
1R-295

REPORTS

DATE: 2001

Site Investigation Report Former Axelson Facility 2703 W. Marland Boulevard Hobbs, New Mexico

September 6, 2001

Prepared for:

Beazer East, Inc. One Oxford Centre, Suite 3000 Pittsburgh, Pennsylvania 15219

Prepared by:

3035 Prospect Park Drive, Suite 40 Rancho Cordova, CA 95670

3035 Prospect Park Drive Suite 40 Rancho Cordova, CA 95670-6070

www.geotransinc.com

916-853-1800 FAX 916-853-1860

Site Investigation Report Former Axelson Facility 2703 W. Marland Boulevard Hobbs, New Mexico RECEIVED

SERVICONNECTION DIVISION

September 6, 2001

Prepared for:

Beazer East, Inc. One Oxford Centre, Suite 3000 Pittsburgh, Pennsylvania 15219

Prepared by:

GeoTrans, Inc. 3035 Prospect Park Drive, Suite 40 Rancho Cordova, California 95670

TABLE OF CONTENTS

	TABLE OF CONTENTS OH Consensation Division. 1
	TABLE OF CONTENTS Conservation Autreau
1.0	INTRODUCTION1
2.0	SITE BACKGROUND2
3.0	SITE SETTING4
4.0	PRIOR INVESTIGATIONS
5.0	2001 INVESTIGATION 9 5.1 Soil Investigation 10 5.1.1 Site Lithology and Field Observations 10 5.1.2 Soil Analytical Results 11 5.2 NORM Investigation 11 5.2.1 Soil Investigation 12 5.2.2 Exposure Survey 12 5.2.3 Results of NORM Site Investigation 12 5.2.3.1 NORM Concentrations in Soils 12 5.2.3.2 Exposure Survey Results 13
	5.2.3.2 Exposure Survey Results 13 5.3.1 Grab Groundwater Sampling 13 5.3.2 Existing Monitor Wells 13 5.3.3 Monitor Well Installation and Development 14 5.3.4 Groundwater Elevation and Movement 14 5.3.5 Monitor Well Sampling 15 5.3.6 Monitor Well Analytical Results 15 5.4 Water Well Abandonment 16 5.5 Sludge Material Investigation 17 5.5.1 Septic Tank Sampling 17 5.5.2 Concrete Catch Basins Sampling 17 5.5.3 Sludge Analytical Results 18
6.0	CONCLUSIONS AND RECOMMENDATIONS

TABLE OF CONTENTS (continued)

TABLES

Table 1	Summary of Soil Analytical Results, Petroleum Hydrocarbons
Table 2	Summary of Soil Analytical Results, Total Solids
Table 3	Summary of Soil Analytical Results, NORM
Table 4	Summary of Monitor Well Construction Details
Table 5	Summary of Water Level and Groundwater Flow Data
Table 6	Summary of Groundwater Analytical Results, Petroleum Hydrocarbons
Table 7	Summary of Groundwater Analytical Results, VOCs and SVOCs
Table 8	Summary of Groundwater Analytical Results, PAHs
Table 9	Summary of Groundwater Analytical Results, WQCC
Table 10	Summary of Groundwater Analytical Results, Dissolved RCRA 8 Metals
Table 11	Summary of Sludge Analytical Results, Petroleum Hydrocarbons and
	Total Solids
Table 12	Summary of Sludge Analytical Results, VOCs
Table 13	Summary of Sludge Analytical Results, SVOCs
Table 14	Summary of Sludge Analytical Results, TCLP RCRA 8 Metals
Table 15	Summary of Sludge Analytical Results, RCI

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plot Plan
Figure 3	Historical Sampling Locations
Figure 4	Sampling Locations, June 2001
Figure 5	Groundwater Elevation Contour Map, June 2001
Figure 6	Summary of Groundwater Petroleum Hydrocarbon Results, June 2001
Figure 7	TPH-G Groundwater Contour Map, June 2001
Figure 8	TPH-D Groundwater Contour Map, June 2001

APPENDICES

Appendix A	Summary of 1995 Sampling Results
Appendix B	1995 Soil Boring Logs
Appendix C	2001 Laboratory Data and Chain-of-Custody Documentation
Appendix D	2001 Soil Boring and Monitor Well Logs
Appendix E	2001 SESI NORM Survey and Site Investigation Report
Appendix F	2001 Monitor Well Development Data Sheets
Appendix G	2001 Monitor Well Survey Data
Appendix H	2001 Monitor Well Sampling Data Sheets

1.0 INTRODUCTION

This report presents the results of the soil, groundwater and naturally occurring radioactive material investigation conducted by GeoTrans, Inc. (GeoTrans), during June 2001, for Beazer East, Inc. and Halliburton at the former Axelson, Inc. facility located at 2703 West Marland Boulevard, Hobbs, New Mexico (Site). A summary of the previous investigations conducted at the Site is also provided to assist in developing an overall understanding of the site conditions. A Site location map is presented on Figure 1 and a Site facility layout map is presented on Figure 2.

The Site is privately owned and currently leased to Reef Chemical, however, some of the Site's environmental liabilities are retained by Beazer East, Inc., on behalf of Carisbrook Industries.

The current investigation, documented in this report, was conducted in accordance with the Site Assessment Work Plan, Former Axelson Facility, 2703 W. Marland Boulevard, Hobbs, New Mexico (HSI GoeTrans, October 2000) (Work Plan) and in accordance with the New Mexico Hazardous Waste Bureau (HWB) letter dated March 9, 2001, the New Mexico Radiation Protection Program (RPP) letter dated March 20, 2001 and the New Mexico Oil and Conservation Division (OCD) letter dated March 29, 2001.

The objectives of the recently completed investigations were to: 1) characterize the onsite extent of subsurface petroleum hydrocarbon impacts in soil and groundwater in the vicinity of the septic tank and associated leach line(s); 2) characterize the sludge material in the concrete catch basins and septic tank located at the Site; 3) establish the on-site distribution of naturally occurring radioactive material in soil; and 4) evaluate the horizontal extent of potential groundwater impacts at the Site.

The remainder of this report is organized in eight sections:

- Section 2.0 Site Background;
- Section 3.0 Site Setting;
- Section 4.0 Prior Investigations;
- Section 5.0 2001 Investigation; and
- Section 6.0 Conclusions and Recommendations.

2.0 SITE BACKGROUND

The Site is owned by Mr. William Staggs and was leased to Axelson, Inc. (Axelson) from 1980 to approximately 1997. Axelson used the Site to repair submersible rod sucker oil pumps and rods. The Site was unoccupied from 1997 until mid-1999, when the Site was leased by Performance Lift, Inc., an equipment distribution company. Performance Lift sold new equipment; any spent or excess fluids generated during nominal cleaning or repairing were contained and disposed by an outside vendor (Safety Kleen). Performance Lift occupied the Site until August 2000. The Site was unoccupied from August 2000 until January 2001, when Reef Chemical leased the Site. Reef Chemical, an oil field chemical distribution company, stores the following types of chemicals at the Site: corrosion inhibitors, parafin chemicals, scale inhibitors, water treatment chemicals, surfactants and bio-sides (for the treatment of bacteria). These chemicals are stored in above ground storage tanks and 55-gallon drums at the Site. Secondary containment is provided for all of the above ground storage tanks.

The Site occupies approximately 1.2 acres, with approximately 6,700 square feet of covered area (primarily occupied by the office/shop building). The shop portion of the building contains two concrete catch basins, that are connected to an exterior septic tank and associated leach line(s). The site septic tank (Figure 2) is reportedly still connected to the catch basins and has not been pumped out since at least 1990. The location, configuration and condition of the leach line(s) are not known. The restrooms located at the Site are connected to the City of Hobbs municipal sewer system.

A water well is located in the northwestern corner of the Site, as shown on Figure 2. A metal plate has been welded on top of the water well and reportedly the well has not been used since at least 1993. The well construction details, including total depth and well screen, are unknown. According to Mr. William Staggs, the current property owner, the well has been at the Site since at least the mid-1960s when the Site was owned by Mr. E.W. Cox.

A small, storage building was formerly located west of the office portion of the main building, as shown on Figure 2. This storage building was reportedly removed in 1997. A shack located south of the building was reportedly removed in 1999.

The Axelson operations consisted of cleaning and repairing submersible rod sucker oil pumps and rods. Equipment received at the Site for servicing was initially screened for Naturally Occurring Radioactive Materials (NORM) using a portable Geiger counter. Scale material on the equipment occasionally contained NORM. The scale material was cleaned off the equipment and stored in 55-gallon drums along the fenced area at the southeastern corner of the Site. The NORM impacted material was returned to the

P:\PROJECTS\BEAZER\P718\T101\site_invst_report.doc

oil company that generated the NORM for appropriate disposal. Pumps and miscellaneous parts were stored along the western angled portion of the Site, as shown on Figure 2.

Prior to repair, rod sucker oil pumps and rods were cleaned at an outdoor staging area when they were returned from the production fields. The wash water and sludge generated during the cleaning operations was contained in an above ground 7,000-gallon wash vat tank from 1994 through 1997 (Figure 2). The wash vat tank was self-contained and not connected to the septic tank. Wash water and sludge material was reportedly directed to the septic tank prior to installation of the wash vat tank.

A 500-gallon gasoline underground storage tank (UST) was formerly located south of the septic tank. The UST reportedly was removed by the Site owner in 1993. Additional information regarding the former gasoline tank is unknown. Axelson did not use the UST; therefore, the Site investigation activities did not address potential concerns associated with the former gasoline UST.

3.0 SITE SETTING

The Site is located within the Southern Plains physiographic district. The Site soils consist of 17 to 19 feet of gray to brown silty sand and sandy silt. This is underlain by 3 to 6.5 feet of hard, brown, indurated sandstone, which is underlain by a brown, silty sand material. The Site is underlain by Pliocene Series of the Tertiary Ogallala Formation. The Ogallala Formation is a thick sequence of interbedded sand, silt and clay overlain by a well indurated calcareous sandstone.

The Ogallala Aquifer, identified within the Ogallala Formation, is a drinking water supply aquifer. Groundwater is located approximately 80 feet below ground surface (bgs) within the Ogallala Aquifer in the vicinity of the Site. There are no groundwater supply wells within a one mile radius of the facility. As mentioned in Section 2.0, a water well is located in the northwestern portion of the site, however, this is not a water supply well.

A 1995 soil and groundwater investigation at the Site identified perched groundwater approximately 30 to 32 feet bgs. During the June 2001 soil and groundwater investigation at the Site, perched groundwater was present at approximately 35 to 36 feet bgs.

4.0 PRIOR INVESTIGATIONS

Environmental Management and Engineering, Inc. (EME) performed a screening level subsurface investigation at the Site in February 1995 and identified Site soil and groundwater impacts. Soil and groundwater samples were collected at the Site to assess the nature and extent of impacts associated with the septic tank and associated leach field and the concrete catch basins, as shown on Figure 3. Soil and groundwater analyses included total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and RCRA 8 Metals (including arsenic, barium, cadmium, total chromium, lead, mercury, selenium and silver). Surface soil samples were collected and analyzed for NORM. In addition, sludge samples were collected from each of the concrete catch basins, the septic tank and the wash vat tank for NORM, TPH, and RCRA 8 Metals analyses.

A summary of the historical analytical results is presented in Appendix A. The soil analytical results are presented in Tables A-1 through A-5 and the groundwater analytical results are presented in Tables A-6 through A-8. The 1995 laboratory analytical data sheets are also included in Appendix A.

The 1995 EME analytical results are compared to applicable regulatory action levels. The OCD recommended remediation action level for TPH in soil is 100 milligrams per kilogram (mg/kg). Other soil analytical results are compared to EPA Region 6 Human Health Medium-Specific Screening Levels (HHSLs) for industrial soils. The groundwater analytical results are compared to New Mexico Water Quality Control Commission Ground Water Standards (WQCCs) and/or the EPA Drinking Water Maximum Contaminant Levels (MCLs). When both a WQCC and MCL value were listed for a contaminant, the more stringent value was used for comparison.

4.1 1995 Soil Investigation

Soil samples were collected from eight soil borings, one background boring, four sludge sample locations, and eleven surface soil sample locations to characterize the nature and extent of potential impacts to Site soils. The areas investigated include: the septic tank and associate leach line(s); the catch basins; one background location; and areas with historic NORM use. Boring logs created by EME during their soil investigation are presented in Appendix B.

4.1.1 Septic Tank and Associated Leach Line(s)

Eight borings were drilled and sampled in the vicinity of the septic tank and associated leach line(s), as presented on Figure 3. Borings H1-2, H1-4, H1-5, and H1-6, drilled with a hollow stem auger rig, extended to depths of 20, 18, 14, and 17 feet bgs, respectively, where refusal was encountered. Borings H1-1, H1-3, H1-7, and H1-8,

\\SAC-SRV1\VOL1\DATA\PROJECTS\BEAZER\P718\T101\site_invst_report.doc

drilled with hollow stem auger and air rotary rigs, extended to 37 feet bgs. Perched groundwater was encountered in borings H1-1, H1-3, H1-7 and H1-8 at approximately 30 to 32 feet bgs. Soil borings H1-1, H1-3, and H1-7 were converted to two-inch diameter groundwater monitoring wells and labeled as MW-1, MW-2, and MW-3, respectively.

Visual petroleum impacts and odors were reported in boring H1-1 from 7 to 32 feet bgs; perched groundwater was present at 32 feet bgs. Visual petroleum impacts and odors were also noted in boring H1-2 from 9 to 18 feet bgs. A "solvent" odor was noted at approximately 15 feet bgs in boring H1-2. Visual impact and odors were not observed in borings H1-3 through H1-8.

Selected soil samples from borings H1-1 through H1-8 were analyzed for TPH, VOCs, SVOCs, and RCRA 8 Metals, as shown in Tables A-1 through A-4 (Appendix A). Six of the eleven soil samples contained TPH at concentrations greater than the OCD action level. These TPH concentrations were detected at depths of up to 29 feet bgs. The soil VOC, SVOC, and RCRA 8 Metal analytical results were below the EPA HHSLs for industrial soils.

One sludge sample was collected from the septic tank and one sludge sample was collected from the former wash vat tank. These samples were analyzed for TPH and RCRA 8 Metals. Both sludge samples contained TPH concentrations that exceeded the OCD action level, however, the metal results were below the EPA HHSLs for industrial soils.

4.1.2 Catch Basins

Two sludge samples were collected from the concrete catch basins. The sludge samples were analyzed for TPH, VOCs, and RCRA 8 Metals. Both sludge samples contained TPH concentrations that exceeded the OCD action level. The sludge samples did not contain detectable concentrations of VOCs. RCRA 8 metal results for the sludge samples were below the EPA HHSLs for industrial soils.

4.1.3 Background Sample

One surface background soil sample (HBG-1) was collected along the northeast boundary of the Site, as shown on Figure 3. The background area was considered to be unimpacted by normal facility operations. The background soil sample was analyzed for TPH and RCRA 8 Metals. The TPH and RCRA 8 metals concentrations were below the corresponding regulatory action levels.

4.1.4 NORM Sampling

EME conducted a Site survey of radiation levels using a 2.0-inch thin window GM detector. The survey map was used to identify areas potentially impacted by NORM. Fourteen surface soil samples, collected from 0 to 0.5 feet bgs, and four sludge samples were collected and analyzed for NORM (specifically radium 226 and 228). Analytical NORM results are presented in Table A-5 (Appendix A) and sample locations are identified in Figure 3.

Six surface soil samples contained radium 226 at concentrations above the proposed State of New Mexico NORM regulatory action level for Radium 226 of 30 pico Curies per gram (pCi/gm). One sludge sample from the concrete catch basins contained radium 226 at concentrations above the proposed regulatory action level.

4.2 1995 Groundwater Investigation

Three soil borings were completed as monitoring wells at the Site to help characterize the potential Site impacts to groundwater. All three groundwater monitoring wells (MW-1 through MW-3) were completed as two-inch diameter wells and are screened from 25 to 35 feet bgs. In addition, a grab groundwater sample was collected from boring H1-8 and a water sample was collected from the water well located in the northwest corner of the Site. The water samples were analyzed for TPH, VOCs, and RCRA 8 Metals. The water analytical results are summarized in Tables A-6 through A-8 (Appendix A).

The groundwater flow direction and gradient had not been established at the Site since the elevations of the monitoring wells had not been surveyed. A review of the 7.5 Minute Series Hobbs West Quadrangle, New Mexico topographic map, indicates the regional groundwater flow direction in the vicinity of the Site is likely to be toward the south-southeast.

The TPH concentrations detected in groundwater samples ranged from less than 1 milligram per liter (mg/L) in the water well sample located in the northwest corner of the Site up to 680 mg/L in monitor well MW-1, located adjacent to the septic tank. The EPA has published Suggested No-Adverse Response Level (SNARL) concentrations for gasoline, diesel and kerosene of 5, 100 and 100 micrograms per liter (μ g/L), respectively. The TPH analyses performed by EME in 1995 did not speciate the hydrocarbons, therefore, a comparison of the 1995 EME data to the SNARLs is not possible.

Groundwater samples collected from the monitoring wells and the grab groundwater boring contained concentrations of VOCs that exceeded some of the WQCCs or MCLs. The sample from the existing water well did not contain VOCs at concentrations that exceeded regulatory action levels.

Arsenic and barium were the only RCRA 8 Metals detected in the Site groundwater. The arsenic concentrations slightly exceeded the MCL. The barium concentrations were all below the MCL. It is unknown whether the 1995 water samples were field filtered, therefore, it is unknown whether the metal results are representative of dissolved or total metal concentrations.

4.3 1997 NORM Cleanup Activities

Safety & Environmental Solutions, Inc. (SESI) performed NORM cleanup activities at the Site for Chevron U.S.A. during May 1997. A NORM survey was conducted at the Site to evaluate the presence of NORM at the Site. Rods and pipes stored in the southeast corner of the Site and soil near the pipe storage area in the western portion of the Site contained NORM that exceeded the State actions levels. The New Mexico state action level for NORM is 50 micro roentgens/hour.

The NORM cleanup activities reportedly consisted of removing the impacted soils, containerizing the soil in drums, and removing the drums and impacted rods and pipes to a centralized controlled storage facility operated by Chevron in Eunice, New Mexico. This work was performed with approval from the Radiation Licensing and Registration Section of the New Mexico Environmental Department. The depth and volume of soils removed was not reported by SESI.

5.0 2001 INVESTIGATION

This section presents a description of the Site Investigation conducted during June 2001, the methods used to complete the investigations, and soil, NORM and groundwater sample analytical results.

The objectives of the investigation were to characterize the on-site extent of soil and groundwater petroleum hydrocarbon impacts, evaluate the horizontal extent of groundwater impacts at the Site, and evaluate the on-site distribution of NORM in soil. The investigations focused on the eastern portion of the Site, specifically in the vicinity of the septic tank and associated leach line(s) (Figure 2).

Field activities included: drilling six soil borings and collecting soil samples; installing, developing, sampling and surveying four groundwater monitor wells; collecting groundwater level measurements at the new monitor wells; conducting a NORM survey; and collecting shallow soil samples from six locations for NORM laboratory analysis.

Soil samples were collected at six boring locations (SB-1 through SB-6, shown on Figure 4) using an air rotary drill rig. Four of the six soil borings were converted to groundwater monitor wells (MW-4, MW-5, MW-6 and MW-7). In addition, soil samples were collected from six shallow borings for NORM analysis at locations Borehole #1 through Borehole #6 shown on Figure 4.

The soil and groundwater samples were analyzed by Columbia Analytical Services in Kelso, Washington for: 1) petroleum hydrocarbons using EPA Method 8015 Modified; 2) VOCs using EPA Method 8260B; 3) SVOCs using EPA Method 8270; 4) dissolved RCRA 8 Metals; 5) toxic characteristic leaching procedure (TCLP) RCRA 8 Metals; 6) New Mexico Water Quality Control Commission (WQCC) metals and major cations and anions; 7) polycyclic aromatic hydrocarbons (PAHs) using EPA Method 8270C SIM; 8) total dissolved solids (TDS); 9) reactivity, corrosivity and ignitability (RCI); and 10) radium 226/228.

A copy of the laboratory analytical data sheets and chain-of-custody documentation are presented in Appendix C. Field procedures for the investigation are described below. Analytical results of the soil, NORM, and groundwater investigations are discussed in the following sections and presented in Tables 1 through 10.

5.1 Soil Investigation

Six soil borings were sampled to evaluate the distribution of petroleum hydrocarbons in soil in the vicinity of the septic tank and associated leach line(s), as presented on Figure 4. Four of the soil borings were completed as groundwater monitoring wells.

An air rotary drill rig was used to drill the on-site soil borings, based on review of previous boring logs for the Site. The air rotary drill rig successfully completed the soil borings to a total depth of 35-45 feet.

Soil samples were collected at 5-foot intervals from ground surface to the total depth at each boring location, and in accordance with the Work Plan. Soil samples were visually inspected in the field to establish the soil texture and moisture content and were visually classified using the United Soil Classification System (USCS). The soil samples were also collected for field screening using a photoionization detector (PID) and potential laboratory analysis. The field PID readings are included on the soil boring logs presented in Appendix D. Groundwater was encountered in borings SB-1, SB-2, SB-5, SB-6 at approximately 35 to 36 feet in depth. Borings SB-3 and SB-4 only extended to 35 feet bgs, groundwater was not encountered in these borings.

The 5, 10 and 15-foot soil samples from the borings in the vicinity of the septic tank and associated leach line(s) (SB-1 through SB-4) were analyzed for TPH and total solids. The 5-foot soil samples from borings SB-5 and SB-6 were also analyzed for TPH and total solids. Deeper soil samples from these borings were archived, pending the analytical results of the shallower soil samples. Based on the initial results of the samples from borings SB-1 and SB-4, the 20, 25, 30 and 35 foot soil samples from these borings were also analyzed for TPH and total solids to evaluate the vertical distribution of petroleum hydrocarbons. The soil samples were shipped under chain-of-custody protocols to Columbia Analytical Services for analysis.

After sampling, soil borings SB-3 and SB-4 were backfilled with a cement sand slurry to ground surface. Soil borings SB-1, SB-2, SB-5 and SB-6 were completed as monitor wells.

5.1.1 Site Lithology and Field Observations

Site lithology was characterized by field observation of soil samples collected at five foot intervals in each of the six borings. The site is underlain by 15 to 20 feet of poorly graded, brown sandy silt or silty sand. Sandy gravel was encountered in one boring (SB-5) to a depth of five feet. A hard pan layer was encountered in two borings (SB-1, SB-3) at a depth of 20 feet. In all borings, poorly graded sand of varying color was detected from depths of 15 to 20 feet bgs to the total depth drilled of 35 to 45 feet. The overburden material observed is consistent with 1995 investigation.

Mild petroleum odors were present in the soil samples collected at approximately 14 feet bgs to total depth in borings SB-1, SB-3 and SB-4. A very mild petroleum odor was present in soil samples collected at boring SB-2 from approximately 26 to 44 feet bgs. No staining or discoloration was present in the soil samples collected. No petroleum odors, staining or discoloration were present in the soil samples collected from borings SB-5 and SB-6.

5.1.2 Soil Analytical Results

A summary of the soil analytical results is presented in Tables 1 and 2. TPH concentrations detected in soil exceed the OCD action level of 100 ppm in borings SB-1 and SB-4. TPH concentrations in borings SB-2, SB-3, SB-5 and SB-6 are below the OCD action level.

The highest concentrations of diesel range, gasoline range and motor oil range petroleum hydrocarbons detected in boring SB-1 (MW-4), located approximately three feet east of the septic tank, were at 20 feet bgs, coincident with the depth of the hard pan layer at this location. The petroleum hydrocarbon concentrations in boring SB-1 decrease with the depth below the hard pan layer, however, the bottom sample at 35 feet bgs exceeds the OCD action level.

The highest concentrations of diesel range, gasoline range and motor oil range petroleum hydrocarbons detected in boring SB-4, located approximately 25 feet south of the septic tank, were at the 10-foot depth interval. The diesel and gasoline range hydrocarbons exceed the OCD action level for samples below 10 feet bgs. Only the diesel range hydrocarbons exceed the OCD action level at the total boring depth of 35 feet bgs.

Total solids ranged from 84.6 to 97.5 percent in soil samples collected from borings SB-1 through SB-6, as shown on Table 2.

5.2 NORM Investigation

SESI, a state certified NORM surveyor located in Hobbs, New Mexico, conducted the June 2001 NORM survey and subsequent sampling activities conducted at the Site to evaluate the extent of any residual NORM. Based on historical NORM data for the Site, six shallow soil borings were completed in June 2001 in the vicinity of the former borings H1-4A, H2-2A, H2-3A, H2-4A, H2-9A and H2-11A to assess the vertical extent of NORM at the Site. The June 2001 soil borings were sampled at 1, 2, and 3 feet bgs. In addition, a survey of the unpaved area was conducted to identify areas exceeding the exposure level limit. The NORM boring locations are shown on Figure 4. A copy of the SESI NORM Survey and Site Investigation report is included in Appendix E.

The one foot soil sample from each boring location (total of six samples) was analyzed for NORM and the remaining soil samples were archived, pending the analytical results of the shallower soil samples. Based on the NORM results for the 1-foot soil samples at borehole BH#5, the 2 and 3-foot soil samples were also analyzed for NORM. No other soil samples were analyzed.

5.2.1 Soil Investigation

A one-foot soil sample was collected from each of six boring locations (BH#1 through BH#6) for analysis of radium-226 and radium-228. Samples were also collected at two and three feet bgs; the deeper samples were archived pending the analytical results of the one foot samples. These locations were near the 1995 sampling locations that had elevated NORM results. Soil samples were analyzed for Radium-226 and Radium-228 using EPA Method 901.1 Modified. Results for all six soil borings are included in Table 3.

5.2.2 Exposure Survey

A survey of the unpaved areas of the facility was conducted on August 23, 2001. The intent of this survey was to identify and delineate areas of the Site that exceed the exposure limit of 50 micro roentgens per hour (μ R/hr). The survey was performed with a NaI scintillation probe attached to a ratemeter calibrated for exposure readings. A 20 feet x 20 feet grid was outlined beginning in the southwest corner of the Site. A natural background level of 11 μ R/hr was determined at an off-site location. The probe was held at a height of two-inches above the surface and readings were observed along the lines of the grid. Areas along the grid that exceeded 15 μ R/hr were further investigated to determine lateral extent.

5.2.3 Results of NORM Site Investigation

5.2.3.1 NORM Concentrations in Soils

Soil results for Radium-226 ranged from 3.36 pCi/gm at BH#2 to a maximum concentration of 49.52 pCi/gm at BH#5. Radium-228 concentrations ranged from 0.43 pCi/gm at BH#1 to 1.82 pCi/gm at BH#5. Based on the initial results, the 2 and 3-foot soil samples from boring BH#5 were also analyzed for NORM. The reported radium-226 concentrations for these samples were 40.22 pCi/gm at 2 feet and 30.6 pCi/gm at 3 feet bgs. The radium-228 concentrations at boring BH#5 were less than 2 pCi/gm. The NORM soil results are included in Table 3.

Exempt quantities of Radium-226 are defined by the New Mexico Environment Department in the New Mexico Administrative Code Title 20, Chapter 3, Part 1, Subpart

14 (20 NMAC 3.1, Subpart 14). Exempt concentrations of radium-226 in soil are less than 30 pCi/g (above background), in a 15 centimeter (cm) layer, averaged over 100 square meters. All other NORM concentrations should be less than 150 pCi/g (above background), in a 15 cm layer, averaged over 100 square meters. Therefore, soils exceeding the exempt quantity standard were found at boring BH#5 to a depth of 3 feet (maximum depth sampled).

5.2.3.2 Exposure Survey Results

The maximum exposure reading allowed for exempt NORM (20 NMAC 3.1.1403.C) is 50 μ R/hr including background. The exposure survey identified three areas where exposure measurements were greater than 15 μ R/hr (Appendix E, Figure 3). Exposure levels between 15-35 μ R/hr were measured along the northwest fence-line, (location of the former pipe and parts storage area). A second area was identified in the southeast corner of the facility. Exposure readings in this area ranged from 15-30 μ R/hr. Both these areas exhibited exposure readings below the 50 μ R/hr limit for exempt quantities. A third area was identified south of the former wash vat. The maximum exposure reading for this small area (less than six square feet) was 1150 μ R/hr. All other areas covered by the survey exhibited exposure levels less than 15 μ R/hr.

5.3 Groundwater Investigation

Groundwater sampling was conducted to characterize the horizontal extent of petroleum hydrocarbons, VOCs and metals in groundwater at the Site in the vicinity of the septic tank and associated leach line(s). In addition, the groundwater investigation was conducted to assess the Site groundwater flow direction and gradient. The groundwater investigation consisted of: 1) attempting to collect grab groundwater samples at two boring locations; 2) installing four monitor wells; 3) developing, sampling and surveying the newly installed monitor wells; and 4) and collecting water level data. The monitor wells locations are shown on Figure 4.

5.3.1 Grab Groundwater Sampling

Two boring locations (SB-3 and SB-4) were completed to 35 feet bgs in the vicinity of the septic tank. The boreholes were dry and left open to allow groundwater to enter the borehole. After 24 hours, the boreholes were still dry. Therefore, grab groundwater samples were not collected at these locations.

5.3.2 Existing Monitor Wells

In accordance with the Work Plan, the three existing monitor wells (MW-1 through MW-3) were to be redeveloped and sampled in conjunction with sampling the new wells at the Site. The monitor well construction details are presented in Table 4 and the well

locations are shown on Figure 4. The existing wells are completed with a screened interval from 25 to 35 feet in depth.

Water level information was collected at each of the existing wells on June 9 and 11, 2001, as shown on Table 5. Wells MW-1 and MW-2 were dry, therefore, the wells were not redeveloped or sampled. Approximately 0.5 to 2-inches of an oily/grease sludge material was present on the tip of the water level sounder at each well. Well MW-3 contained approximately 0.35 feet of water, an insufficient amount to sample, and an insufficient amount for well redevelopment.

5.3.3 Monitor Well Installation and Development

Four monitor wells were installed at the Site in 2001 to provide permanent locations for establishing the groundwater flow direction, gradient and groundwater quality at the Site, in accordance with a request from OCD. The monitor well locations were based on the prior soil and grab groundwater analytical results. The monitor wells were installed at the Site using an air rotary drill rig. The monitor well construction details are presented in Table 4 and the well locations are shown on Figure 4. The monitor well boring logs are included in Appendix D.

Well MW-7 is upgradient of the septic tank, well MW-6 is cross-gradient of the septic tank and wells MW-4 and MW-5 are downgradient of the septic tank and associated leach line(s). The wells are completed with two-inch diameter PVC casing.

The new monitor wells were developed by surging for approximately five to ten minutes followed by pumping at least ten casing volumes with a submersible pump. Physical groundwater parameters (including pH, temperature and electrical conductivity) were measured in the field and recorded on well development data sheets after each purge volume. Physical groundwater parameters were measured until the parameters stabilized. The monitor well development data sheets are included in Appendix F.

Drill cuttings and decontamination, development and sampling purge water were collected in 55-gallon drums, labeled, and stored on-site pending the analytical results. The drums are stored along the fence at the eastern Site boundary.

5.3.4 Groundwater Elevation and Movement

Water level data were collected from the new wells to establish the direction and gradient of groundwater at the Site. Groundwater elevations were measured twice, once prior to well development and again prior to purging and sampling.

The new and existing monitor wells were surveyed by Basin Surveys of Hobbs, New Mexico. The top-of-casing (TOC) elevation and location of each well was surveyed to a

 $\verb|\SAC-SRV1| VOL1 \\ | DATA| PROJECTS \\ | BEAZER| P718| T101 \\ | site_invst_report. docodord | SAC-SRV1| VOL1| \\ | DATA| PROJECTS \\ | BEAZER| P718| T101 \\ | site_invst_report. docodord | SAC-SRV1| \\ | VOL1| \\ | DATA| PROJECTS \\ | BEAZER| P718| \\ | T101| \\ | site_invst_report. docodord | SAC-SRV1| \\ | VOL1| \\ | VOL1| \\ | SAC-SRV1| \\ | VOL1| \\ | VOL$

temporary benchmark placed at the Site by Basin Surveys. A copy of the monitor well survey data is included in Appendix G. The survey data and water level data were used to evaluate the direction and gradient of groundwater at the Site.

Depth to groundwater ranged from 34.63 to 35.63 feet bgs. A summary of the water level data, groundwater flow direction and gradients is presented in Table 5. During June 2001, the groundwater flow direction was to the southeast (S52°E) and the gradient was 0.0014 feet per foot (ft/ft).

Free product material was not measured in any of the new monitor wells at the Site during June 2001.

5.3.5 Monitor Well Sampling

Groundwater samples were collected from wells MW-4 through MW-7. Wells MW-1 and MW-2 were dry and MW-3 did not contain sufficient water for sample collection.

The new wells were purged using a submersible pump with disposable tubing until three casing volumes were removed before samples were collected for analysis. Physical groundwater parameters (including pH, temperature and electrical conductivity) were measured and recorded after each purge volume until they stabilized. Mild petroleum odors were observed in well MW-4. The monitor well sampling event data sheets are included in Appendix H. Groundwater samples were collected using a clean, new disposable bailer at each well, the samples were placed in laboratory-provided bottles. The samples were labeled, placed in a chilled, insulated container and shipped under chain-of-custody protocols to Columbia Analytical Services for analysis.

5.3.6 Monitor Well Analytical Results

The monitor well analytical results are presented in Tables 6 through 10. A summary of the petroleum hydrocarbon analytical results for well MW-4 through MW-7 is presented on Figure 6. A duplicate sample was collected from MW-7 and labeled as QC (MW-7). Groundwater contour maps for TPH-G and TPH-D are presented on Figures 7 and 8, respectively.

The wells were sampled for: 1) TPH; 2) VOCs; 3) SVOCs; 4) dissolved RCRA 8 Metals; 5) TCLP RCRA 8 Metals; 6) New Mexico WQCC metals and major cations and anions; 7) PAHs; 8) TDS; 9) reactivity, corrosivity and ignitability, and; 10) radium 226/228.

The laboratory analytical results were compared to EPA published Suggested No-Adverse Response Level (SNARL) concentrations of gasoline and diesel of 5 and 100 ug/L, respectively, and to the most stringent criteria provided by the WQCC or the USEPA Drinking Water Maximum Contaminant Levels (MCLs).

Concentrations of petroleum hydrocarbons, 1,2-dichloroethane (1,2-DCA), flouride and total dissolved solids (TDS) exceed the most stringent criteria in select wells. The method detection limit for lead exceeded applicable criteria and could not be evaluated. All the remaining constituents were detected at concentrations below the applicable criteria.

The highest concentrations of petroleum hydrocarbon constituents were detected in MW-4, located east of the septic tank. Petroleum hydrocarbon concentrations that exceeded the SNARL were also detected in MW-5 and MW-7 (Table 6). Three VOCs were detected in the groundwater, but only 1,2-DCA was detected at a concentration (in MW-6) that exceeds the MCL, but is below the WQCC (Table 7). Concentrations of PAHs did not exceed the WQCC and/or MCL action levels (Table 8). Fluoride was detected at a concentration marginally in excess of the WQCC in MW-7, but at a concentration below the MCL. Concentrations of TDS exceeded the WQCC and MCL in MW-4, and exceeded the MCL in MW-5, MW-6 and MW-7 (Table 9).

Concentrations of dissolved RCRA metals did not exceed the WQCC or MCL actions levels. The detection limit for lead exceeded the WQCC and MCL action levels, as shown on Table 10.

The ground and surface water protection criteria set forth by the WQCC in the New Mexico Administrative Code (MNAC 20.6.2.3103), establishes a combined radium-226 and radium-228 concentration of 30 pCi/L (picocuries per liter). The EPA Drinking Water MCL for radium-226 and radium-228 combined is 5 pCi/L. All combined radium-226 and radium-228 concentrations in groundwater were below the WQCC standard of 30 pCi/L (Table 9). Combined radium-226 and radium-228 concentrations from samples collected at MW-5 and QC (MW-7) exceed the MCL of 5 pCi/L.

5.4 Water Well Abandonment

In accordance with the October 2000 Work Plan, the on-site water well was scheduled to be abandoned as part of the site investigation field activities. The OCD deferred comment regarding the "plugging of the on-site water well located in the northwest part of the yard", in their March 29, 2001 letter. Therefore, the water well was not abandoned during the June 2001 Site investigation field.

Reportedly, this water well has not been used since at least 1993. A metal plate has been welded on top of the water well casing, however, a small opening is present in the weld which provides access to the interior of the well for surface runoff (i.e., soil, rain water, etc.). The water well may be a potential conduit to the groundwater aquifer beneath the Site.

\\SAC-SRV1\VOL1\DATA\PROJECTS\BEAZER\P718\T101\site_invst_report.doc

The New Mexico State Engineers Office in Roswell maintains water well records for Lea County. This office was contacted to obtain historical construction information pertaining to the water well (i.e., depth, screened interval, etc.). Records were reviewed by legal property description, prior owner's name and available site maps. No records for the on-site water well, however, were on file with the State Engineers Office.

5.5 Sludge Material Investigation

The on-site septic tank and two, concrete catch basins were sampled to characterize the sludge material and evaluate if this material was a RCRA hazardous waste pursuant to EPA CFR 40 part 261. The sample locations are shown on Figure 4.

The sludge samples were analyzed by Columbia Analytical Services for TPH using EPA Method 8015 Modified; total solids using EPA Method 160.3 Modified; SVOCs using EPA Method 8270; VOCs using EPA Method 8260B; reactivity, ignitability and corrosivity; and toxic characteristic leaching procedure (TCLP) for RCRA 8 Metals.

5.5.1 Septic Tank Sampling

A sludge sample was collected through an opening in the top of the concrete septic tank using a hand auger. The sludge material was present approximately six feet below the top of the septic tank and was at least one foot thick. The bottom of the septic tank was not encountered (at least eight feet deep). The sample consisted of a viscous black material with a strong petroleum odor.

The septic tank sample was placed in a laboratory supplied container, labeled ("septic tank"), placed in a chilled, insulated container and shipped under chain-of-custody protocols to Columbia Analytical Services for analysis.

5.5.2 Concrete Catch Basins Sampling

Sludge samples were collected from the two concrete catch basins located within the building using a hand auger. The catch basins were approximately 3 to 5 feet deep, contained approximately 4 to 8-inches of sludge material, and approximately 4-inches of water. Debris material (including paper, wire, metal, rubber, and plastic) was present in both catch basins. Each sample consisted of a viscous black material with a strong petroleum odor.

The catch basin sludge samples were placed in laboratory supplied containers, labeled ("CB-1" and "CB-2"), placed in a chilled, insulated container and shipped under chain-of-custody protocols to Columbia Analytical Services for analysis.

5.5.3 Sludge Analytical Results

A summary of the sludge analytical results is presented in Tables 11 through 15. The sampling results indicate that the sludge material is not a RCRA hazardous waste, and consists primarily of petroleum hydrocarbon compounds.

Concentrations of TPH in the sludge samples exceed the OCD action level, as shown on Table 11. Various VOCs and SVOCs were detected at low concentrations in all of the sludge samples collected (Tables 12 and 13). No exceedences of TCLP RCRA 8 metals were detected in any of the samples, and no indications of ignitability or corrosivity were detected (Table 14 and 15).

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The June 2001 investigation indicates that the Site is underlain by 15 to 20 feet of poorly graded, brown sandy silt or silty sand. A hard pan layer is present intermittently across the Site. Perched groundwater is located approximately 35 to 36 feet bgs, however, the historical depth to the perched water has fluctuated. The perched groundwater flows to the southeast and has a hydraulic gradient of 0.0014 foot/foot. The Ogallala Aquifer, a drinking water supply aquifer, is approximately 80 feet bgs. There are no water supply wells within a one mile radius of the Site.

The investigation confirmed that the Site soils are impacted by TPH and the perched groundwater is impacted with TPH, 1,2-DCA, fluoride, TDS and radium 226 at concentrations which exceed the regulatory limits (the MCL or the WQCC). The horizontal extent of the perched water impacts has not been delineated. The source of the Site impacts is attributed to the septic tank and leach lines(s).

Soil analytical results indicate that NORM was detected above regulatory action levels at one boring location to at least 3 feet bgs. The exposure survey identified one area of the unpaved portion of the facility where exposure measurements were greater than the maximum exposure level allowed for exempt NORM (20 NMAC 3.1.1403.C) of 50 μ R/hr. This area was identified south of the former wash vat and the maximum exposure reading for this small area (less than six square feet) was 1150 μ R/hr.

The sludge material in the two catch basins and the septic tank is characterized as a non-RCRA hazardous waste.

6.2 Recommendations

The recommended actions to complete the characterization of perched groundwater impacts at the Site include installing two monitoring wells downgradient of the Site. In addition, monitoring wells MW-1 through MW-3 should be abandoned since they are no longer screened in the perched groundwater.

The total depth of the on-site water well should be measured and a grab groundwater sample should be collected. After sample collection, the on-site water well should be abandoned as it is not properly sealed and is a potential conduit to the perched groundwater at the Site.

The two catch basins and the septic tank should be cleaned out and the sludge material properly disposed of as a non-RCRA hazardous waste. The catch basins and septic tank should be backfilled with cement and properly abandoned.

The two identified areas of regulated NORM should be delineated both vertically and horizontally. Once the delineation is complete, the regulated NORM soil material should be removed and properly disposed.

TABLES

Table 1 Summary of Soil Analytical Results Petroleum Hydrocarbons

June 2001

Sample ID	Sample Depth (feet)	TPH-d	TPH-g	TPH-mo
SB-1 (MW-4)	5	21	<10	97
	10	1,300	1,500	270
	15	2,400	2,300	370
	20	6,500	7,000	470
	25	2,100	1,100	190
	30	860	290	94
	35	1,100	490	110
SB-2 (MW-5)	5	<10	<10	<26
	10	<11	<11	<28
	15	<11	<11	<27
SB-3	5	<11	<11	<26
	10	<11	<11	<26
	15	<12	<12	<29
SB-4	5	<10	<10	<25
	10	2,700	1,000	120
	15	1,000	300	46
	20	100	10	31
	25	<10	<10	<26
	30	630	170	58
	35	300	76	43
SB-5 (MW-7)	5	<10	<10	<25
SB-6 (MW-6)	5	<11	<11	<27
NM OCD		100	100	100

Note: All results presented as milligrams per kilogram (mg/kg).

Petroleum Hydrocarbons analyzed using EPA Method 8015 Modified.

Concentrations in bold exceed the NM OCD recommended action level.

NM OCD = New Mexico Oil Conservation Division recommended remediation action level.

TPH-d = Total Petroleum Hydrocarbons as diesel range

TPH-g = Total Petroleum Hydrocarbons as gasoline range

TPH-mo = Total Petroleum Hydrocarbons as motor oil range

Table 2 Summary of Soil Analytical Results Total Solids

June 2001

Sample ID	Sample Depth (feet)	Total Solids (%)
SB-1 (MW-4)	5	94.2
	10	86.4
	15	84.6
	20	85.9
	25	93.9
	30	95.1
	35	92.4
SB-2 (MW-5)	5	94.8
	10	86.3
	15	89.4
SB-3	5	91.5
	10	92.9
	15	86.2
SB-4	5	97.2
	10	87.8
	15	89.6
	20	97.5
	25	95.3
	30	95.2
	35	88.9
SB-5 (MW-7)	5	95.7
SB-6 (MW-6)	5	92.8

Note: All results presented as percent (%)

Total Solids analyzed using EPA Method 160.3 Modified.

Table 3 Summary of Soil Analytical Results NORM

June 2001

Borehole #1 1 Borehole #2 1 Borehole #3 1 Borehole #4 1 Borehole #5 1	le Deptin (pCi/gm)	(pCi/gm)	naun (pCi	radium 228 (pCi/gm)	Total Radium (Ra-226+Ra-228)
	Result	Uncertainty	Result	Uncertainty	(pCi/gm)
	6.13	1.22	0.43	0.16	6.56
	3.36	1.17	0.46	0.16	3.82
	3.64	1.31	0.62	0.21	4.26
	3.64	1.46	0.89	0.27	4.53
2	49.52	4.46	1.82	0.48	51.34
	40.22	3.46	1.52	0.45	41.74
3	30.60	1.40	1.30	0.17	31.90
Borehole #6	4.32	1.4	99:0	0.23	4.98
NM NORM	***************************************	-			30

Note: All results reported as pico Curies per gram (pCi/gm).
Concentrations in bold exceed the proposed State of New Mexico NORM limit.
Radium-226 and Radium-228 analyzed using EPA Method 901.1M

NM NORM = State of New Mexico Naturally Occuring Radioactive Material Limit ft. bgs. = feet below ground surface

Table 4 Summary of Monitor Well Construction Details

June 2001

Well Number	Installation Date	Top of Casing Elevation (ft MSL)	Casing Diameter (inches)	Screen Interval (feet)	As Built Total Depth (feet)
MW-1	2/23/95	3,624.76	2	25-35	35
MW-2	2/23/95	3,624.34	2	25-35	35
MW-3	2/27/95	3,623.94	2	25-35	35
MW-4	6/5/01	3,624.74	2	30-45	45
MW-5	6/5/01	3,624.46	2	29-44	44
MW-6	6/6/01	3,623.97	2	30-45	45
MW-7	6/6/01	3,625.32	2	30-45	45

NOTE: All TOC elevations surveyed by Basin Surveys on June 8, 2001.

Wells MW-1through MW-3 installed by Environmental Management & Engineering, Inc.

Wells MW-4 through MW-7 installed by GeoTrans, Inc.

ft MSL = feet mean sea level

Table 5 Summary of Water Level and Flow Direction Data

June 2001

Well Number	Date	As Built Total Depth (feet)	Measured Depth to Water (feet)	Amount of Water in Well (feet)	Top of Casing Elevation (ft MSL)	Calculated Groundwater Elevation (ft MSL)	Groundwater Gradient Direction	Groundwater Gradient (ft/ft)
MW-1	6/9/01	35	dry *	na	3624.76	na		
	6/11/01	35	dry *	na	3624.76	na		
MW-2	6/9/01	35	dry *	na	3624.34	na		
	6/11/01	35	dry *	na	3624.34	na		
MW-3	6/9/01	35	34.65**	0.35	3623.94	na		
	6/11/01	35	34.65**	0.35	3623.94	na		
MW-4	6/9/01	45	35.35	9.65	3624.74	3589.39		
	6/11/01	45	35.36	9.64	3624.74	3589.38	S52 ⁰ E	0.0014
MW-5	6/9/01	44	35.15	8.85	3624.46	3589.31		
	6/11/01	44	35.15	8.85	3624.46	3589.31	S52 ⁰ E	0.0014
MW-6	6/9/01	45	34.62	10.38	3623.97	3589.35		
	6/11/01	45	34.63	10.37	3623.97	3589.34	S52 ⁰ E	0.0014
MW-7	6/9/01	45	35.62	9.38	3625.11	3589.49		
	6/11/01	45	35.63	9.37	3625.11	3589.48	S52 ⁰ E	0.0014

NOTE: Depth to water measured from mark or notch at top of well casing.

ft MSL = feet above Mean Sea Level na = not applicable

--- = data not available

^{* =} approximately 0.5" to 2" of thick oily grease in bottom of well (no groundwater present).

^{**=} Standing water collected in sump of well. Not representative of perched groundwater.

Table 6 Summary of Groundwater Analytical Results Petroleum Hydrocarbons

June 2001

Sample ID	TPH-d	TPH-g	TPH-mo
MW-4	13,000	4,500	2,500
MW-5	490	140	410
MW-6	<100	<100	<260
MW-7	210	110	380
QC (MW-7)	170	<100	440
SNARL	100	5	

Note: Results reported as micrograms per liter (μg/L=ppb)
TPH analyzed using EPA Method 8015 Modified
Concentrations in bold exceed SNARL
QC (MW-7) sample is duplicate sample for MW-7

TPH-d = Total Petroleum Hydrocarbons as Diesel TPH-g = Total Petroleum Hydrocarbons as Gasoline TPH-mo = Total Petroleum Hydrocarbons as Motor Oil SNARL = EPA Sugessted No-Adverse Response Levels

Table 7 Summary of Groundwater Analytical Results VOCs and SVOCs

June 2001

Sample ID	1,1,1-Trichloroethane (1,1,1-TCA)	1,2-Dichloroethane (1,2-DCA)	Tetrachloroethene (PCE)
MW-4	nd	nd	nd
MW-5	nd	nd	nd
MW-6	2.0	8.0	3.0
MW-7	nd	nd	nd
QC (MW-7)	nd	nd	nd
Trip Blank	nd	nd	nd
MRL	0.5	0.5	0.5
wqcc	60	10	20
MCLs	200	5	5

Note: All results reported as micrograms per liter (µg/L = ppb). Only detected analytes listed.

Volatile Organic Compounds analyzed using EPA Method 8260B

Concentrations in bold exceed the WQCC or MCL values.

Semi Volatile Organic Compounds (SVOCs) not detected in the above listed water samples.

SVOCs analyzed using EPA Method 8270C.

Most stringent comaprision criteria used when both WQCC and MCL values exist.

QC (MW-7) sample is duplicate sample for MW-7

WQCC = New Mexico Water Quality Control Commission Groundwater Standards

MCLs = U.S. EPA Drinking Water Maximum Contaminant Levels

MRL = Method Reporting Limit

Summary of Groundwater Analytical Results Polynuclear Aromatic Hydrocarbons (PAHs) Table 8

June 2001

							<u> </u>
Benzo(g,h,l)perylene	<0.019	<0.02	<0.02	0.023	<0.02	1	ŀ
ənəəsirlins(h,s)znədiO	<0.19	<0.02	<0.02	0.029	<0.02		1
anenyq(bɔ-ɛ,ઽ,t)onebnl	<0.19	<0.02	<0.02	0.03	<0.02	1	-
Benzo(a)pyrene	<0.19	<0.02	<0.02	0.061	<0.02	2.0	0.2
Benzo(k)fluoranthene	<0.19	<0.02	<0.02	0.062	<0.02	1	
Benzo(b)fluoranthene	<0.19	<0.02	<0.02	0.057	<0.02	1	
Chrysene	<0.19	<0.02	<0.02	0.025	<0.02	1	
Benz(a)anthracene	<0.19	<0.02	<0.02	0.024	<0.02		0.1
Pyrene	<0.19	<0.02	<0.02	0.026	<0.02		
Phenantthrene	<0.19	<0.02	0.022	0.071	0.07		
S-Methyinaphthalene	0.037	<0.02	<0.02	<0.02	<0.02		
Sample ID	MW-4	MW-5	9-WM	MW-7	QC (MW-7)	Wacc	MCLs

Note: All results reported as micrograms per liter (µg/L = ppb). Only detected analytes listed. Polynuclear Aromatic Hydrocarbons analyzed using EPA Method 8270 SIM

Concentrations in bold exceed the WQCC or MCL values.

QC (MW-7) sample is duplicate sample for MW-7

Most stringent comaprision criteria listed when both WQCC and MCL values exist.

WQCC = New Mexico Water Quality Control Commission Groundwater Standards MCLs = U.S. EPA Drinking Water Maximum Contaminant Levels (August 2000)

--- = not available

Table 9
Summary of Groundwater Analytical Results
New Mexico Water Quality Control Commission (WQCC)

June 2001

Sample ID	Total Cyanide	Flouride	Nitrate as Nitrogen	TDS	PCBs	Rad	Radium 226 (pCi/L)	Radi (P	Radium 228 (pCi/L)	Total Radium (Ra-226 + Ra-228)
	(mg/L)	_	(mg/L)	(IIIg/L)	(µg/∟)	Result	Uncertainty	Result	Uncertainty	(pCi/L)
MW-4	<0.01	1.5	7.2	1,140	pu	1.55	0.35	2.16	0.58	3.71
MW-5	<0.01	1.6	4.3	916	nd	2.42	0.52	3.60	0.84	6.02
MW-6	<0.01	1.5	2.9	9/9	pu	2.06	0.45	2.14	0.57	4.20
MW-7	<0.01	2.2	8.1	908	nd	1.81	0.40	2.39	0.61	4.20
QC (MW-7)	<0.01	2.1	7.7	800	nd	2.4	0.52	3.19	0.76	5.59
Wacc	0.2	1.6	10	1000	0.001		-	****	-	30 pCi/L
MCLs	0.2	4	10	500		į	ł	1	ļ	5 pCi/L

Note: All results reported a milligrams per liter (mg/L=ppm) unless noted otherwise.

Concentrations in bold exceed the WQCC or MCL values. QC (MW-7) sample is duplicate sample for MW-7

WQCC = New Mexico Water Quality Control Commission Groundwater Standards

MCLs = U.S. EPA Drinking Water Maximum Contaminant Levels

TDS = Total Dissolved Solids using EPA Method 160.1

PCBs = Polychlorinated biphenyls using EPA Method 8082

Radium-226 analyzed using EPA Method 903.1

Radium-228 analyzed using EPA Method 904

µg/L = micrograms per liter (µg/L = ppb)
nd = not detected at or above the laboratory reporting limit

pCi/L = pico Curies per liter

Summary of Groundwater Analytical Results Dissolved RCRA 8 Metals Table 10

June 2001

Sample ID	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Uranium
MW-4	<100	55.2	<5.0	<5.0	<100	<0.20	<8.0	<10	18.1
MW-5	<100	70.9	<5.0	<5.0	<100	<0.20	<8.0	<10	15.3
9-WW	<100	162	<5.0	<5.0	<100	<0.20	<8.0	<10	11.9
MW-7	<100	57.5	<5.0	<5.0	<100	<0.20	<8.0	10	11.3
QC (MW-7)	<100	51.6	<5.0	<5.0	<100	<0.20	<8.0	<10	10.4
WQCC	100	1,000	10	50	50	2.0	50	50	1
MCLs	50	2000	5.0	100	15	2	50	50	

Note: All results reported as micrograms per liter (µg/L = ppb).

RCRA Metals analyzed using EPA Method 6010B/7470B/7740/200.8

Concentrations in bold exceed the WQCC or MCL values.

Most stringent comparison criteria listed when both WQCC and MCL values exist.

QC (MW-7) sample is duplicate sample for MW-7

WQCC = New Mexico Water Quality Control Commission Groundwater Standards MCLs = U.S. EPA Drinking Water Maximum Contaminant Levels

Table 11 Summary of Sludge Analytical Results Petroleum Hydrocarbons and Total Solids

June 2001

Sample ID	Sample Depth (feet)	TPH-d	TPH-g	TPH-mo	Total Solids (%)
CB-1 (concrete catch basin)	Sludge	70,000	74,000	68,000	43.0
CB-2 (concrete catch basin)	Sludge	350,000	41,000	51,000	40.6
Septic Tank	Sludge	110,000	42,000	40,000	54.9
NM OCD		100	100	100	

Note: All results presented as milligrams per kilogram (mg/kg) unless otherwise noted.

Petroleum Hydrocarbons analyzed using EPA Method 8015 Modified. Percent Total Solids analyzed using EPA Method 160.3 Modified. Concentrations in bold exceed the NM OCD recommended action level.

NM OCD = New Mexico Oil Conservation Division recommended remediation action level.

TPH-d = Total Petroleum Hydrocarbons as diesel range

TPH-g = Total Petroleum Hydrocarbons as gasoline range

TPH-mo = Total Petroleum Hydrocarbons as motor oil range

Table 12 Summary of Sludge Analytical Results VOCs

June 2001

Sample ID	CB-1 (concrete catch basin)	CB-2 (concrete catch basin)	Septic Tank	Method Blank
Analyte / Sample Type	Sludge	Sludge	Sludge	
Benzene	0.087	<1.2	<0.005	<0.05
Acetone	<2.0	<40	0.11	<2.0
Methylene Chloride	<0.1	<2.4	0.036	0.11
2-Butanone (MEK)	<2.0	<48	0.026	<2.0
Toluene	0.63	<1.2	<0.005	<0.05
Total Xylenes	2.53	5.5	<0.005	<0.05
Ethyl Benzene	0.075	6.6	<0.005	<0.05
Napthalene	3.6	44	<0.02	<0.2
Tetrachloroethene (PCE)	<0.05	<1.2	0.01	<0.05
Carbon Disulfide	<0.05	<1.2	0.0052	<0.05
Isopropylbenzene	0.31	<4.8	<0.02	<0.2
n-Propylbenzene	0.81	7.9	<0.02	<0.2
2-Chlorotoluene	7.9	25	<0.02	<0.2
4-Chlorotoluene	0.56	<4.8	<0.02	<0.2
sec-Butylbenzene	0.5	7.5	<0.02	<0.2
1,3-Dichlorobenzene	0.11	<1.2	<0.005	<0.05
1,4-Dichlrobenzene	1.1	<1.2	<0.005	<0.05
n-Butylbenzene	1	15	<0.02	<0.2
1,2-Dichlorobenzene	44	<1.2	<0.005	<0.05
1,3,5-Trimethylbenzene	1.00	<4.8	<0.02	<0.2
1,2,4-Trimethylbenzene	2.8	9.8	<0.02	<0.2
4-Isopropyltoluene	4.4	<4.8	<0.02	<0.2

Note: All results reported as milligrams per kilogram (mg/kg = ppm). Only detected analytes listed. Volatile Organic Compounds analyzed using EPA Method 8260B

Table 13 Summary of Sludge Analytical Results SVOCs

June 2001

Sample ID	CB-1 (concrete catch basin)	CB-2 (concrete catch basin)	Septic Tank
Analyte / Sample Type	Sludge	Sludge	Sludge
Napthalene	30	270	15
2-Methylnapthalene	64	1000	32
Acenapthene	<6.7	97	<5
Dibenzofuran	<6.7	220	<5
Fluorene	<6.7	230	<5
Phenanthrene	<6.7	370	<5
1,2-Dichlorobenzene	210	<1.2	79
Butyl Benzl Phthalate	14	<82	6.3
Bis(2-ethylhexyl) Phthalate	130	<82	62

Note: All results reported as milligrams per kilogram (mg/kg = ppm). Only detected analytes listed. Semi-Volatile Organic Compounds analyzed using EPA Method 8270C.

Table 14 Summary of Sludge Analytical Results TCLP RCRA 8 Metals

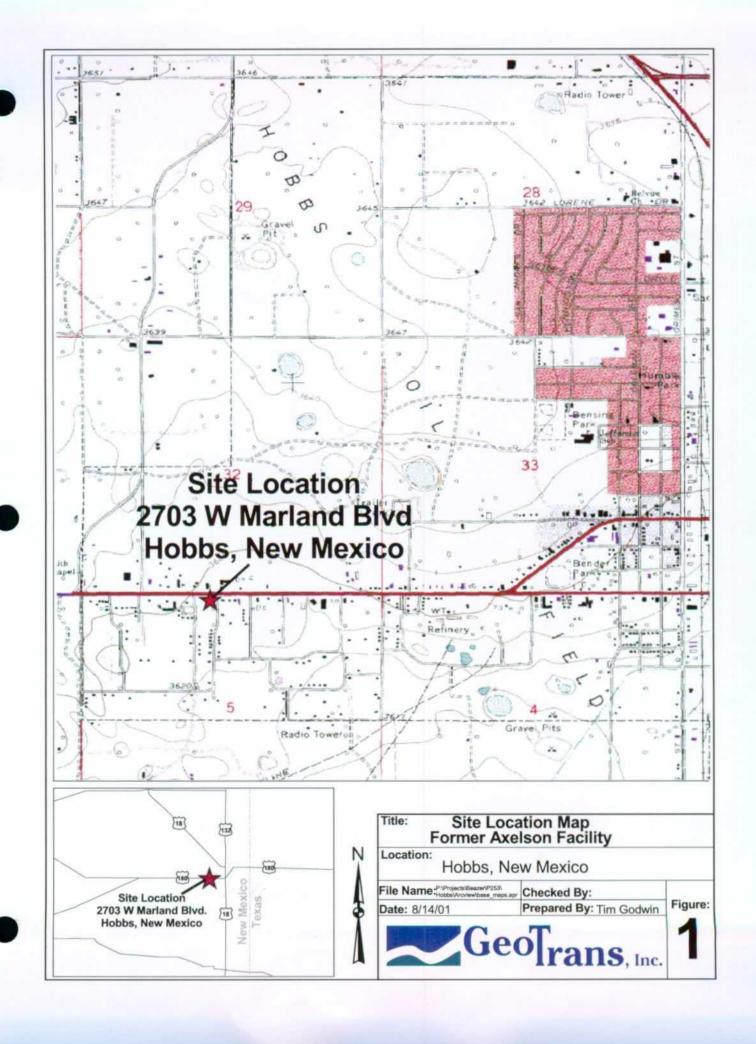
June 2001

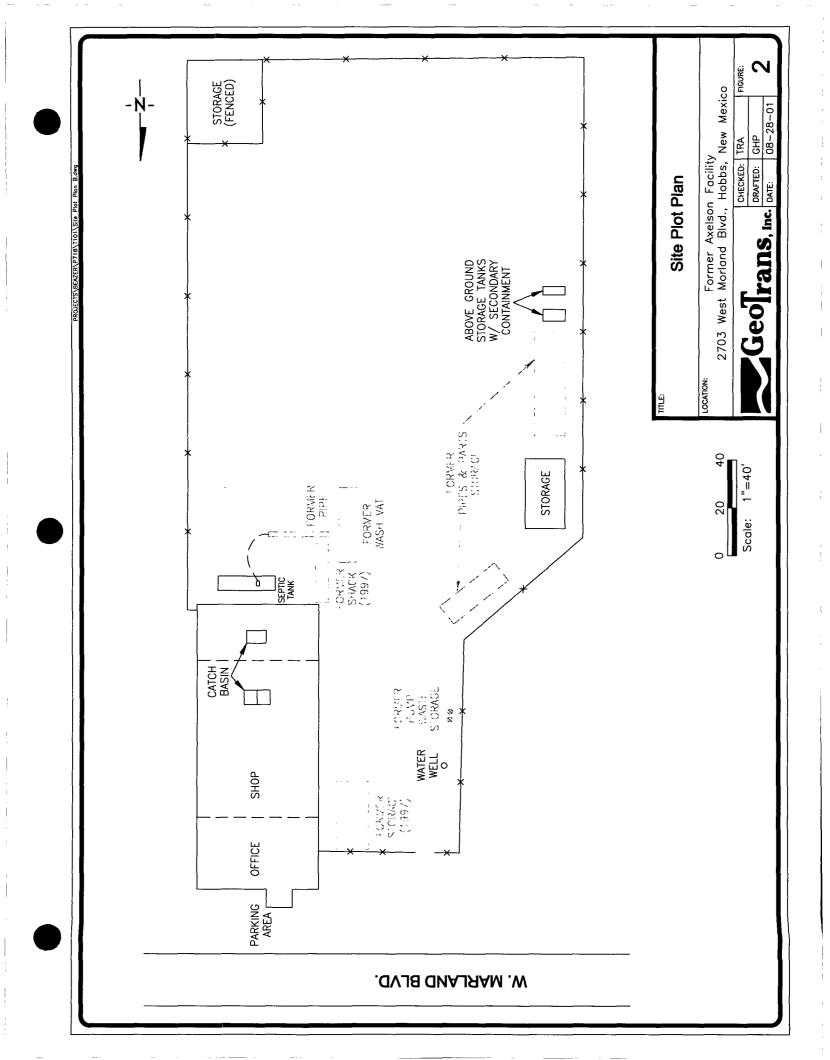
Sample ID	CB-1 (concrete catch basin)	CB-2 (concrete catch basin)	Septic Tank	USEPA Action Level
Analyte / Sample Type	Sludge	Sludge	Sludge	
Arsenic	<0.1	<0.1	<0.1	5
Barium	3	3.3	<1.0	100
Cadmium	<0.01	<0.01	<0.01	1
Chromium (Total)	<0.01	0.02	<0.01	5
Lead	<0.05	<0.05	0.43	5
Mercury	<0.001	<0.001	<0.001	0.2
Selenium	<0.1	<0.1	<0.1	1
Silver	<0.02	<0.02	<0.02	5

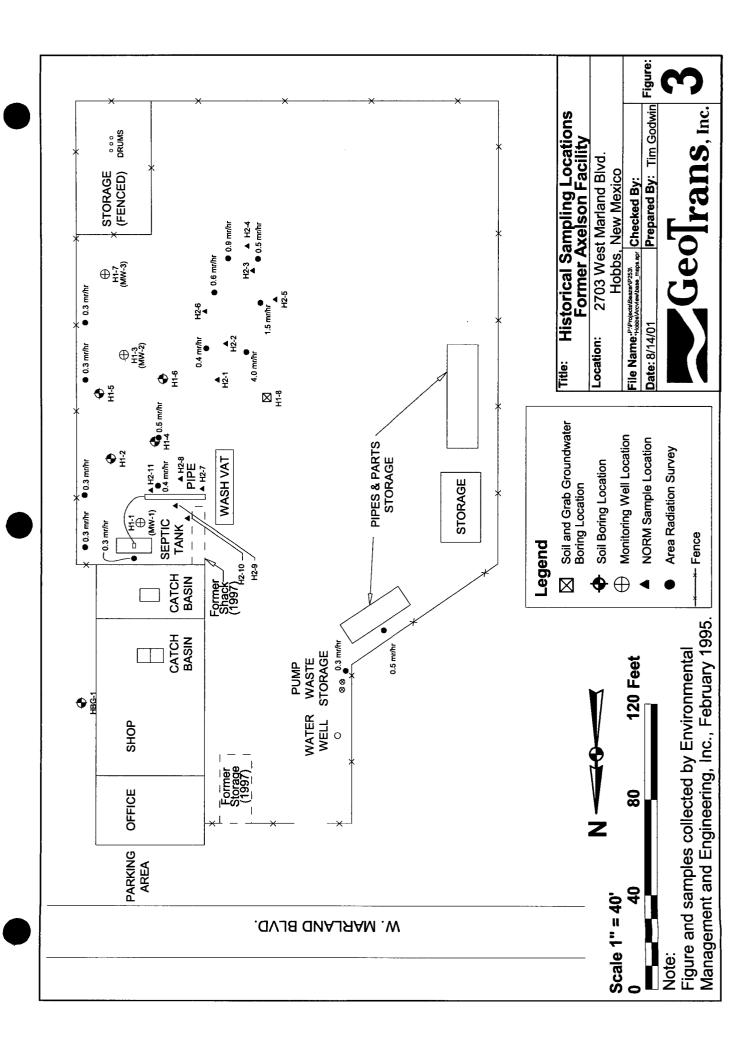
Note: All results reported as milligrams per liter (mg/L = ppm).

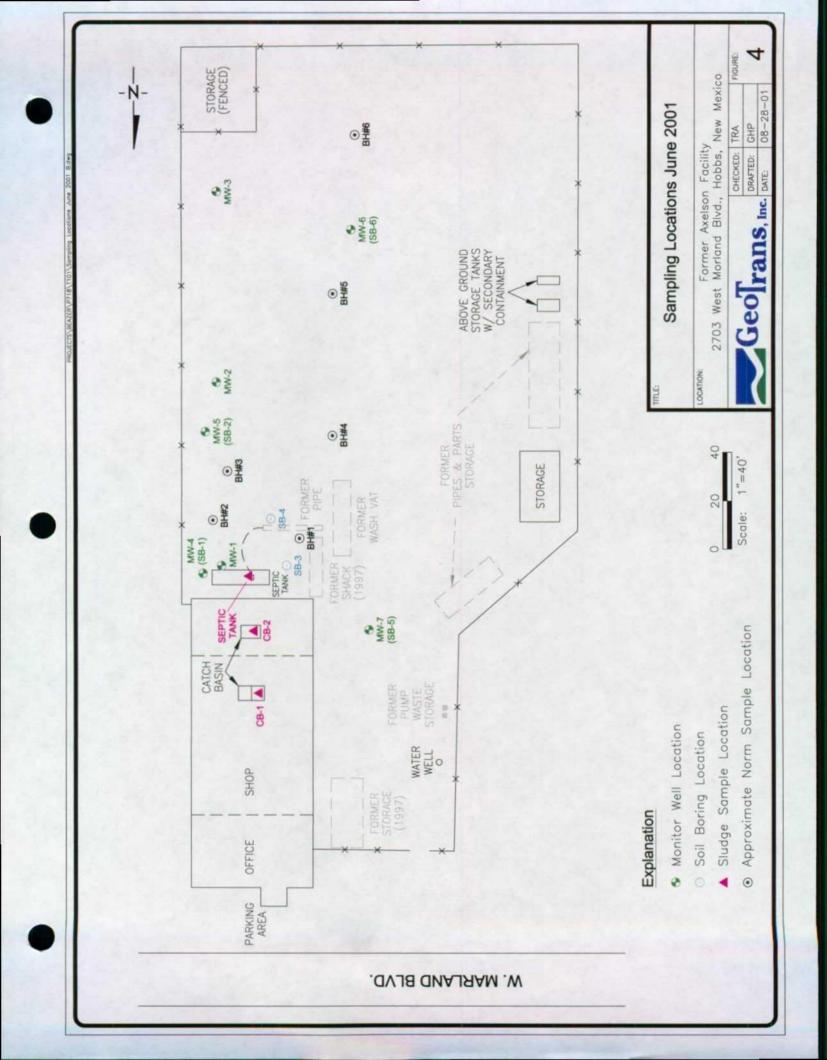
Data represent TCLP RCRA 8 Metals analyzed using EPA Method 3010/3020/7000.

