2R -

REPORTS DATE:

MAR. 2006

2006 MAR 13 PM 12 04

March 8, 2006

Mr. Ed Martin New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

2R-53

Re: Plains All American – Annual Monitoring Report 1 Site in Eddy County, New Mexico

Dear Mr. Martin:

Plains All American is an operator of crude oil pipelines and terminal facilities in the state of New Mexico. Plains All American actively monitors certain historical release sites exhibiting groundwater impacts, consistent with assessments and work plans developed in consultation with the New Mexico Oil Conservation Division (NMOCD). In accordance with the rules and regulations of the NMOCD, Plains All American hereby submits our Annual Monitoring report for the following site:

Ballard Grayburg 5"

Section 10, Township 18 South, Range 29 East, Eddy County

Basin prepared this document and has vouched for its accuracy and completeness, and on behalf of Plains All American, I have personally reviewed the document and interviewed Basin in order to verify the accuracy and completeness of this document. It is based upon these inquiries and reviews that Plains All American submits the enclosed Annual Monitoring Report for the above facility.

If you have any questions or require further information, please contact me at (505) 441-0965.

Sincerely,

amille Keynolds

Camille Reynolds Remediation Coordinator Plains All American

CC: Mike Bratcher, NMOCD, Artesia, NM

Enclosures

Basin Environmental Service Technologies, LLC

P. O. Box 301 Lovington, New Mexico 88260 kdutton@basimenv.com Office: (505) 396-2378

Fax: (505) 396-1429

ß **Effective Solutions**

2005 ANNUAL MONITORING REPORT

BALLARD-GRAYBURG 5" GATHERING SW ¼ SW ¼ SECTION 10, TOWNSHIP 18 SOUTH, RANGE 29 EAST LATITUDE 32°, 45', 27.1" NORTH, LONGITUDE 104°, 04', 12.0" WEST ENTIRE REPORT IS ON THE LODRIVE **EDDY COUNTY, NEW MEXICO** PLAINS EMS NUMBER: 2004-00192

PREPARED FOR:

PLAINS MARKETING, L.P. 333 CLAY STEET, SUITE 1600 HOUSTON, TEXAS 77002

PREPARED BY:

BASIN ENVIRONMENTAL SERVICE TECHNOLGIES, LLC P. O. Box 301 Lovington, New Mexico 88260

March 2006

Pn

Ken Dutton **Project Manager**

TABLE OF CONTENTS

INTRODUCTION	1
SITE DESCRIPTION AND BACKGROUND INFORMATION	1
FIELD ACTIVITIES	2
LABORATORY RESULTS	2
SUMMARY	3
ANTICIPATED ACTIONS	3
LIMITATIONS	4
DISTRIBUTION	5

FIGURES Figure 1 – Site Location Map

Figure 2A – Inferred Groundwater Elevation Map – 29 March 2005 Figure 2B – Inferred Groundwater Elevation Map – 26 May 2005 Figure 2C – Inferred Groundwater Elevation Map – 11 August 2005 Figure 2D – Inferred Groundwater Elevation Map – 27 December 2005

Figure 3A – Groundwater Concentration and Inferred PSH Extent Map – 29 March 2005 Figure 3B – Groundwater Concentration and Inferred PSH Extent Map – 26 May 2005 Figure 3C – Groundwater Concentration and Inferred PSH Extent Map – 11 August 2005 Figure 3D – Groundwater Concentration and Inferred PSH Extent Map – 27 December 2005

TABLES Table 1 – Groundwater Elevation Data (2005) Table 2 – Concentrations of Benzene and BTEX in Groundwater (2005)

APPENDICES Appendix A – Laboratory Reports Appendix B - Release Notification and Corrective Action (Form C-141)

INTRODUCTION

Basin Environmental Service Technologies, LLC, (Basin) on behalf of Plains Marketing, L.P., (Plains), prepared this annual report in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an annual report by April 1 of each year. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. This report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2005 only. Additional site activities and remedial work is summarized in several letters and reports previously submitted to the NMOCD. For reference, the Site Location Map is provided as Figure 1.

Groundwater monitoring was conducted during the four (4) consecutive quarters of 2005 to assess the levels and extent of dissolved phase constituents and presence of phase-separated hydrocarbons (PSH) constituents. The groundwater monitoring event consisted of measuring static water levels in the monitoring wells, checking for the presence of PSH atop the water column, and purging and sampling of each well exhibiting sufficient recharge. Monitoring or recovery wells containing a thickness of PSH greater than 0.01 foot were not sampled.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The legal description of the site is SW ¼ SW ¼ Section 10, Township 18 South, Range 29 East. The site latitude is 32°, 45', 27.1" North and the site longitude is 104°, 04', 12.0" West. On 02 September 2004, Allstate Environmental Services, LLC (Allstate) responded to the pipeline release on behalf of Plains to repair the pipeline and excavate the impacted soil. Beginning on 18 October 2004, Basin assumed project responsibilities for the Ballard Grayburg 5" site. The site is characterized by a right-of-way for the pipeline in a pasture utilized for cattle grazing. The initial visibly surface stained area includes the release point covering an area approximately 22 feet long by 23 feet wide and approximately 14 feet below ground surface (bgs). Subsequent excavation activities covered an area approximately 225 feet long by 60 feet wide and 10 to 18 feet (bgs), respectively. All excavated soil was placed on a poly-liner for future remedial action. Approximately 80 barrels of crude oil were released from the Plains Pipeline and 0 barrels were recovered.

Currently, there are two (2) monitoring wells (MW-2 and MW-3) and one (1) recovery well (RW-1) on site. Two (2) attempts to install an up gradient monitoring well proved futile due to drilling into subsurface limestone caverns. A hydrocarbon absorbent sock was installed in the recovery well to absorb the limited amount of crude oil on the groundwater and is replaced on a monthly basis. Recovery Well (RW-1) is located approximately twenty-one (21) feet to the southwest of a plugged and abandoned Yates Petroleum Company wellhead and caliche pad with abundant surface asphaltenes and historical impacted soils. The drilling pit, which is still displaying signs of distressed vegetation growth; utilized for the initial drilling activities, is located approximately 60 feet to the northwest of RW-1.

FIELD ACTIVITIES

The site monitoring wells were gauged and sampled on 29 March 2005, 26 May 2005, 11 August 2005 and 27 December 2005. During the groundwater sampling events, the monitoring wells, designated to be sampled, were purged of approximately 3 well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon bailers. Water samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in polystyrene fifty-five gallon drums which remain on-site.

Locations of the monitoring wells, recovery well and the inferred groundwater elevations, which were constructed from the measurements collected during the quarterly groundwater monitoring events, are depicted on Figure 2, Inferred Groundwater Elevation Map. The groundwater elevation data are provided as Table 1. Research of the New Mexico State Engineers Office reflected a general south to southwest groundwater gradient in this area of Eddy County, New Mexico. The depth to groundwater, as measured from the top of the well casing, was 186.59 feet.

