1R- 421

REPORTS

DATE:

2005

Phase II ESA Site Investigation Report and Supplemental Site Investigation Work Plan

Mattie Price Tank Battery

Lea County, New Mexico

Prepared for:

Osborn Heirs Company 1250 NE Loop 410 Suite 1100 San Antonio, TX 78209

March 2005

Prepared by:

Kane Environmental Engineering, Inc. 5307 Oakdale Creek Court Spring, Texas 77379 Project No. 04-631

TABLE OF CONTENTS

SEC	ΓIONS	
1.0	SITE HISTORY	•]
2.0	FIELD INVESTIGATION AND LABORATORY ANALYSES	
3.0	QUALITY CONTROL	.(
4.0	SUMMARY AND SUPPLEMENTAL SITE INVESTIGATION WORK PLAN	
5.0	EMERGENCY CONTACT INFORMATION	

APPENDICES

A FIGURE 1 LUCATION MAI	\mathbf{A}	Figure	1 Location	Man
-------------------------	--------------	--------	------------	-----

- B Figure 2 USGS Topographic Map, Mattie Price Tank Battery
- C Figure 3 R.E. Environmental Services, Inc. Sample Locations and Analyses Results

i

- D Figure 4 Soil Boring Plot
- E Site Investigation Soil Boring Log December 2004
- F Field Headspace Analysis by PID
- G Total Petroleum Hydrocarbon and BTEX Analyses for Soil Samples
- H Chain of Custody
- I Laboratory Reports
- J Site Health and Safety Plan

1.0 SITE HISTORY

At the request of Osborn Heirs Company, Kane Environmental Engineering, Inc. (Kane Environmental) conducted a Phase I Environmental Site Assessment (ESA) of the Mattie Price Tank Battery on August 26, 2004. This site assessment was conducted to evaluate the potential impact from historical oil and gas operations at this site. The property is identified as being located in Section 6, T17S R38E, Lea County, New Mexico, at a global position of North 32° 52' 3.4", West 103° 10' 45.8". A location map is included as **Appendix A** and a topographic map of the location is shown as **Appendix B** in the Appendices.

Previous Phase I and Phase II Environmental Site Assessments, performed by Larson & Associates, Inc., identified visual and olfactory evidence of hydrocarbon impacted soils, with this impact identified from the surface to depths of up to three feet (the point of auger refusal). Impacts were reported in these assessments at the following locations:

- near the free water knockout
- at an area reported as a pit
- near the west end of the tank battery
- near the flare
- around the produced water injection points

No soil samples were submitted for laboratory analyses during the aforementioned Phase II ESA. The depth to groundwater in the vicinity of the tank battery was reported to range between 80 and 100 feet below ground surface.

A second investigation was conducted by R.E. Environmental Services, Inc. This investigation consisted of four soil borings placed around the tank battery. Hydrocarbon impacted soils were reported at depths up to 14 feet, with a maximum reported concentration of 25,900 ppm TPH at a depth of 7.5' at Test Point A. All chloride concentrations from the four borings were reported below 250 ppm. See **Appendix C** in the Appendices for a depiction of these soil boring placements and sampling results.

Five surface soil samples were also collected during this ESA in the vicinity of the tank battery and associated well locations. Chloride concentrations were generally reported at a concentration of 100 ppm, with a maximum of 300 ppm measured at Test Point D. This Test Point is located adjacent to the onsite injection well.

During the Kane Environmental ESA a windmill was identified approximately 954 ft. south-southeast from the tank battery. This windmill is reported in the R.E. Environmental Services, Inc. ESA to have a total well depth of 80 feet. The R.E. Environmental Services, Inc. ESA also reports that groundwater is found at a depth of 62 feet.

The windmill supplies water for a steel cattle watering stock tank. Overflow from the stock tank collects in an earthen overflow pond, located immediately to the south. This overflow pond is located 1,030 feet south-southwest of the tank battery.

General drainage in this area is to the south-southeast. A ridge, or increase in elevation, occurs between the tank battery and the windmill/stock tank/overflow pond area, isolating the battery from these surface water impoundments along their northern exposure. The elevated county road completes the isolation of the surface water along the east side. See **Appendix B** for a depiction of the topographic features in this area.

The New Mexico Oil Conservation Guidelines for Remediation of Leaks, Spills and Releases utilize a site ranking protocol for determining the remediation requirements for hydrocarbonimpacted soil. Based on this guidance and available hydrogeologic information, this site is ranked as follows:

Criterion	Measured Value	Ranking Score
Depth to groundwater	50-99 ft	10
Distance to surface water	See Note 1	0
Distance to wellhead protection area	See Note 2	0
-	Total Ranking Score	10

Note 1: The overflow pond is located 1,030' from the tank battery. In addition, a ridge provides a natural barrier between the tank battery and the overflow pond, precluding surface drainage from migrating from the tank battery area to the pond.

Note 2: The windmill is not located in a wellhead protection area.

The site sensitivity ranking for Mattie Price Tank Battery is rated at 10. This ranking score yields the following remediation thresholds:

Constituent	Remediation Threshold	_
Total Petroleum Hydrocarbons	1,000 ppm	
Benzene	10 ppm	
BTEX	50 ppm	

Based on the findings of the Phase I site assessment, a Phase II Site Investigation was conducted. This Phase II Site Investigation Report has been prepared as documentation of site investigation activities at the Mattie Price tank battery.

2.0 FIELD INVESTIGATION AND LABORATORY ANALYSES

Site investigation activities were conducted on December 14 and 15, 2004. Investigation activities were conducted using a mobile rotary drilling rig equipped with hollow-core augers and continuous coring equipment. Under Kane Environmental supervision, Groundwater Monitoring, Inc. of Grand Prairie, Texas performed 16 borings designed to horizontally and vertically delineate potential impact around the tanks and equipment at the Mattie Price tank battery.

Field Investigation Protocols

Initial boring locations were placed to confirm or refute hydrocarbon impact reported around Test Points A (MPB-1) & B (MPB-2) during previous site investigations. Additional borings were performed northwest of AST #1 (MPB-3) and south of AST #2 (MPB-4) to provide delineation of potential hydrocarbon impact. Borings, labeled MPB-5 through MPB-16 were performed to provide full additional delineation of hydrocarbon impacted areas as well as delineation around potential hydrocarbon source equipment. Boring locations are depicted in **Appendix D.**

Soil logs were prepared during boring operations (**Appendix E**) and field headspace readings (**Appendix F**) were collected on each 2.5' sample interval using a photo-ionization detector (PID). Sample collection and headspace readings were conducted according to the procedures outlined in NMOCD's Guidelines for Remediation of Leaks, Spills and Releases. A threshold value of 100 ppm was used to estimate compliance with these BTEX standards and to guide placement of additional borings.

For boring samples with field headspace readings in excess of 100 ppm (MPB-1, MPB-5, MPB-7, MPB-10 and MPB-12), additional borings were placed outward from the initial location in the four cardinal directions wherever possible, based on access limitations caused by surface equipment, piping, electrical lines and lease boundaries. Additional borings to the west and the south of boring MPB-12 were not performed due to physical access constrains, surface and underground piping, and the presence of electrical lines and equipment. For boring MPB-5, additional borings to the east and south were not performed due to the proximity to the east lease boundary and similar access constrains to the south.

The sample interval for each boring demonstrating a maximum field headspace reading and the terminal depth sample interval were submitted to OilLab, Inc. in Midland Texas under a Chain of Custody transport for the analysis of the following constituents:

- TPH-GRO
- TPH-DRO
- BTEX

Significant differences in hydrocarbon impact character (light end vs. heavy end) were encountered at some locations. Subjective cues (color, odor and apparent degree of hydrocarbon saturation) as well as field headspace readings were used to select the sample interval with the expected maximum heavy end impact levels for laboratory analyses from these soil samples.

Soils encountered during boring ranged from sandy loam surface soils (0-2.5',) to silty clay subsurface (2.5-5.0+' generally), overlying hard to very hard but friable caliche to depths of up to 20 feet. In most locations, boring speed (an indicator of material hardness) was slowest in the 10-15' depth range. Materials encountered were generally moist to wet, but not saturated, in the 12.5-20.0' depth range.

Laboratory Analysis

The site maximum benzene and total BTEX concentrations measured in sample borings was encountered in MPB-1 5.0-7.5' (0.175 mg/kg benzene) and MPB-9 7.5-10.0' (15.0106 mg/kg BTEX) are below the OCD regulatory thresholds of 10 mg/kg for benzene and 50 mg/kg for BTEX.

Soil borings from the areas of AST #3 and #4 have measured TPH concentrations in excess of the 1,000 mg/kg OCD threshold. These soil borings are identified as:

MPB-1	MPB-9
MPB-5	MPB-10
MPB-7	MPB-12

A site maximum concentration of 2,740 mg/kg TPH was identified in boring MPB-5 7.5-10.0'.

Soils sample analysis demonstrated that the following borings measured TPH concentrations below the 1,000 mg/kg OCD TPH threshold:

MPB-2	MPB-13
MPB-4	MPB-15
MPB-8	MPB-16
MPB-11	

These borings demonstrate and serve to delineate the boundary of the area of hydrocarbon impact to the north, south and the east. Complete horizontal delineation of the hydrocarbon contaminated area was not achievable to the West due physical access constraints and safety restrictions on working the drilling rig in the area of electrical and process equipment.

In locations where total hydrocarbon levels measured by laboratory analysis exceeded the OCD regulatory threshold, field headspace readings in the surface and near surface materials were

such lower than the maximum levels for each boring, indicating surface leaks were not the source for these elevated hydrocarbons. Field personnel reported that a former pit may have been located in the vicinity of the borings showing elevated hydrocarbons. This pit was reportedly used by a previous operator for disposal of tank bottoms generated during the removal and replacement of ASTs that were located where ASTs #3 and #4 are currently located. The pattern of hydrocarbon distribution with depth supports this report.

Laboratory analyses are summarized in **Appendix G**, with Chain of Custody documentation and complete analytical reports found in **Appendix H and I**, respectively.

3.0 **QUALITY CONTROL**

All sample collection equipment was decontaminated between intervals by washing with soap and water followed by a clean-water rinse.

All soil samples to be submitted for laboratory analysis were immediately packed on ice for shipment to the laboratory under a Chain of Custody transport. EPA approved pre-cleaned and certified containers were used for sample collection.

The PID used for headspace an analysis was calibrated to assume a benzene response factor prior to arrival on location.

Laboratory quality control measures used to insure the precision and accuracy of the data included:

- matrix spike analyses to demonstrate the effectiveness of the extraction procedures.
- known standard sample analyses and quality control spike analyses to demonstrate the accuracy of the equipment used for laboratory analyses.
- method blank analyses to demonstrate the purity of reagents used.

All analytical quality control measures were measured within acceptable limits.

All laboratory analyses were completed within required sample holding times, using EPA or OCD approved analytical methods.

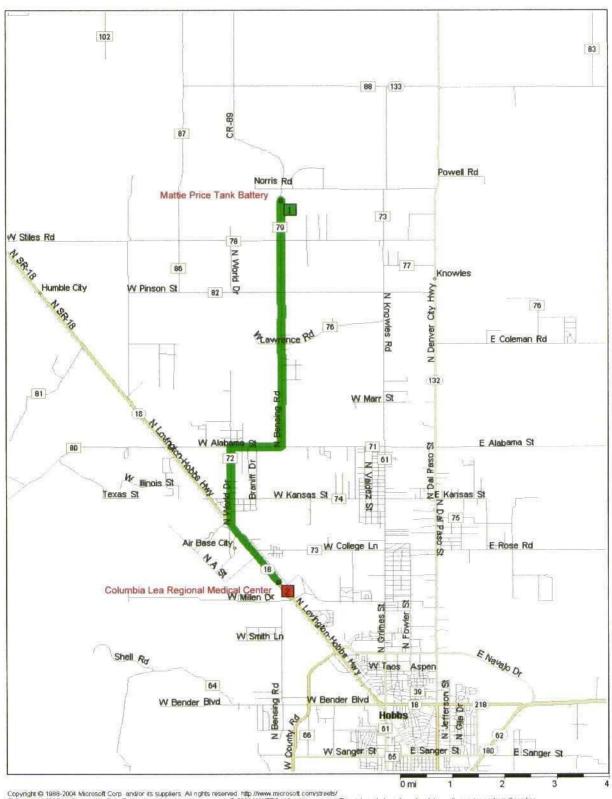
4.0 SUMMARY AND SUPPLEMENTAL SITE INVESTIGATION WORK PLAN

Based on analyses performed to-date, total hydrocarbon impact in excess of established OCD thresholds is present in certain subsurface soils at the Mattie Price Tank Battery. The most significant impact is found to be focused around and to the west of ASTs #3 and #4.

Vertical delineation was not achieved in boring locations MPB 1, 9, and 10 during the initial investigation. Soil boring was terminated when field headspace readings were measured <100 ppm as per the Site Investigation Plan previously approved by the OCD. Although the field headspace readings in the soil borings met this threshold, the measured values reported in the laboratory analysis demonstrates that the TPH in these areas are in excess of OCD regulatory thresholds.

