

REPORTS

DATE: 2002

ENERCON SERVICES, NC. An Employee Owned Company

2775 Villa Creek, Suite 120 Dallas, TX 75234 (972) 484-3854 Fax: (972) 484-8835

May 24, 2002

RECEIVED Environmental Bureau Oil Conservation Division

Mr. Kyle Landreneau Equiva Services, L.L.C. SHE/Science & Engineering PMB 284 40 FM 1960 West Houston, Texas 77090

RE: REPORT DETAILING THE INSTALLATION AND SAMPLING OF TEMPORARY MONITOR WELL TMW-1 FOR PENROSE 'A' LEASE-WINNIE KENNAN RANCH, LEA COUNTY, NEW MEXICO

PROJECT NUMBER: ES-533

Mr. Landreneau:

Enercon Services, Inc. (Enercon) conducted drilling and soil sampling activities at the above referenced facility (Figure 1, Attachment A) on February 27, 2002. The site is located approximately 7 $\frac{1}{2}$ miles southeast of Eunice, New Mexico on the east side of Highway 18, at the Winnie Kennan Ranch, in Lea County, New Mexico.

From October 16 to November 21, 2000, the site was excavated and approximately 4,660 cubic yards of soil were transported to J and L Landfarm of Eunice, New Mexico for disposal. The site was excavated to a maximum depth of 40 feet below ground surface (bgs). The purpose of the current drilling and sampling activities was to confirm the extent of the hydrocarbon contamination at the excavation site and to determine if groundwater has been impacted by the release. This report summarizes the verification drilling and sampling field activities and includes laboratory analytical results.

SITE SAFETY

Before work was initiated, all personnel working at the site attended a tailgate safety meeting. During the meetings, the Site Health and Safety Officer discussed the safety and health concerns and procedures for the site as outlined in the Site Health and Safety Plan (HASP). A copy of the HASP was maintained at the site during all working hours in an easily accessible area. Air monitoring was performed at least four times throughout the day to monitor and document vapor levels in the work zone. A Thermo Environmental Instruments, Inc., Model 580B Organic Vapor Monitor (OVM) was

Mr. Kyle Landreneau May 24, 2002 Page 2 of 4 employed to monitor organic vapors. Each monitoring event produced results below 1 ppm.

SUBSURFACE INVESTIGATION

On January 27, 2002, temporary monitor well (TMW-1) was drilled to determine the vertical extent of hydrocarbon impacts to the soil and to determine if groundwater has been impacted from the former release at the site. Drilling operations were conducted by Eades Drilling Company, from Hobbs, New Mexico and supervised by Enercon personnel. The soil boring/temporary monitor well was placed through the center of the excavation (see Figure 2 in Attachment A).

Soil Data

The temporary monitor well (TMW-1) was drilled to a depth of 77 feet bgs or approximately 37 feet below the original excavation site using an air rotary (AR) drilling method. Sampling procedures consisted of drilling to the desired depths and obtaining soil samples with a split spoon sampling device. In general, the soil samples were collected at five foot intervals and field screened for volatile organic constituents (VOCs) with a Thermo Environmental Instruments, Inc., Model 580B Organic Vapor Meter (OVM) using the head space procedure described in <u>Guidelines for Remediation of Leaks, Spills and Releases</u>. The OVM readings and soil strata location are presented on the boring log in Attachment C.

Soil samples collected from the boring/temporary monitor well registered from 296 to 368 ppm OVM readings. Samples were collected from 53 feet to 55 feet, 63 feet to 65 feet and at 75 feet bgs and submitted to Trace Analysis Laboratories (Trace) in Lubbock. Texas for analysis of benzene, toluene, ethylbenzene, and xlyenes (Total BTEX) using EPA Method 8021B, total petroleum hydrocarbons (TPH Dro/Gro) using EPA method 8015 M and further analysis for SPLP TPH (Dro/Gro) and SPLP BTEX for any sample that exceeded 10 parts per million benzene, 50 parts per million BTEX, and greater than 1,000 parts per million Dro/Gro combined. An additonal analysis for polynuclear aromatic hydrocarbons (PAH) using EPA method 8270C was requested for TMW-1 at 63 to 65 feet and TMW-1 at 75 feet. Of the analysis performed, only the TPH (Dro/Gro) samples exceeded the New Mexico Oil Conservation Division Rankings of greater than 1,000 ppm TPH. Soil sample TMW-1 at 53 to 55 feet, TMW-1 at 63 to 65 feet, and TMW-1 at 75 feet had concentrations of TPH at 2,071, 8,693, and 2,963 ppm, respectively. The remaining soil sample concentrations analysed were negligible. Soil concentrations are listed on Table 1 in Attachment B. Upon completion of the collection of the soil samples from the borehole, the boring was converted to a temporary monitor well (TMW-1).

Groundwater Data

During the subsurface exploration, groundwater was encountered at 77 feet bgs (appoximately 37 feet below the bottom of the excavation) and the soil boring was

Mr. Kyle Landreneau May 24, 2002 Page 3 of 4

converted to a temporary monitor well (TMW-1). Utilizing a sensor probe, groundwater was measured at a depth of approximately 78 feet bgs (38 feet below the bottom of the excavation) in the temporary well. Although groundwater gradient direction has not been established at the site, the regional (and presumed groundwater flow direction for the site) is to the southeast.

The temporary monitor well (TMW-1) was constructed of a 2-inch inside diameter, schedule 40 polyvinyl chloride riser, and a 10-foot long, 0.010 inch slotted screen. The screen was placed at the bottom of the boring and extended 5 feet above the groundwater. A sand pack was set around the well screen from the bottom of the well to two feet above the top of the well screen. Afterwards, a two-foot bentonite plug was placed above the sand pack. A diagram detailing the temporary monitor wells installation is included in Attachment C.

After purging the temporary monitoring well of at least three well volumes, a groundwater sample was collected on February 27, 2002, placed on ice, and transported under strict chain of custody to Trace Analysis of Lubbock, Texas. The groundwater sample was analyzed for total BTEX using EPA Method 8021B, TPH using EPA method 418.1, and PAH using EPA Method 8270. Due to a laboratory error, holding time on the PAH sample was exceeded so the results were considered invalid. When Enercon returned to the site to resample the groundwater for PAHs on March 15, 2002, a LNAPL layer measuring 0.16 feet was encountered on the groundwater. As a result, no additional groundwater samples were collected from the monitor well and hence no PAH results were available for temporary monitor well TMW-1.

Of the groundwater analytes analyzed, only benzene was below detection limit. The remaining analyes (Ethylbenzene, Toluene, Total Xylenes, and TPH) had levels which were above detection limits but were below drinking water standards. Laboratory results are summarized on Table 2, while groundwater measurements are on Table 3 and are included in Attachment B of this document. Laboratory analytical reports are included in Attachment D.

A photo log illustrating and describing field activities is presented in Attachment E of this report.

FINDINGS / CONCLUSIONS

The laboratory analytical results for the soil samples collected from temporary monitor well TMW-1 revealed that the soils have been impacted with TPH (Dro/Gro) which exceeds the NMOCD standards of 1,000 ppm. The TPH (Dro/Gro) concentration range from 2,071 ppm in TMW-1 at 53-55 feet bgs to 8,693 ppm at 63-65 feet bgs. The TPH result for the sample collected at the soil/groundwater interface at 75 feet bgs is 2,963 ppm. Additional analytical results for TMW-1 indicate that the concentration of BTEX and PAH components were below the current NMOCD standards.

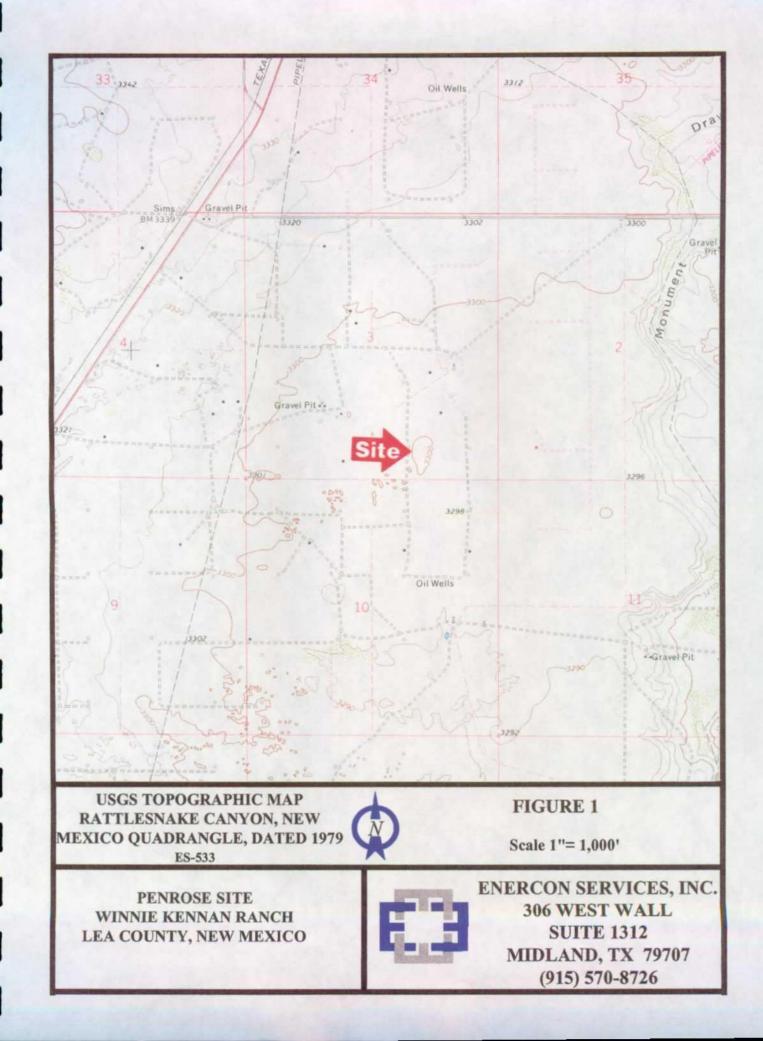
Mr. Kyle Landreneau May 24, 2002 Page 4 of 4

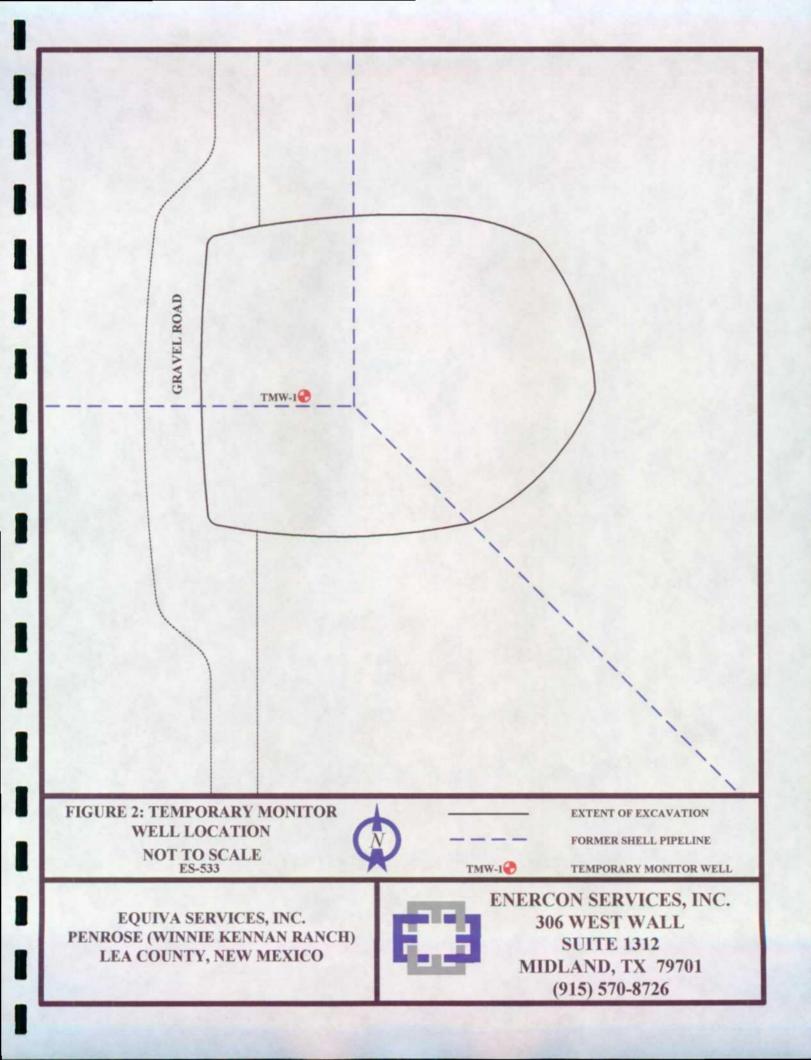
Groundwater analytical results were below EPA drinking water standards for the analytes analyzed. However, a subsequent sampling event on March 15, 2002 revealed that LNAPL measuring 0.16 feet have impacted the groundwater. The NMOCD was notified on March 21, 2002.