A measurable thickness of PSH was detected in RW-1 during the reporting period, refer to Figure 3, Groundwater Concentration and Inferred PSH Extent Map. A maximum thickness of 0.04 in RW-1 was measured and is shown on Table 1. A hydrocarbon absorbent sock was installed in the recovery well and is replaced on a monthly basis. Approximately five (5) gallons of PSH was recovered from the site during the reporting period, with seven (7) gallons of PSH recovered from the site since project inception.

LABORATORY RESULTS

Groundwater samples were collected from the monitor wells MW-2 and MW-3 during the quarterly monitoring events and were delivered to Environmental Laboratory of Texas, Odessa, Texas for determination of Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) constituent concentrations by EPA Method SW846-8021b. A listing of BTEX constituent concentrations for 2005 is summarized in Table 2 and the laboratory reports are provided as Appendix A. Recovery well, RW-1, was not sampled due to the presence of measurable PSH.

Laboratory results for the two (2) site groundwater samples, obtained during the 2005 annual period, indicate that benzene and total BTEX constituent concentrations for monitoring well MW-2 were below applicable NMOCD regulatory standards. Laboratory results indicate monitoring well MW-3 benzene and total BTEX constituent concentrations were below NMOCD regulatory standards for the 3rd quarter groundwater sampling event (11 August 2005). Furthermore, monitoring well MW-3 displayed benzene constituent concentrations slightly above NMOCD regulatory standards (ranging from 0.014 mg/L to 0.054 mg/L) for the 1st, 2nd, and 4th quarter groundwater sampling events (29 March 2005, 11 August 2005 and 27 December

2005) and below NMOCD regulatory standards for total BTEX constituent concentrations for the three groundwater sampling events.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code.

SUMMARY

This report presents the results of groundwater monitoring activities for the 2005 annual monitoring period. Currently, there are two (2) groundwater monitoring wells (MW-1 and MW-2) and one (1) recovery well (RW-1) on-site. During 2005, hydrocarbon absorbent socks were installed in RW-1 for passive product recovery. A measurable thickness of PSH was detected in RW-1 during the quarterly sampling events. A maximum thickness of 0.04 in RW-1 was measured and is shown on Table 1.

Laboratory results for the two (2) site groundwater samples, obtained during the 2005 annual period, indicate that benzene and total BTEX constituent concentrations for monitoring well MW-2 were below applicable NMOCD regulatory standards. Laboratory results indicate monitoring well MW-3 benzene and total BTEX constituent concentrations were below NMOCD regulatory standards for the 3rd quarter groundwater sampling event and slightly above NMOCD regulatory standards for the 1st, 2nd, and 4th quarter groundwater sampling events and below NMOCD regulatory standards for total BTEX constituent concentrations for the three groundwater sampling events.

Based on the limited data, groundwater elevations at the site are relatively similar and groundwater gradient appears to be to the south. Research of the New Mexico State Engineers Office reflected a general south to southwest groundwater gradient.

As previously mentioned, several unsuccessful attempts were made to install an up gradient monitoring well. Based on the location of the recovery well RW-1 adjacent to the source area, the limited amount of PSH on the groundwater, the fact that the two (2) attempted up gradient monitor wells did not encounter impacted soils to their respective total depths, and the two (2) down gradient monitor wells did not indicate soil impacts, it appears the groundwater impacted area is very limited in extent and an up gradient monitor well is not warranted at this site.

ANTICIPATED ACTIONS

Groundwater monitoring and annual reporting will continue in 2006. An amended Remediation Work Plan was submitted to NMOCD and approved with stipulations of collecting confirmation soil samples from the walls and floor of the excavation. The required soil sampling was accomplished and furnished to NMOCD, Santa Fe. Once approval of the approved amended Remediation Work Plan is received, further remedial activities will be accomplished. A soil remediation/closure report will be prepared and submitted to the NMOCD upon completion of the proposed remedial activities.

LIMITATIONS

Basin has prepared this Annual Monitoring Report to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin and/or Plains.

DISTRIBUTION

Copy 1:	Ed Martin
	New Mexico Energy, Minerals and Natural Resources Department
	Oil Conservation Division
	1220 South St. Francis Drive
	Santa Fe. New Mexico 87505
	Ed.martin@state.nm.us
Copy 2:	Mike Bratcher
10	New Mexico Oil Conservation Division, District II
	1301 W. Grand Avenue
	Artesia, New Mexico 88210
	Mike.bratcher@state.nm.us
Copy 3:	Jeff Dann
	Plains Marketing, L.P.
	333 Clay Street
	Suite 1600
	Houston, Texas 77002
	jpdann@paalp.com
Copy 4:	Camille Reynolds
	Plains Marketing, L.P.
	3112 Highway 82
	Lovington, New Mexico 88260
	<u>cjreynolds@paalp.com</u>
Copy 5:	Basin Environmental Service Technologies, LLC
	P. O. Box 301
	Lovington, New Mexico 88260
	kdutton@basinenv.com
<u> </u>	1
Copy Numb	er:

FIGURES

•

•

FIGURE 1

SITE LOCATION MAP

FIGURE 2A, 2B, 2C, 2D

INFERRED GROUNDWATER ELEVATION MAPS

FIGURE 3A, 3B, 3C, 3D

GROUNDWATER CONCENTRATION AND INFERRED PSH EXTENT MAPS

•

•

•

(

GROUNDWATER ELEVATION DATA (2005)

GROUNDWATER ELEVATION DATA (2005)

PLAINS MARKETING, L.P. BALLARD-GRAYBURG 5" EDDY COUNTY, NEW MEXICO PLAINS EMS NO. 2004-00192

WELL	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW - 2	11/10/04	3,497.90		186.58	0.00	3,311.32
	03/29/05	3,497.90		186.58	0.00	3,311.32
	05/26/05	3,497.90	1	186.58	0.00	3,311.32
	08/11/05	3,497.90	-	186.57	0.00	3,311.33
	12/27/05	3,497.90	1	186.58	0.00	3,311.32
MW - 3	11/10/04	3,497.91	-	186.59	0.00	3,311.32
	03/29/05	3,497.91	•	186.59	0.00	3,311.32
	05/26/05	3,497.91		186.58	0.00	3,311.33
	08/11/05	3,497.91	r	186.58	0.00	3,311.33
	12/27/05	3,497.91	•	186.59	0.00	3,311.32
RW-1	11/10/04	3,497.94	186.56	186.60	0.04	3,311.37
	03/29/05	3,497.94	186.56	186.60	0.04	3,311.37
	05/26/05	3,497.94	186.57	186.60	0.03	3,311.37
	08/11/05	3,497.94	186.57	186.60	0.03	3,311.37
	12/27/05	3,497.94	186.56	186.58	0.02	3,311.38