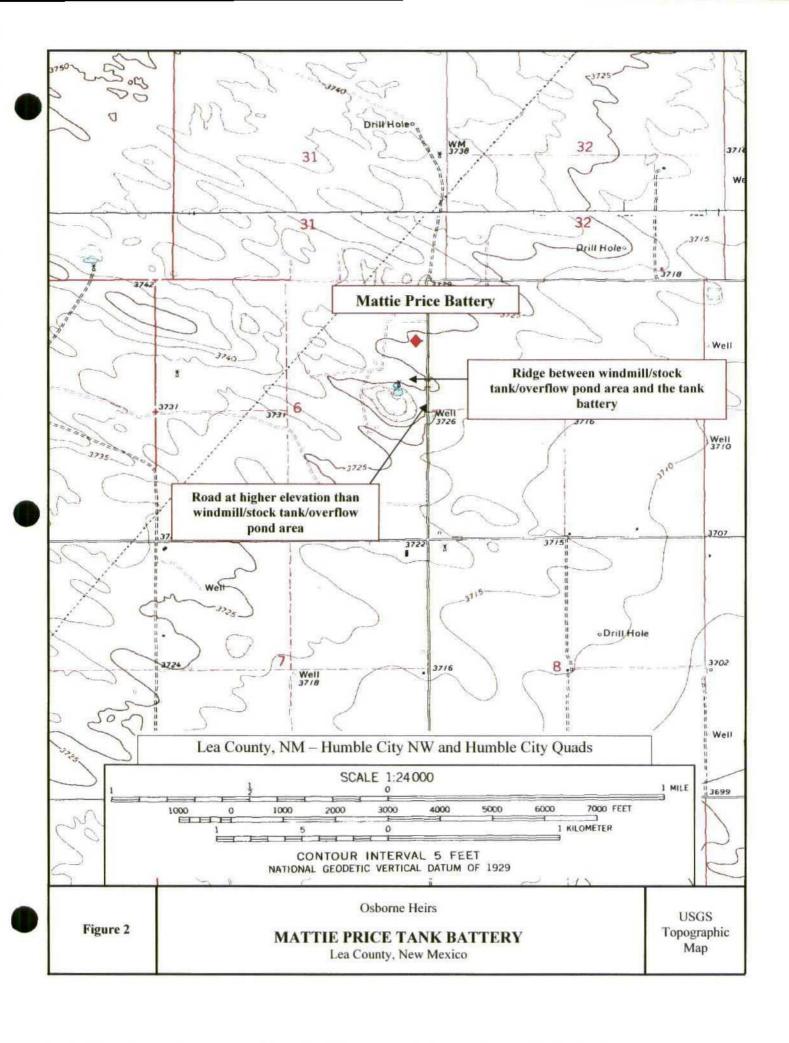
Kane proposes resampling in these locations, with sample collection initiating at the terminal depth of the original coring, and continuing until field headspace readings are below 50 ppm. Samples will be collected in maximum intervals of 2.5°. All samples will be analyzed for TPH to complete vertical delineation at this site. BTEX analyses is not planned for investigation, as all soil samples from the initial investigation had measured values of these constituents below BTEX regulatory thresholds.

This additional sampling plan will be executed upon approval of the OCD. A minimum of 48 hours notice will be given to OCD personnel prior to initiation of on-site activities.


Following completion of analysis, an amended Remediation Work Plan will be submitted to the OCD for review and approval.

D. Penning to	3/21/05
Kane Environmental Engineering, Inc.	Date
debpennington@earthlink.net Angle Mangle Ma	3/23/05
Osborn Heirs Joy Swayze ENVIRONMENTALY Sofety MgR.	Date

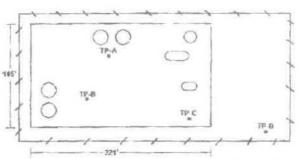
5.0 EMERGENCY CONTACT INFORMATION


Emergency Contacts	Phone number	email
One Call	1-800-321-2537	jtobin28@qwest.net
Osborn Heirs	210- 826-0700	joys@osbornheirs.com
Shawn Hokanson, Kane Environmental	1-979-229-8253	hokanson@cox.net
Deb Pennington, Kane Environmental	1-432-689-8675	debpennington@earthlink.net
Emergency Contacts	I	Phone number
New Mexico State Police	(505) 392-5588
Lea County Sheriffs Office	(505) 393-2515
Weather and Road Conditions	(800) 432-4269
Hobbs Police Department	(505) 397-9265
Hobbs Fire Department	(505) 397-9308	
Hobbs Ambulance	(505) 397-9308	
Columbia Lea Regional Medical Center	5419 N Lovii	ngton Highway Hobbs, NM
		505-392-6581

See Appendix J for a Site Health and Safety Plan

Copyright © 1988-2004 Microsoft Corp. and/or its suppliers. All rights reserved. http://www.microsoft.com/streets/
© Copyright 2003 by Geographic Data Technology. Inc. All rights reserved. © 2004 NAVTEQ. All rights reserved. This data includes information taken with permission from Canadian authorities. © Her Majesty the Queen in Right of Canada.

	Osborn Heirs	
Figure 1	Mattie Price Tank Battery Lea County, New Mexico	Location Map



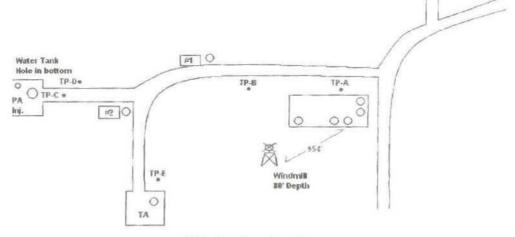
Mattie Price Tank Battery

West Garrett Devonian Pool NE ¼ NE ¼

Sec-6 TS-17-S R-38E

Lea Co. New Mexico

Hydrocarbon & Chloride Test Results

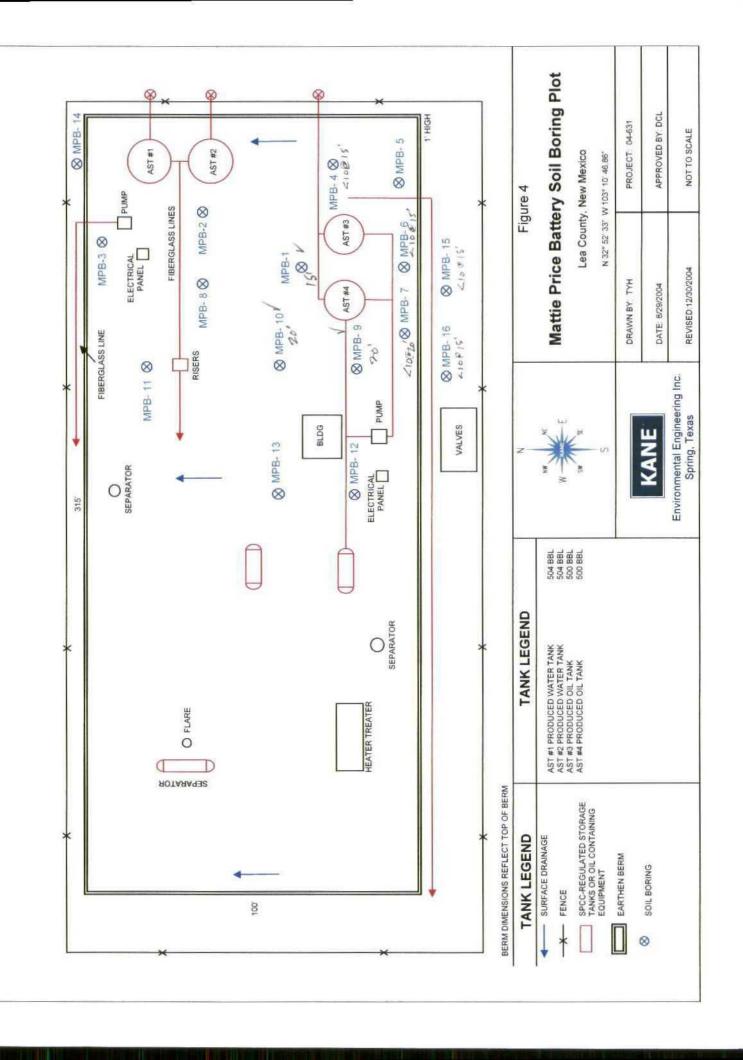

 Test Point
 Results

 A
 16,860ppm @ 6'
 25,900ppm @ 7 ½'
 2,160ppm @ 10'
 516ppm @ 14'

 B
 3,130ppm @ 6'
 460ppm @ 6'
 516ppm @ 14'

 C
 460ppm @ 6'
 460ppm @ 4'

 Chlorides
 <250ppm</td>
 250ppm



Chloride Test Results

Test Point	Results
Α.	100ppm @ Surface
B.	100ppm @ Surface
C.	100ppm @ Surface
D.	300ppm @ Surface
E.	150ppm @ Surface

Environmental Engineering Inc. Spring Texas Figure 3
Excerpted from:
R.E. Environmental Services, Inc.
Sample Locations and Analyses Results

Site Investigation Soil Boring Logs - December 2004

#	Grayish brown stiff, sticky silty clay with caliche, hydrocarbon odor Tan soft friable caliche, hydrocarbon odor, moist Tan soft friable caliche, hydrocarbon odor, wet at 12.0' Tan hard to very hard friable caliche, dry, decreasing hydrocarbon odor Black sandy loam with caliche, hydrocarbon odor Black stiff, sticky silty clay with caliche, hydrocarbon odor Gray to light gray hard to very hard friable caliche with decreasing hydrocarbon odor Tan hard to very hard friable caliche
Depth Interval, ft 0-2.5' 2.5-7.5' 7.5-15.0' 0-2.5' 2.5-7.5'	2.5-7.5' 7.5-10.0' 10.0-12.5' 12.5-15.0' 0-2.5' 2.5-5.0' 5.0-10.0' 10.0-15.0'

Site Investigation Soil Boring Logs - December 2004, continued

Boring Location MPB-8 MPB-9 MPB-10	Depth Interval, ft 0-2.5' 2.5-5.0' 5.0-10.0' 10.0-15.0' 0-2.5' 2.5-5.0' 5.0-15.0' 15.0-20.0' 0-2.5' 2.5-5.0' 2.5-5.0' 5.0-10.0' 5.0-10.0'	Tan sandy loam with caliche Brown stiff silty clay with caliche Tan hard to very hard friable caliche with decreasing hydrocarbon odor Reddish tan hard to very hard friable caliche, saturated at 11', dry at 12.5' Black sandy loam with caliche, hydrocarbon staining 2.0-2.5' Black stiff, sticky silty clay with caliche, hydrocarbon staining 2.5-3.5' Tan hard to very hard friable caliche with decreasing hydrocarbon odor Tan hard to very hard friable caliche with decreasing hydrocarbon odor Black sandy loam with caliche, hydrocarbon staining 2.0-2.5' Black stiff, sticky silty clay with caliche, hydrocarbon saturated 3.0-4.0' Tan hard to very hard friable caliche, hydrocarbon odor Tan hard to very hard friable caliche, hydrocarbon odor
MPB-11	0-2.5° 2.5-5.0° 5.0-12.5°	Tan sandy loam with caliche, faint hydrocarbon odor Tan hard to very hard friable caliche
MPB-12	0-2.5' 2.5-5.0' 5.0-10.0' 10.0-15.0'	Tan sandy loam with caliche, dark brown hydrocarbon staining from 1.5-2.5' Brown stiff, stick silty clay with caliche, hydrocarbon odor Tan hard to very hard friable caliche with light end hydrocarbon odor Tan hard to very hard friable caliche with light end hydrocarbon odor
MPB-13	0-2.5' 2.5-5.0' 5.0-15.0'	Reddish brown sandy loam with caliche, dark gray hydrocarbon staining from 1.5-2.5' Gray stiff, stick silty clay with caliche, hydrocarbon odor Tan hard to very hard friable caliche with faint, decreasing light end hydrocarbon odor
MPB-14	0-2.5' 2.5-5.0' 5.0-12.5'	Tan sandy loam with caliche Brown stiff silty clay with caliche Light gray hard to very hard friable caliche

Site Investigation Soil Boring Logs - December 2004, continued

BoringDepthSoil DescriptionLocationInterval, ft	0-2.5' Dark brown sandy loam with caliche	MPB-15 2.5-10.0' Brown stiff silty clay with caliche	10.0-15.0' Tan to reddish brown hard to very hard friable caliche	0-2.5' Dark brown sandy loam with caliche	MPB-16 2.5-5.0' Brown stiff silty clay with caliche	5.0-15.0' Tan to reddish brown hard to very hard friable caliche
Boring Depth Ocation Interval,	0-2.5	2.5-10.0	10.0-15.0	0-2.5	2.5-5.0	5.0-15.0
Boring Location		MPB-15			MPB-16	

Field Headspace Analysis by PID.

