1R- 444

REPORTS

DATE:

May 10, 2005

Mr. Paul Sheeley New Mexico Oil Conservation Division – District I 1625 North French Drive Hobbs, New Mexico 88240

Re: Pipeline Spill Investigation Report, Dynegy Midstream Services. L.P., Unit Letter I (NE/4, SE/4), Section 24, Township 22 South, Range 37 East, Lea County, New Mexico

Dear Mr. Sheeley:

Dynegy Midstream Services, L.P. ("Dynegy") has retained Larson and Associates Inc. ("LA") to investigate potential impacts to soil from a historic natural gas liquids spill that occurred from a pipeline leak in the northeast quarter (NE/4) of the southeast quarter (SE/4), Section 24, Township 22 South, Range 37 East, Lea County, New Mexico (Site #05). The spill did not involve a reportable quantity of gas or liquid, but a Release Notification and Corrective Action form (C-141) was filed at the request of the New Mexico Oil Conservation Division ("NMOCD"). The leak was repaired. Figure 1 presents a site location and topographic map. Appendix A presents a copy of the form C-141.

Excavation of impacted soil was conducted from September 2, 2003 until September 24, 2003. Confirmation samples were collected and analyzed, and a Pipeline Spill Investigation Report was submitted to the NMOCD on January 30, 2004. Figure 2 shows the boundaried of the excavation and locations of soil samples reported in the January 2004 report. The excavation was backfilled.

On August 12, 2004, the NMOCD denied closure of Site #05, stating that "the Ranking Criteria is 10 because groundwater is 54-69 ft. in that section".

The following Recommended Remediation Action Levels (RRALs) have been assigned based on NMOCD criteria:

Benzene	10 mg/kg
Total BTEX	50 mg/kg
TPH	100 mg/kg

Current Investigation

On September 24, 2004, LA installed three (3) soil borings at Site #05 (BH-1, BH-2 and BH-3), using a Terraprobe® direct-push sampling system, to assess the vertical limits of the spill. Samples from the exploratory borings were collected from ground surface to a depth of approximately eight (8) feet below ground surface ("bgs") at boring BH-1, to approximately twenty- two (22) feet bgs at boring BH-3, using a stainless steel core barrel and dedicated sample liners. The sampling equipment was thoroughly cleaned between soil boring locations with a solution of laboratory-grade detergent and potable water, and rinsed with distilled water. All soil borings were plugged with bentonite. Figure 2 shows the locations of the soil borings with relation to the samples reported in January 2004. Appendix B provides soil boring logs.

The soil samples were collected in four-foot increments (i.e., 0-4', 4-8', etc.) and two (2) foot composite samples (i.e., 0-2', 2-4', 4-6', etc.) from each interval were placed in clean glass sample jars, labeled, chilled in

Mr. Paul Sheeley Page 2 May 10, 2005

an ice chest, and delivered under chain-of-custody control to Environmental Lab of Texas, Inc. (ELOT), located in Odessa, Texas. A duplicate of each composite sample was also placed in a clean glass sample jar for headspace analysis. The headspace jars were filled approximately ³/₄ full, and a layer of aluminum foil was placed over the opening of the jar before replacing the cap. The headspace samples were allowed to reach ambient temperature before a RAE Instruments, Model 2000 photoionization detector ("PID") was used to measure the concentration of organic vapors in the headspace of the sample jars. After calibrating the instrument to 99.9 parts per million ("ppm") isobutylene, the PID probe was inserted into the headspace of the sample jars (through the aluminum foil), and the concentration of organic vapors was displayed by the instrument in ppm. The PID readings are summarized in Table 1.

The soil sample from each boring with the highest PID reading was analyzed for total petroleum hydrocarbons ("TPH") by EPA method 8015 (extended) for gasoline range organics ("GRO") and diesel range organics ("DRO"). If the PID reading exceeded 100 ppm, the sample was also analyzed for benzene, toluene, ethylbenzene and xylenes (collectively referred to as BTEX) by method 8021B. Additional samples were analyzed for TPH and/or BTEX, in order to provide vertical delineation. Table 1 presents a summary of laboratory analysis of soil samples. Appendix C presents the laboratory analyses and chain of custody documentation.

Referring to Table 1, concentrations of TPH exceeded the RRAL (100 mg/Kg) in the samples collected from boring BH-2 at 2-4 feet bgs (160.1 mg/Kg) and 6-8' bgs (9,890 mg/Kg), and from boring BH-3 at 6-8' bgs (996.7 mg/Kg), 18-20' bgs (7,210 mg/Kg) and 20-22' bgs (9,990 mg/Kg). Concentration of BTEX exceeded the RRAL (50 mg/Kg) in the samples collected from boring BH-3 at 18-20' bgs (55.17 mg/Kg) and 20-22' bgs (101.19 mg/Kg).

On January 3, 2005, excavation began at the approximate location of soil boring BH-3, and continued until soil samples were collected from the sides and bottom of the excavation on January 11, 2005. The soil samples were placed in clean glass sample jars, labeled, chilled in an ice chest, and delivered under chain of custody control to ELOT. Duplicate samples were collected for headspace analysis, as described above. Soil samples were analyzed for TPH by EPA method SW-846-8015. Table 2 presents a summary of the laboratory analysis of soil from the excavation, and PID readings. Figure 3 shows the sample locations and TPH concentrations. Appendix C presents laboratory data and chain of custody documentation.

Referring to Table 2, the soil samples collected from north side of the excavation at a depth of 20' bgs (SS-5), the south side at a depth of 20' bgs (SS-6) and the bottom at a depth of 41' bgs (SS-7), showed concentrations of TPH that exceeded the RRAL (834 mg/Kg, 216.4 mg/Kg and 106.3 mg/Kg, respectively). All other samples, collected from the east, north and south sides of the excavation (SS-1 through SS-4) reported TPH concentrations below the test method detection limit. Samples were not collected from the west side of the excavation, as it was ramped to a depth of 41' bgs. Laboratory analysis was not conducted for BTEX, as all PID readings were below 100 ppm.

Excavation continued at the Site #5, until confirmation samples were collected on February 22, 2005, from the north and south side, and the bottom of the excavation. Soil samples were placed in clean glass sample jars, labeled, chilled in an ice chest and delivered to ELOT under chain of custody control. A duplicate of each sample was collected for headspace analysis, as described above. Soil samples were analyzed for TPH

Mr. Paul Sheeley Page 2 May 10, 2005

and chloride by EPA method SW-846-9253. Table 2 presents a summary of laboratory analyses of soil from the excavation, and PID readings. Figure 3 shows the sample locations and TPH concentrations. Appendix C presents laboratory data and chain of custody documentation.

Referring to Table 2, all soil samples collected on February 22, 2005 (SS-8 through SS-10), showed TPH concentrations below the RRAL. The highest chloride concentration was reported in sample SS-10 (40.4 mg/Kg), collected from the bottom of the excavation at a depth of approximately 42 feet bgs. All PID readings were below 100 ppm.

Soil from the excavation was removed from the site, and disposed at an NMOC Dapproved facility. As TPH and chloride concentrations from all final samples collected at Site #05° are below the RRALs, Dynegy requests that Site # 05 be closed. The excavation remains open pending approval of closure by the NMOCD, and will be backfilled with clean soil pending approval.

Please call Mr. Cal Wrangham with Dynegy (432) 688-0555 or myself at (915) 687-0901 if you have any questions.

Sincerely, Larson & Associates, Inc.

Cindy K. Crain, P.G.

Encl. cc: Mr.

Mr. Cal Wrangham – Dynegy Mr. Roger Holland- Dynegy Mr. James Lingnau - Dynegy

的复数的生物现在分词

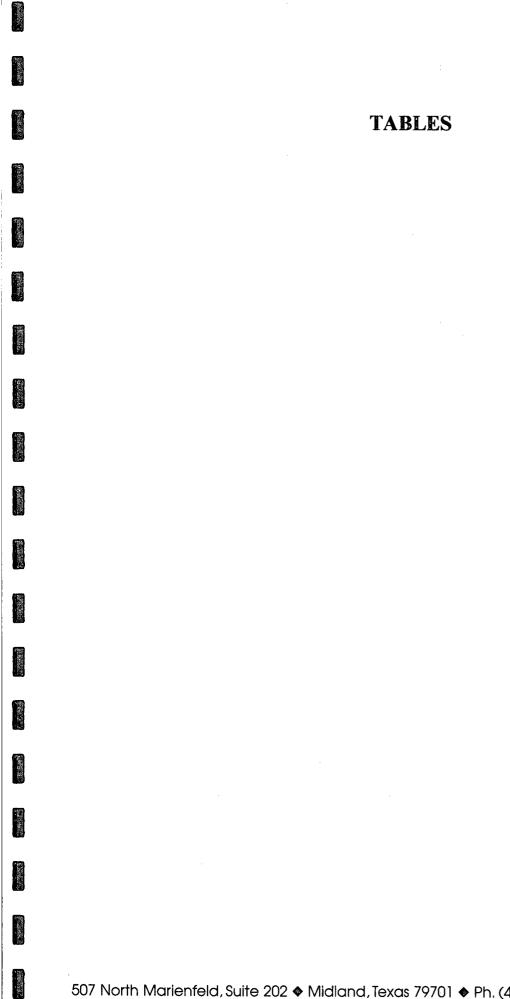


Table 1:

Summary of Headspace and Laboratory Analyses of Soil Samples from Auger Borings

and the second second

a with the

Provinces.

All and a line of the

Section of

an second second

and the second s

(Tableson

* 185 BAR

Sec. 10

Name of

States of

Sarati and

Dynegy Midstream Services, L.P., Spill Site #05

NE/4,SE/4, Section 24, Township 22 South, Range 37 East

	_					6				6	6
	DID	udd)		32	90.3	440.6	92.9	3.3	134	1,369	<u>56</u> 1≷≧
	Total	BTEX	50 50		1	3.341	1	1	0.0419	55.17	<u>101.19</u>
	Benzene	(mg/kg)	10	468		<0.0250			<0.0250	, 1.76	¢ 6.69
	HAT	C6-C35	100	<20.0	1.091	9,890	<20.0	<20.0	7.966	7,210	1~066,6
And the second se	DRO	>C12-C35		<10.0	146.0	7,850	<10.0	<10.0	206	4,840	6:050
	GRO	C6-C12	(gy/gm)	<10.0	14.1	2,040	<10.0	<10.0	89.7	2,370	3,940
0	Sample	Depth (Trank Land)	(rat ups)	6-8	2-4	6-8	10-12	2-4	6-8	18-20	20-22
New Mexic	Soil	Boring		BH - 1	BH - 2			BH-3			
Lea County, New Mexico	Sample	Date	RRAL	9/24/2004	9/24/2004			9/24/2004			

Notes: Analysis performed by Environmental Lab of Texas I, Ltd., Odessa, Texas

1. BGS: Sample depth in feet below ground surface

2. TPH: Total petroleum hydrocarbons (Sum of DRO + GRO)

3. mg/kg: Milligrams per kilogram

4. <: Below method detection limit

5. PID: Photoionization detector

6. ppm: Parts per million

Summary of Headspace and Laboratory Analyses of Soil Samples Table 2:

Sumplements

a state of the state

Section of the

Concernants

「「「「「「」」」

語言語に

Salaran Salar

C. LEWISCON

P. Samerica

. distriction

No.

and the second second

新田田市

構成の

State State

State of

NE/4.SE/4. Section 24. Township 22 South, Range 37 East Dynegy Midstream Services, L.P., Spill Site #05

	NE/4,SE/	4,SE/4, Section 24, Township 22 South, Range 37 East County, New Mexico	ıship 22 Sout	h, Range 37	East			
Sample	Sample	Sample Sample Location	Sample	GRO	DRO	HAIL	Chloride	PID
Date	No.	4	Depth	C6-C12	>C12_C35	C65C35	(mg/kg)	(mqq)
			(Feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)		
RRAL						100	250	<u>8</u>
1/11/2005	SS-1	East side	18'	<10.0	<1000	<u>≨201</u> 0		<u>[[2.63]</u>
1/11/2005	SS-2	East side	38'	<10.0	0101>	\$20i0		
1/11/2005	SS-3	North side	38'	<10.0	0]0](>	<u>≷20</u> i0		012
1/11/2005	SS-4	South side	38'	7.21	6769	<u>122</u> 1		包約 醫
1/11/2005	SS-5	North side	20'	160	674	834		14.8
1/11/2005	9-SS	South side	20'	55.4	161	216.4		[3]4]
1/11/2005	SS-7	Bottom	41'	34.9	極し	1063		10 3
2/22/2005	SS-8	North side	20	<10.0	0 <u>i0</u> i>	< 200	23.1	1014
2/22/2005	SS-9	South side	20	<10.0	0 <u>i0</u> i>	< 20.0	1.7.1	(E:0)
2/22/2005	SS-10	Bottom	42	7.02	3891	45112	40.4	011
Notes: Analysi	is performed by	Notes: Analysis performed by Environmental Lab of Texas I, Ltd., Odessa, Texas	s I, Ltd., Odessa, To	exas				A server
1. BGS:	Sample depth i	Sample depth in feet below ground surface						
2. TPH:	Total petroleur	Total petroleum hydrocarbons (Sum of DRO + GRO)	O + GRO)					
3. mg/kg:	Milligrams per kilogram	: kilogram						
م ۲	Below method	Below method detection limit				- Ale		
5. PID:	Photoionization detector	n detector						
e nom.	Parts per million	F				·:**		

Below method detection limit 2. TPH: 3. mg/kg: 4. <: 5. PID: 6. ppm:

Parts per million

FIGURES

State of the

Same and the second

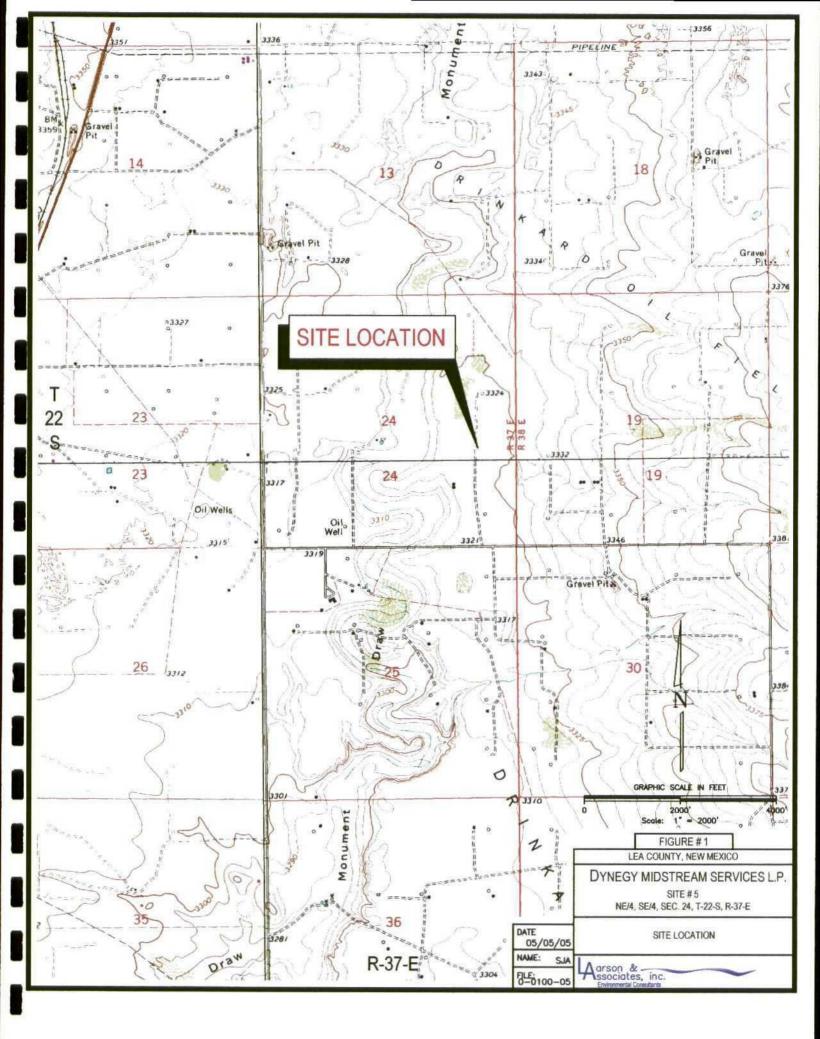
State State

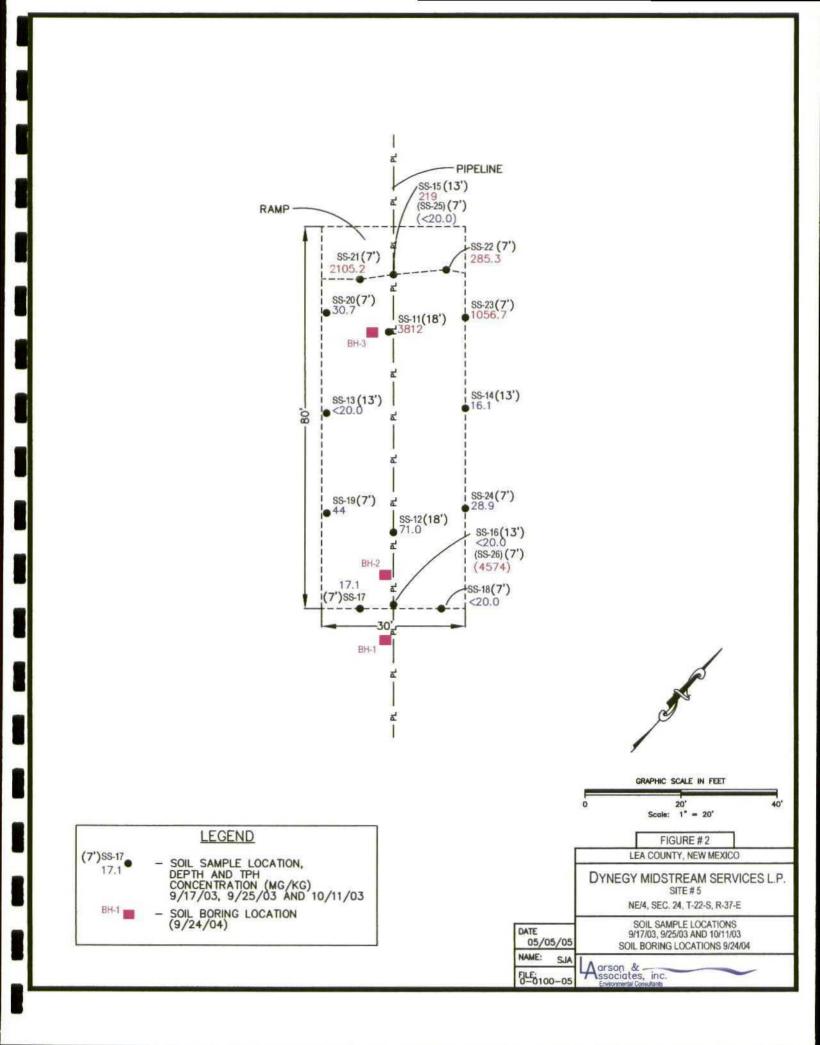
and the second

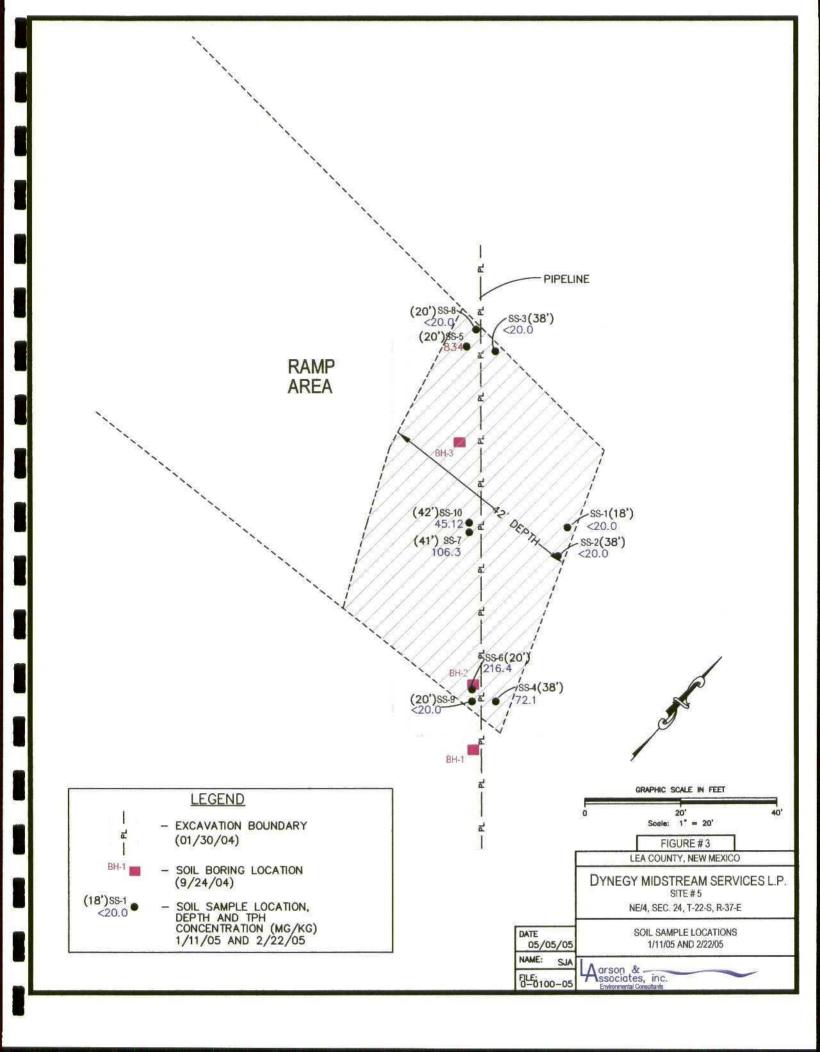
Production of

のないである

State of the second


業の変わり


a state of the second


Section 2

A Statistics and Statistics

507 North Marienfeld, Suite 202 Midland, Texas 79701 Ph. (432) 687-0901 Fax (432) 687-0456

APPENDIX A

物語語

States of the second

間で

構造

の語言

開催に

1944-177

Street La

Release Notification and Corrective Action Form (C-141)

507 North Marienfeld, Suite 202 Midland, Texas 79701 Ph. (432) 687-0901 Fax (432) 687-0456

C PARES

TREFER

A STATE

ないのである

Sector Sector

Printer -

a the set

1412.141

ter bil

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification	and Corrective Actio	n	
N	OPERATOR	I Initial I	Report 🔀 Final Report
Name of Company Dynegy Midstream Services, L.P.	Contact Dave Harris)	report El Tina Report
Tudicos TO Dox 1909 Eunice, NM 88231	Telephone No. (505) 63	1.7069	
Facility Name Eunice Plant Gathering System	Facility Type Gas Plant Low	Pressure	Gathering Lines
Surface Owner J.L. Murcy J Pat Sims Mineral Owner		Lease No.	J
LA Project # 0-0100-05 LOCATIO	N OF RELEASE		
Hait Lattan Contin I mainten La Otterio		West Line C	
I 24 225 37E			Lea
Type or recease Natural (and Condensate	OF RELEASE Volume of Release ? unknown	1 11 1 1 1	
Source of Release Pipeline Leak Was Immediate Notice Given?	Volume of Release ? unknow Date and Hour of Occurrence	Date and Ho	vovered None our of Discovery
Was immediate Notice Given? □ Yes	If YES, To Whom?	1 2000 4110 110	
By Whom?			
Was a Watercourse Reached?	Date and Hour		
Yes 🛛 No	If YES, Volume Impacting the Wa	tercourse.	
If a Watercourse was Impacted, Describe Fully.*	1		
David On the lite			
Describe Cause of Problem and Remedial Action Taken.*			
Pipeline leak due to interior and exterio	x correspond him		.1 1 .1
	WIII C.	kavate i	mpacted soil.
Describe Area Affected and Cleanup Action Taken.*			
Some staining along significantial that	we have an		
Some staining along pipeline right of we	in will clean up per	NMOCD	guidelines
and oddining documentation to district o	ttice.		
I hereby certify that the information given above is true and complete to regulations all operators are required to report and/or file certain release	he best of my knowledge and underst	and that pursua	ant to NMOCD rules and
regulations all operators are required to report and/or file certain release i public health or the environment. The acceptance of a C.141 report by fi	otifications and perform corrective a	ctions for releas	ses which may endanger
should their operations have failed to adequately investigate and some dia	a notice marked as "Final Report"	does not reliev	e the operator of liability
or the environment. In addition, NMOCD acceptance of a C-141 report of federal, state, or local laws and/or regulations.	loes not relieve the operator of respon	ground water, s sibility for con	surface water, human health
Signature:	OIL CONSER	VATION E	DIVISION
Signature: CPW			
Printed Name: Cal Wrangham	Approved by District Supervisor:		
Title: ESYH Advisor	Approval Date:	Expiration Da	ate:
E-mail Address: CWWT @ dynegy. Com	Conditions of Approval:		
Date: 8/21/03 Phone: (432) 688.054	••		Attached
* Attach Additional Sheets If Necessary	<u> </u>		

litional Sheets If Necessary

APPENDIX B

5.722.48

činki

Strates

精制

L. L. A. A. L. M.

「「「「「」」」

建建建

影響品在於

部にはい

· 推动的 建合物的 网络

Soil Boring Logs

507 North Marienfeld, Suite 202 Midland, Texas 79701 Ph. (432) 687-0901 Fax (432) 687-0456

Client: Dynegy Midstream Services L. P.

Project: Site # 5

第二第一

and the second

Sector of the sector of the

60.50×7

0000

Same P

T ALL STREET

調査派さ

では非正

NAT ALL

Barriel C

a the set

Same of the second

85

Project No: 0-0100-05

Location: NE/SE, SEC. 24, T-22-S, R-37-E, Lea Co., NM

Log: BH-1

Page: 1 of 1

Geologist: C. Crain

		SUBSURFACE PROFILE	s	AMPI	E		
Depth	Symbol	Description	Number	Type	Recovery	PID ppm 50 150	Notes
0-		Ground Surface	1	[
0		Sand 5 YR 6/3, Light reddish brown, fine grained, well sorted TD: 8'	1			32.0 •	
Dr		rod: Direct Push Larson and 507 N. Mar 9-24-04 Midland, Te (432) 687-0	ienfelo xas 7	I, Suit	, Inc e 202		Elevation: N/A Checked by: C. Crain Drilled by: LA

Client: Dynegy Midstream Services L. P.

Project: Site # 5

Series of

States a

調査

12.12 B

No.