_----

Ŏ

CONCENTRATIONS OF BENZENE AND BTEX IN GROUNDWATER (2005)

CONCENTRATIONS OF BENZENE AND BTEX IN GROUNDWATER (2005)

PLAINS MARKETING, L.P. BALLARD-GRAYBURG 5" EDDY COUNTY, NEW MEXICO PLAINS EMS NO: 2004-00192

SAMPLE LOCATION	SAMPLE		MET	HODS: EP/	\ SW 846-8021B	
	DATE	BENZENE	TOLUENE	ETHYL- DENZENE	M,P- VVI ENES	O-XYLENES
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
NMOCD REGULATORY S	TANDARD	0.01	0.75	0.75	TOTAL XYLEN	ES 0.62
MW-2	12/04/04	<0.001	<0.001	<0.001	<0.001	<0.001
MW-2	03/29/05	0.006	0.001	<0.001	<0.001	<0.001
MW-2	05/26/05	0.002	0.001	<0.001	<0.001	<0.001
MW-2	08/11/05	0.001	0.001	<0.001	<0.001	<0.001
MW-2	12/27/05	0.008	0.003	<0.001	<0.001	<0.001
MW-3	12/04/04	<0.001	<0.001	<0.001	<0.001	<0.001
MW-3	03/29/06	0.054	0.004	<0.001	<0.001	<0.001
MW-3	05/26/05	0.014	0.003	<0.001	<0.001	<0.001
MW-3	08/11/05	0.002	<0.001	<0.001	<0.001	<0.001
MW-3	12/27/05	0.024	0.002	<0.001	<0.001	<0.001

APPENDICES

APPENDIX A

ENVIRONMENTAL LABORATORY OF TEXAS ANALYTICAL RESULTS

Ŏ

Analytical Report

Prepared for:

Camille Reynolds Plains All American EH & S 1301 S. County Road 1150 Midland, TX 79706-4476

Project: Ballard- Grayburg 5inch Project Number: EMS: 2004-00192 Location: Eddy County, NM

Lab Order Number: 5C30017

Report Date: 04/05/05

Plains All American EH & S	Project: Ballard- Grayburg 5inch	Fax: (432) 687-4914
1301 S. County Road 1150	Project Number: EMS: 2004-00192	Reported:
Midland TX, 79706-4476	Project Manager: Camille Reynolds	04/05/05 10:19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-2	5C30017-01	Water	03/29/05 12:30	03/30/05 15:53
MW-3	5C30017-02	Water	03/29/05 16:30	03/30/05 15:53

Plains All American EH & S	Project:	Ballard- Grayburg 5inch	Fax: (432) 687-4914
1301 S. County Road 1150	Project Number:	EMS: 2004-00192	Reported:
Midland TX, 79706-4476	Project Manager:	Camille Reynolds	04/05/05 10:19

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-2 (5C30017-01) Water								······	
Benzene	0.00672	0.00100	mg/L	1	ED50404	04/01/05	04/02/05	EPA 8021B	
Toluene	0.00182	0.00100	n	"	**	**	н	n	
Ethylbenzene	ND	0.00100	11	"	"	n	11		
Xylene (p/m)	ND	0.00100	n	**	n	"	н		
Xylene (o)	ND	0.00100	"		11	n		n	
Surrogate: a,a,a-Trifluorotoluene		130 %	80-	120	"	"	"	"	S-04
Surrogate: 4-Bromofluorobenzene		83.5 %	80-	120	"	"	"	"	
MW-3 (5C30017-02) Water									
Benzene	0.0547	0.00100	mg/L	1	ED50404	04/01/05	04/02/05	EPA 8021B	
Toluene	0.00412	0.00100	n		"	н	"	*	
Ethylbenzene	I [0.000547]	0.00100	"		"		*	"	J
Xylene (p/m)	l [0.000830]	0.00100	"	u	11	"	**	"	J
Xylene (0)	I [0.000692]	0.00100	"			н	"	n	J

80-120

80-120

535 %

87.0 %

Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene

ĕ

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

,,

S-04

Plains All American EH & S 1301 S. County Road 1150		Pr Project Nu	oject: Ba mber: EN	llard- Graybu AS: 2004-001	rg 5inch 92				Fax: (432)	687-4914
Midland TX, 79706-4476		Project Mar	nager: Ca	mille Reynol	ds				04/05/0	5 10:19
	O	rganics by Environm	GC - (ontol I	Juality Co ab of Ter	ontrol					
					Na 5					
Analyte	Result	Reporting Limit	Units	Level	Source Result	%REC	%REC Limits	RPD	Limit	Notes
Batch ED50404 - EPA 5030C (GC)										
Blank (ED50404-BLK1)				Prepared &	Analyzed:	04/01/05				
enzene	ND	0.00100	mg/L							
oluene	ND	0.00100	**							
thylbenzene	ND	0.00100	"							
Sylene (p/m)	ND	0.00100								
Sylene (0)	ND	0.00100								
urrogate: a,a,a-Trifluorotoluene	21.6		ug/l	20.0		108	80-120			
urrogate: 4-Bromofluorobenzene	18.5		"	20.0		92.5	80-120			
.CS (ED50404-BS1)				Prepared &	Analyzed:	04/01/05	·			
lenzene	96.6		ug/l	100		96.6	80-120			
oluene	96.1			100		96.1	80-120			
thylbenzene	95.2			100		95.2	80-120			
(ylene (p/m)	195		"	200		97.5	80-120			
(ylene (o) .	93.5		u,	100		93.5	80-120			
Surrogate: a,a,a-Trifluorotoluene	21.5		"	20.0		108	80-120			
urrogate: 4-Bromofluorobenzene	17.5		"	20.0		87.5	80-120			
Calibration Check (ED50404-CCV1)				Prepared: 0)4/01/05 A	nalyzed: 04	/02/05			
Benzene	95.2		ug/i	100		95.2	80-120			
oluene	95.1		"	100		95.1	80-120			
thylbenzene	96.9		"	100		96. 9	80-120			
(ylene (p/m)	193			200		96.5	80-120			
(o)	95.6		"	100		95.6	80-120			
urrogate: a,a,a-Trifluorotoluene	21.7	· · · · · · · · · · · · · · · · · · ·	"	20.0		108	80-120			
urrogate: 4-Bromofluorobenzene	20.7		"	20.0		104	80-120			
fatrix Spike (ED50404-MS1)	Sou	rce: 5C28003-	07	Prepared: 0	04/01/05 A	nalyzed: 04	/04/05			
Benzene	93.8		ug/l	100	ND	93.8	80-120			
oluene	95.1		**	100	ND	95.1	80-120			
thylbenzene	102		*	100	ND	102	80-120			
(ylene (p/m)	204		"	200	ND	102	80-120			
Lylene (o)	99.7		"	100	ND	99.7	80-120			
Surrogate: a,a,a-Trifluorotoluene	23.9		"	20.0		120	80-120			
Surrogate: 4-Bromofluorobenzene	19.9		"	20.0		99.5	80-120			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Plains All American EH & S
1301 S. County Road 1150
Midland TX, 79706-4476

