

REPORTS

DATE:

120 727-24

FINAL

REPORT

RICE OPERATING COMPANY JUNCTION BOX FINAL REPORT

				BOX LOC	ATION					
SWD SYSTEM	JUNCTION	UNIT	SECTION	TOWNSHIP	RANGE	COUNTY	BOX	DIMENSION	S - FEET	٦
				10.0			Length	Width	Depth	٦
EME	State F EOL	м	36	195	36 E	Lea		Moved 60' E	ast	-
LAND TYPE:	BLM	STATE	FEE LA	NDOWNER	DL	D Corp.		<u> </u>		
Depth to Grou	ndwater	none	feet	NMOCD	SITE ASS	ESSMENT	RANKING S	CORE:	0	
Date Started	5/1/2	2003	Date Cor	npleted	5/7/2003		Witness	·····	No	
Soil Excavated	133	cubic yar	ds Exc	avation Le	ngth <u>30</u>	Width	30	Depth	4	feet
Soil Disposed	0	cubic yar	ds Off	site Facility	n	/a	Location		n/a	
FINAL ANAL	TICAL F	ESULTS	: Sample	e Date	5/7/20	03	Sample De	epth	4'bgs	

Procure 5-point composite sample of bottom and 4-point composite sample of sidewalls. TPH, BTEX and Chloride laboratory test results completed by using an approved lab and testing procedures pursuant to NMOCD guidelines.

Sample Location	Benzene mg/kg	Toluene mg/kg	Ethyl Benzene mg/kg	Total Xylenes mg/kg	GRO mg/kg	DRO mg/kg	Chlorides mg/kg
SIDEWALLS	<0.025	<0.025	<0.025	<0.025	21.5	980	603
BOTTOM	<0.025	<0.025	<0.025	<0.025	<10.0	346	354
REMEDIATED	<0.025	<0.025	0.029	0.096	188	2630	496

General Description of Remedial Action:	This box was previously the site of a boot
and is located about 50' east of an abandoned bat	ttery site. When excavation commenced, a
very hard caliche rock layer was encountered that	only allowed excavation to a depth of 4' bgs.
A 30' x 30' area was excavated to 4' bgs where TF	PH concentrations exhibited a significant
decline. A compacted clay barrier was installed a	t the bottom of the excavation to inhibit
vertical migration of impact and the excavated soi	I was then backfilled on top of the clay.
ROC contends that there is no groundwater below	this site due to a soil boring approximately
2,600 ft north of State 'F' conducted by Amerada I	Hess in 1992 during which there was no
indication of groundwater. ROC conducted a soil	bore approximately 2,000 south of State 'F' in
2001 during which there was also no indication of	groundwater where it was previously believed
to be. A new watertight junction box was built 60'	east of this location.

CHLORIDE FIELD TESTS

LOCATION	DEPTH (ft)	ppm
Vertical	2	600
	4	800
15' N	4	250
15' S	4	800
15' E	4	100
15' W	4	1600
bottom comp.	4	680
wall comp	n/a	650
remed. comp.	n/a	680

cc: lab results, photos, absence of groundwater documentation

I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF.

DATE	5/12/2003	PRINTED NAME	Kristin Farris	
SIGNATURE	Kaistin Janio	TITLE	Project Scientist	

RICE Operating Company

122 West Taylor • Hobbs, New Mexico 88240 Phone: (505)393-9174 • Fax: (505) 397-1471

November 5, 2002

Mr. Paul Sheeley New Mexico Energy, Minerals, and Natural Resources Oil Conservation Division 1625 N. French Dr. Hobbs, New Mexico 88240

Re: EME State 'F' EOL Release Site Unit Letter M, Sec. 36, T19S, R36E

Mr. Sheeley:

Per your request, Rice Operating Company (ROC) encloses evidence of soil borings that support ROC's conclusion of the absence of groundwater at the above-referenced release site:

In 1992, Amerada Hess conducted 3 soil borings in section 36 which resulted in one monitoring well. According to a report submitted to the OCD, the two other bores had no significant indications of groundwater. The dry bores were down gradient (southeast) of the monitoring well. The State 'F' release site is located south of the Amerada Hess locations.

