

REPORTS

DATE: 2003

RECEIVED

FEB 1 3 2003 Environmental Bureau Oil Conservation Division

CHARACTERIZATION REPORT: C-LINE 50602, 52102 AND 52302 RELEASES LEA COUNTY, NEW MEXICO

February 6, 2003

Prepared For

Duke Energy Field Services, LP 370 17th Street, Suite 900 Denver, CO 80202

Prepared By

Remediacon P.O. Box 302 Evergreen, Colorado 80437 Telephone (303)674-4370 Facsimile (720)528-8132

CHARACTERIZATION REPORT: C-LINE 50602, 52102 AND 52302 RELEASES LEA COUNTY, NEW MEXICO

 \supset

Prepared For

Duke Energy Field Services, LP 370 17th Street, Suite 900 Denver, CO 80202

Prepared By

Remediacon P.O. Box 302 Evergreen, Colorado 80437 Telephone (303)674-4370 Facsimile (720)528-8132

February 6, 2003

Remediacon Incorporated

Geological and Engineering Services mstewart@remediacon.com

PO Box 302, Evergreen, Colorado 80437 Telephone: 303.674.4370 Facsimile: 720.528.8132

C

February 6, 2003

Mr. Stephen Weathers Duke Energy Field Services, LP 370 17th Street, Suite 900 Denver, CO 80202

Re: Transmittal of Characterization Report for C-Line 50602, 52102 And 52302 Releases, Lea County New Mexico

Dear Stephen:

Attached is the characterization report for the C-Line 50602, 52102 And 52302 releases in Lea County New Mexico. The report was prepared following completion of the field activities contained in a work plan dated October 11, 2002 that was submitted to the New Mexico Oil Conservation Division (OCD) and subsequently approved by it.

The report concludes that shallow groundwater beneath the site has been impacted by a hydrocarbon release from the 50602 release site. The hydrocarbons have migrated in a dissolved phase approximately 135 feet down gradient. The high vapor pressure of the product has also resulted in hydrocarbon migration in the vapor phase both up and down groundwater gradient from the release point. The hydrocarbon vapors have not adsorbed to the soil materials.

The proposed remediation program would be completed in two phases.

Phase 1 includes three proposed activities:

- 1. The installation of monitor well(s) at the down gradient boundary of the plume to refine the groundwater gradient information and to provide detection-level monitoring.
- 2. Monitoring of the identified detection wells on a quarterly basis to ensure the plume is not expanding.
- 3. Active removal of the free product from well MW-1.

Phase 1 would continue until the free product is removed to the maximum extent practicable.

Mr Stephen Weathers February 6, 2003 Page 2

Phase 2 includes the following three activities:

- 1. Installation of a temporary soil vapor extraction system at well MW-1 and/or other wells as necessary to remove the hydrocarbons in the soil vapor. This system could be installed as part of the free product removal effort provided that it could be safely operated and assuming reasonable air emissions control costs.
- 2. Regular monitoring of the wells within the plume area to monitor changes in the hydrocarbon concentrations in the groundwater and the soil gas; and
- 3. Regular monitoring of the detection wells to monitor for unanticipated migration of dissolved phase hydrocarbons.

The monitoring proposed under items 2 and 3 above would initially occur on a quarterly basis. The monitoring frequency would be deceases after repeated testing established that plume control was effective. Monitoring would then continue for a predetermined length of time and would cease when the post-closure goals have been attained.

Thank you for the opportunity to complete this work. Do not hesitate to contact me if you have any questions or comments.

Respectfully Submitted, REMEDIACON INCORPORATED

Mechael H. Stewart

Michael H. Stewart, P.E. Principal Engineer

MHS/tbm

enclosure

TABLE OF CONTENTS

1	INT	RODUCTION	1
	1.1	Background Information	1
	1.2	Spring 2002 Remediation Activities	2
	1.3	Purpose And Objectives	3
2	FIEI	LD PROGRAM SUMMARY	4
	2.1	Monitoring Well Installation	4
	2.2	Monitoring Well Development, Purging And Sampling,	4
	2.3	Free Product Removal Evaluation	
3	RES	ULTS	7
	3.1	Material Composition	7
	3.2	Groundwater Gradient And Free Product Occurrence	7
	3.3	Chemical Results	8
	3.4	Product Removal Evaluation	9
4	CON	CLUSIONS AND RECOMMENDATIONS 1	0
	4.1	Hydrogeologic Setting 1	0
	4.2	Contaminant Composition, Origin And Distribution 1	1
	4.2.	Organic Constituent Composition, Origin And Distribution 1	1
	4.2.2	2 Inorganic Constituent Composition, Origin And Distribution 1	2
	4.2.3	3 Suggested Remediation Strategy 1	3

TABLES

- Table 1 Summary C-Line Well Completion Information
- Table 2 Photoionization Detector Readings For Soil Samples Collected from Borings
- Table 3 Well Gauging Information
- Table 4 Summary of C-Line Equilibrated Well Purging Data
- Table 5 Summary of Organic Constituent Results from the November 2002 Sampling

 Episode at the C-Line Location
- Table 6 Summary of Inorganic Constituent Results from the November 2002 Sampling Episode at the C-Line Location

FIGURES

- Figure 1 Study Locations, Topography, and Nearby Water Wells
- Figure 2 Study Area Detail and Monitor Well Locations
- Figure 3 November 2002 Water Table Elevations
- Figure 4 Benzene Concentrations (ug/l) and 200 foot SVE Radius of Influence
- Figure 5 Inorganic Constituent Concentrations (mg/l)
- Figure 6 Distance Verses Vacuum Results for SVE Pilot Test

APPENDICIES

Appendix 1 - Boring Logs And Well Completions Appendix 2 - Laboratory Analytical Report

1 INTRODUCTION

This report presents the results of the characterization activities completed at the Duke Energy Field Services, LP (DEFS) C-Line 50602, 52102 and 52302 locations. The activities were originally proposed in an October 11, 2002 work plan that was supplemented by activities described in a November 15, 2002 letter.

This report is divided into four sections. The remainder of this section presents background information and describes the program purpose and objectives. The second section summarizes the field program. The third section presents and discusses the program data. The final section provides interpretations and conclusions along with a conceptual remediation program.

1.1 Background Information

The study area is located in the southeastern quarter of the southeastern quarter of Section 31, Township 19 South, Range 37 East approximately 6.25 miles south and 1.25 miles west of the town of Monument in Lea County New Mexico. The approximate coordinates are 32 degrees 32.5 minutes north, 103 degrees 15.3 minutes east. The area surrounding the release sites is uninhabited and is used for ranching.

Figure 1 shows the surrounding topography and drainage features. The topography in the area falls gently (0.33 percent) to the northeast toward Monument Draw. Monument Draw is located approximately 2 miles to the north, and it is the nearest defined surface drainage feature in the area.

Nicholson and Clebsch¹ describe the regional subsurface setting in the following fashion:

- 1. The uppermost materials consist of a thin veneer of dune sand that overlies sandy Quaternary alluvial deposits. Nicholson and Clebsch show the site outside the boundaries of the Ogallala Formation; however, the Quaternary alluvial deposits and the Ogallala Formation are composed of similar materials so they probably have similar hydrologic properties.
- 2. Bedrock beneath the site is estimated at an elevation of 3410 feet. The site elevation is approximately 3540 feet (Figure 1) yielding an estimated unconsolidated material thickness of approximately 130 feet.
- 3. The regional groundwater contour map generated by Nicholson and Clebsch is inconclusive in the vicinity of the site because it is located on their boundary for the saturated unconsolidated materials and the underlying bedrock. Their map indicates that the regional groundwater flow direction for the Ogallala aquifer east of the site is

¹ Nicholson, Alexander, Jr. and Clebsch, Alfred, Jr., 1961, Geology and Ground-Water Conditions in Southern Lea County New Mexico. New Mexico State Bureau of Mines and Mineral Resources, Ground-Water Report 6, 123 pp.

to the south-southeast. Groundwater flow in the bedrock is shown with a southeasterly flow pattern.

Environmental Plus Incorporated (EPI) compiled data on the location and depth to groundwater in the nearest permitted water wells. Figure 1 shows the reported depths to water and approximate water-table elevations for these four wells.

1.2 Spring 2002 Remediation Activities

The study area includes three separate remediation locations. These locations, labeled Duke C-Line 50602, Duke C-Line 52102 and Duke C-Line 52302 are approximately shown on Figure 1. The three locations were remediated by EPI between April and June 2002. EPI submitted separate work plans for each location and completed the activities at each of the locations as summarized below:

• EPI removed affected materials at location 50602 to a depth of 18 feet below ground surface (bgs). An affected column of soils approximately 22 feet in diameter remained at the base of the 18 foot excavation All sidewall readings and the portion of the bottom beyond the contaminated soil column perimeter were measured with a photoionization detector at less than 100 ppm. A clay barrier was install from 17 to 18 feet bgs over the residual contaminated soil column with a 10-foot perimeter apron to prevent horizontal encroachment if infiltration of storm water occurs.

EPI advanced boring BH1 beneath the origin at the 50602 location to delineate the vertical extent of hydrocarbon impacts. Ionizable constituent headspace data collected with a calibrated Photoionization Detector (PID) indicated the effects at this location extended to a depth of 51 feet bgs.

Boring BH2 was advanced by EPI approximately 45 feet northeast of the original leak location to assess the eastward horizontal extent of hydrocarbon effects. Samples were collected at 5-foot intervals and the headspace was measured with a PID to the top of the saturated zone at a depth of 90 feet bgs. The 5 foot and 80 foot samples were less than 100 ppm. All other measurements exceeded 100 ppm with the highest reading of 1,246 ppm occurring in the 45-foot sample. Based upon these results, BH2 was converted to 2-inch diameter monitoring well MW-1 with a total depth of 94.4 feet bgs to assess ground water impact. After development, product was measured at 89.5 feet bgs with ground water at 92.8 feet bgs, (i.e., 3.3 feet of product).

• The hydrocarbon effects at location 52102 attenuated at 32 feet. A risk assessment with barrier installation was approved by the NMOCD. The affected materials were removed to a depth of 21 feet bgs. A 1-foot compacted clay barrier was installed from 21 to 22 feet bgs to overlay and isolate the residual contaminated 20 foot diameter soil column in place between 22 and 32 feet.

• EPI removed affected materials at the 52302 location to a depth of 23 feet bgs. A 1foot compacted clay barrier was installed from 22 to 23 feet bgs over the residual contaminated soil column with a 10 foot perimeter apron to overlay and isolate the residual contaminated soil column left in place between 22 and 32 feet.

1.3 Purpose And Objectives

The original purpose of this program was to characterize the groundwater conditions and free product distribution within the study area. Specific objectives contained in the October 2002 work plan included:

- 1. Defining the plume boundaries associated with the 50602 location.
- 2. Installing a free product removal system at the 50602 location.
- 3. Assessing the groundwater beneath the 52102 and 52302 locations.
- 4. Evaluating the degree and extent of natural biodegradation processes on the hydrocarbon distribution.
- 5. Defining the groundwater flow direction and gradient.
- 6. Collecting information on the physical and chemical properties of the subsurface materials.

The additional objective of evaluating potential removal options for the free product at the 50602 C-Line location was added in the November 15, 2002 work plan addendum.

2 FIELD PROGRAM SUMMARY

The field program activities completed at this site included: 1) monitoring well installation, development and sampling; 2) well gauging; 3) physical property measurement; and 4) free product removal evaluation. Each activity is described below.

2.1 Monitoring Well Installation

Five new monitoring wells (MW-2 through MW-6) were installed by Eades Drilling of Hobbs, New Mexico under the supervision of Trident Environmental. The wells were installed between November 5 and 8, 2002. The well locations were staked and cleared for subsurface obstructions prior to the initiation of drilling. The wells were installed at the locations shown on Figure 2. Well completion information is included in Table 1.

The borings were advanced using air-rotary drilling with potable water added as necessary to facilitate advancement. All drilling and installation procedures were supervised by experienced personnel.

Cuttings samples were collected on a regular basis and screened for the presence hydrocarbons using a photoionization detector (PID). The cuttings were also used to generate representative boring logs containing lithologic, saturated material and contaminant distribution information. The PID readings are summarized in Table 2. The combined drilling logs/well completion forms are included in Appendix 1. A licensed surveyor measured the coordinates and elevation of each well to a tolerance of 1 foot for the northing and easting coordinates and 0.01 foot for elevation. Their measurements are included in Table 1.

2.2 Monitoring Well Development, Purging And Sampling,

The depth to water in each well was measured on November 15, 2002. Existing well MW-1 contained free product (discussed in more detail below). The one-week duration between the completion of well installation and the water measurement should have been sufficient to allow the water levels to equilibrate to generate a representative water table map. The five new wells did not contain any free product.

The five new wells were developed on November 14, 2002 using a submersible pump. Well MW-1 contained free product and was not sampled. Well development consisted of extracting a minimum of 10 casing volumes of water using a Grundfos Rediflo pump and continuing development until the field parameters of temperature, pH and conductivity stabilized for three casing volumes.

Purging and sampling was completed on November 15, 2002. Each well (excepting MW-1) was developed using a disposable bailer until a minimum of three casing volumes of water was removed and the field parameters temperature, pH and conductivity

stabilized. Dissolved oxygen was also measured to evaluate bioremediation. The equilibrated field parameters and dissolved oxygen are summarized in Table 3. Unfiltered samples from wells MW-2 to MW-6 were analyzed for, benzene, toluene, ethylbenzene and total xylenes (BTEX), total petroleum hydrocarbons as gasoline and total petroleum hydrocarbons as diesel. Unfiltered samples were also collected from wells MW-2, MW-4 and MW-6 and analyzed for the inorganic constituents calcium, magnesium, sodium, potassium (major cations), bicarbonate alkalinity, chlorides, sulfate (major anions), and total dissolved solids. Field filtered samples from wells MW-2, MW-4 and MW-6 were analyzed for the metals arsenic, barium cadmium, chromium, lead, mercury, selenium and silver, iron and manganese.

All samples were placed in an ice-filled chest immediately upon collection and delivered to the analytical laboratory using standard chain-of-custody protocol.

A field duplicate was collected from MW-4 to evaluated quality control. The field duplicate and a trip blank were both analyzed for BTEX.

All development and purge water was disposed of at an approved OCD facility. All cuttings generated during the drilling process were stockpiled and sampled and then disposed of in an appropriate fashion.

The depth to groundwater combined with the relatively rapid groundwater recovery prevented the use of slug tests to estimate saturated material hydraulic conductivity values. The use of the Grundfos pump prohibited the use of an electronic water measurement instrument to accurately measure the changes in depths to water during pumping.

2.3 Free Product Removal Evaluation

Two tests were completed to evaluate potential product removal systems. The first test was completed on November 18, 2002. This test consisted of placing a slurp tube approximately 1 foot below the water table. A vacuum of approximately 18 inches mercury was applied using a vacuum truck. The test was run for 2 hours and then halted because virtually no liquids were produced because of the high vacuum and limited saturated interval.

A vapor extraction test was then completed by removing the slurp pipe and connecting the vacuum directly to the top of well MW-1. An 18 inch (mercury) vacuum was applied to the system for 2 hours and the change in pressure was measured in wells MW-2 through MW-5 at the end of the test.

A product bail-down test was completed on December 17, 2002. The test was completed by bailing approximately 8 gallons of product over a 40-minute period. The product decreased from an initial thickness of 3.54 feet to a sustained value of 0.75 feet.

Recovery was periodically measured for an additional 22 minutes and then once more 4.5 hours after the completion of the test. The results are tabulated in Section 3.4 below.

-

C-Line Characterization Report February 6, 2003

3 RESULTS

This section presents and summarized the results of the field program. The information is categorized by: 1) material composition; 2) groundwater gradient and free product occurrence; 3) chemical results; and 4) product removal evaluation. Conclusions and interpretations related to the data follow in the subsequent section.

3.1 Material Composition

Examination of the boring logs in Appendix 1 indicates that the materials have a uniform composition beneath the study area. The material is generally described as a well sorted, very-fine-grained silty sand (Unified Soil Classification of SM) with clay percentages varying up to 10 percent. This material is interbedded with a moderate-to-well cemented very-fine-grained sand. This alternating sequence of uncemented and cemented materials is described as present throughout the entire lithologic interval rather than being confined to the shallower depths where caliche is generally found.

