
1R- 474

REPORTS

DATE: 4/02/2007

March 29, 2007

Samson State BD-04 March Progress Report

prepared for :

Samson Resources Company 2 W 2nd Street Tulsa, OK 74103

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266-0745

April 2, 2007

Mr. Glenn von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Samson BD-04, T12S-R33E-Section 2, Unit Letter H, 1R0474

Dear Mr. von Gonten:

On behalf of Samson Resources, R.T. Hicks Consultants is pleased to submit this progress report for the above-referenced site. The report and accompanying CD will be mailed to your office this week. Currently the report is available on our ftp site. To access our FTP, please see the setup instructions at the end of this letter.

In response to recent NMOCD comments regarding the level of detail contained in our reports, we have modified our format and approach in this submission. We appreciate not only your evaluation of the data, conclusions and path forward, but also your comments on the readability and level of detail contained in the report.

Sincerely, R.T. Hicks Consultants, Ltd.

Randall T. Hicks Principal

Copy: Samson Resources, Scott Rose New Mexico State Land Office April 3, 2007 Page 2

To access our FTP site, perform the following. If you already have a FTP program installed, enter your FTP setting (user name, password etc) provided at the end of the instructions and skip the following setup details.

The setup process is as follows:

- 1. Download FileZilla (if you have Filezilla already installed, proceed to Step E)
- 2. Download the attached file (via email) to your Desktop.
- 3. Connect to our FTP site.

Setup Details (you only need to do this once):

- a) Download the latest FileZilla Source Code for Windows: <u>http://downloads.sourceforge.net/fileZilla/FileZilla_2_2_31_setup.exe?modtime=117</u> <u>2667588&big_mirror=0</u>
- b) Run the setup accepting the default install options.
- c) Copy the attached NMOCD.xml file to your desktop. This file contains the setup parameters (usename, password, etc)
- d) Start FileZilla
- e) Open the Site Manager (File>Site Manager) or press the icon directly below the FILE header.
- f) In the Site Manager, select file import. Then import the NMOCD.xml file.
- g) Then Connect.

It is now safe to delete the NMOCD.xml file from you desktop.

To connect at a later time, open Filezilla, then the Site Manager, then connect to NMOCD under <u>ftp.rthicksconsult.com</u>.

NOTE: I have the FTP server to log you off after 2 minutes of inactivity.

Your ftp settings are:

REMOVED

If you have problems connecting to our FTP site, please contact Andrew Parker at our Albuquerque office.

Samson State BD-04 March Progress Report NMOCD #: 1R0474

Table of Contents

1.0	Introduction	2
2.0	Summary of Activities	
	Completed Since Previous Report (November, 2006)	2
3.0	Summary of Conclusions Based On Activity	3
4.0	Continuing Activities—The Path Forward	4

Plates & Tables

Plate 1	Location Ma	ap
---------	-------------	----

- Plate 2 Site Map
- Plate 3 Recent Chloride Map
- Plate 4 Static GW Elevation Map
- Plate 5 Recent GW Elevation Map
- Plate 6 3rd Quarter 2006 Potentiometric Map with Windmill Data
- Plate 7 Vadose Zone Water Content Map
- Table 1Table of Soil Data
- Table 2Table of Ground Water Data over time
- Table 3Table of Pump Test Data
- Table 4Cumulative Pump Test Data

Appendices

Appendix A: Detail of Activities Completed At the BD-04 Site

Appendix B: Details of Conclusions Based On Activities Completed At the Site

Appendix C: Soil Boring Logs, Cross-Sections

Appendix D: Laboratory Certificate of Analyses (COA)

Appendix E: Hydraulic Conductivity Analysis

Appendix F: Photo-Documentation of ET Infiltration Barrier Construction

Appendix G: Letter to NMOCD dated January 25, 2007

1.11

· 11 · 11

Samson State BD-04 March Progress Report NMOCD #: 1R0474

Location: T12s, R33e, Sec 2, Unit H Latitude: 33° 18' 34.77" Longitude: -103° 34' 37.92" NMOCD#: 1R0474

1.0 Introduction

The Samson State BD-04 site, which is operated by Samson Resources Company, is located approximately 15 miles west of Tatum, New Mexico (Plate 1). This report

1) describes the activities completed at the site during the first quarter of 2007,

2) presents our conclusions and the data developed from the work, and

3) provides our recommendation for the near-term path forward.

This report is consistent with the commitments made in a letter submitted to the NMOCD, dated January 25, 2007.

2.0 Activities Completed Since Previous Report

The following list summarizes activities conducted since the previous report, submitted to the NMOCD in November, 2006. Detailed descriptions of the work elements associated with each list item are provided in Appendix A.

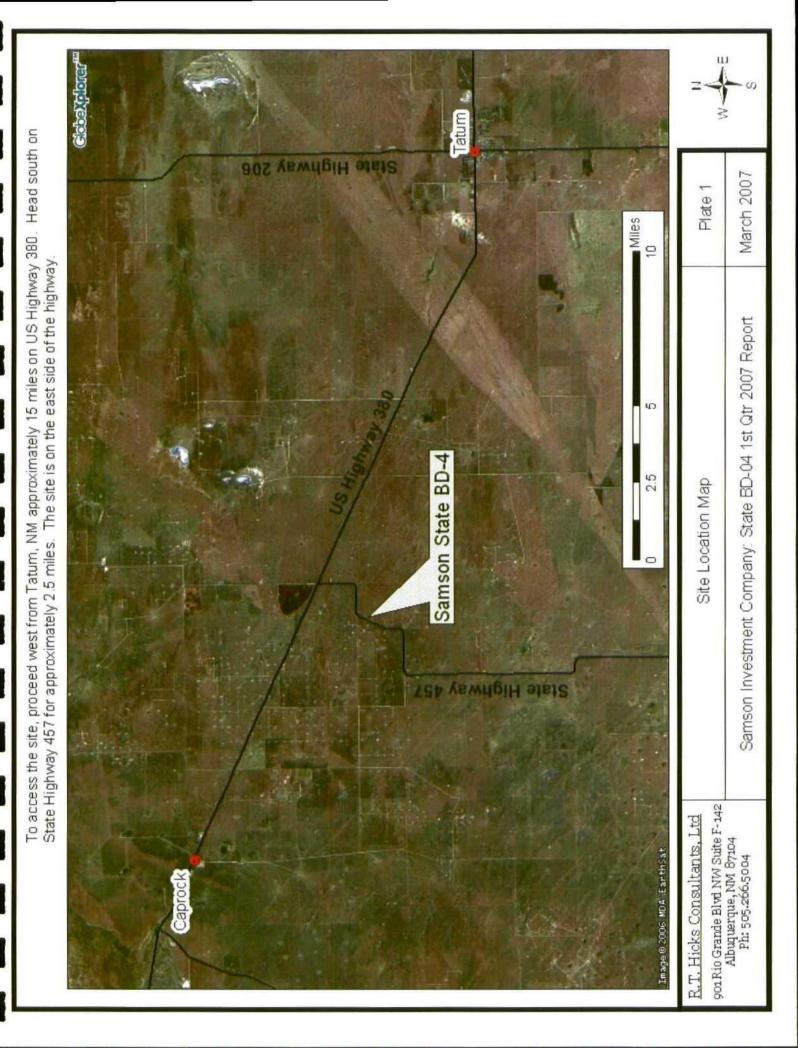
- Performed final grading of the evapotranspiration (ET) infiltration barrier within the former pit
- Conducted a borehole and soil sampling program to more accurately define the extent and magnitude of salt impact in the vadose and saturated zones. Plate 2 shows borehole and well locations and, in addition, shows elevation contours of the recent surface grading of the former pit.
- Installed a source-removal pump-and-dispose system for a ground water restoration program.
- Performed routine ground water sampling and monitoring activities.
- Installed vadose zone moisture ports to begin performance monitoring of the infiltration barrier.
- Performed a ground water pump test at MW-03 to determine hydraulic properties for use in MODFLOW simulation. During our initial MODFLOW simulations, cells were going dry, preventing the model from projecting a

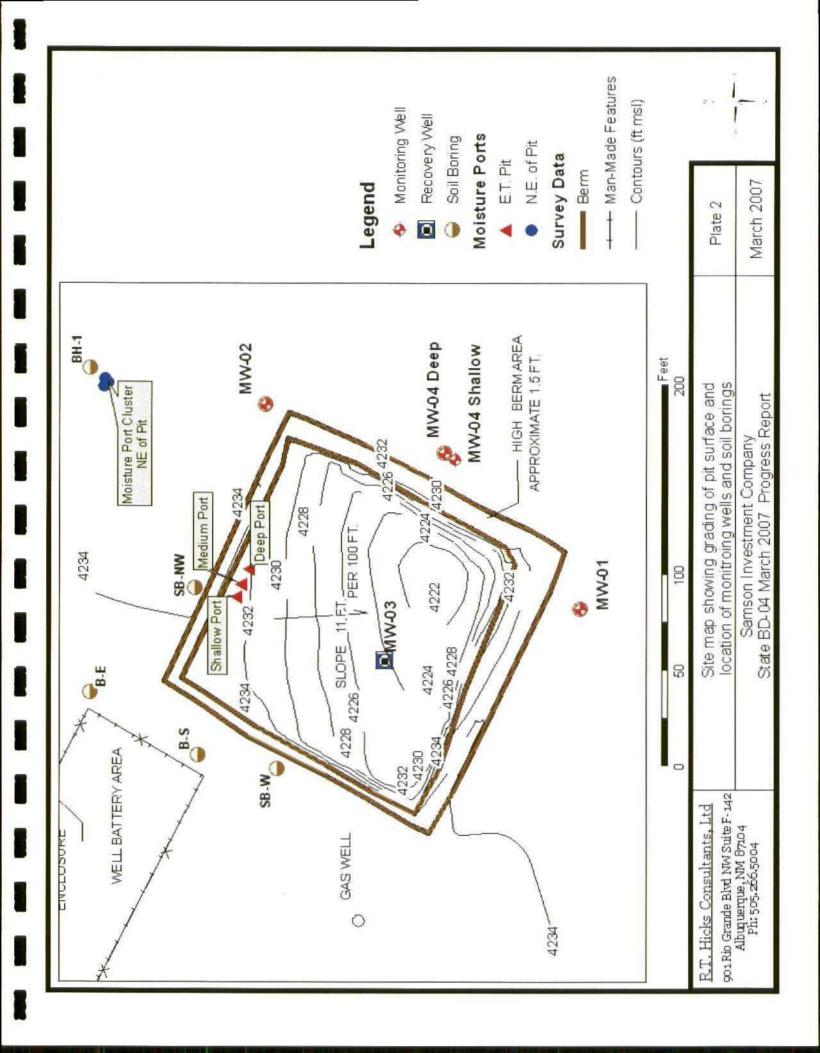
solution. We believe this may be the result of improperly defined hydraulic conductivities. At this time, therefore, we propose to re-evaluate the value of MODFLOW after the cessation of ground water recovery.

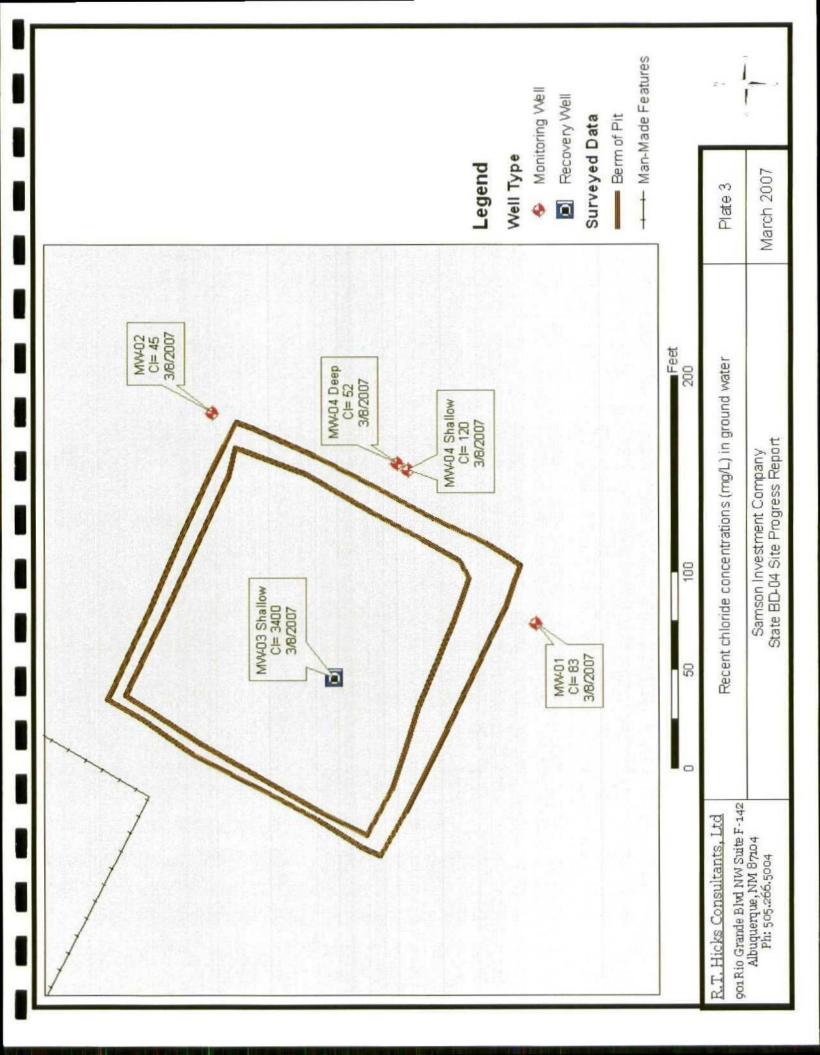
3.0 Conclusions Based on Activities

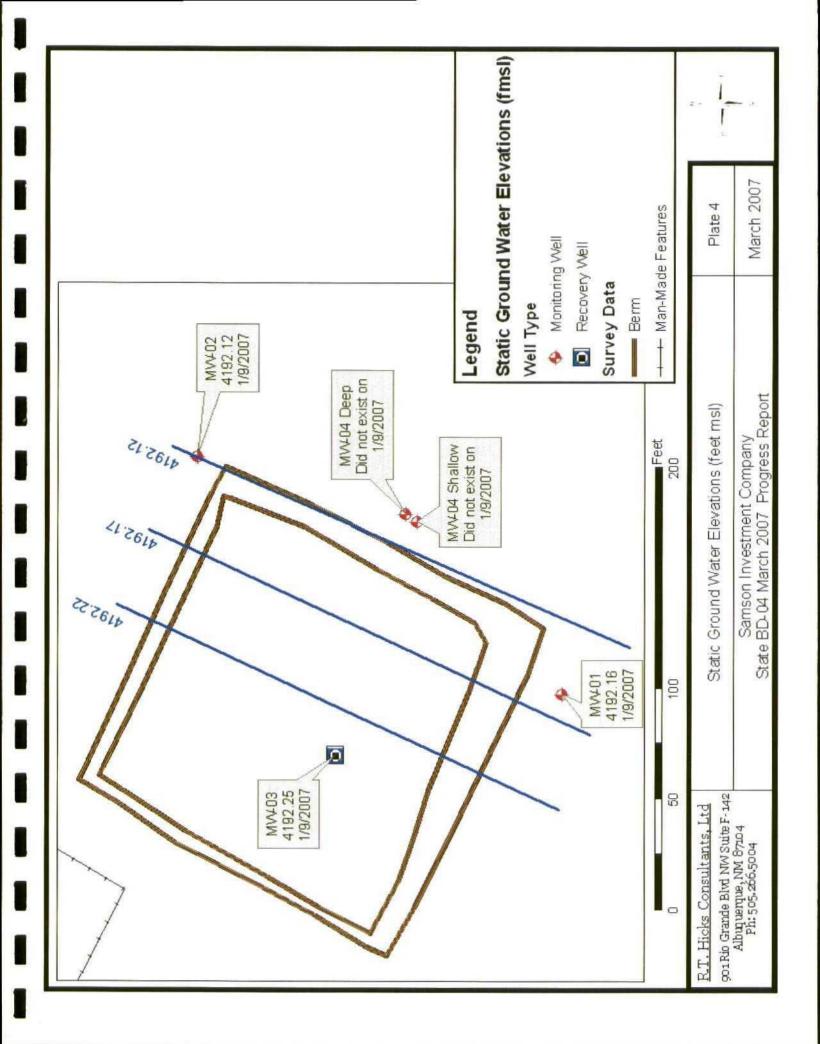
The following conclusions are based on data collected from the activities conducted since the previous report and on the data presented in previous submissions to NMOCD. The data and discussion supporting each conclusion is presented in Appendix B.

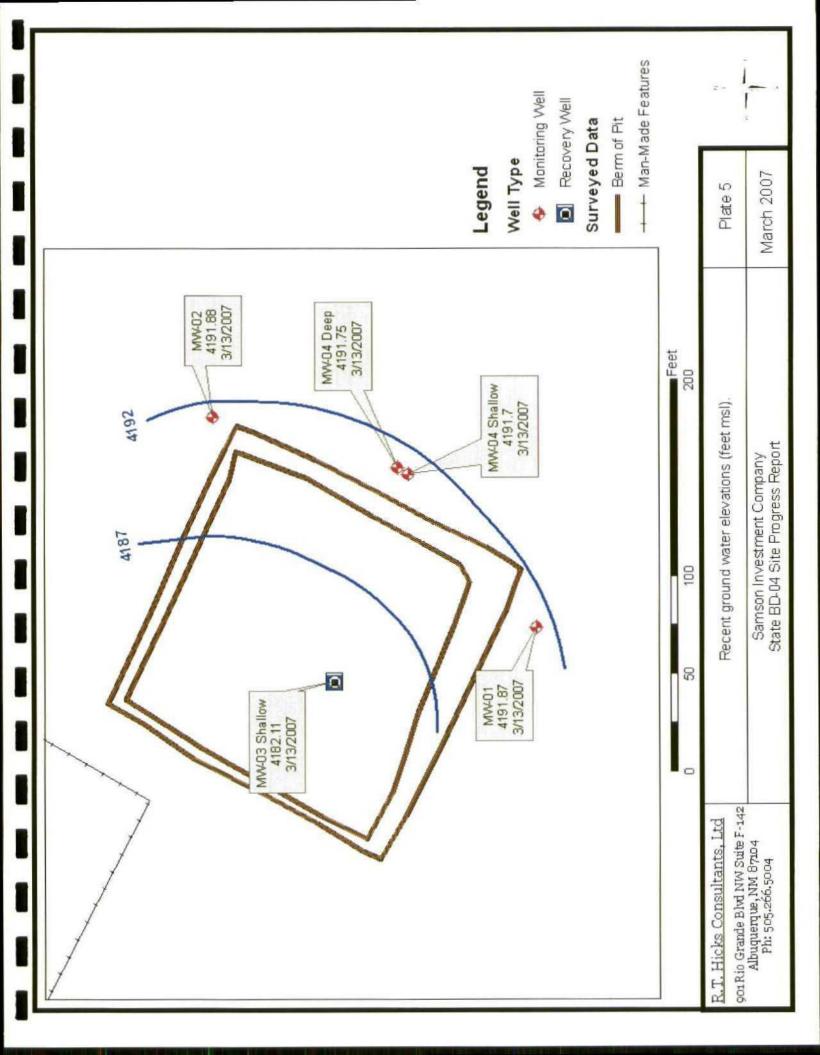
- 1) Subsurface lithology is uniform across the site.
- 2) The release from the reserve pit migrated vertically downward.
- 3) Ground water flows southeast at a gradient of approximately 0.001 feet/foot.
- 4) Recovery test data suggest that the local hydraulic conductivity beneath the site is approximately 0.4 feet/day. The change in observed TDS and chloride concentrations over the past several months, however, suggest that local hydraulic conductivity may be 10–100 times greater than estimated by the initial recovery data.
- 5) More than 30 days of ground-water pumping have created a cone-shaped depression around the pumping well with a subsequent impact on the local ground water flow.
- 6) Ground water data indicate that MW-3 is properly designed and located to effectively remove the mass of chloride released by the former reserve pit.
- 7) Ground water impairment is restricted to the area below the former reserve pit.
- 8) The magnitude and extent of ground water impairment is sufficiently defined to meet the mandates of NMOCD rules and at this time additional monitoring wells are not required.
- 9) The construction of the ET infiltration barrier is consistent with the proposal submitted to NMOCD and with the general design criteria for landfill covers as tested by Sandia National Laboratories.

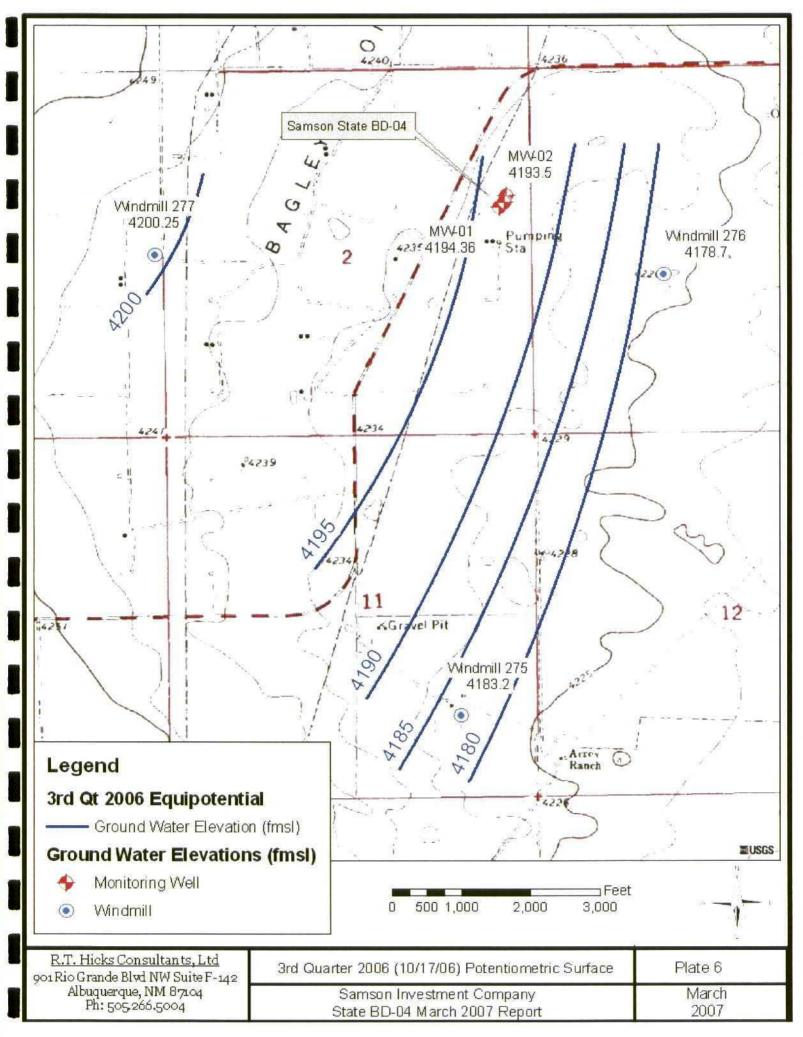

4.0 Continuing Activities—The Path Forward


- Source-removal pumping will continue until two samples taken one month apart demonstrate that pumped ground water contains less than 3000 mg/L TDS.
- 2) If the data demonstrate that continued pumping will result in chloride concentrations significantly lower than 3000 mg/L, source-removal pumping will continue for an additional 30–60 days.
- 3) During the source-removal ground water restoration strategy, water levels and specific conductance will be measured twice per month. Ground water samples from MW-01, MW-02. MW-03 Shallow, MW-03 Deep, MW-04 Shallow, and MW-04 Deep will be laboratory-analyzed for chloride and TDS once per month.
- 4) Once TDS in ground water measures less than 3,000 mg/L, we will transition from a ground-water restoration strategy of source removal to a pump-and-use strategy. After this transition, the ground water sampling for laboratory analysis of chloride and TDS and the field monitoring of ground water elevations and specific conductance will take place on a quarterly basis.
- 5) We will re-evaluate the value of MODFLOW and the fate and transport module, MT3D, to simulate the hydraulic response of the aquifer to long-term ground water pumping and the short-term response of the aquifer to cessation of pumping. Prediction of the response of the aquifer to the pump-anduse/natural restoration strategy using MODFLOW and MT3D will allow us to determine an effective path forward following the cessation of the source-removal program.
- 6) On or before August 30, 2007, we will submit a report summarizing the final results of the source-removal strategy, the initial results of the pump-and-use strategy, evidence of site re-vegetation, additional soil moisture data to verify the performance of the infiltration barrier, and a plan for site closure.