Statistics of the

State of the

C. B. TOWN

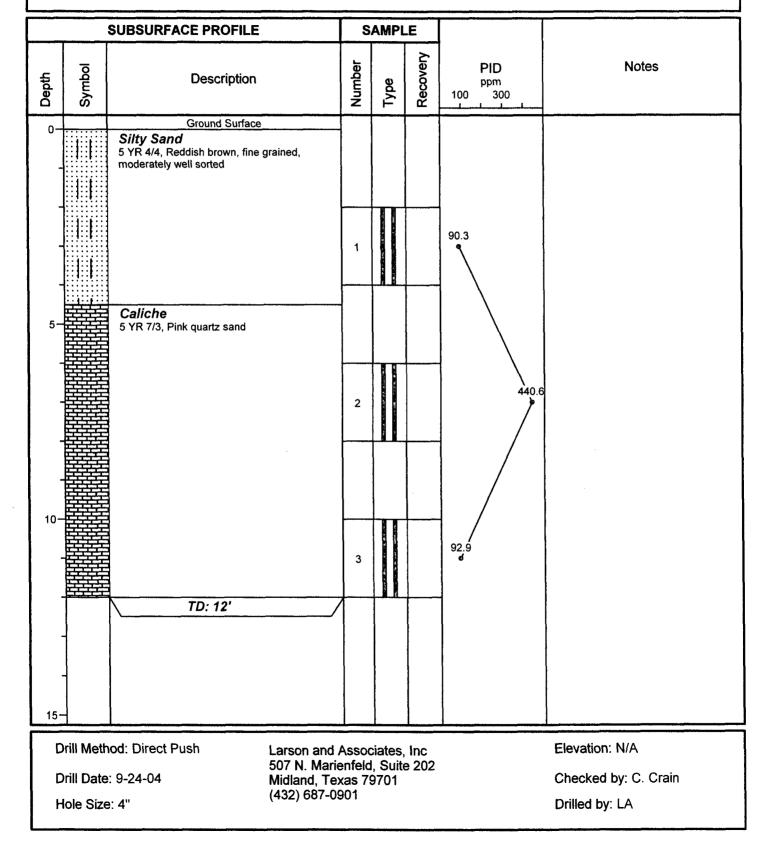
- 2522 -

STATES OF

Section 2

State of the second

and a set


Project No: 0-0100-05

Location: NE/SE, SEC. 24, T-22-S, R-37-E, Lea Co., NM

Log: BH-2

Page: 1 of 1

Geologist: C. Crain

Client: Dynegy Midstream Services L. P.

Project: Site # 5

Project No: 0-0100-05

Location: NE/SE, SEC. 24, T-22-S, R-37-E, Lea Co., NM

Log: BH-3

Geologist: C. Crain

		SUBSURFACE PROFILE	S	AMPL	E		
Depth	Symbol	Description	Number	Type	Recovery	PID ppm 500 1500	Notes
0-		Ground Surface					
-		Sand 5 YR 6/3, Light reddish brown, fine grained, well sorted					
-			1		•	3.3	
5							
-			2			134.0 •	
-							
10-		Backfill	3			237.4	
-							
15-			4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		142.7	
		Silty Sand					
20-		5 YR 5/4 Reddish brown quartz sand, hydrocarbon odor.	5			1369.0	
		TD: 22'	6			1999.0 •	
	-	10.22					
25-							
D		od: Direct Push Larson and A 507 N. Marie 9-24-04 Midland, Tex (432) 687-09	enfeld xas 79	, Suite	Inc e 202		Elevation: N/A Checked by: C. Crain Drilled by: LA

A STREET P. dife adding

and the second

State of

御御御

新新"

構成で

FREE STA

24 . 36 . S

Series.

のない

Page: 1 of 1

APPENDIX C

PHILE PHILE

物理の

観察の

A PROPERTY

問題で

Statistics of

Statistica -

(AND R

報告に対応

が調整する

R. HERRING

1.2.1.A.M

Service and the

Section 2

A. 16. 12.

and the second second

Laboratory Reports

507 North Marienfeld, Suite 202 Midland, Texas 79701 Ph. (432) 687-0901 Fax (432) 687-0456

800 B 20

構成語

観光がたい

1000000

Sate of the second

Contraction of the

No. St. Card

A NAME OF CASE OF CASE

State of

Subtress S

10. AN

Carl Carl

Sec. 1

Analytical Report

Prepared for:

Cindy Crain Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Dynegy Site #5 Project Number: 0-0100-05 Location: None Given

Lab Order Number: 4I26004

Report Date: 09/30/04

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

and the second

東京

No.

100 C

の行きない

State of the

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

Reported: 09/30/04 15:46

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-1 (6-8')	4126004-01	Solid	09/24/04 09:19	09/24/04 17:30
BH-2 (2-4')	4126004-02	Solid	09/24/04 09:30	09/24/04 17:30
BH-2 (6-8')	4126004-03	Solid	09/24/04 09:35	09/24/04 17:30
BH-2 (10-12')	4I26004-04	Solid	09/24/04 09:43	09/24/04 17:30
BH-3 (2-4')	4126004-05	Solid	09/24/04 09:57	09/24/04 17:30
BH-3 (6-8')	4126004-06	Solid	09/24/04 09:59	09/24/04 17:30
BH-3 (18-20')	4126004-07	Solid	09/24/04 10:18	09/24/04 17:30
BH-3 (20-22')	4126004-08	Solid	09/24/04 10:38	09/24/04 17:30

Page 1 of 11

"一下"的话语的问题,他们们

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

12.2.1 C. 2.4

and the second second

10 M 10

14.14

and the second

Back & We

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

		Or	ganics b	y GC					
		Environ	nental L	ab of T	'exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
BH-1 (6-8') (4126004-01) Solid		·						······································	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EI42702	09/27/04	09/28/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	M			н	*	"	
Total Hydrocarbon C6-C35	ND	10.0	"	*	•			"	
Surrogate: 1-Chlorooctane	····	102 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		99.0 %	70-1	130	"	"	"	"	
BH-2 (2-4') (4126004-02) Solid									
Gasoline Range Organics C6-C12	14.1	10.0	mg/kg dry	1	EI42702	09/27/04	09/28/04	EPA 8015M	
Diesel Range Organics >C12-C35	146	10.0	**		*	-	"	"	
Total Hydrocarbon C6-C35	160	10.0			n	۳	"	"	
Surrogate: 1-Chlorooctane	<u> </u>	106 %	70-1	130	"	"	N	**	
Surrogate: 1-Chlorooctadecane		89.6 %	70-1	130	"	"	n	"	
BH-2 (6-8') (4126004-03) Solid									
Benzene	ND	0.0250	mg/kg dry	25	EI42901	09/28/04	09/29/04	EPA 8021B	
Toluene	0.185	0.0250	H	Ħ	۳	*	н	11	
Ethylbenzene	0.549	0.0250	н	*	"	"		н	
Xylene (p/m)	1.76	0.0250	n	*	H	"	н	**	
Xylene (0)	0.847	0.0250	۳		*	H	"	Ħ	
Surrogate: a,a,a-Trifluorotoluene		96.8 %	80-1	120	"	"	. 11	11	
Surrogate: 4-Bromofluorobenzene		115 %	80-1	120	n	"	"	"	
Gasoline Range Organics C6-C12	2040	10.0	mg/kg dry	1	EI42702	09/27/04	09/28/04	EPA 8015M	
Diesel Range Organics >C12-C35	7850	10.0		H	*	н	*	n	
Total Hydrocarbon C6-C35	9890	10.0	H	Ħ			*		
Surrogate: 1-Chlorooctane		129 %	70-,	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		125 %	70	130	"	"	"	"	
BH-2 (10-12') (4I26004-04) Solid									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EI42702	09/27/04	09/28/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	*	"		N	H		
Total Hydrocarbon C6-C35	ND	10.0	n		H	"	n	N	
Surrogate: 1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	110 %	70-	130	"	н	n	н	
Surrogate: 1-Chlorooctadecane		105 %	7 0- -	130	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 2 of 11

22.00

No.

and the second second

で、社会をいた

1997 P. 20

Printer Co

Support 7.8

100

Contraction of the

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

Notes

		Or <u>.</u> Environn	ganics b nental L	•	lexas			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method
BH-3 (2-4') (4I26004-05) Solid								
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EI42702	09/27/04	09/28/04	EPA 8015M
Diesel Range Organics >C12-C35	ND	10.0			"		"	Ħ
Total Hydrocarbon C6-C35	ND	10.0	H	Ħ	*			n
Surrogate: 1-Chlorooctane		108 %	70-1	130	"	"	"	"
Surrogate: 1-Chlorooctadecane		87.2 %	70-1	130	"	"	"	"

BH-3 (6-8') (4126004-06) Solid

						the second s		and the second se
ND	0.0250	mg/kg dry	25	EI42901	09/28/04	09/29/04	EPA 8021B	
ND	0.0250	n	н	*	"		•	
ND	0.0250	W	н	Ħ			•	
0.0271	0.0250		W				*	
J [0.0148]	0.0250					Ħ	M	J
	92.3 %	80-12	0	"	"	#	"	
	82.1 %	80-12	0	"	"	"	"	
89.7	10.0	mg/kg dry	1	EI42702	09/27/04	09/28/04	EPA 8015M	
907	10.0	n	*	H	*	"	*	
997	10.0			n	н	M	n	
	126 %	70-13	0	"	"	"	"	
	129 %	70-13	0	"	n	"	"	
	ND ND 0.0271 J [0.0148] 89.7 907	ND 0.0250 ND 0.0250 0.0271 0.0250 J [0.0148] 0.0250 92.3 % 82.1 % 89.7 10.0 907 10.0 997 10.0 126 % 126 %	ND 0.0250 " ND 0.0250 " 0.0271 0.0250 " J [0.0148] 0.0250 " 92.3 % 80-12 82.1 % 80-12 89.7 10.0 mg/kg dry 907 10.0 997 10.0 126 % 70-13	ND 0.0250 " " ND 0.0250 " " 0.0271 0.0250 " " J [0.0148] 0.0250 " " J [0.0148] 0.0250 " " S89.7 10.0 mg/kg dry 1 907 10.0 " " 997 10.0 " "	ND 0.0250 " " ND 0.0250 " " 0.0271 0.0250 " " J [0.0148] 0.0250 " " <i>J</i> [0.0148] 0.0250 " " <i>S</i> 2.1 % 80-120 " " 89.7 10.0 mg/kg dry 1 EI42702 907 10.0 " " 997 10.0 " " 126 % 70-130 " "	ND 0.0250 " " " " ND 0.0250 " " " " 0.0271 0.0250 " " " " J [0.0148] 0.0250 " " " " Sec.1 % 80-120 " " " 89.7 10.0 mg/kg dry 1 EI42702 09/27/04 907 10.0 " " " 997 10.0 " " " 126 % 70-130 " " "	ND 0.0250 " </td <td>ND 0.0250 "<!--</td--></td>	ND 0.0250 " </td

BH-3 (18-20') (4I26004-07) Solid

Benzene	1.76	0.0250	mg/kg dry	25	EI42901	09/28/04	09/29/04	EPA 8021B	
Toluene	9.41	0.0250				n	*		
Ethylbenzene	7.10	0.0250			۳		M	*	
Xylene (p/m)	24.8	0.0250	*		n		n	"	
Xylene (0)	12.1	0.0250		Ħ	*	н	n	*	
Surrogate: a,a,a-Trifluorotoluene		672 %	80-12	20	"	"	"	"	S-04
Surrogate: 4-Bromofluorobenzene		89.6 %	80-12	20	"	"	"	"	
Gasoline Range Organics C6-C12	2370	10.0	mg/kg dry	1	EI42702	09/27/04	09/28/04	EPA 8015M	
Diesel Range Organics >C12-C35	4840	10.0		Ħ		H		*	
Total Hydrocarbon C6-C35	7210	10.0				n	н	**	
Surrogate: 1-Chlorooctane		128 %	70-1.	30	"	H	11	"	
Surrogate: 1-Chlorooctadecane		123 %	70-1.	30	"	"	н	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 3 of 11

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

1. Sec. 10

11.20

1.1.2.2.2

語言であ

A CARLES

a state of the second s

A CONTRACT

a chaire and

Sector 2.

- AND

Subtraction of

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain Fax: (432) 687-0456 Reported: 09/30/04 15:46

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-3 (20-22') (4I26004-08) Solid							·		
Benzene	6.69	0.0250	mg/kg dry	25	EI42901	09/28/04	09/29/04	EPA 8021B	
Toluene	24.5	0.0250				н			
Ethylbenzene	18.6	0.0250	"	*	*	n	*	•	
Xylene (p/m)	37.0	0.0250		n	•	n	**	"	
Xylene (0)	14.4	0.0250			N	*	"		
Surrogate: a,a,a-Trifluorotoluene		1540 %	80-1	20	"	"	"	11	S-04
Surrogate: 4-Bromofluorobenzene		86.1 %	80-1	20	"	"	"	**	
Gasoline Range Organics C6-C12	3940	10.0	mg/kg dry	1	EI42702	09/27/04	09/28/04	EPA 8015M	
Diesel Range Organics >C12-C35	6050	10.0			n				
Total Hydrocarbon C6-C35	9990	10.0	*		H	N	n	Ħ	
Surrogate: 1-Chlorooctane		127 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		125 %	70-1	30	"	"	н	"	

Environmental Lab of Texas

N N N N N N N N

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 4 of 11

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

100 ANS

Sec. 1

1. A. A. S.

調整語言

States -

1. 20 E. 2

S. STERES

States .

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-1 (6-8') (4I26004-01) Solid									
% Solids	94.0	·····	%	1	EI42812	09/28/04	09/28/04	% calculation	
BH-2 (2-4') (4126004-02) Solid									
% Solids	74.0		%	1	EI42812	09/28/04	09/28/04	% calculation	
BH-2 (6-8') (4126004-03) Solid									
% Solids	91.0		%	1	EI42812	09/28/04	09/28/04	% calculation	
BH-2 (10-12') (4126004-04) Solid									
% Solids	97.0		%	1	EI42812	09/28/04	09/28/04	% calculation	
BH-3 (2-4') (4126004-05) Solid									
% Solids	97.0		%	1	EI42812	09/28/04	09/28/04	% calculation	
BH-3 (6-8') (4126004-06) Solid									
% Solids	96.0		%	1	EI42812	09/28/04	09/28/04	% calculation	
BH-3 (18-20') (4I26004-07) Solid									
% Solids	89.0		%	1	EI42812	09/28/04	09/28/04	% calculation	
BH-3 (20-22') (4126004-08) Solid									
% Solids	89.0		%	1	EI42812	09/28/04	09/28/04	% calculation	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 5 of 11

「「「「「

調査

a di tatagé

Constantion

1.12.12.12.12

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI42702 - Solvent Extraction (GC)									
Blank (EI42702-BLK1)				Prepared	& Analyze	ed: 09/27/0	04			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	۳.							
Total Hydrocarbon C6-C35	ND	10.0								
Surrogate: 1-Chlorooctane	51.5		mg/kg	50.0		103	70-130			
Surrogate: 1-Chlorooctadecane	36.1		"	50.0		72.2	70-130			
Blank (EI42702-BLK2)				Prepared:	09/27/04	Analyzed	: 09/28/04			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0								
Total Hydrocarbon C6-C35	ND	10.0								
Surrogate: 1-Chlorooctane	58.8		mg/kg	50.0	t		70-130			
Surrogate: 1-Chlorooctadecane	36.2		"	50.0		72.4	7 0-130			
LCS (EI42702-BS1)				Prepared	& Analyze	ed: 09/27/	04			
Gasoline Range Organics C6-C12	467	10.0	mg/kg wet	500		93.4	75-125			
Diesel Range Organics >C12-C35	469	10.0	H	500		93.8	75-125			
Total Hydrocarbon C6-C35	936	10.0		1000		93.6	75-125			
Surrogate: 1-Chlorooctane	58.6	<u>-</u>	mg/kg	50.0		117	70-130			······································
Surrogate: 1-Chlorooctadecane	39.6		"	50.0		7 9 .2	70-130			
LCS (E142702-BS2)				Prepared:	: 09/27/04	Analyzed	1: 09/28/04			
Gasoline Range Organics C6-C12	453	10.0	mg/kg wet	500		90.6	75-125			
Diesel Range Organics >C12-C35	543	10.0	H	500		109	75-125			
Total Hydrocarbon C6-C35	996	10.0	H	1000		99.6	75-125			
Surrogate: 1-Chlorooctane	58.9		mg/kg	50.0		118	70-130			
Surrogate: 1-Chlorooctadecane	36.9		"	50.0		7 3 .8	70-130			
Calibration Check (EI42702-CCV1)				Prepared	& Analyz	ed: 09/27/	04			
Gasoline Range Organics C6-C12	499		mg/kg	500		99.8	80-120			
Diesel Range Organics >C12-C35	581		Ħ	500		116	80-120			
Total Hydrocarbon C6-C35	1080		*	1000		108	80-120			
Surrogate: 1-Chlorooctane	57.1		<i>"</i>	50.0		114	70-130			
Surrogate: 1-Chlorooctadecane	57.5		"	50.0		115	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 6 of 11

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

にあ

100-10

Support S

Series of

1. 1923

10000

a suspect

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		Lunn								
Batch EI42702 - Solvent Extraction (GC)									
Calibration Check (EI42702-CCV2)				Prepared:	09/27/04	Analyzed	: 09/28/04			
Gasoline Range Organics C6-C12	461		mg/kg	500		92.2	80-120			
Diesel Range Organics >C12-C35	527			500		105	80-120			
Total Hydrocarbon C6-C35	988		W	1000		98.8	80-120			
Surrogate: 1-Chlorooctane	57.4		"	50.0		115	70-130			<u> </u>
Surrogate: 1-Chlorooctadecane	39.1		"	50.0		78.2	70-130			
Matrix Spike (EI42702-MS1)	Sou	rce: 412600	4-01	Prepared:	09/27/04	Analyzed	l: 09/28/04			
Gasoline Range Organics C6-C12	521	10.0	mg/kg dry	532	ND	97.9	75-125			
Diesel Range Organics >C12-C35	602	10.0	Ħ	532	ND	113	75-125			
Total Hydrocarbon C6-C35	1120	10.0		1060	ND	106	75-125			
Surrogate: 1-Chlorooctane	58.7		mg/kg	50.0			70-130		· · · · · · · · · · · · · · · · · · ·	
Surrogate: 1-Chlorooctadecane	57.0		"	50.0		114	70-130			
Matrix Spike (EI42702-MS2)	Sou	r ce: 4I260 0	5-04	Prepared	09/27/04	Analyzed	1: 09/28/04			
Gasoline Range Organics C6-C12	555	10.0	mg/kg dry	575	ND	96.5	75-125			
Diesel Range Organics >C12-C35	607	10.0		575	ND	106	75-125			
Total Hydrocarbon C6-C35	1160	10.0	Ħ	1150	ND	101	75-125			
Surrogate: 1-Chlorooctane	60.2		mg/kg	50.0		120	70-130			
Surrogate: 1-Chlorooctadecane	36.1		"	50.0		72.2	70-130			
Matrix Spike Dup (EI42702-MSD1)	Sou	rce: 412600)4-01	Prepared	09/27/04	Analyzed	1: 09/28/04			
Gasoline Range Organics C6-C12	521	10.0	mg/kg dry	532	ND	97.9	75-125	0.00	20	
Diesel Range Organics >C12-C35	570	10.0	H	532	ND	107	75-125	5.46	20	
Total Hydrocarbon C6-C35	1090	10.0		1060	ND	103	75-125	2.71	20	
Surrogate: 1-Chlorooctane	57.2		mg/kg	50.0		114	70-130			
Surrogate: 1-Chlorooctadecane	53.5		N	50.0		107	70-1 3 0			
Matrix Spike Dup (EI42702-MSD2)	Sou	rce: 4I2600	5-04	Prepared	: 09/27/04	Analyzed	1: 09/28/04			
Gasoline Range Organics C6-C12	552	10.0	mg/kg dry	575	ND	96.0	75-125	0.542	20	
Diesel Range Organics >C12-C35	621	10.0		575	ND	108	75-125	2.28	20	
Total Hydrocarbon C6-C35	1170	10.0	ĸ	1150	ND	102	75-125	0.858	20	
Surrogate: 1-Chlorooctane	62.0	· · · · · · · · · · · · · · · · · · ·	mg/kg	50.0		124	70-130			
Surrogate: 1-Chlorooctadecane	35.8		"	50.0		71.6	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 7 of 11

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Support of

A CONTRACT

Series -

のたまである

建築が

a statistics

Sec. 2

Section 2

and the second

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI42901 - EPA 5030C (GC)										
Blank (EI42901-BLK1)				Prepared	& Analyze	ed: 09/28/0	04			
Benzene	ND	0.0250	mg/kg wet		····					
Toluene	ND	0.0250	Ħ							
Ethylbenzene	ND	0.0250								
Xylene (p/m)	ND	0.0250	*							
Xylene (o)	ND	0.0250	*							
Surrogate: a,a,a-Trifluorotoluene	92.3		ug/kg	100		92.3	80-120			
Surrogate: 4-Bromofluorobenzene	81.5		"	100		81.5	80-120			
LCS (EI42901-BS1)				Prepared	& Analyze	ed: 09/28/0	04			
Benzene	97.8		ug/kg	100		97.8	80-120			
Toluene	99.4			100		99.4	80-120			
Ethylbenzene	94.1			100		94.1	80-120			
Xylene (p/m)	209			200		104	80-120			
Xylene (0)	97.1		*	100		97.1	80-120			
Surrogate: a,a,a-Trifluorotoluene	<u> </u>	· ·	<i>w</i>	100		<u> </u>	80-120			
Surrogate: 4-Bromofluorobenzene	102		"	100		102	80-120			
Calibration Check (EI42901-CCV1)				Prepared:	09/28/04	Analyzed	: 09/29/04			
Benzene	100		ug/kg	100		100	80-120			
Toluene	101			100		101	80-120			
Ethylbenzene	90.2			100		90.2	80-120			
Xyiene (p/m)	199			200		99.5	80-120			
Xylene (0)	93.6			100		93.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	118			100		118	80-120			
Surrogate: 4-Bromofluorobenzene	91.3		"	100		91. 3	80-120			
Matrix Spike (EI42901-MS1)	So	ource: 412402	20-01	Prepared:	09/28/04	Analyzed	I: 09/29/04	ļ		
Benzene	99.6	·····	ug/kg	100	ND	99.6	80-120			
Toluene	99.7			100	ND	99.7	80-120			
Ethylbenzene	92.3			100	ND	92.3	80-120			
Xylene (p/m)	204			200	ND	102	80-120			
Xylene (o)	94.1		M	100	ND	94.1	80-120			
Surrogate: a,a,a-Trifluorotoluene	112	• ••		100		112	80-120			
Surrogate: 4-Bromofluorobenzene	99.6		"	100		99.6	80-120			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 8 of 11

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

的复数 建油油 化合金

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

新御

10.00 C

1. J. .

N. R. S. S.

No. of Street

14.200

and the second

South States

1 1111

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI42901 - EPA 5030C (GC)										
Matrix Spike Dup (EI42901-MSD1)	Sou	rce: 4I24020	-01	Prepared:	09/28/04	Analyzed	l: 09/29/04			
Benzene	96.3		ug/kg	100	ND	96.3	80-120	3.37	20	
Toluene	98.2			100	ND	98.2	80-120	1.52	20	
Ethylbenzene	94.2		"	100	ND	94.2	80-120	2.04	20	
Xylene (p/m)	206		H	200	ND	103	80-120	0.976	20	
Xylene (o)	96.1		н	100	ND	96.1	80-120	2.10	20	
Surrogate: a,a,a-Trifluorotoluene	107		<i>n</i>	100		107	80-120	_		
Surrogate: 4-Bromofluorobenzene	101		"	100		101	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 9 of 11

21820

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI42812 - % Solids										····
Blank (EI42812-BLK1)				Prepared	& Analyze	ed: 09/28/	04			
% Solids	100		%							, en
Duplicate (EI42812-DUP1)	Sou	irce: 412401	8-01	Prepared	& Analyza	ed: 09/28/	04			
% Solids	98.0		%		98.0			0.00	20	

Environmental Lab of Texas

である

A Strategy

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 10 of 11

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

A SHORE

the factor

12. 242

記書書い

Berry Pro-

B. Ulene le. Report Approved By: Date:

Raland K. Tuttle, Lab Manager (Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Biezugbe, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 11 of 11

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Jeanne McMurrey

From:	"Cindy Crain" <cindy@laenvironmental.com></cindy@laenvironmental.com>
To:	"Jeanne McMurrey" <jeanne@elabtexas.com></jeanne@elabtexas.com>
Sent:	Monday, September 27, 2004 9:20 AM
Subject:	Sample Discrepancies (Dynegy)

Jeanne,

Contrast.

Station of

S. B. S. B. S. B.

金融

and and the

「「「「「「「「「「「」」」」」

For soil samples collected by Larson & Associates on 9/24/04 for Dynegy, please note the following discrepancies on the chain-of-custodies:

- Project No. 0-0100-02: Please change the Project Name to Site #2.
- Project No. 0-0100-05: The sample collected at 0919, and listed on the COC as BH-1 (6-8'), is actually

BH-1 (6-8'), even though the sample jar is labeled as BH-2 (6-8').

• Project No. 0-0100-05: Two extra samples were brought to the lab that were not included on the COC:

(BH-3, 10-12' and BH-3, 14-16'). Please hold these samples.

Please give me a call if you have any further questions.

Thank you,

Cindy Crain, PG

Project Manager Larson and Associates, Inc. 507 N. Marienfeld, Suite 202 Midland, Texas 79702 office - (432) 687-0901 mobile - (432) 556-8665

This message has been scanned for viruses and dangerous content by MailScanner at **BasinBroadBand.com**, and is believed to be clean.