Project: Ballard- Grayburg 5inch Project Number: EMS: 2004-00192 Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

04/05/05 10:19

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch ED50404 - EPA 5030C (GC)

Matrix Spike Dup (ED50404-MSD1)	Source: 50	C28003-07	Prepared: 0	4/01/05 A	nalyzed: 04	4/04/05			
Benzene	91.9	ug/l	100	ND	91.9	80-120	2.05	20	
Toluene	93.5		100	ND	93.5	80-120	1.70	20	
Ethylbenzene	93.0		100	ND	93.0	80-120	9.23	20	
Xylene (p/m)	189	п	200	ND	94.5	80-120	7.63	20	
Xylene (0)	93.6	**	100	ND	93.6	80-120	6.31	20	
Surrogate: a,a,a-Trifluorotoluene	22.0	"	20.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	16.3	"	20.0		81.5	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Plains All American EH & S 1301 S. County Road 1150 Midland TX, 79706-4476 Fax: (432) 687-4914

Reported: 04/05/05 10:19

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

- Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported

J

- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Just

Date:

4/5/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

	= 1	}		1					TAT brebnets	$\overline{\mathbf{x}}$	X												à
	М	1							sluberb8-erg) TAT H2U9											1			ş
	5	N				Γ	1		i an											z		÷ť	ç
ta la	Å	H	2		•]		2	
ű S	N	8	Z																	12 6		ు	ů.
REC	걺	1	2	\sim					BTERBO (atoT] ് ೆ		ř	V 1
55	B	Ä	Ŋ				ļ		.M.H.O.N	ļ												ć	
4LY.	শ	8	22			j.	╡ <u>┝</u> ╶╲╴	.	RCI	ļ												5	
AN	-2	2	S			100	įμ2	1_	BTEX 6021 8 6030	<u>}×</u>	X									Re		े	
S.	<u>4</u> K	- 1	Ÿ	a				4	eslitatovime2	ļ									 	pon d			3
ò	3	S	à	G			╘┝╾┥╾		Aolatiies	ļ									ļ	V C L			۵Ŋ
00	×	S	ିର	ন্য		1			thetats: As Ag 8s Cd Ci Pb Hg										ļ	ato C			Ę
, RE	-4	<u>]</u>	¥۲ پ۲				N S S		SAR / ESP / CEC	ļ													È
â	ame	ţ	Š	ő			F	-	Anions (Cl. SO4, CO3, HCO3)										ļ		T	-0-	<u>.</u>
นรา	Ž	ğ	to a						Cetons (Ce. Md. Ne. K)											4	2	Ľ	2 0
ъ Ц	20	Ω.	D d					19(01 9001 WS108 1914 Hal	ļ	ļ										Ē	Ø	E S
Ö	đ								Other (specify):		 		$\left - \right $						ļ	{	<u> </u>	<u></u>	1 3
HAI								atin	108							┝┥				ł	1	25	
G	1	ţ	ł	ı		I		Z	ephula				\vdash			┝┥			ļ	1	1	10	
					2			_	Valer		ľ					┝──┥				4	[A.	1
		ļ			8				(Whoed 8) Jailto											}	ļ	<u>ry</u>	6
					51			é	eupy 											1			
								Vati	'05°H												1		
					2			aser	MACH.											1			
					3			ď	HCI		•~~~									4			
					Tal				'ONH													:	
) O				108 108		X	<u> </u>							-	Į		-	
					5				arenietroo to .ov	2	え									1			Ţ
					No:															1		4,	$ \langle \rangle \rangle$
					ax	1			nakturen erret	8	8											1	Ę
					14,-				belowes amit	2	6.3									}		1	٢
										1	4						1						5
						ļ			10	6	8											12	Ē
Ż.	- {			a						141	(B)			ļ							À P	0	β ,
l				Ś					D boldmes etel	やと	22										eve	Ŋ	eive
8 87	1			5					ス	30	3							ļ			Sec.		
		3		00		N																8	. m
82		X		7	ť	$\left \right $															Ē	5	5 N
		4	-	5	4	KJ.											1				F	X	দ দ্য
) <u> </u>	2	5	Ø	J	R	3																÷	·
915 915 915	E	N	- M	1	、と																	CO	. 8
5 2 U	KI	4	X	2	Ň	H.			300													10	Dat
, Tage .	4	2	N	Ŋ	Z	7			Ŭ			1					1				{	12	
<u> </u>		A		N 6	Æ	S										- [14	1.K
	N.	3	ିତ	A	Tat	Ľ/			ц.					ł									
	K	8	N	a	je.	M	•			3	ņ	1											
4 20 20	٦			Y	5	$\sim V$				3	3											<u>k</u> k	
•	ger:	ame	5	:dI2	No:	ine:				7	2											ŕć	
	ana	ž	ų	Ate	euc	nati					٦					[Ű,	14
Eas 976	ž	uad	ΥA	NSI	Ņde	Sig			· · · · · · · · · · · · · · · · · · ·	1	51		1			1				:su	1	Ň	a de
8 8	<u>oje</u>	ĕ	nedi	ð	Tek	pter			ি ১০ জি		1		ी					3		CHO	17	H	
	à	0	Ĕ			me		l	ૼ૦ૣઙૺ	-	2			24			्			stru	fa -	7	10
A A A			v			4)		l	್ರಿ	0	71										圈	J.	tishe a
000									· · · · · · · · · · · · · · · · · · ·	$\langle \lambda \rangle$							1			17	廣	K.	퇺 (
Z M I									B. W. Solar Sec.					. 3	1		-	, ÷ ,		6	12~	ן י	Å

Environmental Lab of Texas Variance / Corrective Action Report - Sample Log-In

Client:	ASIN ENV.
Pate/Time:	3/30/05 4:00
Order #:	5630017
Initials:	· CK

Sample Receipt Checklist

Temperature of container/cooler?	I Yes !	Na	85 CI
Shipping container/cocier in good condition?	(Res)!	No I	(
Custody Seals intact on shipping container/cooler?	1 CESI	No . I	Not present
Custody Seals intact on sample bottles?	i Fes	Na I	Not present
Chain of custody present?	10736	No I	}
Samcle Instructions complete on Chain of Custody?	1 (33)	No 1	į
Chain of Custody signed when relinquished and received?	i ced i	No 1	
Chain of custody agrees with sample lacel(s)	1 (23) 1	No I	l l
Container labels legible and intact?	1 YES	No	4
Sample Matrix and procerties same as on chain of custody?	17551	Na I	1 1
Samples in proper container/bcitle?	1 (13)	No i	;
Samples properly creserved?	1 XES	No	
Sample bottles intact?	I MES!	No :	· · · · · · · · · · · · · · · · · · ·
Preservations documented on Chain of Custody?	1 des	No	······································
Containers documented on Chain of Custody?	(es)	No '	
Sufficient sample amount for indicated test?		No	······································
All samcles received within sufficient hold time?	I YEE!	No	
VOC samples have zero headspace?	1 (==)	No	Not Applicable