Boring Location	Sample Depth Interval, ft	Field Headspace Reading, ppm	Boring Location	Sample Depth Interval, ft	Field Headspace Reading, ppm
MPB-1	0-2.5	60	MPB-8	0-2.5	0.0
MPB-1	2.5-5.0'	160	MPB-8	2.5-5.0'	1.0
MPB-1	5.0-7.5'	172	MPB-8	5.0-7.5	1.1
MPB-1	7.5-10.0'	142	MPB-8	7.5-10.0'	37.5
MPB-1	10.0-12.5	88	MPB-8	10.0-12.5	2.3
MPB-1	12.5-15.0'	28	MPB-8	12.5-15.0'	1.0
MPB-2	0-2.5'	2.1	MPB-9	0-2.5	98
MPB-2	2.5-5.0'	1.1	MPB-9	2.5-5.0'	102
MPB-2	5.0-7.5'	0.0	MPB-9	5.0-7.5'	179
MPB-2	7.5-10.0'	0.0	MPB-9	7.5-10.0	289
MPB-2	10.0-12.5	0.0	MPB-9	10.0-12.5	255
MPB-2	12.5-15.0'	0.0	MPB-9	12.5-15.0'	232
MPB-3	0-2.5'	57	MPB-9	15.0-17.5	1.8
MPB-3	2.5-5.0'	38	MPB-9	17.5-20.0'	1.1
MPB-3	5.0-7.5'	8.0	MPB-10	0-2.5	289
MPB-3	7.5-10.0'	2.2	MPB-10	2.5-5.0'	435
MPB-3	10.0-12.5	4.5	MPB-10	5.0-7.5'	547
MPB-3	12.5-15.0'	1.1	MPB-10	7.5-10.0'	408
MPB-4	0-2.5'	1.8	MPB-10	10.0-12.5	400
MPB-4	2.5-5.0'	1.1	MPB-10	12.5-15.0'	289
MPB-4	5.0-7.5'	0.0	MPB-10	15.0-17.5'	214
MPB-4	7.5-10.0'	1.1	MPB-10	17.5-20.0	87.0
MPB-4	10.0-12.5	1.3	MPB-11	0-2.5'	8.0
MPB-4	12.5-15.0'	2.0	MPB-11	2.5-5.0'	3.4
MPB-5	0-2.5	55.2	MPB-11	5.0-7.5'	12.4
MPB-5	2.5-5.0'	92.5	MPB-11	7.5-10.0'	2.2
MPB-5	5.0-7.5'	96.7	MPB-11	10.0-12.5	1.0
MPB-5	7.5-10.0'	227	MPB-12	0-2.5	22
MPB-5	10.0-12.5	23.0	MPB-12	2.5-5.0'	35
MPB-5	12.5-15.0'	15.2	MPB-12	5.0-7.5'	85
MPB-6	0-2.5'	1.1	MPB-12	7.5-10.0'	78
MPB-6	2.5-5.0'	1.0	MPB-12	10.0-12.5	81
MPB-6	5.0-7.5	28.6	MPB-12	12.5-15.0'	76
MPB-6	7.5-10.0'	2.4	MPB-13	0-2.5'	50

Field Headspace Analysis by PID.

Boring Location	Sample Depth Interval, ft	Field Headspace Reading, ppm	Boring Location	Sample Depth Interval, ft	Field Headspace Reading, ppm
MPB-6	10.0-12.5	1.0	MPB-13	2.5-5.0'	5.7
MPB-6	12.5-15.0'	0.0	MPB-13	5.0-7.5	2.5
MPB-7	0-2.5'	89	MPB-13	7.5-10.0	1.5
MPB-7	2.5-5.0'	70	MPB-13	10.0-12.5	0.0
MPB-7	5.0-7.5'	225	MPB-13	12.5-15.0'	0.0
MPB-7	7.5-10.0'	327	MPB-14	0-2.5	1.2
MPB-7	10.0-12.5	105	MPB-14	2.5-5.0'	0.0
MPB-7	12.5-15.0'	57	MPB-14	5.0-7.5	0.0
MPB-7	15.0-17.5	1.1	MPB-14	7.5-10.0	0.0
MPB-7	17.5-20.0'	1.1	MPB-14	10.0-12.5	0.0
MPB-15	0-2.5'	0.0	MPB-16	0-2.5	0.0
MPB-15	2.5-5.0'	0.0	MPB-16	2.5-5.0'	0.0
MPB-15	5.0-7.5'	0.0	MPB-16	5.0-7.5'	0.0
MPB-15	7.5-10.0'	0.0	MPB-16	7.5-10.0	0.0
MPB-15	10.0-12.5	0.0	MPB-16	10.0-12.5	0.0
MPB-15	12.5-15.0'	0.0	MPB-16	12.5-15.0'	0.0

Total Petroleum Hydrocarbon and Benzene, Toluene, Ethylbenzene, and Xylenes Analyses for Soil Samples.

Sample ID	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX	TPH GRO	TPH-DRO	Total Hydrocarbon	
			N	Mg/kg					_
MPB-1 5.0-7.5'	0.1750	1.4200	0.4570	2.1510	4.2030	527	828	1360	Ì
MPB-1 12.5-15.0'	<0.025	0.1060	0.1540	1.1770	1.4370	311	812	1120	1
MPB-2 0.0-2.5'	<0.025	0.0248	0.0169	0.0661	0.1078	13.6	26.5	40.1	
MPB-2 12.5-15.0°	<0.025	<0.025	<0.025	<0.025	<0.025	<10	<10	<10	
MPB-3 0.0-2.5'	<0.025	0.0111	0.0268	0.1214	0.1593	260	4360	4620	
MPB-3 12.5-15.0°	<0.025	<0.025	<0.025	<0.025	<0.025	<10	12.5	12.5	
MPB-4 0.0-2.5'	<0.025	<0.025	<0.025	<0.025	<0.025	<10	<10	<10	
MPB-4 12.5-15.0°	<0.025	<0.025	<0.025	<0.025	<0.025	<10	<10	<10	
MPB-5 7.5-10.0°	0.1540	1.4100	0.3880	2.2850	4.2370	1090	1650	2740	
MPB-5 12.5-15.0°	<0.025	0.0160	0.0203	0.0325	0.0688	15.5	22	37.5	
MPB-6 5.0-7.5'	<0.025	0.0287	0.0542	0.3487	0.4316	29.4	9:59	95	
MPB-6 12.5-15.0°	<0.025	<0.025	<0.025	<0.025	<0.025	<10	<10	<10	
MPB-7 7.5-10.0	0.0169	0996.0	0.3750	2.7280	4.0859	863	1530	2390	
MPB-7 17.5-20.0°	<0.025	<0.025	<0.025	<0.025	<0.025	<10	<10	<10	
MPB-8 7.5-10.0°	<0.025	<0.025	0.0455	0.4280	0.4735	52.7	218	271	
MPB-8 12.5-15.0°	<0.025	<0.025	<0.025	<0.025	<0.025	<10	<10	<10	
OCD Regulatory Thresholds	10	l	ŀ	I	50	1,000	1,000	1,000	

Total Petroleum Hydrocarbon and Benzene, Toluene, Ethylbenzene, and Xylenes Analyses for Soil Samples.

Total Hydrocarbon		407	1880	2430		659	659	659 2250 ~	659 2250 <10 <10	659 2250 ~ <10 <10	659 2250 <10 <10 14.9	659 2250 <10 <10 14.9 2140 549	659 2250 <10 <10 14.9 2140 549	659 2250 <10 <10 14.9 2140 549 381	659 2250 <10 <10 14.9 2140 549 381 30 <10	659 2250 <10 <10 14.9 2140 549 381 30 <10	659 <10 <10 <10 <140 2140 549 381 30 <10 <10 <10	659 2250 <10 <10 14.9 2140 549 381 30 <10 <10 <10 <10	659 2250 <10 <10 14.9 2140 549 381 381 30 <10 <10 <10 <10	659 2250 <10 <10 14.9 2140 549 381 30 <10 <10 <10 <10 <10 <10 <10
TPH-DRO		293	1180	1700	448		1480	1480	1480 <10 <10	1480 <10 <10 <10	1480 <10 <10 <10 1430	1480 <10 <10 <10 1430 408	1480 <10 <10 <10 1430 408	1480 <10 <10 <10 1430 408 347	1480 <10 <10 <10 1430 408 347 30 <10	1480 <10 <10 <10 408 347 30 <10 <10	1480 <10 <10 <10 408 347 30 <10 <10	1480 <10 <10 <10 408 347 30 <10 <10 <10	1480 <10 <10 <10 408 347 30 <10 <10 <10 <10 <10	1480 <10 <10 <10 408 347 30 <10 <10
TPH GRO		114	701	727	211		771	771 <10	771 <10 <10	771 <10 <10 14.9	771<10<1014.9711	771 <10 <10 14.9 711 141	771 <10 <10 14.9 711 141	 771 <10 <10 14.9 711 141 34 <10 	771 <10 <10 14.9 711 141 34 <10	771 <10 <10 14.9 711 141 34 <10 <10	771 <10 <10 14.9 711 141 34 <10 <10 <10	771 <10 <10 <10 <14.9 14.9 711 141 34 <10 <10 <10 <10	771	771 <10 <10 <10 14.9 711 141 34 <10 <10 <10 <10 <10 <10 <10 <10
Total BTEX		2.5755	15.0106	2.4271	8.7030		4.1930	4.1930 0.4805	4.1930 0.4805 <0.025	4.1930 0.4805 <0.025 0.1605	4.1930 0.4805 <0.025 0.1605 3.0021	4.1930 0.4805 <0.025 0.1605 3.0021 1.1869	4.1930 0.4805 <0.025 0.1605 3.0021 1.1869 0.7305	4.1930 0.4805 <0.025 0.1605 3.0021 1.1869 0.7305 <0.025	4.1930 0.4805 <0.025 0.1605 3.0021 1.1869 0.7305 <0.025	4.1930 0.4805 <0.025 0.1605 3.0021 1.1869 0.7305 <0.025 <0.025	4.1930 0.4805 <0.025 0.1605 3.0021 1.1869 0.7305 <0.025 <0.025	4.1930 0.4805 <0.025 0.1605 3.0021 1.1869 0.7305 <0.025 <0.025 <0.025	4.1930 0.4805 <0.025 0.1605 3.0021 1.1869 0.7305 <0.025 <0.025 <0.025 <0.025	4.1930 0.4805 <0.025 0.1605 3.0021 1.1869 0.7305 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025
Xylenes	Mg/kg	2.0920	12.7600	1.6180	6.7590		2.5540	2.5540 0.3838	2.5540 0.3838 <0.025	0.3838 <0.025 0.0929	2.5540 0.3838 <0.025 0.0929 2.2060	2.5540 0.3838 <0.025 0.0929 2.2060 1.0270	2.5540 0.3838 <0.025 0.0929 2.2060 1.0270 0.5690	2.5540 0.3838 <0.025 0.0929 2.2060 1.0270 0.5690	2.5540 0.3838 <0.025 0.0929 2.2060 1.0270 0.5690 <0.025	2.5540 0.3838 <0.025 0.0929 2.2060 1.0270 <0.025 <0.025	2.5540 0.3838 <0.025 0.0929 2.2060 1.0270 0.5690 <0.025 <0.025	2.5540 0.3838 <0.025 0.0929 2.2060 1.0270 0.5690 <0.025 <0.025 <0.025	2.5540 0.3838 <0.025 0.0929 2.2060 1.0270 0.5690 <0.025 <0.025 <0.025 <0.025	2.5540 0.3838 <0.025 0.0929 2.2060 1.0270 0.5690 <0.025 <0.025 <0.025 <0.025 <0.025
Ethylbenzene	Mg	0.2460	0.9360	0.2210	0.6640	0777	0.4710	0.0581	0.0581	0.0581 <0.025 0.0429	0.0581 0.0581 <0.025 0.0429 0.2300	0.0581 0.0581 <0.025 0.0429 0.2300 0.0626	0.0581 0.0581 <0.025 0.0429 0.2300 0.0626 0.1000	0.0581 <0.025 0.0429 0.2300 0.0626 0.1000 <0.025	0.0581 <0.025 0.0429 0.2300 0.0626 0.1000 <0.025	0.0581 <0.025 0.0429 0.2300 0.0626 0.1000 <0.025 <0.025	0.0581 <0.025 0.0429 0.2300 0.0626 0.1000 <0.025 <0.025 <0.025	0.0581 <0.025 0.0429 0.2300 0.0626 0.1000 <0.025 <0.025 <0.025	0.04270 0.0581 <0.025 0.0429 0.2300 0.0626 0.1000 <0.025 <0.025 <0.025 <0.025	0.0581 0.0581 0.0429 0.2300 0.0626 0.1000 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025
Toluene		0.2160	1.2200	0.5520	1.0300	1 0800	1.0000	0.0386	0.0386	0.0386 <0.025 0.0247	0.0386 <0.025 0.0247 0.5460	0.0386 <0.025 0.0247 0.5460 0.0973	0.0386 <0.025 0.0247 0.5460 0.0973	0.0386 <0.025 0.0247 0.5460 0.0973 <0.0615	0.0386 <0.025 0.0247 0.5460 0.0973 <0.0615 <0.025	0.0386 <0.025 0.0247 0.5460 0.0973 <0.025 <0.025	0.0386 <0.025 0.0247 0.5460 0.0973 0.0615 <0.025 <0.025 <0.025	0.0386 <0.025 0.0247 0.5460 0.0973 <0.025 <0.025 <0.025 <0.025	0.0386 <0.025 0.0247 0.5460 0.0973 0.0615 <0.025 <0.025 <0.025 <0.025 <0.025	0.0386 <0.025 0.0247 0.5460 0.0973 0.0615 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025
Benzene		0.0215	0.0946	0.0361	0.2500	0.1320	,	<0.025	<0.025	<0.025 <0.025 <0.025	<0.025 <0.025 <0.025 <0.025 0.0201	 <0.025 <0.025 <0.025 <0.0201 <0.025 	 <0.025 <0.025 <0.025 <0.0201 <0.025 <0.025 	 <0.025 <0.025 <0.025 <0.0201 <0.025 <0.025 <0.025 <0.025 	 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 	 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 	 <0.025 	 <0.025 	 <0.025 <0.025 <0.0201 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 <0.025 	 <0.025
Sample ID		MPB-9 2.5-5.0°	APB-9 7.5-10.0°	APB-9 17.5-20.0	MPB-10 2.5-5.0	APB-10 17.5-20.0		0.0-2.5	0.0-2.5	0.0-2.5 10.0-12.5 0.0-2.5	0.0-2.5 10.0-12.5 0.0-2.5 5.0-7.5'	0.0-2.5 10.0-12.5 0.0-2.5 5.0-7.5' 12.5-15.0'	0.0-2.5 10.0-12.5 0.0-2.5 5.0-7.5' 12.5-15.0' 0.0-2.5	0.0-2.5 10.0-12.5 0.0-2.5 5.0-7.5' 12.5-15.0' 0.0-2.5 12.5-15.0'	MPB-11 0.0-2.5 MPB-11 10.0-12.5 MPB-12 0.0-2.5 MPB-12 5.0-7.5' MPB-12 12.5-15.0' MPB-13 12.5-15.0' MPB-13 10.0-2.5 MPB-14 0.0-2.5'	APB-11 0.0-2.5 APB-11 10.0-12.5 APB-12 0.0-2.5 APB-12 5.0-7.5' APB-12 12.5-15.0' APB-13 0.0-2.5 APB-14 0.0-2.5' APB-14 10.0-12.5'	APB-11 0.0-2.5 APB-11 10.0-12.5 APB-12 0.0-2.5 APB-12 5.0-7.5' APB-12 12.5-15.0' APB-13 12.5-15.0' APB-13 10.0-2.5 APB-14 0.0-2.5' APB-14 0.0-2.5' APB-14 10.0-12.5'	APB-11 0.0-2.5 APB-11 10.0-12.5 APB-12 0.0-2.5 APB-12 5.0-7.5' APB-12 12.5-15.0' APB-13 12.5-15.0' APB-14 10.0-2.5' APB-14 10.0-12.5' APB-15 0.0-2.5' APB-15 0.0-2.5' APB-15 12.5-15.0'	MPB-11 0.0-2.5 MPB-11 10.0-12.5 MPB-12 0.0-2.5 MPB-12 5.0-7.5' MPB-12 12.5-15.0' MPB-13 12.5-15.0' MPB-14 0.0-2.5' MPB-14 0.0-2.5' MPB-15 12.5-15.0' MPB-15 10.0-12.5' MPB-16 0.0-2.5'	APB-11 0.0-2.5 APB-11 10.0-12.5 APB-12 0.0-2.5 APB-12 5.0-7.5' APB-12 12.5-15.0' APB-13 12.5-15.0' APB-14 10.0-2.5' APB-15 0.0-2.5' APB-15 0.0-2.5' APB-15 12.5-15.0' APB-15 12.5-15.0' APB-15 12.5-15.0' APB-15 12.5-15.0'