Enercon Services, Inc. appreciates the opportunity to provide you with our professional consulting services on this important project. If you have any questions or if we can be of further assistance, please do not hesitate to call Jeff Kindley at (915) 570-8726 or Bennett Howell at (972) 484-3854.

Respectfully, Enercon Services, Inc.

HOBELT.


Jeffrey Kindley, P.G. Project Manager


Small Cond

Bennett C. Howell, III, P.E. Senior Engineer

ATTACHMENT A

Figures 1 and 2

ATTACHMENT B

~

Tables 1, 2, and 3

					1. 			TABLE 1								
							SOIL ANALYTICAL RESULTS	LYTICAL	. RESUL	TS						
					EQUILC	IN PENI	EQUILON PENROSE "A" LEASE (WINNIE KENNAN RANCH)	LEASE (WINNIE	KENNA	N RANCH)					
						EUN	UNICE, LEA COUNTY, NEW MEXICO	SOUNTY	, NEW N	IEXICO						
				Ethyl-		Total	HdT	Total	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	
Sample	Date	Benzene	Benzene Toluene	benzene Xylenes	Xylenes	втех	BTEX (DRO/GRO)	PAH*	Benzene Toluene	Toluene	Ethylbenzene Xylenes Total BTEX	Xylenes	Total BTEX	DRO	GRO	Depth to
Location		(in mg/kg)	(in mg/kg)	(in mg/kg)	(in mg/kg)((in mg/kg)	(in mg/kg)	(in mg/kg)	(in mg/L)	(in mg/L)	(in mg/kg)(in mg/kg) (in mg/kg) (in mg/kg)(in mg/kg) (in mg/kg) (in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	groundwater
TMW-1 (53-55') 02/26/02 <0.100	02/26/02	<0.100	<0.100	13.7	28.7	42.4	2,071	Ą	A	NA	AN	AN	NA	AN	NA	77
TMW-1 (63-65') 02/26/02 0.0136	02/26/02	0.0136	0.271	0.612	1.51	2.41	8,693	2.75	0.0071	0.241	0.568	1.36	2.1761	<5.00	6.85	-17
TMW-1 (75') 02/26/02 <0.005	02/26/02	<0.005	<0.005	0.0405	0.132	0.173	2,963	1.08	AN	NA	AN	AN	NA	<5.00	1.55	77
NMOCD Rankings	sõu	10	AN	AN	AN	50	1,000	٩N	٩N	AN	AN	NA	NA	AN	NA	NA
ND = Not detect NA = Not applicable NS = Not sampled	#NA = Not	applicable	NS = Not	sampled												
* PAH result is for total PAH with the 2.75 ppm result being Naphthalene.	for total PA	NH with the	2.75 ppm	result being	Naphthaler	ne.										

1

: I

i

		GROU EQUIVA PENROS EUNICE	TABLE 2 GROUNDWATER MEASUREMENTS EQUIVA PENROSE "A" LEASE (WINNIE KENNAN RANCH) EUNICE, LEA COUNTY, NEW MEXICO	urements Inie kennan ra Ew mexico	NCH)	
Well No.	Date	Casing Elevation (in feet)	Casing Elevation Depth to Groundwater (in feet) (in feet)	Depth to LNAPL (in feet)	LNAPL Thickness (in feet)	LNAPL Thickness Corrected Groundwater (in feet) Elevation (in feet)
TMW-1	02/27/02 03/15/02	NA NA	38.13 38.15	38.13 38.31	0 0.16	NA NA
NA - Not available						

ì

i

L

i

i

i

Į

ļ

		GRO EQUIV.	TABLE 3 GROUNDWATER CONTAMINANT CONCENTRATIONS EQUIVA PENROSE "A" LEASE (WINNIE KENNAN RANCH) EUNICE, LEA COUNTY, NEW MEXICO	TABLE 3 DWATER CONTAMINANT CONCENTR PENROSE "A" LEASE (WINNIE KENNAN EUNICE, LEA COUNTY, NEW MEXICO	CENTRATIONS ENNAN RANCH EXICO			
Well No.	Sample Date	Benzene (in mg/L)	Ethylbenzene (in mg/L)	Toluene (in mg/L)	Total Xylenes (in mg/L)	Total BTEX (in mg/L)	TPH (418.1) (in mg/L)	PAH (in mg/L)
TMW-1	02/27/02 03/15/02	<0.005 LNAPL	0.027 LNAPL	0.084 LNAPL	0.194 LNAPL	0.305	19.6 LNAPL	NA * LNAPL
LNAPL - Light Non-aqueous phase liquids * Samples were collected, however the time frame for extraction was exceeded. A second sample was to be collected, however LNAPLs were noted in the well and hence no samples for PAH were collected or analyzed.	ous phase liquiv d, however the 1 amples for PAH	ds time frame for extractiv were collected or anal	on was exceeded. A se vzed.	scond sample was to t	e collected, however	- LNAPLs were not	ui be	

ĺ

:

ATTACHMENT C

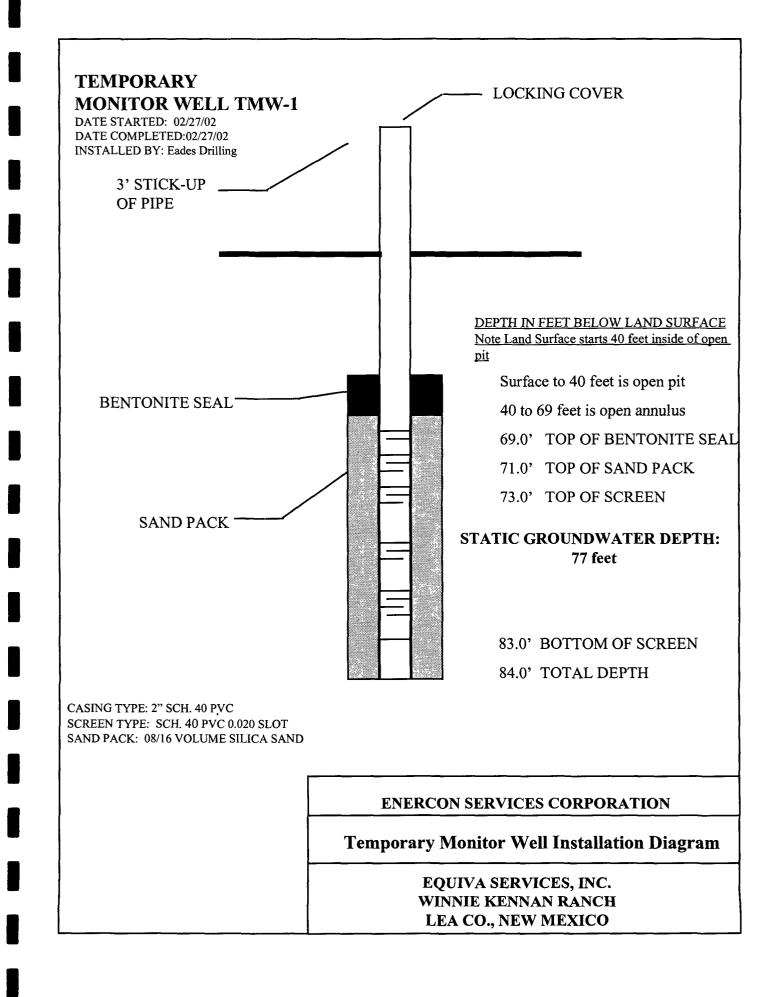
- -----

-

Soil Boring Log and Monitor Well Installation Diagram

	RCON SERVICES, INC. 06 West Wall, Suite 1312 Midland, Texas 79701	RECC	ORD OF	SUBS	URFAC	E EXPLORAT	ION
Project #:		Well/Boring #	ŧ:	TN	4W-1	Date Drilled: 2	/27/02
Project:	Penrose "A" Lease Winnie Kennan Ranch	Drilling Company: Driller:	Eades Drill Alan Eades			Drilling Air Ro Method: Logged By: JWK	otary
DEPTH (FEET)	Lea County, NM SOIL DESCRIPTION	SAMPLE NUMBER	SAMPLE TYPE	OVA (PPM)		REMARKS	
40.0	Backfill material to 43 feet below ground level **		SS		No sample c	ollected. Material is	0.0 —
45.0	Tan well sorted medium grain sand		SS	NA	Stong hydrod with staining		45.0 —
50.0	with intermixed calcareous limestone		SS	350	Stong hydro with staining		50.0 —
- 55.0		TMW-1 (53-55')	SS	368	Stong hydro with staining		55.0 —
60.0			SS	349	Strong hydro with no stair		60.0 —
-		TMW-1 (63'-65')	SS	365	No hydrocar or staining	bon odor	
65.0 		, , , , , , , , , , , , , , , , , , ,				r encountered at 26 feet	65.0 —
70.0 	Tan well sorted medium grain clayey		SS	299			70.0 —
- 	sand	TMW-1 (75')	SS	296			75.0 —
	Boring temrinated at 82 feet and converted to a temporary monitor well.				Groundwate	r encountered at 77 feet	80.0 —

ABBREVIATIONS AND SYMBOLS


SS - Driven Split Spoon

ST - Pressed Shelby Tube

CA - Continuous Flight Auger

HSA - Hollow Stem Auger CFA - Continous Flight Augers DC - Driving Casing ļ

** Notes: Temporary Monitor Well installed inside a 40-foot deep previously excavated open pit.

ATTACHMENT D

I.

i

Laboratory Analytical

TraceAnalysis, Inc.

6701 Aberdeen Ave., Suite 9

Lubbock, TX 79424-1515

(806) 794-1296

1

Report Date: March 6, 2002Order Number: A02022812 ES-533 Equiva Penrose Page Number: 1 of 1 Eunice ,Lea County New Mexico

Summary Report

Kyle Landreneau				Report Date:	March 6, 2002
Equiva Kyle Landı	reneau				
PMB 284 40 FM 1	.960 West				
Houston, TX 7709	0			Order ID Number:	A02022812
Project:	ES-533				
TA Job Code:	Equiva Penrose				
Casualty Code:	ES-533				
Project Location:	Eunice ,Lea Count	y New Mexico			
Project Address:					
Enercon Services I	nc. / Midland / Jeff	Kindley			
			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
191791	TMW-1	Water	2/27/02	9:30	2/28/02

0 This report consists of a total of 1 page(s) and is intended only as a summary of results for the sample(s) listed above.

			BTEX			TPH
	Benzene	Toluene	Ethylbenzene	M,P,O-Xylene	Total BTEX	TRPHC
Sample - Field Code	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
191791 - TMW-1	< 0.005	0.027	0.084	0.194	0.305	19.6

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H

Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79932

888 • 588 • 3443 E-Mail: lab@traceanalysis.com

806 • 794 • 1296 FAX 806 • 794 • 1298 915 • 585 • 3443 FAX 915 • 585 • 4944

Analytical and Quality Control Report

Kyle Landreneau Equiva Kyle Landreneau PMB 284 40 FM 1960 West Houston, TX 77090

Report Date:

March 6, 2002

Order ID Number: A02022812

Project: ES-533 TA Job Code: Equiva Penrose Casualty Code: ES-533 Project Location: Eunice ,Lea County New Mexico Enercon Services Inc. / Midland / Jeff Kindley

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
191791	TMW-1	Water	2/27/02	9:30	2/28/02

0

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

This report consists of a total of 5 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Analytical Report

Sample:	*****	- TMW-1					
Analysis:	BTEX	Analytical Method:	S 8021B	QC Batch:	QC18523	Date Analyzed:	2/28/02
Analyst:	CG	Preparation Method	: S 5030B	Prep Batch:	PB17986	Date Prepared:	2/28/02
Param		Flag	Result	Units	Dil	ution	RDL
Benzene			< 0.005	mg/L		5	0.001
Toluene			0.027	mg/L		5	0.001
Ethylbenzei	ne		0.084	mg/L		5	0.001
M,P,O-Xyle	ene		0.194	mg/L		5	0.001
Total BTE	x		0.305	mg/L		5	0.001
Surrogate TFT 4-BFB	Flag	0.085	Units mg/L	Dilution 5	Amount 0.10	Recovery 85	Limits 70 - 130
		0.089	mg/L	5	0.10	89	70 - 130
Sample: Analysis: Analyst:	19179) TPH KM	0.089 - TMW-1 Analytical Method: Preparation Method:	E 418.1	5 QC Batch: Prep Batch:	0.10 QC18622 PB18067	89 Date Analyzed: Date Prepared:	3/6/02
Sample: Analysis:	ТРН КМ	- TMW-1 Analytical Method:	E 418.1 N/A	QC Batch:	QC18622	Date Analyzed: Date Prepared:	70 - 130 3/6/02 3/5/02 RDL

Report Date: March 6, 2002 ES-533 Order Number: A02022812 Equiva Penrose Page Number: 3 of 5 Eunice ,Lea County New Mexico