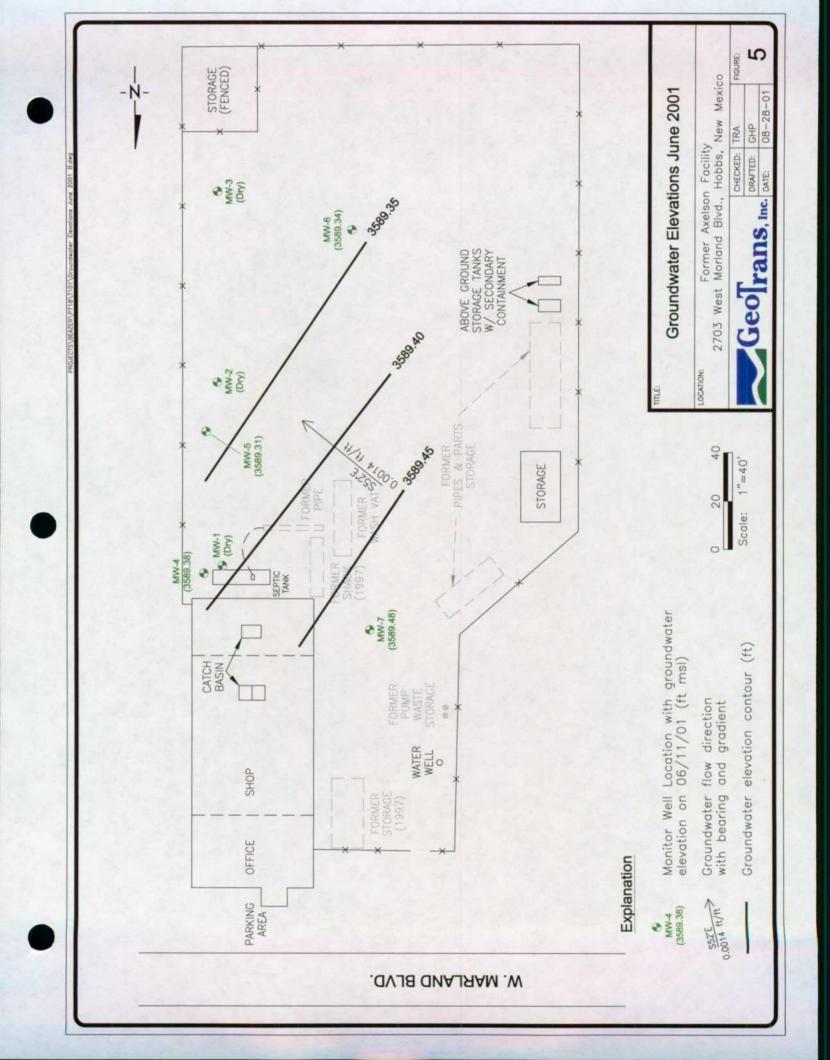
USEPA Action Level = TCLP action level as defined in EPA 40 CFR part 261.24 TCLP = Toxic Characteristic Leaching Procedure

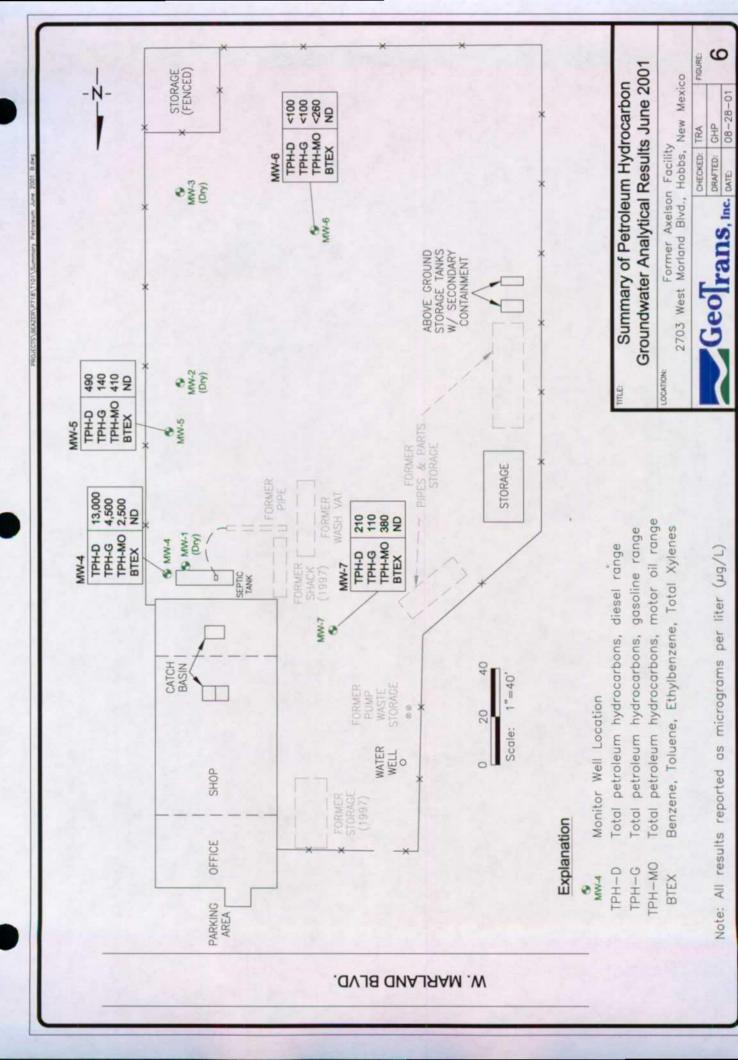

Table 15 Summary of Sludge Analytical Results Reactivity, Corrosivity and Ignitability

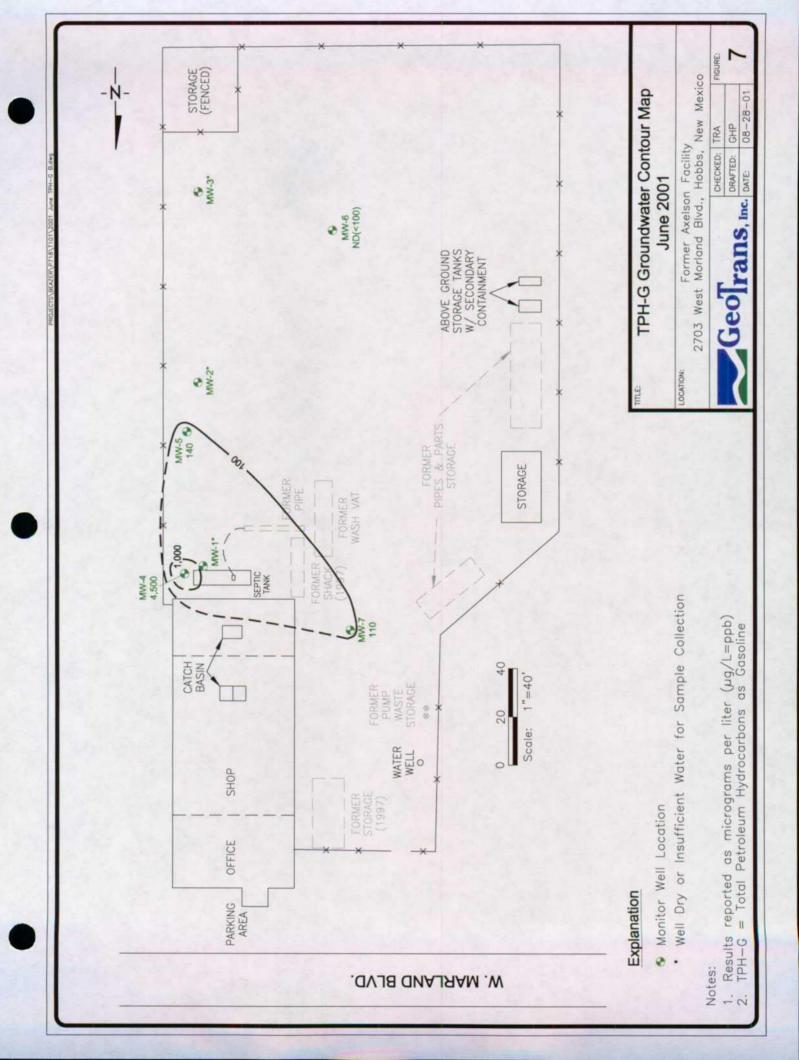

June 2001

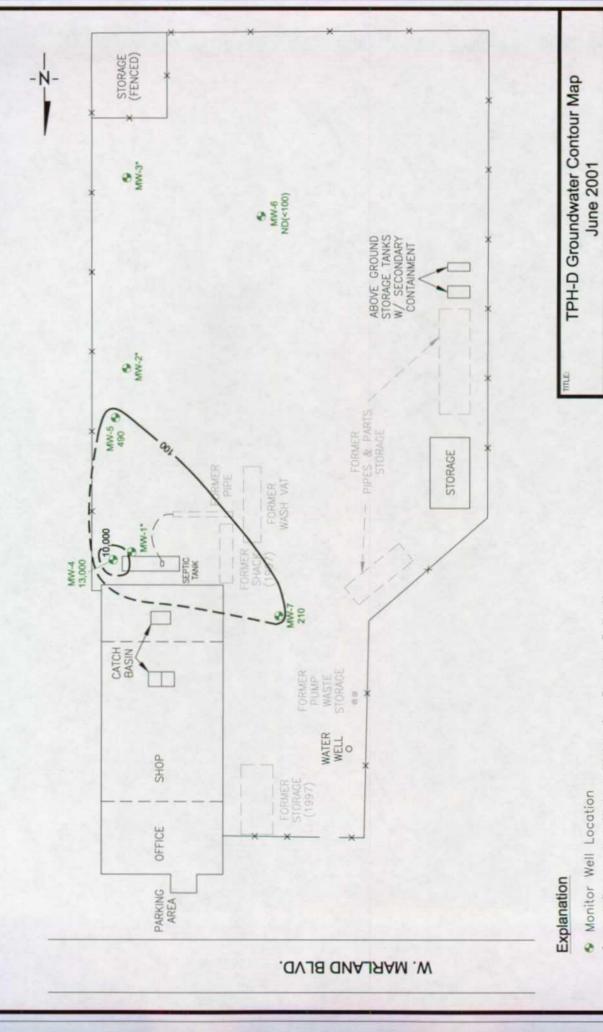

Sample ID	Sample Depth (feet)	Corrosivity (pH units)	Ignitability (Degrees F)	Cyanide (mg/kg)	Sulfide, Reactive (mg/kg)
CB-1 (concrete catch basin)	Sludge	8.06	>200	0.6	47
CB-2 (concrete catch basin)	Sludge	6.79	>200	<0.4	47
Septic Tank	Sludge	6.8	>200	<0.2	90


mg/kg = milligrams per kilogram


FIGURES







Well Dry or Insufficient Water for Sample Collection

Notes:

Results reported as micrograms per liter (µg/L=ppb) TPH-D = Total Petroleum Hydrocarbons as Diesel

COCATION:

2703 West Morland Blvd., Hobbs, New Mexico

Scale: 1"=40'

TRA	GHP	08-28-0
CHECKED:	DRAFTED:	
E	Geolmans	II all S, Inc.

8

APPENDIX A

Summary of 1995 Analytical Data

Table A-1 Summary of Soil Analytical Results Total Petroleum Hydrocarbons

February 1995

Sample ID	Sample Depth (feet)	TPH (mg/kg)
H1-1E	6	1,530
H1-1L	20	7,558
H1-2E	8	5,673
H1-2H	14	9,760
H1-3I	16	12
H1-3K	29	835
H1-4F	12	22
H1-4H	16	6
H1-5D	14	7
H1-7D	29	<1
H1-8D	29	120
H3-1A (concrete catch basin)	Sludge	6,154
H3-2 (concrete catch basin)	Sludge	19,222
H4-1 (septic tank)	Sludge	10,000
H5-1 (wash vat tank)	Sludge	5,490
HBG-1A (background)	0 - 0.5	47
NM OCD		100

Note: Data collected by Environmental Management & Engineering, Inc.
Total Petroleum Hydrocarbons analyzed using EPA Method 418.1
Concentrations in bold exceed the NM OCD recommended action level.

P:\Projects\Beazer\P253\Hobbs\104\workplan_tables.xls\Table1_soil_TPH

NM OCD = New Mexico Oil Conservation Division recommended remediation action level.

TPH = Total Petroleum Hydrocarbons

mg/kg = milligrams per kilogram (ppm)

Table A-2 Summary of Soil Analytical Results Volatile Organic Compounds

February 1995

Xylenes (total)	0.04	0.525	< 0.02	0.2	< 0.02	< 0.02	< 0.005	210
əuən∣o⊥	< 0.02	0.03	< 0.02	< 0.02	< 0.02	< 0.02	< 0.005	520
tert-Butylbenzene	0.058	0.054	< 0.02	0.015	< 0.02	0.06	< 0.005	390
aec-Butylbenzene	0.045	0.072	< 0.02	0.007	< 0.02	0.045	< 0.005	220
haphthalene	9.0	0.75	0.47	0.25	0.12	0.225	< 0.005	190
n-Propylbenzene	< 0.02	90.0	< 0.02	0.044	< 0.02	< 0.02	< 0.005	240
n-Butylbenzene	0.045	0.13	< 0.02	90.0	0.018	< 0.02	< 0.005	240
Ethylbenzene	< 0.02	0.057	< 0.02	0.035	< 0.02	< 0.02	< 0.005	230
4-lsopropyltoluene	60.0	0.18	< 0.02	< 0.02	< 0.02	0.105	< 0.005	
eneznedoroldoid-£,†	0.033	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.005	140
ənəznədlydtəmirT-Z,£,†	0.07	0.135	< 0.02	0.088	< 0.02	0.036	< 0.005	70
eneznedoroldoid-S, f	0.075	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.005	370
ənəznədlydəmirT-4,2,1	0.03	1.305	0.068	0.03	0.045	0.427	< 0.005	5.7
Sample Depth (ft. bgs.)	6-8	20 - 22	8- 10	14 - 16	16 - 17	29 - 31	29 - 31	
Sample ID	H1-1E	H1-1L	H1-2E	H1-2H	H1-3I	H1-3K	H1-8D	HHSLs

Note: Data collected by Environmental Management & Engineering, Inc.
All results reported as milligrams per kilogram (mg/kg = ppm). Only detected analytes listed.
Volatile Organic Compounds analyzed using EPA Method 8260.

HHSLs = U.S. EPA Region 6 Human Health Medium-Specific Screening Levels for industrial soils.

Table A-3 Summary of Soil Analytical Results Semi Volatile Organic Compounds

February 1995

Sample ID	Sample Depth (ft. bgs.)	2-Methylnaphthalene	Naphthalene(SVOC)
H1-1E	8-9	2.6	0.7
H1-1L	20 - 22	3.15	0.87
H1-2E	8- 10	< 0.1	0.58
H1-2H	14 - 16	1.5	0.8
H1-3I	16 - 17	< 0.1	< 0.1
H1-3K	29 - 31	0.18	0.28
H1-8D	29 - 31	< 0.1	< 0.1
HHSLs			190

Note: Data collected by Environmental Management & Engineering, Inc.
All results reported as milligrams per kilogram (mg/kg = ppm). Only detected analytes listed.
Semi Volatile Organic Compounds analyzed using EPA Method 8270.

HHSLs = U.S. EPA Region 6 Human Health Medium-Specific Screening Levels for industrial soils.

Table A-4 Summary of Soil Analytical Results RCRA 8 Metals

February 1995

															_				
Silver	2.3	1.2	1.5	1.7	1.7	< 0.5	2.5	1.9		1.3		< 0.5		6.0		< 0.5		< 0.5	10,000
Selenium	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1		< 0.1		< 0.1		< 0.1	10,000
Mercury	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05	610
Lead	14.0	7.0	12.0	9.0	12.0	3.0	16.0	18.0		179.0		592.0		776.0		0.099		26.0	2,000
Chromium (Total)	12.0	7.0	8.0	9.0	10.0	4.0	12.0	11.0		12.0		124.0		86.0		206.0		6.0	450
Cadmium	1.3	0.5	6.0	0.8	1.1	0.3	1.1	1.1		6.8		5.0		10.0		6.6		1.1	1,000
Barium	78.0	61.0	37.0	166.0	808.0	140.0	244.0	525.0		53.0		78.0		104.0		129.0		256.0	100,000
Arsenic	6.8	2.7	11.0	5.1	5.9	4.3	4.9	5.1		11.0		7.3		6.5		4.8		16.0	360
Sample Depth (ft. bgs.)	8-9	20-22	8-10	14-16	16-17	29-31	14-16	29-31		Sludge		Sludge		Sludge		Sludge		0-0.5	
Sample ID	HI-1E	H1-1L	H1-2E	. Н1-2Н	H1-3I	H1-3K	H1-5D	H1-8D	(concrete catch	basin)	(concrete catch	basin)	H4-1	(septic tank)	H5-1	(wash vat tank)	HBG-1A	(background)	HHSLs

Note: Data collected by Environmental Management & Engineering, Inc. All results reported as milligrams per kilogram (mg/kg = ppm).

All results reported as milligrams per kilogram (mg/kg = ppm). RCRA 8 Metals analyzed using EPA Method 3010/3020/7000.

HHSLs = U.S. EPA Region 6 Human Health Medium-Specific Screening Levels for industrial soils.

Table A-5 Summary of Soil Analytical Results Naturally Occuring Radioactive Material (NORM)

February 1995

Sample ID	Sample Depth (ft. bgs.)	Radium 226	Radium 228
HI-1A	0 - 0.5	3.2	<1.2
H1-4A	0 - 0.5	35.3	<1.4
H1-5A	0 - 0.5	<1.5	<0.8
H2-1A	0 - 0.5	15.8	<3.0
H2-2A	0 - 0.5	387	45.3
H2-3A	0 - 0.5	405	49.3
H2-4A	0 - 0.5	76.6	<1.9
H2-5A	0 - 0.5	23.9	2.5
H2-6A	0 - 0.5	21.5	<1.2
H2-7A	0 - 0.5	24	1.9
H2-8A	0 - 0.5	20.3	<0.7
H2-9A	0 - 0.5	739	70.7
H2-10A	0 - 0.5	<1.2	<0.6
H2-11A	0 - 0.5	64.9	<1.6
H3-1A (concrete catch basin)	Sludge	104	15
H3-2 (concrete catch basin)	Sludge	25.5	<0.7
H4-1 (septic tank) H5-1	Sludge	4.3	<0.4
(wast vat tank)	Sludge	7.1	<0.7
NM NORM		30	30

Note: Data collected by Environmental Management & Engineering, Inc.

All results reported as pico Curies per gram (pCi/gm).

Concentrations in bold exceed the proposed State of New Mexico NORM limit.

NM NORM = Proposed State of New Mexico NORM Limit.

Table A-6 Summary of Water Analytical Results Total Petroleum Hydrocarbons

February 1995

Sample ID	Location	TPH (mg/L)
H1-8	grab groundwater	1
H6-1	water well	<1
MW-1	monitor well	680
MW-2	monitor well	25
MW-3	monitor well	1

Note: Data collected by Environmental Management & Engineering, Inc. TPH analyzed using EPA Method 8015 Modified

TPH = Total Petroleum Hydrocarbons mg/L = milligrams per liter (ppm)

Table A-7 Summary of Water Analytical Results Volatile Organic Compounds

February 1995

							_
Xylenes (Total)	< 0.005	< 0.005	1.225	< 0.005	< 0.005	0.62	1
eneuloT	< 0.005	< 0.005	1.2	0.065	< 0.005	0.75	
Tetrachloroethene	<0.005	<0.005	<0.005	<0.005	0.007		0.005
eri-Butylbenzene	0.01	< 0.005	<0.005	< 0.005	< 0.005		
Aaphthalene	0.015	< 0.005	< 0.005	< 0.005	< 0.005	0.03	:
n-Butylbenzene	0.01	< 0.005	<0.005	< 0.005	< 0.005	-	ij
Еџѝлреиzene	< 0.005	< 0.005	0.28	< 0.005	< 0.005		0.7
Benzene	< 0.005	< 0.005	0.24	< 0.005	< 0.005		0.005
4-isopropyltoluene	0.01	< 0.005	1.0	0.145	< 0.005	-	
ənəznədlydəmirT-Z,£,†	< 0.005	< 0.005	1.5	0,15	< 0.005		
ensdteoroldoiG-2,۲	<0.005	<0.005	<0.005	<0.005	0.01		0.005
ənəznədlydəmirT-4,2,1	0.012	< 0.005	4.7	0.14	< 0.005		1
Location	grab groundwater	water well	monitor well	monitor well	monitor well		
Sample ID	H1-8	H6-1	MW-1	MW-2	MW-3	Wacc	MCLs

Note: Data collected by Environmental Management & Engineering, Inc.

All results reported as milligrams per liter (mg/L = ppm). Only detected analytes listed.

Volatile Organic Compounds analyzed using EPA Method 8260.

Concentrations in bold exceed the WQCC or MCL values.

Semi Volatile Organic Compounds (SVOCs) not detected in the above listed water samples.

Most stringent comaprision criteria listed when both WQCC and MCL values exist.

WQCC = New Mexico Water Quality Control Commission Groundwater Standards MCLs = U.S. EPA Drinking Water Maximum Contaminant Levels

Table A-8 Summary of Water Analytical Results RCRA 8 Metals

February 1995

Sample ID	Location	Arsenic	Barium	Cadmium	Chromium (Total)	Lead	Mercury	Selenium	Silver
	grab groundwater	0.06	0.08	< 0.02	< 0.3	< 0.3	< 0.005	< 0.01	< 0.05
	water well	0.09	0.08	< 0.02	< 0.3	< 0.3	< 0.005	< 0.01	< 0:05
	monitor well	0.08	0.14	< 0.02	< 0.3	< 0.3	< 0.005	< 0.01	< 0.05
	monitor well	0.09	0.08	< 0.02	< 0.3	< 0.3	< 0.005	< 0.01	< 0.05
	monitor well	0.06	0.07	< 0.02	< 0.3	< 0.3	< 0.005	< 0.01	< 0.05
			1.0	1 1 2	0.05		0.002	90'0	0.05
	1	0.05	-	0.005	1	0.015		:	;

Note: Data collected by Environmental Management & Engineering, Inc.

All results reported as milligrams per liter (mg/L = ppm).

RCRA 8 Metals analyzed using EPA Method 3010/3020/7000.

Concentrations in bold exceed the WQCC or MCL values.

Most stringent comaprision criteria listed when both WQCC and MCL values exist.

WQCC = New Mexico Water Quality Control Commission Groundwater Standards MCLs = U.S. EPA Drinking Water Maximum Contaminant Levels

APPENDIX B

1995 Soil Boring Logs

	lient:		Dresser Axelson			***************************************	Pag	ie.	1 of	4		_
		Number:	DRS-94-E893		I	Date:	02-22-		. 0.	7		l
P.	roject	Location:	Hobbs, NM	Ð	rilling Me	thod:	HSA					1
1				Sam	pling Me	thod:	SS					- 1
		Number:	H1-1	WELL	COMPLI	ETIC	N IN	FORM	ATI	ON		
	ogged		JT/GP						-			
ا ا	rilled	By:	Anderson & Associates		Dia: NA		Length	: NA	Typ	e:	NA	ì
1				Slot Siz			Longth	. NIA	Tue			
┢	***************************************		DESCRIPTION	Riser Di	a: NA	1	Length		1 yp	e:	NA	
			DESCRIPTION					B L		w	w l	Į
	D =		•		1 !	-	R	2	1_	E	A	i
	E P				N	N	C	V	G	L	TE	N
	T H		·		E R	U M	0 0	P	AP	c	R	R M
1					V	В	E	ם ו	Н	0	L	141
		Surface Ele	evation:		A	E		l ppn		M	V L	•
			Fragments			A		0	 	╁		0.2
	1 2 2	Silt, Dark C	Gray to Dark Brown, Slightly Cayey									
	1 · <u>=</u>		,					-				1
1	=					В		0				0.2
1	=						ļ					- 1
2	≥ =	1										1
L	Ē	Sand, Buff,	Fine Grained, Silty									
	Ξ		•									
· ·	· -					C		0].		٥),2
I	Ξ											ı
	_							ł				1
1	-											ı
	Ξ											- [
5	111111111111111111111111111111111111111					а		0				
	Ξ			•		١	- 1			1	0	.2
	=											
6	=											
	=											
	=									- 1	Ì	ł
7	Ξ	Petroleum O	dor			E	1	7			0.	2
l	-											
I	=											
8	=											
l	=											
	Ξ											ł
9	\exists					F		11	-	- 1		
	=					1						
10	deleteretet									-		
	\exists											
	ΞI					G		19				
11	=											
					Ullillilli	1						_1

SAMPLE TYPE: SS DRIVEN SPLIT SPOON RC ROCK CORE BORING METHOD: HAS HOLLOW STEM AUGER ST PRESSED SHELBY TUBE CT CONT. TUBE DC DRIVEN CASING

Project Number: Project Location: Boring Number: H1-1 (Contd) Hobbs, NM Boring Number: H1-1 (Contd) JT/GP Drilled By: Anderson & Associates DESCRIPTION												سيسسه		
Project Location: Hobbs, NM Boring Number: H1-1 (Contd) Logged By: JT/CP Drilled By: Anderson & Associates DESCRIPTION DESCRIPTI				Dresser Axelson							of	4		1
Borling Number: H1-1 (Contd) JT/CP Drilled By: Anderson & Associates Screen Dia: NA Length: NA Type: NA Sitot Size: NA Riser Dia: NA Length: NA Type: NA DESCRIPTION DE										i				
Boring Number: Logged By: JT/GP Drilled By: Anderson & Associates Seren Dia: NA Length: NA Type: NA Sict Size: NA Riser Dia: NA Length: NA Type: NA Riser Dia: NA Length: NA Ty	Pro	ject l	Location:	Hobbs, NM	Drillin	g Met	hod:	HSA	1					
Boring Number: H1-1 (Contd)	1	-			Samplin	g Met	hod:	SS				ı		
Logged By:	Ro	ina N	lumber	H1-1 (Contd.)					เทษเ)RM2	ኒጥፕረ)N		
Drilled By: Anderson & Associates Screen Dia: NA Length: NA Type: NA		-			MEILL CO.	LL LIE		714 7	747.	~ T/T/T		- 14		
Slot Size: NA Length: NA Type: NA								1	-44	B1 =			B	
Riser Dia: NA Length: NA Type: NA	Dri	led E	Зу:	Anderson & Associates	I.			Leng	gm:	NΑ	тур	e:	NA	•
DESCRIPTION	ŀ													
1	L				Riser Dia:	NA		Len	gth:	NA	Тур	e:	NA	
1				DESCRIPTION					В					
N	ı								L	1	İ	1	W	1 1
Surface Elevation:	D			•			-	R		1	١ ـ			
Surface Elevation:	E						N	E	W			-	T	
H								0	С	P		1	R	
Surface Elevation:	Н				•			V	0					
Surface Elevation:									1 -	D				
Petroleum odor Buff, Silty, Gray, Petroleum Odor Sand, Silt, Light Gray, Petroleum Odor Sand, Silt, Light Gray, Petroleum Odor Petroleum Odor Petroleum Odor R 13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1		Surface Fla	evation:		4	l .	•	1	pom			1	
Buff, Silty, Gray, Petroleum Odor 13		-					Ë	T	<u> </u>	1	Ť	 	† -	
Buff, Silty, Gray, Petroleum Odor Sand, Silt, Light Gray, Petroleum Odor Sand, Silt, Light Gray, Petroleum Odor Sand, Silt, Light Gray, Petroleum Odor Petroleum Odor R 13 Petroleum Odor L 40	I	=							[1				
Buff, Silty, Gray, Petroleum Odor Sand, Silt, Light Gray, Petroleum Odor Sand, Silt, Light Gray, Petroleum Odor Sand, Silt, Light Gray, Petroleum Odor Petroleum Odor Petroleum Odor L 40	1	Ξ			•					1			1	
Sand, Silt, Light Gray, Petroleum Odor Is Sand, Silt, Light Gray, Petroleum Odor Is Sand, Silt, Light Gray, Petroleum Odor If Sand, Silt, Light Gray, Petroleum Odor It Sand, Silt, Light Gray, Petroleum Odor	12						l					ļ		
13	I	_	Buff, Silty,	Gray, Petroleum Odor							1		1	
Sand, Silt, Light Gray, Petroleum Odor Sand, Silt, Light Gray, Petroleum Odor Sand, Silt, Light Gray, Petroleum Odor Petroleum Odor Petroleum Odor L	1	_								_	[
Sand, Slit, Light Gray, Petroluem Odor	4.	_					н			9			l	
Sand, Silt, Light Gray, Petroleum Odor	13	-									}		İ	
Sand, Silt, Light Gray, Petroleum Odor	İ	-] ;						
Sand, Silt, Light Gray, Petroleum Odor		-												
16 - Sand, Silt, Light Gray, Petroleum Odor 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19	4	-												
16 - Sand, Silt, Light Gray, Petroleum Odor 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19		-	. Sand, Silt,	Light Gray, Petroluem Odor						l				
Sand, Silt, Light Gray, Petroleum Odor 17 -		ΞΙ										1		
Sand, Silt, Light Gray, Petroleum Odor 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19	I	Ξ												
Sand, Silt, Light Gray, Petroleum Odor 17	15	-					I			35				
Sand, Silt, Light Gray, Petroleum Odor 17	1	-1									.	1		
Sand, Silt, Light Gray, Petroleum Odor 17	1	<u> </u>											Į	
Sand, Silt, Light Gray, Petroleum Odor 17	16	-I												
17	1 "	=	Sand, Silt, I	Light Gray, Petroleum Odor					į			•		
18 - Petroleum Odor 19 -	1	=												I
18 - Petroleum Odor 19 -	1	=					l					İ		l
Petroleum Odor 19	17	3					J			30				1
Petroleum Odor 19	1	Ξ					ļ		l	1		l		I
Petroleum Odor 19	I	=					I	- 1	ļ					i
Petroleum Odor 19	40	-					ł	[- 1					
19 - 13 K 13 20 - 1 140 L 40	18	=+	Patralaum C) dor			1	- 1		1	ĺ	1		ı
19 = 1	•		retroletim C	Jugi			- 1	٠	ļ		1	ļ		•
20	1	-					- 1		- 1	- 1	1	ĺ		•
20	19	=					ĸ	- 1	- 1	13	- 1	l		•
20 = 1	1	-						- 1	1	- 1		- 1	- 1	_ [
20 = 1		ΞΙ		,	4 ⁻		1		- 1					
21 - 40	I .	ΞΙ		•	<i>f</i> 1		1		- 1	1	1	- 1		i
	20							1		- 1				
	1	-1					1		- 1	1	1	1	1	ı
	l	-1								- 1		- 1		1
	21	-1			·		,		1	40		1		1
		\exists					-	1				1	1	1
		=							1	Í		- 1	1	j
		Ξ								j	I	- 1		1
	22	=												

Clier	11.	Dresser Axelson					age:		of	4		
		Number: DRS-94-E893				02-2						
		ocation: Hobbs, NM	Drilling	Meti	hod:	HSA	/AR					
		,	Sampling	y ivieti	mro	NT T	NEC	DMA	ጣፐብ	พ		
		lumber: H1-1 (Contd)	WELL CON	APLE	TIC	IN I	INEC) ICINE	110	7.4		
Logo			Screen Dia:	NΑ		Leng	rth:	NA	Туре):	NA -	
Drille	ea B	y: Alideison & Associates	Slot Size:	NA			•		••			
		·	Riser Dia:	NA		Leng	yth:	NA	Type	e:	NA	
 		DESCRIPTION					В			w	w	
				1		R	L 0			E	Α	
D E P				N T	N	E	W		G R	L	T E	N
P T				E	U	0	CO	P	A	С	R	R M
н		·		R	M B	V E	ប	D	Н	0	L	141
				A	E	R	N	ppm	c	M	ľ	
 	<u> </u>	Surface Elevation: Sandstone, White to Brown		 -	 ``	一	 	1		· ·		
	Ξ	(02-23-95 switched to Air Rotary with tricone bit)				,						
23	Ξ								1		}	
23	\exists										1	
	Ξ	·										
24	-											
	\exists											
	=}		······································	1)		1		}		
25	三	Sand, Brown, Silty, Petroleum Odor										
	٠.							1				
	Ξ				м	1		10		}	1	
26	\exists				···				1		l	
	Ξ							1				
27	=											
2"						1						
•	Ξ							1		1		}
28	=				N,			12				
	Ξ				'			1				
l	=											
29		• .									1	
	=											
	Ξ				0			8				
30		Sand, Brown, Silty, Petroleum odor									1	
l	=	And the second s	,"				[
31	\exists	*	ŕ									
•	\exists											
	Ξ	Groundwater										
32	=	Black Organic			P			6				
	=		-									
	=											
33	=			UAS							<u></u>	لسيسا

SAMPLE TYPE: SS DRIVEN SPLIT SPOON RC ROCK CORE BORING METHOD: HAS HOLLOW STEM AUGER ST PRESSED SHELBY TUBE CT CONT. TUBE DC DRIVEN CASING

F	~:·	- A c		Dresser Axelson						0000		o f	A		بنسب
	Clie		f					 .		age:		of	4		1
			Number:	DRS-94-E893						3-95					
1	Proj	ject i	_ocation:	Hobbs, NM		Drillin									•
١						Samplin									
:	Bori	ina N	lumber:	H1-1 (Contd)		WELL CO	MPLE	eric	ON 3	INFO	RMA	TIC	N		ı
1		ged		JT/GP											
1		led E		Anderson & Associates		Screen Dia:	NA.		Leng	ath:	NA	Type	e:	NA	.
ı	٠		, , , .	• • • • • • • • • • • • • • • • • • • •		Slot Size:	NA		•	_		•			1
·						Riser Dia:	NA		Lend	ath:	NA	Type	e:	NA	- 1
1				DESCRIPTION		Tricer Bia.	- 		1	В		1,7			-
ı				DESCRIPTION									w	w	
	D		,]]	-	R	0			E	А	
1	E						N		E	W		G	L	T	N O
ı	P T	1					E	N	0	c	P	A	-	R	R
ı	H						R	М	V	0	13	P	C		М
1							V	B	E	U	ם	H	О М	L	
1			Surface Ele	vation:		•	A	R	Y	T	ppm	c	P	L	
									1	1			l —		
		111111111111111111111111111111111111111							1	1					
1		=	Hole Adjust	ted to 37' Using Air Rotary Techniq	ques				1						
ı	34	-					1	1	İ						
-		-	Set Screen	from 25' to 35'					1						
ı		-	00.00.00.												
	35	-								}					ı
- 1		Ξ													
_		_					1								i
	36	-						•							1
															1
-		ΞΙ													
ı		Ξ													1
	37	-	Bottom		· 	· · · · · · · · · · · · · · · · · · ·	4								
		111111111111111111111111111111111111111													
		-													
	38	=											j		1
		Ξ									I				
1		Ξ		•			1 1				İ			1	1
I	39	- 1					1 1				Ì			1	l
1	JJ	귀										ł		1	i
ı		المامان المامام المامامام										1		- 1	1
		Ξ							l		l	- 1		- 1	
I	40	三		· .			1 1	l	[ļ	- 1	- 1	ļ		
		-1						1	ı	}	ł	}	j	- 1	1
		=]		İ	- 1	- 1		- 1	
ı	41	=							l	1	1		- 1		
ı		=							[j	l	l	ł	1	
		Ξ		4		, , , , , , , , , , , , , , , , , , ,		{	ļ	1	- 1	- 1	- [- 1	ł
	40	-				i		ı	ļ	ļ		1		- 1	- 1
I	42	귀						1	- 1	- 1	-	1	- 1		I
		-								1	[- 1	-		
I		=						- 1	- 1	- 1	- 1		1		
	43	111111111111111111111111111111111111111						- 1	1	- 1	1		1	- 1	1
h		=7						- 1	ŀ	1	1		l		1
1		-							1	- 1					1
1	44	=						1	ļ				- 1		I
ă.															

Clie	nt.		Dresser Axelson		استجبيب المتار نجب	and the same		age:	1	of	1		
8		Number:	DRS-94-E893				02-2						- 1
		_ocation:	Hobbs, NM	Drilling									
•				Samplin									
Bori	na N	lumber:	H1-2	WELL CO	MPLE	TIC	N I	NFC	RMA	TIO	N		
Logg			JT/GP										
Drill			Anderson & Associates	Screen Dia:			Leng	th:	NA	Тур	: :	NA	
				Slot Size:	NA		-			_			1
				Riser Dia:	NA		Leng	itn:	NA	Type) :	NA	
			DESCRIPTION					B	Ì		w	w	
					1		R	0		ļ	E	A	
D E P	1				N		E	W		G	L	E	и 0
P T	l				T	N U	0	С	P	Α		R	R
н	ļ				R	M B	V	0 7	l D	P	CO	L	М
					A	E	R	N		1	М	V	
		Surface El	evation:		L	R	Y	T	ppm	C	P	 	
	·	Sand, Som	ne Stone			Α	1		"	1	1		
	i juliuju					В			0				
2	=								İ		1		
	Ξ	Sand, Whit	ta Silhe			С			0				
	11111	Sand, will	ie Sity										
4				·			Ī	l					
İ		Sand Whit	te Silty, Some Limestone Rock			ם	1		0	}		l	
1	-	Sand, with	te ditty, doine Enticotorio Floori										
6	=]										1		
	=												
	-									İ			
8	=												
	\equiv	Cand Mhif	te Silty, Petroleum Odor			E			7				
		Salid, Will	le Silly, i eli olcum Gao.										
10	=							1		-			
	=	Cand Duff	to White, Silty			F			11	1			
	=	Sand, Buil	to winter only									1	
12	=		•)] ,			
	\equiv	Odor				G			8				
	=						1						
14	=												
I	=	Sand, Whit	a Duff Ciltu			н			15				
	=	Sand, White Odor (Solv	ents)			,,							
16		(
•	=	Odor				1			14				•
	=	Odoi	* *	<i>,</i>									
18	=			·									
	=	Sandstone											j
	=	Janustutie							}				
20	크	Bottom			-								ĺ
	-1												
	=					,							1
22	=												

SAMPLE TYPE: SS DRIVEN SPLIT SPOON RC ROCK CORE BORING METHOD: HAS HOLLOW STEM AUGER ST PRESSED SHELBY TUBE CT CONT. TUBE DC DRIVEN CASING

Client:	Dresser Axelson Number: DRS-94-E893)ate:		age:		of	1	*****	
roject L	· · · · · · · · · · · · · · · · · · ·	Drillin	ıg Met	hod:	HSA						
Boring N	lumber: H1-3	Samplin WELL CO				NFC	ORM?	TIC	N		·
Logged I Drilled B		Screen Dia:	NA.		Leng	ath:	NA	Type	e:	NA	
Dimed B	y,	Slot Size: Riser Dia:	NA NA				NA			NA	
	DESCRIPTION	iraser bia.	T	T	1	В		.,,,			
D E P T H	·		I NT E RVA	N U M B	RECOVER	708 002×	P L D	G R A P H I	WELL COM	W A T E R L V	N O R M
-	Surface Elevation: Sand, Some Stone		L	R	Y	T	ppm	C	P	L	
8	Sand, Silt, Clay Sand, Silt, Buff	·					0				
4 -	Rock										
8 =	Sand, Silt, Buff			D			0				
=	Sand, Silt,White Buff			E			0				
	Sand, White Buffy Limestone			F			0				ļ
	Sand, Silt, Tan			G H			0	·			İ
16 -				1			2				j
20 -	(02-23-95 Switched to Air Rotary with Tricone Bit) Rock		dimessa								
20 =											
24 -	Sand, Brown, Silty]								
-	Saliu, Blowii, Siily			J			4				
28 -											1
=				к			10				
32 =							ļ				
	, .	general									
36 =	Bottom	· ·									
40 =	·										
_ =											
44 -											

SAMPLE TYPE: SS DRIVEN SPLIT SPOON RC ROCK CORE BORING METHOD: HAS HOLLOW STEM AUGER ST PRESSED SHELBY TUBE CT CONT. TUBE DC DRIVEN CASING

Cli	ent:		Dresser Axelson		a see and see a see a see a see	أخار المسيد	P	age:	1	of	1		1
		Number:	DRS-94-E893			Date:				0.	•		1
		Location:	Hobbs, NM	Dril	ling Me								. 1
1.	-				ling Me							_	
Во	ring N	Number:	H1-4	WELL C	COMPL	ETI	. NC	INF	ORM?	TIC	ИС	•	
Log	gged	By:	JT/GP										
Dri	lled E	∃у:	Anderson & Associates	Screen D			Len	gth:	NA	Тур	e:	NA	
				Slot Size			1		NIA	~		81.6	1
<u> </u>			DESCRIPTION	Riser Dia	: NA		Len	1	NA	Т	e:	NA	
			DESCRIPTION					B		1	w	w	
D			•		1		R	o W			E	A	١., ١
D E P T					N T	N	REC			G R	L	E	N O
T H					E	U M	O V	CO	P	A	c	R	R
"					V	В	E	U	Ď	н	0	L	"
j		Surface Elev	ation:		I A	R	R	N	ppm	C	M	L	
	=	Sand, Silty, E	Brown to gray			A			0				
						В			0				
2	三												
	=					С]		0			1	
	ΞΙ												
4	긤												
	ΞΙ												
6	Ξ												
ľ	\exists												
	Ξ										1		
8	=												
	=			· · · · · · · · · · · · · · · · · · ·		_							
	-	Sand, Silt, Wh	nite Buffy			D			0				ı
10	=												1
	<u>-</u>					E			o				I
	=					l .							
12	딈												
	=					F			0				ı
	=							- 1					
14	\exists		• .										
	=					G			0				
16	Ξ												
	=								_ [
	Ξ					н			0				
18	= = _	Bottom	•					- 1		ļ			1
	=1		•	1						1			İ
	=									-			l
20	\exists												
	$\equiv $					- 1						- 1	I
22	Ξ												I
44								L					

SAMPLE TYPE: SS DRIVEN SPLIT SPOON RC ROCK CORE BORING METHOD: HAS HOLLOW STEM AUGÉR ST PRESSED SHELBY TUBE CT CONT. TUBE DC DRIVEN CASING

Rij	ent:		Dresser Axels	On					C	age:	4	of	1		-
		Number:	DRS-94-E893	~			1	Date:				U 1	•		1
		ocation:	Hobbs, NM			Drillir									1
1 ' '	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-00dii011.	110000, 11			Samplin				•					
Ba	rina N	lumber:	H1-5	•	Ī,	WELL CO				TNF	יאקכ	ኒጥፐር	אר		
	gged		JT/GP			MEDD CO	ILE II.	13 1 1	J21 .	T11E (J1012	377,	<u> </u>		
	lled E		Anderson & A	ssociates		Screen Dia	. ма		Len	ath:	NA	Tvn	۵.	NA	
	noa L	,,,	Anderson w/	coodiates		Slot Size:	NA			9		.,,,	٠.	11/1	ı
						Riser Dia:	NA		Len	gth:	NA	Тур	e:	NA	
 			DESCR	PTION			Т	T	Ī	В	Π	Ī	T	T	
1										L	ŀ	İ	w	w	
D							N		R	O W	l	G	E	A	N
D E P T							T	N	C	i i		R	L	E	0
T H			•				E	U	0 7	CO	P	A	c	R	R M
1 "							l v	В	E	U	D	Н	0	L	'''
1		Surface Elev	ation:				A	E	R	N	ppm	C	M	V L	
	-	Sand and Gr						A	 	ΙĖ	0	<u> </u>	广	† -	0.2
1	44444444444444444														
1	-	Clay, Gray, S	liitv										1	ĺ	
	=		,					В		1	l			1	
	Ξ	01 118-74-	074 0					NORM							
2	=	Sand, White,	Siity, Gravei							1			1		
•	Ξ						Time to	1				Ì			
	ΞΙ														
	-														
	=													ĺ	
1	ΞΙ														
4	=														
	=														
	ΞΙ														
5	-]							В			0				0.2
	ㅋ							٦							V.2
				•											
6	-														- 1
1															
	Ξ		•						ļ		ı		İ		
7	Ξ												ı	- 1	
1 '	=			•					1	.				ĺ	
	Ξ								l		- 1	- 1	- 1	l	
8	=								- 1		- 1		- 1		1
ľ	\exists								- 1			1		I	ł
	Ξ									- 1	I		1	- 1	
9	=			*		Í								1	
"	\exists								ł						I
Ī	Ξ							С			0			1	0.2
10	=	Bottom						1			1				
	-	DOUOM													•
	\equiv								1					1	1
11	=														f
												1			

SAMPLE TYPE: SS DRIVEN SPLIT SPOON RC ROCK CORE BORING METHOD: HAS HOLLOW STEM AUGER ST PRESSED SHELBY TUBE CT CONT. TUBE DC DRIVEN CASING

Clier	nt:		Dresser Axelson			الماكات وموادي	***************************************	P	age:	1	of	1		
Proje	ect I	Number:	DRS-94-E893				Date:	02-2	4-95					. [
Proje	ect l	Location:	Hobbs, NM		Drillir				١					
Book	nc •	lumbom	114 E		Samplin				יתדא.	דענטו	mTo	AT.		
Logg		lumber:	H1-6 JT/GP		WELL CO	יד אל או	E T T	L PA	NE	KMF	77.70	- IN		
Drille			Anderson & Assoc	ciates	Screen Dia	: NA		Lenc	ith:	NA	Type	∋:	NA	
l					Slot Size:	NA								1
<u></u>					Riser Dia:	NA		Leng	gth:	NA	Тур	e:	NA	
1			DESCRIPT	ION					B	1		w	w	
D					,	1 !		R	٥			E	А	.
E P						N T	N	EC	W		G R	L	T	N O
T H						E	U	0 7	U O	P	A	С	R	R M
						V A	B	E	U	D	H	O M	L	
		Surface Elev			·	L	R_	Ÿ	T	ppm	c	P	L	
1	-	Sand and G	ravel, White				Α			0				0.2
	Ξ	Clay, dark B	rown, Silty				В							
2	픰	Sand, Buff, 6	Gravel, Silty				NORM							
1														
4	=													
l	\equiv													
	=													
6	\equiv													
	=													•
8	=1													
ľ	귀					1.								1
	ΞΙ						В			o				0.2
10	=							1						
	=				•		င	1						ı
•	Ξ					THE REAL PROPERTY.								1
12	\exists					1								
	ΞΙ			·					j					1
14	-													
	彐						_			ا ً				
	=						D			0				0.2
16	=	-								.				
		Bottom (Refu	sal)							1				.
	∃	, , , , , , , , , , , , , , , , , , ,			Ţ.	1								Ţ
18														
	ΞΙ													I
20										- 1			l	
	=													I
-	Ξ					İ								
22														

	nt:		Dresser Axelson					age:		of	1		
		Vumber:	DRS-94-E893				02-2						
Proj	ect L	_ocation:	Hobbs, NM	Drillin				VAR					
				Samplin				F 3.777	2017	. m = -	77		
	_	lumber:	H1-7 JT/GP	WELL CO	WLL	E.T. T	UN .	LNF.) KWE	7.T.T.()N		
Log	gea ed E		Anderson & Associates	Screen Dia	· ΝΔ		Len	ath.	NΑ	Тур	e.	NA	_
	eu L	y.	Alideison a Associates	Slot Size:	NA			9		.,,,	.		
				Riser Dia:	NA		Len	gth:	NA	Тур	e:	NA	
			DESCRIPTION		T	T		В				Ī	
۵							.	L 0			W	W	
E					N	١	۱.	w		G	L	T	N
P					T	N	N	C	P	R	L	E R	O R
н					R	M B	R	0	I	P	CO	L	М
					A	E	#	N		1	М	V	
		Surface E Sand and	Elevation: Gravel, White		L	R	A	T	ppm 0	C	P	L	0.2
			wn to Gray, Silty, Sandy, Damp			331	В						
4	Ξ								1				
7		Rock in S	poon (No Samples)						1		1		
		Donk											
8	=	Rock											
	Ξ		te, Moist, Plastic		7								
	1 - 1	Rock Sand, Silt	, White, Buffy			В			0				0.2
	'		f to White Silty, Dry		1	٦_				1			
	=										ļ		
	111111					С			0				0.2
16	듸										l	ļ	
	=												
20	Ξ	Bl.	10itahad ta Air Datamanith Trinon-Di	45	<u>.</u>								
20	\exists	Rock Rock, San	(Switched to Air Rotary with Tricone Bindstone	it)									
	Ξ		•		1	i							
24	=												
	=												
	=	Sand,Brov	vn. Siltv										
28	3	waisa,wi Ur	y										ı
	=					D			a				0.2
	=	Groundwa	ter			"			,				V.2
32	듸								l			l	Į
	=		· ·]					l		- 1	·]
36	=) 47 :	1				-		į		- 1
36	\exists	Bottom										-	
	三十											1	
40_	=											1	
	E								1				1
	-						- 1					1	
44	=												

		ent: ject	Number:	on	Page: 1 of 1 Date: 02-27-95												
		ject Number: DRS-94-E893 ject Location: Hobbs, NM			Drilling Method: HSA/AR Sampling Method: SS												
	Boring Number: H1-8						WELL COMPLETION INFORMATION										
	Logged By: JT/GP Drilled By: Harrison					Screen Dia		Length: NA Type: NA									
	DESCRIPTION					Slot Size: Riser Dia:	NA NA		Len	gth:	NA	NA Type: NA					
				· 	T			В									
	D						l N		-	N 0 N		G	E L	W A T	N		
ı	E P T					•	T	N U	0	С	P	R	L	E	O R		
	Н		·				R V A	M B E	R M #	O U N	D	P H I	0 M	L	М		
\vdash			Surface Elevation: Sand and Gravel, White				L	R	-	T	ppm	С	P	L			
4		=		Brown, Silty, Sandy				222	В								
	4	11111111111111	Empty Spoon	······································													
			Sand, Buff, Silty														
1	3		, ,								·						
			Clay, White, Moist					В									
12	2		Juy, 17711110, 111		٠			1									
		=						С							İ		
11	6		Sand, White, Silty, Fine Grained														
		\exists	Rock, Sandsto										l				
20	0																
		=	Rock	oum Industrial Vor	v Uned										ı		
24	Į.	듸	Janusione, Dr	Sandstone, Brown, Indurated, Very Hard											I		
l		=	Sand Fine Gra	ined, Brown, Silty		· · · · · · · · · · · · · · · · · · ·	1										
28	}		Janu, rine Gra	med, brown, dity													
		3	Groundwater		•			D				•			l		
32			Giognawater														
		=	_		•	ý									•		
36	•		Bottom		*	é									l		
		=	DOTTON	 													
40	•																
	•	=			·			Ì									
44	_	=															

APPENDIX C

2001 Laboratory Data and Chain-of-Custody Documentation

July 11, 2001

Service Request No: K2103968

Tanya Akkerman GeoTrans 3035 Prospect Park Drive, Suite 40 Rancho Cordova, CA 95670

Re: Former Axelson Facility (Site #2067)/P253-104

Dear Tanya:

Enclosed are the results of the sample(s) submitted to our laboratory on June 7, 2001. For your reference, these analyses have been assigned our service request number K2103968.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3345.

Respectfully submitted,

Columbia Analytical Services, Inc.

Mingta Lin

Project Chemist

ML/cb

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology

DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number

MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
 - The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
 - The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

Client:

GeoTrans, Inc.

Service Request No.:

K2103968

Project:

Former Axelson Facility (Site #2067)

Date Received:

Jun 7, 2001

Sample Matrix:

Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory Control Sample (LCS).

Sample Receipt

A total of fifty soil and two sludge samples were received for analysis at Columbia Analytical Services on Jun 7, 2001. Selected soil samples were to be archived as instructed. The samples were received in good condition and consistent with the accompanying chain of custody form. The cooler temperature blanks were received at 9.3 and 13.6°C. The samples were stored in a refrigerator at 4°C/frozen at upon receipt at the laboratory.

Inorganic Parameters

The LCS recovery for Reactive Cyanide (by EPA Method 9010B) of 116 percent slightly exceeded the CAS upper control limit of 115 percent. However, the recovery was within the acceptance criteria provided by the Standard Reference Material Manufacturer. No further corrective action was taken.

The Reactive Cyanide and Reactive Sulfide recovery for the MS performed on sludge sample Septic Tank was below the CAS lower control limit due to suspected matrix interference. A duplicate MS analysis was performed and the results were similar to the MS, confirming the presence of matrix interference associated with this sample. No further corrective action was taken.

TCLP Metals

No QA/QC anomalies were observed during the analysis of this sample delivery group.

Fuel Hydrocarbon Identification & Quantitation by EPA Method 8015B

Surrogate Exceptions:

The surrogate control criteria for o-Terphenyl, 4-Bromofluorobenzene, and n-Triacontane in samples SB-1(20'), Septic Tank, and CB-1 are not applicable. The samples contained matrix interferences that prevented adequate resolution of the surrogate.

MS Percent Recovery Exceptions

The control criteria for matrix spike recovery of Diesel Range Organics (DRO) for sample SB-4(30') is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

managed by	n.eth	Date 7/10/01
pproved by	mt/l	Date 4,070

Volatile Organic Compounds by EPA Method 8260B

Internal Standard Exceptions:

The internal standard recovery of Chlorobenzene-d5 and 1,4-Dichlorobenzene-d4 in sample Septic Tank was outside control criteria because of suspected matrix interference. The sample was re-analyzed and the re-analysis confirmed the matrix interference suspected in the original analysis. Results from the original analysis were reported. Results quantified against these internal standards may include a high bias resulting from the matrix effects on the analysis.

Surrogate Exceptions:

The control criteria were exceeded for surrogate Toluene-d8 in sample Septic Tank due to matrix interferences. A re-analysis was performed and produced similar results. The results of the original analysis have been reported. The control criteria were exceeded for surrogates Toluene-d8 and 4-Bromofluorobenzene in sample CB-1 due to matrix interferences. A re-extraction and re-analysis were performed and produced similar results. The results of the original analysis have been reported.

Elevated Method Reporting Limits (MRLs)

Sample CB-1 was analyzed using a mid-level, instead of a low-level, technique due to the extreme complexity associated with this sample. The MRLs were reported at those for the mid-level technique.

Holding Time Exceptions

The initial analysis of sample CB-1 was performed within the recommended holding time. The sample required a dilution and re-analysis of 1,2-Dichlorobenzene because the analyte's concentration exceeded the instrument calibration range. The re-analysis was performed past the recommended holding time for this analyte.

Method Blank Exceptions:

The Method Blanks KWG0103316-2 and KWG0103475-2 contained low levels of Methylene Chloride above the MRL (MRL). In accordance with the methodology, all sample results less than twenty times the level found in the Method Blank are flagged as estimated.

MS Percent Recovery Exceptions

The control criteria for matrix spike recovery of 1,2-Dichlorobenzene for sample CB-1 is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

The matrix spike recovery of Naphthalene for sample CB-1 was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. The matrix spike outlier does not indicate a significant data quality problem. No further corrective action was feasible.

Semivolatile Organic Compounds by EPA Method 8270C

Surrogate Exceptions:

The lower control criteria were exceeded for five out of the six surrogates in the initial extraction of Septic Tank. Since the low surrogate recovery may indicate a potential bias in the analysis, the sample was re-extracted and reanalyzed. The sample results from the re-analysis differ from the initial analysis, indicating potential effects on the quality with the initial sample results. Both sets of data have been reported.

The lower control criterion was exceeded for surrogate 2,4,6-Tribromophenol in the initial extraction of CB-1. Since the problem may indicate a potential bias in the analysis, the sample was re-extracted and re-analyzed. The sample results from the re-analysis differ from the initial analysis, indicating potential effects on the quality with the initial sample results. Both sets of data have been reported.

MS Percent Recovery Exceptions

The spike recovery of N-Nitroso-di-n-propylamine for the MS/DMS performed on a Batch QC sample was outside the upper control criterion. Recovery in the associated LCS was acceptable which indicates the analytical batch was in control. No further corrective action was feasible.

Approved by	mth	Date	7/10/01	
-rr			-	

Semivolatile Organic Compounds by EPA Method 8270C

Holding Time Exceptions:

The analyses of samples Septic Tank, CB-1 were initially performed within the recommended holding time. Re-extraction and re-analysis were required due to the lower surrogate recovery. The re-extractions were performed past the recommended holding time. With the exception of a high surrogate recovery due to matrix interference, the QA/QC results for the re-analyses were within control criteria. The sample results from the re-analyses differ from the initial analyses. Both sets of data have been reported. The data for the re-analysis, which was extracted past the recommended holding time, have been flagged to indicate holding time exceedance.

Approved by Date 7/10/01

Chain of Custody Documentation

K2103968

3035 Prosper pmx perve Analysis Request and Chain of Custody Record 143. Com Bio grantesto PASSE 1 OF 10 LABORATORY REMARKS Laboratory No. WEST MARLAND BLID. Intact Intact Intact HURBS , NEW METER SEGUE Date: 6/6/0/ Date: 6/7/0/ Time: /S_20 Time: Time: Date: Date: Time: Received by: VPS (Signature) +618.85 NEW MERICO Data Results to: Greor RANG, MC, 2703 ANALYSIS REQUESTED Sc15 map.) (1001) SAMPLER REMARKS: BIL BENZER GAST, INC. (REPERENCE SITE NO. 2067) Received for laboratory: TPH (GAT EN IS MED) 5015 mo TOUR (RAM BOIS MOD.) TPH (EPA BUK MOD., Project Location Received by: (Signature) Received by: (Signature) BOIN 853-1800 for (Ma) 853-1860 TOH (EPA TOU CEPA ナアム (どのな Prec 41 VE Aperiod Apo as The Dec Frie Date: 6/6/01 Time: 15% FREMER AVELSIN PACILITY (S.E. # 2007)
HSBSS NEW MERCEN Time: Time: Date: Date: Preser-vative Geoffans, Inc. Sorte 40 Client/Project Name 18 24 24 EAST, W.C. Character Sample Type (Liquid, Sludge, Etc.) Sic (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Sample Container (Size/Mat'l) ひまる Comp ANTA AKERMAN Objection 又 又 メ イ Grab X ベ メ Samplers: (Signature) 6980 10/5/9 2440 0923 1023 6830 1033 8 6-SETTRADIS, 10/C. Date and Time 0 10 SB-4(15") Itib 115 P353-104 Affiliation (9/6) 58-3(32.1) 56-3625 58-3(30,) 58-4(101) 58-36151) 4 56-3620 58-365") (,5)4-85 5.8-36103 Fietd Sample No./ Identification Project No. SEAL #

5

ATTAKION: TANYA AKKERMAN

				l		7 1 1	100	J. Charles do.	¥ -	9 0	
		\ 		E	_	Λ	S S S S S S S S S S S S S S S S S S S	1 1 2 Z		2000 CE	うらからいことといい
		ラン	P		Geolgans		5	Ans	alysis Request and Ch	nain of Cu	stody Record
		А ТЕТАА П	ECH COMPS	A S	I alls,		to coco.	5/4 'CH 956"	PANCHO COLORIA CA 956-70		
	(FILE)	853-1	1900	0	for (914)	85	ő				PAGE 2 or 6
	Project No.		Clie	int/Prc	Client/Project Name 6	टर्स ट्या	INC.		Project Location 2723 WEST	MARLANE	1
	P353-104	104	•	五五	Former Author	pariti	CS. THE M	(5, TE M. 2367)	ttos 85, NEW 1	MEKO S	S4240
	Field Sample No./ Identification	Date and Time	Grab	Comp	Sample Container (Size/Mat'l)	Sample Type (Liquid, Sludge, Etc.)	Preser- vative		ANALYSIS REQUESTED		LABORATORY REMARKS
_	58-4(201)	6/5/01 11:25	X		J. 42	2016		Meretive			
21	56-4125	95:11	イ					GRESSE			
13	58-4(30')	h:.54	¥					MECAL: VE			
11/		12,00	1					ARCHINE			
13	5.3-1(5.)	95:81	4					TOH CROK	TOH CEPA BOIS MOD)		
9)	<(°1)(-85	12:01	ナ					TPH CEPA	\$ 5015 mso)	,	
L		13:03	7					TAH (894	8015 mo)		
18	18 SBN (2007)	13:51	7		·			greative			=
6	<%)(~95	32218	1					GRCHWE			
B	56-1130	13: 22	7		7	-7		ACRICE	•	-	
	Sample	Samplers: (Signature)		Т	Relinquished by:			Date: G/G/6/	Received by: \overrightarrow{O}	Date: 6/6/8 /	Intact
	TANYA ALXERAM	WERR	3		2	enga Abbarman	Zen.	Time: 1500	85 N.M.	Time: 1525	
	Jamos	ans akerman	Ş		Relinquished by: (Signature)	0		Date: Time:	Hart CAS	Date: $6h/c_{\ell}$ Time: (000)	Intact
	GEOTRANS	NS 100.			Relinquished by: (Signature)			Date: Time:	Received by: (Signature)	Date: Time:	Intact
	SAMPLER REMARKS:	HKS: BILL		Ž	BEAZER EAST	EAST, INC. PEFE	SCACE.	SITENO. 2067	REFERENCE SITE NO. 2067 (Signature)	Date:	Laboratory No.
	SEAL #								Data Results to: TANGA AKLEKMAN.		;

K2103968

LAB: Colombia properties 3035 PROSPECT CARRYD OPLUTE

Geoffe Services Analysis Request and Chain of Custody Record PAGE 3 of & LABORATORY REMARKS JEST MARIAND ALVO stres by the Intact Intact Date: 10/6/05 Date: (2 / 1/ 1/ 1/ 1/ 1/ 1/ 1/ A | Time: 1000 Time: 1 Sab H51885, NEW 2723 (EDA EDIS MOD.) TPH (EAG BOISMED.) Received by: C. P. S. (Signature) TP4 (END BOIS OND) ANALYSIS REQUESTED Received by: (Signature) Project Location タタング いかり ORCHITE ARCHIVE 子のその みったいと なっての ARCKING Date: 6/6/01 Time: 1:523 ナマケ FremER AFELSON FALLITY CSITE NO. 2867)
HORBS, NEW MEXICO Time: Date: BEAZER CAST, INC. -Relinquished by: (Signature Law John Ch. Roumen 853-1860 Type (Liquid, Sludge, Etc.) ي ق (9/6) Relinquished by: (Signature) Sample Container (Size/Mat'l) Client/Project Name TAR Сошр Jarya Cheparman graye Alleman 853-1800 イ T ¥ Crab 332 1227 12-5-0 1330 1459 12 38-2(15') 19cb 1503 17 58-2(26) 1530 19 58-2(2) 1556 3551 (5876-55) 06 Date and Time 8 SB-2(25) 1555 P353-104 21 58-1635-1 22 ss-1445) (p) 28-260) 55-16451 55 (">)5-82 F. (916) Sample No./ Identification Project No.

Laboratory No.

Time:

AKEERMAN

C6 TAN99A

Data Results to: GEOTPAMS, INC.

Received for laboratory: (Signature)

BEAZER CAST, MC. (REPORTE SITE NO. 2067)

SAMPLER REMARKS: $eta_{\iota} \mathcal{L}$

SEAL #

Received by: (Signature)

Time: Date:

Relinquished by: (Signature)

SET LANS INC.

Intact

Time: Date:

C LOSTEDIO CO COLL COL COLL	のできたが、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは	Analysis Request and Chain of Custody Record	PASE 7 or 6	2703 WEST MARLAND BUND.	HOBBS, NEW MEXICO BB 240	LABORATORY REMARKS											Date: Of 6/6/ Intact Time: IS CO	Date: 6/7 /6 r Intact CMS Time: (000)	. Date: Intact Time:	Date: Laboratory No. Time:	1
To sold word to forth	プランドの アモス フラン・ア	Analysis Request		Project Location		Preservative ANALYSIS REQUESTED	- pacure	PACKINE	TOH (ENA BUISMOD.)	ARCHIVE						\Delta	Date: 6/6/8/1 Received by: VPS (Signature) Time: 1856 W	Date: Received t	Time: Received by: (Signature)	RECEIVE S.TE VO. 267) Received for laboratory:	Data Results to: G.Co TRANS, int.
•	4	Ceo resconding the glancity	·	Client/Project Name 8 CHECA EMST INC	Former AMELSON GACILITY CS. 1408BS, NEW MEKICO	Sample ype (Liquid, Sludge, Etc.)	JAK 801							·		→	(Signature) Charmer (Signature)	,	Relinquished by: (Signature)	gEAZEAGAST, INC. (REGIONS	
		GEO.	(9161853-1800	├	P253-104 For	Field Date Sample No./ and and ldentification Time CO	58-2(40) (600 x	Se-245 (2003 X	7 Lh10 (5) 9-95	34 SB-6(12) 0752 4	\$ 45L15") 6754 4	76 SB-6(20) 0808 X	37 SB-6125) 0844 X	Se-612') 0858 A	SB-6 (35) 0980 X	X 4000 (124)7-85	AK V. Erman	Offermon	افدد	SAMPLEH REMARKS: BILL 9 EA	SEAL #

K2103968

3035 PROSPER PARK DRUFE

CAS: Colombia Analytical Saration

Geograms Irans, Inc. Rance Constants and Chain of Custody Record PAGESOFE LABORATORY REMARKS Laboratory No. WEST MARLAND BLYD HORSE NEW MEYER SUNYO Intact Intact Intact Date: 6/7/0/ Date: 6/6/01 Time: 1570 Time: 1000 Time: Date: Date: Time: Data Results to: Enest Laws, I.K. AKEERMAN 2703 (E. PA 8015 MOO.) TPH ANALYSIS REQUESTED Received by: U.Q.S. Received for laboratory: (Signature) Project Location 180×10 Received by: (Signature) Received by: (Signature) 日のまで ひのないが BEHTEL CAST, INC. (REFERENCE SIVE NO. 2007) Date: Ce/6/01 000 Time: AKEUSON FACELITY (S. 18 NO. 2267) Time: Time: Date: Date: Preser-vative Client/Project Name (SEN-2ENE ENST., AUC., for (816) 853-1860 Oskeron 45885 NEW MEXICO Sample Type (Liquid, Sludge, Etc.) R (Signardie) Relinquished by: Relinquished by: (Signature) Sample Container (Size/Mat'l) Relinquished by: Jac Franke (416> 853-1800 Splanon メ 1047"X チ Grab Axxernon SAMPLER REMARKS: 8, CL 100 5 1052 2/60 1009 1015/01 1013 47 58-5(2) 1039 1037 Implers: (Signature) Great RANSIME. 1/8 58-5(35) 1041 Date and Time P353-164 (inc) 20 3/ (sc)5-85 9/ V9 58-5(40) 53-5(45") (579-85 1h 44 SE-5-65) 4358-5(10.) 41 58-605) Sample No./ Identification Project No. SEAL # 200

K2103968

3035 PRINTER DAY 00 NA

Site to

Analysis Request and Chain of Custody Record PAGEGRO LABORATORY REMARKS Laboratory No. Intact Intact Intact 80 >40 Time: 1,560 Date: 6/7/0/ Date: 6/c/65 2703 W.MARLAND BLUD Time: 1000 ASBBS, NEW MEKED TUPACRAS METALS: R.C.I.; SVOCS (BOX) TELP ACRA & MEMUS. A.C.I.; SVCCS(828) Time: Date: Time: Received by: V. P. S. (Signature) ANALYSIS REQUESTED Received for laboratory: (Signature) Project Location Data Results to: Received by: (Signature) Received by: (Signature) (8 260) (NOUS VOCS (8260) Date: 6 60 Time: 1 572 > STENS PETBLEUM OUR IN ALL BILL BEAZER EASTING, (REFERENCE SITE NO. 2667) Felmer Averson Facury (S. T. M. 2067) Time: Time: Date: Date: Preser-vative (Signature) Lawy Chiba Aman for (916) 853-1860 Client/Project Name BENZER CHST, AMC SLUGE SAMPLES Student Sample Type (Liquid, Sludge, Etc.) SUNDER SWOGE Sword Geofrans, Inc. JA 223 Relinquished by: (Signature) Relinquished by: (Signature) Sample Container (Size/Mat'l) 452 (Jak (S) Jac Cis JARCZ 40.5 ည သ Comp Janya alkeonnen (gie) 853- 1800 ィ Grab × Y Tonya ALKernen CETPERNS INC. Samplers: (Signature) とうしょう 11:50 7500 550 11.50 Date and Time P253-104 SAMPLER REMARKS: SEPTIC TANK SI SPATICIONE Project No. Field Sample No./ Identification 52 CB-1 C(3--) SEAL #

	mbia A				
Cooler	Receipt	And	Preser	vation	Form

		Cool	er Receipt A	And Preserva	tion Form)
Project	/Client				Order K21_	(968	<u>/ </u>
Coolei	.received on 60/7/01	and opened o	0/7/C	<u> </u>	MD_			·
1.	Were custody seals on of If yes, how many and w	outside of coo	• .		<i>,</i>		UPS	PES NO
2.	Were seals intact and si	gnature & dat	е сопест?_	•			•	YES NO
3.	COC#			 ,			- . 	*
	Temperature of cooler(s	s) upon receip	ti j	6.4	14.5			
	Temperature Blank:			9,3	15,6	·	- . 	
4.	Were custody papers pro	operly filled o	ut (ink, sign	red, etc.)?				(ES NO
5.	Type of packing materia	ıl present	1N5+7	34				
6.	Did all bottles arrive in	good conditio	n (unbroken)?				YES NO
7.	Were all bottle labels co	mplete (i.e. aı	nalysis, pres	ervation, etc.)	?			YES NO
8.	Did all bottle labels and	tags agree wit	th custody p	apers?				(YES NO
9. ·	Were the correct types of	f bottles used	for the tests	indicated?				(YES NO
10.	Were all of the preserved	l bottles recei	ved at the la	b with the app	ropriate pH	?		YES NO
11.	Were VOA vials checked	i for absence	of air bubble	es, and if pres	ent, noted be	elow?		YES NO
12.	Did the bottles originate	from CAS/K	or a branch	laboratory? _				YES NO
Explain	any discrepancies							<u> </u>
· · · · · · · · · · · · · · · · · · ·								
C 1			£.	>				
Samples	that required preservation or			3		Dadla	Rec'd out of	T-:4:-1-
	Sample ID	Reagent	Volume	Lot Nu	moer	Bottle Type	Temperature	Initials
	IN MENTER)				Ar.C	- 1/	140

Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials
10 METE	-70 D			A.C	- 2	140
						,
			· / a			
•						
		·				
·						1.41
		1				

Total Solids

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facil

ample Matrix:

Soil

Service Request: K2103968

Total Solids

Prep Method:

NONE

Analysis Method: **Test Notes:**

160.3M

Units: PERCENT

Basis: WET

Sample Name	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
SB-3(5')	K2103968-001	06/05/2001	06/07/2001	06/08/2001	91.5	
SB-3(10')	K2103968-002	06/05/2001	06/07/2001	06/08/2001	92.9	
SB-3(15')	K2103968-003	06/05/2001	06/07/2001	06/08/2001	86.2	
SB-4(5')	K2103968-008	06/05/2001	06/07/2001	06/08/2001	97.2	
SB-4(10')	K2103968-009	06/05/2001	06/07/2001	06/08/2001	87.8	
SB-4(15')	K2103968-010	06/05/2001	06/07/2001	06/08/2001	89.6	
SB-1(5')	K2103968-015	06/05/2001	06/07/2001	06/08/2001	94.2	
SB-1(10')	K2103968-016	06/05/2001	06/07/2001	06/08/2001	86.4	
SB-1(15')	K2103968-017	06/05/2001	06/07/2001	06/08/2001	84.6	
SB-2(5')	K2103968-024	06/05/2001	06/07/2001	06/08/2001	94.8	
SB-2(10')	K2103968-025	06/05/2001	06/07/2001	06/08/2001	86.3	
SB-2(15')	K2103968-026	06/05/2001	06/07/2001	06/08/2001	89.4	
SB-6(5')	K2103968-033	06/06/2001	06/07/2001	06/08/2001	92.8	
SB-5(5')	K2103968-042	06/06/2001	06/07/2001	06/08/2001	95.7	

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facil

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Date Analyzed: 06/08/200

Duplicate Sample Summary Total Solids

Prep Method:

NONE

Units: PERCENT

Basis: WET

Analysis Method: Test Notes:

160.3M

Sample

Duplicate Sample Result

Average

Relative Percent Difference

Result

Sample Name

Lab Code

Result 91.5

92.3

91.9

<1

Notes

SB-3(5')

K2103968-001

011015

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facil

Soil

Service Request: K2103968

Date Collected: 06/05/2001 **Date Received:** 06/07/2001

Date Analyzed: 06/08/2001

Duplicate Sample Summary Total Solids

Prep Method: Analysis Method: NONE

160.3M

Units: PERCENT

Test Notes:

Basis: WET

Relative

Percent

Difference

Sample Name SB-2(10')

Lab Code K2103968-025 Sample Result 86.3

Result 85.8

Duplicate

Sample

Average 86.1

Result Notes

<1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facil

Sample Matrix:

Soil

Service Request: K2103968

Total Solids

Prep Method:

Analysis Method:

160.3M

NONE

Units: PERCENT

Basis: WET

Test Notes:

Sample Name	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
SB-4(20')	K2103968-011	06/05/2001	06/07/2001	06/18/2001	97.5	
SB-4(25')	K2103968-012	06/05/2001	06/07/2001	06/18/2001	95.3	
SB-4(30')	K2103968-013	06/05/2001	06/07/2001	06/18/2001	95.2	
SB-4(35')	K2103968-014	06/05/2001	06/07/2001	06/18/2001	88.9	
SB-1(20')	K2103968-018	06/05/2001	06/07/2001	06/18/2001	85.9	
SB-1(25')	K2103968-019	06/05/2001	06/07/2001	06/18/2001	93.9	
SB-1(30')	K2103968-020	06/05/2001	06/07/2001	06/18/2001	95.1	
SB-1(35')	K2103968-021	06/05/2001	06/07/2001	06/18/2001	92.4	

QA/QC Report

Client: Project: GeoTrans, Inc.