UT-CUSIOUY / Analytical Request Locur Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately. The Chain-I L

658839

Remarks / Lab ID DATE TIME <u>ን</u> 000 KITCH DER 8 Ö 9 ō S 417002-Section C Accepted by Affiliation To Be Completed by Pace Analytica, and Ollent Requested Analysis Ocote Reference roject Manager: 0600 SAMPLER NAME AND SIGNATURE reject # Profile 2: > Z~19410 Methanol * Turn around times less than 14 days subject to laboratory and contractual obligations and may result in a Rush Turnaround Surcherge. Preservatives RELINGUISHED BY / AFFILIATION N_{B2}S₂O₃ HOBN HCI HNO Information (Check quote/contract): Turn Around Time (TAT) in calendar days. *OS*H Unpreserved õ # Containers hh: mm a/p 0911 1500 0 m 14.00 36 408 COLLECTED SO SO × × × I Page: LIWE mm / od / yy COTTECLED 31A0 0 Section B MATRIX CODE OODE WIT OF SP TS TS OT Sale an Elekung to Required Client Information: WIPE AIR TISSUE OTHER O Çş q 0 Q Ó One character per box. (A-Z, 0-9 / .-)
Sample iDs MUST BE UNIQUE Required Clent Information SAMPLE NOTES Section A V 5 SAMPLE 1. 1. Car De. X 437 6898 75 Required Clicot Information: SAMPLE CONDITION Section D Received on Ice Sealed Cooler 19 re $C_{\mathcal{A}}$ ಎ \circ Temp in °C e T Z I 7 5 ILEM #

ORIGINAL

Additional Comments:

Samples Intact

DATE Sanex

UTCUSTOUT / ADAINGA TEQUESI DOCUT

ustody is a LEGAL DOCUMENT, All relevant fields must be completed accurately. The Chain

658840

Section C To Be Completed by Pace Analytical and Client Requested Analysis: Quoto Reference; roject Manage: roject #: rofile #: Turn around times less than 14 days, subject to laboratory and contractual obligations and may result in a Rush Turnaround Surcharge. Preservatives Turn Around Turio (TAT) in calendar days. Client Information (Check quote/contract):
Reginested Due Datë: Page: Thous Holdinson holdingon a coldina Section B Bullery By LANDASSE MADERSON なった。 Required Offent Information:

7970

IRNE

432 689 867E

Section D

Section A

Required Clear Information:

Face Analytical"
www.parelists.com

Kare ENVIORINGA

POGNING

HNO *OSEH Unpreserved # Containers nh: mm a/p COTTECLED BMIT (de/ yy COTTECTED **BYYE BOOD XIRTAM** CODE WY O'C STS AR O'C Coled Number: 63 OIL WIPE AIR TISSUE OTHER (A-Z, 0-9 / .-) Sample IDs MUST BE UNIQUE Required Client Information: One character per box. SANPLE

4000

- Jeuto Methanol

OSSEN

ИвОн HCI.

Remarks / Lab ID

41,17002

ブ 5

لا

Ohb

000

1038

Ų

Ó

Q

40

7

۵

Mati

9

æ

O

O N N

LO. 3

(A) Ö

I

* 8 *

o.

7

Ġ

V٦

0 ø

TIME ACCEPTED BY LAFFILIATION DATE TIME

77

3

S

PHO _

2

7

12-17046800

060

HEALING STIED BY AFFILIATION DATE

SHIPPING DATE NO. OF COOLERS

1235 0571

S

16/1 1130

SAMPLE NOTES

Ϋ́ SAMPLE CONDITION Received on Ice Sealed Cooler Temp in °C

Additional Comments: Samples Intact

SEE HEVERSE SIDE FOR INSTRUCTIONS

SAMPLER NAME AND SIGNATURE

Form (COCC: Rev (e0)

ustody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

658841

000 Remarks / Lab ID DATE | TIME tv il/ 3 30 24-200F1J/A X 7 3 12.1764 Section C Acception BY/Assitiations To Be Completed by Pace Analytical and Client w. dt. Tu Requested Amalysis: Quote Rafarence: roject Manager IIIM. RELINQUISHED BY / AFFILIATION DATE TIME B raject #: Profile #: Olher Same Methanol Turn around times loss than 14 days subject to laborátory and contractial obligations and may result in a Rush Turnaround Surcharge. Preservatives NgOH HOI HNO Turn Around Time (TAT) in calendar days. Clent Information (Check quote/contract): Requested-Dire Date: TAT *OS*H Unpreserved ŏ # Containers 1540 1400 5.25 ht: mm a/p SIMI COLLECTED Page: LIME mm / dg / yy COLLECTED **3TAO** Section B MATRIX CODE 25 A A A S T C A. C. JAKE. SHIPPING DATE: 1 Required Client Information: MATRIX WATER OIL WIPE AND TISSUE Ø O C **分割** V One character per box. (A-Z, 0-9 / .-)
Sample IDs MUST BE UNIQUE Required Client Information SAMPLE NOTES COLOC 17) Section A U SAMPLE Q Q Pace Analytical Q 7 SHIPMENT METHOD V Required Client Information: SAMPLE CONDITION 432681867 Section D 4 Are ¥ × Temp in °C \leq I 5 I. Company တ ß ဖ # WBII

XX Additional Comments: Samples Intact Sealed Cooler

Received on Ice | Y/N

SEE REVERSE SIDE FOR INSTRUCTIONS

SAMPLER NAME AND SIGNATURE

Form COCOT Play (NO)

Analytical Report

Prepared for:

Deb Lambertson

Kane Environmental (Midland)

4713 Rosewood Drive

Midland, TX 79707

Project: Mattie Price Battery
Project Number: 04-631
Location: None Given

Lab Order Number: 4L17002

Report Date: 12/27/04

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

ANALYTICAL REPORT FOR SAMPLES

Sample 1D	Laboratory ID	Matrix	Date Sampled	Date Received
MPB-4 0-2, 5.0'	4L17002-01	Soil	12/15/04 14:30	12/17/04 08:00
MPB-4 12,5-15.0'	4L17002-02	Soil	12/15/04 14:50	12/17/04 08:00
MPB-5 7.5-10.0'	4L17002-03	Soil	12/15/04 15:00	12/17/04 08:00
MPB-5 12.5-15.0'	4L17002-04	Soil	12/15/04 15:20	12/17/04 08:00
MPB-6 5.0-7.5'	4L17002-05	Soil	12/15/04 15:55	12/17/04 08:00
MPB-6 12.5-15.0'	4L17002-06	Soil	12/15/04 16:00	12/17/04 08:00
MPB-7 7.5-10.0'	4L17002-07	Soil	12/15/04 16:41	12/17/04 08:00
MPB-7 17.5-20.0'	4L17002-08	Soil	12/15/04 17:01	12/17/04 08:00
MPB-1 5.0-7.5'	4L17002-09	Soil	12/16/04 08:04	12/17/04 08:00
MPB-1 12.5-15.0	4L17002-10	Soil	12/16/04 08:18	12/17/04 08:00
MPB-2 0-2.5'	4L17002-11	Soil	12/16/04 08:35	12/17/04 08:00
MPB-2 12.5-15.0'	4L17002-12	Soil	12/16/04 08:45	12/17/04 08:00
MPB-8 7.5-10.0'	4L17002-13	Soil	12/16/04 09:08	12/17/04 08:00
MPB-8 12.5-15.0'	4L17002-14	Soil	12/16/04 09:21	12/17/04 08:00
MPB-9 2.5-5.0'	4L17002-15	Soil	12/16/04 09:40	12/17/04 08:00
MPB-9 7.5-10.0'	4L17002-16	Soil	12/16/04 10:00	12/17/04 08:00
MPB-9 17.5-20.0'	4L17002-17	Soil	12/16/04 10:15	12/17/04 08:00
MPB-10 2.5-5.0'	4L17002-18	Soil	12/16/04 10:28	12/17/04 08:00
MPB-10 17.5-20.0'	4L17002-19	Soil	12/16/04 10:55	12/17/04 08:00
MPB-11 0-2.5'	4L17002-20	Soil	12/16/04 11:30	12/17/04 08:00
MPB-11 10.0-12.5'	4L17002-21	Soil	12/16/04 11:34	12/17/04 08:00
MPB-3 0-2.5	4L17002-22	Soil	12/16/04 12:35	12/17/04 08:00
MPB-3 12.5-15.0'	4L17002-23	Soil	12/16/04 12:50	12/17/04 08:00
MPB-12 0-2.5'	4L17002-24	Soil	12/16/04 13:10	12/17/04 08:00
MPB-12 5.0-7.5'	4L17002-25	Soil	12/16/04 13:20	12/17/04 08:0
MPB-12 12.5-15.0'	4L17002-26	Soil	12/16/04 13:30	12/17/04 08:0
MPB-13 0-2.5'	4L17002-27	Soil	12/16/04 14:00	12/17/04 08:0
MPB-13 12.5-15.0'	4L17002-28	Soil	12/16/04 14:10	12/17/04 08:0
MPB-14 0-2.5'	4L17002-29	Soil	12/16/04 14:21	12/17/04 08:0
MPB-14 10-12.5'	4L17002-30	Soil	12/16/04 14:47	12/17/04 08:0
MPB-15 0-2.5'	4L17002-31	Soil	12/16/04 15:05	12/17/04 08:0
MPB-15 12.5-15.0'	4L17002-32	Soil	12/16/04 15:25	12/17/04 08:0
MPB-16 0-2.5'	4L17002-33	Soil	12/16/04 15:40	12/17/04 08:0
MPB-16 12.5-15.0'	4L17002-34	Soil	12/16/04 15:55	12/17/04 08:00

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	D21 - C	D. J	n 1		3.6.d. 1	.,
MPB-4 0-2, 5.0' (4L17002-01) Soil	Result	Limit	Onits	Dilution	Batch	Prepared	Analyzed	Method	Note
							 		
Benzene	ND	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	ND	0.0250			" H				
Ethylbenzene	ND	0.0250		"	,,	"			
Xylene (p/m)	ND	0.0250		"	u	"	,		
Xylene (o)	ND	0.0250							
Surrogate: a,a,a-Trifluorotoluene		90.2 %	80-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.4 %	80-1		"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0		**	n	11	H	,	
Total Hydrocarbon C6-C35	ND	10.0			**			*1	
Surrogate: 1-Chlorooctane		111 %	70-	130	"	n .	"	"	
Surrogate: 1-Chlorooctadecane		105 %	70-	130	,,	"	"	"	
MPB-4 12,5-15.0' (4L17002-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	ND	0.0250	н		n	11	19	17	
Ethylbenzene	ND	0.0250	W	w	**	11	10	10	
Xylene (p/m)	ND	0.0250			n	"	**	16	
Xylene (o)	ND	0.0250	"	P		н	п	"	
Surrogate: a,a,a-Trifluorotoluene		87.3 %	80-	120	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		108 %	80-	120	n	"	"	n	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0			н	"	**		
Total Hydrocarbon C6-C35	ND	10.0	P	n	н	"	"		
Surrogate: I-Chlorooctane		103 %	70-	130	,,	,,	"	"	
Surrogate: 1-Chlorooctadecane		96.0 %	70-	130	,,	"	"	"	
MPB-5 7.5-10.0' (4L17002-03) Soil									
Benzene	0.154	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	1.41	0.0250	и	н		н	п		
Ethylbenzene	0.388	0.0250	**	**	и	н	11	0	
Xylene (p/m)	1.90	0.0250	u	11		и	11	n	
Xylene (o)	0.385	0.0250	u	п	H	19	n	**	
Surrogate: a,a,a-Trifluorotoluene		184 %	80-	120	"	"	"	"	S-1
Surrogate: 4-Bromofluorobenzene		139 %	80-	120	,,	**	"	11	S-é
Gasoline Range Organics C6-C12	1090	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	1650	10.0	п		"	"		н	
Total Hydrocarbon C6-C35	2740	10.0	"		н		н	i e	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 28