In September of 2001, ROC conducted a soil bore at junction C-1-1 in Unit Letter C, Section 1, T20S, R36E. Groundwater was not encountered. The State 'F' release site is located approximately 2,000 feet north of C-1-1.

Based on these activities, ROC concludes that there is no groundwater below the State 'F' location since borings conducted north and south of the location did not result in a groundwater encounter.

In the letter that was sent to you on October 11, 2002 concerning this site, ROC stated that the site was located on state land. Since then, it has been confirmed that the site is not state land but very close to a property line. ROC plans to arrange a survey of the

location to determine correct ownership in the near future. Upon ownership confirmation, ROC plans to initiate leaching according to the procedure outlined in the October letter.

Please contact me with any questions or concerns. Thank you.

RICE OPERATING COMPANY

Knistin Joinie

Kristin Farris Environmental Projects Scientist

Enclosed: ROC bore log, Amerada Hess soil bore report. Cc: CDH, file

similar product. Drums 20 and 23 were found to contain virgin Scale Preventive which can be either water or solvent based, but contains highly flammable components. Drum 19 is believed to contain virgin Breaxit which is an organic acid. The contents of Drums 13 and 21 could not be classified, based on the information available.

D. Subsurface Investigation

Drilling and monitor well installation during this investigation was conducted by Eades Water Well Drilling & Pump Service of Hobbs, New Mexico. On December 9, 1992, three soil borings were advanced using rotary air drilling techniques. Drill cuttings and returns were monitored continuously while drilling. Soil samples were collected for examination approximately every 10 feet.

The lithology was determined based primarily on visual observation, drilling characteristics, and the examination of returns. Selected soil samples were placed in zip-lock plastic bags, sealed and screened for hydrocarbon vapor concentrations with an Hnu photo-ionization detector (PID). No volatile compounds were detected during drilling operations, and no soil samples were retained for laboratory analysis. Drilling and sampling equipment was decontaminated after each soil boring to eliminate the potential for cross-contamination.

The locations for the three soil borings were selected based on the apparent regional groundwater gradient. Regional groundwater flow was anticipated to be southeasterly based on topography, regional stratigraphy, and local sources knowledgeable in subsurface conditions. Since the precise boundary of the pit was unknown, borings were located outside the suspected boundary of the pit to avoid disturbing possible buried materials, or penetrating any

() (22)

1. A. A. A.

impermeable strata beneath the pit which could create a vertical migration pathway. Therefore, one boring (MW-1) was positioned in a upgradient position at the northwest corner spoils area, while the other two borings (B-2 and B-3) were positioned in a relative downgradient position.

One of the soil borings, soil boring B-1, was converted to monitor well MW-1. Monitor well MW-1 was completed 60 feet below the surface, using 4-inch diameter flush joint schedule 40 PVC well material. A 15 foot screened interval was set from 45 to 60 feet below the surface using 0.020-inch slotted well screen with 45 feet of solid riser to the surface. The well was completed in an upright fashion within a four foot square concrete pad. The Monitor Well Construction Diagram is provided in Appendix 4.

The relative elevations between the borings were surveyed using a level. The top of the concrete pad was given the arbitrary elevation of 100 feet above sea level, and the two other borings elevations were measured in relation to it. The relative ground elevation at soil boring B-2 was 97.67 feet, and 99.60 feet at B-3.

TABLE 2Relative Elevations of MW-1, B-2, B-3

MW-1	100.00 ft
B-2	97.67 ft
B-3	99.60 ft

A cross-section constructed from the boring logs appears on the next page. Since there was only a minor relative difference in surface elevations between the borings no corrections were made. The cross-section does not reveal any significant correlation between the borings. There is no correlation of waterbearing zones between MW-1 and B-2, and B-3. Boring B-3 exhibited the greater sand content but it did not correlate to either of the other borings.