Quality Control Report Method Blank

Method Blank

QCBatch: QC18523

				Reporting
Param	Flag	Results	Units	Limit
Benzene	· · · · · · · · · · · · · · · · · · ·	< 0.001	mg/L	0.001
Toluene		<0.001	mg/L	0.001
Ethylbenzene		< 0.001	mg/L	0.001
M,P,O-Xylene		< 0.001	m mg/L	0.001
Total BTEX		< 0.001	mg/L	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT	·	0.086	mg/L	1	0.10	86	70 - 130
4-BFB		0.087	mg/L	1	0.10	87	70 - 130

Method Blank	QCBatch:	QC18622		
7		D		Reporting
Param	\mathbf{Flag}	Results	Units	Limit
TRPHC		<0.500	mg/L	0.50

Quality Control Report Lab Control Spikes and Duplicate Spikes

QC18523

Laboratory Control Spikes

QCBatch:

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	\mathbf{Result}	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
MTBE	0.094	0.095	mg/L	1	0.10	< 0.001	94	1	82 - 111	20
Benzene	0.091	0.093	mg/L	1	0.10	<0.001	91	2	86 - 106	20
Toluene	0.092	0.094	mg/L	1	0.10	<0.001	92	2	82 - 108	20
Ethylbenzene	0.094	0.096	mg/L	1	0.10	< 0.001	94	2	86 - 115	20
M,P,O-Xylene	0.283	0.286	mg/L	1	0.30	< 0.001	94	1	79 - 122	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
TFT	0.085	0.088	mg/L	1	0.10	85	88	70 - 130
4-BFB	0.087	0.088	mg/L	11	0.10	87	88	70 - 130

Laboratory Control Spikes

QCBatch: QC18622

Report Date: March 6, 2002 ES-533				Order Numb Equiva	Penrose	2	Page Number: 4 of 5 Eunice ,Lea County New Mexico				
					Spike				~ ~ ~		
D	LCS	LCSD	TT			atrix	07 D	RPD	% Rec	RPD	
Param FRPHC	Result 6.75	Result 6.84	Units			esult 0.500	% Rec 79	$\frac{RPD}{1}$	Limit 70 - 130	Limit 20	
IRFIC	0.75	0.04	mg/L	1	0.00 <1	5.500	19	<u> </u>	70 - 150	20	
Percent ree	covery is ba	sed on the sp		PD is based o				sult.			
		Çonti		uality C Calibratio				dards			
CCV ((1)	QCBatc	h: QC18	3523							
				CCVs	CCVs		CCVs	Perce		_	
_				True	Found		ercent	Recov	•	Date	
Param		Flag	Units	Conc.	Conc.	Re	covery	Limi		Analyzed	
MTBE			mg/L	0.10	0.092		92	85 - 1		2/28/02	
Benzene			mg/L	0.10	0.090		90	85 - 1		2/28/02	
Toluene			mg/L	0.10	0.090		90	85 - 1		2/28/02	
Ethylben: M,P,O-Xy			mg/L mg/L	0.10 0.30	$0.092 \\ 0.274$		92 91	85 - 1 85 - 1		$\frac{2}{28}/02$ $\frac{2}{28}/02$	
CCV	(2)	0.075									
	•••	QCBatc	h: $QC18$	3523						·	
		QCBatc	h: QC18	3523 CCVs	CCVs		CCVs	Perce	ent		
		QCBatc	h: QC18		CCVs Found		CCVs Percent	Perce Recov		Date	
Param		QCBatc	h: QC18 Units	CCVs		P			ery		
		-	·	CCVs True	Found	P	ercent ecovery 91	Recov	ery ts	Analyze	
MTBE	· · ·	-	Units	CCVs True Conc.	Found Conc. 0.091 0.087	P	ercent ecovery 91 87	Recov Limi	ery ts 15	Analyze 2/28/0 2/28/0	
MTBE Benzene Toluene	· ·	-	Units mg/L mg/L mg/L	CCVs True Conc. 0.10 0.10 0.10	Found Conc. 0.091 0.087 0.089	P	ercent ecovery 91 87 89	Recov Limi 85 - 1 85 - 1 85 - 1	ery ts 15 15 15	Analyze 2/28/0 2/28/0 2/28/0	
MTBE Benzene Toluene Ethylben		-	Units mg/L mg/L mg/L mg/L	CCVs True Conc. 0.10 0.10 0.10 0.10 0.10	Found Conc. 0.091 0.087 0.089 0.09	P	ercent ecovery 91 87 89 90	Recov Limi 85 - 1 85 - 1 85 - 1 85 - 1	ery ts 15 15 15 15	Analyze 2/28/02 2/28/02 2/28/02 2/28/02	
Param MTBE Benzene Toluene Ethylben M,P,O-X		-	Units mg/L mg/L mg/L	CCVs True Conc. 0.10 0.10 0.10	Found Conc. 0.091 0.087 0.089	P	ercent ecovery 91 87 89	Recov Limi 85 - 1 85 - 1 85 - 1	ery ts 15 15 15 15	Date Analyze 2/28/02 2/28/02 2/28/02 2/28/02 2/28/02	
MTBE Benzene Toluene Ethylben		-	Units mg/L mg/L mg/L mg/L	CCVs True Conc. 0.10 0.10 0.10 0.10 0.10	Found Conc. 0.091 0.087 0.089 0.09	P	ercent ecovery 91 87 89 90	Recov Limi 85 - 1 85 - 1 85 - 1 85 - 1	ery ts 15 15 15 15	Analyze 2/28/02 2/28/02 2/28/02 2/28/02	
MTBE Benzene Toluene Ethylben	ylene	-	Units mg/L mg/L mg/L mg/L	CCVs True Conc. 0.10 0.10 0.10 0.10 0.30	Found Conc. 0.091 0.087 0.089 0.09	P	ercent ecovery 91 87 89 90	Recov Limi 85 - 1 85 - 1 85 - 1 85 - 1	ery ts 15 15 15 15	Analyze 2/28/02 2/28/02 2/28/02 2/28/02	
MTBE Benzene Toluene Ethylben M,P,O-X	ylene	Flag	Units mg/L mg/L mg/L mg/L	CCVs True Conc. 0.10 0.10 0.10 0.10 0.30	Found Conc. 0.091 0.087 0.089 0.09	P Ra	ercent ecovery 91 87 89 90	Recov Limi 85 - 1 85 - 1 85 - 1 85 - 1	ery ts 15 15 15 15 15	Analyze 2/28/02 2/28/02 2/28/02 2/28/02	
MTBE Benzene Toluene Ethylben M,P,O-X	ylene	Flag	Units mg/L mg/L mg/L mg/L	CCVs True Conc. 0.10 0.10 0.10 0.10 0.30	Found Conc. 0.091 0.087 0.089 0.09 0.268	P Ra	ercent 91 87 89 90 89	Recov Limi 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1	ery ts 15 15 15 15 15 15	Analyze 2/28/02 2/28/02 2/28/02 2/28/02	
MTBE Benzene Toluene Ethylben M,P,O-X	ylene	Flag	Units mg/L mg/L mg/L mg/L	CCVs True Conc. 0.10 0.10 0.10 0.10 0.30 523 CCVs	Found Conc. 0.091 0.087 0.089 0.09 0.268 CCVs	P Ra	ercent 91 87 89 90 89 S9	Recov Limi 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1	ery ts 15 15 15 15 15 15 ent very	Analyze 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 Date Analyze	
MTBE Benzene Toluene Ethylben M,P,O-X ICV (Param	ylene	Flag QCBatch	Units mg/L mg/L mg/L mg/L	CCVs True Conc. 0.10 0.10 0.10 0.10 0.30 523 CCVs True	Found Conc. 0.091 0.087 0.089 0.09 0.268 CCVs Found	P Ra	ercent 91 87 89 90 89 CCVs Percent	Recov Limi 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1	ery ts 15 15 15 15 15 15 15 ent very its	Analyze 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 Date Analyze	
MTBE Benzene Toluene Ethylben M,P,O-X	ylene	Flag QCBatch	Units mg/L mg/L mg/L mg/L .: QC18 Units	CCVs True Conc. 0.10 0.10 0.10 0.30 523 CCVs True Conc.	Found Conc. 0.091 0.087 0.089 0.09 0.268 CCVs Found Conc.	P Ra	ercent ecovery 91 87 89 90 89 90 89 CCVs Percent ecovery	Recov Limi 85 - 1 85 - 1	ery ts 15 15 15 15 15 15 15 ent very its 115	Analyze 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0	
MTBE Benzene Toluene Ethylben M,P,O-X ICV (Param MTBE Benzene Toluene	ylene 1)	Flag QCBatch	Units mg/L mg/L mg/L mg/L :: QC18 Units mg/L	CCVs True Conc. 0.10 0.10 0.10 0.10 0.30 523 523 CCVs True Conc. 0.10 0.10 0.10	Found Conc. 0.091 0.087 0.089 0.09 0.268 CCVs Found Conc. 0.097 0.096 0.097	P Ra	Percent ecovery 91 87 89 90 89 89 90 89 90 89 89 89 89 89 89 90 89 89 89 89 89 89 89 89 89 89 89 89 89	Recov Limi 85 - 1 85 - 1 Recov Lim 85 - 2 85 - 3 85 - 3	ery ts 15 15 15 15 15 15 15 15 115 115 115	Analyze 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0	
MTBE Benzene Toluene Ethylben M,P,O-X ICV (Param MTBE Benzene	ylene 1)	Flag QCBatch	Units mg/L mg/L mg/L mg/L units mg/L mg/L	CCVs True Conc. 0.10 0.10 0.10 0.10 0.30 523 523 CCVs True Conc. 0.10 0.10	Found Conc. 0.091 0.087 0.089 0.09 0.268 CCVs Found Conc. 0.097 0.096	P Ra	ercent ecovery 91 87 89 90 89 CCVs Percent ecovery 97 96	Recov Limi 85 - 1 85 - 1 Recov Lim 85 - 3	ery ts 15 15 15 15 15 15 15 115 115 115 115	Analyze 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0 2/28/0	

CCV (1)

QCBatch: QC18622

Report Date: March 6, 2002 ES-533			+	nber: A0202281 va Penrose	Page Number: 5 of 5 Eunice ,Lea County New Mexico		
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
TRPHC		mg/L	100	93	93	75 - 125	3/6/02
ICV (1)	Q	CBatch:	QC18622		·		
			CCVs	CCVs	CCVs	Percent	

Danam	Flor	TInita	True	Found	Percent	Recovery Limits	Date
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Diffics	Analyzed
TRPHC		mg/L	100	92.5	92	75 - 125	3/6/02