The materials are dry to a depth of approximately 79 to 80 feet where are logged as very moist. The materials are logged as saturated at 86 feet; however, the actual depth to water as measured 1-week later varied from 85.6 to 92.2 feet.

None of the boring descriptions included materials that appeared to be stained by hydrocarbon materials. Hydrocarbon odors were described in the following fashion:

- MW-2 slight hydrocarbon odor 18 to 79 feet
- MW-3 no hydrocarbon odor noted
- MW-4 slight hydrocarbon odor 19 to 32 and 39 to 65 feet
- MW-5 slight hydrocarbon odor 40 feet to total depth
- MW-6 no hydrocarbon odor noted

The hydrocarbon distribution in wells MW-2 and MW-4 is unusual because the odors occur in the middle of the boring rather that at the surface (indicative of a surface release) or the base (indicative of groundwater transport). In addition of Table 2 indicates that the PID measurements are fairly constant throughout the entire subsurface interval investigated. The cause of this distribution is described below in the conclusions section.

3.2 Groundwater Gradient And Free Product Occurrence

The water/product measurements are summarized in Table 3. Well MW-1 contained 3.15 feet of free product. The remaining wells did not contain any free product.

C-Line Characterization Report February 6, 2003 Figure 3 shows the water table elevations based upon the water measurements. The contours were generated using the Surfer® program with the kriging option. The groundwater elevation values for well MW-1 was corrected using the following formula (all values in feet):

 $GWE_{corr} = MGWE + (PT*PD)$: where

MGWE is the actual measured groundwater elevation; PT is the measured free-phase hydrocarbon thickness, and PD is the free phase hydrocarbon density (assumed 0.7).

Examination of Figure 3 indicates that the groundwater flow in area investigated is generally to the east-southeast rather than north toward Monument Draw. Note that the single low point at MW-6 deflects the water table toward that well regardless of the actual flow direction.

3.3 Chemical Results

The equilibrated field parameters that were measured during well purging are summarized in Table 4. The conductivity increases toward the southeast with the sample from well MW-6 exhibiting an extremely high value of 10.1 mS/cm. The pH values were relatively constant across the study area. The dissolved oxygen values were lower at wells MW-2 and MW-4 relative to the other three wells.

The analytical results for the organic constituents are summarized on Table 5. The analytical report is included in Appendix 2. Also included on Table 5 are the New Mexico Water Quality Control Commission Ground Water Standards. The constituents that exceed these standards are highlighted (bold) on Table 5. Examination of Table 5 indicates that the constituents benzene, toluene, ethylbenzene and xylenes (BTEX) were detected in wells MW-3 and MW-4 immediately down gradient from the release area. The BTEX constituents were not detected in wells MW-2, MW-5 and MW-6. Total petroleum hydrocarbons in both the gasoline range and the diesel range were not detected at a 3 mg/l detection limit.

The inorganic constituents (ions and dissolved metals) are summarized in Table 6. The relevant New Mexico Water Quality Control Commission Ground Water Standards are also included in this table. The ion data establishes that sodium and chloride and account for the majority of the increase in salt loading. The increased salts limit the potential uses of the groundwater MW-4 and make the water in well MW-6 virtually useless for any livestock or farming activity.

Examination of the dissolved metals concentrations indicates that only iron is present at concentrations above the groundwater standards. Moreover, the highest iron concentration was measured in well MW-2 upgradient from the DEFS release. The

lowest iron concentration was measured at MW-4 where the organic consituents were present at the highest concentrations.

3.4 Product Removal Evaluation

Two tests were performed to evaluate product removal. The first test evaluated both bioslurping and soil vapor extraction. Virtually no free product and limited water were removed during the 2-hour bioslurping test. The test was only run at one vacuum (18-inches of mercury) in a small diameter well with a very limited saturated thickness so the results do not conclusively remove bioslurping as a potential remediation mechanism.

The soil vapor extraction test involved placing an 18-inch mercury vacuum on the well head of MW-1 and measuring the response at outlying wells MW-2 through MW-5 after two hours. All of the wells had an initial measured vapor pressure of approximately 0.5 inches of water. All of the wells responded to the applied vacuum with the following measured results:

- MW-2: 0.12 inches of vacuum (0.62" vapor pressure reduction)
- MW-3: 0.30 inches of pressure (0.20" vapor pressure reduction)
- MW-4: 0.14 inches of pressure (0.36" vapor pressure reduction)
- MW-5: 0.17 inches of pressure (0.33" vapor pressure reduction)

The product baildown test involved removed approximately 8 gallons of product over a 40-minute period. This rate represents the approximate maximum production rate for hand bailing. The product thickness declined in the well from 3.54 feet to 0.75 feet. The thickness remained constant at 0.75 feet over the last 15 to 20 minutes of the test. The product recovery was then measured with the results summarized below.

	Product		Product
Elapsed	Thickness	Elapsed	Thickness
Time	(feet)	Time	(feet)
0	0.75	9	1.91
2	1.45	12	2.05
3	2.02	 13	2.15
4	1.61	16	2.38
5	1.98	18	2.42
6	1.75	22	2.5
7	1.81	270	3.41
8	1.85		

C-Line Characterization Report February 6, 2003

4 CONCLUSIONS AND RECOMMENDATIONS

The conclusions are categorized into sections on

- Hydrogeologic setting;
- Contaminant composition, origin and distribution; and
- Suggested remediation strategy

Recommendations for additional work then follow.

4.1 Hydrogeologic Setting

The conceptual hydrogeologic model for the area is based upon the published information as well as the site specific data. The material covered in this section includes the subsurface material composition, the material hydraulic properties and the groundwater flow direction and velocity.

The materials are a very-fine silty sand. This uniform material type is segregated into uncemented and cemented layers that alternate throughout the entire interval rather than a thick shallow caliche layer that overlies a less-indurated sequence. The clay percentages were generally described as less than 10 percent. The saturated thickness of these materials above the Triassic red beds was not measured but is estimated at approximately 40 feet based upon the published literature discussed above in Section 1.1.

The saturated materials appear to possess moderate permeability even though exact measurements were not made. This conclusion is based upon three factors. First, the materials are either part of the Ogallala Formation or are directly eroded from it. This formation is a major aquifer over much of the west-central part of the United States. Second the material is described as a very-fine grained well sorted sand. This material type generally has a moderate to high permeability, with the exact property a function of the fines present. The silts that were described in this material will decrease its permeability. Finally, two of the five wells sustained pumping rates of 0.7 gallons per minute over a 10-foot saturated thickness. This extraction rate was limited by the pump rather than the materials. The other three wells could not be purged at the maximum rate; however, they did sustain pumping rates between 0.4 and 0.6 gallons per minute. These rates all indicate that the material has a moderate permeability.

The depth to groundwater varies between 90 and 95 feet below ground surface (bgs). The water table contours shown on Figure 3 have an approximate gradient of 0.0044 depending upon the groundwater flow path chosen. Assuming a moderated hydraulic conductivity of 1.0 feet per day, the above gradient and an assumed effective porosity of 0.2, the groundwater velocity is estimated at:

Velocity = 0.0044*1.0/0.2 = 0.022 feet per day or 8 feet per year

C-Line Characterization Report February 6, 2003 A projected groundwater flow path that is based upon the water-table contours is shown on Figure 3. As previously mentioned, the single low point at MW-6 deflects the water directly toward it. There may also be a northerly flow component in this area. The groundwater flow direction will be discussed in more detail relative to chemical patterns in Section 4.2.

4.2 Contaminant Composition, Origin And Distribution

This section discusses the composition, origin and distribution of the chemical constituents in the groundwater. There is a definite difference between the distribution of the organic and inorganic constituents that directly results from their differing origins so the two types are discussed separately below.

4.2.1 Organic Constituent Composition, Origin And Distribution

The hydrocarbons are present at low concentrations over an area greater than the dissolved phased based upon the PID measurements contained in Table 2. This distribution probably originates from one of two causes (or a combination of both). The first cause would be that the background PID concentration was on the order of 0.5 to 1.5 ppm rather than 0.0 ppm. The second cause originates from a free product that possesses a high vapor pressure. The vapors from this product could readily migrate vertically and laterally through the moderately permeable void spaces within the unsaturated materials. These vapors do not adsorb to the soil matrix. This phenomena would produce the situation encountered by EPI where the soils with measurable PID readings did not have any detectable hydrocarbon compounds associated with them. Instead, the vapors "flashed" out of the soil matrix when the sample was collected.

The organic constituent distribution is best depicted by plotting the benzene concentrations that are shown on Figure 4. Benzene was selected because:

- It is the most toxic organic constituent;
- It is the most mobile organic constituent; and
- It is present at the highest concentrations

Examination of Figure 4 indicates that MW-4 has the highest benzene concentration. MW-4 is located approximately 135 feet down gradient of the release and the associated free product at MW-1. The benzene concentration is less at MW-3, and it was not detected at MW-5. This chemical distribution implies that groundwater flows in the southeasterly direction.

None of the hydrocarbon constituents were detected at well MW-6, located approximately 895 feet from the release point (MW-1) and 660 feet from MW-4. This distribution suggests that the hydrocarbon constituents have attenuated through dispersion and bioremediation between MW-4 and MW-6.

4.2.2 Inorganic Constituent Composition, Origin And Distribution

The inorganic discussion is divided into ions and metals because of their differing patterns. The ion distributions, discussed first, form a distinct pattern related to an historical release. The metals are more uniformly distributed with the exception of iron.

The distribution of conductivity measurements and select ion concentrations are shown on Figure 5. The field conductivity readings give the best indication of the ion distribution because it was measured wells MW-2 through MW-6 whereas lab analyses were only completed on wells MW-2, MW-4 and MW-6. Conductivity directly relates to the concentration of ions in the sample with higher the conductivities resulting from higher ion concentrations.

The low conductivity (0.59 mS/m) of MW-2 probably represents the background value. The readings from wells MW-3, MW-4 and MW-5 vary in a narrow range from 3.89 to 3.98 mS/m. The 0.1 mS/m reading from MW-6 is 6.6 times higher than the values at MW-3 to MW-5 and more than 17 times the value measured at well MW-2.

The analytical data from wells MW-2, MW-4 and MW-6 supports the conductivity measurements with the highest total dissolved solid concentration at MW-6 and the lowest at MW-2. The MW-4/MW-2 and MW-6/MW-2 ratios of total dissolved solid concentrations are 5.5 and 15.3 respectively. These ratios approximate the calculated conductivity ratios (6.7 and 17.6 respectively).

Examination of Table 5 indicates that the sodium and chloride are the cation and anion ions that produce the majority of the increased salt loading. These ions typically originate from the release of salt-laden produced water.

The DEFS pipeline release cannot be the source of the salts found in the study area for the following reasons:

- 1. The DEFS pipeline is a natural gas conveyance line. This type of line typically does not carry a sufficient volume of produced water to generate the chloride distribution found in the groundwater beneath this site.
- 2. The distribution of salts (highest at MW-6) is anomalous when compared to the organic distribution and groundwater flow pattern.
- 3. The EPI reports do not report any evidence of produced water effects along the pipeline alignment prior to excavation.

It is probable that the salts are not migrating from MW-6 northwest toward the MW-3 through MW-5 alignment. Moreover, the source may not be the affected area shown on Figure 2 because of the apparently unaffected sample that was collected down gradient

C-Line Characterization Report February 6, 2003 from it in well MW-2. The DEFS pipeline is within an area with a long history of petroleum production. Further evaluation of the origin and migration of the salts is beyond the scope of this project since they do not originate from DEFS operations.

4.2.3 Suggested Remediation Strategy

This section presents a conceptual program to remediate the hydrocarbons released at the 50602 site. This section includes the objectives of the remediation program, design assumptions and the conceptual design strategy.

4.2.3.1 Remediation Objectives

The objectives of the suggested remediation strategy are to:

- Remove the free product as a continuing source of the dissolved and vapor phase hydrocarbons;
- Identify the down-gradient boundary of the dissolved phase hydrocarbon plume;
- Regularly monitor the site to ensure that the dissolved-phase plume does not expand during the free-product removal remediation phase;
- Remove the soil vapor phase hydrocarbons once the free product is removed; and
- Continue monitoring after the free product is removed to verify that the dissolved phase hydrocarbon plume is either stable or contracting.

4.2.3.2 Remediation System Design Assumptions

The assumptions that the conceptual remediation plan was based upon includes:

- 1. The released product is a low-viscosity, high vapor pressure liquid that migrated readily to well MW-1 during the bail-down test.
- 2. The dissolved phase hydrocarbons from this release have migrated toward the southeast a minimum of 190 feet (MW-3) and a maximum of 790 feet (MW-6).
- 3. The groundwater in the immediate vicinity of the release is also impacted by a produced water release(s) from an historic source(s). The extent of this area is undefined. The water is still potentially useable for ranching purposes but is of limited use for irrigation.

- 4. The evidence of natural bioremediation is masked by the historic salt release; however, two indicator parameters are present. First the dissolved oxygen concentration at MW-4 of 3.59 was approximately half the apparent background concentration. Iron the second indicator parameter, is much lower at MW-4 than it is at MW-2 or MW-6, indicating that anaerobic biodegradation is present.
- 5. The PID measurements at borings MW-2 through MW-6 originate from gaseous hydrocarbons within the soil vapor rather than desorbing from soil particles. These soil vapors can be removed with a soil vapor extraction system.
- 6. The hydrocarbon vapors extend over a greater area than the dissolved phase hydrocarbons. These vapors could migrated into the groundwater producing a low-concentration dissolved phase halo around the primary plume. It is probable that any dissolved phase hydrocarbons generated in this fashion will be digested and remove through bioremediation.
- 7. A soil vapor extraction system

4.2.3.3 Conceptual Remediation Program Description

This section presents a remediation program at a level that is sufficient to evaluate the strategy and the general components of the plan. A more detailed plan will be prepared upon OCD concurrence with either this plan or a plan that is modified to address their comments and concerns.

The remediation program will be completed in two phases. The two phases are discussed at a conceptual level below.

The purpose of Phase 1 is to remove the free product from the water table while monitoring for evidence of an expanding dissolved-phase hydrocarbon plume. Phase 1 includes three proposed activities:

- 1. The installation of monitor well(s) at the down gradient boundary of the plume to refine the groundwater gradient and to provide detection-level monitoring.
- 2. Monitoring of the identified detection wells on a quarterly basis to ensure the plume is not expanding.
- 3. Active removal of the free product from well MW-1.

Phase 1 would continue until the free product is removed to the maximum extent practicable.

Phase 2 includes the following three activities:

- 1. Installation of a temporary soil vapor extraction system at well MW-1 and/or other wells as necessary to remove the hydrocarbons in the soil vapor. This system could be installed as part of the free product removal effort provided that it could be safely operated and assuming reasonable air emissions control costs.
- 2. Regular monitoring of the wells within the plume area to monitor changes in the hydrocarbon concentrations in the groundwater and the soil gas; and
- 3. Regular monitoring of the detection wells to monitor for unanticipated migration of dissolved phase hydrocarbons.

The monitoring proposed under items 2 and 3 above would initially occur on a quarterly basis. The monitoring frequency would be deceases after repeated testing established that plume control was effective. Monitoring would then continue for a predetermined length of time and would cease when the post-closure goals have been attained.

MW#	Top of Casing Elevation	Ground Elevation	Latitude	Longitude	Screen Diameter	Screened Interval	Sand Interval
1	3542.10	3539.41	N32°31'29.7"	W103°17'11.3"	2"		
2	3540.91	3537.70	N32°31'30.8"	W103°17'11.5"	2"	81-101	77-102
3	3541.41	3539.30	N32°31'27.8"	W103°17'11.2"	2"	80-100	78-102
4	3541.40	3538.51	N32°31'28.6"	W103°17'10.3"	2"	80-100	78-103
5	3541.45	3538.69	N32°31'29.4"	W103°17'9.6"	2"	80-100	78-102
6	3543.98	3540.94	N32°31'25.1"	W103°17'3.8"	2"	79-99	75-102

.