Monitor Well MW-1 / Soil Boring B-1

Soil boring B-1 was drilled to 60 feet below the surface. Caliche was encountered from approximately 1 to 20 feet below the surface. Red silty clay was encountered from approximately 20 to 60 feet below the surface. The returns were dry from 0 to 50 feet. An increase in sand content was observed in samples collected from 50 to 60 feet. Also, a water-bearing zone was encountered at approximately 50 feet below the surface as indicated by muddy returns. To confirm the presence of a viable water-bearing zone, drilling and air circulation were halted, the drill string was raised approximately 10 feet off-bottom, and the hole was left static to allow for possible groundwater infiltration. After approximately 10 minutes, the hole was reamed and air circulation was begun which resulted in watery returns confirming the presence of a water-bearing zone. The boring was advanced to 60 feet below the surface and the same procedure was performed to allow for water infiltration. Again, the watery returns indicated that the water-bearing zone was viable for completion of a monitoring well. Sand pack and bentonite were used to set well screen and casing, and the concrete grout was set around the cased portion of the well the following day.

Soil Boring B-2

Soil boring B-2 was drilled to a depth of 120 feet below the surface. In general, caliche was encountered from 1 to 20 feet below the surface and red to reddish brown silty clay was encountered from 20 to 120 feet. The formation became increasingly dense and darker in color from 90 to 120 feet below the surface. Drilling and air circulation was halted at two different intervals to determine if water-bearing zones were present in B-2.

Dry returns were observed from 0 to 80 feet below the surface, but increased moisture and stiff muddy returns at 80 feet indicated the presence of a possible water-bearing zone. Circulation was halted, the drill string was raised off bottom, and the hole was left static for 30 minutes. Returns after 30 minutes consisted of stiff mud clumps, but no significant indication of a waterbearing zone were observed. The hole was advanced to 87 feet and circulation was again halted, the drill string raised and the hole left static. Again, no significant indications of a water-bearing zone were observed. The hole was advanced to a total depth of 120 feet below the surface with relatively dry returns and no water-bearing zones encountered.

Soil boring B-2 was allowed to stand open overnight. On the morning of December 10, 1992, a hand bailer was lowered into the bore hole, but only minor amounts of muddy water were present in the bore hole. There was no significant accumulation of water and approximately the lower 30 feet of the borehole had collapsed. The hole was subsequently grouted to the surface.

Soil Boring B-3

Soil boring B-3 was drilled to a depth of 80 feet below the surface. In general, caliche was encountered from 1 to 20 feet below the surface and red

to reddish brown silty clay was encountered from 20 to 80 feet. The formation became increasingly silty and sandy in the interval from 50 to 80 feet below the surface. Dry returns were observed from 0 to the total depth of 80 feet below the surface when drilling was halted. No moisture or muddy returns were observed, and no significant indications of a water-bearing zone were observed. Soil boring B-3 was left to stand open overnight. A hand bailer was lowered into the bore hole on the morning of December 10, 1992, and only minor amounts of mud and silt were present on the bailer and in the bore hole. The hole was subsequently grouted to the surface.

E. Analytical Results

On December 10, 1991, monitor well MW-1 was purged using a submersible (Grundfos) pump and allowed to recharge in preparation for sampling. The well was producing approximately 2-3 gallons per minute without a significant reduction in the water level. Approximately 200 gallons of groundwater were purged into a trailer-mounted steel tank by Eades Drilling. Static water level was measured prior to purging with an electronic water level indicator at 37.0 feet from the top of casing (34.0 feet below the surface). Subsequent water level measurements were within 1/10 of a foot.

