

REPORTS

Highlander Environmental Corp.

Midland, Texas

October 7, 1999

Mr. Wayne Price State of New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

Re: Titan Resources, L.C. - Closure Report, Former Greenhill Petroleum Landfarm, Lovington Paddock / San Andres Unit, Lea County, New Mexico

Dear Mr. Price,

On behalf of Titan Resources, L.C. (Titan), please find enclosed one copy of the abovereferenced closure report prepared by Highlander Environmental Corp. (Highlander). The closure report details the remediation and sampling performed at the Site

Please call if you have any questions.

Sincerely, Highlander Environmental Corp.

Ike Tavarez Project Manager/Geologist

cc: Mr. Ron Lechwar - Titan Exploration, Inc. Ms. Donna Williams - NMOCD- Hobbs, New Mexico

Highlander Environmental Corp.

Midland, Texas

CLOSURE REPORT TITAN RESOURCES, L. P. FORMER GREENFILL PETROLEUM LANDFARM LOVINGTON PADDOCK / SAN ANDRES UNIT LEA COUNTY, NEW MEXICO

Prepared for

Titan Resources, L.P. 500 West North Lorraine Midland, Texas

October 1999

æ

0

2-4559 o

Table of Contents

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	SITE COORDINATES AND OWNERSHIP	5
4.0	REGULATORY	5
5.0	 LANDFARM SOIL SAMPLING AND ANALYSIS 5.1 TPH and BTEX Sampling 5.2 Lead Sampling 	6 6 7
6.0	CONCLUSIONS	8
7.0	RECOMMENDATIONS	10

ليم

Midland, Texas

List of Figures

Figures

- 1. Topographic Map
- 2. Site Map
- 3. Linear Regression Curve for TPH

List of Appendices

Appendix

- A. Highlander's original Report
- B. NMOCD Response Letter
- C. EPA OSWER Directive
- D. Laboratory Reports

Highlander Environmental Corp.

Midland, Texas

CLOSURE REPORT OF FORMER GREENHILL PETROLEUM LANDFARM LOVINGTON PADDOCK / SAN ANDRES UNIT LEA COUNTY, NEW MEXICO

PREPARED FOR

TITAN RESOURCES, L.P.

1.0 **INTRODUCTION**

Titan Exploration, Inc. (Titan) has retained Highlander Environmental Corp. (Highlander) to assess, remediate and monitor the former Greenhill landfarm. This report presents the results of remediation and sampling activities conducted at the Site. Based on the soil sample results, Highlander requests closure for the Site. The Site is located in the Lovington Paddock / San Andres Unit in the NE/4 of Section 1, T-17-S, R-36-E, Lea County, New Mexico. Figure 1 presents a Site location. Figure 2 presents the Site drawing.

2.0 BACKGROUND

Titan Resources, L.P. purchased production in the Lovington Paddock / San Andres Field in December 1997 from Pioneer Natural Resources. Pioneer had acquired this property from Greenhill Petroleum in early 1997. Conveyed along with this production was an ongoing bioremediation (landfarm) area at the Central Production Facility, which Greenhill had operated since 1994. This landfarm had been approved by the New Mexico Oil Conservation Division (NMOCD) to treat sludges and sediments from two open topped tanks and one unlined pit. The two tanks, labeled North Pit and South Pit, were being taken out of service at the Central Tank Battery. The North and South Pits were both polyethylene lined steel tanks, measuring 4' tall by 100' in diameter. The open unlined pit was designated the Getty-Walker Pit. Highlander personnel had sampled the North, South and Getty-Walker pits in 1992 and the results showed elevated lead levels of 137 mg/kg, 64 mg/kg and 32 mg/kg respectively. A copy of Highlander's original report is included in Appendix A.

The open unlined pit was designated the Getty-Walker Pit. Highlander personnel had sampled these tanks and pits in 1992 and the results showed elevated lead levels.

On October 11, 1994, Safety and Environmental Solutions, Inc., submitted a closure request to the New Mexico Oil Conservation Division (NMOCD). However, the question of elevated lead and insufficient sampling were apparently causes for the denial of the closure request. The analysis of a composite sample for total lead had been submitted with the closure request and indicated a total lead level in composite of 37.3 mg/kg at the 3.0' depth. Toxicity Characteristic Leachate Procedure (TCLP) testing previously submitted did not indicate any leachability for the lead contained within this landfarm. Titan, upon closing the purchase of this property, retained Highlander Environmental Corp. to assist in closing this landfarm.

Highlander personnel Tim Reed and Gary Miller met with Wayne Price of the NMOCD at the site on February 27, 1998. Also present for the meeting were Ron Lechwar and Bill Hearne with Titan. At that time, it was agreed that additional profiling of the landfarm would be performed to determine if additional work and/or a risk assessment needed to be performed at this facility. It was agreed that the site would be gridded into six areas and samples taken with a backhoe at depths of 0-1.0', 3.0' and 5.0'. Additionally, samples were to be taken at a depth of 5.0' below the surface in the areas where the old tanks had been to confirm that no residual lead contamination existed.

On March 9, 1998, Lynn Ward with Highlander supervised the investigation of the landfarm area. The site was segregated into six areas as shown on the attached Figure 2. Discrete soil samples were taken with a backhoe at depths of 0-1.0', 3.0' and 5.0' in each of the six areas (18 samples in all). The prior location of the removed north and south pits (tanks) were ascertained and it was determined that only the north pit area was accessible. The south pit area is currently the site of a 5000-barrel storage

tank. On March 8, 1999, a backhoe trench was excavated in the area of the removed north pit and samples were collected at 0-1', 3.0' and 5.0' below surface.

All of the samples were placed in laboratory prepared containers and chilled to 4°C. The samples were shipped under standard Chain of Custody control to Trace Analysis, Inc. in Lubbock, Texas. The samples were analyzed for Total Petroleum Hydrocarbons (TPH), by EPA method 418.1, Benzene, Toluene, Ethylbenzene and Xylene (BTEX), by EPA method 8020 and total lead (Pb), by EPA SW 846-3015, 6010B. The results are summarized in Table 1. The laboratory reports are shown in Appendix D.

Location	Analysis (mg/kg)	0-1.0'	3.0'	5.0'
	Lead	7.0	5.2	<5.0
Area 1	BTEX	< 0.050	<0.050	<0.050
	TPH	11,900	96.9	38.5
	Lead	13.0	<5.0	<5.0
Area 2	BTEX	0.435	1.66	<0.050
	ТРН	21,900	14,100	139
	Lead	15.0	<5.0	<5.0
Area 3	BTEX	< 0.050	<0.050	<0.050
	ТРН	8,200	161	139
	Lead	15.0	<5.0	<5.0
Area 4	BTEX	<0.050	<0.050	<0.050
	TPH	7,120	916	235
	Lead	22.0	<5.0	<5.0
Area 5	BTEX	<0.050	<0.050	<0.050
	ТРН	16,900	121	12.5
	Lead	7.6	<5.0	<5.0
Area 6	BTEX	<0.050	<0.050	<0.050
	ТРН	4,240	133	<10

Table 1.

Highlander Environmental Corp.

The samples taken from the test trench in the area of the removed North Pit were analyzed for total lead. The samples were taken from 0-1.0', 3.0' and 5.0' below surface. The reported total lead levels were 4.2 mg/kg, <2.0 mg/kg and <2.0 mg/kg respectively, indicating no residual lead contamination of soils.

Referring to Table 1, BTEX levels were below method detection limits for all samples except the 0-1.0' and 3.0' samples in Area 2, which exhibited total BTEX levels of 0.435 and 1.66 mg/kg respectively. No benzene was detected in either sample. These levels are well below the NMOCD RRAL level of 50-mg/kg total BTEX.

Due to the high TPH levels found in the 3.0' sample, the soils in Area 2 were turned to a depth of approximately 36" to 42" in order to bring the deeper contamination to the surface for treatment. All of the landfarm area soils were treated with a high nitrogen content fertilizer and watered. The shallow surface soils across the entire landfarm have been periodically watered and tilled to a depth of approximately 18".

The landfarm was re-sampled by Lynn Ward on January 22, 1999. In Areas 1,3,4,5 and 6, composite samples were taken from 0-1.0'. Composite samples were taken from 0-1.0' and 2.0' in Area 2. The results are summarized in Table 2.

Table 2.

(All results for TPH in mg/kg; March 8, 1998 sample results in parentheses)

Location	0-1.0'	2.0'
Area 1	10,200 (11,900)	N/A
Area 2	12,900 (21,900)	5,790 (14,100)
Area 3	3,200 (8,200)	N/A
Area 4	4,900 (7,100)	N/A
Area 5	8,910 (16,900)	N/A
Area 6	8,150 (4,240)	N/A

N/A: Not Analyzed

Referring to Table 2, areas 1, 2, 3, 4 and 5 showed a significant drop in TPH concentration. However, the samples were above the NMOCD RRAL TPH level of 1,000 mg/kg. Area 6 showed an increase in TPH concentration of 8,150 mg/kg and may be attributed to hot spots in the Area 6. The sample collected in Area 2 at 2.0' showed a TPH decreasing to 5,790 mg/kg.

Highlander submitted the Semi-Annual report dated April 27, 1999 to the NMOCD requesting closure of the Site. The NMOCD requested additional information and sampling for the Site, prior to closure. In our telephone conference with the NMOCD, another round of sampling was recommended from 0-1' below surface. Highlander requested the TPH (418.1) method changed to TPH (modified 8015) due to microbial activity and degradation of the hydrocarbon in the soil. Based on the previous soil samples collected for BTEX, trace of BTEX was only detected in Area 2 and BTEX analysis would not be necessary. The NMOCD response letter is enclosed in Appendix B.

3.0 SITE COORDINATES AND OWNERSHIP

The NMOCD in their response letter requested a legal survey point center of the landfarm. The NMOCD approved using a Global Positioning System (GPS) to determine longitude and latitude readings. The GPS reading of (32° 51' 59" N), (103° 18' 24" W) was recorded at the center of the landfarm. In addition, the land status ownership was also requested for the Site. The landowner is the City of Lovington. The City of Lovington has (2) water wells approximately 2,000' northwest of the landfarm. The landfarm is not a risk or environmental concern to the water wells. In addition there is no surface water located near the Site. Titan Resources will be monitoring the area for future development near the landfarm area.

4.0 <u>REGULATORY</u>

The NMOCD has regulatory authority for oil and gas operations in the State of New Mexico. Locally, the NMOCD's Hobbs, New Mexico office regulates oil and gas activity in Lea County, New Mexico. The NMOCD has developed guidelines for closure of unlined

Midland, Texas

surface impoundments (Unlined Surface Impoundment Closure Guidelines, February 1993). The guidelines require a risk-based evaluation of the site to determine recommended remediation action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. A risk-based evaluation was performed for the Site in accordance with the OCD guidelines, and the proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene and xylene). An RRAL of 1,000 ppm for TPH is proposed for the Site.

5.0 LANDFARM SOIL SAMPLING AND ANALYSIS

5.1 TPH and BTEX Sampling

On July 14, 1999, Highlander personnel collected soil composite samples at 0-1' from the Areas 1, 2, 3, 4, 5 and 6. A total of eight to nine grab samples were collected from each area to complete the composite. The soil samples results are shown in Table 3.

Location	ТРН (0-1.0')		
	DRO (mg/kg)	GRO (mg/kg)	
Area 1	612	<5	
Area 2	440	<5	
Area 3	56	<5	
Area 4	660	<5	
Area 5	<50	<5	
Area 6	651	<5	

T٤	ıble	e 3.

Referring to Table 3, the soil sample results show a decrease in TPH in all areas ranging from <50 mg/kg and 660 mg/kg (DRO) and <5 (GRO), which are below the NMOCD RRAL TPH level of 1,000 mg/kg. Based on the soil sample results, the TPH and BTEX concentration have met the RRAL of 1,000 mg/kg TPH. Cumulative soil

sample results (Table 1 and 2) are shown in Appendix D. Figure 3 shows a linear regression curve for TPH.