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

Aughto	Danult	Reporting	Units						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MPB-5 7.5-10.0' (4L17002-03) Soil									
Surrogate: 1-Chlorooctane		119 %	70-1	130	EL41710	12/17/04	12/17/04	EPA 8015M	
Surrogate: 1-Chlorooctadecane		107 %	70-1	130	n	"	u	n	
MPB-5 12.5-15.0' (4L17002-04) Soil	_								
Benzene	ND	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	J [0.0160]	0.0250	u	*	n	"	"		,
Ethylbenzene	J [0.0203]	0.0250	n	*	u	st.	н	H	
Xylene (p/m)	0.0325	0.0250	п	"	•	u	н	и	
Xylene (o)	ND	0.0250	*1	*1	n	17	ņ	U	
Surrogate: a,a,a-Trifluorotoluene		84.4 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		115 %	80-1	120	"	"	"	"	
Gasoline Range Organics C6-C12	15.5	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	22.0	10.0	н	11	п	н	и	11	
Total Hydrocarbon C6-C35	37.5	10.0	**	10	н	**	U	я	
Surrogate: 1-Chlorooctane		106 %	70-	130	"	"	n	n	
Surrogate: 1-Chlorooctadecane		97.8 %	70-	130	n	"	"	n	
MPB-6 5.0-7.5' (4L17002-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	0.0287	0.0250	н	"		I †	11	**	
Ethylbenzene	0.0542	0.0250	*	"	10		41	н	
Xylene (p/m)	0.277	0.0250	10	"	11	n	***		
Xylene (o)	0.0717	0.0250		н	•	*		11	
Surrogate: a,a,a-Trifluorotoluene		92.0 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		113 %	80-	120	"	n	"	n	
Gasoline Range Organics C6-C12	29.4	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	65.6	10.0	n	11	н	u	D	**	
Total Hydrocarbon C6-C35	95.0	10.0	н	11	н	u	ij	41	
Surrogate: 1-Chlorooctane		96.6 %	70-	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		91.6 %	70	130	n	"	"	"	

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

		 -							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MPB-6 12.5-15.0' (4L17002-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	ND	0.0250	11	"	11	11	п	н	
Ethylbenzene	ND	0.0250	п	u	11	n	16	H.	
Xylene (p/m)	ND	0.0250	u		*1	n	II.	10	
Xylene (o)	ND	0.0250	н	H	**	п	Ħ	н	
Surrogate: a,a,a-Trifluorotoluene		83.0 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	80-1	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	D	11	н	н	н	11	
Total Hydrocarbon C6-C35	ND	10.0	11	"	10	и	н	**	
Surrogate: 1-Chlorooctane		97.4 %	70-1	130	,,	"	"	"	
Surrogate: 1-Chlorooctadecane		88.8 %	70-1	130	"	"	"	"	
MPB-7 7.5-10.0' (4L17002-07) Soil									
Benzene	J [0.0169]	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	0.966	0.0250	**	11		**	,,	**	
Ethylbenzene	0.375	0.0250	11		**			11	
Xylene (p/m)	2.31	0.0250	n		н	n	10	11	
Xylene (o)	0.418	0.0250	11	н	"	11	н	IF.	
Surrogate: a,a,a-Trifluorotoluene		111 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		147 %	80-	120	"	n	"	"	S-0-
Gasoline Range Organics C6-C12	863	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	1530	10.0	**	н	н	u	н	**	
Total Hydrocarbon C6-C35	2390	10.0		11	н	ıı	10	11	
Surrogate: 1-Chlorooctane		121 %	70-1	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		124 %	70-	130	"	"	"	n	
MPB-7 17.5-20.0' (4L17002-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42010	12/17/04	12/20/04	EPA 8021B	
Toluene	ND	0.0250		19	"	**	*1	n	
Ethylbenzene	ND	0.0250	D		н	"	**	IF	
Xylene (p/m)	ND	0.0250	u u	u	11	**	п	"	
Xylene (o)	ND	0.0250	"	н	n	n	10	11	
Surrogate: a,a,a-Trifluorotoluene		81.2 %	80	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	н		11	"	11	и	
Total Hydrocarbon C6-C35	ND	10.0	,	н	*1	•	п	11	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 5 of 28

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MPB-7 17.5-20.0' (4L17002-08) Soil		····	W III.E.					·	
Surrogate: 1-Chlorooctane		100 %	70-	130	EL41710	12/17/04	12/17/04	EPA 8015M	
Surrogate: 1-Chlorooctadecane		91.4 %	70-	130	"	"	,,	n	
MPB-1 5.0-7.5' (4L17002-09) Soil									
Benzene	0.175	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	1.42	0.0250	н	19		"	n	п	
Ethylbenzene	0.457	0.0250	*	11		u	**	"	
Xylene (p/m)	1.71	0.0250		"	•	n	*1	н	
Xylene (o)	0.441	0.0250	n	н	**	n		u	
Surrogate: a,a,a-Trifluorotoluene		215 %	80	120	"	"	"	"	S-04
Surrogate: 4-Bromofluorobenzene		164 %	80	120	"	"	"	n	S-04
Gasoline Range Organics C6-C12	527	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	828	10.0	10	"		**	**	**	
Total Hydrocarbon C6-C35	1360	10.0	•	"	•		"	*	
Surrogate: 1-Chlorooctane		110 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		99.4 %	70-	130	"	"	"	"	
MPB-1 12.5-15.0 (4L17002-10) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	0.106	0.0250	н	**		i,	n	o o	
Ethylbenzene	0.154	0.0250	и	**	**	n	и	u	
Xylene (p/m)	0.924	0.0250	n	,,	п	"	11	W.	
Xylene (o)	0.253	0.0250	41	"	н	**	н	u	
Surrogate: a,a,a-Trifluorotoluene		95.0 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		136 %	80-	120	"	"	"	n	S-04
Gasoline Range Organics C6-C12	311	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	812	10.0	**		41	10	H	н	
Total Hydrocarbon C6-C35	1120	10.0		11	**	"	н		
Surrogate: 1-Chlorooctane		111 %	70-	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		105 %	70-	130	"	"	"	"	

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MPB-2 0-2.5' (4L17002-11) Soil			·····	Bittion	Daten	Trepared	- Thiny zed	Wichiod	
Benzene	ND	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	J [0.0248]	0.0250	n	ь	н	n	11	п	
Ethylbenzene	J [0.0169]	0.0250	"	n	н	н	0	п	
Xylene (p/m)	0.0389	0.0250	**	н	н	н	11		
Xylene (0)	0.0272	0.0250	н	н	u	н	1)	н	
Surrogate: a,a,a-Trifluorotoluene		84.7 %	80-1	120	"	"	"	n .	
Surrogate: 4-Bromofluorobenzene		130 %	80-1	120	,,	"	и	"	S-C
Gasoline Range Organics C6-C12	13.6	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	26.5	10.0	и	n	"	н		41	
Total Hydrocarbon C6-C35	40.1	10.0	"	n	н	u	10	40	
Surrogate: 1-Chlorooctane		106 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		96.8 %	70-1	130	"	"	n	n	
MPB-2 12.5-15.0' (4L17002-12) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	ND	0.0250	n	"	11		n	u	
Ethylbenzene	ND	0.0250	**	"	**	н	11		
Xylene (p/m)	ND	0.0250	н	н	"	H	**		
Xylene (o)	ND	0.0250	*	н	11	41	n	n	
Surrogate: a,a,a-Trifluorotoluene		92.0 %	80-	120	"	"	#	"	
Surrogate: 4-Bromofluorobenzene		118 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	N	*	"	41	"	n	
Total Hydrocarbon C6-C35	ND	10.0	и	н	•	11	11	п	
Surrogate: 1-Chlorooctane		103 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		93.6 %	70-	130	"	"	"	и	
MPB-8 7.5-10.0' (4L17002-13) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	ND	0.0250	4	19	н			n	
Ethylbenzene	0.0455	0.0250	n		н	**	н	W	
Xylene (p/m)	0.310	0.0250	"	u	н	•	10	н	
Xylene (0)	0.118	0.0250	u		H	u		**	
Surrogate: a,a,a-Trifluorotoluene		82.0 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		115 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	52.7	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	218	10.0		#	n	н	n	u	
Total Hydrocarbon C6-C35	271	10.0	u	*1	п	н	"	u	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 28

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

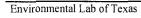
A I	n	Reporting	V 11-						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MPB-9 7,5-10.0' (4L17002-16) Soil									
Benzene	0.0946	0.0250	mg/kg dry	25	EL42010	12/17/04	12/17/04	EPA 8021B	
Toluene	1.22	0.0250	II.	н	"	#	H	n	
Ethylbenzene	0.936	0.0250	"	n	н	n	n	ч	
Xylene (p/m)	8.23	0.0250	"	**	11	н	"	ч	
Xylene (o)	4.53	0.0250		*1					
Surrogate: a,a,a-Trifluorotoluene		182 %	80-1	20	"	n .	"	"	S-0-
Surrogate: 4-Bromofluorobenzene		141 %	80-1	20	"	n	"	"	S-0-
Gasoline Range Organics C6-C12	701	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	1180	10.0	**		н	**	n	11	
Total Hydrocarbon C6-C35	1880	10.0	**	11	11	"	"	"	
Surrogate: 1-Chlorooctane		111 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		110 %	70-1	130	"	"	"	"	
MPB-9 17.5-20.0' (4L17002-17) Soil									
Benzene	0.0361	0.0250	mg/kg dry	25	EL42010	12/17/04	12/18/04	EPA 8021B	
Toluene	0.552	0.0250		"		"	н	D	
Ethylbenzene	0.221	0.0250		и	н	u	H.	*1	
Xylene (p/m)	1.29	0.0250	н	и	11	н	"	11	
Xylene (o)	0.328	0.0250	н	*1	11	и	я		
Surrogate: a,a,a-Trifluorotoluene		108 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		132 %	80-	120	"	,,	"	"	S-0-
Gasoline Range Organics C6-C12	727	10.0	mg/kg dry	1	EL41710	12/17/04	12/17/04	EPA 8015M	
Diesel Range Organics >C12-C35	1700	10.0	н	и	н	Ħ	10	11	
Total Hydrocarbon C6-C35	2430	10.0	n	**	п	и	и	**	
Surrogate: 1-Chlorooctane		106 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		116 %	70-	130	"	"	"	"	
MPB-10 2.5-5.0' (4L17002-18) Soil									
Benzene	0.250	0.0250	mg/kg dry	25	EL42103	12/20/04	12/20/04	EPA 8021B	
Toluene	1.03	0.0250	u	n	n	n	н	u	
Ethylbenzene	0.664	0.0250	11	*	0	19	н	и	
Xylene (p/m)	6.16	0.0250	*1	10	н	41	,,	D	
Xylene (o)	0.599	0.0250	41			"		n	
Surrogate: a,a,a-Trifluorotoluene		548 %	80-	120	"	"	"	n	S-0-
Surrogate: 4-Bromofluorobenzene		145 %	80	120	"	"	"	n	S-0-
Gasoline Range Organics C6-C12	211	10.0	mg/kg dry	1	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	448	10.0		**	"			,	
Total Hydrocarbon C6-C35	659	10.0	**		11	и	н	19	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 28

Project: Mattie Price Battery

Project Number: 04-631


Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

Amalusa	Result	Reporting Limit	Units		n .				
Analyte MPB-10 2.5-5.0' (4L17002-18) Soil	Resun	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		06.006	70.1						
Surrogate: 1-Chlorooctane		96.8 %			EL41710	12/17/04	12/18/04	EPA 8015M "	
Surrogate: 1-Chlorooctadecane		87.2 %	70-1	30	"	"	"	"	
MPB-10 17.5-20.0' (4L17002-19) Soil									
Benzene	0,132	0.0250	mg/kg dry	25	EL42103	12/20/04	12/20/04	EPA 8021B	
Toluene	1.08	0.0250	*	н	н	n	10	11	
Ethylbenzene	0.427	0.0250	"	n	11	н	11	11	
Xylene (p/m)	2.35	0.0250	**			н	"	**	
Xylene (o)	0.204	0.0250	•			н	n	,,	
Surrogate: a,a,a-Trifluorotoluene		195 %	80-1	20	"	"	"	n	S-0-
Surrogate: 4-Bromofluorobenzene		116 %	80-1	20	"	n	"	n	
Gasoline Range Organics C6-C12	771	10.0	mg/kg dry	1	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	1480	10.0	H	**	w	n	n	*1	
Total Hydrocarbon C6-C35	2250	10.0	н	n	*	н	11	**	
Surrogate: 1-Chlorooctane		114%	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		122 %	70-1	30	"	"	"	"	
MPB-11 0-2.5' (4L17002-20) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42103	12/20/04	12/20/04	EPA 8021B	
Toluene	0.0386	0.0250	n		**	11	ti	н	
Ethylbenzene	0.0581	0.0250	11		n	10	"	u	
Xylene (p/m)	0.309	0.0250	и	**	n	14	,,	Ð	
Xylene (0)	0.0748	0.0250	"	**		19	**	u u	
Surrogate: a,a,a-Trifluorotoluene		96.4 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.4 %	80-1	20	"	"	"	и	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	*	н	41	**	12	u	
Total Hydrocarbon C6-C35	ND	10.0	**	**	п	**	D	n	
Surrogate: 1-Chlorooctane		87.2 %	70-	130	"	"	"	"	~
Surrogate: 1-Chlorooctadecane		74.4 %	70-1	130	"	,,	"	"	

