1R- 408

APPROVALS

YEAR(S):

_RE: Conoco Sims#1 maximum report

Price, Wayne

From:	Price.	Wayne
		- ruyno

Sent: Tuesday, March 09, 2004 1:24 PM

To: 'Dan Erskine'; 'Goates, R. Neal'; Price, Wayne; 'gwpope57@aol.com'; Clyde Yancey

Cc: Sheeley, Paul; Johnson, Larry

Subject: RE: Conoco Sims#1 maximum report

OCD hereby approves of the closure work plan. Please send photos when complete.

Please be advised that NMOCD approval of this plan does not relieve (ConocoPhillips) of liability should their operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve (ConocoPhillips) of responsibility for compliance with any other federal, state, or local laws and/or regulations.

-----Original Message----- **From:** Dan Erskine [mailto:DErskine@maximusa.com] **Sent:** Tuesday, March 09, 2004 1:09 PM **To:** Dan Erskine; 'Goates, R. Neal'; 'Price, Wayne'; 'gwpope57@aol.com'; Clyde Yancey **Subject:** RE: Conoco Sims#1 maximum report

Do you want the attachment this time? <<Breakthrough Curves.pdf>>

-----Original Message-----From: Dan Erskine Sent: Tuesday, March 09, 2004 1:07 PM To: 'Goates, R. Neal'; Price, Wayne; gwpope57@aol.com; Clyde Yancey; Dan Erskine Subject: RE: Conoco Sims#1 maximum report

Here are the breakthrough curves. My computer died and I had to regenerate them from scratch.

The critical factor in transport in this part of the world is net infiltration (defined in Vadsat as the water that actually makes it to the groundwater table - i.e., recharge). A lot of people argue that there is no recharge occurring in arid southwestern basins where evaporation far exceeds precipitation. Nevertheless, I chose a conservative infiltration rate of 0.5 inches a year to model (Vadsat won't run with 0 infiltration). There is no impact to groundwater using this value. Out of curiosity, I wanted to see what a value might be that carried chloride to groundwater. The second model used exactly the same parameters as the first, except a value of 5 inches per year net infiltration was substituted. This value basically assumes that every drop of rain that falls makes it to groundwater and is completely unrealistic. This model shows that the impact to groundwater, measured 10 meters downgradient of the source entering groundwater, achieves a maximum concentration of nearly 600 mg/L after about 60 years.

Regards, Dan

-----Original Message-----From: Goates, R. Neal [mailto:Neal.Goates@conocophillips.com] Sent: Monday, March 08, 2004 7:18 AM

3/10/2004

To: Price, Wayne; gwpope57@aol.com; Clyde Yancey (E-mail); Daniel W. Erskine, Ph.D. Cc: Goates, R. Neal Subject: RE: Conoco Sims#1 maximum report

Wayne,

Excavation was done between T samples. The attachment is a hand drawing I found in the file completed by Phillips employee Chris Parks prior to merger of ConocoPhillips. The second excavation was done and depicted by the second subsurface line marking illustrating cross section excavation and readings. That's why the analysis between 2001 and 2002 showed a marked difference in the middle sample area. If I understand correctly all you need now to make a determination is the cl curve. Dan, please provide risk data outputs to Wayne. Thx.

-----Original Message-----From: Price, Wayne [mailto:WPrice@state.nm.us] Sent: Friday, March 05, 2004 10:49 AM To: 'gwpope57@aol.com'; Clyde Yancey (E-mail) Cc: Goates, R. Neal Subject: Conoco Sims#1 maximum report

Dear Greg:

Please verify if excavation activities were done between T samples, Also where was the waste material disposed of. Please send me the CI break thru curves and the input parameters.

Sincerely:

Wayne Price New Mexico Oil Conservation Division 1220 S. Saint Francis Drive Santa Fe, NM 87505 505-476-3487 fax: 505-476-3462 E-mail: WPRICE@state.nm.us

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the MessageLabs Email Security System. << File: DOC.pdf >>

This email has been scanned by the MessageLabs Email Security System. For more information please visit http://www.messagelabs.com/email RE: Conoco Sims#1 maximum report

Price, Wayne

From:	Dan Erskine [DErskine@maximusa.com]							
Sent:	Tuesday, March 09, 2004 1:09 PM							
То:	Dan Erskine; 'Goates, R. Neal'; 'Price, Wayne'; 'gwpope57@aol.com'; Clyde Yancey							
Subject: RE: Conoco Sims#1 maximum report								

Do you want the attachment this time? << Breakthrough Curves.pdf>>

----Original Message-----From: Dan Erskine Sent: Tuesday, March 09, 2004 1:07 PM To: 'Goates, R. Neal'; Price, Wayne; gwpope57@aol.com; Clyde Yancey; Dan Erskine Subject: RE: Conoco Sims#1 maximum report

Here are the breakthrough curves. My computer died and I had to regenerate them from scratch.