5.2 Lead Sampling

Original testing of a composite sample of soil from the landfarm indicated a total lead level of 37.3 mg/kg. Referring to Table 1, the March 9, 1998 soil samples show a total lead ranging from 7 mg/kg to 22 mg/kg at 0-1' below surface in Areas 1, 2, 3, 4, 5 and 6. The deeper samples at 3' below surface were below the method detection limit, except for 5.2 mg/kg detected in Area 1. The soil samples at 5.0' did not show detectable levels of lead in the soil.

On July 14, 1999, Highlander personnel resampled the landfarm for lead evaluation. The total lead ranged from 6.8 mg/kg to 15 mg/kg at 0-1' below surface in Area 1, 2, 3, 4, 5 and 6.

Location	Total Lead Samples Collected on 3/9/98 (concentrations mg/kg)			Total Lead Samples Collected on 7/14/99 (concentrations in mg/kg)	
	0-1'		5'	0-12	
Area 1	7	5.2	<5.0	6.8	
Area 2	13	<5.0	<5.0	13	
Area 3	15	<5.0	<5.0	8.4	
Area 4	7.6	<5.0	<5.0	9.7	
Area 5	22	<5.0	<5.0	13	
Area 6	7.6	<5.0	<5.0	15	

Table 4.

Referring to Table 4, the highest lead concentration of 15 mg/kg was detected in the surface soil (0-1') on July 14, 1999. The deeper soil samples, collected on March 9, 1998, shown no lead levels above the test method detection in samples from 5.0' below

7

Midland, Texas

surface and only one sample from the 3.0' level was above the test method detection limit (5.2 mg/kg). Bases on the sample results, the lead content of the shallow soils is not leaching into the deeper soils at the landfarm.

To further evaluate the leachability for the lead, you multiply the target groundwater concentration by what is considered to be a conservative Concentration Reduction Factor (CRF) of 100, to yield the maximum theoretical contaminant concentration in the soil leachate (in mg/L), the result would be 5 mg/L of lead leachate. The soils at 3.0' do not exceed 5 mg/kg of Total Lead. In other words, the lead would have to be 100% soluble in order to reach the 5-mg/L leachate parameter. Given the relative insolubility of lead and the depth to groundwater in this area, it is virtually impossible for the lead levels found in the near surface soils to impact groundwater. As for soil levels in the near surface soils, the highest total lead concentration (15 mg/kg) is well below the soil cleanup level of 500 to 1,000 mg/kg, established by EPA for residential soil cleanup at CERCLA sites. (OSWER Directive 9355.4-02, September 7, 1989). A copy of the directive is enclosed in Appendix C.

6.0 CONCLUSIONS

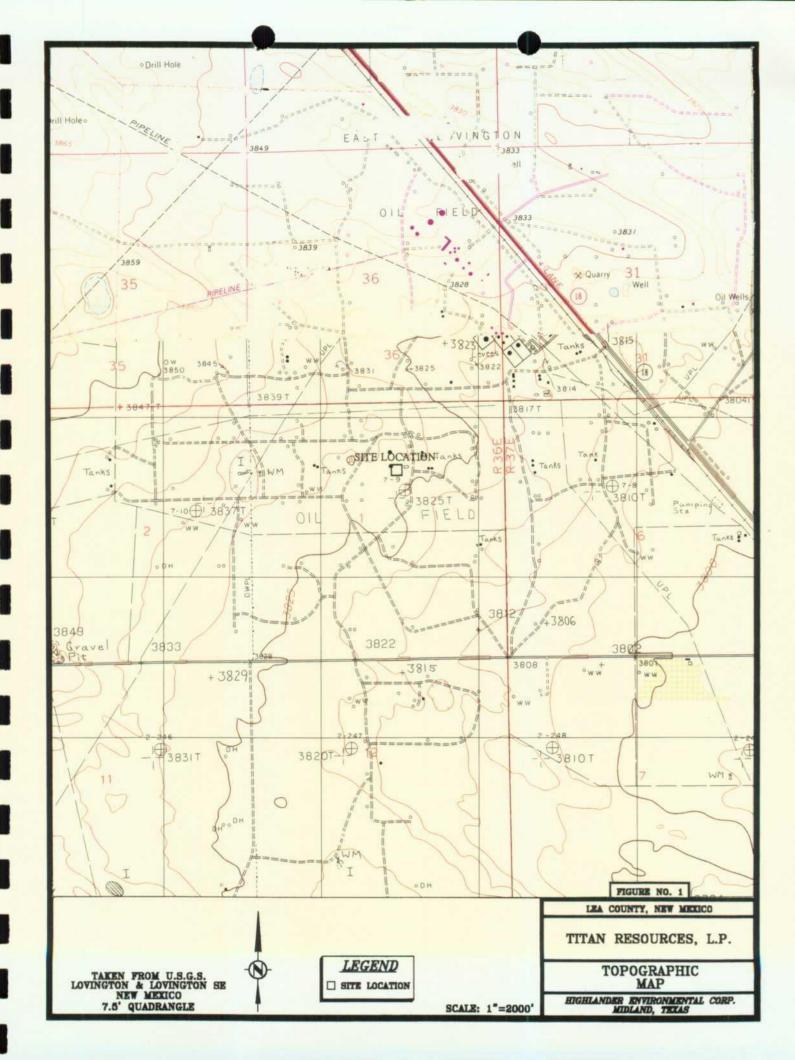
- 1. The NMOCD guidelines require a risk-based evaluation of the site to determine recommended remediation action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. A risk-based evaluation was performed for the Site in accordance with the NMOCD guidelines, and the proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/Kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene and xylene). An RRAL of 1,000 ppm for TPH is proposed for the Site.
- 2. City of Lovington is the owner of the land at the Site. The Site is located in production field southwest of Titan's central tank battery surrounded by producing and gas wells. No receptor or surface water is located near the landfarm. Two (2) City of Lovington waterwells are located approximately 2,000'

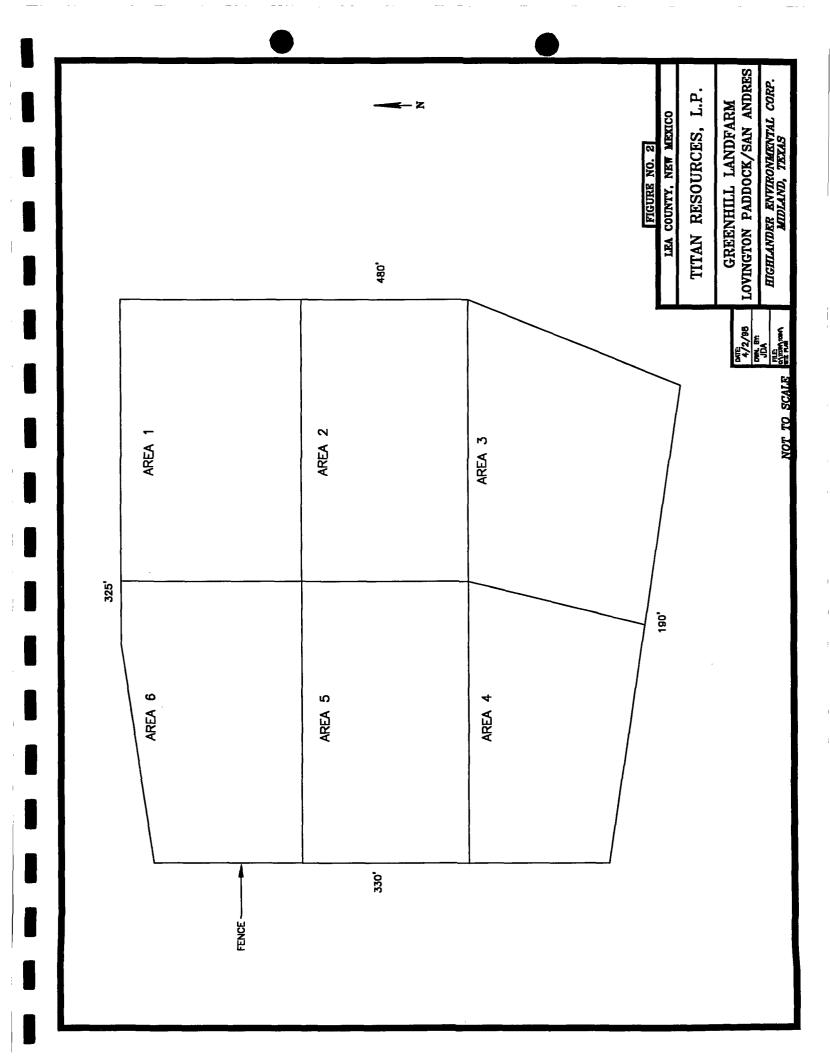
northwest of the landfarm. The landfarm is not a risk or environmental concern to the water wells or groundwater. Titan will monitor the area for future development near or at the landfarm area.

- 3. The soil samples collected from Area 1, 2, 3, 4, 5 and 6 show a TPH ranges from <50 mg/kg to 660 mg/kg. The analytical results indicate TPH reduction below the RRAL levels of 1,000 mg/kg.</p>
- 4. The BTEX levels were below the method detection limits for all samples except the 0-1.0' and 3.0' samples in Area 2, which exhibited total BTEX levels of 0.435 and 1.66 mg/kg respectively. No benzene was detected in either sample. These levels are well below the NMOCD RRAL level of 50-mg/kg total BTEX.
- 5. The highest lead concentration of 15 mg/kg was detected in the surface soil (0-1'). The deeper soil samples shown no lead levels above the test method detection in samples from 5.0' below surface and only one sample from the 3.0' level was above the test method detection limit (5.2 mg/kg). Based on the sample results, the lead content of the shallow soils is not leaching into the deeper soils at the landfarm.

Given the relatively insolubility of lead and the depth to groundwater in this area, it is virtually impossible for the lead levels found in the near surface soils to impact groundwater. As for soil levels in the near surface soils, the highest total lead concentration (15 mg/kg) is below the soil cleanup level of 500 to 1,000 mg/kg, established by EPA for residential soil cleanup at CERCLA sites. (OSWER Directive 9355.4-02, September 7, 1989).

9


7.0 <u>RECOMMENDATIONS</u>


We respectfully request that this Site be considered for closure. Considering the absence of any BTEX constituents, significant reduction in TPH levels and the absence of deep hydrocarbon impact. The TPH and BTEX levels are below the RRAL target level. As for soil levels in the near surface soils, the highest total lead concentration (15 mg/kg) is below the soil cleanup level of 500 to 1,000 mg/kg, established by EPA for residential soil cleanup at CERCLA sites.

Respectfully Submitted, Highlander Environmental Corp.

Bv: Ike Tavarez

Project Manager/ Geologist

Highlander Environmental

Midland • Corpus Christi • San Angelo, Texas

September 22, 1992

Mr. Richard R. Myers Greenhill Petroleum 11490 Westheimer, Suite 200 Houston, TX 77077

RE: Tank Bottom Material Reclamation and Treatment, Lovington, New Mexico

Dear Mr. Myers,

This report details the findings of the Greenhill Petroleum waste disposal pit sampling performed on July 28, 1992 by Highlander Services personnel Tim Reed and Vijay Kurki. The three pits are on leases near Lovington, New Mexico, and all three pits contained B. S. & W. materials.

The North Pond and South Pond are located on one lease approximately 200 feet apart. The third pit, the Getty/Walker, is located two to three miles east of the North and South Ponds. The North and South Ponds are polyethylene-lined steel tanks 100 feet in diameter and four feet tall, open-topped but netted. The Getty/Walker is an unlined earth pit approximately 40 x 60 feet and four feet deep.

The North Pond and South Pond both had chloride and pH levels within acceptable levels. The TPH levels in these two ponds were high--596,000 mg/kg in the North Pond and 626,000 mg/kg in the South Pond.

