2R - 28

GENERAL CORRESPONDENCE

YEAR(S): 1996 TELEPHONE (505) 748-3311

EASYLINK

62905278

REFINING COMPANY

FAX (505) 746-6410 ACCTG (505) 746-6155 EXEC (505) 748-9077 ENGR (505) 746-4438 P / L

501 EAST MAIN STREET • P. O. BOX 159

February 26, 1996

M1. Roger Anderson New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505

Dear Mr. Anderson:

Since November 1994 Navajo Refining Company, Pipeline Division, has performed five (5) Toxic Characteristic Leaching Procedures (TCLP) on soils contaminated by crude oil spilled from our pipeline gathering system east of Artesia, New Mexico (see Exhibit A). This system contains approximately 700 miles of pipeline. These tests cover nine different leak sites throughout our gathering system and are representative of the crude oil carries by this system. The purpose of this letter is to request that Navajo Refining Company, Pipeline Division be allowed to rely upon these tests to satisfy the TCLP requirement for leaks occurring in this gathering system during the calendar year 19:26.

I have enclosed copies of the five (5) TCLP results for your inspection. A summary of these tests are as follows:

LOCATION	#	DATE	REMARKS
Bad Luck	2	10/27/94	Composite Sample- not hazardous
Barber	3	10/28/94	Composite Sample- not hazardous
Besson Station	1	12/20/94	Composite Sample- not hazardous
East Cedar Lake	7	10/25/95	Composite Sample- not hazardous
Composite of Yates, Burton Flats, Phillips, East, and West Cedar Lake			Composite Sample- not hazardous

Navajo Refining Company feels that using these representative tests will serve the intent of the regulations as well as being cost effective. Should any condition present itself during the year that would drastically change the composition of our crude oil, we will notify the OCD immediately and take the appropriate action at that time.

If you should require any additional information or if I may be of assistance, please call me.

incerely

Jim G. Townsend Manager of Transportation

Exhibit A

Map of Navajo Refining Gathering System

(One Page)

Exhibit B

TCLP Results Bad Luck Leak Site

(Three Pages)

K. W. Brown Environmental Services A Division of AMEC Environmental Services, Inc. 501 Graham Road, College Station, TX 77845 Telephone: (409) 690-9280, Fax: (409) 690-7310

November 9, 1994

Mr. Jim Townsend Navajo Refining Company 501 East Main Street P.O. Draws c 159 Artesia, New Mexico 88210

RE: Navajo (Bad Luck) - Artesia New Mexico

Dear Mr. Townsend:

This letter is intended to provide an update regarding the extent of contamination at the referenced property. On October 27, 1994, K. W. Brown Environmental Services performed an assessment of the excavation at Navajo's Bad Luck site. The assessment consisted of visual inspection of the open excavation and stockpile soils and composite sampling of these soils in accordance with the procedures discussed with the Artesia office of the New Mexico Oil Conservation Division (OCD). The sampling techniques and constituent analysis also incorporated the procedures outlined in OCD's "Guidelines For Remediation of Leaks, Spills, and Releases, August 13, 1993."

The sampling locations for the stockpile samples (BAD 1 and 2) and excavation samples (BAD 3 through 7) are presented in Table 1 and are illustrated in the attached Figure 1.

Sample ID	Lab ID	Benzene (ug/Eg)	Toluene (ng/Kg)	Ethylhenzent (ug/Kg)	p,m- Xyicnes (sg/Kg)	o-Xylenes (ng/Kg)	TRPH (mg/Rg)	TRPH DET LIMIT (mg/Lg)
BAD - 1	0 694 G01590	ND	52.7	48.5	108.0	49.3	17500	250
BAD - 2	0694G01991	4.79	96.1	70.9	181.0	82.2	19900	625
BAD - 3	0694 G01992	12.9	125.0	62.9	127.0	54.4	10900	250
BAD - 4	0694G01993	42.9	290.0	138.0	253.0	113.0	20800	250
BAD - 5	0694G01994	ND	· · 5.72	3 .5	10.2	5.22	1 7\$0	25
DAD - 6	0694G01995	ND	ND	ND	NED	ND	40	10
BAD - 7	0694G01996	ND	ND	, MD	ND	ND	16	10

Table 1. Analytical Results of Composite Soil Samples taken at Bad Luck sitc.

