2R - 22

REPORTS

DATE: Nov. 2, 1994

P.O. Box 552 Midland, TX 79702-0552 Telephone 915/682-1626

November 2, 1994

1 1

Mr. William Olson State of New Mexico Oil Conservation Division 2040 South Pacheco St. Santa Fe, New Mexico 87505

RECEIVED

NOV 03 1994

JH. CONSERVATION DIV. SANTA FE

RE: Indian Basin Gas Plant Pipeline Spill (Line #1) Remediation Report

Dear Mr. Olson:

Enclosed is the Pipeline Spill (Line #1) Remediation Report which is submitted to satisfy the Oil Conservation Division (OCD) requirement in your letter to me dated August 25, 1994. The report summarizes the activities that were undertaken on August 31 and September 1, 1994 to address contaminated soil related to a 552-barrel spill consisting of 125 barrels of condensate and 427 barrels of produced water from Line #1 at the Indian Basin Gas Plant. If you have any questions concerning this project, please contact me at (915) 687-8312.

Sincerely,

Robert J. Menzie, Jr. Production Environmental Representative

Attachment

xc: Mark W. Ashley, NMOCD-Artesia N. R. Garza, Indian Basin Gas Plant

INDIAN BASIN GAS PLANT PIPELINE (LINE #1) SPILL REMEDIATION REPORT

ł,

Indian Basin Gas Plant 329 Marathon Road Lakewood, New Mexico 88254 Eddy County

Submitted by Marathon Oil Company on behalf of the Indian Basin Gas Plant Owners

November 2, 1994

٩,

Pipeline (Line #1) Spill Remediation Report November 2, 1994

INTRODUCTION

On July 15, 1994, a 552-barrel spill of condensate and produced water occurred from a production pipeline within the Indian Basin Gas Plant on Marathon-owned property. The spill consisted of approximately 125 barrels of condensate and 427 barrels of produced water. The Indian Basin Gas Plant is located in Eddy County, New Mexico (Figure 1).

A workplan, dated July 29, 1994 and describing proposed remedial activities, was prepared in response to the 15-day written report requirement in the State of New Mexico Water Quality Control Commission (WQCC) Regulations Part 1, Section 1-203(6), "Notification of Discharge- Removal." The Oil Conservation Division (OCD) approved the workplan in a letter dated August 25, 1994. This Pipeline Spill (Line #1) Remediation Report satisfies the OCD requirement to submit a report by November 4, 1994 containing the results of the remedial activities conducted on August 31 and September 1, 1994.

INTERIM MEASURES

The Line #1 leak was discovered on the afternoon of July 13 by a plant operator on routine rounds. A wet area was observed above Line #1 at the southern plant area approximately 80 feet west of the inlet separators (Figure 2). Marathon immediately took steps to shut in and blow down Line #1. One high pressure dry gas pipeline is buried beneath Line #1 and presented a safety hazard during the excavation to repair Line #1. Marathon shut in and blew down this dry gas pipeline. Shovels and a backhoe were then used to excavate around the pipelines to expose the problem area. A corroded dresser coupling connecting two lengths of polyvinyl chloride (PVC) piping was leaking from one 1/8-inch hole. This faulty coupling was replaced with a section of poly pipe and the excavation was backfilled.

VERBAL AND WRITTEN SPILL REPORTING

On July 15, 1994 a verbal notification of the spill event was made to Mr. Mark W. Ashley (OCD) in Artesia, New Mexico by Noel R. Garza, Plant Superintendent. On July 22, 1994 a written report summarizing the spill nature, volume, and description of repair was submitted to OCD offices in Santa Fe and Artesia via an OCD Notification of Fire, Breaks, Spills, Leaks, and Blowouts standard reporting form (Appendix A).

REMEDIATION ACTIVITIES

Source reduction activities to remove contaminated soil adjacent to and below the Line #1 pipeline commenced on the morning of August 31, 1994. Remediation efforts were delayed until this date due to the hazards of excavating near high pressure gas pipelines. Since a limited

£,

Pipeline (Line #1) Spill Remediation Report November 2, 1994

one-day shut down of the gas plant was scheduled for other required maintenance work, the Line #1 remediation work was postponed until August 31 to avoid additional excavation safety hazards. A site safety meeting was conducted before work began. Excavation safety and other hazards associated with the workscope activities were discussed. An exclusion or safe zone was established around the excavation to prevent onsite personnel from approaching the edge of the excavation.

Excavation

Two hundred sixty yards of hydrocarbon-contaminated soil were excavated along a 45foot long section of Line #1 (Figure 3). Surface soils above the pipeline were removed with hand shovels in the area of the initial pipeline leak. The pipeline was approximately 3 feet below grade. A backhoe was used to excavate the remaining contaminated soil to a depth of approximately 13 feet below grade which was the depth limitation for safe operation of the backhoe. Stained soil was observed immediately below the pipeline and in the bottom and north and south side walls of the excavation below approximately eight feet.

Soil Sampling

Figure 3 shows the soil sample locations. Two grab soil samples were collected from contaminated soils immediately below the pipeline several feet east and west of the leak point. Eleven other samples were collected from select locations at the bottom of the excavation. In addition, two soil samples were collected from the east and west sidewalls of the excavation. A total of 13 samples were collected. The samples were collected from the backhoe bucket at the edge of the exclusion zone after the backhoe removed undisturbed soil from the bottom and sidewalls of the excavation. The soil samples were contained in wide-mouth jars and placed on ice in a cooler. Proper chain-of-custody documentation was conducted and the samples were sent overnight to Analytical Technologies, Inc. in Albuquerque, New Mexico for benzene, toluene, ethylbenzene, and total xylene (BTEX; EPA Method 8020), and total (recoverable) petroleum hydrocarbon (TPH; EPA Method 418.1) analyses.

Laboratory Analysis Results

The following table summarizes the laboratory results for the 13 samples collected from the excavation. Laboratory results for TPH in soil samples collected from the excavation ranged from 280 to 16,000 mg/kg. The total BTEX concentration in soil ranged from 9.22 to 375.3 mg/kg. Benzene concentration in soil ranged from < 0.25 to 3.8 mg/kg.

٠

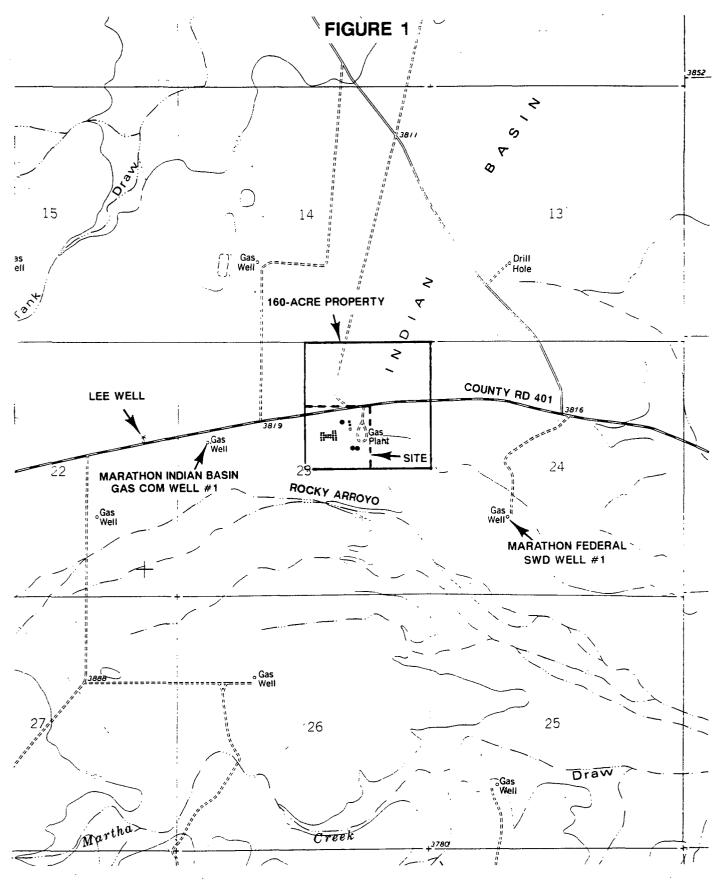
Sample NoDepth (ft)	TPH (mg/kg)	Total BTEX (mg/kg)	Benzene (mg/kg)
1-4BPW	3800	307.4	1.4
2-4BPE	2000	115.1	3.8
3-13S	970	40.0	<0.5
4-9N	3200	128.02	0.62
5-12N	440	9.22	< 0.25
6-12S	280	106.1	3.5
7-13N	6800	172.74	0.84
8-13S	3500	118.5	<0.5
9-13N	6000	204.5	<0.5
10-13S	2100	96.5	<0.5
11-13\$	4200	157.2	<0.5
12-8S	1200	31.1	<0.5
13-10N	16000	375.3	1.3