	_																			<u></u>
. . ſ										рюн							TT		q	For GT
		1.19				prebne	its mont	ifferent	b li em	T bruorA muT						_	1			4 30
-t				-	<u>.</u>												++		┼─┤	E JALLIG
_ 1	ESI	<u></u>		-	<u>, </u>									-						15 mg 11 15 mg 11 15 mg 11 10
	Q	6		-																Enor of the
age	ЦЦ Ш			_																
Page	SIS	8		_								<u> </u>					+			O O O O O O O O O O O O O O O O O O O
	۲	ro	•	. -						Hq ,22T ,008		<u> </u>	╂							H gand S. S. S. S. S. S.
	AN		ESI	Ž.						PCB's 8082/60			+-+		- +					E Constant
	Q	oed	O	- letho			S	29/ጋ02		GC/MS Semi. /							++			KS: Tolvers 5 0 EAUltrans 5 0 EAUltrans 5 0 Xylews 5 2 0 Xylews 5 2 0 Xylews 5 2 0 Xylews 5 2 0 Limis Are Needed Limis Are Needed
	ΥA	\mathcal{P}	R	- v L					_	GC/MS Vol. 82										
	ao		SIS	Specify Method No.)					_	BCI		┡					+		-	
	JST	#			<u> </u>					TCLP Pesticide	<u> </u>	<u> </u>								
-	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST	LAB Order ID #	AN	Circle or				·		TCLP Semi Vol TCLP Volatiles		-					+			
	io-t	۵.		≝		бн	r Pb Se) b) e		TCLP Metals A		╞──	+							The second secon
-	AIA	Š		-	2.002\8	80109 61	1 92 dq	Cd Cr	s8 sA	pA sleteM lstoT										
	R			_						PAH 8270C	<u> </u>									BO STA
				-		*	1.8			+X1/1.814 H9T	\geq	_	+							Presspace
_						. <u></u>				MTBE 8021B/6020B/2021B/6020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/2020B/6020000000000	<u>•></u>	-								Headspace Log-in Review
		L		Τ		<u> </u>			T	TIME	33						+			
2	ite H 32	0.4 m							SAMPLING		+	+								H
	55 McCutcheon,Suite H El Paso, Texas 79932	Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443							SAM	ЭТАО	विमित					l		ł		
0	55 McCutcheon El Paso, Texas	5) 58 15) 58 8) 588	9		-		1		۴,		1-3	, 	+							3 42
	McC Paso	el (91 ax (9 1 (88)	8726	-3	1				μ	AONE	5	+	+							
M	155 EI	- ш	1	15			<	2	E o	ICE	5	\vdash	+							Time:
	l		2				enna	K	PRESERVATIVE METHOD	HOBN										
	1	•	5.5	489				ture	N N N	05 P										Date: Date: Date:
5			915	915-			me	igna I	Ι.	⁶ ONH	-	<u> </u>		L						
_			Phone #: 0	0	3		Project Nam	Sampler Signature	0	HCI	\square	┢		_					_	eller 2 ton py/
			hon	Fax #: 9	E		Project Na	amp	F_	BLUDGE	-	┿								5 1 3
		Ś	٩	j už '				0°°	MATRIX	AIR 1995		╋		<u> </u>						
	•	S			7				ž		_	+								
				.	-					RATAN			-				_			Ved by: Ved by: Ved trabo
_		B			S					<u></u>	_	-	-							
		Ë			Midland					Alemuio/	1	<u>}</u>					_			Received by: Received by:
		l'raceAnalysis,	1		Ę		SUT		รย	CONTAINE	* 									Received by: Received by: Received at Laboratory by Received at Laboratory by and Conditions listed on reve
		G			<u>द</u>	1			-	····.	┤╸	+			†			<u>├</u> ─┼		
		Ŭ			1312	Loin de reau	2011 Not													Time: Time: Time: Time: Time:
_		a a		T NC		9	2			ш							-			Tir Tir Tir Tir Tir
					Sut	15				Ido;										
			İ	9	_		Course	We was	Š	FIELD CODE										Date: $\frac{\alpha_1 \pi p_2}{Date:}$ Date: Late: Late:
	6			, Z	2	t.	3			FIE										Date: Data: Date: Date: Date: Date: Date: Date:
	Ste 24	980	C	\$ ₹		Æ		N				•								
_	enue s 794	4-125		s j	\$ 2		533		•		TW	2								
	exa	6) 79 6) 79 1 378	į	C. Nancon Service (Street, City, Zip)	3 _ë	补		Ïö			14	-								
	erde X	(800) (800) (800)	12 t	นิ	306 ct Perso	Je Ffrey e to:	ې ۲	cation	}—	· 🖌	七	+-	-	+	+			\uparrow	\rightarrow	of sam
	6701 Aberdeen Avenue, Ste. 9 Lubbock, Texas 79424	Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296	ompany Name:	SS:	306 (ontact Person:	Je FFrey K woice to:	2 *	roject Location:	s Z		19010	:	,		Ĵ		· .			
	67		mo.	ddress:	ont	io i	roject #:	1 <u>1</u> 2	4	סב ב	a	ᅴ	1		ł				ł	

Lubbock, TX 79424-1515

Report Date: March 13, 2002Order Number: A02030115 ES-533 Equiva Penrose Page Number: 1 of 1 Eunice ,Lea County New Mexico

Summary Report

L	Report Date:	March 13, 2002		
dreneau	-			
1960 West				
90	Order ID Number:	A02030115		
ES-533				
	dreneau 1960 West 90	dreneau 1960 West 90 Order ID Number: ES-533		

TA Job Code:Equiva PenroseCasualty Code:ES-533Project Location:Eunice ,Lea County New MexicoProject Address:Enercon Services Inc. / Midland / Jeff Kindley

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
191904	TMW-1 (53-55)	Soil	2/26/02	8:10	3/1/02
191905	TMW-1 (63-65)	Soil	2/26/02	9:30	3/1/02

0 This report consists of a total of 1 page(s) and is intended only as a summary of results for the sample(s) listed above.

			TPH DRO	TPH GRO				
	Benzene	Toluene E	DRO	GRO				
Sample - Field Code	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
191904 - TMW-1 (53-55)	< 0.100	< 0.100	13.7	28.7	42.4	* 1	1320	751
191905 - TMW-1 (63-65)	0.0136	0.271	0.612	1.51	2.41	-	5520	3173

Sample: 191905 - TMW-1 (63-65)

Param	Flag	Result	Units
Naphthalene		2.75	mg/Kg
Acenaphthylene		<0.25	mg/Kg
Acenaphthene		<0.25	mg/Kg
Fluorene		<0.25	mg/Kg
Phenanthrene		<0.25	mg/Kg
Anthracene		<0.25	mg/Kg
Fluoranthene		<0.25	mg/Kg
Pyrene		<0.25	mg/Kg
Benzo(a)anthracene		<0.25	mg/Kg
Chrysene		<0.25	mg/Kg
Benzo(b)fluoranthene		<0.25	mg/Kg
Benzo(k)fluoranthene		<0.25	mg/Kg
Benzo(a)pyrene		<0.25	mg/Kg
Indeno(1,2,3-cd)pyrene		<0.25	mg/Kg
Dibenzo(a,h)anthracene		<0.25	mg/Kg
Benzo(g,h,i)perylene		<0.25	mg/Kg

¹Sample diluted due to hydrocarbons beyond xylene. Sample contains less than 0.0032 mg/Kg Benzene wich is the MDL.

TraceAnalysis, Inc.

191905

Lubbock, TX 79424-1515

(806) 794-1296

3/1/02

Report Date: March 12, 2002Order Number: A02030115 ES-533 Equiva Penrose

TMW-1 (63-65)

Summary Report

Kyle Landreneau				Report Date:	March $12, 2002$
Equilon Kyle Land	dreneau				
PMB 284 40 FM 1	1960 West				
Houston, TX 7709	0		Order ID Number:	A02030115	
Project:	ES-533				
TA Job Code:	Equiva Penrose				
Casualty Code:	ES-533				
Project Location:	Eunice ,Lea County	New Mexico			
Project Address:					
Enercon Services	Inc. / Midland / Jeff H	Kindley			
			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received

0 This report consists of a total of 1 page(s) and is intended only as a summary of results for the sample(s) listed above.

2/26/02

9:30

Soil

			SPLP BTEX	ζ]
	Benzene	Toluene	Ethylbenzene	M,P,O-Xylene	Total BTEX
Sample - Field Code	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
191905 - TMW-1 (63-65)	0.0071	0.241	0.568	1.36	2.1761

Sample: 191905 - TMW-1 (63-65)

Param	Flag	Result	Units
SPLP DRO		<5.00	mg/L
SPLP GRO		6.85	mg/L

6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424 155 McCutcheon, Suite H El Paso, Texas 79932

888 • 588 • 3443 E-Mail: lab@traceanalysis.com

806 • 794 • 1296 FAX 806 • 794 • 1298 915•585•3443 FAX 915•585•4944

800 • 378 • 1296

Analytical and Quality Control Report

Kyle Landreneau Equilon Kyle Landreneau PMB 284 40 FM 1960 West Houston, TX 77090

Report Date:

March 13, 2002

Order ID Number: A02030115

Project: ES-533 TA Job Code: Equiva Penrose Casualty Code: ES-533 Project Location: Eunice ,Lea County New Mexico Enercon Services Inc. / Midland / Jeff Kindley

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
191904	TMW-1 (53-55)	Soil	2/26/02	8:10	3/1/02
191905	TMW-1 (63-65)	Soil	2/26/02	9:30	3/1/02

0

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

This report consists of a total of 10 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Blair Leftwich. Director

Order Number: A02030115 Equiva Penrose

Analytical Report

Sample:	191904 -	TMW-1 ((53-55)	
---------	----------	----------------	---------	--

Analysis:	BTEX	Analytical Method:	S 8021B	QC Batch:	QC18564	Date Analyzed:	3/1/02
Analyst:	CG	Preparation Method:	S 5035	Prep Batch:	PB18021	Date Prepared:	3/1/02
Param		Flag	Result	Units		Dilution	RDL
Benzene			<0.100	mg/Kg	······································	100	0.001
Toluene			<0.100	mg/Kg		100	0.001
Ethylbenze	ne		13.7	mg/Kg		100	0.001
M,P,O-Xyle	ene		28.7	mg/Kg		100	0.001
Total BTE	Х		42.4	mg/Kg		100	0.001
Test Comm	nents	1	*	mg/Kg		1	

Surrogate	Flag	Result	Units	Dilution	Spike . Amount	Percent Recovery	Recovery Limits
TFT	2	0.592	mg/Kg	100	1	59	70 - 130
4-BFB	3	9.68	mg/Kg	100	1	968	70 - 130

Sample: 191904 - TMW-1 (53-55)

Analysis: Analyst:	TPH DRO MM	Analytical Method: Preparation Method:	Mod. 8015B 3550 B	QC Batch: Prep Batch:	QC18552 PB18014	Date Analyzed: Date Prepared:	3/3/02 3/1/02
Param	Flag	Result	Units	Dilut	ion		RDL
DRO		1320	mg/Kg	10)		50

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane	4	233	mg/Kg	10	150	155	70 - 130

Sample: Analysis: Analyst:	191904 - TPH GRO CG	TMW-1 (53-55) Analytical Method Preparation Metho	: 8015B	QC Batch: Prep Batch:	QC18565 PB18021	Date Analyzed: Date Prepared:	3/1/02 3/1/02
Param	Flag	Result	Unit	s I	Dilution		RDL
GRO		751	mg/K	g	100		0.10
Surrogate	Flag	Result U	nits .	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT 4-BFB	5		g/Kg g/Kg	100 100	1 1	157 744	70 - 130 70 - 130

¹Sample diluted due to hydrocarbons beyond xylene. Sample contains less than 0.0032 mg/Kg Benzene wich is the MDL. ²Low surrogate recovery due to matrix interference.

³High surrogate recovery due to peak interference.

⁴Surrogate out of recovery limits due to high hydrocarbons. LCS, ICV, and CCV show the process is in control.

⁵High surrogate recovery due to peak interference. ⁶High surrogate recovery due to peak interference.

Report Date: March 13, 2002 ES-533

- ----

Order Number: A02030115 Equiva Penrose

Analysis: E	191905 STEX CG	- TMW-1 Analytical Me Preparation M	ethod:	S 8021B N/A	QC Batch: Prep Batch			Date Analyzed: Date Prepared:	3/1/02 3/1/02
Param		Flag	Re	sult	Units		Dilutio	on	RDL
Benzene			0.0	136	mg/Kg		5		0.001
Foluene				271	mg/Kg		5		0.001
Ethylbenzene				612	mg/Kg		5		0.001
M,P,O-Xylene				.51	mg/Kg		5		0.001
Total BTEX	·			2.41	mg/Kg	·····	5		0.001
						Spil	ce	Percent	Recovery
Surrogate	Flag	Result	Ur	nits	Dilution	Amor		Recovery	Limits
IFT		0.097		/Kg	5	1		97	70 - 130
4-BFB		0.097		/Kg	5	1		97	70 - 130
•	PAH	- TMW-1 Analytical Me Preparation M	thod: S	8270C 3510C	QC Batch: Prep Batch	QC18 :: PB18		Date Analyzed: Date Prepared:	3/6/02 3/6/02
Param		F	lag	Resu	lt	Units		Dilution	RDL
Naphthalene				2.7	75	mg/Kg		1	0.25
Acenaphthyle	ene			<0.2	25	mg/Kg		1	0.25
Acenaphthene				<0.2		mg/Kg		1	0.25
Fluorene				<0.2		mg/Kg		1	0.25
Phenanthrene	2			<0.2		mg/Kg		1	0.25
Anthracene				<0.2		mg/Kg		1	0.25
Fluoranthene	:			<0.2		mg/Kg		1	0.25
Pyrene				<0.5		mg/Kg		1	0.25
Benzo(a)anth	racene			<0.5		mg/Kg		1	0.25
Chrysene				<0.5		mg/Kg		1	0.23
Benzo(b)fluor	ranthene			<0.5		mg/Kg		1	0.25
Benzo(k)fluor				<0.		mg/Kg		1	0.23
Benzo(a)pyre				<0.		mg/Kg		1	0.2
Indeno(1,2,3-				<0.		mg/Kg		1	0.2
Dibenzo(a,h)				<0.		mg/Kg		1	0.2
Benzo(g,h,i)p				<0.		mg/Kg		<u> </u>	0.2
						S	pike	Percent	Recover
Surrogate		Flag R	esult	Units	Dilution	Aı	nount	Recovery	Limits
Nitrobenzene			71.44	mg/Kg	1		80	89	23 - 120
2-Fluorobiph	-		5.875	mg/Kg	1		80	46	30 - 115
-	.4		53.99	mg/Kg	1		80	79	28 - 137
Terphenyl-d1			•						
Sample: Analysis:	TPH DRO	•	Method:	Mod. 8			QC18552 PB18014		
Sample: Analysis: Analyst:	TPH DRO MM	O Analytical Preparatic	Method: on Method	Mod. 8 l: 3550 B	Prep	Batch:	PB18014		3/1/0
Sample: Analysis:	TPH DRO	O Analytical Preparatic	Method:	Mod. 8 1: 3550 B Ui			PB18014		

Report Date: March 13, 2002 ES-533			Order Number: A02030115 Equiva Penrose				Page Number: 4 of 10 Eunice ,Lea County New Mexico		
Surrogate	Flag	Result	Uni	ts	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
n-Triaconta	ne 7	306	mg/l	Kg	10	150	204	70 - 130	
Sample: Analysis: Analyst:	191905 - 7 TPH GRO CG	FMW-1 (63-6 Analytical Meth Preparation Met	od:	8015B 5035	QC Batch: Prep Batch:	QC18565 PB18021	Date Analyzed: Date Prepared:	3/1/02 3/1/02	
Param	Flag	Result		Units	Ľ	Dilution		RDL	
GRO		3173		mg/Kg	Ş	200		0.10	
Surrogate	Flag	Result	Units	D	Vilution	Spike Amount	Percent Recovery	Recovery Limits	
TFT 4-BFB			mg/Kg mg/Kg	д	200 200	1 1	169 7470	70 - 130 70 - 130	

⁷Surrogate out of recovery limits due to high hydrocarbons. LCS, ICV, and CCV show the process is in control. ⁸High surrogate recovery due to peak interference. ⁹High surrogate recovery due to peak interference.