可用的名称的现在形式

Environmental L	ab of T		-		
Variance / Corrective Action				า	
Client: Larson+Associates					
Date/Time: <u>09-26-04 @ 1400</u>					
Order #: 4 I 2600 4					
Initials: JMM					
Sample Receipt	Checkli	st			
Temperature of container/cooler?	(Yes)	No	4.0 C	7	
Shipping container/cooler in good condition?	(Yes)	No			
Custody Seals intact on shipping container/cooler?	Yes	No	Not present		
Custody Seals intact on sample bottles?	Yes	No	Not present>		
Chain of custody present?	(Yes)	No			
Sample Instructions complete on Chain of Custody?	(Yes)	No	<u> </u> _	_	
Chain of Custody signed when relinquished and received?	Yes	No	<u> </u>		an alloched
Chain of custody agrees with sample label(s)	Yes	No	NO LABELS - WRITT	TEN ON LID # 5	ee affailled
Container labels legible and intact?	Yes	No	NULABELS - WRITT	EN.ON LID	E-mail 9.27
Sample Matrix and properties same as on chain of custody?	Ves	<u>No</u>			
Samples in proper container/bottle?	Tes	No		_	
Samples properly preserved?	(es)	<u>No</u>			
Sample bottles intact?	Tes	No			
Preservations documented on Chain of Custody?	(Yes)	No			
Containers documented on Chain of Custody?	(es	No			
Sufficient sample amount for indicated test?	Yes	No			
All samples received within sufficient hold time?	Yes.	No			
VOC samples have zero headspace?	Tes	No	Not Applicable		
	<u></u>				
					·
Variance Docum	nentatio	n:			
Contact Person: - Cindy Grain Date/Time: 09-2	7-0400	2900	Contacted by:	JeanneMa	Murrey
Regarding:					
COC/labels discrepancy					_
extra samples BH3					_
					_
Corrective Action Taken:				<u> </u>	
See attached e-	~~ - · 1				
SEE allached Et					
	<u> </u>				_
•					_
				· · · · · · · · · · · · · · · · · · ·	
					-
	·				
······································					_

	ME:				SITE MANAGER:	AFF シートロートにつかった。1998年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日		PARA	PARAMETERS/METHOD	THOD NUMBER	CHAIN-	-OFCUSTODY RECORD
0	hbau.				Lindy Lid	vin	ـــــــــــــــــــــــــــــــــــــ					
PROJECT NO.	JECT NO.: <i>N - D100 - D 5</i>	50			PROJECT NAMÉ: Site # S		293VIATI	810 WSI				Inc. Fax: 4 Itants
PAGE	6	-		LAB. PO #	8						507 N. Mar	507 N. Marienfeld, Ste. 202 • Midland, TX 79701
IN DATE	JUNI	MATER	105	OTHER	SAMPLE IDENTIFICATION		NUMBER C	XIL 9 HdL			LAB. I.D. NUMBER (LAB USE ONEY)	REMARKS ILE, FILTERED, UNFILTERED, PRESERVED, UNPRESERVED, GRAB COMPOSITE)
9/24/04	9				BH-1 (6-81)		1	7			HI24004-01	
"	0260		7		BH-2 (2.41)		-	7			20-	
"	0935		7		\sim		~	<u> </u>			-03	
1	649		7		" (10-12	(·	-	7			Þ	
4	0957		7		BH-3 (2-4'		-	7			Ş	
te .	0954		7		1, (6-8)			7			-01	
"	1018		7		11 (18-20'	, ·)	~	7 7			L0>	
4,	1038		7		1. 120-22'	(,2,)	-	7			ho- 1	
	1004		7		(101-01) E-HB		_				50-	HOLD * 9-27-4 See attachederna
-*	010		7		BH-3 (14-16)		1				0)- +	Hord
			-+	-				-				
				+								
							+-					
SAMPLE	SAMPLED BY: (Signatore)	atter		1	DATE: 4/24/104	RELINAUISHER	222	HED BY (Signature)		DATE: 2/24/64	KECEIVED BY: (Signature)	L DATE: Indure) DATE: TIME:
RELINQU	RELINQUISHED BY: (Signature)	(Signatur	ture		Y	RECEIVED BY: (Signature)	Signati	ure)		DATE:	SAMPLE SHIPPED BY: (Circle)	
		h			TIME:)			TIME:	FEDEX	A
COMMENTS:	NTS:								TURNAROUN	TURNAROUND TIME NEEDED •		NG LAB
RECEIVING	RECEIVING LABORATORY:	VTORY:		NN	ENU. Cab of Thas	L. L	RECEIVED BY:		(Signature)		Š	- Receiving Lab (10 be relukined 10 La After Receipt)
CITY: CONTACT	 ; i				STATE: ZIP: PHONE: ZIP:		DATE:	0-12-6	DY TIME	0.17		PRUJECT MAINAGER QA/QC COORDINATOR
SAMPLE CC	SAMPLE CONDITION WHEN RECEIVED:	len Reci	EIVED:			kee 4.02	LA CO	LIA CONTACT PERSON:	RSON:		SAMPLE TYPE:	
and the second		12.122.2444	1971年1月1日 1987年1月11日 1987年1月11日 1987年1月11日 1987年1月11日 1987年1100000000000000000000000000000000000		- 二第一部で起来などであ、一方は「山中」の 内容者	「「「「」」、「」、「」、「」、「」、「」、「」、「」、		Contraction of the	and the second of the second of the		中に時に 時間に 一、「「「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	的过去式 法行行法 法法律法 化化学学 化化学学 人名法法尔尔 化合金化合金化合金化合金化合金化合金化合金化合金化合金化合金化合金化合金化合金化

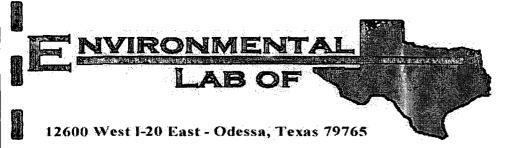
14 A

Same and

四百四 "

教育の

a Market


and the second s

Sarahar.

and the second

September 2

See Strate

State State

State and

調査を

の時間に

の時間で

Contraction of

E ALANA

STATES OF

新生活的

Analytical Report

Prepared for:

Cindy Crain Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Dynegy Site #5 Project Number: 0-0100-05 Location: None Given

Lab Order Number: 5A12006

Report Date: 01/17/05

	Larson & Associates, Inc.	Project: Dynegy Site #5	Fax: (432) 687-0456
,	P.O. Box 50685	Project Number: 0-0100-05	Reported:
	Midland TX, 79710	Project Manager: Cindy Crain	01/17/05 17:06

ANALYTICAL REPORT FOR SAMPLES

調査に

調整し

の言語

金融設置

諸国語に

調査を書き

a restricted

語をない

And a second second

State of the second

Superior Superior

and the second

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SS-1	5A12006-01	Soil	01/11/05 11:15	01/12/05 10:32
SS-2	5A12006-02	Soil	01/11/05 11:21	01/12/05 10:32
SS-3	5A12006-03	Soil	01/11/05 11:28	01/12/05 10:32
SS-4	5A12006-04	Soil	01/11/05 11:35	01/12/05 10:32
SS-5	5A12006-05	Soil	01/11/05 11:48	01/12/05 10:32
SS-6	5A12006-06	Soil	01/11/05 12:01	01/12/05 10:32
SS-7	5A12006-07	Soil	01/11/05 12:32	01/12/05 10:32

Page 1 of 8

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Organics by GC

		UI	games D	y GC					
		Environn	nental L	ab of T	ſexas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SS-1 (5A12006-01) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA51108	01/12/05	01/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	H	"	*	"	11	н	
Total Hydrocarbon C6-C35	ND	10.0	м	"	"		"	n	
Surrogate: 1-Chlorooctane		94.6 %	70-1	30	11	"	"	"	
Surrogate: 1-Chlorooctadecane		109 %	70-1	30	"	"	"	"	
SS-2 (5A12006-02) Soil						- · · · · · · · · · · · · · · · · · · ·			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA51108	01/12/05	01/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	н	"	"	n	n	н	
Total Hydrocarbon C6-C35	ND	10.0	н.	11	"		"	N	
Surrogate: 1-Chlorooctane		90.8 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		107 %	70-1	130	"	"	**	n	
SS-3 (5A12006-03) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA51108	01/12/05	01/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	м		H	u	н	"	
Total Hydrocarbon C6-C35	ND	10.0	N	*	W	u	u	11	
Surrogate: 1-Chlorooctane		98.6 %	70	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		94.2 %	70	130	"	"	"	"	
SS-4 (5A12006-04) Soil									
Gasoline Range Organics C6-C12	J [7.21]	10.0	mg/kg dry	1	EA51108	01/12/05	01/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	64.9	10.0	н	**	"	и	"	"	
Total Hydrocarbon C6-C35	64.9	10.0	H	"	11	II	"	#	
Surrogate: 1-Chlorooctane		104 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-	130	# .	"	"	"	
SS-5 (5A12006-05) Soil	<u></u>								
Gasoline Range Organics C6-C12	160	10.0	mg/kg dry	1	EA51108	01/12/05	01/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	674	10.0	H	H	11	n	"	**	
Total Hydrocarbon C6-C35	834	10.0		"	N	"	"	H	
Surrogate: 1-Chlorooctane		129 %		130	"	**	**	"	
Surrogate: 1-Chlorooctadecane		121 %	70-	130	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

29.63

No.

and the second

L Approved

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SS-6 (5A12006-06) Soil						_			
Gasoline Range Organics C6-C12	55.4	10.0	mg/kg dry	1	EA51108	01/12/05	01/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	161	10.0	11	n	0	"	H	н	
Total Hydrocarbon C6-C35	216	10.0	N	н	n	М	"	M	
Surrogate: 1-Chlorooctane		112 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		123 %	70-1	30	"	"	"	"	
SS-7 (5A12006-07) Soil									
Gasoline Range Organics C6-C12	34.9	10.0	mg/kg dry	1	EA51108	01/12/05	01/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	71.4	10.0	n		"	"	"	11	
Total Hydrocarbon C6-C35	106	10.0		H		"	n	11	
Surrogate: 1-Chlorooctane		88.2 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		88.2 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

State and

State - and a state

Section of

にある

1000

Contraction of the local division of the loc

a dente

10.00

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

		General Chemi	istry Paran Environm		-		ard Metl	hods		
	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SS-1 (5A12006-01) Soil									
24/26	% Moisture	13.1		%	1	EA51314	01/13/05	01/14/05	% calculation	
	SS-2 (5A12006-02) Soil									
	% Moisture	7.3		%	1	EA51314	01/13/05	01/14/05	% calculation	
時期時のつ	SS-3 (5A12006-03) Soil									
	% Moisture	6.1		%	1	EA51314	01/13/05	01/14/05	% calculation	
R)	SS-4 (5A12006-04) Soil									
	% Moisture	5.7		%	1	EA51314	01/13/05	01/14/05	% calculation	
	SS-5 (5A12006-05) Soil									
	% Moisture	3.9		%	1	EA51314	01/13/05	01/14/05	% calculation	
3.1	SS-6 (5A12006-06) Soil									
	% Moisture	10.1		%	1	EA51314	01/13/05	01/14/05	% calculation	
	SS-7 (5A12006-07) Soil									
	% Moisture	7.0		%	1	EA51314	01/13/05	01/14/05	% calculation	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Organics by GC - Quality Control Environmental Lab of Texas Reporting Spike Source %REC RPD Analyte Result Limit Units %REC Limits RPD Level Result Limit Notes Batch EA51108 - Solvent Extraction (GC) Blank (EA51108-BLK1) Prepared: 01/11/05 Analyzed: 01/14/05 Gasoline Range Organics C6-C12 ND 10.0 mg/kg wet Diesel Range Organics >C12-C35 ND 10.0 Total Hydrocarbon C6-C35 ND 10.0 Surrogate: 1-Chlorooctane 45.2 50.0 90.4 70-130 mg/kg Surrogate: 1-Chlorooctadecane 40.0 " 50.0 80.0 70-130 Blank (EA51108-BLK2) Prepared: 01/11/05 Analyzed: 01/15/05 ND Gasoline Range Organics C6-C12 10.0 mg/kg wet Diesel Range Organics >C12-C35 ND 10.0 Total Hydrocarbon C6-C35 ND 10.0 Surrogate: 1-Chlorooctane 44.7 mg/kg 50.0 89.4 70-130 Surrogate: 1-Chlorooctadecane 44.6 50.0 89.2 70-130 LCS (EA51108-BS1) Prepared: 01/11/05 Analyzed: 01/14/05 Gasoline Range Organics C6-C12 476 10.0 mg/kg wet 95.2 500 75-125 Diesel Range Organics >C12-C35 452 10.0 500 90.4 75-125 . 928 Total Hydrocarbon C6-C35 10.0 1000 75-125 92.8 Surrogate: 1-Chlorooctane 45.3 mg/kg 50.0 90.6 70-130 Surrogate: 1-Chlorooctadecane 36.2 50.0 72.4 70-130 LCS (EA51108-BS2) Prepared: 01/11/05 Analyzed: 01/15/05 Gasoline Range Organics C6-C12 445 10.0 mg/kg wet 500 89.0 75-125 Diesel Range Organics >C12-C35 507 10.0 500 101 75-125 Total Hydrocarbon C6-C35 952 10.0 11 1000 95.2 75-125 Surrogate: 1-Chlorooctane 52.7 50.0 105 70-130 mg/kg Surrogate: 1-Chlorooctadecane 44.6 50.0 89.2 70-130 Calibration Check (EA51108-CCV1) Prepared: 01/11/05 Analyzed: 01/14/05 Gasoline Range Organics C6-C12 454 mg/kg 500 90.8 80-120 Diesel Range Organics >C12-C35 525 11 500 105 80-120 . Total Hydrocarbon C6-C35 979 1000 97.9 80-120 . Surrogate: 1-Chlorooctane 46.7 50.0 93.4 70-130

Environmental Lab of Texas

Surrogate: 1-Chlorooctadecane

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

89.4

70-130

.

50.0

44.7

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

01/17/05 17:06

and the second s		•	anics by Invironm	-	-						
	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Batch EA51108 - Solvent Extraction (GC)									
	Calibration Check (EA51108-CCV2)				Prepared:	01/11/05	Analyzed	: 01/15/05			
時代であっ	Gasoline Range Organics C6-C12	474		mg/kg	500		94.8	80-120			
2.12	Diesel Range Organics >C12-C35	488		"	500		97.6	80-120			
	Total Hydrocarbon C6-C35	962			1000		96.2	80-120			
	Surrogate: 1-Chlorooctane	52.8	·····	"	50.0		106	70-130			
	Surrogate: 1-Chlorooctadecane	46.0		"	50.0		92.0	70-130			
	Matrix Spike (EA51108-MS1)	Sou	ırce: 5A100	12-13	Prepared:	01/11/05	Analyzed	: 01/14/05			
	Gasoline Range Organics C6-C12	555	10.0	mg/kg dry	571	ND	97.2	75-125			
	Diesel Range Organics >C12-C35	612	10.0	"	571	ND	107	75-125			
	Total Hydrocarbon C6-C35	1170	10.0	"	1140	ND	103	75-125			
1899 L	Surrogate: 1-Chlorooctane	50.6		mg/kg	50.0		101	70-130			
	Surrogate: 1-Chlorooctadecane	49.8		"	50.0		<i>99.6</i>	70-130			
	Matrix Spike (EA51108-MS2)	Sou	urce: 5A100	12-21	Prepared:	01/11/05	Analyzed	l: 01/15/05			
	Gasoline Range Organics C6-C12	514	10.0	mg/kg dry	554	ND	92.8	75-125			
100	Diesel Range Organics >C12-C35	562	10.0	· H	554	ND	101	75-125			
	Total Hydrocarbon C6-C35	1080	10.0	"	1110	ND	97.3	75-125	•		
ALC: NO	Surrogate: 1-Chlorooctane	58.6		mg/kg	50.0		117	70-130			
a neger	Surrogate: 1-Chlorooctadecane	63.0		"	50.0		126	70-130			
	Matrix Spike Dup (EA51108-MSD1)	So	urce: 5A100	12-13	Prepared:	01/11/05	Analyzed	i: 01/14/05			
	Gasoline Range Organics C6-C12	526	10.0	mg/kg dry	571	ND	92.1	75-125	5.37	20	
	Diesel Range Organics >C12-C35	614	10.0	м	571	ND	108	75-125	0.326	20	
	Total Hydrocarbon C6-C35	1140	10.0	H	1140	ND	100	75-125	2.60	20	
	Surrogate: 1-Chlorooctane	52.8		mg/kg	50.0		106	70-130			
	Surrogate: 1-Chlorooctadecane	49.5		"	50.0		99.0	70-130			
	Matrix Spike Dup (EA51108-MSD2)	So	urce: 5A100	12-21	Prepared	01/11/05	Analyzed	1: 01/15/05			
	Gasoline Range Organics C6-C12	515	10.0	mg/kg dry	554	ND	93.0	75-125	0.194	20	
THE Y	Diesel Range Organics >C12-C35	534	10.0	"	554	ND	96.4	75-125	5.11	20	
	Total Hydrocarbon C6-C35	1050	10.0	"	1110	ND	94.6	75-125	2.82	20	
	Surrogate: 1-Chlorooctane	48.1		mg/kg	50.0		96.2	70-130			
	Surrogate: 1-Chlorooctadecane	45.5		"	50.0		91.0	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 6 of 8

Sec. Sec.

and the second

all and a set

01/17/05 17:06

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

			,	_					
Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
tion (Prep)									
			Prepared:	01/13/05	Analyzed	1: 01/14/05			
0.003		%							
So	urce: 5A1200)6-01	Prepared:	01/13/05	Analyzed	l: 01/14/05			
11.0		%		13.1			17.4	20	
	tion (Prep) 0.003 So	Result Limit tion (Prep) 0.003 Source: 5A1200	Result Limit Units tion (Prep) 0.003 % Source: 5A12006-01	Result Limit Units Level tion (Prep) Prepared: 0.003 % Source: 5A12006-01	Result Limit Units Level Result tion (Prep) Prepared: 01/13/05 0.003 % Source: 5A12006-01 Prepared: 01/13/05	Result Limit Units Level Result %REC ntion (Prep) Prepared: 01/13/05 Analyzed 0.003 % Source: 5A12006-01	Result Limit Units Level Result %REC Limits tion (Prep) Prepared: 01/13/05 Analyzed: 01/14/05 0.003 % Source: 5A12006-01 Prepared: 01/13/05 Analyzed: 01/14/05	Result Limit Units Level Result %REC Limits RPD ntion (Prep) Prepared: 01/13/05 Analyzed: 01/14/05 0.003 % Source: 5A12006-01 Prepared: 01/13/05 Analyzed: 01/14/05	Result Limit Units Level Result %REC Limits RPD Limit tion (Prep) Prepared: 01/13/05 Analyzed: 01/14/05 0.003 % Source: 5A12006-01 Prepared: 01/13/05 Analyzed: 01/14/05

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Notes and Definitions

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported

dry Sample results reported on a dry weight basis

- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

100

No. of Lot of Lo

1-18-05 Report Approved By: Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 8 of 8

CLIENT NAME	<u>ن</u> ن ور				SITE MANAGER:			PAR	Parameters/method number	/METHC		MBEF		CHAIN	-OFCI	-CUSTODY R	RECORD
PROJECT NO.	regy				CINCH CAG	cin	SB							arson	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
P- 4	0-0100-	-05	S	-	5# #2 5% #5		aniatni 	WSI					F	SSOCIDIES Environmental Co	ssociates, Inc. Environmental Consultants	Fax: 432-687-0456 432-687-0901	0456 -0901
PAGE /	٩ م	~		LAB. PO #	# C		OF CO	108					20	7 N. Marié	snfeld, Ste.	507 N. Marienfeld, Ste. 202 • Midland, TX 79701	TX 79701
3140	JUNI	MATER	NOS	OTHER	SAMPLE IDENTIFICATION		NUMBER	Hell					(LAB N L	LAB. I.D. NUMBER (LAB USE ONLY)	-: č	REMARKS (I.E., FILTERED, UNFILTERED, PRESERVED, UNPRESERVED, GRAB COMPOSITE)	É É
5	N		1.		55-1			5					541	5412-006-01			
	121		1		55-2		-	7						20-			
11 11	128		7		55-3		-	7						Ea.			iu institu
1 11	1135	 	7		55-4		ŗ	7						ho_			
1 1	1148		>		55-5		~	2						So-			
11 12	1201		1		55.4		Ű,	7						-01			
<i>c["</i>	1232		7		55-7		ſ	7						L0- 1			- (1)
				†													
		+						-									
											_						
				\uparrow													
-			-	+			-				_						
							-										
	С С	 (\vdash													
SAMPLED BY: (Signovule)	SY: (Sign	gradit (re)			DATE: 1/1/05	RELINACUSHE		(Signature)	(6		DATE:	1245	RECEIVEI	RECEIVED BY: (Signature)	ature)	DATE	
REHINQUISHED BY: (Signature)	ED BY:	(Signatu	ure)	Ì		RECEIVED BY:	Y: (Signature)	(ure)			DATE:		SAMPLE	SAMPLE SHIPPED BY: (Circle)	Y: (Circle)		i interiore e
					TIME:					-	TIME:		FEDEX		BUS	AIRBILL #:	10.100
COMMENTS	, vi								TURN	TURNAROUND TIME NEEDED	IME NE	EDER		HAND DELIVERED	SUD	OTHER:	iksteiden.
	i											J	WHITE		NG LAB VG LAB (TO B	- Receiving Lab - Receiving 1 ab (to be retuirned to	1997) - Anna - A
RECEIVING LABORATORY: ADDRFSS- 12600 W	LABOR/ 1260		Env.	0	Leb of TX	22 \	CEIVEL	RECEIVED BY: (Signature)	(Signature)	1			A P		LA AFTER RECEIPT)		Angel Charles and a specific
CITY: Ode CONTACT:	220	1			STATE: -7.× ZIP: PHONE: 5ん多-1800	79765	DATE: B		TIME	ii 1032	2		GOLD	- QA/QC	QA/QC COORDINATOR	Ж	
SAMPLE CONDITION WHEN RECEIVED:		HEN RECEI	VED:	402	gla		IA CO	LA CONTACT PERSON	ERSON:				SAMPLE TYPE:		Sail		<u>an (1) an</u> an
					それ、「「「「「「」」」「「「」」」」」」」」」」」」」」	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 1 21 21)		A MAR ALL AND A SA	1. Same 1. 20	14	No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	Carlo and an an and	11日の あいまい 二十年二十 ちょうまい	Contraction of the second s

調査に対称し

States.

States and a second sec

教教部院

のである

States and

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	harson+	Associates
---------	---------	------------

Date/Time: 01-12-05@ 1032

JMM

Order #: 5A 12006

Initials:

教会を

a state and a state of the

Construction of the

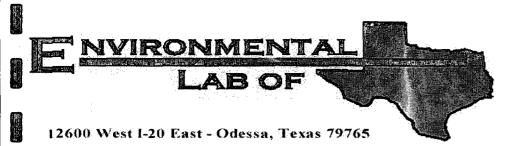
No. of Street, of Street, Stre

Contraction of the

100

Sample Receipt Checklist

Temperature of container/cooler?	(es) No	2.0 C
Shipping container/cooler in good condition?	Yes No	N/A
Custody Seals intact on shipping container/cooler?	Yes No	Not present */4
Custody Seals intact on sample bottles?	Yes No	Not present)
Chain of custody present?	Ves No	
Sample Instructions complete on Chain of Custody?	(es) No	
Chain of Custody signed when relinquished and received?	(es) No	
Chain of custody agrees with sample label(s)	Yes No	
Container labels legible and intact?	Yes No	Nolabels written on lich
Sample Matrix and properties same as on chain of custody?	(TES) No	
Samples in proper container/bottle?	Res No	
Samples properly preserved?	NO NO	
Sample bottles intact?	(res) No	
Preservations documented on Chain of Custody?	(es) No	
Containers documented on Chain of Custody?	Ces No	
Sufficient sample amount for indicated test?	(Pes) No	
All samples received within sufficient hold time?	(Per No	
VOC samples have zero headspace?	res No	Not Applicable


Other observations:

Variance Documentation:

Contact Person: -	• ••••••••••••••••••••••••••••••••••••	Date/Time:	·	Contacted by:	
Regarding:					

Corrective Action Taken:

a service

常いた

in the second se

14 (H) (H)

Contractor

South States

States .

「日本語の

Analytical Report

Prepared for:

Cindy Crain Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Dynegy Site #5 Project Number: 0-0100-05 Location: Site #5

Lab Order Number: 5B24002

Report Date: 02/25/05

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

Salation of the

and the

離しい語言で

教室の

調査

1000

State of

Tour and a second

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SS-8	5B24002-01	Soil	02/22/05 10:35	02/24/05 09:35
SS-9	5B24002-02	Soil	02/22/05 10:40	02/24/05 09:35
SS-10	5B24002-03	Soil	02/22/05 10:45	02/24/05 09:35

Page 1 of 7

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

(*) (*) (*)

Arrest .