Groundwater samples were obtained using a teflon bailer lowered into the well with a clean (virgin) nylon rope. Groundwater samples were placed in clean, laboratory-supplied containers, stored on ice, and transported to Analytical Laboratories Inc. in Albuquerque, New Mexico within twenty-four hours of the sampling event. A summary of analytical results appear in Table 3. The analytical report is included as Appendix 5.

PARAMETER	LABORATORY RESULT	FIELD RESULT
Total Organic Carbon	6.9 mg/l	-
Carbonate (CaCO ₃)	<1 mg/l	
Bicarbonate (CaCO ₃)	477 mg/l	
Hydroxide (CaCO ₃)	<1 mg/l	
Total Alkalinity (as CaCO ₃)	477 mg/l	
Chloride (EPA 325.2)	460 mg/l	
Conductivity (uMhos/cm)	2790	3200
Fluoride (EPA 353.2)	1.6 mg/l	
Nitrate (EPA 353.2)	25.4 mg/l	-
Sulfate (EPA 375.2)	280 mg/l	
pH (EPA 150.1)	7.3 units	6.9
Total Dissolved Solids (160.1)	2000 mg/l	2200 mg/l

TABLE 3MW-1 Groundwater Sample Results

- 12.00

III. CONCLUSIONS AND RECOMMENDATIONS

Of the materials that were observed, the pit was found to contain varying quantities of oil field waste materials which are nonhazardous.

Based on observations made at the site the investigation and subsequent laboratory results, there does not appear to be a significant threat to groundwater resulting from the surface and near surface debris. The water-bearing zone encountered in MW-1 was not encountered in either soil boring B-1 or B-2 which indicates lateral migration beneath the site in a water-bearing zone is unlikely. Furthermore, vertical migration appears unlikely based on the apparent impermeable nature of the "red-bed" clay strata which lie beneath the area.

Although, a water-bearing zone was encountered in MW-1, groundwater monitoring wells were not installed at soil boring B-2 and B-3 because field observations indicated that a well would not produce sufficient recharge to adequately sustain sampling, monitoring, or accurately reflect groundwater conditions. As a result, a groundwater gradient map cannot be made. Laboratory results of groundwater sampled from MW-1 do not indicate unusual groundwater conditions, and there were no significant hydrocarbon vapors detected in any of the three soil borings which would indicate the presence of volatile hydrocarbon-based materials.

It is recommended, however, that Amerada Hess remove the waste materials for proper disposal and cap the area with native soils. The presence of the pit creates an attractive nuisance and encourages continued dumping of waste materials. Eventually, hazardous materials could be deposited in the pit which would require more costly clean-up in the future and expose Amerada Hess to potential liability as owner of the property.

DRILL	ING LOG	Site Name/Location					Loggeti by: DEA
RICE Oper	arting Company	Jct. Box C-1-1	Wat No. N/A	Date Drilled: 9/18/0	н	Driller: Adkins	Canstruction:
122 V	Vest Taylor	1-T20S-R36E	Wet Dopth: N/A	Boring Depth: 23		Well Materiat N/A	Plugged boring
Hobbs, Ner	w Mexico 88240	EME	Casing Longth: N/A	Boring Diameter:	2.5"	Casing Size; N/A	w/ 20' bentonite,
Phone: (5	505) 393-9174	SWD System	Screen Langen: N/A	Drilling Method: Air	Rotary	Siot Size: N/A	water & backfill
Fax: (50	05) 397-1471	Lea County, NM		TEST			
DEPTH	SUBSU	RFACE LITHOLOGY	SAMPLE TYPE	(ppm)	R	EMARKS	Boring
0	Ground surface			CL			
1	Sand		Grab				. 1
2							
3							
4	Dave a samely called	•		104			
	Dry sandy Calici	ite		124			
7							
8	Drv caliche roct	c					
9							
10	Dry caliche san	d		142			
11							- -
12							
13	Dry caliche roch	< c					
. 14				00	Į		
16				33			
17							
18	Dry caliche						
19]						
20				159			
21							
22							
23	Hard limestone			131			ř.
24	1			1	1		:
25	Dry caliche san	d					
27	City Gallone Sall	-					
28	1						
29	Dry caliche san	đ		80			5. 5.