.

Order Number: A02030115 Equiva Penrose Page Number: 5 of 10 Eunice ,Lea County New Mexico

.

ł

Quality Control Report Method Blank

Param	1	Flag	Resu	1+0	Units		Reporting Limit
DRO		l'Iag	<50		mg/Kg		50
	<u></u>						
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane		120	mg/Kg	1	150	80	70 - 130
Method Blan	k	QCBatch:	QC18564				
Param		Flag	F	Results	Units		Reporting Limit
Benzene				<0.010	mg/K		0.001
Toluene				<0.010	mg/K		0.001
Ethylbenzene				<0.010	mg/K		0.001
M,P,O-Xylene				<0.010	mg/K		0.001
Total BTEX	<u> </u>			<0.010	mg/K	g	0.001
					Spike	Percent	Recover
Surrogate F	lag	Result	Units	Dilution	Amount	Recovery	Limits
TFT		0.855	mg/Kg	10	1	85	70 - 130
4-BFB		0.757	mg/Kg	10	1	75	70 - 130
Method Blan	k	QCBatch:	QC18565				
							Reportin
Param		Flag	Resi	ilts	Units		Limit
GRO				<1	mg/Kg		0.10
	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recover Limits
TFT		1.01	mg/Kg	10	1	101	70 - 13
4-BFB		0.810	mg/Kg	10	1	81	70 - 13
Method Blan	ւ	OCPataba	0019694				
Mernor Dian		QCBatch:	QC18684				Der ert*
Param		Fl	ag	Results		nits	Reportin Limit
Naphthalene		· ·		< 0.25		;/Kg	0.25
Acenaphthylene				< 0.25	ma	;/Kg	0.25

Continued ...

... Continued

Param	Flag	Results	Units	Reporting Limit
Acenaphthene		< 0.25	mg/Kg	0.25
Fluorene		< 0.25	mg/Kg	0.25
Phenanthrene		< 0.25	mg/Kg	0.25
Anthracene		< 0.25	mg/Kg	0.25
Fluoranthene		< 0.25	mg/Kg	0.25
Pyrene		< 0.25	mg/Kg	0.25
Benzo(a)anthracene		< 0.25	mg/Kg	0.25
Chrysene		< 0.25	mg/Kg	0.25
Benzo(b)fluoranthene		< 0.25	mg/Kg	0.25
Benzo(k)fluoranthene		< 0.25	mg/Kg	0.25
Benzo(a)pyrene		< 0.25	mg/Kg	0.25
Indeno(1,2,3-cd)pyrene		< 0.25	mg/Kg	0.25
Dibenzo(a,h)anthracene		< 0.25	mg/Kg	0.25
Benzo(g,h,i)perylene		< 0.25	mg/Kg	0.25

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Nitrobenzene-d5		58.28	mg/Kg	1	80	72	23 - 120
2-Fluorobiphenyl		61.45	mg/Kg	1	80	76	30 - 115
Terphenyl-d14		62.83	mg/Kg	1	80	78	28 - 137

Quality Control Report Lab Control Spikes and Duplicate Spikes

Labora	atory Co	ntrol Spi	ikes	QCBatcl	n: QC185	52				
					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	\mathbf{Result}	% Rec	RPD	Limit	Limit
DRO	243	232	mg/Kg	1	250	<50.0	97	5	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Recovery
Surrogate	Result	Result	Units	Dilution	Amount	% Rec	% Rec	Limits
n-Triacontane	134	127	mg/Kg	1	150	89	85	70 - 130

Laboratory Control Spikes

QCBatch: QC18564

Spike LCS LCSD Amount % Rec RPD Matrix Result Units Dil. Added Result % Rec RPD Limit Limit Param Result MTBE 0.853 0.872 mg/Kg 10 1 < 0.010 85 2 79 - 113 20 Benzene 0.914 0.926 mg/Kg 10 1 < 0.010 91 1 88 - 107 20 Toluene 0.915 0.931 mg/Kg 10 1 < 0.010 91 1 86 - 110 20 91 2 20 Ethylbenzene 0.914 0.934 mg/Kg 10 1 < 0.010 85 - 110 10 93 86 - 112 M,P,O-Xylene mg/Kg 3 < 0.010 1 20 2.8 2.85

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: March 13, 2002 ES-533 Order Number: A02030115 Equiva Penrose Page Number: 7 of 10 Eunice ,Lea County New Mexico

<u></u>	T CR				0.1	T 00	I CCD	
Summe mete	LCS	LCSD	TT_:+-		Spike	LCS	LCSD	Recovery
Surrogate	Result	Result	Units	Dilution	Amount	% Rec	% Rec	Limits
\mathbf{TFT}	0.863	0.886	mg/Kg	10	1	86	88	70 - 130
4-BFB	0.868	0.875	mg/Kg	10	1	86	87	70 - 130

Laboratory Control Spikes

QCBatch: QC18565

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
GRO	9.14	8.38	mg/Kg	10	1	<1	91	8	82 - 115	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	$\begin{array}{c} \mathrm{LCSD} \\ \mathrm{Result} \end{array}$	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
TFT	0.968	0.931	mg/Kg	10	1	97	93	70 - 130
4-BFB	0.904	0.897	mg/Kg	10	1	90	90	70 - 130

Laboratory Control Spikes

QCBatch:

: QC18684

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Naphthalene	50.9	56	mg/Kg	1	80	< 0.25	63	9	21 - 133	20
Acenaphthylene	56.5	61.4	mg/Kg	1	80	< 0.25	70	8	33 - 145	20
Acenaphthene	54.1	59.1	mg/Kg	1	80	< 0.25	67	8	47 - 145	20
Fluorene	55	61.1	mg/Kg	1	80	< 0.25	68	10	59 - 121	20
Phenanthrene	58.5	61.8	mg/Kg	1	80	< 0.25	73	5	54 - 120	20
Anthracene	62.5	65.9	mg/Kg	1	80	< 0.25	78	5	27 - 133	20
Fluoranthene	66.3	67.9	mg/Kg	1	80	< 0.25	82	2	26 - 137	20
Pyrene	56.1	56.9	mg/Kg	1	80	< 0.25	70	1	52 - 115	20
Benzo(a)anthracene	60.4	65.8	mg/Kg	1	80	< 0.25	75	8	33 - 143	20
Chrysene	64.6	66.2	mg/Kg	1	80	< 0.25	80	2	17 - 168	20
Benzo(b)fluoranthene	57	65	mg/Kg	1	80	< 0.25	71	13	33 - 143	20
Benzo(k)fluoranthene	71.0	73.8	mg/Kg	1	80	< 0.25	88	3	17 - 168	20
Benzo(a)pyrene	61.2	64.2	mg/Kg	1	80	< 0.25	76	4	24 - 159	20
Indeno(1,2,3-cd)pyrene	49.4	50.8	mg/Kg	1	80	< 0.25	61	2	0 - 171	20
Dibenzo(a,h)anthracene	39.9	48.0	mg/Kg	1	80	< 0.25	49	18	0 - 227	20
Benzo(g,h,i)perylene	58.8	63.1	mg/Kg	1	80	< 0.25	73	7	0 - 219	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
Nitrobenzene-d5	51.9	62.4	mg/Kg	1	80	64	78	23 - 120
2-Fluorobiphenyl	58.6	65.0	mg/Kg	1	80	73	81	30 - 115
Terphenyl-d14	62.4	67.7	mg/Kg	1	80	78	84	28 - 137

Quality Control Report Matrix Spikes and Duplicate Spikes

Matrix Spikes

Report Date: March 13, 2002 ES-533					Number: A02 quiva Penros		Page Number: 8 of 10 Eunice ,Lea County New Mexico				
Param	MS Result	MSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit	
DRO	2560	2530	mg/Kg	5	250	2290	108	1	70 - 130	20	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Recovery
Surrogate	Result	Result	Units	Dilution	Amount	% Rec	% Rec	Limits
n-Triacontane	¹⁰ 219	196	mg/Kg	5	150	146	131	70 - 130

Matrix Spikes QCBatch: QC18564

					Spike					
	MS	MSD			Amount	Matrix			$\% { m Rec}$	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Benzene	0.895	0.926	mg/Kg	10	1	< 0.010	90	3	68 - 102	20
Toluene	0.907	0.938	mg/Kg	10	1	<0.010	91	3	69 - 105	20
Ethylbenzene	0.904	0.932	mg/Kg	10	1	<0.010	90	3	65 - 108	20
M,P,O-Xylene	2.78	2.87	mg/Kg	10	3	< 0.010	93	3	63 - 114	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Recovery
Surrogate	Result	Result	Units	Dilution	Amount	% Rec	% Rec	Limits
TFT	0.708	0.826	mg/Kg	10	1	71	83	70 - 130
4-BFB	0.721	0.856	mg/Kg	10	1	72	86	70 - 130

Quality Control Report Continuing Calibration Verification Standards

CCV (1)		QCBatch:	QC18552				
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
DRO		mg/Kg	250	258	103	75 - 125	3/3/02
ICV (1)		QCBatch:	QC18552				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	247	98	75 - 125	3/3/02

¹⁰Surrogate recovery high due to coelution with analytes.

Report Date: March 13, 2002 ES-533			Order Number: A02030115 Equiva Penrose			Page Number: 9 of 10 Eunice ,Lea County New Mexico		
CCV (1)	QCBatch: QC18		564					
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date	
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
MTBE		mg/L	0.10	0.0946	94	85 - 115	3/1/02	
Benzene		mg/L	0.10	0.0925	92	85 - 115	3/1/02	
Toluene		mg/L	0.10	0.0934	93	85 - 115	3/1/02	
Ethylbenzene		mg/L	0.10	0.0925	92	85 - 115	3/1/02	
M,P,O-Xylene		mg/L	0.30	0.2843	94	85 - 115	3/1/02	

CCV (2) QCBatch: QC18564

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
MTBE		mg/L	0.10	0.0875	87	85 - 115	3/1/02
Benzene		mg/L	0.10	0.0919	91	85 - 115	3/1/02
Toluene		mg/L	0.10	0.0924	92	85 - 115	3/1/02
Ethylbenzene		mg/L	0.10	0.0919	91	85 - 115	3/1/02
M,P,O-Xylene		mg/L	0.30	0.2824	94	85 - 115	3/1/02

ICV(1)	QCBatch:	QC18564
--------	----------	---------

			$\begin{array}{c} \mathrm{CCVs} \\ \mathrm{True} \end{array}$	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	\mathbf{F} lag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
MTBE		mg/L	0.10	0.0874	87	85 - 115	3/1/02
Benzene		mg/L	0.10	0.0905	90	85 - 115	3/1/02
Toluene		mg/L	0.10	0.091	91	85 - 115	3/1/02
Ethylbenzene		mg/L	0.10	0.091	91	85 - 115	3/1/02
M,P,O-Xylene		mg/L	0.30	0.279	93	85 - 115	3/1/02

CCV (1) QCBatch: QC18565

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1	0.911	91	75 - 125	3/1/02

ICV (1)		QCBatch:	QC18565				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1	0.955	95	75 - 125	3/1/02