Other observations:

Variance Documentation:

Regarding:

Contact Person: -____ Date/Time: _____ Contacted by: _____

Corrective Action Taken:

Analytical Report

Prepared for:

Camille Reynolds Plains All American EH & S 1301 S. County Road 1150 Midland, TX 79706-4476

Project: Ballard- Grayburg 5inch Project Number: EMS: 2004-00192 Location: Ballard Grayburg

Lab Order Number: 5E27006

Report Date: 06/06/05

Plains All American EH & S	Project: Ballard- Graybur	g 5inch Fax: (432) 687-4914
1301 S. County Road 1150	Project Number: EMS: 2004-0019	2 Reported:
Midland TX, 79706-4476	Project Manager: Camille Reynold	s 06/06/05 11:21

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #2	5E27006-01	Water	05/26/05 14:23	05/27/05 11:30
Monitor Well #3	5E27006-02	Water	05/26/05 16:20	05/27/05 11:30

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Plains All American EH & S 1301 S. County Road 1150 Midland TX, 79706-4476

4

1

Project: Ballard- Grayburg 5inch Project Number: EMS: 2004-00192 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 06/06/05 11:21

Organics by GC

Environmental Lab of Texas

		Reporting							ľ
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #2 (5E27006-01) Water		· · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	
Benzene	0.00199	0.00100	mg/L	1	EF50210	06/02/05	06/02/05	EPA 8021B	
Toluene	J [0.000713]	0.00100	μ	π	u	"	u	11	
Ethylbenzene	ND	0.00100	11	Ħ	n	"	u	n	
Xylene (p/m)	ND	0.00100	11	"	n	"	11	11	
Xylene (o)	ND	0.00100	*	n		11	17	"	
Surrogate: a,a,a-Trifluorotoluene		99.0 %	80-12	0	"	n	"	11	
Surrogate: 4-Bromofluorobenzene		83.0 %	80-12	0	17	"	"	17	
Monitor Well #3 (5E27006-02) Water									
Benzene	0.0144	0.00100	mg/L	1	EF50210	06/02/05	06/02/05	EPA 8021B	
Toluene	0.00283	0.00100	11	11	"	"	"	"	
Ethylbenzene	J [0.000252]	0.00100	11	n	"	*1	н	"	
Xylene (p/m)	ND	0.00100	"	u	u	**	u		
Xylene (o)	J [0.000332]	0.00100	"	"	"	"	н	"	
Surrogate: a,a,a-Trifluorotoluene		158 %	80-12	0	"	"	17	**	S-04
Surrogate: 4-Bromofluorobenzene		84.0 %	80-12	0	59	n		18	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Plains All American EH & S 1301 S. County Road 1150		Pr Project Nu	oject: Ball mber: EM	ard- Graybu S: 2004-001	urg 5inch 92				Fax: (432) Repo	687-49]	
Midland TX, 79706-4476		Project Mar	ager: Can	tille Reynol	ds				06/06/05 11:21		
	O	rganics by	GC - Q	uality Co	ontrol						
	. <u></u>	Environm	ental La	ab of Tex	kas						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note	
Batch EF50210 - EPA 5030C (GC)											
Blank (EF50210-BLK1)				Prepared &	Analyzed:	06/02/05				_	
Benzene	ND	0.00100	mg/L								
Toluene	ND	0.00100	u								
Ethylbenzene	ND	0.00100	u								
Xylene (p/m)	ND	0.00100	n								
Xylene (o)	ND	0.00100	n								
Surrogate: a,a,a-Trifluorotoluene	18.9		ug/l	20.0		94.5	80-120				
Surrogate: 4-Bromofluorobenzene	16.4		"	20.0		82.0	80-120				
LCS (EF50210-BS1)				Prepared &	z Analyzed:	06/02/05					
Benzene	105		ug/l	100		105	80-120				
Toluene	107		н	100		107	80-120				
Ethylbenzene	101		n	100		101	80-120				
Xylene (p/m)	206		n	200		103	80-120				
Xylene (o)	98.1		n	100		98.1	80-120				
Surrogate: a,a,a-Trifluorotoluene	22.2		"	20.0		111	80-120				
Surrogate: 4-Bromofluorobenzene	21.3		"	20.0		106	80-120				
LCS Dup (EF50210-BSD1)				Prepared &	Analyzed:	06/02/05					
Benzene	105		ug/l	100		105	80-120	0.00	20		
Toluene	107		n	100		107	80-120	0.00	20		
Ethylbenzene	101		"	100		101	80-120	0.00	20		
Xylene (p/m)	209		**	200		104	80-120	0.966	20		
Xylene (o)	95.2		"	100		95.2	80-120	3.00	20		
Surrogate: a,a,a-Trifluorotoluene	21.2		11	20.0		106	80-120				
Surrogate: 4-Bromofluorobenzene	19.3		"	20.0		96.5	80-120				
Calibration Check (EF50210-CCV1)				Prepared 8	k Analyzed:	06/02/05					
Benzene	105		ug/l	100		105	80-120				
Toluene	107		"	100		107	80-120				
Ethylbenzene	101		19	100		101	80-120				
Xylene (p/m)	207			200		104	80-120				
Xylene (0)	97.2		н	100		97.2	80-120				
Surrogate: a,a,a-Trifluorotoluene	20.7		H	20.0		104	80-120				
Surrogate: 4-Bromofluorobenzene	21.2		"	20.0		106	80-120				

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Plains All American EH & S	Project: Ballard- Grayburg 5inch	Fax: (432) 687-4914
1301 S. County Road 1150	Project Number: EMS: 2004-00192	Reported:
Midland TX, 79706-4476	Project Manager: Camille Reynolds	06/06/05 11:21

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF50210 - EPA 5030C (GC)