.

C-1-1 a soil boring on this site completed 9/18/01, demonstrate a dramatic disp in TPH from 1620 ppme15 to 352 ppm it 30' a lob Muficiation of the 30' sample was 272 ppm, all DRo. There are no wetter wello white 3/4 mile of this site. There wells to the south wart and se are @ = 26 bgs. Area an no wells in the section to the north of this sits. The sie bring did not encenter any general water to 50'. Bene on the results of the sail bring no que is present at this site and there is no threat to the fublic health or the enveronment. The junction Pox site will be excavated to 3' bgs. And as competer clay line will be unstilled to frement Compressioning of compactic soit. a spill front box is installed and the pinction + Values to contain any discharger.

Barrier to Ventucal transmissibility, The "string ded pocket of the canceining plume, is alaphatic" (long chain) fraction w/ us BTEX signicent

EME State 'F' EOL

Before Excavation

4' Deep Excavation with New Junction Box in Background

Clay Barrier

Backfilled

ANALYTICAL REPORT

Prepared for:

Kristin Farris Rice Operating 122 W. Taylor Hobbs, NM 88240

Project:EMEPO#:G0306439

Report Date: 05/10/2003

<u>Certificates</u> US EPA Laboratory Code TX00158

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ENVIRONMENTAL LAB OF TEXAS

SAMPLE WORK LIST

Rice Operating 122 W. Taylor Hobbs, NM 88240 505-397-1471 Order#:G0306439Project:Project Name:EMELocation:State 'F' Amerada

p.2

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

				Date / Time	Date / Time		
Lab ID:	Sample :	<u>Matrix:</u>		Collected	Received	<u>Container</u>	Preservative
0306439-01	Wall Comp.	SOIL		5/7/03	5/7/03	4 oz Glass	Ice
				13:00	17:00		
<u>L</u> (ib Testing:	Rejected:	No	Tei	mp: 5.5 C		
	8015M						
	8021B/5030 BTEX						
	Chloride						
0306439-02	Bottom Comp @4'	SOIL		5/7/03	5/7/03	4 oz Glass	Ice
				13:00	17:00		
<u>La</u>	<u>ub Testing:</u>	Rejected:	No	Tei	mp: 5.5 C		· · ·
	8015M						
	8021B/5030 BTEX				·		
	Chloride						
0306439-03	Backfill Comp	SOIL		5/7/03	5/7/03	4 oz Glass	Ice
				13:00	17:00		
<u>La</u>	<u>ıb Testing:</u>	Rejected:	No	Ter	np: 5.5 C		
	8015M						
	8021B/5030 BTEX						
	Chloride						
	•						

May 12 03 11:34a

ĩ

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

Kristin Farris Rice Operating 122 W. Taylor Hobbs, NM 88240				Order#: Project: Project Name Location:	G0: : EM Sta	306439 E te 'F' Amerada	
Lab 1D; Sample ID;	0306439-01 Wall Comp.						
				8015M			
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 5/7/03	Sample <u>Amount</u>	Dilutio <u>Facto</u>	n <u>r Analyst</u>	Method
			5///05	I	L	WL	8015M
		Parameter		Result mg/kg		RL	
		GRO, C6-C12		21.5		10.0	
		DRO, >C12-C35		980		10.0	
		TOTAL, C6-C35		1,002		10.0	
		Surroga	tes	% Recovered	QC Li	mits (%)	
		1-Chlorooct	ane	124%	70	130	
		1-Chiorooct	adecane	112%		130	
			8021B	8/5030 BTEX			
	Method	Date	Date	Sample	Dilutio	n Annivet	Mothod
	<u>Blank</u>	rrepared	Abaryzeg 5/0/03	Amount	<u>Facto</u>	CK	8021D
	0005477-02		11:38	4	43	U.N.	00210
		Parameter		Result mg/kg		RL	
		Benzene		<0.025		0.025	
		Toluene		<0.025		0.025	
		Ethylbenzene		<0.025		0.025	
	(p/m-Xylene		<0.025		0.025	
		o-Xylene		<0.025		0.025	
	·						
		Surroga	tcs	% Recovered	QC Li	mits (%)	
		aaa-Toluene		87%	80	120	
•		Bromofluoro	benzene	106%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ANALYTICAL REPORT