BAD-7 is a duplicate of BAD-6.

3

The pipeline leak resulted in the release of crude oil to the surrounding soils. These impacted soils were subsequently evaluated for RCRA toxicity characterization leaching procedure (TCLP) analysis for volatiles, semivolatiles, and metals, and reactivity, corrosivity and ignitability to determine if the impacted soils were characteristically hazardous. The sample designated as BAD -1 was selected for hazardous waste evaluation due to the relatively

3

s

•;:

•••

٠

Mr. Jim Townsend Navajo Refining Company November 9, 1994

consistent total recoverable petroleum hydrocarbon (TRPH) documented for the stockpile soils.

Table 2. TCLP results for BAD -1 composite sample.

	Concentration	Detection Limit	Regulatory Limit
Analyte	(mg/L)	(mg/L)	(mg/L)
TCLP Volatiles			05
Benzene	0.041	0.025	0.5
Carbon Tetrachloride	ND	0.025	0.0
Chlorobezene	ND	0.025	100
Chloroform	ND	0.025	D.U
1.2 - Dichloroethane	ND	0.025	0.5
I,I - Dichloroethylene	ND	0.025	0.7
Methyl ethyl ketone	ND	0.050	200
Tetrachloroethylene	ND	0.050	0.7
Trichloroethylene	ND	0.050	0.5
Vinyl Chloride	ND	0.050	0.2
		·····	
	ND	0.01	200
	ND	0.01	200
1 A Tichlandaum	ND	0.01	7.5
2 A-Dinitrotolyana	ND	0.01	0.13
		0.01	0.13
Herachlone, 1.2 butsdiene	ND	0.01	0.5
Hexacinoro-1,3-Dutamene Verschloppethane		001	3.0
Mitzahonzono	ND	0.01	20
Pentachlamphonol	ND	0.03	100
Duridina	ND	0.01	5.0
24 E-Trichloronhunut	ND	0.01	400
2,4,8-Trichlorophenol	ND	0.01	2.0
	······		
TCLP Trace Metals		0.0	= 0
Arsenic	ND	0.2	100
Barium	ND	U.5	100
Cadmium	ND		· 1.0
Chromium	- ND	0.05	5.0
Lcad	ND	0.2	0.0
Mercury	ND	0.002	
Selenium	NI3	02	1.0
Sliver	ND	0.1	5.0
Reactivity			
Reactivity - Cvanide	ND	250	250
Reactivity - Sulfide	ND	250	500
pH (s.u.)		7.6	2.0 <ph<12.5< td=""></ph<12.5<>
Flash Point (°P)		>140	must exceed 140

-

Ξ

Mr. Jim Townsend Navajo Refining Company November 9, 1994

The results of these analysis indicate that the impacted soils are not characteristically hazardous and may be remediated in accordance with the referenced OCD guidelines. A formal assessment report will be submitted to Navajo Refining by November 23, 1994. The report will further document sampling procedures/analytical methodology, discuss action levels, potential receptors and recommended remedial technology.

If you have any questions concerning this matter, please contact me at (409) 690-9280 in our College Station office.

Respectfully,

MIR Cillen

W. R. Cullen, P.E. Engineering Group Manager

Ę

WRC/seh Enclosure File: via Fax and US Mail

2

Exhibit C

TCLP Results Barber Leak Site

(Three Pages)

ŀ

.

K. W. Brown Environmental Services A Division of AMEC Environmental Services, Inc. 501 Graham Road, College Station, TX 77845 Telephone: (409) 690-9280, Fax: (409) 690-7310

November 15, 1994

Mr. Jim Townsend Navajo Refining Company 501 East Main Street P.O. Drawer 159 Artesia, New Mexico 88210

RE: Navajo (Barber) - Artesia New Mexico

Dear Mr. Townsend:

The following letter is forwarded to Navajo Refining Company to provide preliminary information regarding the Navajo Barber site. On October 27 and 28, 1994, K. W. Brown Environmental Services performed an assessment of the excavation at Navajo's Barber site. The assessment consisted of visual inspection of the open excavation and stockpile soils and composite sampling of these soils in accordance with the procedures discussed with the Artesta affice of the New Mexico Qil Conservation Division (OCD) on October 26, 1994.