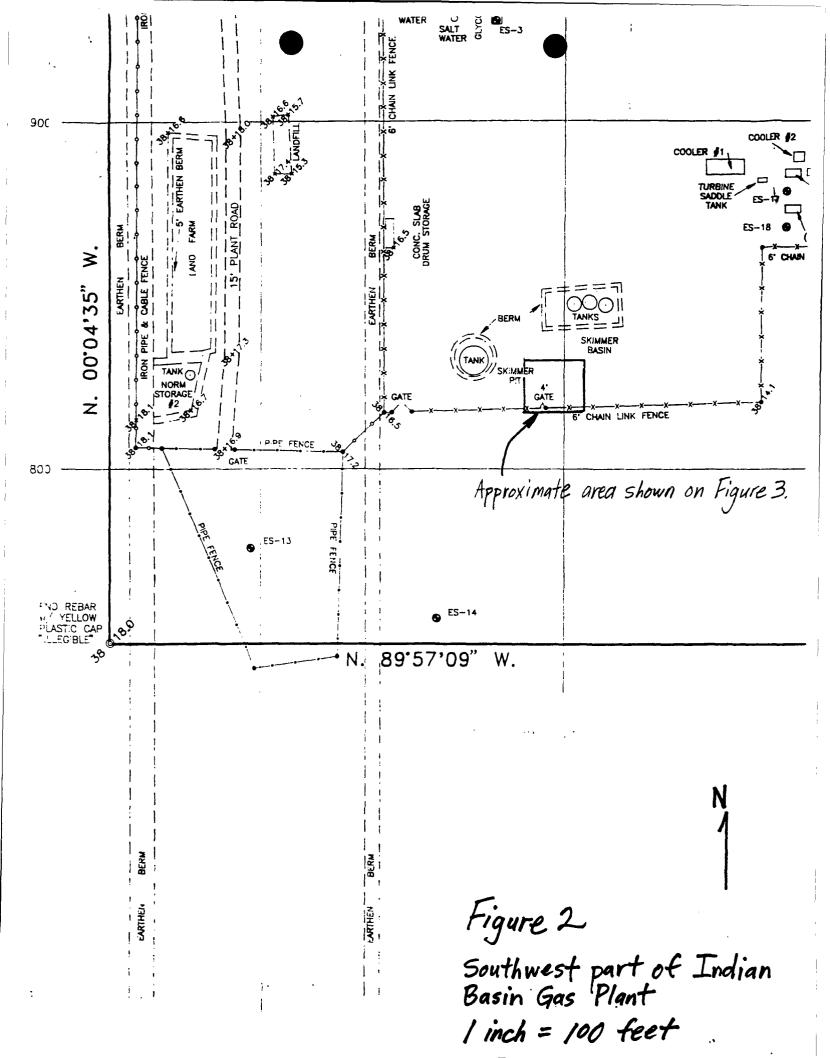
BPW = sample collected below the pipeline toward the west end of the excavation

BPE = sample collected below the pipeline toward the east end of the excavation

S = sample collected south of pipeline

N = sample collected north of pipeline


Marathon had proposed to remove soil that exceeds the suggested concentrations in the OCD Guidelines for Remediation of Leaks, Spills, and Releases for sites where the depth to groundwater is less than 50 feet. These guideline standards for TPH, total BTEX, and benzene concentration in soil are 100, 50, and 10 mg/kg, respectively. Although benzene concentrations in soil samples collected from the bottom of the excavation met these guideline levels, TPH concentrations were not met. Ten of thirteen total BTEX concentrations did not met these guidelines either. However, the backhoe could not be used to excavate contaminated soil that remained below approximately 13 feet. The excavation was also limited to the south by the southern plant fence and to the north by Line #2 pipeline (Figure 3). The fence is located 21 feet south of the limit of the excavation was deemed unsafe, clean fill dirt was placed in the excavation and compacted with the backhoe. The clean fill dirt was purchased and trucked in from off site.


٩

Marathon stockpiled the 260 yards of excavated contaminated soil in the Indian Basin Gas Plant landfarm staging area. The soil is awaiting treatment in the plant landfarm area. This soil will be treated to the guideline standards of 100 and 50 mg/kg for TPH and total BTEX, respectively, for reburial associated with future projects at the gas plant.

CLOSURE

Marathon proposes no further cleanup action relating to the Line #1 spill. Source reduction has been accomplished by the excavation of soils adjacent to and beneath the pipeline to approximately 13 feet. These soils, containing the highest hydrocarbon concentrations, have been removed so that the potential for contamination of groundwater has been reduced substantially. Based on assessment of risk, contaminated soils remaining below the safe limits of excavation should not pose an undue threat to present or future beneficial use of groundwater, public health, or the environment. While shallow groundwater is present in the vicinity of the Indian Basin Gas Plant, the nearest downgradient shallow groundwater water-source well is more than two miles east. Rocky Arroyo, an intermittent dry watercourse is located approximately 1200 feet south of the leak site. In addition, downgradient shallow groundwater monitoring wells are present which would detect noticeable contaminant entry into the shallow groundwater aquifer. Given the environmental setting and the excavation of the contaminated soils to the maximum depth and horizontal extent practicable per OCD guidelines, no additional remedial action is warranted for soils remaining below Line #1. **FIGURES**

Marathon Pipe Line Company

۰,

Subject	Figure	3 - 1	Excavation	Plan	View	Page No.	Of
File						BY RTM	Date 11-2-94
1	<u>_</u>		5)		······································	· · · · · · · · · · · · · · · · · · ·	
, T			<u> </u>				2 1
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	, 			-	<u>5</u>
· I				: 	2		
							1 6
	······································		· · · · · · · · · · · · · · · · · · ·	<u> </u>	Q		
	· · · · · · · · · · · · · · · · · · ·						2 4
							2. W
١			·····				1 20
L		ŀ			2 2	reaction of the second	
I			·	2	E 0		< are
. 1	.		C	ç	r d.		S
• •	4	N	ml				<u>y</u>
	•		·····		5 . 6	general construction and an and an and an and an and an and an an and an and an and an and an and an an and and	e 7
ţ					mt		
١	1				2 2		N N
. •				<u> </u>	<u> </u>		
1	#		+ >	<u>ν</u> ι	ં ત્રું -		· · · · · · · · · · · · · · · · · · ·
· · • • •	Ŕ	angangana ang ang ang ang ang ang ang an					
	, , , , , , , , , , , , , , , , , , ,		ł	1	1 II		······
,			8				
.)							s i synnesia a anna an y e i
•••••••••••••••••••••••••••••••••••••••			\ \		\$ 		
t			ł		3		
1	, sec. 1		1	Ľ	5		
			l				
ł			1				
			<u>9</u> _ I		an an ann an	nan ana karangan garan karan sa	a an an ann a
		1				-	
1			1	÷ .		Ø	
	2		· · · · · · · · ·		Ŝ	2	
						X	
		·			5	at the	
1			I			ž	
	· · · · · · · · · · · · · · · · · · ·		,	"	<u>Z</u>		· · · · · · · · · · · · · · · · · · ·
- N					Excard	50	· · · · · · · · · · · · · · · · · · ·
	-		=	i an ann ann an Annaich	<u></u>	T.	
· }		······					
····) ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	+		······	· · · · · · · · · · · · · · · · · · ·	
			1,			· · · · · · · · · · · · · · · · · · ·	
(J I				

į.