Source: 5E27005-01			Prepared & Analyzed: 06/02/05				
105	ug/l	100	ND	105	80-120		
109		100	ND	109	80-120		
103	*	100	ND	103	80-120		
204	"	200	ND	102	80-120		
96 .0	"	100	ND	96.0	80-120		
21.8	11	20.0		109	80-120		
20.6	"	20.0		103	80-120		
	Source: : 105 109 103 204 96.0 21.8 20.6	Source: 5E27005-01 105 ug/l 109 " 103 " 204 " 96.0 " 21.8 " 20.6 "	Source: 5E27005-01 Prepared & 105 ug/l 100 109 " 100 103 " 100 204 " 200 96.0 " 100 21.8 " 20.0 20.6 " 20.0	Source: 5E27005-01 Prepared & Analyzed: 105 ug/l 100 ND 109 " 100 ND 103 " 100 ND 204 " 200 ND 96.0 " 100 ND 21.8 " 20.0 20.0 20.6 " 20.0 100	Source: 5E27005-01 Prepared & Analyzed: \06/02/05 105 ug/l 100 ND 105 109 " 100 ND 109 103 " 100 ND 103 204 " 200 ND 102 96.0 " 100 ND 96.0 21.8 " 20.0 109 20.6 " 20.0 103		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Plains All A	American EH & S	Project:	Ballard- Grayburg 5inch	Fax: (432) 687-4914
1301 S. Co	unty Road 1150	Project Number:	EMS: 2004-00192	Reported:
Midland TX	X, 79706-4476	Project Manager:	Camille Reynolds	06/06/05 11:21
		Notes and De	finitions	
S-04	The surrogate recovery for this sample is	outside of established control	limits due to a sample matrix effect.	
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the repo	orting limit		
NR	Not Reported			
dry	Sample results reported on a dry weight basis			
RPD	Relative Percent Difference			
LCS	Laboratory Control Spike			
MS	Matrix Spike			
Dup	Duplicate			

Report Approved By:

Raland K Julies Date:

6/6/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental L	ab of T	exas		
Variance / Conjective Action	кероп	- 38		-10
Client: BAGIN ENV.				
Date/Time: <u>5/201/05 11:30</u>				
Order #: <u>6E21006</u>				
Initials:				
Sample Receipt	Checkli	st	·.·	
Temperature of container/cooler?	Yes	No	20	CI
Shipping container/cooler in good condition?	Yes	No		
Custody Seals intact on shipping container/ccoler?	FERI	No	Not present	
Custody Seals intact on sample bottles?	1 Xes 1	No	Nct present	
Chain of custocy present?	1 2001	No I		
Sample Instructions complete on Chain of Custody?	1 (ES)	No		
Chain of Custody signed when relinquished and received?	1 Yes 1	No		
Chain of custody agrees with sample label(s)	100	<u>No </u>		
Container lace's legible and intact?	X895	NO		
Sample Matrix and properties same as on chain of custocy?	103	010		
Samples in proper container/cottle?	YES I			
Samcles procerly preserved /	1 ACD	10V,	**********	
Sample Dotties Intact?		NO		
Preservations receimented on Chain & Costedy?		No	····	
Sufficient sample amount for indicated test?	1 Val	No		
All samples received within sufficient hold time?	Vera	No	**************************************	
VOC semples have zero headspace?	1 434.	No	Not Applicabl	****
Other observations:			· · · · · · · · · · · · · · · · · · ·	۵ ۱۹۶۰
Contact Person: Date/Time:	mentatio	n:	Contacted by	/:
Regarding:	,	•		*****
Corrective Action Taken:				
· .				

(

		 	_

Analytical Report

Prepared for:

Camille Reynolds Plains All American EH & S 1301 S. County Road 1150 Midland, TX 79706-4476

Project: Ballard- Grayburg 5inch Project Number: EMS: 2004-00192 Location: Eddy County, NM

Lab Order Number: 5H12004

Report Date: 08/18/05

		
Plains All American EH & S	Project: Ballard- Grayburg 5inch	Fax: (432) 687-4914
1301 S. County Road 1150	Project Number: EMS: 2004-00192	Reported:
Midland TX, 79706-4476	Project Manager: Camille Reynolds	08/18/05 14:40

ANALYTICAL REPORT FOR SAMPLES

Ĵ

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #2	5H12004-01	Water	08/11/05 12:00	08/12/05 11:10
Monitor Well #3	5H12004-02	Water	08/11/05 15:00	08/12/05 11:10

Project: Ballard- Grayburg 5inch Project Number: EMS: 2004-00192 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 08/18/05 14:40

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #2 (5H12004-01) Water					······································	• •			
Benzene	0.00191	0.00100	mg/L	1	EH51609	08/16/05	08/16/05	EPA 8021B	
Toluene	0.00106	0.00100	"	n		r	**	н	
Ethylbenzene	ND	0.00100	н	"	n	"	"	"	
Xylene (p/m)	ND	0.00100		#	"	"	"	"	
Xylene (o)	ND	0.00100	u	n		"		"	
Surrogate: a,a,a-Trifluorotoluene		100 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	80-12	0	"	"	"	n	
Monitor Well #3 (5H12004-02) Water									
Benzene	0.00239	0.00100	mg/L	1	EH51609	08/16/05	08/16/05	EPA 8021B	
Toluene	ND	0.00100	19	"		11	"	"	
Ethylbenzene	ND	0.00100	"	"	"	**	"	"	
Xylene (p/m)	ND	0.00100	11	"	**	**	n	*	
Xylene (o)	ND	0.00100	н	"	u		u		
Surrogate: a,a,a-Trifluorotoluene		94.1 %	80-12	0	"	"	11	"	
Surragate: A_Bromofluorobanzana		89.6%	80-12	n	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Plains All American EH & S		 Pr	oiect Ba	allard- Gravbu	rg 5inch				Fax: (432)	687-4914
1301 S. County Road 1150		Project Nu	mber: EN	MS: 2004-001	92				Reno	rted:
Midland TX, 79706-4476		Project Mar	nager: Ca	amille Reynol	ds				08/18/0	5 14:40
<u> </u>		rganics by)vality Co	ntrol					
	U	Environm	iental I	Lab of Tex	as					
		Reporting		Spike	Source	#/DEC	%REC	7100	RPD	Nutur
Analyte	Kesult	Limit	Units	Level	Kesuit	%REC	Limits	KPD	Limit	Notes
Batch EH51609 - EPA 5030C (GC)		· · · · · · · · · · · · · · · · · · ·								
Blank (EH51609-BLK1)				Prepared &	Analyzed:	08/16/05				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	H							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	"							
Surrogate: a,a,a-Trifluorotoluene	97.9		ug/l	100		97.9	80-120			
Surrogate: 4-Bromofluorobenzene	81.4		n	100		81.4	80-120			
LCS (EH51609-BS1)				Prepared &	Analyzed	08/16/05				
Benzene	98.4		ug/l	100		98.4	80-120			
Toluene	97.0		"	100		97.0	80-120			
Ethylbenzene	106		и	100		106	80-120			
Xylene (p/m)	204		D	200		102	80-120			
Xylene (o)	104		"	100		104	80-120			
Surrogate: a,a,a-Trifluorotoluene	104		"	100		104	80-120			
Surrogate: 4-Bromofluorobenzene	95.4		"	100		95.4	80-120			
Calibration Check (EH51609-CCV1)				Prepared: ()8/16/05 A	nalyzed: 08	/17/05			
Benzene	94.2		ug/l	100		94.2	80-120			
Toluene	94.5		n	100		94.5	80-120			
Ethylbenzene	106		u	100		106	80-120			
Xylene (p/m)	203			200		102	80-120			
Xylene (o)	109		"	100		109	80-120			
Surrogate: a,a,a-Trifluorotoluene	94.9		#	100		94.9	0-200		,	
Surrogate: 4-Bromofluorobenzene	102		"	100		102	0-200			
Matrix Spike (EH51609-MS1)	Sou	rce: 5H11006-	-01	Prepared: (8/16/05 A	nalyzed: 08	/17/05			
Benzene	91.6		ug/l	100	ND	91.6	80-120			
Toluene	90.2		"	100	ND	90.2	80-120			
Ethylbenzene	101		"	100	ND	101	80-120			
Xylene (p/m)	191		"	200	ND	95.5	80-120			
Xylene (o)	102		H	100	ND	102	80-120			
Surrogate: a,a,a-Trifluorotoluene	91.5		"	100		91.5	80-120		a a a a a a a	
Surrogate: 4-Bromofluorobenzene	97.9		"	100		97.9	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 5