Rice Operating 122 W. Taylor Hobbs, NM 88240	i			Project: Project Name: Location:	EME State	E • 'F' Amerada	
Lab ID:	0306439-02						
Sample ID;	Bottom Comp @4	4'					
		~ .	D (8015M			
	Method Blank	Date Prepared	Date Analyzed	Sample Amount	Dilution Factor	Analyst	Method
	Digiti	<u></u>	5/7/03	1	1	WL	8015M
		Parameter		Result		RL	
		GPO C6 C12		mg/kg		10.0	
		DRO > C12 - C35	······································	346		10.0	
		TOTAL, C6-C35		346		10.0	
		Surroga	ites	% Recovered	QC Lin	nits (%)	
		1-Chlorooc	ane	118%	70	130	
		1-Chiorooci	adecane	110%	70	130	
			8021E	8/5030 BTEX			
	Method	Date Prepared	Date Analyzed	Sample	Dilution Factor	Analyst	Method
	0005477-02		5/9/03 12:00	1	25	СК	8021B
		Parameter		Result mg/kg		RL	
		Benzene		<0.025		0.025	
		Toluene		<0.025		0.025	
		Ethylbenzene		<0.025		0.025	
		p/m-Xylene		<0.025	:	0.025	
		o-Aylene	- <u></u>	<0.025	······································	0.025	
		Surroga	ites	% Recovered	QC Lin	iits (%)	
		aaa-Toluen	e	86%	80	120	
		Bromofluor	obenzene	107%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

May 12 03 11:34a

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

Kristin Farris Rice Operating 122 W. Taylor Hobbs, NM 88240)			Order#: Project: Project Name Location:	G030 e: EME State	6439 'F' Amerada		
Lab ID: Sample ID:	0306439-03 Backfill Comp							
-	-			8015M				
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 5/7/03	Sample <u>Amount</u> 1	Dilution <u>Factor</u> 5	<u>Analyst</u> WL	<u>Method</u> 8015M	
	:	Parameter		Result mg/kg	t	RL		
		GRO, C6-C12		188		50.0		
	i	DRO, >C12-C35		2630		50.0		
		101AL, Co-C35		2818		30.0		
		Surroga	tes	% Recovered	OC Limi	ts (%)		
		1-Chloroocta	ine	23%	70	130		
		1-Chloroocta	adecane	42%	70	130		
			8021B	/5030 BTEX				
	Method	Date	Date	Sample	Dilution	A malavat	Mathad	
	<u>Biank</u> 0005477-02	TTEPALEU	5/9/03 10:32	1	25	CK	8021B	
		Parameter		Result mg/kg	t	RL		
		Benzene		<0.025	5	0.025		
		Toluene	······································	<0.025	5	0.025		
		p/m-Xvlene		0.029	i	0.025		
		o-Xylene		<0.025	5	0.025		
		Surroga	tes	% Recovered	QC Limi	ts (%)		
		aaa-Toluene		97%	80	120		
		Bromotiuoro	benzene	104%	80	120		
				Appr Ralan Celey Jeann Sandr Sara 1	oval: d K. Tuttle, D. Keene, te McMurre ta Biczugbe Molina, Lab	Lab Director, Org. Tech. Dir y, Inorg. Tech. , Lab Tech.	QA Officer ector Director	5-12-03 Date