Page Number: 10 of 10 Eunice ,Lea County New Mexico

CCV (1)	QCBatch:	QC18684
---------	----------	---------

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Naphthalene		mg/Kg	60	58.36	97	80 - 120	3/6/02
Acenaphthylene		mg/Kg	60	54.8	91	80 - 120	3/6/02
Acenaphthene		mg/Kg	60	54.9	91	80 - 120	3/6/02
Fluorene		mg/Kg	60	57.1	95	80 - 120	3/6/02
Phenanthrene		mg/Kg	60	61.9	103	80 - 120	3/6/02
Anthracene		mg/Kg	60	60.5	100	80 - 120	3/6/02
Fluoranthene		mg/Kg	60	66.0	110	80 - 120	3/6/02
Pyrene		mg/Kg	60	49.7	82	80 - 120	3/6/02
Benzo(a)anthracene		mg/Kg	60	63.1	105	80 - 120	3/6/02
Chrysene		mg/Kg	60	61.0	101	80 - 120	3/6/02
Benzo(b)fluoranthene		mg/Kg	60	69.4	115	80 - 120	3/6/02
Benzo(k)fluoranthene		mg/Kg	60	51.6	86	80 - 120	3/6/02
Benzo(a)pyrene		mg/Kg	60	58.1	96	80 - 120	3/6/02
Indeno(1,2,3-cd)pyrene		mg/Kg	60	63.5	105	80 - 120	3/6/02
Dibenzo(a,h)anthracene		mg/Kg	60	51.7	86	80 - 120	3/6/02
Benzo(g,h,i)perylene		mg/Kg	60	51.6	86	80 - 120	3/6/02
Nitrobenzene-d5		mg/Kg	60	61.6	102	80 - 120	3/6/02
2-Fluorobiphenyl		mg/Kg	60	57.8	96	80 - 120	3/6/02
Terphenyl-d14		mg/Kg	60	50.1	83	80 - 120	3/6/02

MUMUMUM		RACEANA	LYSIS	, Inc.//		
67	01 Aberdeen Avenue, Suite 9	Lubbock, Texas 79424	800•378•1296	806 • 794 • 1296	FAX 806 • 794 • 1298	
15	5 McCutcheon, Suite H	El Paso, Texas 79932	888•588•3443	915•585•3443	FAX 915•585•4944	
		E-Mail: lab@t	raceanalysis.com			

Analytical and Quality Control Report

Kyle Landreneau Equilon Kyle Landreneau PMB 284 40 FM 1960 West Houston, TX 77090 Report Date:

March 12, 2002

Order ID Number: A02030115

Project:ES-533TA Job Code:Equiva PenroseCasualty Code:ES-533Project Location:Eunice ,Lea County New MexicoEnercon Services Inc. / Midland / Jeff Kindley

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
191905	TMW-1 (63-65)	Soil	2/26/02	9:30	3/1/02

0

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

This report consists of a total of 5 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Order Number: A02030115 Equiva Penrose

Analytical Report

Analysis: Analyst:	191905 - 7 SPLP BTEX CG	Analytica		S 8021B 1312	QC Batch: Prep Batch:	QC18688 PB18125	Date Analyzed: Date Prepared:	3/7/02 3/7/02
Param	F	lag	Result	U	nits	Dilution		RDL
Benzene		<u></u>	0.0071	m	ıg/L	1		0.001
Toluene			0.241	m	$_{\rm lg/L}$	1		0.001
Ethylbenzer	ne		0.568	m	$_{ m lg/L}$	1		0.001
M,P,O-Xyle	ene		1.36	m	ıg/L	1		0.001
Total BTE	ζ		2.1761	m	ng/L	1		0.001
Summe med -		D - malt	T T • 4	D .	1	Spike	Percent	Recovery
Surrogate	Flag	Result	Units			Amount	Recovery	Limits
TFT		0.082	mg/Kg		5	0.10	82	72 - 128
		0 005						
4-BFB		0.095	mg/Kg	<u> </u>	5	0.10	95	72 - 128
Sample: Analysis:			63-65) Aethod: N	Mod. 8015] 312		QC18741	95 Date Analyzed: Date Prepared:	3/10/02
Sample: Analysis: Analyst:	SPLP DRO	FMW-1 (Analytical M Preparation	63-65) Aethod: N	Mod. 80151	B QC Batch: Prep Batcl	QC18741	Date Analyzed:	
Sample: Analysis: Analyst: Param	SPLP DRO MM Fla	FMW-1 (Analytical M Preparation	63-65) Aethod: M Method: 1	Mod. 8015] .312	B QC Batch: Prep Batcl its	QC18741 h: PB18157	Date Analyzed:	3/10/02 3/10/02
Sample: Analysis: Analyst: Param SPLP DRO Sample: Analysis: Analyst:	SPLP DRO MM Fla	FMW-1 (Analytical M Preparation g FMW-1 (Analytica	63-65) Aethod: Method: 1 Result <5.00 63-65)	Mod. 8015J .312 Un	B QC Batch: Prep Batcl its	QC18741 h: PB18157 Dilution	Date Analyzed:	3/10/02 3/10/02 RDL 50 3/7/02
Sample: Analysis: Analyst: Param SPLP DRO Sample: Analysis:	SPLP DRO MM Fla 191905 - 7 SPLP GRO	FMW-1 (Analytical M Preparation g FMW-1 (Analytica Preparati	63-65) Aethod: M Method: 1 Result <5.00 63-65) I Method:	Mod. 8015J .312 Un mg 8015 1312	B QC Batch: Prep Batch its ;/L QC Batch:	QC18741 h: PB18157 Dilution 1 QC18703	Date Analyzed: Date Prepared: Date Analyzed:	3/10/02 3/10/02 RDL

•

Order Number: A02030115 Equiva Penrose Page Number: 3 of 5 Eunice ,Lea County New Mexico

Quality Control Report Method Blank

Method Blank

QCBatch: QC18688

Param	Flag	Results	Units	Reporting Limit
Benzene		< 0.001	mg/L	0.001
Toluene		<0.001	mg/L	0.001
Ethylbenzene		< 0.001	mg/L	0.001
M,P,O-Xylene		<0.001	mg/L	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
TFT		0.089	mg/Kg	1	0.10	89	72 - 128
4-BFB		0.091	mg/Kg	1	0.10	91	72 - 128

Method Blank	QCBatch:	QC18703		
Param	Flag	Results	Units	Reporting Limit
SPLP GRO		<0.1	mg/L	0.10
Method Blank	QCBatch:	QC18741		

				Reporting
Param	Flag	Results	Units	Limit
SPLP DRO		<5.00	mg/L	50

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory	Laboratory Control Spikes				QC18688					
Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
MTBE	0.097	0.096	mg/L	1	0.10	< 0.001	97	1	80 - 120	20
Benzene	0.093	0.090	mg/L	1	0.10	< 0.001	93	3	80 - 120	20
Toluene	0.094	0.092	mg/L	1	0.10	<0.001	94	2	80 - 120	20
Ethylbenzene	0.097	0.095	mg/L	1	0.10	<0.001	97	2	80 - 120	20
M,P,O-Xylene	0.287	0.284	mg/L	1	0.30	<0.001	95	1	80 - 120	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
TFT	0.087	0.083	mg/Kg	1	0.10	87	83	72 - 128

Continued ...

Report Date ES-533	2002		Order Number: A02030115 Equiva Penrose				Page Number: 4 of 5 Eunice ,Lea County New Mexico			
Surrogate	LCS Result	LCSD Result	U	nits	Dilution	Spike Amount	LCS % Rec	:	LCSD % Rec	Recovery Limits
4-BFB	0.093	0.089	mg	g/Kg	1	0.10	93		89	72 - 128
Laborator	y Contro	ol Spikes		QCBatch:	QC18703					
2	LCS	LCSD	TT T .	51	Spike Amount	Matrix	(Y 1)		% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes QCBatch: QC18741

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
SPLP DRO	24.8	23.5	mg/L	0.10	250	<5.00	99	5	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV (1)

QCBatch: QC18688

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE	····	mg/L	0.10	0.103	103	80 - 120	3/7/02
Benzene		mg/L	0.10	0.103	103	80 - 120	3/7/02
Toluene		mg/L	0.10	0.103	103	80 - 120	3/7/02
Ethylbenzene		mg/L	0.10	0.106	106	80 - 120	3/7/02
M,P,O-Xylene		mg/L	0.30	0.312	104	80 - 120	3/7/02

ICV (1)

QCBatch: QC18688

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.099	99	80 - 120	3/7/02
Benzene		mg/L	0.10	0.095	95	80 - 120	3/7/02
Toluene		mg/L	0.10	0.096	96	80 - 120	3/7/02
Ethylbenzene		mg/L	0.10	0.099	99	80 - 120	3/7/02
M,P,O-Xylene		mg/L	0.30	0.294	98	80 - 120	3/7/02

CCV (1)

QCBatch: QC18703

Report Date: March 12, 2002 ES-533				Order Number: A02030115 Equiva Penrose			umber: 5 of 5 V New Mexico
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
SPLP GRO		mg/L	1	0.946	94	80 - 120	3/7/02
ICV (1)	QCBa	tch: QC1	.8703				
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param SPLP GRO	Flag	Units mg/L	Conc.	Conc.	Recovery 88	Limits 80 - 120	Analyzed 3/7/02
CCV (1)	OCE	Batch: QC	C18741				
	401	, , , , , , , , , , , , , , , , , , ,	CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP DRO		mg/L	250	250	100	70 - 130	3/10/02
ICV (1)	QCB	atch: QC	18741				
			CCVs	CCVs	CCVs	Percent	-
D	1-1	TT	True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP DRO		mg/L	250	241	96	70 - 130	3/10/02

• •

_		8.613	h.4	ht p	, nebneti	trom s	terent	11D }	i əmi	T brund r	1 1 1 1 1 1	4	>				-+						TPH	HIG	vighunt ar coul	₽ ₽	(زير
REQUEST			<u>۶-</u> ۶ ری	<u>-8</u> 5-3		<u>کر _</u>	05. <u>351</u>	10	2/ @``	H-H (19 57)	115		$\frac{\mathbf{x}}{\mathbf{x}}$	-+						-+		_	Ferrin	د	2 2		\sim
EQI			4	-{ 7	8 ~	1	FOS !	J.	00	· · · · · · · · · · · · · · · · · · ·	15	-ŀ	Ż							-+			_	1,000 pg m	Ľ	1. 1000	
		c	200	0	.9	¥	1	ע	न्न	08) H	<u>ш</u> ,	>	<u>-></u>					\square				:	Here a	000			3
ANALYSIS		8-3-	2	(e5)}	<u>, x</u>	718	1 17	10	<u> </u>	44 , 997 ,0			-+		_			_					*				
NAI	6	<u>ь</u>		<u> </u>				80		808 2082/60 102 8082/60		-+				+			_	-+			TPH	gm	ي ک	and un	[;
DA	3	Od N						327(.ime2 2M						-+		-+-	+	-+	{-	-1	بە		÷ +	2 2	
AN	ર્સ	Meth				_	1	¢29/	/809Z	8 .Iov 2M	-09					_							ser p	that ex	DA STEX +	legen l	تر ا
CHAIN-OF-CUSTODY AND	0203011	ANALYSIS REQUEST (Circle or Specify Method No.)	ì —								BCI											{	Ţ.	Ŧ	s ta	0 -	1-4
STC	${\cal R}$	YSI:	<u> </u>			<u> </u>		s		P Semi Vo		-		+					-+			[₹	Č.	2
- C	3 Order ID # /	VAL le or	; }_							P Volatiles		\dashv	-+			-+			\neg	-+	-+		*				R
Ŕ	rder	A (Circ			6H 6	es dq	Cq CL	вâ	sA gA	A elstaM 9	LCL												Ш. "	1761 23. 6	N.	13	3
AIN	LAB		<u></u>	108/200	.09 6H	əS da	10 pc) 85	3 sA g)A elsteM i									_				Sn=		<u>`</u> }		3
Я	X. 45 .								5001	418.1/TX									_	+			AB N	5 ≿	. ace ace	e So	J.
	16 (34) 78 (34)		·			<u></u>				8021B/6		5	\mathbf{x}								+			are de	Headspa	Temp Log-in Review	4
	at they									E 8051B/													ele and Tenet		Hea	Temp. Log-in	[{
									NG	Э	МІТ	8 10	430														5
ite A 2-1028	σ .4								SAMPLING		-+	6 2 8	8						-+	-+						$\sum_{i=1}^{n}$	1
Dr., Ste 79922-1	585-3443 585-4944 588-3443		2						SAI	Э.	TAG	collador	al se la														B
ipley Dr. Texas 79) 585-344() 585-494 588-3443		5					Γ																g		2 C	ß
	915 (915 (88)		75						K		ION																B
4725 Paso,	- Tel							3	PRESERVATIVE														Time:			۲ السود	p
ជ	j	726	684					۶	METHOD	L	N ^s C												-	ปโ		10	5
	•	5				X	Zä-	<u>کا</u>	PRE	²os									-+							. m	
	じ	0-8	915-			ë.	Signatu	\$	7		ОЛН]	Date	24 /0 Date:		Date	
		* 570				Name:	CI. 🗆	4	=		нсг												(2		1. .	
		Phone -	Fax #: 79701			Project	Sampler	矛	Ó															5	1	A 4	
	Ś	έσ	J Fa			d D	Sa		MATRIX	DGE													-	31		ه ا	
•			12	4					MA		IIOS AIA	_					{						2	3		aton.	* {
				+				·			TAW	>	2								-+		-			bd R	3 20
•			D. Nand					ŀ	<u> </u>	L		-0											; Aq				
				1		1			tun	iomA\9m	uloV	404	1.01	_					_	_			ived			20 1.2	
			6		L F				รษ	BNIATN))))												Received by:	Received by:		Received a Laboratory	13
	E/							ł																-		+	
	J J		3	1	le nau																	i	Time:	6 00 Time:	5	ine:	
{	ä	F	4 +	2	Service	8						<u>.</u>	5	•									Ę	16 00 Time:	DE YI . IN	1 ⊨	
	TraceAnalysis,	1	1 1	3	n s			3		IQOX		-52	- -												2	†	
			¥	17		-		New Marico		FIELD CODE		53	(3										Date:	ë ë	20	Date:	
6.6			City, Zip)	ŢŸ	¥~4	1		٤		ΕE										Ì			Da	0275802 Date:	4	ő	
e, Ste.	Lubbock, lexas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296	1 1		3	*-			3	,				-												B]	
6701 Aberdeen Avenue,	as 79 14-12 14-12 14-12	1 8	(Street,	on: 7. F.F.	Invoice to: (If different from above)			Z				Tmu	Taw	ļ									.	a)	9	2	
en A	, lex (6) 75 (6) 75 (1) 376	Company Name:			n a	L	ij		•			۲ ۲	ĮΡ										، ق		Ì	څ ۲	
)erde	800 (80 (80 (80 (80 (80 (80 (80		Address:	Contact Person:	<u>۽ ڊ</u> [∂ E	J		STREE 1	F	7	5	inde.			terner.			8 B	34555		Relinquished by:	The state) 0 44	Relinquished by	•
01 AL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pany	3. Session	act	ce to	Project #:		9		LAB # 11		Fab(b1	Sab										quis	1	Ő	quist	A Tarme and Conditions listed on reverse si
IN		I E	눤	1 E	1§ F	-iel	oje		. برونوا	 _	₹0	6					156]		ië.	が	-3	님들	1.