The lead levels in the North Pond, 137 mg/kg, and in the South Pond, 64 mg/kg, are above the regulatory levels specified for landfill disposal, which is 50 mg/kg. However, the TCLP levels may be below the 5 mg/kg regulatory level. Typically, the reduction from total level to TCLP levels is anywhere from 10 to 20 times the total level. Also, the North Pond high level of 137 mg/kg may be partially due to lead in the fluid. The North Pond has more fluid than the South Pond. The lead levels may be lowered once the fluid is extracted from the pits, as discussed later in this report. All other metals tested were below detection limits. The third pit, the Getty/Walker, also had high TPH of 334,000 mg/kg with high volatile organic compounds, the organic compounds being benzene, toluene, ethylbenzene, and xylene (BTEX). Arsenic was detected at 5 mg/kg and lead at 32 mg/kg, but neither should present any problems. No other metals or semi-volatile organics were detected. As with the other two pits, the chloride and pH levels were within acceptable limits. Copies of the laboratory reports and the chain of custody are enclosed in Appendix A.

All three of the pits are open-topped, allowing rainwater to enter, and requiring that any free water be pumped into a storage tank before any method of treatment can begin. Removing free water will reduce the overall volume of material to be treated and, consequently, the cost of treatment. Pumping the free water may also reduce the pit lead level, which will be especially important in the North Pond and South Pond, which have high lead levels.

The bottom of the North Pond is a loosely packed layer of sludge about 1 1/2 feet thick and 440 cubic yards volume, with a high water content. The middle layer of the pit is free water, about 1 to 1 1/2 feet thick and about 360 cubic yards in volume. The top is a hard paraffin layer 4 to 6 inches thick with a volume of 120 cubic yards and low water content.

The South Pond contains a single sludge layer of 1 1/2 feet with a volume of about 440 cubic yards.

The Getty/Walker pit has three layers, the bottom of which was about 2 1/2 feet of loose sludge approximately 223 cubic yards volume. The middle layer is about 6 inches of free water and 44 cubic yards volume. The top paraffin layer is four inches thick and has a volume of 30 cubic yards. The estimation of these volumes is presented in Table 1.

	North Tank (100 feet diameter)	
Description	Layer Thickness (average)	Volume (cubic yards)
Top paraffin layer	5 in.	121.00
Free water	1.25 ft.	363.00
Bottom loose sludge	1.50 ft.	436.00

Table 1
Estimated Volume of Sludge Components
North Tank (100 feet diameter)

Description	Layer Thickness (average)	Volume (cubic yards)
Total sludge	1.5 ft.	436.00

South Tank (100 feet diameter)

Getty/Walker Pit (40 feet x 60 feet)

Description	Layer Thickness (average)	Volume (cubic yards)
Top paraffin layer	4 in.	30.00
Free water	0.5 ft.	44.00
Bottom sludge	2.5 ft.	223.00

Based on the contamination findings of these three pits, the following remedial alternatives are proposed:

- 1. Transportation of sludge from all pits to an off-site disposal
- 2. Enhanced in-situ bio-remediation with micro-organisms
- 3. In-situ bio-remediation with indigenous bacteria

1. Transportation of the sludge to an off-site disposal facility will require moving the sludge either in barrels or a viscuine lined truck to the nearest disposal facility. The nearest disposal facility is CRI, between Hobbs, New Mexico and Carlsbad, New Mexico. The estimated cost for this transportation and disposal is \$30,308, and does not include loading and unloading expenses. Another factor in considering off-site disposal is that the generator is liable for cleanup should problems occur at the disposal facility in the future. A cost estimate sheet is given in Attachment 1.

2. Enhanced in-situ bio-remediation involves adding micro-organisms and biocatalyst to the sludge while it remains in the tank. Inoculation fees for bacteria range from \$15 to \$20 per cubic yard. Enclosed in Appendix A is the Alpha West Inc. proposal concerning the cost of treating 2500 cubic yards. The actual sludge volume for three pits is about 1250 cubic yards, and based

on this estimated volume, this method of treatment would cost about \$29,900. After in-situ treatment, the waste must either be landfarmed or backfilled, which results in additional cost and is explained further in the next paragraph.

3. Natural biodegradation is the most common method of treatment. After removal of the free water in the tank, the residual sludge would be treated by land farming. The sludge would be sampled for Toxicity Characteristic Leaching Procedures (TCLP) before landfarming operations began. Landfarming involves thorough blending of the top soil at the site with the sludge and added nutrients. Every 30 days the blended soil and sludge would be tilled for aeration. The nutrients are added in calculated quantities during tilling to provide favorable conditions for indigenous bacteria. While biological degradation of hydrocarbon wastes has been used extensively by the petroleum industries, it is a slower process than enhanced bioremediation.

An evaluation assessment of the history, geology and hydrology of the site is required for the implementation of a successful bioremediation design plan. The necessity and amount of nutrients added to subsurface microorganisms for in-situ remediation is dependent upon the site hydrology. Sites with low permeability, such as those with clay, may not allow a successful introduction of nutrients.

A thorough laboratory assessment of the microbiology of the site also provides indicative information as to whether natural bioremediation will be successful. Some components of this laboratory assessment are:

- * Evaluate the presence of requisite microorganisms
- * Assess potential toxicity to the microorganisms
- * Evaluate nutrient requirements to enhance degradation activity
- * Evaluate the compatibility of the site geochemistry with the nutrient solution proposed for addition.

Natural biodegradation may be used based on the results of the laboratory assessment.

If the Oil Conservation Division of Santa Fe, New Mexico will not allow land farming, then the sludge can be treated by bio-venting with the use of a bio-cell. The bio-cell would

consist of a layer of one foot thick porous soil, or top soil available at the site, laid over a plastic sheet. It is strongly recommended that drainage pipes be installed for every 20 feet of the bio-cell. For this project, the bio-cell dimensions would be 150 feet by 150 feet. Bio-venting works on the same principles as natural biodegradation, but instead of the sludge being mixed with soil, the sludge is laid out over the bio-cell. The drainage pipes would be used for sludge venting after any water present in the sludge is drained out by gravity.

The Getty/Walker pit can be treated in-situ by adding micro-organisms to enhance the bioremediation and blending of the soil, or the sludge may be moved to the North Pond for treatment. If the sludge is moved from one lease to another, the New Mexico Oil Conservation Division (OCD) has to be notified for approval. Therefore, treatment of the Getty/Walker sludge in-situ might be more favorable. A sample form for the New Mexico OCD is attached at the end of this report.

The natural biodegradation method appears to be the most cost-effective method treatment for the North Pond and South Pond tank sludge. Highlander Services Corp. recommends drainage of any free water from the pits and subsequent injection of the free water into the deep injection wells operated by Greenhill Petroleum.

If you have any further questions involving the investigation or this report, please do not hesitate to call on us at once.

HIGHLANDER ENVIRONMENTAL CORP.

Tim Reed Vice President, Environmental Services

Hydrologist

Materials, environmental and geotechnical engineering, nondestructive, metallurgical and analytical services 1703 West Industrial Avenue • P.O. Box 2150 • Midland, Texas 79702

Report of tests on	Waste	File No.	6581000
Client	Highlander Services Corp.	Report No.	78575
Delivered by	Tim Reed	Report Date	8-18-92 7-29-92

Identification

Project No. 294, Greenhill Petroleum, Lovington, Tank Bottoms Sampling, North Pond, Sampled 7-28-92 @ 1145 by Tim Reed.

REPORT OF CHEMICAL ANALYSIS

<u>Parameters</u>	<u>Results</u>	Date <u>Performed</u>	<u>Analyst</u>	<u>Test Method</u>
Chloride, mg/kg (1:1 Water Extract)	284	8-3-92	W. Jaycox	SM 4500-Cl,
pH (1:1)	6.97	8-3-92	W. Jaycox	SW846, 9040
Total Petroleum Hydrocarbons, mg/kg	596000	7-30-92	S. Stovall	EPA 418.1

* Denotes "less than"

Copies: Highlander Services Corp. Attn: Tim Reed

EDN

Sw[

Materials, environmental and geotechnical engineering, nondestructive, metallurgical and analytical services 1703 West Industrial Avenue • P.O. Box 2150 • Midland, Texas 79702

Report of tests on Waste Client Highlander Services Corp. Delivered by Tim Reed	File No. Report No. Report Date Date Received	6581000 78575 8-18-92 7-29-92
---	--	--

Identification

Project No. 294, Greenhill Petroleum, Lovington, Tank Bottoms Sampling, North Pond, Sampled 7-28-92 @ 1145 by Tim Reed.

REPORT OF TOTAL METALS

Parameters	Results mg/kg	Date <u>Performed</u>	Analyst	<u>Test Method</u>
Arsenic	* 5.0	8-11-92	G. Bunch	SW846, 7061
Barium	* 20	8-17-92	G. Bunch	SW846, 7080
Cadmium	* 2.0	8-17-92	G. Bunch	SW846, 7130
Chromium	* 4.0	8-17-92	G. Bunch	SW846, 7190
Lead	137	8-17-92	G. Bunch	SW846, 7420
Mercury	* 0.40	8-12-92	G. Bunch	SW846, 7470
Selenium	* 1.5	8-11-92	G. Bunch	SW846, 7741
Silver	* 2.5	8-17-92	G. Bunch	SW846, 7760

*Denotes "less than"

Copies: Highlander Services Corp. Attn: Tim Reed

Аво TEBN L

Materials, environmental and geotechnical engineering, nondestructive, metallurgical and analytical services 1703 West Industrial Avenue • P.O. Box 2150 • Midland, Texas 79702

Report of tests on Client	Waste Highlander Services Corp.	File No. Report No.	6581000 78576
Delivered by	Tim Reed	Report Date	8-18-92
		Date Received	7-29-92

Identification

Project No. 294, Greenhill Petroleum, Lovington, Tank Bottoms Sampling, South Pond, Sampled 7-28-92 @ 1230 by Tim Reed.

REPORT OF CHEMICAL ANALYSIS

<u>Parameters</u>	<u>Results</u>	Date <u>Performed</u>	<u>Analyst</u>	Test Method
Chloride, mg/kg (1:1 Water Extract)	284	8-3-92	W. Jaycox	SM 4500-Cl,
pH (1:1)	6.69	8-3-92	W. Jaycox	SW846, 9040
Total Petroleum Hydrocarbons, mg/kg	626000	7-30-92	S. Stovall	EPA 418.1

* Denotes "less than"

Copies: Highlander Services Corp. Attn: Tim Reed

à

RIES ESTERN L

Sw[

Materials, environmental and geotechnical engineering, nondestructive, metallurgical and analytical services 1703 West Industrial Avenue • P.O. Box 2150 • Midland, Texas 79702

Delivered by Tim Reed Report Date	78576 8-18-92 7-29-92
-----------------------------------	-----------------------------

Identification Project No. 294, Greenhill Petroleum, Lovington, Tank Bottoms Sampling, South Pond, Sampled 7-28-92 @ 1230 by Tim Reed.

REPORT OF TOTAL METALS

)	<u>Parameters</u>	Results mg/kg	Date <u>Performed</u>	<u>Analyst</u>	<u>Test Method</u>
	Arsenic	* 5.0	8-11-92	G. Bunch	SW846, 7061
1	Barium	* 20	8-17-92	G. Bunch	SW846, 7080
	Cadmium	* 2.0	8-17-92	G. Bunch	SW846, 7130
	Chromium	* 4.0	8-17-92	G. Bunch	SW846, 7190
•	Lead	64	8-17-92	G. Bunch	SW846, 7420
	Mercury	* 0.40	8-12-92	G. Bunch	SW846, 7470
	Selenium	* 1.5	8-11-92	G. Bunch	SW846, 7741
I	Silver	* 2.5	8-17-92	G. Bunch	SW846, 7760

*Denotes "less than"

Copies: Highlander Services Corp. Attn: Tim Reed

Reviewed by

/ESTERN LABØR

Our letters and reports are for the exclusive use of the client to whom they are addressed. The letters and reports shall not be reproduced except in full without the approval of the testing laboratory. The use of our name must receive prior written approval.