Plates & Tables


R.T. Hicks Consultants, Ltd.


901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104



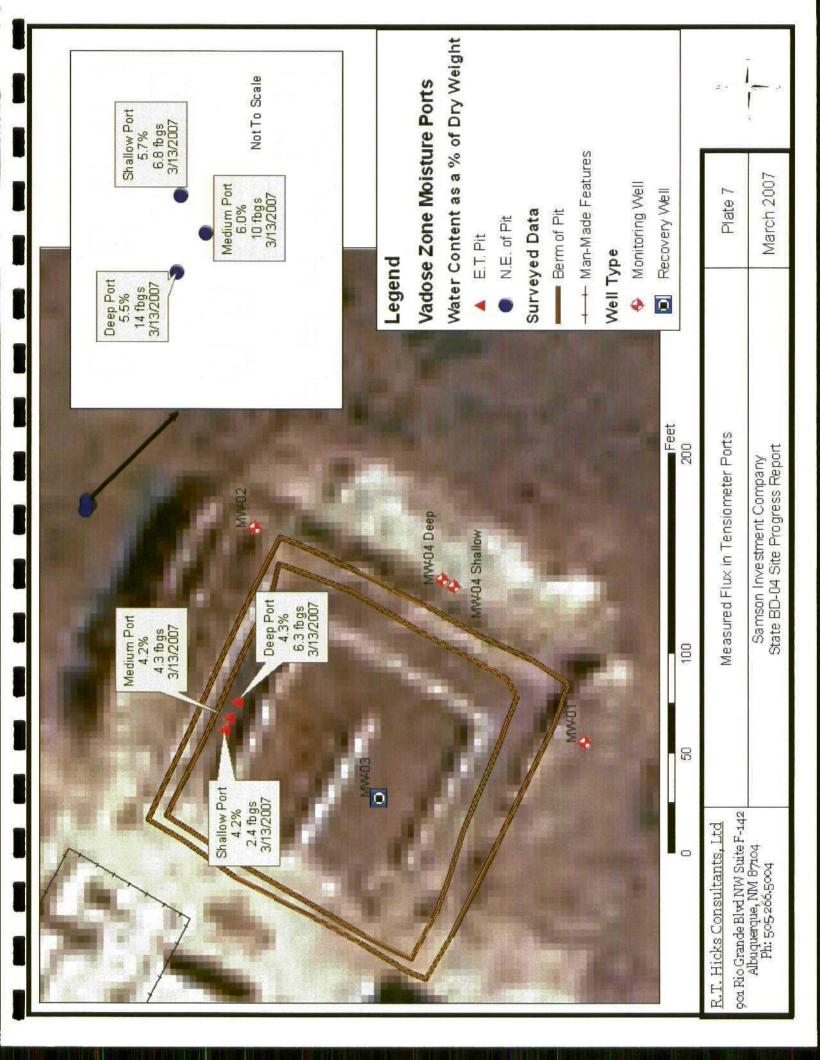


Table 1: Soil

·

Sample Name	Tvne	Samnle Date	Denth (fbgs)	A nalveis	(Chloride (mo/Ka)	Bromide (ma/Ka)
AANV 1	Soil Boring	1 5 /8 /20106			/9-1-9	
1- M W	BUILING HOC	0007/0/0	19	Lau	0.00	
	Soil Boring	5 /8 /2006	29	Lab	3.38	
	Soil Boring	5 /8 /2006	34	Lab	5.02	<0.100
MW-2	Soil Boring	5 /9 /2006	6	Lab	66.6	
	Soil Boring	5 /9 /2006	19	Lab	7.3	
	Soil Boring	5 /9 /2006	29	Lab	8.27	
	Soil Boring	5 /9 /2006	34	Lab	7.77	
	Soil Boring	5 /9 /2006	39	Lab	12.0	0.187
EDT-NC	Pit	7 /12/2006	0	Lab	3700	ŵ
EDT-NE	Pit	7 /12/2006	0	Lab	1700	\$
EDT-NW	Pit	7 /12/2006	0	Lab	2000	♡
ED'I-SC	Pit	7 /12/2006	0	Lab	3000	\$
EDT-SE	Pit	7 /12/2006	0	Lab	850	♡
EDT-SW	Pit	7 /12/2006	0	Lab	5400	\$
EIPL	Pit	7 /12/2006	0	Lab	972	

Friday, March 09, 2007

I

i

Page 1 of 3

:

ł

Table 1: Soil

Sample Name	Type	Sample Date	Depth (fbgs)	Analysis	Chloride (mg/Kg)	Bromide (mg/Kg)
NSEIP-E	Pit	7 /12/2006	0	Lab	110	
NSEIP-N	Pit	7 /12/2006	0	Lab	370	
NSEIP-S	Pit	7 /12/2006	0	Lab	320	
NSEIP-W	Pit	7 /12/2006	0	Lab	300	
SIP-E	Pit	7 /12/2006	0	Lab	940	
7S-7dIS	Pit	7 /12/2006	0	Lab	1400	
N-4IS	Pit	7 /12/2006	0	Lab	1700	
S-41S	Pit	7 /12/2006	0	Lab	2300	
SIP-W	Pit	7 /12/2006	0	Lab	2500	
SSEIP-E	Pit	7 /12/2006	0	Lab	230	
SSEIP-N	Pit	7 /12/2006	0	Lab	220	
SSEIP-S	Pit	7 /12/2006	0	Lab	120	
SSEIP-W	Pit	7 /12/2006	0	Lab	061	
SW PIT 10.16	Pit	10/17/2006	0	Lab	950	

Friday, March 09, 2007

Page 2 of 3

ł

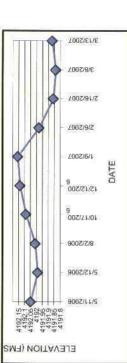
THE 1

1

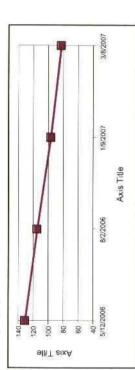
Table 1: Soil

Li a Li la

Sample Name	Type	Sample Date	Depth (fbgs)	Analysis	Chloride (mg/Kg)	Bromide (mg/Kg)
SB-4D	Soil Boring	1 /8 /2007	10	Lab	15	
	Soil Boring	1 /8 /2007	35	Lab	3.6	
	Soil Boring	1 /8 /2007	80	Lab	8.9	
SB-NW	Soil Boring	1 /8 /2007	10	Lab	1900	
	Soil Boring	1 /8 /2007	15	Lab	1100	
	Soil Boring	1 /8 /2007	35	Lab	25	
SB-W	Soil Boring	1 /9 /2007	5	Lab	2400	
	Soil Boring	1 /9 /2007	10	Lab	1300	
	Soil Boring	1 /9 /2007	35	Lab	4.8	

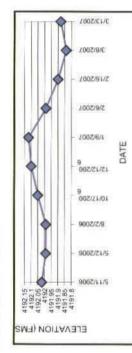

Friday, March 09, 2007

Page 3 of 3


Table 2: Ground Water Data

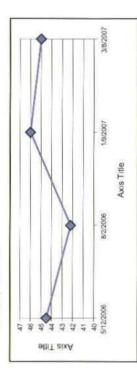
MW-01

Chloride (mg/L) vs Time


Thursday, March 22, 2007

Page 1 of 6

Table 2: Ground Water Data


Samson State BD-4

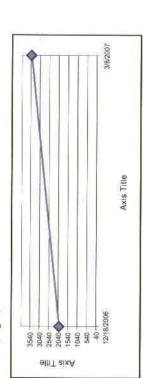
MW-02

Chloride (mg/L) vs Time

Comments										
TDS (mg/L)	530	444							015	
Chloride (mg/L)	34.5	42/2			46				57	
Conductivity (field) Chloride (mg/L) TDS (mg/L) Comments								426		109
DTW (ft) GW Elev (fmsl) 41.85 4192.02	34191.990	661617	4192.05	4192.1	4192.12	M IST	76 1615	0,1012	4101.84	4101 88
(JJ) MLD	41.88	41.88	41.82	41.77	41.75	41.53	2) 92	41.97	42.03	41.00
TOC (fmsl) 4231.87	CR-5424	18,5524	1233.87	4233.87	1233.87	1233.877	1233,822	12(1)/27	1233.87	1712.87
Type of Well Monitoring Well	Monitoring Well	Monitoring Well	Monitoring Well	Monitoring Well	Monitoring Well	Monitoring Well	Monuting Well	Montoring Well	Montoring Well	Monttoring Well
Sample Date 5/112006	5/12/2006	8.2/2006	10:17:2006	1212/2006	1:9/2007	2.6/2007	2362007	2.1A.2007	18.2007	313/2007

Thursday, March 22, 2007

Page 2 of 0


Table 2: Ground Water Data

MW-03 Deep

Chloride (mg/L) vs Time

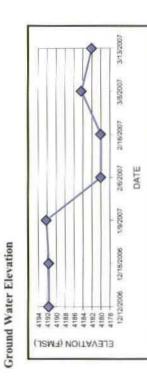
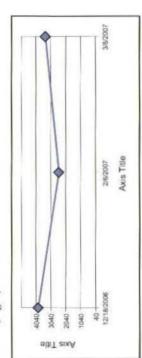

Comments			
TDS (mg/L)	3700	6200	
) Chloride (mg/L)	2000	3500	
Conductivity (field)	870	10280	10060
GW Elev (fmsl)			4182.11
DTW (ft) GW			42.41
TOC (fmsl)	4224.52	4224.52	4224.52
Type of Well	Recovery Well	Recovery Well	Recovery Well
Sample Date	90023171	3/8:2007	3313(2007

Table 2: Ground Water Data

I


1

Samson State BD-4

MW-03 Shallow

Chloride (mg/L) vs Time

Comments			Pump Off K hours				
TDS (mg/L)	5800			4400		0029	
Chloride (mg/L)	3900			2500		2400	
Conductivity (field) Chloride (mg/L) TDS (mg/L) Comments					8710	10310	10270
DTW (ft) GW Elev (fmsl) 52.81 2191.71	2/1615	4102.25	191.82	4180.05	4180.02	4184.4	112812
DTW (ft)	32.82	32.27	32.7	14/12	14.45	46.12	12.41
TOC (fmsl) 4234.52	4224.52	4224 52	4224 52	4224.52	4224.52	4224.52	4224.52
Type of Well Reavery Well	Recovery Well	Recovery Well	Recovery Well	Roonery Well	Roonery Well	Records Wall	Recovery Well
Sample Date 1212206	12/18/2006	2002.0.1	2.6.2007	262007	2016-2007	3.8.2007	111,2007

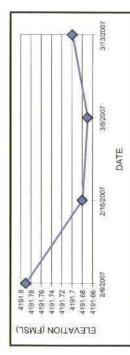
Thursday, March 22, 2007

Page 4 of 6

Table 2: Ground Water Data

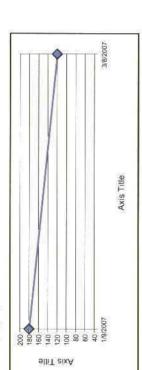
I

MW-04 Deep


TDS (mg/L) Comments				550	
Chloride (mg/L) 100				Ç.	
Conductivity (field)			070		782
DTW (ft) GW Elev (fmsl)	4191 77	4191,85	4191.74	4191.73	4191.75
	41.61	41.53	41.64	41.65	41.63
TOC (fmsl) 4233.38	4233.38	4233,38	4233.38	4233.38	4233.38
Type of Well Monitoring Well	Monitoring Well	Monitoring Well	Monitoring Well	Montoring Well	Monitoring Well
Sample Date	2/6/2007	2.6/2007	2,16/2007	3.8.2007	3/13/2007

Thursday, March 22, 2007

Table 2: Ground Water Data


1

MW-04 Shallow

Elev (fmsl) Conductivity (field) Chloride (mg/L) ¹⁸⁰	4191.72	4191.79	680 880/1814	291614	\$86 £161t
DTW (ft) GW Elev (fmsl)	41.8 4191.72	41.75 4191.79	41.91.68	41.65 4191.67	1917
TOC (fmsl) 4235.52	rng Well 4233 52	ring Well 4233.52	ring Well 4233.52	nng Wéll 4233.52	
TOC (fms1)	4233.52	4233.52	4233.52	123.6514	4233.52
500	Aonitoring Well 4233.52		Montoring Well 4233.52	Montioning Well 4233.52	Monitoring Well 4233.52

Thursday, March 22, 2007

Page 6 of 6.

Table 3: MW-03 Recovery Test

Depth to Water (static) = 42-feet from TOC Depth to Water (start of recharge) = 54.85-feet from TOC Change in ground water depth = 12.85-feet

Recharge Da	ata:		
time (min)	time (hours)	DTW (ft)	Change (ft)
0	0.00	54.85	0
0.5	0.01	54.45	0.4
1	0.02	54.04	0.81
2	0.03	53.11	1.74
3	0.05	48.41	6.44
4	0.07	46.53	8.32
5	0.08	44.92	9.93
6	0.10	44.38	10.47
7	0.12	43.98	10.87
8	0.13	43.71	11.14
9	0.15	43.57	11.28
10	0.17	43.44	11,41
11	0.18	43.31	11.54
12	0.20	43.31	11.54
13	0.22	43.17	11.68
14	0.23	43.17	11.68
15	0.25	43.04	11.81
16	0.27	43.17	11.68
17	0.28	43.04	11.81
18	0.30	43.04	11.81
19	0.32	43.04	11.81
20	0.33	43.04	11.81
21	0.35	43.04	11.81
22	0.37	43.04	11.81
23	0.38	43.04	11.81
24	0.40	43.04	11.81
25	0.42	43.04	11.81
26	0.43	43.04	11.81
27	0.45	42.9	11.95
28	0.47	42.9	11.95
29	0.48	42.9	11.95
30	0.50	43.04	11.81
31	0.52	42.9	11.95
32	0.53	42.9	11.95
33	0.55	42.9	11.95
34	0.57	42.9	11.95
35	0.58	42.9	11.95
36	0.60	42.9	11.95
37	0.62	42.9	11.95
38	0.63	42.9	11.95
39	0.65	42.9	11.95
40	0.67	42.9	11.95

R.T. Hicks Consultants, Ltd

14 64

Table 3 Page 1 of 9

Table 3: MW-03 Recovery Test

time (min)	time (hours)	DTW (ft)	Change (ft)
41	0.68	42.9	11.95
42	0.70	42.9	11.95
43	0.72	42.9	11.95
44	0.73	42.9	11.95
45	0.75	42.9	11.95
46	0.77	42.9	11.95
47	0.78	42.9	11.95
48	0.80	42.77	12.08
49	0.82	42.77	12.08
50	0.83	42.9	11.95
51	0.85	42.9	11.95
52	0.87	42.77	12.08
53	0.88	42.77	12.08
54	0.90	42.9	11.95
55	0.92	42.9	11.95
56	0.93	42.5	12.08
57	0.95	42.77	12.08
58	0.97	42.77	12.08
59	0.98	42.77	12.08
60	1.00	42.77	12.08
61	1.00	42.77	12.08
62	1.02	42.77	12.08
63	1.05	42.77	12.08
64	1.03	42.77	12.08
65	1.07	42.77	12.08
66	1.10	42.77	12.08
67	1.12	42.77	12.08
68	1.12	42.77	12.08
69	1.15		12.08
70	1.15	42.77	12.08
70	1.17	42.77	
72		42.77	12.08
	1.20	42.77	12.08
73	1.22	42.77	12.08
74	1.23	42.77	12.08
75	1.25	42.77	12.08 12.08
76	1.27 1.28	42.77	12.08
		42.77	I
78	1.30	42.77	12.08
79	1.32	42.77	12.08
80	1.33	42.77	12.08
81	1.35	42.77	12.08
82	1.37	42.77	12.08
83	1.38	42.77	12.08
84	1.40	42.77	12.08
85	1.42	42.77	12.08
86	1.43	42.77	12.08
87	1.45	42.77	12.08
88	1.47	42.77	12.08
89	1.48	42.77	12.08
90	1.50	42.77	12.08

1

R.T. Hicks Consultants, Ltd

Table 3 Page 2 of 9

.

Table 3: MW-03 Recovery Test

time (min)	time (hours)	DTW (ft)	Change (ft)
91	1.52	42.77	12.08
92	1.53	42.77	12.08
93	1.55	42.77	12.08
94	1.55	42.77	12.08
95	1.58	42.77	12.08
95	1.60		
90		42.77	12.08
Service of the servic	1.62	42.77	12.08
98	1.63	42.77	12.08
99	1.65	42.64	12.21
100	1.67	42.77	12.08
101	1.68	42.77	12.08
102	1.70	42.77	12.08
103	1.72	42.77	12.08
104	1.73	42.77	12.08
105	1.75	42.77	12.08
106	1.77	42.77	12.08
107	1.78	42.64	12.21
108	1.80	42.77	12.08
109	1.82	42.77	12.08
110	1.83	42.64	12.21
111	1.85	42.64	12.21
112	1.87	42.64	12.21
113	1.88	42.64	12.21
114	1.90	42.64	12.21
115	1.92	42.64	12.21
116	1.93	42.77	12.08
117	1.95	42.64	12.21
118	1.97	42.64	12.21
119	1.98	42.64	12.21
120	2.00	42.64	12.21
120	2.02	42.77	12.08
121	2.02	42.64	12.00
122	2.05	42.64	and the second s
123			12.21
	2.07	42.64	12.21
125	2.08	42.64	12.21
126	2.10	42.64	12.21
127	2.12	42.64	12.21
128	2.13	42.64	12.21
129	2.15	42.64	12.21
130	2.17	42.64	12.21
131	2.18	42.64	12.21
132	2.20	42.64	12.21
133	2.22	42.64	12.21
134	2.23	42.64	12.21
135	2.25	42.64	12.21
136	2.27	42.64	12.21
137	2.28	42.64	12.21
138	2.30	42.64	12.21
139	2.32	42.64	12.21
140	2.33	42.64	12.21

R.T. Hicks Consultants, Ltd

1 11 6

the sil

14

in i hi

 Table 3 Page 3 of 9

11

Table 3: MW-03 Recovery Test

time (min)	time (hours)	DTW (ft)	Change (ft)
141	2.35	42.64	12.21
142	2.37	42.64	12.21
143	2.38	42.64	12.21
144	2.40	42.64	12.21
145	2.40	42.64	12.21
146	2.42	42.64	12.21
140	2.45	42.64	12.21
147	2.43	42.64	12.21
140	2.47	42.64	12.21
149	2.40	42.64	12.21
151	2.52	42.64	12.21
152	2.53	42.64	12.21
153	2.55	42.64	12.21
154	2.57	42.64	12.21
155	2.58	42.64	12.21
156	2.60	42.64	12.21
157	2.62	42.64	12.21
158	2.63	42.64	12.21
159	2.65	42.64	12.21
160	2.67	42.64	12.21
161	2.68	42.64	12.21
162	2.70	42.64	12.21
163	2.72	42.64	12.21
164	2.73	42.64	12.21
165	2.75	42.64	12.21
166	2.77	42.64	12.21
167	2.78	42.64	12.21
168	2.80	42.64	12.21
169	2.82	42.64	12.21
170	2.83	42.64	12.21
171	2.85	42.64	12.21
172	2.87	42.64	12.21
173	2.88	42.64	12.21
174	2.90	42.64	12.21
175	2.92	42.64	12.21
176	2.93	42.64	12.21
177	2.95	42.64	12.21
178	2.97	42.64	12.21
179	2.98	42.64	12.21
180	3.00	42.64	12.21
181	3.02	42.64	12.21
182	3.02	42.64	12.21
183	3.05	42.64	12.21
184	3.03	42.64	12.21
185	3.07	42.64	12.21
·			
186	3.10	42.64	12.21
187	3.12	42.64	12.21
188	3.13	42.64	12.21
189	3.15	42.64	12.21
190	3.17	42.64	12.21

R.T. Hicks Consultants, Ltd

i dalla her

14.