Former Axelson Facil

ample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Date Analyzed: 06/18/2001

Duplicate Sample Summary Total Solids

Prep Method: Analysis Method: NONE

160.3M

Units: PERCENT

Test Notes:

Sample Name

Relative

Basis: WET

Duplicate Sample Percent

Result Difference Notes

SB-4(20')

K2103968-011

Lab Code

97.5

Sample Result

Result 98.7

Average 98.1

00018 Page 1 of 1

Analytical Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 6/6/01

Date Received: 6/7/01

Total Solids

Prep Method:

NONE

Analysis Method: 160.3M

Test Notes:

Units: Percent Basis: WET

		Date		Result
Sample Name	Lab Code	Analyzed	Result	Notes
Septic Tank	K2103968-051	6/21/01	54.9	
CB-1	K2103968-052	6/21/01	43.0	

Approved By: Total Solids/042095

Tsol_Dod1 - Total Solids 7/3/01

Date: 1/3/0/

Page No.:

QA/QC Report

lient:

GeoTrans, Inc.

Service Request: K2103968

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: 6/6/01

Sample Matrix:

Sludge

Date Received: 6/7/01

Duplicate Summary Total Solids

Prep Method:

NONE

Units: PERCENT

Analysis Method: 160.3M

Basis: WET

Test Notes:

				Duplicate		Relative	
Sample Name	Lab Code	Date Analyzed	Sample Result	Sample Result	Average	Percent Difference	Result Notes
Septic Tank	K2103968-051	6/21/01	54.9	55.2	55.0	<1	

Approved By: Total Solids/060595

Tsol_Dod1 - TS DUP 7/3/01

04920

Page No.:

Inorganic Parameters

Analytical Report

Client:

GeoTrans, Inc.

Project: Former Axelson Facility (Site #2067)/P253-104

Service Request: K2103968

Date Collected: 6/6/01 Date Received: 6/7/01

Basis: As Received

Date Extracted: NA

Characteristics of Hazardous Waste RCRA, 40 CFR Part 261

Sample Name:

Sample Matrix:

Septic Tank

Lab Code:

K2103968-051

Test Notes:

Analyte	Analysis Method	Units	MRL	MDL	Dilution Factor	Date Analyzed	Result	Result Notes	Regulatory Limits
Corrosivity	SW-846 Sec. 7.2*	pH UNITS			1	6/14/01	6.80		\leq 2 or \geq 12.5
Ignitability	SW-846 Sec. 7.1*	DEG F			1	6/8/01	> 200		<140°F
Cyanide	9010B	mg/Kg (ppm)	0.8	0.2	1	6/19/01	ND		250 mg/Kg
Sulfide, Reactive	SW-846 Sec. 7.3*	mg/Kg (ppm)	20	-	1	6/13/01	90		500 mg/Kg

Analytical methods, regulatory limits and action levels used in this report are from Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Ed., September 1986 and as amended by Update I, July 1992.

Approved By:

1S22/052595

____ Date: <u>6/22/01</u>

03968WET.PW1 - charhw 6/22/01

Analytical Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sludge

Service Request: K2103968

Basis: As Received

Date Collected: 6/6/01
Date Received: 6/7/01
Date Extracted: NA

Characteristics of Hazardous Waste RCRA, 40 CFR Part 261

Sample Name:

CB-1

Lab Code:

K2103968-052

Test Notes:

Analyte	Analysis Method	Units	MRL	MDL	Dilution Factor	Date Analyzed	Result	Result Notes	Regulatory Limits
Corrosivity	SW-846 Sec. 7.2*	pH UNITS			1	6/14/01	8.06		$\leq 2 \text{ or } \geq 12.5$
Ignitability	SW-846 Sec. 7.1*	DEG F			1	6/8/01	> 200		<140°F
Cyanide	9010B	mg/Kg (ppm)	0.8	0.2	1	6/20/01	0.6	Ţ	250 mg/Kg
Sulfide, Reactive	SW-846 Sec. 7.3*	mg/Kg (ppm)	20	-	1	6/15/01	47		500 mg/Kg

Analytical methods, regulatory limits and action levels used in this report are from Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Ed., September 1986 and as amended by Update I, July 1992.

Approved By:

1S22/052595

 \leq

Date: 6/22/01

U111) 22

Analytical Report

Client:

GeoTrans, Inc.

Service Request: K2103968

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: NA

Sample Matrix:

Soil

Date Received: NA Date Extracted: NA

Characteristics of Hazardous Waste RCRA, 40 CFR Part 261

Sample Name:

Method Blank

Basis: As Received

Lab Code:

K2103968-MB

Test Notes:

Analyte	Analysis Method	Units	MRL	MDL	Dilution Factor	Date Analyzed	Result	Result Notes	Regulatory Limits
Ignitability	SW-846 Sec. 7.1*	DEG F			1	6/8/01	> 200		<140°F
Cyanide	9010B	mg/Kg (ppm)	0.01	0.002	I	6/19/01	ND		250 mg/Kg
Cyanide	9010B	mg/Kg (ppm)	0.01	0.002	1	6/20/01	ND		250 mg/Kg
Sulfide, Reactive	SW-846 Sec. 7.3*	mg/Kg (ppm)	20	_	1	6/13/01	ND		500 mg/Kg
Sulfide, Reactive	SW-846 Sec. 7.3*	mg/Kg (ppm)	20	-	1 .	6/15/01	ND		500 mg/Kg

Analytical methods, regulatory limits and action levels used in this report are from Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Ed., September 1986 and as amended by Update I, July 1992.

Approved By: 1822/052595

Date: 6/22/01

03968WET.PW1 - MB 6/22/01

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix: Sludge

Service Request: K2103968

Date Collected: 6/6/01

Date Received: 6/7/01 Date Extracted: NA

Date Analyzed: 6/8-20/01

Duplicate Summary Inorganic Parameters

Sample Name:

Septic Tank

Lab Code:

K2103968-051DUP

Test Notes:

Basis: As Received

Analyte	Units	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Corrosivity	pH UNITS	SW-846 Sec. 7.2		6.80	6.92	6.86	2	
Ignitability	DEG F	SW-846 Sec. 7.1		> 200	> 200	> 200	-	
Cyanide	mg/Kg (ppm)	9010B	0.8	ND	NĎ	ND	-	
Sulfide, Reactive	mg/Kg (ppm)	SW-846 Sec. 7.3	20	90	93	92	3	

Approved By: DUP/052595 03968WET.PW1 - DUP 6/22/01

00024

QA/QC Report

GeoTrans, Inc.

Sample Matrix: Sludge

Former Axelson Facility (Site #2067)/P253-104

Service Request: K2103968

Date Collected: 6/6/01 Date Received: 6/7/01

Date Extracted: NA

Date Analyzed: 6/8-20/01

Matrix Spike Summary **Inorganic Parameters**

Sample Name:

Septic Tank

Lab Code:

K2103968-051MS

Basis: As Received

Test Notes:

								CAS Percent	
Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	•	Percent Recovery	Recovery Acceptance Limits	Result Notes
Cyanide Sulfide, Reactive	mg/Kg (ppm) mg/Kg (ppm) s	9010B SW-846 Sec. 7.3*	0.8 20	10.2 143	ND 90	6.4 117	63 19	75-125 60-130	*

Approved By: 03968WET.PWI - MS 6/22/01

Date: 6/22/01

0111125

QA/QC Report

Client:

GeoTrans, Inc.

Service Request: K2103968

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: NA

LCS Matrix:

Call

Date Received: NA

Date Extracted: NA
Date Analyzed: 6/8-20/01

Laboratory Control Sample Summary

Inorganic Parameters

Sample Name:

Lab Control Sample

Lab Code:

K2103968-LCS

Basis: NA

Test Notes:

CAS Percent Recovery Acceptance Analysis True Percent Result Analyte Units Method Limits Notes Value Result Recovery Corrosivity pH UNITS 7.08 6.96 98 85-115 SW-846 Sec. 7.2* Ignitability DEG F 99 85-115 SW-846 Sec. 7.1* 80 81 Cyanide mg/Kg (ppm) 9010B 116 85-115 0.59 0.68 Cyanide mg/Kg (ppm) 9010B 0.59 0.67 114 85-115 mg/Kg (ppm) sw-846 Sec. 7.3* Sulfide, Reactive 2690 2310 86 60-130 Sulfide, Reactive mg/Kg (ppm) sw-846 Sec. 7.3* 2690 2390 89 60-130

Approved By:

LCS/52595

Date: 4/22/81

Total Metals

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

C1	i	en	+		
-		611	ᆫ	-	

GeoTrans, Inc.

Service Request: K2103968

Project No.:

P253-104

Project Name: Former Axelson Facility (Site #2067)

Sample No.	Lab Sample ID.
Septic Tank	K2103968-051_
Septic TankS	K2103968-051S
CB-1	K2103968-052
Method Blank	K2103968-MB

Were	ICP interelement corrections applied?	Yes/No YES
Were	ICP background corrections applied?	Yes/No YES
	If yes-were raw data generated before application of background corrections?	Yes/No NO
Comm	ents:TCLP Metals	

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:

Date: 6/13/01

Uni 127

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

GeoTrans, Inc.

Service Request: K2103968

Project No.: P253-104

Date Collected: 06/06/01

Date Received: 06/07/01

Matrix:

Project Name: Former Axelson Facility (Site #2067)

Units: MG/L

Basis: NA

Sample Name: Septic Tank

TCLP

Lab Code: K2103968-051

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6010B	0.1	1	6/12/01	6/13/01	0.1	ט	
Barium	6010B	1.0	1	6/12/01	6/13/01	1.0	ט	
Cadmium	6010B	0.01	1	6/12/01	6/13/01	0.01	ט	
Chromium	6010B	0.01	1	6/12/01	6/13/01	0.01	ט	_
Lead	6010B	0.05	1	6/12/01	6/13/01	0.43		
Mercury	7470A	0.001	1	6/12/01	6/12/01	0.001	ט	
Selenium	6010B	0.1	1	6/12/01	6/13/01	0.1	[ט	
Silver	6010B	0.02	1	6/12/01	6/13/01	0.02	Ū	

Solids: 0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

GeoTrans, Inc.

Service Request: K2103968

Project No.: P253-104

Date Collected:

06/06/01

Project Name: Former Axelson Facility (Site #2067)

Date Received: 06/07/01

Matrix:

Sample Name: CB-1

Units: MG/L

Basis: NA

TCLP

Lab Code: K2103968-052

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6010B	0.1	1	6/12/01	6/13/01	0.1	Ū	
Barium	6010B	1.0	1	6/12/01	6/13/01	3.0		
Cadmium	6010B	0.01	1	6/12/01	6/13/01	0.01	Ū	
Chromium	6010B	0.01	1	6/12/01	6/13/01	0.01	Ū	
Lead	6010B	0.05	1	6/12/01	6/13/01	0.05	ט	
Mercury	7470A	0.001	1	6/12/01	6/12/01	0.001	Ū	
Selenium	6010B	0.1	1	6/12/01	6/13/01	0.1	Ū	
Silver	6010B	0.02	1	6/12/01	6/13/01	0.02	ט	

% Solids: 0.0

Comments:

00029

INORGANIC ANALYSIS DATA SHEET

Client:

GeoTrans, Inc.

Service Request: K2103968

Project No.: P253-104

Date Collected:

Project Name: Former Axelson Facility (Site #2067)

Date Received:

Matrix:

WATER

Units: MG/L

Basis: NA

Sample Name: Method Blank

Lab Code: K2103968-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6010B	0.1	1	6/12/01	6/13/01	0.1	ַ ט	
Barium	6010B	1.0	1	6/12/01	6/13/01	1.0	ט	
Cadmium	6010B	0.01	1	6/12/01	6/13/01	0.01	ט	
Chromium	6010B	0.01	1	6/12/01	6/13/01	0.01	ט	
Lead	6010B	0.05	1	6/12/01	6/13/01	0.05	ָט	
Mercury	7470A	0.001	1	6/12/01	6/12/01	0.001	ט	
Selenium	6010B	0.1	1	6/12/01	6/13/01	0.1	ט	
Silver	6010B	0.02	1	6/12/01	6/13/01	0.02	ן ט	

Solids: 0.0

Comments:

- 5a -

SPIKE SAMPLE RECOVERY

Client: GeoTrans, Inc.

Service Request: K2103968

Project No.: P253-104

Units: MG/L

Project Name: Former Axelson Facility (Site #2067)

Basis: NA

Matrix:

TCLP

% Solids: 0.0

Sample Name: Septic TankS

Lab Code: K2103968-051S

Analyte	Control Limit %R	Spike Result	С	Sample Result	С	Spike Added	%R	Q	Method
Arsenic	75 - 125	4.6		0.1	ן ט	5.0	92		6010B
Barium	75 - 125	9.5		1.0	ַ ט	10.0	95		6010B
Cadmium	75 - 125	0.88		0.01	ט	1.00	88		6010B
Chromium	75 - 125	4.26		0.01	ט	5.00	85		6010B
Lead	75 - 125	4.76		0.43	Π	5.00	87		6010B
Mercury	75 - 125	0.005		0.001	ט	0.005	103		7470A
Selenium	75 - 125	1.0		0.1	U	1.0	95		6010B
Silver	75 - 125	0.89		0.02	ט	1.00	89		6010B

Comments:

METALS

LABORATORY CONTROL SAMPLE

Client:

GeoTrans, Inc.

Service Request: K2103968

Project No.: P253-104

Project Name: Former Axelson Facility (Site #2067)

Aqueous LCS Source: Inorganic Ventures

Solid LCS Source:

	Aqueou	ıs mg/L		Solid (mg/kg)				
Analyte	True	Found	%R	True	Found	С	Limits	8R
Arsenic	l 5.00	4.95	99	·				
Barium	10.0	9.71	97			1		
Cadmium	1.00	0.953	95					
Chromium	5.00	4.70	94			\top		Î
Lead	5.00	4.69	94					
Mercury	0.00500	0.00515	103					
Selenium	1.00	1.01	101			1		
Silver	1.00	0.907	91			11		i

Fuel Identification and Quanification Method 8015 M

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Service Request: K2103968

Date Collected: 06/05/2001 **Date Received:** 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-3(5')

Lab Code:

K2103968-001

Extraction Method: Analysis Method:

EPA 3550B

8015M

Units: mg/Kg Basis: Dry

Level: Low

Dilution Date Date Extraction **Analyte Name** Result Q MRL Factor Extracted Analyzed Lot Note Gasoline Range Organics (GRO) ND U 11 06/08/01 06/13/01 KWG0103242 Diesel Range Organics (DRO) ND U 1 11 06/08/01 06/13/01 KWG0103242 Residual Range Organics (RRO) ND U 26 1 06/08/01 06/13/01 KWG0103242

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	60	20-150	06/13/01	Acceptable	
o-Terphenyl	100	50-150	06/13/01	Acceptable	
n-Triacontane	94	50-150	06/13/01	Acceptable	

Comments:

Merged

Printed: 07/11/2001 18:02:18

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001 **Date Received:** 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-3(10')

Lab Code:

K2103968-002

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Date	Date	Extraction	
ctracted	Analyzed	Lot	Note
6/08/01	06/13/01	KWG0103242	
6/08/01	06/13/01	KWG0103242	
6/08/01	06/13/01	KWG0103242	
6,	tracted /08/01 /08/01	tracted Analyzed /08/01 06/13/01 06/13/01	tracted Analyzed Lot /08/01 06/13/01 KWG0103242 /08/01 06/13/01 KWG0103242

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	60	20-150	06/13/01	Acceptable	
o-Terphenyl	95	50-150	06/13/01	Acceptable	
n-Triacontane	90	50-150	06/13/01	Acceptable	

Comments:

0003

Printed: 07/11/2001 18:02:23

Merged

Form 1A - Organic

SuperSet Reference: RR9022

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Date Collected: 06/05/2001

Service Request: K2103968

Sample Matrix:

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-3(15')

Lab Code:

K2103968-003

Units: mg/Kg Basis: Dry

Extraction Method: EPA 3550B

Level: Low

Analysis Method:

8015M

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	12	1	06/08/01	06/13/01	KWG0103242	
Diesel Range Organics (DRO)	ND U	12	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	ND U	29	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	59	20-150	06/13/01	Acceptable
o-Terphenyl	93	50-150	06/13/01	Acceptable
n-Triacontane	91	50-150	06/13/01	Acceptable

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-4(5')

Lab Code:

K2103968-008

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND U	10	1	06/08/01	06/13/01	KWG0103242	
Diesel Range Organics (DRO)	ND U	10	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	ND U	25	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	57	20-150	06/13/01	Acceptable	
o-Terphenyl	91	50-150	06/13/01	Acceptable	
n-Triacontane	87	50-150	06/13/01	Acceptable	

Comments:

Merged

Printed: 07/11/2001 18:02:32

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: ., 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-4(10')

Lab Code:

K2103968-009

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	1000	Ĥ	11	1	06/08/01	06/13/01	KWG0103242	
Diesel Range Organics (DRO)	2700	Y	11	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	120	Y	28	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	61	20-150	06/13/01	Acceptable	
o-Terphenyl	87	50-150	06/13/01	Acceptable	
n-Triacontane	82	50-150	06/13/01	Acceptable	

Comments:

Merged

0111)37

Printed: 07/11/2001 18:02:36

Form 1A - Organic

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

'Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-4(15')

Lab Code:

K2103968-010

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg
Basis: Dry

Level: Low

Analyte Name	Result (Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	300 H	I	11	1	06/08/01	06/13/01	KWG0103242	
Diesel Range Organics (DRO)	1000 Y	Z .	11	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	46 Y	<i>T</i>	28	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	61	20-150	06/13/01	Acceptable	
o-Terphenyl	92	50-150	06/13/01	Acceptable	
n-Triacontane	86	50-150	06/13/01	Acceptable	

00038

Comments:

Merged

Printed: 07/11/2001 18:02:40

Form 1A - Organic

,

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

mple Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-4(20')

Lab Code:

K2103968-011

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Analyte Name	Result (Q MR	Diluti L Facto		Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	10 F	·I 10	Ī	06/19/01	06/20/01	KWG0103448	
Diesel Range Organics (DRO)	100 L		1	06/19/01	06/20/01	KWG0103448	
Residual Range Organics (RRO)	31 Y	Y 25	1	06/19/01	06/20/01	KWG0103448	
Diesel Range Organics (DRO)	100 L	10		06/19/01	06/20/01	KW	G0103448

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	72	20-150	06/20/01	Acceptable	
o-Terphenyl	117	50-150	06/20/01	Acceptable	
riacontane	118	50-150	06/20/01	Acceptable	

Comments:

011039

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-4(25')

Lab Code:

K2103968-012

Units: mg/Kg Basis: Dry

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND U	10	1	06/19/01	06/20/01	KWG0103448	
Diesel Range Organics (DRO)	ND U	10	1	06/19/01	06/20/01	KWG0103448	
Residual Range Organics (RRO)	ND U	26	1	06/19/01	06/20/01	KWG0103448	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	85	20-150	06/20/01	Acceptable	
o-Terphenyl	125	50-150	06/20/01	Acceptable	
n-Triacontane	129	50-150	06/20/01	Acceptable	

01104

Comments:

Merged

Printed: 07/11/2001 18:02:49

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Service Request: K2103968

Date Collected: 06/05/2001

Sample Matrix:

Soil

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-4(30')

Lab Code:

K2103968-013

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg
Basis: Dry

Level: Low

		_		Dilution	Date	Date	Extraction	.
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	170	Н	10	1	06/19/01	06/20/01	KWG0103448	
Diesel Range Organics (DRO)	630	L	10	1	06/19/01	06/20/01	KWG0103448	
Residual Range Organics (RRO)	58	O	26	1	06/19/01	06/20/01	KWG0103448	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	81	20-150	06/20/01	Acceptable	
o-Terphenyl	122	50-150	06/20/01	Acceptable	•
n-Triacontane	124	50-150	06/20/01	Acceptable	

Comments:

00041

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-4(35')

Lab Code:

Extraction Method:

K2103968-014

Analysis Method:

EPA 3550B 8015M

Units: mg/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	76 H	11	1	06/19/01	06/20/01	KWG0103448	
Diesel Range Organics (DRO)	300 L	11	1	06/19/01	06/20/01	KWG0103448	
Residual Range Organics (RRO)	43 0	28	1	06/19/01	06/20/01	KWG0103448	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	75	20-150	06/20/01	Acceptable	
o-Terphenyl	117	50-150	06/20/01	Acceptable	
n-Triacontane	121	50-150	06/20/01	Acceptable	

Comments:

Printed: 07/11/2001 18:02:58

Merged

Form 1A - Organic

Page 1 of 1

Analytical Results

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)

Service Request: K2103968 Date Collected: 06/05/2001

Date Received: 06/07/2001

Sample Name:

SB-1(5')

Soil

Lab Code:

K2103968-015

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	10	1	06/08/01	06/13/01	KWG0103242	<u> </u>
Diesel Range Organics (DRO)	21 Y	10	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	97 Y	26	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	56	20-150	06/13/01	Acceptable
o-Terphenyl	90	50-150	06/13/01	Acceptable
n-Triacontane	85	50-150	06/13/01	Acceptable

Comments:

Merged

00043

Printed: 07/11/2001 18:03:02

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-1(10')

Lab Code:

K2103968-016

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	1500 H	11	1	06/08/01	06/13/01	KWG0103242	
Diesel Range Organics (DRO)	1300 Y	11	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	270 O	28	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	90	20-150	06/13/01	Acceptable	
o-Terphenyl	88	50-150	06/13/01	Acceptable	
n-Triacontane	85	50-150	06/13/01	Acceptable	

Comments:

Printed: 07/11/2001 18:03:06

Form 1A - Organic

Page 1 of 1

SuperSet Reference: RR9022

0004

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Service Request: K2103968 Date Collected: 06/05/2001

Sample Matrix:

Soil

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-1(15')

Lab Code:

K2103968-017

Units: mg/Kg

Basis: Dry

Extraction Method:

EPA 3550B

Level: Low

Analysis Method:

8015M

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	2300 H	11	1	06/08/01	06/13/01	KWG0103242	
Diesel Range Organics (DRO)	2400 Y	11	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	370 O	29	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	122	20-150	06/13/01	Acceptable	
o-Terphenyl	87	50-150	06/13/01	Acceptable	
n-Triacontane	86	50-150	06/13/01	Acceptable	

Comments:

Merged

0111145

Printed: 07/11/2001 18:03:10

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-1(20')

Lab Code:

K2103968-018

Extraction Method: EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	7000 DH	110	10	06/19/01	06/23/01	KWG0103448	
Diesel Range Organics (DRO)	6500 L	11	1	06/19/01	06/20/01	KWG0103448	
Residual Range Organics (RRO)	470 O	29	1	06/19/01	06/20/01	KWG0103448	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	307	20-150	06/20/01	Outside Control Limits	
o-Terphenyl	112	50-150	06/20/01	Acceptable	
n-Triacontane	115	50-150	06/20/01	Acceptable	

Comments:

Printed: 07/11/2001 18:03:15

Merged

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

ample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-1(25')

Lab Code:

K2103968-019

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	1100 H	10	1	06/19/01	06/20/01	KWG0103448	-
Diesel Range Organics (DRO)	2100 L	10	1	06/19/01	06/20/01	KWG0103448	
Residual Range Organics (RRO)	190 O	26	1	06/19/01	06/20/01	KWG0103448	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1-Bromofluorobenzene	115	20-150	06/20/01	Acceptable	
o-Terphenyl	131	50-150	06/20/01	Acceptable	
Triacontane	130	50-150	06/20/01	Acceptable	

Comments:

Merged

00047

Printed: 07/11/2001 18:03:19

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-1(30')

Lab Code:

K2103968-020

Units: mg/Kg

Basis: Dry

Extraction Method: EPA 3550B

Level: Low

Analysis Method:

8015M

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	290 H	10	1	06/19/01	06/20/01	KWG0103448	
Diesel Range Organics (DRO)	860 L	10	1	06/19/01	06/20/01	KWG0103448	
Residual Range Organics (RRO)	94 O	26	1	06/19/01	06/20/01	KWG0103448	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	83	20-150	06/20/01	Acceptable	
o-Terphenyl	122	50-150	06/20/01	Acceptable	
n-Triacontane	122	50-150	06/20/01	Acceptable	

Comments:

Merged

0111148

Printed: 07/11/2001 18:03:23

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-1(35')

Lab Code:

K2103968-021

Extraction Method: EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	490 H	11	1	06/19/01	06/21/01	KWG0103448	
Diesel Range Organics (DRO)	1100 L	11	1	06/19/01	06/21/01	KWG0103448	
Residual Range Organics (RRO)	110 O	27	1	06/19/01	06/21/01	KWG0103448	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	101	20-150	06/21/01	Acceptable	
o-Terphenyl	130	50-150	06/21/01	Acceptable	
Triacontane	129	50-150	06/21/01	Acceptable	

Comments:

Merged

00049

Printed: 07/11/2001 18:03:28

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-2(5')

Lab Code:

K2103968-024

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg Basis: Dry

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND	U	10	1	06/08/01	06/13/01	KWG0103242	
Diesel Range Organics (DRO)	ND	U	10	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	ND	U	26	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	57	20-150	06/13/01	Acceptable	
o-Terphenyl	92	50-150	06/13/01	Acceptable	
n-Triacontane	88	50-150	06/13/01	Acceptable	

Comments:

Merged

Printed: 07/11/2001 18:03:32

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:
Sample Matrix:

Former Axelson Facility (Site #2067)

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-2(10')

Lab Code:

K2103968-025

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Result Q	WIKL	ractor	Extracted	Analyzeu	LUt	11016
Gasoline Range Organics (GRO)	ND U	11	1	06/08/01	06/13/01	KWG0103242	=
Diesel Range Organics (DRO)	ND U	11	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	ND U	28	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	56	20-150	06/13/01	Acceptable	
o-Terphenyl	86	50-150	06/13/01	Acceptable	
n-Triacontane	82	50-150	06/13/01	Acceptable	

Comments:

Merged

Printed: 07/11/2001 18:03:36

Form 1A - Organic

Page 1 of 1

SuperSet Reference: RR9022

00051

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/05/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-2(15')

Lab Code:

K2103968-026

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND U	11	1	06/08/01	06/13/01	KWG0103242	
Diesel Range Organics (DRO)	ND U	11	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	ND U	27	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	54	20-150	06/13/01	Acceptable	
o-Terphenyl	88	50-150	06/13/01	Acceptable	
n-Triacontane	85	50-150	06/13/01	Acceptable	

Comments:

Merged

0005

Printed: 07/11/2001 18:03:40

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-6(5')

Lab Code:

K2103968-033

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	11	1	06/08/01	06/13/01	KWG0103242	
Diesel Range Organics (DRO)	ND U	11	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	ND U	27	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	58	20-150	06/13/01	Acceptable
o-Terphenyl	87	50-150	06/13/01	Acceptable
n-Triacontane	83	50-150	06/13/01	Acceptable

Comments:

Merged

00053

Printed: 07/11/2001 18:03:45

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-5(5')

Lab Code:

K2103968-042

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	10	1	06/08/01	06/13/01	KWG0103242	
Diesel Range Organics (DRO)	ND U	10	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	ND U	25	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	59	20-150	06/13/01	Acceptable	
o-Terphenyl	88	50-150	06/13/01	Acceptable	
n-Triacontane	85	50-150	06/13/01	Acceptable	

Comments:

Merged

Printed: 07/11/2001 18:03:49

Form 1A - Organic

Page 1 of 1

Analytical Results

Client: Project: GeoTrans, Inc.

mple Matrix:

Former Axelson Facility (Site #2067)

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

Septic Tank

Units: mg/Kg

Lab Code:

K2103968-051

Basis: Dry

Extraction Method:

EPA 3550B

Level: Low

Analysis Method:

8015M

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	42000 DH	900	10	06/19/01	06/24/01	KWG0103584	
Diesel Range Organics (DRO)	110000 DF	900	10	06/19/01	06/24/01	KWG0103584	
Residual Range Organics (RRO)	40000 DO	2300	10	06/19/01	06/24/01	KWG0103584	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	416	20-150	06/23/01	Outside Control Limits	
Terphenyl	0	50-150	06/23/01	Outside Control Limits	
riacontane	0	50-150	06/23/01	Outside Control Limits	

Comments:

00055

Printed: 07/11/2001 18:03:53

Merged

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

CB-1

Lab Code:

K2103968-052

Units: mg/Kg Basis: Dry

Extraction Method: EPA 3550B

Analysis Method:

8015M

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	74000 H	220	1	06/19/01	06/23/01	KWG0103584	
Diesel Range Organics (DRO)	70000 F	220	1	06/19/01	06/23/01	KWG0103584	
Residual Range Organics (RRO)	68000 F	560	1	06/19/01	06/23/01	KWG0103584	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	1243	20-150	06/23/01	Outside Control Limits	
o-Terphenyl	75	50-150	06/23/01	Acceptable	
n-Triacontane	0	50-150	06/23/01	Outside Control Limits	

Comments:

Merged

00056

Printed: 07/11/2001 18:03:58

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: NA

Date Received: NA

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

Method Blank

Lab Code:

KWG0103242-4

Units: mg/Kg Basis: Dry

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND U	10	1	06/08/01	06/13/01	KWG0103242	_
Diesel Range Organics (DRO)	ND U	10	1	06/08/01	06/13/01	KWG0103242	
Residual Range Organics (RRO)	ND U	25	1	06/08/01	06/13/01	KWG0103242	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	58	20-150	06/13/01	Acceptable	
o-Terphenyl	90	50-150	06/13/01	Acceptable	
Triacontane	86	50-150	06/13/01	Acceptable	

Comments:

00057

Printed: 07/11/2001 18:04:02

Merged

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sediment

Service Request: K2103968

Date Collected: NA

Date Received: NA

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

Method Blank

Lab Code:

KWG0103448-5

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND U	10	1	06/19/01	06/20/01	KWG0103448	
Diesel Range Organics (DRO)	ND U	10	1	06/19/01	06/20/01	KWG0103448	
Residual Range Organics (RRO)	ND U	25	1	06/19/01	06/20/01	KWG0103448	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	78	20-150	06/20/01	Acceptable	
o-Terphenyl	119	50-150	06/20/01	Acceptable	
n-Triacontane	123	50-150	06/20/01	Acceptable	

0005

Comments:

Printed: 07/11/2001 18:04:06

Form 1A - Organic

Page 1 of 1

SuperSet Reference: RR9022

Merged

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: NA Date Received: NA

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

Method Blank

Lab Code:

KWG0103584-2

Units: mg/Kg Basis: Dry

Extraction Method:

EPA 3550B

Level: Low

Analysis Method:

8015M

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND U	10	ı	06/19/01	06/23/01	KWG0103584	
Diesel Range Organics (DRO)	ND U	10	1	06/19/01	06/23/01	KWG0103584	
Residual Range Organics (RRO)	ND U	25	I	06/19/01	06/23/01	KWG0103584	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	. 54	20-150	06/23/01	Acceptable	for the second
o-Terphenyl	89	50-150	06/23/01	Acceptable	
n-Triacontane	93	50-150	06/23/01	Acceptable	

Comments:

Merged

00059

Printed: 07/11/2001 18:04:10

Form 1A - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Service Request: K2103968

Project: Sample Matrix:

Former Axelson Facility (Site #2067)

Surrogate Recovery Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method: EPA 3550B

Analysis Method:

8015M

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1		Sur2		Sur	}
SB-3(5')	K2103968-001	60		100		94	
SB-3(10')	K2103968-002	60		95		90	
SB-3(15')	K2103968-003	. 59		93		91	
SB-4(5')	K2103968-008	57		91		87	
SB-4(10')	K2103968-009	61		87		82	
SB-4(15')	K2103968-010	61		92		86	
SB-4(20')	K2103968-011	72		117		118	
SB-4(25')	K2103968-012	85		125		129	
SB-4(30')	K2103968-013	81		122		124	
SB-4(35')	K2103968-014	75		117		121	
SB-1(5')	K2103968-015	56		90		85	
SB-1(10')	K2103968-016	90		88		85	
SB-1(15')	K2103968-017	122		87		86	
SB-1(20')	K2103968-018	307	*	112		115	
SB-1(25')	K2103968-019	115		131		130	
SB-1(30')	K2103968-020	83		122		122	
SB-1(35')	K2103968-021	101		130		129	
SB-2(5')	K2103968-024	57		92		88	
SB-2(10')	K2103968-025	56		86		82	
SB-2(15')	K2103968-026	54		88		85	
SB-6(5')	K2103968-033	58		87		83	
SB-5(5')	K2103968-042	59		88		85	
Septic Tank	K2103968-051	416	*	0	*	0	*
CB-1	K2103968-052	1243	*	75		0	*
Method Blank	KWG0103242-4	58		90		86	
Method Blank	KWG0103448-5	78		119		123	
Method Blank	KWG0103584-2	54		89		93	
SB-3(5')MS	KWG0103242-1	65		93		88	
SB-3(5')DMS	KWG0103242-2	75		95		90	
SB-4(30')MS	KWG0103448-1	91		127		135	
SB-4(30')DMS	KWG0103448-2	75		115		122	
Lab Control Sample	KWG0103242-3	71		91		87	
Lab Control Sample	KWG0103448-4	91		117		120	
Lab Control Sample	KWG0103584-1	67		95		96	

Surrogate Recovery Control Limits (%)

Sur1 =	4-Bromofluorobenzene	20-150
Sur2 =	o-Terphenyl	50-150
Sur3 =	n-Triacontane	50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

00060

Printed: 07/11/2001 18:04:21

Form 2A - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Extracted: 06/08/2001

Date Analyzed: 06/13/2001

Matrix Spike/Duplicate Matrix Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-3(5')

Lab Code:

K2103968-001

Units: mg/Kg
Basis: Dry

Extraction Method:

EPA 3550B

Level: Low

Analysis Method:

8015M

Extraction Lot: KWG0103242

SB-3(5')MS

KWG0103242-1

SB-3(5')DMS

KWG0103242-2

Matrix Spike Duplicate Matrix Spike Sample %Rec RPD **Analyte Name** Result Result Expected %Rec Result Expected %Rec Limits RPD Limit Diesel Range Organics (DRO) ND 171 168 102 178 168 106 19-145 4 40 Residual Range Organics (RRO) ND 194 190 168 168 116 113 50-150 2 40

sults flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00061

Page

1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Extracted: 06/19/2001

Date Analyzed: 06/20/2001

Matrix Spike/Duplicate Matrix Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

SB-4(30')

Lab Code:

K2103968-013

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Extraction Lot: KWG0103448

Level: Low

SB-4(30')MS

KWG0103448-1

SB-4(30')DMS

KWG0103448-2

Matrix Spike Duplicate Matrix Spike RPD Sam ple %Rec **Analyte Name** Result Result Expected %Rec Result Expected %Rec Limits **RPD** Limit 741 Diesel Range Organics (DRO) 882 165 155 * 69 17 40 630 165 19-145 Residual Range Organics (RRO) 58 252 165 118 222 165 100 50-150 13 40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00062

1 of 1

Page

SuperSet Reference: RR9022

Printed: 07/11/2001 18:04:26 Form 3A - Organic

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Service Request: K2103968 Date Extracted: 06/08/2001

Sample Matrix:

Date Analyzed: 06/13/2001

Lab Control Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method: EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0103242

Lab Control Sample KWG0103242-3 Lab Control Spike

%Rec **Analyte Name** Result Expected %Rec Limits Diesel Range Organics (DRO) 174 160 109 19-145 Residual Range Organics (RRO) 182 160 114 50-150

ults flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00063

Printed: 07/11/2001 18:04:28 Form 3C - Organic SuperSet Reference: RR9022

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sediment

Service Request: K2103968

Date Extracted: 06/19/2001

Date Analyzed: 06/20/2001

Lab Control Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method: EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0103448

Lab Control Sample KWG0103448-4

Lab Control Snike

	Lau	Lab Control Spike		%Rec		
Analyte Name	Result	Expected	%Rec	Limits		
Diesel Range Organics (DRO)	165	160	103	19-145		
Residual Range Organics (RRO)	140	160	87	50-150		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00064

Printed: 07/11/2001 18:04:30

Form 3C - Organic

Page

1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Extracted: 06/19/2001

Date Analyzed: 06/23/2001

Lab Control Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method: EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0103584

Lab Control Sample KWG0103584-1 Lab Control Spike

				%Rec
Analyte Name	Result	Expected	%Rec	Limits
Diesel Range Organics (DRO)	126	160	79	19-145
Residual Range Organics (RRO)	132	160	83	50-150

ilts flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

v#065

Printed: 07/11/2001 18:04:31

Form 3C - Organic

1 of 1 Page

Volatile Organic Compounds Method 8260 B

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Volatile Organic Compounds

Sample Name:

Septic Tank

Lab Code:

K2103968-051

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Wet

Level: Low

A LAS Mana	D 14	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Result	_		ractor			KWG0103475	Note
Dichlorodifluoromethane	ND		5.0	1	06/20/01 06/20/01	06/20/01 06/20/01	KWG0103475	
Chloromethane	ND		5.0 5.0	1	06/20/01	06/20/01	KWG0103475	
Vinyl Chloride	ND			1				
Bromomethane	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
Chloroethane	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
Trichlorofluoromethane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Acetone	110		50	1	06/20/01	06/20/01	KWG0103475	
1,1-Dichloroethene	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Carbon Disulfide	5.2		5.0	1	06/20/01	06/20/01	KWG0103475	
Methylene Chloride	36	В	10	1	06/20/01	06/20/01	KWG0103475	
trans-1,2-Dichloroethene	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Dichloroethane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Jutanone (MEK)	26	·	20	1	06/20/01	06/20/01	KWG0103475	
2,2-Dichloropropane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
cis-1,2-Dichloroethene	ND	U	5.0	1.	06/20/01	06/20/01	KWG0103475	
Chloroform	ND	Ū	5.0	1	06/20/01	06/20/01	KWG0103475	
Bromochloromethane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
1,1,1-Trichloroethane (TCA)	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
1,1-Dichloropropene	ND	Ü	5.0	1	06/20/01	06/20/01	KWG0103475	
Carbon Tetrachloride	ND	U	5.0	1.	06/20/01	06/20/01	KWG0103475	
1,2-Dichloroethane (EDC)	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Benzene	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Trichloroethene (TCE)	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
1,2-Dichloropropane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Bromodichloromethane	ND	Ū	5.0	1	06/20/01	06/20/01	KWG0103475	
Dibromomethane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
2-Hexanone	ND	U	20	1	06/20/01	06/20/01	KWG0103475	
cis-1,3-Dichloropropene	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Toluene	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
trans-1,3-Dichloropropene	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
1,1,2-Trichloroethane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
4-Methyl-2-pentanone (MIBK)	ND	U	20	1	06/20/01	06/20/01	KWG0103475	
1,3-Dichloropropane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Tetrachloroethene (PCE)	10		5.0	1	06/20/01	06/20/01	KWG0103475	
omochloromethane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
- manta:								

Comments:

Printed 07/02/2001 11:20:38 Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Volatile Organic Compounds

Sample Name:

Septic Tank

Lab Code: K2

K2103968-051

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg
Basis: Wet

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	20	1	06/20/01	06/20/01	KWG0103475	
Chlorobenzene	ND U	5.0	1	06/20/01	06/20/01	KWG0103475	
1,1,1,2-Tetrachloroethane	ND U	5.0	1	06/20/01	06/20/01	KWG0103475	
Ethylbenzene	ND U	5.0	1 .	06/20/01	06/20/01	KWG0103475	
m,p-Xylenes	ND U	5.0	1	06/20/01	06/20/01	KWG0103475	
o-Xylene	ND U	5.0	1	06/20/01	06/20/01	KWG0103475	
Styrene	ND U	5.0	1	06/20/01	06/20/01	KWG0103475	
Bromoform	ND U	5.0	1	06/20/01	06/20/01	KWG0103475	
Isopropylbenzene	ND U	20	1	06/20/01	06/20/01	KWG0103475	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	06/20/01	06/20/01	KWG0103475	
1,2,3-Trichloropropane	ND U	5.0	1	06/20/01	06/20/01	KWG0103475	
Bromobenzene	ND U	5.0	1	06/20/01	06/20/01	KWG0103475	•
n-Propylbenzene	ND U	20	1	06/20/01	06/20/01	KWG0103475	
2-Chlorotoluene	ND U	20	1	06/20/01	06/20/01	KWG0103475	
4-Chlorotoluene	ND U	20	1.	06/20/01	06/20/01	KWG0103475	
1,3,5-Trimethylbenzene	ND U	20	1	06/20/01	06/20/01	KWG0103475	
tert-Butylbenzene	ND U	20	1	06/20/01	06/20/01	KWG0103475	
1,2,4-Trimethylbenzene	ND U	20	1	06/20/01	06/20/01	KWG0103475	
sec-Butylbenzene	ND U	20	1	06/20/01	06/20/01	KWG0103475	
1,3-Dichlorobenzene	ND U	5.0	1	06/20/01	06/20/01	KWG0103475	***************************************
4-Isopropyltoluene	ND U	20	1	06/20/01	06/20/01	KWG0103475	
1,4-Dichlorobenzene	ND U	5.0	1	06/20/01	06/20/01	KWG0103475	
n-Butylbenzene	ND U	20	1	06/20/01	06/20/01	KWG0103475	
1,2-Dichlorobenzene	ND U	5.0	1	06/20/01	06/20/01	KWG0103475	
1,2-Dibromo-3-chloropropane	ND U	20	1	06/20/01	06/20/01	KWG0103475	
1,2,4-Trichlorobenzene	ND U	20	1	06/20/01	06/20/01	KWG0103475	
1,2,3-Trichlorobenzene	ND U	20	1	06/20/01	06/20/01	KWG0103475	
Naphthalene	ND U	20	1	06/20/01	06/20/01	KWG0103475	
Hexachlorobutadiene	ND U,	20	1	06/20/01	06/20/01	KWG0103475	

Comments:

00067

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

mple Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Volatile Organic Compounds

Sample Name: Lab Code:

Septic Tank

K2103968-051

Units: ug/Kg

Basis: Wet

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	105	75-132	06/20/01	Acceptable	
Toluene-d8	66	85-109	06/20/01	Outside Control Limits	
4-Bromofluorobenzene	70	49-131	06/20/01	Acceptable	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Volatile Organic Compounds

Sample Name:

CB-1

Lab Code:

K2103968-052

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg Basis: Wet

Level: Med

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Chloromethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Vinyl Chloride	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Bromomethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Chloroethane	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
Trichlorofluoromethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Acetone	ND	_	2.0	1	06/12/01	06/20/01	KWG0103316	
1,1-Dichloroethene	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
Carbon Disulfide	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Methylene Chloride	ND		0.10	1	06/12/01	06/20/01	KWG0103316	
trans-1,2-Dichloroethene	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
1,1-Dichloroethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
2-Butanone (MEK)	ND		2.0	1	06/12/01	06/20/01	KWG0103316	
2,2-Dichloropropane	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
cis-1,2-Dichloroethene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Chloroform	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Bromochloromethane	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
1,1,1-Trichloroethane (TCA)	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,1-Dichloropropene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Carbon Tetrachloride	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,2-Dichloroethane (EDC)	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Benzene	0.087		0.050	1	06/12/01	06/20/01	KWG0103316	
Trichloroethene (TCE)	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
1,2-Dichloropropane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Bromodichloromethane	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
Dibromomethane	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
2-Hexanone	ND	U	2.0	1	06/12/01	06/20/01	KWG0103316	
cis-1,3-Dichloropropene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Toluene	0.63		0.050	1	06/12/01	06/20/01	KWG0103316	
trans-1,3-Dichloropropene	ND	Ú	0.050	1	06/12/01	06/20/01	KWG0103316	
1,1,2-Trichloroethane	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
4-Methyl-2-pentanone (MIBK)	ND		2.0	1	06/12/01	06/20/01	KWG0103316	
1,3-Dichloropropane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Tetrachloroethene (PCE)	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Dibromochloromethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	

Comments:

Printed 07/02/2001 11:20:44 Merged

Form 1A - Organic

1 of 3 Page

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

mple Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001 **Date Received:** 06/07/2001

Volatile Organic Compounds

Sample Name:

CB-1

Lab Code:

K2103968-052

Extraction Method:

EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg Basis: Wet

Level: Med

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
Chlorobenzene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,1,1,2-Tetrachloroethane	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
Ethylbenzene	0.75	0.050	1	06/12/01	06/20/01	KWG0103316	
m,p-Xylenes	0.63	0.050	1 .	06/12/01	06/20/01	KWG0103316	
o-Xylene	1.9	0.050	1	06/12/01	06/20/01	KWG0103316	
Styrene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
Bromoform	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
Isopropylbenzene	0.31	0.20	1	06/12/01	06/20/01	KWG0103316	
1,1,2,2-Tetrachloroethane	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
3-Trichloropropane	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
mobenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
n-Propylbenzene	0.81	0.20	1	06/12/01	06/20/01	KWG0103316	
2-Chlorotoluene	7.9	0.20	1	06/12/01	06/20/01	KWG0103316	
4-Chlorotoluene	0.56	0.20	1.	06/12/01	06/20/01	KWG0103316	
1,3,5-Trimethylbenzene	1.0	0.20	1	06/12/01	06/20/01	KWG0103316	
tert-Butylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,2,4-Trimethylbenzene	2.8	0.20	1	06/12/01	06/20/01	KWG0103316	
sec-Butylbenzene	0.50	0.20	1	06/12/01	06/20/01	KWG0103316	
1,3-Dichlorobenzene	0.11	0.050	1	06/12/01	06/20/01	KWG0103316	
4-Isopropyltoluene	4.4	0.20	1	06/12/01	06/20/01	KWG0103316	
1,4-Dichlorobenzene	1.1	0.050	1	06/12/01	06/20/01	KWG0103316	
n-Butylbenzene	1.0	0.20	1	06/12/01	06/20/01	KWG0103316	
1,2-Dichlorobenzene	44	0.50	1	06/12/01	06/26/01	KWG0103316	*
1,2-Dibromo-3-chloropropane	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,2,4-Trichlorobenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,2,3-Trichlorobenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
Naphthalene	3.6	0.20	1	06/12/01	06/20/01	KWG0103316	
Hexachlorobutadiene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	

^{*} See Case Narrative

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Volatile Organic Compounds

Sample Name:

CB-1

Lab Code:

K2103968-052

Units: mg/Kg Basis: Wet

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	52	45-141	06/20/01	Acceptable
Toluene-d8	39	50-139	06/20/01	Outside Control Limits
4-Bromofluorobenzene	32	50-143	06/20/01	Outside Control Limits

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

nple Matrix:

Soil

Service Request: K2103968

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank KWG0103316-2

Extraction Method:

EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg
Basis: Wet

Level: Med

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
		-					KWG0103316	Note
Dichlorodifluoromethane	ND ND		0.050	1	06/12/01	06/20/01 06/20/01	KWG0103316 KWG0103316	
Chloromethane	ND ND		0.050	1 1	06/12/01 06/12/01	06/20/01	KWG0103316	
Vinyl Chloride			0.050					
Bromomethane	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
Chloroethane	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
Trichlorofluoromethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Acetone	ND	U	2.0	1	06/12/01	06/20/01	KWG0103316	
1,1-Dichloroethene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Carbon Disulfide	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Methylene Chloride	0.11		0.10	1	06/12/01	06/20/01	KWG0103316	
trans-1,2-Dichloroethene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Dichloroethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
2-Butanone (MEK)	ND	Ū	2.0	1	06/12/01	06/20/01	KWG0103316	
2,2-Dichloropropane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
cis-1,2-Dichloroethene	ND	U	0.050	1.	06/12/01	06/20/01	KWG0103316	
Chloroform	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Bromochloromethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,1,1-Trichloroethane (TCA)	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,1-Dichloropropene	ND	U	0.050	<u>I</u>	06/12/01	06/20/01	KWG0103316	
Carbon Tetrachloride	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,2-Dichloroethane (EDC)	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Benzene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Trichloroethene (TCE)	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,2-Dichloropropane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Bromodichloromethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Dibromomethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
2-Hexanone	ND	U	2.0	1	06/12/01	06/20/01	KWG0103316	
cis-1,3-Dichloropropene	ND	Ū	0.050	1	06/12/01	06/20/01	KWG0103316	·
Toluene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
trans-1,3-Dichloropropene	ND	Ú	0.050	1	06/12/01	06/20/01	KWG0103316	
1,1,2-Trichloroethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
4-Methyl-2-pentanone (MIBK)	ND	U	2.0	1	06/12/01	06/20/01	KWG0103316	
1,3-Dichloropropane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Tetrachloroethene (PCE)	ND	Ū	0.050	1	06/12/01	06/20/01	KWG0103316	
omochloromethane	ND		0.050	1	06/12/01	06/20/01	KWG0103316	

Comments:

00072

Printed 07/02/2001 11:20:51 Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: NA

Date Received: NA

Volatile Organic Compounds '

Sample Name: Lab Code:

Method Blank KWG0103316-2

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg Basis: Wet

Level: Med

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
Chlorobenzene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,1,1,2-Tetrachloroethane	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
Ethylbenzene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
m,p-Xylenes	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
o-Xylene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
Styrene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
Bromoform	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
Isopropylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,1,2,2-Tetrachloroethane	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,2,3-Trichloropropane	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
Bromobenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
n-Propylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
2-Chlorotoluene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
4-Chlorotoluene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,3,5-Trimethylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
tert-Butylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,2,4-Trimethylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
sec-Butylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,3-Dichlorobenzene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
4-Isopropyltoluene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,4-Dichlorobenzene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
n-Butylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,2-Dichlorobenzene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,2-Dibromo-3-chloropropane	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,2,4-Trichlorobenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,2,3-Trichlorobenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
Naphthalene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
Hexachlorobutadiene	ND U.	0.20	1	06/12/01	06/20/01	KWG0103316	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project: nple Matrix: Former Axelson Facility (Site #2067)

Soil

Service Request: K2103968

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

KWG0103316-2

Units: mg/Kg

Basis: Wet

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	95	45-141	06/20/01	Acceptable
Toluene-d8	113	50-139	06/20/01	Acceptable
4-Bromofluorobenzene	100	50-143	06/20/01	Acceptable

Comments:

Printed 07/02/2001 11:20:51 Merged

Form 1A - Organic

Page 3 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Service Request: K2103968

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank KWG0103475-5

Extraction Method: EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Wet

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND	Ū	5.0	1	06/20/01	06/20/01	KWG0103475	
Chloromethane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Vinyl Chloride	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Bromomethane	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
Chloroethane	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
Trichlorofluoromethane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Acetone		-	50	1	06/20/01	06/20/01	KWG0103475	
1,1-Dichloroethene	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
Carbon Disulfide	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Methylene Chloride	10		10	1	06/20/01	06/20/01	KWG0103475	
trans-1,2-Dichloroethene	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
1,1-Dichloroethane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
2-Butanone (MEK)	ND	U	20	1	06/20/01	06/20/01	KWG0103475	
2,2-Dichloropropane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
cis-1,2-Dichloroethene	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Chloroform	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Bromochloromethane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
1,1,1-Trichloroethane (TCA)	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
1,1-Dichloropropene	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
Carbon Tetrachloride	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
1,2-Dichloroethane (EDC)	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Benzene	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
Trichloroethene (TCE)	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
1,2-Dichloropropane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Bromodichloromethane	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
Dibromomethane	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
2-Hexanone	ND	U	20	1	06/20/01	06/20/01	KWG0103475	
cis-1,3-Dichloropropene	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
Toluene	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
trans-1,3-Dichloropropene	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
1,1,2-Trichloroethane	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
4-Methyl-2-pentanone (MIBK)	ND		20	1	06/20/01	06/20/01	KWG0103475	
1,3-Dichloropropane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	
Tetrachloroethene (PCE)	ND		5.0	1	06/20/01	06/20/01	KWG0103475	
Dibromochloromethane	ND	U	5.0	1	06/20/01	06/20/01	KWG0103475	

Comments:

Printed 07/02/2001 11:20:58 Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

mple Matrix:

Soil

Service Request: K2103968

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

KWG0103475-5

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg Basis: Wet

Level: Low

Analyte Name	Result	Q	MRL		Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND	U	20		1	06/20/01	06/20/01	KWG0103475	
Chlorobenzene	ND	Ū	5.0		1	06/20/01	06/20/01	KWG0103475	
1,1,1,2-Tetrachloroethane	ND	U	5.0		1	06/20/01	06/20/01	KWG0103475	
Ethylbenzene	ND	U	5.0		1 .	06/20/01	06/20/01	KWG0103475	
m,p-Xylenes	ND	U	5.0	_,	1	06/20/01	06/20/01	KWG0103475	
o-Xylene	ND	U	5.0		1	06/20/01	06/20/01	KWG0103475	
Styrene	ND	U	5.0		1	06/20/01	06/20/01	KWG0103475	
Bromoform	ND	U	5.0		1	06/20/01	06/20/01	KWG0103475	
Isopropylbenzene	ND	U	20		1	06/20/01	06/20/01	KWG0103475	
1,1,2,2-Tetrachloroethane	ND	U	5.0		1	06/20/01	06/20/01	KWG0103475	
1-23-Trichloropropane	ND	U	5.0		1	06/20/01	06/20/01	KWG0103475	
mobenzene	ND T	U	5.0		1	06/20/01	06/20/01	KWG0103475	
n-Propylbenzene	ND	U	20		1	06/20/01	06/20/01	KWG0103475	
2-Chlorotoluene	ND	U	20		1	06/20/01	06/20/01	KWG0103475	
4-Chlorotoluene	ND	U	20		1	06/20/01	06/20/01	KWG0103475	
1,3,5-Trimethylbenzene	ND	U	20		1	06/20/01	06/20/01	KWG0103475	
tert-Butylbenzene	ND	U	20		1	06/20/01	06/20/01	KWG0103475	
1,2,4-Trimethylbenzene	ND	U	20		1	06/20/01	06/20/01	KWG0103475	
sec-Butylbenzene	ND	U	20		1	06/20/01	06/20/01	KWG0103475	
1,3-Dichlorobenzene	ND	U	5.0		1	06/20/01	06/20/01	KWG0103475	
4-Isopropyltoluene	ND	U	20		1	06/20/01	06/20/01	KWG0103475	
1,4-Dichlorobenzene	ND '	U	5.0		1	06/20/01	06/20/01	KWG0103475	
n-Butylbenzene	ND	U	20		1	06/20/01	06/20/01	KWG0103475	
1,2-Dichlorobenzene	ND 1	U	5.0		1	06/20/01	06/20/01	KWG0103475	
1,2-Dibromo-3-chloropropane	ND 1	U	20		1	06/20/01	06/20/01	KWG0103475	
1,2,4-Trichlorobenzene	ND		20		1	06/20/01	06/20/01	KWG0103475	
1,2,3-Trichlorobenzene	ND 1		20		1	06/20/01	06/20/01	KWG0103475	
Naphthalene	ND 1	U	20		1	06/20/01	06/20/01	KWG0103475	
Hexachlorobutadiene	ND	Ų	20		1	06/20/01	06/20/01	KWG0103475	

Comments:

00076

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

KWG0103475-5

Units: ug/Kg

Basis: Wet

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
	108	75-132	06/20/01		
nofluoromethane	100	13-132	06/20/01	Acceptable	
oluene-d8	89	85-109	06/20/01	Acceptable	
4-Bromofluorobenzene	90	49-131	06/20/01	Acceptable	

Comments:

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

aple Matrix:

Sludge

Service Request: K2103968

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: EPA 5030A

Analysis Method:

8260B

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
Septic Tank	K2103968-051	105	66 *	70
Method Blank	KWG0103475-5	108	89	90
Lab Control Sample	KWG0103475-1	104	93	93
Duplicate Lab Control Sample	KWG0103475-2	103	91	95

Surrogate Recovery Control Limits (%)

Sur1 = Dibromofluoromethane	75-132
Sur2 = Toluene-d8	85-109
Sur3 = 4-Bromofluorobenzene	49-131

alts flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

00078

Printed 07/02/2001 11:21:12

Form 2A - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Former Axelson Facility (Site #2067)

Project: Sample Matrix:

Sludge

Service Request: K2103968

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: PERCENT

Level: Med

Sample Name	Lab Code	<u>Sur1</u>	Sur2		<u>Sur3</u>	
CB-1	K2103968-052	52	39	*	32	*
Method Blank	KWG0103316-2	95	113		100	
CB-1MS	KWG0103316-3	58	40	*	40	*
CB-1DMS	KWG0103316-4	55	38	*	36	*
Lab Control Sample	KWG0103316-1	105	113		109	

Surrogate Recovery Control Limits (%)

Sur1	=	Dibromofluoromethane	45-141
Sur2	=	Toluene-d8	50-139
Sur3	=	4-Bromofluorobenzene	50-143

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

00079

Printed 07/02/2001 11:21:24

Form 2A - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

mple Matrix:

Sludge

Service Request: K2103968

Date Extracted: 06/12/2001

Date Analyzed: 06/20/2001

Matrix Spike/Duplicate Matrix Spike Summary **Volatile Organic Compounds**

Sample Name:

CB-1

Lab Code:

K2103968-052

Extraction Method:

EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg

Basis: Wet

Level: Med

Extraction Lot: KWG0103316

	Sample		CB-1MS VG0103316- <mark>Iatrix Spike</mark>		KV	CB-1DMS VG0103316- ate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND	5.25	5.00	105	4.92	5.00	98	51-127	7	40
Benzene	0.087	5.57	5.00	110	5.42	5.00	107	57-121	3	40
Trichloroethene (TCE)	ND	5.31	5.00	106	5.17	5.00	103	45-127	3	40
Toluene	0.63	5.96	5.00	107	5.64	5.00	100	34-134	6	40
Chlorobenzene	ND	4.88	5.00	98	4.79	5.00	96	37-126	2	40
1,2-Dichlorobenzene	44	43.7E	5.00	-15 #	43.3E	5.00	-22 #	34-131	1	40
Nanhthalene	3.6	10.3	5.00	133	11.7	5.00	161 *	20-139	13	40

alts flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Extracted: 06/12/2001

Date Analyzed: 06/20/2001

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:

EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg

Basis: Wet

Level: Med

Extraction Lot: KWG0103316

Lab Control Sample KWG0103316-1 Lab Control Spike

	Lab	Control Spil	ke	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Dichlorodifluoromethane	0.677	1.00	68	50-150	
Chloromethane	0.875	1.00	87	50-150	
Vinyl Chloride	0.915	1.00	91	50-150	
Bromomethane	0.884	1.00	88	50-150	
Chloroethane	0.824	1.00	82	50-150	
Trichlorofluoromethane	0.695	1.00	69	50-150	
Acetone	7.97	5.00	159 *	50-150	
1,1-Dichloroethene	0.876	1.00	88	73-118	
Carbon Disulfide	1.63	2.00	82	50-150	
Methylene Chloride	1.11	1.00	111	50-150	
trans-1,2-Dichloroethene	0.922	1.00	92	50-150	
1,1-Dichloroethane	1.08	1.00	108	50-150	
2-Butanone (MEK)	8.25	5.00	165 *	50-150	
2,2-Dichloropropane	0.935	1.00	93	50-150	
cis-1,2-Dichloroethene	1.00	1.00	100	50-150	•
Chloroform	0.953	1.00	95	50-150	
Bromochloromethane	0.963	1.00	96	50-150	
1,1,1-Trichloroethane (TCA)	0.812	1.00	81	50-150	
1,1-Dichloropropene	0.881	1.00	88	50-150	
Carbon Tetrachloride	0.751	1.00	75	50-150	
1,2-Dichloroethane (EDC)	1,10	1.00	110	50-150	
Benzene	0.952	1.00	95	78-116	
Trichloroethene (TCE)	0.866	1.00	87	79-119	
1,2-Dichloropropane	0.972	1.00	97	50-150	
Bromodichloromethane	0.905	1.00	90	50-150	•
Dibromomethane	1.06	1.00	106	50-150	
2-Hexanone	7.76	5.00	155 *	50-150	
cis-1,3-Dichloropropene	1.05	1.00	105	50-150	
Toluene	0.977	1.00	98	77-118	
trans-1,3-Dichloropropene	0.893	1.00	89	50-150	
1,1,2-Trichloroethane	0.999	1.00	100	50-150	
4-Methyl-2-pentanone (MIBK)	7.24	5.00	145	50-150	
1,3-Dichloropropane	1.01	1.00	100	50-150	
Tetrachloroethene (PCE)	0.707	1.00	71	50-150	
Dibromochloromethane	0.773	1.00	77	50-150	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: GeoTrans, Inc.