Materials, environmental and geotechnical engineering, nondestructive, metallurgical and analytical services 1703 West Industrial Avenue • P.O. Box 2150 • Midland, Texas 79702

Report of tests on	Waste	File No.	6581000
Client	Highlander Services Corp.	Report No.	78577
Delivered by	Tim Reed	Report Date	8-18-92 7-29-92

Identification

Project No. 294, Greenhill Petroleum, Lovington, Tank Bottoms Sampling, Getty/Walker, Sampled 7-28-92 @ 1430 by Tim Reed.

REPORT OF CHEMICAL ANALYSIS

<u>Parameters</u>	<u>Results</u>	Date <u>Performed</u>	Analyst	<u>Test Method</u>
Chloride, mg/kg (1:1 Water Extract)	248	8-3-92	W. Jaycox	SM 4500-Cl,
pH (1:1)	6.41	8-3-92	W. Jaycox	SW846, 9040
Total Petroleum Hydrocarbons, mg/kg	334000	7-30-92	S. Stovall	EPA 418.1

* Denotes "less than"

Copies: Highlander Services Corp. Attn: Tim Reed

ORIS STERN LABOR

Materials, environmental and geotechnical engineering, nondestructive, metallurgical and analytical services 1703 West Industrial Avenue • P.O. Box 2150 • Midland, Texas 79702

Report of tests on Client Delivered by	Waste Highlander Services Co Tim Reed	rp.	File No. Report No. Report Date Date Receive	78577 8-18-92
Identification	Project No. 294, Green Tank Bottoms Sampling, @ 1430 by Tim Reed. REPORI	Getty/Wa OF	lker, Sample	ngton, 2d 7-28-92
	VOLATILE ORGAN			
	7-31-92		SW846, 5030/	8240
Technique 'Purge an	id Trap GC/MS	Analyst	R. Wright	
Compound				<u>ug/kg</u>
	· · · · · · · · · · · · · · · · · · ·			
Vinyl Chloride				* 10900
Chloroethane -	• •			* 10900
Methylene Chlor	ride			* 5430
1,1-Dichloroeth	nene			* 5430
1,1-Dichloroeth				* 5430
trang 1 2-Dichioroeth	nene (total) loroethene			* 5430 * 5430
Chloroform				* 5430
1 2-Dichloroet	nane			* 5430
1,1 1-Trichlor	name			* 5430
Carbon Tetrach	oethane ————— loride —————	<u>.</u>		* 5430
Bromodichlorom	ethane			* 5430
1.2-Dichloropro	onane — — — — — — — — — — — — — — — — — — —			* 5430
trans-1.3-Dich	loropropene			* 5430
Trichloroethen	5			* 5430
	ethane			
1,1,2-Trichlor	oethane			* 5430
Benzene		<u> </u>		62000
cis-1,3-Dichlo	ropropene ————	<u> </u>	<u></u>	* 5430
2-Chloroethylv:	inylether ————			* 10900
Tetrachloroeth	ene — hloroethane —	·····-		* 5430
1,1,2,2-Tetracl	hloroethane ———			* 5430
Toluene				165000
Chlorobenzene -	······································	<u></u>		* 5430
Ethylbenzene -	·····			126000
Total Xylenes .				172000
Acrolein	······································	· · · · · · · · · · · · · · · · · · ·		* 54300
*Denotes "less	thanl	······································		× 54300
voenores "Tess	unan"			

Copies: Highlander Services Corp. Attn: Tim Reed

Reviewed by

0 a

RIES sour L

Our letters and reports are for the exclusive use of the client to whom they are addressed. The letters and reports shall not be

Sw[

Materials, environmental and geotechnical engineering, nondestructive, metallurgical and analytical services 1703 West Industrial Avenue • P.O. Box 2150 • Midland, Texas 79702

Report of tests on Client Delivered by	Highlander Servio	ces Corp.	File No. Report No. Report Date Date Received	78577 8-18-92
Identification		pling, Getty/Wal ed. EPORT OF	leum, Lovingt ker, Sampled	con, 7-28-92
	ORGA	NICS ANALYSIS		
			ige 1 of 3	
Date of Analysis	8-4-92	Method Analyst	SW846, 3550/8 L. Jones	270
Compound				<u>uq/kq</u>
Phenol			*	280000
bis(2-Chloroet	hyl)Ether ———		*	280000
2-Chlorophenol	phenol		*	280000
1,3-Dichlorobe	nzene ———		*	280000
1,4-Dichlorobe	nzene		*	280000
Benzyl Alcohol			*	280000
1,2-Dichlorobe	nzene ———		*	280000
2-Methylphenol			*	280000
bis(2-Chlorois	opropyl)Ether		*	280000
4-Methylphenol			*	280000
N-Nitroso-Di-n	-Propylamine ——		*	280000
Hexachloroetha	ne		*	280000
Nitrobenzene -	·		*	280000
Isophorone			<u> </u>	280000
2-Nitrophenol			*	280000
2,4-Dimethylph	enol		*	280000
bis(2-Chloroet	hoxy)Methane ——	<u></u>	*	280000
2,4-Dichloroph	enol	<u></u>	*	280000
1,2,4-Trichlor	obenzene ———		*	280000
Naphthalene —			*	280000
4-Chloroanilin	e		*	280000
Hexachlorobuta	diene hylphenol		*	280000
4-Cnloro-3-Met	nyipnenoi		*	280000
2-metnyinaphth	alene	· · · · · · · · · · · · · · · · · · ·	*	280000
nexachiorocycl	opentadiene		*	280000
2,4,0-Tricnior	ophenol		*	280000
2,4,5-Tricnior	alene ————		*	280000
*Denotes "less	than		*]	1200000
"Denotes "Tess	UIIAII			

Copies: Highlander Services Corp. Attn: Tim Reed

α C

BATORES /ESTERN L 80

Materials, environmental and geotechnical engineering, nondestructive, metallurgical and analytical services 1703 West Industrial Avenue • P.O. Box 2150 • Midland, Texas 79702

Report of tests on Client Delivered by Waste Highlander Services Corp. Tim Reed
 File No.
 6581000

 Report No.
 78577

 Report Date
 8-18-92

 Date Received
 7-29-92

Identification

Project No. 294, Greenhill Petroleum, Lovington, Tank Bottoms Sampling, Getty/Walker, Sampled 7-28-92 @ 1145 by Tim Reed.

> REPORT OF ORGANICS ANALYSIS

> > Page 2 of 3

	Compound	_	ug/k	
	Dimethyl Phthalate	*	2800	00
	Acenaphthylene	*	2800	00
)	2,6-Dinitrotoluene			
	3-Nitroaniline			
	Acenaphthene	*	2800	00
	2,4-Dinitrophenol	:*]	L3600	00
	2,4-Dinitrophenol	*1	L3600	00
	Dibenzofuran	*	2800	00
	2,4-Dinitrotoluene			
	Diethyl Phthalate	*	2800	00
	4-Chlorophenyl-phenylether	*	2800	00
	Fluorene	*	2800	00
	4-Nitroaniline	*	13600	00
	4,6-Dinitro-2-Methylphenol —	_		
1	N-Nitrosodiphenylamine (1)		2000	00
	4-Bromophenyl-phenylether		2000	00
	Hexachlorobenzene	*	2800	00
	Pentachlorophenol			
	Phenanthrene			
	Anthracene			
	Di-n-Butylphthalate	*	2800	00
	Fluoranthene			
	Pyrene			
	Butylbenzylphthalate	*	2800	00
	3,3'-Dichlorobenzidine	*	5610	00
	Benzo(a)Anthracene	*	2800	00
	Chrysene	*	2800	00
	bis(2-Ethylhexyl)Phthalate	*	2800	00

*Denotes "less than"

Copies: Highlander Services Corp. Attn: Tim Reed

Reviewed by

ATOMIES

Our letters and reports are for the exclusive use of the client to whom they are addressed. The letters and reports shall not be

Materials, environmental and geotechnical engineering, nondestructive, metallurgical and analytical services 1703 West Industrial Avenue • P.O. Box 2150 • Midland, Texas 79702

Report of	tests	on
Client		
Delivered	by	

Waste Highlander Services Corp. Tím Reed
 File No.
 6581000

 Report No.
 78577

 Report Date
 8~18-92

 Date Received
 7~29-92

Identification

Project No. 294, Greenhill Petroleum, Lovington, Tank Bottoms Sampling, Getty/Walker, Sampled 7-28-92 @ 1145 by Tim Reed.

REPORT OF ORGANICS ANALYSIS

Page 3 of 3

Compound	<u>uq/kq</u>
Di-n-Octyl Phthalate	* 280000
Benzo(b)Fluoranthene	* 280000
Benzo(k)Fluoranthene	* 280000
Benzo(a)Pyrene	* 280000
Indeno(1,2,3-cd)Pyrene	* 280000
Dibenz(a,h)Anthracene	* 280000
Benzo(g,h,i)Perylene	* 280000

* Denotes "less than"

Copies: Highlander Services Corp. Attn: Tim Reed

d'un

Reviewed by

STERNI RATORIES

Our letters and reports are for the exclusive use of the client to whom they are addressed. The letters and reports shall not be reproduced except in full without the approval of the testing laboratory. The use of our name must receive prior written approval.

Sw[

Materials, environmental and geotechnical engineering, nondestructive, metallurgical and analytical services 1703 West Industrial Avenue • P.O. Box 2150 • Midland, Texas 79702

Report of tests on Waste Client Highlander Services Corp. Delivered by Tim Reed	File No. Report No. Report Date Date Received	6581000 78577 8-18-92 7-29-92
---	--	--

Identification Project No. 294, Greenhill Petroleum, Lovington, Tank Bottoms Sampling, Getty/Walker, Sampled 7-28-92 @ 1430 by Tim Reed.

REPORT OF TOTAL METALS

Parameters	Results mg/kg	Date <u>Performed</u>	Analyst	<u>Test Method</u>
Arsenic	5.0	8-11-92	G. Bunch	SW846, 7061
Barium	* 20	8-17-92	G. Bunch	SW846, 7080
Cadmium	* 2.0	8-17-92	G. Bunch	SW846, 7130
Chromium	* 4.0	8-17-92	G. Bunch	SW846, 7190
Lead	32	8-17-92	G. Bunch	SW846, 7420
Mercury	* 0.40	8-12-92	G. Bunch	SW846, 7470
Selenium	* 1.5	8-11-92	G. Bunch	SW846, 7741
Silver	* 2.5	8-17-92	G. Bunch	SW846, 7760

*Denotes "less than"

Copies: Highlander Services Corp. Attn: Tim Reed.

X X C

STERN

Highlander Services Corp. 306 W. Wall Suite 320 · Midland, TX 79701 · (915)682-4559 Analvsis Request and Chain of Custody Record	LUVITETON Tank Bettons Sampling Date B E Sample Preser ANALYSIS REQUESTED	Rication Time & Sludge, Ect.) 2 k r r Starter Starter X Sludge	er Stors reall with X Sludge			Date: Time:	Date: Recleved by: Time: (Signature)	Relinquished by: Date: Data Results To: (Signature) (Signature) 1.	Delivered To, Leperatori, Willand 2.	REMARKS: Sove additional family	copies - Deliverer retains White copy for file - Lab retains Yellow copy & Return Pink copy to Highlander Services Corp. at above address
A CONTRACTOR OF	Project No. Client/Pr XQA Drew	NErth Pond				lers: (Print)	r k i	in lect		Rush Charges Authorized	Fill out all copies -

i

i I

ł

ł

NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 South Pachace Street Santa Fe, New Mexico \$7505 (506) \$27-7131

June 12, 1999

CERTIFIED MAIL RETURN RECEIPT NO. Z 357 870 137

Mr. Ron Lechwar Titan Resources, Inc. 500 W. Texas Suite 500 Midland, Tx 79701

Re: Investigation and Remediation of former Greenhill Petroleum Landfarm, Lovington Paddock/San Andres Unit, NE/4 of Section 1, Ts17s-R36e, Lea County, New Mexico.