APPENDIX A

١,

OCD NOTIFICATION OF FIRE, BREAKS, SPILLS, LEAKS, AND BLOWOUTS

JUL-10-94	rKI 10+50	1 IIIKI	TIO NOUL	IBUL	THA NU.	1 000 401	2044	r. uz	
								-	RIM
		NEW	031X2.	OIL CONS	ERVATION CO	ommiss o	N		EIH - HE
·	NOTIF	ICATION	OF FIRE	, BREAKS	, SPILLS, L	EAKS, A	ND BLOWQU	ITS	file M
HAME OF			ومعتاري فالكولين واليوان	ويستنقد والمستعلي والمستعلي والم	ADDRESS				
OI LIVITON	MARATHON						, ARTESI	L, NM 882	13
REPORT OF	FIRE	BREAK	SPILL	LEAK	BLOWOUT	OTHER*			
TYPE UF	DRLG	PROD	TANK		CASO OIL	INTO	R*		
FACILITY	WELL	WELL	BTTY	LINE	PLNT X RFY				
NAME OF FACILITY	INDIAN B	ASIN GA	S PLANT						
LOCATION O					SEC	TWP	RGE.	ICOUNTY	
FER SECTION	N OR FOOT	AGE DESCR	IPTION)	SW/NE			218 230	E EDDY	
DISTANCE A				5 MILES	WEST OF CAS	LSBAD			1
DATE AND H	DUR				DATE AND HOL	IR		· · · · · · · · · · · · · · · · · · ·	
OF OCCUREN	CE APP.		p.m. 7/		OF DISCOVERY		94 APP.	1:00 p.m.	
WAS INMEDI		ES NO			IF YES, TO WHOM MA	RK ASHL	BY - NMOC	20	
NOTICE GIV			QUIR	EU	DATE _				
WHOM	NOEL GAE	ZA			AND HOUR		m. 7/15/9	4	
TYPE OF	CONDEN	SATE/PR	ODUCED	WATER	QUANTITY 125	bls Cond.	VOLUME		
FLUID LOST			NO	QUANTI	OF LOSS 427	bls prod.	HOI LUYEREL		
A NATERCOU			x	QUANT I					ļ
IF YES, DE	SCRIBE FU	LY**							
l .									
DESCRIBE C									
					e Skimmer Bas; L dresser cou				
					n both ends to				}
All steel	. waa elim	innated.							
DESCRIBE A	REA AFFEC	TED AND C	LEARUP AC	TIUN TAKE	Nas Eest in diame	01 For 35 Va	1 8/3//9 s the area	4 Ran 17-1	22
					c will continu				1
1					ime all the li			d while the	
					Eter start-up	OTHER*	sary.		
DESCRIPTION	N 171	ARMING	GRAZ	,13901	UNDAIN				.
SURFACE		ANDY	SANDY	CLAY	ROCKY	WET	DRY	SNOW	-
CONDITIONS	FUERAL ON	X	LOAM	C (TEMPER	X	TATION	ETC 199		
DESCRIBE G	eneral ()	SUCTORS	PREVAILIN	IN LIEPPER	ATURE, PRECIP	TINITON.	£16./***		
Hot dry	and bre	ezy. A	wbient t	emp. in	the high 9	0's to	100's,		
HERERY C	FRILEY TH	T THE IN	FORMATION	ABOVE IS	TRUE AND COM	PIFTE TO	THE BEST OF	MY	
KNOWLEDGE									
	Λ	0	-					1	
SIGNED Y	1 rel	K. ×	Zan.	TI	TLE Plant.	Supt.	DATE	7/15/94	
*SPECIFY		**ATTAC	H ADDIMO	INAL SHEET	TLE Plant	Y		·	
					4/94 (3:30 p.				
					ined to be re		•		

٠.

i

1

i

J

APPENDIX B

i,

٠,

LABORATORY RESULTS (SOIL)

2709-D Pan American Freeway, NE Albuquerque, NM 87107 Phone (505) 344-3777 FAX (505) 344-4413

ATI I.D. 409314

September 13, 1994

Marathon Oil Company P.O. Box 552 Midland, TX 79701

Project Name/Number: LINE #1 REMEDIATION

Attention: Bob Menzie

On **09/03/94**, Analytical Technologies, Inc., (ADHS License No. AZ0015), received a request to analyze **non-aqueous** samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (505) 344-3777.

akowli

Letitia Krakowski, Ph.D. Project Manager

MR:jt

Enclosure

12 Mitchel/

H. Mitchell Rubenstein, Ph.D. Laboratory Manager

SEP 1 5 1994

Corporate Offices: 5550 Morehouse Drive San Diego, CA 921210(018)1458 214 121

٠.

ĈLIENT	: MARATHON OIL COMPANY	DATE RECEIVED	:09/03/94
PROJECT #	: (NONE)		
PROJECT NAME	:LINE #1 REMEDIATION	REPORT DATE	:09/13/94

ATI ID: 409314

ATI #	CLIENT DESCRIPTION	MATRIX	DATE ~ COLLECTED
01	L1-1-4BPW	NON-AQ	08/31/94
02	L1-2-4BPE	NON-AQ	08/31/94
03	L1-3-13S	NON-AQ	08/31/94
04	L1-4-9N	NON-AQ	08/31/94
05	L1-5-12N	NON-AQ	08/31/94
06	L1-6-12S	NON-AQ	08/31/94
07	L1-7-13N	NON-AQ	09/01/94
08	L1-8-13S	NON-AQ	09/01/94
09	L1-9-13N	NON-AQ	09/01/94

---TOTALS----

MATRIX #SAMPLES NON-AQ 9

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

•

GENERAL CHEMISTRY RESULTS

CLIENT	: MARATHON OI	L COMPAN	Y	ATI I.D.		: 409314
PROJECT # : (NONE)			DATE RECEIVED		: 09/03/94	
PROJECT NAME	: LINE #1 REM	EDIATION		DATE ANALY	: 09/08/94	
PARAMETER		UNITS	01	02	03	04
PETROLEUM HYDI	ROCARBONS, IR	MG/KG	3800	2000	970	3200

GENERAL CHEMISTRY RESULTS

CLIENT	: MARATHON OI	L COMPANY	Y	ATI I.D.		: 409314
PROJECT # : (NONE)				DATE RECE	IVED	: 09/03/94
PROJECT NAME	: LINE #1 REM	EDIATION		DATE ANAL	YZED	: 09/08/94
PARAMETER		UNITS	05	06	07	08
PETROLEUM HYDE	ROCARBONS, IR	MG/KG	440	280	6800	3500

GENERAL CHEMISTRY RESULTS

CLIENT	: MARATHON OIL COMPAN	Y	ATI I.D.	: 409314
PROJECT #	: (NONE)		DATE RECEIVED	: 09/03/94
PROJECT NAME	: LINE #1 REMEDIATION	Ī	DATE ANALYZED	: 09/08/94
PARAMETER	UNITS	09		
PETROLEUM HYDF	ROCARBONS, IR MG/KG	6000		

GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT : MARATHON	OIL COMPANY	<u>.</u>	ATI I.D.		:	409314	
PROJECT # : (NONE)			SAMPLE M	ATRIX	:	NON-AQ	~
PROJECT NAME : LINE #1 R	EMEDIATION		UNITS		:	MG/KG	
		SAMPLE	DUP.		SPIKED	SPIKE	%
PARAMETER	ATI I.D.	RESULT	RESULT	RPD	SAMPLE	CONC.	REC
PETROLEUM HYDROCARBONS	090894C	<20	<20	NA	180	150	120

(Spike Sample Result - Sample Result)
% Recovery = ----- X 100
Spike Concentration

GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT : MARATHON	OIL COMPANY	•	ATI I.D.		:	409314	
PROJECT # : (NONE)			SAMPLE M	ATRIX	:	NON-AQ	E.
PROJECT NAME : LINE #1 R	EMEDIATION	UNITS		: MG/KG			
		SAMPLE	DUP.	- <u>142 y</u>	SPIKED	SPIKE	%
PARAMETER	ATI I.D.	RESULT	RESULT	RPD	SAMPLE	CONC.	REC
PETROLEUM HYDROCARBONS	090894B	<20	<20	NA	170	150	113

(Spike Sample Result - Sample Result)
% Recovery = ----- X 100
Spike Concentration

GAS CHROMATOGRAPHY RESULTS

TEST : BTEX (EPA 8020)

CLIENT : MARATHON OIL COMPANY ATI I.D.: 409314

PROJECT # : (NONE)

PROJECT NAME : LINE #1 REMEDIATION

SAMPLE	CLIENT I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL.
ID. #						FACTOR
01	L1-1-4BPW	NON-AQ	08/31/94	09/06/94	09/08/94	10
02	L1-2-4BPE	NON-AQ	08/31/94	09/06/94	09/08/94	20
03	L1-3-13S	NON-AQ	08/31/94	09/06/94	09/08/94	20
PARAME	TER		UNITS	01	02	03
BENZEN	ΙE		MG/KG	1.4	3.8	<0.5
TOLUEN	ΙE		MG/KG		14	3.7
ETHYLE	BENZENE		MG/KG		7.3	2.8
TOTAL	XYLENES		MG/KG		90	33

SURROGATE:

BROMOFLUOROBENZENE (%)

92 78

۰.

GAS CHROMATOGRAPHY RESULTS

TEST : BTEX (EPA 8020)

CLIENT: MARATHON OIL COMPANYATI I.D.: 409314PROJECT #: (NONE)

PROJECT NAME : LINE #1 REMEDIATION

SAMPLE ID. #	CLIENT I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
$\frac{10}{04}$	L1-4-9N	NON-AQ			09/08/94	20
05	L1-5-12N	NON-AQ	NON-AQ 08/31/94 (09/08/94	10
06	L1-6-12S	NON-AQ	08/31/94	09/06/94	09/08/94	20
PARAME	TER		UNITS	04	05	06
BENZEN	E		MG/KG	0.62	<0.25	3.5
TOLUEN	E		MG/KG	24	0.29	30
ETHYLB	ENZENE		MG/KG		0.58	6.6
TOTAL	XYLENES		MG/KG		8.1	66

SURROGATE:

BROMOFLUOROBENZENE (%)

87 99 53*

***OUTSIDE ATI QUALITY CONTROL LIMITS DUE TO MATRIX INTÊRFERENCE**

٠.