Table 1 – Summary C-	-Line Well Completion Information
----------------------	-----------------------------------

Î

Depth	MW-2	MW-3	MW-4	MW-5	MW-6
(feet)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
5	4.5				
10	2.2		1.7	0.0	1.1
15	5.6				
20	3.3	1.0	1.0	2.4	2
25	7.8				
30	11.3		1.3	3.4	2.7
35	8.8				
40	6.7	1.3	3.1	4.1	2.3
45	4.4				
50			3.1	3.2	3.1
55					
60	7.8	0.6	2	3.4	2.7
70	3.4			4.8	1.7
80	2.3			5.1	
85				3.1	

Table 2 – Photoionization Detector Readings For Soil Samples Collected from Borings

1

Notes: Groundwater noted in all boring logs at ~ 86 feet Actual water table subsequently measured at ~102 feet

Table 3 – Well Gauging Information

•

I

۱

Monitor Well Identifier	Top of Casing Elevation				Corrected Groundwater Elevation
1	3542.10	92.30	89.15	3.15	3452.01
2	3540.91	88.80			3452.11
3	3541.41	89.16			3452.25
4	3541.40	89.84			3451.56
5	3541.45	90.06			3451.39
6	3543.98	95.21			3448.77

.

MW#	Casing Volumes Removed	Average Pumping Rage (GPM)	Temperature °C	Conductivity mS/cm	РН	Dissolved Oxygen (ppm)
2	15.0	0.55	18.6	0.59	7.54	5.07
3	11.0	0.70	18.5	3.91	7.21	7.61
4	10.8	0.59	19.0	3.96	7.10	3.59
5	11.5	0.71	18.9	3.89	7.08	7.98
6	12.9	0.41	18.5	10.1	6.97	7.43

Table 4 – Summary of C-Line Equilibrated Well Purging Data

I

	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO
NM Standards	0.01	0.75	0.75	0.62		
Well #						
2	< 0.001	< 0.001	< 0.001	< 0.001	<3	<3
3	0.017	0.005	< 0.001	< 0.001	<3	<3
4	0.114	0.039	0.002	0.003	<3	<3
4 dup	0.1	0.036	0.002	0.003	<3	<3
5	< 0.001	< 0.001	< 0.001	< 0.001	<3	<3
6	<0.001	< 0.001	< 0.001	< 0.001	<3	<3

Table 5 - Summary of Organic Constituent Results from the November 2002 Sa	mpling
Episode at the C-Line Location	

Notes: All units mg/l

GRO: Total petroleum hydrocarbons as gasoline range organics

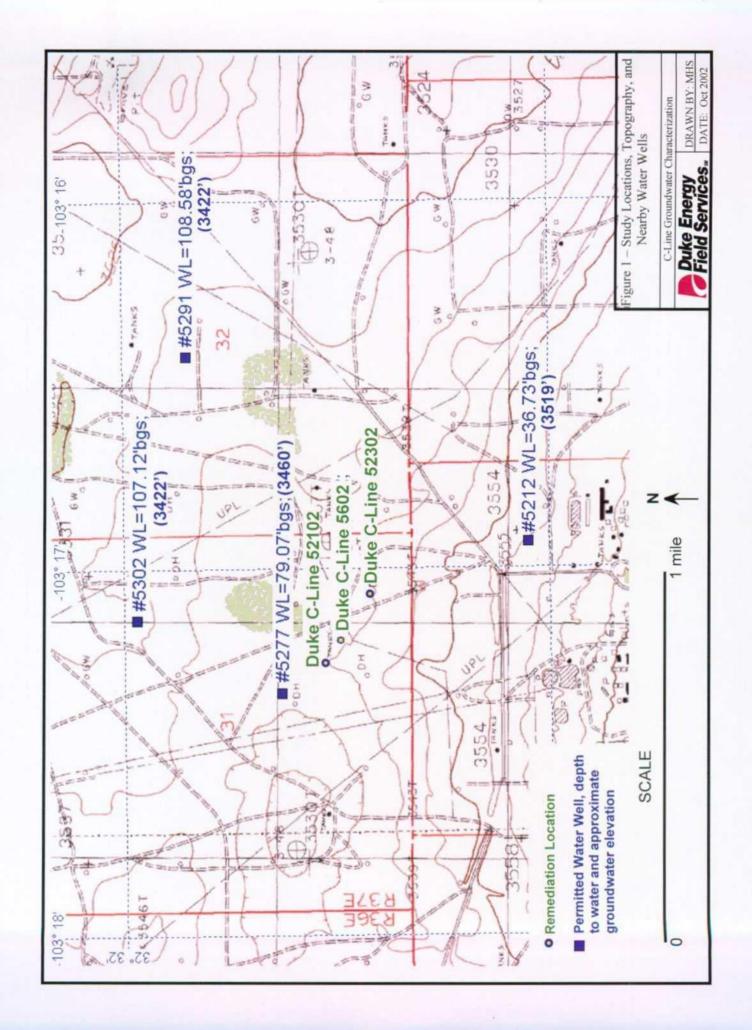
DRO: Total petroleum hydrocarbons as diesel range organics

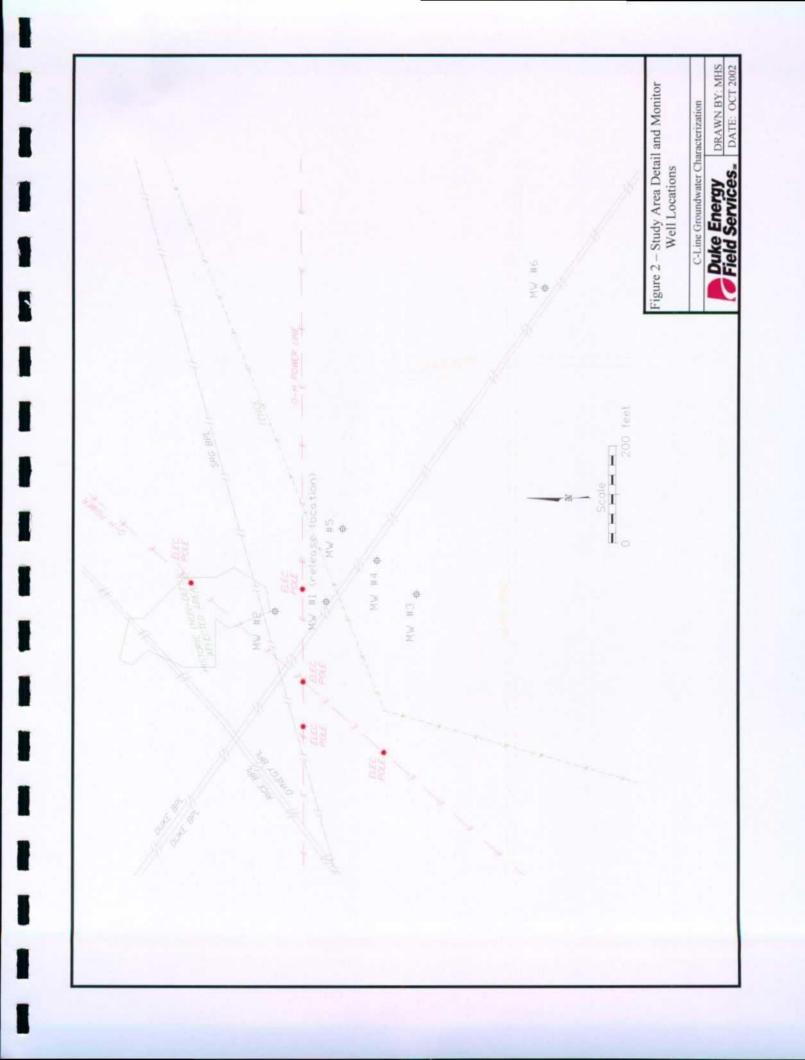
NM Standards: New Mexico Water Quality Control Commission Standards Values that exceed these standards are bolded

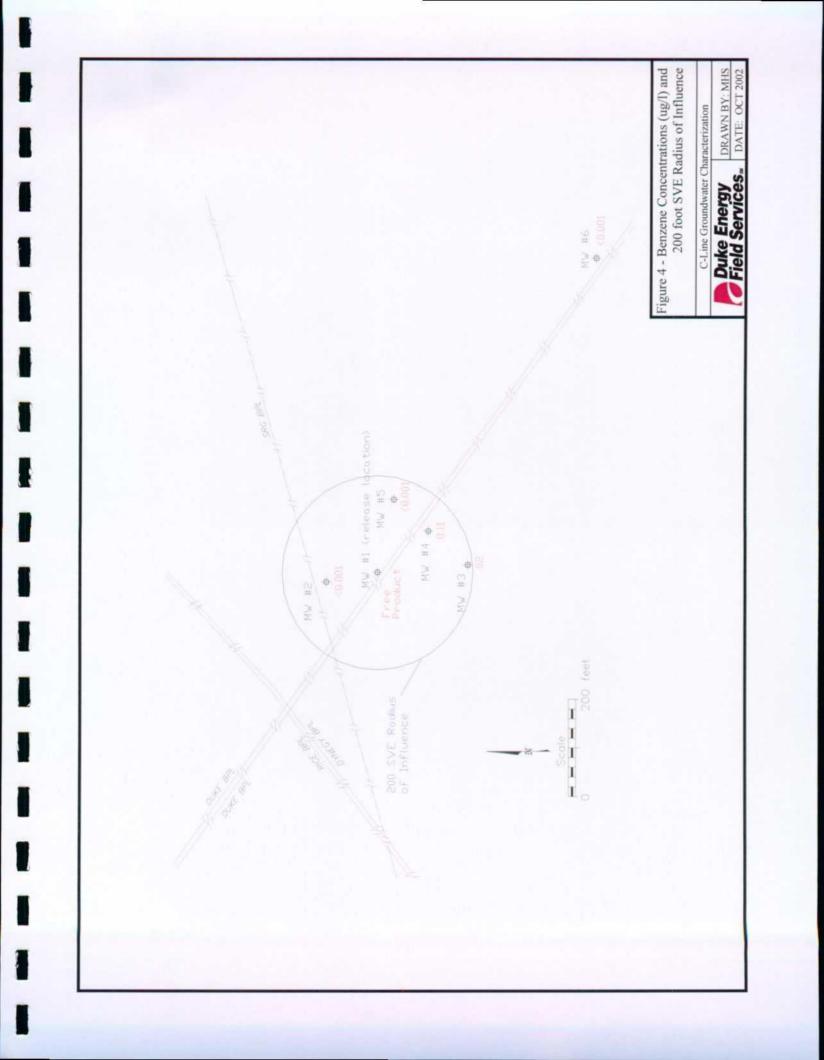
Table 6 - Summary of Inorganic Constituent Results from the November 2002 Sampling Episode at the C-Line Location

	Calcium	Calcium Magnesium	mPotassium	Sodium	Bicarbonate Carbonate Chloride Hydroxy	Carbonate	Chloride	Hydroxyl	Sulfate	Total Dissolved Solids
NM Standards							250		000	
Well #							007		000	1000
MW-2	53.4	16.7	5.52	52.5	162	<0.01	44.3	<0.01	111	428
MW-4	211	80.8	12.7	369	282	<0.01	904	<0.01	348	2359
9-MM	664	375	31.5	838	240	<0.01	3010	<0.01	1300	6564

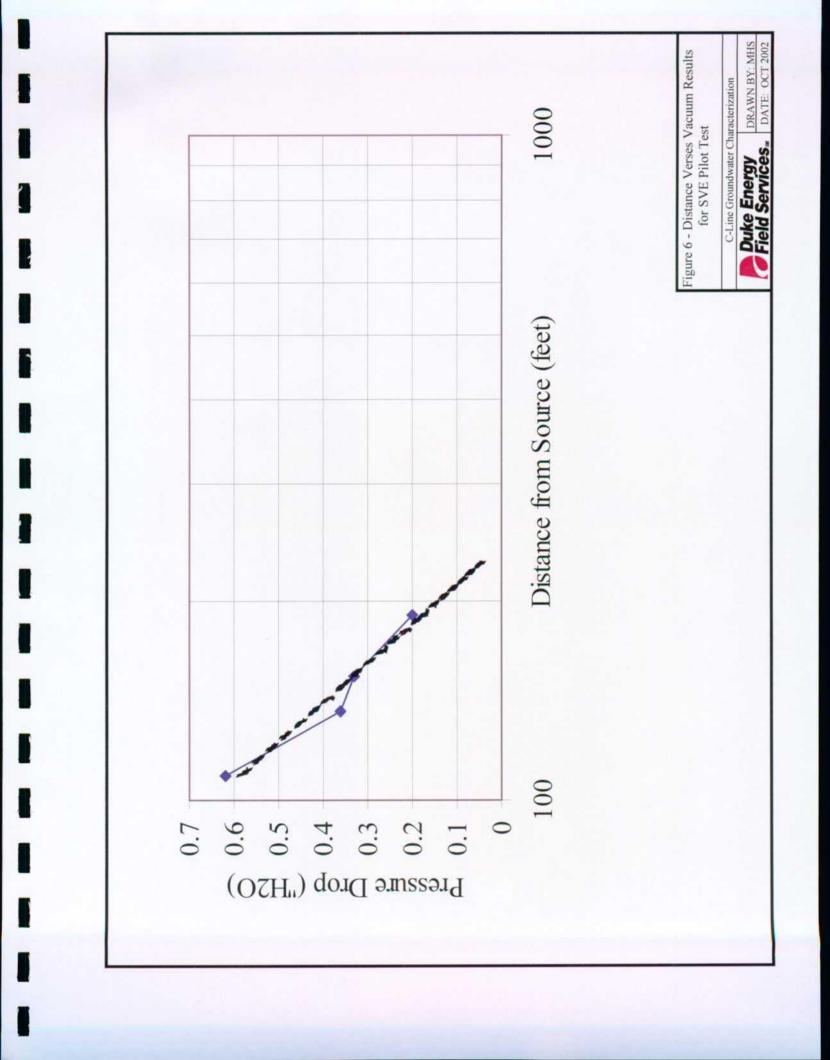
	Arsenic	Barium	Cadmium Chromium	Chromium	Lead	Selenium	Silver	Iron	Manganese	Mercurv
MN)	
Standards	0.1		0.01	0.05	0.05	0.05	0.05	-	0.2	0.002
Well #										
MW-2	<0.008	0.683	0.004	0.015	<0.011	<0.004	<0.002	12.6	0.117	0,004
MW-4	<0.008	0.496	0.002	<0.002	<0.011	<0.004	<0.002	0.304	0.144	<0.002
9-MM	0.011	0.407	0.002	0.005	<0.011	<0.004	<0.002	3.49	0.094	<0.002


NM Standards: New Mexico Water Quality Control Commission Standards Values that exceed these standards are bolded


.....


Ì

FIGURES



APPENDIX 1 BORING LOGS AND WELL COMPLETIONS

						LII	THOL	OGIC	LOG (MONI	TORING WELL)	- H <u></u>
						MONITO		ELL NO:			TOTAL DEPTH	
				11	_	SURFA		SITE ID: VATION:	C Line		CLIENT COUNTY	Duke Energy Field Services
	٦T	.	TT				CONTR	ACTOR:	Eades D		STATE	New Mexico
	EN EN	X. avi	LL RO	JEIN Inmentai		DRI			Air/Mud 11/5/200			Monument, NM
	-	1				CON			11/6/200		FILE NAME	
							COM	MENTS:				· · · · · · · · · · · · · · · · · · ·
		l		LITH.	USCS	FROM	SAMPL TO	E TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION: SIZE, SORTING, ROUNDING,	
1		Ø	ient 🕅		0000	1100					Silty Clay, It brown-mod reddish	
			Cerr								matrix, v moist, no odor.	
					CL							
						4	5	Grab	4.5ppm	5		
											Silty Sand, v pale-mod orange, s	
											w/2% clay in matrix, interbedded sand, moist, no odor.	wmoo-w cemented vi grain
					SM	•	40	01		40		
						9	10	Grab	2.2ppm	10		
											Silty Sand, mod reddish orange- w sorted, w/2% clay in matrix, in	
					SМ	14	15	Grab	5.6ppm	15	vf grain sand, moist, no odor.	
			ľ								Silty Sand, v pale orange-It brow	
						19	20	Grab	3.3ppm	20	sorted, w/10% clay in matrix, inte vf grain sand, sl hydrocarbon od	
			1								or grain sand, si nyarodarbon da	
			<u>9</u>		SM							
			Holeplug			24	25	Grab	7.8ppm	25		
			ite H									
											Silty Sand, mod reddish orange-	It brown, silt-vf grain, unconso
			Bento								w sorted, w/2% clay in matrix, int	erbedded w/mod-well cemente
					SM	29	30	Grab	11.3ppm	30	vf grain sand, sl hydrocarbon od	or.
		:										
			ŀ			34	35	Grab	8.8ppm	35	Silty Sand, mod reddish orange-	It brown, silt-vf grain, unconso
1			ľ			ľ					w sorted, w/2% clay in matrix, int	.
											grain sand, sl hydrocarbon odor.	
			ŀ		SM							
			ľ.			39	40	Grab	6.7ppm	40		
			-						ŀ			
			ŀ								01111 0	
						44	45	Grab	4.4ppm		Silty Sand, mod reddish orange- w sorted, w/2% clay in matrix, int	
			ŀ								grain sand, sl hydrocarbon odor.	
					SM							
			ŀ		1			1	· ł			
			-							50		

		M	ONITORI	NG WE	LL NO:		MW-2	TOTAL DEPTH: 102 Feet
	LITH.	USCS	FROM	SAMPLI TO	E TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRA SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURE
Riser Holeplug		SM	59	60	Grab	7.8ppm	55 60	Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented grain sand, sl hydrocarbon odor.
2 Inch Sched 40 Riser Bentonite Hole		SM	69	70	Grab	3.4ppm	65 70	Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented v grain sand, sl hydrocarbon odor.
		SM	79	80	Grab	2.3ppm		Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented v grain sand, v moist, no odor.
40 Slotted Screen								Encountered Groundwater! Sitty Sand, mod reddish orange-It brown, silt-vf grain, unconse w sorted, w/2% clay in matrix, interbedded w/mod cemented v grain sand, wet, no odor.
2 Inch 0.010 Sched 40 S 1220 Silica S		SM					95	
							105	TD @ 102 Feet!