A COLORADO

and the

にの法律にない

情報を

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

Organics by GC **Environmental Lab of Texas**

	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SS-8 (5B24002-01) Soil									
	Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EB52307	02/24/05	02/24/05	EPA 8015M	
Sector Sector	Diesel Range Organics >C12-C35	ND	10.0	H	н	"	"	It	n	
部第三	Total Hydrocarbon C6-C35	ND	10.0	"	'n	11	"	"	"	
_	Surrogate: 1-Chlorooctane		78.8 %	70-1	30	"	"	"	"	
1	Surrogate: 1-Chlorooctadecane		72.6 %	70-1	30	"	"	"	"	
~	SS-9 (5B24002-02) Soil									
1.214 AN 218	Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EB52307	02/24/05	02/25/05	EPA 8015M	
	Diesel Range Organics >C12-C35	ND	10.0	"	н	"		"	H	
	Total Hydrocarbon C6-C35	ND	10.0	H	, H	"	11	"	51	
1. A.	Surrogate: 1-Chlorooctane		88.0 %	70-1	30	"	"	"	"	
	Surrogate: 1-Chlorooctadecane		111 %	70-1	30	"	"	"	"	
語を読む	SS-10 (5B24002-03) Soil									
<u> </u>	Gasoline Range Organics C6-C12	J [7.02]	10.0	mg/kg dry	1	EB52307	02/24/05	02/25/05	EPA 8015M	
10	Diesel Range Organics >C12-C35	38.1	10.0	"	n	"	"	N	u	
1. 19. 10.	Total Hydrocarbon C6-C35	38.1	10.0	#		"	"	H	11	
	Surrogate: 1-Chlorooctane		86.4 %	70-1	130	"	"	"	"	
	Surrogate: 1-Chlorooctadecane		112 %	70-1	130	"	"	"	"	

Environmental Lab of Texas

S IS NOR

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 7

的名词复数的时间含义

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

いたの

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

General Chemistry Parameters by EPA / Standard Methods

			Environm	iental I	Lab of T	Texas				
	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
観察に	SS-8 (5B24002-01) Soil									
	Chloride	23.1	5.00	mg/kg	10	EB52503	02/24/05	02/24/05	EPA 300.0	
教室になる	% Moisture	12.3	0.1	%	1	EB52504	02/24/05	02/25/05	% calculation	
	SS-9 (5B24002-02) Soil								_	
業が行いた。	Chloride	17.1	5.00	mg/kg	10	EB52503	02/24/05	02/24/05	EPA 300.0	
a and	% Moisture	16.2	0.1	%	1	EB52504	02/24/05	02/25/05	% calculation	
States of	SS-10 (5B24002-03) Soil									
1	Chloride	40.4	5.00	mg/kg	10	EB52503	02/24/05	02/24/05	EPA 300.0	
	% Moisture	10.0	0.1	%	1	EB52504	02/24/05	02/25/05	% calculation	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 3 of 7

A ward

11 tes

における

1222

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

Organics by GC - Quality Control

Environment	tal Lab of Texas
-------------	------------------

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB52307 - Solvent Extraction ((GC)									
Blank (EB52307-BLK1)				Prepared:	02/23/05	Analyzed	: 02/24/05			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	n							
Total Hydrocarbon C6-C35	ND	10.0	W							
Surrogate: 1-Chlorooctane	44.9		mg/kg	50.0		89.8	70-130			
Surrogate: 1-Chlorooctadecane	41.1		"	50.0		82.2	70-130			
LCS (EB52307-BS1)				Prepared:	02/23/05	Analyzed	: 02/24/05			
Gasoline Range Organics C6-C12	453	10.0	mg/kg wet	500		90.6	75-125			
Diesel Range Organics >C12-C35	460	10.0	"	500		92.0	75-125			
Total Hydrocarbon C6-C35	913	10.0	"	1000		91.3	75-125			
Surrogate: 1-Chlorooctane	46.7		mg/kg	50.0		93.4	70-130			
Surrogate: 1-Chlorooctadecane	36.7		"	50.0		73.4	70-130			
Calibration Check (EB52307-CCV1)				Prepared:	: 02/23/05	Analyzed	1: 02/24/05			
Gasoline Range Organics C6-C12	509		mg/kg	500		102	80-120			
Diesel Range Organics >C12-C35	565		**	500		113	80-120			
Total Hydrocarbon C6-C35	1070		"	1000		107	80-120			
Surrogate: 1-Chlorooctane	48.6		"	50.0		97.2	70-130			
Surrogate: 1-Chlorooctadecane	47.8		"	50.0		95.6	70-130			
Matrix Spike (EB52307-MS1)	So	urce: 5B23(07-03	Prepared	: 02/23/05	Analyzed	1: 02/24/05			
Gasoline Range Organics C6-C12	530	10.0	mg/kg dry	602	ND	88.0	75-125			
Diesel Range Organics >C12-C35	579	10.0	n	602	ND	96.2	75-125			
Total Hydrocarbon C6-C35	1110	10.0	"	1200	ND	92.5	75-125			
Surrogate: 1-Chlorooctane	37.3		mg/kg	50.0		74.6	70-130			
Surrogate: 1-Chlorooctadecane	39.3		"	50.0		78. 6	70-130			
Matrix Spike Dup (EB52307-MSD1)	So	urce: 5B23(007-03	Prepared	: 02/23/05	Analyzed	1: 02/24/05			
Gasoline Range Organics C6-C12	516	10.0	mg/kg dry	602	ND	85.7	75-125	2.68	20	
Diesel Range Organics >C12-C35	600	10.0	*1	602	ND	99.7	75-125	3.56	20	
Total Hydrocarbon C6-C35	1120	10.0	n	1200	ND	93.3	75-125	0.897	20	
Surrogate: 1-Chlorooctane	41.4		mg/kg	50.0		82.8	70-130			
Surrogate: 1-Chlorooctadecane	38.0		"	50.0		76.0	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

and the second

Project: Dynegy Site #5 Project Number: 0-0100-05 Project Manager: Cindy Crain

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

	Develt	Reporting	**.*.	Spike	Source	AVREC	%REC	000	RPD	NT 4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB52503 - Water Extraction										
Blank (EB52503-BLK1)				Prepared	& Analyze	ed: 02/24/0	05			
Chloride	ND	0.500	mg/kg			<u>6</u> ,				
Blank (EB52503-BLK2)				Prepared	& Analyze	ed: 02/24/0	05			
Chloride	ND	0.500	mg/kg		·····					
LCS (EB52503-BS1)				Prepared	& Analyze	ed: 02/24/	05			
Chloride	10.3		mg/L	10.0		103	80-120			
LCS (EB52503-BS2)				Prepared	& Analyz	ed: 02/24/	05			
Chloride	10.4		mg/L	10.0		104	80-120			
Calibration Check (EB52503-CCV1)				Prepared	& Analyz	ed: 02/24/	05			
Chloride	10.4		mg/L	10.0		104	80-120			
Calibration Check (EB52503-CCV2)				Prepared	& Analyz	ed: 02/24/	05			
Chloride	10.4		mg/L	10.0	·*	104	80-120			
Duplicate (EB52503-DUP1)	Sou	rce: 5B220	06-01	Prepared	& Analyz	ed: 02/24/	05			
Chloride	35.3	5.00	mg/kg	4	42.2			17.8	20	
Duplicate (EB52503-DUP2)	Sou	irce: 5B240	02-02	Prepared	& Analyz	ed: 02/24/	05			
Chloride	17.2	5.00	mg/kg		17.1			0.583	20	
Batch EB52504 - General Preparation	(Pren)									
				<u> </u>	00/01/07			-	<u> </u>	
Blank (EB52504-BLK1)				Prepared	: 02/24/05	Analyzed	1: 02/25/05	5		
% Moisture	ND	0.1	%							

Environmental Lab of Texas

1.23.49

di stati

64. A.S.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

CHICKS STATES AND A STREET AND A

CHI ADARDA DI S

H.M.R.R.

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas** Reporting %REC RPD Spike Source Analyte Result Limit Units Level Result %REC RPD Notes Limits Limit **Batch EB52504 - General Preparation (Prep)** Duplicate (EB52504-DUP1) Source: 5B24002-01 Prepared: 02/24/05 Analyzed: 02/25/05 13.0 % Moisture 5.53 0.1 % 12.3 20

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 6 of 7

Notes and Definitions

	J	Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
	DET	Analyte DETECTED
に開きた	ND	Analyte NOT DETECTED at or above the reporting limit
X-27	NR	Not Reported
	dry	Sample results reported on a dry weight basis
•	RPD	Relative Percent Difference
startes a	LCS	Laboratory Control Spike
19 19	MS	Matrix Spike
2. 27. 27.28	Dup	Duplicate
御書		

Kalandk. July Report Approved By: Date: 2-25-05

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

CLIENT NAME	نٺ د			SITE MANAGER:			PAR	AMETER	PARAMETERS/METHOD NUMBER	N DOH	IUMBE		CHAIN	-OFCUSTC	CHAIN-OF-CUSTODY RECORD
Q	Vnegu	-		Cindy Crain	Ĺ	ـــــــــــــــــــــــــــــــــــــ									
PROJECT NO	0010	CC :0010-0	_	PROJECT NAME: 57 ≠ 5	·		P/ WSI							A arson & Ssociates, Inc. Fax: 432-687-0456 Environmental Consultants 432-687-0901	432-687-0456 432-687-0901
PAGE /	Ъ			LAB. PO # 5324002	1-1		08						507 N. Marie	507 N. Marienfeld, Ste. 202 • Midland, TX 79701	Midland, TX 79701
ILVQ	31411	20°	~0 <i>NOS</i>	SAMPLE IDENTIFICATION		NUMBER (40						Lab. I.D. Number (Lab Use Only)	REN (1.E., FILTEREL PRESERVED, 1 GRAB CC	Remarks II.E., Filtered, Unfiltered, Preserved, Unpreserved, Grab Composite)
<i>D</i>	2			35 8 -	0	-	7								
4 1/	1040	•	7	1	52	-	7 7								
1/	ieuts	7	$\overline{1}$	55-10 1	75	-	7 7								
							_		-				-		
		_										_			
							_		_						
							+-								
			+												
SAMPLED BY: (Signature)	K: (Sign	divire).	-	DATE: 2/22/05 TIME: 1045	RELINDUS	D BY: Sign	HED BY: Signature)		-	DATE: TIME:	202	C REC	6 RECEIVED BY: (Signature)	ature)	DATE: TIME:
RELINQUISHED BY: (Signature)	HED BY:	(Signatu	ire)	DATE:	_ RECEIVED BY:	3Y: (Signature)	ure)			DATE		- SAN	SAMPLE SHIPPED BY: (Circle)	Y: (Circle)	
				TIME:						TIME		FEDEX	T.	۹	ILL #:
COMMENTS:	ŝ							Ĩ	Turnaround time needed	4D TIME	NEEDED	<u>v</u> _	Hand Delivered White - Receiving Lab	SU	OTHER:
RECEIVING LABORATORY:	LABOR	NTORY:	I T	EMMONTHENDELLE	the work R	ECEIVE	RECEIVED BY: (Signature)	nature/	000			₩ 	ž	- Receiving Lab (to be returned to La After Receipt)	RNED TO
AUUKESS: CITY: CONTACT						DATE: 2	to the		WE:	7.30	A	GOLD		PROJECT MANAGER QA/QC COORDINATOR	
SAMPLE CONDITION WHEN RECEIVED: 0,0°C 6°Z /a 19	W NOILIO	ten Received:	<u></u>			LA CO	LA CONTACT PERSON	ERSON	5			SAM	SAMPLE TYPE:		
		2			A STATE OF STATE OF STATE OF STATES	A Second Second Second	<u></u>	and a second	ため、一般の主人	ちんしいではいろうので	というかっている	ale de constator		「日本語の日本」を「日本書」」	一方の一方の一方の一方の一方の一方の方をある。 あんろう

(and the second

教学で

際に出た。

1. 200 B

開始の

読品が

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	avson & Assoc.
Date/Time:	2/24/05 9:35
Order #: _	5BZ4002
Initials:	Cle

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	0,0 0
Shipping container/cooler in good condition?	Yes	No	
Custody Seals intact on shipping container/cooler?	Yes	No	Not present
Custody Seals intact on sample bottles?	Yes	No	Not present
Chain of custody present?	Yes>	No	
Sample Instructions complete on Chain of Custody?	Xes	No	
Chain of Custody signed when relinquished and received?	Yes	No	
Chain of custody agrees with sample label(s) no label	LYS-	- No	writtenonlid
Container labels legible and intact?	-Yes	No	nla
Sample Matrix and properties same as on chain of custody?	(Tes)	No	
Samples in proper container/bottle?	Yes	No	
Samples properly preserved?	TES	No	
Sample bottles intact?	Yes	No	
Preservations documented on Chain of Custody?	res	No	
Containers documented on Chain of Custody?	tes	No	
Sufficient sample amount for indicated test?	255	No	
All samples received within sufficient hold time?	Jes I	No	
VOC samples have zero headspace?	(es.	No	Not Applicable

Other observations:

構造に

100.000

And the second second

Variance Documentation:

Contact Person: -____ Date/Time: _____ Contacted by: _____ Regarding:

Corrective Action Taken:

January 30, 2004

Mr. Paul Sheeley New Mexico Oil Conservation Division – District I 1625 North French Drive Hobbs, New Mexico 88240

Re: Pipeline Spill Investigation Report, Dynegy Midstream Services. L.P., Unit Letter I (NE/4, SE/4), Section 24, Township 22 South, Range 37 East, Lea County, New Mexico

Dear Mr. Sheeley:

Dynegy Midstream Services, L.P. (Dynegy) has retained Larson and Associates Inc. (LA) to investigate potential impacts to soil from a historic natural gas liquids spill that occurred from a pipeline leak in the northeast quarter (NE/4) of the southeast quarter (SE/4), Section 24, Township 22 South, Range 37 East, Lea County, New Mexico (Site #05). The spill did not involve a reportable quantity of gas or liquid. A Release Notification and Corrective Action form (C-141) was filed only at the request of the New Mexico Oil Conservation Division (NMOCD). The leak was repaired. Figure 1 presents a site location and topographic map. Appendix A presents a copy of the form C-141.

Current Investigation

On August 21, 2003, LA personnel collected soil samples at Site #05 by hand auger methods. The hand auger soil samples were collected using a stainless steel hand auger that was thoroughly cleaned between sample events using potable water and laboratory-grade detergent, and rinsed with distilled water. Hand auger samples were collected at one-foot intervals, from the surface to a depth of eight (8) feet below ground surface (bgs). Caliche was encountered at a depth of approximately eight (8) feet bgs, preventing advancement of the hand auger.

The soil samples were placed in clean glass sample jars, labeled, chilled in an ice chest, and delivered under chain of custody control to Environmental Lab of Texas I, Ltd. (ELOT), located in Odessa, Texas. A duplicate of each sample was collected for headspace analysis. The clean glass headspace jars were filled approximately ³/₄ full, and covered with a layer of aluminum foil before the cap was replaced. The headspace samples were set aside and allowed to warm up to ambient temperature before a FAE Instruments, Model 2000 photoionization detector (PID) was used to measure the concentration of organic vapors in the sample headspace. After calibrating the instrument to 99.9 parts per million (ppm), the PID probe was inserted into the headspace of the sample jars (through the aluminum foil), and the concentration of organic vapors was displayed by the instrument in ppm. Table 1 presents the PID readings.

Mr. Paul Sheeley January 30, 2004 Page 2

The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method SW-846-8015, including gasoline range (GRO) and diesel range organics (DRO), and chloride by EPA method SW-846-9253. Table 1 presents a summary of the laboratory results. Figure 2 shows the hand auger boring location. Appendix B presents the laboratory analyses and chain of custody documentation. Appendix C presents photographs.

Based on published literature (1961) and well records of the New Mexico State Engineer, groundwater occurs at a depth of approximately 146 feet bgs. No domestic wells were observed within ½ mile of the site. The NMOCD has established soil remediation action levels (RRALs) for benzene, total BTEX (sum of benzene, toluene, ethylbenzene and xylene), and TPH resulting from spills of natural gas liquids ("Guidelines for Remediation of Leaks, Spills and Releases, August 13, 1993").

The following RRALs have been assigned based on NMOCD criteria:

Benzene	10 mg/kg
Total BTEX	50 mg/kg
TPH	5000 mg/kg

THE PARTY NUMBER OF

Referring to Table 1, concentrations of TPH exceeded the RRAL in the samples from 5-6 feet bgs (41,100 mg/kg) and from 7-8 feet bgs(12,070 mg/kg). Chloride concentrations were below the test method detection limit in all samples from soil boring HB-1. The samples were not analyzed for BTEX since the PID readings were below 100 ppm. The NMOCD allows a PID of less than 100 ppm to substitute for a BTEX laboratory analysis.

From September 2, 2003 through September 17, 2003, excavation of impacted soil occurred at Site #05. Soil samples were collected on September 2, 3, 12 and 17, from the sides and bottom of the excavation, and submitted to ELOT for laboratory analysis. The soil samples were placed in clean glass sample jars, labeled, chilled in an ice chest, and delivered under chain of custody control to ELOT. Duplicate samples were collected for headspace analysis, as described above. Soil samples were analyzed for TPH by EPA method SW-846-8015, for BTEX by EPA method SW-846-8021B, and for chlorides by EPA method SW-846-9253. Table 2 presents a summary of the laboratory analysis of soil from the excavation, and PID readings. Figure 2 shows the sample locations and TPH concentrations. Appendix B presents laboratory data and chain of custody documentation. Appendix C presents photographs.

Referring to Table 2, the soil sample from the southeast wall (SS-1) collected on September 2, 2003, and the samples collected on September 3, 2003 from the bottom of the excavation (SS-7 and SS-8), showed TPH concentrations above the RRAL (10,860 mg/kg, 15,080 mg/kg and 16,720 mg/kg, respectively). All other samples collected from September 2 through September 17, 2003, showed TPH concentrations below the RRAL. Benzene concentrations were below the RRAL in all soil

Mr. Paul Sheeley January 30, 2004 Page 3

samples except sample SS-7 (11.1 mg/kg) collected from the bottom of the excavation, at a depth of approximately 16 feet bgs. Total BTEX concentrations were below the RRAL in all soil samples except samples SS-7 (150.6 mg/kg) and SS-8 (93.7 mg/kg), also collected from the bottom of the excavation, at a depth of approximately eighteen (18) feet bgs. The only sample to show a detectable concentration of chloride was sample SS-2 (35.4 mg/kg), collected from the southwest wall of the excavation. The NMOCD does not have an RRAL for chloride.

On September 24 and October 1, 2003, final confirmation samples were collected along the side walls of the Site #05 excavation, following NMOCD notification of sampling activities. Soil samples were placed in clean glass sample jars, labeled, chilled in an ice chest and delivered to ELOT under chain of custody control. A duplicate of each sample was collected for headspace analysis, as described above. Soil samples were analyzed for TPH and chlorides. Table 2 presents a summary of laboratory analyses of soil from the excavation, and PID readings. Figure 3 shows the sample locations and TPH concentrations. Appendix B presents laboratory data and chain of custody documentation. Appendix C presents photographs.

Referring to Table 2, all soil samples collected on November 25, 2003, showed TPH concentrations below the RRAL. The only detectable chloride concentration was shown in sample SS-19 (177 mg/kg), collected from the west wall at a depth of approximately seven (7) feet bgs. All PID readings were below 100 ppm, except the reading from sample SS-26 (109.7 ppm). Sample SS-26 was also analyzed for BTEX. Concentrations of benzene and BTEX in sample SS-26 were below the RRALs.

Soil from the excavation was placed adjacent to the hole, and blended to reduce the TPH level below the RRAL. On September 17, 2003, a grab sample was obtained from the blended soil, and is presented as "Fill-1" in Table 2. As TPH, benzene, Total BTEX and chloride concentrations from all final samples collected at Site #05 were below the RRALs, the excavation was filled with blended soil.

Dynegy requests that Site # 05 be closed. Please call Mr. Cal Wrangham with Dynegy (432) 688-0555 or myself at (915) 687-0901 if you have any questions.

Sincerely, Larson & Associates, Inc.

Cindy K. Crain, CPG

Encl. cc: Mr. Dave Harris - Dynegy Mr. Cal Wrangham – Dynegy Mr. Roger Holland- Dynegy

TABLES

Table 1:

Summary of Headspace and Laboratory Analyses of Soil Samples from Auger Boring Dynegy Midstream Services, L.P., Spill Site #05

No.

No.

Participants of the second sec

544 A

Same and

Section 2.

2.000000

NE/4,SE/4, Section 24, Township 22 South, Range 37 East

Lea County, New Mexico	New Mexic	C0				A A A ANALYSI A A A A A A A A A A A A A A A A A A A	
Sample	Soil		GRO	DRO	TPH	Chloride	PID
Date	Boring	Depth	C6-C12	>C12-C35	C6-C35	C6-C35 (mg/kg)	(mdd)
		(Feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)		
RRAL					5000		
8/21/2003	HB-1	5-6	10,000	31,100	41,100	<20.0	1.6
		6-7	<10.0	89.3	89.3	<20.0	73.8
		7-8	3,610	8,460	12,070	<20.0	76.3

Notes: Analysis performed by Environmental Lab of Texas I, Ltd., Odessa, Texas

Sample depth in feet below ground surface 1. BGS: Total petroleum hydrocarbons (Sum of DRO + GRO) 2. TPH:

Milligrams per kilogram 3. mg/kg: Below method detection limit 4 V

Photoionization detector 5. PID:

Parts per million 6. ppm:

 Table 2:
 Summary of Headspace and Laboratory Analyses of Soil Samples

 Dynegy Midstream Services, L.P., Spill Site #05

Dynegy Midstream Services, L.F., Dpill Site #05 NE/4,SE/4, Section 24, Township 22 South, Range 37 East Lea County. New Mexico

ľ			·						107011	
Sample	Sample	Sample Location	Sample	GKU	DKU	IFH Co-	Chioride	Denzene	1 01210	
Date	No.		Depth (Feet	C6-C12	>C12-C35	C3S	(mg/kg)	(mg/kg)	BTEX	(mqq)
			(sgd	(mg/kg)	(mg/kg)	(mg/kg)			(mg/kg)	
RRAL						5000		10	50	
9/2/2003	SS-1	Southeast Wall	6	2,740	8,120	10,860	<20.0	1.22	30.66	185.8
	SS-2	Southwest Wall	6	388	1,200	1,588	35.4	0.369	24.42	200.5
9/3/2003	SS-7	Midwest Bottom	16	4,480	10,600	15,080	<20.0	11.1	150.6	85.3
	SS-8	Mideast Bottom	15.5	4,520	12,200	16,720	<20.0	6.2	93.7	76.1
9/12/2003	9/12/2003 SS-9 (W)	Midwest Bottom	18.5	353	1,160	1,513	<20.0	1.19	20.07	71.5
	SS-10 (E)	Mideast Bottom	18	775	2,840	3,615	<20.0	0.934	44.97	108.3
9/17/2003	SS-11	Bottom	18	902	2,910	3,812	<20.0	2.22	31.16	138.3
	SS-12	Bottom	18	<10.0	71.0	71.0	<20.0	<0.025	0.098	40.1
	SS-13	West Wall	13	<10.0	<10.0	<20.0	<20.0	<0.025	0.026	2.2
	SS-14	East Wall	13	<10.0	16.1	16.1	<20.0	<0.025	<0.125	5.3
	SS-15	North Wall	13	<10.0	219	219	<20.0	<0.025	<0.125	36.2
	SS-16	South Wall	13	<10.0	<10.0	<20.0	<20.0	<0.025	<0.125	7.3
	Fill-1		backfill	522	2500	3022	<20.0	0.291	17.04	63.7
9/25/2003	SS-17	South Wall	7	<10.0	17.1	17.1	<20.0	1	1	0.1
	SS-18	South Wall	4	<10.0	<10.0	<20.0	<20.0	1	ł	0.3
	SS-19	West Wall	7	<10.0	44	44	177	1		1.3
	SS-20	West Wall	7	<10.0	30.7	30.7	<20.0	1	1	1.2
	SS-21	North Wall	7	85.2	2,020	2,105.2	<20.0	:	:	0.7
	SS-22	North Wall	7	16.3	269	285.3	<20.0	1	1	0.4
	SS-23	East Wall	L	35.7	1,020	1,056.7	<20.0	ł	1	2.1
	SS-24	East Wall	2	<10.0	28.9	28.9	<20.0	:	:	2.7
10/1/2003	SS-25	North Wall	7	<10.0	<10.0	<20.0	<20.0	1	1	24.3
	SS-26	South Wall	٤ ـ	984	3,590	4,574	<20.0	0.071	9.34	109.7

THE RESIDENCE AND ADDRESS

Notes: Analysis performed by Environmental Lab of Texas I, Ltd., Odessa, Texas

1. BGS: Sample depth in feet below ground surface

2. TPH: Total petroleum hydrocarbons (Sum of DRO + GRO)

3. mg/kg: Milligrams per kilogram

ng/Kg: Multigrams per kurogram c: Below method detection limit

4. <: Below method detection lin
5. PID: Photoionization detector

PlD: Photoionization detection
 ppm: Parts per million

ļ

1. 1. C.

100000

1.47.202

And Address of the

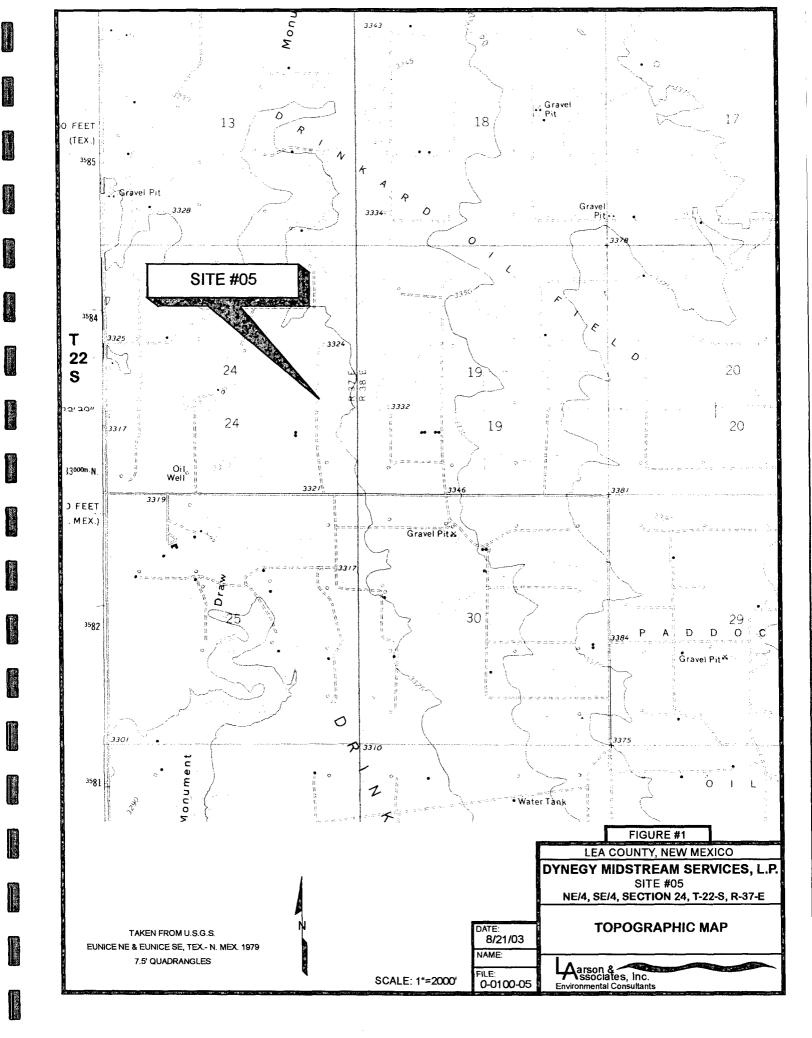
Property and

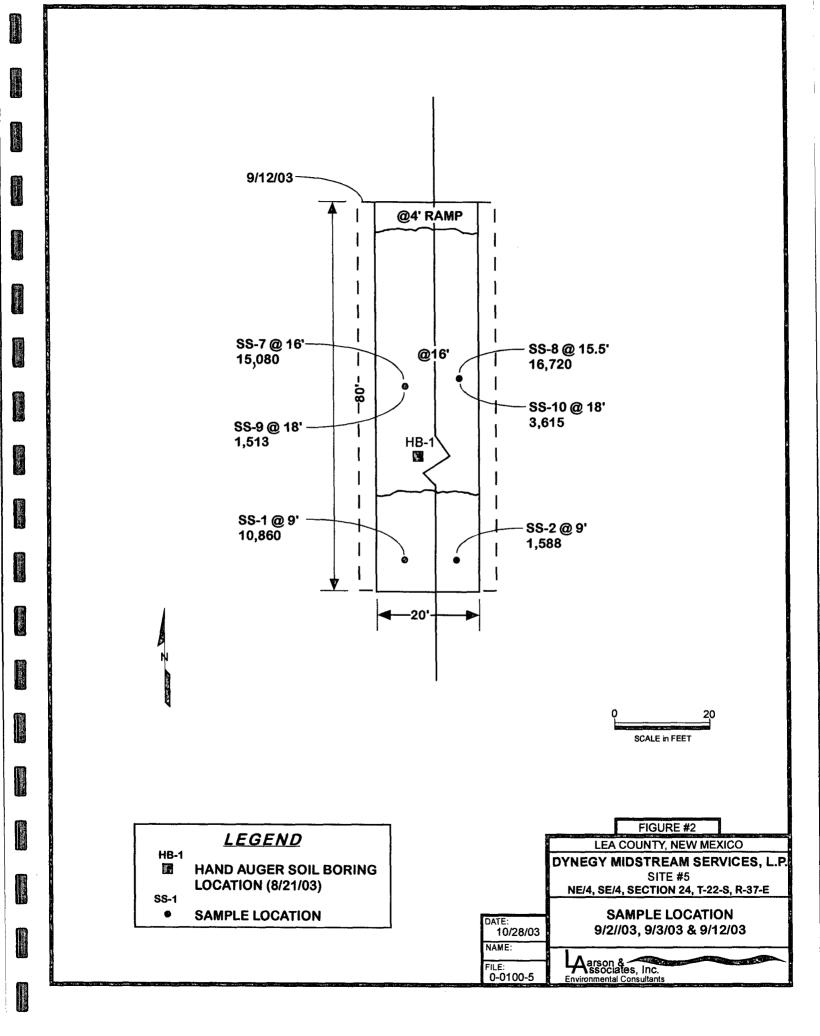
the file

Service d

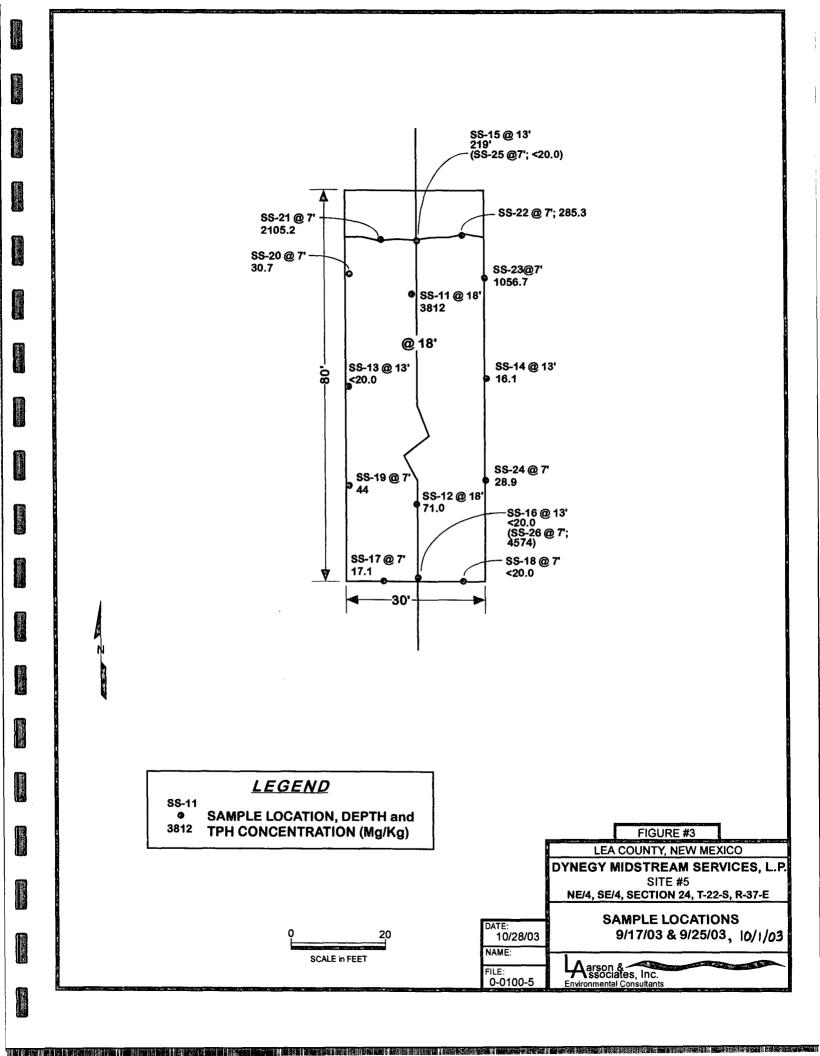
Sec. March

No.