GAS CHROMATOGRAPHY RESULTS

TEST	:	BTEX	(EPA	8020)
------	---	------	------	-------

CLIENT : MARATHON OIL COMPANY ATI I.D.: 409314

PROJECT # : (NONE)

PROJECT NAME : LINE #1 REMEDIATION

SAMPLE ID. #	CLIENT I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
07	L1-7-13N	NON-AQ	09/01/94	09/06/94	09/08/94	20
08	L1-8-13S	NON-AQ	09/01/94	09/06/94	09/08/94	20
09	L1-9-13N	NON-AQ	09/01/94	09/06/94	09/08/94	20
PARAME	TER		UNITS	07	08	09
BENZEN	E		MG/KG	0.84	<0.5	<0.5
TOLUEN	E		MG/KG	32	16	31
ETHYLB	ENZENE		MG/KG	9.9	7.0	13
TOTAL	XYLENES		MG/KG	130	95	160

SURROGATE:

BROMOFLUOROBENZENE (%)

160* 127* 149*

*OUTSIDE ATI QUALITY CONTROL LIMITS DUE TO MATRIX INTÊRFERENCE

GAS CHROMATOGRAPHY RESULTS

REAGENT BLANK

TEST	: BTEX (EPA 8020)		ATI I.D.	: 409314
BLANK I.D.	: 090694B		MATRIX	: NON-AQ
CLIENT	: MARATHON OIL COMPA	NY	DATE EXTRACTED	: 09/06/94
PROJECT #	: (NONE)		DATE ANALYZED	: 09/08/94
PROJECT NAME	: LINE #1 REMEDIATIO	N	DILUTION FACTOR	: 1
PARAMETER		UNITS		
BENZENE		MG/KG	<0.025	<u></u>
TOLUENE		MG/KG	<0.025	
ETHYLBENZENE		MG/KG	<0.025	
TOTAL XYLENES		MG/KG	<0.025	
SUDDOCATE.				
SURROGATE:				
BROMOFLUOROBEN	VZENE (%)		100	

GAS CHROMATOGRAPHY RESULTS

REAGENT BLANK

TEST	: BTEX (EPA 8020)	ATI I.D.	: 409314
BLANK I.D.	: 090694	MATRIX	: NON-AQ
CLIENT	: MARATHON OIL COMPANY	DATE EXTRACTED	: 09/06/94
PROJECT #	: (NONE)	DATE ANALYZED	: 09/06/94
PROJECT NAME	: LINE #1 REMEDIATION	DILUTION FACTOR	: 1
PARAMETER	UNITS		
BENZENE	MG/KG	<0.025	
TOLUENE	MG/KG	<0.025	
ETHYLBENZENE	MG/KG	<0.025	
TOTAL XYLENES	MG/KG	<0.025	

SURROGATE:

BROMOFLUOROBENZENE (%)

GAS CHROMATOGRAPHY - QUALITY CONTROL

MSMSD

TEST	: BTEX (EPA 8	8020)						
MSMSD #	: 40931304			ATI I.D.		:	409314	
CLIENT	: MARATHON OI	L COMPANY		DATE EXT	RACTED	:	09/06/	94
PROJECT #	: (NONE)			DATE ANA	LYZED	:	09/06/	94
PROJECT NAME	E:LINE #1 REM	IEDIATION		SAMPLE M	ATRIX	:	NON-AQ	
REF. I.D.	: 40931304			UNITS		:	MG/KG	
PARAMETER		SAMPLE RESULT	CONC SPIKE	SPIKED SAMPLE	% REC	DUP SPIKE	DUP % REC	RPD
BENZENE	<u>,</u>	<0.025	1.0	0.96	96	0.97	97	1
TOLUENE		<0.025	1.0	0.98	98	0.95	95	3
ETHYLBENZENE	8	<0.025	1.0	0.98	98	0.92	92	6
TOTAL XYLENE	S	<0.025	3.0	30	100	3.0	100	0

(Spike Sample Result - Sample Result)
% Recovery = X 100
Spike Concentration

GAS CHROMATOGRAPHY - QUALITY CONTROL

MSMSD

TEST	: BTEX (EPA 8	3020)						
MSMSD #	: 090694			ATI I.D.		:	409314	
CLIENT	: MARATHON OF	L COMPANY		DATE EXT	RACTED	:	09/06/	94
PROJECT #	: (NONE)			DATE ANA	LYZED	:	09/09/	94
PROJECT NAME	E:LINE #1 REM	EDIATION		SAMPLE M	ATRIX	:	NON-AQ	
REF. I.D.	: 090694			UNITS		:	MG/KG	
PARAMETER	· · · · · · · · · · · · · · · · · · ·	SAMPLE RESULT	CONC SPIKE	SPIKED SAMPLE	% REC	DUP SPIKE	DUP % REC	RPD
BENZENE	······································	<0.025	1.0	1.0	100	1.0	100	0
TOLUENE		<0.025	1.0	1.0	100	1.0	100	0
ETHYLBENZENI	2	<0.025	1.0	1.0	100	1.0	100	0
TOTAL XYLENE	S	<0.025	3.0	3.1	103	3.1	103	0

(Spike Sample Result - Sample Result)
% Recovery = ----- X 100
Spike Concentration

(Sample Result - Duplicate Result) RPD (Relative Percent Difference) = ------ X 100 Average Result

	Analytical Technologies, Inc., Albuquerque, NM San Diego = Phoenix = Seattle = Pensacola = Ft. Collins = Portland = Albuquerque		CI DAT	E:	8-3	01 51-94	P		IST((9	2 8 1	2	{							
	PROJECT MANAGER: Bob Menzie							_			AN	ALY	'SIS	R	QU	IEST		1	-							
S ARE FOR LAB USE ONLY.	COMPANY: <u>Marathon Oil Company</u> ADDRESS: <u>125 W. Missouri Stl.</u> <u>Midland, TX 79701</u> PHONE: <u>915-687-8312</u> FAX: <u>915-687-8337</u> BILL TO: <u>Bob Meuzie</u> COMPANY: <u>Marathon Oil Company</u> ADDRESS: <u>Midland TX 79702-0552</u> <u>J.O. Box 552</u>	Petroleum Hydrocarbons (418.1)	(MOD 8015) Gas/Diesel	Diesel/Gasoline/BTXE/MTBE (MOD 8015/8020)	NTERE (8020)		Chlorinated Hydrocarbons (601/8010)	Aromatic Hydrocarbons (602/8020)	SDWA Volatiles (502.1/503.1), 502.2 Reg. & Unreg.		Pesticides/PCB (608/8080)	Herbicides (615/8150)	Base/Neutral/Acid Compounds GC/MS (625/8270)	Volatile Organics GC/MS (624/8240)	Polynuclear Aromatics (610/8310)		SDWA Primary Standards - Arizona	SDWA Secondary Standards - Arizona	SOWA Primary Standards - Federal	SDWA Secondary Standards - Federal			The 13 Priority Politutant Metals	RCRA Metals by Total Digestion	HCHA Metas by ICLP (1311)	SER CONTAINERS
AREAS	SAMPLE ID DATE TIME MATRIX LAB ID	Petrole	DOM)	Diesel	BIXE		Chlori	Aroma	SDWA		Pestici	Herbic	Base/	Volatik	Polynu		SDWA	SDWA	MUS	SDWA			¥ ₽	RCRA	HCHA	NUMBER
SHADED AF	<u>L1-1-4BPW</u> 8-31-94 10:209 SOIL 0 <u>L1-2-4BPE</u> 12:25P 07- L1-3-135 5:15P 03	とレ			2																					///////////////////////////////////////
SHA	L1-4-9N 5:20P 04	$\vec{\nu}$	┟──		~							\neg			-+		┼	╎	-	┢	+	┝─┼				17
	L1-5-12N 5:55P 05	V			~																					Z
	L1-6-125 V 6:25P 06	V	1		~													-	-	-	\downarrow	\square			- ·	4
L L	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V		-	~ V							-				_			-	_	╞	$\left \cdot \right $	_	+	_	4
COMPLETELY.	L1-9-13N 9-1-94 3:10pm V DE	~	┢	-	V					┼╌╂					-				+	┼╴	┢	┝╌┼		-+		Ľ
FORM IN C	PROJECT INFORMATION SAMPLE RECEIPT PROJ. NO.: NO. CONTAINERS					RELINOL - Ain				RI: Signa	ELIN(iture:	פוטב	SHE		me:		2.			ELIN ature:	_	HEDI	BY: Tim			3.
	PROJ. NAME: Line # Remediation Custody seals Y / N (NA) P.O. NO.: RECEIVED INTACT X	Pri	ințed	Nan	ne:	Da	10 [.]		-94	Printe	ed Na	me:		D	ate:			F	Print (ed Na	une:		Dat	0:		
THIS	SHIPPED VIA: Greyhound RECEIVED COLD HOTEL PRIOR AUTHORIZATION IS REQUIRED FOR RUSH PROJECTS	Co	impai l <i>a ru</i>	ny: • 77	bon	Ph 915	one:		-83/z						<u>-</u>					pany:						
FL	(RUSH) 24hr 48hr 72hr 1 WEEK (NORMAL)		i ECI: Inatu		DBY	: Tin	ne:		1,	il= Signa	CEN ture:	ΈD	BY:	T	me:		2	241	L	ΰŋ.		BY:(L		13. 13.		3.
ы S	Comments: On ICE 2.5°C	Pri	inted	Nan	ne:	Da	te:			Printe	ed Na	me:		D	ate:				1.4.4	6.97		47 J. J. J.	() () (" GR. HZ	
PLEA	ATL Labe: San Gierro (619) 458-9141 • Phoenix (602) 496-4400 • Seattle (206) 228-8335 • Pensacc		mpa		004		(500)			Comp		_				070/2					Co lixes		523.	- 1. A.	alita x	