Dear Mr. Lechwar:

The New Mexico Oil Conservation Division (NMOCD) is in receipt of the Report on Semi-Annual Sampling dated April 27, 1999 for the above captioned site submitted by Highlander Environmental Corp. in which closure is requested. The NMOCD hereby denies your request for closure at this time. In order to further evaluate your request please provide to NMOCD the following information:

- 1. Please provide a legal surveyed point (to nearest foot) from approximately the center of the landfarm.
- 2. Please provide another round of sampling from the landfarm area. Samples shall be tested for the constituents of concern i.e. BTEX, TPH, Lead etc. Titan will notify the OCD Santa Fe office and the OCD District office at least 48 hours in advance of all scheduled activities such that the OCD has the opportunity to witness the events and/or split samples during OCD's normal business hours.
- 3. Please provide to NMOCD a linear regression curve showing time vs remaining constituents levels. Please plot existing data and extrapolate into the future.
- 4. Please provide a copy of the EPA/CERCLA OSWER Dir. 9355.4-02 Sept 7, 1989.
- 5. Please provide land status ownership.
- 6. Please provide a plan or rational i.e. model etc. as to how current or future landowners will be protected if they excavate in this area.

Please provide the above information by December 1, 1999, If you require any further information or assistance please do not hesitate to write or call me at (505-827-7155).

Sincerely Yours,

Wayne Price-Pet. Engr. Spec. Environmental Bureau

cc: OCD Hobbs District Office Tim M. Reed- Highlander

	Wasnington, DC 20460	1 Sirective Number
SEPA OSWER	Directive Initiation R	equest OSWER 9355.4-0
	2. Originator Information	
Name of Contact Person Marlene Berg	Mail Code Cffice OS-240 OERR/HS	FD 475-9493
J. fille	OS-240 OERR/HS	
Interim Guidance	on Establishing Soil Lead Cl	eanup Levels at Superfund Sit
4. Summary of Okrective (include oner sta		
total lead, at 500	memo is to set forth an inte to 1000 ppm, which OERR and cesidential settings.	OWPE consider protective for
	concial settings.	
5. Keywords Superfund, CERCL		
64. Does This Directive Superseae Prevo	ous Directive(s)?	What cirective (number, title)
b. Does It Supplement Previous Directive	e(s)?	What directive (number, title)
7. Oran Level A - Signed by AA/DAA	X 8 - Signed by Office Director	- For Review & Comment 0 - in Deve
	······	
8. Document to be a	distributed to States by Headq	uarters? X Yes No
This Request Meets OSWER Directives		
. Signature of Lead Office Directives Coo	ordinator	Date
		1
Betti Van Epps. OERR P	ublications Coordinator	
	Aublications Coordinator	10ate
0. Name and Title of Approving Official		Date
0. Name and Title of Approving Chical Henry L. Longest II, D.	Director, OERR	Oate
0. Name and Title of Approving Chical Henry L. Longest II, D.	Director, OERR	
0. Name and Title of Approving Chical Henry L. Longest II, D.	Director, OERR	RECEIVER
0. Name and fille of Approving Chical Henry L. Longest II, D.	Director, OERR	RECEIVER
10. Name and Title of Approving Chical Henry L. Longest II, D.	Director, OERR	RECEIVED
10. Name and Title of Approving Official Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous	Director, OERR	RECEIVED
10. Name and Title of Approving Official Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous	Director, OERR	RECEIVER
10. Name and Title of Approving Chicas Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous SWER	ectoons are obsolete.	RECEIVED NOV 0 8 1989 Waste Minageritiante arvice
10. Name and Title of Approving Chical Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous SWER DIRECTIVE	ectoons are obsolete.	RECEIVED NOV 0 8 1989 Waste Minageritiante arvice
IO. Name and Title of Approving Chical Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous SWER DIRECTIVE	Director, OERR economis are obsolete. DSWER DIRECTIV	RECEIVED NOV 0 8 1989 Waste Minageritiante arvice
10. Name and Title of Approving Chicas Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous SWER DIRECTIVE	ectoons are obsolete.	RECEIVED NOV 0 8 1989 Waste Minageritiante arvice
0. Name and Title of Approving Chicas Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous SWER DIRECTIVE	ectoons are obsolete.	RECEIVED NOV 0 8 1989 Waste Minageritiante arvice
IO. Name and Title of Approving Chical Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous SWER DIRECTIVE	ectoons are obsolete.	RECEIVED NOV 0 8 1989 Waste Minageritiante arvice
10. Name and Title of Approving Chicas Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous SWER DIRECTIVE	ectoons are obsolete.	RECEIVED NOV 0 8 1989 Waste Minageritiante arvice
10. Name and Title of Approving Chicas Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous SWER DIRECTIVE	ectoons are obsolete.	RECEIVED NOV 0 8 1989 Waste Minageritiante arvice
0. Name and Title of Approving Chicas Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous SWER DIRECTIVE	ectoons are obsolete.	RECEIVED NOV 0 8 1989 Waste Minageritiante arvice
0. Name and Title of Approving Chicas Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous SWER DIRECTIVE	ectoons are obsolete.	RECEIVED NOV 0 8 1989 Waste Minageritiante arvice
0. Name and Title of Approving Chicas Henry L. Longest II, D. PA Form 1315-17 (Rev. 5-47) Previous SWER DIRECTIVE	ectoons are obsolete.	RECEIVED NOV 0 8 1989 Waste Minageritiante arvice

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

SEP 7, 19.89

DEFICE OF SOUD WASTE AND EMERGENCY PEER ITLE

OSWER Directive #9355.4-02

MEMORANDUM Interim Guidance on Establishing Soil Lead Cleanup SUBJECT: Levels at Superfund Sites. Henry L. Longest II, Director 1. 4. FROM: Office of Emergency and Remedial Response Bruce Diamond, Director Office of Waste Programs Enforcement Directors, Waste Management Division, Regions I, II, TO: IV, V, VII and VIII Director, Emergency and Remedial Response Division, Region II Directors, Hazardous Waste Management Division, Regions III and VI Director, Toxic Waste Management Division, Region IX Director, Hazardous Waste Division, Region X -

PURPOSE

The purpose of this directive is to set forth an interim soil cleanup level for total lead, at 500 to 1000 ppm, which the Office of Emergency and Remedial Response and the Office of Waste Programs Enforcement consider protective for direct contact at residential settings. This range is to be used at both Fund-lead and Enforcement-lead CERCLA sites. Further guidance will be developed after the Agency has developed a verified Cancer Potency Factor and/or a Reference Dose for lead.

BACKGROUND

Lead is commonly found at hazardous waste sites and is a contaminant of concern at approximately one-third of the sites on the National Priorities List (NPL). Applicable or relevant and appropriate requirements (ARARs) are available to provide cleanup levels for lead in air and water but not in soil. The current National Ambient Air Quality Standard for lead is 1.5 ug/m³. While the existing Maximum Contaminant Level (MCL) for lead is 50 ppb, the Agency has proposed lowering the MCL for lead to 10 ppb at the tap and to 5 ppb at the treatment plant(1). A Maximum Contaminant Level Goal (MCLG) for lead of zero was proposed in 1988⁽²⁾. At the present time, there are no Agency-verified toxicological values (Reference Dose and Cancer Potency Factor, ie., slope factor), that can be used to perform a risk assessment and to develop protective soil cleanup levels for lead.

Efforts are underway by the Agency to develop a Cancer Potency Factor (CPF) and Reference Dose (RfD), (or similar approach), for lead. Recently, the Science Advisory Board strongly suggested that the Human Health Assessment Group (HHAG) of the Office of Research and Development (ORD) develop a CPF for lead, which was designated by the Agency as a B2 carcinogen in 1988. The HHAG is in the process of selecting studies to derive such a level The level and documentation package will then be sent to the Agency's Carcinogen Risk Assessment Verification Exercise (CRAVE) workgroup for verification. It is expected that the documentation package will be sent to CRAVE by the end of 1989. The Office of Emergency and Remedial Response, the Office of Waste Programs Enforcement and other Agency programs are working with ORD in conjunction with the Office of Air Quality Planning and Standards (OAQPS) to develop an RfD, (or similar approach), for lead. The Office of Research and Development and OAQPS will develop a level to protect the most sensitive populations, namely young children and pregnant women, and submit. a documentation package to the Reference Dose workgroup for verification. It is anticipated that the documentation package will be available for review by the fall of 1989.

IMPLEMENTATION

The following guidance is to be implemented for remedial actions until further guidance can be developed based on an Agency verified Cancer Potency Factor and/or Reference Dose for lead.

<u>Guidance</u>

This guidance adopts the recommendation contained in the 1985 Centers for Disease Control (CDC) statement on childhood lead poisoning⁽³⁾ and is to be followed when the current or predicted land use is residential. The CDC recommendation states that "...lead in soil and dust appears to be responsible for blood levels in children increasing above background levels when the concentration in the soil or dust exceeds 500 to 1000 ppm". Site-specific conditions may warrant the use of soil cleanup levels below the 500 ppm level or somewhat above the 1000 ppm level. The administrative record should include background documents on the toxicology of lead and information related to site-specific conditions. The range of 500 to 1000 ppm refers to levels for total lead, as measured by protocols developed by the Superfund Contract Laboratory Program. Issues have been raised concerning the role that the bioavailability of lead in various chemical forms and particle sizes should play in assessing the health risks posed by exposure to lead in soil. At this time, the Agency has not developed a position regarding the bioavailability issue and believes that additional information is needed to develop a position. This guidance may be revised as additional information becomes available regarding the bioavailability of lead in soil.

Blood-lead testing should not be used as the sole criterion for evaluating the need for long-term remedial action at sites that do not already have an extensive, long-term blood-lead data base(1).

EFFECTIVE DATE OF THIS GUIDANCE

This interim guidance shall take effect immediately. The guidance does not require that cleanup levels already entered into Records of Decisions, prior to this date, be revised to conform with this guidance.

١

¹ In one case, a biokinetic uptake model developed by the Office of Air Quality Planning and Standards was used for a sitespecific risk assessment. This approach was reviewed and approved by Headquarters for use at the site, based on the adequacy of data (due to continuing CDC studies conducted over many years). These data included all children's blood-lead levels collected over a period of several years, as well as family socio-economic status, dietary conditions, conditions of homes and extensive environmental lead data, also collected over several years. This amount of data allowed the Agency to use the model without a need for extensive default values. Use of the model thus allowed a more precise calculation of the level of cleanup needed to reduce risk to children based on the amount of contamination from all other sources, and the effect of contamination levels on blood-lead levels of children.

REFERENCES

- 1. 53 FR 31516, August 18, 1988.
- 2. 53 FR 31521, August 18, 1988.
- Preventing Lead Poisoning in Young Children, January 1985,
 U.S. Department of Health and Human Services, Centers for Disease Control, 99-2230.