The sampling locations for the stockpile samples and excavation samples are presented in Table 1 and are illustrated in the attached Figure 1.

Table 1. Analytical results of composite soil samples taken at the Barber site.

Sample fb	Lab ID	Benzene (ng/Kg)	Tolucue (ug/Kg)	Ethylbensene (ug/Eg)	p.m-Xylenes (ng/Kg)	o-Xylenes (ug/Kg)	TRPH (mg/Kg)	TRPH DET I.MT (mg/Kg)
HAR - 1	0694001997	< 25	< 25	< 25	< 25	< 25	71	10
BAR - 2	0694601998	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	15	10
BAR - S	0594001999	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ND	. 10
BAR - 4	0694G02000	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ND	10
BAR - 5	0694602001	< 49	< 49	< 49	95	92	627	25
BAR - 6	0694G02002	< 5	< 5	14	87	105	654	25
BAR - 7	0694G02003	< 1.0	1.8	4.2	94.2	17.1	829	25
BAR - 8	0694G02004	< 19500	20900	< 19500	42600	< 19500	8510	250
BAR - 9	0694G02005	12700	131000	29100	135000	59800	20500	250
BAR - 10	0594G02006	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	196	10
BAR - 11	0694G02007	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	185	10
BAR - 12	0694G02008	< 1.0	.↓ < 1.0	< 1.0	< 1.0	< 1.0	230	10
BAR - 13	0694G02009	8420	81800	29100	101000	48800	15100	250
BAR - 14	0694G02010	\$3200	183000	52200	106000	79400	32000	500
BAR - 15	0694G02011	< 48	< 48	< 484	1020	1030	1990	25
BAR - 16	0694602012	< 1.0	1.6	< 1.0	2.8	< 1.0	212	· 25
BAR - 17	0694G02013	< 60	- 111	-3661	777	850	1430	25
BAR - 18	0694G03014	16300	141000	39000	150000	91000	20400	250
BAR - 19	0694G02015	< 18600	58400	< 18800	96200	38200	13500	250
BAR - 20	0694G02016	19400	183000	39200	204000	100000	22700	250
BAR - 21	0694602017	< 18800	20400	< 18800	38600	19700	8460	250
BAR - 22	0694G02018	< 19000	152000	35100	168000	88400	20600	230

÷

A significant disparity in indicator parameter TRPH levels was noted for the stockpile soils. As a result, the composite samples from the stockpile soils were subsampled and again composited for analysis. The subsamples were taken from sample designations BAR-8, 9, 13, 14, 18, 19, 20, 21, and 22. This sample was evaluated for RCRA toxicity characteristic leaching procedure (TCLF) analysis for volatiles, semivolatiles, and metals, and reactivity. corrosivity and ignitability to determine if the impacted soils were characteristically hazardous. The results of the analysis are presented in Table 2.

	Concentration	Detection Limit	Regulatory Limit
Analyte	(mg/L)	(mg/Ľ)	(mg/L)
TCLP Volatiles			
Benzene	ND	0.005	0.5
Carbon Tetrachloride	ND	0.005	0.5
Chlorobezene	ND	0.005	100
Chloroform	ND	0.005	6.0
1,2 - Dichloroethane	ND	0.005	0.5
I.1 - Dichlomethylene	ND	0.005	0.7
Methyl ethyl ketonc	ND	0.010	200
Tetrachioroethylene	ND	0.005	0.7
Trichloroethylene	ND	0.005	0.5
Vinyl Chloride	ND	0.005	0.2
TCLP Semivolatiles	<u> </u>	<u> </u>	
o-Crcsol	ND	0.0}	200
m.p-Cresol	ND	0.01	200
I.4-Dichlorobenzene	ND	0.01	7.5
2,4-Dinitrotoluene	ND	0.01	0.13
Hexachiorobenzene	ND	0.01	0.13
Hexachloro-1.3-butadiene	ND	0.01	0.5
Hexachloroethane	ND	0.01	3.0
Nitrobenzene	ND	0.01	2.0
Pentachlorophenol	ND	0.025	100
Pyridine	ND	0.01	5.0
2,4,5-Trichlorophenol	ND	0.01	400
2.4.6-Trichlorophenol	ND	0.01	2.0
TCLP Trace Metals		····	
Arsenic	ND	0.2	5.0
Barium	ND	0.5	100
Cadmium	ND	0.05	1.0
Chromium	ND	0.05	5.0
Lead	ND	0.2	5.0
Mercury	ND	0.002	0.2
Scientum	ND	0.2	1.0
Silver	ND	0.1	5.0