ATI Labs: San Diego (619) 458-9141

Phoenix (602) 496-4400

Seattle (206) 228-8335

Pensacola (904) 474-1001

Portland (503) 684-0447

Albuquerque (505) 344-3777

DISTRIBUTION: While, Canary
ATI

Pink

ORIGINATOR

2709-D Pan American Freeway, NE Albuquerque, NM 87107 Phone (505) 344-3777 FAX (505) 344-4413

ATI I.D. 409312

September 9, 1994

Marathon Oil Co. 125 E. Missouri St. Midland, TX 79701

Project Name/Number: INDIAN BASIN GP

Attention: Bob Menzie

On **09/03/94**, Analytical Technologies, Inc., (ADHS License No. AZ0015), received a request to analyze **aqueous and non-aqueous** samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

Sample "LANDFARM-NW" was heterogenous. Both runs are reported.

If you have any questions or comments, please do not hesitate to contact us at (505) 344-3777.

Létitia Krakowski, Ph.D. Project Manager

MR:jt

Enclosure

H. Mitchell Rubenstein, Ph.D. Laboratory Manager

SEP 13 1894

Corporate Offices: 5550 Morehouse Drive San Diego, CA 92121 (619) 458-9141

۰.

CLIENT	: MARATHON OIL CO.	DATE RECEIVED	:09/03/94
PROJECT #	: (NONE)		
PROJECT NAME	:INDIAN BASIN GP	REPORT DATE	:09/09/94

ATI ID: 409312

ATI #	CLIENT DESCRIPTION	MATRIX	DATE . COLLECTED
01	L1-10-135	NON-AQ	09/01/94
02	L1-11-135	NON-AQ	09/01/94
03	L1-12-85	NON-AQ	09/01/94
04	L1-13-10N	NON-AQ	09/01/94
05	STRIPPER INLET	AQUEOUS	09/02/94
06	STRIPPER OUTLET	AQUEOUS	09/02/94
07	LANDFARM-SE	NON-AQ	09/02/94
08	LANDFARM-NE	NON-AQ	09/02/94
09	LANDFARM-SW	NON-AQ	09/02/94
10	LANDFARM-NW	NON-AQ	- •

---TOTALS---

MATRIX#SAMPLESNON-AQ8AQUEOUS2

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

۰,

1941 - A 1

GAS CHROMATOGRAPHY RESULTS

'FEST	: BTEX (EPA	A 8020)				
CLIENT	: MARATHON	OIL CO.		ATI I.D.:	409312	•
PROJECT #	: (NONE)					
PROJECT NAME	: INDIAN BA	ASIN GP				
SAMPLE ID. # CLIENT	I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
01 L1-10-	135	NON-AQ	09/01/94	09/06/94	09/08/94	20
02 L1-11-	135	NON-AQ	09/01/94	09/06/94	09/08/94	20
03 L1-12-	85	NON-AQ	09/01/94	09/06/94	09/08/94	20
PARAMETER			UNITS	01	02	03
BENZENE	······		MG/KG	<0.5	<0.5	<0.5
TOLUENE			MG/KG	12	38	5.0
ETHYLBENZENE			MG/KG	5	8.7	1.6
TOTAL XYLENES			MG/KG	79	110	20
SURROGATE:						
BROMOFLUOROBE	NZENE (%)			134*	128*	103

*OUTSIDE ATI QUALITY CONTROL LIMITS DUE TO MATRIX INTERFERENCE

۰.

GAS CHROMATOGRAPHY RESULTS

TEST : BTEX (EPA 8020)

CLIENT : MARATHON OIL CO.

ATI I.D.: 409312

237*

PROJECT # : (NONE)

PROJECT NAME : INDIAN BASIN GP

·		······				
SAMPI	LE		DATE	DATE	DATE	DIL.
ID. A	# CLIENT I.D.	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
04	L1-13-10N	NON-AQ	09/01/94	09/06/94	09/08/94	20
07	LANDFARM-SE	NON-AQ	09/02/94	09/06/94	09/08/94	1
08	LANDFARM-NE	NON-AQ	09/02/94	09/06/94	09/08/94	1
PARAN	METER		UNITS	04	07	08
BENZI	ENE		MG/KG	1.3	<0.025	<0.025
TOLUI	ENE		MG/KG	93	<0.025	<0.025
ETHYI	LBENZENE		MG/KG	21	<0.025	<0.025
TOTAI	L XYLENES		MG/KG	260	0.032	<0.025

SURROGATE:

BROMOFLUOROBENZENE (%)

86

89

***OUTSIDE ATI QUALITY CONTROL LIMITS DUE TO MATRIX INTERFERENCE**

GAS CHROMATOGRAPHY RESULTS

TEST : BTEX (EPA 8020)

CLIENT : MARATHON OIL CO.

ATI I.D.: 409312

89

PROJECT # : (NONE)

PROJECT	NAME	:	INDIAN	BASIN	GP	

SAMPI	E		DATE	DATE	DATE	DIL.
ID. #	CLIENT I.D.	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
09	LANDFARM-SW	NON-AQ	09/02/94	09/06/94	09/08/94	1
10	LANDFARM-NW	NON-AQ	09/02/94	09/06/94	09/08/94	1
PARAMETER		, , , , , , , , , , , , , , , , , , ,	UNITS		10	
BENZENE			MG/KG		<0.025	
TOLUENE			MG/KG		<0.025	
ETHYLBENZENE			MG/KG		<0.025	
TOTAL	XYLENES		MG/KG	<0.025		

SURROGATE:

BROMOFLUOROBENZENE (%)

GAS CHROMATOGRAPHY RESULTS

REAGENT BLANK

TEST	: BTEX (EPA 8020)		ATI I.D.	: 409312
BLANK I.D.	: 090694		MATRIX	: NON-AQ
CLIENT	: MARATHON OIL CO.		DATE EXTRACTED	: 09/06/94
PROJECT #	: (NONE)		DATE ANALYZED	: 09/06/94
PROJECT NAME	: INDIAN BASIN GP		DILUTION FACTOR	: 1
PARAMETER		UNITS		<u></u>
BENZENE	<u></u>	MG/KG	<0.025	
TOLUENE		MG/KG	<0.025	
ETHYLBENZENE		MG/KG	<0.025	
TOTAL XYLENES		MG/KG	<0.025	
SURROGATE:				

BROMOFLUOROBENZENE (%)

100

۰.

ETHYLBENZENE TOTAL XYLENES

GAS CHROMATOGRAPHY - QUALITY CONTROL

MSMSD

TEST	: BTEX (EPA 8	020)						
MSMSD #	: 40931304			ATI I.D.		:	409312	
CLIENT : MARATHON OIL CO.			DATE EXTRACTED			: 09/06/94		
PROJECT #	DATE ANALYZED			: 09/06/94				
PROJECT NAME : INDIAN BASIN GP			SAMPLE MATRIX			: NON-AQ		
REF. I.D. : 40931304			UNITS			: MG/KG		
PARAMETER		SAMPLE RESULT	CONC SPIKE	SPIKED SAMPLE	% REC	DUP SPIKE	DUP % REC	RPD
BENZENE	nate de la constant d	<0.025	1.0	0.96	96	0.97	97	1
TOLUENE <0.025			1.0	0.98	98	0.95	95	3

<0.025 3.0 30

1.0 0.98 98

100

0.92 92

100

3.0

6

0

(Spike Sample Result - Sample Result)
% Recovery = ----- X 100
Spike Concentration

<0.025

(Sample Result - Duplicate Result) RPD (Relative Percent Difference) = ------ X 100 Average Result

GAS CHROMATOGRAPHY RESULTS

ATI I.D.: 409312

TEST	:	BTEX	(EPA	8020)
------	---	------	------	-------

CLIENT : MARATHON OIL CO.

PROJECT # : (NONE)

4

:

PROJECT NAME : INDIAN BASIN GP

SAMPLE ID. # CLIENT I.D.	MATRIX	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
05 STRIPPER INLET	AQUEOUS	09/02/94	NA	09/09/94	1
06 STRIPPER OUTLET	AQUEOUS	09/02/94	NA	09/09/94	1
PARAMETER		UNITS	05	06	
BENZENE		UG/L	23	<0.5	
TOLUENE		UG/L	18	8.6	
ETHYLBENZENE		UG/L	17	0.9	
TOTAL XYLENES		UG/L	110	12	
SURROGATE:					
BROMOFLUOROBENZENE (%)			90	102	

۰.