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MPB-11 10.0-12.5' (4L17002-21) Soil					-				
Benzene	ND	0.0250	mg/kg dry	25	EL42103	12/20/04	12/21/04	EPA 8021B	
Toluene	ND	0.0250	п	11		н	*1	*1	
Ethylbenzene	ND	0.0250	u	u	н	**	*1	и	
Xylene (p/m)	ND	0,0250	н		**	11	11	It	
Xylene (o)	ND	0.0250	**	н	"	19	D	e	
Surrogate: a,a,a-Trifluorotoluene		80.2 %	80-120		"	n	"	n	
Surrogate: 4-Bromofluorobenzene		87.7 %	80-120		"	n	n	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	i	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0		11	н	н		11	
Total Hydrocarbon C6-C35	ND	10.0	i+	n	н	n	"	41	
Surrogate: 1-Chlorooctane		99.2 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		87.8 %	70-1	130	"	"	"	"	
MPB-3 0-2.5 (4L17002-22) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42103	12/20/04	12/20/04	EPA 8021B	
Toluene	J [0.0111]	0.0250	u	u	*1	и	н	11	
Ethylbenzene	0.0268	0.0250	u	**	n	и	н	н	
Xylene (p/m)	0.0900	0.0250	"	11	11	u	,,	н	
Xylene (o)	0.0314	0.0250	н	#		н	11		
Surrogate: a,a,a-Trifluorotoluene		97.1 %	80-	120	n	"	n	"	
Surrogate: 4-Bromofluorobenzene		83.3 %	80-	120	"	n	n	u	
Gasoline Range Organics C6-C12	260	10.0	mg/kg dry	1	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	4360	10.0	17	n	п	11	*	11	
Total Hydrocarbon C6-C35	4620	10.0	u	u	**	D	**	· · · · · · · · · · · · · · · · · · ·	
Surrogate: 1-Chlorooctane		111 %	70	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		84.8 %	70-	130	n	"	n	"	
MPB-3 12.5-15.0' (4L17002-23) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42103	12/20/04	12/20/04	EPA 8021B	
Toluene	ND	0.0250	н	н		D	н	**	
Ethylbenzene	ND	0.0250	11	•	10	*	"	11	
Xylene (p/m)	ND	0.0250	11	u	н		**	H	
Xylene (o)	ND	0.0250	"	"		rt.	10	"	
Surrogate: a,a,a-Trifluorotoluene		96.4 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.8 %	80-	120	,,	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	12.5	10.0	"	"	10		п	Ħ	
Total Hydrocarbon C6-C35	12.5	10.0	н	0				11	

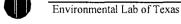
Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 11 of 28

Project: Mattie Price Battery

Project Number: 04-631


Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MPB-3 12.5-15.0' (4L17002-23) Soil				Dilution	Datch	Prepared	Analyzed	Method	Notes
Surrogate: 1-Chlorooctane		107 %	70-	130	EL41710	12/17/04	12/18/04	EPA 8015M	
Surrogate: 1-Chlorooctadecane		99.2 %	70-		"	"	"	и	
MPB-12 0-2.5' (4L17002-24) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42103	12/20/04	12/20/04	EPA 8021B	
Toluene	J [0.0247]	0.0250	11		11	II	*1		
Ethylbenzene	0.0429	0.0250	11	н	**	u	**	и	
Xylene (p/m)	0.0607	0.0250	er .	н	11	"	"		
Xylene (o)	0.0322	0.0250	#	н	**	**	"	н	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.0 %	80-	120	"	u	"	"	
Gasoline Range Organics C6-C12	14.9	10.0	mg/kg dry	1	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	**	11	91	10	и	
Total Hydrocarbon C6-C35	14.9	10.0	n	11	n	н	n	**	
Surrogate: 1-Chlorooctane		103 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		92.2 %	70-	130	"	<i>u</i>	n	"	
MPB-12 5.0-7.5' (4L17002-25) Soil									
Benzene	J [0,0201]	0.0250	mg/kg dry	25	EL42103	12/20/04	12/20/04	EPA 8021B	
Toluene	0.546	0.0250	н	11		н	u	и	
Ethylbenzene	0.230	0.0250	u	и	"	н	п	я	
Xylene (p/m)	2.01	0.0250	н	11	11	н	и	o	
Xylene (o)	0.196	0.0250	*	9	и	н	n	n	
Surrogate: a,a,a-Trifluorotoluene		149 %	80-	120	"	1)	n	n	S-0-
Surrogate: 4-Bromofluorobenzene		132 %	80-	120	"	"	n	n	S-0-
Gasoline Range Organics C6-C12	711	10.0	mg/kg dry	1	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	1430	10.0	U	я			"	**	
Total Hydrocarbon C6-C35	2140	10.0		11	10		IP.	11	
Surrogate: 1-Chlorooctane		113 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		123 %	70-	130	"	"	"	"	

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MPB-12 12.5-15.0' (4L17002-26) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42206	12/20/04	12/20/04	EPA 8021B	
Toluene	0.0973	0.0250	11	н	**	*1	u	ii.	
Ethylbenzene	0.0626	0.0250	H	,	•	**	н	и	
Xylene (p/m)	0.881	0.0250	11	*		ч	н	19	
Xylene (0)	0.146	0.0250	"	11	n		н		
Surrogate: a,a,a-Trifluorotoluene		101 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		111 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	141	10.0	mg/kg dry	1	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	408	10.0	•	**	н	н	u	u	
Total Hydrocarbon C6-C35	549	10.0	"	"	11	н		"	
Surrogate: 1-Chlorooctane		101 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		93.4 %	70-1	30	n	"	"	"	
MPB-13 0-2.5' (4L17002-27) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42206	12/20/04	12/21/04	EPA 8021B	
Toluene	0.0615	0.0250	41		н	**	u	"	
Ethylbenzene	0.100	0.0250		10		*1	D	n	
Xylene (p/m)	0.444	0.0250	**		**	**	u	11	
Xylene (0)	0.125	0.0250	**	"		**		11	
Surrogate: a,a,a-Trifluorotoluene		102 %	80-	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-	120	"	"	"	n	
Gasoline Range Organics C6-C12	34.0	10.0	mg/kg dry	1	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	347	10.0	41	11	w	•	n	11	
Total Hydrocarbon C6-C35	381	10.0	**					"	
Surrogate: 1-Chlorooctane		94.8 %	70-	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		88.8 %	70	130	"	"	"	"	
MPB-13 12.5-15.0' (4L17002-28) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42206	12/20/04	12/21/04	EPA 8021B	
Toluene	ND	0.0250	н	н	**	"	11	16	
Ethylbenzene	ND	0.0250	и	n	**	n	n	u	
Xylene (p/m)	ND	0.0250	н	н	**	**	**	н	
Xylene (o)	ND	0.0250	н	н	•	**	"	"	
Surrogate: a,a,a-Trifluorotoluene		95.1 %	80	120	n	"	<u>"</u>	"	
Surrogate: 4-Bromofluorobenzene		99.0 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0		1	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	30.0	10.0	**	*	ч	**		D	
Total Hydrocarbon C6-C35	30.0	10.0	п	14		41		p	

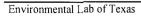
Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 13 of 28

Project: Mattie Price Battery

Project Number: 04-631


Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

Anglista	Result	Reporting Limit	Units	15.11					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MPB-13 12.5-15.0' (4L17002-28) Soil									
Surrogate: 1-Chlorooctane		96.0 %	70-	130	EL41710	12/17/04	12/18/04	EPA 8015M	
Surrogate: 1-Chlorooctadecane		85.4 %	70	130	n	"	"	"	
MPB-14 0-2.5' (4L17002-29) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42206	12/20/04	12/21/04	EPA 8021B	
Toluene	ND	0.0250	*1	**	,,	10	11	н	
Ethylbenzene	ND	0.0250	41	**	51	14	18	19	
Xylene (p/m)	ND	0.0250	**	**		н	н	v	
Xylene (o)	ND	0.0250	**	#	11	н			
Surrogate: a,a,a-Trifluorotoluene		93.5 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-	120	,,	"	,,	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0		11	"	#1	"	н	
Total Hydrocarbon C6-C35	ND	10.0	19		W.	**	н	и	
Surrogate: 1-Chlorooctane		97.6 %	70-	130	"	"	"	,,	
Surrogate: 1-Chlorooctadecane		85.6 %	70-	130	"	"	"	"	
MPB-14 10-12.5' (4L17002-30) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42206	12/20/04	12/21/04	EPA 8021B	
Toluene	ND	0.0250			u	o	IF	и	
Ethylbenzene	ND	0.0250		н	"	11		t+	
Xylene (p/m)	ND	0.0250	*	н	"	D		W	
Xylene (o)	ND	0.0250			,,	11	11	в	
Surrogate: a,a,a-Trifluorotoluene		83.2 %	80-	120	,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.1 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	i	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	п	11	и	"	"		
Total Hydrocarbon C6-C35	ND	10.0	*	11	н	*1	"	и	
Surrogate: 1-Chlorooctane		94.4 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		82.8 %	70-	130	"	"	"	n	

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MPB-15 0-2.5' (4L17002-31) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42206	12/20/04	12/21/04	EPA 8021B	
Toluene	ND	0.0250	10	10	н	•	"	я	
Ethylbenzene	ND	0.0250	I#	11	"	**	п	n	
Xylene (p/m)	ND	0.0250	10	10	н	"	а	n	
Xylene (o)	ND	0.0250	19	I+	*1	11	а	II .	
Surrogate: a,a,a-Trifluorotoluene		81.1 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		85.3 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EL41710	12/17/04	12/18/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0		"	**	U	•	н	
Total Hydrocarbon C6-C35	ND	10.0		19	*	ø	**	**	
Surrogate: 1-Chlorooctane		109 %	70-	130	"	"	'n	"	-
Surrogate: 1-Chlorooctadecane		94.8 %	70-1	130	"	n	"	"	
MPB-15 12.5-15.0' (4L17002-32) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42206	12/20/04	12/21/04	EPA 8021B	
Toluene	ND	0.0250	11	**	16	H	"	4	
Ethylbenzene	ND	0.0250	*1	**	11	н	u	"	
Xylene (p/m)	ND	0.0250	**	**	н	н	п	ч	
Xylene (o)	ND	0.0250	0	n	н	"	п	н	
Surrogate: a,a,a-Trifluorotoluene		86.5 %	80	120	"	"	"	,,	
Surrogate: 4-Bromofluorobenzene		99.3 %	80	120	"	"	,,	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EL41710	12/17/04	12/23/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	10	"	**	"	Ħ	n	
Total Hydrocarbon C6-C35	ND	10.0	11	19	u	**	11	**	
Surrogate: 1-Chlorooctane		127 %	70	130	"	,,	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70	130	,,	"	"	"	
MPB-16 0-2.5' (4L17002-33) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42206	12/20/04	12/21/04	EPA 8021B	•
Toluene	ND	0.0250	п	**		н	"	п	
Ethylbenzene	ND	0.0250	10	16		**	п	п	
Xylene (p/m)	ND	0.0250	11	н		**	11	н	
Xylene (o)	ND	0.0250		и	N	"	11	II.	
Surrogate: a,a,a-Trifluorotoluene		93.8 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.0 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EL41710	12/17/04	12/19/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0		н	n	11	I#	u	
Total Hydrocarbon C6-C35	ND	10.0		*1	и	11	н	ь	

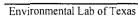
Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 15 of 28

Project: Mattie Price Battery

Project Number: 04-631


Project Manager: Deb Lambertson

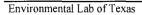
Fax: (432) 689-7785

Reported: 12/27/04 10:29

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MPB-16 0-2.5' (4L17002-33) Soil									
Surrogate: 1-Chlorooctane		103 %	70-12	30	EL41710	12/17/04	12/19/04	EPA 8015M	
Surrogate: 1-Chlorooctadecane		90.0 %	70-13	30	n	n	u u	"	
MPB-16 12.5-15.0' (4L17002-34) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL42206	12/20/04	12/21/04	EPA 8021B	
Toluene	ND	0.0250	"	17	н	**	**	н	
Ethylbenzene	ND	0.0250	D.		н	"	**	41	
Xylene (p/m)	ND	0.0250	R	n		u u	"	н	
Xylene (o)	ND	0.0250		H	*	n	41	11	
Surrogate: a,a,a-Trifluorotoluene		92.2 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.3 %	80-12	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EL41710	12/17/04	12/19/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	10	IF	н	**	"	и	
Total Hydrocarbon C6-C35	ND	10.0		11	н	"	11	H	
Surrogate: 1-Chlorooctane		95.2 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		81.0 %	70-1.	30	"	"	"	"	