ا کی ا

ł

Table 3 Page 4 of 9

1 1 1 1 1

Table 3: MW-03 Recovery Test

time (min)	time (hours)		Change (ft)
191	3.18		12.21
191	3.18	42.64	
		42.64	12.21
193	3.22	42.64	12.21
194	3.23	42.64	12.21
195	3.25	42.64	12.21
196	3.27	42.64	12.21
197	3.28	42.64	12.21
198	3.30	42.64	12.21
199	3.32	42.64	12.21
200	3.33	42.64	12.21
201	3.35	42.64	12.21
202	3.37	42.64	12.21
203	3.38	42.64	12.21
204	3.40	42.64	12.21
205	3.42	42.64	12.21
206	3.43	42.64	12.21
207	3.45	42.64	12.21
208	3.47	42.64	12.21
209	3.48	42.64	12.21
210	3.50	42.64	12.21
210	3.52	42.64	12.21
212	3.53	42.64	12.21
212	3.55	42.64	12.21
213			12.21
and the second se	3.57	42.64	
215	3.58	42.64	12.21
216	3.60	42.64	12.21
217	3.62	42.64	12.21
218	3.63	42.64	12.21
219	3.65	42.64	12.21
220	3.67	42.64	12.21
221	3.68	42.64	12.21
222	3.70	42.64	12.21
223	3.72	42.64	12.21
224	3.73	42.64	12.21
225	3.75	42.64	12.21
226	3.77	42.64	12.21
227	3.78	42.64	12.21
228	3.80	42.64	12.21
229	3.82	42.64	12.21
230	3.83	42.5	12.35
231	3.85	42.5	12.35
232	3.87	42.64	12.21
233	3.88	42.64	12.21
234	3.90	42.64	12.21
235	3.92	42.5	12.35
236	3.93	42.64	12.00
237	3.95	42.64	12.21
238	3.97	42.64	12.21
239	3.98	42.5	12.35
239	4.00	THE REAL POLY AND A PROPERTY OF	12.35
240	4.00	42.5	12.35

1.1

R.T. Hicks Consultants, Ltd

Table 3 Page 5 of 9

Table 3: MW-03 Recovery Test

time (min)	time (hours)	DTW (ft)	Change (ft)
241	4.02	42.64	12.21
242	4.03	42.64	12.21
243	4.05	42.5	12.35
244	4.07	42.5	12.35
245	4.08	42.64	12.00
246	4.10	42.5	12.35
247	4.12	42.64	12.21
248	4.13	42.64	12.21
249	4.15	42.64	12.21
250	4.17	42.5	12.35
251	4.18	42.64	12.33
252	4.20	42.64	12.21
253	4.20	42.04	12.21
253	4.22	42.5	12.35
255	4.25	42.64	12.21
256	4.27	42.64	12.21
257	4.28	42.5	12.35
258	4.30	42.5	12.35
259	4.32	42.64	12.21
260	4.33	42.5	12.35
261	4.35	42.5	12.35
262	4.37	42.5	12.35
263	4.38	42.5	12.35
264	4.40	42.64	12.21
265	4.42	42.5	12.35
266	4.43	42.5	12.35
267	4.45	42.5	12.35
268	4.47	42.5	12.35
269	4.48	42.5	12.35
270	4.50	42.64	12.21
271	4.52	42.5	12.35
272	4.53	42.5	12.35
273	4.55	42.5	12.35
274	4.57	42.5	12.35
275	4.58	42.5	12.35
276	4.60	42.5	12.35
277	4.62	42.64	12.21
278	4.63	42.5	12.35
279	4.65	42.64	12.21
280	4.67	42.5	12.35
281	4.68	42.5	12.35
282	4.70	42.5	12.35
283	4.72	42.64	12.21
284	4.73	42.5	12.35
285	4.75	42.5	12.35
286	4.77	42.5	12.35
287	4.78	42.5	12.35
288	4.80	42.5	12.35
289	4.82	42.5	12.35
290	4.83	42.5	12.35
	·		

R.T. Hicks Consultants, Ltd

101.1

The set

1 U. D. Lie

1

Table 3 Page 6 of 9

1.7.1.1.1

Table 3: MW-03 Recovery Test

time (min)			
201	4.85	42.5	Change (ft) 12.35
291 292	4.85	42.5	12.35
293	4.88	42.5	12.35
294	4.90	42.5	12.35
295	4.92	42.5	12.35
296	4.93	42.5	12.35
297	4.95	42.5	12.35
298	4.97	42.5	12.35
299	4.98	42.5	12.35
300	5.00	42.5	12.35
301	5.02	42.5	12.35
302	5.03	42.5	12.35
303	5.05	42.5	12.35
304	5.07	42.5	12.35
305	5.08	42.5	12.35
306	5.10	42.5	12.35
307	5.12	42.5	12.35
308	5.13	42.5	12.35
309	5.15	42.5	12.35
310	5.17	42.5	12.35
311	5.18	42.5	12.35
312	5.20	42.5	12.35
313	5.22	42.5	12.35
314	5.23	42.5	12.35
315	5.25	42.5	12.35
316	5.27	42.5	12.35
317	5.28	42.5	12.35
318	5.30	42.5	12.35
319	5.32	42.5	12.35
320	5.33	42.5	12.35
320	5.35	42.5	12.35
321	5.37	42.5	12.35
323	5.38	42.5	12.35
			12.35
324	5.40	42.5	
325	5.42	42.5	12.35
326	5.43	42.5	12.35
327	5.45	42.5	12.35
328	5.47	42.5	12.35
329	5.48	42.5	12.35
330	5.50	42.5	12.35
331	5.52	42.5	12.35
332	5.53	42.5	12.35
333	5.55	42.5	12.35
334	5.57	42.5	12.35
335	5.58	42.5	12.35
336	5.60	42.5	12.35
337	5.62	42.5	12.35
338	5.63	42.5	12.35
339	5.65	42.5	12.35
340	5.67	42.5	12.35

R.T. Hicks Consultants, Ltd

1.11

ŰL.

1

Table 3 Page 7 of 9

I

Table 3: MW-03 Recovery Test

time (min)	time (hours)	DTW (ft)	Change (ft)
341	5.68	42.5	12.35
342	5.70	42.5	12.35
343	5.72	42.5	12.35
344	5.73	42.5	12.35
345	5.75	42.5	12.35
346	5.77	42.5	12.35
347	5.78	42.5	12.35
348	5.80	42.5	12.35
349	5.82	42.5	12.35
350	5.83	42.5	12.35
351	5.85	42.5	12.35
352	5.87	42.5	12.35
353	5.88	42.5	12.35
354	5.90	42.5	12.35
355	5.92		12.35
		42.5	
356	5.93	42.5	12.35
357	5.95	42.5	12.35
358	5.97	42.5	12.35
359	5.98	42.5	12.35
360	6.00	42.5	12.35
361	6.02	42.5	12.35
362	6.03	42.5	12.35
363	6.05	42.5	12.35
364	6.07	42.5	12.35
365	6.08	42.5	12.35
366	6.10	42.5	12.35
367	6.12	42.5	12.35
368	6.13	42.5	12.35
369	6.15	42.5	12.35
370	6.17	42.5	12.35
371	6.18	42.5	12.35
372	6.20	42.5	12.35
373	6.22	42.5	12.35
374	6.23	42.5	12.35
375	6.25	42.5	12.35
376	6.27	42.5	12.35
377	6.28	42.5	12.35
378	6.30	42.5	12.35
379	6.32	42.5	12.35
380	6.33	42.5	12.35
381	6.35	42.5	12.35
382	6.37	42.5	12.35
383	6.38	42.5	12.35
384	6.40	42.5	12.35
385	6.42	42.5	12.35
386	6.43	42.5	12.35
387	6.45	42.5	12.35
388	6.47	42.5	12.35
389	6.48	42.5	12.35
390	6.50	42.5	12.35
550	0.00		12.00

R.T. Hicks Consultants, Ltd

4 14 8

i Fii

H

Table 3 Page 8 of 9

161

Table 3: MW-03 Recovery Test

time (min)	time (hours)	DTW (ft)	Change (ft)
391	6.52	42.5	12.35
392	6.53	42.5	12.35
393	6.55	42.5	12.35
394	6.57	42.5	12.35
395	6.58	42.5	12.35
396	6.60	42.5	12.35
397	6.62	42.5	12.35
398	6.63	42.5	12.35
399	6.65	42.5	12.35
400	6.67	42.5	12.35
401	6.68	42.5	12.35
		42.5	12.35
402	6.70		
403	6.72	42.5	12.35
404	6.73	42.5	12.35
405	6.75	42.5	12.35
406	6.77	42.5	12.35
407	6.78	42.5	12.35
408	6.80	42.5	12.35
409	6.82	42.5	12.35
410	6.83	42.5	12.35
411	6.85	42.5	12.35
412	6.87	42.5	12.35
413	6.88	42.5	12.35
414	6.90	42.5	12.35
415	6.92	42.5	12.35
416	6.93	42.5	12.35
417	6.95	42.5	12.35
418	6.97	42.5	12.35
419	6.98	42.5	12.35
420	7.00	42.5	12.35
421	7.02	42.5	12.35
422	7.03	42.5	12.35
423	7.05	42.5	12.35
424	7.07	42.5	12.35
425	7.08	42.5	12.35
425	7.00	42.5	12.35
420	7.10	42.5	12.35
427	7.12	42.5	12.35
429	7.15	42.5	12.35
430	7.17	42.5	12.35
431	7.18	42.5	12.35
432	7.20	42.5	12.35
433	7.22	42.5	12.35
434	7.23	42.5	12.35
435	7.25	42.5	12.35
436	7.27	42.5	12.35
437	7.28	42.5	12.35

ET IN DI

Table 3 Page 9 of 9

1

1

i í

161.71

116 131

H E

151

14.

111

H

Table 4: Cumulative Pump Data

DATE	Barrels Pumped Comments
2/4/07	76
2/5/07	150
2/6/07	169 TEST RECOVERY
2/7/07	132
2/8/07	146
2/9/07	155
2/10/07	95
2/11/07	99
2/12/07	101
2/13/07	0 TURNED OFF
2/14/07	167
2/15/07	163
2/16/07	146
2/17/07	139
2/18/07	139
2/19/07	140
2/20/07	149
2/21/07	105
2/22/07	108
2/23/07	105
2/24/07	108
2/25/07	110
2/26/07	111
2/27/07	109
2/28/07	113
3/1/07	100
3/2/07	80
3/3/07	79
3/4/07	75
3/5/07	99
3/6/07	86
3/7/07	77
3/8/07	78
3/9/07	70
3/10/07	66
3/11/07	56
3/12/07	50
3/13/07	66
	1017 TOTAL
	4017 TOTAL

R.T. Hicks Consultants, Ltd

Appendix A Details of Activities Completed

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

Appendix A

1) PERFORMED FINAL GRADING AND SEEDING OF THE ET INFILTRA-TION BARRIER

Appendix F provides photographic documentation of this work element.

2) CONDUCTED A BOREHOLE AND SOIL SAMPLING PROGRAM

On January 6, 2007, we installed four additional boreholes. We completed two of the four boreholes as monitoring wells (MW-04 Shallow and MW-04 Deep). Plate 2 shows the location of the two boreholes (W Boring and NW Boring) and the location of all monitoring wells relative to the former pit. In addition, Plate 2 shows the location of the source-removal pumping well, MW-03, and the soil moisture monitoring ports installed within the former pit.

Using hollow-stem auger drilling techniques, we collected split-spoon soil samples at five-foot intervals from each of the four boreholes. The soils were fieldscreened for chlorides using a field titration method. In addition, select samples were submitted for laboratory analysis based upon field-screening results. Table 1 shows the results of recent and historic soil sampling events.

3) INSTALLED A PUMP AND DISPOSE SYSTEM

On February 4, 2007, we began a source-removal (pump and dispose) ground water restoration system to reduce total dissolved solids (TDS) concentration in ground water to less than 3,000 mg/L. The system, which was described in a January 25, 2007, letter to NMOCD, is located in Appendix G.

The system runs 24 hours a day and pumps at a rate of approximately 3.1 gallons per minute (gpm). From February 4 through March 13, 2007, the system has removed approximately 4,017 barrels of ground water to the nearby Samson Class II injection well.

4) PERFORMED ROUTINE SAMPLING AND MONITORING ACTIVITIES

During the first quarter of 2007, we collected ground water samples for laboratory analysis on January 9, February 6, and March 8. Table 2 presents both recent and past ground water data. The graphs included in Table 2 compare the chloride concentrations in ground water samples taken from on-site monitoring wells from before source-removal pumping began through the most recent laboratory analyses. Plate 3 shows recent chloride concentrations in ground water. The Certificate of Analyses is provided in Appendix D.

Table 2 also includes the results of periodic field testing of specific conductance and water level measurements. Plates 4 and 5 compare the potentiometric surface during static conditions (January 9, 2007) with conditions after more than 30 days of continual pumping (March 8, 2007), respectively. Plate 6 shows the regional potentiometric surface based on site wells and nearby windmills.

5) INSTALLED VADOSE ZONE MOISTURE MEASUREMENT PORTS

Six soil moisture sampling ports, open at the bottom, were installed at the site during two characterization and remediation activities (December, 2006, and February, 2006) in order to provide a measure of soil moisture content. Three were installed along the north side of the excavation pit and three were installed north of the affected area to provide background readings (see Plate 7) in a moist slurry of silica flour and screened cuttings in accordance with the manufacturer's recommendations (http://www.soilmoisture.com/PDF%20FILES/85201F1.pdf). The slurry, and hence the gypsum blocks, equilibrate with the surrounding vadose zone moisture content. After the "wet installation" of the blocks, the sampling devices can require several months to equilibrate to the ambient moisture content of the soil. The results of the February 6, 2007, and March 13, 2007, monitoring events are presented below.

Location	Port Name		ı (fbgs) ple date:		Content) on sample date:	
		2/6/2007	3/13/2007	2/6/2007	3/13/2007	
E.T. Pit	Deep port	6	6	4.5%	4.3%	
E.T. Pit	Medium port	4	4	4.2%	4.2%	
E.T. Pit	Shallow port	2	2	NS	4.2%	
NE of Pit	Deep port	14	14	NS	5.5%	
NE of Pit	Medium port	10	10	6.0%	6.0%	
NE of Pit	Shallow port	7	7	5.7%	5.7%	

Monitoring Results, February 7, 2007, and March 13,	
	2007

R.T. Hicks Consultants, Ltd.

6) PERFORMED A GROUND WATER PUMP TEST AT MW-03 FOR USE IN MODFLOW SIMULATION

On February 6, 2007, we performed a drawdown/recovery test at MW-03 (the Recovery Well). The purpose of the test was to obtain the hydraulic properties of the underlying aquifer to use as input parameters for Visual MODFLOW. Results of the pumping test are provided in Table 3. The calculated hydraulic conductivity (K) based on this pumping test is 0.437 ft/day. This value compares favorably with the results of a single-well slug test conducted in October, 2006, on MW-1, where K = 0.358 ft/day. Because the pumping well was designed for source removal, however, we suspect that the pumping test data does not provide accurate estimates of aquifer properties. At this time, therefore, we propose to re-evaluate the value of MODFLOW after the cessation of ground water recovery.

Appendix B

Details of Conclusions Based On Activities Completed

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

APPENDIX B

1) SUBSURFACE LITHOLOGY IS UNIFORM ACROSS THE SITE.

During the boring event, we observed caliche and sandstone lenses in the uppermost fifteen feet below ground surface (bgs). From fifteen to eighty feet bgs, we observed silty sands (SM) with lenses of sandstone. We observed saturated conditions at approximately forty feet bgs. Soil boring logs and cross-sections with chloride results are provided in Appendix C.

2) THE RELEASE FROM THE RESERVE PIT MIGRATED VERTICALLY DOWNWARD.

As shown in the cross-sections presented in Appendix C, chloride concentrations are not materially above background in borings outside of the pit boundary. The Laboratory Certificate of Analyses for recent samples is provided in Appendix D.

3) GROUND WATER FLOWS SOUTHEAST AT A GRADIENT OF APPROXI-MATELY 0.001 FEET/FOOT.

Plate 4 shows the potentiometric surface based on the four site wells before the source removal pumping program began. Plate 5 shows the March 13, 2007 potentiometric surface for the general area of the former pit.

4) RECOVERY TEST DATA SUGGEST THAT THE LOCAL HYDRAULIC CONDUCTIVITY BENEATH THE SITE IS APPROXIMATELY 0.4 FEET/ DAY. OBSERVATIONAL DATA OVER THE PAST SEVERAL MONTHS, HOWEVER, SUGGEST THAT LOCAL HYDRAULIC CONDUCTIVITY MAY BE 10–100 TIMES GREATER THAN ESTIMATED BY THE INITIAL RE-COVERY DATA.

Analysis of drawdown and recovery data associated with the start-up of the source-removal program suggest that partial well penetration. borehole skin effects or other factors may result in an under-estimate of the local hydaulic conductivity beneath the site. Analysis of test data show that the hydraulic conductivity is approximately 0.4 feet/day (see Table 3 and Appendix E).

We used the calculated hydraulic conductivity data in a simulation of ground water flow using MODFLOW. The simulation did not agree with the observed drawdown of MW-3 and the response in the nearby monitoring wells. Increasing the hydraulic conductivity a factor of 10–100 provided a better correlation between the observed hydraulic response of the aquifer and the simulation.

Samson State BD-04 March Progress Report NMOCD #: 1R0474

Additionally, using the observed hydraulic gradient and the hydraulic conductivity calculated in the pumping test yields an estimated ground water flux of 0.0004 feet/day, or 0.15 feet/year. We find it difficult to reconcile this estimate of ground water flux with the observed decline in chloride concentration in MW-1 due to dispersion and dilution.

We believe that a ground water flux that is 10–100 times greater than that calculated by the pumping test is required to achieve the observed decline in chloride due to dilution and dispersion.

5) MORE THAN 30 DAYS OF GROUND-WATER PUMPING HAVE CREATED A CONE-SHAPED DEPRESSION AROUND THE PUMPING WELL WITH A SUBSEQUENT IMPACT ON THE LOCAL GROUND WATER FLOW.

Plate 5 shows the site potentiometric surface on March 13, 2007, after more than 30 days of source-removal pumping. Figure B-1a, which plots water elevation vs. time for MW-1, MW-2, MW-4 Shallow, and MW-04 Deep, shows that pumping has affected the water level in these wells. Figure B-1b shows the rise in water level elevation in MW-03 Shallow on February 6. The rise in ground water elevation represents data collected when the pumping ceased for 8 hours to conduct a recovery test. Pumping resumed at the completion of the 8 hour recovery test.

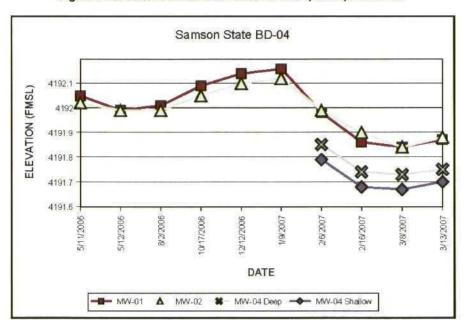


Figure B-1a: Water Elevation vs. Time for MW-1, MW-2, and MW 3

Samson State BD-04 March Progress Report NMOCD #: 1R0474



Table 4 shows the pumping data from MW-3.

6) GROUND WATER DATA INDICATE THAT MW-3 IS PROPERLY DESIGNED AND LOCATED TO EFFECTIVELY REMOVE THE MASS OF CHLORIDE RELEASED BY THE FORMER RESERVE PIT.

Table 2 shows that chloride concentration, prior to source removal, in MW-03 Shallow (3900 mg/L) is essentially two times higher than chloride concentration in MW-03 Deep (2000 mg/L). Focusing pumping in the upper screened zone of MW-03 (MW-03 Shallow) is appropriate for a source removal program.

7) GROUND WATER IMPAIRMENT IS RESTRICTED TO THE AREA BELOW THE FORMER RESERVE PIT.

Plate 3 and Table 2 show that chloride concentrations are below WQCC standards in monitoring wells located down-gradient from the former pit.

8) THE MAGNITUDE AND EXTENT OF GROUND WATER IMPAIRMENT IS SUFFICIENTLY DEFINED TO MEET THE MANDATES OF NMOCD RULES AND AT THIS TIME ADDITIONAL MONITORING WELLS ARE NOT RE-QUIRED.

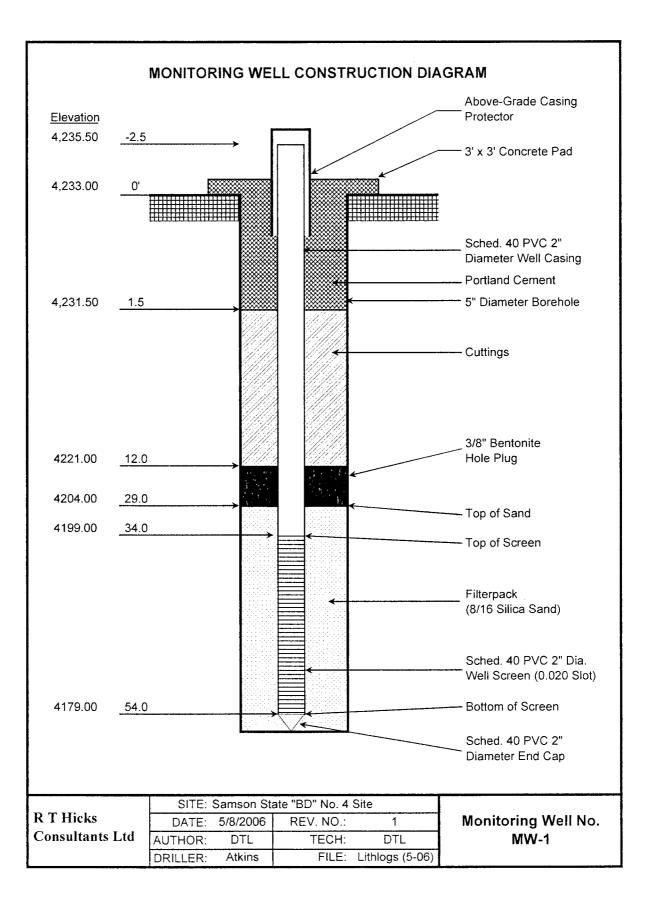
Plate 3 and Table 2 show that chloride concentrations are below WQCC standards in monitoring wells located down-gradient from the former pit. Moreover, chlo-

Samson State BD-04 March Progress Report NMOCD #: 1R0474

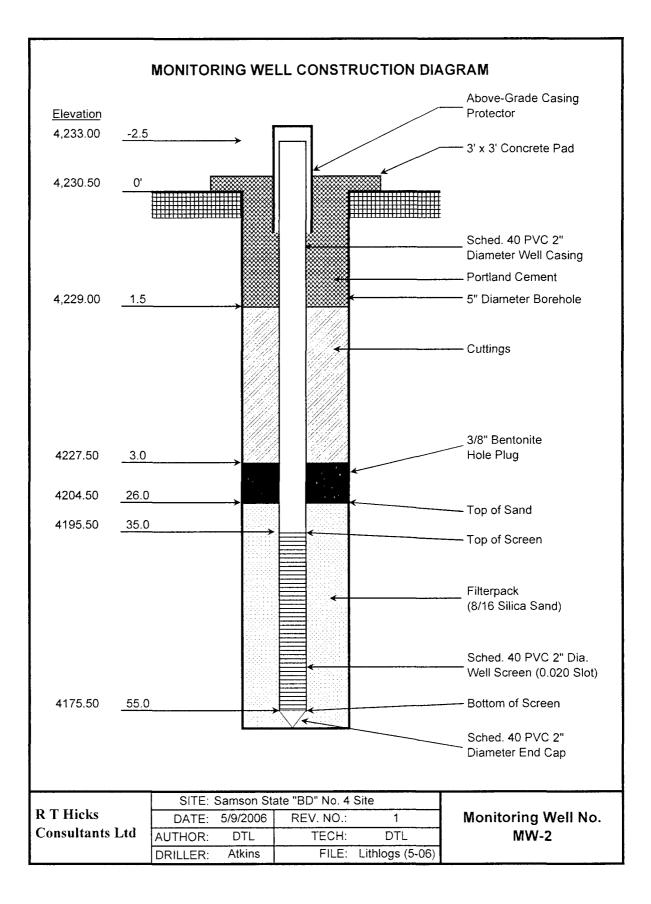
ride concentrations in these down gradient wells are declining over time. At this time, additional monitoring wells are not required.

9) THE CONSTRUCTION OF THE ET INFILTRATION BARRIER IS CONSIS-TENT WITH THE PROPOSAL SUBMITTED TO NMOCD AND WITH THE GENERAL DESIGN CRITERIA FOR LANDFILL COVERS AS TESTED BY SANDIA NATIONAL LABORATORIES.