Former Axelson Facility (Site #2067)

Date Extracted: 06/12/2001

Service Request: K2103968

mple Matrix:

Soil

Date Analyzed: 06/20/2001

Lab Control Spike Summary **Volatile Organic Compounds**

Extraction Method: Analysis Method:

EPA 5035/5030B

8260B

Units: mg/Kg

Basis: Wet

Level: Med

Extraction Lot: KWG0103316

Lab Control Sample KWG0103316-1

	Lab	Control Spil	ke	%Rec		
Analyte Name	Result	Expected	%Rec	Limits		
1,2-Dibromoethane (EDB)	0.960	1.00	96	50-150		
Chlorobenzene	0.872	1.00	87	80-117		
1,1,1,2-Tetrachloroethane	0.826	1.00	83	50-150	·	
Ethylbenzene	0.887	1.00	89	50-150		
m,p-Xylenes	1.78	2.00	89	50-150		
o-Xylene	0.912	1.00	91	50-150		
Styrene	0.927	1.00	93	50-150		
Bromoform	0.754	1.00	75	50-150		
Isopropylbenzene	0.862	1.00	86	50-150		
11,2,2-Tetrachloroethane	1.23	1.00	123	50-150		
3-Trichloropropane	1.24	1.00	124	50-150		
promobenzene	0.920	1.00	92	50-150		
n-Propylbenzene	0.960	1.00	96	50-150		
2-Chlorotoluene	0.931	1.00	93	50-150		
4-Chlorotoluene	0.951	1.00	95	50-150	•	
1,3,5-Trimethylbenzene	0.956	1.00	96	50-150		
tert-Butylbenzene	0.833	1.00	83	50-150		
1,2,4-Trimethylbenzene	0.964	1.00	96	50-150		
sec-Butylbenzene	0.905	1.00	90	50-150		
1,3-Dichlorobenzene	0.953	1.00	95	50-150		
4-Isopropyltoluene	0.830	1.00	83	50-150		
1,4-Dichlorobenzene	0.917	1.00	92	50-150		
n-Butylbenzene	0.796	1.00	80	50-150		
1,2-Dichlorobenzene	0.966	1.00	97	79-120		
1,2-Dibromo-3-chloropropane	0.986	1.00	99	50-150		
1,2,4-Trichlorobenzene	0.891	1.00	89	50-150		
1,2,3-Trichlorobenzene	0.915	1.00	91	50-150		
Naphthalene	1.17	1.00	117	57-135		
Hexachlorobutadiene	0.661	1.00	66	50-150		

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Extracted: 06/20/2001

Date Analyzed: 06/20/2001

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030A

Analysis Method:

8260B

Units: ug/Kg

Basis: Wet Level: Low

Extraction Lot: KWG0103475

Lab Control Sample KWG0103475-1

	Lab	%Rec		
Analyte Name	Result	Expected	%Rec	Limits
Dichlorodifluoromethane	129	100	129	50-150
Chloromethane	96.0	100	96	50-150
Vinyl Chloride	121	100	121	50-150
Bromomethane	108	100	108	50-150
Chloroethane	121	100	121	50-150
Trichlorofluoromethane	115	100	115	50-150
Acetone	438	500	88	50-150
1,1-Dichloroethene	140	100	140 *	73-118
Carbon Disulfide	225	200	112	50-150
Methylene Chloride	116	100	116	50-150
trans-1,2-Dichloroethene	148	100	148	50-150
1,1-Dichloroethane	133	100	133	50-150
2-Butanone (MEK)	526	500	105	50-150
2,2-Dichloropropane	142	100	142	50-150
cis-1,2-Dichloroethene	133	100	133	50-150
Chloroform	130	100	130	50-150
Bromochloromethane	120	100	120	50-150
1,1,1-Trichloroethane (TCA)	136	100	136	50-150
1,1-Dichloropropene	125	100	125	50-150
Carbon Tetrachloride	140	100	140	50-150
1,2-Dichloroethane (EDC)	124	100	124	50-150
Benzene	116	100	116	78-116
Trichloroethene (TCE)	122	100	122 *	79-119
1,2-Dichloropropane	115	100	115	50-150
Bromodichloromethane	119	100	119	50-150
Dibromomethane	120	100	120	50-150
2-Hexanone	530	500	106	50-150
cis-1,3-Dichloropropene	119	100	119	50-150
Toluene	116	100	116	77-118
trans-1,3-Dichloropropene	119	100	119	50-150
1,1,2-Trichloroethane	114	100	114	50-150
4-Methyl-2-pentanone (MIBK)	542	500	108	50-150
1,3-Dichloropropane	109	100	109	50-150
Tetrachloroethene (PCE)	133	100	133	50-150
Dibromochloromethane	116	100	116	50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

mple Matrix:

Soil

Service Request: K2103968

Date Extracted: 06/20/2001

Date Analyzed: 06/20/2001

Lab Control Spike Summary **Volatile Organic Compounds**

Extraction Method:

EPA 5030A

Analysis Method:

8260B

Units: ug/Kg

Basis: Wet

Level: Low

Extraction Lot: KWG0103475

Lab Control Sample KWG0103475-1 Lab Control Spike

Analyte Name Result Expected %Rec Climits
Chlorobenzene 116 100 116 80-117 1,1,1,2-Tetrachloroethane 120 100 119 50-150 Ethylbenzene 124 100 124 50-150 m,p-Xylenes 245 200 123 50-150 o-Xylene 117 100 117 50-150 Styrene 120 100 120 50-150 Bromoform 121 100 121 50-150 Isopropylbenzene 122 100 122 50-150 1,1,2,2-Tetrachloroethane 109 100 109 50-150 1,1,2,2-Tetrachloroethane 109 100 109 50-150 1-Trichloropropane 113 100 113 50-150 1-Propylbenzene 113 100 113 50-150 n-Propylbenzene 121 100 121 50-150 2-Chlorotoluene 113 100 113 50-150 4-Chlorotoluene 114 100 <t< th=""></t<>
1,1,1,2-Tetrachloroethane 120 100 119 50-150 Ethylbenzene 124 100 124 50-150 m,p-Xylenes 245 200 123 50-150 o-Xylene 117 100 117 50-150 Styrene 120 100 120 50-150 Bromoform 121 100 121 50-150 Isopropylbenzene 122 100 122 50-150 1,1,2,2-Tetrachloroethane 109 100 109 50-150 3-Trichloropropane 113 100 113 50-150 n-Propylbenzene 121 100 121 50-150 n-Propylbenzene 121 100 121 50-150 2-Chlorotoluene 113 100 113 50-150 4-Chlorotoluene 114 100 114 50-150 1,3,5-Trimethylbenzene 119 100 119 50-150 1,2,4-Trimethylbenzene 124 100 124 50-150 1,3-Dichlorobenzene 121 100 <
Ethylbenzene 124 100 124 50-150 m,p-Xylenes 245 200 123 50-150 o-Xylene 117 100 117 50-150 Styrene 120 100 120 50-150 Bromoform 121 100 121 50-150 Isopropylbenzene 122 100 122 50-150 1,1,2,2-Tetrachloroethane 109 100 109 50-150 3-Trichloropropane 113 100 113 50-150 mobenzene 113 100 113 50-150 n-Propylbenzene 121 100 121 50-150 2-Chlorotoluene 113 100 113 50-150 4-Chlorotoluene 114 100 114 50-150 1,3,5-Trimethylbenzene 119 100 119 50-150 1,2,4-Trimethylbenzene 124 100 124 50-150 1,3-Dichlorobenzene 121 100 121 50-150 1,3-Dichlorobenzene 121 100 125
m,p-Xylenes 245 200 123 50-150 o-Xylene 117 100 117 50-150 Styrene 120 100 120 50-150 Bromoform 121 100 121 50-150 Isopropylbenzene 122 100 122 50-150 1,1,2,2-Tetrachloroethane 109 100 109 50-150 3-Trichloropropane 113 100 113 50-150 3-Trichloropropane 113 100 113 50-150 n-Propylbenzene 121 100 121 50-150 2-Chlorotoluene 113 100 113 50-150 4-Chlorotoluene 114 100 114 50-150 4-Chlorotoluene 114 100 114 50-150 1,3,5-Trimethylbenzene 119 100 119 50-150 1,2,4-Trimethylbenzene 125 100 125 50-150 1,3-Dichlorobenzene 121 100 124 50-150 1,3-Dichlorobenzene 121 100 <
o-Xylene 117 100 117 50-150 Styrene 120 100 120 50-150 Bromoform 121 100 121 50-150 Isopropylbenzene 122 100 122 50-150 1,1,2,2-Tetrachloroethane 109 100 109 50-150 3-Trichloropropane 113 100 113 50-150 3-Trichloropropane 113 100 113 50-150 n-Propylbenzene 121 100 121 50-150 2-Chlorotoluene 113 100 113 50-150 4-Chlorotoluene 114 100 114 50-150 4-Chlorotoluene 114 100 114 50-150 1,3,5-Trimethylbenzene 119 100 119 50-150 1,2,4-Trimethylbenzene 124 100 124 50-150 1,3-Dichlorobenzene 121 100 121 50-150 1,4-Dichlorobenzene 125 100 </td
Styrene 120 100 120 50-150 Bromoform 121 100 121 50-150 Isopropylbenzene 122 100 122 50-150 1,1,2,2-Tetrachloroethane 109 100 109 50-150 3-Trichloropropane 113 100 113 50-150 3-mobenzene 113 100 113 50-150 1-Propylbenzene 121 100 121 50-150 2-Chlorotoluene 113 100 113 50-150 4-Chlorotoluene 114 100 114 50-150 1,3,5-Trimethylbenzene 119 100 119 50-150 1,2,4-Trimethylbenzene 125 100 125 50-150 1,2,4-Trimethylbenzene 124 100 124 50-150 1,3-Dichlorobenzene 121 100 121 50-150 1,3-Dichlorobenzene 121 100 121 50-150 1,4-Dichlorobenzene 115 100 125 50-150 1,4-Dichlorobenzene 124 <
Bromoform
Isopropylbenzene 122 100 122 50-150
1,1,2,2-Tetrachloroethane 109 100 109 50-150 3-Trichloropropane 113 100 113 50-150 3-mobenzene 113 100 113 50-150 n-Propylbenzene 121 100 121 50-150 2-Chlorotoluene 113 100 113 50-150 4-Chlorotoluene 114 100 114 50-150 1,3,5-Trimethylbenzene 119 100 119 50-150 tert-Butylbenzene 125 100 125 50-150 1,2,4-Trimethylbenzene 124 100 124 50-150 1,3-Dichlorobenzene 129 100 129 50-150 1,3-Dichlorobenzene 121 100 121 50-150 4-Isopropyltoluene 125 100 125 50-150 1,4-Dichlorobenzene 115 100 115 50-150 n-Butylbenzene 124 100 124 50-150
3-Trichloropropane 113 100 113 50-150 n-Propylbenzene 121 100 121 50-150 2-Chlorotoluene 113 100 113 50-150 4-Chlorotoluene 114 100 114 50-150 1,3,5-Trimethylbenzene 125 100 125 50-150 1,2,4-Trimethylbenzene 124 100 124 50-150 sec-Butylbenzene 129 100 129 50-150 1,3-Dichlorobenzene 121 100 121 50-150 1,3-Dichlorobenzene 125 100 125 50-150 1,3-Dichlorobenzene 121 100 121 50-150 1,4-Dichlorobenzene 125 100 125 50-150 1,4-Dichlorobenzene 126 100 127 50-150 1,4-Dichlorobenzene 127 100 128 50-150 1,4-Dichlorobenzene 128 100 129 50-150 1,4-Dichlorobenzene 129 100 125 50-150 1,4-Dichlorobenzene 124 100 124 50-150 1.50 124 50-150
113 100 113 50-150 121 50-150 2-Chlorotoluene 113 100 113 50-150 2-Chlorotoluene 114 100 114 50-150 1,3,5-Trimethylbenzene 119 100 119 50-150 1,2,4-Trimethylbenzene 125 100 125 50-150 1,2,4-Trimethylbenzene 124 100 124 50-150 1,3-Dichlorobenzene 129 100 129 50-150 1,3-Dichlorobenzene 121 100 121 50-150 1,4-Dichlorobenzene 115 100 115 50-150 1,4-Dichlorobenzene 124 100 124 50-150 1,4-Dichlorobenzene 124 100 125 50-150 1,4-Dichlorobenzene 124 100 124 100 124
n-Propylbenzene 121 100 121 50-150 2-Chlorotoluene 113 100 113 50-150 4-Chlorotoluene 114 100 114 50-150 1,3,5-Trimethylbenzene 119 100 119 50-150 tert-Butylbenzene 125 100 125 50-150 1,2,4-Trimethylbenzene 124 100 124 50-150 sec-Butylbenzene 129 100 129 50-150 1,3-Dichlorobenzene 121 100 121 50-150 4-Isopropyltoluene 125 100 125 50-150 1,4-Dichlorobenzene 115 100 115 50-150 n-Butylbenzene 124 100 124 50-150
2-Chlorotoluene 113 100 113 50-150 4-Chlorotoluene 114 100 114 50-150 1,3,5-Trimethylbenzene 119 100 119 50-150 tert-Butylbenzene 125 100 125 50-150 1,2,4-Trimethylbenzene 124 100 124 50-150 sec-Butylbenzene 129 100 129 50-150 1,3-Dichlorobenzene 121 100 121 50-150 4-Isopropyltoluene 125 100 125 50-150 1,4-Dichlorobenzene 115 100 115 50-150 n-Butylbenzene 124 100 124 50-150
2-Chlorotoluene 113 100 113 50-150 4-Chlorotoluene 114 100 114 50-150 1,3,5-Trimethylbenzene 119 100 119 50-150 tert-Butylbenzene 125 100 125 50-150 1,2,4-Trimethylbenzene 124 100 124 50-150 sec-Butylbenzene 129 100 129 50-150 1,3-Dichlorobenzene 121 100 121 50-150 4-Isopropyltoluene 125 100 125 50-150 1,4-Dichlorobenzene 115 100 115 50-150 n-Butylbenzene 124 100 124 50-150
1,3,5-Trimethylbenzene 119 100 119 50-150 tert-Butylbenzene 125 100 125 50-150 1,2,4-Trimethylbenzene 124 100 124 50-150 sec-Butylbenzene 129 100 129 50-150 1,3-Dichlorobenzene 121 100 121 50-150 4-Isopropyltoluene 125 100 125 50-150 1,4-Dichlorobenzene 115 100 115 50-150 n-Butylbenzene 124 100 124 50-150
tert-Butylbenzene 125 100 125 50-150 1,2,4-Trimethylbenzene 124 100 124 50-150 sec-Butylbenzene 129 100 129 50-150 1,3-Dichlorobenzene 121 100 121 50-150 4-Isopropyltoluene 125 100 125 50-150 1,4-Dichlorobenzene 115 100 115 50-150 n-Butylbenzene 124 100 124 50-150
1,2,4-Trimethylbenzene 124 100 124 50-150 sec-Butylbenzene 129 100 129 50-150 1,3-Dichlorobenzene 121 100 121 50-150 4-Isopropyltoluene 125 100 125 50-150 1,4-Dichlorobenzene 115 100 115 50-150 n-Butylbenzene 124 100 124 50-150
sec-Butylbenzene 129 100 129 50-150 1,3-Dichlorobenzene 121 100 121 50-150 4-Isopropyltoluene 125 100 125 50-150 1,4-Dichlorobenzene 115 100 115 50-150 n-Butylbenzene 124 100 124 50-150
1,3-Dichlorobenzene 121 100 121 50-150 4-Isopropyltoluene 125 100 125 50-150 1,4-Dichlorobenzene 115 100 115 50-150 n-Butylbenzene 124 100 124 50-150
4-Isopropyltoluene 125 100 125 50-150 1,4-Dichlorobenzene 115 100 115 50-150 n-Butylbenzene 124 100 124 50-150
1,4-Dichlorobenzene 115 100 115 50-150 n-Butylbenzene 124 100 124 50-150
n-Butylbenzene 124 100 124 50-150
·
1,2-Dichlorobenzene 114 100 114 79-120
1,2-Dibromo-3-chloropropane 119 100 119 50-150
1,2,4-Trichlorobenzene 122 100 122 50-150
1,2,3-Trichlorobenzene 122 100 122 50-150
Naphthalene 116 100 116 57-135
Hexachlorobutadiene 140 100 140 50-150

ts flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Semi-Volatile Organic Compounds by GC / MS Method 8270 C

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

emple Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Septic Tank K2103968-051

Extraction Method: EPA 3541 **Analysis Method:**

8270C

Units: mg/Kg

Basis: Wet

Level: Low

Analyte Name	Result	o	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND		20	10	06/13/01	06/22/01	KWG0103330	
Aniline	ND		10	10	06/13/01	06/22/01	KWG0103330	
Bis(2-chloroethyl) Ether	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Phenol	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
2-Chlorophenol	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
1,3-Dichlorobenzene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
1,4-Dichlorobenzene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
1,2-Dichlorobenzene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Benzyl Alcohol	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Bis(2-chloroisopropyl) Ether	ND	U	3,3	10	06/13/01	06/22/01	KWG0103330	
2-Methylphenol	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
cachloroethane	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
N-Nitrosodi-n-propylamine	ND	U	3,3	10	06/13/01	06/22/01	KWG0103330	
4-Methylphenol†	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Nitrobenzene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Isophorone	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
2-Nitrophenol	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
2,4-Dimethylphenol	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Bis(2-chloroethoxy)methane	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
2,4-Dichlorophenol	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Benzoic Acid	ND	U	20	10	06/13/01	06/22/01	KWG0103330	
1,2,4-Trichlorobenzene	ND	U	3,3	10	06/13/01	06/22/01	KWG0103330	
Naphthalene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
4-Chloroaniline	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Hexachlorobutadiene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
4-Chloro-3-methylphenol	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
2-Methylnaphthalene	ND	U	3,3	10	06/13/01	06/22/01	KWG0103330	
Hexachlorocyclopentadiene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
2,4,6-Trichlorophenol	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
2,4,5-Trichlorophenol	ND	Ú	3.3	10	06/13/01	06/22/01	KWG0103330	
2-Chloronaphthalene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	, , , , , , , , , , , , , , , , , , , ,
2-Nitroaniline	ND	U	20	10	06/13/01	06/22/01	KWG0103330	
Acenaphthylene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Dimethyl Phthalate	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Dinitrotoluene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Comments:							0008	35
Comments:							0008	<u> </u>

Printed 07/05/2001 15:51:54

Merged

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Septic Tank

Lab Code:

K2103968-051

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: mg/Kg Basis: Wet

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Acenaphthene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
3-Nitroaniline	ND	U	20	10	06/13/01	06/22/01	KWG0103330	
2,4-Dinitrophenol	ND	U	20	10	06/13/01	06/22/01	KWG0103330	
Dibenzofuran	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
4-Nitrophenol	ND	U	20	10	06/13/01	06/22/01	KWG0103330	
2,4-Dinitrotoluene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Fluorene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
4-Chlorophenyl Phenyl Ether	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Diethyl Phthalate	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
4-Nitroaniline	ND	U	20	10	06/13/01	06/22/01	KWG0103330	
2-Methyl-4,6-dinitrophenol	ND	U	20	10	06/13/01	06/22/01	KWG0103330	
N-Nitrosodiphenylamine	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
4-Bromophenyl Phenyl Ether	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Hexachlorobenzene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Pentachlorophenol	ND	U	20	10	06/13/01	06/22/01	KWG0103330	
Phenanthrene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Anthracene	ND		3.3	10	06/13/01	06/22/01	KWG0103330	
Di-n-butyl Phthalate	ND		3.3	10	06/13/01	06/22/01	KWG0103330	
Fluoranthene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Pyrene	ND		3.3	10	06/13/01	06/22/01	KWG0103330	
Butyl Benzyl Phthalate	ND		3.3	10	06/13/01	06/22/01	KWG0103330	
3,3'-Dichlorobenzidine	ND	U	20	10	06/13/01	06/22/01	KWG0103330	
Benz(a)anthracene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Chrysene	ND	U	3.3	10	06/13/01	06/22/01	KWG0103330	
Bis(2-ethylhexyl) Phthalate	6.4	D	3.3	10	06/13/01	06/22/01	KWG0103330	
Di-n-octyl Phthalate	ND	U	17	50	06/13/01	06/22/01	KWG0103330	
Benzo(b)fluoranthene	ND	U	17	50	06/13/01	06/22/01	KWG0103330	
Benzo(k)fluoranthene	ND	U	17	50	06/13/01	06/22/01	KWG0103330	
Benzo(a)pyrene	ND		17	50	06/13/01	06/22/01	KWG0103330	
Indeno(1,2,3-cd)pyrene	ND		17	50	06/13/01	06/22/01	KWG0103330	
Dibenz(a,h)anthracene	ND	U	17	50	06/13/01	06/22/01	KWG0103330	
Benzo(g,h,i)perylene	ND	U	17	50	06/13/01	06/22/01	KWG0103330	

0008

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

mple Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Lab Code:

Septic Tank

K2103968-051

Units: mg/Kg

Basis: Wet

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	10	26-97	06/22/01	Outside Control Limits	
Phenol-d6	19	37-109	06/22/01	Outside Control Limits	
Nitrobenzene-d5	29	35-116	06/22/01	Outside Control Limits	
2-Fluorobiphenyl	44	45-109	06/22/01	Outside Control Limits	
2,4,6-Tribromophenol	21	19-131	06/22/01	Acceptable	
Terphenyl-d14	36	48-140	06/22/01	Outside Control Limits	

†Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

00087

Printed 07/05/2001 15:51:54 Merged

Form 1A - Organic

Page 3 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Septic Tank

Lab Code:

K2103968-051

Extraction Method: EPA 3541 Analysis Method:

8270C

Units: mg/Kg Basis: Wet

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
N-Nitrosodimethylamine	ND	-	30	5	06/27/01	07/02/01	KWG0103701	*
Aniline	ND		15	5	06/27/01	07/02/01	KWG0103701	*
Bis(2-chloroethyl) Ether	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Phenol	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
2-Chlorophenol	ND		5.0	5	06/27/01	07/02/01	KWG0103701	*
1,3-Dichlorobenzene	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
1,4-Dichlorobenzene	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
1,2-Dichlorobenzene	79	D	5.0	5	06/27/01	07/02/01	KWG0103701	*
Benzyl Alcohol	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Bis(2-chloroisopropyl) Ether	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
2-Methylphenol	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*_
Hexachloroethane	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	
N-Nitrosodi-n-propylamine	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
4-Methylphenol†	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Nitrobenzene	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Isophorone	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
2-Nitrophenol	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
2,4-Dimethylphenol	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Bis(2-chloroethoxy)methane	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
2,4-Dichlorophenol	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Benzoic Acid	ND	U	30	5	06/27/01	07/02/01	KWG0103701	*
1,2,4-Trichlorobenzene	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Naphthalene	15	D	5.0	5	06/27/01	07/02/01	KWG0103701	*
4-Chloroaniline	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Hexachlorobutadiene	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
4-Chloro-3-methylphenol	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
2-Methylnaphthalene	32	D	5.0	5	06/27/01	07/02/01	KWG0103701	*
Hexachlorocyclopentadiene	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
2,4,6-Trichlorophenol	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
2,4,5-Trichlorophenol	ND	Ú	5.0	5	06/27/01	07/02/01	KWG0103701	*
2-Chloronaphthalene	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
2-Nitroaniline	ND	U	30	5	06/27/01	07/02/01	KWG0103701	*
Acenaphthylene	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Dimethyl Phthalate	ND	U	5.0	5	06/27/01	07/02/01	KWG0103701	*
2,6-Dinitrotoluene	ND		5.0	5	06/27/01	07/02/01	KWG0103701	

Comments:

Printed 07/05/2001 16:07:53 Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Septic Tank

Lab Code:

K2103968-051

Units: mg/Kg Basis: Wet

Extraction Method: Analysis Method:

EPA 3541 8270C

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Acenaphthene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
3-Nitroaniline	ND U	30	5	06/27/01	07/02/01	KWG0103701	*
2,4-Dinitrophenol	ND U	30	5	06/27/01	07/02/01	KWG0103701	*
Dibenzofuran	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
4-Nitrophenol	ND U	30	5	06/27/01	07/02/01	KWG0103701	*
2,4-Dinitrotoluene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Fluorene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
4-Chlorophenyl Phenyl Ether	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Diethyl Phthalate	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
4-Nitroaniline	ND U	30	5	06/27/01	07/02/01	KWG0103701	*
2 Methyl-4,6-dinitrophenol	ND U	30	5	06/27/01	07/02/01	KWG0103701	*
itrosodiphenylamine	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
4-Bromophenyl Phenyl Ether	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Hexachlorobenzene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Pentachlorophenol	ND U	30	5	06/27/01	07/02/01	KWG0103701	*
Phenanthrene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Anthracene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Di-n-butyl Phthalate	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Fluoranthene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Pyrene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Butyl Benzyl Phthalate	6.3 D	5.0	5	06/27/01	07/02/01	KWG0103701	*
3,3'-Dichlorobenzidine	ND U	30	5	06/27/01	07/02/01	KWG0103701	*
Benz(a)anthracene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Chrysene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Bis(2-ethylhexyl) Phthalate	62 D	5.0	5	06/27/01	07/02/01	KWG0103701	*
Di-n-octyl Phthalate	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Benzo(b)fluoranthene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Benzo(k)fluoranthene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Benzo(a)pyrene	ND U,	5.0	5	06/27/01	07/02/01	KWG0103701	*
Indeno(1,2,3-cd)pyrene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*
Dibenz(a,h)anthracene	ND U	5.0	5	06/27/01	07/02/01	KWG0103701	*

* See Case Narrative

Benzo(g,h,i)perylene

Comments:

<u>00089</u>

5.0

ND U

KWG0103701

07/02/01

06/27/01

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Septic Tank

Lab Code:

K2103968-051

Units: mg/Kg

Basis: Wet

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	96	26-97	07/02/01	Acceptable
Phenol-d6	102	37-109	07/02/01	Acceptable
Nitrobenzene-d5	96	35-116	07/02/01	Acceptable
2-Fluorobiphenyl	130	45-109	07/02/01	Outside Control Limits
2,4,6-Tribromophenol	144	19-131	07/02/01	Outside Control Limits
Terphenyl-d14	109	48-140	07/02/01	Acceptable

†Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

00090

Printed 07/05/2001 16:07:53 Merged

Form 1A - Organic

Page 3 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project: mple Matrix:

Former Axelson Facility (Site #2067)

Sludge

Service Request: K2103968

Date Collected: 06/06/2001 **Date Received:** 06/07/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

CB-1

Lab Code:

K2103968-052

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: mg/Kg Basis: Wet

Level: Low

Analyte Name	Result Q) MRL	Dilution Factor		Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND U	40	10	06/13/01	06/22/01	KWG0103330	
Aniline	ND U		10	06/13/01	06/22/01	KWG0103330	
Bis(2-chloroethyl) Ether	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
Phenol	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
2-Chlorophenol	ND U		10	06/13/01	06/22/01	KWG0103330	
1,3-Dichlorobenzene	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
1,4-Dichlorobenzene	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
1,2-Dichlorobenzene	50 D		10	06/13/01	06/22/01	KWG0103330	
Benzyl Alcohol	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
Bis(2-chloroisopropyl) Ether	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
Methylphenol	ND U		10	06/13/01	06/22/01	KWG0103330	
achloroethane	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
N-Nitrosodi-n-propylamine	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
4-Methylphenol†	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
Nitrobenzene	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
Isophorone	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
2-Nitrophenol	ND U		10	06/13/01	06/22/01	KWG0103330	
2,4-Dimethylphenol	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
Bis(2-chloroethoxy)methane	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
2,4-Dichlorophenol	ND U		10	06/13/01	06/22/01	KWG0103330	
Benzoic Acid	ND U	40	10	06/13/01	06/22/01	KWG0103330	
1,2,4-Trichlorobenzene	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
Naphthalene	10 D		10	06/13/01	06/22/01	KWG0103330	
4-Chloroaniline	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
Hexachlorobutadiene	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
4-Chloro-3-methylphenol	ND U		10	06/13/01	06/22/01	KWG0103330	
2-Methylnaphthalene	23 D	6.7	10	06/13/01	06/22/01	KWG0103330	
Hexachlorocyclopentadiene	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
2,4,6-Trichlorophenol	ND U		10	06/13/01	06/22/01	KWG0103330	
2,4,5-Trichlorophenol	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
2-Chloronaphthalene	ND U		10	06/13/01	06/22/01	KWG0103330	
2-Nitroaniline	ND U	40	10	06/13/01	06/22/01	KWG0103330	
Acenaphthylene	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
Pimethyl Phthalate	ND U		10	06/13/01	06/22/01	KWG0103330	
Dinitrotoluene	ND U	6.7	10	06/13/01	06/22/01	KWG0103330	
_							

Comments:

00091

Printed 07/05/2001 15:52:01 Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

CB-1

Lab Code:

K2103968-052

Extraction Method: EPA 3541 **Analysis Method:**

8270C

Units: mg/Kg Basis: Wet

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Acenaphthene	ND	U	6.7	10	06/13/01	06/22/01	KWG0103330	
3-Nitroaniline	ND	U	40	10	06/13/01	06/22/01	KWG0103330	
2,4-Dinitrophenol	ND	U	40	10	06/13/01	06/22/01	KWG0103330	
Dibenzofuran	ND	U	6.7	10	06/13/01	06/22/01	KWG0103330	
4-Nitrophenol	ND	U	40	10	06/13/01	06/22/01	KWG0103330	
2,4-Dinitrotoluene	ND	U	6.7	10	06/13/01	06/22/01	KWG0103330	
Fluorene	ND	U	6.7	10	06/13/01	06/22/01	KWG0103330	
4-Chlorophenyl Phenyl Ether	ND	U	6.7	10	06/13/01	06/22/01	KWG0103330	
Diethyl Phthalate	ND	U	6.7	10	06/13/01	06/22/01	KWG0103330	
4-Nitroaniline	ND	U	40	10	06/13/01	06/22/01	KWG0103330	
2-Methyl-4,6-dinitrophenol	ND	U	40	10	06/13/01	06/22/01	KWG0103330	
N-Nitrosodiphenylamine	ND	U	6.7	10	06/13/01	06/22/01	KWG0103330	
4-Bromophenyl Phenyl Ether	ND	U	6.7	10	06/13/01	06/22/01	KWG0103330	
Hexachlorobenzene	ND	U	6.7	10	06/13/01	06/22/01	KWG0103330	
Pentachlorophenol	ND	U	40	10	06/13/01	06/22/01	KWG0103330	
Phenanthrene	ND	U	6.7	10	06/13/01	06/22/01	KWG0103330	
Anthracene		U	6.7	10	06/13/01	06/22/01	KWG0103330	
Di-n-butyl Phthalate		U	6.7	10	06/13/01	06/22/01	KWG0103330	
Fluoranthene	ND	U	6.7	10	06/13/01	06/22/01	KWG0103330	
Pyrene	ND		6.7	10	06/13/01	06/22/01	KWG0103330	
Butyl Benzyl Phthalate	11		6.7	10	06/13/01	06/22/01	KWG0103330	
3,3'-Dichlorobenzidine	ND	U	40	10	06/13/01	06/22/01	KWG0103330	
Benz(a)anthracene	ND		6.7	10	06/13/01	06/22/01	KWG0103330	
Chrysene	ND		6.7	10	06/13/01	06/22/01	KWG0103330	
Bis(2-ethylhexyl) Phthalate	58	D	6.7	10	06/13/01	06/22/01	KWG0103330	
Di-n-octyl Phthalate	ND		67	100	06/13/01	06/23/01	KWG0103330	
Benzo(b)fluoranthene	ND		67	100	06/13/01	06/23/01	KWG0103330	
Benzo(k)fluoranthene	ND	U	67	100	06/13/01	06/23/01	KWG0103330	
Benzo(a)pyrene	ND		67	100	06/13/01	06/23/01	KWG0103330	
Indeno(1,2,3-cd)pyrene	ND		67	100	06/13/01	06/23/01	KWG0103330	
Dibenz(a,h)anthracene	ND	U	67	100	06/13/01	06/23/01	KWG0103330	
Benzo(g,h,i)perylene	ND	U	67	100	06/13/01	06/23/01	KWG0103330	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

mple Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

CB-1

Lab Code:

K2103968-052

Units: mg/Kg

Basis: Wet

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	13	26-97	06/22/01	Outside Control Limits
Phenol-d6	19	37-109	06/22/01	Outside Control Limits
Nitrobenzene-d5	45	35-116	06/22/01	Acceptable
2-Fluorobiphenyl	59	45-109	06/22/01	Acceptable
2,4,6-Tribromophenol	0	19-131	06/22/01	Outside Control Limits
Terphenyl-d14	63	. 48-140	06/22/01	Acceptable

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

00093

Printed 07/05/2001 15:52:01 Merged

Form 1A - Organic

Page 3 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001

Date Received: 06/07/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

CB-1

Lab Code:

K2103968-052

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: mg/Kg Basis: Wet

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
N-Nitrosodimethylamine	ND	U	40	5	06/27/01	07/02/01	KWG0103701	*
Aniline	ND	U	20	5	06/27/01	07/02/01	KWG0103701	*
Bis(2-chloroethyl) Ether	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Phenol	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
2-Chlorophenol	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
1,3-Dichlorobenzene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
1,4-Dichlorobenzene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
1,2-Dichlorobenzene	210		33	25	06/27/01	07/03/01	KWG0103701	*
Benzyl Alcohol	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Bis(2-chloroisopropyl) Ether	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
2-Methylphenol	ND		6.7	5	06/27/01	07/02/01	KWG0103701	*
Hexachloroethane	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	•
N-Nitrosodi-n-propylamine	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
4-Methylphenol†	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Nitrobenzene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Isophorone	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
2-Nitrophenol	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
2,4-Dimethylphenol	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Bis(2-chloroethoxy)methane	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
2,4-Dichlorophenol	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Benzoic Acid	ND	U	40	5	06/27/01	07/02/01	KWG0103701	*
1,2,4-Trichlorobenzene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Naphthalene	30	D	6.7	5	06/27/01	07/02/01	KWG0103701	*
4-Chloroaniline	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Hexachlorobutadiene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
4-Chloro-3-methylphenol	ND		6.7	5	06/27/01	07/02/01	KWG0103701	*
2-Methylnaphthalene	64	D	6.7	5	06/27/01	07/02/01	KWG0103701	*
Hexachlorocyclopentadiene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
2,4,6-Trichlorophenol	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
2,4,5-Trichlorophenol	ND	Ú	6.7	5	06/27/01	07/02/01	KWG0103701	*
2-Chloronaphthalene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
2-Nitroaniline	ND		40	5	06/27/01	07/02/01	KWG0103701	*
Acenaphthylene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Dimethyl Phthalate	ND		6.7	5	06/27/01	07/02/01	KWG0103701	*
2,6-Dinitrotoluene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	•
Comments:							000	94

Printed 07/05/2001 16:07:59

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)

Sludge

Service Request: K2103968 **Date Collected:** 06/06/2001

Date Received: 06/07/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

CB-1

Lab Code:

K2103968-052

Extraction Method: EPA 3541

Units: mg/Kg Basis: Wet

Level: Low

8270C Analysis Method:

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Acenaphthene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
3-Nitroaniline	ND	U	40	5	06/27/01	07/02/01	KWG0103701	*
2,4-Dinitrophenol	ND	U	40	5	06/27/01	07/02/01	KWG0103701	*
Dibenzofuran	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
4-Nitrophenol	ND	U	40	5	06/27/01	07/02/01	KWG0103701	*
2,4-Dinitrotoluene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Fluorene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
4-Chlorophenyl Phenyl Ether	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Diethyl Phthalate	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
4-Nitroaniline	ND	U	40	5	06/27/01	07/02/01	KWG0103701	*
2-Methyl-4,6-dinitrophenol	ND		40	5	06/27/01	07/02/01	KWG0103701	*
Jitrosodiphenylamine	ND		6.7	5	06/27/01	07/02/01	KWG0103701	*
- Bromophenyl Phenyl Ether	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Hexachlorobenzene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Pentachlorophenol	ND	U	40	5	06/27/01	07/02/01	KWG0103701	*
Phenanthrene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Anthracene	ND		6.7	5	06/27/01	07/02/01	KWG0103701	*
Di-n-butyl Phthalate	ND		6.7	5	06/27/01	07/02/01	KWG0103701	*
Fluoranthene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Pyrene	ND		6.7	5	06/27/01	07/02/01	KWG0103701	*
Butyl Benzyl Phthalate	14		6.7	5	06/27/01	07/02/01	KWG0103701	*
3,3'-Dichlorobenzidine	ND	U	40	55	06/27/01	07/02/01	KWG0103701	*
Benz(a)anthracene	ND		6.7	5	06/27/01	07/02/01	KWG0103701	*
Chrysene	ND		6.7	5	06/27/01	07/02/01	KWG0103701	*
Bis(2-ethylhexyl) Phthalate	130	D	6.7	5	06/27/01	07/02/01	KWG0103701	*
Di-n-octyl Phthalate	ND		6.7	5	06/27/01	07/02/01	KWG0103701	*
Benzo(b)fluoranthene	ND		6.7	5	06/27/01	07/02/01	KWG0103701	*
Benzo(k)fluoranthene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Benzo(a)pyrene	ND	- /	6.7	5	06/27/01	07/02/01	KWG0103701	*
Indeno(1,2,3-cd)pyrene	ND		6.7	5	06/27/01	07/02/01	KWG0103701	*
Dibenz(a,h)anthracene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*
Benzo(g,h,i)perylene	ND	U	6.7	5	06/27/01	07/02/01	KWG0103701	*

* See Case Narrative

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Date Collected: 06/06/2001 **Date Received:** 06/07/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

CB-1

Lab Code:

K2103968-052

Units: mg/Kg

Basis: Wet

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	58	26-97	07/02/01	Acceptable	
Phenol-d6	147	37-109	07/02/01	Outside Control Limits	
Nitrobenzene-d5	85	35-116	07/02/01	Acceptable	
2-Fluorobiphenyl	78	45-109	07/02/01	Acceptable	
2,4,6-Tribromophenol	81	19-131	07/02/01	Acceptable	
Terphenyl-d14	83	48-140	07/02/01	Acceptable	

+ Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

011096

Printed 07/05/2001 16:07:59 Merged

Form 1A - Organic

Page 3 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank

KWG0103330-4

Extraction Method: EPA 3541 **Analysis Method:**

8270C

Units: mg/Kg Basis: Wet

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND	U	2.0	1	06/13/01	06/19/01	KWG0103330	
Aniline	ND	U	1.0	1	06/13/01	06/19/01	KWG0103330	
Bis(2-chloroethyl) Ether	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Phenol	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
2-Chlorophenol	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
1,3-Dichlorobenzene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
1,4-Dichlorobenzene	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
1,2-Dichlorobenzene	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
Benzyl Alcohol	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Bis(2-chloroisopropyl) Ether	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
2-Methylphenol	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
achloroethane	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
N-Nitrosodi-n-propylamine	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
4-Methylphenol†	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
Nitrobenzene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Isophorone	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
2-Nitrophenol	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
2,4-Dimethylphenol	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Bis(2-chloroethoxy)methane	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
2,4-Dichlorophenol	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
Benzoic Acid	ND	U	2.0	1	06/13/01	06/19/01	KWG0103330	
1,2,4-Trichlorobenzene	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
Naphthalene	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
4-Chloroaniline	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Hexachlorobutadiene	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
4-Chloro-3-methylphenol	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
2-Methylnaphthalene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Hexachlorocyclopentadiene	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
2,4,6-Trichlorophenol	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
2,4,5-Trichlorophenol	ND	Ű	0.33	1	06/13/01	06/19/01	KWG0103330	
2-Chloronaphthalene	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
2-Nitroaniline	ND		2.0	1	06/13/01	06/19/01	KWG0103330	
Acenaphthylene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Dimethyl Phthalate	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
Dinitrotoluene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Comments:							000	97

Printed 07/05/2001 15:52:08 Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0103330-4

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: mg/Kg Basis: Wet

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Acenaphthene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
3-Nitroaniline	ND	U	2.0	1	06/13/01	06/19/01	KWG0103330	
2,4-Dinitrophenol	ND	U	2.0	1	06/13/01	06/19/01	KWG0103330	
Dibenzofuran	ND	U	0,33	1	06/13/01	06/19/01	KWG0103330	
4-Nitrophenol	ND	U	2.0	1	06/13/01	06/19/01	KWG0103330	
2,4-Dinitrotoluene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Fluorene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
4-Chlorophenyl Phenyl Ether	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Diethyl Phthalate	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
4-Nitroaniline	ND	U	2.0	1	06/13/01	06/19/01	KWG0103330	
2-Methyl-4,6-dinitrophenol	ND	U	2.0	1	06/13/01	06/19/01	KWG0103330	
N-Nitrosodiphenylamine	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
4-Bromophenyl Phenyl Ether	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Hexachlorobenzene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Pentachlorophenol		U	2.0	1	06/13/01	06/19/01	KWG0103330	
Phenanthrene	ND	U	0.33	11	06/13/01	06/19/01	KWG0103330	
Anthracene	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
Di-n-butyl Phthalate	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
Fluoranthene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Pyrene	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
Butyl Benzyl Phthalate	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
3,3'-Dichlorobenzidine	ND	U	2.0	1	06/13/01	06/19/01	KWG0103330	
Benz(a)anthracene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Chrysene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Bis(2-ethylhexyl) Phthalate	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Di-n-octyl Phthalate	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Benzo(b)fluoranthene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Benzo(k)fluoranthene	ND	U	0.33	11	06/13/01	06/19/01	KWG0103330	
Benzo(a)pyrene	ND		0.33	1	06/13/01	06/19/01	KWG0103330	
Indeno(1,2,3-cd)pyrene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Dibenz(a,h)anthracene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	
Benzo(g,h,i)perylene	ND	U	0.33	1	06/13/01	06/19/01	KWG0103330	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Service Request: K2103968

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0103330-4

Units: mg/Kg

Basis: Wet

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	62	26-97	06/19/01	Acceptable	
Phenol-d6	72	37-109	06/19/01	Acceptable	
Nitrobenzene-d5	79	35-116	06/19/01	Acceptable	
2-Fluorobiphenyl	80	45-109	06/19/01	Acceptable	
2,4,6-Tribromophenol	82	19-131	06/19/01	Acceptable	
Terphenyl-d14	96	48-140	06/19/01	Acceptable	

†Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0103701-4

Extraction Method: EPA 3541

Units: mg/Kg Basis: Wet

Level: Low

Analysis Method:

8270C

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	No
N-Nitrosodimethylamine	ND	-	2.0	1	06/27/01	07/02/01	KWG0103701	
Aniline	ND		1.0	1	06/27/01	07/02/01	KWG0103701	
Bis(2-chloroethyl) Ether	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
Phenol	ND	_	0.33	1	06/27/01	07/02/01	KWG0103701	
2-Chlorophenol	ND		0.33	1	06/27/01	07/02/01	KWG0103701	
1,3-Dichlorobenzene	ND	U	0.33	11	06/27/01	07/02/01	KWG0103701	
1,4-Dichlorobenzene	ND		0.33	1	06/27/01	07/02/01	KWG0103701	
1,2-Dichlorobenzene	ND		0.33	1	06/27/01	07/02/01	KWG0103701	
Benzyl Alcohol	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
Bis(2-chloroisopropyl) Ether	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
2-Methylphenol	ND		0.33	1	06/27/01	07/02/01	KWG0103701	4
Hexachloroethane	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
N-Nitrosodi-n-propylamine	ND	U	0,33	1	06/27/01	07/02/01	KWG0103701	
4-Methylphenol†	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
Nitrobenzene	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
Isophorone	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
2-Nitrophenol	ND		0.33	1	06/27/01	07/02/01	KWG0103701	
2,4-Dimethylphenol	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
Bis(2-chloroethoxy)methane	ND		0.33	1	06/27/01	07/02/01	KWG0103701	
2,4-Dichlorophenol	ND		0.33	1	06/27/01	07/02/01	KWG0103701	
Benzoic Acid	ND	U	2.0	1	06/27/01	07/02/01	KWG0103701	
1,2,4-Trichlorobenzene	ND		0.33	1	06/27/01	07/02/01	KWG0103701	
Naphthalene	ND		0.33	1	06/27/01	07/02/01	KWG0103701	
4-Chloroaniline	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
Hexachlorobutadiene	ND		0.33	1	06/27/01	07/02/01	KWG0103701	
4-Chloro-3-methylphenol	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
2-Methylnaphthalene	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
Hexachlorocyclopentadiene	ND		0.33	1	06/27/01	07/02/01	KWG0103701	
2,4,6-Trichlorophenol	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
2,4,5-Trichlorophenol	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
2-Chloronaphthalene	ND		0.33	1	06/27/01	07/02/01	KWG0103701	
2-Nitroaniline	ND	U	2.0	1	06/27/01	07/02/01	KWG0103701	
Acenaphthylene	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
Dimethyl Phthalate	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	
2,6-Dinitrotoluene	ND	U	0.33	1	06/27/01	07/02/01	KWG0103701	

Comments:

Printed 07/05/2001 16:08:04

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Units: mg/Kg Basis: Wet

Lab Code:

KWG0103701-4

Level: Low

Extraction Method: EPA 3541

Analysis Method:

8270C

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Acenaphthene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
3-Nitroaniline	ND U	2.0	1	06/27/01	07/02/01	KWG0103701	
2,4-Dinitrophenol	ND U	2.0	1	06/27/01	07/02/01	KWG0103701	
Dibenzofuran	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
4-Nitrophenol	ND U	2.0	1	06/27/01	07/02/01	KWG0103701	
2,4-Dinitrotoluene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Fluorene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
4-Chlorophenyl Phenyl Ether	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Diethyl Phthalate	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
4-Nitroaniline	ND U	2.0	1	06/27/01	07/02/01	KWG0103701	
Methyl-4,6-dinitrophenol	ND U	2.0	1	06/27/01	07/02/01	KWG0103701	
Nitrosodiphenylamine	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
4-Bromophenyl Phenyl Ether	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Hexachlorobenzene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Pentachlorophenol	ND U	2.0	1	06/27/01	07/02/01	KWG0103701	
Phenanthrene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Anthracene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Di-n-butyl Phthalate	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Fluoranthene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Pyrene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Butyl Benzyl Phthalate	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
3,3'-Dichlorobenzidine	ND U	2.0	1	06/27/01	07/02/01	KWG0103701	
Benz(a)anthracene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Chrysene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Bis(2-ethylhexyl) Phthalate	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Di-n-octyl Phthalate	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Benzo(b)fluoranthene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Benzo(k)fluoranthene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Benzo(a)pyrene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Indeno(1,2,3-cd)pyrene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Dibenz(a,h)anthracene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	
Benzo(g,h,i)perylene	ND U	0.33	1	06/27/01	07/02/01	KWG0103701	

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank

KWG0103701-4

Units: mg/Kg

Basis: Wet

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	41	26-97	07/02/01	Acceptable	
Phenol-d6	48	37-109	07/02/01	Acceptable	
Nitrobenzene-d5	54	35-116	07/02/01	Acceptable	
2-Fluorobiphenyl	53	45-109	07/02/01	Acceptable	
2,4,6-Tribromophenol	55	19-131	07/02/01	Acceptable	
Terphenyl-d14	61	48-140	07/02/01	Acceptable	

†Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed 07/05/2001 16:08:04 Merged

Form 1A - Organic

Page 3 of 3

SuperSet Reference: RR8800

QA/QC Report

Client: Project: GeoTrans, Inc.

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Service Request: K2103968

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541 **Analysis Method:**

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	<u>Sur3</u>	Sur4	Sur5	Sur6
Septic Tank	K2103968-051	10 D *	19 D *	29 D *	44 D *	21 D	36 D *
CB-1	K2103968-052	13 D #	19D#	45 D #	59 D #	0D *	63 D #
Method Blank	KWG0103330-4	62	72	79	80	82	96
Batch QC	K2104056-001	48	59	62	65	84	85
Batch QCMS	KWG0103330-1	60	78	83	76	111	116
Batch QCDMS	KWG0103330-2	75	96	104	95	126	133
Lab Control Sample	KWG0103330-3	64	68	68	79	86	94

Surrogate Recovery Control Limits (%)

Sur1 = 2-Fluorophenol	26-97	Sur5 = 2,4,6-Tribromophenol	19-131
Sur2 = Phenol-d6	37-109	Sur6 = Terphenyl-d14	48-140
Sur3 = Nitrobenzene-d5	35-116	- ·	
Sur4 = 2-Fluorobiphenyl	45-109		

Its flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

GeoTrans, Inc.

Service Request: K2103968

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Sludge

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4	Sur5	Sur6
Septic Tank	K2103968-051	96 D	102 D	96 D #	130 D #	144 D *	109 D #
CB-1	K2103968-052	58D#	147D#	85 D #	78 D #	81 D #	83 D #
Method Blank	KWG0103701-4	41	48	54	53	55	61
Lab Control Sample	KWG0103701-3	62	72	79	77	88	98

Surrogate Recovery Control Limits (%)

19-1	Sur5 = 2,4,6-Tribromophenol	26-97	Sur1 = 2-Fluorophenol
48-1	Sur6 = Terphenyl-d14	37-109	Sur2 = Phenol-d6
		35-116	Sur3 = Nitrobenzene-d5
		45-109	Sur4 = 2-Fluorobiphenyl
		45-109	Sur4 = 2-Fluorobiphenyl

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

00104

Printed 07/05/2001 16:08:25

Form 2A - Organic

Page 1 of 1

SuperSet Reference: RR8800

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Service Request: K2103968

Date Extracted: 06/13/2001

Date Analyzed: 06/20/2001

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Batch QC

Lab Code:

K2104056-001

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: mg/Kg Basis: Wet

Level: Low

Extraction Lot: KWG0103330

	Sample	KV	atch QCMS VG0103330- Iatrix Spike		KV	tch QCDMS VG0103330-: ate Matrix S	2	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Phenol	ND	2.31	3.33	69	2.98	3.33	89	51-102	25	40
2-Chlorophenol	ND	2.38	3.33	71	3.03	3.33	91	54-100	24	40
1,4-Dichlorobenzene	ND	2.08	3.33	63	2.74	3.33	82	47-98	27	40
N-Nitrosodi-n-propylamine	ND	2.95	3.33	89	3.69	3.33	111 *	48-109	22	40
1,2,4-Trichlorobenzene	ND	2.20	3.33	66	2.92	3.33	88	52-102	28	40
4-Chloro-3-methylphenol	ND	2.98	3.33	89	3.51	3.33	105	68-105	16	40
Acenaphthene	ND	2.68	3.33	80	3.23	3.33	97	40-124	18	40
4-Nitrophenol	ND	3.31	3.33	99	3.84	3.33	115	59-115	15	40
2.4-Dinitrotoluene	ND	3.43	3.33	103	3.96	3.33	119	66-123	14	40
tachlorophenol	ND	2.93	3.33	88	3.42	3.33	103	49-105	16	40
ryrene	ND	3.01	3.33	90	3.49	3.33	105	35-145	15	40

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Extracted: 06/13/2001

Date Analyzed: 06/19/2001

Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: mg/Kg Basis: Wet

Level: Low

Extraction Lot: KWG0103330

Lab Control Sample KWG0103330-3

Lab Control Spike			%Rec
Result	Expected	%Rec	Limits
2.44	3.32	73	42-118
			21-98
2.38			38-110
2.34	3.32		51-98
			51-101
			39-110
			36-105
			41-107
			59-103
			38-110
			56-101
			39-107
			54-96
			53-99
			51-106
			62-102
2.50	3.32	75	61-102
2.33	3.32		53-99
2.42			54-104
			61-103
2.21	3.32	66	16-128
2.37	3.32	71	50-100
2.47	3.32	74	53-103
2.19	3.32	66	19-112
2.50			48-111
2.38	3.32	72	64-112
2.29	3.32	69	57-95
2.71	3.32	82	14-118
2.63	3.32	<i>7</i> 9	67-104
2.69			67-105
2.53	3.32	76	59-99
2.56	3.32	77	47-104
2.62	3.32	79	60-105
2.59	3.32	78	68-102
2.76	3.32	83	69-107
	Result 2.44 1.62 2.38 2.34 2.32 2.33 2.26 2.37 2.30 2.31 2.30 2.23 2.49 2.21 2.18 2.51 2.50 2.33 2.42 2.44 2.21 2.37 2.47 2.19 2.50 2.38 2.29 2.71 2.63 2.69 2.53 2.56 2.62 2.59	Result Expected 2.44 3.32 1.62 3.32 2.38 3.32 2.34 3.32 2.32 3.32 2.33 3.32 2.37 3.32 2.30 3.32 2.31 3.32 2.30 3.32 2.31 3.32 2.49 3.32 2.18 3.32 2.51 3.32 2.51 3.32 2.53 3.32 2.42 3.32 2.44 3.32 2.47 3.32 2.47 3.32 2.47 3.32 2.50 3.32 2.50 3.32 2.51 3.32 2.50 3.32 2.50 3.32 2.51 3.32 2.50 3.32 2.51 3.32 2.52 3.32 2.53 3.32 2	Result Expected %Rec 2.44 3.32 73 1.62 3.32 49 2.38 3.32 70 2.32 3.32 70 2.33 3.32 70 2.26 3.32 68 2.37 3.32 71 2.30 3.32 69 2.31 3.32 69 2.33 3.32 69 2.23 3.32 67 2.49 3.32 75 2.18 3.32 65 2.51 3.32 75 2.50 3.32 75 2.33 3.32 75 2.50 3.32 75 2.33 3.32 75 2.33 3.32 75 2.33 3.32 75 2.33 3.32 75 2.33 3.32 75 2.33 3.32 74 2.21 3

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00106

Printed 07/05/2001 15:52:47

Form 3C - Organic

Page

SuperSet Reference: RR8796

1 of 2

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Service Request: K2103968

Date Extracted: 06/13/2001

Date Analyzed: 06/19/2001

Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541 **Analysis Method:**

8270C

Units: mg/Kg

Basis: Wet

Level: Low Extraction Lot: KWG0103330

Lab Control Sample

KWG0103330-3 Lab Control Snike

	Lab	Control Spil	ontrol Spike			
Analyte Name	Result	Expected	%Rec	%Rec Limits	Limits	
Acenaphthene	2.49	3.32	75	57-108		
3-Nitroaniline	2.56	3.32	77	21-133		
2,4-Dinitrophenol	2.35	3.32	71	41-119		
Dibenzofuran	2.48	3.32	75	65-99		
4-Nitrophenol	2.39	3.32	72	55-121		
2,4-Dinitrotoluene	2.58	3.32	78	63-123		
Fluorene	2.51	3.32	75	63-109		
4-Chlorophenyl Phenyl Ether	2.58	3.32	78	63-101		
Diethyl Phthalate	2.62	3.32	79	66-113		
4-Nitroaniline	2.48	3.32	75	60-116		
ethyl-4,6-dinitrophenol	2.76	3.32	83	61-114		
Nitrosodiphenylamine	2.69	3.32	81	69-109		
4-Bromophenyl Phenyl Ether	2.91	3.32	88	69-105		
Hexachlorobenzene	2.98	3.32	90	68-112		
Pentachlorophenol	2.93	3.32	88	58-110	•	
Phenanthrene	2.78	3.32	84	62-102		
Anthracene	2.95	3.32	89	68-107		
Di-n-butyl Phthalate	3.01	3.32	91	67-107		
Fluoranthene	2.97	3.32	89	64-105		
Pyrene	2.54	3.32	76	53-123		
Butyl Benzyl Phthalate	2.67	3.32	80	55-119		
3,3'-Dichlorobenzidine	2.89	3.32	87	38-124		
Benz(a)anthracene	2.73	3.32	82	64-111		
Chrysene	2.75	3.32	83	72-99		
Bis(2-ethylhexyl) Phthalate	2.75	3.32	83	57-117		
Di-n-octyl Phthalate	2.76	3.32	83	47-136		
Benzo(b)fluoranthene	2.76	3.32	83	67-118		
Benzo(k)fluoranthene	2.70	3.32	81	63-117		
Benzo(a)pyrene	2.78	3.32	84	69-113		
Indeno(1,2,3-cd)pyrene	2.88	3.32	86	55-124		
Dibenz(a,h)anthracene	3.17	3.32	95	68-124		
Benzo(g,h,i)perylene	2.85	3.32	86	60-117		

its flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Soil

Service Request: K2103968

Date Extracted: 06/27/2001

Date Analyzed: 07/02/2001

Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541 **Analysis Method:**

8270C

Units: mg/Kg Basis: Wet

Level: Low

Extraction Lot: KWG0103701

Lab Control Sample KWG0103701-3

	Lab Control Spike		%Rec		
Analyte Name	Result	Expected	%Rec	Limits	
N-Nitrosodimethylamine	2.32	3.32	70	42-118	
Aniline	1.59	3.32	48	21-98	
Bis(2-chloroethyl) Ether	2.29	3.32	69	38-110	
Phenol	2.36	3.32	71	51-98	
2-Chlorophenol	2.28	3.32	69	51-101	
1,3-Dichlorobenzene	2.23	3.32	67	39-110	
1,4-Dichlorobenzene	2.25	3.32	68	36-105	
1,2-Dichlorobenzene	2.26	3.32	68	41-107	
Benzyl Alcohol	2.65	3.32	80	59-103	
Bis(2-chloroisopropyl) Ether	2.39	3.32	72	38-110	
2-Methylphenol	2.39	3.32	72	56-101	
Hexachloroethane	2.11	3.32	63	39-107	
N-Nitrosodi-n-propylamine	2.90	3.32	87	54-96	
4-Methylphenol	2.36	3.32	71	53-99	
Nitrobenzene	2.38	3.32	72	51-106	
Isophorone	2.52	3.32	76	62-102	
2-Nitrophenol	2.35	3.32	71	61-102	
2,4-Dimethylphenol	2.14	3.32	64	53-99	
Bis(2-chloroethoxy)methane	2.28	3.32	69	54-104	
2,4-Dichlorophenol	2.30	3.32	69	61-103	
Benzoic Acid	2.30	3.32	69	16-128	
1,2,4-Trichlorobenzene	2.15	3.32	65	50-100	
Naphthalene	2.26	3.32	68	53-103	
4-Chloroaniline	2.13	3.32	64	19-112	
Hexachlorobutadiene	2.15	3.32	65	48-111	
4-Chloro-3-methylphenol	2.60	3.32	78	64-112	
2-Methylnaphthalene	2.25	3.32	68	57-95	
Hexachlorocyclopentadiene	1.71	3.32	51	14-118	
2,4,6-Trichlorophenol	2.73	3.32	82	67-104	
2,4,5-Trichlorophenol	2.73	3.32	82	67-105	
2-Chloronaphthalene	2.43	3.32	73	59-99	
2-Nitroaniline	2.91	3.32	87	47-104	
Acenaphthylene	2.62	3.32	79	60-105	
Dimethyl Phthalate	2.61	3.32	79	68-102	
2,6-Dinitrotoluene	2.85	3.32	86	69-107	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)

Service Request: K2103968 **Date Extracted:** 06/27/2001

Sample Matrix:

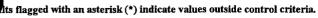
Soil

Date Analyzed: 07/02/2001

Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541 **Analysis Method:**

8270C


Units: mg/Kg Basis: Wet

Level: Low Extraction Lot: KWG0103701

Lab Control Sample

KWG0103701-3

Analyte Name Result Expected %Rec Limits Acenaphthene 2.53 3.32 76 57-108 3-Nitroaniline 2.75 3.32 83 21-133 2,4-Dinitrophenol 2.50 3.32 75 41-119 Dibenzofuran 2.47 3.32 74 65-99 4-Nitrophenol 2.62 3.32 79 55-121 2,4-Dinitrotoluene 2.76 3.32 83 63-123 Fluorene 2.59 3.32 78 63-109 4-Chlorophenyl Phenyl Ether 2.63 3.32 79 63-101 Diethyl Phthalate 2.75 3.32 83 66-113 4-Nitroaniline 2.60 3.32 78 60-116
3-Nitroaniline 2.75 3.32 83 21-133 2,4-Dinitrophenol 2.50 3.32 75 41-119 Dibenzofuran 2.47 3.32 74 65-99 4-Nitrophenol 2.62 3.32 79 55-121 2,4-Dinitrotoluene 2.76 3.32 83 63-123 Fluorene 2.59 3.32 78 63-109 4-Chlorophenyl Phenyl Ether 2.63 3.32 79 63-101 Diethyl Phthalate 2.75 3.32 83 66-113
3-Nitroaniline 2.75 3.32 83 21-133 2,4-Dinitrophenol 2.50 3.32 75 41-119 Dibenzofuran 2.47 3.32 74 65-99 4-Nitrophenol 2.62 3.32 79 55-121 2,4-Dinitrotoluene 2.76 3.32 83 63-123 Fluorene 2.59 3.32 78 63-109 4-Chlorophenyl Phenyl Ether 2.63 3.32 79 63-101 Diethyl Phthalate 2.75 3.32 83 66-113
2,4-Dinitrophenol 2.50 3.32 75 41-119 Dibenzofuran 2.47 3.32 74 65-99 4-Nitrophenol 2.62 3.32 79 55-121 2,4-Dinitrotoluene 2.76 3.32 83 63-123 Fluorene 2.59 3.32 78 63-109 4-Chlorophenyl Phenyl Ether 2.63 3.32 79 63-101 Diethyl Phthalate 2.75 3.32 83 66-113
Dibenzofuran 2.47 3.32 74 65-99 4-Nitrophenol 2.62 3.32 79 55-121 2,4-Dinitrotoluene 2.76 3.32 83 63-123 Fluorene 2.59 3.32 78 63-109 4-Chlorophenyl Phenyl Ether 2.63 3.32 79 63-101 Diethyl Phthalate 2.75 3.32 83 66-113
4-Nitrophenol 2.62 3.32 79 55-121 2,4-Dinitrotoluene 2.76 3.32 83 63-123 Fluorene 2.59 3.32 78 63-109 4-Chlorophenyl Phenyl Ether 2.63 3.32 79 63-101 Diethyl Phthalate 2.75 3.32 83 66-113
2,4-Dinitrotoluene 2.76 3.32 83 63-123 Fluorene 2.59 3.32 78 63-109 4-Chlorophenyl Phenyl Ether 2.63 3.32 79 63-101 Diethyl Phthalate 2.75 3.32 83 66-113
Fluorene 2.59 3.32 78 63-109 4-Chlorophenyl Phenyl Ether 2.63 3.32 79 63-101 Diethyl Phthalate 2.75 3.32 83 66-113
4-Chlorophenyl Phenyl Ether 2.63 3.32 79 63-101 Diethyl Phthalate 2.75 3.32 83 66-113
Diethyl Phthalate 2.75 3.32 83 66-113
[ethyl-4,6-dinitrophenol 2.90 3.32 87 61-114
Nitrosodiphenylamine 2.75 3.32 83 69-109
4-Bromophenyl Phenyl Ether 2.77 3.32 83 69-105
Hexachlorobenzene 2.85 3.32 86 68-112
Pentachlorophenol 2.74 3.32 82 58-110
Phenanthrene 2.70 3.32 81 62-102
Anthracene 2.70 3.32 81 68-107
Di-n-butyl Phthalate 3.05 3.32 92 67-107
Fluoranthene 2.76 3.32 83 64-105
Pyrene 2.77 3.32 83 53-123
Butyl Benzyl Phthalate 2.98 3.32 90 55-119
3,3'-Dichlorobenzidine 2.90 3.32 87 38-124
Benz(a)anthracene 2.94 3.32 88 64-111
Chrysene 2.85 3.32 86 72-99
Bis(2-ethylhexyl) Phthalate 2.71 3.32 81 57-117
Di-n-octyl Phthalate 2.53 3.32 76 47-136
Benzo(b)fluoranthene 2.86 3.32 86 67-118
Benzo(k)fluoranthene 2.81 3.32 84 63-117
Benzo(a)pyrene 2.95 3.32 89 69-113
Indeno(1,2,3-cd)pyrene 3.03 3.32 91 55-124
Dibenz(a,h)anthracene 3.27 3.32 98 68-124
Benzo(g,h,i)perylene 2.97 3.32 89 60-117

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

.

March 10

July 5, 2001

Service Request No: K2104091

Tanya Akkerman GeoTrans 3035 Prospect Park Drive, Suite 40 Rancho Cordova, CA 95670

Re: Former Axelson Facility (Site #2067)/253-104

Dear Tanya:

Enclosed are the results of the sample(s) submitted to our laboratory on June 12, 2001. For your reference, these analyses have been assigned our service request number K2104091.

The analysis of Radium 226/228 is performed by Seven Trens Laboratories, and the analysis is till in progress. The Radium 226.228 report will be submitted separately.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3345.

Respectfully submitted,

Columbia Analytical Services, Inc.

Mingta Lin

Project Chemist

ML/di

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
 - The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
 - The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y
 The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

Client:

Beazer East, Inc.

Project:

Former Axelson Facility (Site #2067)

Sample Matrix:

Service Request No.:

Date Received:

K2104091 June 12, 2001

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory Control Sample (LCS).

Sample Receipt

Six Water samples (including one trip blank) were received for analysis at Columbia Analytical Services on June 12, 2001. The samples were received in good condition and consistent with the accompanying chain of custody form. The cooler temperature blank ranged from 8.0 to 14.2°C upon receipt of the samples. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Inorganic Parameters

The LCS recovery of 116 percent slightly exceeded the CAS upper control criteria of 115 percent. However, the recovery was within the Standard Reference Material manufacturer's specification of 127 percent. Field sample results are not significantly affected. No further corrective action was feasible.

Total and Dissolved Metals

No QA/QC anomalies were observed during the analysis of this sample delivery group.

Diesel and Oil Range Organics by EPA Method 8015B

No QA/QC anomalies were observed during the analysis of this sample delivery group.

Gasoline Range Organics by EPA Method 8015B

No QA/QC anomalies were observed during the analysis of this sample delivery group.

PCB Aroclors by EPA Method 8082

No QA/QC anomalies were observed during the analysis of this sample delivery group.

Approved by	mtl	Date 7/3/01	00004

Volatile Organic Compounds by EPA Method 8260B

No QA/QC anomalies were observed during the analysis of this sample delivery group.

Polycyclic Aromatic Hydrocarbons by EPA Method 8270C-SIM

No QA/QC anomalies were observed during the analysis of this sample delivery group.

Semivolatile Organic Compounds by EPA Method 8270C

No QA/QC anomalies were observed during the analysis of this sample delivery group.

Chain of Custody Documentation

Services INC.
An Employee-Owned Company Analytical Columbia

FORMER PAFELSON FOCULTY (SITE NO. 2067)
2703 W. MARLAND BLYDCHAIN OF CUSTODY

120th

SR#:

000

Я

PAGE

Street & PETEOLEUM 뤈 REMARKS 뿟 Z Z (CIRCLE ONE) S S 9. F F ດັ OTHER: Z3 Se Š å K Ag Na Y K Ag Fe Pb Mg Mn Mo Ni WI NORHTWEST Pb Mg Mn Mo Ni ኝ X HOLD TIME FOR NO.3 SAMPLES. K Y Date/Time ઇ Ti O RELINQUISHED BY: メ ¥ E Ö S *INDICATE STATE HYDROCARBON PROCEDURE: AK 上 ర ဝံ Dissolved Metals: Al As Sb Ba Be B Ca Cd Co S S Total Metals: Al As Sb Ba Be B Ca SPECIAL INSTRUCTIONS/COMMENTS: Signature Circle which metals are to be analyzed メ 16.30 45 TASKY 6 Intar ゾ RECEIVED BY: NUMBER OF CONTAINERS TURNAROUND REQUIREMENTS Ñ Š Bill To: BEAZER CAFT NC _ Standard (10-15 working days) 7 INVOICE INFORMATION なるなべ 120 528 SITE 40. Printed Name MATRIX Requested Report Date 48 hr. FAX# 916 -853-1860 Signature X Provide FAX Results MAGEN MALTHA MENTENS ADDRESS SESTEMS ADDRESS ACCT PARCOR, SCITTE 42 96-95670 LAB I.D. CARLENCE Table 7 24 hr. 5 Day Date/Time SEDTICANS WAC Firm JEN MEXICE なら 1750 0930 is S 1235 1733 0135 TIME 130 901119 RANCIE CARBIA CA Islin's! Report Dup., MS, MSD as RELINQUISHED BY: DATE 1. Routine Report: Method CLP Deliverable Report REPORT REQUIREMENTS Data Validation Report (includes all raw data) PROJECT NUMBER Blank, Surrogate, as PHONE # 916-853-1600 PROJECT NAME HESSS COMPANY/ADDRESS CA Ş Jamy Charmon **SIGNATURE** Brus . SAMPLE I.D required required PROJECT MANAGE CI MM 0006 MW-b AL JA MW-5 C 8-1 SAMPLER'S ≝ 7

OC #1 04/03

Printed Name

Columbia Analytical Service Inc. Cooler Receipt And Preservation Form

Project/Cl	ient Green Work Order, K21 0409/
Project/Cl	Walls to the state of the state
Cooler.rec	reived on 6/12/01 and opened on 6/12/01 by
1.	Were custody seals on outside of cooler? If yes, how many and where? YES (NO)
2.	Were seals intact and signature & date correct?
3.	COC#
	Temperature of cooler(s) upon receipt: 7.9 /12 /3.1 /3.0
	Temperature Blank: 8.0 1.2 13.2 19.2 12.8
4.	Were custody papers properly filled out (ink, signed, etc.)?
5.	Type of packing material present /N STRT, BURAGE
6.	Did all bottles arrive in good condition (unbroken)?
7.	Were all bottle labels complete (i.e. analysis, preservation, etc.)?
8.	Did all bottle labels and tags agree with custody papers?
<i>9</i> . ·	Were the correct types of bottles used for the tests indicated?
10.	Were all of the preserved bottles received at the lab with the appropriate pH? YES NO
11.	Were VOA vials checked for absence of air bubbles, and if present, noted below?
12.	Did the bottles originate from CAS/K or a branch laboratory?
Explain any	discrepancies Art SAMPLES FOR CB-/ LABERTO CB 2 Apr

C- 1-3-1			3/1/10		(1)=3/	24
Samples that required preservation of Sample ID	Reagent	Volume	Lot Number	Bottle	Rec'd out of	Initials
				Туре	Temperature	
mw-7	HNO3	Zine	7280CZ	140	4	m
MW-6	HILBS	2m1	778062	140		An
MW-5	HNO2	2m,	728062	-/100		10
MW-4	HNOS	2mi	128062	100		Bo
QC .	HNO2	2mi	128062	INP		Ap
						J

Inorganic Parameters

Analytical Report

nt:

GeoTrans, Inc.

Service Request: K2104091

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: 6/11/01

Sample Matrix:

Water

Date Received: 6/12/01

Basis: NA

Inorganic Parameters

Sample Name:

MW-7

Lab Code:

K2104091-001

Test Notes:

		Analysis		Dilution	Date	Date		Result
Analyte	Units	Method	MRL	Factor	Extracted	Analyzed	Result	Notes
Cyanide, Total	mg/L (ppm)	335.2	0.01	1	NA	6/19/01	ND	
Fluoride	mg/L (ppm)	300.0	0.2	I	NA	6/13/01	2.2	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.1	1	NA	6/13/01	8.1	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	5	1	NA	6/13/01	908	

Approved By:

04091WET.PW1 - 1 6/27/01

Date: 6/27/01

00008

Page No.:

Analytical Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 6/11/01

Basis: NA

Date Received: 6/12/01

Inorganic Parameters

Sample Name:

04091WET.PW1 - 2 6/27/01

MW-6

Lab Code:

K2104091-002

Test Notes:

Analyte	Units	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Cyanide, Total	mg/L (ppm)	335.2	0.01	1	NA	6/19/01	ND	
Fluoride	mg/L (ppm)	300.0	0.2	1	NA	6/13/01	1.5	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.1	1	NA	6/13/01	2.9	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	5	1	NA	6/13/01	676	

Analytical Report

nt: Poject: GeoTrans, Inc.

Service Request: K2104091

Sample Matrix:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: 6/11/01

Water

Date Received: 6/12/01

Inorganic Parameters

Sample Name:

MW-5

Basis: NA

Lab Code:

K2104091-003

Test Notes:

Analyte	Units	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Cyanide, Total	mg/L (ppm)	335.2	0.01	1	NA	6/19/01	ND	
Fluoride	mg/L (ppm)	300.0	0.2	1	NA	6/13/01	1.6	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.1	1	NA	6/13/01	4.3	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	5	1	NA	6/13/01	916	

01010

Page No

Analytical Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 6/11/01
Date Received: 6/12/01

Basis: NA

Inorganic Parameters

Sample Name:

MW-4

Lab Code:

K2104091-004

Test Notes:

Analyte	Units	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Cyanide, Total	mg/L (ppm)	335.2	0.01	1	NA	6/19/01	ND	
Fluoride	mg/L (ppm)	300.0	0.2	1	NA	6/13/01	1.5	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.1	1	NA	6/13/01	7.2	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	5	1	NA	6/13/01	1140	

Approved By:

1S22/020597p

Date: 6/27/01

00011

04091WET.PW1 - 4 6/27/01

Page No.:

Analytical Report

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 6/11/01

Date Received: 6/12/01

Inorganic Parameters

Sample Name:

QC

K2104091-005

Basis: NA

Lab Code:

Test Notes:

Analyte	Units	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Cyanide, Total	mg/L (ppm)	335.2	0.01	i	NA	6/19/01	ND	
Fluoride	mg/L (ppm)	300.0	0.2	1	NA	6/13/01	2.1	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.1	1	NA	6/13/01	7.7	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	5	1	NA	6/13/01	800	

__ Date: __ C|77/6| Approved By: _ 1S22/020597p 04091WET.PW1 ~ 5 6/27/01

Analytical Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: NA
Date Received: NA

Basis: NA

Inorganic Parameters

Sample Name:

04091WET.PW1 - MBlank 6/27/01

Method Blank

Lab Code:

K2104091-MB

Test Notes:

Analyte	Units	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Cyanide, Total	mg/L (ppm)	335.2	0.01	1	NA	6/19/01	ND	
Fluoride	mg/L (ppm)	300.0	0.2	1	NA	6/13/01	ND	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.1	1	NA	6/13/01	ND	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	5	1	NA	6/13/01	ND	

QA/QC Report

rroject:

GeoTrans, Inc.