Table 1 Titan Resources, L.P. Greenhill Landfarm, Lovington Paddock/ San Andres Lea County, New Mexico TPH and Total Lead (mg/kg)

-	Lead	7.6		<5.0	<5.0	•	1		15
Area 6	ТРН	4,240	-	133	<10	8,150	-		651 / <5
۰. ۱۵	Lead	22	•	<5.0	<5.0	-		*	13
Area 5	НЧТ	16,900	•	121	12.5	8,910			<50 / <5
4	Lead	7.6		<5.0	<5.0				9.7
Area 4	НДТ	7,120		916	235	4,900			660 / <5
e	Lead	15	-	<5.0	<5.0				8.4
Area 3	HdT	8,200		161	139	3,200			56 / <5
7	Lead	13	1	<5.0	<5.0	•	'	•	13
Area 2	Н	21,900		14,100		12,900	5,790		440/<5
-	Lead	7		5.2	<5.0				6.8
Area '	ТРН	11,900	,	96.9	38.5	10,200	1		612/<5
Depth	(H)	0-1-	5	m	ល	0-1.	2.0		0-1'
Date		3/9/98				1/21/99		10 T.	7/14/99

7/14/99 - Samples collected were analyzed by modified 8015 (TPH shown DRO/GRO) (-) Not Anayized

I . Table 2 Titan Resources, L.P. Greenhill Landfarm, Lovington Paddock/ San Andres Lea County, New Mexico BTEX Analysis (mg/kg)

• --

Sample ID	Date	Depth (ft)	Benzene	Toluene	Ethylbenzene	Xylene	Total BTEX
		!			i -		
Area 1	3/9/98	Surface	<0.050	<0.050	<0.050	<0.050	<0.050
	3/9/98	с	<0.050	<0.050	<0.050	<0.050	<0:050
	3/9/98	5	<0.050	<0.050	<0.050	<0.050	<0.050
						24 17	
Area 2	3/9/98	Surface	<0.050	<0.050	0.058	0.377	0.435
	3/9/98	°.	<0.050	<0:050	0.276	1.38	1.66
	3/9/98	5	<0.050	<0.050	<0.050	<0.050	<0:050
						, ¹⁰	
Area 3	3/9/98	Surface	<0.050	<0.050	<0.050	<0.050	<0:050
	3/9/98	ę	<0.050	<0.050	<0.050	<0.050	<0.050
	3/9/98	5	<0.050	<0.050	<0.050	<0.050	<0.050
1	- 				······································		
Area 4	3/9/98	Surface	<0.050	<0:050	<0.050	<0.050	<0.050
	3/9/98	n	<0.050	<0.050	<0.050	<0.050	<0.050
	3/9/98	5	<0.050	<0.050	<0.050	<0.050	<0:050
×, '	* 						
Area 5	3/9/98	Surface	<0.050	<0:050	<0.050	<0.050	<0.050.0>
	3/9/98	с	<0.050	<0.050	<0.050	<0.050	<0.050
	3/9/98	5	<0.050	<0.050	<0.050	<0.050	<0:050
	ΣΥ. 3 × 3 × 3 × 4	y*** 			×		
Area 6	3/9/98	Surface	<0.050	<0.050	<0.050	<0.050	<0.050
	3/9/98	3	<0.050	<0.050	<0.050	<0.050	<0.050
	3/9/98	5	<0.050	<0.050	<0.050	<0.050	<0.050

ì

Date: Mar Date Rec:	Hic Att	El Paso, Texas 79922 888 • 588 • 3443 E-Mail: lab@traceanalysis.com ALYTICAL RESULTS FOR ghlander Environmenta ention Lynn Ward	915•585•3443 FAX 915•585•4944 al Services
	Hic Att	ghlander Environmenta	al Services
	Att		al Services
	23 1998 191	0 N. Big Spirng St.	
	•	land TX 79705	Lab Receiving # : 9803000189
Project:	1084		Sampling Date: 3/9/98
-	Greenhill Landfarm		Sample Condition: Intact and Co
Proj Loc:	N/A		Sample Received By: VW
			1
TA# Fie	ld Code	MATRIX	TRPHC
111/ 110	14 0040		(mg/Kg)
T93179 Area	1 @ Surface	Soil	11,900
T93180 Area	103'	Soil	96.9
T93181 Area	1 @ 5'	Soil	38.5
T93182 Area	2 @ Surface	Soil	21,900
T93183 Area	2 @ 3'	Soil	14,100
T93184 Area	2 @ 5'	Soil	139
T93185 Area	3 @ Surface	Soil	8,200
T93186 Area		Soil	161
T93187 Area		Soil	139
	4 @ Surface	Soil	7,120
T93189 Area		Soil	916
T93190 Area		Soil	235
	5 @ Surface	Soil	16,900
T93192 Area		Soil	121
T93193 Area		Soil	12.5
	6 @ Surface	Soil Soil	4,240 133
T93195 Area T93196 Area		Soil	<10.0
195190 ALea	1062	3011	<10:0
	le l		<10.0
Method Blan	K.		
Method Blan Reporting L			10

Instr	ument Accurac	сy			99		
TEST	PREP METHOD	PREP DATE	ANALYSIS METHOD	ANALYSIS COMPLETED	CHEMIST	QC: (mg/L)	SPIKE: (mg/Kg)
TRPHC	EPA 3550	3/18/98	EPA 418.1	3/18/98	MS	100	250
			RS .		3-2	3-98	
					·····		

Director, Dr. Blair Leftwich

Date

MULLIN LUMINUM LULIANU		RACEANA	CEANALYSIS	, INC.	M. M. M. L. M.			
	6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A ANAL	uite 9 Lubbock, Texas 79424 800•378•1296 A El Paso, Texas 79922 888•588•3443 E-Mail: lab@traceanalysis.com ANALYTICAL RESULTS FOR	800 • 378 • 1296 888 • 588 • 3443 raceanalysis.com P.S. FOR	806 • 794 • 1296 915 • 585 • 3443	FAX 806 • 794 • 1298 FAX 915 • 585 • 4944	1298 4944		
: Mar 19, 1998 Rec: 3/11/98 ect: 1084 Name: Greenhill	Highla Attenti 1910 N. Midland Landfarm	Highlander Enviro Attention Lynn Ward 1910 N. Big Spirng S Midland	Environmental m Ward pirng St. TX 79	al Services L 79705 S S	ab Rec amplin ample ample	# : : 3/9 ion: ed By:	9803000189 9/98 Intact and : VW	Cool
Froj Loc: N/A TA# Field Code	MATRIX	×	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	M, P, O XYLENE (mg/Kg)	TOTAL BTEX mg/Kg)	•
Area 1 0			<0.050	<0.050	<0.050	<0.050	<0.050	
93181 Area 1 0 5 03181 Area 1 0 5			<0.050	<0.050	<0.050 <0.050	<0.050	<0.050	
93187 Area 2 6						000.0V		
93183 Area 2 @ 3'			<0.050		0.030	138	0.433 1 66	
93184 Area 2 0	Soil		<0.050	<0.050	<0.050	<0.050	<0.050 <050	
Area 3 @	Soil		<0.050	<0.050	<0.050	<0.050	<0.050	
T 93186 Area 3 @ 3'	Soil		<0.050	<0.050	<0.050	<0.050	<0.050	
T 93187 Area 3 @ 5'	Soil		<0.050	<0.050	<0.050	<0.050	<0.050	
Method Blank			<0.050	<0.050	<0.050	<0.050		
Reporting Limit			0.05	0.05	0.05	0.05		
QC			0.093	0.086	0.085	0.260		
RPD			Ч	N	Ś	m		
% Extraction Accuracy			102	95	69	. 97		
<pre>% Instrument Accuracy</pre>			63	86	85	87		
TEST PREP METHOD	PREP DATE	ANALYSIS METHOD	ANALYSIS COMPLETE		CHEMIST'	QC: (mg/L)	SPIKE: mg/Kg)	
BTEX EPA 5030	0 3/14/98	EPA 8021B	3/14	3/14/98	JG	0.100 ea	5 ea	<u></u>
	al	-	3	-15-50				г

ULUMUIL VLUVIU	· ·	9803000189 9/98 Intact and Cool	TOTAL BTEX mg/Kg)	<0.050	<0.050	<0.050	<0.050 ·	<0.050 	<pre>>0.050</pre>		<0.050			•				SPIKE: mg/Kg)	5 ea	
LUULUL ALIUL	1298 4944	# : 3/5 on: d By:	M, P, O XYLENE (mg/Kg)	<0.050	<0.050	<0.050	<0.050	<0.050		<0.050	<0.050	<0.050	0.05	0.260	m	97	87	QC: (mg/L)	0.100 ea	
Mulululu	6 FAX 806-794-1298 3 FAX 915-585-4944	ab Rec amplin ample ample	ETHYL- BENZENE (mg/Kg)	<0.050	<0.050	<0.050	<0.050	<0.050	00.050 050 050	050.0%	<0.050	<0.050	0.05	0.085	m	93	85	CHEMIST	JG	00
, INC.	ထိတ	al Services L 79705 S S	TOLUENE (mg/Kg)	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050		<0.050	<0.050	0.05	0.086	N	95	86	ANALYSIS C COMPLETED	3/14/98	5-51-
CEANALYSIS,	Texas 79424 800•378•1296 Texas 79922 888•588•3443 E-Mail: lab@traceanalysis.com L RESULTS FOR	ronmenta st. TX	BENZENE (mg/Kg)	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050 050		<0.050	<0.050	0.05	0.093	Ч	102	63	ANAI COME	3/1	~
RACEAN		nder on Lyr Big S					·		-	-								ANALYSIS METHOD	EPA 8021B	
ALLINITY T	6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A ANAL	Highla Attenti 1910 N. Midland	MATRIX	Soil	Soil	Soil	Soil	Soil	Soil Soil	1100	soil							PREP DATE	3/14/98	R K
IN CULULUMU CULULUMU ULIMU	6701 Aberc 4725 Ripley	Mar 19, 1998 :: 3/11/98 1084 Ne: Greenhill Landfarm	ь. Э	Area 4 @ Surface	4 6	4 (9	പ	യം ഗം	Area 5 (5' Area 6 Gurfaco	ש פ ע ס	9 9	lank	g Limit			tion Accuracy	ment Accuracy	PREP METHOD	EPA 5030	
MILLINLU		Date: Ma Date Rec: Project: Proj Name		T 93188 F	93189	93190	93191	93192 22192	T 93193 7	90105 02105	93196	Method Blank	Reporting Limit	SC	RPD	<pre>% Extraction</pre>	<pre>% Instrument</pre>	TEST	BTEX	

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A Lubbock, Texas 79424 800•378•1296 El Paso, Texas 79922 888•588•3443 E-Mail: lab@traceanalysis.com

806•794•1296 F. 915•585•3443 F.

6 FAX 806•794•1298 3 FAX 915•585•4944

ANALYTICAL RESULTS FOR HIGHLANDER SERVICES Attention: Lynn Ward 1910 N. Big Spring St. Midland, TX 79705

FIELD CODE

March 20, 1998 Receiving Date: 03/11/98 Sample Type: Soil Project No: 1084 Project Location: NA

TA#

Prep Date: 03/12/98 Analysis Date: 03/13/98 Sampling Date: 03/09/98 Sample Condition: Intact & Cool Sample Received by: VW Client Name: Titan Project Name: Greenhill Landfarm (Bio Cell)

> TOTAL Pb (mg/kg)

	•
Area 1 @ Surface	7.0
Area 1 @ 3'	5.2
Area 1 2 5'	<5.0
Area 2 @ Surface	13
Area 2 @ 3'	<5.0
Area 2 @ 5'	<5.0
Area 3 @ Surface	15
Area 3 @ 3'	<5.0
Area 3 @ 5'	<5.0
Area 4 @ Surface	15
Area 4 @ 3'	<5.0
Area 4 @ 5'	<5.0
	22
	<5.0
	<5.0
	7.6
	<5.0
Area 6 @ 5'	<5.0
	1.06
	1.03
	5.0
	3
	95
	105
	Area 1 2 5' Area 2 @ Surface Area 2 @ 3' Area 2 @ 5' Area 3 @ Surface Area 3 @ 3' Area 3 @ 5' Area 4 @ Surface Area 4 @ 3' Area 5 @ Surface Area 5 @ 3' Area 6 @ Surface Area 6 @ 3' Area 6 @ 5'

CHEMIST: RR TOTAL Pb SPIKE: 200 mg/kg TOTAL Pb. TOTAL Pb CV: 1.0 mg/L TOTAL Pb.