Appendix F provides photographic documentation of the construction of the monolithic evapotranspiration infiltration barrier. Plate 2 shows that the final grade of the site conforms to design criteria tested by Sandia national laboratory. The Sandia National Laboratories study was referenced in the Corrective Action Plan submitted to NMOCD in November, 2006.


The soil moisture data from sampling ports below the infiltration barrier show a lower moisture content than similar soil horizons at the background location, north of the former reserve pit. We conclude that the spoil piles placed into the pit had dried and are now artificially low in moisture. Over time, we expect moisture concentrations may rise to equal that observed in the background boring. Because of the low moisture content, the moisture flux through the vadose zone will be significantly lower than originally predicted in HYDRUS-1D simulations (see figure 4a of August 17 Closure Plan Design Document).

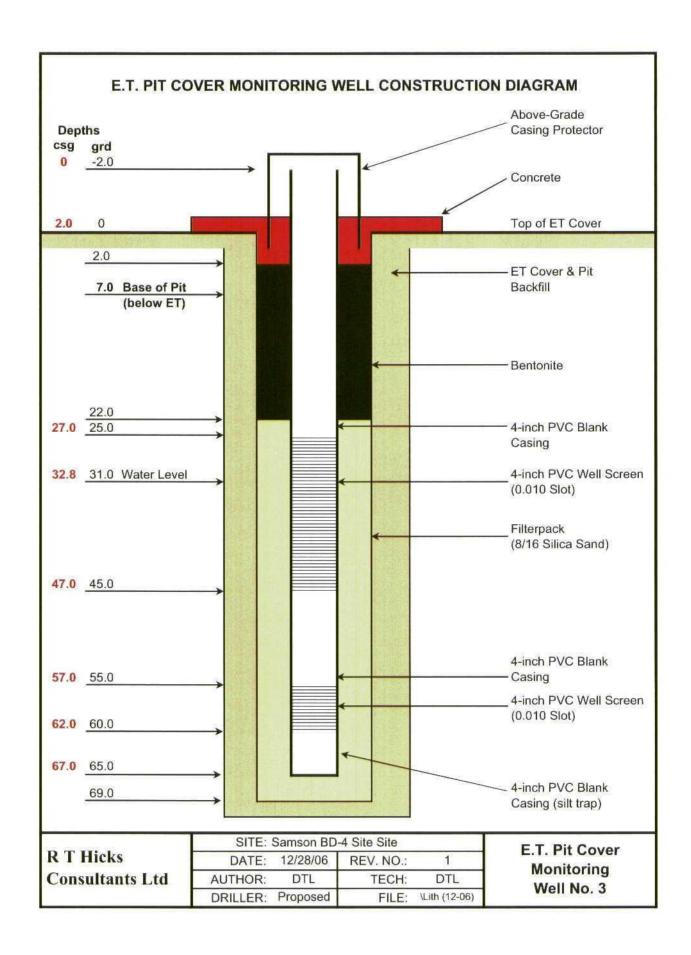
Appendix C Soil Boring Logs, Cross-Sections


R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

	R T Hicks Consultants Ltd P O Box 7624 Midland, TX 79708 (432) 528-3878				t d	SURFAC (DRIL INSTAI WELI	SE ELEV CONTRA LING ME LATION PLACE COMM	ATION: ACTOR: THOD: DATE: MENT: MENTS:	Samson Approxin Atkins E Hollow-S 5/8/06 South of	nately 42 ngineerin Stem f reserve 18' 34.3"	COUNTY: Lea County Ing STATE: New Mexico LOCATION: T-12-S, R-33-E, Sec. 2 (H) FIELD REP.: Dale Littlejohn pit FILE NAME: \State BD-4\Lithlogs (5-06) North, Long. 103° 34' 38.8" West
CULINES				ology 4 4 4 4 4	РНОТО		MPLE D		CI (Lab)		LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. DEATURES CALICHE grayish white with silt. CALICHE gray to grayish tan with silt and very fine grain sand.
00000			4 1 1 1 1 1 1			9-11	35%	0 ppm	49.4 mg/kg	10	SILT tan to light brown, with some caliche and fine gain sand.
DENIONIE		Z" PVC BLANK CASING	+ + + +	F + + + +		19-21	25%	0 ppm	7.86 mg/kg	20	SAND light brown, fine grain, sub angular, well sorted, with some caliche.
						29-31	30%	0 ppm	3.38 mg/kg	30	SAND light brown, fine grain, sub angular, well sorted, with no caliche.
OLID SHIND FILLERFACK		2" PVC SLOTTED SCREEN (0.020")			No Sample Recovery	34-36	15%	0 ppm	5.02 mg/kg	35 40 45	Saturated formation at 39 feet (838 mg/L CI)

				MONITOR WELL NO.: SITE ID: SURFACE ELEVATION: CONTRACTOR: DRILLING METHOD: INSTALLATION DATE: WELL PLACEMENT: COMMENTS: SAMPLE DATA			Samson Approxir Atkins E Hollow-S 5/9/06 East cor	nately 42 ngineerin Stem ner of res 18' 35.5"	233 COUNTY: Lea County ng STATE: New Mexico LOCATION: T-12-S, R-33-E, Sec. 2 FIELD REP.: Dale Littlejohn				
			РНОТО	DEPTH	% REC	PID	CI (Lab)		SIZE, SORTING, ROUNDING, CONSOL., DIST. DEATURE CALICHE with top soil, brownish gray, silty, hard.				
		+ + + + + + + + + + + + + + + + + + + +						5	CALICHE AND SILT gray to pinkish gray.				
				9-11	5%	0 ppm	10.0 mg/kg	10	CALICHE gray with very fine grain sandstone and silt. Very hard drilling to 11 feet.				
	Je starter de la constante de	114,4,4 114,4,4 114,4,4						15	CALICHE AND SILT grayish white to grayish pink, with some interbedded sandstone.				
	BLANK CASING	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1											
	2" PVCE			19-21	10%	0 ppm	7.30 mg/kg	20	CALICHE AND SILT gray to light brown with interbedded hard sandstone layers at 22 -23 feet and 27-28 feet.				
				29-31	10%	0 ppm	8.27 mg/kg	30	CALICHE AND SILT gray to light brown with some fine grain sand.				
							overstored and	35	SAND light brown, very fine grain, angular, poorly sorted, with some silt.				
				34-36	10%	0 ppm	7.77 mg/kg	35					
	EEN (0.020")			39-41	10%	0 ppm	12.0 mg/kg	40	SANDSTONE gray to It brown, v fn gr, angular, p/s. SILTY SAND gray to light brown, very fine grain, angular, poorly sorted. Moist formation at 39 feet, wet at 40 feet.				
	PVC SLOTTED SCREEN		No Sample Recovery					45					
	2" P		No Sa					50					
								55					


115. E

11.

161

1 dia

Consultants Ltd P O Box 7624 Midland, TX 79708 (432) 528-3878					SURFAC DRILI INSTAL WELL	SE ELEV CONTRA LING ME LLATION L PLACE COM	ATION: ACTOR: ETHOD: N DATE: MENT: MENTS:	Samson Csg = 4, Atkins Er Hollow-S 12/11/06 Center o	ngineering item f Former F 18' 35.0" N	COUNTY: Lea County STATE: New Mexico LOCATION: T-12-S, R-33-E, Sec. 2 (H FIELD REP: Dale Littlejohn FILE NAME: BD-4\Littlogs (12-06) orth, Long, 103° 34' 39.2" West			
ſ			Lithology	PHOTO		MPLE D		CI (Lab)	DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOL., DIST. DEATURES			
		1" PVC BLANK CASING			14-16	20%	<1 ppm	5,740 mg/kg	5	SILTY CLAY dark brown (top soil) with some caliche. CALICHE light grayish brown with some fine grain sand (10% gradient to 25% with depth). Very difficult to determine the base of former excavation. Possible base of original excavation			
					19-21	20%	<1.ppm	5,320 mg/kg	20	SAND light brown, fine grain, sub-rounded, poorly sorted, with some caliche.			
THE DRY CA AND		101			24-26	30% 20%	<1 ppm	5,7402 mg/kg 936 mg/kg	25 	SAND light to medium brown, medium grain size, sub- rounded, poorly sorted with some clay.			
WID SHART IF I FURTHALN		4" PVC SLOTTED SCREEN (0.010")			34-36	10%	<1 ppm	wet, na sample	35 40 45	Moist Formation at 30 - 31 feet SAND AND CLAY light reddish brown, very fine grain sand with 50 to 60% clay. Saturated formation (no returns) below 39 feet.			
		BLANK CSG SLOTS (0.010") 4" PVC BLANK CASING		No Sample Recovery					50				

I

1

I

I

I

I

ł

Project: Samson BD-04

Client: Samson

Location: T12S R33E Sec 2

Log of Borehole: MW-4S

Enclosure:

Engineer: Atkins/Hicks

S	UB	SURFACE PROFILE		SA	MPL	E	VOC Concentration
Depth	Symbol	Description	Elev.	Number	Type	Recovery	 ppm 125 250 375 . %LEL 10 30 50 70 90 Well Completion Details
ft m		Ground Surface	0				Concrete
12345678		SM Silty sands, sand-silt mixtures. Med-fine grained, poorly sorted, dry, yellowish orange, trace gravel, clay,	-5				_
m 0 1 2 3 4 5 6 7 ft bitlathillat		caliche nodules SM Silty sands, sand-silt mixtures. Tan, white, chalky fine grained caliche nodules, 3/8"	-10				Bentonite Grout
10 18 19 20 21 20		gravel <u>SM</u> Silty sands, sand-silt mixtures.Light brown,	-20				6" S
23 7 24 7 25 8		tan, poorly sorted, fine grained sandstone & caliche nodules	-25				
1901 1901 2022 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2223 2233 2233 2233 2233 2233 2233 2233 2233 2233 2233 233 23 2		SM Silty sands, sand-silt mixtures.Silty sand, tan, orangish yellow, fairly well sorted, some gravel, sandstone nodules.	-35	5			IIII IIII IIII IIII IIII IIII IIII IIII IIII
37 38 39 40 41 41 42 41		SM Silty sands, sand-silt mixtures.Silty sand, fine grained, light brown, fairly well sorted,	-40				-10/16 Silca Sand- January 20 slot screen - 15' →
43 44 45 46 46 47 47		uniform. Small sandstone nodules	-45				-10/16
49 15 50 15	1914		-50				

Drill Method: HSA CME -75

Drill Date: 1/8/07

Hole Size: 7.5

R.T. Hicks Consultants, Ltd. 901 Rio Grande NW Albuquerque, NM 87104 Datum: Ground Surface Checked by: MS Sheet: 1 of 1

1

I

I

I

I

Project: Samson BD-04

Client: Samson

Location: T12S R33E Sec 2

Log of Borehole: MW-4D

Enclosure:

Engineer: Atkins/Hicks

S	SUB	SURFACE PROFILE		SA	MPL	E	VOC Concentration
Depth Symbol		Description	Elev.	Number	Type	Recovery	* 125 250 375 Well Completion Details * 0 30 50 70 90
		Ground Surface	0				Concrete
1 2 3 4 4 5		SM Silty sands, sand-silt mixtures. Med-fine grained, poorly sorted, dry, yellowish orange, trace gravel, clay,	-5				•
6 7 8 9 0 1		caliche nodules SM Silty sands, sand-silt	-10				Creater Castron Creater Variation
		mixtures. Tan, white, chalky fine grained caliche nodules, 3/8" gravel	-15				Ctrool Poetr
5 6		SM Silty sands, sand-silt mixtures.Light brown, tan, poorly sorted, fine grained sandstone & caliche nodules	-20				Grout
ակակակակակակակ		SM Silty sands, sand-silt mixtures.Silty sand, tan, orangish yellow, fairly well sorted, some gravel, sandstone nodules.	-25				Bentonite Grout
ակակեսկուկունընդունը 10		SM Silty sands, sand-silt mixtures.Silty sand, fine grained, light brown, fairly well sorted,	-35				January 8, 2007
12			-40				Jar

Drill Method: HSA CME -75

Drill Date: 1/8/07

Hole Size: 7.5

R.T. Hicks Consultants, Ltd. 901 Rio Grande NW Albuquerque NM, 87104 Datum: Ground Surface

Checked by: MS

Sheet: 1 of 2

I

Project: Samson BD-04

Client: Samson

Location: T12S R33E Sec 2

Log of Borehole: MW-4D

Enclosure:

Engineer: Atkins/Hicks

	SUB	SURFACE PROFILE		SA	MPL	E	VOC Concentration
Depth	Symbol	Description	Elev.	Number	Type	Recovery	ppm well Completion Details 125 250 375 %LEL • 10 30 50 70 90
45-I		SM Silty sands, sand-silt mixtures.Silty sand, very fine grain moist, light brown	-45				
46 14 47 4 48 1		SM Silty sands, sand-silt mixtures.fine silty					
49 http://www.action.com/ 50 http://www.action.com/ 52 http://www.action.com/ 53 http://www.action.com/ 54 http://www.action.com/ 53 http://www.action.com/ 54 http://www.acti	و به این از ا این از این از این از این از این از این از	SM Silty sands, sand-silt mixtures.Fine grained - 40 to plus 200, very moist to wet, tan color, pooorly sorted, some caliche nodules, cemented sandstone. SM Silty sands, sand-silt mixtures.Very fine grain, light brown, uniform, some sandstone nodules	-65				Bentonite Pellets-
65 66 67 68 69 70 71 71 72 73 74 75 76 77 77 77 77 77 77 77 77 77 77 77 77		SM Silty sands, sand-silt mixtures.Fine silty sand , tan color, uniform, well sorted, wet.					-10/16 Silca Sand - Bentoni - Bentoni
76			-80	-			-10 2" 20 slo

Drill Method: HSA CME -75

Drill Date: 1/8/07

Hole Size: 7.5

Datum: Ground Surface

Checked by: MS

Sheet: 2 of 2

I

Project: Samson BD-04

Client: Samson

Location: T12S R33E Sec 2

Log of Borehole: SB-West

Enclosure:

Engineer: Atkins/Hicks

SUE	SURFACE PROFILE		SA	MPL	E	VOC Concentration	
Depth Symbol	Description	Elev.	Number	Type	Recovery	 ppm 125 250 375 %LEL 30 50 70 90 , , , , , , , , , , , , , , , , , , ,	Well Completion Details
ft m 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ground Surface SM Silty sands, sand-silt mixtures. Med-fine	0					
	dry, yellowish orange, trace gravel, clay, caliche nodules	-5					
9 10 11 12 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	<i>SM</i> Silty sands, sand-silt mixtures. Tan, white, chalky fine grained caliche nodules, loose	-15					
17 18 19 20 21 20 19 10 21 20 10 10 21 20 10 10 21 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	dry SM Silty sands, sand-silt mixtures.Light brown, tan, poorly sorted, fine grained sandstone & caliche nodules						
27 28 29 29 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	<i>SM</i> Silty sands, sand-silt mixtures.Silty sand, tan, orangish yellow, fairly well sorted, some gravel, sandstone nodules.						
38 39 40 12		-40					
41 42 43 44 44 45 44 45 46 47 48 47 48 47 48 49 49 45 45 45 45 45 45 45 45 45 45 45 45 45	<i>SM</i> Silty sands, sand-silt mixtures.Fine grained - moist to wet, tan color, pooorly sorted, some caliche nodules, cemented sandstone.	-45					