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

May 12 03 11:35a

ENVIRONMENTAL LAB OF TEXAS

şe

ANALYTICAL REPORT

Kristin Farris Rice Operating 122 W. Taylor Hobbs, NM 88	240		Order# Project Project Locatio	#: () t: t Name: 1 on: 5	50306439 EME itate 'F' Am	erada		
Lab ID:	0306439-01							
Sample ID:	Wall Comp.							
Test Paran Parameter	neters	Result	Units	Dilution Factor	RL	Method	Date Analyzed	Analyst
Chloride		603	mg/kg	1	20	9253	5/8/03	SB
Lab ID:	0306439-02	· · · · · · · · · · · · · · · · · · ·						
Sample ID:	Bottom Comp @4'							
<i>Test Paran</i> Parameter	neters	Result	Units	Dilution Factor	RL	Method	Date Analyzed	Analyst
Chloride		354	mg/kg	I	20	9253	5/8/03	SB
Lab ID:	0306439-03		·					
Sample ID:	Backfill Comp							
<i>Test Paran</i> Parameter	neters	Result	Units	Dilution Factor	RL	Method	Date Analyzed	Analyst
Chloride		496	mg/kg	1	20	9253	5/8/03	SB

Approval: Kaland K July Raland K. Tuttle, Lab Director, QA Officer 5-12-03 Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

RL = Reporting Limit N/A = Not Applicable

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West 1-20 East, Odessa, TX 79765 Ph: 915-563-1800

p.6

ENVIRONMENTAL LAB OF TEXAS

QUALITY CONTROL REPORT

8015M

Order#: G0306439

BLANK SOIL		LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0005469-02			<10.0	1	
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0306436-01	0	952	872	92.%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	<u></u>	0306436-01	0	952	841	88.%	3.6%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0005469-05		1000	915	91.5%	

ENVIRONMENTAL LAB OF TEXAS I, LTD.

May 12 03 11:35a

ENVIRONMENTAL LAB OF TEXAS

QUALITY CONTROL REPORT

8021B/5030 BTEX

Order#: G0306439

BLANK	SOIL	LAB-1D #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0005477-02			<0.025		
Toluene-mg/kg		0005477-02			<0.025		
Ethylbenzene-mg/kg		0005477-02			<0.025		
p/m-Xylene-mg/kg		0005477-02			<0.025		
o-Xylene-mg/kg		0005477-02			<0.025		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0306428-12	0	0.1	0.102	102.%	·····
Toluene-mg/kg		0306428-12	0	0.1	0.101	101.%	
Ethylbenzene-mg/kg		0306428-12	0	0.1	0.098	98.%	
p/m-Xylene-mg/kg		0306428-12	0	0.2	0.204	102.%	
o-Xylene-mg/kg	i	0306428-12	0	0.1	0.096	96.%	
MSD	SOIL	LAB-ID #	Sample Concentr,	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0306428-12	0	0.1	0.090	90.%	12.5%
Toluene-mg/kg		0306428-12	0	0.1	0.089	89.%	12.6%
Ethylbenzene-mg/kg		0306428-12	0	0.1	0.088	88.%	10.8%
p/m-Xylene-mg/kg		0306428-12	0	0.2	0.184	92.%	10.3%
o-Xylene-mg/kg	······································	0306428-12	0	0.1	0.086	86.%	11.%
SRM	SOIL	LAB-1D #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0005477-05		0.1	0.101	101.%	
Toluene-mg/kg	<u> </u>	0005477-05		0.1	0.099	99.%	
Ethylbenzene-mg/kg		0005477-05		0.1	0.094	94.%	
p/m-Xylene-mg/kg		0005477-05		0.2	0.194	97.%	
o-Xylene-mg/kg		0005477-05		0.1	0.091	91.%	

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ENVIRONMENTAL LAB OF TEXAS

QUALITY CONTROL REPORT

Test Parameters

Order#: G0306439

BLANK SOIL		LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0005463-01			<20.0		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr,	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0306431-01	142	500	638	99.2%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0306431-01	142	500	656	102.8%	2.8%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0005463-04		5000	4960	99.2%	······································