3-20-98

DATE

	ANALYSIS REQUEST (Circle or Specify Method No.)	<i>₽S 8H</i>	2 CF P4 CF P4	93270/628 260/624 Ba Cd Ba Cd	/602 //18.1 //18.1 //016.08 //608 //608 //608 //608 //608 //01.608 //608 //608 //01.608 //608 //01.608 //182	bear Boar bCB.* 808/ bCB.* 808/ CCWZ 2em BCTP 2em BCTP 2em BCCM 2em BCCM 2em BCCM 2em BCCM 2em BCCTP 2em BCCTP 2em BCCTP 2em BCCTP 2em BCCTP 2em BLEX 9050' NONE 2	XXX			X	×××			K K		le k	1.20 1 SAMPLED BY URAN & Son) And Date	/BY: (Circle) BUS	HAND DELIVERED UPS OTHER.	HIGHLANDER CONTACT PERSON:
Request and Chain of Custody Record	ENIVIDONNENTAL	N. Big Spring St.	Mıdland, Texas 79705 Fax (915) 682-3946	SITE MANAGER: LVMM, WARTEN B METHOD	Bio Cell CONTA	ICE HAO3 HAO3 LITLEKED (MANDEK OF KANDER OF SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION COMP.	K are 1 B Suntace 1 K	× (1,1,2,1) 3, 1 ×	K mar 1 B 5' 1 X	Y I	.)	5	5	3 13) (j		Time: 71/0/12 RECEIVED BY: (Signature) Date: 31	(Signature)	Date: RECEIVED BY: (Signature) Date: Time:	And Lange Received BY (Signature)
Analvsis Red	hav and invit		(915) 682-4559	CLIENT NAME:	PROJECT NO:	LAB I.D. DATE TIME XX	93179 3/9/32 5	80 3/4/2 5		83 34/98 5	83 3/9/98 5		85 3/9/98 5	86 3/9/48 5	87 3/9/98 5	(RELIVICATISHED BY (Signature)	RELINGUISHED BY: (Spendare)	RELINQUISHED BY: (Signature)	RECEIVING LABORATORY: - AACA

Lubbock, Texas 79424 806 • 794 • 1296 6701 Aberdeen Avenue, Suite 9 800 • 378 • 1296 FAX 806 • 794 • 1298 888•588•3443 915•585•3443 FAX 915•585•4944 4725 Ripley Avenue, Suite A El Paso, Texas 79922 E-Mail: lab@traceanalysis.com ANALYTICAL RESULTS FOR **HIGHLANDER SERVICES** Attention: Lynn Ward 1910 N. Big Spring St. Midland, TX 79705 March 18, 1998 Prep Date: 03/12/98 Receiving Date: 03/11/98 Analysis Date: 03/17/98 Sampling Date: 03/09/98 Sample Type: Soil Project No: 1084 Sample Condition: Intact & Cool Project Location: NA Sample Received by: VW Client Name: Titan Project Name: Greenhill Landfarm TOTAL Pb TA# **FIELD CODE** (mg/kg) 4.2 T93164 N. Pit Area @ Surface <2.0 T93165 N. Pit Area @ 3' <2.0 T93166 N. Pit Area @ 5.0'-5.4' 0.98 ICV 0.99 CCV 2.0 **Reporting Limit** 1 RPD

% Extraction Accuracy70*% Instrument Accuracy98

*NOTE: Extraction Accuracy out of accepted limits of 75-125% because of matrix effects. LCS shows that the test was in range.

METHODS: EPA SW 846-3051, 6010B. CHEMIST: RR TOTAL Pb SPIKE: 200 mg/kg TOTAL Pb. TOTAL Pb CV: 1.0 mg/L TOTAL Pb.

3-18-98

Director, Dr. Blair Leftwich

DATE

								 ,	 	1			<u> </u>	- 1		·····
0F: / d No.)		(Air)	BOD, TSS, pl Gamma Spec Alpha Beta PLM (Asbest								M 2 C	Date: 2/1/48 Time:	AIRBILL # 155 758 444	OLITER:	RUSH Charges Authorized: Yes No	
PAGE: / ANALYSIS REQUEST (Circle or Specify Method		608 46 45 84 64 1240/8260/624 1240/8260/624 1240/8260/624 1240/8260/625		· ×		·X						SAMPLED BY. (PADA & Agg)	BY: (Circle)		Cynn Ward	31,12
y Record	(915) 682-3946	PRESERVATIVE METHOD ≷	ВLEX 8050/6 ИОИЕ ICE HUO3 ЫТLEBED (X ⁾ ЫТLEBED (X	X	*	X					(0) () () () () () () () () ()	Date: 3/10/18	Date: Time:	Date:	4:00 AU	REMARKS: 10
nd Chain of Custody	HIGHLANDER EN VIRONMENTAL CORP. 1910 N. Big Spring St. Midland, Texas 79705 Fax (915) 682-39	SITE MANAGER: LYNN Ward B	ENTIFICATION	Pit Area 12 Suntain	व	Pit Area @ 5.0'.5.4'	-				1 40		10148 RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	ZIP:	A-Air SD-Solid
Analysis Request and	HIGHLANDEK EN 1910 N. Midland, (915) 682-4559	CLIENT NAME: Titain, S PROJECT NO: 1084 PROJECT NAME:	LAB I.D. NUMBER DATE TIME RIX COMP. COMP.	93164 24998 2:455 × N. P.t.	45 3498 3:30 5 × N. P.t.	3,50 S K						RELIGUESTIED BY (Signature) Date: 711	BY. (Gignature) Date: 21	JISHED BY: (Signature) Date:	RECEIVING LABORATORY:	CONDITION WHEN RECEIVED:

3

	6701 Aberdeen Avenue, Suite 4725 Ripley Avenue, Suite A	9 Lubbock, Texas 79424 800•378•13 El Paso, Texas 79922 888•588•34 E-Mail: lab@traceanalysis.c	443 915•585•3443 FAX 915•585•	
	HI At 19	ALYTICAL RESULTS FOR GHLANDER ENVIRONMENTAL : cention: Tim Reed 10 N. Big Spring St. dland TX 79705		
	Apr 15, 1999 : 1/22/99		Lab Receiving # : 990	
Project:			Sampling Date: 1/21/ Sample Condition: Int.	
2	e: Greenhill Landfar	n	-	VW
Proj Loc	: N/A			
TA#	Field Code	MATRIX	TRPHC	
			(mg/L)	
117300	Area 1 @ 0-1'	Soil	10,200	· · · · · · · · · · · · · · · · · · ·
117301	Area 2 @ 0-1'	Soil	12,900	
117302	Area 2 @ 2'	Soil	5,790	
117303	Area 3 @ 0-1'	Soil	3,200	
117304	Area 4 @ 0-1'	Soil	4,900	
117305	Area 5 @ 0-1'	Soil	8,910	
117306	Area 6 @ 0-1'	Soil	8,150	
Method			<10.0	
Reportin	g Limit		10	
QC			94	
RPD			2	
	tion Accuracy		98	
% Instru	ment Accuracy		94	

TEST	PREP METHOD	PREP DATE	ANALYSIS METHOD	ANALYSIS COMPLETED	CHEMIST	QC (mg/L	SPIKE (mg/L)	
TRPH	IC EPA 3550B	1/25/99	EPA 418.1	1/25/99	MF	100	250	

A

4-15-59

Date

Director, Dr. Blair Leftwich

0F: /	r bd No.)			əp	Hold)	рН, TDS ес. (Ліг)	PLA (Asbe Alpha Beto Bob, TSS, Bob, TSS,									1 1, 100	Date: // 6//// Time: 3:20	Alend Andrew and and	OTHER: Resultanders AP - Aller AD	RUSH Charges Authorized: Yes	Vin/ le
PAGE: /	ANALYSIS REQUEST (Circle or Specify Method			Pd JJ	a Be Cd)\608 8540\8 8540\8 1162 2 y8 y2 2 y8 y8 y2 2 y8	هوع۲ 808/ هوع۲ 808/ هوع۲ 808/ هوع۲ 809/ هوع۲ 809/ هوع 809/ هوع 809/ هوع 909/ هوع 909/	×,	X			X	×	X			N.	BY: (Cir	HAND DELIVERED UPS HIGHLANDER CONTACT PERSON:	ril	- 11.4.
maat and Chain of Custody Bonord	and chain of custory	DER ENVIRONMENTAL CORP.	1910 N. Big Spring St.	MIGIANG, 16XAS 79700 Fax (915) 682-3946	SITE MANAGER: Lynn Lyczel B METHOD	209/	GRAB COMP.	5× aua 1 @ 0-1' 1 X	5× aux 2 (2) 0-1' 1 ×	5× aus 2 3 2' 1 K	5× aux 3 (2) 0-1' 1 K	× aris 4 @ 0-1' 1 ×	5× aus 5/2 0-1' 1 ×				(Sjerneury then	BA Date: 1/2-1/14 RECEIVED BY: (Signature) Date:	Date:	1 1 2	MATRIX: JA Aler A-Air SD-Solid
	ALIAIYSIS REG	HIGHLANDER		(912) 682-4559	CLIENT NAME: TI TAN	PROJECT NO.: 1084	LAB I.D. DATE TIME R	117300 1/21/99 10:00 5	1	302 1/21/49 12:25 S	303 1/21/99/10:50 5	364 1/21/99/11:30 5	3 05 1/21/99 11:55 5	3010 1/10/105 50			RELINGUISHED BY (Signature)	RALINOUISHED BY: (Signature)	RELINQUISHED BY: (Signature)	RECEIVING LABORATORY: JAB CL- ADDRESS: JABAET JL- STATE: CONTRICT. DIRECT DATE	ONDITION WHEN RE

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888 • 588 • 3443 E-Mail: lab@traceanalysis.com 806•794•1296 FAX 80 915•585•3443 FAX 91

FAX 806•794•1298 FAX 915•585•4944

Analytical and Quality Control Report

Ike Tavarez Highlander Environmental Services 1910 N. Big Spirng St. Midland, TX 79705

Report Date:

7/22/99

Project Number:1084Project Name:Greenhill LandfarmProject Location:N/A

Order ID Number: 99071507

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to TraceAnalysis, Inc. for analysis:

Sample Number	Sample Description	Matrix	Date Taken	Time Taken	Date Received
128170	Area 1 (0-1') Comp	Soil	7/14/99	-	7/15/99
128171	Area 2 (0-1') Comp	Soil	7/14/99	-	7/15/99
128172	Area 3 (0-1') Comp	Soil	7/14/99	-	7/15/99
128173	Area 4 (0-1') Comp	Soil	7/14/99	-	7/15/99
128174	Area 5 (0-1') Comp	Soil	7/14/99	-	7/15/99
128175	Area 6 (0-1') Comp	Soil	7/14/99	-	7/15/99

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 4 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Report Date: 7/22/99 1084