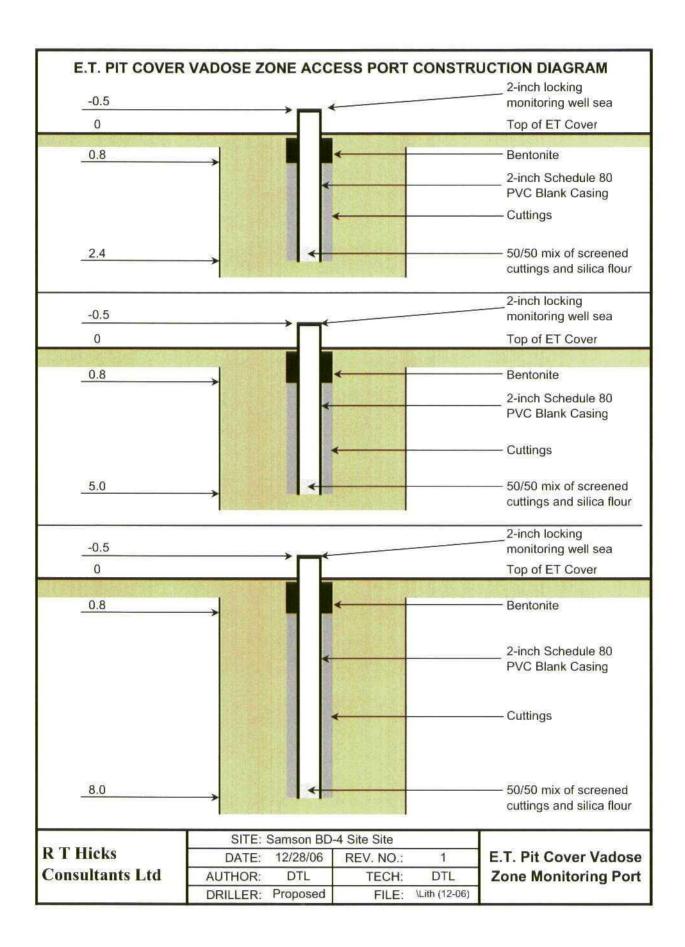
Drill Method: HSA CME -75

1 1

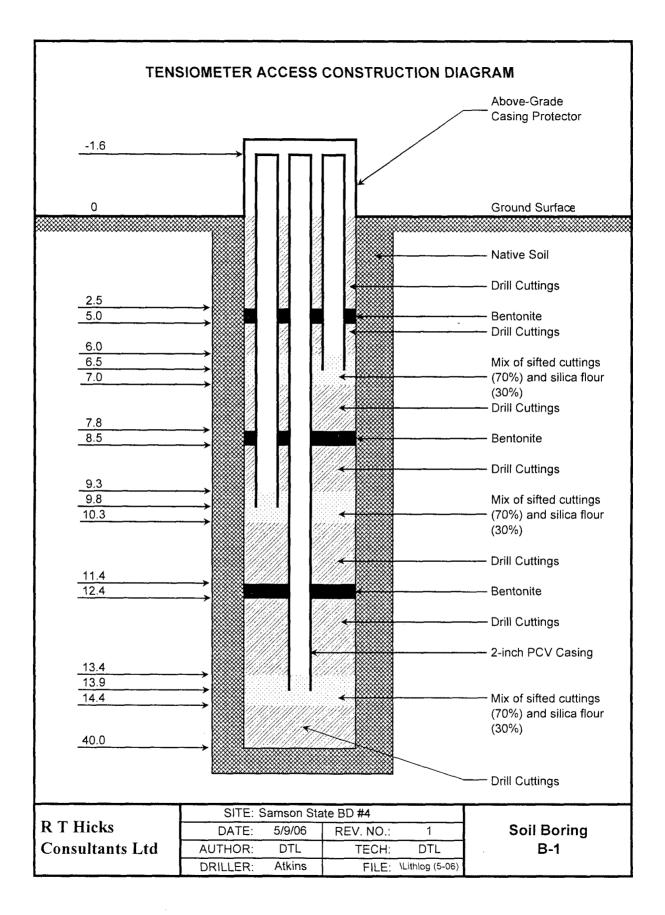
Drill Date: 1/8/07

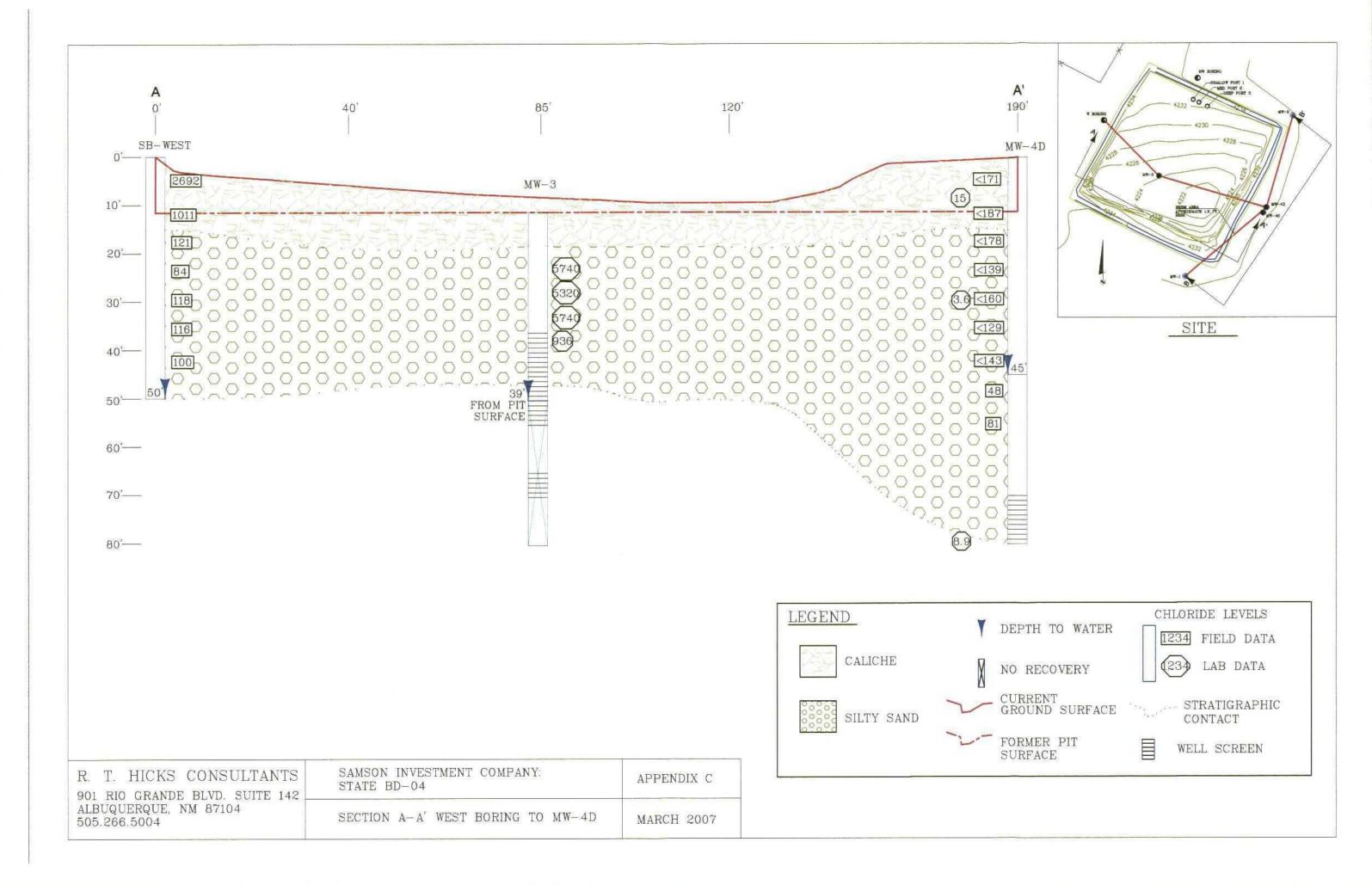
Hole Size: 7.5

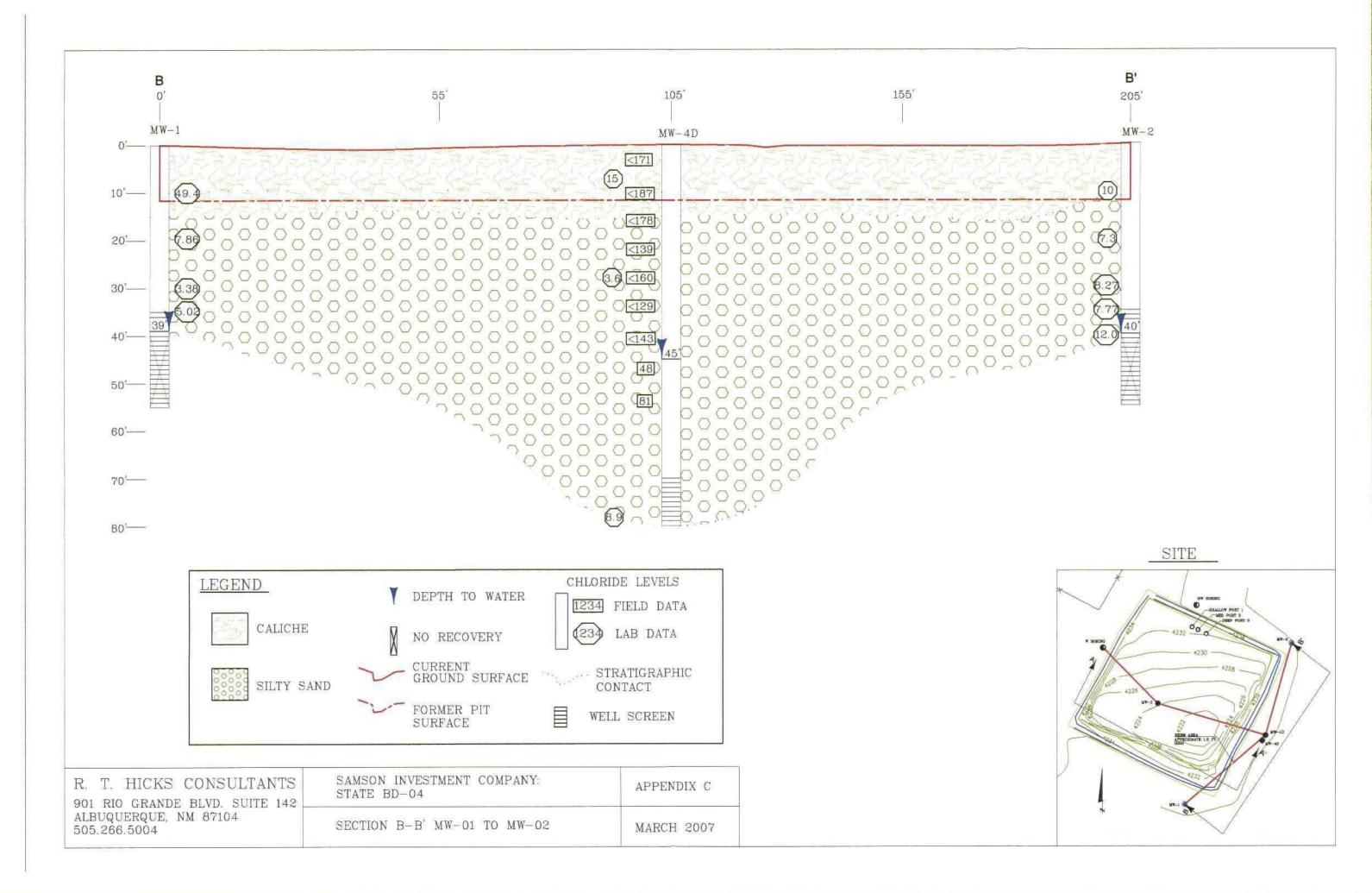
R.T. Hicks Consultants, Ltd. 901 Rio Grande NW Albuquerque, NM 87104


102

1.


Datum: Ground Surface


Checked by: MS


Sheet: 1 of 1

	T H onsu			. 1 1	d	MONIT	OR WE				TOTAL DEPTH: 40.0 Ft	
L	onsu	ila	inter						Samson			
					,				Approxir			
			-						Atkins E		LOCATION: T-12-S, R-33-E, Sec. 2 (H)	
	P O Box Midland,			0		DRILLING METHOD: INSTALLATION DATE:				stem	FIELD REP.: Dale Littlejohn	
	(432) 528			0					288' wes	at-northwa		
3	(4JE) JE0	-301	U			V V La La La					North, Long. 103° 34' 37.4" West	
-		1	Lithe	ology		SA	MPLE D		Eur. 00	DEPTH	LITHOLOGIC DESCRIPTION LITHOLOGY, COLOR, GRAI	
ſ	ппг				PHOTO	DEPTH			CI (Lab)		SIZE, SORTING, ROUNDING, CONSOL., DIST. DEATURE	
P				and the second	Contraction of the local distance of the loc	0-1	50%	0 ppm	0. (100)		SILT (top soil) dark brown with roots.	
1			-	-		1.2	50%	0 ppm		3	CALICHE with top soil, brownish gray, silty, hard.	
			-		TER MER	2-3	50%	0 ppm		-		
- 14			-	100	100	3-4	50%	0 ppm			-	
			-4. 3	17 march	1,5-	4-5	50%	0 ppm		5	CALICHE gray to pinkish gray with silt.	
P			<u>-</u>		in the second	5-6	50%	0 ppm				
ť	M ML		-		10-10-10	6-7	50%	0 ppm		- i	1	
Ø			<u> </u>	-	and the second	7-8	50%	0 ppm			CALICHE AND SILT, gray	
ť				-		8-9	50%	0 ppm				
1			-	-	States 1	9-10	50%	0 ppm		10	1	
1	Ted here		-	-	1.	10-11	50%	0 ppm			1	
0					Sector 194			1.42			1	
Í			+2		1			1.00			CALICHE AND SAND grayish pink to light brown, very fine	
V			1			13-14	50%	0 ppm			grain, medium sorted sand.	
ſ	- Jaco		-	-	1-1-2	14-15	50%	0 ppm		15		
0	////////	ails	+	-	all and a						1	
		deti		-	124						-	
V		noi	. 1 . 3	-	1	17-18	50%	0 ppm			-	
V		plet		1	Selfer -	18-19	50%	0 ppm				
U		completion details		100	Sec. 1					20		
U		for			and a	2011 0000	ST-SP				SAND silty with caliche, light brown, very fine grain, sub	
V		N	+	<u> </u>	-aprile	21-22	40%	0 ppm			angular, medium to poorly sorted sand.	
		page			120	22-23	20%	0 ppm			_	
V		See			Y LEWIS							
U		<i>o</i> n	-		English and	24/23/20/20/20	2020-0027	North Contractor		25		
V				-		25-26	30%	0 ppm			-	
	///////				2.34						4	
V					11 11 1					-	4	
V			19				100.000	and the second second			4	
1	///////			Seeker .	-	29-30	20%	0 ppm		30	4	
V					-						4	
U					SKED LE	31-32	20%	0 ppm			4	
V			i de		Constant production	-		-			CAND light brown was fan and and and and	
	///////				and the second second	24.95	5000	0.000		35	SAND light brown, very fine grain, sub angular, medium sorted, with some silt.	
					Conversion of	34-35	50%	0 ppm		35	sorred, with some sit.	
U					The state of the s					1	-	
						37-38	50%	0 ppm		/Y	4	
V	///////			-	CORRECT OF	31-30	0.0170	o ppm	+		SAND brown, medium grain, angular, well sorted.	
V					A STREET	39-40	50%	0 ppm		40	angular, weil solled.	

Appendix D

Laboratory Certificate of Analyses (COA)

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

?

Analytical Report

Prepared for: Dale Littlejohn

R.T. Hicks Consultants Ltd.- Midland P.O. Box 7624 Midland, TX 79708

Project: Samson State BD No. 4 Project Number: L-126-5 Location: Lea Co., NM

Lab Order Number: 6E16008

Report Date: 06/22/06

.

Project: Samson State BD No. 4 Project Number: L-126-5 Project Manager: Dale Littlejohn

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1 9'	6E16008-01	Soil	05/08/06 10:09	05/16/06 15:45
MW-1 19'	6E16008-02	Soil	05/08/06 10:30	05/16/06 15:45
MW-1 29'	6E16008-03	Soil	05/08/06 10:50	05/16/06 15:45
MW-1 34'	6E16008-04	Soil	05/08/06 11:10	05/16/06 15:45
MW-2 9'	6E16008-05	Soil	05/09/06 12:20	05/16/06 15:45
MW-2 19'	6E16008-06	Soil	05/09/06 12:45	05/16/06 15:45
MW-2 29'	6E16008-07	Soil	05/09/06 13:30	05/16/06 15:45
MW-2 34'	6E16008-08	Soil	05/09/06 13:55	05/16/06 15:45
MW-2 39'	6E16008-09	Soil	05/09/06 14:20	05/16/06 15:45
MW-1	6E16008-10	Water	05/12/06 10:25	05/16/06 15:45
MW-2	6E16008-11	Water	05/12/06 11:00	05/16/06 15:45

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

12 1

1.6

٦.

11

Project: Samson State BD No. 4 Project Number: L-126-5 Project Manager: Dale Littlejohn

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		<u></u>		<u> </u>					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 9' (6E16008-01) Soil									
Chloride	49.4	1.00	mg/kg	2	EE61902	05/18/06	05/18/06	EPA 300.0	
MW-1 19' (6E16008-02) Soil									
Chloride	7.86	1.00	mg/kg	2	EE61902	05/18/06	05/18/06	EPA 300.0	
MW-1 29' (6E16008-03) Soil									
Chloride	3.38	1.00	mg/kg	2	EE61902	05/18/06	05/18/06	EPA 300.0	
MW-1 34' (6E16008-04) Soil									
Bromide	ND	0.100	mg/kg	2	EE61905	05/18/06	05/18/06	EPA 300.0	
Chloride	5.02	1.00	н	"	EE61902	05/18/06	05/18/06	21	
MW-2 9' (6E16008-05) Soil									
Cbloride	9.99	1.00	mg/kg	2	EE61902	05/18/06	05/18/06	EPA 300.0	
MW-2 19' (6E16008-06) Soil									
Chloride	7.30	1.00	mg/kg	2	EE61902	05/18/06	05/18/06	EPA 300.0	
MW-2 29' (6E16008-07) Soil									
Chloride	8.27	1.00	mg/kg	2	EE61902	05/18/06	05/18/06	EPA 300.0	
MW-2 34' (6E16008-08) Soil									
Chloride	7.77	1.00	mg/kg	2	EE61902	05/18/06	05/18/06	EPA 300.0	
MW-2 39' (6E16008-09) Soil									
Bromide	0.187	0.100	mg/kg	2	EE61905	05/18/06	05/18/06	EPA 300.0	
Chloride	12.0	1.00	'n	11	EE61902	05/18/06	05/18/06	11	
MW-1 (6E16008-10) Water	·								
Bromide	0.482	0.0500	mg/L	1	EE61705	05/17/06	05/17/06	EPA 300.0	
Chloride	131	5.00	"	10	EE61704	05/17/06	05/17/06	и	
Total Dissolved Solids	838	5.00	н	1	EE61718	05/17/06	05/17/06	EPA 160.1	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 7

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Project: Samson State BD No. 4 Project Number: L-126-5

Fax: (432) 689-4578

Project Manager: Dale Littlejohn

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-2 (6E16008-11) Water									
Bromide	0.446	0.0500	mg/L	1	EE61705	05/17/06	05/17/06	EPA 300.0	
Chloride	44.5	2.50	*1	5	EE61704	05/17/06	05/17/06	*1	
Total Dissolved Solids	530	5,00		I	EE61718	05/17/06	05/17/06	EPA 160.1	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 7

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE61704 - General Preparation (WetChem)									
Blank (EE61704-BLK1)				Prepared &	Analyzed	05/17/06				
Chloride	ND	0.500	mg/L							
LCS (EE61704-BS1)				Prepared &	Analyzed:	05/17/06				
Chloride	10.1	0.500	mg/L	10.0		101	80-120			
Calibration Check (EE61704-CCV1)				Prepared &	Analyzed:	05/17/06				
Chloride	10.2		mg/L	10.0		102	80-120			
Duplicate (EE61704-DUP1)	Sour	ce: 6E16004-	04	Prepared &	Analyzed	05/17/06				
Chloride	26200	250	mg/L		25800			1.54	20	
Matrix Spike (EE61704-MS1)	Sour	rce: 6E16004-	04	Prepared &	Analyzed:	05/17/06				
Chloride	31700	250	mg/L	5000	25800	118	80-120			
Batch EE61705 - General Preparation (WetChem)									
Blank (EE61705-BLK1)				Prepared &	Analyzed:	05/17/06				
Bromide	ND	0.0500	mg/L							
LCS (EE61705-BS1)				Prepared &	Analyzed:	05/17/06				
Bromide	1.96	0.0500	mg/L	2.00	<u>.</u>	98.0	80-120			
Calibration Check (EE61705-CCV1)				Prepared &	: Analyzed:	05/17/06				
Bromide	2.05		mg/L	2.00		102	80-120			
Duplicate (EE61705-DUP1)	Sour	ce: 6E16004-	04	Prepared &	Analyzed:	05/17/06				
1 ()										

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 7

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

R.T. Hicks Consultants Ltd Midland P.O. Box 7624 Midland TX, 79708		Project Nu	mber: L-	amson State B 126-5 ale Littlejohn	D No. 4				Fax: (432)	689-4578
General Cl	emistry Para	ameters by Environn				ls - Qua	lity Con	trol		
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE61705 - General Preparation (V	VetChem)									
Matrix Spike (EE61705-MS1)	Sou	rce: 6E16004-	04	Prepared &	Analyzed:	05/17/06				
Bromide	264	0.0500	mg/L	200	66.1	99.0	80-120			
Batch EE61718 - Filtration Preparation										
Blank (EE61718-BLK1)	<u></u>			Prepared &	Analyzed:	05/17/06				
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EE61718-DUP1)	Sou	rce: 6E16010-	·01	Prepared &	2 Analyzed:	05/17/06				
Total Dissolved Solids	3990	5.00	mg/L		3900			2.28	5	
Batch EE61902 - Water Extraction										
Blank (EE61902-BLK1)				Prepared & Analyzed: 05/18/06						
Chloride	ND	0,500	mg/kg			199 (B)				
LCS (EE61902-BS1)				Prepared &	Analyzed:	05/18/06				
Chloride	10.3	0.500	mg/kg	10.0		103	80-120			
Calibration Check (EE61902-CCV1)				Prepared &	2 Analyzed:	05/18/06				
Chloride	10.6		mg/L	10.0		106	80-120			
Duplicate (EE61902-DUP1)	Sou	rce: 6E16007-	-04	Prepared &	k Analyzed:	05/18/06				
Chloride	4350	50.0	mg/kg		4360			0.230	20	
Duplicate (EE61902-DUP2)	Sou	arce: 6E16008-	-13	Prepared &	k Analyzed:	05/18/06				
Chloride	71000	1000	mg/kg		71000			0.00	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 5 of 7

1

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

÷.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE61902 - Water Extraction										
Matrix Spike (EE61902-MS1)	Sour	ce: 6E16007-	04	Prepared &	Analyzed:	05/18/06				
Chloride	5640	50.0	mg/kg	1000	4360	128	80-120			S-0
Matrix Spike (EE61902-MS2)	Sour	ce: 6E16008-	13	Prepared &	Analyzed:	05/18/06				
Chloride	95000	1000	mg/kg	20000	71000	120	80-120			
Batch EE61905 - Water Extraction										
Blank (EE61905-BLK1)				Prepared &	Analyzed:	05/18/06				
Bromide	ND	0.0500	mg/kg	, ***						
LCS (EE61905-BS1)				Prepared &	Analyzed:	05/18/06				
Bromide	2.17	0.0500	mg/kg	2.00		108	80-120			
Calibration Check (EE61905-CCV1)				Prepared &	Analyzed:	05/18/06				
Bromide	2.27		mg/kg	2.00		114	80-120			
Duplicate (EE61905-DUP1)	Sour	ce: 6E16007-	04	Prepared & Analyzed: 05/18/06						
Bromide	0.990	0.100	mg/kg		1,01	· · · · · · · · · · · · · · · · · · ·		2.00	20	
Duplicate (EE61905-DUP2)	Sour	·ce: 6E16008-	-13	Prepared & Analyzed: 05/18/06						
Bromide	ND	100	mg/kg		ND				20	
Matrix Spike (EE61905-MS1)	Sour	ce: 6E16007-	04	Prepared &	Analyzed	05/18/06				
Bromide	208	5.00	mg/kg	200	1.01	103	80-120			
Matrix Spike (EE61905-MS2)	Sour	ce: 6E16008-	13	Prepared &	Analyzed:	05/18/06				
Bromide	4130	100	mg/kg	4000	ND	103	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Notes and Definitions

S-07	Recovery outside Laboratory historical or method prescribed limits.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Raland K Juits

6/22/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 7

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

12600 West I-20 East Phone: 432-563-1800 Odessa, Texas 79765 Fax: 432-563-1713	t Pho 5 Fi	Phone: 432-563-1800 Fax: 432-563-1713								CH	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	F CU	001s	Y REI	CORD	AND	ANAI	-YSIS	REQ	JEST		
	Project Manager: Dale Littlejohn	ur								Į	Ъ	Project Name: Samson State BD No.	Nami	NS SS	msc	U S	tate	BD	40,4	_		
	сотралу Name RT Hicks Consultants Ltd	onsultants Ltd								1		Ргс	oject 1	Project #: <u>L-126-5</u>	126-	2						1
	Company Address: P.O. Box 7624	24								1	_	Proje	ct Lo	Project Lec: Lea Co.,	aC		MN					
	City/State/Zip: <u>Midland</u> , Texas	kas 79708							l	I			;# 0d									1
	Telephone No: (432),528-3878	378		Fax No: (432) 689-4578 (Fax)	(432)	689-	4578	(Fax		I							1 of 2	•				
Sampler Signature:	nature: $\sqrt{2}$ a	C.1 Litteren	NUN							I		Į									Γ	
	7		i N											TOLP.		Analy	Analyze For					
						Ċ	Cencer ratio	4	╞	Matric	2		-		-	-						
LAB # (lab use	FIELD CODE	соре	bəlqms2 əts0	belqme2 emiT	No. of Containers Ice		N ^g OH HCL	onoN، مەرەب	Water (Specify)		Cilhet (specify):	1001 5001 W012W 1002 1000	Cations (Ca, Mg, Na, K) Anions (Ca, Mg, Na, K)		A let al Cd Ct Pb Hg Sd Relation	volatijes Birjejovines	BTEX 80218/5030 or BTEX 8260	איסיציאי פכו	Chloride	Bromide Total Dissolyed Solids		RUSH TAT (Pre-Schedule TAT brabard
2-2	MW-1 (9')		5/8/06	1009	+ ×			×			×								×			×
27	MW-1 (19')		5/8/06	1030	1 X			X			×								×			×
L.	MW-1 (29')	1. M. 2. 3.	5/8/06	1050	1 X			×			×								×			×
20	MW-1 (34')	ĺ	5/8/06	1110	1 ×			×			×								×	×		×
So-	MW-2 (9')		5/9/06	1220	×			×			×]				×			×
-00	MW-2 (19')		5/9/06	1245	× 			×			×	_		-					×			<u>×</u>
- <u>5</u>	MW-2 (29')		5/9/06	1330	× -			×			×					-			×			×
2 X X	MW-2 (34')		5/9/06	1355	× -			×			×					\rightarrow	_		×	_		×
29 9	MW-2 (39')		5/9/06	1420	× -			×			×								×	×		×
Special Instructions:	Send Invoice to RT Hicks Consult. 901 Rio Grande Date Littlejohn at the adress above.	cks Consult. 901 Rio Idress above.		Blvd. NW, Suite F-142,		anbno	Albuquerque, h	NM 87104;	104	Sen	Send results		to T	Sample Containers Intact? Temperature Upon Receipt.	Contrature	Upon	Intac Rece				z	-
Relinquished by:	TttoL.	Date Time $1/b/b$ \mathcal{L} \mathcal{L}	Received by:							Date		Time	1	11-1202 110.0	- 124 J				<u>.</u>			
Relinqu		Date Time	Received by ELOT	or \r00	4				Date	Date DATe		Time A. A. S		and and any			Jangues	<u>م</u>	(

Thill

1 1

D. L

10

las rill

1 11

.

11

1.1

1.