No.


A STREET

Salation of the


Same a

No. of the local diversion of the local diver

THE THE

APPENDIX A

a statement

EL OVER

調査部署

Service 1

 $\sum_{i=1}^{m} \frac{(i-1)^{i-1}}{(i-1)^{i-1}} \sum_{i=1}^{m} \frac{(i-1)^{i-1}}{(i-1)^{i-1}}$

<u> 1997 - 1997</u>

Street.

No.

Section 2

1. N. F. F.

al al a de la de l

a upper and

TIT

Release Notification and Corrective Action Form (C-141)

and a second

a colored

Statute -

Sec.

Sec. 4.2

Salar and

State of the

Real and

and the second second

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505 ļ

i

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Santa F	e, NM 875	05					
Release Notificatio	n and Co	rrective A	ction				
	OPERA	FOR	I Initia	l Report	Final Report		
Name of Company Dynegy Midstream Services, L.P.	Contact	Dave Har					
Address PO Box 1909 Eunice, NM 88231	Telephone 1	No. (505)	631.7069				
Facility Name Eunice Plant Gathering System	Facility Typ	e Gas Plant	Low Pressur	<u>e Gatheri</u>	ng Lines		
Surface Owner J.L. Murcy J Pat Sims Mineral Owner	· · · · · · · · · · · · · · · · · · ·		Lease N	lo	<u> </u>		
LA Project # 0-0100-05 LOCATIO)N OF RE	LEASE					
	h/South Line	Feet from the	East/West Line	County ,	······································		
I 24 225 37E				1	ea		
				L			
Type of Release Natural Gas Condensate	E OF REL		1 1 1 1 1 m 1	Deservered	Nese		
Source of Release Pipeline Leak	Volume o	Hour of Occurrence		Recovered Hour of Dise	None		
Was Immediate Notice Given?	If YES, T						
🗋 Yes 🔯 No 🗍 Not Require	d						
By Whom?	Date and 1				······		
Was a Watercourse Reached?	If YES, V	olume Impacting	the Watercourse.				
If a Watercourse was Impacted, Describe Fully.*							
Describe Cause of Problem and Remedial Action Taken.* Pipeline leak due to interior and exter Describe Area Affected and Cleanup Action Taken.*	ior corre	osion. Wi	11 excavate	impact	ed soil.		
Some staining along pipeline right of way. Will clean up per NMOCD guidelines and submit documentation to district office.							
I hereby certify that the information given above is true and complete tregulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remeat or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	to the best of m is notifications of the NMOCD diate contamina	and perform corre- marked as "Final" ition that pose a th	ective actions for re Report [®] does not re treat to ground wat	eleases which elieve the op- ter, surface w	n may endanger erator of liability vater, human health		
Signature:		OIL COM	NSERVATIO	N DIVISI	<u>ON</u>		
Printed Name: Cal Wrangham	Approved	y District Superv	isor:				
Title: ES4H Advisor	Approval I	Date:	Expiratio	m Date:			
E-mail Address: CWWF @ dynegy. Com	7	of Approval:		Attache	5d 🔲		
Date: 8/21/03 Phone: (432) 688-05	42						

* Attach Additional Sheets If Necessary

APPENDIX B

部門に変わ

And and a second

1.42 miles

Sec.

DH DR

STRUMENTS AND ADDRESS OF ADDRES

Laboratory Reports

ANALYTICAL REPORT

Prepared for:

And the second second

NACONS.

Series Series

Reading and

JOHN STEWART LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710

 Project:
 Dynegy

 PO#:
 G0307285

 Order#:
 08/25/2003

<u>Certificates</u> US EPA Laboratory Code TX00158

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

A PROPERTY AND A PROPERTY

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

LARSON AND ASSOCIATES, INC.	Order#:	G0307285
P.O. BOX 50685	Project:	0-0100-05
MIDLAND, TX 79710	Project Name:	Dynegy
915-687-0456	Location:	None Given

61-61-6

Contraction of the

22.20

STALLER.

10.000

astat It

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

				Date / Time	Date / Time		
	<u>Lab ID:</u>	Sample :	Matrix:	Collected	_Received	<u>Container</u>	Preservative
	0307285-01	0-0100-05 (5-6')	SOIL	8/21/03 8:30	8/21/03 17:30	4 oz glass	ice
	La	<u>b Testing:</u>	Rejected: No	Tem	p: 1.0 C		
		8015M					
		Chloride					
	0307285-02	0-0100-05 (6-7')	SOIL	8/21/03 8:45	8/21/03 17:30	4 oz glass	ice
_	La	<u>b Testing:</u>	Rejected: No	Tem	р: 1.0 C		
		8015M					
	·	Chloride					
	0307285-03	0-0100-05 (7-8')	SOIL	8/21/03 8:50	8/21/03 17:30	4 oz glass	ice
	` <u>La</u>	<u>b Testing:</u>	Rejected: No	Tem	ар: 1.0 C		
		8015M					
		Chloride					

图 包括常常的空间 部

(前)的短期短期间的

的时间空的

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

OHN STEWAR LARSON AND A P.O. BOX 50685 MIDLAND, TX	SSOCIATES, INC.			Order#: Project: Project Name: Location:		0-05	
Lab ID: Sample ID:	0307285-01 0-0100-05 (5-6')						
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 8/23/03	8015M Sample <u>Amount</u> 1	Dilution <u>Factor</u> 10	<u>Analyst</u> CK	<u>Method</u> 8015M
		Parameter	••••••••••••••••••••••••••••••••••••••	Result mg/kg		RL	
		GRO, C6-C12		10000		100	
		DRO, >C12-C35		31100		100	
		TOTAL, C6-C35		41100		100	
		Surrogat 1-Chloroocta 1-Chloroocta	ine	% Recovered 46% 24%	QC Lim 70 70	its (%) 130 130	
Lab ID: Sample ID:	0307285-02 0-0100-05 (6-7') Method	Date	Date	8015M Sample	Dilution		
	Blank	Prepared	Analyzed	Amount	Factor	<u>Analyst</u>	Method
			8/23/03	1	1	СК	8015M
		Parameter		Result mg/kg		RL	
		GRO, C6-C12		<10.0		10.0	
		GRU, CO-C12	_	~10.0		1	
		DRO, >C12-C35		89.3		10.0	

Surrogates	% Recovered	QC Limits (%)		
1-Chlorooctane	108%	70	130	
1-Chlorooctadecane	128%	70	130	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

1987 19

Marine P

Sec. 4

教祖之心

19 J. 20

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

JOHN STEWAR	кт			Order#:	G0307	285	
LARSON AND A	ASSOCIATES, INC.			Project:	0-0100	-05	
P.O. BOX 50685				Project Name	e: Dyneg	у	
MIDLAND, TX	79710			Location:	None (Given	
Lab ID:	0307285-03						
Sample ID:	0-0100-05 (7-8')						
				8015M			
	Method	Date	Date	Sample	Dilution		
	Blank	Prepared	Analyzed	Amount	Factor	<u>Analyst</u>	Method
			8/23/03	1	1	СК	8015M
			<u></u>				
		Parameter		Result mg/kg		RL	
		GRO, C6-C12		3,610		10.0	
		DRO, >C12-C35		8,460)	10.0	
		TOTAL, C6-C35		12,070	0	10.0	

Surrogates	% Recovered	QC Li	mits (%)
1-Chlorooctane	198%	70	130
1-Chlorooctadecane	82%	70	130

Approval:

בטאברו את ב

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

Super-

STATE OF STATE

Server and the

State of the second

Statistics of

deserves and

Silest State

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

JOHN STEWA LARSON AND P.O. BOX 5068 MIDLAND, TY	ASSOCIATES, INC. 5		Order# Project Project Locatio	: 0 Name: I	G0307285 -0100-05)ynegy None Given			
Lab ID: Sample ID:	0307285-01 0-0100-05 (5-6')							
Test Parameters Parameter		Result	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	<u>Analyst</u>
Chloride		< 20.0	mg/kg	1	20.0	9253	8/25/03	SB
Lab ID: Sample ID:	0307285-02 0-0100-05 (6-7')							
Test Parameters Parameter		Result	<u>Units</u>	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	Analyst
Chloride		< 20.0	mg/kg	1	20.0	9253	8/25/03	SB
Lab ID: Sample ID:	0307285-03 0-0100-05 (7-8')					<u>, , , , , , , , , , , , , , , , , , , </u>		
Test Paran	neters			Dilution			Date	
Parameter	·	<u>Result</u>	Units	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Chloride		< 20.0	mg/kg	1	20.0	9253	8/25/03	SB
	,			_	11			1 1

Approval: <u>Approval</u> Raland K. Tuttle, Lab Director, QA Officer Date Celey D. Keene, Org. Tech. Director Jeanne McMurgar Laws Tech. Director

Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

RL = Reporting Limit N/A = Not Applicable

20.00

20 - 10 - 10 20 - 10 - 10 20 - 10 - 10

and a state of the

Sale and

State and

and a second second

States of

ENVIRONMENTAL LAB OF TEXAS I, LTD.

Departments

「「「「「」」

10.00

South States

a contractor

個中習

8015M

Order#: G0307285

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/k	g	0006605-02			<10.0		
CONTROL	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/k	g	0006605-03		952	964	101.3%	
CONTROL I	DUP SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/k	g	0006605-04	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	952	979	102.8%	1.5%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/k	g	0006605-05		1000	942	94.2%	

STATE OF STREET

100 B

10000

Statistics.

議会に経済

No. of Concession, Name

- A COLORED

No. of Concession, Name

100

Test Parameters

Order#: G0307285

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0006608-01			< 20		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg	·····	0307280-01	0	500	478	95.6%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307280-01	0	500	496	99.2%	3.7%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0006608-04		5000	4960	99.2%	

CASE NARRATIVE ENVIRONMENTAL LAB OF TEXAS

Prepared for:

Page

1

LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710 Order#: G0307285

Project: Dynegy

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
0-0100-05 (5-6')	0307285-01	SOIL	08/21/2003	08/21/2003
0-0100-05 (6-7')	0307285-02	SOIL	08/21/2003	08/21/2003
0-0100-05 (7-8')	0307285-03	SOIL	08/21/2003	08/21/2003

Surrogate recoveries on the 8015M TPH are outside of control limits due to dilution. (0307285-01)

Surrogate recoveries on the 8015M TPH are outside control limits due to matrix interference. (0307285-03)

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete. γ

Approved By:

un Date: Environmental Lab of Texas I, Ltd.

178/25/172

BER CHAIN-OF-CUSTODY RECORD	A arson & Fax: 915-687-0456 Environmental Consultants 915-687-0901	arienfeld, Ste. 202 • Midland, TX 79/01	LAB. I.D. REMARKS NUMBER (I.E., FILTERED, UNFILTERED, PRESERVED, UNPRESERVED, (LAB USE ONLY) CRAB COMPOSITE)	0301285	3422001							RECEIVED BY: (Signature) DATE:	SAMPLE SHIPPED BY: (Circle)	FEDEX BUS A	WHITE - RECEIVING LAB	TELLOW - RECEIVING LAB (10 BE REJURNEU 10 LA AFTER RECEIPT) PINK - PROJECT MANAGER GOLD - QA/QC COORDINATOR	SAMPLE TYPE: 4 02 4 62 4 600 / " 67	
PARAMETERS/METHOD NUMBER	OUTRINERS	OF CC	аруун ТТТ Момвек	<i>, , , , , , , , , ,</i>)	3						ED BY: (Signature) DATE: TIME:	RECEIVED BY: (Signature) DATE:	TIME		RECEIVED BY: (Signature)	LA CONTACT PERFON.	(vode / have
SITE MANAGER:	PROJECT NAME:	LAB. PO #	Sample IDENTIFICATION	5-0/m-05 (5-b	12-05 (6.7	10 1						 DATE: 3/>1/b3 RELINQUISHED BY: (Signature) TIME:	Shick	TIME		STATE: ZIP:	FINONE.	
CLIENT NAME:	PROJECTION 25	PAGE 2 OF	1105 24214M 31M11 21240	1 0530 12/2	2 2121 2845	~ 0000 refs 9						SAMPLED BY. (Signature)	REFINICUISMED BY (Signature)	/	COMMENDE:	RECEIVING LABORATORY: ADDRESS: CUTY:	CONTACT: SAMPLE CONDITION WHEN RECEIVED:	

200

C

and the second second

and the second s

No.

ANALYTICAL REPORT

Prepared for:

JOHN STEWART LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710

Project: Dynegy #05

PO#:

Order#: G0307366

Report Date: 09/04/2003

Certificates US EPA Laboratory Code TX00158

Add to shirt

No. of Lot of Lo

. 1

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

LARSON AND ASSOCIATES, INC.	Order#:	G0307366
P.O. BOX 50685	Project:	0-0100-05
MIDLAND, TX 79710	Project Name:	Dynegy #05
915-687-0456	Location:	None Given

ita a martin A

and the second second

and the set

Reason of

and a second

Acres 1

and the second

article and

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

				Date / Time	Date / Time		
	<u>Lab ID:</u>	Sample :	<u>Matrix:</u>	Collected	Received	<u>Container</u>	Preservative
	<u>Lab ID:</u> 0307366-01	SS-1	SOIL	9/2/03 13:45	9/2/03 16:50	4 oz glass	ice
	<u>La</u>	<u>b Testing:</u> 8015M 8021B/5030 BTEX	Rejected: No	Т	emp: 2.5 C		
	0307366-02	Chloride SS-2	SOIL	9/2/03	9/2/03	4 oz glass	ice
	<u>La</u>	<u>b Testing:</u> 8015M 8021B/5030 BTEX Chloride	Rejected: No	13:47 T	16:50 emp: 2.5 C		
Sec. 2							

JOHN STEWAH LARSON AND P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC. 5			Order#: Project: Project Name: Location:	0-01 : Dyn	07366 00-05 egy #05 e Given	
Lab ID:	0307366-01						
Sample ID:	SS-1						
				8015M			
	Method	Date	Date	Sample	Dilution		Mathad
	<u>Blank</u>	Prepared	<u>Analyzed</u> 9/3/03	<u>Amount</u> 1	<u>Factor</u> 1	<u>Analyst</u> CK	<u>Method</u> 8015M
		Parameter		Result mg/kg		RL	
		GRO, C6-C12		2,740		10.0	
		DRO, >C12-C35	;	8,120		10.0	
		TOTAL, C6-C3	5	10,860		10.0	
							
		Surrog		% Recovered	_	mits (%)	
		1-Chlorooc 1-Chlorooc		197% 120%	70 70	130 130	
				B/5030 BTEX			
	Method		Date	Sample	Dilutio		
	<u>Blank</u>	Prepared	<u>Analyzed</u> 9/3/03	Amount	<u>Factor</u> 50	<u>Analyst</u> JMM	<u>Method</u> 8021B
	0006685-0	2	9/3/03	1	50	JMM	80218
		Parameter	,,,,,	Result mg/kg		RL	
		Benzene		1.22		0.050	
		Toluene		3.98		0.050	
		Ethylbenzene		4.57		0.050	
		p/m-Xylene		12.7		0.050	
		o-Xylene		8.19		0.050	
		Surrog	ates	% Recovered	QC Li	mits (%)	
		aaa-Toluei		753%	80	120	
		aaa-10luei	le	10070	••		

ENVIRONMENTAL LAB OF TEXAS I, LTD.

Contract of

Barren a

and the second se

And the second se

a the second

「「「「「「」」」」

States 1

推动动行"

different f

把用113

JOHN STEWAR LARSON AND A P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC.			Order#: Project: Project Name Location:	-		
Lab ID: Sample ID:	0307366-02 SS-2						
				8015M			
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 9/3/03	Sample <u>Amount</u>	Dilution <u>Factor</u>	<u>Analyst</u>	Method
			9/3/03	1	1	СК	8015M
		Parameter		Result mg/kg		RL	
		GRO, C6-C12		388		10.0	
		DRO, >C12-C35	5	1,200		10.0	
	[TOTAL, C6-C3	5	1,588		10.0	
		- Surmage		0/ Deservered	OC Lim	ite (8/)	
		Surrog		% Recovered	QC Lim	130	
		1-Chlorooc		130%	70	130	
				B/5030 BTEX			
	Method	Date	Date	Sample	Dilution		
	Blank	Prepared	Analyzed	Amount	Factor	<u>Analyst</u>	Method
	0006685-02		9/3/03	1	25	JMM	8021B
		Parameter		Result mg/kg		RL	
		Benzene		0.369		0.025	
		Toluene		3.42		0.025	
		Ethylbenzene		5.39		0.025	
		p/m-Xylene		9.65		0.025	
		o-Xylene		5.59		0.025	
		Surrog	gates	% Recovered	QC Lin	nits (%)	
		aaa-Tolue	ne	450%	80	120	
		Bromofluo	robenzene	109%	80	120	
				Celey Jeann	d K. Tuttl D. Keene e McMuri	e, Lab Director, e, Org. Tech. Dir rey, Indrg. Tech. he, Lab Tech.	QA Officer Date rector

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 2 of 2

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

JOHN STEWA LARSON AND P.O. BOX 5068 MIDLAND, TY	ASSOCIATES, INC. 5		Order# Project Project Locatio	t: 0- t Name: Dy	0307366 0100-05 ynegy #05 one Given			
Lab ID: Sample ID:	0307366-01 SS-1							
Test Parameters Parameter Chloride	<u>Result</u> <20.0	<u>Units</u> mg/kg	Dilution <u>Factor</u> 1	<u>RL</u> 20	<u>Method</u> 9253	Date <u>Analyzed</u> 9/4/03	<u>Analyst</u> CK	
Lab ID: Sample ID:	0307366-02 SS-2							
Test Paran Parameter Chloride	neters	<u>Result</u> 35.4	<u>Units</u> mg/kg	Dilution <u>Factor</u> 1	<u>RL</u> 20	<u>Method</u> 9253	Date <u>Analyzed</u> 9/4/03	<u>Analyst</u> CK
				Celey D. K	eene, Org. ' Murrey, Ino zugbe, Lab	Director, QA Offi Tech. Director org. Tech. Director Tech.		9/04/05 Date

RL = Reporting Limit N/A = Not Applicable

and the second

The structure of the

Sector Sector

2007-07 2007-07

Contraction of

And the second

the second

States of

Page 1 of 1

ALC: NO.

and a second

Services

184127711

TRACTOR

8015M

Order#: G0307366

	BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
•	TOTAL, C6-C35-mg/kg		0006691-02			<10.0		
Contraction of the second second	CONTROL	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
	TOTAL, C6-C35-mg/kg		0006691-03		952	904	95.%	
- Consider a subscription	MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
	TOTAL, C6-C35-mg/kg	·····	0307371-07	0	952	1082	113.7%	
	MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
	TOTAL, C6-C35-mg/kg		0307371-07	0	952	1075	112.9%	0.6%
	SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
,	TOTAL, C6-C35-mg/kg		0006691-05		1000	1030	103.%	

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT 8021B/5030 BTEX

No.

1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

Order#: G0307366

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0006685-02			<0.025		
foluene-mg/kg		0006685-02			<0.025		
Ethylbenzene-mg/kg		0006685-02			<0.025		
p/m-Xylene-mg/kg		0006685-02			<0.025		
o-Xylene-mg/kg		0006685-02			<0.025		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0307363-01	0	0.1	0.090	90.%	
Toluene-mg/kg		0307363-01	0	0.1	0.090	90.%	
Ethylbenzene-mg/kg		0307363-01	0	0.1	0.093	93.%	
p/m-Xylene-mg/kg		0307363-01	0	0.2	0.187	93.5%	
o-Xylene-mg/kg		0307363-01	0	0.1	0.092	92.%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0307363-01	0	0.1	0.094	94.%	4.3%
Toluene-mg/kg		0307363-01	0	0.1	0.094	94.%	4.3%
Ethylbenzene-mg/kg		0307363-01	0	0.1	0.096	96.%	3.2%
p/m-Xylene-mg/kg		0307363-01	0	0.2	0.193	96.5%	3.2%
o-Xylene-mg/kg		0307363-01	0	0.1	0.093	93.%	1.1%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0006685-05		0.1	0.091	91.%	
Toluene-mg/kg		0006685-05		0.1	0.090	90.%	
Ethylbenzene-mg/kg		0006685-05		0.1	0.090	90.%	
p/m-Xylene-mg/kg		0006685-05		0.2	0.182	91.%	···· ····
o-Xylene-mg/kg	······································	0006685-05		0.1	0.090	90.%	

THE DOLL

·計2時後に応じてす。10

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

and the second

Sec. State

Backers of

(Second Second

Test Parameters

Order#: G0307366

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0006696-01			<20.0		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307366-01	0	500	502	100.4%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307366-01	0	500	517	103.4%	2.9%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0006696-04		5000	5050	101.%	

TIME

CASE NARRATIVE ENVIRONMENTAL LAB OF TEXAS

Prepared for:

Page

1

LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710 Order#: G0307366 Project: Dynegy #05

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
SS-1	0307366-01	SOIL	09/02/2003	09/02/2003
SS-2	0307366-02	SOIL	09/02/2003	09/02/2003

Surrogate recoveries on the 8015M TPH are outside control limits due to matrix interference. (G0307366-01)

Surrogate recoveries on the 8021B BTEX are outside control limits due to matrix interference (0307366-01,02).

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

计时间 网络白色 网络白色

200 100 2530

Approved By:

Mune Environmental Lab of Texas I, Ltd.