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 6/11/01 Date Received: 6/12/01 Date Extracted: NA

Date Analyzed: 6/13-19/01

Basis: NA

Duplicate Summary Inorganic Parameters

Sample Name:

MW-7

Lab Code:

K2104091-001DUP

Test Notes:

Units	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Units		MRL	•	•	Average		

Analyte Cyanide, Total ND ND ND mg/L (ppm) 335.2 0.01 Fluoride 300.0 0.2 2.2 2.2 2.2 < 1 mg/L (ppm) Nitrate as Nitrogen mg/L (ppm) 300.0 0.1 8.1 8.1 8.1 < 1 Solids, Total Dissolved (TDS) mg/L (ppm) 160.1 5 908 892 900 2

Approved By: 04091WET.PW1 - DUP 6/27/01

Date: 6 27 W

00014

Page No.:

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 6/11/01

Date Received: 6/12/01 Date Extracted: NA

Date Analyzed: 6/13-19/01

Matrix Spike Summary Inorganic Parameters

Sample Name:

MW-7

Lab Code:

K2104091-001MS

Test Notes:

Basis: NA

						Spiked		CAS Percent Recovery	
Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	Sample Result	Percent Recovery	Acceptance Limits	Result Notes
Cyanide, Total Fluoride	mg/L (ppm) mg/L (ppm)	335.2 300.0	0.01	0.10 10	ND 2.2	0.08 13.3	80 111	75-125 80-120	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.1	10	8.1	19.9	118	80-120	

Approved By: _ 04091WET.PW1 - MS 6/27/01 Date: 6/27/01

QA/QC Report

nt:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

LCS Matrix:

Water

Service Request: K2104091

Date Collected: NA

Date Received: NA
Date Extracted: NA

CAS

Date Analyzed: 6/13-19/01

Laboratory Control Sample Summary

Inorganic Parameters

Sample Name:

Lab Control Sample

Lab Code:

K2104091-LCS

Test Notes:

Basis: NA

Analyte	Units	Analysis Method	True Value	Result	Percent Recovery	Percent Recovery Acceptance Limits	Result Notes
Cyanide, Total	mg/L (ppm)	335.2	0.59	0.68	116	85-115	*
Fluoride	mg/L (ppm)	300.0	12.1	12.2	101	90-110	
Nitrate as Nitrogen	mg/L (ppm)	300.0	10.3	10.4	101	90-110	
Solids, Total Dissolved (TDS)	mg/L (ppm)	160.1	1060	1030	97	85-115	

Approved By: _

 $\langle \langle \rangle$

Date: 4/17/01

Dissolved Metals

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Lab Sample ID.

K2104091-001 DISS

K2104091-001 DISSD

K2104091-001 DISSS

K2104091-002 DISS K2104091-003 DISS

K2104091-004 DISS

K2104091-005 DISS

K2104091-005 DISSD K2104091-005 DISSS

K2104091-MB

Client:

GeoTrans, Inc.

Service Request: K2104091

00017

Project No.:

P253-104

Sample No. MW-7

MW-7D

MW-7s

MW-6

MW-5MW-4

QC

QCD

QCS

Method Blank

Project Name: Former Axelson Facility (Site #2067)

Were ICP interelement corrections applied?	Yes/No	YES
Were ICP background corrections applied?	Yes/No	YES
If yes-were raw data generated before application of background corrections?	Yes/No	NO
omments:		
certify that this data package is in compliance with the ontract, both technically and for completeness, for other bove. Release of the data contained in this hardcopy dat	than the conditions	
omputer-readable data submitted on diskette has been auth ne Manager's designee, as verified by the following signa	orized by the Laborat	ory Manager or
	1 1 ,	
ignature: Date:	6/26/01	

COVER PAGE - IN

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

GeoTrans, Inc.

Service Request: K2104091

Project No.: P253-104

Date Collected: 06/11/01

Project Name: Former Axelson Facility (Site #2067)

Date Received: 06/12/01

Matrix:

Units: µG/L

WATER

Basis: NA

Sample Name: MW-7

Lab Code: K2104091-001 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	6010B	100	1	6/19/01	6/20/01	100	ט	
Barium	6010B	5.0	1	6/19/01	6/20/01	57.5		
Cadmium	6010B	5.0	1	6/19/01	6/20/01	5.0	ซ	
Chromium	6010B	5.0	1	6/19/01	6/20/01	5.0	ט	
Lead	6010B	100] 1	6/19/01	6/20/01	100	ַ	
Mercury	7470A	0.20	1	6/13/01	6/13/01	0.20	ט	
Selenium	7740	8.00	4	6/18/01	6/20/01	8.00	ט	
Silver	6010B	10	1	6/19/01	6/20/01	10	ָּט	
Uranium	200.8	0.02	1	6/18/01	6/19/01	11.3		

% Solids: 0.0

INORGANIC ANALYSIS DATA SHEET

Client:

GeoTrans, Inc.

Service Request: K2104091

Project No.: P253-104

Date Collected: 06/11/01

Project Name: Former Axelson Facility (Site #2067)

Date Received: 06/12/01

Matrix:

Units: µG/L

Basis: NA

WATER

Sample Name: MW-6

Lab Code: K2104091-002 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6010B	100	1	6/19/01	6/20/01	100	ט	
Barium	6010B	5.0	1	6/19/01	6/20/01	162		
Cadmium	6010B	5.0	1	6/19/01	6/20/01	5.0	ט	
Chromium	6010B	5.0	1	6/19/01	6/20/01	5.0	ש	
Lead	6010B	100	1	6/19/01	6/20/01	100	ט	
Mercury	7470A	0.20	1	6/13/01	6/13/01	0.20	ַ ט	
Selenium	7740	8.00	4	6/18/01	6/20/01	8.00	ט	
Silver	6010B	10	1	6/19/01	6/20/01	10	ט	<u> </u>
Uranium	200.8	0.02	1	6/18/01	6/19/01	11.9		

% Solids: 0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

GeoTrans, Inc.

Service Request: K2104091

Project No.: P253-104

Date Collected: 06/11/01

Project Name: Former Axelson Facility (Site #2067)

Date Received: 06/12/01

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: MW-5

Lab Code: K2104091-003 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6010B	100	1	6/19/01	6/20/01	100	U	ĺ
Barium	6010B	5.0	1	6/19/01	6/20/01	70.9		
Cadmium	6010B	5.0	1	6/19/01	6/20/01	5.0	U	
Chromium	6010B	5.0	1	6/19/01	6/20/01	5.0	ט	
Lead	6010B	100	1	6/19/01	6/20/01	100	ט	
Mercury	7470A	0.20	1	6/13/01	6/13/01	0.20	ט	
Selenium	7740	8.00	4	6/18/01	6/20/01	8.00	ט	
Silver	6010B	10	1	6/19/01	6/20/01	10	ט	
Uranium	200.8	0.02	1	6/18/01	6/19/01	15.3		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

GeoTrans, Inc.

Service Request: K2104091

Project No.: P253-104

Date Collected: 06/11/01

Date Received: 06/12/01

Project Name: Former Axelson Facility (Site #2067)

Units: µG/L

Matrix:

WATER

Basis: NA

Sample Name: MW-4

Lab Code: K2104091-004 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6010B	100	1	6/19/01	6/20/01	100	ט	
Barium	6010B	5.0	1	6/19/01	6/20/01	55.2		
Cadmium	6010B	5.0	1	6/19/01	6/20/01	5.0	ט	
Chromium	6010B	5.0	1	6/19/01	6/20/01	5.0	[ט	
Lead	6010B	100	1	6/19/01	6/20/01	100	ש	
Mercury	7470A	0.20	1	6/13/01	6/13/01	0.20	ט	
Selenium	7740	8.00	4	6/18/01	6/20/01	8.00	ט	
Silver	6010B	10	1	6/19/01	6/20/01	10	ט	
Uranium	200.8	0.02	1	6/18/01	6/19/01	18.1		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

GeoTrans, Inc.

Service Request: K2104091

Project No.: P253-104

Date Collected: 06/11/01

Date Received: 06/12/01

Project Name: Former Axelson Facility (Site #2067)

Matrix:

WATER

Units: µG/L

Basis: NA

Sample Name: QC

Lab Code: K2104091-005 DISS

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6010B	100	1	6/19/01	6/20/01	100	บ	
Barium	6010B	5.0	1	6/19/01	6/20/01	51.6		
Cadmium	6010B	5.0	1	6/19/01	6/20/01	5.0	ט	
Chromium	6010B	5.0	1	6/19/01	6/20/01	5.0	U	
Lead	6010B	100	1	6/19/01	6/20/01	100	ט	
Mercury	7470A	0.20	1	6/13/01	6/13/01	0.20	U	
Selenium	7740	8.00	4	6/18/01	6/20/01	8.00	ט	
Silver	6010B	10	1	6/19/01	6/20/01	10	ט	
Uranium	200.8	0.02	1	6/18/01	6/19/01	10.4		

% Solids: 0.0

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

GeoTrans, Inc.

Service Request: K2104091

Project No.: P253-104

Date Collected:

Date Received:

Project Name: Former Axelson Facility (Site #2067)

Units: µG/L

Matrix:

WATER

Basis: NA

Sample Name: Method Blank

Lab Code: K2104091-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6010B	100	1	6/19/01	6/20/01	100	U	
Barium	6010B	5.0	1	6/19/01	6/20/01	5.0	U	
Cadmium	6010B	5.0	1	6/19/01	6/20/01	5.0	ט	
Chromium	6010B	5.0	1	6/19/01	6/20/01	5.0	บ	
Lead	6010B	100	1	6/19/01	6/20/01	100	ט	
Mercury	7470A	0.20	1	6/13/01	6/13/01	0.20	บ	
Selenium	7740	2.00	1	6/18/01	6/20/01	2.00	ט	
Silver	6010B	10	1	6/19/01	6/20/01	10	ט	
Uranium	200.8	0.02	1	6/18/01	6/19/01	0.02	ט	

Solids: 0.0

Comments:

- 5a -

SPIKE SAMPLE RECOVERY

Client:

GeoTrans, Inc.

Service Request: K2104091

Project No.: P253-104

Units: µG/L

Project Name: Former Axelson Facility (Site #2067)

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name: MW-7S

Lab Code: K2104091-001 DISSS

Analyte	Control Limit %R	Spike Result	Sample Result	С	Spike Added	%R	Q	Method
Mercury	75 - 125	0.88	0.20	ט	1.00	88		7470A

Comments:

- 5a -

SPIKE SAMPLE RECOVERY

Client:

GeoTrans, Inc.

Service Request: K2104091

Project No.: P253-104

Units: µG/L

Basis: NA

Project Name: Former Axelson Facility (Site #2067)

Matrix:

WATER

% Solids: 0.0

Sample Name: QCS

Lab Code: K2104091-005 DISSS

Analyte	Control Limit %R	Spike Result	C	Sample Result	С	Spike Added	₹R	Q	Method
Arsenic	75 - 125	1870		100	ט	2000	93		6010B
Barium	75 - 125	1980		51.6		2000	96		6010B
Cadmium	75 - 125	58.5		5.0	ט	50.0	117		6010B
Chromium	75 - 125	185		5.0	ט	200	93		6010B
Lead	75 - 125	485		100	ט	500	97		6010B
Selenium	75 - 125	21.5		8.00	ט	20.0	108		7740
Silver	75 - 125	46.0		10.0	ี	50.0	92		6010B
Uranium	75 - 125	33.0		10.4		20.0	113		200.8

-6-**DUPLICATES**

Client:

GeoTrans, Inc.

Service Request: K2104091

Project No.: P253-104

Units: µG/L

Project Name: Former Axelson Facility (Site #2067)

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name: MW-7D

Lab Code: K2104091-001 DISSD

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Mercury		0.20	ט ס	0.20	U			7470A

-6-**DUPLICATES**

Client:

GeoTrans, Inc.

Service Request: K2104091

Project No.: P253-104

Units: µG/L

Project Name: Former Axelson Facility (Site #2067)

Basis: NA

Matrix:

WATER

% Solids: 0.0

Sample Name: QCD

Lab Code: K2104091-005 DISSD

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		100	ש	100	ט			6010B
Barium		51.6		54.9		6		6010B
Cadmium		5.0	U	5.0	U			6010B
Chromium		5.0	U	5.0	ט			6010B
Lead	i	100	ש	100	ט			6010B
Selenium	i	8.00	U	8.00	U			7740
Silver		10	U	10	U		Ì	6010B
Uranium	i i	10.4		10.8		4		200.8

- 7 -

LABORATORY CONTROL SAMPLE

GeoTrans, Inc.

Service Request: K2104091

Project No.: P253-104

Project Name: Former Axelson Facility (Site #2067)

Aqueous LCS Source: Inorganic Ventures

Solid LCS Source:

	Aqueou	ıs ug/L			Soli	d (mg	/kg)	
Analyte	True	Found	%R	True	Found	C	Limits	8R
Arsenic	2500	2450	98			1		
Barium	5000	5030	101		1	T	1	
Cadmium	1250	1230	98			T		
Chromium	l 500	502	100				l	
Lead	l 2500	2540	102					
Mercury	5.00	4.65	93					İ
Selenium	20.0	20.0	100			T	1	
Silver	625	605	97					
Uranium	20.0	20.6	103					

Fuel Identification and Quanification Method 8015 M

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MW-7

Lab Code:

K2104091-001

Extraction Method: EPA 3510C

Analysis Method:

8015M

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	110 Y	110	1	06/18/01	06/20/01	KWG0103415	
Diesel Range Organics (DRO)	210 Y	110	1	06/18/01	06/20/01	KWG0103415	
Residual Range Organics (RRO)	380 Y	260	1	06/18/01	06/20/01	KWG0103415	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	79	35-150	06/20/01	Acceptable
o-Terphenyl	108	50-150	06/20/01	Acceptable
n-Triacontane	108	50-150	06/20/01	Acceptable

Comments:

00029

Printed: 06/25/2001 10:42:22

Merged

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

emple Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MW-6

Lab Code:

K2104091-002

Units: ug/L Basis: NA

Extraction Method: EPA 3510C

Level: Low

Analysis Method:

8015M

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND U	100	1	06/18/01	06/20/01	KWG0103415	
Diesel Range Organics (DRO)	ND U	100	1	06/18/01	06/20/01	KWG0103415	
Residual Range Organics (RRO)	ND U	260	1	06/18/01	06/20/01	KWG0103415	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	70	35-150	06/20/01	Acceptable
o-Terphenyl	98	50-150	06/20/01	Acceptable
Triacontane	101	50-150	06/20/01	Acceptable

Comments:

Printed: 06/25/2001 10:42:23

Merged

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MW-5

Lab Code:

K2104091-003

Extraction Method: EPA 3510C

Analysis Method:

8015M

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	140	Y	100	1	06/18/01	06/20/01	KWG0103415	
Diesel Range Organics (DRO)	490	F	100	1	06/18/01	06/20/01	KWG0103415	
Residual Range Organics (RRO)	410	Y	250	1	06/18/01	06/20/01	KWG0103415	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	67	35-150	06/20/01	Acceptable	
o-Terphenyl	89	50-150	06/20/01	Acceptable	
n-Triacontane	90	50-150	06/20/01	Acceptable	

Comments:

Printed: 06/25/2001 10:42:24

Merged

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: 06/11/2001

Service Request: K2104091

pple Matrix:

Water

Date Received: 06/12/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MW-4

Lab Code:

K2104091-004

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

	B	3.6DY	Dilution	Date	Date	Extraction	Mata
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	4500 H	110	1	06/18/01	06/20/01	KWG0103415	
Diesel Range Organics (DRO)	13000 F	110	1	06/18/01	06/20/01	KWG0103415	
Residual Range Organics (RRO)	2500 O	260	1	06/18/01	06/20/01	KWG0103415	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	71	35-150	06/20/01	Acceptable
o-Terphenyl	90	50-150	06/20/01	Acceptable
riacontane	92	50-150	06/20/01	Acceptable

Comments:

00032

Printed: 06/25/2001 10:42:26

Form 1A - Organic

Page 1 of 1

SuperSet Reference: RR8506

Merged

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001 Date Received: 06/12/2001

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

QC

Lab Code:

K2104091-005

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND	U	100	1	06/18/01	06/20/01	KWG0103415	
Diesel Range Organics (DRO)	170	Y	100	1	06/18/01	06/20/01	KWG0103415	
Residual Range Organics (RRO)	440	Y	250	1	06/18/01	06/20/01	KWG0103415	

Surrogate Name	%Rec_	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	65	35-150	06/20/01	Acceptable
o-Terphenyl	88	50-150	06/20/01	Acceptable
n-Triacontane	91	50-150	06/20/01	Acceptable

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Sample Matrix:

Former Axelson Facility (Site #2067)/P253-104

Water

Service Request: K2104091

Date Collected: NA

Date Received: NA

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

Method Blank

Lab Code:

KWG0103415-7

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

8015M

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	100	1	06/18/01	06/20/01	KWG0103415	
Diesel Range Organics (DRO)	ND U	100	1	06/18/01	06/20/01	KWG0103415	
Residual Range Organics (RRO)	ND U	250	1	06/18/01	06/20/01	KWG0103415	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
4-Bromofluorobenzene	75	35-150	06/20/01	Acceptable
o-Terphenyl	106	50-150	06/20/01	Acceptable
n-Triacontane	106	50-150	06/20/01	Acceptable

Comments:

Printed: 06/25/2001 10:42:28

Merged

Form 1A - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Service Request: K2104091

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Surrogate Recovery Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method:

EPA 3510C

Analysis Method:

8015M

Units: PERCENT

Level: Low

Lab Code	Sur1	Sur2	Sur3
K2104091-001	79	108	108
K2104091-002	70	98	101
K2104091-003	67	89	90
K2104091-004	71	90	92
K2104091-005	65	88	91
KWG0103415-7	75	106	106
KWG0103415-1	71	91	95
KWG0103415-2	71	89	93
KWG0103415-5	70	95	98
KWG0103415-6	71	93	99
	K2104091-001 K2104091-002 K2104091-003 K2104091-004 K2104091-005 KWG0103415-7 KWG0103415-1 KWG0103415-2 KWG0103415-5	K2104091-001 79 K2104091-002 70 K2104091-003 67 K2104091-004 71 K2104091-005 65 KWG0103415-7 75 KWG0103415-1 71 KWG0103415-2 71 KWG0103415-5 70	K2104091-001 79 108 K2104091-002 70 98 K2104091-003 67 89 K2104091-004 71 90 K2104091-005 65 88 KWG0103415-7 75 106 KWG0103415-1 71 91 KWG0103415-2 71 89 KWG0103415-5 70 95

Surrogate Recovery Control Limits (%)

Sur1	=	4-Bromofluorobenzene	35-150
Sur2	=	o-Terphenyl	50-150
Sur3	=	n-Triacontane	50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

00035

Printed: 06/25/2001 10:42:30

Form 2A - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

emple Matrix:

Water

Service Request: K2104091

Date Extracted: 06/18/2001

Date Analyzed: 06/20/2001

Matrix Spike/Duplicate Matrix Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

MW-7

Lab Code:

K2104091-001

Extraction Method:

EPA 3510C

Analysis Method:

8015M

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0103415

MW-7MS

MW-7DMS

KWG0103415-2

	Sample		VG0103413- <mark>Iatrix Spike</mark>	-		ate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	210	3150	3200	92	3080	3200	90	50-150	2	30
Residual Range Organics (RRO)	380	3150	3200	87	2800	3200	76	50-150	12	30

esults flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded. 00036

Printed: 06/25/2001 10:42:31

Form 3A - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Extracted: 06/18/2001

Date Analyzed: 06/20/2001

Lab Control Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method: EPA 3510C

Analysis Method:

8015M

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0103415

Lab Control Sample KWG0103415-5

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00037

Gasoline Range Organics Method 8015 B

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Gasoline Range Organics

Sample Name:

MW-7

Lab Code:

K2104091-001

Extraction Method: EPA 5035/5030B

Analysis Method:

8015B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	50	1	06/21/01	06/21/01	KWG0103544	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	86	70-130	06/21/01	Acceptable	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Service Request: K2104091 Date Collected: 06/11/2001

Sample Matrix:

Water

Date Received: 06/12/2001

Gasoline Range Organics

Sample Name:

MW-6

Lab Code:

K2104091-002

Units: ug/L Basis: NA

Extraction Method: EPA 5035/5030B

Level: Low

Analysis Method:

8015B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND U	50	1	06/21/01	06/21/01	KWG0103544	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	86	70-130	06/21/01	Acceptable	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Gasoline Range Organics

Sample Name:

MW-5

Lab Code:

K2104091-003

Extraction Method: EPA 5035/5030B

Analysis Method:

8015B

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	50	1	06/21/01	06/21/01	KWG0103544	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	89	70-130	06/21/01	Acceptable	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: 06/11/2001

Service Request: K2104091

Sample Matrix:

Date Received: 06/12/2001

Gasoline Range Organics

Sample Name:

MW-4

Lab Code:

K2104091-004

Extraction Method:

EPA 5035/5030B

Analysis Method:

8015B

Units: ug/L

Basis: NA

Level: Low

Analyte Name

Result Q

MRL 50

Dilution **Factor**

Date Date Extracted

Analyzed

Extraction Lot Note

Gasoline Range Organics (GRO)

120 H

1

06/21/01

06/21/01

KWG0103544

Control Date %Rec Limits Note Surrogate Name **Analyzed**

1,4-Difluorobenzene

89

70-130

06/21/01

Acceptable

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Gasoline Range Organics

Sample Name:

QC

Lab Code:

K2104091-005

Extraction Method:

EPA 5035/5030B

Analysis Method:

8015B

Units: ug/L

Basis: NA

Level: Low

Analysis Name	Dogult O	MDI	Dilution	Date	Date	Extraction	Moto
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	50	1	06/21/01	06/21/01	KWG0103544	*

^{*} See Case Narrative

urrogate Name %Rec	Control Limits	Date Analyzed	Note	
4-Difluorobenzene 91	70-130	06/21/01	Acceptable	06/21/01

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Former Axelson Facility (Site #2067)/P253-104

Result Q

ND U

Service Request: K2104091 Date Collected: NA

Project:

Sample Matrix:

Date Received: NA

Gasoline Range Organics

Sample Name:

Method Blank

Lab Code:

KWG0103544-4

Units: ug/L Basis: NA

Extraction Method: EPA 5035/5030B

Analysis Method:

Analyte Name

8015B

Level: Low

KWG0103544

Gasoline Range Organics (GRO)

Dilution	Date	Date	Extraction	
Districti	Dute	Date	DAU HEUOH	
Factor	Extracted	Analyzed	Lot	Note
_ H-1-1-1				~ 1000

06/21/01

06/21/01

Surrogate Name %Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene 87	70-130	06/21/01	Acceptable

1

MRL

50

comments:

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Surrogate Recovery Summary Gasoline Range Organics

Extraction Method: EPA 5035/5030B

Analysis Method:

8015B

Units: PERCENT

Service Request: K2104091

Level: Low

Sample Name	Lab Code	<u>Sur1</u>
MW-7	K2104091-001	86
MW-6	K2104091-002	86
MW-5	K2104091-003	89
MW-4	K2104091-004	89
QC	K2104091-005	91
Method Blank	KWG0103544-4	87
QCMS	KWG0103544-1	95
QCDMS	KWG0103544-2	94
Lab Control Sample	KWG0103544-3	97

Surrogate Recovery Control Limits (%)

Sur1 = 1,4-Difluorobenzene

70-130

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Water

Service Request: K2104091

Date Extracted: 06/21/2001

Date Analyzed: 06/21/2001

Matrix Spike/Duplicate Matrix Spike Summary **Gasoline Range Organics**

Sample Name:

Sample Matrix:

QC

Lab Code:

K2104091-005

Extraction Method:

Analyte Name

EPA 5035/5030B

Analysis Method:

8015B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0103544

QCMS

KWG0103544-1

Expected

OCDMS

KWG0103544-2

Matrix Spike Sample

Result

Duplicate Matrix Spike

%Rec RPD Limits RPD Limit

Gasoline Range Organics (GRO)

ND

Result

839 1000 %Rec 84

798

Result

Expected 1000

80

%Rec

70-121

30

ts flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00045

Printed 06/27/2001 15:56:19

Form 3A - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Service Request: K2104091

Date Extracted: 06/21/2001

Date Analyzed: 06/21/2001

Lab Control Spike Summary **Gasoline Range Organics**

Extraction Method:

EPA 5035/5030B

Analysis Method:

8015B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0103544

Lab Control Sample KWG0103544-3

Lab Control Spike

%Rec

Analyte Name

Gasoline Range Organics (GRO)

Expected %Rec

Limits

Result 932

1000

93

76-138

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Polynuclear Aromatic Hydrocarbons Method 8270C SIM

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Polynuclear Aromatic Hydrocarbons

Sample Name:

MW-7

Lab Code:

K2104091-001

Analysis Method:

Extraction Method: EPA 3520 8270C SIM

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
2-Methylnaphthalene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Acenaphthylene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Acenaphthene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Dibenzofuran	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Fluorene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Phenanthrene	0.071		0.020	1	06/13/01	06/28/01	KWG0103328	
Anthracene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Fluoranthene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Pyrene	0.026		0.020	1	06/13/01	06/28/01	KWG0103328	
Benz(a)anthracene	0.024		0.020	1	06/13/01	06/28/01	KWG0103328	
Chrysene	0.025		0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(b)fluoranthene	0.057		0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(k)fluoranthene	0.062		0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(a)pyrene	0.061		0.020	1.	06/13/01	06/28/01	KWG0103328	
Indeno(1,2,3-cd)pyrene	0.030		0.020	1	06/13/01	06/28/01	KWG0103328	-
Dibenz(a,h)anthracene	0.029		0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(g,h,i)perylene	0.023		0.020	1	06/13/01	06/28/01	KWG0103328	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	46	26-105	06/28/01	Acceptable	`
Fluoranthene-d10	80	25-117	06/28/01	Acceptable	·
Terphenyl-d14	65	30-120	06/28/01	Acceptable	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

mple Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Polynuclear Aromatic Hydrocarbons

Sample Name:

MW-6

Lab Code:

K2104091-002

Extraction Method: EPA 3520

Analysis Method:

8270C SIM

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
2-Methylnaphthalene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Acenaphthylene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Acenaphthene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Dibenzofuran	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Fluorene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Phenanthrene	0.022		0.020	1	06/13/01	06/28/01	KWG0103328	
Anthracene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Fluoranthene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Pyrene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benz(a)anthracene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
/sene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(b)fluoranthene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(k)fluoranthene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(a)pyrene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Indeno(1,2,3-cd)pyrene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Dibenz(a,h)anthracene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(g,h,i)perylene	ND	U	0.020	_ 1	06/13/01	06/28/01	KWG0103328	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	57	26-105	06/28/01	Acceptable	
Fluoranthene-d10	82	25-117	06/28/01	Acceptable	
Terphenyl-d14	68	30-120	06/28/01	Acceptable	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Polynuclear Aromatic Hydrocarbons

Sample Name:

MW-5

Lab Code:

K2104091-003

Extraction Method: EPA 3520

Analysis Method:

8270C SIM

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
2-Methylnaphthalene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Acenaphthylene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Acenaphthene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Dibenzofuran	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Fluorene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Phenanthrene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Anthracene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Fluoranthene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Pyrene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benz(a)anthracene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	_
Chrysene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(b)fluoranthene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(k)fluoranthene	ND	U	0.020	1	06/13/01	06/28/01	·KWG0103328	
Benzo(a)pyrene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Indeno(1,2,3-cd)pyrene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Dibenz(a,h)anthracene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(g,h,i)perylene	ND	U	0.020	1	06/13/01	06/28/01	KWG0103328	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	46	26-105	06/28/01	Acceptable	
Fluoranthene-d10	69	25-117	06/28/01	Acceptable	
Terphenyl-d14	58	30-120	06/28/01	Acceptable	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)/P253-104

Water

Service Request: K2104091 Date Collected: 06/11/2001

Date Received: 06/12/2001

Polynuclear Aromatic Hydrocarbons

Sample Name:

MW-4

Lab Code:

K2104091-004

Extraction Method: EPA 3520

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8270C SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
2-Methylnaphthalene	0.037		0.019	1	06/13/01	06/28/01	KWG0103328	
Acenaphthylene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Acenaphthene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Dibenzofuran	ND	U	0.019	ı	06/13/01	06/28/01	KWG0103328	
Fluorene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Phenanthrene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Anthracene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Fluoranthene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Pyrene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Benz(a)anthracene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
ysene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Benzo(b)fluoranthene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Benzo(k)fluoranthene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Benzo(a)pyrene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Indeno(1,2,3-cd)pyrene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Dibenz(a,h)anthracene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	
Benzo(g,h,i)perylene	ND	U	0.019	1	06/13/01	06/28/01	KWG0103328	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	58	26-105	06/28/01	Acceptable
Fluoranthene-d10	81	25-117	06/28/01	Acceptable
Terphenyl-d14	68	30-120	06/28/01	Acceptable

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Polynuclear Aromatic Hydrocarbons

Sample Name:

QC

Lab Code:

K2104091-005

Extraction Method: EPA 3520

Analysis Method:

8270C SIM

Units: ug/L

Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
2-Methylnaphthalene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Acenaphthylene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Acenaphthene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Dibenzofuran	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Fluorene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Phenanthrene	0.070		0.020	1	06/13/01	06/27/01	KWG0103328	
Anthracene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Fluoranthene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Pyrene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Benz(a)anthracene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Chrysene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Benzo(b)fluoranthene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Benzo(k)fluoranthene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Benzo(a)pyrene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Indeno(1,2,3-cd)pyrene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Dibenz(a,h)anthracene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	
Benzo(g,h,i)perylene	ND	U	0.020	1	06/13/01	06/27/01	KWG0103328	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	54	26-105	06/27/01	Acceptable	
Fluoranthene-d10	70	25-117	06/27/01	Acceptable	
Terphenyl-d14	49	30-120	06/27/01	Acceptable	•

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: NA

Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG0103328-4

Extraction Method:

EPA 3520C

Analysis Method:

8270C SIM

Units: ug/L Basis: NA

Level: Low

Analyta Nama	Possilt ()	MRL	Dilution	Date	Date	Extraction	Note
Analyte Name	Result Q		Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
2-Methylnaphthalene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
Acenaphthylene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
Acenaphthene	ND, U	0.020	1	06/13/01	06/28/01	KWG0103328	
Dibenzofuran	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
Fluorene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
Phenanthrene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
Anthracene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
Fluoranthene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
Pyrene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benz(a)anthracene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
ysene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(b)fluoranthene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(k)fluoranthene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
Benzo(a)pyrene	ND U	0.020	1.	06/13/01	06/28/01	KWG0103328	
Indeno(1,2,3-cd)pyrene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	
Dibenz(a,h)anthracene	ND U	0.020	. 1	06/13/01	06/28/01	KWG0103328	
Benzo(g,h,i)perylene	ND U	0.020	1	06/13/01	06/28/01	KWG0103328	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	67	26-105	06/28/01	Acceptable	
Fluoranthene-d10	77	25-117	06/28/01	Acceptable	
Terphenyl-d14	69	30-120	06/28/01	Acceptable	

QA/QC Report

Client: Project: GeoTrans, Inc.

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3520 Analysis Method:

8270C SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
MW-7	K2104091-001	46	80	65
MW-6	K2104091-002	57	82	68
MW-5	K2104091-003	46	69	58
MW-4	K2104091-004	58	81	68
QC	K2104091-005	54	70	49
Method Blank	KWG0103328-4	67	77	69
QCMS	KWG0103328-1	65	83	58
QCDMS	KWG0103328-2	5 6	84	64
Lab Control Sample	KWG0103328-3	67	91	72

Surrogate Recovery Control Limits (%)

Sur1 =	Fluorene-d10	26-105
Sur2 =	Fluoranthene-d10	25-117
Sur3 =	Terphenyl-d14	30-120

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

GeoTrans, Inc.

Project: emple Matrix: Former Axelson Facility (Site #2067)/P253-104

Water

Service Request: K2104091 **Date Extracted:** 06/13/2001

Date Analyzed: 06/27/2001

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name:

QC

Lab Code:

K2104091-005

Extraction Method: EPA 3520

Analysis Method:

Benzo(g,h,i)perylene

8270C SIM

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0103328

	Sample	QCMS KWG0103328-1 Matrix Spike			QCDMS KWG0103328-2 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	ND	1.77	2.55	69	1.51	2.48	61	45-135	16	30
2-Methylnaphthalene	ND	1.84	2.55	72	1.53	2.48	62	45-135	18	30
Acenaphthylene	ND	2.01	2.55	79	1.76	2.48	71	45-135	13	30
Acenaphthene	ND	1.85	2.55	72	1.62	2.48	65	31-122	13	30
Dibenzofuran	ND	1.92	2.55	75	1.69	2.48	68	45-135	13	30
Fluorene	ND	2.01	2.55	79	1.78	2.48	72	45-135	12	30
Phenanthrene	0.070	2.07	2.55	78	2.02	2.48	79	45-135	2	30
Anthracene	ND	2.09	2.55	82	2.05	2.48	83	45-135	2	30
oranthene	ND	2.23	2.55	87	2.27	2.48	92	45-135	2	30
ene	ND	1.83	2.55	72	1.95	2.48	79	31-124	7	30
Benz(a)anthracene	ND	2.05	2.55	80	2.13	2.48	86	45-135	4	30
Chrysene	ND	1.88	2.55	74	1.96	2.48	79	45-135	4	30
Benzo(b)fluoranthene	ND	2.04	2.55	80	2,20	2.48	89	45-135	8	30
Benzo(k)fluoranthene	ND	1.95	2.55	76	1.96	2.48	79	45-135	1	30
Benzo(a)pyrene	ND	2.17	2.55	85	2.22	2.48	90	28-151	2	30
Indeno(1,2,3-cd)pyrene	ND	2.23	2.55	88	2.20	2.48	89	45-135	1	30
Dibenz(a,h)anthracene	ND	2.26	2.55	89	2.28	2.48	92	45-135	1	30

ults flagged with an asterisk (*) indicate values outside control criteria.

ND

1.91

2.55

75

1.90

2.48

77

45-135

1

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00054

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Extracted: 06/13/2001 **Date Analyzed:** 06/28/2001

Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3520C

Analysis Method:

8270C SIM

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG0103328

Lab Control Sample KWG0103328-3

Analyte Name	Lab Control Spike			%Rec
	Result	Expected	%Rec	Limits
Naphthalene	1.79	2.50	72	23-107
2-Methylnaphthalene	1.83	2.50	73	30-119
Acenaphthylene	2.01	2.50	80	41-112
Acenaphthene	1.86	2.50	75	40-109
Dibenzofuran	1.94	2.50	77	44-113
Fluorene	2.02	2.50	81	49-114
Phenanthrene	2.12	2.50	85	61-112
Anthracene	2.22	2.50	89	55-114
Fluoranthene	2.51	2.50	100	67-121
Pyrene	2.01	2.50	80	52-128
Benz(a)anthracene	2.28	2.50	91	58-128
Chrysene	2.17	2.50	87	64-120
Benzo(b)fluoranthene	2.45	2.50	98	39-146
Benzo(k)fluoranthene	2.37	2.50	95	42-146
Benzo(a)pyrene	2.48	2.50	99	39-141
Indeno(1,2,3-cd)pyrene	2.44	2.50	98	24-160
Dibenz(a,h)anthracene	2.56	2.50	102	35-153
Benzo(g,h,i)perylene	2.17	2.50	87	31-137

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Polychlorinated Biphenyls (PCBs) Method 8082

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Polychlorinated Biphenyls (PCBs)

Sample Name:

MW-7

Lab Code:

K2104091-001

Extraction Method: EPA 3520

Analysis Method:

8082

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	DilutionFactor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.20	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1221	ND U	0.40	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1232	ND U	0.20	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1242	ND U	0.20	1	06/15/01	06/19/01	KWG0103421	
Arocior 1248	ND U	0.20	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1254	ND U	0.20	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1260	ND U	0.20	1	06/15/01	06/19/01	KWG0103421	

Surrogate Name %Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl 41	0-143	06/19/01	Acceptable

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: 06/11/2001

Service Request: K2104091

mple Matrix:

Water

Date Received: 06/12/2001

Polychlorinated Biphenyls (PCBs)

Sample Name:

MW-6

Lab Code:

K2104091-002

Extraction Method: EPA 3520 **Analysis Method:**

8082

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.22	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1221	ND U	0.44	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1232	ND U	0.22	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1242	ND U	0.22	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1248	ND U	0.22	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1254	ND U	0.22	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1260	ND U	0.22	1	06/15/01	06/19/01	KWG0103421	_

rogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	31	0-143	06/19/01	Acceptable	

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Polychlorinated Biphenyls (PCBs)

Sample Name:

MW-5

Lab Code:

K2104091-003

Extraction Method: EPA 3520

Units: ug/L Basis: NA

Analysis Method:

8082

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND	U	. 0.20	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1221	ND	U	0.39	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1232	ND	U	0.20	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1242	ND	U	0.20	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1248	ND	U	0.20	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1254	ND	U	0.20	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1260	ND	U	0.20	1	06/15/01	06/20/01	KWG0103421	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	26	0-143	06/20/01	Acceptable

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: 06/11/2001

Service Request: K2104091

emple Matrix:

Water

Date Received: 06/12/2001

Polychlorinated Biphenyls (PCBs)

Sample Name:

MW-4

Lab Code:

K2104091-004

Extraction Method: EPA 3520

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8082

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.19	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1221	ND U	0.39	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1232	ND U	0.19	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1242	ND U	0.19	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1248	ND U	0.19	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1254	ND U	0.19	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1260	ND U	0.19	1	06/15/01	06/20/01	KWG0103421	

rogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	20	0-143	06/20/01	Acceptable	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001 **Date Received:** 06/12/2001

Polychlorinated Biphenyls (PCBs)

Sample Name:

QC

Lab Code:

K2104091-005

Extraction Method: EPA 3520

Analysis Method:

8082

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.20	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1221	ND U	0.40	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1232	ND U	0.20	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1242	ND U	0.20	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1248	ND U	0.20	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1254	ND U	0.20	1	06/15/01	06/20/01	KWG0103421	
Aroclor 1260	ND U	0.20	1	06/15/01	06/20/01	KWG0103421	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Decachlorobiphenyl	23	0-143	06/20/01	Acceptable	

Analytical Results

Client:

GeoTrans, Inc.

Service Request: K2104091

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: NA

ample Matrix:

Water

Date Received: NA

Polychlorinated Biphenyls (PCBs)

Sample Name:

Method Blank

Units: ug/L

Lab Code:

KWG0103421-4

Basis: NA

Extraction Method: EPA 3520

Level: Low

extracti	on Michiga.	TI TO 332
Analysis	Method:	8082

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND U	0.20	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1221	ND U	0.40	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1232	ND U	0.20	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1242	ND U	0.20	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1248	ND U	0.20	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1254	ND U	0.20	1	06/15/01	06/19/01	KWG0103421	
Aroclor 1260	ND U	0.20	1	06/15/01	06/19/01	KWG0103421	

rogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	72	0-143	06/19/01	Acceptable

QA/QC Report

Client: Project: GeoTrans, Inc.

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Surrogate Recovery Summary Polychlorinated Biphenyls (PCBs)

Extraction Method: EPA 3520 **Analysis Method:**

8082

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>
MW-7	K2104091-001	41
MW-6	K2104091-002	31 .
MW-5	K2104091-003	26
MW-4	K2104091-004	20
QC	K2104091-005	23
Method Blank	KWG0103421-4	72

QCDMS Lab Control Sample

OCMS

27 KWG0103421-2 72

KWG0103421-1

KWG0103421-3

29

Surrogate Recovery Control Limits (%)

Sur1 = Decachlorobiphenyl

0-143

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)/P253-104

Water

Service Request: K2104091

Date Extracted: 06/15/2001

Date Analyzed: 06/20/2001

Matrix Spike/Duplicate Matrix Spike Summary Polychlorinated Biphenyls (PCBs)

Sample Name:

QC

Lab Code:

K2104091-005

Extraction Method: Analysis Method:

EPA 3520

8082

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0103421

OCMS

KWG0103421-1

QCDMS

KWG0103421-2

	Sample	Matrix Spike			Duplic	ate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Aroclor 1016	ND	3.29	3.92	84	3.22	3.92	82	48-140	2	30
Aroclor 1260	ND	3.41	3.92	87	3.36	3.92	86	58-136	1	30

ts flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Extracted: 06/15/2001

Date Analyzed: 06/19/2001

Lab Control Spike Summary Polychlorinated Biphenyls (PCBs)

Extraction Method: EPA 3520

Analysis Method:

8082

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0103421

Lab Control Sample KWG0103421-3

Lab	Control Spil	ke	%Rec		
Result	Expected	%Rec	Limits		
1.69	2.00	84	60-124		
1.71	2.00	85	65-131		
	Result	Result Expected 1.69 2.00	1.69 2.00 84	Result Expected %Rec Limits 1.69 2.00 84 60-124	Result Expected %Rec Limits 1.69 2.00 84 60-124

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00064

Printed 06/21/2001 16:38:25

Form 3C - Organic

Page 1 of 1

Volatile Organic Compounds Method 8260

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

MW-7

Lab Code:

K2104091-001

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND ND 0.26 ND ND S.2 ND	U U J U		0.50 0.50 0.50 0.50	0.17 0.14 0.26	1 1	06/20/01 06/20/01	06/20/01 06/20/01	KWG0103506	
Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND 0.26 ND ND ND	U J U		0.50			06/20/01	06/20/01		
Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	0.26 ND ND 5.2	J U			0.26	1		00/20/01	KWG0103506	
Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND 5.2	U		0.50		1	06/20/01	06/20/01	KWG0103506	
Trichlorofluoromethane Acetone 1,1-Dichloroethene Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND 5.2				0.22	1	06/20/01	06/20/01	KWG0103506	
Acetone 1,1-Dichloroethene Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	5.2	U		0.50	0.22	1	06/20/01	06/20/01	KWG0103506	
1,1-Dichloroethene Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)				0.50	0.18	1	06/20/01	06/20/01	KWG0103506	
Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND	J		20	2.3	1	06/20/01	06/20/01	KWG0103506	
Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)		U		0.50	0.12	1	06/20/01	06/20/01	KWG0103506	
trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND	U		0.50	0.16	1	06/20/01	06/20/01	KWG0103506	
1,1-Dichloroethane 2-Butanone (MEK)	0.35	J		1.0	0.24	1	06/20/01	06/20/01	KWG0103506	
2-Butanone (MEK)	ND	U		0.50	0.14	1	06/20/01	06/20/01	KWG0103506	_
	ND	U		0.50	0.091	1	06/20/01	06/20/01	KWG0103506	
· · · · · · · · · · · · · · · · · · ·	ND	U		20	3.7	1	06/20/01	06/20/01	KWG0103506	
2,2-Dichloropropane	ND	U		0.50	0.22	1	06/20/01	06/20/01	KWG0103506	
cis-1,2-Dichloroethene	ND	U		0.50	0.12	1.	06/20/01	06/20/01	KWG0103506	
Chloroform	ND	U		0.50	0.096	1	06/20/01	06/20/01	KWG0103506	
Bromochloromethane	ND	U	F	0.50	0.13	1	06/20/01	06/20/01	KWG0103506	
1,1,1-Trichloroethane (TCA)	ND	U		0.50	0.16	1	06/20/01	06/20/01	KWG0103506	
1,1-Dichloropropene	ND	U		0.50	0.13	1	06/20/01	06/20/01	KWG0103506	
Carbon Tetrachloride	ND	U		0.50	0.17	1	06/20/01	06/20/01	KWG0103506	
1,2-Dichloroethane (EDC)	ND	U		0.50	0.16	1	06/20/01	06/20/01	KWG0103506	
Benzene	ND	U		0.50	0.11	1	06/20/01	06/20/01	KWG0103506	
Trichloroethene (TCE)	ND	U		0.50	0.12	1	06/20/01	06/20/01	KWG0103506	
1,2-Dichloropropane	ND	U		0.50	0.17	1	06/20/01	06/20/01	KWG0103506	
Bromodichloromethane	ND	U		0.50	0.085	1	06/20/01	06/20/01	KWG0103506	
Dibromomethane	ND	U		0.50	0.10	1	06/20/01	06/20/01	KWG0103506	
2-Hexanone	ND	U		20	4.0	1	06/20/01	06/20/01	KWG0103506	
cis-1,3-Dichloropropene	ND	U	1	0.50	0.081	1	06/20/01	06/20/01	KWG0103506	
Toluene	0.12	J	r r	0.50	0.098	1	06/20/01	06/20/01	KWG0103506	
trans-1,3-Dichloropropene	ND	U.		0.50	0.091	1	06/20/01	06/20/01	KWG0103506	
	ND	U		0.50	0.10	1	06/20/01	06/20/01	KWG0103506	
· · · · · · · · · · · · · · · · · · ·	ND		1	20	2.8	1	06/20/01	06/20/01	KWG0103506	
1,3-Dichloropropane	ND	U		0.50	0.076	1	06/20/01	06/20/01	KWG0103506	
	_									
Dibromochloromethane	0.27	J		0.50	0.11	1	06/20/01	06/20/01	KWG0103506 KWG0103506	_

Comments:

Printed 06/26/2001 09:39:16

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

emple Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001 **Date Received:** 06/12/2001

Volatile Organic Compounds

Sample Name:

MW-7

Lab Code:

K2104091-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

		_			Dilution	Date	Date	Extraction	.
Analyte Name	Result		MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,2-Dibromoethane (EDB)	ND	U	2.0	0.073	1	06/20/01	06/20/01	KWG0103506	
Chlorobenzene	ND	U	0.50	0.098	1	06/20/01	06/20/01	KWG0103506	
1,1,1,2-Tetrachloroethane	ND	U	0.50	0.16	1	06/20/01	06/20/01	KWG0103506	
Ethylbenzene	ND	U	0.50	0.10	1	06/20/01	06/20/01	KWG0103506	
m,p-Xylenes	ND	U	0.50	0.19	1	06/20/01	06/20/01	KWG0103506	
o-Xylene	ND	U	0.50	0.079	1	06/20/01	06/20/01	KWG0103506	
Styrene	ND	U	0.50	0.099	1	06/20/01	06/20/01	KWG0103506	
Bromoform	ND	U	0.50	0.28	1	06/20/01	06/20/01	KWG0103506	
Isopropylbenzene	ND	U	2.0	0.068	1	06/20/01	06/20/01	KWG0103506	
1,1,2,2-Tetrachloroethane	ND	U	0.50	0.14	1	06/20/01	06/20/01	KWG0103506	
3-Trichloropropane	ND	U	0.50	0.26	1	06/20/01	06/20/01	KWG0103506	
mobenzene	ND	U	2.0	0.10	1	06/20/01	06/20/01	KWG0103506	
n-Propylbenzene	ND	U	2.0	0.097	1	06/20/01	06/20/01	KWG0103506	
2-Chlorotoluene	ND		2.0	0.16	1	06/20/01	06/20/01	KWG0103506	
4-Chlorotoluene		U	2.0	0.093	1	06/20/01	06/20/01	KWG0103506	
1,3,5-Trimethylbenzene	ND	U	2.0	0.17	11	06/20/01	06/20/01	KWG0103506	
tert-Butylbenzene	ND		2.0	0.17	1	06/20/01	06/20/01	KWG0103506	
1,2,4-Trimethylbenzene	ND	U	2.0	0.19	1	06/20/01	06/20/01	KWG0103506	
sec-Butylbenzene	ND	U	2.0	0.13	1	06/20/01	06/20/01	KWG0103506	
1,3-Dichlorobenzene	ND	U	0.50	0.15	1	06/20/01	06/20/01	KWG0103506	
4-Isopropyltoluene	ND	U	2.0	0.13	1	06/20/01	06/20/01	KWG0103506	
1,4-Dichlorobenzene	ND	U	0.50	0.087	1	06/20/01	06/20/01	KWG0103506	
n-Butylbenzene	ND		2.0	0.27	1	06/20/01	06/20/01	KWG0103506	
1,2-Dichlorobenzene	ND	U	0.50	0.085	1	06/20/01	06/20/01	KWG0103506	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1.0	1	06/20/01	06/20/01	KWG0103506	
1,2,4-Trichlorobenzene	ND		2.0	0.22	1	06/20/01	06/20/01	KWG0103506	
1,2,3-Trichlorobenzene		U	2.0	0.33	1	06/20/01	06/20/01	KWG0103506	
Naphthalene	0.30	J	2.0	0.29	1	06/20/01	06/20/01	KWG0103506	
Hexachlorobutadiene	ND	U	2.0	0.38	1	06/20/01	06/20/01	KWG0103506	

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

MW-7

Lab Code:

K2104091-001

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	96	87-115	06/20/01	Acceptable
Toluene-d8	91	83-116	06/20/01	Acceptable
4-Bromofluorobenzene	82	75-120	06/20/01	Acceptable

Comments:

00067

Printed 06/26/2001 09:39:16 Merged

Form 1A - Organic

Page 3 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)/P253-104

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

MW-6

Lab Code:

K2104091-002

Extraction Method: EPA 5030B

Units: ug/L Basis: NA

Level: Low

Analysis	Method:	8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
Chloromethane	ND U	0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
Vinyl Chloride	ND U	0.50	0.26	1	06/21/01	06/21/01	KWG0103506	
Bromomethane	ND U	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
Chloroethane	ND U	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
Trichlorofluoromethane	ND U	0.50	0.18	1	06/21/01	06/21/01	KWG0103506	
Acetone	2.6 J	20	2.3	1	06/21/01	06/21/01	KWG0103506	
1,1-Dichloroethene	0.14 J	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
Carbon Disulfide	ND U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Methylene Chloride	0.57 J	1.0	0.24	1	06/21/01	06/21/01	KWG0103506	
trans-1,2-Dichloroethene	ND U	0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
-Dichloroethane	0.36 Ј	0.50	0.091	1	06/21/01	06/21/01	KWG0103506	
Butanone (MEK)	ND U	20	3.7	1	06/21/01	06/21/01	KWG0103506	
2,2-Dichloropropane	ND U	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
cis-1,2-Dichloroethene	ND U	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
Chloroform	ND U	0.50	0.096	1	06/21/01	06/21/01	KWG0103506	
Bromochloromethane	ND U	0.50	0.13	1	06/21/01	06/21/01	KWG0103506	
1,1,1-Trichloroethane (TCA)	2.0	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
1,1-Dichloropropene	ND U	0.50	0.13	1	06/21/01	06/21/01	KWG0103506	
Carbon Tetrachloride	ND U	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichloroethane (EDC)	8.0	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Benzene	ND U	0.50	0.11	1	06/21/01	06/21/01	KWG0103506	
Trichloroethene (TCE)	ND U	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichloropropane	ND U	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
Bromodichloromethane	ND U	0.50	0.085	1	06/21/01	06/21/01	KWG0103506	
Dibromomethane	ND U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
2-Hexanone	ND U	20	4.0	1	06/21/01	06/21/01	KWG0103506	
cis-1,3-Dichloropropene	ND U	0.50	0.081	1	06/21/01	06/21/01	KWG0103506	
Toluene	0.12 J	0.50	0.098	1	06/21/01	06/21/01	KWG0103506	
trans-1,3-Dichloropropene	ND Ú	0.50	0.091	1	06/21/01	06/21/01	KWG0103506	
1,1,2-Trichloroethane	ND U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	· <u></u>
4-Methyl-2-pentanone (MIBK)	ND U	20	2.8	1	06/21/01	06/21/01	KWG0103506	
1,3-Dichloropropane	ND U	0.50	0.076	1	06/21/01	06/21/01	KWG0103506	
Tetrachloroethene (PCE)	3.0	0.50	0.11	1	06/21/01	06/21/01	KWG0103506	
romochloromethane	ND U	0.50	0.082	1	06/21/01	06/21/01	KWG0103506	

00068

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

MW-6

Lab Code:

K2104091-002

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result (Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND 1	U	2.0	0.073	1	06/21/01	06/21/01	KWG0103506	
Chlorobenzene	ND 1	U	0.50	0.098	1	06/21/01	06/21/01	KWG0103506	
1,1,1,2-Tetrachloroethane	ND I	U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Ethylbenzene	ND 1	U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
m,p-Xylenes	ND I	U	0.50	0.19	1	06/21/01	06/21/01	KWG0103506	
o-Xylene	ND I	U	0.50	0.079	1	06/21/01	06/21/01	KWG0103506	
Styrene	ND I	U	0.50	0.099	1	06/21/01	06/21/01	KWG0103506	
Bromoform	ND I	U	0.50	0.28	1	06/21/01	06/21/01	KWG0103506	
Isopropylbenzene	ND U	U	2.0	0.068	1	06/21/01	06/21/01	KWG0103506	
1,1,2,2-Tetrachloroethane	ND U	U	0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
1,2,3-Trichloropropane	ND U	U	0.50	0.26	1	06/21/01	06/21/01	KWG0103506	
Bromobenzene	ND (U	2.0	0.10	1	06/21/01	06/21/01	KWG0103506	
n-Propylbenzene	ND U	U	2.0	0.097	1	06/21/01	06/21/01	KWG0103506	
2-Chlorotoluene	ND U		2.0	0.16	1	06/21/01	06/21/01	KWG0103506	
4-Chlorotoluene	ND (2.0	0.093	1.	06/21/01	06/21/01	KWG0103506	
1,3,5-Trimethylbenzene	ND U	U	2.0	0.17	1	06/21/01	06/21/01	KWG0103506	
tert-Butylbenzene	ND (2.0	0.17	1	06/21/01	06/21/01	KWG0103506	
1,2,4-Trimethylbenzene	ND U		2.0	0.19	1	06/21/01	06/21/01	KWG0103506	
sec-Butylbenzene	ND U	U	2.0	0.13	1	06/21/01	06/21/01	KWG0103506	
1,3-Dichlorobenzene	ND (U	0.50	0.15	1	06/21/01	06/21/01	KWG0103506	
4-Isopropyltoluene	ND U	U	2.0	0.13	1	06/21/01	06/21/01	KWG0103506	
1,4-Dichlorobenzene	ND U	U	0.50	0.087	1	06/21/01	06/21/01	KWG0103506	
n-Butylbenzene	ND U		2.0	0.27	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichlorobenzene	ND U		0.50	0.085	1	06/21/01	06/21/01	KWG0103506	
1,2-Dibromo-3-chloropropane	ND U	U	2.0	1.0	1	06/21/01	06/21/01	KWG0103506	
1,2,4-Trichlorobenzene	ND U		2.0	0.22	1	06/21/01	06/21/01	KWG0103506	
1,2,3-Trichlorobenzene	ND U	IJ	2.0	0.33	1	06/21/01	06/21/01	KWG0103506	
Naphthalene	ND U	J	2.0	0.29	1	06/21/01	06/21/01	KWG0103506	
Hexachlorobutadiene	ND U	J,	2.0	0.38	1	06/21/01	06/21/01	KWG0103506	

Comments:

Printed 06/26/2001 09:39:26 Merged

Form 1A - Organic

Page 2 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)/P253-104

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

MW-6

Lab Code:

K2104091-002

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	97	87-115	06/21/01	Acceptable
Toluene-d8	90	83-116	06/21/01	Acceptable
4-Bromofluorobenzene	81	75-120	06/21/01	Acceptable

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

MW-5

Lab Code:

K2104091-003

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result (Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	J	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
Chloromethane	ND I		0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
Vinyl Chloride	ND I	J	0.50	0.26	1	06/21/01	06/21/01	KWG0103506	
Bromomethane	ND U	J	0.50	0.22	Ī	06/21/01	06/21/01	KWG0103506	
Chloroethane	ND U	J	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
Trichlorofluoromethane	ND U	J	0.50	0.18	1	06/21/01	06/21/01	KWG0103506	
Acetone	ND U	J	20	2.3	1	06/21/01	06/21/01	KWG0103506	
1,1-Dichloroethene	ND U	J	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
Carbon Disulfide	0.19 J	ſ	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Methylene Chloride	0.30 J		1.0	0.24	1	06/21/01	06/21/01	KWG0103506	
trans-1,2-Dichloroethene	ND (0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
1,1-Dichloroethane	ND U	J	0.50	0.091	1	06/21/01	06/21/01	KWG0103506	
2-Butanone (MEK)	ND (J	20	3.7	1	06/21/01	06/21/01	KWG0103506	
2,2-Dichloropropane	ND (J	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
cis-1,2-Dichloroethene	ND U	J	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
Chloroform	ND U	J	0.50	0.096	1	06/21/01	06/21/01	KWG0103506	
Bromochloromethane	ND U	J	0.50	0.13	1	06/21/01	06/21/01	KWG0103506	
1,1,1-Trichloroethane (TCA)	ND U	J	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
1,1-Dichloropropene	ND U	J	0.50	0.13	1	06/21/01	06/21/01	KWG0103506	
Carbon Tetrachloride	ND U		0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichloroethane (EDC)	ND U	J	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Benzene	ND U	J	0.50	0.11	1	06/21/01	06/21/01	KWG0103506	
Trichloroethene (TCE)	ND U	J	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichloropropane	ND U	J	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
Bromodichloromethane	ND U	J	0.50	0.085	1	06/21/01	06/21/01	KWG0103506	
Dibromomethane	ND U	J	0.50	0.10	I	06/21/01	06/21/01	KWG0103506	
2-Hexanone	ND U	J	20	4.0	1	06/21/01	06/21/01	KWG0103506	
cis-1,3-Dichloropropene	ND U	 J	0.50	0.081	1	06/21/01	06/21/01	KWG0103506	
Toluene	ND U		0.50	0.098	1	06/21/01	06/21/01	KWG0103506	
trans-1,3-Dichloropropene	ND U	j	0.50	0.091	1	06/21/01	06/21/01	KWG0103506	
1,1,2-Trichloroethane	ND U	J	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
4-Methyl-2-pentanone (MIBK)	ND U	J	20	2.8	1	06/21/01	06/21/01	KWG0103506	
1,3-Dichloropropane	ND U	J	0.50	0.076	1	06/21/01	06/21/01	KWG0103506	
Tetrachloroethene (PCE)	0.31 J		0.50	0.11	1	06/21/01	06/21/01	KWG0103506	
Dibromochloromethane	ND U	J	0.50	0.082	1	06/21/01	06/21/01	KWG0103506	
		,							

Comments:

Merged

Printed 06/26/2001 09:39:32

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)/P253-104

Water

Service Request: K2104091

Date Collected: 06/11/2001 **Date Received:** 06/12/2001

Volatile Organic Compounds

Sample Name:

MW-5

Lab Code:

K2104091-003

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	2.0	0.073	1	06/21/01	06/21/01	KWG0103506	
Chlorobenzene	ND U	0.50	0.098	1	06/21/01	06/21/01	KWG0103506	
1,1,1,2-Tetrachloroethane	ND U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Ethylbenzene	ND U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
m,p-Xylenes	ND U	0.50	0.19	1	06/21/01	06/21/01	KWG0103506	
o-Xylene	ND U	0.50	0.079	1	06/21/01	06/21/01	KWG0103506	
Styrene	ND U	0.50	0.099	1	06/21/01	06/21/01	KWG0103506	
Bromoform	ND U	0.50	0.28	1	06/21/01	06/21/01	KWG0103506	
Isopropylbenzene	ND U	2.0	0.068	1	06/21/01	06/21/01	KWG0103506	
1,1,2,2-Tetrachloroethane	ND U	0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
3-Trichloropropane	ND U	0.50	0.26	1	06/21/01	06/21/01	KWG0103506	
mobenzene	ND U	2.0	0.10	1	06/21/01	06/21/01	KWG0103506	
n-Propylbenzene	ND U	2.0	0.097	1	06/21/01	06/21/01	KWG0103506	
2-Chlorotoluene	ND U	2.0	0.16	1	06/21/01	06/21/01	KWG0103506	
4-Chlorotoluene	ND U	2.0	0.093	1	06/21/01	06/21/01	KWG0103506	
1,3,5-Trimethylbenzene	ND U	2.0	0.17	1	06/21/01	06/21/01	KWG0103506	
tert-Butylbenzene	ND U	2.0	0.17	1	06/21/01	06/21/01	KWG0103506	
1,2,4-Trimethylbenzene	ND U	2.0	0.19	1	06/21/01	06/21/01	KWG0103506	
sec-Butylbenzene	ND U	2.0	0.13	1	06/21/01	06/21/01	KWG0103506	
1,3-Dichlorobenzene	ND U	0.50	0.15	1	06/21/01	06/21/01	KWG0103506	
4-Isopropyltoluene	ND U	2.0	0.13	1	06/21/01	06/21/01	KWG0103506	
1,4-Dichlorobenzene	ND U	0.50	0.087	1	06/21/01	06/21/01	KWG0103506	
n-Butylbenzene	ND U	2.0	0.27	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichlorobenzene	ND U	0.50	0.085	1	06/21/01	06/21/01	KWG0103506	
1,2-Dibromo-3-chloropropane	ND U	2.0	1.0	1	06/21/01	06/21/01	KWG0103506	
1,2,4-Trichlorobenzene	ND U	2.0	0.22	1	06/21/01	06/21/01	KWG0103506	
1,2,3-Trichlorobenzene	ND U	2.0	0.33	1	06/21/01	06/21/01	KWG0103506	
Naphthalene	ND U	2.0	0.29	1	06/21/01	06/21/01	KWG0103506	
Hexachlorobutadiene	ND U	2.0	0.38	1	06/21/01	06/21/01	KWG0103506	

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

MW-5

Lab Code:

K2104091-003

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	95	87-115	06/21/01	Acceptable
Toluene-d8	91	83-116	06/21/01	Acceptable
4-Bromofluorobenzene	82	75-120	06/21/01	Acceptable

Comments:

00073

Printed 06/26/2001 09:39:32 Merged

Form 1A - Organic

Page 3 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

comple Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

MW-4

Lab Code:

K2104091-004

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
Chloromethane	ND	U	0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
Vinyl Chloride	ND	U	0.50	0.26	1	06/21/01	06/21/01	KWG0103506	
Bromomethane	ND	U	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
Chloroethane	ND	U	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
Trichlorofluoromethane	ND	U	0.50	0.18	1	06/21/01	06/21/01	KWG0103506	
Acetone	3.4	J	20	2.3	1	06/21/01	06/21/01	KWG0103506	
1,1-Dichloroethene	ND	U	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
Carbon Disulfide	0.18	J	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Methylene Chloride	0.27	J	1.0	0.24	1	06/21/01	06/21/01	KWG0103506	
trans-1,2-Dichloroethene	ND		0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
Dichloroethane	ND	U	0.50	0.091	1	06/21/01	06/21/01	KWG0103506	
2-Butanone (MEK)	ND	U	20	3.7	1	06/21/01	06/21/01	KWG0103506	
2,2-Dichloropropane	ND	U	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
cis-1,2-Dichloroethene	ND	U	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
Chloroform	0.17	J	0.50	0.096	1	06/21/01	06/21/01	KWG0103506	
Bromochloromethane	ND	U	0.50	0.13	1	06/21/01	06/21/01	KWG0103506	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
1,1-Dichloropropene	ND	U	0.50	0.13	1	06/21/01	06/21/01	KWG0103506	
Carbon Tetrachloride	ND	U	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Benzene	ND	U	0.50	0.11	1	06/21/01	06/21/01	KWG0103506	
Trichloroethene (TCE)	ND	U	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichloropropane	ND	U	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
Bromodichloromethane	ND	U	0.50	0.085	1	06/21/01	06/21/01	KWG0103506	
Dibromomethane	ND	U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
2-Hexanone	ND	U	20	4.0	1	06/21/01	06/21/01	KWG0103506	
cis-1,3-Dichloropropene	ND	U	0.50	0.081	1	06/21/01	06/21/01	KWG0103506	
Toluene	0.12	J	0.50	0.098	1	06/21/01	06/21/01	KWG0103506	
trans-1,3-Dichloropropene	ND	Ü	0.50	0.091	1	06/21/01	06/21/01	KWG0103506	
1,1,2-Trichloroethane	ND	U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
4-Methyl-2-pentanone (MIBK)	ND		20	2.8	1	06/21/01	06/21/01	KWG0103506	
1,3-Dichloropropane	ND	U	0.50	0.076	1	06/21/01	06/21/01	KWG0103506	
Tetrachloroethene (PCE)	0.28	J	0.50	0.11	1	06/21/01	06/21/01	KWG0103506	
omochloromethane	ND		0.50	0.082	1	06/21/01	06/21/01	KWG0103506	

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

MW-4

Lab Code:

K2104091-004

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

	•							
4	,			Dilution	Date	Date	Extraction	NT 4
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
1,2-Dibromoethane (EDB)	ND U	2.0	0.073	1	06/21/01	06/21/01	KWG0103506	
Chlorobenzene	ND U	0.50	0.098	1	06/21/01	06/21/01	KWG0103506	
1,1,1,2-Tetrachloroethane	ND U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Ethylbenzene	ND U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
m,p-Xylenes	ND U	0.50	0.19	1	06/21/01	06/21/01	KWG0103506	
o-Xylene	0.27 J	0.50	0.079	1	06/21/01	06/21/01	KWG0103506	
Styrene	ND U	0.50	0.099	1	06/21/01	06/21/01	KWG0103506	
Bromoform	ND U	0.50	0.28	1	06/21/01	06/21/01	KWG0103506	
Isopropylbenzene	ND U	2.0	0.068	1	06/21/01	06/21/01	KWG0103506	
1,1,2,2-Tetrachloroethane	ND U	0.50	0.14	ļ	06/21/01	06/21/01	KWG0103506	
1,2,3-Trichloropropane	ND U	0.50	0.26	1	06/21/01	06/21/01	KWG0103506	
Bromobenzene	ND U	2.0	0.10	1	06/21/01	06/21/01	KWG0103506	•
n-Propylbenzene	ND U	2.0	0.097	1	06/21/01	06/21/01	KWG0103506	
2-Chlorotoluene	ND U	2.0	0.16	1	06/21/01	06/21/01	KWG0103506	
4-Chlorotoluene	ND U	2.0	0.093	1	06/21/01	06/21/01	KWG0103506	
1,3,5-Trimethylbenzene	1.0 J	2.0	0.17	1	06/21/01	06/21/01	KWG0103506	
tert-Butylbenzene	ND U	2.0	0.17	1	06/21/01	06/21/01	KWG0103506	
1,2,4-Trimethylbenzene	0.29 J	2.0	0.19	1	06/21/01	06/21/01	KWG0103506	
sec-Butylbenzene	ND U	2.0	0.13	1	06/21/01	06/21/01	KWG0103506	
1,3-Dichlorobenzene	ND U	0.50	0.15	1	06/21/01	06/21/01	KWG0103506	
4-Isopropyltoluene	0.73 J	2.0	0.13	1	06/21/01	06/21/01	KWG0103506	
1,4-Dichlorobenzene	ND U	0.50	0.087	1	06/21/01	06/21/01	KWG0103506	
n-Butylbenzene	ND U	2.0	0.27	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichlorobenzene	ND U	0.50	0.085	1	06/21/01	06/21/01	KWG0103506	
1,2-Dibromo-3-chloropropane	ND U	2.0	1.0	1	06/21/01	06/21/01	KWG0103506	
1,2,4-Trichlorobenzene	ND U	2.0	0.22	1	06/21/01	06/21/01	KWG0103506	
1,2,3-Trichlorobenzene	ND U	2.0	0.33	1	06/21/01	06/21/01	KWG0103506	
Naphthalene	0.52 J	2.0	0.29	1	06/21/01	06/21/01	KWG0103506	
Hexachlorobutadiene	ND U	2.0	0.38	1	06/21/01	06/21/01	KWG0103506	

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

MW-4

Lab Code:

K2104091-004

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	97	87-115	06/21/01	Acceptable
Toluene-d8	93	83-116	06/21/01	Acceptable
4-Bromofluorobenzene	85	75-120	06/21/01	Acceptable

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

QC

Lab Code:

K2104091-005

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
Chloromethane	ND U	0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
Vinyl Chloride	ND U	0.50	0.26	1	06/21/01	06/21/01	KWG0103506	
Bromomethane	ND U	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
Chloroethane	ND U	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
Trichlorofluoromethane	ND U	0.50	0.18	1	06/21/01	06/21/01	KWG0103506	
Acetone	3.4 J	20	2.3	1	06/21/01	06/21/01	KWG0103506	
1,1-Dichloroethene	ND U	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
Carbon Disulfide	ND U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Methylene Chloride	0.52 J	1.0	0.24	1	06/21/01	06/21/01	KWG0103506	
trans-1,2-Dichloroethene	ND U	0.50	0.14	1	06/21/01	06/21/01	KWG0103506	_
1,1-Dichloroethane	ND U	0.50	0.091	1	06/21/01	06/21/01	KWG0103506	
2-Butanone (MEK)	ND U	20	3.7	1	06/21/01	06/21/01	KWG0103506	
2,2-Dichloropropane	ND U	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
cis-1,2-Dichloroethene	ND U	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
Chloroform	ND U	0.50	0.096	1	06/21/01	06/21/01	KWG0103506	
Bromochloromethane	ND U	0.50	0.13	1	06/21/01	06/21/01	KWG0103506	
1,1,1-Trichloroethane (TCA)	ND U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
1,1-Dichloropropene	ND U	0.50	0.13	1	06/21/01	06/21/01	KWG0103506	
Carbon Tetrachloride	ND U	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichloroethane (EDC)	ND U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Benzene	ND U	0.50	0.11	1	06/21/01	06/21/01	KWG0103506	
Trichloroethene (TCE)	ND U	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichloropropane	ND U	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
Bromodichloromethane	ND U	0.50	0.085	1	06/21/01	06/21/01	KWG0103506	
Dibromomethane	ND U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
2-Hexanone	ND U	20	4.0	1	06/21/01	06/21/01	KWG0103506	
cis-1,3-Dichloropropene	ND U	0.50	0.081	1	06/21/01	06/21/01	KWG0103506	
Toluene	0.10 J	0.50	0.098	1	06/21/01	06/21/01	KWG0103506	
trans-1,3-Dichloropropene	ND U	0.50	0.091	1	06/21/01	06/21/01	KWG0103506	
1,1,2-Trichloroethane	ND U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
4-Methyl-2-pentanone (MIBK)	ND U	20	2.8	1	06/21/01	06/21/01	KWG0103506	
1,3-Dichloropropane	ND U	0.50	0.076	1	06/21/01	06/21/01	KWG0103506	
Tetrachloroethene (PCE)	0.28 J	0.50	0.11	1	06/21/01	06/21/01	KWG0103506	
Dibromochloromethane	ND U	0.50	0.082	1	06/21/01	06/21/01	KWG0103506	
								•