Order ID Number: 99071507 Greenhill Landfarm

Analytical Results Report

Sample Number: Description:	128170 Area 1 (0-1') Comp				•					
Param	Flag	Result	Dilution	Analytical Method	Date Prepared	Date Analyzed	Analyst	Prep Batch #	QC Batch #	RDL
DRO (mg/Kg)		612	1	Mod. 8015B	7/15/99	7/16/99	MF	PB01485	QC01839	50
GRO (mg/Kg)		<5	1	8015B	7/16/99	7/16/99	RC	PB01569	QC01932	0.1
Sample Number: Description:	128171 Area 2 (0-1') Comp			Analytical	Date	Date		Prep	QC	
Param	Flag	Result	Dilution		Prepared	Analyzed	Analyst	Batch #	Batch #	RDL
DRO (mg/Kg)		440	1	Mod. 8015B	7/15/99	7/16/99	MF	PB01485	QC01839	50
GRO (mg/Kg)		<5	1	8015B	7/16/99	7/16/99	RC	PB01569	QC01932	0.1
Sample Number: Description:	128172 Area 3 (0-1') Comp			Analytical	Date	Date		Prep	QC	
Param	Flag	Result	Dilution		Prepared	Analyzed	Analyst	Batch #	Batch #	RDL
DRO (mg/Kg)		56	1	Mod. 8015B	7/15/99	7/16/99	MF	PB01485	QC01839	50
GRO (mg/Kg)		<5	1	8015B	7/16/99	7/16/99	RC	PB01569	QC01932	0.1
Sample Number: Description:	128173 Area 4 (0-1') Comp							~	~~~	
Param	Flag	Result	Dilution	Analytical Method	Date Prepared	Date Analyzed	Analyst	Prep Batch #	QC Batch #	RDL
DRO (mg/Kg)	<u> </u>	660	1	Mod. 8015B	7/15/99	7/16/99	MF	PB01485	QC01839	50
GRO (mg/Kg)		<5	1	8015B	7/16/99	7/16/99	RC	PB01569	QC01932	0.1
Sample Number:	128174				<u></u>	<u> </u>				
Description:	Area 5 (0-1') Comp			Analytical	Date	Date		Prep	QC	
Param	Flag		Dilution	Method	Prepared	Analyzed	Analyst	Batch #	Batch #	RDL
DRO (mg/Kg)		<50	1	Mod. 8015B	7/15/99	7/16/99	MF	PB01485	QC01839	50
GRO (mg/Kg)		<5	1	8015B	7/16/99	7/16/99	RC	PB01569	QC01932	0.1
Sample Number: Description:	128175 Area 6 (0-1') Comp			Analytical	Date	Date		Prep	QC	
Param	Flag	Result	Dilution		Prepared	Analyzed	Analyst	Batch #	Batch #	RDL
DRO (mg/Kg)		651	1	Mod. 8015B	7/15/99	7/16/99	MF	PB01485	QC01839	50
GRO (mg/Kg)		<5	1	8015B	7/16/99	7/16/99	RC	5501670	QC01932	0.1

		YSIS, INC.	
6701 Aberdeen Aven 4725 Ripley Avenue,	ue, Suite 9 Lubbock, Texas 79424 800	● 378 ● 1296 806 ● 794 ● 1296 FAX 806 ● 794 ● 1298 ● 588 ● 3443 915 ● 585 ● 3443 FAX 915 ● 585 ● 4944	<u></u>
	ANALYTICAL RESULTS FOR HIGHLANDER ENVIRONMENT Attention: Ike Tavarez 1910 N. Big Spring St. Midland, TX 79705	'AL CORP.	
July 21, 1999 Receiving Date: 07/15/99 Sample Type: Soil Project No: 1084 Project Location: NA Client Nanme: Titan		Prep Date: 07/19/99 Analysis Date: 07/19/99 Sampling Date: 07/14/99 Sample Condition: Intact & Cool Sample Received by: VW Project Name: Titan/Greenhill Landfarm	
TA#	FIELD CODE	TOTAL Pb (mg/kg)	
T128170 T128171 T128172 T128173 T128174 T128175 ICV CCV	Area 1 (0-1') Comp. Area 2 (0-1') Comp. Area 3 (0-1') Comp. Area 4 (0-1') Comp. Area 5 (0-1') Comp. Area 6 (0-1') Comp.	6.8 13 8.4 9.7 13 15 1.0 1.0	
METHOD BLANK REPORTING LIMIT		< 5.0 5.0	
RPD % Extraction Accuracy % Instrument Accuracy		2 102 102	
METHODS: EPA SW 846-3050B CHEMIST: RR TOTAL Pb SPIKE: 200 mg/kg TC TOTAL Pb CV: 1.0 mg/L TOTAL	DTAL Pb.		
	K	7-22-99	

Director, Dr. Blair Leftwich

DATE

Report Date:	7/22/99	
1084		

Order ID Number: 99071507 Greenhill Landfarm

Quality Control Report Method Blanks

Param	Flag	Blank Result	Reporting Limit	Date Analyzed	Prep Batch #	QC Batch #
DRO (mg/Kg)		<50	50	7/16/99	PB01485	QC01839
Param	Flag	Blank Result	Reporting Limit	Date Analyzed	Prep Batch #	QC Batch #
GRO (mg/Kg)		<5	0.1	7/16/99	PB01569	QC01932

Quality Control Report Matrix Spike and Matrix Duplicate Spike

Standard	Param	Sample Result	Dil.	Spike Amount Added	•	% Rec.	RPD	% Rec. Limit	RPD Limit	QC Batch #	
MS	DRO (mg/Kg)	651	1	250	811	111		70 - 130	0 - 20	QC01839	
MSD	DRO (mg/Kg)	651	1	250	864	104	28	70 - 130	0 - 20	QC01839	

Quality Control Report Lab Control Spikes and Duplicate Spike

	Param	Blank Result	Dil.	Spike Amount Added	Matrix Spike Result	% Rec.	RPD	% Rec. Limit	RPD Limit	QC Batch #
LCS	DRO (mg/Kg)	<50	1	250	217	87		70 - 130	0 - 20	QC01839
LCSD	DRO (mg/Kg)	<50	1	250	212	85	2	70 - 130	0 - 20	QC01839
	Param	Blank Result	Dil	Spike Amount Added	Matrix Spike Result	% Rec	RPD	% Rec.	RPD Limit	QC Batch #
LCS	Param GRO (mg/Kg)	Blank Result	Dil.	-			RPD	% Rec. Limit 80 - 120	RPD Limit 0 - 20	QC Batch # QC01932

Report Date: 7/22/99 1084

Order ID Number: 99071507 Greenhill Landfarm

Page Number: 4 of 4 N/A

Quality Control Report Continuing Calibration Verification Standard

Standard	Param	Flag	CCVs TRUE Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed	QC Batch #
ICV	DRO (mg/Kg)		250	209	84	70 - 130	7/16/99	QC01839
CCV (1	DRO (mg/Kg)		250	212	85	70 - 130	7/16/99	QC01839
CCV (2	DRO (mg/Kg)		250	218	87	70 - 130	7/16/99	QC01839
		······	CCVs	CCVs	CCVs	Percent		
Standard	Param	Flag	TRUE Conc.	Found Conc.	Percent Recovery	Recovery Limits	Date Analyzed	QC Batch #
Standard ICV	Param GRO (mg/Kg)	Flag		Found	Percent	Recovery		•

-	·									1									¢ ₹⊺	<u>र</u> ज		299
				9	d .	1-2-20/	Ķ	X	×	X	Ķ	, X					+	5	00		No.	aell
\neg				-/	9-1													3		₩.		
		ļ				BIT (Vspea			ļ	ļ								5	12	19		
6	<u></u>					ated autob		<u> </u>									i Bigi Bigi		2			
	No.)		əi	Chlorid		BOD, TSS, p											Date: Time:	THE				
\neg	QUEST Method				808	9/808 7 89 4											1	À.				
	ANALYSIS REQUEST or Specify Metho	ļ				PCB's 8080/				ļ							5			•		
		·[20/0LZ		CCTRE BOUT			[R	7 8)				
PAGE	LYSIS RI Specify	,├	<u> </u>	108/ 000	34/ 0700	ECT TO TO T				┨							122	J.		4.	J Q	
"	NAL)			8	Volatile													ΞĂ				
	1 0					TCLP Volatii											P	SAMPLE SHIPPED BY: (Cipale) FEDER	UPS UNIT UKITA CANADA UPS	5	and a	
	(Cirel	95 3				TCLP Metals		L	-								2	ditte			11	
	²		u 4d 40	ED BE		BCBV ROPT		┣										N N		!'\	$ \mathcal{U} $	
	Į	90	ODL	10 ROD	08) T	917 HdI	×	4	7	×	×	X					SAMPLED	ANP			X	
			000	1019		MTBE 8020/			Ĺ								N				\geq	
	Ĺ,		•		809,	N0208 X2TH											H.			1	1	
	1			R													Ħ					
7	3		8	E go		NONE		L														ģ
Record			682-3946	PRESERVATIVE METHOD		ICE	\geq	~	12	\geq	\geq	\geq					7			3	4	
c	5 0	.	ାଁ ଷ	RES		Eonh													ë ë	4	10:01	REMARKS
20		2	68	E .		ТЭН		·									Date: Time:	Date: Time:	Date: Time:	mape	2	REMAR
	- (5	2)		(N/.	LITLESED (J											ン			3	1	
4	<u>}</u> {	CURP	(815)	SZEIN	CONTAI	NOMBER OF	-	-	-	-	-	-					B		ł	3	2002	
	1				2.	5			<u>ا</u>							F	R		4	3	1	Solid her
40	כ מ	41	Fax		5	6		}	1	10	2	Þø.					Z			2		SD–Solid 0–Other
Custody	ז ו			1	6	100	}	24	15	S C	67	2						(Signature)	(Signature)	aatu	10	
	ין י	Ζ.		U U	L Z	linn i	5			" V		5	1						5	5	Ś	e li pi
с f	51	ER ENVIRONMENTAL 1910 N. Big Spring St.	05	STTE MANAGER	2	SAMPLE DENTIFICATION		12		17	5	~					Ë٤	RECEIVED BY:	RECEIVED BY:	RECEIVED BY: (Signature)	7-15.9'	<i>I−</i> Fator A−Air <u>3-Soit</u> EIr−Studge
		X u	22	2		ICA	1				1	$ \sim$					F				7	-
2	3 ;	≤ ġ	Midland, Texas 79705		Greenhill	126	(1-0)			01	0	0					H				DATE	۲
Chain	מ מ	2 B	5		1	て、配	10	9	0	13		12	j			2	<u>-</u>		~	2	D	V-Vater 3-Soll
2	3	E S	BX:	132	6	Nº H					1					N.	٦Į	6 2 64				
		E. <	ц Ц С		62		1	る	6	17	$ $ \mathcal{N}	2				3	Þ	36				, V
puo	<u>מן</u>	<u>S</u> 8	, m	Es		N. S	6			1	2		[└ `]	圳	79			Ë	KATRUT:
	מ	ЧZ.	ğ		8		3		1.0	19	17	9				١		' [X
		20	11a		NAL C		62	14	13	R	12	23	i i				Date: 710.	Date: Time:	Date: 71E:			
	<u>מ</u>	<i>E1</i> 91	Wi		E.	<u> </u>					$\overline{\nu}$	$\overline{\lambda}$	 	Ŀ			46	46	-			
	וול	a =		1	PROJECT	CEVB CONG	<u>-</u>	5	5	<u> </u>		5	┟				,				ATE: PHONE:	
	ןי <u>ק</u>	Ś		1		MATRIX	1	- N	1	1.	<u>∼</u> ∞	- n					\ \				STATE: PHO	Ë
	request	Ą.	8		X				V								Ĩŝ		2		55 I	2CE
	<u>,</u>	T	25	itan	09	and the second sec	a					5.					ł	3	atu			N R
Anglweie	"	HIGHLANDER 1910	(815) 882-4559	115	1084	63	10	1 th	10	15	5	N.					(euniterins)	RELACED BY: (Sunature)	(Sign	RECEIVING LABORATORY: ADDRESS:		SAMPLE CONDITION WHEN RECEIVED: MATRIX:
		IC	682			DATE	13	13	~ ~	1 2		12	F			Ha	jii)	No.	BY: (DRAT		NOL
a	3	H	<u>.</u>	CLIENT NAME:	PROJECT NO .:			ナン	\downarrow		ナン	\downarrow	<u>} </u>			\mathcal{H}	Ŕ			ZAB		HON
6	1		915	Ē	EC.	LAB I.D. NUMBER	0L1821	11		13	- 4/1	- SCI					RELINGUE	B	HSUO	S S	CUTY:	8
									1 0		1 5	1 V)					A \	0.1	õ l	S 73	10	1167