1.1

Project Manager: Dale Littlejohn Company Name RT Hicks Consultants Ltd Company Address: P.O. Box 7624 Caty/state/Zlu: Micliand, Texas 79708 Telephone No: (432) 528-3878 Telephone No: (432) 558 Telephone No: (432) 558 Telephone No: (432) 558 Telephone No: (432) 589 Telephone No: (432) 58<	No. of Containers No. of Containers -
Company Name RT Hicks Consultants Ltd Company Address P.O. Box 7624 Company Address City/State/Zip: Micland, Texas: 79708 Fax No: (432) 528-3878 Tolephone No: (432) 528-3878 Fax No: (432) 688 Tolephone No: (432) 688 Tolephone No: (432) 688 Tolephone No: (432) 688 Tolephone No: (432) 688 MM# # (ab use Tolephone No: (432) 688 MM# # (ab use Tolephone No: (432) 688 MW<1	Project No. of Containers No. of Containers No. of Containers 1 1 1 No. of Containers No. of Containers No. of Containers 1 1 1 No. of Containers No. of Containers No. of Containers 1 1 1 No. of Containers No. of Containers No. of Containers 1 1 1 No. of Containers No. of Containers No. of Containers 1
Company Address: P.O. Box 7624 Company Address: P.O. Box 7524 City/State/Zip: Midland, Texas 79708 Fax No: (432) 528-3878 Telephone No: (432) 528-3878 Fax No: (432) 583 Sampler Signature: CO.C. 7 / JUCG LS/L Delt Constant of the fact	Poleat Los
City/State/Zip: Midland, Texas 79708 Telephone No: (432) 528-3878 Fax No: (432) 528-3878 Fax No: (432) 528-3878 Sampler Signature: ClC-7 AUC LeA Sampler Signature: ClC-7 AUC LeA Cut (LOU) MM-1 Cut (LOU) Bate Cut (LOU) Bate Cut (LOU) MM-1 Cut (LOU) Sampled Cut (LOU) MM-1 Cut (LOU) Sampled Cut (LOU) MM-1 Cut (LOU) Sampled Cut (LOU) MM-1 Cut (LOU) MM-1 Cut (LOU) Sampled Cut (LOU) MM-1 Cut (LOU) Sampled Cut (LOU) MM-1 Cut (LOU) Sampled Cut (LOU) Sampled <t< td=""><td>No. of Containers No. of Containers X X X X X<</td></t<>	No. of Containers No. of Containers X X X X X<
Telephone No: (432) 528-3878 Fax No: (432) 528-3878 Sampler Signature:	Qi Containets 1 1 1 1 1
Sampler Signature:	A No. of Containets A No. of Containets A No. of Containets B No. of Containets C HOG No. of Containets No. of Containets B No. of Containets No. of Containets No. of Containets No. of No. of Containets No. of Containets
Definition FileLD CODE Date Sampled Intell RielD use FileLD CODE Date Sampled Intell RielD use FileLD CODE Date Sampled MW-1 5/12/06 1025 1 X MW-2 5/12/06 1100 1 X MW-2 5/12/06 1130 1 X Pit A (28) 5/12/06 1130 1 X Pit D (28) 5/12/06 1130 1 X Pit D (28) 5/12/06 1130 1 X	
Low FleLD CODE Sampled Intersection FleLD CODE 03te Sampled Intersection 5/12/06 1025 1 Intersection 5/12/06 1100 1 X Intersection 5/12/06 1130 1 X Intersection 5/12/06 1133 1 X <td></td>	
Definition FIELD CODE Nuo. Muo. ILAB # (lab use FIELD CODE 0ate Sampled No. of Containers ILAB # (lab use FIELD CODE 5/12/06 1 NO. No. of Containers MWV-1 5/12/06 1100 1 X No. of Containers No. of Containers MVV-2 5/12/06 1100 1 X No. of Containers No. of Containers MVV-2 5/12/06 1130 1 X No. of Containers No. of Containers MVV-2 5/12/06 1130 1 X No. of Containers No. of Containers MVV-2 5/12/06 1130 1 X No. of Containers No. of Containers MV-1 5/12/06 1130 1 X No. of Containers No. of Containers	
Understand FileLD CODE Date Sampled I.AB # (lab use FIELD CODE Date Sampled MW-1 5/12/06 1025 1 X MW-1 5/12/06 1005 1 X HdG MW-1 5/12/06 1100 1 X HdG MW-2 5/12/06 1130 1 X HGT MW-2 5/12/06 1130 1 X HGT MM-2 5/12/06 1130 1 X 1 MM-2 5/12/06 1130 1 X 1 MM-2 5/12/06 1130 1 X 1 MM-2 5/12/06 1132 1 X 1 MM-2 5/12/06 1132 1 X 1 MM-2 5/12/06 1132 1 X 1 MM-2 5/12/06 1 1 X 1 X 1	→ → No. of Containers → → No. of Containers × × × × ×
U U	→ → No. of Containe → → No. of Containe × × × × × × × <tr< td=""></tr<>
LAB # (lab use lab.) FIELD CODE \Box_{ab} \overline{F}_{ab} \overline{C}_{ab}	00.00/ - <td< td=""></td<>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 X
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
1 Pit A (28') 5/12/06 1130 1 1 5/12/06 1132 1 1 Pit B (28') 5/12/06 1132 1 1 Pit D (28') 5/12/06 1135 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
1 5/12/06 1132 1 1 5/12/06 1135 1 1 5/12/06 1135 1 (5) Pit D (28') 5/12/06 1125 1	
5/12/06 1135 1 5/12/06 1125 1	
5/12/06 1125 1	
→(<i>V</i> , Pit E (28') 5/12/06 1121 1 X	-
-11/ Pit F (28') 5/12/06 1137 1 X	-
Special Instructions: Send Invoice to RT Hicks Consult. 901 Rio Grande Blvd. NW, Suite F-142, Dale Littlejohn at the adress above.	Albuquerque, NM 87104; Send results to
Relinquished by Date	Date Time Laboratory Continuents.
2 Dal / June + 1 1/10/00 3.45	
Relinquished by. Date Time Received by ELOT:	c_{000} c_{100} c_{1

THE REPORT OF A REPORT OF A

151

	Environmental Lab of Texas
	Variance / Corrective Action Report – Sample Log-In
ient	R.T. Hicks
ste/Time:	5/16/DRE 3:45
rder #:	67-16028
itials:	CK

Sample Receipt Checklist Yes 1.0 mperature of container/cooler? C No recing container/cooler in good condition? 138 No stody Seals intact on shipping container/cooler? Yes No Hor present stody Seals intact on sample bottles? रावा वाहडहको Yes No iain of custody present? No Ž mple Instructions complete on Chain of Custody? 1 No Vas. No. ain of Custody signed when relinquished and received? No ain ci custody agrees with sample label(s) No Yes 1 No intainer labels legible and intact? mple Matrix and properties same as on chain of custody? No 2005 moles in proper container/bottle? ses 1 No mples properly preserved? ارتجلا No mole bottles intact? X No eservations documented on Chain of Custody? YBI No ntainers decumented on Chain of Custody? Es_ No fficient sample amount for indicated test? No Yes samples received within sufficient hold time? 1000 No ALCE ADDIICADE IC samples have zero headspace? Yes No

her observations:

1. 1.

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

.ent:	R.T. HICKS
ate/ Time:	8/3/04 10:51
ıb 1D # :	64103002
itials:	<u> </u>

1.1.11

Sample Receipt Checklist

Client Initials O' °C Temperature of container/ cooler? Yes No XES, No Shipping container in good condition? Yes Custody Seals intact on shipping container/ cooler? No Not-Present Not Present Custody Seals intact on sample bottles/ container? Yes No Chain of Custody present? Æs No 5 No Sample instructions complete of Chain of Custody? Yes Chain of Custody signed when relinguished/ received? No YES :8 Chain of Custody agrees with sample label(s)? Yes No Pwritten on Cont./ Lid Yes No Container label(s) legible and intact? Not-Applicable 10 Sample matrix/ properties agree with Chain of Custody? No Véd #11 Containers supplied by ELOT? œ No #12 Samples in proper container/ bottle? XOS No See Below #13 Samples properly preserved? No Ves See Below #14 Sample bottles intact? tes No #15 Preservations documented on Chain of Custody? Ves. No #16 Containers documented on Chain of Custody? YAS No #17 Sufficient sample amount for indicated test(s)? Yes No See Below #18 All samples received within sufficient hold time? No Yes See Below No Not Applicable #19 VOC samples have zero headspace? Yes

Variance Documentation

Contact:		Contacted by:	Date/ Time:
Regarding:			
			M
Corrective Action Taken:			
}	• ,		
Check all that Apply:		See attached e-mail/ fax Client understands and would like to proceed with an	alvsis
		Cooling process had begun shortly after sampling even	•

Analytical Report

Prepared for: Dale Littlejohn

R.T. Hicks Consultants Ltd. 901 Rio Grande Blvd, NW Ste., F-142 Albuquerque, NM 87104

Project: Samson State BD No.4 Project Number: None Given Location: BD State #4

Lab Order Number: 6H03002

Report Date: 08/09/06

R.T. Hicks Consultants Ltd. 901 Rio Grande Blvd, NW Ste., F-142 Albuquerque NM, 87104 Project: Samson State BD No.4 Project Number: None Given Project Manager: Dale Littlejohn Fax: (413) 403-9968

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-2 (0608021500))	6H03002-01	Water	08-02-2006 15:00	08-03-2006 10:51
MW-1 (0608021555)	6H03002-02	Water	08-02-2006 15:55	08-03-2006 10:51

1 š

Ĩ11

1

1.1

- h

1.1

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte MW-2 (0608021500)) (6H03002-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Chloride Total Dissolved Solids	42.2 444	5.00 10.0	mg/L	10 1	EH60306 EH60901	08/03/06 08/04/06	08/03/06 08/08/06	EPA 300.0 EPA 160.1	
MW-1 (0608021555) (6H03002-02) Water									
Chloride	115	5.00	mg/L	10	EH60306	08/03/06	08/03/06	EPA 300.0	
Total Dissolved Solids	648	10.0		1	EH60901	08/04/06	08/08/06	EPA 160.1	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 4

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60306 - General Preparation (V	VetChem)									
Blank (EH60306-BLK1)				Prepared &	Analyzed:	08/03/06				
Chloride	ND	0,500	mg/L							
LCS (EH60306-BS1)				Prepared &	Analyzed:	08/03/06				
Chloride	9.71	0.500	mg/L	10.0	-	97.1	80-120			
Calibration Check (EH60306-CCV1)				Prepared &	Analyzed:	08/03/06				
Chloride	9.89		mg/L	10.0		98.9	80-120			
Duplicate (EH60306-DUP1)	Sour	-ce: 6H02012-	·01	Prepared &	Analyzed	08/03/06				
Chloride	ND	0.500	mg/L		ND				20	
Matrix Spike (EH60306-MS1)	Sour	-ce: 6H02012-	01	Prepared &	Analyzed	08/03/06				
Chloride	10.2	0.500	mg/L	10.0	ND	102	80-120			
Batch EH60901 - Filtration Preparation										
Blank (EH60901-BLK1)				Prepared: (08/04/06 A		3/08/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EH60901-DUP1)	Sour	-ce: 6H03002-	01	Prepared: (08/04/06 A	nalyzed: 08	3/08/06			
Total Dissolved Solids	470	10.0	mg/L		444			5.69	5	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 4

R.T. Hicks Consultants Ltd. 901 Rio Grande Blvd, NW Ste., F-142 Albuquerque NM, 87104

Notes and Definitions

R5	RPD is outside of historic values
DET	Analyte DETECTED

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

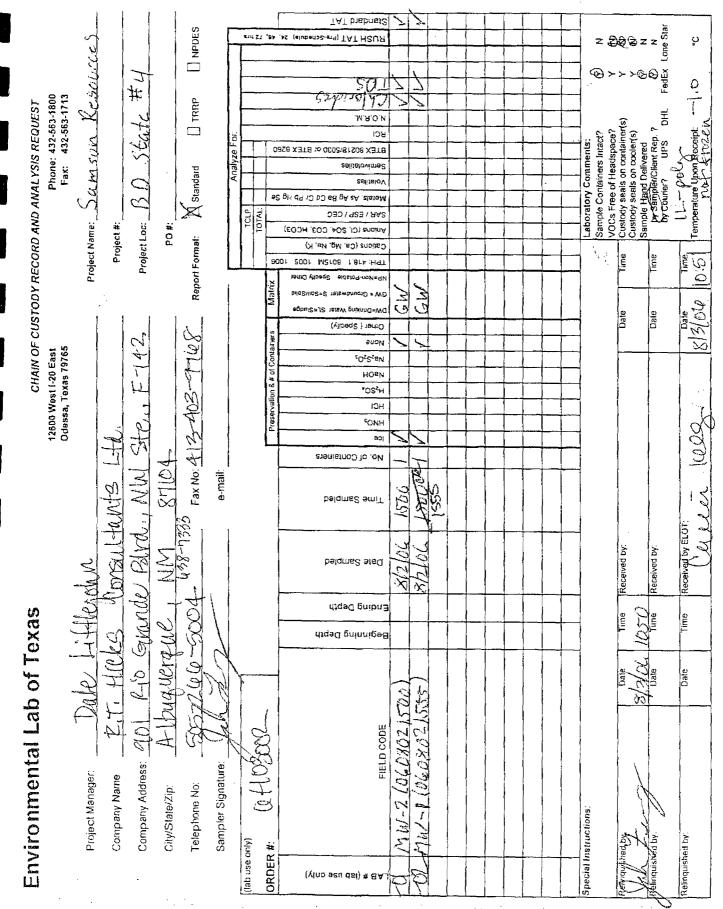
Report Approved By:

Raland Kuthink

8/9/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:


This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 4

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Lent:	R.T. Hicks
ate/ Time:	8/3/04 10:51
и ир ID # :	67103002
itials:	CK

Sample Receipt Checklist

Client Initials 10 °C Temperature of container/ cooler? Yes No Shipping container in good condition? YES No Custody Seals intact on shipping container/ cooler? Yes No Not-Present Not Present Custody Seals intact on sample bottles/ container? Yes No Chain of Custody present? X6s No 5 Sample instructions complete of Chain of Custody? No Yes Chain of Custody signed when relinquished/ received? YES No Chain of Custody agrees with sample label(s)? No :8 Yes D written on Cont./ Lid 9! Container label(s) legible and intact? Yes No Not-Applicable 10 Sample matrix/ properties agree with Chain of Custody? YeD No 11 Containers supplied by ELOT? (Es No #12 Samples in proper container/ bottle? Xes No See Below #13 Samples properly preserved? No œ See Below #14 Sample bottles intact? Хæş No #15 Preservations documented on Chain of Custody? <u>Zes</u> No #16 Containers documented on Chain of Custody? Yes No #17 Sufficient sample amount for indicated test(s)? No Yes See Below #18 All samples received within sufficient hold time? No Yes See Below #19 VOC samples have zero headspace? Yes No Not Applicable

Variance Documentation

Contact:	·	Contacted by:	Date/ Time:	
Regarding:	·· <u>····</u> ·····			
Corrective Action Taker);	· · · · · · · · · · · · · · · · · · ·		
Check all that Apply:		See attached e-mail/ fax		

6 51

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

COVER LETTER

Wednesday, July 26, 2006

Randall Hicks R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104

TEL: (505) 266-5004 FAX (505) 266-0745

RE: Samson BD-04

Dear Randall Hicks:

Order No.: 0607165

Hall Environmental Analysis Laboratory, Inc. received 20 sample(s) on 7/14/2006 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

AZ license # AZ0682 ORELAP Lab # NM100001

1.18

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

	.T. Hicks Consultants, amson BD-04	LTD				La	b Order	: 0607165
Lab ID:	0607165-01			(Collecti			06 10:00:00 AM
Client Sample ID:	UID0028-SIP-EAST					Matrix:	SOIL	
Analyses	······································	Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056 Chloride	A: ANIONS	940	6.0		mg/Kg		20	Analyst: TES 7/25/2006 7:39:36 AM
Lab ID:	0607165-02			(Collecti	ion Date:	7/12/200	06 10:00:00 AM
Client Sample ID:	UID0028-SIP-North					Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056 Chloride	A: ANIONS	1700	6.0		mg/Kg		20	Analyst: TES 7/25/2006 7:57:00 AM
Lab ID:	0607165-03			(Collect	ion Date:	7/12/200)6 10:00:00 AM
Client Sample ID:	UID0028-SIP-South					Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056 Chloride	A: ANIONS	2300	15		mg/Kg		50	Analyst: TES 7/25/2006 8:14:25 AM
Lab ID:	0607165-04			(Collecti	ion Date:	7/12/200	06 10:00:00 AM
Client Sample ID:	UID0028-SIP-West					Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056 Chloride	A: ANIONS	2500	15		mg/Kg		50	Analyst: TES 7/25/2006 8:31:50 AM
Lab ID:	0607165-05			(Collect	ion Date:	7/12/200	06 10:40:00 AM
Client Sample ID:	UID0028-NSEIP-Eas	t				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056 Chloride	A: ANIONS	110	3.0		mg/Kg		10	Analyst: TES 7/24/2006 12:26:05 PM

Date: 26-Jul-06

Qualifiers: *

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 1 of 4

	.T. Hicks Consultants, l amson BD-04	LTD				La	b Order:	0607165
Lab ID:	0607165-06			(Collecti	on Date:	7/12/200	6 10:40:00 AM
Client Sample ID:	UID0028-NSEIP-Nort	ih				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056 Chloride	A: ANIONS	370	3.0		mg/Kg		10	Analyst: TES 7/24/2006 12:43:29 PM
Lab ID:	0607165-07			(Collecti	on Date:	7/12/200	6 10:40:00 AM
Client Sample ID:	UID0028-NSEIP-Sout	th				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056 Chloride	A: ANIONS	320	3.0		mg/Kg		10	Analyst: TES 7/24/2006 1:00:53 PM
Lab ID:	0607165-08			(Collecti	on Date:	7/12/200	6 10:40:00 AM
Client Sample ID:	UID0028-NSEIP-Wes	st				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056 Chioride	A: ANIONS	300	3.0		mg/Kg		10	Analyst: TES 7/24/2006 8:55:31 PM
Lab ID:	0607165-09			(Collecti	on Date:	7/12/200	6 10:15:00 AM
Client Sample ID:	UID0028-SSEIP-East					Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056 Chloride	A: ANIONS	230	3.0		mg/Kg		10	Analyst: TES 7/24/2006 9:12:55 PM
Lab ID:	0607165-10			(Collecti	on Date:	7/12/200	06 10:15:00 AM
Client Sample ID:	UID0028-SSEIP-Nort	h				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056 Chloride	A: ANIONS	220	3.0		mg/Kg		10	Analyst: TES 7/24/2006 9:30:19 PM

Date: 26-Jul-06

Qualifiers:

*

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

	.T. Hicks Consultant amson BD-04	s, LTD				La	b Order	: 0607165
Lab ID:	0607165-11			(Collect	ion Date:	7/12/20	06 10:15:00 AM
Client Sample ID:	UID0028-SSEIP-So	outh				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056 Chloride	A: ANIONS	120	3.0		mg/Kg		10	Analyst: TES 7/24/2006 9:47:44 PM
Lab ID:	0607165-12	<u></u>		(Collect	ion Date:	7/12/20	06 10:15:00 AM
Client Sample ID:	UID0028-SSEIP-W	est				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056 Chloride	A: ANIONS	190	3.0		mg/Kg		10	Analyst: TES 7/24/2006 10:05:09 PM
Lab ID:	0607165-13				Collect	ion Date:	7/12/20	06 10:55:00 AM
Client Sample ID:	UID0028-EDT-Sou	th Center				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056	A: ANIONS							Analyst: TES
Chloride		3000	15		mg/Kg		50	7/25/2006 3:09:15 PM
Bromide		ND	3.0		mg/Kg		10	7/24/2006 10:22:33 PM
Lab ID:	0607165-14				Collect	ion Date:	7/12/20	06 10:55:00 AM
Client Sample ID:	UID0028-EDT-Sou	th East				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056	A: ANIONS					<u> </u>		Analyst: TES
Chloride		850	3.0		mg/Kg		10	7/24/2006 10:39:58 PM
Bromide		ND	3.0		mg/Kg		10	7/24/2006 10:39:58 PM
Lab ID:	0607165-15			 (Collect	ion Date:	7/12/20	06 10:55:00 AM
Client Sample ID:	UID0028-EDT-Sou	ath West				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9056	A: ANIONS							Analyst: TES
Chloride		5400	15		mg/Kg		50	7/25/2006 3:26:40 PM
Bromide		ND	3.0		mg/Kg		10	7/24/2006 10:57:22 PM
-	Value exceeds Maximum Value above quantitation r					•		sociated Method Blank ion or analysis exceeded

Date: 26-Jul-06

Analyte detected below quantitation limits Spike Recovery outside accepted recovery limits

J S

10.31

ND Not Detected at the Reporting Limit

Page 3 of 4

	R.T. Hicks Consultants Samson BD-04	, LTD				La	b Order:	. 0607165
Lab ID: Client Sample ID:	0607165-16 UID0028-EDT-Nort	h Center		(Collecti	ion Date: Matrix:		06 10:55:00 AM
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 9050 Chloride Bromide	6A: ANIONS	3700 ND	15 3.0		mg/Kg mg/Kg		50 10	Analyst: TES 7/25/2006 3:44:05 PM 7/24/2006 11:49:35 PM
Lab ID: Client Sample ID:	0607165-17 UID0028-EDT-Nort	h East		(Collecti	ion Date: Matrix:)6 10:55:00 AM
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 905 Chloride Bromide	6A: ANIONS	1700 ND	6.0 3.0		mg/Kg mg/Kg		20 10	Analyst: TES 7/25/2006 4:01:30 PM 7/25/2006 12:06:59 AM
Lab ID: Client Sample ID:	0607165-18 UID0028-EDT-Nort	h West			Collecti	ion Date: Matrix:	••	06 10:55:00 AM
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 905 Chloride Bromide	6A: ANIONS	2000 ND	6.0 3.0		mg/Kg mg/Kg		20 10	Analyst: TES 7/25/2006 4:18:54 PM 7/25/2006 12:24:23 AM
Lab ID: Client Sample ID:	0607165-19 UID0028-SIPL-Sou	th Large		(Collecti	ion Date: Matrix:		06 11:05:00 AM
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 905 Chloride	6A: ANIONS	1400	6.0		mg/Kg		20	Analyst: TES 7/25/2006 4:36:19 PM
Lab ID: Client Sample ID:	0607165-20 UID0028-EIPL			(Collecti	ion Date: Matrix:		06 11:00:00 AM
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 905 Chloride	6A: ANIONS	7.6	3.0		mg/Kg		10	Analyst: TES 7/25/2006 12:59:11 AM
E	Value exceeds Maximum C Value above quantitation ra Analyte detected below qua Spike Recovery outside acc	nge ntitation limits			H Hol	-	or preparati	ociated Method Blank on or analysis exceeded ing Limit Page 4 of

Date: 26-Jul-06

Hall Environmental Analysis Laboratory, Inc.