Date: 09/04/03

No Company and the second state of the

U yhesy D hust PROJECT NO.: PROJECT NAME: PROJECT NO.: H of state $U - 0 \cdot 0 - 0 \leq 100 - 0 \leq 100 - 0 \leq 100$ $H \circ state Pacie Or = 0 \cdot 100 - 0 \leq 100 H \circ state Pacie Or = 0 \cdot 100 - 0 \leq 100 H \circ state Pacie Or = 0 \cdot 100 - 0 \leq 100 H \circ state Pacie Or = 0 \cdot 100 - 0 \leq 100 H \circ state Pacie Or = 0 \cdot 100 - 0 \leq 100 H \circ state Or = 0 \cdot 100 - 0 \leq 100 H \circ state H \circ state Or = 0 \cdot 100 - 0 \leq 100 H \circ state H \circ state Or = 0 \cdot 100 - 0 \leq 100 H \circ state H \circ state Or = 0 \cdot 100 - 0 \leq 100 H \circ state H \circ state Or = 0 \cdot 100 - 0 \leq 100 H \circ state H \circ state Or = 0 \cdot 100 - 0 \leq 100 H \circ state H \circ state Or = 0 \cdot 100 - 0 \leq 100 H \circ state H \circ state Or = 0 \cdot 100 - 0 \leq 100 H \circ state H \circ state Or = 0 \cdot 100 - 0 \leq 100 H \circ state Or = 0 \cdot 100 - 100 H \circ state Or = 0 \cdot 100 - 100 H \circ state Or = 0 \cdot 100 - 100 H \circ state Or = 0 \cdot 100 - 100 H \circ state Or = 0 \cdot 100 - 100 - 100 Or = 0 \cdot 100 - 100 - $	C P LEX C P LEX C P LOU RY-Z C P LOU RY-Z C P LOU RY-Z S S S S S S S S S S S S S		A arson & arso
- 0100 - 02 - 010			TASSOCICITES, INC. Fax: 915-687-0456 Environmental Consultants 915-687-090 507 N. Marienfeld, Ste. 202 • Midland, TX 7 LAB. I.D. REMARKS NUMBER (I.E., FILTERED, UNFILTERED, LAB. USE ONLY REMARKS QUT3D GRAB COMPOSITE)
$\frac{d_{3}}{d_{3}} \frac{d_{3}}{d_{3}} \frac{d_{3}}{d_{$			LAB.I.D. NUMBER NUMBER LAB USE ONLY ERESERVED, UNFILTERED, PRESERVED, UNFILTERED, PRESERVED, BRAB.COMPOSITE) GRAB.COMPOSITE)
d3HU0 NOS J <td>━╴┽╾╄╴╎╺╄╶╎╶╋╸╎╶╋╸┥╸╢╸</td> <td></td> <td></td>	━╴┽╾╄╴╎╺╄╶╎╶╋╸╎╶╋╸┥╸╢╸		
2 7 7 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7			
SAMPLED BY: Signature, DATE: 4/2 R	RELINQUISHED BY: (Signature)	DATE: REC	RECEIVED BY: (Signature) DATE:
	st Signature)	M	SAMPLE SHIPPED BY: (Circle)
Jun tant Time: 450 34	8	0	BUS AI
COMMENTS:	TURNAROUNI	TURNAROUND TIME NEEDED HAND L	41 •
RECEIVING LABORATORY:	RECEIVED BY: (Signature)		Teledw - keceiving lab (10 be kelukined 10 La After Receipt) Dinkddd.iect managep
ADALOS. STATE. ZIP. CONTACE PHONE	DATE: TIME:	COLD	
IDITION WHEN RECEIVED:	LA CONTACT PERSON:	SAN	SAMPLE TYPE 2, SUC 4 02 4 Case

No. of Street, or Stre

27.72

Section 2

a man a train

104010

ANALYTICAL REPORT

Prepared for:

JOHN STEWART LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710

Project: Dynegy #05

PO#:

Order#: G0307373

Report Date:

Certificates US EPA Laboratory Code TX00158

A second

and the second second

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

LARSON AND ASSOCIATES, INC.	Order#:	G0307373
P.O. BOX 50685	Project:	0-0100-05
MIDLAND, TX 79710	Project Name:	Dynegy #05
915-687-0456	Location:	None Given

And and the

and the second

States (1)

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

					Date / Tin	ne I	Date / Time		
	<u>Lab ID:</u>	<u>Sample :</u>	<u>Matrix:</u>		Collected	<u>d</u>	Received	<u>Container</u>	Preservative
	<u>Lab ID:</u> 0307373-01	SS-7	SOIL		9/3/03		9/3/03	4 oz glass	ice
	I.a.	L Tordina	Rejected:	No	14:45	T	16:48		
		<u>b Testing:</u>	Rejecteu:	140		Temp:	12.5 C		
STEL S		8015M							
		8021B/5030 BTEX							
-		Chloride	·······						
	0307373-02	SS-8	SOIL		9/3/03 14:47		9/3/03 16:48	4 oz glass	ice
	La	b Testing:	Rejected:	No		Temp:			
		8015M							
_		8021B/5030 BTEX							
		Chloride							

计算行性 计算机 计算机的复数形式 化分子

1991 **(1**971 (1972)

Sec. 1

Same and

2016-222-2

1.42 A.M.

JOHN STEWAR LARSON AND / P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC.			Order#: Project: Project Name Location:	0-01 : Dyn	07373 00-05 egy #05 e Given	
Lab ID: Sample ID:	0307373-01 SS-7						
				8015M			
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>		Method
			9/3/03	1	5	СК	8015M
		Parameter		Result mg/kg		RL	
		GRO, C6-C12		4,480		50.0	
		DRO, >C12-C35		10,600		50.0	
		TOTAL, C6-C35		15,080)	50.0	
		Surroga		% Recovered	QC Lii	nits (%)	
		1-Chlorooc		29%	70	130	
		1-Chlorooc	tadecane	20%	70	130	
				B/5030 BTEX			
	Method	Date Propored	Date <u>Analyzed</u>	Sample	Dilutio		Method
	<u>Blank</u> 0006700-02	Prepared	9/3/03	<u>Amount</u> 1	<u>Factor</u> 50	<u>Analyst</u> JMM	8021B
	0008700-02		210100		50	UIVAIVA	00212
		Parameter		Resul mg/kg		RL	
		Benzene		11.1		0.050	`
		Toluene		42.1		0.050	
,		Ethylbenzene		25.4		0.050	
	•	p/m-Xylene o-Xylene		52.1		0.050	
		о-лутене		19.9		0.030	
		Surrog		% Recovered	QC Li		
		Surrog aaa-Toluer Bromofluor	le	% Recovered 1360% 91%	QC Lii 80 80	nits (%) 120 120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 1 of 2

******4 2545

ENVIRONMENTAL LAB OF TEXAS I, LTD.

South and the state

State of

A VER STORES

Stanger 1

an ann a'

No.

(Little and

IN INTERN

JOHN STEWAR LARSON AND A P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC.			Order#: Project: Project Name Location:	0-01 e: Dyne	07373 00-05 egy #05 e Given		
Lab ID: Sample ID:	0307373-02 SS-8							
				8015M				
	Method	Date	Date	Sample	Dilution	n		
	Blank	Prepared	Analyzed	Amount	Factor		Method	
			9/3/03	1	5	СК	8015M	
		Parameter		Resul		RL		
		GRO, C6-C12		mg/kg 4,520		50.0		
		DRO, >C12-C35		12,200		50.0		
		TOTAL, C6-C3		16,720		50.0		
		Surrog	ates	% Recovered	QC Lii	nits (%)		
		1-Chlorooc		32%	70	130		
		1-Chlorooc	tadecane	23%	70	130		
			8021E	B/5030 BTEX	•			
	Method	Date	Date	Sample	Dilutio		Madhad	
	<u>Blank</u>	Prepared	<u>Analyzed</u> 9/3/03	<u>Amount</u> 1	<u>Factor</u> 50	<u>Analyst</u> JMM	<u>Method</u> 8021B	
	0006700-02		75165	I	οU	JIVIIVI	00215	
		Parameter		Resul mg/kg		RL		
		Benzene		6.20		0.050		
		Toluene		14.6		0.050		
		Ethylbenzene		22.2		0.050		
		p/m-Xylene		34.5		0.050		
		o-Xylene		16.2		0.050		
		Surrog	ates	% Recovered	QC Li	mits (%)		
		aaa-Toluer		1080%	80	120		
		Bromofluo	robenzene	97%	80	120		
				Ralar Cele Jean Sand	y D. Keen ne McMui	Le, Lab Director, e, Org. Tech. Dir rrey, Inorg. Tech. be, Lab Tech. .ab Tech.	QA Officer Date ector	<u>7-0</u> _

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 2 of 2

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

JOHN STEWA LARSON AND P.O. BOX 5068 MIDLAND, TX	ASSOCIATES, INC. 5		Order# Project Project Locatio	: 0 Name: I	G0307373 -0100-05 Dynegy #05 None Given			
Lab ID: Sample ID:	0307373-01 SS-7							
Test Paran Parameter	neters	<u>Result</u>	<u>Units</u>	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	Analyst
Chloride		<20.0	mg/kg	1	20	9253	9/4/03	СК
Lab ID:	0307373-02							,
Sample ID:	SS-8							
Test Paran Parameter	neters	Result	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	Analys
Chloride		<20.0	mg/kg	1	20	9253	9/4/03	СК

Lalandk Jul 9-08-03 Approval: Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

RL = Reporting Limit N/A = Not Applicable

a state

Survey of the

Sand San

State State

Contraction of the

Section of the sectio

Teolie une and

and the second second

No. of Concession, Name

San Lines

Constant of

1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 -1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 -

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

TARM START WAR WAR WAR AND START

2月2日18日18日18日18日

12021-2010

No. Contraction of

Statistics.

ALC: NO

1900 and a

8015M

Order#: G0307373

and the floor of the	BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
1	TOTAL, C6-C35-mg/kg		0006691-02	······		<10.0		
All and prime of the local data of the	CONTROL	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
8	TOTAL, C6-C35-mg/kg		0006691-03	·····	952	904	95.%	
and the second second	MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
	TOTAL, C6-C35-mg/kg		0307371-07	0	952	1082	113.7%	
the rest of the local sector of the	MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
and the second sec	TOTAL, C6-C35-mg/kg	····	0307371-07	0	952	1075	112.9%	0.6%
The second secon	SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
	TOTAL, C6-C35-mg/kg		0006691-05		1000	1030	103.%	····

REALLY

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT 8021B/5030 BTEX

1.18 P. 10

ALC: NO

Order#: G0307373

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0006700-02			<0.025		
Toluene-mg/kg		0006700-02			<0.025		
Ethylbenzene-mg/kg		0006700-02			<0.025		
p/m-Xylene-mg/kg		0006700-02			<0.025		
o-Xylene-mg/kg		0006700-02			<0.025		
CONTROL	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	··	0006700-03	<u> </u>	0.1	0.094	94.%	
Toluene-mg/kg		0006700-03		0.1	0.094	94.%	
Ethylbenzene-mg/kg		0006700-03		0.1	0.096	96.%	
p/m-Xylene-mg/kg		0006700-03		0.2	0.193	96.5%	
o-Xylene-mg/kg		0006700-03		0.1	0.093	93.%	
CONTROL D		LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	<u> </u>	0006700-04		0.1	0.090	90.%	4.3%
Toluene-mg/kg		0006700-04		0.1	0.090	90.%	4.3%
Ethylbenzene-mg/kg		0006700-04		0.1	0.093	93.%	3.2%
p/m-Xylene-mg/kg		0006700-04		0.2	0.187	93.5%	3.2%
o-Xylene-mg/kg		0006700-04		0.1	0.092	92.%	1.1%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0006700-05		0.1	0.087	87.%	
Toluene-mg/kg		0006700-05		0.1	0.088	88.%	
Ethylbenzene-mg/kg		0006700-05		0.1	0.089	89.%	
p/m-Xylene-mg/kg		0006700-05		0.2	0.180	90.%	
o-Xylene-mg/kg		0006700-05		0.1	0.087	87.%	

WE HE TO BE THE TO BE

Contraction of the

Service Construction

1000

Test Parameters

Order#: G0307373

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg	*** ***	0006696-01	······································		<20.0		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307366-01	0	500	502	100.4%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307366-01	0	500	517	103.4%	2.9%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0006696-04		5000	5050	101.%	

ENVIRONMENTAL LAB OF TEXAS I, LTD.

C 14 13 23

CASE NARRATIVE ENVIRONMENTAL LAB OF TEXAS

Prepared for:

HAND IN

and the second

al market a

a francisco de la constante

LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710 Order#: G0307373 Project: Dynegy #05

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
SS-7	0307373-01	SOIL	09/03/2003	09/03/2003
SS-8	0307373-02	SOIL	09/03/2003	09/03/2003

Surrogate recoveries on 8015M TPH are outside of control limits due to dilution (G0307373-01&02).

Surrogate recoveries on the BTEX are outside control limits due to matrix interference. (0307373-01, 02)

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

Kalan dk Ju 9-08-03 Approved By: Date: Environmental Lab of Texas I, Ltd.

CLIENT NAME:	AME:	a free manufacture a		前の湯シート	SITE MANAGER:	PARAN	Parameters/method number	D NUMBER	CHAIN-C	-OFCUSTODY RECORD
Ľ.	2 m	R			· John Mewert	I				
PROJECT NO.:) V V				PROJECT NAME:					ssociates, Inc. Fax: 915-687-0456
0	0-0100.0	50.			#05	10			Environmenta	I Consultants 915-687-0901
PAGE	/ OF /			LAB. PO #	# Oc	1. 1. 1. 2. 8.			507 N. Marien	507 N. Marienfeld, Ste. 202 • Midland, 1X 79/01
I VO	JWII	+Hom	1105	OTHER	SAMPLE IDENTIFICATION	949 411 839WNN	128		Lab. I.D. Number (Lab Use only)	Remarks (1.E., Filtered, Unpreserved, Preserved, Unpreserved, Grab composite)
9/3	$\overline{\mathcal{S}}$		\sim		5-7				0307373	
12	7.47		\setminus		5- S	7 -				
SAMPLE	SAMPLED'BY: (Signature)	atture)		\mathbb{N}	DATE: 2/3 RELINQUE	RELINQUISHED BY: (Signature)		DATE: TIME:	RECEIVED BY: (Signature)	Jre) DATE: TIME:
REFINOL	REVINQUISHED BY: (Signature)	(Signo	iture)			RECEIVED BY: (Signature)		DATE:	SAMPLE SHIPPED BY: (Circle)	
11	the way	L	1 Alex		TIME: HYS			TIME:	FEDEX	BUS AIRBILL #:
COMMENTS	SINE						TURNAROUND TIME NEEDED	TIME NEEDED	ЖI	UPS OTHER:
	2								White - Receiving Lab Yellow - Receiving Lab	- receiving lab - receiving lab (to be returned to
RECEIVING ADDRESS:	receiving Laboratory: Address:	ATORY:				16	(UDI			LA AFTER RECEIPT) PROJECT MANAGER
CITY: CONTACT:	CE				SIAIE:	- DATE: <u>*1/3/03</u>	TIME: / COL &	48	GOLD - QA/QC C(QA/QC COORDINATOR
SAMPLE C	SAMPLE CONDITION WHEN RECEIVED	HEN REC	EIVED:			LA CONTACT PERSON:	SON:	1	SAMPLE TYPE: 402	F (and 12 5 00
		と、美国語の部		S. C. LEWIS	御道のかえるとうなるないないで、「ないないない」でもので、「あっていた」ので、「ないないない」と、	「三年三町茶」」、いっている」」の「日、日、日、日、日、日、日、日、日、日、日、日、日、日、日、日、日、日、日、	社会に、来に、人口など、たら、御書記と読みなりま	「「「「「」」」、「「」」、「」」、「」」、「」、「」、「」、「」、「」、「」、	これ、これでは時間のからでの「「「「「「」」」、「」、「」、「」、「」、「」、」、「」、」、、、、、、、、	「御子書」、「御子」」、 ちょうまう ちょうちょう 御言書をからる 御子書を

1

State and State

State of the second

 $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n \frac{1}{n}$

No. of Concession, Name

No. of Concession, Name

ANALYTICAL REPORT

Prepared for:

Surger State

a and a state of

and all the

1. Starting

Constanting of

A CONTRACTOR

and and

JOHN STEWART LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710

Project:Dynegy Site #05PO#:G0307441

Report Date: 09/15/2003

<u>Certificates</u> US EPA Laboratory Code TX00158

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

LARSON AND ASSOCIATES, INC.	Order#:	G0307441
P.O. BOX 50685	Project:	0-0100-05
MIDLAND, TX 79710	Project Name:	Dynegy Site #05
915-687-0456	Location:	None Given

Contractory of the

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

				Da	te / Time	Date / Time		
	<u>Lab ID:</u> 0307441-01	Sample :	<u>Matrix:</u>	<u> </u>	ollected	Received	<u>Container</u>	Preservative
	0307441-01	SS-9 (W)	SOIL		9/12/03 12:25	9/12/03 14:07	4 oz glass	ice
1	<u>La</u>	<u>b Testing:</u>	Rejected:	No	Te	mp: 5.5 C		
(The last		8015M						
		8021B/5030 BTEX						
		Chloride						
44 J	0307441-02	SS-10 (E)	SOIL		9/12/03 12:27	9/12/03 14:07	4 oz glass	ice
	La	b Testing:	Rejected:	No		mp: 5.5 C		
翻		8015M						
833		8021B/5030 BTEX						
(And		Chloride						

ENVIRONMENTAL LAB OF TEXAS I, LTD.

などのない

States &

Benefit (C)

the second

National States

Souther of

14.14 19

Andreas and a second

Ben Barriston

服育部署

JOHN STEWAR LARSON AND A P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC.			Order#: Project: Project Name Location:	0-01 e: Dyn	07441 00-05 egy Site #05 e Given	
Lab ID: Sample ID:	0307441-01 SS-9 (W)						
				8015M			
	Method <u>Blank</u>	Date Prepared	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilutio <u>Factor</u>		Method
	<u></u> DIAIIK	Trepared	9/12/03	<u>Anount</u> 1	<u>ractor</u> 1	CK	8015M
		ſ					
		Parameter		Resul mg/kg		RL	
		GRO, C6-C12		353		10.0	
		DRO, >C12-C35		1,160)	10.0	
		TOTAL, C6-C3	5	1,513	3	10.0	
				·····		·····	
		Surrog		% Recovered		mits (%)	
		1-Chlorooc 1-Chlorooc		<u> </u>	70 70	130 130	
		1-01101000		3/5030 BTEX	1	100	
	Method	Date	Date	Sample	Dilutio	n	
	Blank	Prepared	Analyzed	Amount	Factor		Method
	0006805-02		9/14/03	1	25	RKT	8021B
		[T		
		Parameter		Resul mg/kg		RL	
		Benzene		1.19		0.025	
		Toluene		3.32		0.025	
		Ethylbenzene		3.58		0.025	
		p/m-Xylene		7.07		0.025	
		o-Xylene		4.91		0.025	
		Surrog		% Recovered		mits (%)	
		aaa-Toluer Bromofluor		806% 127%	80	120	
		Bromotiuo	robenzene	12/%	80	120	

ENVIRONMENTAL LAB OF TEXAS I, LTD.

A TRANSPORT

States

Summer of

Sugar S

Contraction of the

资本来部於

A STREET

and the second se

相對自當的時間。

JOHN STEWART LARSON AND ASS P.O. BOX 50685 MIDLAND, TX 79				Order#: Project: Project Nam Location:	0-01 e: Dyn	07441 00-05 egy Site #05 e Given	
Lab ID: Sample ID:	0307441-02 SS-10 (E)						
				8015M			
	Method	Date	Date	Sample	Dilutio	n	
	Blank	Prepared	Analyzed	Amount	Factor		Method
			9/12/03	1	1	СК	8015M
		Parameter		Resul mg/kg		RL	
		GRO, C6-C12		775		10.0	
		DRO, >C12-C35	;	2,840		10.0	
		TOTAL, C6-C3	5	3,61	5	10.0	
		Summer		% Recovered		mits (%)	
		Surrog 1-Chlorooc		119%	70	130	
		1-Chlorooc		110%	70	130	
			8021E	3/5030 BTEX			
	Method	Date	Date	Sample	Dilutio	n	
	Blank	Prepared	Analyzed	Amount	Factor		Method
	0006805-02		9/14/03	1	25	RKT	8021B
		Parameter		Resul mg/kg		RL	
		Benzene		0.934	4	0.025	
		Toluene		8.56		0.025	
		Ethylbenzene		8.79		0.025	
		p/m-Xylene o-Xylene		18.4 8.29		0.025	
		0-Aylene		0.27		0.025	
		Surrog	ates	% Recovered	QC Li	mits (%)	
		aaa-Toluer		633%	80	120	
		Bromofluo	robenzene	111%	80	120	
				Rala Cele Jean	y D. Keer ne McMu	Rolan (tle, Lab Director ie, Org. Tech. Di rrey, Inorg. Tech ibe, Lab Tech.	rector

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

JOHN STEWA LARSON AND P.O. BOX 5068 MIDLAND, TX	ASSOCIATES, INC. 5		Order# Project Project Locatio	: 0 Name: D	0307441 0100-05 ynegy Site one Given	#05		
Lab ID: Sample ID:	0307441-01 SS-9 (W)							
Test Paran Parameter	neters	<u>Result</u>	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date <u>Analyzed</u>	<u>Analyst</u>
Chloride		<20.0	mg/kg	1	20	9253	9/15/03	SB
Lab ID: Sample ID:	0307441-02 SS-10 (E)							
Test Paran Parameter	neters	<u>Result</u>	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	<u>Analyst</u>
Chloride		<20.0	mg/kg	1	20	9253	9/15/03	SB

Approval: Ralan or Juil 9-15-03 Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

RL = Reporting Limit N/A = Not Applicable

A LANGE

1000

Service of

Section of

And Property of the

No. 2 Street

State of the

and the second second

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

Page 1 of 1

The first of the

the second

and the second

No. 101

新聞生産

States a

Market West

and the second

NAME

Surgium 27

Surveyor .

8015M

Order#: G0307441

BLANK SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0006806-02			<10.0		
CONTROL SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0006806-03		952	1051	110.4%	
CONTROL DUP	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0006806-04		952	890	93.5%	16.6%
SRM SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0006806-05		1000	822	82.2%	

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT 8021B/5030 BTEX

and the second second

The second s

Barris and

AN ANALY

Statistics.

Section 2

Transfer

120 1

Order#: G0307441

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0006805-02			<0.025		
Foluene-mg/kg		0006805-02			<0.025		
Ethylbenzene-mg/kg	, <u></u> , <u>_</u>	0006805-02			<0.025		
p/m-Xylene-mg/kg		0006805-02			<0.025		
o-Xylene-mg/kg		0006805-02			<0.025		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0307454-01	0	2.5	2.68	107.2%	
Foluene-mg/kg		0307454-01	0.043	2.5	2.66	104.7%	
Ethylbenzene-mg/kg		0307454-01	0.043	2.5	2.78	109.5%	
p/m-Xylene-mg/kg		0307454-01	0.219	5	5.56	106.8%	
o-Xylene-mg/kg		0307454-01	0	2.5	2.77	110.8%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0307454-01	0	2.5	2.63	105.2%	1.9%
Toluene-mg/kg		0307454-01	0.043	2.5	2.56	100.7%	3.8%
Ethylbenzene-mg/kg		0307454-01	0.043	2.5	2.66	104.7%	4.4%
p/m-Xylene-mg/kg		0307454-01	0.219	5	5.29	101.4%	5.%
o-Xylene-mg/kg	· ·	0307454-01	0	2.5	2.58	103.2%	7.1%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0006805-05		0.1	0.112	112.%	
Toluene-mg/kg	····_	0006805-05		0.1	0.11	110.%	
Ethylbenzene-mg/kg		0006805-05		0.1	0.107	107.%	
p/m-Xylene-mg/kg		0006805-05		0.2	0.214	107.%	
o-Xylene-mg/kg		0006805-05		0.1	0.102	102.%	

·雪精 学校 住住的

Bergeranger in

Status -

Comments.

a Deficiencia

State of the second

er segen te

Test Parameters

Order#: G0307441

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0006802-01			<20.0		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307437-01	124	500	620	99.2%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307437-01	124	500	603	95.8%	2.8%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg	<u> </u>	0006802-04		5000	4960	99.2%	

THING

CASE NARRATIVE ENVIRONMENTAL LAB OF TEXAS

Prepared for:

and the second

and the second

and the second

a state

12121

LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710 Order#: G0307441 Project: Dynegy Site #05

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
SS-9 (W)	0307441-01	SOIL	09/12/2003	09/12/2003
SS-10 (E)	0307441-02	SOIL	09/12/2003	09/12/2003

Surrogate recoveries on the BTEX are outside control limits due to matrix interference. (0307441-01, 02)

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

Approved By:

Rala dK Jan Environmental Lab of Texas I, Ltd.

Date: 9-15-03

CLIENT NAME:	SITE MANAGER:	PARAMETERS/METHOD	D NUMBER	CHAIN-OF-CUSTODY RECORD
Dynesy	John Stevart	h		A drson &
PROJECT NO.:	Since NAME:	NTAINE 2 2 10		F SSOCIOTES, INC. Fax: 915-687-0456 Environmental Consultants 915-687-0901
-	LAB. PO #	1 = 3.8 ,		arienfeld, Ste. 202 • N
Solites NOS Solit Solit Sull Sull	SAMPLE IDENTIFICATION	9 77 72 Ф 40 <u>1</u> 838WNN		LAB. I.D. REMARKS NUMBER II.E., FILTERED, UNPRESERVED, PRESERVED, UNPRESERVED, GRAB COMPOSITE]
L 1225 U	55-9(w)			0307441
1 2-08171/6	5-(0 (F)	-		
SAMPLED BY: (Signature)		RELINQUISHED BY: (Signature) D	DATE: RE	RECEIVED BY: (Signature) DATE: TIME:
RELINQUISHED BY: (Signature)	7/12	RECEIVED BY: (Signature) D		SAMPLE SHIPPED BY: (Circle)
1 han I alward	TIME: 2:07			BUS
comments.		TURNAROUND TIME NEEDED		RECEIVING LAB
receiving Laboratory: address: city:	STATE: ZIP:	RECEIVED BY (Signature) RECEIVED BY (Signature) CATE: 9-12-03 TIME: 140		1 1 1
CONTACT: SAMPLE CONDITION WHEN RECEIVED:	PHONE:	LA CONTACT PERSON:	S/	TYPE:
				SiSec tozcharo

i

00

and the second second

State and

With the

Sec. March

ANALYTICAL REPORT

Prepared for:

Sec. 1

Supersident of

No. of the local division of the local divis

Section of the sectio

ALC: NO.

812-71-5

State of State

and the second

A North Control of the

JOHN STEWART LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710

Project:	Site # 05
PO#:	Dynegy
Order#:	G0307476
Report Date:	09/19/2003

<u>Certificates</u> US EPA Laboratory Code TX00158

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

LARSON AND ASSOCIATES, INC.	Order#:	G0307476
P.O. BOX 50685	Project:	0-0100-05
MIDLAND, TX 79710	Project Name:	Site # 05
915-687-0456	Location:	Eunice N.M.

and a second

a description of the

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

× 1 m	61	.		Date / Time	Date / Time	a	
<u>Lab ID:</u> 0307476-01	<u>Sample :</u>	Matrix:		<u>Collected</u>	Received	Container	<u>Preservativ</u>
0307476-01	SS-11	SOIL		9/17/03 12:00	9/17/03 16:34	4 oz glass	ice
Lab Testing:		Rejected:	No	Tem			
	8015M						
	8021B/5030 BTEX						
	Chloride						
0307476-02	SS-12	SOIL		9/17/03 12:05	9/17/03 16:34	4 oz glass	ice
<u>Lab Testing:</u>		Rejected:	No	Tem	p: 4.0 C		
	8015M						
•	8021B/5030 BTEX						
	Chloride						
0307476-03	SS-13	SOIL		9/17/03	9/17/03	4 oz glass	ice
0507470705				12:07	16:34	-	
<u>L</u> e	ab Testing:	Rejected:	No	Tem	p: 4.0 C		
	8015M						
1	8021B/5030 BTEX						
	Chloride						
0307476-04	SS-14	SOIL		9/17/03	9/17/03	4 oz glass	ice
<u>L</u>	ab Testing:	Rejected:	No	12:09 Tom	16:34 p: 4.0 C		
		Kejecieu.	140	Tem	p: 4.0 C		
	8015M						
	8021B/5030 BTEX						
	Chloride						
0307476-05	SS-15	SOIL		9/17/03	9/17/03	4 oz glass	ice
030/4/0-05	at Teatimas	Rejected:	No	12:11	16:34		
	ab Testing:	Kejecieu:	140	Tem	p: 4.0 C		
1	8015M						
	8021B/5030 BTEX						
	Chloride	····					
0307476-06	SS-16	SOIL		9/17/03 12:13	9/17/03 16:34	4 oz glass	ice
<u>L</u>	<u>ab Testing:</u>	Rejected:	No	Tem	ар: 4.0 C		
	8015M						
<i>E</i>	NVIRONMENTAL LAB C	OF TEXAS I,	LTD.	12600 West 1	-20 East, Ode	ssa, TX 79765	Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710 915-687-0456

CHONG THE NES

and the second

The second

Order#:G0307476Project:0-0100-05Project Name:Site # 05Location:Eunice N.M.