;

GAS CHROMATOGRAPHY RESULTS

REAGENT BLANK

TEST	: BTEX (EPA 8020)		ATI I.D.	: 409312
BLANK I.D.	: 090994		MATRIX	: AQUEOUS
CLIENT	: MARATHON OIL CO.		DATE EXTRACTED	: NA
PROJECT #	: (NONE)		DATE ANALYZED	: 09/09/94
PROJECT NAME	: INDIAN BASIN GP		DILUTION FACTOR	: 1
PARAMETER		UNITS		
BENZENE		UG/L	<0.5	<u> </u>
TOLUENE		UG/L	<0.5	
ETHYLBENZENE		UG/L	<0.5	
TOTAL XYLENES		UG/L	<0.5	

SURROGATE:

BROMOFLUOROBENZENE (%)

94

•...,

i,

ETHYLBENZENE

TOTAL XYLENES

:

GAS CHROMATOGRAPHY - QUALITY CONTROL

MSMSD

TEST	: BTEX (EPA 8	020)									
MSMSD #	: 40931601			ATI I.D.		:	409312				
CLIENT	: MARATHON OI	L CO.		DATE EXT	RACTED	:	NA				
PROJECT #	: (NONE)			DATE ANA	LYZED	:	09/09/	94			
PROJECT NAME	: INDIAN BASI	N GP		SAMPLE M	ATRIX	:	AQUEOU	S			
REF. I.D.	: 40931601			UNITS		: UG/L					
PARAMETER		SAMPLE RESULT	CONC SPIKE	SPIKED SAMPLE	% REC	DUP SPIKE	DUP % REC	RPD			
BENZENE		1.0	10	11	100	10	90	10			
TOLUENE		0.6	10	10	94	10	94	0			

10

30

100

101

10

31

10

31

100

101

0

0

(Spike Sample Result - Sample Result)
% Recovery = ----- X 100
Spike Concentration

<0.5

0.7

(Sample Result - Duplicate Result) RPD (Relative Percent Difference) = ------ X 100 Average Result

×.

:

GENERAL CHEMISTRY RESULTS

CLIENT	: MARATHON OI	L CO.		ATI I.D.		: 409312
PROJECT #	: (NONE)			DATE RECE	IVED	: 09/03/94
PROJECT NAME	: INDIAN BASI	N GP		DATE ANALY	ZED	: 09/08/94
PARAMETER		UNITS	01	02	03	04
PETROLEUM HYDR	ROCARBONS, IR	MG/KG	2100	4200	1200	16000

.

٩.

GENERAL CHEMISTRY RESULTS

CLIENT	: MARATHON OI	L CO.		ATI I.D.		: 409312
PROJECT #	: (NONE)			DATE RECEI	VED	: 09/03/94
PROJECT NAME	: INDIAN BASI	N GP		DATE ANALY	ZED	: 09/08/94
PARAMETER		UNITS	07	08	09	10A
PETROLEUM HYDE	ROCARBONS, IR	MG/KG	580	410	39	460

٩,

GENERAL CHEMISTRY RESULTS

CLIENT	: MARATHON OIL CO.	ATI I.D.	: 409312
PROJECT #	: (NONE)	DATE RECEIVED	: 09/03/94
PROJECT NAME	: INDIAN BASIN GP	DATE ANALYZED	: 09/08/94
PARAMETER	UNITS	10B	······
PETROLEUM HYDF	ROCARBONS, IR MG/KG	630	

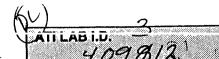
٢

GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT : MARATHON	OIL CO.		ATI I.D.			409312	
PROJECT # : (NONE)			SAMPLE M	ATRIX	:	NON-AQ	٠
PROJECT NAME : INDIAN BA	SIN GP		UNITS		:	MG/KG	
		SAMPLE	DUP.		SPIKED	SPIKE	%
PARAMETER	ATI I.D.	RESULT	RESULT	RPD	SAMPLE	CONC.	REC
PETROLEUM HYDROCARBONS	090894B	<20	<20	NA	170	150	113

% Recovery = (Spike Sample Result - Sample Result) % Recovery = X 100 Spike Concentration

(Sample Result - Duplicate Result) RPD (Relative Percent Difference) = ------ X 100 Average Result


۴.

GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT : MARATHON	OIL CO.		ATI I.D.		:	409312	
PROJECT # : (NONE)			SAMPLE M	ATRIX	:	NON-AQ	•
PROJECT NAME : INDIAN BA	SIN GP		UNITS		:	MG/KG	
· · · · · · · · · · · ·		SAMPLE	DUP.		SPIKED	SPIKE	%
			DUF.		SPIKED	SLIVE	6
PARAMETER	ATI I.D.	RESULT	RESULT	RPD	SAMPLE	CONC.	REC

% Recovery = (Spike Sample Result - Sample Result)
% Recovery = X 100
Spike Concentration

PROJECT	MANAGER:	lie • Pensacola • F Bcb Me					-				ī						REQL									-1	
COMPA ADDRES PHONE: FAX: BILL TO COMPA ADDRES	:	larathon C 25 W. M Midland, TX 915-687-9 915-687-9 915-687-9 915-687-9 Midland, Midland,	2/1 Cov 1:550471 7970 3312- 8337 1216- n Oil C 552- 7X 79	 стран 702 - С	<u>y</u> 25:5 ⁻ 2-	Petroleum Hydrocarbons (418.1)	(MOU 8015) Gas/Lifesel Discal/Gasoline/RTYE/MTRE (MOD 8015/8020)	BTXER (1920)		Chlorinated Hydrocarbons (601/8010)	Aromatic Hydrocarbons (602/8020)	SDWA Volatiles (502.1/503.1), 502.2 Reg. & Unreg.		Pesticides/PCB (608/8080)	Heroidges (619/8130) Base/Nei trai/Arid Communds GC/MS (625/8270)	Volatile Organics GC/MS (624)8240)	Polynuclear Aromatics (610/8310)		SDWA Primary Standards - Anzona	SDWA Secondary Standards - Arizona	SDWA Primary Standards - Federal	SDWA Secondary Standards - Federal		The 13 Priority Pollutant Metals	RCRA Metals by Total Digestion	RCRA Metals by TCLP (1311)	
L1-10	SAMPLE ID	DATE		· · · · · · · · · · · · · · · · · · ·		Pet	ž			ਓ	Arc	8		ä :		3 3	8		8	8	S	2		Ê	<u>В</u>	8	┦
L1-11-			4 3:15P 1 4:30P	1	0				$\frac{1}{1}$												_			$\left \right $		_	ť
L1-12			1 4:40P		03			V	$\frac{1}{1}$		1				-												ť
L1-13	-10N		1 5:10P		04	V		-	Ŧ																		[
	R INLET		4 11:20 9				_	V																			ľ
	R OUTLE	== 9-2-4	1 11:259	1				V															_				1
LANDFA	RM-SE RM-NE		11:40 9	501L	07	2		1 L														\vdash		┼──┤			¥
CANOF	RM - NE ARM - NW ARM - Siv		11:509		10	K	7	P	F						+							F	+	Ħ			1
			11:559	····	;																						D
Proj. no.:	ROJECT INFORM	VIATION	NO. CONTA	PLE RECE	9 *** *							3Y: 1.			UISH	ED B	Y: Time:	-	2.		gnati		JISHED) BY: Tim	ne:		3.
	NDIAN B	SASIN GP	CUSTODY :		77	Printe	lig	<u>67</u> 7	Kozy	<u>y.</u>	1:	30 P.M	Printe				Date:										
P.O. NO.:			RECEIVED	21.232/02	Y	Rob	int	Me	nzie		9-	2-14		u nai			Dale.				mea	1 Name	3.	Dat	10:		
SHIPPED VI	A: Greyhou	ind	RECEIVED	COLD	Ý	Com		tho		hone: 915	-6	87·83	Comp	any:						Co	ompa	iny:					
Р		ATION IS REQUIR	ED FOR RUS	H PROJEC	TS		_	ED BY		1.5		1.		CEIV	ED B'	Y:			2.		REC	CEIVE	DBY:(LAB)			3.
		72hr 1 WEEK	()	NORMAL)	BZWEEK	Signa	ature:		٦	lime:			Signat	lure:			Time:					un	Ma	, Tin	ne: 7.5	2	
Comments						Printe	ed Na	ume:	(Date:			Printe	d Nar	ne:		Date:			H	inter	1 Name	e. ,	, Dat	te:	, ,	7
													Comp							_6	1.	tree	hick	<u> </u>	9/.		

2R - 22

REPORTS

DATE: Nov 5, 1991

Mid-Continent Region Resources United States

P.O. Box 552 Midland, Texas 79702 Telephone 915/682-1626

November 13, 1991

Mr. William J. LeMay, Director State of New Mexico Oil Conservation Division P. O. Box 2088 State Land Office Building Santa Fe, New Mexico 87504 Mr. Larry L. Woodard, Director Bureau of Land Management P. O. Box 27115 Santa Fe, New Mexico 87502

Gentlemen:

As promised, attached is a report summarizing the highlights of the Indian Basin, 1991 Maintenance Turnaround activities relating to the Plant's gas and liquid gathering systems.