.

Table 2. TCLP results for the composite sample of BAR-8, 9, 13, 14, 18, 19, 20, 21, and 22.

Table 2. (cont.) TCLP results for the composite sample of BAR-8, 9, 13, 14, 18, 19, 20, 21, and 22.

Reactivity Reactivity - Cyanide Reactivity - Sulfide	ND ND	250 250	250 500
pH (s.u.)	7.6		2.0 <ph<12.5< td=""></ph<12.5<>
Flash Point (°F)	>140*		<140° is flazardous

The results of these analyses indicate that the impacted soils are **not** characteristically hazardous and may be remediated in accordance with OCD guidelines. A formal assessment report will be submitted to Navajo Refining by November 23, 1994. The report will further document sampling procedures and analytical methodology, discuss action levels, potential receptors, and recommended remedial technology.

If you have any questions concerning this matter, please contact me at (409) 690-9280 in our College Station office.

. **'**-

Respectfully.

ma tor

W. R. Cuilcn, P.E. Engineering Group Manager

Ŧ

WRC/seh Enclosure via Fax and US Mail

EZZ

Exhibit D

TCLP Results Beeson Station Leak Site

(Three Pages)

K. W. Brown Environmental Services A Division of AMEC Environmental Services, Inc. 501 Graham Road, College Station, TX 7784S Telephone: (409) 690-9380, Fax: (409) 690-7310

December 30, 1994

Mr. Jim Townsend Navajo Refining Company 501 East Main Street P.O. Drawer 159 Artesia, New Mexico 88210

RE: Navajo (Beeson Station) - Loco Hills - New Mexico

Dear Mr. Townsend:

ïč

On December 19 and 20, 1994, K. W. Brown Environmental Services (KWBES) performed an assessment of the excavation and stockpile soils at Navajo's Beeson Station. The assessment consisted of visual inspection of the open excavation and advancement of several exploratory borings in the immediate vicinity of the spill. In addition, composite samples were collected from the stockpile soils in accordance with the procedures discussed with personnel from the Artesia office of the New Mexico Oli Conservation Division (OCD). The sampling techniques and constituent analysis also incorporated the procedures outlined in OCD's "Guidelines For Remediation Of Leaks, Spills, and Releases", August 13, 1993. This letter is intended to provide an update regarding the classification of the impacted soils at the referenced property.

The spiil resulted in the release of crude oil to the near surface soils. The majority of these soils (estimated to be approximately 1,000 cubic yards) were excavated and placed on polyethylene sheeting within the berned area near the spiil. These impacted soils were subsequently evaluated for RCRA toxicity characterization leaching procedure (TCLP) analysis for volatiles, metals, and reactivity, corrosivity and ignitability (RCI) to determine if the impacted soils were characteristically hazardons. Two composite samples designated as BEE 9 and 10 were obtained from the stockpile and submitted to the laboratory for classification purposes. These two samples were subsequently composited in the laboratory to obtain a representative sample for analysis. The results of the analysis are presented in Table 1.

The results of these analysis indicate that the impacted soils are not characteristically hazardous and may be remediated in accordance with the referenced OCD guidelines. A formal assessment report will be submitted to Navajo Refining by January 13, 1995. The report will further document sampling procedures/analytical methodology, delineate the extent of contamination that may be attributed to the spill, discuss action levels, potential receptors, and recommended remedial technology.