......

.

					LI	THOL	OGIC	LOG	(MONI	TORING WELL)
E	R	IRC	JEN DEN	T	SURF4 DRI	ACE ELE CONTR LLING M STAR IPLETIO	SITE ID: VATION: ACTOR: ETHOD: T DATE:		Rotary 2	TOTAL DEPTH: 102 Feet CLIENT: Duke Energy Field Services COUNTY: Lea STATE: New Mexico LOCATION: Monument, NM FIELD REP.: J. Fergerson FILE NAME:
 	-		LITH.	11000		SAMPL			DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN
		Cement		CL	FROM	TO	TYPE	PID	5	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Silty Clay, It brown-mod reddish brown, w 30% silt and tr caliche matrix, v moist, no odor.
				SM					10	Silty Sand, v pale-mod orange, silt-vf grain, unconsol, w sorted, w/2% clay in matrix, interbedded w/mod-w cemented vf grain sand, moist, no odor.
				SM					15	Silty Sand, mod reddish orange-lt brown, silt-vf grain, unconsol, w sorted, w/2% clay in matrix, interbedded w/mod-well cemented vf grain sand, moist, no odor.
		Bentonite Holeplug		SM	19	20	Grab	1.0ppm	20 25 30	Silty Sand, v pale orange-It brown, silt-vf grain, unconsol, w sorted, w/10% clay in matrix, interbedded w/mod-well cemented vf grain sand, no odor.
				SM	39	40	Grab	1.3ppm	35 40 45 50	Silty Sand, mod reddish orange-It brown, silt-vf grain, unconsol, w sorted, w/2% clay in matrix, interbedded w/mod cemented vf grain sand, no odor.

ļ

ļ

1

I

				м	ONITOR	ING WE	LL NO:		MW-3	TOTAL DEPTH: 102 Feet
			LITH.	LISCS	FROM	SAMPL TO	E TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRA SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURE
				0000	11.00					Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented
		ļ								grain sand, no odor.
	-								55	
				SM						
		ō			59	60	Grab	0.6ppm	60	
Rise		Holeplug								
2 Inch Sched 40 Riser									65	
- Sch		Bentonite								Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented
		- -								grain sand, no odor.
							:		70	
				SM						
				CIVI I					75	
· · · · ·								-		
		ŀ							80	
										Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented v
ç				SM		:				grain sand, v moist, no odor.
Screen		Lack							85	Encountered Groundwater!
Slotted										Silty Sand, mod reddish orange-lt brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented v
	1000 c	σΙ.								grain sand, wet, no odor.
2 Incn 0.010 Sched 44										
	0401								_	
				ѕм					95	
									100	
<i></i>	Nat Sano	- 14								TD @ 102 Feet
									105	
									110	

i.

	 				LIT	HOL	OGIC	LOG (MONI	TORING WELL)
T	XI	D	L/ EN		MONITC SURFA DRI	CE ELE CONTR LLING M STAR PLETIO	ell no: Site id: Vation: Actor: Ethod: T date:	MW-4	rilling Rotary 2	TOTAL DEPTH: 103 Feet CLIENT: Duke Energy Field Services COUNTY: Lea STATE: N ew Mexico LOCATION: Monument, NM FIELD REP.: J. Fergerson FILE NAME:
	 1		LITH.			SAMPL			DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN
	Cement			CL	FROM	то	TYPE	PID	5	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES Silty Clay, It brown-mod reddish brown, w 30% silt and tr caliche matrix, v moist, no odor.
				SM	9	10	Grab	1.7ppm	10	Silty Sand, v pale-mod orange, silt-vf grain, unconsol, w sorted, w/2% clay in matrix, interbedded w/mod-w cemented vf grain sand, moist, no odor.
				SM	19	20	Grab	1.0ppm	15	Silty Sand, mod reddish orange-It brown, silt-vf grain, unconsol, w sorted, w/2% clay in matrix, interbedded w/mod-well cemente vf grain sand, moist, no odor. Silty Sand, v pale orange-It brown, silt-vf grain, unconsol, w
Sched 40 Riser	te Holeplug			SM					25	sorted, w/10% clay in matrix, interbedded w/mod-well cemented vf grain sand, sl hydrocarbon odor.
2 Inch So	Bentonite				29	30	Grab	1.3ppm	30	
		1.1.1.1.1.1.		SM					35	Silty Sand, mod reddish orange-lt brown, silt-vf grain, unconsol, w sorted, w/2% clay in matrix, interbedded w/mod cemented vf grain sand, no odor.
				SM	39	40	Grab	3.1ppm 3.1ppm	40	Silty Sand, mod reddish orange-lt brown, silt-vf grain, unconsol, w sorted, w/2% clay in matrix, interbedded w/mod cemented vf grain sand, sl hydrocarbon odor.

]

•

2 Inch Sched 40 Riser Bentonite Holeplug	USCS	FROM 59	SAMPLI TO 60	ΤΥΡΕ	PID 2.0ppm	55	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRA SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURE Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented w grain sand, sl hydrocarbon odor.
2 Inch Sched 40 Riser Bentonite Holeplug							Silty Sand, mod reddish orange-lt brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented w
2 Inch Sched 40 Riser Bentonite Holeplug	SM	59	60	Grab	2.0ppm	60	
2 Inch Sche Benton		1				65	
	SM					70	Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod-w cemente grain sand, no odor.
	SM					80	Silty Sand, mod reddish orange-lt brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod-w cemente grain sand, v moist, no odor.
0 Slotted Screen						85	Encountered Groundwater! Silty Sand, mod reddish orange-lt brown, silt-vf grain, uncons
2 Inch 0.010 Sched 40 Slotte	SM						w sorted, w/2% clay in matrix, interbedded w/mod-w cementer grain sand, wet, no odor.
Nat Sand						100	TD @ 103 Feet!
						105	

				LI	THOL	OGIC	LOG	MONI	TORING WELL)
T	VIR (U DEN DEN		SURF# DRI	ACE ELE CONTR LLING M STAR IPLETIO	iethod: T date:		Rotary 2	TOTAL DEPTH: 102 Feet CLIENT: Duke Energy Field Services COUNTY: Lea STATE: New Mexico LOCATION: Monument, NM FIELD REP:: J. Fergerson FILE NAME:
г]	LITH.		FROM	SAMPL TO	E TYPE		DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
	Cement		CL SM				1.12		Silty Clay, It brown-mod reddish brown, w 30% silt and tr caliche matrix, v moist, no odor. Silty Sand, v pale-mod orange, silt-vf grain, unconsol, w sorted, w/2% clay in matrix, interbedded w/mod-w cemented vf grain sand, v moist, no odor.
			CL SM	9	10	Grab	0.0ppm	10	Silty Clay, It brown-mod reddish brown, w 30% silt and tr caliche matrix, v moist, no odor. Silty Sand, mod reddish orange-It brown, silt-vf grain, unconsol, w sorted, w/2% clay in matrix, interbedded w/mod-well cemented vf grain sand, moist, no odor.
er.				19	20	Grab	2.4ppm	20	Silty Sand, v pale orange-lt brown, silt-vf grain, unconsol, w sorted, w/10% clay in matrix, interbedded w/mod-well cemented vf grain sand, no odor.
Z INCH SCRED 4U KISE	Bentonite Hotepluç		- SM	29	30	Grab	3.4ppm	25 30	
			SM					35	Silty Sand, mod reddish orange-It brown, silt-vf grain, unconsol, w sorted, w/2% clay in matrix, interbedded w/mod cemented vf grain sand, no odor.
			- - - - - - -	39	40	Grab	4.1ppm	40	Silty Sand, mod reddish orange-lt brown, silt-vf grain, unconsol, w sorted, w/2% clay in matrix, interbedded w/mod cemented vf grain sand, sl hydrocarbon odor.
			_	49	50	Grab	3.2ppm	50	

Ĩ

١

		LITH.			SAMPL	E		DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRA
			USCS	FROM	TO	TYPE	PID	1	SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURE
								55	Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod-w cemente grain sand, sl hydrocarbon odor.
2 Inch Sched 40 Riser	nite Holephra			59	60	Grab	3.4ppm	60 	
2 Inch Sch	Bentonite		SM	69	70	Grab	4.8ppm	70	Silty Sand, mod reddish orange-lt brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod-w cemente grain sand, sl hydrocarbon odor.
				70	00	Quet		75	
creen			SM	79 84	80 85	Grab Grab	5.1ppm 3.1ppm		Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented v grain sand, v moist, sl hydrocarbon odor.
	Pack		-						Encountered Groundwater!
2 Inch 0.010 Sched 40 Slotted Screen	12/20 Silica Sand P		SM					90	Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented grain sand, wet, sl hydrocarbon odor.
duns	Nat Sand								TD @ 102 Feet
								105	

......

1

					LIT	HOL	OGIC	LOG (MONI	TORING WELL)
					MONITO		ELL NO:			TOTAL DEPTH: 102 Feet
			11				SITE ID:	C Line		CLIENT: Duke Energy Field Services
			×~		SURFA			Eades Dr	illing	COUNTY: Lea County STATE: New Mexico
\mathbf{T}	R	Π	DEN		DRI			Air/Mud F		LOCATION:
E	NY	IRC	DEN	r 📘		STAR	T DATE:	11/6/200	2	FIELD REP.: J. Fergerson
•	and the second sec				CON			11/7/200	2	FILE NAME:
						COM	MENTS:			
								·		
			LITH.		FROM	SAMPL TO	E TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURES
~										Silty Clay, It brown-mod reddish brown, w 30% silt and tr caliche
		Cement		_	:					matrix, v moist, no odor.
		ľ	! <u></u>	CL						
				-					5	
					-					Silty Sand, grayish-mod orange pink, silt-vf grain, unconsol, w
				SM						sorted, w/2% clay in matrix, interbedded w/mod-w cemented vf
]						grain sand, v moist, no odor.
				-	9	10	Grab	1.1ppm	10	Silty Sand, mod reddish orange-It brown, silt-vf grain, unconsol
				-						w sorted, w/2% clay in matrix, interbedded w/mod-well cemente
				·						vf grain sand, moist, no odor.
				SM						
									15	
					19	20	Grab	2.0ppm	20	Silty Sand, v pale orange-It brown, silt-vf grain, unconsol, w sorted, w/10% clay in matrix, interbedded w/mod-well cemented
					19	20	Giab	z.oppin		vf grain sand, no odor.
		5		-						
		Holeplug								
		흥							25	
		횬		SM						
		tonite								
		Ben		4						
		"		4	29	30	Grab	2.7ppm	30	
				1					35	Silty Sand, mod orange pink-lt brown, silt-vf grain, unconsol, w
										sorted, w/2% clay in matrix, interbedded w/mod-w cemented vl
				1						grain sand, moist, no odor.
				1	39	40	Grab	2.3ppm	40	
				-					45	
				1					40	
					49	50	Grab	3.1ppm	50	

١

ľ

١

R

R

				MC					MW-6	
			LITH.	USCS	FROM	SAMPL TO	E TYPE	PID	DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRA SIZE, SORTING, ROUNDING, CONSOL., DIST. FEATURE
									55	Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented grain sand, no odor.
2 Inch Sched 40 Riser	Dontrotito Unioni ve			SM	59	60	Grab	2.7ppm	60	
2 Inch Sci	à				69	70	Grab	1.7ppm	70	Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented grain sand, no odor.
				SM					75	
eeu				SM					80	Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented grain sand, v moist, no odor.
d Scr									85	Estimated Depth to Groundwater!
Sched 40 Slotted Screen	ica Sand Dack									Silty Sand, mod reddish orange-It brown, silt-vf grain, uncons w sorted, w/2% clay in matrix, interbedded w/mod cemented grain sand, wet, no odor.
2 Inch 0.010 Scher		ōĿ		SM					95	
Sump		· · · ·							100	
										TD @ 102 Feet
									105	

I

APPENDIX 2 LABORATORY ANALYTICAL REPORT

Nov 26 02 10:37p

ANALYTICAL REPORT

Prepared for:

JOHN FERGERSON TRIDENT ENVIRONMENTAL P.O BOX 7624 MIDLAND, TX 79708

Project: Duke Energy Field Services

p.1

PO#:

Order#: G0205055

Report Date: 11/25/2002

<u>Certificates</u> US EPA Laboratory Code TX00158 Nov 26 02 10:38p

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

TRIDENT ENVIRONMENTAL P.O BOX 7624 MIDLAND, TX 79708 262-5216 Order#:G0205055Project:F-107Project Name:Duke Energy Field ServicesLocation:C-Line

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

......