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

receipt of a	<u>Sample :</u> 8021B/5030 BTEX Chloride	<u>Matrix:</u>	Date / Time <u>Collected</u>	Date / Time <u>Received</u>	Container	Preservative
0307476-07	Fill-1	SOIL	9/17/03 12:15	9/17/03 16:34	4 oz glass	ice
	<u>ab Testing:</u>	Rejected: No	Tem	p: 4.0 C		
	8015M 8021B/5030 BTEX Chloride					

Santan Angles

A DESCRIPTION OF

ALC: NOT THE REAL PROPERTY OF

The second second

State and

States -

						·	
OHN STEWAF LARSON AND A P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC.			Order#: Project: Project Nan Location:	0-01 ie: Site	07476 00-05 # 05 ice N.M.	
Lab ID:	0307476-01						
Sample ID:	SS-11						
				8015M			
	Method	Date	Date	Sample	Dilutio	n	
	Blank	Prepared	Analyzed	Amount	Factor		Method
			9/18/03	1	1	СК	8015M
		Parameter		Resu mg/k		RL	
		GRO, C6-C12		902		10.0	
		DRO, >C12-C35		2,91		10.0	
		TOTAL, C6-C3		3,81		10.0	
		· <u> </u>		·			
		Surrog		% Recovered		nits (%)	
		1-Chlorooc		91%	70	130	
		1-Chlorooc		71%	70	130	
		_		8/5030 BTEX			
	Method <u>Blank</u>	Date Prepared	Date <u>Analyzed</u>	Sample Amount	Dilutio Factor		Method
	BIANK	Trepareu	Analyzeu	Amount			
	0006981 07		9/18/03				
	0006851-02	1	9/18/03	1	25	JMM	8021B
	0006851-02	Parameter	9/18/03		25 lt		
	0006851-02	[9/18/03	1 Resu	25 lt	JMM	
	0006851-02	Parameter Benzene Toluene	9/18/03	1 Resu mg/k 2.22 2.95	25	JMM RL 0.025 0.025	
	0006851-02	Parameter Benzene Toluene Ethylbenzene	9/18/03	1 Resu mg/k 2.22 2.95 5.15	25	JMM RL 0.025 0.025 0.025	
	0006851-02	Parameter Benzene Toluene Ethylbenzene p/m-Xylene	9/18/03	1 Resu mg/k 2.22 2.95 5.19 14.5	25	JMM RL 0.025 0.025 0.025 0.025	
	0006851-02	Parameter Benzene Toluene Ethylbenzene	9/18/03	1 Resu mg/k 2.22 2.95 5.15	25	JMM RL 0.025 0.025 0.025	
	0006851-02	Parameter Benzene Toluene Ethylbenzene p/m-Xylene o-Xylene		1 Resu mg/k 2.22 2.99 5.19 14.5 6.30	25	JMM RL 0.025 0.025 0.025 0.025 0.025	
	0006851-02	Parameter Benzene Toluene Ethylbenzene p/m-Xylene	ates	1 Resu mg/k 2.22 2.95 5.19 14.5	25	JMM RL 0.025 0.025 0.025 0.025	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

1.12.12.12.12.12 12.12.12.12.12

STATES S

En were

BURKE

Service -

Strategy Strategy

		-					
JOHN STEWAJ LARSON AND P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC. 5			Order#: Project: Project Name Location:	0-01) :: Site	07476 00-05 # 05 ice N.M.	
Lab ID:	0307476-02						
Sample ID:	SS-12						
				8015M			
	Method	Date	Date	Sample	Dilutior		
	Blank	Prepared	Analyzed	Amount	<u>Factor</u>		Method
			9/18/03	1	1	СК	8015M
		Parameter	<u></u>	Resul mg/kg		RL	
		GRO, C6-C12		<10.0		10.0	
		DRO, >C12-C35		71.0		10.0	
		TOTAL, C6-C3	;	71.0		10.0	
		Surrog	ates	% Recovered	QC Lin	nits (%)	
		1-Chlorooc		110%	70	130	
		1-Chlorooc	tadecane	94%	70	130	
			8021E	B/5030 BTEX			
	Method	Date	Date	Sample	Dilutio	n	
	Blank	Prepared	<u>Analyzed</u>	Amount	Factor		Method
	0006851-02	2	9/18/03	1	25	JMM	8021B
		Parameter		Resul mg/kg		RL	
		Parameter Benzene				RL 0.025	
				mg/kg <0.02 <0.02	5		
		Benzene Toluene Ethylbenzene		mg/kg	5	0.025 0.025 0.025	
		Benzene Toluene Ethylbenzene p/m-Xylene		mg/kg <0.02: <0.02: 0.030 0.068	5	0.025 0.025 0.025 0.025	
		Benzene Toluene Ethylbenzene		mg/kg <0.02 <0.02 0.030	5	0.025 0.025 0.025	
		Benzene Toluene Ethylbenzene p/m-Xylene	ates	mg/kg <0.02: <0.02: 0.030 0.068	5	0.025 0.025 0.025 0.025	
		Benzene Toluene Ethylbenzene p/m-Xylene o-Xylene		mg/kg <0.02: 0.030 0.068 <0.02:	5	0.025 0.025 0.025 0.025 0.025 0.025	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

可增能

State Property

South State

ETERSION OF

Sector Sector

Way of Street

(and the second

						·	
JOHN STEWAR LARSON AND A P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC.			Order#: Project: Project Name Location:	0-01 e: Site	07476 00-05 # 05 ice N.M.	
Lab ID:	0307476-03						
Sample ID:	SS-13						
				8015M			
	Method	Date	Date	Sample	Dilutio		
	<u>Blank</u>	Prepared	Analyzed	Amount	Factor		Method
			9/18/03	1	1	СК	8015M
		[D - au 1	. 1		
		Parameter		Resul mg/kg		RL	
		GRO, C6-C12		<10.0		10.0	
		DRO, >C12-C35		<10.0		10.0	
		TOTAL, C6-C35	5	<10.0		10.0	
		Surrog		% Recovered		mits (%)	
		1-Chlorooc 1-Chlorooc		109%	70	130	
		1-Chiorooc		93%	70	130	
				8/5030 BTEX			
	Method	Date Prepared	Date <u>Analyzed</u>	Sample Amount	Dilutio <u>Factor</u>		Method
	<u>Blank</u> 0006851-02		9/18/03	1	25	JMM	8021B
	0000851-0.	6		•		07/11/1	
		Parameter		Resul	t	RL	
				mg/kg			
		Benzene		<0.02		0.025	
		Toluene		<0.02		0.025	
		Ethylbenzene		<0.02		0.025	
		p/m-Xylene		0.026		0.025	
		o-Xylene		<0.02	5	0.025	
		Surrog	ates	% Recovered	OC Li	mits (%)	
			, <i>-</i>		<u> </u>		
		aaa-Toluer	ne	91%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

A CONTRACTOR

1997 (M. 1997)

No.

100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100

Statistics

JOHN STEWAR LARSON AND A P.O. BOX 50685 MIDLAND, TX	SSOCIATES, INC.			Order#: Project: Project Nam Location:	0-01 e: Site	607476 100-05 # 05 nice N.M.	
Lab ID: Sample ID:	0307476-04 SS-14						
				8015M			
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilutio <u>Factor</u>		Method
			9/18/03	1	1	СК	8015M
		Parameter		Resu mg/kg		RL	
		GRO, C6-C12		<10.0)	10.0	
		DRO, >C12-C35		16.1		10.0	
		TOTAL, C6-C35		16.1		10.0	
		Surroga	ites	% Recovered	QC Li	mits (%)	
		1-Chlorooct		100%	70	130	
		1-Chlorooct	adecane	83%	70	130	
			8021E	8/5030 BTEX	<u> </u>		
	Method	Date	Date	Sample	Dilutio		
	Blank	Prepared	Analyzed	Amount	Facto		· · · · · · · · · · · · · · · · · · ·
	0006851-02	2	9/18/03	1	25	JMM	8021B
		Parameter		Resu mg/k		RL	
	1	Benzene		<0.02	5	0.025	
		Toluene		<0.02	5	0.025	
		Ethylbenzene		<0.02		0.025	
		p/m-Xylene		<0.02		0.025	
		o-Xylene		<0.02	5	0.025	
		Surrog	ates	% Recovered	OC Li	mits (%)	
		aaa-Toluen		93%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

and a second of

Sector Sector

10.20 C

E.S.

A CONTRACTOR

dinga partija Grava partija

Service Service

JOHN STEWAF LARSON AND A P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC.			Order#: Project: Project Name Location:	0-01 : Site	07476 00-05 # 05 ice N.M.	
Lab ID: Sample ID:	0307476-05 SS-15						,
				8015M			
	Method	Date Bronovod	Date A polygod	Sample	Dilution		Method
	<u>Blank</u>	<u>Prepared</u>	<u>Analyzed</u> 9/18/03	<u>Amount</u> 1	<u>Factor</u> 1	<u>Analyst</u> CK	8015M
		[
		Parameter		Result mg/kg		RL	
		GRO, C6-C12		<10.0		10.0	
		DRO, >C12-C35		219		10.0	
		TOTAL, C6-C35	,	219		10.0	
		Surrog	ates	% Recovered	QC Li	nits (%)	
		1-Chlorooc		100%	70	130	
		1-Chlorooc		89%	70	130	
				8/5030 BTEX			
	Method	Date	Date A polygod	Sample Amount	Dilutio Factor		Method
	<u>Blank</u> 0006851-02	Prepared	<u>Analyzed</u> 9/18/03	1	<u>ractor</u> 25	<u>Analyst</u> JMM	8021B
	0000851-02		710/00	L.	25	UIVIIVE	0021D
		Parameter		Resul mg/kg		RL	
		Benzene		<0.02		0.025	
		Toluene		<0.02		0.025	
		Ethylbenzene		<0.02		0.025	
		p/m-Xylene		<0.02		0.025	
		o-Xylene		<0.02	5	0.025	
					1.0.0-		
		Surrog		% Recovered	QC Li	mits (%) 120	
		aaa-Toluer		88%			

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

Construction of the local division of the lo

and the second

Road Control of

Martin C.

Section 2

Service Service

And the second second

State of

JOHN STEWART LARSON AND AS P.O. BOX 50685 MIDLAND, TX 7	SSOCIATES, INC.			Order#: Project: Project Name Location:	0-01(:: Site	07476 00-05 # 05 ice N.M.	
Lab ID: Sample ID:	0307476-06 SS-16						
				8015M			
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 9/18/03	Sample <u>Amount</u> 1	Dilutior <u>Factor</u> 1		<u>Method</u> 8015M
		Parameter		Result mg/kg		RL	
		GRO, C6-C12		<10.0		10.0	
		DRO, >C12-C35	;	<10.0		10.0	
		TOTAL, C6-C35	5	<10.0		10.0	
		Surrog	ates	% Recovered	QC Lin	nits (%)	
		1-Chlorooc		106%	70	130	
		1-Chlorooc		96%	70	130	
	Method	Date	80211 Date	B/5030 BTEX			
	Blank	Prepared	Analyzed	Sample <u>Amount</u>	Dilution <u>Factor</u>		Method
	0006851-02		9/18/03	1	25	JMM	8021B
		Parameter		Result mg/kg		RL	
		Benzene		< 0.024		0.025	
		Toluene		< 0.025	5	0.025	
		Ethylbenzene		<0.025		0.025	
		p/m-Xylene		<0.025		0.025	
		o-Xylene		<0.025	5	0.025]
		Surrog	ates	% Recovered	QC Li	nits (%)	
		aaa-Toluer	ne	89%	80	120	
		Bromofluo	robenzene	96%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

Same Sec.

and the second s

1 Transform

JOHN STEWART LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710		, INC.				G0307 0-0100 : Site # Eunic	0-05		
Lab ID: Sample ID:	0307476-0 Fill-1)7							
					8015M				
		Iethod Blank	Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>	<u>Analyst</u>	Method	
			. •	9/18/03	1	1	СК	8015M	
			Parameter		Result mg/kg		RL		
		-	GRO, C6-C12		522		10.0		
			DRO, >C12-C35	i	2,500		10.0		
			TOTAL, C6-C3	5	3,022		10.0		
			Surrog	ates	% Recovered	QC Lim	its (%)		
			1-Chlorooc		130%	70	130		
			1-Chlorooc	tadecane	108%	70	130		
				8021E	8/5030 BTEX				
		lethod	Date	Date	Sample	Dilution			
		<u>Blank</u>	Prepared	<u>Analyzed</u> 9/18/03	<u>Amount</u> 1	Factor 25	<u>Analyst</u> JMM	Method 8021B	
	000	6851-02		9/10/03	I	25	JIVIIVI	0021D	
			Parameter		Result mg/kg	1	RL		
			Benzene		0.291		0.025		
			Toluene		2.03		0.025		
			Ethylbenzene		2.91		0.025		
			p/m-Xylene		7.73		0.025		
			o-Xylene		4.08		0.025		
			Surrog	ates	% Recovered	QC Lim	its (%)		
			aaa-Toluei		273%	80	120		
			Bromofiuo		108%	80	120		
					Appr Ralan		Lab Director,	A Officer	C1-22-C Date

Raland K. Tuttle, Lab Director, QA Office Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 7 of 7

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

JOHN STEWA LARSON AND P.O. BOX 5068 MIDLAND, TX	ASSOCIATES, INC. 5		Order# Project Project Locatio	: Name:	G0307476 0-0100-05 Site # 05 Eunice N.M.			
Lab ID: Sample ID:	0307476-01 SS-11							
<i>Test Paran</i> Parameter	neters	Result	Units	Dilutio Factor		Method	Date Analyzed	Analys
Chloride		<20.0	mg/kg	1	20	9253	9/18/03	SB
Lab ID: Sample ID:	0307476-02 SS-12							
<i>Test Paran</i> Parameter	neters	<u>Result</u>	Units_	Dilution Factor		Method	Date Analyzed	Analys
Chloride		<20.0	mg/kg	1	20	9253	9/18/03	SB
Lab ID: Sample ID:	0307476-03 SS-13							
Test Paran	neters	Result	<u>Units</u>	Dilutio <u>Facto</u>		Method	Date Analyzed	Analy
Chloride		<20.0	mg/kg	1	20	9253	9/18/03	SB
Lab ID: Sample ID:	0307476-04 SS-14							
Test Paran Parameter	neters	Result	Units	Dilutio <u>Facto</u>		Method	Date Analyzed	Analy
Chloride		<20.0	mg/kg	1	20	9253	9/18/03	SB
Lab ID: Sample ID:	0307476-05 SS-15							
Test Paran Parameter	neters	<u>Result</u>	<u>Units</u>	Dilutio <u>Facto</u>		Method	Date <u>Analyzed</u>	<u>Analy</u>
Chloride		<20.0	mg/kg	1	20	9253	9/18/03	SB
Lab ID: Sample ID:	0307476-06 SS-16					,, ,		
Test Paran Parameter	neters	<u>Result</u>	Units	Dilutio <u>Facto</u>		Method	Date <u>Analyzed</u>	Analy
Chloride		<20.0	mg/kg	1	20	9253	9/18/03	SB

RL = Reporting Limit N/A = Not Applicable

a transfer

South States

and the second

ALC: NO.

STATES -

A Contraction of the second second

August and

Page 1 of 2

ENVIRONMENTAL LAB OF TEXAS I, LTD.

. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

JOHN STEWA LARSON AND P.O. BOX 5068 MIDLAND, T2	ASSOCIATES, INC. 5	С.		: 0 Name: S	:0307476 -0100-05 ite # 05 Sunice N.M.			
Lab ID:	0307476-07							
Sample ID:	Fill-1							
Test Paran Parameter	neters	<u>Result</u>	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	<u>Analyst</u>
Chloride		<20.0	mg/kg	1	20	9253	9/18/03	SB

land 9-22-03 Approval: Q. Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

RL = Reporting Limit N/A = Not Applicable

and the second

attender og

E States

55 A 10

and the second second

and the second

State of the second

A LOUGH LAND

MINING

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

All and the second

and a straight of the straight

Internation

8015M

Order#: G0307476

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-	mg/kg	0006844-02			<10.0		
CONTRO	L SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-	mg/kg	0006844-03		952	697	73.2%	
CONTRO	L DUP	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-	mg/kg	0006844-04	······	952	793	83.3%	12.9%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-	mg/kg	0006844-05		1000	998	99.8%	

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT 8021B/5030 BTEX

100000 A

Balleton and I

Same .

10.2

A COLUMN

Order#: G0307476

BLANK SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	0006851-02			<0.025		
Toluene-mg/kg	0006851-02			<0.025		
Ethylbenzene-mg/kg	0006851-02			<0.025		
p/m-Xylene-mg/kg	0006851-02			<0.025		
o-Xylene-mg/kg	0006851-02			<0.025	1	
CONTROL SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	0006851-03		0.1	0.100	100.%	
Toluene-mg/kg	0006851-03		0.1	0.099	99.%	
Ethylbenzene-mg/kg	0006851-03		0.1	0.094	94.%	·
p/m-Xylene-mg/kg	0006851-03		0.2	0.190	95.%	
o-Xylene-mg/kg	0006851-03		0.1	0.090	90.%	
CONTROL DUP	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	0006851-04		0.1	0.098	98.%	2.%
Toluene-mg/kg	0006851-04		0.1	0.098	98.%	1.%
Ethylbenzene-mg/kg	0006851-04		0.1	0.095	95.%	1.1%
p/m-Xylene-mg/kg	0006851-04		0.2	0.192	96.%	1.%
o-Xylene-mg/kg	0006851-04		0.1	0.092	92.%	2.2%
SRM SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	0006851-05		0.1	0.094	94.%	
Toluene-mg/kg	0006851-05		0.1	0.094	94.%	
Ethylbenzene-mg/kg	0006851-05		0.1	0.095	95.%	
p/m-Xylene-mg/kg	0006851-05		0.2	0.193	96.5%	
o-Xylene-mg/kg	0006851-05		0.1	0.096	96.%	

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

Test Parameters

Order#: G0307476

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0006845-01			<20.0		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg	<u></u>	0307470-02	26900	500	27500	120.%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307470-02	26900	500	27500	120.%	0.%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0006845-04		5000	4960	99.2%	

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

Strate;

Designation of the

Statistics of

States of the

Name of Street

Station of the

and the second

19.2

CASE NARRATIVE **ENVIRONMENTAL LAB OF TEXAS**

Prepared for:

and the second

1212

LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710

Order#: G0307476 **Project:** Site # 05

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
SS-11	0307476-01	SOIL	09/17/2003	09/17/2003
SS-12	0307476-02	SOIL	09/17/2003	09/17/2003
SS-13	0307476-03	SOIL	09/17/2003	09/17/2003
SS-14	0307476-04	SOIL	09/17/2003	09/17/2003
SS-15	0307476-05	SOIL	09/17/2003	09/17/2003
SS-16	0307476-06	SOIL	09/17/2003	09/17/2003
Fill-1	0307476-07	SOIL	09/17/2003	09/17/2003

Surrogate recoveries on the BTEX are outside control limits due to matrix interference. (0307476-01, 07)

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

Approved By:

Kalandklow Date: 9-19-03 Environmental Lab of Texas I, Ltd.

医结果 日本 经济资源经济部分

Andrew Strategy

1. A.

											ТАТ biebr												
									_	elubedo2-6	Pro (Pre	รกช			_								
				1			1													z	z		
翻	EST		5	~																			
	aue	٧Ÿ	0	2																_{	ϵ		\circ
	RE	$ \mathcal{Q} $	2	2																	\sim		8
	SIS.	-++	Ð		X					<u> </u>	.M.S	ч.о.и										2	a
	АГУ	#	ŏ	1	、儿							- Jaci	17				\mathbf{X}				s:	2	K
W	AN	d	2	Y	Ŋ		ľ	zer		0928 X3T8 16	(80218/2030	KETES -	7 4	\geq	$\overline{}$	2	>	4			Rec	0	d)
19	DNN	2170	9	2	5		ŀ	Analyze For			zelijslov	imə2									lpon mm	\tilde{O} ,	0
	1 02	Ń	Ó	13	67		ľ				·····	15loV	_			\square		_			y Cc	7	2
	CO	∇'	9	Y				<u> </u>		a Cr Pb Hg Se									\square		Sample Containers Intact? Temperature Upon Receipt: Laboratory Comments:		
	'RE							TCLP:			LESP / CEC		\downarrow	\downarrow	\searrow	-	+		<u> </u>		in pe		
	(ao	ame	Project #: _	Loc	но #:		1		Ĕ		2 '705 12 S		$\frac{1}{2}$			<u> </u>	>	¥	╄──┼-		La La	1	
	JST	it N	roje	ect	ድ						N (Ca, Mg, N	~ ~		\searrow	$\mathbf{\lambda}$	\checkmark	\rightarrow	+				ē	e 7
	ר כר	Project Name:	٩	Project Loc:			L			9001 SOOL 4	12 POB 1.814					1	<u> </u>		+	_		Time	Time 634
	io v	Ъ								, 	ı (sbecity):	<u> </u>	+	K	$ \mid$	-	+		$\left \right $	_		┝	<u> </u>
	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST								Matriv			lios	<u>, ,</u>	1>	~			>		-			5
	õ	1	۱	1	1	1	1		≥	≧					┝─┤				+			Date	Date 17/03
									┝		r (Specify)	anno 916W		+				_	┼─┼	_		 	
												anov (+		-+			+	\neg		 	+
				1					9			DS ² H				-+	+	+	+				
									101					+					+	_			
												нсі		+					+	\neg			
				$\mathbf{\mathbf{x}}$						<u>}</u>	Ε	ONĄ		+									
200												ICG	1	$\mathbf{\nabla}$	5	2	21	2		-1			5
										s	of Container	N			_		~	_					1150
		7		X	1	ö								+			+						5
		1		2	\mathcal{A}	Fax No:							01	12	6	_	γ	\sim			1		B
		4		- K \	10	Ű.					bəlqms2 a	imiT	0000	C0:11	12:09	/ ,	1	-			1		$\langle \rangle$
		0			N								C\$ (7 1	1	2	4	4			, f		15
		Jero		20	6			I					50	Τ								4	Received by ELOI
		Ê	0, 0								belqma2 e	1	Ĭ.								1	Received by:	egyby El
		Ň			1	~	J					-	1	z	1	2	2	-				ceive	ceiv
18(2)		v	C	X		0	K						2/	+				\rightarrow				Re	
	ທ		1	$ \begin{bmatrix} \mathcal{M} \\ \mathcal{M} \end{bmatrix} $		050	12	\mathbf{r}						1								e .	
1	(a)	5	1		17	1	N IS															Time 4/22	Time
	b of Texa: Phone: 432-563-1800 Fav. 432-563-1800	204~	12	IN	IN		100							1									·
		, Q	5			8																1 °	
		1	50%	S	2	17 1		1				DE										Date	Date
	hone:		1 2	V,	1	1 i	R		\mathbf{i}			Ŭ		1								N	
	a,		4		1	3	N	k	5)		FIELD CODE	\neg	_ _		.							
_					14	11	$ \rangle$	\mathbb{N}					$\frac{1}{2}$	NA	13			\neg				X	1
	ສີ				2								4	77		\uparrow		4				N	
	Ĵ	, .	 	ļ.,		۱.	۱ 			l		ľ	2	ЧV	ん	1 in	1	1				1 4	Į
	e	ader	lame	ress	a'Z's	N C	ture					ſ	* `	ηv		$\langle \cdot \rangle$	M	UL				1	Ú
	B ast	exas raroo Proiect Manager:	Company Name	Company Address:	Citv/State/Zip:	Telenhone No:	Sampler Signature:	I						—	<u>+-</u>	<u> </u>	$\left - \right $				- :: ::	1	1
			eou		itv/S	fuel	erSi				1	(<u>S</u>				1.		2			tion:		Y.
NA	1 2	sXdS Proie	20		L U	, e	: ¥lam	•			¥	seo	20	$\frac{\gamma}{\eta}$	1Z	18	2	ò			truct	à	Nã
	Vi			č	\$		Sa				č	ab u	2	∽ د	2	' ~				1	Inst	ined ,	shed .
-	Environmental Lab of Texas 12600 West 1-20 East Phone: 432-563-1800 Cast Factor Fact	Odessa, Texas / 3/00 Proioct Man									0307476	LAB # (lab use only)									Special Instructions:	Relinquished by:	Kelinquished by
	Щ ² 2	5									3	LAE									Spe	l Rei	
																							, <i>1</i>

ANALYTICAL REPORT

Prepared for:

¹ i știn știnere

Summer S

States and

Strategy and

Contraction of

And a start

的自己的问题的问题

JOHN STEWART LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710

Project:Dynegy Site #05PO#:G0307564

Report Date: 09/30/2003

<u>Certificates</u> US EPA Laboratory Code TX00158

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

LARSON AND ASSOCIATES, INC.	Order#:	G0307564
P.O. BOX 50685	Project:	0-0100-05
MIDLAND, TX 79710	Project Name:	Dynegy Site #05
915-687-0456	Location:	None Given

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

					Date / Time		
Lab ID:	<u>Sample :</u>	<u>Matrix:</u>		Collected	Received	<u>Container</u>	<u>Preservative</u>
0307564-01	SS-17	SOIL		9/25/2003	9/25/2003 16:20	4 oz glass	ice
• <u>1</u>	Lab Testing:	Rejected:	No	Temp:	4.0 C		
	8015M						
.	Chloride						
0307564-02		SOIL		9/25/2003	9/25/2003 16:20	4 oz glass	ice
1	Lab Testing:	Rejected:	No	Temp:	4.0 C		
	8015M						
	Chloride						
0307564-03		SOIL		9/25/2003	9/25/2003 16:20	4 oz glass	ice
	Lab Testing:	Rejected:	No	Temp:	4.0 C		
	8015M						
	Chloride						
0307564-04		SOIL		9/25/2003	9/25/2003 16:20	4 oz glass	ice
	<u>Lab Testing:</u>	Rejected:	No	Temp:	4.0 C		
	8015M						
	Chloride						
0307564-05	SS-21	SOIL		9/25/2003	9/25/2003 16:20	4 oz glass	ice
	<u>Lab Testing:</u>	Rejected:	No	Temp:	4.0 C		
	8015M						
·	Chloride						
0307564-06	SS-22	SOIL		9/25/2003	9/25/2003 16:20	4 oz glass	ice
	Lab Testing:	Rejected:	No	Temp:	4.0 C		
	8015M						
	Chloride						
0307564-07	7 SS-23	SOIL		9/25/2003	9/25/2003 16:20	4 oz glass	ice
-	<u>Lab Testing:</u>	Rejected:	No	Temp	: 4.0 C		
	ENVIRONMENTAL L	4B OF TEXAS I, L	TD.	12600 West I-2	0 East, Odes	ssa, TX 79765 Ph	ı: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

LARSON AND ASSOCIATES, INC.	Order#:	G0307564
P.O. BOX 50685	Project:	0-0100-05
MIDLAND, TX 79710	Project Name:	Dynegy Site #05
915-687-0456	Location:	None Given

A Constant of the

Service of

(36-36-)

12 of the state of the

教育の

STATES OF

100

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

receipt of s	amples by Environmenta <u>Sample :</u> 8015M Chloride	ll Lab of Texas, unless othe <u>Matrix:</u>	rwise noted. Date / Time <u>Collected</u>	Date / Time <u>Received</u>	<u>Container</u>	<u>Preservative</u>
0307564-08	SS-24	SOIL	9/25/2003	9/25/2003 16:20	4 oz glass	ice
La	<u>b Testing:</u>	Rejected: No	Ter	np: 4.0 C		
	8015M					
<u></u>	Chloride					

State of the local division of the local div

AND AND A

and the second second

Station of the local division of the local d

E ANALAS

Sec. 2

IOHN STEWAR LARSON AND A P.O. BOX 50685 MIDLAND, TX	SSOCIATES, INC.			P P	Order#: roject: roject Name location:	0-01 : Dyr	07564 00-05 negy Site #05 ne Given	
Lab ID: Sample ID:	0307564-01 SS-17							
				8015	М			
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u>	S	ample mount	Dilutio <u>Factor</u>	<u>Analyst</u>	
			9/27/2003		1	1	JLH	8015M
		Parameter			Result mg/kg		RL	
		GRO, C6-C12			<10.0		10.0	
		DRO, >C12-C35			17.1		10.0	
		TOTAL, C6-C35			17.1		10.0	
		Surrogat	es	%	Recovered	QC Li	mits (%)	
		1-Chloroocta			106%	70	130	
		1-Chloroocta	decane		82%	70	130	
Lab ID: Sample ID:	0307564-02 SS-18			8015	M			
	Method	Date	Date	S	ample	Dilutio	n	
	<u>Blank</u>	<u>Prepared</u>	<u>Analyzed</u> 9/27/2003	A	<u>mount</u> 1	Factor 1	<u>Analyst</u> JLH	Method 8015M
		Parameter			Result mg/kg		RL	
		GRO, C6-C12			<10.0		10.0	
		DRO, >C12-C35			<10.0		10.0	
		TOTAL, C6-C35			<10.0		10.0	
		Surroga	tes	%	Recovered	QC Li	mits (%)	
		the second se						
		1-Chlorooct			110%	70	130	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

JOHN STEWAF LARSON AND A P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC.			Order#: Project: Project Name Location:	0-010 : Dyn	07564 00-05 egy Site #05 e Given	
Lab ID: Sample ID:	0307564-03 SS-19						
				8015M			
	Methoo <u>Blank</u>) Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>	<u>Analyst</u>	Method
			9/27/2003	1	1	JLH	8015M
		Parameter	, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Result mg/kg		RL	
		GRO, C6-C12		<10.0		10.0	
		DRO, >C12-C35		44.0		10.0	
		TOTAL, C6-C35		44.0		10.0	
		Surroga	ites	% Recovered	QC Lin	nits (%)	
		1-Chlorooct	ane	109%	70	130	
		1-Chlorooct	adecane	86%	70	130	
Lab ID: Sample ID:	0307564-04 SS-20			8015M			
	Metho	d Date	Date	Sample	Dilution	n	
	Blank	Prepared	Analyzed	Amount	<u>Factor</u>		Method
			9/27/2003	1	1	JLH	8015M
		Parameter		Result mg/kg		RL	
		GRO, C6-C12)	<10.0		10.0	
						10.0	
		DRO, >C12-C35		30.7		10.0	
				<u> </u>		10.0	
		DRO, >C12-C35					
		DRO, >C12-C35 TOTAL, C6-C35	ates tane	30.7		10.0	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 2 of 4

ENVIRONMENTAL LAB OF TEXAS I, LTD.

and the second

1.1642.64

All and a second

No. 200

1972 - 1974 (

St. Date to St.