L.

Mr. Jim Townsend Navajo Refining Company December 30, 1994

Table 1. Analytical results for composite sample of BEE 9 and 10.

Analyte	Concentration	Detection Limit	Regulatory Limit
	(mg/L)	(mg/L)	(mg/L)
Benzene Carbon tetrachloride Chlorobezene Chloroform 1.2 - Dichloroethane 1.1 - Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene Vinvi chloride	ND ND ND ND ND ND ND ND ND	0.005 0.005 0.005 0.005 0.005 0.010 0.010 0.005 0.005 0.005	0.5 0.5 100 6.0 0.5 0.7 200 0.7 0.5 0.2
Arsenic Barium Cadmium Chromium Lead Mercury Scientum Stilver Reactivity - Cyanide Reactivity - Sulfide	ND 1.7 ND ND ND ND ND ND ND	0.2 0.5 0.05 0.05 0.2 0.002 0.2 0.2 0.1 50 50	5.0 100 1.0 5.0 5.0 0.2 1.0 5.0 250 500
pH (s.u.)	7. 6		2.0 <ph<12.5< td=""></ph<12.5<>
Flach Point (F)	>140		must exceed 140

If you have any questions concerning this matter, please contact me at our College Station office, (409) 890-9280.

Respectfully,

Ne ቦ

W. R. Cullen, Jr., P.E. Engineering Group Manager

....

WRC:dr File: 622094004-110 via US Mail

<u>ر</u> .

4

2

Exhibit E

TCLP Results East Cedar Lake Leak Site and

Composite Sample of Yates, Burton Flats, Phillips, East and West Cedar Lake, and Marbob BKU Leak Sites

PHONE (915) 673-7001 • 2111 BEECHWOOD • ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

PHONE (505) 326-4669 • 118 S. COMMERCIAL AVE. • FARMINGTON, NM 87401

			TPH,	BTEX	ANALY	SIS	REPOI	R T		
Ci	Company: Address: ty, State:	SES, P.O. Hobb	Inc. Box 1613 s, NM 882	3 241		Date: Lab #:	11/13/95 H2255			
Pro Sa Ana Sai	ject Name: Location: ampled by: alyzed by: mple Type:	Nava Eddy DB MI Soil	jo Pipel: County,	ine NM Date: Date:	10/25/95 10/26-30/ Sample Con	Tin 95 Tin dition:	ne: vario ne: vario Intact	ous ous	Units:	ppm
*** Samj #	Field Code	****	********* TRPHC	********* BENZENE	**************************************	******** ETHYL BENZENE	PARA- XYLENE	********* META- XYLENE	********* ORTHO– XYLENE	*****
1	Composite ·	6	39,077	1.386	4.492	4.165	0.826	1.959	1.236	
2	529	Ε.	69,071	2.526	8.420	5.215	1.400	2.799	1.916	

OC Recovery OC Spike	385 375	0.808	0.805 0.852	0.919	0.871 0.844	0.906 0.854	0.874 0.844	
Accuracy	102.6%	93 %	94 %	107 %	103 %	106 %	104 %	
Air Blank	***	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	

Methods - GAS CHROMOTOGRAPHY; INFRARED SPECTROSCOPY - EPA SW-846; 8020, 418.1, 3510, 3540 or 3550

こ)-Mitch Irvin

13 95 <u>|| ||</u> Date

PHONE (915) 673-7001 • 2111 BEECHWOOD • ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

PHONE (505) 326-4669 • 118 S. COMMERCIAL AVE. • FARMINGTON, NM 87401

TCLP ANALYSIS REPORT

Company: Address: City, State:	SES, Inc. P.O. Box 1613 Hobbs, NM 88241	Date Lab #	: 11/20/95 : H2255-1
Project Name: Location:	Navajo Pipeline Eddy County, NM		
Sampled by: Sample Type:	DB Soil	Date Sample Condition Units	: 10/25/95 : Intact : ppm