				Date / Time	Date / Time	•	
<u>Lab ID:</u>	<u>Sample :</u>	<u>Matrix</u> :		Collected	Received	Container	Preservativ
0205055-01	0211151220 (MW-2)	WATER		11/15/02 12:20	11/18/02 11:50	40 mL VOA	Ice
La	ib Testing:	Rejected:	No	Тет	np: -0.5 C		
	8015M						
	8021B/5030 BTEX						
	Anions						
	Cations						
	METALS RCRA 7 To	tal					
	Iron						
	Manganese						
	Mercury, Total						
	Total Dissolved Solids	(TDS)					
0205055-02	0211151340 (MW-5)	WATER		11/15/02 13:40	11/18/02 11:50	40 mL VOA	Ice
<u>La</u>	<u>b Testing:</u>	Rejected:	No	Ten	ւ թ։ - 0.5 C		
	8015M						
·	8021B/5030 BTEX					· · · · · · · · · · · · · · · · · · ·	
0205055-03	0211151510 (MW-4)	WATER		11/15/02 15:10	11/18/02 11:50	40 mL VOA	lce
La	b Testing:	Rejected:	No	Ten	ор: -0.5 C		
	8015M						
	8021B/5030 BTEX						
	Anions						
	Cations						
	METALS RCRA 7 To	tal					
	Iron						
	Manganese						
	Mercury, Total						
	Total Dissolved Solids	(TDS)					· · · · · · · · · · · · · · · ·
0205055-04	0211151610 (MW-3)	WATER		11/15/02 16:10	11/18/02 11:50	40 mL VOA	Ice
La	<u>b Testing:</u>	Rejected:	No	Tem	р: -0.5 C		
	8015M						
	8021B/5030 BTEX						

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West 1-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST TRIDENT ENVIRONMENTAL Order#: G0205055 P.O BOX 7624 F-107 Project: MIDLAND, TX 79708 Project Name: Duke Energy Field Services 262-5216 Location: C-Line The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

<u>Lab ID:</u> 0205055-05	<u>Sample :</u> 0211151720 (MW-6)	<u>Matrix:</u> WATER		Date / Time <u>Collected</u> 11/15/02 17:20	Date / Time <u>Received</u> 11/18/02 11:50	Container 40 mL VOA	Preservativelce	
	ab Testing: 8015M 8021B/5030 BTEX Anions Cations METALS RCRA 7 Tot Iron Manganese Mercury, Total Total Dissolved Solids		No	Temp				
0205055-06 <u>La</u>	0211150000 (Duplicate) <u>b Testing:</u> 8021B/5030 BTEX	WATER Rejected:	No	1 1/1 5/02 Temp:	11/18/02 11:50 -0.5 C	40 mL VOA	lce	
0205055-07 <u>La</u>	Trip Blank 1 <u>b Testing:</u> 8021B/5030 BTEX	WATER Rejected:	No	11/15/02 Temp:	11/18/02 11:50 -0.5 C	40 mL VOA	lce	

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ANALYTICAL REPORT

055-01 151220 (MV Method <u>Blank</u>	Date <u>Prepared</u> Parameter	Date <u>Analyzcd</u> 11/18/02	8015M Sample <u>Amount</u> 1 Resu	Dilutio <u>Factor</u> 1		Method 8015M
Method	Date <u>Prepared</u> Parameter	Analyzed	Sample <u>Amount</u> 1	Factor	<u>Analyst</u>	
	<u>Prepared</u> Parameter	Analyzed	Sample <u>Amount</u> 1	Factor	<u>Analyst</u>	
	<u>Prepared</u> Parameter	Analyzed	Amount 1	Factor	<u>Analyst</u>	<u>Method</u> 8015M
<u>Blank</u>	Parameter		1			
		11/18/02		1	СК	8015M
			Resu	· ·		8015M
			mg/l		RL	
	GRO, C6-C12	·····	<3.0)	3.00	
	DRO, >C12-C35		<3.00		3.00	
	TOTAL, C6-C35		<3.00)	3.00	
	Surroga	Ites	% Recovered	QC Li	nits (%)	
	1-Chlorooct	ane	93%	70	130	
	1-Chlorooct	adecane	89%	70	130	
		8021E	3/5030 BTEX	-		
Method	Date	Date	Sample	Dilutio	1	
Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method
0003832-02	2 11/20/02 20:11		1	1	СК	8021B
	Parameter				RL	
	Benzene				0.001	
1	Ethylbenzene		<0.00		0.001	
Ì						
	Toluene		<0.00		0.001	
ţ				1		
ļ	Toluene		<0.00	1	0.001	
ļ	Toluene p/m-Xylene	tes	<0.00 <0.00	1	0.001 0.001 0.001	
ļ	Toluene p/m-Xylene o-Xylene		<0.00 <0.00 <0.00		0.001 0.001 0.001	
	<u>Blank</u> 0003832-02	1-Chlorooct 1-Chlorooct <u>Blank Prepared</u> 9003832-02	Method Date Date <u>Blank Prepared Analyzed</u> 0003832-02 11/20/02 20:11 Parameter	1-Chlorooctane 93% 1-Chlorooctadecane 89% State 8021B/5030 BTEX Method Date Blank Prepared Analyzed Amount 0003832-02 11/20/02 Parameter Resul Method Resul Method Date Date Sample Benzene <0.00	1-Chlorooctane 93% 70 1-Chlorooctadecane 89% 70 B021B/5030 BTEX Method Date Date Sample Dilution Blank Prepared Analyzed Atmount Factor 0003832-02 11/20/02 1 1 Parameter Result mg/L Benzene <0.001	1-Chlorooctane93%701301-Chlorooctadecane89%70130B021B/5030 BTEXMethodDateDateSampleDilutionBlankPreparedAnalyzedAttountFactorAnalyst0003832-0211/20/0211CKParameterResult mg/LBenzene<0.001

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

JOHN FERGERSON TRIDENT ENVIRO P.O BOX 7624 MIDLAND, TX 797	NMENTAL			Order#: Project: Project Nan Location:	F nc: D	6020505 107 Dake En 2-Line	i5 iergy Field	Services
	0205055-02							
Sample ID:	0211151340 (MV	w-5)						
	Method Blank	Date <u>Prepared</u>	Date Analyzed	8015M Sample <u>Amount</u>	Dilui Faci	tor	Analyst	Method
			11/18/02	1	1		CK	8015M
		Parameter		Resu mg/I		J	RL	
		GRO, C6-C12		<3.0	0	:	3.00	
		DRO, >C12-C35		<3.0			3.00	
		TOTAL, C6-C3:	5	<3.00	0		3.00	
		Surrog	ates	% Recovered		Limits (%)	
		1-Chlorooc		92%	70			
		1-Chlorooc	tadecane	88%	70	13	0	
			80211	3/5030 BTEX	C			
	Method	Date	Date	Sample	Dilat	tion		
	Blank	Prepared	Analyzed	Amount	Fact	<u>tor</u>	<u>Analyst</u>	Method
	0003832-02	1	11/20/02 20;32	1	1		СК	8021B
		Parameter		Resul		F	u.	
		Benzene		<0.00			.001	
		Ethylbenzene		<0.00			.001	
		Toluene		<0.00			.001	
		p/m-Xylene	·······	<0.00			001	
		o-Xylene		<0.00	1		001	
		Surrog	ates	% Recovered	QCL	Limits (%)	
		aaa-Toluen		93%	80	12		
		Bromofluor	obenzene	90%	80	12	0	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 2 of 7

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ANALYTICAL REPORT

11/18/02 I I CK 8015 Parameter Result mg/L RL mg/L RL mg/L RL mg/L GRO, C6-C12 <3.00 3.00 DRO, >C12-C35 <3.00 3.00 TOTAL, C6-C35 <3.00 3.00 I-Chlorooctane: 89% 70 130 1-Chlorooctade.cane 95% 70 130 B021B/5030 BTEX Method Date Date Sample Dilution Blank Prepared Analyzed Amount Factor Analyst Method	Sample ID: 2211151510 (MW-4) Method Blank Date Prepared Date Analyzed Analyzed Sample Amount Dilution Factor Analyst Method Method Parameter Result I I CK 8015M Parameter Result RL mg/L I CK 8015M GRO, C6-C12 <3.00 3.00 3.00 3.00 3.00 TOTAL, C6-C35 <3.00 3.00 TOTAL, C6-C35 <3.00 3.00	IRIDENT ENV P.O BOX 7624 MIDLAND, TX			Order#: Project: Project Nar Location:	F-10 ne: Dul	G0205055 F-107 Duke Energy Field S C-Line		
Method Blank Date Prepared Date Analyzed Analyzed Sample Amount Dilution Factor Analyse Analyse Meth 8015 Parameter Result mg/l. I CK 8015 QRO, C6-C12 <3.00 3.00 DRO, >C12-C35 <3.00 3.00 DRO, >C12-C35 <3.00 3.00 TOTAL, C6-C35 <3.00 3.00 1-Chlorooctane 89% 70 130 Blank Prepared Analyzed Sample Dilution Blank Prepared Analyzed Amount Factor Analyst 0003832-02 11/20/02 1 1 CK 8021 20:51 Parameter Result RL Benzene 0.014 0.001 0.001 Ethylbenzene 0.003 0.001 p/m-Xylene 0.003 0.001 o-Xylene <0.001 0.001	Method Blank Date Prepared Date Analyzed Analyzed Sample Amount Dilution Factor Analyst Analyst Method 8015M Parameter Result mg/L I I CK 8015M DRQ, >C12-C35 <3.00 3.00 DRQ, >C12-C35 <3.00 3.00 TOTAL, C6-C35 <3.00 3.00 1-Chlorooctane: 89% 70 130 1-Chlorooctane: 89% 70 130 1-Chlorooctade.cane 95% 70 130 1-Chlorooctade.cane 95% 70 130 Blank Prepared Analyzed Amount Factor Method Date Date Sample Dilution Blank Prepared Analyzed Amount Factor 0003832-02 11/20/02 1 1 CK 11/20/02 1 1 CK 8021B Quisti 20:51 1 CK 8021B Parameter Result mg/L 0.001 0.001 Parameter 0.039 0.001 P/m-Xylene 0.003 0.001 p/m-Xylene 0.003 0.001 p/m-Xylene <0.001 0.001			W-4)					
Method Blank Date Prepared Date Analyzed Analyzed Sample Amount Dilution Factor Analyse Analyse Meth 8015 Parameter Result mg/l. I CK 8015 QRO, C6-C12 <3.00	Method Blank Date Prepared Date Analyzed Analyzed Sample Amount Dilution Factor Analyst Analyst Method 8015M Parameter Result mg/L I I CK 8015M DRQ, >C12-C35 <3.00					8015M			
II/18/02 I I CK 8015 Parameter Result mg/L RL mg/L Nethod Nethod	II/18/02 I I CK 8015M Parameter Result mg/l. RL mg/l. Method 8021B Nethod <		Method	Date	Date				
Parameter Result mg/L RL mg/L GR0, C6-C12 <3.00	Parameter Result mg/L RL mg/L GRO, C6-C12 -3.00 3.00 DRO, >C12-C35 -3.00 3.00 TOTAL, C6-C35 -3.00 3.00 1-Chlorooctane: 89% 70 130 1-Chlorooctane: 89% 70 130 1-Chlorooctadecane 95% 70 130 B021B/5030 BTEX Method Date Date Sample Dilution Blank Prepared Analyzed Amount Factor Analyst 0003832-02 11/20/02 1 1 CK 8021B Denzene 0.114 0.001 0.001 0.001 p/m-Xylene 0.003 0.001 0.001 p/m-Xylene 0.003 0.001 0.001 p/m-Xylene 0.003 0.001 0.001 p/m-Xylene 0.001 0.001 0.001		Blank	Prepared		Amount	Factor	Analyst	Method
Interfere mg/L ICC GRO, C6-C12 <3.00	Indirect mg/L ICD GRO, C6-C12 <3.00				11/18/02	t	1	СК	8015M
GRO, C6-C12 <3.00	GRO, C6-C12 <3.00			Parameter				RL	
DRO, >C12-C35 <3.00	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			GRO C6-C12				3.00	
TOTAL, C6-C35 <3.00 3.00 Surrogates % Recovered QC Limits (%) 1-Chiorooctane: 89% 70 130 1-Chiorooctane: 89% 70 130 B021B/5030 BTEX Method Date Date Sample Dilution Blank Prepared Analyzed Amount Factor Analyst Method 0003832-02 11/20/02 1 1 CK 8021 Parameter Result mg/L RL 8021 Dilution Image: Sample 0.001 0.001 0.001 Ethylbenzene 0.014 0.001 0.001 0.001 p/m-Xylene 0.003 0.001 0.001 0.001 o-Xylene <0.001	TOTAL, C6-C35 <3.00 3.00 Surrogates % Recovered QC Limits (%) 1-Chlorooctane: 89% 70 130 1-Chlorooctadecane 95% 70 130 B021B/5030 BTEX Method Date Date Sample Dilution Blank Prepared Analyzed Amount Factor Analyst Method 0003832-02 11/20/02 1 1 CK 8021B 20:51 20:51 8021 Parameter Result mg/L RL Benzene 0.014 0.001 Ethylbenzene 0.003 0.001 p/m-Xylene 0.003 0.001 o-Xylene <0.001				5				
1-Chiorooctane:89%701301-Chiorooctadecane95%70130BO21B/5030 BTEXMethodDateDateSampleDilutionBlankPreparedAnalyzedAmountFactorAnalystMethod0003832-0211/20/02111CK802120:5120:5111CK8021ParameterResult mg/LRLBenzene0.1140.001Ethylbenzenc0.0020.001Toluene0.0030.001p/m-Xylene<0.001	1-Chlorooctane:89%701301-Chlorooctadecane95%70130B021B/5030 BTEXMethodDateDateSampleDilutionBlankPreparedAnalyzedAmountFactorAnalystMethod0003832-0211/20/0211CK8021B20:5120:511CK8021BParameterResultRLmg/LBenzene0.014Ethylbenzene0.0020.001Toluene0.0030.001p/m-Xylene<0.001				A COMPANY IN COMPANY OF A COMPA			· · · · · ·	
1-Chiorooctane:89%701301-Chiorooctadecane95%70130BO21B/5030 BTEXMethodDateDateSampleDilutionBlankPreparedAnalyzedAmountFactorAnalystMethod0003832-0211/20/02111CK802120:5120:5111CK8021ParameterResult mg/LRLBenzene0.1140.001Ethylbenzenc0.0020.001Toluene0.0030.001p/m-Xylene<0.001	1-Chlorooctane:89%701301-Chlorooctadecane95%70130B021B/5030 BTEXMethodDateDateSampleDilutionBlankPreparedAnalyzedAmountFactorAnalystMethod0003832-0211/20/0211CK8021B20:5120:511CK8021BParameterResultRLmg/LBenzene0.014Ethylbenzene0.0020.001Toluene0.0030.001p/m-Xylene<0.001			Surros	ates	% Recovered	LOC Lir	nite (%)	
1-Chlorooctadecane95%701308021B/5030 BTEXMethodDateDateSampleDilutionBlankPreparedAnalyzedAmountFactorAnalystMethod0003832-0211/20/02111CK802120:5120:5111CK8021ParameterResult mg/LRLBenzene0.1140.001Ethylbenzene0.0020.001Toluene0.0030.001p/m-Xylene0.0030.001o-Xylene<0.001	1-Chlorooctadescane95%70130B021B/5030 BTEXMethodDateDateSampleDilutionBlankPreparedAnalyzedAmountFactorAnalystMethod0003832-0211/20/02111CK8021B20:5120:5111CK8021BParameterResultmg/LBenzene0.1140.001Ethylbenzene0.0020.001Toluene0.0030.001p/m-Xylene0.0030.001o-Xylene<0.001								
Method BlankDate PreparedDate AnalyzedSample AmountDilution FactorAnalyst Method0003832-0211/20/02 20:5111CK8021ParameterParameterResult mg/LRLBenzene0.0140.001Ethylbenzene0.0020.001Toluene0.0030.001p/m-Xylene0.0030.001o-Xylene<0.001	Method BlankDate PreparedDate AnalyzedSample AmountDilution FactorAnalyst Method0003832-0211/20/02111CK8021B20:5120:5111CK8021BParameterResult mg/LRLBenzene0.1140.001Ethylbenzene0.0020.001Toluene0.0030.001p/m-Xylene0.0030.001o-Xylene<0.001								
Method BlankDate PreparedDate AnalyzedSample AmountDilution FactorAnalyst AnalystMethod Method0003832-0211/20/02 20:5111CK8021ParameterResult mg/LRL BenzeneRL 0.001Benzene0.1140.0010.001Ethylbenzene0.0030.001Toluene0.0030.001p/m-Xylene0.0030.001o-Xylene<0.001	Method BlankDate PreparedDate AnalyzedSample AmountDilution FactorAnalyst Method0003832-0211/20/02111CK8021B20:5120:5111CK8021BParameterResult mg/LRLBenzene0.1140.001Ethylbenzene0.0020.001Toluene0.0030.001p/m-Xylene0.0030.001o-Xylene<0.001				80211	B/5030 BTEX	ζ		
0003832-02 11/20/02 20;51 1 1 CK 8021 Parameter Result mg/L RL	0003832-02 11/20/02 20:51 1 1 CK 8021B Parameter Result mg/L RL Benzene 0.114 0.001 Ethylbenzene 0.002 0.001 Toluene 0.039 0.001 p/m-Xylene 0.003 0.001 o-Xylene <0.001	Method		Date				1	
Parameter Result mg/L RL Benzene 0.114 0.001 Ethylbenzene 0.002 0.001 Toluene 0.039 0.001 p/m-Xylene 0.003 0.001 o-Xylene <0.001	Parameter Result mg/L RL Benzene 0.114 0.001 Ethylbenzene 0.002 0.001 Toluene 0.039 0.001 p/m-Xylene 0.003 0.001 o-Xylene <0.001		Blank	Prepared	Analyzed				Method
mg/L mg/L Benzene 0.114 0.001 Ethylbenzene 0.002 0.001 Toluene 0.039 0.001 p/m-Xylene 0.003 0.001 o-Xylene <0.001	rataliteter mg/L RC Benzene 0.114 0.001 Ethylbenzene 0.002 0.001 Toluene 0.039 0.001 p/m-Xylene 0.003 0.001 o-Xylene <0.001		0003832-02	,		1	1	СК	8021B
Benzene 0.114 0.001 Ethylbenzene 0.002 0.001 Toluene 0.039 0.001 p/m-Xylene 0.003 0.001 o-Xylene <0.001	Benzene 0.114 0.001 Ethylbenzene 0.002 0.001 Toluene 0.039 0.001 p/m-Xylene 0.003 0.001 o-Xylene <0.001			Parameter				RL	
Toluene 0.039 0.001 p/m-Xylene 0.003 0.001 o-Xylene <0.001	Toluene 0.039 0.001 p/m-Xylene 0.003 0.001 o-Xylene <0.001			Benzene				0.001	
p/m-Xylene 0.003 0.001 o-Xylene <0.001	p/m-Xylene 0.003 0.001 o-Xylene <0.001			Ethylbenzene		0.002	2	0.001	
o-Xylene <0.001 0.001 Surrogates % Recovered QC Limits (%) aaa-Toluene 193% 80 120	o-Xylene <0.001 0.001 Surrogates % Recovered QC Limits (%) aaa-Toluene 193% 80 120	•							
Surrogates% RecoveredQC Limits (%)aaa-Toluene193%80120	Surrogates% RecoveredQC Limits (%)aaa-Toluene193%80120			·					
aaa-Toluene 193% 80 120	aaa-Toluene 193% 80 120			o-Xylene		<0.00	1	0.001	
							1		
Bromofiliorobenzene 93% 80 120									
·				Bromotiuor	obenzene	93%	. 80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 3 of 7