The critical factor in transport in this part of the world is net infiltration (defined in Vadsat as the water that actually makes it to the groundwater table - i.e., recharge). A lot of people argue that there is no recharge occurring in arid southwestern basins where evaporation far exceeds precipitation. Nevertheless, I chose a conservative infiltration rate of 0.5 inches a year to model (Vadsat won't run with 0 infiltration). There is no impact to groundwater using this value. Out of curiosity, I wanted to see what a value might be that carried chloride to groundwater. The second model used exactly the same parameters as the first, except a value of 5 inches per year net infiltration was substituted. This value basically assumes that every drop of rain that falls makes it to groundwater and is completely unrealistic. This model shows that the impact to groundwater, measured 10 meters downgradient of the source entering groundwater, achieves a maximum concentration of nearly 600 mg/L after about 60 years.

Regards,

Dan

-----Original Message-----

From: Goates, R. Neal [mailto:Neal.Goates@conocophillips.com] Sent: Monday, March 08, 2004 7:18 AM To: Price, Wayne; gwpope57@aol.com; Clyde Yancey (E-mail); Daniel W. Erskine, Ph.D. Cc: Goates, R. Neal Subject: RE: Conoco Sims#1 maximum report

Wayne,

Excavation was done between T samples. The attachment is a hand drawing I found in the file completed by Phillips employee Chris Parks prior to merger of ConocoPhillips. The second excavation was done and depicted by the second subsurface line marking illustrating cross section excavation and readings. That's why the analysis between 2001 and 2002 showed a marked difference in the middle sample area. If I understand correctly all you need now to make a determination is the cl curve. Dan, please provide risk data outputs to Wayne. Thx.

-----Original Message-----From: Price, Wayne [mailto:WPrice@state.nm.us] Sent: Friday, March 05, 2004 10:49 AM To: 'gwpope57@aol.com'; Clyde Yancey (E-mail) RE: Conoco Sims#1 maximum report

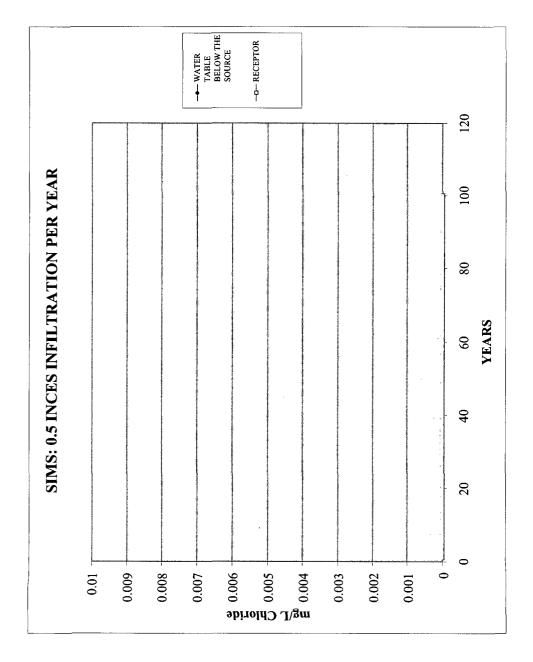
Cc: Goates, R. Neal Subject: Conoco Sims#1 maximum report

Dear Greg:

Please verify if excavation activities were done between T samples, Also where was the waste material disposed of. Please send me the CI break thru curves and the input parameters.

Sincerely:

Wayne Price New Mexico Oil Conservation Division 1220 S. Saint Francis Drive Santa Fe, NM 87505 505-476-3487 fax: 505-476-3462 E-mail: WPRICE@state.nm.us


Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the MessageLabs Email Security System. << File: DOC.pdf >>