6 F AL

CASE NARRATIVE ENVIRONMENTAL LAB OF TEXAS

Prepared for:

Rice Operating 122 W. Taylor Hobbs, NM 88240 Order#: G0306439

Project: EME

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
Wall Comp.	0306439-01	SOIL	05/07/2003	05/07/2003
Bottom Comp @4'	0306439-02	SOIL	05/07/2003	05/07/2003
Backfill Comp	0306439-03	SOIL	05/07/2003	05/07/2003

Surrogate recoveries on 8015M TPH are outside of control limits due to dilution (G0306439-03).

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

Raland K. Just Environmental Lab of Texas I, Ltd Date: 5-12-03 Approved By:

۵۰	↓ •	• •																					P•11
Relinquished by: Date Time Stop	Relinquisped by: Date Time	Special Miscrocology tax to Rive						A + 0 S () A B & C O C	In dependence in the second se	100- 10- Hand 10- 10- 10- 10- 10- 10- 10- 10- 10- 10-	OllWallcone.	OCOURS (Induse only) FIELD CODE				Sampler Signature:	Telephone No:	City/State/Zip: Hobbs, NM 6821	Company Address: 122 W Taylor	Company Name Kill	Project Manager: Kristin Farris	12600 West I-20 East Odessa, Texas 79763 Fax: 915-563-1713	Environmental Lab of Texas I
Received by EL	Received by:							29.7.63	2000	50-1-23	50703	Date Sampled						01					0
or Cly	5							1.00	1100	000	130° 1	Time Sampled					Fax No:						
X	/							\geq	- -		-	No. of Containers		-				-					
6								 <u> </u>	7	X	X												
£			<u> </u>					 	+	_		HNO3	- 2	ĺ									
								 				NaOH	eser										
								 	+			H _z SO4	Valiv										
			-					 	+			None	1ª								ĺ		
$\overline{C \wedge 1}$	\sim											Other (Specify)	1										
<u>2</u>	<u>ر</u> م											Water								1		-	
lite / O	2 a		-					 				Sludge	Mat									СНА	
	N:							 <u> </u>		5	\mathbf{X}	Soli	×	1							פ	IN O	
1 7	2	ļ					-	 	+			TPH: 418.1 8015M 1005 1008	<u> </u>	┝┑	Т	٦			Proj	P	ojeć.	FC	
2. n	and							 _ <u> `</u>	ť	2	A	Cations (Ca, Mg, Na, K)		$\left \right $				סי	ect	roje	t Na	JST	
<u> </u>		La da	2			-			. 5	$\overline{\mathbf{x}}$	$\overline{\mathbf{\nabla}}$	Anions (CI.) SO4, CO3, HCO3)		1				0 <u>†</u> ‡	000		me:	γας	
	•	eroq iadu iadu	-						Í			SAR / ESP / CEC		Ā	C P	1						REC	
• . •		ratur	»									Metals: As Ag Ba Cd Cr Pb Hg Se		\square	_						IT	OR	
		e Up Cor	·					 		_		Volatiles							1		B	AN	
	· · · · · ·	on F on F						 	-		~	Semivolatiles		+					5	1	5	ID A	
		ntaci nts:						 $-\uparrow$	┶┼╍	<u>×</u>	즈	RCI									1	NAL	
		<u>P</u>	?		-			 	╧			N,O.R.M.							\vdash	-		YSIS	
		\sim										Total Gamma							`(REC	
•	, J		<u>}</u>																D.	1		QUE	
			.					 	_						_				R /			ST	
	(╼╼┼	+	 	╉			RUSH TAT (Pre-Schedule)				_			12	[
	1	· .				-+		 				Standard TAT	1					1	R		1		
			<u> </u>	۱ <u></u>	L			 		1	!		1					1	12	1	•		

May 12 03 11:36a

1 1

!