Project: Ballard- Grayburg 5inch Project Number: EMS: 2004-00192 Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 08/18/05 14:40

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH51609 - EPA 5030C (GC)

Matrix Spike Dup (EH51609-MSD1)	Source: 5	H11006-01	Prepared: ()8/16/05 A	nalyzed: 0	8/17/05			
Benzene	95.5	ug/l	100	ND	95.5	80-120	4.17	20	
Toluene	94.5	н	100	ND	94.5	80-120	4.66	20	
Ethylbenzene	106	"	100	ND	106	80-120	4.83	20	
Xylene (p/m)	201	н	200	ND	100	80-120	4.60	20	
Xylene (o)	108	"	100	ND	108	80-120	5.71	20	
Surrogate: a,a,a-Trifluorotoluene	82.3	· "	100		82.3	80-120	···		
Surrogate: 4-Bromofluorobenzene	92.9	n	100		92.9	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Plains A	ll American EH & S	Project:	Ballard- Grayburg 5inch	Fax: (432) 687-4914
1301 S.	County Road 1150	Project Number:	EMS: 2004-00192	Reported:
Midland	TX, 79706-4476	Project Manager:	Camille Reynolds	08/18/05 14:40
		Notes and De	finitions	
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the reporting limit			
NR	Not Reported			
dry	Sample results reported on a dry weight basis			
RPD	Relative Percent Difference			
LCS	Laboratory Control Spike			
MS	Matrix Spike			
Dun	Duplicate			

Report Approved By:

Raland K Julies

8/18/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

		,	,	1								R -21									
		S.			1					TAT bisbriet8	X	X						_88			
		VI	N		2		(Possa)	-	er 604	eluberto2-erg) TAT H2UR		and sector									
		2	ુબ	7	9										4		\downarrow		19 H C		
	EST	E_	o	2	- 33				 ,	\$\$\$1\$						-	┢╌┝╴	-1223	<u>, </u>		
	50	3	~ 9		2					RUDURO (RIG)					╉─┤		╉╌╌╂╌		11 8		
	S RE	8	큀	P	·Æ				-	Totol Ostrans	•••••		-+				╋╍┞╸	-1322	24	ସ	
	NS.	S	8	S	-								-	-+-	+		╂┈┼╌	-2.5		R	
	NAL	_	N	<u> </u>	Æ		E O	X	1	BLEX 803/ 6/6030	X	X		-+-	+-1		╋╌┾╌		2 9	୍ରିସ	
	A Cl	Z	*	J			ełyz(\mathbf{T}	seittelovintie8	-			-+-	+			188	l S	<u></u>	-
	0 AN	ğ	Ň	しむ	· 3		Ā		Ť	Bolitelov			1					123	<u>३</u> ं ३		
	20 E	R	Å	<u>d</u>	a				05	Metais: As Ag Ba Cd Cr Pb Hg								- S in		S SI	
	REC	A	W	4	a			N G		CEC								- Ba	; (3)		
	λą	:eW	素	ö				۴þ		Anions (CI, SO4, CO3, HCO3)											
	STO	t Na	<u>č</u>	ş	ā.					Cetions (Ce, Mg, Na, K)											
	3	ojec	ā	Proj					90	191 2001 M2108 1.814 141											
	40k	Å		-						Officer (specify):					\downarrow			4			
	HAI								atrix	lios					+		┢╾┢╸			NAM -	
	ប	1	1	\$	1	أحج	ŧ		×	eppnis					+		+ + -	-1 -5			
						X			┝─	Valey	X	\simeq					┢╍┢╸	- Č	ドル	2	
			N			귂	1			BUGN							╋╌╋	$- \langle$	<u>/~~</u>		
			Į.	0		ė			ž	*O\$ ² H			-+	-+-	+		╆╾┾╴	1 3	2		
			2			2			eve	HO®N					+						
			শ			Ä			Les Les	HCI NOY	X	X		1							
			-S			'XI	1			'ONH											
			Ň			Ň,	1			80)	X	X							K		·~
			Π			Y				No. of Containers	N	N						س [$\otimes \mathcal{O}(\mathbf{r})$.)
			3			ğ				······································								10	1 3	R	
			']			Fax				nme sampled	ß	B									
			X								2.5	10						ź	s d		
			V		প্র					~	1	3			+			ーエ	1 3	5 3	
ي مركبي م			0		a					ų I	-	-							} ≊k		
4			_å		Ø					Date Sampled		5	5					10	BR	<u> </u>	
لبديد			2		0					N	Ł	E						$ \mathbf{\Lambda} $		<u>8</u>	
			2		d	J				·····			-+		$\uparrow \uparrow$		┢──┼──	1		<u>A78-54</u>	
ŝ	8 2		Ž		Z	9												F			
X	12		ā	え	d	<u>ଏ</u> `	И												j j		
പ്പ		3	4	<u>୍</u> ୟ	7	ł.	3				N	M						I Y	'}	-51	
li	55	-4	A41		1	110				ų	#	*						0	bla K	18 B	
0	ax:		W	X	đ	٦, Fe	7			CO	Ø	3							1 3		
0	ă ^r	Á	4	Å	्यु	23 6	Н			in the second seco	-3	굇		ł						-00	
<u>т</u>			3		্শ	d	K.			Ē		7						112	1	4	
		্র	Ř	0	ব	20	fL .				Š.	all.							-	S	
ů,		-24	M	A	-4	V	N	I			20	1						-3	i	Z	
S		ger.) 	1 28	Zip:	ŝ					0	3	ł			1		1 3	1 7	2	
ŭ	¥ 12	anæ	v Na	ddre	lattel.	ano	gnat				\mathbb{Z}	R						1 6.	1 3	(X)	
5	797(A De	ledu	d Yn	ityrs	ųdejų –	ñ 7			1								ii v		2 X	1
2	Xas Xas	Proj.	Š	adw	ö	ř.	ndua				<u>81</u>	S				(A) (S)		1 5		K d	5
	Nesi			ပိ		ć	n N			a a	0	0			擨			ie v		월 것	
É	6889 6889									57 F			21					17 - 1	予想	動の	
ш	84									<u>EdX</u>		<u>)</u>						1 <u>8</u> /+-		1223	<u>ن</u>
							· . ·	÷.,		nin Asia andara	,	•					· · .	÷			
					Sec. 14	·	•	•					••	· ·					•		