Comments:

0007

Printed 06/26/2001 09:39:44 Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)/P253-104

Date Collected: 06/11/2001

Service Request: K2104091

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

QC

Water

Lab Code:

K2104091-005

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	2.0	0.073	1	06/21/01	06/21/01	KWG0103506	
Chlorobenzene	ND U	0.50	0.098	1	06/21/01	06/21/01	KWG0103506	
1,1,1,2-Tetrachloroethane	ND U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Ethylbenzene	ND U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
m,p-Xylenes	ND U	0.50	0.19	1	06/21/01	06/21/01	KWG0103506	
o-Xylene	ND U	0.50	0.079	1	06/21/01	06/21/01	KWG0103506	
Styrene	ND U	0.50	0.099	1	06/21/01	06/21/01	KWG0103506	
Bromoform	ND U	0.50	0.28	1	06/21/01	06/21/01	KWG0103506	
Isopropylbenzene	ND U	2.0	0.068	1	06/21/01	06/21/01	KWG0103506	
1,1,2,2-Tetrachloroethane	ND U	0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
1.2,3-Trichloropropane	ND U	0.50	0.26	1	06/21/01	06/21/01	KWG0103506	
nobenzene	ND U	2.0	0.10	1	06/21/01	06/21/01	KWG0103506	
n-ropylbenzene	ND U	2.0	0.097	1	06/21/01	06/21/01	KWG0103506	
2-Chlorotoluene	ND U	2.0	0.16	1	06/21/01	06/21/01	KWG0103506	
4-Chlorotoluene	ND U	2.0	0.093	1.	06/21/01	06/21/01	KWG0103506	
1,3,5-Trimethylbenzene	ND U	2.0	0.17	1	06/21/01	06/21/01	KWG0103506	
tert-Butylbenzene	ND U	2.0	0.17	1	06/21/01	06/21/01	KWG0103506	
1,2,4-Trimethylbenzene	ND U	2.0	0.19	1	06/21/01	06/21/01	KWG0103506	
sec-Butylbenzene	ND U	2.0	0.13	1	06/21/01	06/21/01	KWG0103506	
1,3-Dichlorobenzene	ND U	0.50	0.15	1	06/21/01	06/21/01	KWG0103506	
4-Isopropyltoluene	ND U	2.0	0.13	1	06/21/01	06/21/01	KWG0103506	
1,4-Dichlorobenzene	ND U	0.50	0.087	1	06/21/01	06/21/01	KWG0103506	
n-Butylbenzene	ND U	2.0	0.27	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichlorobenzene	ND U	0.50	0.085	1	06/21/01	06/21/01	KWG0103506	
1,2-Dibromo-3-chloropropane	ND U	2.0	1.0	1	06/21/01	06/21/01	KWG0103506	
1,2,4-Trichlorobenzene	ND U	2.0	0.22	1	06/21/01	06/21/01	KWG0103506	
1,2,3-Trichlorobenzene	ND U	2.0	0.33	1	06/21/01	06/21/01	KWG0103506	
Naphthalene	ND U	2.0	0.29	1	06/21/01	06/21/01	KWG0103506	
Hexachlorobutadiene	ND U	2.0	0.38	1	06/21/01	06/21/01	KWG0103506	

Comments:

00078

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

QC

Lab Code:

K2104091-005

Units: ug/L Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	94	87-115	06/21/01	Acceptable	
Toluene-d8	92	83-116	06/21/01	Acceptable	
4-Bromofluorobenzene	84	75-120	06/21/01	Acceptable	•

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name: Lab Code:

Trip Blank K2104091-006

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Amalasta Nasa	D 4 0	3 673 7	B #FFS Y	Dilution	Date	Date	Extraction	NT - 4
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
Chloromethane	ND U	0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
Vinyl Chloride	ND U	0.50	0.26	1	06/21/01	06/21/01	KWG0103506	
Bromomethane	ND U	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
Chloroethane	ND U	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
Trichlorofluoromethane	ND U	0.50	0.18	1	06/21/01	06/21/01	KWG0103506	
Acetone	ND U	20	2.3	1	06/21/01	06/21/01	KWG0103506	
1,1-Dichloroethene	ND U	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
Carbon Disulfide	0.47 J	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Methylene Chloride	0.70 J	1.0	0.24	1	06/21/01	06/21/01	KWG0103506	
trans-1,2-Dichloroethene	ND U	0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
Dichloroethane	ND U	0.50	0.091	1	06/21/01	06/21/01	KWG0103506	
2-Butanone (MEK)	ND U	20	3.7	1	06/21/01	06/21/01	KWG0103506	
2,2-Dichloropropane	ND U	0.50	0.22	1	06/21/01	06/21/01	KWG0103506	
cis-1,2-Dichloroethene	ND U	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
Chloroform	ND U	0.50	0.096	1	06/21/01	06/21/01	KWG0103506	
Bromochloromethane	ND U	0.50	0.13	1	06/21/01	06/21/01	KWG0103506	
1,1,1-Trichloroethane (TCA)	ND U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
1,1-Dichloropropene	ND U	0.50	0.13	1	06/21/01	06/21/01	KWG0103506	
Carbon Tetrachloride	ND U	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichloroethane (EDC)	ND U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Benzene	ND U	0.50	0.11	1	06/21/01	06/21/01	KWG0103506	
Trichloroethene (TCE)	ND U	0.50	0.12	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichloropropane	ND U	0.50	0.17	1	06/21/01	06/21/01	KWG0103506	
Bromodichloromethane	ND U	0.50	0.085	1	06/21/01	06/21/01	KWG0103506	
Dibromomethane	ND U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
2-Hexanone	ND U	20	4.0	1	06/21/01	06/21/01	KWG0103506	
cis-1,3-Dichloropropene	ND U	0,50	0.081	1	06/21/01	06/21/01	KWG0103506	
Toluene	0.28 J	0.50	0.098	1	06/21/01	06/21/01	KWG0103506	
trans-1,3-Dichloropropene	ND Ú	0.50	0.091	1	06/21/01	06/21/01	KWG0103506	
1,1,2-Trichloroethane	ND U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
4-Methyl-2-pentanone (MIBK)	ND U	20	2.8	1	06/21/01	06/21/01	KWG0103506	
1,3-Dichloropropane	ND U	0.50	0.076	1	06/21/01	06/21/01	KWG0103506	
Tetrachloroethene (PCE)	ND U	0.50	0.11	1	06/21/01	06/21/01	KWG0103506	
romochloromethane	ND U	0.50	0.082	1	06/21/01	06/21/01	KWG0103506	

Comments:

Printed 06/26/2001 09:39:50 Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

Trip Blank

Lab Code:

K2104091-006

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	2.0	0.073	1	06/21/01	06/21/01	KWG0103506	
Chlorobenzene	ND U	0.50	0.098	1	06/21/01	06/21/01	KWG0103506	
1,1,1,2-Tetrachloroethane	ND U	0.50	0.16	1	06/21/01	06/21/01	KWG0103506	
Ethylbenzene	ND U	0.50	0.10	1	06/21/01	06/21/01	KWG0103506	
m,p-Xylenes	ND U	0.50	0.19	1	06/21/01	06/21/01	KWG0103506	
o-Xylene	ND U	0.50	0.079	1	06/21/01	06/21/01	KWG0103506	
Styrene	ND U	0.50	0.099	1	06/21/01	06/21/01	KWG0103506	
Bromoform	ND U	0.50	0.28	1	06/21/01	06/21/01	KWG0103506	
Isopropylbenzene	ND U	2.0	0.068	1	06/21/01	06/21/01	KWG0103506	
1,1,2,2-Tetrachloroethane	ND U	0.50	0.14	1	06/21/01	06/21/01	KWG0103506	
1,2,3-Trichloropropane	ND U	0.50	0.26	1	06/21/01	06/21/01	KWG0103506	
Bromobenzene	ND U	2.0	0.10	1	06/21/01	06/21/01	KWG0103506	
n-Propylbenzene	ND U	2.0	0.097	1	06/21/01	06/21/01	KWG0103506	
2-Chlorotoluene	ND U	2.0	0.16	1	06/21/01	06/21/01	KWG0103506	
4-Chlorotoluene	ND U	2.0	0.093	1	06/21/01	06/21/01	KWG0103506	
1,3,5-Trimethylbenzene	ND U	2.0	0.17	1	06/21/01	06/21/01	KWG0103506	
tert-Butylbenzene	ND U	2.0	0.17	1	06/21/01	06/21/01	KWG0103506	
1,2,4-Trimethylbenzene	ND U	2.0	0.19	1	06/21/01	06/21/01	KWG0103506	
sec-Butylbenzene	ND U	2.0	0.13	1	06/21/01	06/21/01	KWG0103506	
1,3-Dichlorobenzene	ND U	0.50	0.15	1	06/21/01	06/21/01	KWG0103506	
4-Isopropyltoluene	ND U	2.0	0.13	1	06/21/01	06/21/01	KWG0103506	
1,4-Dichlorobenzene	ND U	0.50	0.087	_ 1	06/21/01	06/21/01	KWG0103506	
n-Butylbenzene	ND U	2.0	0.27	1	06/21/01	06/21/01	KWG0103506	
1,2-Dichlorobenzene	ND U	0.50	0.085	1	06/21/01	06/21/01	KWG0103506	
1,2-Dibromo-3-chloropropane	ND U	2.0	1.0	1	06/21/01	06/21/01	KWG0103506	
1,2,4-Trichlorobenzene	ND U	2.0	0.22	1	06/21/01	06/21/01	KWG0103506	
1,2,3-Trichlorobenzene	ND U	2.0	0.33	1	06/21/01	06/21/01	KWG0103506	
Naphthalene	ND U	2.0	0.29	1	06/21/01	06/21/01	KWG0103506	
Hexachlorobutadiene	ND U	2.0	0.38	1	06/21/01	06/21/01	KWG0103506	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project: Sample Matrix:

Water

Former Axelson Facility (Site #2067)/P253-104

Date Collected: 06/11/2001

Service Request: K2104091

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

Trip Blank

Lab Code:

K2104091-006

Units: ug/L

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	94	87-115	06/21/01	Acceptable
Toluene-d8	90	83-116	06/21/01	Acceptable
4-Bromofluorobenzene	81	75-120	06/21/01	Acceptable

Comments:

00082

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

KWG0103506-4

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	0.50	0.17	1	06/20/01	06/20/01	KWG0103506	
Chloromethane	ND U	0.50	0.14	1	06/20/01	06/20/01	KWG0103506	
Vinyl Chloride	ND U	0.50	0.26	1	06/20/01	06/20/01	KWG0103506	
Bromomethane	ND U	0.50	0.22	1	06/20/01	06/20/01	KWG0103506	
Chloroethane	ND U	0.50	0.22	1	06/20/01	06/20/01	KWG0103506	
Trichlorofluoromethane	ND U	0.50	0.18	1	06/20/01	06/20/01	KWG0103506	
Acetone	3.5 J	20	2.3	1	06/20/01	06/20/01	KWG0103506	
1,1-Dichloroethene	ND U	0.50	0.12	1	06/20/01	06/20/01	KWG0103506	
Carbon Disulfide	ND U	0.50	0.16	1	06/20/01	06/20/01	KWG0103506	
Methylene Chloride	0.43 J	1.0	0.24	1	06/20/01	06/20/01	KWG0103506	
trans-1,2-Dichloroethene	ND U	0.50	0.14	1	06/20/01	06/20/01	KWG0103506	
1,1-Dichloroethane	ND U	0.50	0.091	1	06/20/01	06/20/01	KWG0103506	
2-Butanone (MEK)	ND U	20	3.7	1	06/20/01	06/20/01	KWG0103506	
2,2-Dichloropropane	ND U	0.50	0.22	1	06/20/01	06/20/01	KWG0103506	
cis-1,2-Dichloroethene	ND U	0.50	0.12	1	06/20/01	06/20/01	KWG0103506	
Chloroform	ND U	0.50	0.096	1	06/20/01	06/20/01	KWG0103506	
Bromochloromethane	ND U	0.50	0.13	1	06/20/01	06/20/01	KWG0103506	
1,1,1-Trichloroethane (TCA)	ND U	0.50	0.16	1	06/20/01	06/20/01	KWG0103506	
1,1-Dichloropropene	ND U	0.50	0.13	1	06/20/01	06/20/01	KWG0103506	
Carbon Tetrachloride	ND U	0.50	0.17	1	06/20/01	06/20/01	KWG0103506	
1,2-Dichloroethane (EDC)	ND U	0.50	0.16	1	06/20/01	06/20/01	KWG0103506	
Benzene	ND U	0.50	0.11	1	06/20/01	06/20/01	KWG0103506	
Trichloroethene (TCE)	ND U	0.50	0.12	1	06/20/01	06/20/01	KWG0103506	
1,2-Dichloropropane	ND U	0.50	0.17	1	06/20/01	06/20/01	KWG0103506	
Bromodichloromethane	ND U	0.50	0.085	1	06/20/01	06/20/01	KWG0103506	
Dibromomethane	ND U	0.50	0.10	1	06/20/01	06/20/01	KWG0103506	
2-Hexanone	ND U	20	4.0	1	06/20/01	06/20/01	KWG0103506	
cis-1,3-Dichloropropene	ND U	0.50	0.081	1	06/20/01	06/20/01	KWG0103506	
Toluene	ND U	0.50	0.098	1	06/20/01	06/20/01	KWG0103506	
trans-1,3-Dichloropropene	ND U	0.50	0.091	1	06/20/01	06/20/01	KWG0103506	
1,1,2-Trichloroethane	ND U	0.50	0.10	1	06/20/01	06/20/01	KWG0103506	
4-Methyl-2-pentanone (MIBK)	ND U	20	2.8	1	06/20/01	06/20/01	KWG0103506	
1,3-Dichloropropane	ND U	0.50	0.076	1	06/20/01	06/20/01	KWG0103506	
Tetrachloroethene (PCE)	ND U	0.50	0.11	1	06/20/01	06/20/01	KWG0103506	
Dibromochloromethane	ND U	0.50	0.082	1	06/20/01	06/20/01	KWG0103506	

Comments:

00083

Printed 06/26/2001 09:39:56

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)/P253-104

Water

Service Request: K2104091

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank KWG0103506-4

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	2.0	0.073	1	06/20/01	06/20/01	KWG0103506	
Chlorobenzene	ND U	0.50	0.098	1	06/20/01	06/20/01	KWG0103506	
1,1,1,2-Tetrachloroethane	ND U	0.50	0.16	1	06/20/01	06/20/01	KWG0103506	
Ethylbenzene	ND U	0.50	0.10	1	06/20/01	06/20/01	KWG0103506	
m,p-Xylenes	ND U	0.50	0.19	1	06/20/01	06/20/01	KWG0103506	
o-Xylene	ND U	0.50	0.079	1	06/20/01	06/20/01	KWG0103506	
Styrene	ND U	0.50	0.099	1	06/20/01	06/20/01	KWG0103506	
Bromoform	ND U	0.50	0.28	1	06/20/01	06/20/01	KWG0103506	
Isopropylbenzene	ND U	2.0	0.068	1	06/20/01	06/20/01	KWG0103506	
1,1,2,2-Tetrachloroethane	ND U	0.50	0.14	1	06/20/01	06/20/01	KWG0103506	
3-Trichloropropane	ND U	0.50	0.26	1	06/20/01	06/20/01	KWG0103506	
mobenzene	ND U	2.0	0.10	1	06/20/01	06/20/01	KWG0103506	
n-Propylbenzene	ND U	2.0	0.097	1	06/20/01	06/20/01	KWG0103506	
2-Chlorotoluene	ND U	2.0	0.16	1	06/20/01	06/20/01	KWG0103506	
4-Chlorotoluene	ND U	2.0	0.093	1	06/20/01	06/20/01	KWG0103506	
1,3,5-Trimethylbenzene	ND U	2.0	0.17	1	06/20/01	06/20/01	KWG0103506	
tert-Butylbenzene	ND U	2.0	0.17	1	06/20/01	06/20/01	KWG0103506	
1,2,4-Trimethylbenzene	ND U	2.0	0.19	1	06/20/01	06/20/01	KWG0103506	
sec-Butylbenzene	ND U	2.0	0.13	1	06/20/01	06/20/01	KWG0103506	
1,3-Dichlorobenzene	ND U	0.50	0.15	1	06/20/01	06/20/01	KWG0103506	
4-Isopropyltoluene	ND U	2.0	0.13	1	06/20/01	06/20/01	KWG0103506	
1,4-Dichlorobenzene	ND U	0.50	0.087	1	06/20/01	06/20/01	KWG0103506	
n-Butylbenzene	ND U	2.0	0.27	1	06/20/01	06/20/01	KWG0103506	
1,2-Dichlorobenzene	ND U	0.50	0.085	1	06/20/01	06/20/01	KWG0103506	
1,2-Dibromo-3-chloropropane	ND U	2.0	1.0	1	06/20/01	06/20/01	KWG0103506	
1,2,4-Trichlorobenzene	ND U	2.0	0.22	1	06/20/01	06/20/01	KWG0103506	
1,2,3-Trichlorobenzene	ND U	2.0	0.33	1	06/20/01	06/20/01	KWG0103506	
Naphthalene	ND U	2.0	0.29	1	06/20/01	06/20/01	KWG0103506	
Hexachlorobutadiene	ND U	2.0	0.38	1	06/20/01	06/20/01	KWG0103506	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

KWG0103506-4

Units: ug/L Basis: NA

Control Date Surrogate Name %Rec Limits Analyzed Note Dibromofluoromethane 95 87-115 06/20/01 Acceptable Toluene-d8 90 Acceptable 83-116 06/20/01 4-Bromofluorobenzene 84 75-120 06/20/01 Acceptable

QA/QC Report

Client:

GeoTrans, Inc.

Service Request: K2104091

Project: emple Matrix:

Water

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: EPA 5030B

Units: PERCENT

Level: Low

Analysis Method: 8260B

Sample Name	Lab Code	Sur1	Sur2	Sur3
MW-7	K2104091-001	96	91	82
MW-6	K2104091-002	97	90	81
MW-5	K2104091-003	95	91	82
MW-4	K2104091-004	97	93	85
QC	K2104091-005	94	92	84
Trip Blank	K2104091-006	94	90	81
Method Blank	KWG0103506-4	95	90	84
MW-7MS	KWG0103506-1	96	93	88
MW-7DMS	KWG0103506-2	96	94	89
Lab Control Sample	KWG0103506-3	95	94	92
MW-7MS MW-7DMS	KWG0103506-1 KWG0103506-2	96 96	93 94	88 89

Former Axelson Facility (Site #2067)/P253-104

Surrogate Recovery Control Limits (%)

Sur1 = Dibromofluoromethane	87-115
Sur2 = Toluene-d8	83-116
Sur3 = 4-Bromofluorobenzene	75-120

its flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

00086

Printed 06/26/2001 09:40:21

Form 2A - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Extracted: 06/20/2001

Date Analyzed: 06/20/2001

Matrix Spike/Duplicate Matrix Spike Summary **Volatile Organic Compounds**

Sample Name:

MW-7

Lab Code:

K2104091-001

Extraction Method:

EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0103506

	Sample	KV	MW-7MS VG0103506- Iatrix Spike	_	KV	MW-7DMS VG0103506- ate Matrix S		%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND	12.1	10.0	121	11.7	10.0	117	42-178	3	30
Benzene	ND	11.7	10.0	117	11.4	10.0	114	65-138	2	30
Trichloroethene (TCE)	ND	11.7	10.0	117	11.5	10.0	114	58-146	2	30
Toluene	0.12	11.3	10.0	112	11.0	10.0	109	68-135	2	30
Chlorobenzene	ND	10.0	10.0	100	9.81	10.0	98	71-124	2	30
1,2-Dichlorobenzene	ND	10.7	10.0	107	10.4	10.0	104	71-121	3	30
Naphthalene	0.30	10.4	10.0	101	10.6	10.0	103	50-145	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Former Axelson Facility (Site #2067)/P253-104

Service Request: K2104091 Date Extracted: 06/20/2001

Project: Sample Matrix:

Water

Date Analyzed: 06/20/2001

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0103506

Lab Control Sample KWG0103506-3

Lab Control Spike		%Rec	
Result	Expected	%Rec	Limits
11.6	10.0	116	50-150
			50-150
			50-150
			50-150
			50-150
			50-150
			50-150
			62-148
			50-150
12.0	10.0		50-150
			50-150
			50-150
69.6	50.0		50-150
10.1	10.0		50-150
10.2	10.0		50-150
11.0	10.0		50-150
10.4	10.0	104	50-150
11.2	10.0	112	50-150
10.9	10.0	109	50-150
11.2	10.0	112	50-150
12.1	10.0	121	50-150
10.8	10.0	108	77-114
10.7	10.0	107	69-124
10.4	10.0	104	50-150
11.0	10.0	110	50-150
11.3	10.0	113	50-150
59.6	50.0	119	50-150
10.8	10.0	108	50-150
10.3	10.0	103	75-118
10.1	10.0	101	50-150
11.3	10.0	113	50-150
61.0	50.0	122	50-150
10.7	10.0	107	50-150
9.43	10.0	94	50-150
9.84	10.0	98	50-150
	Result 11.6 9.24 9.68 11.1 10.5 10.9 72.1 11.0 20.1 12.0 10.9 11.3 69.6 10.1 10.2 11.0 10.4 11.2 10.9 11.2 12.1 10.8 10.7 10.4 11.0 11.3 59.6 10.8 10.3 10.1 11.3 61.0 10.7 9.43	Result Expected 11.6 10.0 9.24 10.0 9.68 10.0 10.5 10.0 10.9 10.0 72.1 50.0 11.0 10.0 20.1 20.0 12.0 10.0 10.9 10.0 10.1 10.0 10.2 10.0 11.0 10.0 10.2 10.0 11.0 10.0 10.4 10.0 10.9 10.0 11.2 10.0 10.9 10.0 11.2 10.0 10.7 10.0 10.4 10.0 10.7 10.0 10.3 10.0 10.3 10.0 10.1 10.0 10.3 10.0 10.1 10.0 10.3 10.0 10.1 10.0 10.3 10.0 1	Result Expected %Rec 11.6 10.0 116 9.24 10.0 92 9.68 10.0 97 11.1 10.0 110 10.5 10.0 105 10.9 10.0 109 72.1 50.0 144 11.0 10.0 110 20.1 20.0 101 12.0 10.0 120 10.9 10.0 109 11.3 10.0 113 69.6 50.0 139 10.1 10.0 101 10.2 10.0 102 11.0 10.0 102 11.0 10.0 104 11.2 10.0 112 10.9 10.0 109 11.2 10.0 104 11.2 10.0 112 10.9 10.0 109 11.2 10.0 108 10

s flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Extracted: 06/20/2001

Date Analyzed: 06/20/2001

Lab Control Spike Summary **Volatile Organic Compounds**

Extraction Method: EPA 5030B

Analysis Method:

8260B

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0103506

Lab Control Sample KWG0103506-3

	Lab	%Rec		
Analyte Name	Result	Expected	%Rec	Limits
1,2-Dibromoethane (EDB)	10.6	10.0	106	50-150
Chlorobenzene	9.53	10.0	95	79-110
1,1,1,2-Tetrachloroethane	10.1	10.0	101	50-150
Ethylbenzene	9.75	10.0	98	50-150
m,p-Xylenes	19.3	20.0	97	50-150
o-Xylene	9.36	10,0	94	50-150
Styrene	9.69	10.0	97	50-150
Bromoform	9.63	10.0	96	50-150
Isopropylbenzene	9.12	10.0	91	50-150
1,1,2,2-Tetrachloroethane	13.2	10.0	132	50-150
1,2,3-Trichloropropane	12.7	10.0	127	50-150
Bromobenzene	10.2	10.0	102	50-150
n-Propylbenzene	10.5	10.0	105	50-150
2-Chlorotoluene	10.5	10.0	105	50-150
4-Chlorotoluene	10.8	10.0	108	50-150
1,3,5-Trimethylbenzene	10.8	10.0	108	50-150
tert-Butylbenzene	10.1	10.0	101	50-150
1,2,4-Trimethylbenzene	11.1	10.0	110	50-150
sec-Butylbenzene	10.7	10.0	107	50-150
1,3-Dichlorobenzene	10.6	10.0	106	50-150
4-Isopropyltoluene	10.1	10.0	101	50-150
1,4-Dichlorobenzene	10.3	10.0	103	50-150
n-Butylbenzene	10.7	10.0	107	50-150
1,2-Dichlorobenzene	10.0	10.0	100	80-110
1,2-Dibromo-3-chloropropane	10.5	10.0	105	50-150
1,2,4-Trichlorobenzene	9.15	10.0	92	50-150
1,2,3-Trichlorobenzene	10.0	10.0	100	50-150
Naphthalene	10.5	10.0	105	64-125
Hexachlorobutadiene	9.27	10.0	93	50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

nn189

Semi-Volatile Organic Compounds by GC / MS Method 8270 C

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

MW-7

Lab Code:

K2104091-001

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Bis(2-chloroethyl) Ether	ND	Ū	10	1	06/13/01	06/16/01	KWG0103324	
Phenol	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
2-Chlorophenol	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
1,3-Dichlorobenzene	ND	U	10	. 1	06/13/01	06/16/01	KWG0103324	
1,4-Dichlorobenzene	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
1,2-Dichlorobenzene	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
Benzyl alcohol	ND		10	1	06/13/01	06/16/01	KWG0103324	
Bis(2-chloroisopropyl) Ether	ND		10	1	06/13/01	06/16/01	KWG0103324	
2-Methylphenol	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
Hexachloroethane	ND	-	10	1	06/13/01	06/16/01	KWG0103324	
N-Nitrosodi-n-propylamine	ND T		10	1	06/13/01	06/16/01	KWG0103324	
4-Methylphenol†	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
Nitrobenzene	ND		10	1	06/13/01	06/16/01	KWG0103324	
Isophorone	ND 1		10	1	06/13/01	06/16/01	KWG0103324	
2-Nitrophenol	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
2,4-Dimethylphenol	ND		10	1	06/13/01	06/16/01	KWG0103324	
Bis(2-chloroethoxy)methane	ND 1	U	10	1	06/13/01	06/16/01	KWG0103324	
2,4-Dichlorophenol	ND	U	. 10	1	06/13/01	06/16/01	KWG0103324	
Benzoic acid	ND 1	U	26	1	06/13/01	06/16/01	KWG0103324	
1,2,4-Trichlorobenzene	ND 1		. 10	1	06/13/01	06/16/01	KWG0103324	
4-Chloroaniline	ND 1	U	10	1	06/13/01	06/16/01	KWG0103324	
Hexachlorobutadiene	ND 1		10	1	06/13/01	06/16/01	KWG0103324	
4-Chloro-3-methylphenol	ND 1		10	1	06/13/01	06/16/01	KWG0103324	
Hexachlorocyclopentadiene	ND 1	U	10	1	06/13/01	06/16/01	KWG0103324	
2,4,6-Trichlorophenol	ND I		10	1	06/13/01	06/16/01	KWG0103324	
2,4,5-Trichlorophenol	ND 1		10	1	06/13/01	06/16/01	KWG0103324	
2-Chloronaphthalene	ND 1	U	10	11	06/13/01	06/16/01	KWG0103324	
2-Nitroaniline	ND I		26	1	06/13/01	06/16/01	KWG0103324	
Dimethyl Phthalate	ND I		10	1	06/13/01	06/16/01	KWG0103324	
2,6-Dinitrotoluene	ND I	U	10	11	06/13/01	06/16/01	KWG0103324	
3-Nitroaniline	ND 1		26	1	06/13/01	06/16/01	KWG0103324	
2,4-Dinitrophenol	ND I		26	1	06/13/01	06/16/01	KWG0103324	
4-Nitrophenol	ND U	U	26	1	06/13/01	06/16/01	KWG0103324	
2,4-Dinitrotoluene	ND I		10	1	06/13/01	06/16/01	KWG0103324	
4-Chlorophenyl Phenyl Ether	ND U	U	10	1	06/13/01	06/16/01	KWG0103324	

Comments:

00090

Printed 06/21/2001 12:03:05 Merged

Form 1A - Organic

Page 1 of 2

Analytical Results

Client: **Project:** GeoTrans, Inc.

Water

Former Axelson Facility (Site #2067)/P253-104

Service Request: K2104091 **Date Collected:** 06/11/2001 **Date Received:** 06/12/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Sample Matrix:

MW-7

Lab Code:

K2104091-001

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diethyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
4-Nitroaniline	ND U	26	1	06/13/01	06/16/01	KWG0103324	
2-Methyl-4,6-dinitrophenol	ND U	26	1	06/13/01	06/16/01	KWG0103324	
N-Nitrosodiphenylamine	ND U	10	1	06/13/01	06/16/01	KWG0103324	
4-Bromophenyl Phenyl Ether	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Hexachlorobenzene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Pentachlorophenol	ND U	26	1	06/13/01	06/16/01	KWG0103324	
Di-n-butyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Butyl Benzyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
3,3'-Dichlorobenzidine	ND U	26	1	06/13/01	06/16/01	KWG0103324	
Bis(2-ethylhexyl) Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
-octyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	63	19-107	06/16/01	Acceptable
Phenol-d6	71	32-115	06/16/01	Acceptable
Nitrobenzene-d5	80	42-117	06/16/01	Acceptable
2-Fluorobiphenyl	80	33-120	06/16/01	Acceptable
2,4,6-Tribromophenol	86	30-121	06/16/01	Acceptable
Terphenyl-d14	80	39-120	06/16/01	Acceptable

+ Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Form 1A - Organic

00091

Printed 06/21/2001 12:03:05 Merged

SuperSet Reference: RR8442

Page 2 of 2

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

MW-6

Lab Code:

K2104091-002

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Bis(2-chloroethyl) Ether	ND		10	1	06/13/01	06/16/01	KWG0103324	
Phenol	ND		10	1	06/13/01	06/16/01	KWG0103324	
2-Chlorophenol	ND		10	1	06/13/01	06/16/01	KWG0103324	
1,3-Dichlorobenzene	ND		10	1	06/13/01	06/16/01	KWG0103324	
1,4-Dichlorobenzene	ND		10	1	06/13/01	06/16/01	KWG0103324	
1,2-Dichlorobenzene	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
Benzyl alcohol	ND		10	1	06/13/01	06/16/01	KWG0103324	
Bis(2-chloroisopropyl) Ether	ND		10	1	06/13/01	06/16/01	KWG0103324	
2-Methylphenol	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
Hexachloroethane	ND		10	1	06/13/01	06/16/01	KWG0103324	
N-Nitrosodi-n-propylamine	ND		10	1	06/13/01	06/16/01	KWG0103324	
4-Methylphenol†	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
Nitrobenzene	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
Isophorone	ND		10	1	06/13/01	06/16/01	KWG0103324	
2-Nitrophenol	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
2,4-Dimethylphenol	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
Bis(2-chloroethoxy)methane	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
2,4-Dichlorophenol	ND	U	10	1	06/13/01	06/16/01	KWG0103324	
Benzoic acid	ND		26	1	06/13/01	06/16/01	KWG0103324	
1,2,4-Trichlorobenzene	ND		10	1	06/13/01	06/16/01	KWG0103324	
4-Chloroaniline	ND	U	10	11	06/13/01	06/16/01	KWG0103324	
Hexachlorobutadiene	ND		10	1	06/13/01	06/16/01	KWG0103324	
4-Chloro-3-methylphenol	ND		10	1	06/13/01	06/16/01	KWG0103324	
Hexachlorocyclopentadiene	ND	U	10	11	06/13/01	06/16/01	KWG0103324	
2,4,6-Trichlorophenol	ND		10	1	06/13/01	06/16/01	KWG0103324	
2,4,5-Trichlorophenol	ND		10	1	06/13/01	06/16/01	KWG0103324	
2-Chloronaphthalene	ND		10	1	06/13/01	06/16/01	KWG0103324	
2-Nitroaniline	ND		26	1	06/13/01	06/16/01	KWG0103324	
Dimethyl Phthalate	ND		10	1	06/13/01	06/16/01	KWG0103324	
2,6-Dinitrotoluene	ND	<u>U</u>	10	1	06/13/01	06/16/01	KWG0103324	
3-Nitroaniline	ND		26	1	06/13/01	06/16/01	KWG0103324	
2,4-Dinitrophenol	ND		26	1	06/13/01	06/16/01	KWG0103324	
4-Nitrophenol	ND ND	U	26	1	06/13/01	06/16/01	KWG0103324	
2,4-Dinitrotoluene	ND	U	10	1	06/13/01	06/16/01	KWG0103324	4
4-Chlorophenyl Phenyl Ether	ND	U	10	1	06/13/01	06/16/01	KWG0103324	

Comments:

00092

Printed 06/21/2001 12:03:11 Merged

Form 1A - Organic

Page 1 of 2

Analytical Results

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)/P253-104

Water

Date Collected: 06/11/2001

Service Request: K2104091

Date Received: 06/12/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

MW-6

Lab Code:

K2104091-002

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diethyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
4-Nitroaniline	ND U	26	1	06/13/01	06/16/01	KWG0103324	
2-Methyl-4,6-dinitrophenol	ND U	26	1	06/13/01	06/16/01	KWG0103324	
N-Nitrosodiphenylamine	ND U	10	1	06/13/01	06/16/01	KWG0103324	
4-Bromophenyl Phenyl Ether	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Hexachlorobenzene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Pentachlorophenol	ND U	26	1	06/13/01	06/16/01	KWG0103324	
Di-n-butyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Butyl Benzyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
3,3'-Dichlorobenzidine	ND U	26	1	06/13/01	06/16/01	KWG0103324	
Bis(2-ethylhexyl) Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
-octyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	60	19-107	06/16/01	Acceptable	
Phenol-d6	68	32-115	06/16/01	Acceptable	
Nitrobenzene-d5	77	42-117	06/16/01	Acceptable	
2-Fluorobiphenyl	76	33-120	06/16/01	Acceptable	
2,4,6-Tribromophenol	80	30-121	06/16/01	Acceptable	
Terphenyl-d14	85	39-120	06/16/01	Acceptable	

+Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Printed 06/21/2001 12:03:11 Merged

Form 1A - Organic

Page 2 of 2

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

MW-5

Lab Code:

K2104091-003

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Not
Bis(2-chloroethyl) Ether	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Phenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2-Chlorophenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
1,3-Dichlorobenzene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
1,4-Dichlorobenzene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
1,2-Dichlorobenzene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Benzyl alcohol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Bis(2-chloroisopropyl) Ether	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2-Methylphenol	ND U	10	11	06/13/01	06/18/01	KWG0103324	
Hexachloroethane	ND U	10	1	06/13/01	06/18/01	KWG0103324	
N-Nitrosodi-n-propylamine	ND U	10	1	06/13/01	06/18/01	KWG0103324	_
4-Methylphenol†	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Nitrobenzene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Isophorone	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2-Nitrophenol	ND U	10	1.	06/13/01	06/18/01	KWG0103324	
2,4-Dimethylphenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Bis(2-chloroethoxy)methane	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2,4-Dichlorophenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Benzoic acid	ND U	26	1	06/13/01	06/18/01	KWG0103324	
1,2,4-Trichlorobenzene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
4-Chloroaniline	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Hexachlorobutadiene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
4-Chloro-3-methylphenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Hexachlorocyclopentadiene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2,4,6-Trichlorophenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2,4,5-Trichlorophenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2-Chloronaphthalene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2-Nitroaniline	ND U	26	1	06/13/01	06/18/01	KWG0103324	
Dimethyl Phthalate	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2,6-Dinitrotoluene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
3-Nitroaniline	ND U	26	1	06/13/01	06/18/01	KWG0103324	
2,4-Dinitrophenol	ND U	26	1	06/13/01	06/18/01	KWG0103324	
4-Nitrophenol	ND U	26	1	06/13/01	06/18/01	KWG0103324	
2,4-Dinitrotoluene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
4-Chlorophenyl Phenyl Ether	ND U	10	1	06/13/01	06/18/01	KWG0103324	
							7

00094

Printed 06/21/2001 12:03:17 Merged

Form 1A - Organic

Page 1 of 2

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Service Request: K2104091

Date Collected: 06/11/2001 **Date Received:** 06/12/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

MW-5

Lab Code:

K2104091-003

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diethyl Phthalate	ND U	10	. 1	06/13/01	06/18/01	KWG0103324	
4-Nitroaniline	ND U	26	1	06/13/01	06/18/01	KWG0103324	
2-Methyl-4,6-dinitrophenol	ND U	26	1	06/13/01	06/18/01	KWG0103324	
N-Nitrosodiphenylamine	ND U	10	1	06/13/01	06/18/01	KWG0103324	
4-Bromophenyl Phenyl Ether	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Hexachlorobenzene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Pentachlorophenol	ND U	26	1	06/13/01	06/18/01	KWG0103324	
Di-n-butyl Phthalate	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Butyl Benzyl Phthalate	ND U	10	1	06/13/01	06/18/01	KWG0103324	
3,3'-Dichlorobenzidine	ND U	26	1	06/13/01	06/18/01	KWG0103324	
Bis(2-ethylhexyl) Phthalate	ND U	10	1	06/13/01	06/18/01	KWG0103324	
1-octyl Phthalate	ND U	10	1	06/13/01	06/18/01	KWG0103324	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	58	19-107	06/18/01	Acceptable
Phenol-d6	63	32-115	06/18/01	Acceptable
Nitrobenzene-d5	71	42-117	06/18/01	Acceptable
2-Fluorobiphenyl	73	33-120	06/18/01	Acceptable
2,4,6-Tribromophenol	86	30-121	06/18/01	Acceptable
Terphenyl-d14	60	39-120	06/18/01	Acceptable

+Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

MW-4

Lab Code:

K2104091-004

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Bis(2-chloroethyl) Ether	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Phenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2-Chlorophenol	ND U	. 10	1	06/13/01	06/18/01	KWG0103324	
1,3-Dichlorobenzene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
1,4-Dichlorobenzene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
1,2-Dichlorobenzene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Benzyl alcohol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Bis(2-chloroisopropyl) Ether	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2-Methylphenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Hexachloroethane	ND U	10	1	06/13/01	06/18/01	KWG0103324	
N-Nitrosodi-n-propylamine	ND U	10	1	06/13/01	06/18/01	KWG0103324	
4-Methylphenol†	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Nitrobenzene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Isophorone	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2-Nitrophenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2,4-Dimethylphenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Bis(2-chloroethoxy)methane	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2,4-Dichlorophenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Benzoic acid	ND U	25	1	06/13/01	06/18/01	KWG0103324	,
1,2,4-Trichlorobenzene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
4-Chloroaniline	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Hexachlorobutadiene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
4-Chloro-3-methylphenol	ND U	10	1 .	06/13/01	06/18/01	KWG0103324	
Hexachlorocyclopentadiene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2,4,6-Trichlorophenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2,4,5-Trichlorophenol	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2-Chloronaphthalene	· ND U	10	1	06/13/01	06/18/01	KWG0103324	
2-Nitroaniline	ND U	25	1	06/13/01	06/18/01	KWG0103324	
Dimethyl Phthalate	ND U	10	1	06/13/01	06/18/01	KWG0103324	
2,6-Dinitrotoluene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
3-Nitroaniline	ND U	. 25	1	06/13/01	06/18/01	KWG0103324	
2,4-Dinitrophenol	ND U	25	1	06/13/01	06/18/01	KWG0103324	
4-Nitrophenol	ND U	25	1	06/13/01	06/18/01	KWG0103324	
2,4-Dinitrotoluene	ND U	10	1.	06/13/01	06/18/01	KWG0103324	
4-Chlorophenyl Phenyl Ether	ND U	10	1	06/13/01	06/18/01	KWG0103324	
							•

00096

Printed 06/21/2001 12:03:23 Merged

Form 1A - Organic

Page 1 of 2

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

MW-4

Lab Code:

K2104091-004

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diethyl Phthalate	ND U	10	1	06/13/01	06/18/01	KWG0103324	
4-Nitroaniline	ND U	25	1	06/13/01	06/18/01	KWG0103324	
2-Methyl-4,6-dinitrophenol	ND U	25	1	06/13/01	06/18/01	KWG0103324	
N-Nitrosodiphenylamine	ND U	10	1	06/13/01	06/18/01	KWG0103324	
4-Bromophenyl Phenyl Ether	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Hexachlorobenzene	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Pentachlorophenol	ND U	25	1	06/13/01	06/18/01	KWG0103324	
Di-n-butyl Phthalate	ND U	10	1	06/13/01	06/18/01	KWG0103324	
Butyl Benzyl Phthalate	ND U	10	1	06/13/01	06/18/01	KWG0103324	
3,3'-Dichlorobenzidine	ND U	25	1	06/13/01	06/18/01	KWG0103324	
Bis(2-ethylhexyl) Phthalate	ND U	10	1	06/13/01	06/18/01	KWG0103324	
-octyl Phthalate	ND U	10	1	06/13/01	06/18/01	KWG0103324	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	68	19-107	06/18/01	Acceptable	
Phenol-d6	<i>7</i> 7	32-115	06/18/01	Acceptable	
Nitrobenzene-d5	87	42-117	06/18/01	Acceptable	
2-Fluorobiphenyl	79	33-120	06/18/01	Acceptable	
2,4,6-Tribromophenol	91	30-121	06/18/01	Acceptable	
Terphenyl-d14	55	39-120	06/18/01	Acceptable	

+ Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: 06/11/2001

Date Received: 06/12/2001

. Semi-Volatile Organic Compounds by GC/MS

Sample Name:

QC

Lab Code:

K2104091-005

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Bis(2-chloroethyl) Ether	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Phenol	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
2-Chlorophenol	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
1,3-Dichlorobenzene	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
1,4-Dichlorobenzene	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
1,2-Dichlorobenzene	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Benzyl alcohol	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Bis(2-chloroisopropyl) Ether	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
2-Methylphenol	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Hexachloroethane	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
N-Nitrosodi-n-propylamine	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
4-Methylphenol†	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Nitrobenzene	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Isophorone	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
2-Nitrophenol	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
2,4-Dimethylphenol	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Bis(2-chloroethoxy)methane	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
2,4-Dichlorophenol	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Benzoic acid	ND U	24	1	06/13/01	06/18/01	KWG0103324	
1,2,4-Trichlorobenzene	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
4-Chloroaniline	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Hexachlorobutadiene	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
4-Chloro-3-methylphenol	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Hexachlorocyclopentadiene	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
2,4,6-Trichlorophenol	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
2,4,5-Trichlorophenol	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
2-Chloronaphthalene	ND U	9.6	11	06/13/01	06/18/01	KWG0103324	
2-Nitroaniline	ND U	24	1	06/13/01	06/18/01	KWG0103324	
Dimethyl Phthalate	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
2,6-Dinitrotoluene	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
3-Nitroaniline	ND U	24	1	06/13/01	06/18/01	KWG0103324	
2,4-Dinitrophenol	ND U	24	1	06/13/01	06/18/01	KWG0103324	
4-Nitrophenol	ND U	24	11	06/13/01	06/18/01	KWG0103324	
2,4-Dinitrotoluene	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
4-Chlorophenyl Phenyl Ether	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	

Comments:

00098

Printed 06/21/2001 12:03:28 Merged

Form 1A - Organic

Page 1 of 2

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Service Request: K2104091 **Date Collected:** 06/11/2001

emple Matrix:

Water

Date Received: 06/12/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

QC

Lab Code:

K2104091-005

Extraction Method: EPA 3520C **Analysis Method:**

8270C

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diethyl Phthalate	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
4-Nitroaniline	ND U	24	1	06/13/01	06/18/01	KWG0103324	
2-Methyl-4,6-dinitrophenol	ND U	24	1	06/13/01	06/18/01	KWG0103324	
N-Nitrosodiphenylamine	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
4-Bromophenyl Phenyl Ether	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Hexachlorobenzene	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Pentachlorophenol	ND U	24	1	06/13/01	06/18/01	KWG0103324	
Di-n-butyl Phthalate	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
Butyl Benzyl Phthalate	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
3,3'-Dichlorobenzidine	ND U	24	1	06/13/01	06/18/01	KWG0103324	
P: (2-ethylhexyl) Phthalate	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	
-octyl Phthalate	ND U	9.6	1	06/13/01	06/18/01	KWG0103324	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	64	19-107	06/18/01	Acceptable	
Phenol-d6	72	32-115	06/18/01	Acceptable	
Nitrobenzene-d5	85	42-117	06/18/01	Acceptable	
2-Fluorobiphenyl	79	33-120	06/18/01	Acceptable	
2,4,6-Tribromophenol	85	30-121	06/18/01	Acceptable	
Terphenyl-d14	78	39-120	06/18/01	Acceptable	

†Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Collected: NA
Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code: Method Blank KWG0103324-6

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	DilutionFactor	Date Extracted	Date Analyzed	ExtractionLot	Note
Bis(2-chloroethyl) Ether	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Phenol	ND U	10	1	06/13/01	06/16/01	KWG0103324	
2-Chlorophenol	ND U	10	1	06/13/01	06/16/01	KWG0103324	
1,3-Dichlorobenzene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
1,4-Dichlorobenzene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
1,2-Dichlorobenzene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Benzyl alcohol	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Bis(2-chloroisopropyl) Ether	ND U	10	1	06/13/01	06/16/01	KWG0103324	
2-Methylphenol	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Hexachloroethane	ND U	10	1	06/13/01	06/16/01	KWG0103324	
N-Nitrosodi-n-propylamine	ND U	10	1	06/13/01	06/16/01	KWG0103324	4
4-Methylphenol†	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Nitrobenzene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Isophorone	ND U	10	1	06/13/01	06/16/01	KWG0103324	
2-Nitrophenol	ND U	10	1	06/13/01	06/16/01	KWG0103324	
2,4-Dimethylphenol	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Bis(2-chloroethoxy)methane	ND U	10	1	06/13/01	06/16/01	KWG0103324	
2,4-Dichlorophenol	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Benzoic acid	ND U	25	1	06/13/01	06/16/01	KWG0103324	
1,2,4-Trichlorobenzene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
4-Chloroaniline	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Hexachlorobutadiene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
4-Chloro-3-methylphenol	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Hexachlorocyclopentadiene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
2,4,6-Trichlorophenol	ND U	10	1	06/13/01	06/16/01	KWG0103324	
2,4,5-Trichlorophenol	ND U	10	1	06/13/01	06/16/01	KWG0103324	
2-Chloronaphthalene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
2-Nitroaniline	ND U	25	1	06/13/01	06/16/01	KWG0103324	
Dimethyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
2,6-Dinitrotoluene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
3-Nitroaniline	ND U	25	1	06/13/01	06/16/01	KWG0103324	
2,4-Dinitrophenol	ND U	25	1	06/13/01	06/16/01	KWG0103324	
4-Nitrophenol	ND U	25	1	06/13/01	06/16/01	KWG0103324	
2,4-Dinitrotoluene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
4-Chlorophenyl Phenyl Ether	ND U	10	1	06/13/01	06/16/01	KWG0103324	
							_

Comments:

00100

Printed 06/21/2001 12:03:35 Merged Form 1A - Organic

Page 1 of 2

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: NA

Service Request: K2104091

Sample Matrix:

Water

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank KWG0103324-6 Units: ug/L Basis: NA

Extraction Method:

EPA 3520C

Level: Low

Analysis Method:

8270C

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diethyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
4-Nitroaniline	ND U	25	1	06/13/01	06/16/01	KWG0103324	
2-Methyl-4,6-dinitrophenol	ND U	25	1	06/13/01	06/16/01	KWG0103324	
N-Nitrosodiphenylamine	ND U	10	1	06/13/01	06/16/01	KWG0103324	
4-Bromophenyl Phenyl Ether	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Hexachlorobenzene	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Pentachlorophenol	ND U	25	1	06/13/01	06/16/01	KWG0103324	
Di-n-butyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
Butyl Benzyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
3,3'-Dichlorobenzidine	ND U	25	1	06/13/01	06/16/01	KWG0103324	
Bis(2-ethylhexyl) Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	
-octyl Phthalate	ND U	10	1	06/13/01	06/16/01	KWG0103324	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
2-Fluorophenol	73	19-107	06/16/01	Acceptable	
Phenol-d6	82	32-115	06/16/01	Acceptable	
Nitrobenzene-d5	92	42-117	06/16/01	Acceptable	
2-Fluorobiphenyl	90	33-120	06/16/01	Acceptable	
2,4,6-Tribromophenol	87	30-121	06/16/01	Acceptable	
Terphenyl-d14	102	39-120	06/16/01	Acceptable	

+ Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

QA/QC Report

Client: **Project:** GeoTrans, Inc.

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4	<u>Sur5</u>	Sur6
MW-7	K2104091-001	63	71	80	80	86	80
MW-6	K2104091-002	60	68	77	76	80	85
MW-5	K2104091-003	58	63	71	73	8 6	60
MW-4	K2104091-004	68	77	87	79	91	55
QC	K2104091-005	64	72	85	79	85	78
Method Blank	KWG0103324-6	73	82	92	90	87	102
QCMS	KWG0103324-1	56	65	74	82	87	73
QCDMS	KWG0103324-2	59	66	70	81	93	81
Lab Control Sample	KWG0103324-5	62	66	73	78	83	90

Surrogate Recovery Control Limits (%)

Sur1 = 2-Fluorophenol	19-107	Sur5 = 2,4,6-Tribromophenol	30-12
Sur2 = Phenol-d6	32-115	Sur6 = Terphenyl-d14	39-12
Sur3 = Nitrobenzene-d5	42-117		
Sur4 = 2-Fluorobiphenyl	33-120		

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Extracted: 06/13/2001

Date Analyzed: 06/18/2001

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

OC

Lab Code:

K2104091-005

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG0103324

	Sample		QCMS VG0103324- Iatrix Spike			QCDMS VG0103324-: ate Matrix S		%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
Phenol	ND	68.0	99.0	69	66.1	97.1	68	55-96	3	50	
2-Chlorophenol	ND	65.0	99.0	66	63.1	97.1	65	56-99	3	50	
1,4-Dichlorobenzene	ND	62.0	99.0	63	59.2	97.1	61	46-95	5	50	
N-Nitrosodi-n-propylamine	ND	86.6	99.0	88	76.2	97.1	78	43-122	13	50	
1,2,4-Trichlorobenzene	ND	64.0	99.0	65	61.3	97.1	63	51-98	4	50	
4-Chloro-3-methylphenol	ND	82.3	99.0	83	71.9	97.1	74	56-128	14	50	
4-Nitrophenol	ND	86.9	99.0	88	71.2	97.1	73	60-132	20	50	
2,4-Dinitrotoluene	ND	86.6	99.0	88	75.6	97.1	78	67-138	14	50	
Pentachlorophenol	ND	90.9	99.0	92	89.9	97.1	93	44-138	1	50	

ts flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Water

Service Request: K2104091

Date Extracted: 06/13/2001

Date Analyzed: 06/16/2001

Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method:

EPA 3520C

Analysis Method:

8270C

Units: ug/L

Basis: NA

Level: Low Extraction Lot: KWG0103324

Lab Control Sample KWG0103324-5

Lab Control Spike %Rec Limits Analyte Name Result Expected %Rec 68.8 100 69 58-97 Bis(2-chloroethyl) Ether 65.3 100 65 33-112 Phenol 2-Chlorophenol 67.2 100 67 38-112 100 65 1,3-Dichlorobenzene 64.7 45-135 64.3 100 64 51-89 1,4-Dichlorobenzene 100 67 52-94 1,2-Dichlorobenzene 67.0 Benzyl alcohol 73.0 100 73 59-106 Bis(2-chloroisopropyl) Ether 100 69 44-110 68.7 2-Methylphenol 66.5 100 66 46-108 50-92 Hexachloroethane 62.5 100 63 79.8 100 80 55-102 N-Nitrosodi-n-propylamine 4-Methylphenol 67.0 100 67 25-150 Nitrobenzene 100 67 56-106 66.9 78.6 100 79 66-106 Isophorone 47-116 2-Nitrophenol 73.8 100 74 2,4-Dimethylphenol 100 68 47-93 67.8 73 Bis(2-chloroethoxy)methane 100 66-97 72.6 100 72 48-112 2,4-Dichlorophenol 72.3 63.4 100 63 10-133 Benzoic acid 55-92 66.1 100 66 1.2.4-Trichlorobenzene 72 58-105 4-Chloroaniline 72.2 100 100 66 52-101 Hexachlorobutadiene 66.2 4-Chloro-3-methylphenol 78.7 100 79 62-111 100 31 10-71 Hexachlorocyclopentadiene 31.0 100 77 44-125 2,4,6-Trichlorophenol 76.8 78 78.3 100 58-113 2,4,5-Trichlorophenol 100 70 66-96 2-Chloronaphthalene 70.3 100 81 65-119 2-Nitroaniline 81.0 76.6 100 77 56-117 Dimethyl Phthalate 83 75-110 2,6-Dinitrotoluene 82.8 100 82.7 100 83 65-129 3-Nitroaniline 49-127 2,4-Dinitrophenol 75.5 100 76 4-Nitrophenol 71.2 100 71 45-132 100 81 75-120 2,4-Dinitrotoluene 81.4 68-105 4-Chlorophenyl Phenyl Ether 77.7 100 78

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)/P253-104 Water

Date Extracted: 06/13/2001

Service Request: K2104091

Date Analyzed: 06/16/2001

Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3520C

Analysis Method:

8270C

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG0103324

Lab Control Sample KWG0103324-5 Lab Control Spike

	Lau	Control Spin	<u>.e</u>	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	_
Diethyl Phthalate	77.6	100	78	62-117	
4-Nitroaniline	76.7	100	77	54-142	
2-Methyl-4,6-dinitrophenol	86.7	100	87	63-128	
N-Nitrosodiphenylamine	79.1	100	79	59-108	
4-Bromophenyl Phenyl Ether	80.2	100	80	70-111	
Hexachlorobenzene	77.8	100	78	66-117	
Pentachlorophenol	80.1	100	80	59-121	
Di-n-butyl Phthalate	84.9	100	85	67-112	
Butyl Benzyl Phthalate	78.5	100	79	70-114	
3,3'-Dichlorobenzidine	79.9	100	80	35-130	
2-ethylhexyl) Phthalate	79.7	100	80	69-117	
l-octyl Phthalate	87.3	100	87	68-120	

s flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ì

Aug 0 6 2001

Columbia
Analytical
Services
An Employee-Owned Company

August 1, 2001

Service Request No: K2104091

Tanya Akkerman GeoTrans 3035 Prospect Park Drive, Suite 40 Rancho Cordova, CA 95670

Re: Former Axelson Facility (Site #2067)/253-104

Dear Tanya:

Enclosed are the additional pages for the sample(s) submitted to our laboratory on June 12, 2001. For your reference, these analyses have been assigned our service request number K2104091.

These pages pertain to the Radium 226/228 results. The analysis has been performed by STL-Richland. the STL report number is 13962.

Please call if you have any questions. My extension is 3345.

Respectfully submitted,

montalin

Columbia Analytical Services, Inc.

Mingta Lin

Project Chemist

ML/ee

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

POL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- The control limit criteria is not applicable. See case narrative.
- The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Analytical Data Package Prepared For

COLUMBIA ANALYTICAL SERVICES

Radiochemical Analysis By

STL Richland

2800 G.W. Way, Richland, Wa 99352, (509) 375-3131

Assigned Laboratory Code:

Data Package Contains | Pages

Report No.: 13962

SDG No.	Order No.	Client Sample ID (List Order)	Lot-Sa No.	Work Order	Report DB ID	Batch No.	
17594		MW-4	J1F190182-4	EE55T1AC	9EE55T10	1170508	
		MW-4	J1F190182-4	EE55T1AA	9EE55T10	1170510	
		MW-5	J1F190182-3	EE55R1AC	9EE55R10	1170508	
		MW-5	J1F190182-3	EE55R1AA	9EE55R10	1170510	
		MW-6	J1F190182-2	EE55P1AC	9EE55P10	1170508	
		MW-6	J1F190182-2	EE55P1AA	9EE55P10	1170510	_
	*	MW-7	J1F190182-1	EE55L1AC	9EE55L10	1170508	
		MW-7	J1F190182-1	EE55L1AA	9EE55L10	1170510	
		QC	J1F190182-5	EE55W1AC	9EE55W10	1170508	
		QC	J1F190182-5	EE55W1AA	9EE55W10	1170510	

CASE NARRATIVE

July 30, 2001

Columbia Analytical Services, Inc. 1317 South 13th Avenue Kelso, WA 98626

Attention: Mingta Lin

Date Received by Lab

June 19, 2001

Number of Samples

Five Water Samples

SDG Number

17594

Purchase Order

1/374

K2104091

I. Introduction

On June 19, 2001, five water samples were received by the STL Richland laboratory (STLR) for radiochemical analysis. Upon receipt, these samples were assigned the STLR identification number as described on the cover page of the Analytical Data Package report form. These samples were assigned to Lot Number J1F190182.

II. Analytical Results/Methodology

The analytical results for this report are presented by laboratory sample ID. Each set of data includes sample identification information; analytical results and the appropriate associated statistical errors.

The requested analyses were:

Radium-226 by method RICHRC5005 (EPA 903.1) Radium-228 by method RICHRC5005 (EPA 904)

Columbia Analytical Services, Inc. July 30, 2001

Page 2

III. Quality Control

The analytical results for each analysis performed includes a minimum of one Laboratory Control Sample (LCS), one method (reagent) blank and one duplicate sample. Any exceptions have been noted in the "comments" section.

IV. Comments

Radium-226 Analysis:

The LCS, batch blank and sample results are within contractual requirements. There was not sufficient volume available for a duplicate analysis.

Radium-228 Analysis:

The LCS, LCS duplicate, batch blank and sample results are within contractual requirements. There was not sufficient volume available for a duplicate analysis.

I certify that this Certificate of Analysis is in compliance with the Quality Assurance Summary (QAS), both technically and for completeness, for other than the conditions detailed above. The Laboratory Manager or a designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Reviewed and approved:

Andy Kopriva Project Manager **Drinking Water Method Cross References**

	DRINKING WAT	ER ASTM METHOD CROSS REFERENC
Referenced Method	Isotope(s)	STL Richland's SOP number
EPA 901.1	Cs-134, I-131	RICH-RC-5017
EPA 900.0	Alpha & Beta	RICH-RC-5014
EPA 903.1	Ra-226	RICH-RC-5005
EPA 904.0	Ra-228	RICH-RC-5005
EPA 905.0	Sr89/90	RICH-RC-5006
ASTM D2460	Total Radium	RICH-RC-5027
Standard Method 7500-U-C & ASTM D57174	Uranium	RICH-RC-5058
EPA 906.0	Tritium	RICH-RC-5007
NOTE:		
The Gross Alpha LCS is prepared with Am-24	•	•
The Gross Beta LCS is prepared with Sr/Y-90	(unless otherwise	e specified in the case narrative)

Uncertainty Estimation

STL Richland has adopted the internationally accepted approach to estimating uncertainties described in "NIST Technical Note 1297, 1994 Edition". The approach, "Law of Propagation of Errors", involves the identification of all variables in an analytical method which are used to derive a result. These variables are related to the analytical result (R) by some functional relationship, R = constants * f(x,y,z,...). The components (x,y,z) are evaluated to determine their contribution to the overall method uncertainty. The individual component uncertainties (u_i) are then combined using a statistical model that provides the most probable overall uncertainty value. All component uncertainties are categorized as type A, evaluated by statistical methods, or type B, evaluated by other means. Uncertainties not included in the components, such as sample homogeneity, are combined with the component uncertainty as the square root of the sum-of-the-squares of the individual uncertainties. The uncertainty associated with the derived result is the combined uncertainty (u_c) multiplied by the coverage factor (1,2, or 3).

When three or more sample replicates are used to derive the analytical result, the type A uncertainty is the standard deviation of the mean value (S/vn), where S is the standard deviation of the derived results. The type B uncertainties are all other random or non-random components that are not included in the standard deviation.

The derivation of the general "Law of Propagation of Errors" equations and specific example are available on request.

	Report Definitions					
Action Lev	An agreed upon activity level used to trigger some action when the final result is greater than or equal to the Action Level. Often the Action Level is related to the Decision Limit.					
Batch	The QC preparation batch number that relates laboratory samples to QC samples that were prepared and analyzed together.					
Bias	Defined by the equation (Result/Expected)-1 as defined by ANSI N13.30.					
COC No	Chain of Custody Number assigned by the Client or STL Richland.					
Count Error (#s)	Poisson counting statistics of the gross sample count and background. The uncertainty is absolute and in the same units as the result. For Liquid Scintillation Counting (LSC) the batch blank count is the background.					
Total Uncert (#s) u _c _Combined Uncertainty.	All known uncertainties associated with the preparation and analysis of the sample are propagated to give a measure of the uncertainty associated with the result, u_c the combined uncertainty. The uncertainty is absolute and in the same units as the result.					
(#s), Coverage Factor	The coverage factor defines the width of the confidence interval, 1, 2 or 3 standard deviations.					
CRDL (RL)	Contractual Required Detection Limit as defined in the Client's Statement Of Work or STL Richland "default" nominal detection limit. Often referred to the reporting level (RL)					
Lc	Decision Level based on instrument background or blank, adjusted by the Efficiency, Chemical Yield, and Volume associated with the sample. The Type I error probability is approximately 5%. Lc=(1.645 * Sqrt(2*(BkgrndCnt/BkgrndCntMin)/SCntMin)) * (ConvFct/(Eff*Yld*Abn*Vol) * IngrFct). For LSC methods the batch blank is used as a measure of the background variability. Lc cannot be calculated when the background count is zero.					
Lot-Sample No	The number assigned by the LIMS software to track samples received on the same day for a given client. The sample number is a sequential number assigned to each sample in the Lot.					
MDC MDA	Detection Level based on instrument background or blank, adjusted by the Efficiency, Chemical Yield, and Volume with a Type I and II error probability of approximately 5%. MDC = (4.65 * Sqrt((BkgrndCnt/BkgrndCntMin)/SCntMin) + 2.71/SCntMin) * (ConvFct/(Eff * Yld * Abn * Vol) * IngrFct). For LSC methods the batch blank is used as a measure of the background variability.					
Primary Detector	The instrument identifier associated with the analysis of the sample aliquot.					
Ratio U-234/U-238	The U-234 result divided by the U-238 result. The U-234/U-238 ratio for natural uranium in NIST SRM 4321C is 1.038.					
Rst/MDC	Ratio of the Result to the MDC. A value greater than 1 may indicate activity above background at a high level of confidence. Caution should be used when applying this factor and it should be used in concert with the qualifiers associated with the result.					
Rst/TotUcert	Ratio of the Result to the Total Uncertainty. If the uncertainty has a coverage factor of 2 a value greater than 1 may indicate activity above background at approximately the 95% level of confidence assuming a two-sided confidence interval. Caution should be used when applying this factor and it should be used in concert with the qualifiers associated with the result.					
Report DB No	Sample Identifier used by the report system. The number is based upon the first five digits of the Work Order Number.					
RER	The equation Replicate Error Ratio = $(S-D)/[sqrt(TPUs^2 + TPUd^2)]$ as defined by ICPT BOA where S is the original sample result, D is the result of the duplicate, TPUs is the total uncertainty of the original sample and TPUd is the total uncertainty of the duplicate sample.					
SDG	Sample Delivery Group Number assigned by the Client or assigned by STL Richland upon sample receipt.					
Sum Rpt Alpha Spec Rst(s)	The sum of the reported alpha spec results for tests derived from the same sample excluding duplicate result where the results are in the same units.					
Work Order	The LIMS software assign test specific identifier.					
Yield	The recovery of the tracer added to the sample such as Pu-242 used to trace a Pu-239/40 method.					

Sample Results Summary STL Richland

Date: 30-Jul-01

Ordered by Client Sample ID, Batch No.

Report No.: 13962

SDG No: 17594

Client ID	Work Order Number	Parameter	Result +- Uncertainty	Qual	Units	Yield	MDC MDA	RER
MW-4	EE55T1AC	RA-226	1.55E+00 +- 3.5E-01	(2s)	pCi/L	100.00%	1.49E-01	
MW-4	EE55T1AA	RA-228	2.16E+00 +- 5.8E-01	(2s) J	pCi/L	88.95%	4.93E-01	
MW-5	EE55R1AC	RA-226	2.42E+00 +- 5.2E-01	(2s)	pCi/L	100.00%	1.12E-01	
MW-5	EE55R1AA	RA-228	3.60E+00 +- 8.4E-01	(2s)	pCi/L	88.37%	4.80E-01	
MW-6	EE55P1AC	RA-226	2.06E+00 +- 4.5E-01	(2s)	pCi/L	100.00%	1.60E-01	
MW-6	EE55P1AA	RA-228	2.14E+00 +- 5.7E-01	(2s) J	pCi/L	87.79%	5.04E-01	
MW-7	EE55L1AC	RA-226	1.81E+00 +- 4.0E-01	(2s)	pCi/L	100.00%	1.31E-01	
MW-7	EE55L1AA	RA-228	2.39E+00 +- 6.1E-01	(2s) J	pCi/L	89.83%	4.68E-01	
QC	EE55W1AC	RA-226	2.40E+00 +- 5.2E-01	(2s)	pCi/L	100.00%	1.07E-01	
QC	EE55W1AA	RA-228	3.19E+00 +- 7.6E-01	(2s)	pCi/L	89.24%	3.28E-01	

Number of Results:

QC Results Summary STL Richland

Date: 30-Jul-01

Ordered by QC Type, Batch No.

Report No.: 13962

SDG No.: 17594

QC Type	Work Order Number	Parameter	Result +- Uncertainty	Qual	Units	Yield	Recovery	Bias	MDC MDA
BLANK QC	EE6QJ1AA	RA-226	8.48E-03 +- 3.80E-02	(2s) U	pCi/L	100.00%			7.98E-02
BLANK QC	EE6QN1AA	RA-228	5.40E-01 +- 2.36E-01	(2s) J	pCi/L	89.53%			3.01E-01
LCS	EE6QJ1AC	RA-226	1.36E+00 +- 3.17E-01	(2s)	pCi/L	100.00%	97.50%	0.0	8.80E-02
LCS	EE6QN1AC	RA-228	5.98E+00 +- 1.30E+00	(2s)	pCi/L	90.70%	116.62%	0.2	3.06E-01
LCS	EE6QN1AD	RA-228	5.42E+00 +- 1.20E+00	(2s)	pCi/L	88.95%	106.23%	0.1	3.18E-01

Number of Results:

Date: 30-Jul-01

SAMPLE RESULTS

6/11/01 12:50:00 PM Collection Date: 17594 SDG: STL Richland Lab Name:

Ordered by Client Sample ID, Batch No. Analy Method, Primary Detector 6/19/01 10:45:00 AM Aliquot Size WATER Total Sa Received Date: Matrix: Analysis, Prep Date Rst/MDC, Rst/TotUcert 13962 Yield Report No.: Rpt Unit, COC No.: MDC | MDA, Lot-Sample No.: J1F190182-4 Client Sample ID: MW-4 Result

1.8E-01 Work Order: EE55T1AC 1.55E+00 Batch: 1170508 Batch: 1170510 RA-226

3.9E-01 Work Order: EE55T1AA

2.16E+00

RA-228

Number of Results:

Comments:

4.93E-01 Report DB ID: 9EE55T10 5.8E-01

pCi/L

2.31E-01 3.00E+00

(11.1)

(4.4)

7/26/01 07:58 a

0.9804 _

MDCIMDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. J. Qual - No U qualifier has been assigned and the result is below the Reporting Limit, RL (CRDL) or Report Value is Estimated.

rptSTLRchSample v3.76

STL Richland

000008

RICHRC5005

GPC1D

RICHRC5005

0.9804

7/24/01 02:19 p

(10.4)(16.9)

100.00% 1.00E+00

pCi/L

1.49E-01

3.5E-01

9EE55T10

Report DB ID:

6.82E-02

Size

CRDL(RL)

2

Action Lev

Uncert(2s)

Error (2 s)

Onal

Parameter

ASC4HA

SAMPLE RESULTS

Analy Meth Primary Dete	Aliquot Size	Total Sa Size	Analysis, Prep Date	Yield Rst/MDC, CRDL(RL) Rst/TotUcert	Yield CRDL(RL)	Rpt Unit, Le	MDC MDA, Rpt Unit, Action Lev Lc	Total Uncert(2 s)	Count Error (2 s)	lt Qual	Result	Parameter
Ordered by Client Sample ID, Bat	red by Client	Orde										
	WATER	••	Matrix			COC No. :	ŏ			MW-5	mple ID:	Client Sample ID: MW-5
15:00 AM	Received Date: 6/19/01 10:45:00 AM	/ed Date:	Receiv		13962	Report No. :	Re		82-3	.ot-Sample No.: J1F190182-3	ole No.:	Lot-Samp
30:00 AM	Collection Date: 6/11/01 11:30:00 AM	tion Date:	Collec		17594	SDG:	SE		hland	STL Richland	 ds	Lab Name:

									Orderec	d by Client S≀	Ordered by Client Sample ID, Batch No.
Parameter	Result Qual	Count Qual Error (2 s)	Total Uncert(2 s)	MDC MDA, Rpt Unit, Action Lev Lc			Yield Rst/MDC, CRDL(RL) Rst/TotUcert	Analysis, Prep Date	Total Sa Aliquot Size Size	Aliquot Size	Analy Method, Primary Detector
Batch: 1170508	Work Order: EE55R1AC	:55R1AC	Report DB ID: 9EE55R10	9EE55R10							
RA-226	2.42E+00	2.1E-01	5.2E-01	1.12E-01 pCi/L	pCi/L	100.00%	(21.6)	(21.6) 7/24/01 02:19 p		1.0006	RICHRC5005
	,				5.01E-02	5.01E-02 1.00E+00	(22.7)			_	ASC3HA
Batch: 1170510	Work Order: EE55R1AA	:55R1AA	Report DB ID: 9EE55R10	9EE55R10							
RA-228	3.60E+00	4.5E-01	8.4E-01	4.80E-01 pCi/L	pCi/L	88.37%	(7.5)	7/26/01 08:02 a		1.0006	RICHRC5005
					2.26E-01	2.26E-01 3.00E+00	(15.9)				GPC1C

Number of Results: 2

Comments:

MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume.