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

I

DN DNMENTAL 9708			Order#:	G0:	205055	
			Project: Project Nam Location:	F-1 ie: Dul C-I	07 (c Energy Field	Services
0205055-04 0211151610 (MV	V-3)					
Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 11/18/02	8015M Sample <u>Amount</u> 1			Method 8015M
	Parameter				RL	
	GRO, C6-C12	<u> </u>			3.00	
		No. 1	<3.00		3.00	
	TOTAL, C6-C3	5	<3.00		3.00	
	Surrog	ates	% Recovered	QC Li	nits (%)	
	·····		91%	70	130	
	1-Chlorooc	tadecane	87%	70	130	
	_					
			-			Mcthod
0003832-02		11/20/02 21:10	1	1	СК	8021B
	Parameter		mg/L		RL	
1						
•						
L					0.001	
				→		
			% Recovered			
			141%			
	<u>Błauk</u> Method <u>Blank</u> 0003832-02	BlankPreparedParameterGRO, C6-C12DRO, >C12-C32TOTAL, C6-C33Surrog1-Chiorooc	BlankPreparedAnalyzed11/18/02ParameterGRO, C6-C12DRO, >C12-C35TOTAL, C6-C35TOTAL, C6-C35Surrogates1-Chlorooctane1-Chlorooctadecane8021EMethodDateDateBlankPreparedAnalyzed0003832-0211/20/0221:10ParameterBenzeneEthylbenzeneToluenep/m-Xylenc	Method BlaukDate PreparedDate AnalyzedSample Amount 11/18/02ParameterResul mg/L GRO, C6-C12Resul mg/L GRO, >C12-C35Resul anot mg/LGRO, C6-C12<3.00 DRO, >C12-C35<3.00 C10TAL, C6-C35Recovered 1.Chlorooctane1.Chlorooctane91% 1.Chlorooctadecane87%Surrogates% Recovered 1.ChlorooctadecaneSample AnalyzedMethod BlankDate PreparedDate AnalyzedSample Amount 0003832-0211/20/02 21:1011ParameterResult mg/L Benzene0.0017 0.0017Ethylbenzene<0.0017 0.0017p/m-Xylene<0.0010 0.Vylene<0.001 Surrogates% Recovered aaa-Toluene141%	Method Blauk Date Prepared Date Analyzed Sample Amount Dilutio Factor Parameter Result mg/L 1 1 GRO, C6-C12 <3.00	Method BlankDate PreparedDate Analyzed 11/18/02Sample AmountDilution FactorAnalyst Analyst IParameterResult mg/LRL mg/LGRO, C6-C12<3.00

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West 1-20 East, Odessa, TX 79765 Ph: 915-563-1800

•

Page 4 of 7

p.7

1

i.

Nov 26 02 10:39p

ENVIRONMENTAL LAB OF TEXAS	

ANALYTICAL REPORT

JOHN FERGERS IRIDENT ENVIR P.O BOX 7624 MIDLAND, TX 7	ONMENTAL			Order#: Project: Project Nam Location:	F-1	ke Energy Field	Services
Lab ID: Sample ID:	0205055-05 0211151720 (M)	W-6)					
				8015M			
	Method <u>Blank</u>	l Date Date <u>Prepared Analyz</u> 11/18/0		Sample <u>Amount</u> I	Dilutio <u>Factor</u> 1		<u>Method</u> 8015M
		Parameter		Resul		RL	
		GRO, C6-C12		<3.00	, –	3.00	
		DRO, >C12-C35		<3.00		3.00	
		TOTAL, C6-C35	;	<3.00		3.00	
		Surroga	ates	% Recovered	QC Li	nits (%)	
		1-Chlorooc	tane	91%	70	130	
		1-Chlorooct	tadecane	88%	70	130	
			80211	3/5030 BTEX	•		
	Method	Date	Date	Sample	Dilutio		
	<u>Blank</u>	Prepared	<u>Analyzed</u>	Amount	Factor		Method
	0003832-02		1/20/02 21:29	l	1	СК	8021B
		Parameter		Result mg/L		RL	
		Benzene	· · · · · · · · · · · · · · · · · · ·	<0.001	1	0.001	
		Ethylbenzene		<0.001	1	0.001	
		Toluene		<0.001	L	0.001	
		p/m-Xylene		<0.001		0.001	
		o-Xylene		<0.001		0.001	
		Surroga	ites	% Recovered	QC Lin	nits (%)	
		aaa-Toluen		91%	80	120	
		Bromofluoro	benzene	91%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 5 of 7

p.8

Ĩ

I

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

IOHN FERGEF IRIDENT ENV P.O BOX 7624 MIDLAND, TX	IRONMENTAL			Order#: Project: Project Nam Location:	F-l e: Du)205055 107 Ike Energy Field Line	Services
Lab ID: Sample ID:	0205055-06 0211150000 (Duj	plicate)					
•			80711	B/5030 BTEX	,		
	Method	Date	Date	Sample	Dilutie	o n	
	Blank	Prepared	Analyzed	Amount	Facto		Method
	0003832-02	2	11/20/02 21:48	1	1	СК	8021B
		Parameter		Resul mg/L		RL	
		Benzene		0.100		0.001	
		Ethylbenzene		0.002		0.001	
		Toluene		0.036		0.001	
		p/m-Xylene		0.003		0.001	
		o-Xylene		<0.00		0.001	
		Surrog	ates	% Recovered	QC LI	imits (%)	
		aaa-Toluen	e	165%	80	120	
		Bromofluor	obenzene	85%	80	120	
Lab ID:	0205055-07						
Sample ID:	Trip Blank		8021E	8/5030 BTEX			
	Method	Date	Date	Sample	Dilutio	n	
	Blank	Prepared	Analyzed	Amount	Factor		Method
	0003832-02		11/20/02 22:08	1	1	СК	8021B
		Parameter	/ II	Result mg/L		RL	
		Benzene		<0.001	-+	0.001	
		Ethylbenzene		<0.001		0.001	
		Toluene		<0.001		0.001	
		p/m-Xylene		<0.001		0.001	
		o-Xylene		<0.001		0.001	
		Surrog	ites	% Recovered	QC Li	mits (%)	
		Surroga aaa-Toluen		% Recovered 91%	QC Li 80	mits (%) 120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 6 of 7

Nov 26 02 10:40p

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

JOHN FERGERSON TRIDENT ENVIRONMENTAL P.O BOX 7624 MIDLAND, TX 79708	Order#: Project: Project Name: Location:	G0205055 F-107 Duke Energy Field Services C-Line	
	Raland K Celey D. Jeanne M Sandra B	Al: Calan dk Itulio . Tuttle, Lab Director, QA Officer Keene, Org. Tech. Director teMurrey, Inorg. Tech. Director tezugbe, Lab Tech. lina, Lab Tech.	11 - Z (0- D Z Date
DL = Diluted out N/A = Not Applicable RL = Reporting Limit			Page 7 of 7

ENVIRONMENTAL LAB OF TEXAS

JOHN FERGERSON TRIDENT ENVIRONMENTAL P.O BOX 7624 MIDLAND, TX 79708				Order#: Project: Project Name: Location:		G0205055 F-107 Duke Energy Field C-Linc	Services		
Lab ID: Sample ID:	0205055-01 0211151220 (MW-2)								
Cations Parameter		Result	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date <u>Prepared</u>	Date Analyzed	Analysi
Calcium		53.4	mg/L	10	0.10	6010B	11/20/2002	11/20/02	SM
Magnesium		16.7	mg/L	10	0.010	6010B	11/20/2002	11/20/02	SM
Potassium		5.52	mg/L	1	0.050	6010B	11/20/2002	11/20/02	SM
Sodium		52.5	mg/L	10	0.10	6010B	11/20/2002	11/20/02	SM
METALS	RCRA 7 Total			Dilution			Date	Date	
Parameter		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
Arsenic		<0.008	mg/L	I	0.008	3005/6010B	11/19/2002	11/22/02	SM
Barium		0.683	mg/L	1	0.001	3005/6010B	11/19/2002	11/22/02	SM
Cadmium		0.004	mg/L	1	0.001	3005/6010B	11/19/2002	11/22/02	SM
Chromium		0.015	mg/L	1	0.002	3005/6010B	11/19/2002	11/22/02	SM
Lead		<0.011	mg/L	1	0.011	3005/6010B	11/19/2002	11/22/02	SM
Selenium		<0.004	mg/L	1	0.004	3005/6010B	11/19/2002	11/22/02	SM
Silver		<0.002	mg/L	1	0.002	3005/6010B	11/19/2002	11/22/02	SM
Test Paran	neters			Dilution			Date	Date	
Parameter		Result	<u>Units</u>	Factor	<u>RL</u>	Method	<u>Prepared</u>	Analyzed	<u>Analyst</u>
Iron		12.6	mg/L	1	0.002	3005/6010B	11/19/2002	11/21/02	SM
Manganese		0.117	mg/L	ĩ	.001	3005/6010B	11/19/2002	11/21/02	SM
Mercury, Tota	1	0.004	mg/L	1	0.002	7470	11/24/2002	11/24/02	SM

Sample ID: 0211151510 (MW-4)

		Dilution			Date	Date	
Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
211	mg/L	100	1.0	6010B	11/20/2002	11/20/02	SM
80.8	mg/L	10	0.010	6010B	11/20/2002	11/20/02	SM
12.7	mg/L	10	0.50	6010B	11/20/2002	11/20/02	SM
369	mg/L	001	3.0	6010B	11/20/2002	11/20/02	SM
		Dilution			Date	Date	
Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analyst</u>
<0.008	mg/L	I	0.008	3005/6010B	11/19/2002	11/22/02	SM
0.496	mg/L	1	0.001	3005/6010B	11/19/2002	11/22/02	SM
0.002	mg/L	i	0.001	3005/6010B	11/19/2002	11/22/02	SM
<0.002	mg/L	1	0.002	3005/6010B	11/19/2002	11/22/02	SM
< 0.011	mg/L	1	0.011	3005/6010B	11/19/2002	11/22/02	SM
< 0.004	mg/L	I	0.004	3005/6010B	11/19/2002	11/22/02	SM
<0.002	mg/L	I	0.002	3005/6010B	11/19/2002	11/22/02	SM
	211 80.8 12.7 369 <u>Result</u> <0.008 0.496 0.002 <0.002 <0.002 <0.011 <0.004	211 mg/L 80.8 mg/L 12.7 mg/L 369 mg/L Result Units <0.008	211 mg/L 100 80.8 mg/L 10 12.7 mg/L 10 369 mg/L 10 369 mg/L 100 Eastern Dilution Factor <0.008	Result Units Factor RL 211 mg/L 100 1.0 80.8 mg/L 10 0.010 12.7 mg/L 10 0.50 369 mg/L 100 1.0 Dilution Result Units Factor RL <0.008	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Result Units Factor RL Method Prepared 211 mg/L 100 1.0 6010B 11/20/2002 80.8 mg/L 10 0.010 6010B 11/20/2002 12.7 mg/L 10 0.50 6010B 11/20/2002 369 mg/L 100 3.0 6010B 11/20/2002 369 mg/L 100 3.0 6010B 11/20/2002 bilution Dilution Result Dilution Date Prepared <0.008	Result Units Factor RL Method Prepared Analyzed 211 mg/L 100 1.0 6010B 11/20/202 11/20/02 80.8 mg/L 10 0.010 6010B 11/20/2002 11/20/02 12.7 mg/L 10 0.50 6010B 11/20/2002 11/20/02 369 mg/L 100 1.0 6010B 11/20/2002 11/20/02 369 mg/L 100 1.0 6010B 11/20/2002 11/20/02 Dilution Factor RL Method Prepared Analyzed 0.008 mg/L 1 0.008 3005/6010B 11/19/2002 11/22/02 0.496 mg/L 1 0.001 3005/6010B 11/19/2002 11/22/02 0.002 mg/L 1 0.001 3005/6010B 11/19/2002 11/22/02 <0.001

N/A = Not Applicable RL = Reporting Limit

Page 1 of 2

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

JOHN FERGERSON TRIDENT ENVIRONMENTAL P.O BOX 7624 MIDLAND, TX 79708				Order#: Project: Project Name: Location:		G0205055 F-107 Duke Energy Field C-Line			
	0205055-03 0211151510 (MW-4)								
Test Paramet	ers			Dilution			Date	Date	
Parameter		Result	Units	<u>Factor</u>	<u>RL</u>	Method	Prepared	Analyzed	Analyst
lron		0.304	mg/L	1	0.002	3005/6010B	11/19/2002	11/21/02	SM
Manganese		0.144	mg/L	1	.001	3005/6010B	11/19/2002	11/21/02	SM
Mercury, Total		<0.002	mg/L	1	0.002	7470	11/24/2002	H1/24/02	SM
Lab ID: 0)205055-05		. 						
Sample ID: 0)211151728 (MW-6)								
Cations				Dilution			Date	Date	
Parameter		<u>Result</u>	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Calcium		664	mg/L	100	1.0	6010B	11/20/2002	11/20/02	SM
Magnesium		375	mg/L	100	0.10	6010B	11/20/2002	11/20/02	SM
Potassium		31.5	mg/L	10	0.50	6010B	11/20/2002	11/20/02	SM
Sođium		838	mg/L	100	1.0	6010B	11/20/2002	11/20/02	SM
METALS RCI	RA 7 Total			Dilution			Date	Date	
Parameter	<u> </u>	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic		0.011	mg/L	1	0.008	3005/6010B	11/19/2002	11/22/02	SM
Barium		0.407	mg/L	1	0.001	3005/6010B	11/19/2002	11/22/02	SM
Cadmium		0.002	mg/L	1	0.001	3005/6010B	11/19/2002	11/22/02	SM
Chromium		0.005	mg/L	1	0.002	3005/6010B	11/19/2002	11/22/02	SM
Lead		<0.011	mg/L	1	0.011	3005/6010B	11/19/2002	11/22/02	SM
Selenium		<0.004	mg/L	1	0.004	3005/6010B	11/19/2002	11/22/02	SM
Silver		<0.002	mg/L	1	0.002	3005/6010B	11/19/2002	11/22/02	SM
Test Paramete	P F S			Dilution			Date	Date	
Parameter		Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	<u>Prepared</u>	Analyzed	<u>Analyst</u>
Iron		3.49	mg/L	1	0.002	3005/6010B	11/19/2002	11/21/02	SM
Manganese		0.094	mg/L	I	.001	3005/6010B	11/19/2002	11/21/02	SM
Mercury, Total		<0.002	mg/L	1	0.002	7470	11/24/2002	11/24/02	SM

1-26-02 Kalan Approval: Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

N/A = Not Applicable RL = Reporting Limit

Page 2 of 2

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800 ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