Project: Mattie Price Battery


Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MPB-4 0-2, 5.0' (4L17002-01) Soil				<u> </u>					
% Moisture	15,0		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-4 12,5-15.0' (4L17002-02) Soil									
% Moisture	14.2		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-5 7.5-10.0' (4L17002-03) Soil									
% Moisture	14.1		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-5 12.5-15.0' (4L17002-04) Soil									
% Moisture	14.3		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-6 5.0-7.5' (4L17002-05) Soil									
% Moisture	14.8		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-6 12.5-15.0' (4L17002-06) Soil									
% Moisture	11.4		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-7 7.5-10.0' (4L17002-07) Soil									
% Moisture	15.4		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-7 17.5-20.0' (4L17002-08) Soil									
% Moisture	15.9		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-1 5.0-7.5' (4L17002-09) Soil									
% Moisture	13.2		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-1 12.5-15.0 (4L17002-10) Soil									
% Moisture	9.6		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-2 0-2.5' (4L17002-11) Soil									
% Moisture	14.9	<u>.</u>	%	1	EL42003	12/17/04	12/20/04	% calculation	

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MPB-2 12.5-15.0' (4L17002-12) Soil				- Ditation	Daten	riepareu	Analyzed	Memod	note
% Moisture	15.5		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-8 7.5-10.0' (4L17002-13) Soil									
% Moisture	13.0		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-8 12.5-15.0' (4L17002-14) Soil	_								
% Moisture	18.8		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-9 2.5-5.0' (4L17002-15) Soil									
% Moisture	15.6		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-9 7.5-10.0' (4L17002-16) Soil									
% Moisture	12.9		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-9 17.5-20.0' (4L17002-17) Soil									
% Moisture	12.4		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-10 2.5-5.0' (4L17002-18) Soil									
% Moisture	17.4		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-10 17.5-20.0' (4L17002-19) Soil									
% Moisture	12.0		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-11 0-2.5' (4L17002-20) Soil									
% Moisture	17.4		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-11 10.0-12.5' (4L17002-21) Soil									
% Moisture	8.2		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-3 0-2.5 (4L17002-22) Soil									
% Moisture	15.5		%	1	EL42003	12/17/04	12/20/04	% calculation	

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Auto	Dl	Reporting	Theire						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MPB-3 12.5-15.0' (4L17002-23) Soil									
% Moisture	7.3		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-12 0-2.5' (4L17002-24) Soil									
% Moisture	16.0		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-12 5.0-7.5' (4L17002-25) Soil									
% Moisture	10.7		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-12 12.5-15.0' (4L17002-26) Soil									
% Moisture	14.1		%	t	EL42003	12/17/04	12/20/04	% calculation	
MPB-13 0-2.5' (4L17002-27) Soil									
% Moisture	13.3		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-13 12.5-15.0' (4L17002-28) Soil									
% Moisture	11.3		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-14 0-2.5' (4L17002-29) Soil									
% Moisture	15.8		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-14 10-12.5' (4L17002-30) Soil									
% Moisture	5.7		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-15 0-2.5' (4L17002-31) Soil									
% Moisture	14.9		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-15 12.5-15.0' (4L17002-32) Soil									
% Moisture	14.4		%	1	EL42003	12/17/04	12/20/04	% calculation	
MPB-16 0-2.5' (4L17002-33) Soil									
% Moisture	15.1		%	I	EL42003	12/17/04	12/20/04	% calculation	

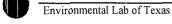
Project: Mattie Price Battery

Project Number: 04-631 Project Manager: Deb Lambertson Fax: (432) 689-7785

Reported: 12/27/04 10:29

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MPB-16 12.5-15.0' (4L17002-34) Soil									
% Moisture	15.8		%	1	EL42003	12/17/04	12/20/04	% calculation	

Project: Mattie Price Battery


Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Amaluta	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Limit	Notes
Batch EL41710 - Solvent Extraction (GC)				<u> </u>						
Blank (EL41710-BLK1)				Prepared: 1	2/17/04 A	nalyzed: 12	/23/04			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	B							
Total Hydrocarbon C6-C35	ND	10.0								
Surrogate: 1-Chlorooctane	40.5		mg/kg	50.0		81.0	70-130			
Surrogate: 1-Chlorooctadecane	39.1		"	50.0		78.2	70-130			
Blank (EL41710-BLK2)				Prepared: 1	12/17/04 A	nalyzed: 12	2/23/04			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	R							
Total Hydrocarbon C6-C35	ND	10.0	P							
Surrogate: 1-Chlorooctane	49.6		mg/kg	50.0		99.2	70-130			
Surrogate: 1-Chlorooctadecane	43.9		"	50.0		87.8	70-130			
LCS (EL41710-BS1)				Prepared: 1	12/17/04 A	nalyzed: 12	2/23/04			
Gasoline Range Organics C6-C12	466	10.0	mg/kg wet	500		93.2	75-125			
Diesel Range Organics >C12-C35	477	10.0	u	500		95.4	75-125			
Total Hydrocarbon C6-C35	943	10.0		1000		94.3	75-125			
Surrogate: 1-Chlorooctane	47.8		mg/kg	50.0		95.6	70-130			
Surrogate: 1-Chlorooctadecane	40.5		"	50.0		81.0	70-130			
LCS (EL41710-BS2)				Prepared:	12/17/04 A	nalyzed: 12	2/23/04			
Gasoline Range Organics C6-C12	454	10.0	mg/kg wet	500		90.8	75-125			
Diesel Range Organics >C12-C35	497	10.0	**	500		99.4	75-125			
Total Hydrocarbon C6-C35	951	10.0	н	1000		95.1	75-125			
Surrogate: 1-Chlorooctane	45.8		mg/kg	50.0		91.6	70-130			
Surrogate: 1-Chlorooctadecane	40.6		"	50.0		81.2	70-130			
Calibration Check (EL41710-CCV1)				Prepared:	12/17/04 A	nalyzed: 12	2/23/04			
Gasoline Range Organics C6-C12	478		mg/kg	500		95.6	80-120			
Diesel Range Organics >C12-C35	487		*1	500		97.4	80-120			
Total Hydrocarbon C6-C35	965		*11	1000		96.5	80-120			
Surrogale: 1-Chlorooctane	53.0		"	50.0		106	70-130			
Surrogate: 1-Chlorooctadecane	45.2		**	50.0		90.4	70-130			

Project: Mattie Price Battery

Project Number: 04-631

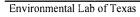
Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	resur	Limit			ixeoun	70ICEC	Limits		Lillin	Tioles
Batch EL41710 - Solvent Extraction (GC) Calibration Check (EL41710-CCV2)				Dranarad: 1	2/17/04 Ai	anlyzad: 12	/22/04			
Gasoline Range Organics C6-C12	483		mg/kg	500	12/11/04 A1	96.6	80-120			
Diesel Range Organics >C12-C35	548		mg/kg	500		110	80-120			
Fotal Hydrocarbon C6-C35	1030		,,	1000		103	80-120			
			,,							
Surrogate: I-Chlorooctane	51.5		,,	50.0		103	70-130			
Surrogate: 1-Chlorooctadecane	42.7		"	50.0		85.4	70-130			
Matrix Spike (EL41710-MS1)	Sou	rce: 4L17002	-01	Prepared:	12/1 7 /04 Aı	nalyzed: 12	/23/04			
Gasoline Range Organics C6-C12	586	10.0	mg/kg dry	588	ND	99.7	75-125			
Diesel Range Organics >C12-C35	609	10.0	п	588	ND	104	75-125			
Total Hydrocarbon C6-C35	1200	10.0	q	1180	ND	102	75-125			
Surrogate: 1-Chlorooctane	58.1		mg/kg	50.0		116	70-130			
urrogate: 1-Chlorooctadecane	53.7		,,	50.0		107	70-130			
Matrix Spike (EL41710-MS2)	Sou	rce: 4L17002	-21	Prepared:	12/17/04 Ai	nalyzed: 12	/23/04			
Gasoline Range Organics C6-C12	525	10.0	mg/kg dry	545	ND	96.3	75-125			
Diesel Range Organics >C12-C35	557	10.0	4	545	ND	102	75-125			
otal Hydrocarbon C6-C35	1080	10.0	11	1090	ND	99.1	75-125			
Surrogate: 1-Chlorooctane	54.4		mg/kg	50.0		109	70-130			
urrogate: 1-Chlorooctadecane	45.5		"	50.0		91.0	70-130			
Matrix Spike Dup (EL41710-MSD1)	Sou	rce: 4L17002	-01	Prepared:	12/17/04 A	nalyzed: 12	/23/04			
Gasoline Range Organics C6-C12	593	10.0	mg/kg dry	588	ND	101	75-125	1.19	20	
Diesel Range Organics >C12-C35	631	10.0	**	588	ND	107	75-125	3.55	20	
Total Hydrocarbon C6-C35	1220	10.0		1180	ND	103	75-125	1.65	20	
Surrogate: 1-Chlorooctane	57.7		mg/kg	50.0		115	70-130			
Surrogate: 1-Chlorooctadecane	53.9		"	50.0		108	70-130			
Matrix Spike Dup (EL41710-MSD2)	Sou	rce: 4L17002	:-21	Prepared:	12/17/04 A	nalyzed: 12	/23/04			
Gasoline Range Organics C6-C12	535	10.0	mg/kg dry	545	ND	98.2	75-125	1.89	20	
Diesel Range Organics >C12-C35	558	10.0	н	545	ND	102	75-125	0.179	20	
Total Hydrocarbon C6-C35	1090	10.0	н	1090	ND	100	75-125	0.922	20	
Surrogate: 1-Chlorooctane	55.2		mg/kg	50.0		110	70-130			
Surrogate: 1-Chlorooctadecane	45.8		"	50.0		91.6	70-130			

Project: Mattie Price Battery


Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

A 1-4-	Doords	Reporting	T Inita	Spike	Source	0/DEC	%REC	DDD	RPD Limit	Nota-
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL42010 - EPA 5030C (GC)										
Blank (EL42010-BLK1)				Prepared &	Analyzed:	12/17/04				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	11							
Xylene (p/m)	ND	0.0250	10							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	85.6		ug/kg	100		85.6	80-120			
Surrogate: 4-Bromofluorobenzene	108		"	100		108	80-120			
LCS (EL42010-BS1)				Prepared &	Analyzed:	12/17/04				
Benzene	99.1		ug/kg	100		99.1	80-120			
Toluene	98.8		0	100		98.8	80-120			
Ethylbenzene	105		"	100		105	80-120			
Xylene (p/m)	234		11	200		117	80-120			
Xylene (o)	114		"	100		114	80-120			
Surrogate: a,a,a-Trifluorotoluene	104		"	100		104	80-120			
Surrogate: 4-Bromofluorobenzene	116		"	100		116	80-120			
Calibration Check (EL42010-CCV1)				Prepared:	12/17/04 A	nalyzed: 12	2/18/04			
Benzene	104		ug/kg	100		104	80-120	,		
Toluene	105		"	100		105	80-120			
Ethylbenzene	105		11	100		105	80-120			
Xylene (p/m)	232		11	200		116	80-120			
Xylene (o)	107		"	100		107	80-120			
Surrogate: a,a,a-Trifluorotoluene	107		· ·	100		107	80-120			
Surrogate: 4-Bromofluorobenzene	116		"	100		116	80-120			
Matrix Spike (EL42010-MS1)	Sou	ırce: 4L17002	2-17	Prepared:	12/17/04 A	.nalyzed: 12	2/18/04			
Benzene	2680		ug/kg	2500	31.6	106	80-120			
Toluene	3230		,,	2500	484	110	80-120			
Ethylbenzene	2600			2500	194	96.2	80-120			
Xylene (p/m)	6270		n	5000	1130	103	80-120			
Xylene (o)	2540		n	2500	287	90.1	80-120			
Surrogate: a,a,a-Trifluorotoluene	124		"	100		124	80-120			
Surrogate: 4-Bromofluorobenzene	131		"	100		131	80-120			

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL42010 - EPA 5030C (GC)										
Matrix Spike Dup (EL42010-MSD1)	Sou	rce: 4L17002	-17	Prepared: 1	12/17/04 At	nalyzed: 12	/18/04			
Benzene	2720		ug/kg	2500	31.6	108	80-120	1.87	20	
Toluene	3270		**	2500	484	111	80-120	0.905	20	
Ethylbenzene	2960		"	2500	194	111	80-120	14.3	20	
Xylene (p/m)	7030			5000	1130	118	80-120	13.6	20	
Xylene (o)	3020		H	2500	287	109	80-120	19.0	20	
Surrogate: a,a,a-Trifluorotoluene	132	· · · · · · · · · · · · · · · · · · ·	"	100		132	80-120			S-0
Surrogate: 4-Bromofluorobenzene	165		"	100		165	80-120			S-6
Batch EL42103 - EPA 5030C (GC) Blank (EL42103-BLK1)	<u> </u>			Prepared &	k Analyzed:	12/20/04				
Benzene	ND	0.0250	mg/kg wet	1 Topareu &	- / Mary ZEU.	12/20/04				
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	"							
Xylene (p/m)	ND	0.0250	н							
Xylene (o)	ND	0.0250	IP.							
Surrogate: a,a,a-Trifluorotoluene	86.0		ug/kg	100		86.0	80-120			
Surrogate: 4-Bromofluorobenzene	104		"	100		104	80-120			
LCS (EL42103-BS1)				Prepared &	k Analyzed:	12/20/04				
Benzene	90.0		ug/kg	100		90.0	80-120			
Toluene	90.8		н	100		90.8	80-120			
Ethylbenzene	99.8		19	100		99.8	80-120			
Xylene (p/m)	224		P	200		112	80-120			
Xylene (o)	108		#1	100		108	80-120			
Surrogate: a,a,a-Trifluorotoluene	98.5		"	100		98.5	80-120			
Surrogate: 4-Bromofluorobenzene	117		**	100		117	80-120			