The report documents Marathon's commitment to ensuring the longevity and integrity of those systems. Equally rewarding was the fact that this work, coupled with that performed in the Plant, represented almost 10,000 man-hours of multi-discipline work without any accidents; a credit to all who were involved. New technologies, as well as the successful application of proven technologies were applied in this effort. These experiences, among others, we plan to share with the other members of the New Mexico Oil Conservation Division Aging Infrastructure Task Force.

Should you require any additional information, feel free to call; as documented, the test records are available for inspection.

Sincerely,

Extinger,

Robert F. Unger Production Manager Midland Operations

RFU/elk

Attachment

cc: M. B. Williams (OCD-Artesia) D. L. Manus (BLM-Carlsbad) Rxc: L. J. Oswald T. N. Tipton A. R. Kukla w/o Attachment J. L. Benson w/o Attachment INDIAN BASIN GAS AND LIQUID GATHERING SYSTEM MODIFICATIONS AND TESTING REPORT SEPTEMBER, 1991 TURNAROUND

٠.

Ĵ.

November 5, 1991

MARATHON OIL COMPANY MIDLAND, TEXAS

TABLE	OF CONTENTS PAGE
I.	INTRODUCTION AND PROJECT SUMMARY
II.	ROCKY ARROYO MODIFICATIONS
III.	INTEGRITY AND LEAK TESTING OF GATHERING SYSTEM
IV.	GATHERING SYSTEM MODIFICATIONS7
ν.	FUTURE METERING SEPARATORS8
VI.	CONCLUSION
	EXHIBIT #1 "ROCKY ARROYO MODIFICATIONS"

ł.

ł

i.

Ì

ł

ł

INDIAN BASIN GAS AND LIQUID GATHERING SYSTEM

MODIFICATIONS AND TESTING REPORT

I. INTRODUCTION

For thirteen days in September, 1991 the Indian Basin Gas Plant suspended operation to undergo a major turnaround. During this time Marathon Oil Company conducted an intensive and significant program to inspect, modify and integrity test the gas and liquid gathering systems. The primary objective of the effort was to ensure the operational longevity of the systems, and to minimize or eliminate possible leaks. Both conventional and non-conventional methods were used to verify the integrity of both systems.

The overall gathering system consists of a PVC condensate pipeline system in conjunction with a steel gas pipeline system. Both pipeline systems reside in the same ditch. Production from each well is separated and metered on-site. Gas and condensate plus water are transported by each respective gathering system to the Indian Basin Gas Plant. The gathering system traverses very rough terrain with large arroyos. Particular attention was focused on providing isolation in the pipeline system across the arroyos to minimize leak exposure. The main Rocky Arroyo crossing had additional modifications made to it to utilize early leak detection methods to eliminate and/or minimize leak exposure in this area.

II. ROCKY ARROYO MODIFICATIONS

The existing 6" PVC and steel condensate line across Rocky Arroyo was removed from service and a 4" polyethylene pipe (PEP) was sliplined into the 6" line across the arroyo. In this manner the 6" line will act as a containment casing for the 4" PEP; the steel providing structural integrity while the fluids travel in the corrosion resistant plastic pipe. Valves were installed on each side of the arroyo to minimize drainage and thus reduce liquid volumes if a leak should occur. The pipe encasement was sealed using a double "Link Seal" and "Trenton Wax" combination at each end. A Link Seal was installed approximately 3' inside the pipe encasement on each end. Another Link Seal was installed at the edge of the pipe encasement on both ends. The void between the link seals was filled with Trenton Casing Filler. This ensures a liquid tight seal between the pipe encasement and the PEP slipline. Please refer to Exhibit #1.

To provide for early detection should a leak occur, a fiberglass tank with a 3/4" stainless steel line was installed to the 2" casing vent. This will allow gas plant personnel to determine if the 4" PEP slipline is leaking. The 6" encasement would capture any escaped condensate and evidence of condensate would appear in the fiberglass tank from the casing vent. Maintenance personnel will periodically check the tank for condensate liquid and/or fumes. The 6" encasement is constructed with 2" vent pipes to the surface at each end of the arroyo. This, too, will be monitored for any escaping condensate fumes.

III. INTEGRITY & LEAK DETECTION OF THE GATHERING SYSTEM

Both conventional and unconventional methods were used in the testing program. For leak detection, a patented odorant used in conjunction with trained dogs was utilized in both systems. A corrosion monitoring tool was used in selected portions of the steel gas line to verify the internal and external integrity. Along with these unique methods of testing both pipeline systems were pressure tested to further verify their integrity.

a) Leak Detection:

Both the liquid and gas gathering systems used the TekScent method of leak detection. This method was developed by Exxon Chemical and has been previously used in Canada. However, this was the first time this method was used in the United States. The process included injecting a specialized patented chemical odorant in the gas stream of the pipeline system and then walking the surface above the lines with trained dogs. Migration of the special chemical through the soil from a pipeline leak can be detected by the dogs.

The chemical was injected directly into the produced gas stream of the gas gathering system by injection pumps located at selected well sites. The liquid system was purged with nitrogen to eliminate as much condensate as possible. Initially, there was some uncertainty as to whether the TekScent product would work correctly in the liquid system due to its solubility in condensate. Exxon Chemical verified, by laboratory testing, that by using nitrogen as the carrier and saturating the system with TekScent a viable test could be conducted. The linear footage of each system was 38 miles which was successfully tested in 8 days for the gas system and 4 days for the liquid system. By injecting directly into the produced gas stream of the gas system, this system was able to be leak tested while on-production.

No leaks were found in the gas gathering system. In the liquid system no leaks were indicated in the buried portion of the system. With this method of leak detection being new to the Indian Basin gas gathering operation, certain adjustments to the test procedure were required. Several tests were conducted to determine the concentration of TekScent required in the nitrogen gas medium. Initially, their were doubts about the ability of the dogs to detect leaks. However, once the procedure was optimized and several tests conducted, confidence in the dogs' ability to find leaks was reaffirmed.

Areas of uncertainty still remain for this method of testing. It is still unclear as to the dogs' ability to accurately detect leaks in a strong sour system due to the H₂S affecting their sense of smell. Also, close attention needs to be paid to wind direction and strength as it could affect the concentration of the TekScent being released. Rough terrain poses a problem since the dogs have to walk on top of pipeline system to adequately detect the TekScent.

It is felt that leak testing by using TekScent and dogs was a technical success. However, careful evaluation of a pipeline system (location, proximity to population center, pigging facilities, medium in pipeline, etc.) needs to be done prior to consideration of this type of test due to its high cost.

b) Internal/External Testing:

There was some uncertainty about the internal condition of the steel gas gathering system. Even though the integrity was to be verified by a pressure test, the need for actual data related to the internal condition of the pipe was also desired. It was decided to use a camera and wall thickness tool to obtain corrosion information in selected portions of the line. These selected portions represent a worst case condition and were not meant to be representative of the entire pipeline system. The portions were selected based on an evaluation of where water could potentially accumulate based on pipe elevation, pipe drameter and fluid velocity. It was our desire to obtain information on areas believed to be the most conducive to internal/external corrosion.

Schlumberger's Pipe Analyses Tool (PAT-E) was used with their RVC 360^o video camera to gather this data. Sections had to be removed from the pipeline (the pipeline had no "pigging" facilities) so that the tool could be inserted. The tool was pushed approximately 500 feet in both directions by using a 3" PEP "fast-line". The tool was then pulled back by its tethered cable for the actual data gathering.

This PAT-E tool is similar in design and works on the same principle of the Pipe Analysis Log (PAL) tool for well casings. An electromagnetic field is produced by the tool around the pipe. Any deflection of the flux leakage is determined to be a corrosion thinning. The eddy current pads located on the tool determines if the deflection is caused by an anomaly internally. If no disruption is indicated by the eddy current pads, then the deflection is determined to be external. This technology is well proven to be successful with well casings, but is relatively new for pipelines.

The video camera was used on portions of Line #4 in the 16" main steel gas line and a 6" steel gas lateral. The video results of the 16" line showed the internal surface to be very clean with little or no scale. Corrosion in this area was limited to very light general pitting. The welds showed no apparent defects. The 6" line showed standing water in several places and pits along the bottom portion of the pipe. Outside of the standing water areas only scattered light, individual pits were observed.

The PAT-E was run in this same Line #4 - 6" pipe as well as a Line #1 - 6" portion. The PAT-E was not run in the 16" main line. The PAT-E tool was not able to traverse the bends that the video camera could, but it provided some good results. The Line #4 - 6" showed various internal light and moderate pits. No external corrosion thinning was observed. The Line #1 - 6" indicated similar conditions. Again the PAT-E could not make all of the bends that the video camera could, particularly in the areas of the standing water. Study of this information is presently being conducted to decide if any action is necessary in light of these observations.