JOHN FERGERSON TRIDENT ENVIRONMENTAL P.O BOX 7624 MIDLAND, TX 79708		Order Projec Projec Locati	et: et Name:	G0205055 F-107 Duke Energ C-Line	y Field Services		
Lab ID: 0205055-01 Sample ID: 0211151220 (MW-2)							<u> </u>
Anions Parameter	<u>Result</u>	Units	Dilution <u>Factor</u>		Method	Date Analyzed	Analys
Bicarbonate Alkalinity	162	mg/L	1	2.00	310.1	11/18/02	SB
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	11/18/02	SB
Chloride	44.3	mg/L	1	5.00	9253	11/19/02	SB
Hydroxide Alkalinity	<0.10	mg/L	1	0.10	310.1	11/18/02	SB
SULFATE, 375.4	111	mg/L	2.5	1.25	375.4	11/19/02	SB
<i>Test Parameters</i> Parameter	Result	Units	Dilution <u>Factor</u>		Method	Date Analyzed	Analysi
Total Dissolved Solids (TDS)	428	mg/L	1	5.0	160.1	J 1/18/02	TAL
Lab ID: 0205055-03 Sample ID: 0211151510 (MW-4)							
Anions Parameter	Result	Units	Dilution <u>Factor</u>		Method	Date Analyzed	Analyst
Bicarbonate Alkalinity	282	mg/L	1	2.00	310.1	11/18/02	SB
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	11/18/02	SB
Chloride	904	mg/L	1	5.00	9253	11/19/02	SB
Hydroxide Alkalinity	<0.10	mg/L	1	0.10	310.1	11/18/02	SB
SULFATE, 375.4	348	mg/L	5	2.5	375.4	11/19/02	\$B
Test Parameters			Dilution			Date	
Parameter Total Dissolved Solids (TDS)	<u>Result</u> 2359	<u>Units</u> mg/L	Factor I	<u>RL</u> 5.0	<u>Method</u> 160.1	Analyzed 11/18/02	<u>Analys</u> t TAL
Lab ID: 0205055-05 Sample ID: 0211151720 (MW-6)							
Anions Parameter	Result	Units	Dilution <u>Factor</u>		Method	Date <u>Analyzed</u>	Analyst
Bicarbonate Alkalinity	240	mg/L	I	2.00	310.1	11/18/02	SB
Carbonate Alkalinity	<0.10	mg/L	I	0.10	310.1	11/18/02	SB
Chloride	3010	mg/L	1	5.00	9253	11/19/02	SB
Hydroxide Alkalinity	<0.10	mg/L	1	0.10	310.1	11/18/02	SB
SULFATE, 375.4	1300	mg/L	25	12.5	375.4	11/19/02	SB
Test Parameters	Result	Units	Dilution <u>Factor</u>	RL	Method	Date Analyzed	Analyst
Parameter	Nesult	CING	1 40101	<u></u>	Inversou	1 ACTOR / ADUCE	

RL = Reporting Limit N/A = Not Applicable

I

I

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 V

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

Page 1 of 2

Nov 26 02 10:41p

ANALYTICAL REPORT

JOHN FERGERSON	Order#:	G0205055
TRIDENT ENVIRONMENTAL	Project:	F-107
P.O BOX 7624	Project Name;	Duke Energy Field Services
MIDLAND, TX 79708	Location:	C-Line
	···,·	

alandk JSuls 11-26-02 Approval: Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

RL = Reporting Limit N/A = Not Applicable

QUALITY CONTROL REPORT

· · ---

8015M

Order#: G0205055

BLANK	WATER	LAB-1D #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/L		0003801-02			<3.00		
MS	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
10TAL, C6-C35-mg/L		0205055-01	0	95.2	94.0	98.7%	
MSD	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/L		0205055-01	0	95.2	94.0	98.7%	0.%
SRM	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Rcsult	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/L		0003801-05		100	93.1	93.1%	

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West 1-20 East, Odessa, TX 79765 Ph: 915-563-1800

-

Nov 26 02 10:42p

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

8021B/5030 BTEX

Order#: G0205055

p.16

BLANK WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L	0003832-02		1	<0.001	1	
Ethylbenzene-mg/L	0003832-02			<0.001	1	
Toluçne-mg/L	0003832-02	••••••••••••••••••••••••••••••••••••••		<0.001		
p/m-Xylene-mg/L	0003832-02			<0.001		
o-Xylene-mg/L	0003832-02			<0.001		
CONTROL WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L	0003832-03	······	0.1	0.100	100.%	······································
Ethylbenzene-mg/L	0003832-03		0.1	0.103	103.%	
Toluene-mg/L	0003832-03		0.1	0.102	102.%	
o/m-Xylene-mg/L	0003832-03		0.2	0.219	109.5%	.,
-Xylene-mg/L	0003832-03		0.1	0.105	105.%	
CONTROL DUP WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L	0003832-04		0.1	0.099	99.%	1.%
Ethylbenzene-mg/L	0003832-04		0.1	0.102	102.%	1.%
Foluenc-mg/L	0003832-04		0.1	0.101	101.%	1.%
o/m-Xylene-mg/L	0003832-04		0.2	0.218	109.%	0.5%
-Xylene-mg/L	0003832-04		0.1	0.104	104.%	1.%
SRM WATER	LAB-ID #	Sample Concentr.	Spikc Concentr.	QC Test Resuit	Pct (%) Recovery	RPD
Benzene-mg/L	0003832-05		0.1	0.101	101.%	
Ethylbenzene-mg/L	0003832-05	······	0.1	0.103	103.%	
foluene-mg/L	0003832-05		0.1	0.102	102.%	
/m-Xylene-mg/L	0003832-05	i i i	0.2	0.218	109.%	
-Xylene-mg/L	0003832-05		0.1	0.106	106.%	

QUALITY CONTROL REPORT

Anions

Order#: G0205055

BLANK WATE	R LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Bicarbonate Alkalinity-mg/L	0003794-01	· · · · · · · · · · · · · · · · · · ·		<2.00	<u>}</u>	
Carbonate Alkalinity-mg/L	0003793-01		• • • • • • • • • • • • • • • • • • •	<0.10		
Chloride-mg/L	0003814-01			<5.00		
Hydroxide Alkalinity-mg/L	0003795-01		<u> </u>	<0.10	1	
SULFATE, 375.4-mg/L	0003815-01		[<0.50	1	
DUPLICATE WATE	R LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/L	0205055-01	162	ļ	163		0.6%
Carbonate Alkalinity-mg/L	0205055-01	. 0		<0.10		0.%
Hydroxide Alkalinity-mg/L	0205055-01	0		<0.10		0.%
SULFATE, 375.4-mg/L	0205055-01	111		110		0.9%
MS WATE	LAB-1D #	Sample Concentr,	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L	0205055-01	44.3	100	144	99.7%	
MSD WATE	LAB-ID #	Sample Concentr.	Spik e Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L	0205055-01	44.3	100	142	97.7%	1.4%
SRM WATE	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/L	0003794-04		0.05	0,0496	99.2%	
Carbonate Alkalinity-mg/L	0003793-04		0.05	0.0496	99.2%	
Chloride-mg/L	0003814-04		5000	4960	99.2%	
Hydroxide Alkalinity-mg/L	0003795-04		0.05	0.0496	99.2%	
SULFATE, 375.4-mg/L	0003815-04		50	47.0	94.%	

QUALITY CONTROL REPORT

Cations

Order#: G0205055

BLANK	WATER	LAB-1D #	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Calcium-mg/L		0003826-02			<0.010	ł	
Magnesium-mg/L		0003826-02			<0.001		
Potassium-mg/L	<u> </u>	0003826-02			<0.050		
Sodium-mg/L		0003826-02			<0.010		
DUPLICATE	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Calcium-mg/L		0205023-01	591		590		0.2%
Magnesium-mg/L	······	0205023-01	254		252		0.8%
Potassium-mg/L		0205023-01	88		87.4		0.7%
Sodium-mg/L		0205023-01	3150	N	3120		1.%
SRM	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/L		0003826-05	•	2	2.16	108.%	
Magnesium-mg/L	,	0003826-05		2	2.15	107.5%	
otassium-mg/L		0003826-05		2	1.86	93.%	
Sodium-mg/L		0003826-05		2	1.80	90.%	

QUALITY CONTROL REPORT

METALS RCRA 7 Total

Order#: G0205055

BLANK	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/L		0003850-02			<0.008		
Barium-mg/L		0003850-02			<0.001		
Cadmium-mg/L	·····	0003850-02	· · · · · · · · · · · · · · · · · · ·	j	<0.001		
Chromium-mg/L		0003850-02			<0.002	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Lead-mg/L		0003850-02			<0.011		
Selenium-mg/L		0003850-02	·		<0.004		
Silver-mg/L		0003850-02			<0.002		
CONTROL	WATER	LAB-1D#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/L		0003850-03		0.8	0.800	100.%	
Barium-mg/L		0003850-03		0.2	0.212	106.%	
Cadmium-mg/L		0003850-03		0.2	0.200	100.%	
Chromium-mg/L		0003850-03	·	0.2	0.202	101.%	
.ead-mg/L		0003850-03		1	1.08	108.%	
elenium-mg/L		0003850-03		0.4	0.404	101.%	
Silver-mg/L		0003850-03	<u></u>	0.4	0.386	96.5%	
CONTROL DU	P WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/L		0003850-04		0.8	0.804	100.5%	0.5%
arium-mg/L		0003850-04		0.2	0.210	105.%	0.9%
admium-mg/L		0003850-04		0.2	0.199	99.5%	0.5%
hromium-mg/L		0003850-04		0.2	0.202	101.%	0.%
.ead-mg/L		0003850-04		1	1.09	109.%	0.9%
elenium-mg/L		0003850-04		0.4	0.400	100.%	1.%
ilver-mg/L		0003850-04		0.4	0.384	96.%	0.5%
SRM	WATER	LAB-10 #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Irsenic-mg/L		0003850-05		1	1.04	104.%	
arium-mg/L		0003850-05		I	1.05	105.%	
admium-mg/L		0003850-05		1	1.05	105.%	
hromium-mg/L		0003850-05		1	1.06	106.%	· · · · · · · · · · · · · · · · · · ·
ead-mg/L		0003850-05	······	1	1.01	101.%	
lenium-mg/L		0003850-05		1	1.01	101.%	
ilver-mg/L		0003850-05	· · · · · · · · · · · · · · · · · · ·	0.5	0.508	101.6%	

•

QUALITY CONTROL REPORT

Test Parameters

Order#: G0205055

BLANK WATE	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Iron-mg/L	0003851-01			<0.002	1	
Manganese-mg/L	0003851-01			<.001		· · ·
Mercury, Total-mg/L	0003863-01	۵۰ « ک ور میشوری» در نشوده می رواند کرد.		<0.002		
Fotal Dissolved Solids (TDS)-mg/L	0003819-01			<5.0	++	
CONTROL WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
run-mg/L	0003851-02		0.2	0.208	104.%	<u></u>
Manganese-mg/L	0003851-02		0.2	0.205	102.5%	
Mercury, Total-mg/L	0003863-02		0.015	0.016	106.7%	
CONTROL DUP WATER	LAB-ID #	Sample Concentr.	Spikc Concentr.	QC Test Result	Pct (%) Recovery	RPD
ron-mg/L	0003851-03		0.2	0.210	105.%	1.%
Manganese-mg/L	0003851-03		0.2	0.205	102.5%	0.%
Mercury, Total-mg/L	0003863-03	, <u></u>	0.015	0.016	106.7%	0.%
DUPLICATE WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Total Dissolved Solids (TDS)-mg/L	0205055-01	428		428		0.%
SRM WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
ron-mg/L	0003851-04		1	0.988	98.8%	
Aanganese-mg/L	0003851-04	·	1	0.998	99.8%	
Aercury, Total-mg/L	0003863-04		0.015	0.015	100.%	

1100 W Intertal Lab of Icxas 1400 W Interstate 20 E 24essa Trxas 79763 515-563-1800	<u>ָּס</u>	F-107-021115 Chain of Custody
2400 W Interstate 20 E	Date 11/15/07	12 Page of
	<u> </u>	
200 200 200 200 200 200 200 200 200 200	(1:0) (1:0) (0510)	1×1×1 1 1
огоробо ССОСОСС ССССС СССС ССС ССС ССС	(TX-1004 (EPA 80 (EPA 16 (EPA 16)) (EPA 16 (EPA 16)) (EPA 16 (EPA 16)) (EPA 16) (EPA	8 4 1
entification Matrix Date Time 8 0 E 2 2 E 2	ояд Sat IoinA	77 32
0211151220 (NW-2) 01 Whater 11/15/02 1220 V		9
2-WH/		
(H-ML)		6
(nw-3		7
021115 1720 (ruw-6) 05 Water 11115/02 1720 V		V
Duplicite Princiter		7
Trip. Blank O'I Water V		2
10 mr VORS		
Project Information Sample Receipt Kelinquished By. (1) Rt. (2) Rt. (2	Relinquished By: (Company)	(2) Relinquished By: (3) (Company)
nvironmental		:
crierson	(Printed Name)	(Prirted Name)
	(Signature)	(Signature)
to Records: 21/15/02 (Time) (ISO)	(Date) (Time)	(Date) (Time)
Lab No.: Received By: (1)	Received By: (Company)	(2) Received By: (Company)
rgy rield SIVCS [Phinter Name) /	(Dritted Marrie)	
chy Keene	(Signature)	(Frinceo Name) (Signature)
(Date) (Titme) 11 (SD	(Date) (Time)	(Date) (Time)

ļ

ANALYTICAL REPORT

Prepared for:

ĐALE LITTLEJOHN TRIDENT ENVIRONMENTAL P.O. BOX 7624 MIDLAND, TX 79708

 Project:
 DEFS: C-1-Line

 PO#:
 G0205254

 Report Date:
 12/19/2002

<u>Certificates</u> US EPA Laboratory Code TX00158 12/31/2002 12:09 FAX 3033891957

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

3
S: C-1-Line
r Ranch

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

				Date / Time	Date / Time		
Lab ID:	Sample :	<u>Matrix:</u>		Collected	Received	<u>Container</u>	<u>Preservative</u>
205254-01	Windmill	WATER		12/12/02	12/13/02	See COC	Ice
				14:15	16:11		
<u> </u>	ab Testing:	Rejected:	No	Ten	ap: -3 C		
	8021B/5030 BTEX						
i.	Anions						
.	Cations						
	Total Dissolved Solids	s (TDS)					
v205254-02	MW-1	WATER		12/13/02	12/13/02	See COC	lce
~				8:35	16:11		
<u>La</u>	ub Testing:	Rejected:	No	Tem	ър: -3 C		
	8021B/5030 BTEX						
• .	Anions						
	Cations						
	Total Dissolved Solids	(TDS)					
205254-03	MW-2	WATER		12/13/02 9:35	12/13/02 16:11	See COC	Ice
La	b Testing:	Rejected:	No	y.yy			
	8021B/5030 BTEX						
	Anions						
	Cations						
	Total Dissolved Solids	(TDS)					
0205254-04	MW-3	WATER		12/13/02	12/13/02	See COC	Ice
— 7.	L Tandiu a.	Rejected:	No	10:35 Tom	16:11		
	b Testing:	nejetieu:	110	Tem	р: -3 C		
~ <u>-</u> 2	8021B/5030 BTEX						
-	Anions						
	Cations						
	Total Dissolved Solids	(TDS)					

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

DALE LITTLE TRIDENT ENV P.O. BOX 7624 MIDLAND, TX	IRONMENTAL			Order#: Project: Project Name Location:	F-10 :: DEF	05254 8 'S: C-1-Lint: ar Ranch	
Lab ID:	0205254-01						
Sample ID:	Windmill						
			8021	B/5030 BTEX			
	Method	Date	Date	Sample	Dilution	-	
	Blank	Prepared	Analyzed	Amount	<u>Factor</u>	<u>Analyst</u>	Method
	0004088-02	2	12/15/02 17:05	1	1	СК	8021B
		Parameter		Result mg/L		RL	
		Benzene		<0.001		0.001	
		Toluene		< 0.001		0.001	
		Ethylbenzene		<0.001		0.001	
		p/m-Xylene		<0.001		0.001	
		o-Xylene		<0.001		0.001	
		Surrog	ates	% Recovered	QC Lim	lits (%)	
		aaa-Toluen		83%	80	120	
		Bromofluor	obenzene	91%	80	120	
ab ID: ample ID:	0205254-02 MW-1						
				B/5030 BTEX			
	Method	Date Brongred	Date Analyzed	Sample Amount	Dilution Factor	Analy:t	Method
	<u>Blank</u>	Prepared	<u>Analyzeu</u> 1.2/17/02	<u>Ambun</u> 1	<u>ractor</u>	<u>Analysi</u> CK	8021B
	0004088-02		0:27	-	*		0.477
		Parameter		Result mg/L		RL	
		Benzene		0.003		0.001	
		Toluene		<0.001		0.001	
		Ethylbenzene		<0.001		0.001	
						T	