2/28/02

Report Date: March 13, 2002Order Number: A02022813 ES-533 Equiva Penrose

TMW-1 (75')

Page Number: 1 of 1 Eunice ,Lea County New Mexico

Summary Report

Kyle Landreneau	L ,			Report Date:	March 13, 2002
Equiva Kyle Land	lreneau				
PMB 284 40 FM	1960 West				
Houston, TX 770	90			Order ID Number:	A02022813
Project:	ES-533				
TA Job Code:	Equiva Penrose				
Casualty Code:	ES-533				
Project Location:	Eunice ,Lea County	New Mexico			
Project Address:					
Enercon Services	Inc. / Midland / Jeff	Kindley			
			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received

0 This report consists of a total of 1 page(s) and is intended only as a summary of results for the sample(s) listed above.

2/26/02

13:30

Soil

[]				TPH DRO	TPH	GRO			
	MTBE	Benzene	Toluene	Ethylbenzene	M,P,O-Xylene	Total BTEX	DRO	GRO	GRO
Sample - Field Code	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
191792 - TMW-1 (75')	< 0.005	< 0.005	< 0.005	0.0405	0.132	0.173	2290	673	673

Sample: 191792 - TMW-1 (75')

Param	Flag	Result	Units
Naphthalene		1.08	mg/Kg
Acenaphthylene		<0.25	mg/Kg
Acenaphthene		<0.25	mg/Kg
Fluorene		<0.25	mg/Kg
Phenanthrene		<0.25	mg/Kg
Anthracene		<0.25	mg/Kg
Fluoranthene		<0.25	mg/Kg
Pyrene		<0.25	mg/Kg
Benzo(a)anthracene		<0.25	mg/Kg
Chrysene		<0.25	mg/Kg
Benzo(b)fluoranthene		<0.25	mg/Kg
Benzo(k)fluoranthene		<0.25	mg/Kg
Benzo(a)pyrene		<0.25	mg/Kg
Indeno(1,2,3-cd)pyrene		<0.25	mg/Kg
Dibenzo(a,h)anthracene		<0.25	mg/Kg
Benzo(g,h,i)perylene		<0.25	mg/Kg

Report Date: March 13, 2002Order Number: A02022813 ES-533 Equiva Penrose

Summary Report

Kyle Landreneau				Report Date:	March 13, 2002		
Equiva Kyle Land	reneau						
PMB 284 40 FM	1960 West						
Houston, TX 7709	90			Order ID Number:	A02022813		
Project:	ES-533						
TA Job Code:	Equiva Penrose						
Casualty Code:	ES-533						
Project Location:	Eunice ,Lea County I	New Mexico					
Project Address:	· · ·						
Enercon Services	Inc. / Midland / Jeff k	Lindley					
			Date	Time	Date		
Sample	Description	Matrix	Taken	Taken	Received		
191792	TMW-1 (75')	Soil	2/26/02	13:30	2/28/02		

0 This report consists of a total of 1 page(s) and is intended only as a summary of results for the sample(s) listed above.

Sample: 191792 - TMW-1 (75')

Param	Flag	Result	Units
SPLP DRO		<5.00	mg/L
SPLP GRO		1.55	mg/L

 6701 Aberdeen Avenue, Suite 9
 Lubbock, Texas 79424
 800 • 378 • 1296
 806 • 794 • 1296
 FAX 806 • 794 • 1298

 155 McCutcheon, Suite H
 Lubbock, Texas 79932
 888 • 588 • 3443
 915 • 585 • 4944

E-Mail: lab@traceanalysis.com Analytical and Quality Control Report

Kyle Landreneau Equiva Kyle Landreneau PMB 284 40 FM 1960 West Houston, TX 77090

0

Report Date:

March 13, 2002

Order ID Number: A02022813

Project:ES-533TA Job Code:Equiva PenroseCasualty Code:ES-533Project Location:Eunice ,Lea County New MexicoEnercon Services Inc. / Midland / Jeff Kindley

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
191792	TMW-1 (75')	Soil	2/26/02	13:30	2/28/02

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

This report consists of a total of 9 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Director

Analytical Report

Sample: 191792 - TMW-1 (75')

Analysis: Analyst:	BTEX CG	Analytical Me Preparation N	ethod: S 8021B Method: N/A	QC Batch: Prep Batch:	QC18564 PB18021	Date Analyzed: Date Prepared:	3/1/02 3/1/02
Param		Flag	Result	Units	Di	lution	RDL
MTBE			< 0.005	mg/Kg	·	5	0.001
Benzene			<0.005	mg/Kg		5	0.001
Toluene			< 0.005	mg/Kg		5	0.001
Ethylbenzer	ne		0.0405	mg/Kg		5	0.001
M,P,O-Xyle	ne		0.132	mg/Kg		5	0.001
Total BTEX	٢		0.173	mg/Kg		5	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.094	mg/Kg	5	1	94	70 - 130
4-BFB	1	0.087	mg/Kg	5	1	87	70 - 130

Sample: 191792 - TMW-1 (75')

Analysis:	PAH	Analytical Method:	S 8270C	QC Batch:	QC18767	Date Analyzed:	3/10/02
Analyst:	RC	Preparation Method:	E 3510C	Prep Batch:	PB18134	Date Prepared:	3/9/02
Param		Flag	Resul	t	Units	Dilution	RDL
Naphthale		1 105	1.08		mg/Kg	1	0.25
-						1	
Acenaphth	•		<0.2		mg/Kg	1	0.25
Acenaphth	ene		< 0.2	5 :	mg/Kg	1	0.25
Fluorene			< 0.2		mg/Kg	1	0.25
Phenanthr	ene		< 0.2		mg/Kg	1	0.25
Anthracen	e		< 0.2	5	mg/Kg	1	0.25
Fluoranthe	ene		< 0.2		mg/Kg	1	0.25
Pyrene			<0.2		mg/Kg	1	0.25
Benzo(a)ai	nthracene		< 0.2	5	mg/Kg	1	0.25
Chrysene			< 0.2	5	mg/Kg	1	0.25
Benzo(b)fl	uoranthene	;	< 0.2	5	mg/Kg	1	0.25
Benzo(k)fl	uoranthene)	< 0.2		mg/Kg	1 .	0.25
Benzo(a)p	yrene		< 0.2	5	mg/Kg	1	0.25
Indeno(1,2	,3-cd)pyrei	ne	< 0.2	5	mg/Kg	· 1	0.25
Dibenzo(a	,h)anthrace	ene	< 0.2		mg/Kg	1	0.25
Benzo(g,h,	i)perylene		< 0.2	5	mg/Kg	1	0.25

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Nitrobenzene-d5		84.2	mg/Kg	1	80	105	23 - 120
2-Fluorobiphenyl		57.74	mg/Kg	1	80	72	30 - 115
Terphenyl-d14		58.64	mg/Kg	1	80	73	28 - 137

¹High surrogate recovery due to peak interference.

Report Dat ES-533	e: March 13, 2	2002		ber: A02022813 a Penrose	3	Page Number: 3 of 9 Eunice ,Lea County New Mexico			
Sample: Analysis: Analyst:	lysis: TPH DRO Analytical l lyst: MM Preparation am Flag Re		d: Mod.	•	Batch: Batch:	QC18552 PB18014	Date Analyzed: Date Prepared:	3/3/02 3/1/02	
Param	Flag	Result	1	Units	Diluti	on		RDI	
DRO		2290	n	ng/Kg	5			50	
Surrogate	Flag		Units	Dilution	Ar	pike nount	Percent Recovery	Recovery Limits	
n-Triaconta	ne ²	221	mg/Kg	5	<u> </u>	150	147	70 - 130	
Sample: Analysis: Analyst:	191792 - TPH GRO CG	TMW-1 (75') Analytical Meth Preparation Me	nod: 801	~	•	C18565 318021	Date Analyzed: Date Prepared:	3/1/0 3/1/0	
Param	Flag	Result	1	Units	Dilut	ion		RDI	
GRO GRO		<5 673		ng/Kg ng/Kg	1 100)		0.1 0.1	
Surrogate	Flag	Result	Units	Dilution	-	oike Iount	Percent Recovery	Recover Limits	
TFT 4-BFB	<u>3</u> 4	0.68 7.69	mg/Kg mg/Kg	100 100	-	.10 .10	68 769	70 - 130 70 - 130	

L

²High surrogate due to peak interference. ³Low surrogate recovery due to matrix interference. ⁴High surrogate recovery due to peak interference.

Report Date: March 13, 2002 ES-533

Order Number: A02022813 Equiva Penrose

•

Page Number: 4 of 9 Eunice ,Lea County New Mexico l

Į.

Quality Control Report Method Blank

							Poporti-
Param		Flag	Resi	lts	Units		Reporting Limit
DRO				0.0	mg/Kg		50
		·····		······································	0/_0_		······································
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane		120	mg/Kg	1	150	80	70 - 130
Method Bla	nk	QCBatch:	QC18564				
							Reporting
Param		Flag		Results	Units		Limit
MTBE				<0.010	mg/K		0.001
Benzene				<0.010	mg/K		0.001
Toluene				<0.010	mg/K		0.001
Ethylbenzene				<0.010	mg/K		0.001
M,P,O-Xylene				<0.010	mg/K		0.001
Total BTEX				<0.010	mg/K	g	0.001
a		-			Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
TFT		0.0855	mg/Kg	10	1	85	70 - 130
4-BFB		0.0757	mg/Kg	10	1	75	70 - 130
Method Bla	ank	QCBatch:	QC18565				
Param		Flag	Res		Units		Reportin Limit
GRO		r lag	nes	<1	mg/Kg		0.10
			<u> </u>				0.10
					Spike	Percent	Recover
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
TFT		0.101	mg/Kg	1	0.10	101	70 - 130
4-BFB		0.081	mg/Kg	1	0.10	81	70 - 130
·							
Method Bla	ank	QCBatch:	QC18767				
Param		Fl		Results	TT.	nits	Reportin Limit

Order Number: A02022813 Equiva Penrose

... Continued

				Reporting
Param	Flag	Results	Units	Limit
Acenaphthylene		< 0.25	mg/Kg	0.25
Acenaphthene		< 0.25	mg/Kg	0.25
Fluorene		< 0.25	mg/Kg	0.25
Phenanthrene		< 0.25	mg/Kg	0.25
Anthracene		< 0.25	mg/Kg	0.25
Fluoranthene		< 0.25	mg/Kg	0.25
Pyrene		< 0.25	mg/Kg	0.25
Benzo(a)anthracene		< 0.25	mg/Kg	0.25
Chrysene		< 0.25	mg/Kg	0.25
Benzo(b)fluoranthene		< 0.25	mg/Kg	0.25
Benzo(k)fluoranthene		< 0.25	mg/Kg	0.25
Benzo(a)pyrene		< 0.25	mg/Kg	0.25
Indeno(1,2,3-cd)pyrene		< 0.25	mg/Kg	0.25
Dibenzo(a,h)anthracene		< 0.25	mg/Kg	0.25
Benzo(g,h,i)perylene		< 0.25	mg/Kg	0.25

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Nitrobenzene-d5		53.84	mg/Kg	1	80	67	23 - 120
2-Fluorobiphenyl		53.98	mg/Kg	1	80	67	30 - 115
Terphenyl-d14		55.4	mg/Kg	1	80	69	28 - 137

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
DRO	243	232	mg/Kg	1	250	<50.0	97	5	70 - 130	20