JOHN STEWAR LARSON AND A P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC.			Order#: Project: Project Name Location:	0-01(: Dyn	07564 00-05 egy Site #05 e Given	
Lab ID: Sample ID:	0307564-05 SS-21						
				8015M			
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>	ı <u>Analyst</u>	Method
			9/27/2003	1	1	JLH	8015M
		Parameter		Result mg/kg		RL	
		GRO, C6-C12		85.2		10.0	
		DRO, >C12-C35		2,020		10.0	
		TOTAL, C6-C35		2,105		10.0	
		Surroga	ites	% Recovered	QC Lin	nits (%)	
		1-Chlorooc		126%	70	130	
		1-Chlorooc	adecane	123%	70	130	
Lab ID: Sample ID:	0307564-06 SS-22						
	Method	Date Prenared	Date	8015M Sample Amount	Dilution Factor		Method
	Method <u>Blank</u>	Date <u>Prepared</u>		Sample <u>Amount</u>	<u>Factor</u>	<u>Analyst</u>	<u>Method</u> 8015M
			Date <u>Analyzed</u>	Sample			<u>Method</u> 8015M
			Date <u>Analyzed</u>	Sample <u>Amount</u>	Factor 1	<u>Analyst</u>	
		Prepared Parameter GRO, C6-C12	Date <u>Analyzed</u> 9/27/2003	Sample <u>Amount</u> 1 Result	Factor 1	Analvst JLH RL 10.0	
		Prepared Parameter GRO, C6-C12 DRO, >C12-C35	Date <u>Analyzed</u> 9/27/2003	Sample Amount 1 Result mg/kg 16.3 269	Factor 1	<u>Analyst</u> JLH RL 10.0 10.0	
		Prepared Parameter GRO, C6-C12	Date <u>Analyzed</u> 9/27/2003	Sample <u>Amount</u> 1 Result mg/kg 16.3	Factor 1	Analvst JLH RL 10.0	
		Prepared Parameter GRO, C6-C12 DRO, >C12-C35	Date <u>Analyzed</u> 9/27/2003	Sample Amount 1 Result mg/kg 16.3 269	Factor 1	<u>Analyst</u> JLH RL 10.0 10.0	
		Prepared Parameter GRO, C6-C12 DRO, >C12-C35 TOTAL, C6-C35	Date <u>Analyzed</u> 9/27/2003	Sample Amount 1 Result mg/kg 16.3 269 285	Factor 1	Analyst JLH RL 10.0 10.0 10.0	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

THE REAL PROPERTY IN

Sector S

1

States of the second

Service Services

Statistics of

George W

And the second

State of the second

Transfer P.

Sector of the sector

新加加

Stationary Sector

1.30 M. 3

State of the second

State of the local sector

Standy I

States in

States and

JOHN STEWAR LARSON AND A P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC.			Order#: Project: Project Nam Location:	0-01 e: Dyr	07564 00-05 1egy Site #05 e Given		
Lab ID: Sample ID:	0307564-07 SS-23							
				8015M				
	Method	Date	Date	Sample	Dilutio	n		
	<u>Blank</u>	Prepared	Analyzed	Amount	Factor	<u>Analyst</u>	Method	
			9/27/2003	1	1	JLH	8015M	
		Parameter		Resul		RL		
				mg/kį				
		GRO, C6-C12	· · · · · · · · · · · · · · · · · · ·	35.7		10.0		
		DRO, >C12-C35		1,020		10.0		
		TOTAL, C6-C35) 	1,050		10.0		
		Surrog	ates	% Recovered	QC Li	nits (%)		
		1-Chlorooc		117%	70	130		
		1-Chlorooc	tadecane	111%	70	130		
Sample ID:	SS-24			8015M				
	Method	Date	Date	Sample	Dilutio			
	<u>Blank</u>	<u>Prepared</u>	Analyzed	Amount	Factor		Method	
			9/27/2003	1	1	JLH	8015M	
		Parameter		Resu mg/kj		RL		
		GRO, C6-C12		<10.0		10.0		
		DRO, >C12-C35	;	28.9		10.0		
		TOTAL, C6-C35	5	28.9)	10.0		
		Surrog	ates	% Recovered	QC Li	mits (%)		
		1-Chlorooc		101%	70	130		
		1-Chlorooc	tadecane	80%	70	130		

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 4 of 4

JOHN STEWA LARSON AND P.O. BOX 5068 MIDLAND, TX	ASSOCIATES, INC. 5		Order# Project Project Locatio	t: t Name:	G0307564 0-0100-05 Dynegy Site None Given	#05		
Lab ID: Sample ID:	0307564-01 SS-17							
<i>Test Paran</i> Parameter	neters	Result	Units_	Dilution Factor		Method	Date Analyzed	Analys
Chloride		<20	mg/kg	1	20	9253	9/29/2003	SB
Lab ID: Sample ID:	0307564-02 SS-18							
Test Paran Parameter	neters	<u>Result</u>	Units	Dilution Factor	-	Method	Date <u>Analyzed</u>	Analys
Chloride		<u><20</u>	mg/kg	<u>ractor</u> 1	20	9253	9/29/2003	SB
Lab ID: Sample ID:	0307564-03 SS-19			<u>ar , 11 ar</u>				
Test Paran Parameter	neters	<u>Result</u>	Units	Dilution <u>Factor</u>		Method	Date Analyzed	Analys
Chloride		177	mg/kg	1	20	9253	9/29/2003	SB
Lab ID: Sample ID:	0307564-04 SS-20							
Test Paran	neters		T T 1 4	Dilution			Date	
Parameter Chloride	·	<u>Result</u> <20	<u>Units</u> mg/kg	<u>Factor</u> 1	20 RL	<u>Method</u> 9253	Analyzed 9/29/2003	<u>Analys</u> SB
Lab ID: Sample ID:	0307564-05 SS-21							
Test Paran Parameter	neters	Result	Units	Dilution <u>Factor</u>		Method	Date <u>Analyzed</u>	<u>Analys</u>
Chloride		<20	mg/kg	1	20	9253	9/29/2003	SB
Lab ID: Sample ID:	0307564-06 SS-22							
Test Paran	neters	<u>Result</u>	Units	Dilution <u>Factor</u>		Method	Date <u>Analyzed</u>	Analys
Chloride		<20	mg/kg	1	20	9253	9/29/2003	SB

RL = Reporting Limit N/A = Not Applicable

A CONTRACTOR

A THE REPORT OF

and the second s

a see the second

ti maaning

New York

a transmission

Second 3

Marine .

Page 1 of 2

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

JOHN STEWA LARSON AND P.O. BOX 5068 MIDLAND, TX	ASSOCIATES, INC. 5		Order# Project Project Locatio	: 0- Name: D	0307564 0100-05 Jynegy Site one Given	#05		
Lab ID: Sample ID:	0307564-07 SS-23							
Test Paran	neters	<u>Result</u>	<u>Units</u>	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	Analyst
Chloride		<20	mg/kg	1	20	9253	9/29/2003	SB
Lab ID:	0307564-08							
Sample ID:	SS-24							
Test Paran Parameter	neters	<u>Result</u>	<u>Units</u>	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	<u>Analyst</u>
Chloride		<20	mg/kg	1	20	9253	9/29/2003	SB

Approval: <u>Secare McMuy 09-30-03</u> Raland K. Tuttle, Lab Director, QA Officer Date

Raland K. Tuffic, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

RL = Reporting Limit N/A = Not Applicable

a management

1999-1999 1999-1999

語いない

ALC: NOT ALC

and a second second

BASISTICS

apr. 24

Sec. 1

2000

限計部目標構成

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

出行,用任于任任书书公式,在任时期,当下,不可能是这样?于我可能能能出来出,把了这种通知通道,把招待你的能子。这些"这些",这些"我说的"那比较通知得到很不是我的能量,也没有通过人们必要我说:"你

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

Southern and

Sec. 2

Strate of the

Constanting

8015M

Order#: G0307564

	4NK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTA	L, C6-C35-mg/kg		0006971-02			<10.0		
TOTA	L, C6-C35-mg/kg		0006973-02			<10.0		
	NTROL	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTA	L, C6-C35-mg/kg		0006971-03		952	681	71.5%	
TOTA TOTA	L, C6-C35-mg/kg		0006973-03		952	775	81.4%	
MS	1	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
ΤΟΤΑ	L, C6-C35-mg/kg		0307562-01	0	952	824	86.6%	
	L, C6-C35-mg/kg		0307565-01	79.9	952	889	85.%	
MS	D	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTA	L, C6-C35-mg/kg		0307562-01	0	952	833	87.5%	1.1%
ΤΟΤΑ	L, C6-C35-mg/kg		0307565-01	79.9	952	905	86.7%	1.8%
SR/	M	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
ΤΟΤΑ	L, C6-C35-mg/kg		0006971-05		1000	943	94.3%	
ΤΟΤΑ	L, C6-C35-mg/kg		0006973-05		1000	1056	105.6%	

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

Approximation of the second second

ALC: NO.

ar interest of

. deregenetik

ないたいますが

a hard and a state

N. Science a

a state and

and the second

a state of

Test Parameters

Order#: G0307564

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0006980-01			<20		
Chloride-mg/kg		0006981-01			<20		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307562-01	0	500	496	99.2%	
Chloride-mg/kg		0307565-01	0	500	478	95.6%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg	•	0307562-01	0	500	496	99.2%	0.%
Chloride-mg/kg		0307565-01	0	500	496	99.2%	3.7%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0006980-04		5000	4960	99.2%	
Chloride-mg/kg		0006981-04		5000	4960	99.2%	

CLIENT NAME:		SITE MANAGER:	PARAMETERS/METHOD NUMBER	ER CHAIN-OF-CUSTODY RECORD
VHNA	2	-3hy Stevar-		
PROJECT NO.	150	PROJECT NAME:	TAINERS	A drson & Ssociates, Inc. Fax: 915-687-0456 Environmental Consultants 915-687-0901
}	, LAB	LAB. PO #	אד כסא געולבי אד כסא	507 N. Marienfeld, Ste. 202 • Midland, TX 79701
-			Pfee MBEB C	LAB. I.D. REMARKS NUMBER (I.E., FILTERED, UNFILTERED,
TWILL TWILL	105 JOS		2 Z Z	(LAB USE ONLY) PRESERVED, UNPRESERVED, GRAB COMPOSITE)
C) 9/28	7	5-17	6 1 1	0307564
	8	25-18		
03 66	2	25-CP	7	
K C	-	Sr-20		
Sa	7	55-21		
CG I	8	<u>دد-كر</u>		
N 11-	2	55-23		
09 4	2	5-28		
5				
HG8734				
• V 31.501 /				
	_			
SAMPLED BY: (Signaltare)	oltare)	DATE: RELINQUIS	SHED BY: (Signature) DATE: TIME:	RECEIVED BY: (Signature) DATE: TIME:
BELINQUISHED BY: (Signature)	(Signature)	DATE:	BY: (Signature)	SAMPLE SHIPPED BY: (Circle)
1 th	1 Sec	TIME:	TIME:	BUS AI
COMMENTS.			TURNAROUND TIME NEEDED	HAND DELIVERED
				WHITE - RECEIVING LAB
RECEIVING LABORATORY:		ECO T	RECEIVED BY: (Signature)	
CITY:		STATE: ZIP: PHONE:	- DATE: 9-25-03 TIME: 16-20	1
	HEN RECEIVED:	B. U.C.	Q I A CONTACT DEPSON:	SAMPIE TYPE:
		HAC 1		
	· · · · · · · · · · · · · · · · · · ·	1000 日本の日本の時代の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の		如果不过这种情况的,这些"这些"是是一种的,不是是是的问题,这些"这些是是是是是这个人的是是是是一个人的是一种,我们也是是是是是不是是是这些的是是,我们也是是最多不是是我们的

19-24

A NEW YORK

State of the second sec

Sec. No.

Market a

and many property

- N.

ANALYTICAL REPORT

Prepared for:

the second state

No. and No.

of the second

Salary St.

(Section of the

Name and

the set

100 C

Londor.

JOHN STEWART LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710

Project: Dynegy #05

PO#:

Order#: G0307616

Report Date:

<u>Certificates</u> US EPA Laboratory Code TX00158

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS SAMPLE WORK LIST

LARSON AND ASSOCIATES, INC.	Order#:	G0307616
P.O. BOX 50685	Project:	0-0100-05
MIDLAND, TX 79710	Project Name:	Dynegy #05
915-687-0456	Location:	None Given

1. 2.2. A. 2.

olicitation and

A Designed

Haranter's

States and

1111111

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Lab ID: Sample: 0307616-01 SS-25	<u>Matrix:</u> SOIL	Date / Time <u>Collected</u> 10/1/03 12:15	Date / Time <u>Received</u> 10/1/03 16:00	Container 4 oz glass	Preservative ice
Lab Testing: 8015M Chloride	Rejected: No				
	SOIL Rejected: No	10/1/03 12:25	10/1/03 16:00	4 oz glass	ice
8015M 8021B/5030 BTEX Chloride					
	0307616-01 SS-25 <u>Lab Testing:</u> 8015M Chloride 0307616-02 SS-26 <u>Lab Testing:</u> 8015M 8021B/5030 BTEX	0307616-01 SS-25 SOIL Lab Testing: Rejected: No 8015M Chloride No 0307616-02 SS-26 SOIL Lab Testing: Rejected: No 8015M SOID Rejected: No 0307616-02 SS-26 SOIL Rejected: No Lab Testing: Rejected: No SO15M Rejected: No S015M S021B/5030 BTEX Chloride Chloride Chloride Chloride Chloride	Lab ID: Sample : Matrix: Collected 0307616-01 SS-25 SOIL 10/1/03 Lab Testing: Rejected: No Temp 8015M Chloride 10/1/03 12:15 0307616-02 SS-26 SOIL 10/1/03 12:25 Lab Testing: Rejected: No Temp 8015M 12:25 12:25 12:25 Lab Testing: Rejected: No Temp 8015M 8021B/5030 BTEX Chloride Temp	Lab ID: Sample : Matrix: Collected Received 0307616-01 SS-25 SOIL 10/1/03 10/1/03 12:15 16:00 Lab Testing: Rejected: No Temp: 3.5 C 8015M Chloride Chloride 10/1/03 10/1/03 0307616-02 SS-26 SOIL 10/1/03 10/1/03 0307616-02 SS-26 SOIL 10/1/03 10/1/03 Lab Testing: Rejected: No Temp: 3.5 C 8015M SOIL 10/1/03 10/1/03 12:25 16:00 Lab Testing: Rejected: No Temp: 3.5 C 8015M S021B/5030 BTEX Chloride V V	Lab ID: Sample : Matrix: Collected Received Container 0307616-01 SS-25 SOIL 10/1/03 10/1/03 4 oz glass Lab Testing: Rejected: No Temp: 3.5 C 4 oz glass 8015M Chloride SOIL 10/1/03 10/1/03 4 oz glass 0307616-02 SS-26 SOIL 10/1/03 10/1/03 4 oz glass 12:25 16:00 12:25 16:00 4 oz glass 12:25 16:00 10/1/03 4 oz glass 12:25 16:00 10/1/03 10/1/03 4 oz glass 12:25 16:00 10/1/03 10/1/03 10/1/03 10/1/03 Lab Testing: Rejected: No Temp: 3.5 C 10/1/03 8015M 8021B/5030 BTEX Chloride Keloride Keloride Keloride

Barrister and

The second second

が日本語のの

and the second

State and

All and a second

And Arts

Sec.

BETRUTH

JOHN STEWAR LARSON AND A P.O. BOX 50685 MIDLAND, TX	ASSOCIATES, INC.			Order#: Project: Project Nan Location:	0-01 ne: Dyn	07616 00-05 legy #05 le Given	
Lab ID: Sample ID:	0307616-01 SS-25						
				8015M			
	Method <u>Blank</u>	Date <u>Prepared</u>	Date Analyzed	Sample <u>Amount</u>	Dilutio <u>Factor</u>	<u>Analyst</u>	Method
			10/1/03	1	1	JLH	8015M
		Parameter		Resu mg/k		RL	
		GRO, C6-C12		<10.	0	10.0	
		DRO, >C12-C35		<10.	0	10.0	
		TOTAL, C6-C35		<10.	0	10.0	
		Surroga		% Recovered		mits (%)	
		1-Chlorooc		90%	70	130	
		1-Chlorooc		96%	70	130	
Lab ID: Sample ID:	0307616-02 SS-26						
		_		8015M			
	Method <u>Blank</u>	Date Prepared	Date <u>Analyzed</u>	Sample Amount	Dilutio Factor		Method
	Diana	- <u></u>	10/1/03	1	1	JLH	8015M
		Parameter		Resu mg/k		RL	
		GRO, C6-C12		984	1	10.0	
		DRO, >C12-C35		3,59		10.0	
			5	4,57	4	10.0	
		TOTAL, C6-C35					
					OC Li	mits (%)	
		Surrog	ates	% Recovered 95%	QC Li 70	mits (%) 130	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

JOHN STEWART	Order#:	G0307616
LARSON AND ASSOCIATES, INC.	Project:	0-0100-05
P.O. BOX 50685	Project Name:	Dynegy #05
MIDLAND, TX 79710	Location:	None Given

Lab ID: 0307616-02 Sample ID:

A DECEMBER

State State

Superior Superior

a and a second

1.200

SS-26

		8021B	x/5030 BTEX	K		
Method <u>Blank</u>	Date Prepared	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>	<u>Analyst</u>	Method
0007012-02		10/1/03	1	25	RKT	8021B

Parameter	Result mg/kg	RL
Benzene	0.071	0.025
Toluene	0.721	0.025
Ethylbenzene	1.97	0.025
p/m-Xylene	3.76	0.025
o-Xylene	2.82	0.025

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	199%	80	120
Bromofluorobenzene	124%	80	120

10-07-03 Approval: <u>Cance</u> MCM usey Raland K. Tuttle, Lab Director, QA Officer Date Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

JOHN STEWART LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710			Order# Project Project Locatio	: 0- Name: Dy)307616)100-05 /negy #05)ne Given			
Lab ID: Sample ID:	0307616-01 SS-25							
Test Paran Parameter	neters	<u>Result</u>	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date Analyzed	<u>Analyst</u>
Chloride		<20	mg/kg	1	20	9253	10/1/03	SB
Lab ID:	0307616-02							
Sample ID:	SS-26							
Test Paran Parameter	neters	<u>Result</u>	Units	Dilution <u>Factor</u>	<u>RL</u>	Method	Date <u>Analyzed</u>	Analyst
Chloride		<20	mg/kg	1	20	9253	10/1/03	SB

Approval: Secure Mr. Mukey 10-07-03 Raland K. Tuttle, Lab Director, QA Officer Date Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

N/A = Not Applicable RL = Reporting Limit

a state of the second

and the second s

No. of Street, St

Calcie 2

De Talles

ar diates

State of the second

新たい

即行作员

Page 1 of 1

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

and the second

No. of Concession, Name

and the second second

North Control

8015M

Order#: G0307616

BLANK SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007024-02			<10.0		
CONTROL SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007024-03		952	1026	107.8%	<u></u>
CONTROL DUP	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007024-04		952	965	101.4%	6.1%
SRM SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007024-05	·····	1000	935	93.5%	

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT 8021B/5030 BTEX

and the second

Order#: G0307616

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0007012-02			<0.025		
Toluene-mg/kg		0007012-02			<0.025		
Ethylbenzene-mg/kg		0007012-02			<0.025		
p/m-Xylene-mg/kg	···	0007012-02			<0.025		
o-Xylene-mg/kg		0007012-02			<0.025		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0307547-16	0	2.5	2.67	106.8%	
Toluene-mg/kg		0307547-16	0.061	2.5	2.57	100.4%	
Ethylbenzene-mg/kg		0307547-16	0.073	2.5	2.62	101.9%	
p/m-Xylene-mg/kg		0307547-16	0.333	5	5.17	96.7%	
o-Xylene-mg/kg		0307547-16	0.051	2.5	2.49	97.6%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0307547-16	0	2.5	2.46	98.4%	8.2%
Toluene-mg/kg		0307547-16	0.061	2.5	2.44	95.2%	5.2%
Ethylbenzene-mg/kg		0307547-16	0.073	2.5	2.54	98.7%	3.1%
p/m-Xylene-mg/kg		0307547-16	0.333	5	5.06	94.5%	2.2%
o-Xylene-mg/kg		0307547-16	0.051	2.5	2.51	98.4%	0.8%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg		0007012-05		0.1	0.106	106.%	
Toluene-mg/kg	·····	0007012-05		0.1	0.103	103.%	
Ethylbenzene-mg/kg		0007012-05		0.1	0.096	96.%	
p/m-Xylene-mg/kg		0007012-05		0.2	0.194	97.%	
o-Xylene-mg/kg		0007012-05		0.1	0.094	94.%	• • • • • • • • • • • • • • • • • • • •

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

Test Parameters

NATION TAL

Order#: G0307616

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0006998-01			<20		
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307601-01	0	500	496	99.2%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307601-01	496	500	478	95.6%	3.7%
SRM	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0006998-04		5000	4960	99.2%	

CASE NARRATIVE ENVIRONMENTAL LAB OF TEXAS

Prepared for:

LARSON AND ASSOCIATES, INC. P.O. BOX 50685 MIDLAND, TX 79710 Order#: G0307616 Project: Dynegy #05

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
SS-25	0307616-01	SOIL	10/01/2003	10/01/2003
SS-26	0307616-02	SOIL	10/01/2003	10/01/2003

Surrogate recoveries on the BTEX are outside control limits due to matrix interference. (0307616-02)

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

Approved By: Environmental Lab of Texas I, Ltd. Date: 10-07-03

21	<u>v</u>	site manager:	PARAMETERS/METHOD NUMBER	JOD NUMBER	CHAIN-OF-	
Vynes y		John Steval I			4	
РКОЈЕСТ NO.: 10-0100- 20		PROJECT NAME:	VITAINER2		A drson & ssociates, Inc. Environmental consultants	Inc. Fax: 9 uttants
0. V	LAB. PO #	2			507 N. Marienfeld, Ste. 202	<
1105 2210m 31111	OTHER	SAMPLE IDENTIFICATION	иливек о		LAB. I.D. NUMBER (LAB USE ONLY)	REMARKS (I.E., FILTERED, UNFILTERED, PRESERVED, UNPRESERVED, GRAB COMPOSITE)
7 5.01		55.25			0307616	
10/1 12:35		1 1				
	-					
SAMPLED BY: (Signature)		DATE: 10// RELINQUISHEI	RELINQUISHED BY: (Signature)	DATE: TIME:	RECEIVED BY: (Signature)	DATE: TIME:
RELINICUISINED BY: (Signature)		DATE: 10/ RECEIVED BY-(SIGNATURE)	(signiture)	DATE: <u>10-1-03</u> TIME: 160-0	Sample Shipped BY: (Circle) Fedex BI	A SL
COMMENTS		- free to a comment	TURNAROUND	TURNAROUND TIME NEEDED	HAND DELIVERED WHITE - RECEIVING LAB	UPS OTHER: AB
RECEIVING LABORATORY:		RE	RECEIVED BY: (Signature)		>	- Receiving Lab (To be returned to La After Receipt)
ADDRESS: CITY:	S	STATE:ZIP:D	DATE: TIME:		PINK PROJECT MANAGER GOLD QA/QC COORDINATOR	NAGER RDINATOR
CONTACT						
sample condition when received:			LA CONTACT PERSON:		sample type: 40そん(3.5°C

A descent

And the second

APPENDIX C

or the more

ar ann an Alta An Anna Alta

and the second se

Photographs

Dynegy Midstream Services, L.P., Spill Site #05 NE/4, SE/4, Section 24, Township 22 South, Range 38 East Lea County, New Mexico

Photo# 3 View to site to N (9/17/03)

Photo# 4 View to S of Excavation (10/1/03)

Dynegy Midstream Services, L.P., Spill Site #05 NE/4, SE/4, Section 24, Township 22 South, Range 38 East Lea County, New Mexico

1

Photo# 5 View to S of Excavation (10/1/03)

Photo# 6 View to N of Excavation (10/1/03)

Dynegy Midstream Services, L.P., Spill Site #05 NE/4, SE/4, Section 24, Township 22 South, Range 38 East Lea County, New Mexico

Photo# 7 View to N of Excavation (10/1/03)