Date: 30-Jul-01

SAMPLE RESULTS

Collection Date: 6/11/01 10:35:00 AM 6/19/01 10:45:00 AM WATER Received Date: Matrix: 17594 13962 Report No.: COC No.: SDG: STL Richland Lot-Sample No.: J1F190182-2 Client Sample ID: MW-6 Lab Name:

									Orderec	d by Client Sa	Ordered by Client Sample ID, Batch No.
Parameter	Result Qual	Count Qual Error (2 s)	Total Uncert(2 s)	MDC MDA, Action Lev	MDC MDA, Rpt Unit, Action Lev Lc	Yield CRDL(RL)	Yield Rst/MDC, CRDL(RL) Rst/TotUcert	Analysis, Prep Date	Total Sa Aliquot Size Size	Aliquot Size	Analy Method, Primary Detector
Batch: 1170508	Work Order: EE55P1AC	55P1AC	Report DB ID: 9EE55P10	9EE55P10							
RA-226	2.06E+00	2.2E-01	4.5E-01	1.60E-01	pCi/L	100.00%	(12.9)	(12.9) 7/24/01 02:19 p		1.0008	RICHRC5005
	; 				7.34E-02	7.34E-02 1.00E+00	(19.1)			_	ASC2HB
Batch: 1170510	Work Order: EE55P1AA	:55P1AA	Report DB ID: 9EE55P10	9EE55P10							
RA-228	2.14E+00 J	3.9E-01	5.7E-01	5.04E-01	pCi/L	87.79%	(4.3)	7/26/01 08:02 a		1.0008	RICHRC5005
					2.37E-01 3.00E+00	3.00E+00	(11.)				GPC1B

Number of Results: 2

Comments:

STL Richland

rptSTLRchSample v3.76

MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. J Qual - No U qualifier has been assigned and the result is below the Reporting Limit, RL (CRDL) or Report Value is Estimated.

010010

FORMI

Date: 30-Jul-01

SAMPLE RESULTS

6/19/01 10:45:00 AM 6/11/01 9:30:00 AM WATER Collection Date: Received Date: Matrix: 17594 13962 Report No.: COC No.: SDG: STL Richland Lot-Sample No.: J1F190182-1 Client Sample ID: MW-7 Lab Name:

									Orderec	d by Client S	Ordered by Client Sample ID, Batch No.
Parameter	Result Qual	Count Qual Error (2 s)	Total Uncert(2 s)	MDC MDA, Rpt Unit, Action Lev Lc	Rpt Unit, Le	Yield CRDL(RL)	Yield Rst/MDC, CRDL(RL) Rst/TotUcert	Analysis, Prep Date	Total Sa Aliquot Size Size	Aliquot Size	Analy Method, Primary Detector
Batch: 1170508	Work Order: EE55L1AC	E55L1AC	Report DB ID: 9EE55L10	9EE55L10					÷		
RA-226	1.81E+00	1.9E-01	4.0E-01	1.31E-01 pCi/L	pCi/L	100.00%	(13.7)	(13.7) 7/24/01 02:19 p		0.9865	RICHRC5005
	,				5.98E-02	5.98E-02 1.00E+00	(19.1)				ASC1HA
Batch: 1170510	Work Order: EE55L1AA	E55L1AA	Report DB ID: 9EE55L10	9EE55L10							
RA-228	2.39E+00 J	3.9E-01	6.1E-01	4.68E-01 pCi/L	pCi/L	89.83%	(5.1)	7/26/01 08:02 a		0.9865	RICHRC5005
					2.19E-01	2.19E-01 3.00E+00	(12.3)			٦.	GPC1A

Number of Results: 2

Comments:

rptSTLRchSample -- 3.76

MDCIMDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. J Qual - No U qualifier has been assigned and the result is below the Reporting Limit, RL (CRDL) or Report Value is Estimated.

COOOT 1

Date: 30-Jul-01

SAMPLE RESULTS

Lab Name:	STL Richland	SDG:	17594	Collection Date: 6/11/01 9:30:0	6/11/01 9:30:0
1 - 4 O				1	!

13962 Report No.:

Ordered by Client Sample ID, Batch No. 6/19/01 10:45:00 AM :00 AM WATER Received Date: Matrix: MDC | MDA, Rpt Unit, COC No.: Lot-Sample No.: J1F190182-5 Client Sample ID: QC Result

Analy Method, Primary Detector RICHRC5005 RICHRC5005 **ASC7UA GPC2A** 0.9831 0.9831 Aliquot Size _ Total Sa Size 7/24/01 02:46 p 7/26/01 07:58 a Analysis, Prep Date Yield Rst/MDC, CRDL(RL) Rst/TotUcert (22.5)(21.1) (6.7) (15.) 4.65E-02 1.00E+00 1.47E-01 3.00E+00 100.00% 89.24% 7 pCi/L pCi/l. 1.07E-01 3.28E-01 Action Lev 9EE55W10 Report DB ID: 9EE55W10 Report DB ID: Uncert(2s) 5.2E-01 7.6E-01 Error (2 s) 2.3E-01 4.3E-01 Work Order: EE55W1AC Work Order: EE55W1AA Qual 2.40E+00 3.19E+00 Batch: 1170510 Batch: 1170508 Parameter RA-226 RA-228

0 Number of Results:

Comments:

MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume.

rptSTLRchSample v3.76 STL Richland

000012

FORM II

Date: 30-Jul-01

BLANK RESULTS

17594

SDG:

STL Richland Lab Name:

Report No.: 13962

Matrix: WATER

Lot-Sample No.: J1F190000-508

Count Error (2 s) Work Order: EE6QJ1AA Qual Result Batch: 1170508 Parameter

Report DB ID: EE6QJ1AB 3.8E-02 3.8E-02 ⊃

8.48E-03

RA-226

Number of Results:

Comments:

7.98E-02 3.42E-02

1.00E+00 pCi/L

100.00%

0.11 0.45

1.0006

Aliquot Size Total Sa Size

Analysis, Prep Date

Rst/MDC, Rst/TotUcert

Yield

MDC | MDA Rpt Unit, CRDL

Total Uncert(2 s)

Primary Detector

Analy Method,

RICHRC5005

ASC8RC

7/24/01 02:46 p

MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. U Qual - Analyzed for, but the result is less than the Mdc/Mda|Total Uncert or gamma scan software did not identify the nuclide.

rptSTLRchBlank v3.75

STL Richland

000013

FORM II

Date: 30-Jul-01

BLANK RESULTS

SDG:

17594

Matrix: WATER

Lot-Sample No.: J1F190000-510

STL Richland

Lab Name:

Report No.: 13962

Error (2 s) Count 2.1E-01 Work Order: EE6QN1AA Qual 5.40E-01 Result Batch: 1170510 RA-228 Parameter

89.53% 3.00E+00 pCi/L 3.01E-01 1.34E-01 Report DB ID: EE6QN1AB

2.4E-01

(1.8) (5.1)

7/26/01 07:58 a

1.0006

Analysis, Prep Date Rst/MDC, Rst/TotUcert

Yield

Rpt Unit, CRDL

MDC | MDA

Uncert(2s)

Total

Primary Detector

Aliquot Size

Total Sa Size

Analy Method,

RICHRC5005

GPC2B

Number of Results:

Comments:

STL Richland

rptSTLRchBlank v3.75

MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. J Qual - No U qualifier has been assigned and the result is below the Reporting Limit, RL (CRDL) or Report Value is Estimated.

Date: 30-Jul-01

LCS RESULTS

STL Richland Lab Name:

SDG:

17594

Lot-Sample No.: J1F190000-508

Report No.: 13962

Matrix: WATER

Report DB ID: EE6QJ1CS Total Uncert(2 s) Count Error (2 s) 1.7E-01 Work Order: EE6QJ1AC Qual 1.36E+00 Result Batch: 1170508 Parameter RA-226

8.80E-02 pCi/L 3.2E-01

100.00% 1.40E+00 7.7E-02 97.50% 7/25/01 01:12 p 70.

Rec Limits:

0.0 130.

Analy Method, Primary Detector

Aliquot Size

Analysis, Prep Date

Recovery, Bias

Expected Uncert

Expected

Yield

Report Unit

MDC | MDA

RICHRC5005 ASC9HC

1.0001

Number of Results:

Comments:

Bias - (Result/Expected)-1 as defined by ANSI N13.30.

rptSTLRchLcs v3.75 STL Richland

000015

Date: 30-Jul-01

LCS RESULTS

Lab Name: STL Richland

Lot-Sample No.: J1F190000-510

SDG: 17594

Report No.: 13962

Matrix: WATER

Parameter	Result Qual	Count Qual Error (2 s)	Total Tocal WDC MDA	MDC MDA	Report Unit		Yield Expected	Expected Recovery, Uncert Bias	Recovery, Bias	Analysis, Prep Date	Aliquot Size	Analy Method, Primary Detector
Batch: 1170510	Work Order: EE6QN1AC	6QN1AC	Report DB ID: EE6QN1CS	EE6QN1CS								
RA-228	5.98E+00	5.6E-01	1.3E+00	3.06E-01 pCi/L	pCi/L		5.13E+00	2.6E-01	116.62% 7/	90.70% 5.13E+00 2.6E-01 116.62% 7/26/01 07:58 a	1.0001	RICHRC5005
	e e				œ	Rec Limits:	70.	130.	0.2		_	GPC2C
Batch: 1170510	Work Order: EE6QN1AD	6QN1AD	Report DB ID: EE6QN1DS	EE6QN1DS								
RA-228	5.42E+00	5.4E-01	1.2E+00	3.18E-01 pCi/L	pCi/L		5.11E+00	2.6E-01	106.23% 7/	88.95% 5.11E+00 2.6E-01 106.23% 7/26/01 07:58 a	1.0005	RICHRC5005
					ď	Rec Limits:	70.	130.	0.1		_	GPC2D

Number of Results: 2

Comments:

STL Richland

rptSTLRchLcs v3.75

Bias - (Result/Expected)-1 as defined by ANSI N13.30.

000016

$^{\prime}$ $^{\prime}$ CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 • (800) 695-7222 • FAX (360) 636-1068

Columbia	とう
Analytical	
Services Inc.	
	1317 South 13th Ave. • Kelso, WA 986

400-05 Data package include CA100 summary & electronic deliverables REMARKS d SAMPLE RECEIPT Shipping VIA: Shipping #: _ Condition: Lab No: ANALYSIS REQUESTED INVOICE INFORMATION: iginator; YELLOW - lab; PINK - retained by originator Pod. REPORT REQUIREMENTS II. Report (includes DUP.MS. MSD, as required, may be charged as samples) IV. CLP Deliverable Report III. Data Validation Report (includes All Raw Data) 1. Routine Report * Radium 226/228. SPECIAL INSTRUCTIONS/COMMENTS: RECEIVED BY: OD CP TURNAROUND REQUIREMENTS

ACTO 48 hr. 5 day Provide FAX preliminary Results
Requested Report Date Standard (10-15 working days) Provide Verbal Preliminary DISTRIBUTION: WHITE - retu NUMBER OF CONTAINERS SAMPLE MATRIX RECEIVED BY: PHONE Printed Name 10-Z-0 Printed Name Date/Time Signature Date/Time Ø. 4871 SB OHORA J/190189 RELINQUISHED BY: RELINQUISHED BY: Frang Kall Signature Rall SAMPLERS SIGNATURE PROJECT MANAGER COMPANY/ADDRESS Printed Name SAMPLE PROJECT NAME_ Printed Name Date/Time Date/Time Signature Ē

July 6, 2001

Service Request No: K2104103

Tanyan Akkerman GeoTrans 3035 Prospect Park Drive, Suite 40 Rancho Cordova, CA 95670

Re: Former Axelson Facility (Site #2067)/P235-104

Dear Tanyan:

Enclosed are the results of the sample(s) submitted to our laboratory on June 12, 2001. For your reference, these analyses have been assigned our service request number K2104103.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3345.

Respectfully submitted,

Columbia Analytical Services, Inc.

Mingta Lin

Project Chemist

ML/ee

Page 1 of 51

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon

CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology

DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number

MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The reported value is estimated because of the presence of matrix interference.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
 - The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

Client:

Beazer East, Inc.

Project:

Former Axelson Facility (Site #2067)

Service Request No.: Date Received:

K2104103 June 12, 2001

Sample Matrix:

Sludge

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

One sludge sample, along with 5 water samples (logged in under a different work order) were received for analysis at Columbia Analytical Services on June 12, 2001. The sample identity was labeled as CB-2 on the sample container, but listed as CB-1 on the Chain-of-Custody form (COC). Sample ID: CB-2 was used for the report as instructed by Ms. Tanyan Akkerman at GeoTrans, Inc. The samples were received in good condition, the cooler temperature blank was received at 8.0 °C. The sample was stored in a refrigerator at 4°C upon receipt at the laboratory.

Inorganic Parameters

The spike recovery of Cyanide (analyzed by EPA Method 9010B) in the MS performed on a batch QC sample was below the lower control criteria. The recovery from the DMS also had lower recovery, indicating that the matrix interference may be present on this sample. All other QC results (e.g., LCS recovery) indicated that the analysis was in control, no further corrective action was taken.

The Relative Percent Difference (RPD) for the replicate analysis of Cyanide on a batch QC sample was outside the CAS control criteria. The Cyanide concentration in this QC sample was not significantly higher than the quantitation limit. Replicate RPD criterion was established based on a middle level at the calibration range, and was not applicable for the measurements close to the quantitation limit.

TCLP Metals

No QA/QC anomalies were observed during the analysis of this sample delivery group.

Fuel Hydrocarbon Identification by EPA 8015M

No QA/QC anomalies were observed during the analysis of this sample delivery group.

Approved by	mtl	Date	7/6/01	

Volatiles by EPA Method 8260B

Surrogate RecoveryExceptions:

The surrogate control criteria for Toluene-d8, 4-Bromofluorobenzene in sample CB-2 are not applicable. The analysis of this sample required a dilution, which resulted in a surrogate concentration below the MRL. No further corrective action was taken.

Elevated MRLs:

Sample CB-2 had to be diluted due to high levels of target analytes. The reporting limits have been elevated accordingly.

LCS Recovery Exceptions:

The upper control criterion was exceeded Acetone, 2-Butanone (MEK), and 2-Hexanone in LCS KWG0103316-1. These analytes were not detected in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was feasible.

Semivolatiles by EPA Method 8270C

Surrogate Recovery Exceptions:

The surrogate control criteria for all surrogates in sample CB-2 are not applicable. The analysis of this sample required a dilution, which resulted in surrogate concentrations being below the MRL. No further corrective action was taken.

LCS Recovery Exceptions:

Approved by

The upper control criterion was exceeded for N-Nitrosodi-n-propylamine LCS KWG0103517-3. This analyte was not detected in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was feasible.

mth Date 7/6/01

Chain of Custody Documentation

An Employee-Owned Company Columbia

FORMER AMELSON FOCILITY (SITE NO. 2067)
2703 W. MARLAND BLYDCHAIN OF CUSTODY

SRA: K210410 2 Я PAGE

훈 STREW GA REMARKS v Zn (CIRCLE ONE) THE WE ŝ ည် RECEIVED BY ഗ് ŭ OTHER: NA Se Se Ag Na ğ X Ŷ ¥ ¥ ž NORHTWEST Pb Mg Mn Mo Ni Mg Mn Mo ł X HOLD TIME FOR NOS SHOPLES ₹ ヹ イ ት Fe Pb Date/Time S RELINQUISHED BY: メ ē Y Y ភ AK ರ ပ င် *INDICATE STATE HYDROCARBON PROCEDURE: ပိ ပိ ၓ ပ္ပ Ba Be B Ca Be B Ca SPECIAL INSTRUCTIONS/COMMENTS: Signature Circle which metals are to be analyzed: Ва Dissolved Metals: Al As Sb S **16**.33 Total Metals: Al As 45 Haret Orgenics by GC/MS Date/Time 6 fir lac 1 RECEIVED BY NUMBER OF CONTAINERS 151 TURNAROUND REQUIREMENTS 2 Bill To: BEGEZOL CAFFE Standard (10-15 working days) 3 7 INVOICE INFORMATION N. Bar SITE 40. Requested Report Date MATRIX 820 _48 hr. FAX# 916 -853-1860 Signature X Provide FAX Results 55.17 to 26-75670 LAB I.D. DEFERENCE. 24 hr. _5 Day Jas Marica 3 56.30 1430 0133 P.O. # TIME かんめら Saras Aucos 81110 RANCIE GRADIA CA Date/Time 10111/9 II. Report Dup., MS, MSD as RELINQUISHED BY: DATE 1. Routine Report: Method IV. CLP Deliverable Report REPORT REQUIREMENTS Data Validation Report (includes all raw data) PROJECT NUMBER Blank, Surrogate, as PHONE # 916-853-1600 SAMPLER'SBIGNATURE COMPANY/ADDRESS CS H8885 Jang abstract RANG SAMPLE I.D required required PROJECT MANAG PROJECT NAME L-WM 3 - WY 1- JK MW-S V. EDD (8-1

Firm

Printed Name

Printed Name

GEDTRANS WAS FIRM

Ary er mon ame

100 A

Columbia Analytical Services Inc. Cooler Receipt And Preservation Form

			·		4	113	•	
Project/Cl	. 77	TENN	(/12	Work Order, K21		0-		
	-/	and opened o	- /	10 / by 21		7/4		
I.	Were custody seals on If yes, how many and		oler?			THE	YES (√
2.	Were seals intact and s		te correct?			- · <u>"</u> .	YES_A	ie.
3.	COC#	5			· · ·			
	Temperature of cooler(s) upon receip	ot: ,·	7.9 11.2	13.1	13-9	12	C
	Temperature Blank:			8.0 11.2	13.	2- 14:	2-12	5
4.	Were custody papers pr	roperly filled o	out (ink, sig	med, etc.)?			TES N	O
5 .	Type of packing materi	al present	INST	RT, BURA	3 0			
6.	Did all bottles arrive in			/	V		(YE) N	0
7.	Were all bottle labels co	omplete (i.e. a	nalysis, pre	servation, etc.)?	 .		M SEC	0
8.	Did all bottle labels and	tags agree wi	th custody p	papers?			YES	3
9. ·	Were the correct types of	of bottles used	for the tests	indicated?			Es No	0
10.	Were all of the preserve	d bottles recei	ved at the la	sb with the appropriate pH	?		YES NO) -
11.	Were VOA vials checke	d for absence	of air bubb	les, and if present, noted b	elow?		YES NO	2_
12.	Did the bottles originate	from CAS/K	or a branch	laboratory?			YES	5
		SIMPL		OR CB-1	LABE		<u>3-2</u>	
<u>fer</u> even	Tanua Akkerman ((GeoTrans) high-	V	t ID Should be 4101.	CB-Z.	Proceed w.	1 analysis	Ė
	<u> </u>	U						-
Samples tha	t required preservation or				7			3
	Sample ID	Reagent	Volume	Lot Number	Bottle Type	Rec'd out of Temperature	Initials	
	· · · · · · · · · · · · · · · · · · ·				- 3,7			
							!	
							<u> </u>	i
		<u>·</u> _		. • 7				
	·				4.7 3-			
	·							
					i i			
						—		
		1		1	į.	1	· · · · · · · · · · · · · · · · · · ·	

Total Solids

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facil/P253-104

ample Matrix:

Sludge

Service Request: K2104103

Total Solids

Prep Method: Analysis Method:

Test Notes:

NONE

160.3M

Units: PERCENT

Basis: WET

Sample Name

Lab Code

Date Collected

Date Received

Date Analyzed

Result

CB-2

K2104103-001

06/11/2001

06/12/2001

06/15/2001

40.6

Notes

Result

00008

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facil/P253-104

Sample Matrix:

Sludge

Service Request: K2104103

Date Collected: 06/11/2001

Date Received: 06/12/2001 Date Analyzed: 06/15/200

Duplicate Sample Summary Total Solids

Prep Method:

Analysis Method:

NONE

Units: PERCENT

Basis: WET

Test Notes:

Sample Name

160.3M

Lab Code

Sample Result

Duplicate Sample Result

Average

Percent Result Difference Notes

CB-2

K2104103-001

40.6

40.2

40.4

<1

Relative

Inorganics

Analytical Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sludge

Service Request: K2104103

Date Collected: 6/11/01 **Date Received:** 6/12/01

Date Extracted: NA

Basis: Wet

Characteristics of Hazardous Waste RCRA, 40 CFR Part 261

Sample Name:

CB-2

Lab Code:

K2104103-001

Test Notes:

Analyte	Analysis Method	Units	MRL	MDL	Dilution Factor	Date Analyzed	Result	Result Notes	Regulatory Limits
Corrosivity	SW-846 Sec. 7.2*	pH UNITS			1	6/14/01	6.79		\leq 2 or \geq 12.5
Ignitability	SW-846 Sec. 7.1*	DEG F			1	6/23/01	> 200		<140°F
Cyanide	9010B	mg/Kg (ppm)	0.4	0.08	1	6/20/01	ND		250 mg/Kg
Sulfide, Reactive	SW-846 Sec. 7.2*	mg/Kg (ppm)	20		I	6/16/01	47		500 mg/Kg

Analytical methods, regulatory limits and action levels used in this report are from Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Ed., September 1986 and as amended by Update I, July 1992.

Approved By:

04103WET.PW1 - charhw 6/26/01

1S22/052595

Date: 6/26/01

10010

Page No.:

Analytical Report

Client:

GeoTrans, Inc.

Service Request: K2104103

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: NA

Sample Matrix:

Soil

Date Received: NA
Date Extracted: NA

Characteristics of Hazardous Waste RCRA, 40 CFR Part 261

Sample Name:

Method Blank

Lab Code:

K2104103-MB

Test Notes:

Basis: Wet

Analyte	Analysis Method	Units	MRL	MDL	Dilution Factor	Date Analyzed	Result	Result Notes	Regulatory Limits
Ignitability	SW-846 Sec. 7.1*	DEG F		~~	1	6/23/01	> 200		<140°F
Cyanide	9010B	mg/Kg (ppm)	0.4	0.08	1	6/20/01	ND		250 mg/Kg
Sulfide, Reactive	SW-846 Sec. 7.3*	mg/Kg (ppm)	20		1	6/16/01	ND		500 mg/Kg

Analytical methods, regulatory limits and action levels used in this report are from Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Ed., September 1986 and as amended by Update I, July 1992.

Approved By:

ved By:

_ Date: ______ 4 (26 (0)

00011

04103WET.PW1 - MB 6/26/01

Page No.:

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sludge

Service Request: K2104103

Date Collected: 6/11/01 **Date Received:** 6/12/01

Date Extracted: NA

Date Analyzed: 6/14-23/01

Duplicate Summary

Inorganic Parameters

Sample Name:

CB-2

Lab Code:

K2104103-001MS

Test Notes:

Basis: Wet

Analyte	Units	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Corrosivity	pH UNITS	SW-846 Sec. 7.2		6.79	6.87	6.83	1	
Ignitability	DEG F	SW-846 Sec. 7.1		> 200	> 200	> 200	-	
Cyanide	mg/Kg (ppm)	9010B	0.4	0.6	1.0	0.8	50	* L1
Sulfide, Reactive	mg/Kg (ppm)	SW-846 Sec. 7.3	20	90	93	92	3	L2

Duplicate analysis was performed on Batch QC; Lab Code K2103968-052. Duplicate analysis was performed on Batch QC; Lab Code K2103968-051.

LI

L2

Date: 4 (24/0)

U1012

QA/QC Report

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix: Sludge

Service Request: K2104103

Date Collected: 6/11/01

Date Received: 6/12/01 Date Extracted: NA

Date Analyzed: 6/16-20/01

Matrix Spike Summary **Inorganic Parameters**

Sample Name:

CB-2

Lab Code:

K2104103-001MS

Basis: Wet

Test Notes:

Analyte	Units	Analysis Method	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Cyanide	mg/Kg (ppm) mg/Kg (ppm)	9010B	0.01	3.7	0.6	2.0	54	75-125	* M1
Sulfide, Reactive		SW-846 Sec. 7.3*	20	143	90	117	19	-	M2

Ml

Matrix Spike analysis was performed on Lab Code K2103968-052.

M2

Matrix Spike analysis was performed on Lab Code K2103968-051.

Approved By: 04103WET.PWI - MS 6/26/01

Date: 6/26/01

00013

Page No.:

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

LCS Matrix:

Soil

Service Request: K2104103

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 6/14-23/01

Laboratory Control Sample Summary

Inorganic Parameters

Sample Name:

Lab Control Sample

Lab Code:

K2104103-LCS

Test Notes:

Basis: NA

					CAS Percent Recovery	
Analyte	Analysis Units Method		Result	Percent Recovery	Acceptance Limits	Result Notes
Corrosivity	pH UNITS SW-846 Sec. 7	7.2* 7.08	6.96	98	85-115	
Ignitability	DEG F SW-846 Sec. 7	7.1* 81	81	100	85-115	
Cyanide	mg/Kg (ppm) 9010B	0.59	0.67	114	85-115	
Sulfide, Reactive	mg/Kg (ppm) SW-846 Sec. 7	2680	2410	90	-	

00014

Page No.:

TCLP Metals Method 1311 / 6010 / 7470 A

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:

GeoTrans, Inc.

Service Request: K2104103

Project No.:

P253-104

Sample No.

Project Name: Former Axelson Facility (Site #2067)

CB-2	K2104103-001
CB-2D	K2104103-001D
CB-2S	K2104103-001S
Method Blank	K2104103-MB

Lab Sample ID.

Were	ICP interelement corrections applied?	Yes/No	YES
Were	ICP background corrections applied?	Yes/No	YES
	If yes-were raw data generated before application of background corrections?	Yes/No	NO
Comm	ents:		
			· · · · · · · · · · · · · · · · · · ·
			

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

GeoTrans, Inc.

Service Request: K2104103

Project No.: P253-104

Date Collected: 06/11/01

Project Name: Former Axelson Facility (Site #2067)

Date Received: 06/12/01

Matrix:

TCLP

Units: MG/L

Basis: NA

Sample Name: CB-2

Lab Code: K2104103-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6010B	0.1	1	6/20/01	6/21/01	0.1	ט	
Barium	6010B	1.0	1	6/20/01	6/21/01	3.3		
Cadmium	6010B	0.01	1	6/20/01	6/21/01	0.01	U	
Chromium	6010B	0.01	1	6/20/01	6/21/01	0.02		
Lead	6010B	0.05	1	6/20/01	6/21/01	0.05	[ט	
Mercury	7470A	0.001	1	6/21/01	6/22/01	0.001	U	
Selenium	6010B	0.1	1	6/20/01	6/21/01	0.1	ט	
Silver	6010B	0.02	1	6/20/01	6/21/01	0.02	ט	

Solids: 0.0

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

Client:

GeoTrans, Inc.

Service Request: K2104103

Project No.: P253-104

Date Collected:

Project Name: Former Axelson Facility (Site #2067)

Sample Name: Method Blank

Date Received:

Units: MG/L

Basis: NA

Matrix:

TCLP

Lab Code: K2104103-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6010B	0.1	1	6/20/01	6/21/01	0.1	บ	
Barium	6010B	1.0	1	6/20/01	6/21/01	1.0	ט	
Cadmium	6010B	0.01	1	6/20/01	6/21/01	0.01	U	
Chromium	6010B	0.01	1	6/20/01	6/21/01	0.01	ַ	
Lead	6010B	0.05	1	6/20/01	6/21/01	0.05	ט	
Mercury	7470A	0.001	1	6/21/01	6/22/01	0.001	ט	
Selenium	6010B	0.1	1	6/20/01	6/21/01	0.1	ี	
Silver	6010B	0.02	1	6/20/01	6/21/01	0.02	ט	

% Solids: 0.0

Comments:

- 5a -

SPIKE SAMPLE RECOVERY

Client:

GeoTrans, Inc.

Service Request: K2104103

Project No.: P253-104

Units: MG/L

Project Name: Former Axelson Facility (Site #2067)

Basis: NA

Matrix:

TCLP

% Solids: 0.0

Sample Name: CB-2S

Lab Code: K2104103-001S

Analyte	Control Limit %R	Spike Result	c	Sample Result	С	Spike Added	₽R	Q	Method
Arsenic	75 - 125	4.8	\Box	0.1	U	5.0	96		6010B
Barium	75 - 125	11.8		3.3		10.0	86		6010B
Cadmium	75 - 125	0.87		0.01	ט	1.00	87		6010B
Chromium	75 - 125	4.39		0.02		5.00	87		6010B
Lead	75 - 125	4.27		0.05	ט	5.00	85		6010B
Mercury	75 - 125	0.004		0.001	ַ ט	0.005	88		7470A
Selenium	75 - 125	0.9		0.1	ט	1.0	93		6010B
Silver	75 - 125	0.91		0.02	ט	1.00	91		6010B

- 6 -**DUPLICATES**

Client:

GeoTrans, Inc.

Service Request: K2104103

Project No.: P253-104

Units: MG/L

Project Name: Former Axelson Facility (Site #2067)

Basis: NA

Matrix:

TCLP

% Solids: 0.0

Sample Name: CB-2D

Lab Code: K2104103-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.1	U	0.1	U			6010B
Barium	1.0	3.3	j j	3.1		4		6010B
Cadmium		0.01	ט	0.01	U		Ī	6010B
Chromium	0.0	0.02		0.02		5		6010B
Lead		0.05	Ū	0.05	U			6010B
Mercury		0.001	U	0.001	U		Ī	7470A
Selenium	İ	0.1	U	0.1	U	ĺ	İ	6010B
Silver		0.02	ט	0.02	ט		· · · · · ·	6010B

- 7 -

LABORATORY CONTROL SAMPLE

Client:

GeoTrans, Inc.

Service Request: K2104103

Project No.: P253-104

Project Name: Former Axelson Facility (Site #2067)

Aqueous LCS Source: Inorganic Ventures

Solid LCS Source:

	Aqueo	ıs mg/L			Soli	d (mg	/kg)	
Analyte	True	Found	%R	True	Found	С	Limits	8R
Arsenic	5.00	5.27	105		1			
Barium	10.0	10.4	104			T	1	
Cadmium	1.00	0.990	99]	
Chromium	5.00	4.91	98		1		<u> </u>	
Lead	5.00	4.80	96					
Mercury	0.00500	0.00464	93					Ì
Selenium	1.00	1.04	104					Ì
Silver	1.00	0.942	94					

Fuel Identification and Quanification Method 8015 M

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sludge

Service Request: K2104103

Date Collected: 06/11/2001

Date Received: 06/12/2001

Fuel Identification and Quantitation - Silica Gel Treated

Sample Name:

CB-2

Lab Code:

K2104103-001

Extraction Method: EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	41000 H	240	1	06/19/01	06/23/01	KWG0103584	
Diesel Range Organics (DRO)	350000 DF	2400	10	06/19/01	06/25/01	KWG0103584	
Residual Range Organics (RRO)	51000 O	590	I	06/19/01	06/23/01	KWG0103584	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	396	20-150	06/23/01	Outside Control Limits	
o-Terphenyl	0	50-150	06/23/01	Outside Control Limits	
n-Triacontane	0	50-150	06/23/01	Outside Control Limits	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sediment

Service Request: K2104103

Date Collected: NA

Date Received: NA

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

Method Blank

Lab Code:

KWG0103448-5

Extraction Method: EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND U	10	1	06/19/01	06/20/01	KWG0103448	
Diesel Range Organics (DRO)	ND U	10	1	06/19/01	06/20/01	KWG0103448	
Residual Range Organics (RRO)	ND U	25	11	06/19/01	06/20/01	KWG0103448	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	78	20-150	06/20/01	Acceptable	
o-Terphenyl	119	50-150	06/20/01	Acceptable	
n-Triacontane	123	50-150	06/20/01	Acceptable	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: NA

Service Request: K2104103

Sample Matrix:

Sludge

Date Received: NA

Fuel Identification and Quantitation - Silica Gel Treated

Sample Name:

Method Blank

Lab Code:

KWG0103584-2

Units: mg/Kg Basis: Dry

Extraction Method: EPA 3550B

Level: Low

Analysis Method:

8015M

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U	10	1	06/19/01	06/23/01	KWG0103584	
Diesel Range Organics (DRO)	ND U	10	1	06/19/01	06/23/01	KWG0103584	
Residual Range Organics (RRO)	ND U	25	1	06/19/01	06/23/01	KWG0103584	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
4-Bromofluorobenzene	54	20-150	06/23/01	Acceptable	
o-Terphenyl	89	50-150	06/23/01	Acceptable	
n-Triacontane	93	50-150	06/23/01	Acceptable	

Comments:

00023

QA/QC Report

Client:

GeoTrans, Inc.

Service Request: K2104103

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sludge

Surrogate Recovery Summary Fuel Identification and Quantitation - Silica Gel Treated

Extraction Method: EPA 3550B

Analysis Method:

8015M

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
CB-2	K2104103-001	396 *	0	* 0 *
Method Blank	KWG0103448-5	78	119	123
Method Blank	KWG0103584-2	54	89	93
Batch QC	K2103968-013	81	122	124
Batch QCMS	KWG0103448-1	91	127	135
Batch QCDMS	KWG0103448-2	75	115	122
Lab Control Sample	KWG0103448-4	91	117	120
Lab Control Sample	KWG0103584-1	67	95	96

Surrogate Recovery Control Limits (%)

Sur1 = 4-Bromofluorobenzene 20-150 Sur2 = o-Terphenyl50-150 Sur3 = n-Triacontane50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

00024

Printed 07/05/2001 11:32:30

Form 2A - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Service Request: K2104103

Date Extracted: 06/19/2001

Date Analyzed: 06/20/2001

Matrix Spike/Duplicate Matrix Spike Summary Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Sample Name:

Batch QC

Lab Code:

K2103968-013

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0103448

Batch QCMS

KWG0103448-1

Batch QCDMS

KWG0103448-2

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	630	882	165	155 *	741	165	69	19-145	17	40
Residual Range Organics (RRO)	58	252	165	118	222	165	100	50-150	13	40

ults flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sediment

Service Request: K2104103

Date Extracted: 06/19/2001

Date Analyzed: 06/20/2001

Lab Control Spike Summary

Fuel Identification and Quantitation (FIQ) Hydrocarbon Scan

Extraction Method:

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0103448

Lab Control Sample KWG0103448-4

	Lab	Control Spil	ke	%Rec
Analyte Name	Result	Expected	%Rec	Limits
Diesel Range Organics (DRO)	165	160	103	19-145
Residual Range Organics (RRO)	140	160	87	50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00026

Printed 07/05/2001 11:32:35

Form 3C - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

emple Matrix:

Sludge

Service Request: K2104103

Date Extracted: 06/19/2001

Date Analyzed: 06/23/2001

Lab Control Spike Summary Fuel Identification and Quantitation - Silica Gel Treated

50-150

Extraction Method:

Residual Range Organics (RRO)

EPA 3550B

Analysis Method:

8015M

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0103584

Lab Control Sample KWG0103584-1

160

83

Lab Control Spike %Rec Limits **Analyte Name** Result Expected %Rec Diesel Range Organics (DRO) 126 160 79 19-145

132

sults flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00027

Printed 07/05/2001 11:32:37

Form 3C - Organic

Page 1 of 1

Volatile Organic Compounds Method 8260 B

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sludge

Service Request: K2104103

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

CB-2

Lab Code:

K2104103-001

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg Basis: Dry

Level: Med

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND	Ū	1.2	1	06/22/01	06/22/01	KWG0103555	
Chloromethane	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Vinyl Chloride	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Bromomethane	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Chloroethane	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Trichlorofluoromethane	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Acetone	ND	U	48	1	06/22/01	06/22/01	KWG0103555	
1,1-Dichloroethene	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Carbon Disulfide	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Methylene Chloride	ND	U	2.4	1	06/22/01	06/22/01	KWG0103555	
trans-1,2-Dichloroethene	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
-Dichloroethane	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
2-Butanone (MEK)	ND		48	1	06/22/01	06/22/01	KWG0103555	
2,2-Dichloropropane	ND		1.2	1	06/22/01	06/22/01	KWG0103555	
cis-1,2-Dichloroethene	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Chloroform	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Bromochloromethane	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
1,1,1-Trichloroethane (TCA)	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
1,1-Dichloropropene	ND		1.2	1	06/22/01	06/22/01	KWG0103555	
Carbon Tetrachloride	ND		1.2	1	06/22/01	06/22/01	KWG0103555	
1,2-Dichloroethane (EDC)	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Benzene	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Trichloroethene (TCE)	ND		1.2	1	06/22/01	06/22/01	KWG0103555	
1,2-Dichloropropane	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Bromodichloromethane	ND		1.2	1	06/22/01	06/22/01	KWG0103555	
Dibromomethane	ND		1.2	1	06/22/01	06/22/01	KWG0103555	
2-Hexanone	ND	U	48	1	06/22/01	06/22/01	KWG0103555	
cis-1,3-Dichloropropene	ND		1.2	1	06/22/01	06/22/01	KWG0103555	
Toluene	ND		1.2	1	06/22/01	06/22/01	KWG0103555	
trans-1,3-Dichloropropene	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
1,1,2-Trichloroethane	ND		1.2	1	06/22/01	06/22/01	KWG0103555	
4-Methyl-2-pentanone (MIBK)	ND		48	1	06/22/01	06/22/01	KWG0103555	
1,3-Dichloropropane	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Tetrachloroethene (PCE)	ND		1.2	1	06/22/01	06/22/01	KWG0103555	
romochloromethane	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	

Comments:

00028

Printed 06/26/2001 17:16:38 Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sludge

Service Request: K2104103

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

CB-2

Lab Code:

K2104103-001

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg Basis: Dry

Level: Med

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND	U	4.8	1	06/22/01	06/22/01	KWG0103555	
Chlorobenzene	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
1,1,1,2-Tetrachloroethane	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Ethylbenzene	6.6		1.2	1	06/22/01	06/22/01	KWG0103555	
m,p-Xylenes	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
o-Xylene	5.5		1.2	1	06/22/01	06/22/01	KWG0103555	
Styrene	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Bromoform	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Isopropylbenzene	ND	U	4.8	1	06/22/01	06/22/01	KWG0103555	
1,1,2,2-Tetrachloroethane	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
1,2,3-Trichloropropane	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
Bromobenzene	ND	U	4.8	1	06/22/01	06/22/01	KWG0103555	
n-Propylbenzene	7.9		4.8	1	06/22/01	06/22/01	KWG0103555	
2-Chlorotoluene	25		4.8	1	06/22/01	06/22/01	KWG0103555	
4-Chlorotoluene	ND		4.8	1	06/22/01	06/22/01	KWG0103555	
1,3,5-Trimethylbenzene	ND	U	4.8	1	06/22/01	06/22/01	KWG0103555	
tert-Butylbenzene	ND	U	4.8	1	06/22/01	06/22/01	KWG0103555	
1,2,4-Trimethylbenzene	9.8		4.8	1	06/22/01	06/22/01	KWG0103555	
sec-Butylbenzene	7.5		4.8	1	06/22/01	06/22/01	KWG0103555	
1,3-Dichlorobenzene	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
4-Isopropyltoluene	ND	U	4.8	1	06/22/01	06/22/01	KWG0103555	
1,4-Dichlorobenzene	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
n-Butylbenzene	15		4.8	1	06/22/01	06/22/01	KWG0103555	
1,2-Dichlorobenzene	ND	U	1.2	1	06/22/01	06/22/01	KWG0103555	
1,2-Dibromo-3-chloropropane	ND	U	4.8	1	06/22/01	06/22/01	KWG0103555	
1,2,4-Trichlorobenzene	ND	U	4.8	1	06/22/01	06/22/01	KWG0103555	
1,2,3-Trichlorobenzene	ND	U	4.8	1	06/22/01	06/22/01	KWG0103555	
Naphthalene	44		4.8	1	06/22/01	06/22/01	KWG0103555	
Hexachlorobutadiene	ND	U	4.8	1	06/22/01	06/22/01	KWG0103555	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sludge

Service Request: K2104103

Date Collected: 06/11/2001

Date Received: 06/12/2001

Volatile Organic Compounds

Sample Name:

CB-2

Lab Code:

K2104103-001

Units: mg/Kg

Basis: Dry

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	60	45-141	06/22/01	Acceptable	
Toluene-d8	39	50-139	06/22/01	Outside Control Limits	
4-Bromofluorobenzene	35	50-143	06/22/01	Outside Control Limits	

Comments:

00030

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Soil

Service Request: K2104103

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank KWG0103316-2

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg Basis: Dry

Level: Med

				Dilution	Date	Date	Extraction	
Analyte Name	Result		MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
Chloromethane	ND		0.050	1	06/12/01	06/20/01	KWG0103316	
Vinyl Chloride	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Bromomethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Chloroethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Trichlorofluoromethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Acetone	ND	U	2.0	1	06/12/01	06/20/01	KWG0103316	
1,1-Dichloroethene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Carbon Disulfide	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Methylene Chloride	0.11		0.10	1	06/12/01	06/20/01	KWG0103316	
trans-1,2-Dichloroethene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,1-Dichloroethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
2-Butanone (MEK)	ND	U	2.0	1	06/12/01	06/20/01	KWG0103316	
2,2-Dichloropropane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
cis-1,2-Dichloroethene	ND	U	0.050	1 .	06/12/01	06/20/01	KWG0103316	
Chloroform	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Bromochloromethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,1,1-Trichloroethane (TCA)	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,1-Dichloropropene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Carbon Tetrachloride	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,2-Dichloroethane (EDC)	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Benzene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Trichloroethene (TCE)	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,2-Dichloropropane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Bromodichloromethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Dibromomethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
2-Hexanone	ND	U	2.0	1	06/12/01	06/20/01	KWG0103316	
cis-1,3-Dichloropropene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Toluene	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
trans-1,3-Dichloropropene	ND	Ú	0.050	1	06/12/01	06/20/01	KWG0103316	
1,1,2-Trichloroethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
4-Methyl-2-pentanone (MIBK)	ND	U	2.0	1	06/12/01	06/20/01	KWG0103316	
1,3-Dichloropropane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Tetrachloroethene (PCE)	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	
Dibromochloromethane	ND	U	0.050	1	06/12/01	06/20/01	KWG0103316	

Printed 06/26/2001 17:16:45

Comments:

Merged

Form 1A - Organic

Page 1 of 3

00031

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

emple Matrix:

Soil

Service Request: K2104103

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

KWG0103316-2

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg Basis: Dry

Level: Med

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
Chlorobenzene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,1,1,2-Tetrachloroethane	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
Ethylbenzene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
m,p-Xylenes	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
o-Xylene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
Styrene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
Bromoform	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
Isopropylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,1,2,2-Tetrachloroethane	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
3-Trichloropropane	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
mobenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
n-Propylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
2-Chlorotoluene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
4-Chlorotoluene	ND U	0.20	1:	06/12/01	06/20/01	KWG0103316	
1,3,5-Trimethylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
tert-Butylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,2,4-Trimethylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
sec-Butylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,3-Dichlorobenzene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
4-Isopropyltoluene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,4-Dichlorobenzene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
n-Butylbenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,2-Dichlorobenzene	ND U	0.050	1	06/12/01	06/20/01	KWG0103316	
1,2-Dibromo-3-chloropropane	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,2,4-Trichlorobenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
1,2,3-Trichlorobenzene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
Naphthalene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	
Hexachlorobutadiene	ND U	0.20	1	06/12/01	06/20/01	KWG0103316	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Soil

Service Request: K2104103

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name:

Method Blank

Lab Code:

KWG0103316-2

Units: mg/Kg

Basis: Dry

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	95	45-141	06/20/01	Acceptable
Toluene-d8	113	50-139	06/20/01	Acceptable
4-Bromofluorobenzene	100	50-143	06/20/01	Acceptable

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)/P253-104

Soil

Service Request: K2104103

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank KWG0103555-2

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg Basis: Dry

Level: Med

A 2 / 27	.	•	MADY	Dilution	Date	Date	Extraction	NI-4-
Analyte Name	Result		MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND		0.050	1	06/22/01	06/22/01	KWG0103555	
Chloromethane	ND	_	0.050	1	06/22/01	06/22/01	KWG0103555	
Vinyl Chloride	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Bromomethane	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Chloroethane	ND		0.050	1	06/22/01	06/22/01	KWG0103555	
Trichlorofluoromethane	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Acetone	ND	U	2.0	1	06/22/01	06/22/01	KWG0103555	
1,1-Dichloroethene	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Carbon Disulfide	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Methylene Chloride	ND	U	0.10	1	06/22/01	06/22/01	KWG0103555	
trans-1,2-Dichloroethene	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Dichloroethane	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
2-Butanone (MEK)	ND	U	2.0	1	06/22/01	06/22/01	KWG0103555	
2,2-Dichloropropane	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
cis-1,2-Dichloroethene	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Chloroform	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	***************************************
Bromochloromethane	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
1,1,1-Trichloroethane (TCA)	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
1,1-Dichloropropene	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Carbon Tetrachloride	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
1,2-Dichloroethane (EDC)	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Benzene	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Trichloroethene (TCE)	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
1,2-Dichloropropane	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Bromodichloromethane	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Dibromomethane	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
2-Hexanone	ND	U	2.0	1	06/22/01	06/22/01	KWG0103555	
cis-1,3-Dichloropropene	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Toluene	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
trans-1,3-Dichloropropene	ND	Ú	0.050	1	06/22/01	06/22/01	KWG0103555	
1,1,2-Trichloroethane	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	***
4-Methyl-2-pentanone (MIBK)	ND	U	2.0	1	06/22/01	06/22/01	KWG0103555	
1,3-Dichloropropane	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
Tetrachloroethene (PCE)	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	
omochloromethane	ND	U	0.050	1	06/22/01	06/22/01	KWG0103555	

Comments:

Printed 06/26/2001 17:16:50 Merged

Form 1A - Organic

Page 1 of 3

00034

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Soil

Service Request: K2104103

Date Collected: NA

Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code: Method Blank KWG0103555-2

Extraction Method: EPA 5035/5030B

211 00100000 2

Analysis Method:

8260B

Units: mg/Kg
Basis: Dry

Level: Med

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
1,2-Dibromoethane (EDB)	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
Chlorobenzene	ND U	0.050	1	06/22/01	06/22/01	KWG0103555	
1,1,1,2-Tetrachloroethane	ND U	0.050	1	06/22/01	06/22/01	KWG0103555	
Ethylbenzene	ND U	0.050	1	06/22/01	06/22/01	KWG0103555	
m,p-Xylenes	ND U	0.050	1	06/22/01	06/22/01	KWG0103555	
o-Xylene	ND U	0.050	1	06/22/01	06/22/01	KWG0103555	
Styrene	ND U	0.050	1	06/22/01	06/22/01	KWG0103555	
Bromoform	ND U	0.050	1	06/22/01	06/22/01	KWG0103555	
Isopropylbenzene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
1,1,2,2-Tetrachloroethane	ND U	0.050	1	06/22/01	06/22/01	KWG0103555	
1,2,3-Trichloropropane	ND U	0.050	1	06/22/01	06/22/01	KWG0103555	
Bromobenzene	ND U	0.20	I	06/22/01	06/22/01	KWG0103555	
n-Propylbenzene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
2-Chlorotoluene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
4-Chlorotoluene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
1,3,5-Trimethylbenzene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
tert-Butylbenzene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
1,2,4-Trimethylbenzene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
sec-Butylbenzene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
1,3-Dichlorobenzene	ND U	0.050	1	06/22/01	06/22/01	KWG0103555	
4-Isopropyltoluene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
1,4-Dichlorobenzene	ND U	0.050	1	06/22/01	06/22/01	KWG0103555	
n-Butylbenzene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
1,2-Dichlorobenzene	ND U	0.050	1	06/22/01	06/22/01	KWG0103555	
1,2-Dibromo-3-chloropropane	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
1,2,4-Trichlorobenzene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
1,2,3-Trichlorobenzene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
Naphthalene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	
Hexachlorobutadiene	ND U	0.20	1	06/22/01	06/22/01	KWG0103555	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Collected: NA

Service Request: K2104103

Date Received: NA

Sample Matrix:

Soil

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

KWG0103555-2

Units: mg/Kg

Basis: Dry

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	89	45-141	06/22/01	Acceptable
Toluene-d8	100	50-139	06/22/01	Acceptable
4-Bromofluorobenzene	93	50-143	06/22/01	Acceptable

Comments:

QA/QC Report

Client: Project: GeoTrans, Inc.

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix;

Sludge

Service Request: K2104103

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: PERCENT

Level: Med

Sample Name	Lab Code	<u>Sur1</u>	Sur2		Sur3	<u>.</u>
CB-2	K2104103-001	60	# 39	#	35	#
Method Blank	KWG0103316-2	95	113		100	
Method Blank	KWG0103555-2	89	100		93	
Batch QC	K2104055-001	105	110		99	
Batch QCMS	KWG0103316-5	102	104		105	
Batch QCDMS	KWG0103316-6	95	95		97	
Lab Control Sample	KWG0103316-1	105	113		109	
Lab Control Sample	KWG0103555-1	101	106		106	

Surrogate Recovery Control Limits (%)

Surl =	Dibromofluoromethane	45-141
Sur2 =	Toluene-d8	50-139
Sur3 =	4-Bromofluorobenzene	50-143

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Extracted: 06/12/2001

Service Request: K2104103

mple Matrix:

Soil

Date Analyzed: 06/22/2001

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:

Batch QC

Lab Code:

K2104055-001

Extraction Method:

EPA 5035/5030B

ND

2.5

0.925

3.10

Analysis Method:

1,2-Dichlorobenzene

Naphthalene

8260B

Units: mg/Kg

Basis: Dry

Level: Med

3

2

40

40

34-131

20-139

Extraction Lot: KWG0103316

Batch QCMS KWG0103316-5

1.01

1.01

Batch QCDMS KWG0103316-6

1.01

1.01

89

50

Duplicate Matrix Spike Matrix Spike %Rec RPD Sample RPD Limit Result %Rec Expected %Rec Limits **Analyte Name** Result Expected Result 40 0.965 95 0.892 1.01 88 51-127 8 1.01 1,1-Dichloroethene ND Benzene ND 1.03 1.01 102 0.961 1.01 95 57-121 7 40 0.975 1.01 96 0.903 1.01 89 45-127 8 40 Trichloroethene (TCE) ND 1.01 88 34-134 8 40 ND 0.971 1.01 96 0.895 Toluene 8 40 94 1.01 87 37-126 Chlorobenzene ND 0.948 1.01 0.879

91

56

0.901

3.05

ilts flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Soil

Service Request: K2104103

Date Extracted: 06/12/2001

Date Analyzed: 06/20/2001

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg

Basis: Dry

Level: Med

Extraction Lot: KWG0103316

Lab Control Sample KWG0103316-1 Lab Control Spike

Limits 50-150
50 150
JU-1JU
50-150
50-150
50-150
50-150
50-150
50-150
73-118
50-150
50-150
50-150
50-150
50-150
50-150
0-150
50-150
50-150
50-150
50-150
50-150
50-150
78-116
79-119
50-150
50-150
50-150
50-150
50-150
77-118
0-150
50-150
50-150
50-150
0-150
0-150
50- 50- 50- 50- 50- 50- 50- 50- 50- 50-

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Service Request: K2104103

Date Extracted: 06/12/2001

Date Analyzed: 06/20/2001

Lab Control Spike Summary **Volatile Organic Compounds**

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg Basis: Dry Level: Med

Extraction Lot: KWG0103316

Lab Control Sample KWG0103316-1

	Lab	%Rec		
Analyte Name	Result	Expected	%Rec	Limits
1,2-Dibromoethane (EDB)	0.960	1.00	96	50-150
Chlorobenzene	0.872	1.00	87	80-117
1,1,1,2-Tetrachloroethane	0.826	1.00	83	50-150
Ethylbenzene	0.887	1.00	89	50-150
m,p-Xylenes	1.78	2.00	89	50-150
o-Xylene	0.912	1.00	91	50-150
Styrene	0.927	1.00	93	50-150
Bromoform	0.754	1.00	75	50-150
Isopropylbenzene	0.862	1.00	86	50-150
1,1,2,2-Tetrachloroethane	1.23	1.00	123	50-150
3-Trichloropropane	1.24	1.00	124	50-150
mobenzene	0.920	1.00	92	50-150
n-Propylbenzene	0.960	1.00	96	50-150
2-Chlorotoluene	0.931	1.00	93	50-150
4-Chlorotoluene	0.951	1.00	95	50-150
1,3,5-Trimethylbenzene	0.956	1.00	96	50-150
tert-Butylbenzene	0.833	1.00	83	50-150
1,2,4-Trimethylbenzene	0.964	1.00	96	50-150
sec-Butylbenzene	0.905	1.00	90	50-150
1,3-Dichlorobenzene	0.953	1.00	95	50-150
4-Isopropyltoluene	0.830	1.00	83	50-150
1,4-Dichlorobenzene	0.917	1.00	92	50-150
n-Butylbenzene	0.796	1.00	80	50-150
1,2-Dichlorobenzene	0.966	1.00	97	79-120
1,2-Dibromo-3-chloropropane	0.986	1.00	99	50-150
1,2,4-Trichlorobenzene	0.891	1.00	89	50-150
1,2,3-Trichlorobenzene	0.915	1.00	91	50-150
Naphthalene	1.17	1.00	117	57-135
Hexachlorobutadiene	0.661	1.00	66	50-150

its flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Soil

Service Request: K2104103

Date Extracted: 06/22/2001

Date Analyzed: 06/22/2001

Lab Control Spike Summary **Volatile Organic Compounds**

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg

Basis: Dry

Level: Med

Extraction Lot: KWG0103555

Lab Control Sample KWG0103555-1

%Rec
imits
0-150
0-150
0-150
0-150
0-150
0-150
0-150
3-118
0-150
0-150
0-150
0-150
0-150
0-150
0-150
0-150
0-150
0-150
0-150
0-150
0-150
8-116
9-119
0-150
0-150
0-150
0-150
0-150
7-118
)-150
)-150
)-150
)-150
)-150
)-150
ii 00000000000000000000000000000000000

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Date Extracted: 06/22/2001

Service Request: K2104103

mple Matrix:

Soil

Date Analyzed: 06/22/2001

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method: EPA 5035/5030B

Analysis Method:

8260B

Units: mg/Kg

Basis: Dry

Level: Med

Extraction Lot: KWG0103555

Lab Control Sample KWG0103555-1 Lah Control Snike

	Lab	%Rec		
Analyte Name	Result	Expected	%Rec	Limits
1,2-Dibromoethane (EDB)	0.906	0.990	91	50-150
Chlorobenzene	0.897	0.990	91	80-117
1,1,1,2-Tetrachloroethane	0.912	0.990	92	50-150
Ethylbenzene	0.932	0.990	94	50-150
m,p-Xylenes	1.81	1.98	91	50-150
o-Xylene	0.904	0.990	91	50-150
Styrene	0.906	0.990	91	50-150
Bromoform	0.743	0.990	75	50-150
Isopropylbenzene	0.875	0.990	88	50-150
1.1,2,2-Tetrachloroethane	0.960	0.990	97	50-150
3-Trichloropropane	0.923	0.990	93	50-150
mobenzene	0.922	0.990	93	50-150
n-Propylbenzene	0.964	0.990	97	50-150
2-Chlorotoluene	0.901	0.990	91	50-150
4-Chlorotoluene	0.920	0.990	93	50-150
1,3,5-Trimethylbenzene	0.950	0.990	96	50-150
tert-Butylbenzene	0.924	0.990	93	50-150
1,2,4-Trimethylbenzene	0.978	0.990	99	50-150
sec-Butylbenzene	0.932	0.990	94	50-150
1,3-Dichlorobenzene	0.945	0.990	95	50-150
4-Isopropyltoluene	0.913	0.990	92	50-150
1,4-Dichlorobenzene	0.901	0.990	91	50-150
n-Butylbenzene	0.986	0.990	100	50-150
1,2-Dichlorobenzene	0.887	0.990	90	79-120
1,2-Dibromo-3-chloropropane	0.753	0.990	76	50-150
1,2,4-Trichlorobenzene	0.853	0.990	86	50-150
1,2,3-Trichlorobenzene	0.814	0.990	82	50-150
Naphthalene	0.916	0.990	92	57-135
Hexachlorobutadiene	0.870	0.990	88	50-150

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

UUU42

Polynuclear Aromatic Hydrocarbons Method 8270C SIM

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

emple Matrix:

Sludge

Service Request: K2104103

Date Collected: 06/11/2001 **Date Received:** 06/12/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

CB-2

Lab Code:

K2104103-001

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: mg/Kg Basis: Dry

Level: Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND		490	5	06/21/01	06/29/01	KWG0103517	
Aniline	ND	U	250	5	06/21/01	06/29/01	KWG0103517	
Bis(2-chloroethyl) Ether	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
Phenol	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
2-Chlorophenol	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
1,3-Dichlorobenzene	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
1,4-Dichlorobenzene	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
1,2-Dichlorobenzene	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
Benzyl Alcohol	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
Bis(2-chloroisopropyl) Ether	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
2-Methylphenol	ND		82	5	06/21/01	06/29/01	KWG0103517	
tachloroethane	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
N-Nitrosodi-n-propylamine	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
4-Methylphenol†	ND		82	5	06/21/01	06/29/01	KWG0103517	
Nitrobenzene	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
Isophorone	ND		82	5	06/21/01	06/29/01	KWG0103517	
2-Nitrophenol	ND		82	5	06/21/01	06/29/01	KWG0103517	
2,4-Dimethylphenol	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
Bis(2-chloroethoxy)methane		U	82	5	06/21/01	06/29/01	KWG0103517	
2,4-Dichlorophenol	ND		82	5	06/21/01	06/29/01	KWG0103517	
Benzoic Acid	ND	U	490	5	06/21/01	06/29/01	KWG0103517	
1,2,4-Trichlorobenzene	ND		82	5	06/21/01	06/29/01	KWG0103517	
Naphthalene	270		82	5	06/21/01	06/29/01	KWG0103517	
4-Chloroaniline	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
Hexachlorobutadiene		U	82	5	06/21/01	06/29/01	KWG0103517	
4-Chloro-3-methylphenol	ND		82	5	06/21/01	06/29/01	KWG0103517	
2-Methylnaphthalene	1000	D	82	5	06/21/01	06/29/01	KWG0103517	
Hexachlorocyclopentadiene	ND	_	82	5	06/21/01	06/29/01	KWG0103517	· · · · · ·
2,4,6-Trichlorophenol	ND		82	5	06/21/01	06/29/01	KWG0103517	
2,4,5-Trichlorophenol	ND	U	82	5	06/21/01	06/29/01	KWG0103517	
2-Chloronaphthalene	ND		82	5	06/21/01	06/29/01	KWG0103517	_
2-Nitroaniline	ND		490	5	06/21/01	06/29/01	KWG0103517	
Acenaphthylene	ND		82	5	06/21/01	06/29/01	KWG0103517	
Dimethyl Phthalate	ND		82	5	06/21/01	06/29/01	KWG0103517	
Dinitrotoluene	ND	U	82	5	06/21/01	06/29/01	KWG0103517	

Comments:

Printed 07/03/2001 13:07:08 Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sludge

Service Request: K2104103

Date Collected: 06/11/2001

Date Received: 06/12/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

CB-2

Lab Code:

K2104103-001

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: mg/Kg Basis: Dry

Level: Low

Analyte Name Res	alt (Q M	IRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Acenaphthene	97]	D	82	5	06/21/01	06/29/01	KWG0103517	
3-Nitroaniline	ID I	U 4	190	5	06/21/01	06/29/01	KWG0103517	
2,4-Dinitrophenol	D I	U 4	190	5	06/21/01	06/29/01	KWG0103517	
Dibenzofuran 2	2 0 l	D :	82	5	06/21/01	06/29/01	KWG0103517	
4-Nitrophenol	D I	U 4	90	5	06/21/01	06/29/01	KWG0103517	
2,4-Dinitrotoluene	DI	U :	82	5	06/21/01	06/29/01	KWG0103517	
Fluorene 2	3 0 1	D :	82	5	06/21/01	06/29/01	KWG0103517	
4-Chlorophenyl Phenyl Ether N	D (U 8	82	5	06/21/01	06/29/01	KWG0103517	
Diethyl Phthalate	DI	U 8	82	5	06/21/01	06/29/01	KWG0103517	
4-Nitroaniline	DU	U 4	90	5	06/21/01	06/29/01	KWG0103517	
2-Methyl-4,6-dinitrophenol	D U	U 4	90	5	06/21/01	06/29/01	KWG0103517	
	D	U 8	32	5	06/21/01	06/29/01	KWG0103517	
4-Bromophenyl Phenyl Ether	DU	U 8	32	5	06/21/01	06/29/01	KWG0103517	
Hexachlorobenzene N	D (U 8	32	5	06/21/01	06/29/01	KWG0103517	
Pentachlorophenol N	DU	U 4	90	5.	06/21/01	06/29/01	KWG0103517	
Phenanthrene 3	70 I	D 6	32	5	06/21/01	06/29/01	KWG0103517	
	D (U 8	32	5	06/21/01	06/29/01	KWG0103517	
	D (32	5	06/21/01	06/29/01	KWG0103517	
Fluoranthene	D (U 8	32	5	06/21/01	06/29/01	KWG0103517	
	D (U 8	32	5	06/21/01	06/29/01	KWG0103517	
	D (U 8	32	5	06/21/01	06/29/01	KWG0103517	
3,3'-Dichlorobenzidine	D (J 4	90	5	06/21/01	06/29/01	KWG0103517	
	D (J 8	32	5	06/21/01	06/29/01	KWG0103517	
•	Dι	IJ 8	32	5	06/21/01	06/29/01	KWG0103517	
Bis(2-ethylhexyl) Phthalate	D (J 8	32	5	06/21/01	06/29/01	KWG0103517	
Di-n-octyl Phthalate N	D (J 8	32	5	06/21/01	06/29/01	KWG0103517	
	D (J 8	32	5	06/21/01	06/29/01	KWG0103517	
Benzo(k)fluoranthene N	D U	J 8	32	5	06/21/01	06/29/01	KWG0103517	
Benzo(a)pyrene N	D L		32	5	06/21/01	06/29/01	KWG0103517	
· · · · · · · · · · · · · · · · · · ·	D (32	5	06/21/01	06/29/01	KWG0103517	
Dibenz(a,h)anthracene N	D L	J 8	32	5	06/21/01	06/29/01	KWG0103517	
Benzo(g,h,i)perylene N	D L	J 8	32	5	06/21/01	06/29/01	KWG0103517	

Comments:

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Sludge

Service Request: K2104103

Date Collected: 06/11/2001

Date Received: 06/12/2001

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

CB-2

Lab Code:

K2104103-001

Units: mg/Kg

Basis: Dry

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	87	26-97	06/29/01	Acceptable
Phenol-d6	96	37-109	06/29/01	Acceptable
Nitrobenzene-d5	111	35-116	06/29/01	Acceptable
2-Fluorobiphenyl	172	45-109	06/29/01	Outside Control Limits
2,4,6-Tribromophenol	87	19-131	06/29/01	Acceptable
Terphenyl-d14	141	48-140	06/29/01	Outside Control Limits

+ Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

00045

Printed 07/03/2001 13:07:08 Merged

Form 1A - Organic

Page 3 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Soil

Service Request: K2104103

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by G.C/MS

Sample Name: Lab Code:

Method Blank KWG0103517-4

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: mg/Kg Basis: Dry

Level: Low

Analyte Name	Result	•	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
N-Nitrosodimethylamine	ND	_	2.0		06/21/01	06/22/01	KWG0103517	HULE
Aniline	ND ND		2.0 1.0	1 1	06/21/01	06/22/01	KWG0103517	
Bis(2-chloroethyl) Ether	ND		0.33	1	06/21/01	06/22/01	KWG0103517	
Phenol	ND					06/22/01	KWG0103517	
2-Chlorophenol	ND ND		0.33 0.33	1 1	06/21/01 06/21/01	06/22/01	KWG0103517	
1,3-Dichlorobenzene	ND ND		0.33	1	06/21/01	06/22/01	KWG0103517	
1,4-Dichlorobenzene			· · · · · · · · · · · · · · · · · · ·				KWG0103517	
1,2-Dichlorobenzene	ND ND		0.33 0.33	1	06/21/01 06/21/01	06/22/01 06/22/01	KWG0103517	
Benzyl Alcohol	ND ND		0.33	1	06/21/01	06/22/01	KWG0103517	
							KWG0103517	
Bis(2-chloroisopropyl) Ether	ND		0.33	1	06/21/01	06/22/01	KWG0103517 KWG0103517	
2-Methylphenol Hexachloroethane	ND ND		0.33 0.33	1 1	06/21/01 06/21/01	06/22/01 06/22/01	KWG0103517	
								_{
N-Nitrosodi-n-propylamine	ND		0.33	1	06/21/01	06/22/01	KWG0103517	
4-Methylphenol†	ND		0.33	1	06/21/01	06/22/01	KWG0103517	
Nitrobenzene	ND		0.33	1	06/21/01	06/22/01	KWG0103517	
Isophorone	ND		0.33	1	06/21/01	06/22/01	KWG0103517	
2-Nitrophenol	ND		0.33	1	06/21/01	06/22/01	KWG0103517	
2,4-Dimethylphenol	ND ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
Bis(2-chloroethoxy)methane	ND		0.33	1	06/21/01	06/22/01	KWG0103517	
2,4-Dichlorophenol	ND		0.33	1	06/21/01	06/22/01	KWG0103517	
Benzoic Acid	ND	U	2.0	1	06/21/01	06/22/01	KWG0103517	
1,2,4-Trichlorobenzene	ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
Naphthalene	ND		0.33	1	06/21/01	06/22/01	KWG0103517	
4-Chloroaniline	ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
Hexachlorobutadiene	ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
4-Chloro-3-methylphenol	ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
2-Methylnaphthalene	ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
Hexachlorocyclopentadiene	ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
2,4,6-Trichlorophenol	ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
2,4,5-Trichlorophenol	ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
2-Chloronaphthalene	ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
2-Nitroaniline	ND	U	2.0	1	06/21/01	06/22/01	KWG0103517	
Acenaphthylene	ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
Dimethyl Phthalate	ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
2,6-Dinitrotoluene	ND	U	0.33	1	06/21/01	06/22/01	KWG0103517	
Comments:							000	46

Printed 07/03/2001 13:07:14

Merged

Form 1A - Organic

Page 1 of 3

Analytical Results

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)/P253-104

Soil

Service Request: K2104103

Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Lab Code:

Method Blank KWG0103517-4

Extraction Method: EPA 3541 **Analysis Method:**

8270C

Units: mg/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Acenaphthene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
3-Nitroaniline	ND U	2.0	1	06/21/01	06/22/01	KWG0103517	
2,4-Dinitrophenol	ND U	2.0	1	06/21/01	06/22/01	KWG0103517	
Dibenzofuran	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
4-Nitrophenol	ND U	2.0	1	06/21/01	06/22/01	KWG0103517	
2,4-Dinitrotoluene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Fluorene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
4-Chlorophenyl Phenyl Ether	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Diethyl Phthalate	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
4-Nitroaniline	ND U	2.0	1	06/21/01	06/22/01	KWG0103517	
2-Methyl-4,6-dinitrophenol	ND U	2.0	1	06/21/01	06/22/01	KWG0103517	
itrosodiphenylamine	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
4-Bromophenyl Phenyl Ether	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Hexachlorobenzene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Pentachlorophenol	ND U	2.0	1	06/21/01	06/22/01	KWG0103517	
Phenanthrene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Anthracene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Di-n-butyl Phthalate	ND U	0.33	l	06/21/01	06/22/01	KWG0103517	
Fluoranthene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Pyrene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Butyl Benzyl Phthalate	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
3,3'-Dichlorobenzidine	ND U	2.0	1	06/21/01	06/22/01	KWG0103517	
Benz(a)anthracene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Chrysene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Bis(2-ethylhexyl) Phthalate	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Di-n-octyl Phthalate	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Benzo(b)fluoranthene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Benzo(k)fluoranthene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Benzo(a)pyrene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Indeno(1,2,3-cd)pyrene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Dibenz(a,h)anthracene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	
Benzo(g,h,i)perylene	ND U	0.33	1	06/21/01	06/22/01	KWG0103517	

Comments:

00047

Analytical Results

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Soil

Service Request: K2104103

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Method Blank

Lab Code:

KWG0103517-4

Units: mg/Kg

Basis: Dry

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	71	26-97	06/22/01	Acceptable
Phenol-d6	84	37-109	06/22/01	Acceptable
Nitrobenzene-d5	96	35-116	06/22/01	Acceptable
2-Fluorobiphenyl	89	45-109	06/22/01	Acceptable
2,4,6-Tribromophenol	89	19-131	06/22/01	Acceptable
Terphenyl-d14	92	48-140	06/22/01	Acceptable

†Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

QA/QC Report

Client: Project: GeoTrans, Inc.