QC18552

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

QCBatch:

	LCS	LCSD			Spike	LCS	LCSD	Recovery
Surrogate	Result	Result	Units	Dilution	Amount	% Rec	% Rec	Limits
n-Triacontane	134	127	mg/Kg	1	150	89	85	70 - 130

Laboratory Control Spikes

QCBatch: Q

QC18564

Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
MTBE	0.853	0.872	mg/Kg	10	1	< 0.010	85	2	79 - 113	20
Benzene	0.914	0.926	mg/Kg	10	1	<0.010	91	1	88 - 107	20
Toluene	0.915	0.931	mg/Kg	10	1	<0.010	91	1	86 - 110	20
Ethylbenzene	0.914	0.934	mg/Kg	10	1	<0.010	91	2	85 - 110	20
M,P,O-Xylene	2.8	2.85	mg/Kg	10	3	<0.010	93	1	86 - 112	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
TFT	0.863	0.886	mg/Kg	10	1	86	88	70 - 130
4-BFB	0.868	0.875	mg/Kg	10	1	86	87	70 - 130

Laboratory Control Spikes

pikes	QCBatch:	QC18565
-------	----------	---------

Spike LCS LCSD Amount % Rec RPD Matrix Param Result Result Dil. Added % Rec RPD Limit Limit Units Result GRO 9.14 8.38 91 82 - 115 20 mg/Kg 10 1 <1 8

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
TFT	0.968	0.931	mg/Kg	10	1	97	93	70 - 130
4-BFB	0.904	0.897	mg/Kg	10	1	90	90	70 - 130

Laboratory Control Spikes

QCBatch:

QC18767

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
Naphthalene	53.55	55.09	mg/Kg	1	80	< 0.25	66	2	21 - 133	20
Acenaphthylene	60.2	61.57	mg/Kg	1	80	< 0.25	75	2	33 - 145	20
Acenaphthene	58.02	60.1	mg/Kg	1	80	<0.25	72	3	47 - 145	20
Fluorene	56.92	59.81	mg/Kg	1	80	< 0.25	71	4	59 - 121	20
Phenanthrene	60.08	61.21	mg/Kg	1	80	<0.25	75	1	54 - 120	20
Anthracene	61.41	62.19	mg/Kg	1	80	< 0.25	76	1	27 - 133	20
Fluoranthene	51.5	54.17	mg/Kg	1	80	< 0.25	64	5	26 - 137	20
Pyrene	56.19	53.88	mg/Kg	1	80	<0.25	70	4	52 - 115	20
Benzo(a)anthracene	64.09	64.5	mg/Kg	1	80	< 0.25	80	0	33 - 143	20
Chrysene	62.93	64.09	mg/Kg	1	80	< 0.25	78	1	17 - 168	20
Benzo(b)fluoranthene	57.56	59.36	mg/Kg	1	80	< 0.25	71	3	33 - 143	20
Benzo(k)fluoranthene	63.65	63.42	mg/Kg	1	80	< 0.25	79	0	17 - 168	20
Benzo(a)pyrene	62.43	61.64	mg/Kg	1	80	< 0.25	78	1	24 - 159	20
Indeno(1,2,3-cd)pyrene	68.38	65.01	mg/Kg	1	80	< 0.25	85	5	0 - 171	20
Dibenzo(a,h)anthracene	49.85	47.05	mg/Kg	1	80	< 0.25	62	5	0 - 227	20
Benzo(g,h,i)perylene	60.74	59.42	mg/Kg	1	80	<0.25	75	2	0 - 219	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
Nitrobenzene-d5	56.62	58.08	mg/Kg	1	80	70	72	23 - 120
2-Fluorobiphenyl	59.21	60.84	mg/Kg	1	80	74	76	30 - 115
Terphenyl-d14	59.54	56.4	mg/Kg	1	80	74	70	28 - 137

Quality Control Report Matrix Spikes and Duplicate Spikes

Order Number: A02022813 Equiva Penrose Page Number: 7 of 9 Eunice ,Lea County New Mexico

Matrix	: Spikes	Q	CBatch:	QC18552						
Param	MS Result	MSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
DRO	2560	2530	mg/Kg	5	250	2290	108	1	70 - 130	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Recovery
Surrogate	Result	\mathbf{Result}	Units	Dilution	Amount	$\% \ \mathrm{Rec}$	$\% { m Rec}$	Limits
n-Triacontane	⁵ 219	196	mg/Kg	5	150	146	131	70 - 130

Matrix Spikes QCBatch: QC18564

Param	MS Result	MSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
MTBE	0.749	0.755	mg/Kg	10	1	····	74	0	47 - 138	20
Benzene	0.895	0.926	mg/Kg	10	1	< 0.010	90	3	68 - 102	20
Toluene	0.907	0.938	mg/Kg	10	1	< 0.010	91	3	69 - 105	20
Ethylbenzene	0.904	0.932	mg/Kg	10	1	<0.010	90	3	65 - 108	20
M,P,O-Xylene	2.78	2.87	mg/Kg	10	3	<0.010	93	3	63 - 114	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	MS Result	${ m MSD}$ Result	Units	Dilution	Spike Amount	MS % Rec	MSD % Rec	Recovery Limits
TFT	0.708	0.826	mg/Kg	10	1	71	83	70 - 130
4-BFB	0.721	0.856	mg/Kg	10	1	72	86	70 - 130

Quality Control Report Continuing Calibration Verification Standards

CCV (1)		QCBatch:	QC18552				
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
DRO		mg/Kg	250	258	103	75 - 125	3/3/02
ICV (1)		QCBatch:	QC18552				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	247	98	75 - 125	3/3/02

⁵Poor surrogate recoveries due to matrix difficulties. LCS/LCSD shows analysis in control.

Report Date: March 13, 2002 ES-533

QC18564

:

CCV (1) QCBatch:

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.0946	94	85 - 115	3/1/02
Benzene		mg/L	0.10	0.0925	92	85 - 115	3/1/02
Toluene		mg/L	0.10	0.0934	93	85 - 115	3/1/02
Ethylbenzene		mg/L	0.10	0.0925	92	85 - 115	3/1/02
M,P,O-Xylene		mg/L	0.30	0.2843	94	85 - 115	3/1/02

CCV (2)	QCBatch:	QC18564
---------	----------	---------

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.0875	87	85 - 115	3/1/02
Benzene		mg/L	0.10	0.0919	91	85 - 115	3/1/02
Toluene		mg/L	0.10	0.0924	92	85 - 115	3/1/02
Ethylbenzene		mg/L	0.10	0.0919	91	85 - 115	3/1/02
M,P,O-Xylene		mg/L	0.30	0.2824	94	85 - 115	3/1/02

ICV. (1) QCBatch: QC18564

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
MTBE		mg/L	0.10	0.0874	87	85 - 115	3/1/02
Benzene		mg/L	0.10	0.0905	90	85 - 115	3/1/02
Toluene		mg/L	0.10	0.091	91	85 - 115	3/1/02
Ethylbenzene		mg/L	0.10	0.091	91	85 - 115	3/1/02
M,P,O-Xylene		mg/L	0.30	0.279	93	85 - 115	3/1/02

CCV (1)

QCBatch: QC18565

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1	0.911	91	75 - 125	3/1/02

ICV (1) QCBatch: QC18565

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
GRO		mg/Kg	1	0.955	95	75 - 125	3/1/02

Order Number: A02022813 Equiva Penrose Page Number: 9 of 9 Eunice ,Lea County New Mexico ļ

Ļ

CCV (1)

QCBatch: QC18767

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Naphthalene		mg/Kg	60	58.87	98	80 - 120	3/10/02
Acenaphthylene		mg/Kg	60	58.18	96	80 - 120	3/10/02
Acenaphthene		mg/Kg	60	58.3	97	80 - 120	3/10/02
Fluorene		mg/Kg	60	57.16	95	80 - 120	3/10/02
Phenanthrene		mg/Kg	60	59.09	98	80 - 120	3/10/02
Anthracene		mg/Kg	60	59.31	· 98	80 - 120	3/10/02
Fluoranthene		mg/Kg	60	50.86	84	80 - 120	3/10/02
Pyrene		mg/Kg	60	50.92	84	80 - 120	3/10/02
Benzo(a)anthracene		mg/Kg	60	59.19	98	80 - 120	3/10/02
Chrysene		mg/Kg	60	58.21	97	80 - 120	3/10/02
Benzo(b)fluoranthene		mg/Kg	60	52.92	88	80 - 120	3/10/02
Benzo(k)fluoranthene		mg/Kg	60	59.59	99	80 - 120	3/10/02
Benzo(a)pyrene		mg/Kg	60	57.65	96	80 - 120	3/10/02
Indeno(1,2,3-cd)pyrene		mg/Kg	60	61.12	101	80 - 120	3/10/02
Dibenzo(a,h)anthracene		mg/Kg	60	61.02	101	80 - 120	3/10/02
Benzo(g,h,i)perylene		mg/Kg	60	54.7	91	80 - 120	3/10/02
Nitrobenzene-d5		mg/Kg	60	57.44	95	80 - 120	3/10/02
2-Fluorobiphenyl		mg/Kg	60	57.6	96	80 - 120	3/10/02
Terphenyl-d14		mg/Kg	60	50.83	84	80 - 120	3/10/02

6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424 155 McCutcheon, Suite H El Paso, Texas 79932

800 • 378 • 1296 888 • 588 • 3443 E-Mail: lab@traceanalysis.com

806 • 794 • 1296 FAX 806 • 794 • 1298 FAX 915•585•4944 915 • 585 • 3443

Analytical and Quality Control Report

Kyle Landreneau Equiva Kyle Landreneau PMB 284 40 FM 1960 West Houston, TX 77090

Report Date:

March 13, 2002

Order ID Number: A02022813

ES-533 Project: TA Job Code: Equiva Penrose Casualty Code: ES-533 Project Location: Eunice ,Lea County New Mexico Enercon Services Inc. / Midland / Jeff Kindley

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
191792	TMW-1 (75')	Soil	2/26/02	13:30	2/28/02

0

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed. Note: the RDL is equal to MQL for all organic analytes including TPH.

This report consists of a total of 4 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, pirector

Order Number: A02022813 Equiva Penrose

Analytical Report

Sample: Analysis: Analyst:	191792 - SPLP DRO MM	TMW-1 (75') Analytical Metho Preparation Met	od: Mod.	· · · · · · · · · · · · · · · · · · ·		QC18741 PB18157	Date Analyzed: Date Prepared:	3/10/02 3/10/02
Param	Fl	ag Res	ult	Units	Dilu	ition		RDL
SPLP DRO)	<5	.00	mg/L		1		50
Sample: Analysis:	191792 - SPLP GRO	TMW-1 (75') Analytical Me		5 QC Ba	atch: OC1	18703	Date Analyzed:	3/7/02
Analyst:	CG	Preparation M		•	•		Date Prepared:	3/7/02
Param	F	ag Res	sult	Units	Dilı	ition		RDL

Order Number: A02022813 Equiva Penrose

Quality Control Report Method Blank

Method Blank	QCBatch:	QC18703		
Param	Flag	Results	Units	Reporting Limit
SPLP GRO		<0.1	mg/L	0.10
Method Blank	QCBatch:	QC18741		
Param	Flag	Results	Units	Reporting Limit
SPLP DRO		<5.00	mg/L	50

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory	Control Spike	es QCBatch	: QC18703

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
SPLP GRO	0.866	0.861	mg/L	1	1	<0.1	86	0	82 - 115	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spikes QCBatch: QC18741 Spike LCSD LCS % Rec RPD Amount Matrix RPD Param Result Result Units Dil. Added Result % Rec Limit Limit SPLP DRO 24.8 23.5 0.10 250 70 - 130 mg/L <5.00 99 5 20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Quality Control Report Continuing Calibration Verification Standards

CCV (1)	QCE	Batch: QC	18703				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP GRO		mg/L	1	0.946	94	80 - 120	3/7/02

Report Date: March 13, 2002 ES-533				ber: A02022813 a Penrose	Page Number: 4 of 4 Eunice ,Lea County New Mexico		
ICV (1)	QCBa	tch: QC1	.8703				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP GRO		mg/L	1	0.887	88	80 - 120	3/7/02
CCV (1)	QCE	Batch: QC	218741				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP DRO		mg/L	250	250	100	70 - 130	3/10/02
ICV (1)	QCB	atch: QC	18741				
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP DRO		mg/L	250	241	96	70 - 130	3/10/02

. 1

T

I

I.

. T

•

ATTACHMENT E

Site Photographs

Photo 1: Drilling of Temporary Monitor Well TMW-1.

Photo 2: Drilling of Temporary Monitor Well TMW-1.

Photo 3: Drilling of Temporary Monitor Well TMW-1.

Photo 4: Drilling of Temporary Monitor Well TMW-1.

Photo 5: Installation of piping for Temporary Monitor Well TMW-1.

Photo 6: Completed Temporary Monitor Well TMW-1.