QA/QC SUMMARY REPORT

Client: Project:		T. Hicks Consultants, LTD amson BD-04			Worl	Work Order: 0607165			
Analyte		Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RF	PDLimit Qual
Method: E3	DO	na an a							
Sample ID: M	B-10840		MBLK			Batch	ID: 10840	Analysis Date:	7/24/2006 10:24:13 AM
Chloride		ND	mg/Kg	0.30					
Bromide		ND	mg/Kg	0.30					
Sample ID: M	B-10840		MBLK			Batch	ID: 10840	Analysis Date:	7/24/2006 10:41:37 AM
Chloride		ND	mg/Kg	0.30					
Bromide		ND	mg/Kg	0.30					
Sample ID: L	CS-10840		LCS			Batch	ID: 10840	Analysis Date:	7/24/2006 10:59:02 AM
Chlaride		14.77	mg/Kg	0.30	98.4	90	110		
Bromide		7.710	mg/Kg	0.30	103	90	110		

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Page 1

COVER LETTER

Wednesday, October 18, 2006

Randall Hicks R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104

TEL: (505) 266-5004 FAX (505) 266-0745

RE: Samson BD-04

Dear Randall Hicks:

Order No.: 0610174

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 10/17/2006 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

EN L

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001

4901 Hawkins NE © Suite D © Albuquerque, NM 87109 505.345.3975 © Fax 505.345.4107 www.hallenvironmental.com

Hall Envir	onmental Analy	D. D	ate: 18-0	18-Oct-06		
CLIENT:	R.T. Hicks Consulta	nts, LTD		Client Sample	ID: SW P	Pit 10.16
Lab Order:	0610174			Collection D	ate: 10/17	/2006 10:00:00 AM
Project:	Samson BD-04			Date Receiv	/ed: 10/17	/2006
Lab ID:	0610174-01			Mat	rix: SOIL	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	9056A: ANIONS					Analyst: TES
Chloride		950	3.0	mg/Kg	10	10/17/2006 4:44:43 PM

		a manana na sa si kanana ka ka kanana ka ka kanana			·····
Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Metho	sd Blank
 	• E ···	Value above quantitation range		Holding times for preparation or analysis	rexceeded
	t	Analyte detected below quantitation limits	MCL	Maximum Contaminant Level	
	ND	Not Detected at the Reporting Limit	RL	Reporting Limit	
	S	Spike recovery outside accepted recovery limits			Page 1 of 1

I

QA/QC SUMMARY REPORT

Client: Project:	R.T. Hiel Samson I	cs Consultants, 3D-04	LTD					We	ork Order:	0610174
Analyte		Result	Units	PQL	%Rec	LowLimit Hig	hLimit	%RPD	RPDLimit QL	18J
Method: SW Sample ID: M	/9056A B-11511	Mina	MBLK	ar		Balch ID:	11511	Analysis Dat	e: 10/17/2006	31:25:11 PM
Chloride		ND	mg/Kg	5.0						

Quali	fiers:		and a second
 Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
R	RPD outside accepted recovery limits	S	Spike recovery outside accepted recovery limits

S Spike recovery outside accepted recovery limits 2/3

Page 1

I

Client Name RT HICKS	٦	Date and Tim	ne Received:	10/17/2006
Work Order Number 0610174	/	Received b	y AT	
Checklist completed by	Date	10/17/0	ilo	
Matrix Carrie	r name <u>Client drop-</u>	off		
Shipping container/cooler in good condition?	Yes 🔽		Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🗌	Not Present	Not Shipped 🗹
Custody seals intact on sample bottles?	Yes 🗌	No 🗹	N/A	
Chain of custody present?	Yes 🗹	No 🗆		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗔		
Chain of custody agrees with sample labels?	Yes 🔽	No 🗀		
Samples in proper container/bottle?	Yes 🗹			
Sample containers intact?	Yes 🗹	No 🗔		
Sufficient sample volume for indicated test?	Yes 🗹			
All samples received within holding time?	Yes 🗹			
Water - VOA vials have zero headspace? No VOA vi	lals submitted 🔽	Yes 🗌	No 🗆	
Water - pH acceptable upon receipt?	Yes 🗌		N/A	
Container/Temp Blank temperature?	19°	4° C ± 2 Accep If given sufficie		
COMMENTS:				
Client contacted Date contact	led:	Pe	rson conlacted	<u>.</u>
Contacted by: Regarding		22.2. (B. 1.). (B. 1.).		
Comments:		····	t ta an	,,
			, . <u></u>	
			5. 19. 10. 10. 10. 10. 10. 10. 10. 10. 10.	
Corrective Action		••••••••••••••••••••••••••••••••••••••		

3/3

HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite 0 Albuquerque, New Mexico 87109 Tel. 505.345.3975 Fax 505.345,4107 www.hallenvironmental.com		10 (۱۲۵۵ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۵۹۵ ۲۰۹۹ ۲۰۹۹ ۱۹۹۹ ۲۰۹۹ ۱۹۹۹ ۱۹۹۹ ۲۰۹۹ ۱۹۹۹ ۱۹۹۹ ۲۰۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۲۰۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱	3 8 8 8 8 8 8 8 8 8		THE BIG BUCKETS!
	(yinO aniloza	31EX + MT8E + TM8's 91EX + MT8E + TPH (Ga PH (Method 418.1) 91 (Gas 91			Hermarks: U.S.C.
04/00 Package: Stul 1 Level 4 1 Other: Project Name: SAMSON PD-04	Project #: Project Manager: R , Hrcks	R HLLS MPERALURE: ANNENENCO Adume Preservative	1 - 10/07 Enum English		Received By: (Signature) Received By: (Signature)
CHAIN-OF-CUSTODY RECORD Dient: R.T. Hicks Consulting	Rio GRANDE NW	Matrix Sample I.D. No.	SOIL SW PIT 10.16		Relinquisted By: (9/gnature) Ann (1111 - 112) Relinquished By: (Signature)
CHAIN-OF-	Address: 901 RL	Phone #: Fax #: Date	01 90.71. Oi		Date: Time: Date: Time: Date: Time:

The Fill of the second states of the second states

 h

j

COVER LETTER

Thursday, December 21, 2006

Randall Hicks Atkins Engineering Associates 2904 West Second Street Roswell, NM 88201

TEL: (505) 624-2420 FAX (505) 624-2421

RE: Samson State BD-04 Samples

Order No.: 0612227

Dear Randall Hicks:

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 12/20/2006 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001

11 11 12

4901 Hawkins NE ©Suite D ©Albuquerque, NM 87109 505.345.3975 ©Fax 505.345.4107 www.hallenvironmental.com

CLIENT: Lab Order: Project:	BBBB			-	12/18	4" Monitor Well Lower 12/18/2006 12:00:00 PM 12/20/2006		
Lab ID:	0612227-01	, oumpies			Matrix: AQUE			
Analyses		Result	PQL Qua	l Units	DF	Date Analyzed		
EPA METHOD Chloride	300.0: ANIONS	2000	10	mg/L	100	Analyst: TES 12/21/2006		
EPA METHOD Total Dissolved		3700	20	mg/L	1	Analyst: KS 12/20/2006		

Date: 21-Dec-06

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	MCL	Maximum Contaminant Level
	ND	Not Detected at the Reporting Limit	RL	Reporting Limit
	S	Spike recovery outside accepted recovery limits		Page

1

Page 1 of 2

CLIENT:	Atkins Engineerin	g Associates		С	Client Sample ID: 4		4" Monitor Well Upper		
Lab Order: 0612227			Collection Date: 12/18/2006 12:15:00 PM						
Project:Samson State BD-04 SamplesLab ID:0612227-02			Date Received:				12/20/2006		
			Matrix: AQUEOUS						
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD Chloride	300.0: ANIONS	3900	10		mg/L	100	Analyst: TES 12/20/2006 3:09:42 PM		
EPA METHOD	160.1: TDS						Analyst: KS		

Date: 21-Dec-06

Qualifiers:

* Value exceeds Maximum Contaminant Level

Ε Value above quantitation range J

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 2 of 2

Date: 21-Dec.00	Date:	21-Dec-06
-----------------	-------	-----------

QA/QC SUMMARY REPORT

	Engineering Asse State BD-04 Sa						Worl	c Order: 0612227
Analyte	Result	Units	PQL	%Rec	LowLimit Hig	ghLimit	%RPD RF	DLimit Qual
Method: E300 Sample ID: MBLK	*****	MBLK			Batch ID:	R21895	Analysis Date:	12/20/2006 12:33:03 PM
Chloride Sample ID: MBLK	ND	mg/L MBLK	0.10		Batch ID:	R21901	Analysis Date:	12/21/2006 8:18:18 AM
Chloride Sample ID: LCS ST300-0602	ND 26	mg/L LCS	0.10		Batch ID:	R21895	Analysis Date:	12/20/2006 12:50:27 PM
Chloride	4.780	mg/L	0.10	95.6	90 1	10		
Method: E160.1 Sample ID: MB-12010		MBLK			Batch ID:	12010	Analysis Date:	12/20/2006
Total Dissolved Solids Sample ID: LCS-12010	ND	mg/L LCS	20		Batch ID:	12010	Analysis Date:	12/20/2006
Total Dissolved Solids	977.0	mg/L	20	97.7	80 1	20		

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

1.7

S Spike recovery outside accepted recovery limits

Page 1

he i

11. 11

16.1

1.1.1

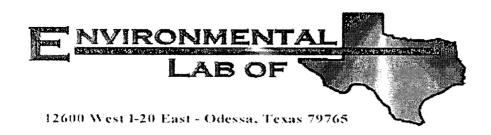
1

1

Î

.

1 141


T1

	Sample	Rece	eipt Ch	ecklist			
Client Name ATK				Date and Time	Received:	12/20/	2006
Work Order Number 0612227				Received by	AT		
Checklist completed by	the		Daie	2/20/00	2		
Małrix	Carrier name	<u>Grey</u>	hound				
Shipping container/cooler in good condition?		Yes	V	No 🗆	Not Present		
Custody seals intact on shipping container/cooler?		Yes	\checkmark	No 🗆	Not Present	Not Shipped	
Custody seals intact on sample bottles?		Yes		No 🗹	N/A		
Chain of custody present?		Yes		No 🗔			
Chain of custody signed when relinquished and recei	ived?	Yes	\checkmark	No 🗔			
Chain of custody agrees with sample labels?		Yes	\checkmark	No 🗆			
Samples in proper container/bottle?		Yes	\checkmark	No 🗆			
Sample containers intact?		Yes	\checkmark	No 🗆			
Sufficient sample volume for indicated test?		Yes	\checkmark	No 🗆			
All samples received within holding time?		Yes		No 🗋			
Water - VOA vials have zero headspace? N	o VOA vials subn	nitted	\checkmark	Yes 🗆	Νο 🗆		
Water - pH acceptable upon receipt?		Yes		No 🗔	N/A 🗹		
Container/Temp Blank temperature?			1°	4° C ± 2 Accepta If given sufficient			
COMMENTS:					**	 	
Client contacted Dat	e contacied:				on contacted	 	
	e comacieo					 	
Contacted by: Reg	parding	·				 ·	
Commenis:						 	
					-		
Corrective Action						 	
						• .	
•							

20	Bubbles or Headspace (Y or N)	IIA				
HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuquergue, New Mexico 87109 Tel. 505.345.3975 Fax 505.345.4107 Www.hallenvironmental.com	(Kachod BO21) (HA9 or PALASIS (HA9 or PAP) (HA9 or AV91 OT (ADV) BAR (ADV) (DA A A 28 38 38 38 38 38				our Turn Around < sults to Randall Hicks hicks TDS-
I A 4 A 1	C (Method 8021) C (Method 8023) C (Method 80758 (Gasoline Only) H (Method 80758 (GasyDiesel) C (Method 504.1) C (Method 504.1)	19 11 11				Remarks 24- how results Send Results CET Hicks
ad/ ac Package: Std D Level 4 D Other: BD-Of Samples	Project #: RTH BD\$4, SAM.\$ Project Manager: Project Manager: Randcall Hicks Sampler: M. Bartes Sample Temperature: Sample Temperature: Number/Molume	1-500,mL HUUJ 200/2227	7 7			Received By, (Signaturel) Received By: (Signaturel, 2/20/UU 1030
CHAIN-OF-CUSTODY RECORD Client: Alleins Engineering Associates	Address: 2904 Nest Second St. Rosquell, NM 88 201 Phone #: 505. 624. 2420 Fax #: 505. 624. 2420 Data Time Matrix Sample I.D. No.	1200 Agreeds 4" Aloni-to-Well Lower	\rightarrow			Date: Date: Relinquished By: (Signature) Date: Time: Relinquished By: (Signature)
CHAIN-C	Address: 290 Phone #: 50 Fax #: 50 Date Tin	12/16/06/12	1215/06 1215		F	Date: Do Time: Date: Time:

1

1-6

Analytical Report

Prepared for: Dale Littlejohn

R.T. Hicks Consultants Ltd. 901 Rio Grande Blvd, NW Ste., F-142 Albuquerque, NM 87104

> Project: Samson Livestock 30 Project Number: L-124-1206 Location: Lea Co., NM

> Lab Order Number: 6L14006

Report Date: 12/20/06

R.T. Hicks Consultants Ltd.	Project:	Samson Livestock 30	Fax: (413) 403-9968
901 Rio Grande Blvd, NW Ste., F-142	Project Number:	L-124-1206	
Albuquerque NM, 87104	Project Manager:	Dale Littlejohn	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	6L14006-01	Water	12/12/06 15:05	12-14-2006 14:30

. .

l i lui

Project: Samson Livestock 30 Project Number: L-124-1206 Project Manager: Dale Littlejohn Fax: (413) 403-9968

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte MW-1 (6L14006-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Chloride Total Dissolved Solids	5210 9600	5.00 10.0	mg/L	l 	EL61513 EL61530	12/15/06 12/18/06	12/15/06 12/19/06	SW846-9253 EPA 160.1	·····

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 4

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL61513 - General Preparation (We	tChem)									
Blank (EL61513-BLK1)				Prepared &	Analyzed:	12/15/06				
Chloride	0.00	5.00	mg/L							
LCS (EL61513-BS1)				Prepared &	Analyzed:	12/15/06				
Chloride	91.5	5.00	mg/L	100		91.5	80-120			
Matrix Spike (EL61513-MS1)	Sou	ce: 6L14006-	01	Prepared &	Analyzed:	12/15/06				
Chloride	5480	5.00	mg/L	250	5210	108	80-120			
Matrix Spike Dup (EL61513-MSD1)	Sour	ce: 6L14006-	01	Prepared &	Analyzed:	12/15/06				
Chloride	5480	5.00	mg/L	250	5210	108	80-120	0.00	20	
Reference (EL61513-SRM1)				Prepared &	Analyzed:	12/15/06				
Chloride	50.0		mg/L	50.0	· · · ·	100	80-120			
Batch EL61530 - Filtration Preparation										
Blank (EL61530-BLK1)				Prepared: 1	12/18/06 A	nałyzed: 12	2/19/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EL61530-DUP1)	Sour	ce: 6L14006-	01	Prepared: I	12/18/06 A	nalyzed: 12	2/19/06			
Total Dissolved Solids	9510	10,0	mg/L		9600			0.942	20	
Duplicate (EL61530-DUP2)	Sour	ce: 6L15006-	03	Prepared: 1	12/18/06 A	nalyzed: 12	/19/06			
Total Dissolved Solids	1250	10.0	mg/L		1300			3.92	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 4

R.T. Hicks Consultants Ltd. 901 Rio Grande Blvd, NW Ste., F-142 Albuquerque NM, 87104

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Raland Kituts

12/20/2006

Raland K. Tuttle, Lab Manager Celcy D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 4

12600 West I-20 East Odessa, Texas 79765	12600 West I-20 East Phone: 432-563-1800 Odessa, Texas 79765 Fax: 432-563-1713									CH	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	F CU:	100	Y RE	ORD:	AND	ANAI	YSIS.	SEQL	EST	
Project Manager: Dale Littlejohn	ittlejohn									ı	ď.	oject	Name	လို	msc	n Li	/est	Project Name: Samson Livestock 30	0		
Company Name RT Hicks Consultants Ltd	ks Consultants Ltd									,		đ	ject 1	انــــــــــــــــــــــــــــــــــــ	24-	Project #: <u>L-124-1206</u>				ĺ	
Company Address: P.O. Box 7624	ox 7624											Proje	st Lot		a C	Project Loc: Lea Co., NM	>				
city/State/Zip: Midland, Texas	d, Texas 79708									1			# 04								
Telephone No: (432) 5 Samular Simmature	528-3878	4	Fax No: (432) 689-4578 (Fax)	432)	689	-457	8 (F	ax)													
	5											L				Analyze For	e For				
									نے	-mall	7			TCLP: TOTAL:		·					l
						Preservative	vative			Matrix	خ	90			05		0				
ULLANUE LAB# (lab use only)	FIELD CODE	belqmeS etsD	balqms2 amiT	No. of Containers	fonh	NºOH HCI	' 0\$ ² H	Binow Miner & Sherify	Ofher (Specify)	əßpnis	Other (specify): Soil	101 2001 M3108 1.814 HGT	Cations (Ca, Mg, Va, K) Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Volatiles Volatiles Volatiles	semivolatiles	BTEX 80219/5030 or BTEX 826 RCI	N.O.R.M.	Chloride Bromide	abilo2 bevlossi0 lstoT	
		12/12/06	1505	× ×		<u> </u>		×	×										×	×	
				<u> </u>					<u> </u>								-		<u> </u>		i
														ļ							
				-		$\left \right $		-			-		-								
Special Instructions: Send Invoice to RT Hicks Consult. 901 Rio Grand Dale Littlejohn at the adress above.	Send Invoice to RT Hicks Consult 901 Rio C Dale Littlejohn at the adress above.	srande Blvd. Nv	e Błvd. NW, Suite F-142, Albuquerque, NM 87104;	12. AI	- nbnc	erque		871	8	Sent	Send results to	ults t		ample emper	Conta ature	Sample Containers Intract? Temperature Upon Receipt:	Intact Recei	-			z
Relinquistred by Turdey and	Date Time F	Received by:							ã	Date		Time	<u>i · · · ·</u>		2.0						
Relinquished by:	Date Time F	Received by ELOT:			· ·				<u>م</u> .	Date .		Time	T.	W/a (abel	ß	é					, c

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Chent:	RT Hicke
Date/ Time:	12/14/010 2:30
Lab IO #	UHI 4000
Initials	CLC

Sample Receipt Checklist

				Client Initia
#1	Temperature of container/ cooler?	Yes	No	2.0 °C
#2	Shipping container in good condition?	Tes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
#5	Chain of Custody present?	YES	No	
#6	Sample instructions complete of Chain of Custody?	(E)	No	
#7	Chain of Custody signed when relinquished/ received?	Stes.	No	
#8	Chain of Custody agrees with sample label(s)?	Jes	No	1D written on Cont./ Lid
#9	Container label(s) legible and intact?	Xes	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	(es	No	
#11	Containers supplied by ELOT?	(es	No	
#12	Samples in proper container/ bottle?	XEBS	No	See Below
#13	Samples properly preserved?	Xas	No	See Below
#14	Sample bottles intact?	Yes	No	
#15	Preservations documented on Chain of Custody?	Yes	No	
#16	Containers documented on Chain of Custody?	Yes	No	
#17	Sufficient sample amount for indicated test(s)?	Tes	No	See Below
#18	All samples received within sufficient hold time?	Yes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicate
#20	VOC samples have zero headspace?	Yes	No	Not Applicable

Variance Documentation

Contact:	Contacted by:	Date/ Time:
Regarding:		
Corrective Action Taken:		

Check all that Apply:

See attached e-mail/ fax

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

- 1

. 17.

111

14. L. L. L. A. I.

COVER LETTER

Monday, January 22, 2007

Randall Hicks R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104

TEL: (505) 266-5004 FAX (505) 266-0745

RE: Samson BD 04

Dear Randall Hicks:

Order No.: 0701130

Hall Environmental Analysis Laboratory, Inc. received 13 sample(s) on 1/10/2007 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

111 1 1

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001

4901 Hawkins NE Suite D Albuquerque, NM 87109 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com

	R.T. Hicks Consulta Samson BD 04	ants, LTD			La	b Order:	0701130
Lab ID:	0701130-01			Col	lection Date:	1/8/2007	9:32:00 AM
Client Sample ID:	SB-NW 10'				Matrix:	SOIL	
Analyses		Result	PQL	Qual U	nits	DF	Date Analyzed
EPA METHOD 905 Chloride	6A: ANIONS	1900	6.0	m	g/Kg	20	Analyst: TES 1/16/2007 5:45:20 PM
Lab ID:	0701130-02			Col	lection Date:	1/8/2007	9:44:00 AM
Client Sample ID:	SB-NW 15'				Matrix:	SOIL	
Analyses		Result	PQL	Qual U	nits	DF	Date Analyzed
EPA METHOD 905 Chloride	6A: ANIONS	1100	3.0	m	g/Kg	10	Analyst: TES 1/16/2007 6:37:34 PM
Lab ID:	0701130-03	······		Col	llection Date:	1/8/2007	10:18:00 AM
Client Sample ID:	SB-NW 35'				Matrix:	SOIL	
Analyses		Result	PQL	Qual U	nits	DF	Date Analyzed
EPA METHOD 905 Chloride	6A: ANIONS	25	0.30	m	g/Kg	1	Analyst: TES 1/16/2007 6:36:43 AM
Lab ID:	0701130-04			Co	llection Date:	1/8/2007	12:35:00 PM
Client Sample ID:	SB-4D 10'				Matrix:	SOIL	
Analyses		Result	PQL	Qual U	nits	DF	Date Analyzed
EPA METHOD 905 Chioride	6A: ANIONS	15	0.30	m	g/Kg	1	Analyst: TES 1/16/2007 6:54:07 AM
Lab ID:	0701130-05		<u></u>	Co	llection Date:	1/8/2007	1:20:00 PM
Client Sample ID:	SB-4D 35'				Matrix:	SOIL	
Analyses		Result	PQL	Qual U	Inits	DF	Date Analyzed
EPA METHOD 905 Chloride	6A: ANIONS	3.6	0.30	m	ıg/Kg	1	Analyst: TES 1/16/2007 7:11:31 AM

Date: 22-Jan-07

٠ Value exceeds Maximum Contaminant Level

Е Value above quantitation range

Qualifiers:

1

1 h i - 1-

Analyte detected below quantitation limits 1

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits 1/5 S

T E

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page I of 3

	R.T. Hicks Consultan Samson BD 04	nts, LTD		····	Lab Or	der: 0701130	
Lab ID:	0701130-06			Collectio	n Date: 1/8/2	2007 4:10:00 PM	
Client Sample ID:	SB-4D 80'			1	Matrix: SOI	L	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed	
EPA METHOD 905 Chloride	6A: ANIONS	8.9	0.30	mg/Kg	1	Analyst: TES 1/16/2007 2:45:54 PM	
Lab ID:	0701130-07			Collectio	n Date: 1/9/2	2007 12:01:00 PM	
Client Sample ID:	SB-W 5'			j	Matrix: SOI	L	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed	
EPA METHOD 905 Chioride	56A: ANIONS	2400	15	mg/Kg	50	Analyst: TES 1/18/2007 4:05:32 PM	
Lab ID:	0701130-08			Collectio	n Date: 1/9/	2007 12:10:00 PM	
Client Sample ID:	: SB-W 10']	Matrix: SOI	L	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed	
EPA METHOD 905 Chloride	56A: ANIONS	1300	6.0	mg/Kg	20	Analyst: TES 1/17/2007 11:07:05 PM	
Lab ID:	0701130-09			Collectio	n Date: 1/9/	2007 1:09:00 PM	
Client Sample ID	: SB-W 35'				Matrix: SOI	L	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed	
EPA METHOD 90! Chloride	56A: ANIONS	4.8	0.30	mg/Kg	1	Analyst: TES 1/19/2007 4:02:28 PM	
Lab ID:	0701130-10			Collectio	on Date: 1/9/	2007 1:40:00 PM	
Client Sample ID	: MW-1		Matrix:		Matrix: AQ ¹	AQUEOUS	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed	
EPA METHOD 30 Chloride	0.0: ANIONS	97	0.50	mg/L	5	Analyst: TES 1/11/2007 4:24:03 PM	

Date: 22-Jan-07

Qualifiers: ٠ Value exceeds Maximum Contaminant Level E Value above quantitation range Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits 2 / 5 S

٦.