TCLP ORGANICS

Sample ID: Composite - 6 Sites

DADAMETED	DFSIIT.T	гра Т.ТМТ Т
FARMEIER	<u>RESUBI</u>	EFA DIMII
Pvridine	<0.002	5.00
o-Cresol	<0.002	200
m,p-Cresol	<0.004	200
Hexachloroethane	<0.002	3.00
Nitrobenzene	<0.002	2.00
Hexachloro-1,3-butadiene	<0.002	0.500
2,4,6-Trichlorophenol	<0.002	2.00
2,4,5-Trichlorophenol	<0.002	400
2,4-Dinitrotoluene	<0.002	- 0.130
Hexachlorobenzene	<0.002	0.130
Pentachlorophenol	<0.002	100
Vinyl chloride	<0.002	0.20
1,1-Dichloroethylene	<0.002	0.70
Methyl ethyl ketone	<0.002	200
Chloroform	0.016	6.00
1,2-Dichloroethane	<0.002	0.50
Benzene	0.015	0.50
Carbon tetrachloride	<0.002	0.50
Trichloroethylene	<0.002	0.50
Tetrachloroethylene	<0.002	0.70
Chlorobenzene	<0.002	100
1,4-Dichlorobenzene	<0.002	7.50

TCLP	INORGANICS	(Leachate)
	*1101101111 CO	[Deachare)

PARAMETER	RESULT	<u>epa limit</u>
Silver	<0.1	5.0
Arsenic	<0.1	5.0
Barium	0.9	100.0
Cadmium	<0.1	1.0
Chromium	<0.1	5.0
Mercury	<0.002	0.2
Lead	<0.1	5.0
Selenium	<0.1	1.0

METHODS: TCLP ORGANICS - EPA 8260/8270 METHODS: TCLP INORGANICS (Leachate) - EPA 1311/7000

NVI -

20/95

Mitch Irvin

PHONE (915) 673-7001 • 2111 BEECHWOOD • ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

PHONE (505) 326-4669 • 118 S. COMMERCIAL AVE. • FARMINGTON, NM 87401

TCLP ANALYSIS REPORT

Company: Address: City, State:	SES, Inc. P.O. Box 1613 Hobbs, NM 88241	:	Date: Lab #:	11/20/95 H2255-2
Project Name: Location: Sampled by: Sample Type:	Navajo Pipeline Eddy County, NM DB Soil	Sample Cond.	Date: ition:	10/25/95 Intact
		-	Units:	ppm

Sample ID: Cedar Lake - East - 529

	TCLP	ORGANICS	
<u>PARAMETER</u>		<u>RESULT</u>	<u>EPA LIMIT</u>
Pyridine		<0.002	5.00
o-Cresol		<0.002	200
m,p-Cresol		<0.004	200
Hexachloroethane		<0.002	3.00
Nitrobenzene		<0.002	2.00
Hexachloro-1,3-butadiene		<0.002	0.500
2,4,6-Trichlorophenol		<0.002	2.00
2,4,5-Trichlorophenol		<0.002	400
2,4-Dinitrotoluene		<0.002	0.130
Hexachlorobenzene		<0.002	0.130
Pentachlorophenol		<0.002	100
Vinyl chloride		<0.002	0.20
1,1-Dichloroethylene		<0.002	0.70
Methyl ethyl ketone		<0.002	200
Chloroform		0.011	6.00
1,2-Dichloroethane		<0.002	0.50
Benzene		0.115	0.50
Carbon tetrachloride		<0.002	0.50
Trichloroethylene		<0.002	0.50
Tetrachloroethvlene		<0.002	0.70
Chlorobenzene		<0.002	100
1,4-Dichlorobenzene		<0.002	7.50

	TCLP INORGANICS	(Leachate)
<u>PARAMETER</u>	RESULT	<u>EPA LIMIT</u>
Silver Arsenic Barium Cadmium Chromium Mercury Lead	<0.1 <0.1 0.8 <0.1 <0.1 <0.002 <0.1	5.0 5.0 100.0 1.0 5.0 0.2 5.0
Selenium	<0.1	1.0

METHODS: TCLP ORGANICS - EPA 8260/8270 METHODS: TCLP INORGANICS (Leachate) - EPA 1311/7000

11/20/95

Irvin

-