Project: Mattie Price Battery

Project Number: 04-631

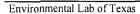
Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL42103 - EPA 5030C (GC)										
Calibration Check (EL42103-CCV1)				Prepared &	Analyzed:	12/20/04				
Benzene	93.0		ug/kg	100		93.0	80-120			
Toluene	93.9		11	100		93.9	80-120			
Ethylbenzene	97.6		11	100		97.6	80-120			
Xylene (p/m)	215		10	200		108	80-120			
Xylene (o)	101		"	100		101	80-120			
Surrogate: a,a,a-Trifluorotoluene	114		n	100		114	80-120			
Surrogate: 4-Bromofluorobenzene	107		"	100		107	80-120			
Matrix Spike (EL42103-MS1)	Sour	ce: 4L17002-	-25	Prepared &	k Analyzed:	12/20/04				
Benzene	2190		ug/kg	2500	17.9	86.9	80-120			
Toluene	2900		**	2500	488	96.5	80-120			
Ethylbenzene	2720		11	2500	205	101	80-120			
Xylene (p/m)	6670		10	5000	1790	97.6	80-120			
Xylene (o)	2530		н	2500	175	94.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	168		"	100		168	80-120			S-(
Surrogate: 4-Bromofluorobenzene	128		"	100		128	80-120			S-0
Matrix Spike Dup (EL42103-MSD1)	Sour	ce: 4L17002	-25	Prepared & Analyzed: 12/20/04						
Benzene	2400		ug/kg	2500	17.9	95.3	80-120	9.22	20	
Toluene	3090		**	2500	488	104	80-120	7.48	20	
Ethylbenzene	2710		#	2500	205	100	80-120	0.995	20	
Xylene (p/m)	6790		**	5000	1790	100	80-120	2.43	20	
Xylene (o)	2500		**	2500	175	93.0	80-120	1.28	20	
Surrogate: a,a,a-Trifluorotoluene	175		"	100		175	80-120			S-0
Surrogate: 4-Bromofluorobenzene	131		"	100		131	80-120			S-0
Batch EL42206 - EPA 5030C (GC)										
Blank (EL42206-BLK1)				Prepared &	k Analyzed:	: 12/20/04			***	
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	P							
Ethylbenzene	ND	0.0250	11							
Xylene (p/m)	ND	0.0250	*							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	94.2		ug/kg	100		94.2	80-120			
Surrogate: 4-Bromofluorobenzene	95. I		"	100		95.1	80-120			

Project: Mattie Price Battery


Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Rosuit	Dinit Cints	Level	Result	70KEC	Emilia		Liiiii	110103
Batch EL42206 - EPA 5030C (GC)									
LCS (EL42206-BS1)			Prepared &	& Analyzec	l: 12/20/04				
Benzene	88.7	ug/kg	100		88.7	80-120			
Toluene	90.6	н	100		90.6	80-120			
Ethylbenzene	98.5	н	100		98.5	80-120			
Xylene (p/m)	217	н	200		108	80-120			
Xylene (o)	102	н	100		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	114	"	100		114	80-120			
Surrogate: 4-Bromofluorobenzene	115	"	100		115	80-120			
Calibration Check (EL42206-CCV1)			Prepared:	12/20/04 A	Analyzed: 12	2/21/04			
Benzene	87.2	ug/kg	100		87.2	80-120			
Toluene	82.0	11:	100		82.0	80-120			
Ethylbenzene	81.4	I)	100		81.4	80-120			
Xylene (p/m)	180	11	200		90.0	80-120			
Xylene (o)	87.7	D	100		87.7	80-120			
Surrogate: a,a,a-Trifluorotoluene	105	"	100		105	80-120			
Surrogate: 4-Bromofluorobenzene	96.0	"	100		96.0	80-120			
Matrix Spike (EL42206-MS1)	Sou	rce: 4L17002-33	Prepared:	Prepared: 12/20/04 Analyzed: 12/21/04					
Benzene	90,6	ug/kg	100	ND	90.6	80-120			
Toluene	90.5	•	100	ND	90.5	80-120			
Ethylbenzene	99.7	4	100	ND	99.7	80-120			
Xylene (p/m)	225	н	200	ND	112	80-120			
Xylene (o)	109	и	100	ND	109	80-120			
Surrogate: a,a,a-Trifluorotoluene	113	n	100		113	80-120			
Surrogate: 4-Bromofluorobenzene	113	"	100		113	80-120			
Matrix Spike Dup (EL42206-MSD1)	Sou	rce: 4L17002-33	Prepared:	12/20/04	Analyzed: 12	2/21/04			
Benzene	93.2	ug/kg	100	ND	93.2	80-120	2.83	20	
Toluene	93.2	R	100	ND	93.2	80-120	2.94	20	
Ethylbenzene	100	u	100	ND	100	80-120	0.300	20	
Xylene (p/m)	225	н	200	ND	112	80-120	0.00	20	
Xylene (o)	108	U	100	ND	108	80-120	0.922	20	
Surrogate: a,a,a-Trifluorotoluene	118	,,	100		118	80-120			
Surrogate: 4-Bromofluorobenzene	119	"	100		119	80-120			

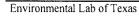
% Moisture

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785


Reported: 12/27/04 10:29

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL42003 - General Preparation	n (Prep)									
Blank (EL42003-BLK1)				Prepared:	12/17/04 A	nalyzed: 12	/20/04			
% Moisture	0.004		%							
Duplicate (EL42003-DUP1)	Sou	rce: 4L17002-	01	Prepared:	12/17/04 A	nalyzed: 12	/20/04			

15.0

15.6

Project: Mattie Price Battery

Project Number: 04-631

Project Manager: Deb Lambertson

Fax: (432) 689-7785

Reported: 12/27/04 10:29

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). DET Analyte DETECTED Analyte NOT DETECTED at or above the reporting limit ND NR Not Reported dry Sample results reported on a dry weight basis Relative Percent Difference RPD Laboratory Control Spike LCS MSMatrix Spike Dup Duplicate

	Kaland KJul	
Report Approved By:	Control	Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

12/27/2004

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: Kane Environmental.				
Date/Time: 12-17-04. 0830				
Order #: 4L17002				•
Initials:				
Sample Receipt	Checkli	cf		
Temperature of container/cooler?	1860)	No	2.5 C	
Shipping container/cooler in good condition?	Yes	No	- Andrews Const.	
Custody Seals intact on shipping container/cooler?	Yes	No	(Not present	
Custody Seals intact on sample bottles?	Yes	No	(Not present)	
Chain of custody present?	(Yes)	No		
Sample Instructions complete on Chain of Custody?	(Yes)	No		
Chain of Custody signed when relinquished and received?	YES	No		
Chain of custody agrees with sample label(s)	(Yes)	No		
Container labels legible and intact?	(Yes)	No		
Sample Matrix and properties same as on chain of custody?	(Yes)	No		
Samples in proper container/bottle?	(Yes)	No		
Samples properly preserved?	(Yes)	No		
Sample bottles intact?	(Xes)	No		
Preservations documented on Chain of Custody?	(Ves)	No		
Containers documented on Chain of Custody?	Mes.	No		
Sufficient sample amount for indicated test?	(Ves)	No		
All samples received within sufficient hold time?	Yes.	No		
VOC samples have zero headspace?	Yes.	No	Not Applicable	
Other observations: Trip Blank arrived us Sample. No method Listed for TIH.	<u>2 Von</u>	4 '5	net en Coc	the grant control of the control of
Variance Docur Contact Person: - Deb Date/Time: 12 Regarding: Lethmesage will Refun. Call.			Contacted by:	jly.
Corrective Action Taken:				

				- 1000 MM MARKET 1000
	Pile og paysyn y artigengjirgdellind. Frilge andere			
	***************************************			man man believe the property of the second o

SITE HEALTH AND SAFETY PLAN

INTRO	DDUCTION				
Site Ov	vner/Operator Na	ame:			· · · · · · · · · · · · · · · · · · ·
Name o	of Site:				
Locatio	on of Property: _				
SITE I	DESCRIPTION				
Descrip	otion of Project:_				
Descrip	otion of Site:				
Descrip	otion of Surround docks	ling Area: Topogi cliffs	raphy:1 marshes1	rocky _ other:	sandy beach
Descrip	otion of Surround rural	ling Population:unpopulated	indind	ustrial ::	_ residentia
Additio	onal Information:			· · · · · · · · · · · · · · · · · · ·	
Weathe	er Conditions:				
					
	Wind	Current	6-Hr Forecast	12-Hr Forecas	it
	Direction:	i			

Wind	Current	6-Hr Forecast	12-Hr Forecast
Direction:			
Velocity:			
Character:			

C. **CHAIN OF COMMAND** Onsite Supervisor: Other Onsite Personnel: Pre-Entry Briefing/Work plan (brief description of activities, tasks, approximate work D. force, special equipment required, and potential safety and health hazards). E. Other Safety and Health Hazards (description of safety and health hazards which may be associated with the project activities described above.) Potential hazards may include: (Check those that apply.) N () Skin contact with hazardous substance. (List material) Water hazards including high winds and boating hazards; ()Heat stress/Heat exhaustion;) () () Hazards to the eye; Cuts and abrasions: () Vehicular/pedestrian traffic;) () Slippery ground;) () () Uneven terrain: Sunburn/Hypothermia () Poor visibility; () () Water hazards; () Dust hazards:) () Hearing hazards; Ultraviolet radiation/sunlight;) () () Elevated work: Overhead loads: ()) () Heavy equipment operation hazards; () Aircraft operation hazards; Burn hazards (heat tracing, boilers, warming fires, etc.); () () Uncontrolled fire: () Unignited flammable vapors; Biological hazards (medical waste);) ()() Electrical hazards;) () Other (Specify) in high airborne concentrations, the use of an approved respirator is recommended. Do not attempt rescue without approved supplied air of self-contained breathing equipment.

F. HAZARD EVALUATION

Complete as applicable:

Hazard	Concentrations	Primary Hazards
LEL/Oxygen		
Total Hydrocarbons (Benzene, Toluene, Xylene)		
Hydrogen Sulfide		

Material Safety Data Sheets for these substances are available?

Substance: (list material)	
Exposure Symptoms (i.e. skin, ingestion)	First Aid Instructions
FIRST AID EQUIPMENT AVA LOCATIONS:	ILABLE ON SITE OR AT THE FOLLO

Other____

I. EMERGENCY MEDICAL ASSISTANCE (EMS, Hospitals)

See emergency contact information in Section 4.

J. HAZARD REDUCTION PROCEDURES

Hazard	Method
Eye Contact	Wear Chemical Safety Goggles
Skin Contact	Wear Impervious Protective Clothing
High Airborne Concentrations	Use Approved Respiratory Protection
Fire Protection	When Fighting Fires, Do Not Enter a Confined Space Without Proper Protective Equipment, Including Self-Contained Breathing Apparatus.

K. PERSONAL PROTECTIVE EQUIPMENT

Rain Suits	Air Purifying Respirator
Goggles	Sunscreen
Gloves (Impervious)	Floration Doning
Boots	Flotation Devices
	Hard Hats
Barrier Cream	
	Duct Tape
SCBA/Respirator	
	Other (Specify)

T	CITT	CONTT	$\mathbf{D} \mathbf{A} \mathbf{T}$
1.	21 I I	CONT	KUI.

- 1. Anyone entering or departing a WORK AREA shall report to the site supervisor or designated representative.
- 2. No personnel shall enter a site without subscribing to the Site Safety and Health Plan.
- 3. The buddy system is preferred at every site, and mandatory if H₂S gas is present.
- 4. Training.
 - a. In general, all personnel on site shall be trained adequately to perform their assigned tasks safely. The general training level requirement is technician level and/or routine site worker (40 hours and 3 days OJT min.) except as noted below.

JOB DESCRIPTION:	TRAINING LEVEL:
and the same that the same tha	

b. All personnel entering the site shall be fully informed about applicable hazards and procedures on site.

M. DECONTAMINATION

Partial Decontamination Station Locations	Procedures	
Full Decontamination Station Locations	Procedures	

N. AIR MONITORING

O.

P.

Monitoring shall be conducted with monitoring equipment calibrated and maintained in accordance with the manufacturer's instructions (electronic equipment shall be calibrated before each day's use) when hazardous gases are present.

Monitor:	Frequency:					
Combustible gas	continuous, hourly, daily, OTHER:					
Oxygen	continuous, hourly, daily, OTHER:					
H2S dosimeter	continuous, hourly, daily, OTHER:					
H2S level	continuous, hourly, daily, OTHER:					
HNU	continuous, hourly, daily, OTHER:					
OVA	continuous, hourly, daily, OTHER:					
WBGT	continuous, hourly, daily, OTHER:					
Noise	continuous, hourly, daily, OTHER:					
OTHER:	continuous, hourly, daily, OTHER:					
COMMUNICATIONS PLAN The following standard hand signals have the following meanings: Hand gripping throatOut of air/can't breath Grip buddy's wristLeave area immediately Both hands around waistLeave area immediately						
Thumbs up	Need assistanceO.K., I'm all right, I understandNo, negative					

MEDICAL SURVEILLANCE REQUIRED:

Q.	ALL SITE PERSONNEL HAVE READ THE ABOVE FAMILIAR WITH THE PROVISIONS HEREIN.			PLAN, AND ARE
	Site Safety Officer	Name		Signature/Date
	Project Personnel		_	
			-	
			-	
			_	