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 2 of 3

	R.T. Hicks Consulta Samson BD 04	nts, LTD		L	ab Order:	: 0701130	
Lab ID: 0701130-11						1/9/2007 1:10:00 PM	
Client Sample ID: MW-2			Matrix: AQUEOUS				
Analyses		Result	PQL	Qual Units	DF	Date Analyzed	
EPA METHOD 300 Chloride	.0: ANIONS	46	0.50	mg/L	5	Analyst: TES 1/11/2007 4:41:28 PM	
Lab ID:	0701130-12			Collection Date	: 1/9/2007	7 3:55:00 PM	
Client Sample ID:	MW-4D			Matrix: AQUEOUS		US	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed	
EPA METHOD 300 Chloride	.0: ANIONS	100	0.50	mg/L	5	Analyst: TES 1/11/2007 4:58:52 PM	
Lab ID:	0701130-13			Collection Date	: 1/9/2007	7 4:00:00 PM	
Client Sample ID:	MW-4S		Matrix:		: AQUEO	AQUEOUS	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed	
EPA METHOD 300.0: ANIONS Chloride		180	0.50	mg/L	5	Analyst: TES 1/11/2007 5:16:16 PM	

Date: 22-Jan-07

Qualifiers: * Value exceeds Maximum Contaminant Level В Analyte detected in the associated Method Blank Ε Value above quantitation range н Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits MCL Maximum Contaminant Level RL Reporting Limit ND Not Detected at the Reporting Limit Page 3 of 3 Spike recovery outside accepted recovery limits 3 / 5 \$

QA/QC SUMMARY REPORT

Client: Project:

R.T. Hicks Consultants, LTD Samson BD 04

Work Order: 0701130

Analyte	Result	Units	PQL	%Rec	LowLimit HighLimit	%RPD RPDLimit Qual
Method: SW9056A						
Sample ID: 0701130-09AMSD		MSD			Batch ID: 12146	Analysis Date: 1/19/2007 4:19:53 PM
Chloride	19.14	mg/Kg	0.30	95.3	80 120	1.48 20
Sample ID: MB-12117		MBLK			Batch ID: 12117	Analysis Date: 1/15/2007 12:54:47 PN
Chloride	ND	mg/Kg	0.30			
Sample ID: LCS-12117		LCS			Batch ID: 12117	Analysis Date: 1/15/2007 1:12:12 PM
Chloride	15.35	mg/Kg	0.30	102	90 110	
Sample ID: 0701130-09AMS		MS			Batch ID: 12146	Analysis Date: 1/19/2007 4:37:17 PM
Chloride	19.42	mg/Kg	0.30	97.2	80 120	
Method: E300						
Sample ID: MBLK		MBLK			Batch ID: R22088	Analysis Date: 1/11/2007 11:10:43 AN
Chloride	ND	mg/L	0.10			
Sample ID: LCS ST300-06026		LCS			Batch ID: R22088	Analysis Date: 1/11/2007 11:28:07 AM
Chloride	4.688	mg/L	0.10	93.8	90 110	

Qualifiers:

111

- E Value above quantitation range
- 3 Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

1 11 1

1.16

H H

14

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

S

4 / 5

Page 1

Hall Environmental Analysis Laboratory, Inc.

.

Samp	e Receipt Ch	ecklist		
Client Name RT HICKS		Date and Time	Received:	1/10/2007
Work Order Number 0701130		Received by	GLS	
Checklist completed by <u>Jamure</u> <u>Anon</u>	Jan Date	10,07		
Malrix Carrier nam	e <u>Client drop-o</u>	ff		
Shipping container/cooler in good condition?	Yes 🗹		Not Present	t 🗖
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🗖	Not Present	t 🗋 Not Shipped 🗹
Custody seals intact on sample bottles?	Yes 🗆	No 🗆	N/A	
Chain of custody present?	Yes 🗹	No 🗔		
Chain of custody signed when relinquished and received?	Yes 🗹			
Chain of custody agrees with sample labels?	Yes 🗹			
Samples in proper container/bottle?	Yes 🗹	No 🗔		
Sample containers intact?	Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗹			
All samples received within holding time?	Yes 🗹	No 🗆		
Water - VOA vials have zero headspace? No VOA vials su	ubmitted 🗹	Yes 🗌	No 🗆]
Water - pH acceptable upon receipt?	Yes 🗌	No 🗆	N/A 🗹	3
Container/Temp Blank temperature?	3°	4° C ± 2 Accepta If given sufficient		
COMMENTS:				
Client contacted Date contacted:		Pers	on contacted	
Contacted by: Regarding				
Comments: Murk called and co	Firmed	co lection	n tin	nes 3 dates for
Samplis 1-6 as collected o	in 1 - 8 - 1	07.0	-75 1-11	-07
Corrective Action				······································
			Andre and Andreas and Andreas	
	<u></u>	<u> </u>		
	5 / 5			

í.

HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuquerque, New Maxico 87109 Tel. 5065.345. 8375 Fax 505.345.4107 www.hallenvironmental.com	02, P0,, 50,) 28's (8082) 28's (8082) 29:50 (Y or V)	и, "Ои "г. 10 (40 (40v-ir (40v-ir (5,6)	1808 170 1805 10 10 10 10 10 10 10 10 10 10 10 10 10	X		×	X	·X	XX	X		- -
	{	97 + 387 82108 bo 1.814 bor 1.908 bor 1.908 bor	M + Xəta									Remarks:
QA/ GC Package: Std C Level 4 C Other: Project Name: SOMBON BD CM	Project Manager: Rondy Hicks	Sample Temperature:	Number/Volume HgCl ₂ HND ₃ OTO//3D	1-46z (co)	3 2	7	2 	9	۲ ک 			Received By (Signature) (- 10-010)
CHAIN-OF-CUSTODY RECORD Client: R.T. Hicks COMSULADAS, LTD.		500-2010-200A	Date Time Matrix Sample I.D. No.	2932-301/ 3B-NW 10'	21 MN-25 102 11-10 12-84	1 3B-40	HE-67 112. 501 38-40 36	110 BOIL SB-4D	1-9-07 1221 BOIL 5B-W 5			Date: Time: Religneished By (Dignature) 1/0/07 1/04 6 7/007 Date: Time: Relinquished By: (Signature)

I

1. 1

i ı

HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 Tel. 505:345.3975 Fax 505:345.4107 www.hallenvironmental.com	(†508) z'8MT + 38TM + X3T8 (†508) z'8MT + 38TM + X3T8 (fissol) H9T + 38TM + X3T8 (fissol) 88708 bortaem (fischod 80708 (fischod 804)) (fischod 8070 (fischod 807)) (fischod 8070 (fischod 807)) (fischod 808) (fischod 808) (fisch				Remarks:
QA/ GC Package: Std D Level 4 D Other: Project Name: Project #:	Project Manager: Project Manager: Sampler: Sample Temperature: Number/Volume HgCl ₂ HNO ₃	100	13		Receiled by: (Signature)
CHAIN-OF-CUSTODY RECORD Client: RT. Hicks CCTEMHENHS, CTD. Address:	Phone #: 605-766-5004 Fax #: Date Time Matrix Sample I.D. No.	1-9-07 1340 Waler MW-1	1-9-67 1555 MCHER MIN- 45		Date: Time: Relinguished By: (Sigfrature) 1/1 of o7 1/しゲレ Relinquished By: (Signature) Date: Time: Relinquished By: (Signature)

14 110

11. 12.

E ă -

11

H

1

17F

COVER LETTER

Monday, February 19, 2007

Randall Hicks R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142

Albuquerque, NM 87104

TEL: (505) 266-5004 FAX (505) 266-0745

RE: Samson BD 04

Dear Randall Hicks:

Order No.: 0702070

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 2/7/2007 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

11111

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001

4901 Hawkins NE Suite D Albuquerque, NM 87109 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	R.T. Hicks Consul	tants, LTD		С	lient Sample ID:	MW-3	3 upper 600 BBL's pumpe
Lab Order:	0702070				Collection Date:	2/6/20	07 9:45:00 AM
Project:	Samson BD 04				Date Received:	2/7/20	007
Lab ID:	0702070-01				Matrix:	AQUI	EOUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS	······································					Analyst: TES
Chloride		2500	10		mg/L	100	2/8/2007 3:50:25 PM
EPA METHOD	160.1: TDS						Analyst: KS
Total Dissolved	Solids	4400	20		mg/L	1	2/13/2007

Hall Environmental Analysis Laboratory, Inc.

Date: 19-Feb-07

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Bl	ank
	Ē	Value above quantitation range	н	Holding times for preparation or analysis exc	eeded
	J	Analyte detected below quantitation limits	MCL	Maximum Contaminant Level	
	ND	Not Detected at the Reporting Limit	RL	Reporting Limit	D 1-61
· .	S	Spike recovery outside accepted recovery limits 1/3			Page 1 of 1

1.1.11

11

QA/QC SUMMARY REPORT

Client: R.T. Hicks Consultants, LTD 0702070 **Project:** Samson BD 04 Work Order: LowLimit HighLimit %RPD RPDLimit Qual Analyte Units PQL %Rec Result Method: E300 Analysis Date: 2/7/2007 10:47:06 AM Sample ID: MBLK MBLK Batch ID: R22409 Chloride тg/L 0.10 ND 2/8/2007 1t:12:36 AM Sample ID: MBLK MBLK Batch ID: R22428 Analysis Date: Chloride ND mg/L 0.10 2/7/2007 11:04:31 AM Batch ID: R22409 Analysis Date: Sample ID: LCS ST300-06026 LCS 90 110 Chloride 4.773 mg/L 0.10 95.5 2/8/2007 11:30:00 AM Sample ID: LCS ST300-06026 LCS Batch ID: R22428 Analysis Date: Chloride 4.837 0.10 96.7 90 110 mg/L Method: E160.1 2/13/2007 MBLK Batch ID: 12301 Analysis Date: Sample ID: MB-12301 **Total Dissolved Solids** mg/L 20 ND 2/13/2007 Batch ID: Analysis Date: 12301 Sample ID: LCS-12301 LCS **Total Dissolved Solids** 992.0 20 99.2 80 120 mg/L

Qualifiers:

E Value above quantitation range

1 10

- HT - K

- E fa

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

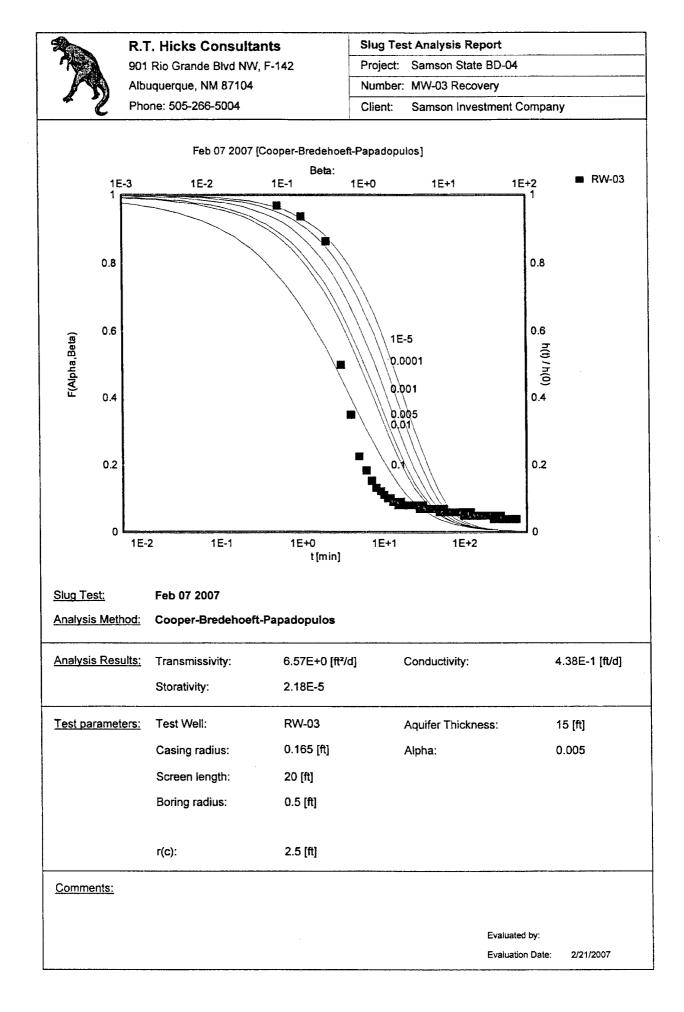
S 2/3 c-ite recovery outside accepted recovery limits

Page I

Hall Environmental Analysis Laboratory, Inc.

1.1

int 1 - 5 6 6 6


	Sample	Receipt Che	ecklist			
Client Name RT HICKS			Date and Time	e Received:	2	/7/2007
Work Order Number 0702070	\bigcirc		Received by	AT		
Checklist completed by	Shin	1 Date	21	7/07		
Mətrix	Carrier name	Client drop-of	f			
Shipping container/cooler in good condition?		Yes 🗹	No 🗔	Not Present		
Custody seals intact on shipping container/cooler	?	Yes 🗌	No 🗔	Not Present	Not Shipped	\checkmark
Custody seals intact on sample bottles?		Yes 🗆	No 🗹	N/A		
Chain of custody present?		Yes 🗹	No 🗌			
Chain of custody signed when relinquished and r	eceived?	Yes 🗹	Na 🗖			
Chain of custody agrees with sample labels?		Yes 🗹				
Samples in proper container/bottle?		Yes 🗹	No 🗖			
Sample containers intact?		Yes 🗹	No 🗆			
Sufficient sample volume for indicated test?		Yes 🗹	No 🗆			
All samples received within holding time?		Yes 🗹	No 🗔			
Water - VOA vials have zero headspace?	No VOA vials subm	nitted 🗹	Yes 🗆			
Water - Preservation labels on bottle and cap ma	itch?	Yes 🗆	No 🗆	N/A 🗹		
Water - pH acceptable upon receipt?		Yes 🗌	No 🗆	N/A 🔽		
Container/Temp Blank lemperature?		6°	4" C ± 2 Accept			
COMMENTS:			If given sufficien	it time to cool.		
	<u> </u>					
Client contacted	Date contacted:	d b . t	Per	son contacted	****	
Contacted by:	Regarding					
Comments:						
Connicita.						
<u> </u>	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -					
Corrective Action						
· .		3/3				

NMENTAL BORATORY Inite D exica 87109 Fax 505.345.4107 cal.com	ZCT Air Bubbles or Headspace (Y or N)		
HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 fel. 505.345.3975 Fax 505.345.4 www.hallenvironmental.com	والراءد ولاحد	×	
HALL ENVIRCNMENTA ANALYSIS LABORATOF 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 Tel. 505.345.3975 Fax 505.34 www.hallenvironmental.com	(AOV-ima2) 0758		
VIRONME S LABOR. S NE, Suite D New Maxica 6 3975 Fax 5 onmental.com	82608 (VDA)		
HALL ENVIRONME ANALYSIS LABORA 4901 Hawkins NE, Suite D Albuquerque, New Mexico 8 Tel. 505.345.3975 Fax 50 www.hallenvironmental.com	Anions (F, Cl, VO ₂ , VO ₂ , PO ₄ , SO ₄) 8081 Pesticides / PCB's (8082)		
HALLEN ANALYSI 4901 Hawkir 4901 Hawkir 4901 Hawkir 7805,345 7945 707,17515	aleteM B ARDR		
1.505 WW. he WW. he	(HA9 10 AN9) OF 68		
Idäs≒≷	EDC (Method 8021)		
	(1.402 bottee) 803		
	TPH Method 80158 (Gas/Diesel) TPH (Method 418.1)		
	nO enilosed) H9T + 38TM + X3T8		 .::
	(1508) 2'8MT + 38TM + X3T8		Remarks:
BA/BC Package: Std D Braine: Dther: Project Name: Project #: Project #:	Project Managar: Rcndy H.cKS Sampler: MJS Sample Temperature: Number/Valume Preservative HgCl ₂ HNU ₃ November November/Valume		Received By: (Signature)
CHAIN-OF-CUSTODY RECORD Client: バエ H.cks ConSultants Ltn Address:		Agueus '600 BBits pumped	Relinquished By: (Signature) Relinquished By: (Signature)
H H H H H H H H H H H H H H H H H H H		SH00	Time:
CHAL Client:	Phone #: Fax #: Date		Date:

Appendix E Hydraulic Conductivity Analysis

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

Appendix F

Photo-Documentation of ET Infiltration Barrier Construction

R.T. Hicks Consultants, Ltd.

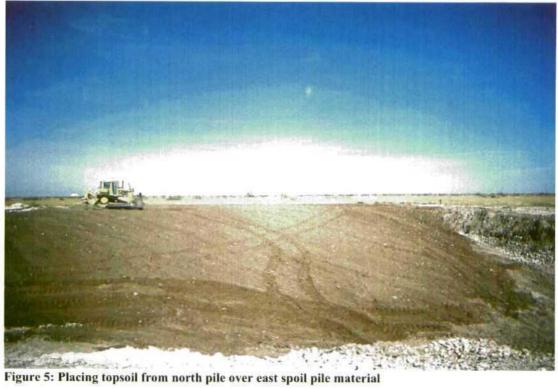
901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

1

I

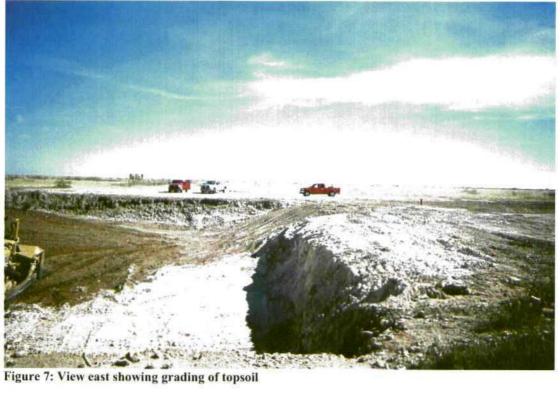
Figure 1: View north from MW-1 showing sampling trenches and coarse-grained east spoil pile

Figure 2: View south from MW-2 showing finer-grained south spoil pile


Figure 3: Placing south spoil pile in bottom of former pit

I

I


Figure 4: Placing coarse-grained east spoil pile material over south pile with northern soil pile in background. Layers show 5% slope.

١

Figure 6: Grading to achieve 5% slope of topsoil cover

I

I

I

Figure 8: Drilling MW-4 prior to final grading

I

l

Figure 9: View south of final grade from MW-2 showing MW-4 (center) and MW-1 (center right)



Figure 10: View south from MW-2 showing MW-3 (center) and MW-1 (arrow)

Figure 11: Final grade showing MW-3 (center) and berm (foreground)

I

Appendix G

Letter to NMOCD dated January 25, 2007

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

January 25, 2007

Mr. Glenn von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Samson BD-04, T12S-R33E-Section 2, Unit Letter H, 1R0474

Dear Mr. von Gonten:

On behalf of Samson Resources, R.T. Hicks Consultants presents this Letter Report in accordance with the commitments made in the January 3, 2007 Revision to the December 13 Remediation Plan. Because freezing weather prevented the mid-January commencement of ground water restoration pumping, we respectfully request delaying submission of our proposed report scheduled for the end of February. Please expect the report 40-days after we begin the ground water restoration strategy. We hope to begin pumping next week, which would mean submission of a report on or before March 15 that:

- 1. Describes the field programs and discusses any variation from the protocols outlined in previous submittals to NMOCD.
- 2. Describes the final grading and installation of the ET infiltration barrier
- 3. Presents the results of vadose zone sampling to
 - a. define the magnitude and extent of salt impact to the vadose zone, and
 - b. measure the moisture content below the infiltration barrier
- 4. Presents the results of the investigation of the saturated zone and includes
 - a. Potentiometric surface maps
 - b. Interpretation of the planned 4-day pumping test
 - c. Tables and graphs of ground water analyses for each well
 - d. Interpretation of the magnitude and extent of chloride impact
 - e. A hydrogeologic cross-section of the site area
 - f. Tables and graphs showing the hydraulic effect of the first 30-days of the source removal pumping program (described below)
- 5. Presents the results of numerical modeling of the fate and transport of the chloride introduced to the saturated zone
 - a. During source removal pumping phase of the remedy and
 - b. During the pump-and-use ground water restoration phase
- 6. Proposes a site monitoring plan and proposed criteria for closure of the regulatory file based upon the results of the monitoring

Source Removal Pumping

Current data suggests that MW-3 can produce about 5 gallons/minute from the upper screened interval (see Appendix A for a description of the pumping system). Ground water

January 25, 2007 Page 2

produced from MW-3 will discharge to a 500-barrel storage tank at the site. From the storage tank, the water flows to the Samson injection well located about 500 feet south of the site. Although we believe that most of the pumped water will flow to the Samson disposal well during this phase of the ground water remedy, we are negotiating with several oilfield service companies to take the water for use in oil and gas well drilling programs.

We anticipate that this aggressive source removal pumping will continue for 30 to 90 days. During this phase of the remedy we will:

- monitor the volume of pumped ground water with a totalizing flow meter
- coordinate water rights permitting with the office of the State Engineer
- routinely measure ground water levels of on-site wells
- routinely measure field conductance of pumped water
- measure the volume of water flowing to the disposal well
- measure the volume of water used in oil and gas drilling operations

Proposed Pump-and-Use Ground Water Restoration

When the TDS concentration of pumped water from MW-3 declines from the current level of about 5000 mg/L to 3000 mg/L, we will transition from source removal pumping to the pump-and-use strategy. According to New Mexico State University

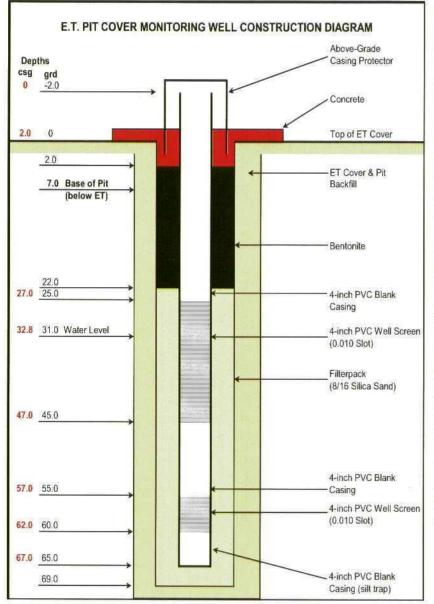
(<u>http://cahe.nmsu.edu/pubs/ m/m-112.html</u>) water with a TDS of 3000 mg/L or less is "Very satisfactory for all classes of livestock and poultry". Therefore, the ground water remedy calls for supplying the surface leaseholder with a water source for cattle since this area of the state lease does not have a water source for stock. Additionally, we anticipate that oilfield service companies will periodically take water from the stock tank for use in nearby oil and gas well drilling operations.

We also request that NMOCD forego any formal evaluation of the site activities until we have submitted the March report. Please contact Mr. Scott Rose of Samson if you have any questions or concerns regarding this plan as he has reviewed and approved this submission.

Sincerely, R.T. Hicks Consultants, Ltd.

Randall T. Hicks Principal

Copy: Samson Resources, Scott Rose New Mexico State Land Office


Appendix A – Pump and Packer System for MW-3

1) milled redwood plug

Í

- 2) 1/4 in stainless steel tube
- 3) submersible pump motor
- liquid pump end discharging to 1 in schedule 80 pvc column pipe
- 5) bushing from 1/4 in ss tube to 1/2 in sch 40 pvc riser tube
- 6) disposable bailer to bail through 1/2 in riser tube

The milled redwood plug is placed at 50-feet below ground surface, within the blank casing. This plug focuses water withdrawal from the upper screen.

During pumping, water enters the well from the upper screen and a small bailer lowered into the well can obtain a sample of ground water produced from the upper screen.

Because the redwood plug only restricts flow from the lower screen, water enters the well through the lower screen but at a low rate.

The $\frac{1}{4}$ inch tube connects the $\frac{1}{2}$ inch riser to the area of the well below the packer. When the well is pumping, a small bailer can draw a discrete sample from the lower well screen

Discrete water level measurements may be obtained using the same protocol as that described for sampling