Environmental L Variance / Corrective Action	ab of T Report	'exas : – Sa	mple Log-	In
Client: Basin Env.				
Date/Time: 6/12/05 11:10				
Drder #:5 <u>+112004</u>				
nitials:CK				
Sample Receipt	Checkli	st		
emperature of container/cooler?	Yes	No	0,5 (হা
Shipping container/cooler in good condition?	YES	No		
Custody Seals intact on shipping container/cooler?	Yes	No	Not present	
Sustody Seals intact on sample bottles?	Yes	No	Not present	
Chain of custody present?	Yes	No		
Sample Instructions complete on Chain of Custody?	103	NO		
Chain of Custody signed when relinquished and received?	(Yes)	NO		
Chain of custody agrees with sample label(s)		NO		
		NC		
Sample Mathx and properties same as on chain of custody?		NO		
		No		
Sample splugerly preserved:	Van	No		
Preservations documented on Chain of Custody?	Vena	No		
Containers documented on Chain of Custody?	X	No		
Sufficient sample amount for indicated test?	Yes	Nò		
All samples received within sufficient hold time?	Tes 1	No	<u></u>	
VOC samples have zero headspace?	Yas	No	Not Applicable	
Variance Docu Contact Person: Date/Time: Regarding:	mentatic	n:	Contacted by:	
Variance Docume Contact Person: Date/Time: Regarding: Corrective Action Taken:	mentatic	on:	Contacted by:	
				

Analytical Report

Prepared for:

Camille Reynolds Plains All American EH & S 1301 S. County Road 1150 Midland, TX 79706-4476

Project: Ballard- Grayburg 5inch Project Number: EMS: 2004-00192 Location: Eddy Co., NM

Lab Order Number: 5L28002

Report Date: 01/04/06

		\smile	
Plains All American EH & S	Project	: Ballard- Grayburg 5inch	Fax: (432) 687-4914
1301 S. County Road 1150	Project Number	; EMS: 2004-00192	Reported:
Midland TX, 79706-4476	Project Manager	: Camille Reynolds	01/04/06 17:11

Organics by GC - Quality Control

Environmental Lab of Texas

							and the second se		and the second sec	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL52915 - EPA 5030C (GC)										
Matrix Spike Dup (EL52915-MSD1)	Sou	rce: 5L23009-	-11	Prepared: 1	2/29/05 A	nalyzed: 12	/30/05			
Benzene	0.0440	0.00100	mg/L	0.0500	ND	88.0	80-120	8.04	20	
Toluene	0.0450	0.00100	"	0.0500	ND	90.0	80-120	0.445	20	
Ethvibenzene	0.0407	0.00100	"	0.0500	ND	81.4	80-120	9.37	20	

ug/l

"

0.100

0.0500

40.0

40.0

ND

ND

81.3

82.6

106

98.2

80-120

80-120

80-120

80-120

13.0

9.46

20

20

0.00100

0.00100

0.0813

0.0413

42.3

39.3

Surrogate: a,a,a-Trifluorotoluene

Xylene (p/m)

Xylene (o)

Surrogate: 4-Bromofluorobenzene

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 5

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

APPENDIX B

RELEASE NOTIFICATION AND CORRECTIVE ACTION (NMOCD FORM C-141)

District 1 1625 N. French Dr., Hobbs, NM 88240 Form C-141 Revised October 10, 2003 Energy Minerals and Natural Resources District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form **Oil Conservation Division** 1220 South St. Francis Dr. District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505 **Release Notification and Corrective Action** OPERATOR x Initial Report 🔲 Final Report Name of Company Plains Marketing, LP Address 5805 East Hwy. 80, Midland, TX 79706 Contact Camille Reynolds Telephone No. 505-441-0965 Facility Name Ballard Greyburg 5" #2 Facility Type 5"Steel Pipeline Surface Owner BLM Mineral Owner Lease No. LOCATION OF RELEASE Township Unit Letter Section Range 29E Feet from the North/South Line | Feet from the East/West Linc County 185 м 10 Eddy Latitude_32°45'27.1" Longitude_104°04'12.0" NATURE OF RELEASE Type of Release Crude Oil Volume of Release 80 barrels Volume Recovered 0 barrels rce of Release 5" Steel Pipeline Date and Hour of Occurrence 9-2-04 @ 06:00 If YES, To Whom? Date and Hour of Discovery 9-2-04 @ 08:45 Was Immediate Notice Given? 🛛 Yes 🗌 No 🗋 Not Required Van Barton Date and Hour 9-2-04 @ 14:32 If YES, Volume Impacting the Watercourse. By Whom? Ken Dutton Was a Watercourse Reached? Yes X No If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* External corrosion of the 5" steel pipeline. A line clamp was installed to mitigate the release. The line is a 5-inch steel gathering line that produces approximately 95 barrels of crude per day. The pressure on the line varies from 50 to 70 psi and the gravity of the sour crude oil is 39. The sour crude has an H₂S content of 20 ppm Describe Area Affected and Cleanup Action Taken.* The impacted soil was excavated and stockpiled on plastic. Aerial extent of surface impact was 10 x 6 feet, subsequent excavation of impacted soil resulted in an area of approximately 22 x 23 x 13 feet. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to acceptance of a C-141 report does not relieve the operator of operations there, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other formation and performed on the operator of a C-141 report does not relieve the operator of responsibility for compliance with any other formation of the operator of responsibility for compliance with any other formation operator operator operator operators and the operator operator operator operator operator operators operator operators operator operators operators operators operator operators ope federal, state, or local laws and/or regulations. **OIL CONSERVATION DIVISION** amille Keeprolds Signature: Approved by District Supervisor: Printed Name: Camille Reynolds Title: Remediation Coordinator Approval Date: Expiration Date Conditions of Approval: E-mail Address: circynolds@paalp.com Attached 🔲

Phone:505-441-0965

State of New Mexico

* Attach Additional Sheets If Necessary

Date: 9-7-04