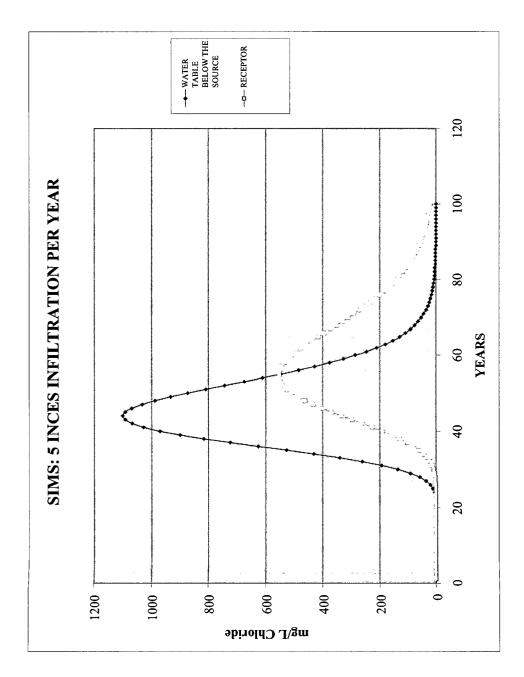
This email has been scanned by the MessageLabs Email Security System. For more information please visit http://www.messagelabs.com/email

VADSAT Version 3.0 VADSAT Version 3.0 A Monte Carlo Model for Assessing the Effects of Soil Contamination on Groundwater Quality Contamination on Groundwater Quality Contamination on Groundwater Quality Tel: T03-552-0685, Fax: 703-951-5307 Blacksburg, Virginia Tel: 703-552-0685, Fax: 703-951-5307 For Tel: 703-552-0685, Fax: 703-951-5307 PROJECT TITLE: SIMMS 1 WITH 0.5 INCHES INFILTRATION PER YEAR PROJECT TITLE: SIMMS 1 WITH 0.5 INCHES INFILTRATION PER YEAR 2) 10 METERS DOWNGRADIENT IN THE DIRECTION OF FLOW SOURCE AND OF RECEPTORS: 1) 56ROUNDWARER TABLE BELOW INPARED AREA 2) 10 METERS DOWNGRADIENT IN THE DIRECTION OF FLOW BEPTHM, MEAN THICKNESS OF WASTE ZONE (m)= 1,00000 ORDER STD.DEV. OF THICKNESS OF WASTE ZONE (m)= 1,00000 STDALW, STD.DEV. OF UW RATIO (= 0,00000 STDALW, STD.DEV. OF UW RATIO (= 0,00000 STDALW, STD.DEV. OF UW RATIO (= 0,00000 CVATHM, MEAN VALUE OF COVER THICKNESS (m) = 0,00000 CVATHM, MEAN VALUE OF COVER THICKNESS (m) = 0,00000 CVATHM, MEAN VALUE OF COVER THICKNESS (m) = 0,00000	HYDROGEOLOGICAL PROPERTIES 	TIME (Years) TIME (Years) WATER TABLE Verse Surgers 2332333333333333333333333333333333333	E E E E E E E E E E E E E E E E E E E
CVRTHS, STD.DEV. OF COVER THICKNESS = 0.00000 MEAN MASS FRACTION OF SALT IN WASTE (mg/kg)=1999.99536 STD OF MASS FRACTION OF SALT IN WASTE= 0.00000 CZEROM, MEAN AQU. PHASE CONC OF SALT (g/m^3) =9422.20020 CZEROS, STD.DEV. OF AQU. PHASE CONC. OF SALT = 0.00000 CZEROS, STD.DEV. OF AQU. PHASE CONC. OF SALT = 0.00000			

3

:

ĩ


RECEPTOR	000	0000	0000		0000		200 - 1	-იი	,∞, <u>7</u> ,∞,	-0405 -0690	22885 12885 12885	5022 5002 5022 5022 5022 5022 5022 5022	04 4 V 006 4 000000000000000000000000000000000	5208 5208 5208 535 807 535 535 535 535 535 535 535 535 535 53	5532740 55327470 55327470	545 536 524	510 493 436 415 415)
WATER TABLE BELOW THE	SOURCE 0 0	0000	0000	0000	0000	000-1	20002 2000	9889 9889	192 192	2260 2526 2526 2526 2526 2526 2526 2526	802 80 80 80 80 80 80 80 80 80 80 80 80 80	1027 1027 1092 1092	1033	933 933 808 808 808	675 609 545 85 85	376 376 828	22000200 22000200 22000200000000000000	129
TIME (Years)	-00	000 900400	~∞00	-004	0078 0078	5579 5779	25 25 25	227 28	3829	NG490	01-800 70000	0+44; 0+06;	4444	900 900	222 227 222 222 222 222 222 222 222 222	28 28 28		CO
	** UNSATURATED ZONE INPUT PARAMETERS ** GAMMAM, MEAN UNSAT ZONE DECAY COEF (1/day)= 0.00000 STDGAM, STD.DEV. OF UNSAT ZONE DECAY COEF = 0.00000	UNFOCM, MEAN UNSAT ZONE ORGANIC CARBON FRACTION (-) = 0.00000 UNFOCS, STD.DEV. OF UNSAT ZONE ORGANIC CARBON FRAC. = 0.00000	FKSW, MEAN SAT. CONDUCTIVITY (m/day)= 0.00500 STDFKS, STD.DEV. OF SAT. CONDUCTIVITY = 0.000	DISTM, MEAN DEPTH TO GROUNDWATER (m)=20.00000 STDDST, STD.DEV. OF DEPTH TO GROUNDWATER= 0.00000	UNPORM, MEAN VADOSE ZONE POROSITY (-) = 0.36000 SUNPOR, STD.DEV. OF VADOSE ZONE POROSITY= 0.00000	PARNM, MEAN VALUE OF VG PARAMETER N (-) = 1.09000 SDPARN, STD.DEV. OF VG PARAMETER N= 0.00000	RESWCM, MEAN RESIDUAL WATER CONTENT (-) = 0.07000 RESWCS, STD.DEV. OF RESIDUAL WATER CONTENT= 0.00000	ALFINM = 0, UNSAT DISPERSIVITY CALCULATED INTERNALLY	** SATURATED ZONE INPUT PARAMETERS **	LAMBW, MEAN SAT. ZONE DECAY COEFF. (1/day) = 0.00000 SLAMB, STD.DEV. OF SAT. ZONE DECAY COEFF.= 0.00000	PORM, MEAN SAT. ZONE POROSITY (-) = 0.30000 STDPOR, STD.DEV. OF SAT. ZONE POROSITY= 0.00000	FOCM, MEAN SAT. ZONE ORG. CARBON FRAC. (-)= 0.00000 STDFOC, STD.DEV. SAT. ZONE ORG. CARBON FRAC:= 0.00000	ALRLTM, MEAN DISPERS, RATIO LONG/TRANSV. (-) = 3.00000 SALRLT, STD.DEV. OF DISP. RATIO LONG/TRANSV. = 0.00000	ALRTVM, MEAN DISPERS. RATIO TRANSV/VERT. (-) =87.00000 SALRTV, STD.DEV. OF DISP. RATIO TRANSV/VERT. = 0.00000	CONDS, SAT. HYDRAULIC COND. (m/day) = 0.86000 SCONDS, STD.DEV. OF SAT HYDRAULIC COND. = 0.00000 CDADS. UVDDALLIC CDADIENT (m/m/s 0.04000	SGRADS, STD.DEV. OF HYDRAULIC GRADIENT = 0.00000	HMEAN, MEAN AQUIFER THICKNESS (m) =21.80000 STDH, STD.DEV. OF AQUIFER THICKNESS = 0.00000 QINM, MEAN INFILTRATION RATE (m/day)= 0.0004 QINSTD, STD.DEV. OF INFILTRATION RATE = 0.00000	
	VADSAT Version 3.0	A Monte Carlo Model for Assessing the Effects of Soil Contamination on Groundwater Quality	Developed by:	Environmental Systems and Technologies Inc. Blacksburg, Virginia Tel: 703-552-0585 Eav: 703-051-5307		For The American Petroleum Institute 1995			PROJECT TITLE: SIMMS 1 WITH 5 INCHES INFILTRATION PER YEAR	LOCATION OF RECEPTORS: 1) GROUNDWARER TABLE BELOW INPATED AREA	2) 10 METERS DOWNGRADIENT IN THE DIRECTION OF FLOW SOURCE AND CHEMICAL DATA	DEPTHM, MEAN THICKNESS OF WASTE ZONE (m)= 1.00000 DEPSTD, STD.DEV. OF THICKNESS OF WASTE ZONE = 0.00000	AREAM, MEAN WASTE ZONE AREA (m^2) =8100.00000 STDA, STD.DEV. OF WASTE ZONE AREA = 0.00000	RLWM, MEAN L/W RATIO (-)= 1.00000 STDRLW, STD.DEV. OF L/W RATIO = 0.00000	CVRTHM, MEAN VALUE OF COVER THICKNESS (m) = 0.00000 CVRTHS, STD.DEV. OF COVER THICKNESS = 0.00000	MEAN MASS FRACTION OF SALT IN WASTE (mg/kg)=1999.99536 STD OF MASS FRACTION OF SALT IN WASTE= 0.00000	CZEROM, MEAN AQU. PHASE CONC OF SALT (g/m^3) =9422.20020 CZEROS, STD.DEV. OF AQU. PHASE CONC. OF SALT = 0.00000 CHEMICAL SPECIES Sodium Chloride	

i

| . .

۶

ļ

I