Due to the absence of "pigging" facilities this method of inspection is labor intensive and operationally disruptive. However, the data received is valuable and can be used to determine the condition of the pipeline at that specific location. Inspection spool pieces were installed for future repeat inspections, and the actual sections removed were sent to Marathon's Petroleum Technology Center for further analysis. All documentation including video tapes, charts and logs of this process are kept at the Indian Basin Gas Plant office for future reference.

c) Pressure Testing:

To further substantiate the pipeline system integrity 15 of the 20 gas and liquid pipeline sections were pressure tested. These sections were tested by using nitrogen gas as the test medium. The gas sections were tested to 1150 psi which correlate to the setting of the pressure relief system for the gathering system and plant. The liquid sections were tested to 125% of the maximum working pressure in each section. The remaining 5 sections that were not tested during the turnaround will be tested under the same criteria before the end of the year.

It was decided to gas test the system using nitrogen instead of hydrotesting due to the field's operational constraints. Various field constraints, such as varying pipeline size, preclude pigging facilities. This system also could not be equipped with temporary pigging facilities without making major design changes. With the gas gathering system any water used for hydrostatic testing could not be effectively evacuated from the system once the test was completed. The trapped water would later cause severe corrosion problems. With the liquid gathering system, the main problem was the large elevation changes which in some cases had a difference of 300'. With liquid testing this elevation change would create a hydrostatic head which would exceed the pressure rating of the PVC once test pressure was added to the system.

The decision to use nitrogen instead of produced gas was also due to safety. The produced gas is sour and explosive and not considered viable for this type of test. Nitrogen is an inert gas and is much safer to work with. The produced gas is sour and posed a possible health risk. The cost of \$78,000 to use nitrogen over produced gas was well worth the expense due to the safety aspects.

The gas system was successfully tested without incident. The liquid system failed to test at various locations. This was primarily due to the testing of the lines prior to adequate drying time of newly cemented joints. Once adequate drying time was given, this system also tested successfully.

The hilly terrain that these systems traversed made it difficult to purge the pipelines due to liquid left in low spots. The compressible properties of nitrogen gas also made it difficult at times to maintain a uniform pressure. However, both systems were pressure tested successfully and the integrity of the gas and liquid gathering systems were verified. All data and pressure charts associated with this testing are located at the Indian Basin Gas Plant office.

d) Discussion:

All three methods for testing the integrity of the gas and liquid gathering systems were completed successfully. Of the three methods used, two, TekScent and Schlumberger's PAT-E tool, were unconventional and new to this type of system. Both methods performed well and produced favorable results. Minor procedural problems were encountered but were overcome. Weather and terrain conditions hampered progress slightly, but the project was considered a success.

IV. GATHERING SYSTEM MODIFICATIONS

Significant line modifications were made to both the gas gathering and liquid gathering systems on Lines #1 and #4. These modifications included adding new valves to effectively isolate line sections, replacement of old valves, removal of steel sections in the PVC liquid gathering system and elimination of Dresser sleeves. These modifications were made to minimize exposure to potential leaks and to better respond to potential problem areas. Line #2 is presently out of service. However, prior to reactivation this line will undergo the required evaluation and modifications.

New values were either added to the system, or installed as replacements to old values. Some of the new values were installed on the gas gathering system for isolation purposes. These values were fabricated with a spool piece in the shop and installed in the field as one unit. Along with the new values, old values were replaced that leaked, worn trim, or no longer worked properly. The values installed meet NACE MRO-175 requirements and are constructed of suitable materials.

Along with the gas gathering system, new and additional valves were added to the liquid gathering system. Again, these new valves meet NACE MRO-175 standards. Isolation valves were strategically placed at main arroyos to minimize exposure to leaks in environmentally sensitive areas. Isolation valves were installed on both sides to isolate the pipeline across the draw. This work was done at three locations along Marathon Creek Draw, Lower Bone Tank Draw, and Upper Bone Tank Draw. As was previously mentioned, isolation valves were also installed at Rocky Arroyo. In addition to valve isolation, any steel across these draws was replaced with PVC and encased with concrete which will eliminate exposure to corrosion and offer the required itegrity to resist washouts. By effectively isolating line sections, earlier detection can occur and drainage due to any future leaks will be minimized. In all, 13 new valves were installed on the Gas Gathering and 41 new valves were installed on the Liquid Gathering system.

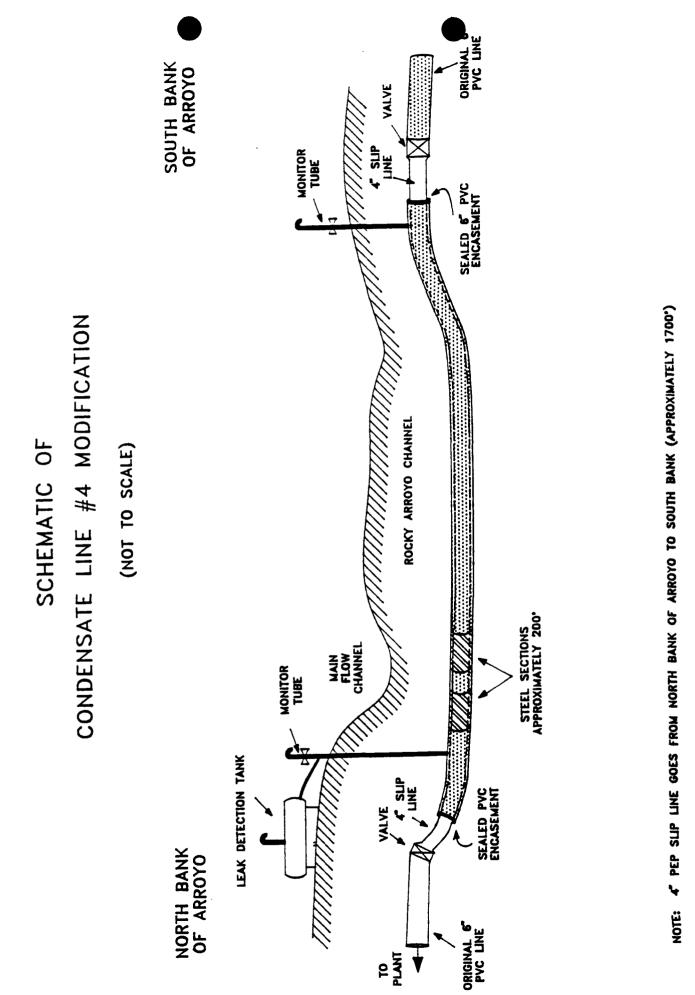
Additional modifications made to the liquid gathering system included removal of numerous Dresser sleeves. When located, Dresser sleeves were replaced with a section of PVC. Dresser sleeves are easily and quickly installed, but create a risk due to leakage if left unattended for long periods of time or if not installed properly. During the modifications, approximately 18 Dresser sleeves were removed and replaced with sections of PVC.

V. <u>EUTURE METERING SEPARATORS</u>

Provisions were made to accommodate future separators, for the liquid entering the plant, to more effectively meter condensate, water and gas. During the turnaround, valves were installed on the inlet lines such that the separators could be installed without incurring another operational shutdown. Engineering work has been done and bids have been sent out to perform this work. Additional piping and separator fabrication has yet to be done. It is expected to have the separators in place with proper metering by mid-February, 1992.

In addition to the liquid system, annubar meters were installed on the gas gathering inlet lines to measure gas volumes coming into the plant from each line. These additions will not only provide a better operation, but will also be used as a check against the sum of the individual well meters feeding into that line. Such meters are seen as the best means of detection for future leaks between wellheads and the gas plant.

VI. <u>CONCLUSION</u>


A large amount of work has been done in a short period of time to enhance and secure the Indian Basin Gas Plant Gathering System. As indicated, modification of the Rocky Arroyo crossing far exceeds what was previously in place for early leak detection and elimination.

Integrity testing of the pipeline system was done by both conventional and non-conventional methods. Regardless of the method, a better understanding and a large amount of knowledge has been gained of the system we are using. In addition, information obtained will help in determining the course of action needed to mitigate corrosion within the pipeline system. Overall, the testing methods performed to date confirm that the present system is adequate and integrity is maintained.

The modifications made to both pipeline systems greatly enhance the ability to isolate potential leaks and also greatly reduces the chances of having a leak. By removing the known steel sections and Dresser sleeves in the PVC lines, the probability of leaks at these points has been reduced. The replacement and addition of new valves effectively allows isolation of various pipeline sections.

With the planned addition of separators and metering facilities, the operation of the plant will be more efficient. Also, detection of problem areas or possible volume loss due to a leak will easily be determined in a timely manner. The cost for the gathering system work described in Sections II to IV totaled \$900,000. Installation of the metering separators is estimated to cost an additional \$240,000. This money was and will be spent to ensure a functional, safe and environmentally sound operation for years to come.

SDH050/1gh

9/27/81