Surrogates	% Recovered	QC Limits (%		
aaa-Toluene	103%	80	120	
Bromofluorobenzene	105%	80	120	

<0.001

<0.001

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 1 of 3

ENVIRONMENTAL LAB OF TEXAS I, LTD.

p/m-Xylene

o-Xylene

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

0.001

0.001

Î

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

TRIDENT ENVIRG P.O. BOX 7624 MIDLAND, TX 75				Order#: Project: Project Nam Location:	F-1 e: DE	205254 08 FS: C-1-Line 3ar Ranch	
Lab ID;	0205254-03						
Sample ID:	MW-2						
			80211	B/5030 BTEX	•		
	Method	Date	Date	Sample	Dilutic)n	
	Blank	Prepared	Analyzed	Amount	Facto		Method
	0004088-02		12/17/02 0:47	1	1	СК	8021B
		Parameter		Resul mg/L	t	RL	
		Benzene		0.020		0.001	
		Toluene		<0.001		0.001	
		Ethylbenzene		0.002		0.001	
		p/m-Xylene		0.002		0.001	
		o-Xylene		<0.001		0.001	
							
		Surrog	ates	% Recovered	QC Li	mits (%)	
		aaa-Toiuen	ie	103%	80	120	
		Bromofluor	obenzene	103%	80	120	
Lab ID: Sample ID:	0205254-04 MW-3			8/5030 BTEX			
	MW-3 Method	Date Prenared	Date	Sample	Dilutio Factor		Method
	MW-3	Date <u>Prepared</u>			Dilution <u>Factor</u> 1		<u>Method</u> 8021B
	MW-3 Method <u>Blank</u>		Date <u>Analyzed</u> 12/15/02	Sample <u>Amount</u>	Factor 1	<u>Analyst</u>	
	MW-3 Method <u>Blank</u> 0004088-02	Prepared Parameter Benzene	Date <u>Analyzed</u> 12/15/02	Sample <u>Amount</u> 1 Result mg/L <0.001	Factor 1	Analy:1 CK RL 0.001	
	MW-3 Method <u>Blank</u> 0004088-02	Prepared Parameter Benzene Toluene	Date <u>Analyzed</u> 12/15/02	Sample <u>Amount</u> 1 Result mg/L <0.001 <0.001	Factor 1	Analy:1 CK RL 0.001 0.001	
	MW-3 <u>Method</u> <u>Blank</u> 0004088-02	Prepared Parameter Benzene Toluene Ethylbenzene	Date <u>Analyzed</u> 12/15/02	Sample <u>Amount</u> 1 Result mg/L <0.001 <0.001 <0.001	Factor 1	Analy:1 CK RL 0.001 0.001 0.001	
	MW-3 <u>Blank</u> 0004088-02	Prepared Parameter Benzene Toluene Ethylbenzene p/m-Xylene	Date <u>Analyzed</u> 12/15/02	Sample <u>Amount</u> 1 Result mg/L <0.001 <0.001 <0.001 <0.001	Factor 1	Analy:1 CK RL 0.001 0.001 0.001 0.001	
	MW-3 <u>Blank</u> 0004088-02	Prepared Parameter Benzene Toluene Ethylbenzene	Date <u>Analyzed</u> 12/15/02	Sample <u>Amount</u> 1 Result mg/L <0.001 <0.001 <0.001	Factor 1	Analy:1 CK RL 0.001 0.001 0.001	
	MW-3 <u>Blank</u> 0004088-02	Prepared Parameter Benzene Toluene Ethylbenzene p/m-Xylene o-Xylene	Date <u>Analyzed</u> 12/15/02 18:21	Sample Amount 1 Result mg/L <0.001	<u>Factor</u> 1	Analy:1 CK RL 0.001 0.001 0.001 0.001 0.001	
	MW-3 <u>Blank</u> 0004088-02	Prepared Parameter Benzene Toluene Ethylbenzene p/m-Xylene	Date <u>Analyzed</u> 12/15/02 18:21	Sample Amount 1 Result mg/L <0.001	<u>Factor</u> 1	Analy:1 CK RL 0.001 0.001 0.001 0.001	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 2 of 3

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

DALE LITTLEJOHN TRIDENT ENVIRONMENTAL P.O. BOX 7624 MIDLAND, TX 79708

Order#: G0205254 **Project:** Project Name:

Approval:

F-108 DEFS: C-1-Line Location: **U-Bar Ranch**

will 12-20-02 Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tect. Sara Molina, Lab Tech.

Kalandt

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 3 of 3

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800 ENVIRONMENTAL LAB OF TEXAS I, 1.TD.

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

DALE LITTLE TRIDENT ENV P.O. BOX 7624 MIDLAND, TX	IRONMENTAL			Order#: Project: Project N: Location:	ame:	G0205254 F-108 DEFS: C-1-Line U-Bar Ranch			
Lab ID: Sample ID:	0205254-01 Windmill								
Cations				Dilution			Date	Date	
Parameter		Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	<u>Prepared</u>	Analyzed	Analys
Calcium		83.6	mg/L	100	1.0	601013	12/19/2002	12/19/02	SM
Magnesium		18.2	mg/L	10	0.010		12/19/2002	12/19/02	SM
Potassium		8.78	mg/L	1	0.050		12/19/2002	12/19/02	SM
Sodium		52.1	mg/L	10	0.10	6010]}	12/19/2002	12/19/02	SM
Lab ID:	0205254-02								
Sample ID:	MW-1								
Cations				Dilution			Date	Date	
Parameter		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analys
Calcium		61.5	mg/L	10	0.10	601013	12/19/2002	12/19/02	SM
Magnesium		8.00	mg/L	1	0.001	6010B	12/19/2002	12/19/02	SM
Potassium		4.86	mg/L	1	0.050		12/19/2002	12/19/02	SM
Sodium		42.6	mg/L	10	0.10	6010B	12/19/2002	12/19/02	SM
Lab ID: Sample ID:	0205254-03 MW-2					, ,			
Cations				Dilution			Date	Date	
Parameter		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analys
Calcium		72.0	mg/L	10	0.10	6010E	12/19/2002	12/19/02	SM
Magnesium		9,98	mg/L	1	0.001	6010E	12/19/2002	12/19/02	SM
Potassium		4.66	mg/L	I	0.050	6010E	12/19/2002	12/19/02	SM
Sodium		72.9	mg/L	10	0.10	6010E	12/19/2002	12/19/02	SM
Lab ID:	0205254-04								
Sample ID:	MW-3								
Cations				Dilution			Date	Date	
<u>Parameter</u>		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	<u>Analys</u>
Calcium		45.6	mg/L	10	0.10	6010E	12/19/2002	12/19/02	SM
Magnesium		7.61	mg/L	1	0.001	6010B	12/19/2002	12/19/02	SM
Potassium		3.39	mg/L	1	0.050	6010B	12/19/2002	12/19/02	SM
Sodium		48.0	mg/L	10	0.10	6010B	12/19/2002	12/19/02	SM

N/A = Not Applicable RL = Reporting Limit

Page 1 of 2

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX '79765 Ph: 915-563-1800

Date

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

DALE LITTLEJOHN TRIDENT ENVIRONMENTAL P.O. BOX 7624 MIDLAND, TX 79708

Order#: G0205254 Project: F-108 **Project Name:** Location:

DEFS: C-1-Line U-Bar Ranch

12-20-02 Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

DALE LITTLEJOHN TRIDENT ENVIRONMENTAL P.O. BOX 7624 MIDLAND, TX 79708		Order Projec Projec Locati	:t: :t Name:	G0205254 F-108 DEFS: C-1- U-Bar Ranc			
Lab ID: 0205254-01 Sample ID: Windmill							
Anions Parameter	Result	Units	Dilutio Facto		Method	Date Analyzed	Analys
Bicarbonate Alkalinity	206	mg/L		2.00	310.1	12/13/02	SB
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	12/13/02	SB
Chloride	48.7	mg/L	1	5.00	9253	12/14/02	SB
Hydroxide Alkalinity	<0.10	mg/L	1	Q.10	310.1	12/13/02	SB
SULFATE, 375.4	104	mg/L	2	1.0	375.4	12/15/02	\$B
<i>Test Parameters</i> Parameter	Result	Units	Dilutio Factor		Method	Date	A I
Total Dissolved Solids (TDS)	658	mg/L	<u>1</u>	5.0	160.1	<u>Analyzed</u> 12/15/02	<u>Analys</u> SB
Lab ID: 0205254-02							
Sample ID: MW-1							
Anions			Dilutio	n		Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Analyzed	<u>Analys</u>
Bicarbonate Alkalinity	166	mg/L	1	2.00	310.1	12/13/02	SB
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	12/13/02	SB
Chloride	33.7	mg/L	1	5.00	9253	12/14/02	SB
Hydroxide Alkalinity	<0.10	mg/L	1	0.10	310.1	12/13/02	SB
SULFATE, 375.4	87.0	mg/L	2	1.0	375.4	12/15/02	SB
Test Parameters			Dilution	-		Date	
Parameter	<u>Result</u>	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analys</u>
Total Dissolved Solids (TDS)	351	mg/L	1	5.0	160.1	12/15/02	SB
Lab ID: 0205254-03 Sample ID: MW-2				-			
Anions Parameter	<u>Result</u>	Units	Dilution <u>Factor</u>		Method_	Date Analyzed	Analyst
Bicarbonate Alkalinity	168	mg/L	1	2.00	310.1	12/13/02	SB
Carbonate Alkalinity	<0.10	mg/L	1	0.10	310.1	12/13/02	SB
Chloride	48.7	mg/L	- 1	5.00	9253	12/14/02	SB
Hydroxide Alkalinity	<0.10	mg/L	1	0.10	310.1	12/13/02	SB
SULFATE, 375.4	167	mg/L	2.5	1.25	375.4	12/15/02	SB
Test Parameters	D 1 4	T 1 *4_	Dilution		b # 41 1	Date	4
Parameter	<u>Result</u>	<u>Units</u>	Factor		<u>Method</u>	Analyzed	<u>Analys</u>
Total Dissolved Solids (TDS)	535	mg/L	1	5.0	160.1	12/15/02	SB

RL = Reporting Limit N/A = Not Applicable

Page 1 of 2

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX '79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

Anions

Order#: G0205254

BLANK water	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/L	0004068-01			<2.00		····
Carbonate Alkalinity-mg/L	0004070-01			<0.10		
Chloride-mg/L	0004067-01			<5.0		<u> </u>
Hydroxide Alkalinity-mg/L	0004072-01			<0.10		
SULFATE, 375.4-mg/L	0004076-01			<0.50		····
DUPLICATE WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/L	0205254-01	206		205		0.5%
Carbonate Alkalinity-mg/L	0205254-01	0	· · ·	<0.10		0.%
Hydroxide Alkalinity-mg/L	0205254-01	0		<0.10		0.%
SULFATE, 375.4-mg/L	0205254-01	104		103		1.%
MS water	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L	0205235-01	88.6	250	337	99.4%	
MSD WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L	0205235-01	88.6	250	341	101.%	1.2%
SRM WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
licarbonate Alkalinity-mg/L	0004068-04		0.05	0.0496	99.2%	
Carbonate Alkalinity-mg/L	0004070-04		0.05	0.0496	99.2%	
hloride-mg/L	0004067-04		5000	4960	99.2%	
Iydroxide Alkalinity-mg/L	0004072-04		0.05	0.0496	99.2%	
ULFATE, 375.4-mg/L	0004076-04		50	51.0	102.%	

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

Cations

Order#: G0205254

BLANK	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Calcium-mg/L		0004113-02			<0.010	1	
Magnesium-mg/L		0004113-02			<0.001	1	
Potassium-mg/L		0004113-02			<0.050		
Sodium-mg/L		0004113-02	<u></u>		<0.010		
DUPLICATE	WATER	LAB-1D #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/L		0205254-01	83.6		85.4		2.1%
Magnesium-mg/L		0205254-01	18.2		17.8	† †	2.2%
Potassium-mg/L,		0205254-01	8.78		8.71		0.8%
Sodium-mg/L		0205254-01	52.1		51.5		1.2%
SRM	WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/L		0004113-05		2	2.02	101.%	
Magnesium-mg/L	<u></u>	0004113-05		2	2.19	109.5%	
otassium-mg/L		0004113-05		2	1.90	95.%	
Sodium-mg/L		0004113-05		2	1.95	97.5%	

.

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

Test Parameters

Order#: G0205254

BLANK WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Total Dissolved Solids (TDS)-mg/L	0004094-01			<5.0		
DUPLICATE WATER	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Total Dissolved Solids (TDS)-mg/L	0205249-01	649		640		1.4%

P.O. Box 7624	Trident Environmental P.O. Box 7624 Midland, Texas 79708		Ощ	Original Results to: Steave Weathers (DEFS) Fax Copies to: Mike Stewart (Remediacon)	tesults es to: l	to: St Mike S	eave V tewart	Veathe (Reme	rs (DE ediacol	ES)					-105	F-105-12/02	02
KULUELN (915) 682- ENVIRONMENTAL (915) 262-	(915) 682-0008 (915) 262-5216 (Fax)					٥Ļ	John Fergerson (Trident)	gerson	(Tride	int)	eteC	Cha 2/13/62	cha 2/ep	in o	fCu	Chain of Custody	
Lab Name: Environmental Labs	(of Texas)		F							i al luci	Analysis Dounds	+		1496		$\frac{1}{1}$	
•					$\left \right $	-		╞	Ē								-
Odessa, TX 79763 Telephone: (505) 563-1800 Fax: (9	3 Fax: (915) 563-1713	3				<u></u> 11					03' CI'	(UM)					
Samplers (SIGNATURES) たして んせん	Littleyolur		it, C- Com	1 1508 Aqa) 11508 Aqa)	(0228 A93)	(0228 A9	(1.814 Aq	(9001-X	93108 A9	(03108 A9	<mark>'И≊'К'НС</mark> Ь∀ 160.1)	31 (FE, Ba,	sletak				ar of Conta
Samole Identification Matrix		Time					3) HJ			3) O A	6W) 'e	O4, 8 ot.Mei	CLP N				
3	12/12/02	1415						_		a	<u>°</u>	-	1				
11	12/13/02	-0835	<u>د</u> د								>			-			(")
יו שה-ש	• •	0435	ر ج			-					<u>د</u>	<u> </u>					m
3	11	1035	ゆく								<u>}</u>						(r)
			M									<u> </u>					-
1			5								-						┢
L HAE			+								┢						┢
KLOML VOAS			ß								-						
			2								$\left \right $						
-3 50								 									-
Project Information	San	Sample Receipt	Re (1)	Relinquished By. (1) (Company)	ž			Reli (2)	Relinquished By. (2) (Company)	<u>ل</u> ظ				Relinquished By	<u>اھ</u>		ł
DEFS: C-1-Line	Total Containers:	ners:		I rident Environmental	UNILO	nmen	tal	<u>_</u>		_			<u> </u>		_		
Project Location: U-Bar Ranch	COC Seals:		Ľ,	(Printed Name) O ale T. Littlyohun	L'HH			(Prir	(Printed Name)					(Printed Name)			
Project Manager: John Fergerson	Rec'd Good Cond/Cold:	Cond/Cold:	<u>ð-</u>	(ame GS)	1, we	1		(Sig	(Signature)					(Signature)			
Cost Center No.: F-108	Conforms to Records:	Records:	(Date)	2/1	13/02	(Time)	1505	(Date)	â		(Time)			(Date)		(Time)	
Shipping ID No.:	Lab No.:		Re (1)	Received By: ENVILON	NANS	inter-	ENT M	2 8 9 2	Received By: (2) (Company)					Received By: (3) (Company)			
				teu	Z	Bur	2.10	$\overline{\lambda}$									
Special Instructions/Comments: Please sei	Please send invoice direct to client:	irect to clien		the Name	C S	774	()	(Prit	(Printed Name)	~			Ŭ	(Printed Name)			
Duke Energy Field Services, Attention: Steve Weathers	, Attention: S	steve Weath		(Signature)				(Sigi	(Signature)					(Sign ature)			
P. O. Box 5493, Deriver, Colorado 80217	Denver, C	colorado 802	17 (Date	- ' ' (a		(Lime)		1 (Oate)			(Time)		Ī	(Date)		(Time)	