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Surrogate Recovery Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541

Analysis Method:

8270C

Service Request: K2104103

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3	Sur4	<u>Sur5</u>	Sur6
CB-2	K2104103-001	87D#	96 D #	111 D #	172 D #	87D#	141 D #
Method Blank	KWG0103517-4	71	84	96	89	89	92
Batch QC	K2104218-026	32	40	45	51	72	89
Batch QCMS	KWG0103517-1	76	84	91	88	92	106
Batch QCDMS	KWG0103517-2	71	80	90	87	93	100
Lab Control Sample	KWG0103517-3	7 7	84	93	86	92	101

Surrogate Recovery Control Limits (%)

,	<u> </u>		
Sur1 = 2-Fluorophenol	26-97	Sur5 = 2,4,6-Tribromophenol	19-131
Sur2 = Phenol-d6	37-109	Sur6 = Terphenyl-d14	48-140
Sur3 = Nitrobenzene-d5	35-116	• •	
Sur4 = 2-Fluorobiphenyl	45-109		

lts flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

0111)49

Printed 07/03/2001 13:07:43

Form 2A - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Soil

Service Request: K2104103

Date Extracted: 06/21/2001

Date Analyzed: 06/22/2001

Matrix Spike/Duplicate Matrix Spike Summary Semi-Volatile Organic Compounds by GC/MS

Sample Name:

Batch QC

Lab Code:

K2104218-026

Extraction Method:

EPA 3541

Analysis Method:

8270C

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG0103517

	Sample	Batch QCMS KWG0103517-1 Matrix Spike			Batch QCDMS KWG0103517-2 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Phenol	ND	2.94	3.45	85	2.89	3.45	84	51-102	2	40
2-Chlorophenol	ND	2.84	3.45	82	2.91	3.45	84	54-100	2	40
1,4-Dichlorobenzene	ND	2.78	3.45	81	2.67	3.45	78	47-98	4	40
N-Nitrosodi-n-propylamine	ND	3.27	3.45	95	3.30	3.45	96	48-109	1	40
1,2,4-Trichlorobenzene	ND	2.73	3.45	79	2.77	3.45	80	52-102	2	40
4-Chloro-3-methylphenol	ND	3.04	3.45	88	3.01	3.45	87	68-105	1	40
Acenaphthene	ND	3.07	3.45	89	2.90	3.45	84	40-124	6	40
4-Nitrophenol	ND	2.87	3.45	83	3.04	3.45	88	59-115	6	40
2,4-Dinitrotoluene	ND	3.27	3.45	95	3.24	3.45	94	66-123	1	40
Pentachlorophenol	ND	3.01	3.45	87	3.12	3.45	91	49-105	4	4
Pyrene	ND	2.94	3.45	85	2.79	3.45	81	35-145	. 5	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00050

SuperSet Reference: RR8733

Printed 07/03/2001 13:07:46

Form 3A - Organic

Page 1 of 1

QA/QC Report

Client:

GeoTrans, Inc.

Project: Sample Matrix: Former Axelson Facility (Site #2067)/P253-104

Service Request: K2104103

Date Extracted: 06/21/2001

Date Analyzed: 06/22/2001

Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541

Analysis Method:

8270C

Units: mg/Kg Basis: Dry

Level: Low

Extraction Lot: KWG0103517

Lab Control Sample KWG0103517-3

	Lab	Control Spil	ke	%Rec
Analyte Name	Result	Expected	%Rec	Limits
N-Nitrosodimethylamine	3.08	3.33	93	42-118
Aniline	2.42	3.33	73	21-98
Bis(2-chloroethyl) Ether	2.88	3.33	87	38-110
Phenol	2.93	3.33	88	51-98
2-Chlorophenol	2.86	3.33	86	51-101
1,3-Dichlorobenzene	2.74	3.33	82	39-110
1,4-Dichlorobenzene	2.72	3.33	82	36-105
1,2-Dichlorobenzene	2.81	3.33	85	41-107
Benzyl Alcohol	3.11	3.33	94	59-103
Bis(2-chloroisopropyl) Ether	3.00	3.33	90	38-110
ethylphenol	2.87	3.33	86	56-101
kachloroethane	2.54	3.33	76	39-107
N-Nitrosodi-n-propylamine	3.34	3.33	100 *	54-96
4-Methylphenol	2.88	3.33	87	53-99
Nitrobenzene	2.98	3.33	90	51-106
Isophorone	3.07	3,33	92	62-102
2-Nitrophenol	3.00	3.33	90	61-102
2,4-Dimethylphenol	2.77	3.33	83	53-99
Bis(2-chloroethoxy)methane	2.79	3,33	84	54-104
2,4-Dichlorophenol	2.77	3.33	83	61-103
Benzoic Acid	2.77	3.33	83	16-128
1,2,4-Trichlorobenzene	2.69	3.33	81	50-100
Naphthalene	2.76	3.33	83	53-103
4-Chloroaniline	2.88	3.33	87	19-112
Hexachlorobutadiene	2.70	3.33	81	48-111
4-Chloro-3-methylphenol	3.14	3.33	94	64-112
2-Methylnaphthalene	2.65	3.33	80	57-95
Hexachlorocyclopentadiene	2.53	3.33	76	14-118
2,4,6-Trichlorophenol	3.03	3.33	91	67-104
2,4,5-Trichlorophenol	3.05	3.33	92	67-105
2-Chloronaphthalene	2.81	3.33	84	59-99
2-Nitroaniline	3.31	3.33	99	47-104
Acenaphthylene	2.96	3.33	89	60-105
Dimethyl Phthalate	2.91	3.33	88	68-102
2,6-Dinitrotoluene	3.24	3.33	97	69-107

ts flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

GeoTrans, Inc.

Project:

Former Axelson Facility (Site #2067)/P253-104

Sample Matrix:

Soil

Service Request: K2104103

Date Extracted: 06/21/2001

Date Analyzed: 06/22/2001

Lab Control Spike Summary Semi-Volatile Organic Compounds by GC/MS

Extraction Method: EPA 3541 **Analysis Method:**

8270C

Units: mg/Kg Basis: Dry

Level: Low

Extraction Lot: KWG0103517

Lab Control Sample KWG0103517-3

	Lab	Control Spil	ke	%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Acenaphthene	2.87	3.33	86	57-108	
3-Nitroaniline	3.14	3.33	94	21-133	
2,4-Dinitrophenol	2.86	3.33	8 6	41-119	
Dibenzofuran	2.83	3.33	85	65-99	
4-Nitrophenol	2.98	3.33	89	55-121	
2,4-Dinitrotoluene	3.13	3.33	94	63-123	
Fluorene	2.82	3.33	85	63-109	
4-Chlorophenyl Phenyl Ether	3.05	3.33	92	63-101	
Diethyl Phthalate	2.95	3.33	89	66-113	
4-Nitroaniline	3.08	3.33	93	60-116	
2-Methyl-4,6-dinitrophenol	3.23	3.33	97	61-114	
N-Nitrosodiphenylamine	3.03	3.33	91	69-109	
4-Bromophenyl Phenyl Ether	3.05	3.33	92	69-105	
Hexachlorobenzene	3.06	3.33	92	68-112	•
Pentachlorophenol	3.00	3.33	90	58-110	
Phenanthrene	2.83	3.33	85	62-102	,
Anthracene	2.92	3.33	88	68-107	
Di-n-butyl Phthalate	3.07	3.33	92	67-107	
Fluoranthene	2.96	3.33	89	64-105	
Pyrene	2.80	3.33	84	53-123	
Butyl Benzyl Phthalate	3.09	3.33	93	55-119	
3,3'-Dichlorobenzidine	3.31	3.33	100	38-124	
Benz(a)anthracene	3.14	3.33	94	64-111	
Chrysene	2.97	3.33	89	72-99	
Bis(2-ethylhexyl) Phthalate	3.06	3.33	92	57-117	
Di-n-octyl Phthalate	3.19	3.33	96	47-136	
Benzo(b)fluoranthene	3.09	3.33	93	67-118	
Benzo(k)fluoranthene	2.84	3.33	85	63-117	
Benzo(a)pyrene	3.12	3.33	94	69-113	
Indeno(1,2,3-cd)pyrene	3.41	3.33	102	55-124	
Dibenz(a,h)anthracene	3.65	3.33	110	68-124	
Benzo(g,h,i)perylene	3.26	3.33	98	60-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00052

Page 2 of 2

APPENDIX D

2001 Soil Boring and Monitor Well Logs

Cool	Γ	
Geo	irans,	Inc.

SOIL BORING LOG

PROD LOCA DRILL SAME DEPT STAT LOGG REMA	ECT NATION LING MIPLING MPLING	AME 27 ETHOR METHOR ATUR ER DE Soi	O3 Wes O Ail OD ATED SO EPTH (ft) anya Ak il boring.	mer t M r Ro Gra OIL	Axelso arland otary b (ft)	n Fac	ility (Si	BORING NUMBER SB-3 DATE DRILLING BEGAN 6/5/2001 DATE DRILLING ENDED 6/5/2001 NORTHING EASTING GROUND SURFACE ELEVATION (ft, N BOREHOLE DIAMETER 8" BOREHOLE DEPTH (feet) 35	ISL)
PID (ppm)	BLOW	RECOVERY (ft)	SAMPLE ID	SAMPLE DEPTH	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION (% Gravel, Sand, Silt, Clay)	BOREHOLE ABANDONMENT
3.9		SI	B-3 (5')	G				SANDY SILT: Brown (10YR 4/3); (0,10,90,0); fine, poorly graded sands; dry to slightly damp. No odor. Light brown mottling present at approximately 14 feet.	
2.0		SE	3-3 (10')	G	 10 				
3.0			3-3 (15') 3-3 (20')	G	-15- 				Neat Cement
2.2			-3 (25')	G	-20			Hard pan layer present. SILTY SAND: Very pale brown (10YR 8/2); (0,75,25,0); fine, poorly graded sands; dry. No odor. Small rock fragments present.	
SBLOG BZKHOBBS.GPJ LAEWNNO1.GDT 9/6/01 74 79 8		SB	-3 (30')	G	-30-	SP		SAND: Very pale brown (10YR 8/4) to Red (2.5YR 6/6); (0,100,0,0); fine, poorly graded sands; slightly damp to moist. Mild petroleum odor.	
9 44.5 90 44.5		SB	-3 (35')	3	-35				

Signature of Geologist

Signature of Reviewer

Coot		
Geolrans	S , Inc.	•

SOIL BORING LOG

PROJECT NAME				11 CL15, Inc.								
PROJECT NAME	L 1			P718	-101			BORING NUMBER	_SB-4	· · · · · · · · · · · · · · · · · · ·		
DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD Grap DRILLING METHOD DRILLING M				Forme	Axels	on Fac	ility (Si	te No. 2067) DATE DRILLING BEGAN				
DRILLING METHOD												
SAMPLING METHOD Grab EASTING												
DEPTH TO SATURATED SOIL (ft) GROUND SURFACE ELEVATION (ft, MISL)	l l											
STATIC WATER DEPTH (#0) SOREHOLE DIAMETER STATIC WATER DEPTH (#0) 35 SOREHOLE DEPTH (#0) 3												
Condition Section Se												
REMARKS Sell boring Sell	1											
SB-4 (10) SB-4 (10) SB-4 (20) SB-4												
SB-4 (10) G = 10 - SB-4 (15) G = 25 - SANDY GRAVEL: Brown (10YR 8/2); (0,10,90,10); fine, poorly graded sands; dry. No odor. SB-4 (15) G = 25 - SANDY GRAVEL: Brown (10YR 8/2); (0,75,25,0); fine, poorly graded sands; dry. Mild petroleum odor. SB-4 (20) G = 20 - SANDY GRAVEL: Brown (10YR 8/3); (90,10,0,0); medium, well graded, angular gravel, fine sands; dry. SB-4 (25) G = 25 - SAND: Very pale brown (10YR 8/4) to Reddish brown (5YR 6/4); (0,100,0); fine, poorly graded sands; slightly damp to moist. Mild petroleum odor.	ļ	<u> </u>				1	7					
2.6 SB-4 (5) C 5 SB-4 (10) C 10 SB-4 (10) C 10 SB-4 (10) C 10 SB-4 (20) C 20 SANDY GRAVEL: Brown (10YR 8/2); (9.75.25.0); fine, poorly graded sands; dry. Mild petroleum odor. SANDY GRAVEL: Brown (10YR 8/3); (90,10,0,0); medium, well graded, angular gravet, fine sands; dry. SB-4 (25) C 25 SANDY CRAVEL: Brown (10YR 8/4) to Reddish brown (5YR 6/4); (0,100,0,0); fine, poorly graded sands; slightly damp to moist. Mild petroleum odor.	PID (ppm)	BLOW	RECOVERY (ft) SAMPLE ID.	SAMPLE DEPTH	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG			BOREHOLE ABANDONMENT		
SB-4 (20') SB-4 (20') SB-4 (20') SB-4 (20') SB-4 (25') SB-4 (30')				G				(10YR 8/2); (0,10,90,0); fine, poorly graded sands	vn s; dry. No	Neat Cement		
SAND: Very pale brown (10YR 8/4) to Reddish brown (5YR 6/4); (0,100.0,0); fine, poorly graded sands; slightly damp to moist. Mild petroleum odor. SB-4 (30') SB-4 (30') SB-4 (30') SB-4 (30')	39.4		SB-4 ((15') G	 15 	SM		SILTY SAND: Very pale brown (10YR 8/2); (0,75,7 fine, poorly graded sands; dry. Mild petroleum odd	25,0); or.			
1.9 SB-4 (25') SB-4 (30') SB-4 (3	10.9		SB-4 (20') G	20		0.0	SANDY GRAVEL: Brown (10YR 4/3); (90,10,0,0); medium, well graded, angular gravel; fine sands;	dry.			
			SB-4 (25') G				(5YR 6/4); (0,100,0,0); fine, poorly graded sands;	own slightly			
8 60.3 SB-4 (35') G	BZRHOBBS.GPJ LAEWIND TO 100 PT		SB-4 (30') G	-30-	SP						
평 1 35 1 35 1 3	60.3		SB-4 (35") G	- -35-							

Signature of Geologist

Signature of Reviewer

	Geo	rans, Inc.
--	-----	------------

\	PROJ	ECT NI	JMBER	P71	8-101				WELL NUMBER	MW-4				
	1	ECT NA				on Fac	ility (S	ite No. 2067)						
	LOCA		_											
	DRILL	ING ME												
	Į.		ETHOD		rab				TACTIVE 00040T 000					
	DEPT	H TO S	ATURATE	D SOI	L (ft)	37			GROUND SURFACE ELEVA	ATION (ft, M	SL) 3625.11			
	STAT	IC WAT									74			
		ED BY							CASING DIAMETER/TYPE					
	REMA	RKS	Conve	ted fro	m soil l	boring	SB-1							
	PID (ppm)	BLOW	RECOVERY (ft) SAMPLE ID.	SAMPI F DEPTH	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG		OLOGIC DESCRIPTION Gravel, Sand, Silt, Clay)		WELL DIAGRAM			
	5.7		SB-1	(5')				(0.20.80.0); fine to m	(10YR 8/1) to Gray (10YR 6/1 nedium, poorly graded sands; mild to mild petroleum hydroc	drv to				
	190		SB-1 (10')	- - 10-	SM					Neat Cement			
•	95.9		SB-1 (15')	- - 15- - - -						2" SCH 40 PVC			
	236.3		SB-1 (20') <u>G</u>	20-	-		Hard pan layer prese	ent.					
	142.2		SB-1 (25') <u>C</u>	25	-		SAND: Very pale bro (10YR 6/4); (0,0,100 damp to moist. Mild	wn (10YR 7/3) to Light brown ,0); fine, poorly graded sands; petroleum odor.	slightly	Bentonite			
	37.3		SB-1 (30') C	30-						Silica sand			
NN01.GDT 9/6/01	198		SB-1 (35') G	35-	SP				立				
SZRHOBBS.GPJ LAEWNN01.GDT 9/6/01	20		SB-1 (10')	40						0.020" Slotted PVC Screen			
MWLOG BZRH	10.1		SB-1 (4	I5') G	 -45-						T.D. = 45'			

\sim 7		
160	Irans	
SCO	irans	Inc
4		, liic.

h	PROJ	ECT N	JME	BER P	718	l-101					_MW-5			
	PROJ	ECT NA	AME	For	mei	Axelso	on Fac	ility (S		DATE DRILLING BEGAN	6/5/2001			
	LOCA	TION	_	2703 We	st M	larland	Boule	vard		DATE DRILLING ENDED	6/6/2001	······		
	DRILL	ING M	ETH	0D <u>A</u>	ir R	otary				NORTHING 618829.99	94			
	SAMF	LING N	ΛEΤ	HOD _	Gra	ab								
	i									GROUND SURFACE ELEVATION (ft, MSL) 3624.80				
										TOC ELEVATION (ft, MSL)		46		
		SED BY	•	Tanya A						CASING DIAMETER/TYPE	2"	 		
	REMA	ARKS	_	Converted	froi	m soil t	oring	SB-2						
	PID (ppm)	BLOW	RECOVERY (ft)	SAMPLE ID.	SAMPLE DEPTH	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC	LITH	OLOGIC DESCRIPTION Gravel, Sand, Silt, Clay)		WELL DIA	GRAM	
	0.0			SB-2 (5')	G	5			SANDY SILT: Very p fine sands; dry. No o	ale brown (10YR 8/2); (0,10,9 odor.	90,0);			
	0.5			SB-2 (10')	G	 -10 							Neat Cement	
	0.0			SB-2 (15')	G	 15 	SP		SAND: Very pale bro sands, poorly graded	wn (10YR 8/2); (0,0,100,0); fi ; dry.	ne		2" SCH 40 PVC	
	4.4			SB-2 (20')	G				Hard pan layer prese					
	1.5			SB-2 (25')	G	 -25	SM		fine, poorly graded sa				3entonite	
	67.8			SB-2 (30')	G	 -30-	٠		SAND: Light reddish (7.5YR 6/4); (0,100,0 damp to moist. Very	brown (5YR 6/4) to Light brov ,0); fine, poorly graded sands mild petroleum odor.	vn s; slightly	\$ \\ \frac{1}{2} \\ \	ilica sand	
MWLOG BZRHOBBS.GPJ LAEWINIO1.GDT 9/6/01	62.2			SB-2 (35')	G	 - 35- 	SP				立		.020" Slotted	
HOBBS.GPJ LAEV	13.9			SB-2 (40')	G	 40 						P	VC Screen	
MWLOG BZRI	3.1		9	SB-2 (45')	G								T.D. = 44'	

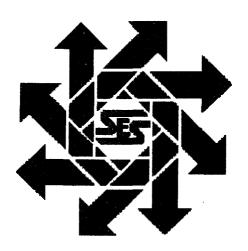
i	cuirane .
	eolrans, Inc.

			4					· — ·	ullo, inc	•			,,,		
\	PROJ	ECT N	JME	BER F						WELL NUMBER MW-6					
	PROJ	ECT N	AME	<u>For</u>	mer	Axelso	n Fac	ility (S	te No. 2067)						
	LOCA	TION		2703 We	st M	arland	Boule	vard		DATE DRILLING ENDED	6/6/2001				
	DRILLING METHOD Air Rotary									NORTHING 618746.77	8				
	SAMF	LING N	/ET	HOD	Gra	ab				EASTING 899124.996					
	DEPT	н то ѕ	ΑT	JRATED S	OIL	. (ft)	37			GROUND SURFACE ELEVA	ATION (ft, MS	SL) 3624.34			
	STAT	IC WAT	ER	DEPTH (f	t)	34.63				TOC ELEVATION (ft, MSL)	3623.9	97	· · · · · · · · · · · · · · · · · · ·		
	LOGO	SED BY		Tanya A	kke	rman				CASING DIAMETER/TYPE	2"				
	REM/	ARKS	(Converted	fro	n soil b	oring	SB-6							
	PID (ppm)	BLOW	RECOVERY (ft)	SAMPLE ID.	SAMPLE DEPTH	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG	LITH((% C	OLOGIC DESCRIPTION Gravel, Sand, Silt, Clay)		WELL DIAG	GRAM		
	2.8			SB-6 (5')	G	- 5 -			SANDY SILT: Very p (10YR 8/1) to Gray (graded sands; dry. N	ale brown (10YR 7/2) to Whiti 10YR 6/1); (0,25,75,0); fine, p lo odor.	e oorly				
	3.2			SB-6 (10')) G	 10 						N	leat Cement		
)	1.9	- III		SB-6 (15')	G	15 15 						2	" SCH 40 PVC		
	1.3			SB-6 (20')	G	- 20 			Hard pan layer prese	nt.					
	1.8			SB-6 (25')	G	- 25- -	<u>.</u>		SAND: Pink (7 5YR 7	(/4) to Very pale brown (10YR	7/3)·	ДДД ДДД ДДД ДДД ДДД ДДД	entonite		
	1.8			SB-6 (30')	G	- - -30- -			(0,0,100,0); fine, poor damp. No odor.	rly graded sands; dry to slight	ly		ilica sand		
VNN01.GDT 9/6/01	2.6			SB-6 (35')	G	 -35- 	SP				Δ	0	.020" Slotted		
BZRHOBBS.GPJ LAEWNN01.GDT 9/6/01	2.0			SB-6 (40')	G	-40 40							VC Screen		
MWLOG BZR	2.3			SB-6 (45')	G	-45						The state of the s	.D. = 45'		

Signature of Geologist

Signature of Reviewer

Cool	r	
Geo	irans,	Inc.


		4				1	L (4113 , Inc	· VVC	ELL CO	NSTRUCTION LUG		
PROJ	ECT N	JMBER	<u>P</u>	718	-101				WELL NUMBER	MW-7			
PROJ	PROJECT NAME Former Axelson Facility (Site No. 2067)												
LOCA	TION	27	03 Wes	st M	larland	Boulev	<u>/ard</u>		DATE DRILLING ENDED	6/6/2001			
DRILL	ING M	ETHOD	Ai	ir R	otary				NORTHING 618911.7	86			
SAMP	LING	METHO	a	Gra	ab				EASTING 899117.644				
DEPT	н то ѕ	ATUR/	ATED S	OIL	. (ft)	37			GROUND SURFACE ELEV	ATION (ft, MS	SL) <u>3625.32</u>		
STAT	IC WAT	ER DE	PTH (ft	:)	35.63		-	·····	TOC ELEVATION (ft, MSL)	3625.1	1		
LOGG	ED BY		anya Al	kkeı	rman				CASING DIAMETER/TYPE	_2'			
REMA	RKS	Cor	verted	fror	n soil b	oring S	SB-5			·			
PID (ppm)	BLOW	RECOVERY (ft)	SAMPLE ID.	SAMPLE DEPTH	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG		DLOGIC DESCRIPTION Gravel, Sand, Silt, Clay)		WELL DIAGRAM		
2.1		SE	3-5 (5')	G	 - 5			(85,15,0,0); fine sand No odor.	tht yellowish brown (10YR 6/ds, medium, sub-rounded gradule)	avel; dry.			
2.3		SB	-5 (10')	G	 -10-			fine, poorly graded sa	ands; dry. No odor.		Neat Cement		
2.2		SB	-5 (15')	G	 - 15 						2" SCH 40 PVC		
1.9		SB	-5 (20')	G	- 20 -			SAND: Very pale brow (7.5YR 6/6); (0,100,0, slightly damp. No ode (21-23') Hard pan laye		llow s; dry to			
2.0		SB	-5 (25')	G	- 25 			(21-25) Halu pali layi	er present.		Bentonite		
1.9		SB	5 (30')	G	- -30-	SP					Silica sand		
3.2		SB-	5 (35')	G	- - -35-	i				₽.			
2.3		SB-	5 (40')	G	-40-					=	0.020" Slotted PVC Screen		
2.3		SB-	5 (45')	G	-45						T.D. ≈ 45'		

APPENDIX E

2001 SESI NORM Survey and Site Investigation Report

HSI GEOTRANS NORM Survey and Site Investigation 2703 West Marland Hobbs, Lea County, New Mexico

August 23, 2001

Prepared for:

HSI GEOTRANS 3035 Prospect Park Drive Suite 40 Rancho Cordova, California 95670

By:

Safety & Environmental Solutions, Inc. 703 E. Clinton, Suite 102 Hobbs, New Mexico 88240 (505) 397-0510

TABLE OF CONTENTS

I.	Background	1					
П.	Work Performed	1					
Ш.	Conclusions and Recommendations	2					
IV.	Report Figures	2					
V.	Report Appendices						
	LIST OF FIGURES						
Figur	re 1 – Vicinity Map	2					
Figui	re 2 – Site Map – Borehole Locations	2					
_	ra 3 Sita Man _ Survey Pasults	1					

I. Background

In June 2001 Safety & Environmental Solutions, Inc. (SESI) was engaged by HSI GEOTRANS to perform a Naturally Occurring Radioactive Material (NORM) survey and site investigation at the old Axelson yard located at 2703 West Marland in Hobbs, New Mexico. (Figure 1).

Previously the subject area was used as an oil well pump shop and the pump barrels may have contained NORM scale, which may have contaminated the yard during the cleaning and storage process.

The purpose of the investigation was to determine the extent, if any, of NORM contamination in the yard of the subject property.

II. Work Performed

Soil Boring and Sampling

Six (6) borehole locations were provided by GEOTRANS. (Figure 2) SESI was to take samples at 1, 2 and 3ft. intervals. The 1ft. samples were to be sent to a laboratory and analyzed for NORM content. The remaining samples were to be archived for later analysis if required.

Sampling was completed on June 20, 2001, using SESI personnel from Hobbs. A Giddings trailer-mounted drill, Model 25-SCT was used to bore test holes with a 4-in. continuous auger. Samples from the test holes generally were collected in thin-walled sampling tubes using SOPs found in Environmental Protection Agency, 1984, Characterization of Hazardous Waste Site - A Methods Manual: Vol. II. Initially, soil samples were collected at 1,2, and 3 ft. intervals. At the completion of drilling, the boreholes were backfilled with drill cuttings.

The 1 ft. samples were delivered along with Chain of Custody to American Radiation Services, 1726 Wooddale Ct., Baton Rouge, Louisiana 70806 on June 22, 2001for analysis. Copies of the analytical results are found in Appendix A. On August 22, 2001, SESI was instructed by GEOTRANS to send the 2 ft. and 3 ft. samples from borehole # 5 for analysis. Copies of the analytical results are found in Appendix B.

NORM Survey

On August 23, 2001, SESI personnel conducted a NORM survey of the unpaved portion of the yard at the subject property. The survey was conducted with a Ludlum Measurements Model 3 Survey Meter, serial # 155994 using a 44-2 probe, serial # RN013125. Ludlum Measurements calibrated the instrument on July 23, 2001. (Appendix B)

The unpaved portion of the yard at the subject property was surveyed on a 20 ft grid. The probe was passed over the ground at an approximate height of 2 inches and the readings recorded by the operator. The survey revealed only one area that exceeded the action level of 50 uR. That area is approximately 2 ft. X 2ft. in size and is located 43 ft. from the southwest corner of the building and 54 ft. from the east fence line. The reading for that area was 1150 uR. (Figure 3) No other areas were observed to have readings above the action level.

III. Conclusions and Recommendations

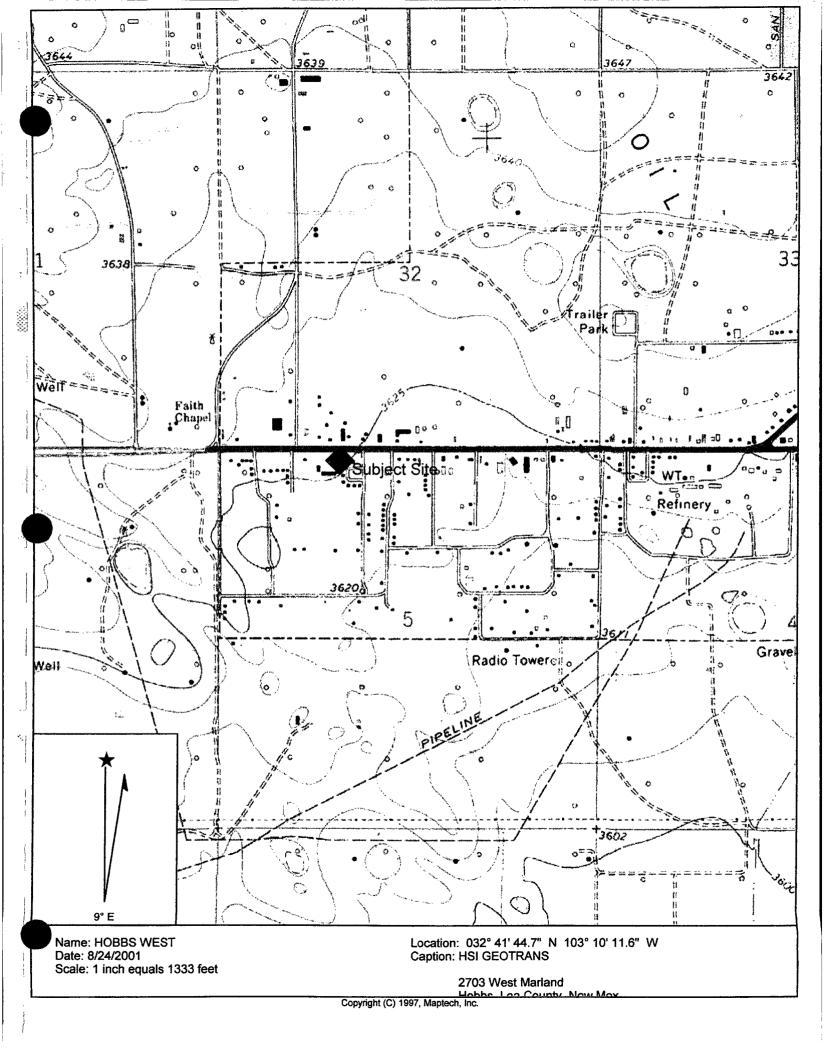
Results of the NORM survey suggest only one area of concern in the unpaved portion of the yard. SESI recommends that area be further investigated and/or the contaminated soil removed as soon as possible.

IV. Report Figures

Figure 1 – Vicinity Map

Figure 2 - Site Map - Borehole Locations

Figure 3 – Site Map – Survey Results


V. Report Appendices

Appendix A. Laboratory Analytical Reports – Bore Hole 1 – 6 1 ft.

Appendix B. Laboratory Analytical Reports - Bore Hole 5 2 ft. and 3 ft.

Appendix C. Credentials

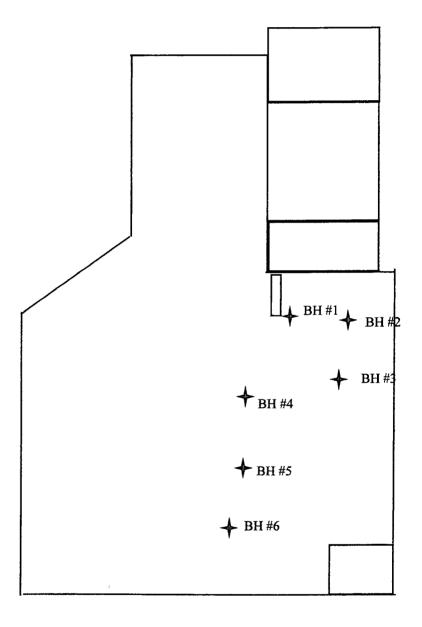

Figure 1. Vicinity Map

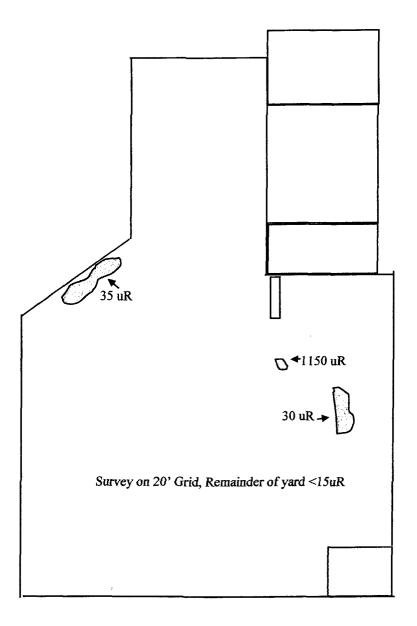
Figure 2. Site Map Borehole Locations

Marland

Not To Scale

HIS Geotrans

Former Axelson Building 2703 West Marland Hobbs, New Mexico



Safety & Environmental Solutions, Inc.

Figure 3. Site Map – Survey Results

Marland

Not To Scale

HIS Geotrans

Former Axelson Building 2703 West Marland Hobbs, New Mexico

Safety & Environmental Solutions, Inc.

Appendix A Laboratory Analytical Reports Bore Holes 1 –6 1 ft.

Appendix B Laboratory Analytical Reports Bore Hole 5 2ft. and 3 ft.

1726 Wooddale Court - Baton Rouge, Louisiana 70806

1 (800) 401-4277 • Fax (225) 927-6822

American Radiation Services, Inc.

Laboratory Analysis Report

Prepared For:

Safety & Environmental Solutions **Bob Allen** 703 East Clinton Hobbs, NM 88240

> Phone: 505-397-0510 Fax: 505-393-4388

pality Assurance Review

Danny L. Coleman **Laboratory Manager**

1726 Wooddale Court . Baton Rouge, Louisiana 70806

1 (800) 401-4277 • Fax (225) 927-6822

ARS Tracking Number:

ARS-01-1216

P.O. Number:

Verbal W/ Bob Allen

Client I.D.:

Bore Hole #5, 2'

ARS Sample I.D.:

ARS-01-5017

Date Sampled:

06/20/01

Date Received:

8/23/01

Time Sampled:

0730

Time Received:

0900

Type of Sample:

Solid

Date of Report:

8/23/01

Analysis Description	Analysis Result	Analysis Error +2 Sigma	Analysis Units	Analysis Result	Analysis Error +2 Sigma	Analysis Units	Analysis Test Method	Analysis Date & Time	Analysis Technician
Ra-226	40.22	3.46	pCi/gm	1.488	0.128	Bq/gm	EPA 901.1M	08/23/01 09:46	фr
Ra-228	1.52	0.45	pCi/gm	0.056	0.017	Bq/gm	EPA 901.1M	08/23/01 09:46	dr
Pb-210	4.80	1.66	pCi/gm	0.178	0.061	Bq/gm	EPA 901.1M	08/23/01 09:46	dr
Total Activity	129.36	N/A	pCi/gm	4.786	N/A	Bq/gm	EPA 901.1M	08/23/01 09:46	d r

Notes:

Quality Assurance Review

1726 Wooddale Court • Baton Rouge, Louisiana 70806

1 (800) 401-4277 • Fax (225) 927-6822

ARS Tracking Number:

ARS-01-1216

P.O. Number:

Verbal W/ Bob Allen

Client I.D.:

Bore Hole #5, 3'

ARS Sample I.D.:

ARS-01-5018

Date Sampled:

06/20/01

Date Received:

8/23/01

Time Sampled:

0750

Time Received:

0900

Type of Sample:

Solid

Date of Report:

8/23/01

Analysis Description	Analysis Result	Analysis Error +2 Sigma	Analysis Units	Analysis Result	Analysis Error +2 Sigma	Analysis Units	Analysis Test Method	Analysis Date & Time	Analysis Technician
Ra-226	30.60	1.40	pCi/gm	1.132	0.052	Bq/gm	EPA 901.1M	08/23/01 09:49	rb
Ra-228	1.30	0.17	pCi/gm	0.048	0.006	Bq/gm	EPA 901.1M	08/23/01 09:49	rb
Pb-210	3.28	0,68	pCi/gm	0.121	0.025	Bq/gm	EPA 901.1M	08/23/01 09:49	rb
Total Activity	94.57	N/A	pCi/gm	3.499	N/A	Bq/gm	EPA 901.1M	08/23/01 09:49	rb

Notes:

Quality Assurance Review

Notes: American Radiation Services, Inc. assumes on liability for the use or interpretation of any analytical results provided other than the cost of the performed analysis itself. Reproduction of this report in less than full requires the written consent of the client.

1726 Wooddale Court • Baton Rouge, Louisiana 70806

AUG-23-01 12:24;

1 (800) 401-4277 • Fax (225) 927-6822

Notes:

Comments:

- 1.0) Soil and Sludge analysis are reported on a wet basis or an as received basis unless otherwise indicated.
- 2.0) The data in this report are within the limits of uncertainty specified in the reference method unless specified.
- 3.0) Modified analysis procedures are procedures that are modified to meet the certain specifications. An example may be the use of a water method to analyze a solid matrix due to the lack of an officially recognized procedure for the analysis of the solid matrix.
- 4.0) Derived Air Concentrations and Effluent Release Concentrations are obtained from 10 CFR 20 Appendix B.
- 5.0) Total activity is actually total gamma activity and is determined utilizing the prominent gamma emitters from the naturally occurring radioactive decay chains and other prominent radioactive nuclides. Total activity may be lower than actual total activity due to the extent of secular equilibrium achieved in the various decay chains at the time of analysis. The total activity is not representative of nuclides that emit soley alpha or beta particles.
- 6.0) Ra-228 is determinded via secular equilibrium with its daughter, Actinium 228. (Gamma Spectroscopy only).
- 7.0) U-238 is determined via secular equilibrium with its daughter, Thorium 234. (Gamma Spectroscopy only).
- 8.0) All Gamma spectroscopy was performed utilizing high purity germanium detectors (HPGe).

Method References:

- 1.0) EPA 600/4-80-032, Prescribed Procedures for the Measurements of Radioactivity in Drinking Water, August 1980.
- 2.0) Standard Methods for the Examination of Water and Waste Water, 18th, 1992.
- B.0) EPA SW-846, Test Methods for Evaluating Solid Waste, Third Edition, (9/86). (Updated through 1995),
- 4.0) EPA 600/4/79-020, Methods for Chemical Analysis of Water and Waste, March 1983.
- 5.0) HASL 300

Definitions:

1.0)	BDL	Analyte not detected because the value was below the detection limit.
2.0)	ND	Not detected above the detection limit.
3.0)	Detection Limit	The minimum amount of the analyte that ARS can detect utilizing the specific analysis.
4.0)	В	Method Bank
5.0}	a	Method Duplicate
6.0)	MS	Matrix Spike
7.0)	S	Spike:
8.0)	RS	Reference Spike
9.0)	*SC	Subcontracted out to another qualified laboratory
10.0)	NR	Not Referenced
11.0)	N/A	Not Applicable

Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the performed analysis itself. Reproduction of this report in less than full requires the written consent of the client.

Appendix C Calibration Certificate

Designer and Manufacturer of Scientific and Industrial Instruments

CERTIFICATE OF CALIBRATION

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 915-235-5494

501 OAK STREET

FAX NO. 915-235-4672

SWEETWATER, TEXAS 79556, U.S.A.

CUSTOMER	SAFETY & ENVIR	ONMENT SOLUTION	<u>S</u>			ORDER	1026	6554/257119
_	Ludlum Measuren	nents, Inc. M	odel	3		Serial No	55994	
Mfg	Ludlum Measuren	nents, Inc. M	odel	44-2		Serial No	NO13/2	5
Cal. Date	23-Jul-0	<u>)1</u> Cal Du	e Date2	23-Jul-02	Cal. Interv	al <u>1 Year</u>	Meterface	202-654
☐ New In	istrument Instrum anical ck.	ent Received [] Meter Zeroe Reset ck.] 10-20% [Backgrour Window O	Out of Tol. R nd Subtract peration	equiring Repo		
	ted in accordance v		v 12/05/89.	Calibrated	in. Volt)2 in accordance w	rith LMI SOP 14 Thr	eshold	mV
Instrument V	olf Set734	_ V Input Sens	_36 mV Det, Ope	er. <u>734</u>	V at <u>36</u>	mV Did	al Ratio	=
☐ HV	Readout (2 points)	Ref./Inst.	/		_ V Ref./Inst		/	V
	laced on top o ound Reading"		red crystal.	·				
Gamma Calibration	n: GM detectors positioned pe		for M 44-9 in which the front of pro FERENCE		RUMENT REC'I) IN	STRUMENT	
	RANGE/MULTIPL		AL. POINT		FOUND READI	NG" ME	TER READIN	1G*
	X 100	<u>4000 μ</u>					0	
	X 100 X 10	1000 µ	R/hr /hr=67100CFM				<u> </u>	
	X 10	100 µk					11	
•	X 1	6710 c	pm		NIA			
	X 1	<u> 1/280 c</u>	pm				10	
-	X 0.1 X 0.1	168 0	opm opm				10 10	
	<u> </u>		,p		5			
*11:	ncertainty within ± 10%	C.E. within ± 20%				ALL Rang	e(s) Calibrate	d Electronically
	EFERENCE	INSTRUMENT	INSTRUMENT	R	EFERENCE	INSTRUME		STRUMENT
	CAL. POINT	RECEIVED	METER READING*	1	CAL, POINT	RECEIVED		ETER READING*
Digital Readout _		,		Log Scale _				
_				_				
<u></u>								
				_				
other Internation The calibration s	al Standards Organization ystem conforms to the requ	members, or have been of uirements of ANSI/NCSL 15	een calibrated by standards dérived from accepted value 40-1-1994 and ANSI N323-1976	s of natural phy	National Institute of St sical constants or have	been derived by	lhe ratio type of ca	dibration facilities of libration techniques. cense No. LO-1963
	Instruments and/		05 🗆 71008 🗆 7879 🛭		:551		Neutron 4	Am-241 Be S/N T-304
	S/N					Other		MIN-241 PG 0/14 1-004
m 500		_	Oscilloscope S/N					460209
Calibrated	By: 19amin	go Baryo			Date <u>2</u>	3 Jul 0)/	
Reviewed I	ву:) ш	rine /ACK	'ADM		Date _2	3-Jul-	01	
This certificate FORM C22A	shall not be reproduced e 12/28/2000	except in full, dithout the v	written approval of Ludlum M	easurements, In	c	Passed Dielectri	c (Hi-Pot) and Co	ontinuity Test

Appendix D Creditials

QUALIFICATIONS AND CREDENTIALS James R. (Bob) Allen CHMM, REM, CET, CES

Qualifications Summary

James R. (Bob) Allen is a Safety and Environmental Professional with more than 15 years of experience relating to occupational safety and health, hazardous materials, and environmental cleanup and 13 years of experience in finance and management industries.

Mr. Allen was a successful bank president, management and safety consultant prior to joining Safety & Environmental Solutions, Inc. Mr. Allen continually draws from his finance, management, and regulatory compliance experience in his current position as President of SES, Inc. Mr. Allen is responsible for the development and implementation of safety and environmental programs for a wide variety of industries such as oil & gas production, petrochemical, and refineries. Mr. Allen has delivered a broad curriculum of safety and environmental training for industrial clients as well as serving as an adjunct professor at New Mexico Junior College, Hobbs, New Mexico.

Education

B.B.A., New Mexico State University, Las Cruces, New Mexico

Registrations and Affiliations

- Certified Hazardous Materials Manager, Master Level, CHMM #10551 Institute of Hazardous Materials Management
- Registered Environmental Manager REM #7773 National Registry of Environmental Professionals
- Certified Environmental Trainer #94-209 in Occupational Safety and Health and Management and Transportation of Hazardous Materials and Waste -Natl. Environmental Training Association
- Registered Environmental Professional, Texas Registry of Environmental Professionals -#611
- Certified Environmental Compliance Manager Columbia Southern University
- Certified Environmental Specialist #10583 Environmental Assessment Association
- Professional Member, American Society of Safety Engineers (ASSE)
- Past Chairman, SE New Mexico Section, Permian Basin Chapter, ASSE
- Member, International Registry of Environmental Engineers and Compliance Professionals
- Past Member, Board of Directors, West Texas Safety Training Center
- Instructor, Medic First Aid (Basic) International Registry # 17942, EMP America
- Instructor, Medic First Aid (BLS/PRO) International Registry # 17942, EMP America
- Corporate Representative, National Fire Protection Association
- Corporate Representative, Association of Energy Service Contractors
- Incident Commander, 29 CFR 1910.120
- Licensed Radiation Safety Consultant, State of New Mexico #398-6
- Defensive Driving Instructor #45671 National Safety Council
- Judge, International Intercollegiate Environmental Design Contest 2000, Waste Education Research Consortium (WERC)

Certificate of Megistration as a Radiation Safety Consultant for Industrial Uses

Radiation Licensing & Registration Section

NM Environment Department

(Registration does not imply approval by this agency)

			-
Name James R. (Bob) Allen	Д.	P.O. Box 1613	398~6
		Street Address	Registration Number
Profession/Business Safety &	Hobbs,	Hobbs, New Mexico 88240	10/31/2001
	City	State Zip Code	ode Expiration Date
Environmental Solutions, Inc.			Cillation Il Shows
		: Telephone	Certifying Official
DOOMING OF CENTIFICATE.			The state of the s

OVISIONS OF CERTIFICATE

THE PERSON OR BUSINESS NAMED IN THIS CERTIFICATE IS REGISTERED WITH THE NEW MEXICO PERTAINING TO RADIATION PROTECTION AND SAFETY TO PROVIDE SERVICES AND CONSULTATION TO THIS TRAINING INCLUDES CLASSROOM INSTRUCTION TOGETHER WITH ACTUAL HANDS-AND FOR PROPERTIES SURVEYS PERFORMING NORM ON FIELD SURVEY TRAINING. INDUSTRIES. PERSONNEL

THE ABOVE NAMED REGISTRANT SHALL NOT PERFORM SERVICES WHICH ARE NOT SPECIFICALLY

WMED 023H 3/92

POST or FILE. Certificate must be available for inspection.

Certificate of Registration for Indining

Radiation Licensing & Registration Section

NM Environment Department

(Registration does not imply approval by this agency)

NameJames R. Allen	P.O. Box 1613	434-9N
	Street Address	Registration Number
Profession/Business Safety & Environmental	Hobbs, New Mexico 88240	10-31-2002
	City State	apo
Solutions, Inc.	505/397-0510	Margack M. Roya,
	Telephane	Certifying Official

PROVISIONS OF CERTIFICATE:

PERFORMING NORM SURVEYS FOR PROPERTIES UTILIZED IN THE OIL AND GAS INDUSTRIES. THIS THE PERSON NAMED IN THIS CERTIFICATE IS REGISTERED WITH THE NEW MEXICO RADIATION LICENSING AND REGISTRATION SECTION AS HAVING THE KNOWLEDGE AND TRAINING PERTAINING TO RADIATION PROTECTION AND SAFETY, TO PROVIDE SERVICES AND CONSULTATION TO PERSONNEL TRAINING INCLUDES CLASSROOM INSTRUCTION TOGETHER WITH ACTUAL HANDS-ON FIELD SURVEY TRAINING.

THE ABOVE NAMED REGISTRANT SHALL NOT PERFORM SERVICES WHICH ARE NOT SPECIFICALLY INDICATED BY THIS CERTIFICATE.

POST or FILE. Certificate must be available for inspection.

APPENDIX F

2001 Well Development Data Sheets

WELL or DATE	61	91	0	ſ

WATER LEVEL DATA FLAMER ATELSON FACILITY

WELL LOCATION 2703 W. MARLAMO BUSO

MEASURING POINT MOTCH AT

HOBBS NEW MEXICO

TOP OF WELL CASING

ELEVATION: MEASURING POINT (SITE NO. 2067)

GROUND LEVEL PASS-104

WELL OR	, TIL 45	MEASURING	DEADING	CONVERSIONS	WAT	ER LEVEL	BY	00444545
DATE	TIME	DEVICE	READING	corrections	DEPTH	ELEVATION	ВТ	COMMENTS
WE	uc	PEVELOP M	ent E	VENT				
mw-7	0930	SOLINST			35.62		30	
		世14319						
4w-6	0934	1			34.62		Ja.	
			· ·		ļ	<u> </u>		
nw-5	0938				35.15'		30	
							10	
uw-4	0940	<u> </u>	-		35.35		gar	
1. 1.		4 4	-		0434			
WELL	2 1	1W-1, MW	2 AM	omw-s:	CYCY	BK DIO	not	
	Co	TAIN SUFFER	IENT A	mant of w	ATER	For Sam	PLIM	<u>S.</u>
				i				
7								
								
				7				· -····
								•
-				-				
		2						
					···			
					:			

HSI GEOTRANS

WELL DEVELOPME	WELL DEVELOPMENT RECORD FORMER ALELSON FACILITY SITE NO. 2067 2703 W. MARLAND BLYD Sometime May -4 1406 1100 1100 1100 1100 1100 1100 1100								
Project Name/Client	1703 W. MARLAM HOBBS, N. M.	D BLYD	Sample Location	on N	w-4	Date_	6/9/01		
Project Number Pos	3- (34 Samplers T	ALLERA	nan		·····				
SWL(if above screen) SWL 35.35 (if in screen)	Well type			rge Calcula	1	Pump rate (gpm)	Water level 37. 08 ' 36.33'		
Measured T.D	られて T.D. (as built)]	SWL one		Purge vol. (10 casings)		
Purging apparatus / Sam	pling apparatus / Method			Actual ga	llons purged	18			
	G SUBMERSIBLE C	RUMP FOS	Pump	Actual Vo	lumes purged	117			
Field observations / addit	ional comments								
Gallons purged	TEMP(C) F (circle one)	EC(us/	cm)/ (ms/cm) e one)		pН	Tur	bidity		
1 1.6	26.0		16	7.	25 25		SAMOR		
2 3. 2	22.8		65	7.	25_	CLOSOF	SAMOT		

Gallons	purged TEMP(C)	F (circle one)	EC (us/cm) (ms/cm) (circle one)	ρΉ	Turbidity
1 1.6	26.	0	1778	7.25	Cloud Samo
2 3.2	22.	<u>გ</u>	1765	7.25	CLOUDY SAMOT
3 4.8	21	8	1760	7.26	CLIDY/SANDY
4 6.4	1 21	2	1773	7.25	Chury SANOY
5 g.		2	1778	7.27	Charat Sousy
6 9.6	21.	2	1778	7.29	CLANDY (SANOY
7 11.3	2 34	5210	1781	7.27	CLOUDY (SAMOY
8 / J , ;	g 20.	8	1783	7.28	MURKY KAMBY
9 14.4	1 21	. 3	1783	7.29	MURKY /SUGAH
10 16.	0 21	12	1795	7.30	musica
11					
12					
13					

13

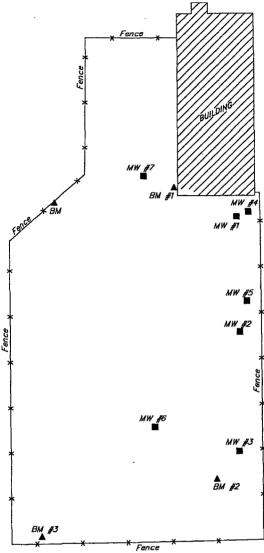
標

WELL DEVELOPME	NT RECORD FORM	ner A	relson f	FACILITY	SITE	No. 206	1.7
· ·	2703 WESTMAN	بيسيسيد الاستراس	. ~				
•	3-124 Samplers T						
		,	Action		<u>Time</u>	Pump rate (gpm)	<u>Water level</u>
	Well type ML	<u>ا</u> ا	Start pump		11:58		
ĺ	(MW, EW, etc.)	J			12:00		36.31
SWL	diameter 2"	′			12:08	 	36.52
(if above screen)	equals 0.17 gal/ft.					+	
(II above sciedili)		Casing				+	
	29 Top of screen						
SWL 35.15							
		1 1	Stop		13:13	 	35.92
(if in screen)		1 .	Sampled Final water le			 	
		1 1	Pu Pu	urge Calcula	<u>tion</u>		
	<u> 44'</u> Bottom of screen		0.17 g	jal/ft *_ 8. \$	5 ft. = 1,	<u>S_</u> x10=	15 gals.
Measured T.D.	44′ T.D. (as built)			тл <u>-</u> с	SWL one	· vot	Purge vol. (10 casings)
	1.D. (as punt)	-		۰۰ - ۱۰۵۰	SVVL ONE	VOI.	(10 0009-,
2 - tana aratus / Sami	"			14-4-1-1 2011	·	70	
Purging apparatus / Samp				Actual gail	ions purged	2D+	<u> </u>
DURGE VSINC	a submacsible c	~ RUMOFO!	CAMO				
AND DISPOS		ر د د د د د د ح) I= erry=	Actual Vol	umes purged	13+	
MAN MODICO	Revie (done of			ACtual vo.	umes parged		
				ŀ			
Field observations / additi	ional comments						
			/cm / (ms/cm)			_	
Gallons purged	TEMP(C) F (circle one)	(circle	e one))H		bidity
1 1.5	23.1		68		38	Clarpy 13	
2 3.0	21.5		138		33	CHUNY 15	
3 4,5	20.7	14			39		Stroy
4 6.0	20.5	143		7.3		Claro1/	SAMOY
5 7.5	20.3	144		7. 3		Clargi	SAMOY
6 9.0	20.3	144		7.3	39		SANOY
7 10.5	20.2	145	1	7.3	B	MURKY/	
8 12.0	20.3	,451		7.3	6	nievy 15	ANDY
9 13.5	20.3	1455		7.37	,	miex	
10 15.0	20.3	1452		7.3	0		SLAGTU
11							
l 	<u> </u>						

13

WELL DEVELOPME	NT RECORD Frem	GR ALE	t Son FA	CILITY SITE ME	2067	
roject Name/Client	2703 W. MARLAM 1603BS, N.M.	1 BL/10	Sample Locat	ion Nw-6	Date	6/9/01
Project Number Pos3	-104 Samplers T	ALVER	MAN			
) A ation	Time	Pump rate	Water level
	h A 1	1	<u>Action</u>	Time	(gpm)	<u>Water level</u>
	Well type Mu		Start pump	11:18		
	(MW, EW, etc.)			11:24		39.65
SWL	diameter 2"			110		30,03
f above screen)	equals <u>0.17 g</u> al/ft. o	easing				
	30 Top of screen					
	1 op of screen					
SWL 34.62			Stop	11:34		35.64
f in screen)		İ	Sampled			
			Final water le	vel		
			Pu	rge Calculation		
	45 Bottom of screen		017	al/ft * 10 . 38 ft. = 1	.7	17
	Bottom of screen			ai/π - <u></u>	X10=	gais.
1easured		<u> </u>		J		Purge vol.
.D	45 T.D. (as built)			T.DSWL or	ne vol.	(10 casings)
Purging apparatus / Sam	pling apparatus / Method			Actual gallons purged	20	
	G Submersible &	0000	2 0 - 2			_
_		SIZCIN OF ICS.	Porm		0.22	
AND OLSROSA	BLE TUBING			Actual Volumes purg	ed O	13+
Field observations / addit	tional comments					
(
Callana muun d	TEMP F (circle one)		/cm) / (ms/cm)		_	
Gallons purged	JU. 8		cle one)	pH > 7.7		rbidity
		(13		7.30	Circon/	
3.4	21.4	(08		7.25	Chorl	
5.1	20.3	(08		7.22	CLANDY	
6.8	19.9	isos	<u> </u>	7. a3	Cliror [SANOY
8.5	18.8	1105		7.21	Clausi	SANDY
10,2	[9.7	1121		7.21	CLOUDY	SAWAY
11.9	19.6	1137		7.17	CLONDE	
13.60	19.4	1140		7.20	CLOUDY	
15.3	19.0	1150		7.19	MURKY.	
17.0	18,9	1154		7.17		SU GHT SA
	- 0, 8	Viv	,	£ . v ;	11000 (2	CH CHI SH
3						

	Geolran	S , In	c.				
WELL DEVELOPM	ENT RECORD	Exer.	و مدور د	w Face	ررته ح	TE NO.	2007
Project Name/Client	2703 W. MARLAND BO HORBS, N.M.	-vp	Sample Location	on _M	W-7	Date	6/9/01
Project Number Pas	53-104 Samplers T. A	tkkern	ron_				
			Action		Time	Pump rate (gpm)	Water level
	Well type		Start pump		10:23		
	(MW, EW, etc.)				1006		37.22'
	¬ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~] [10:30		36.95'
SWL	diameter 2"				1033		36.45)
(if above screen)	equals <u>o. 7 g</u> al/ft. casii	ng [10:40		37.18
	<u>క</u> ై Top of screen						
	Top or screen		· · · · · · · · · · · · · · · · · · ·				
SWL 35 62			Stop		10:40		
(if in screen)			Sampled				
(·	Final water lev	el			
			Pur	ge Calcula	ation		
					_ 		
	니5' Bottom of screen		0.17 ga	al/ft * 7.3	8 ft. = 1,	<u>し</u> x10=	<i>16</i> gals.
Measured	<u> </u>			J			Purge vol.
T.D.	リラ T.D. (as built)			TD -9	SWL one	vol	(10 casings)
	1.D. (as built)			1.0.	JVVL ONG	, voi.	, ,
Purging apparatus / Sar	mpling apparatus / Method			Actual ga	llons purged	16+	_
					, 5		
i .	NG SUBMENSIBLE GI	Runpas	_	Actual Vo	lumes purge	, 10	
	491 F TORING			Inclual VO	aumes purge	J	_

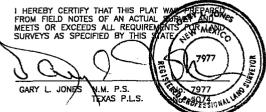

Field observations / additional comments

Gallons purged	TEMPO/F (circle one)	EC (us/cm)/ (ms/cm) (circle one)	pН	Turbidity
1.6	21.4	1423	7.83	CLOUDY
3. ユ	20.3	1407	7.41	CLIVIOY
4.8	20-0	1392	7.47	Clarpy
6.4	20.1	1397	7.40	Clowor
<u> 8</u> .0	21.5	1401	7.41	CLOWDY/SAM
9.6	21.4	1389	7.40	Chousy 1 Samp4
11.2	20.7	1352	7.47	CLANYISANOY
12.8	20.0	1345	7.41	CLOUDY / SANDY
14.4	19.80	1345	7.48	Clasor I SANDY
0 16.0	19.8	1342	7.45	Cloudy
1				
2				
3				

APPENDIX G

2001 Monitor Well Survey Data

MARLAND BLVD


NOTE:
ALL BEARINGS AREA BASED ON STATE
PLANE COORDINATES NEW MEXICO EAST
ZONE, AND ELEVATIONS ARE GROUND
ELEVATIONS.

- DENOTES BENCHMARKS

- DENOTES MONITOR WELLS

NAME	NORTHING	EASTING	ELEV. (TOC)	ELEV.(PVC)
MW #1	618885.317	899179.310	3625.11'	3624.76
MW #2	618809.659	899181.415	3624.60'	3624.34
MW #3	618730.921	899181.132	3624.18'	3623.94'
MW #4	618888.513	899187.068	3625.11'	3624.74
MW #5	618829.994	899186.066	3624.80'	3624.46
MW #6	618746.778	899124.996	3624.34'	3623.97
MW #7	618911.786	899117.644	3625.32'	3625.11

NAME	NORTHING	EASTING	ELEVATION		
BM	618894.084	899059.172	3624.67		
BM #1	618904.464	899138.025	3625.55		
BM #2	618712.681	899166.434	3624.38'		
BM #3	618674.096	899050.494	3624.56		

BASIN SURVEYS P.O. BOX 1786-HOBBS, NEW MEXICO

W.O. Number: 18428 Drawn By: 100 FEET

GEO TRANS, INC.

REF: MONITOR WELLS - 2703 WEST MARLAND BLVD.

MONITOR WELLS LOCATED AT 2703 W. MARLAND BLVD, CITY OF HOBBS, LEA COUNTY, NEW MEXICO.

Survey Date: 06-11-2001

Sheet

Sheets

Date: 06-18-2001 Disk: KJG #5

18428.DWG

APPENDIX H

2001 Monitor Well Sampling Data Sheets

WATER LEVEL DATA FORMER ALEISON FACILITY

WELL LOCATION	2703	(M.	MARLAND	BUYD

HOBBS NEW MEXICO ELEVATION: MEASURING POINT (S.TE NO. 2007) MEASURING POINT NOTCH AT

TOP OF WELL CASING

Pas3-104

WELL OR		MEASURING	CONVERSIONS	WATER LEVEL				
DATE	E TIME DEVICE	1	or CORRECTIONS	DEPTH	ELEVATION	BY	COMMENTS	
mon	IN	WELL ST	MPLIN	& EVEN				
7W-7	0874	SOLINST			35.63		办	
		出14319					1	
1w-6	9827	—	<u> </u>		34.63		go	
			 .				120	
1W-5	0830				35.15	-	ate	
	4477		-	,	200		Ja	VERY MILL
Mw-4	0032	Ψ	 		35.36		٠٠٠	DETPOLEUR
								Greenan
N 84	, (,	EUS MW-1	2465-	Am m W	2 WF10	£ 01×	in	DO ANT
		ntain Siff						
,,		THE SUPP	10,000	TO ACCEPT				
					-			
			-					
		:						
							-	
			-					
			L				!	

HSI GEOTRANS

ELE SAMPLING N	ECORD Rolenica	ALEL	son fac	7174	SITE NO	2067	? -
~	703 W. MARIAM BO WBBS N. M. Sam	. 40				: :	
	-154 Samplers T.						
							1
			Action		<u>Time</u>	Pump rate	Water level
	Well type	, l	Start pump		12:24	(gpm)	
	(MW, EW, etc.)	_	Otart pamp		10.21		
	1						
SWL	diameter 2 "	_					
(if above screen)	equals <u>Ø.17</u> gal/ft. c	asing					
	20 Ton of course						
	36 Top of screen						<u> </u>
SWL35.36		1	Stop		12:38		
(if in screen)			Sampled		12:50		
			Final water lev				
			Pur	rge Calculat	tion		
	ر ا		1				
	45 Bottom of screen		0.17 g	al/ft * <u>9.6</u>	1 ft. = <u>1</u> · (<u>о</u> x3=	4,8 gals.
							-
Measured	43,,,,,						Purge vol.
I.D.	45 T.D. (as built)			T.DS	WL one	vol.	(3 casings)
Purging apparatus / Samp	oling apparatus / Mathod			Actual gall	ons purged	S	
or diging apparates / Samp	apparates / Wested			1	. •		_
PURGE AND	SAMPLE USING	DISPUSAC	LE	Actual Vol	umes purged	3+	_
20.150	SAMPLE USING						
13/4/202				ļ			
					COC#		
				Sample I.E		<u>ysis</u>	Lab
			MWY		0		Cal
					<u> </u>	2900	Columbia
				Conic	neo PCRS	(2082)	CALALYTICAL
Field observations / addition	onal comments			DISSOLVE	O RERA E.	METALS,	Columb.A ANALYTICAL SERVICES
_				PAUS S	m, F, NO	> "AS N).	
VERT MILD F	ETREIL EUM WUX IS	WATER,	N	I 1 '			·····
SHEEN OBSERVE	£0.		TOS,		RADIO 2000 28		
2,20				Wilce	menals,	CATONS,	
		EC (C	cm) (malam)				
Gallons purged	TEMPO/F (circle one)		cm)/ (ms/cm) e one)		н	Turbio	dity (NTU)
1 1.6	23.0	1	ත	-	32	Clarpy	
2 3.2	20.6						·
3 4.9	20.3	1752		0.000	7,28 Cloud		9
	<i></i>				20	Custor	SANOT
SAMPLE							
Opproving state of a second	not of parameters per seci	volume		<u> </u>			
approximately one s	et of parameters per casing v	Olumb					

YELL SAMPLING R	ECORD FERMER	AXELSON	PACLITY	SITE NO	2067		
270	R W MARLAMO RWE	9					
Project Name/Client _ 150	<i>aβs, ν. m</i> . Sam	pie Location <u>N</u>	<u> </u>	Date	791		,
Project Number Pas	3-104 Samplers T	AKKERA	מפט	,			
			Action		<u>Time</u>	Pump rate (gpm)	Water level
	Well type M W	_	Start pump		11:08	(gpan)	
	(MW, EW, etc.)						
SWL diameter <u>2</u> "							
(if above screen)	equals <u>o,17</u> gal/ft.c	asing					
-	29' Top of screen						
4	10p of screen						
SWL <u>35.15</u>			Stop		11:20		
(if in screen)			Sampled Final water le	vel	11:30		
				rge Calcula	tion	<u></u>	
			}			e.	
	44 Bottom of screen		0.17	gai/ft * <u>ど. ダ</u> 1	S ft. = 1,	5_x3=	<u>4.5</u> gals.
Measured	,	<u> </u>					Purge vol.
T.D	44 T.D. (as built)			T.DS	SWL one	vol.	(3 casings)
Purging apparatus / Samp	oling apparatus / Method			Actual gai	lons purged	45	
PURCIE AND	SAMPLE US.NB	DISPOSA	BLE	Actual Vol	umes purgeo	3_	-
BAILER.					· · · · · · · · · · · · · · · · · · ·		
					COC #		
		•					Lab
				mw-s:	מבנא :	3 8260.	Colums 4
				Cronid	e 8015/	no,	
F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				PERSO	8082), v	PAHS, "	analy richt
Field observations / addition	unal comments			Sim F	T, NO, AS N	TOS.	AMALYTICAL SERVICES
				CADISI	n sacis	28,	
				Pissila	CO RURA 8	CATIONS _	
				ang a	ancons	CHILOND	
		EC dusto	cm)/ (ms/cm)				
Gallons purged	TEMPC) F (circle one)	(circle	ane)	T	oH		ity (NTU)
1 (.5	22.7	1466				A	KANGY
2 3.0	80.0	1449					Sany
3 4.5	28.0	140	رےر	7	46	Clarot	SANDT
EMMPLE				_			
-							
				L			
approximately one s	et of parameters per casing v	rolume					j

WELL SAMPLING RECORD Gerner ALELSON	FACILITY SITE	W. 206	7	
Project Name/Client 14085 N.M. Sample Location				
r roject rums/chom				
Project Number <u>P253-104</u> Samplers <u>T. AKVEA</u>	CMAN	·		·
	Action	Time	Pump rate	Materia
Well type <u>M</u> ₩	Action	Time	(gpm)	Water level
(MW, EW, etc.)	Start pump	10:15	 	
SWL 347. diameter 2" (if above screen) equals <u>0.17</u> gal/ft. casing			-	
		 	1	
<u>30</u> Top of screen				
SWL 34-63	Stop	100 2 B	 	
(if in screen)	Sampled	10:35		
	Final water level		1	
	Purge Calcu	lation		
95' Bottom of screen	<u>Ø.17</u> gal/ft * 10	37 ft. = 1.	<u> 8</u> x3= S	.4 gals.
Measured				Purge vol.
T.D. (as built)	T.D.	-SWL one	vol.	(3 casings)
Purging apparatus / Sampling apparatus / Method	1	allons purged		
PURCIE AND SAMPLE VSING DISPOSA	Actual \	olumes purge	d 3+	
PUBLIC FIND SAMPLE VSING DISPOSA	BLE			
BAILER.				
	Sample	COC # <u>I.D.</u> Anal	lvsis	Lab
·				
	Mu-	6: 8276	1 8260 _	<u>Whimiso</u>
·	F.S.	MADIS MA WEBS LEG	P P	AMEGITAL
Field observations / additional comments	PANS	ress L80	63)	Analytical Services
	DISSU LAQ	MED BURA	BI WEIGHLS;	SERVICES
		C METELS		
	anno	ph. one	· · ·	
Gallons purged TEMP 6 / F (circle one) (circle	cm))/ (ms/cm) e one)	На	Turkid	ty (NTU)
1 1.8 31.1 1143		33		Souse
2 3.6 19.3 119-		7.26		SANDY
3 5.4 19.80 1158		.32	Cloud	Same
SAMPLE				
approximately one set of parameters per casing volume				

	ECORD FORMER A 53 W. MARIAND BUS 5805, W. M. Sam								
_	L			Date					
Project Number <u>P253</u>	S-104 Samplers T	ALLERY	nan						
			A		T	Pump rate	NA 1 . 1 1		
		_	<u>Action</u>		Time	(gpm)	Water level		
	Well type Mk	2	Start pump		0855	 			
	(MW, EW, etc.)								
SWL	diameter 2 "								
(if above screen)	equals <u>0.17 g</u> al/ft. o	casing							
-	30 Top of screen					<u> </u>			
	10p of screen								
swl <u>35.63</u>			Stop		0909	1			
(if in screen)		1	Sampled		0930				
			Final water le	evel		<u> </u>			
			Pı	<u>urge Calcula</u>	tion				
45 Bottom of screen			0.17 gal/ft * 9.37 ft. = 1.6 x3= 4.8 gals.						
Measured T.D.	リシュ T.D. (as built)				NA/!	!	Purge vol. (3 casings)		
1.0	1.D. (as built)			1.03	SWL one	VOI.	(0 0401190)		
Purging apparatus / Samp	oling apparatus / Method			Actual cal	lons purged	5			
ruiging apparatus / Sam	pinig apparatus / Method			1					
fuelse Amo	SAMPLE USING	DISPOSA	BLE	Actual Vol	umes purged	3+	-		
BALLER.				ļ					
					COC #				
				Sample I.I			Lab		
	ž.			MW-7	. 8260	מכרם	olembera		
									
				F. PAH	Sim CY	AMOE)	TWALTICAL		
Field observations / additi	onal comments		and the part of the state of th	RADIUM	226/225	, <u>,</u>	ANALYTICAL Structs		
				O.SSOL	FO PERA	EMETAS, -	>traces		
				1 CO3 (8	CHT CHT	ME Amo			
				ANION	my Coper				
Gallons purged	TEMP© / F (circle one)	EC (us/	cm / (ms/cm) e one)		οН	Turbidi	tv (NTU)		
1 L. 6	21.6	(32)			66	Turbidity (NTU)			
3.2	19.6	1339			54		SAMOY		
4.8	19.4	(32			6.3	Clara			
gan PLE				1					
							·		
				 					
				1					