3R - 23

REPORTS

DATE: Mar. 24, 1995

BLAGG ENGINEERING, INC.

P.O. Box 87, Bloomfield, New Mexico 87413 Phone: (505)632-1199 Fax: (505)632-3903

March 24, 1995

RECEIVED

APR 03 1995

Environmental Bureau Oil Conservation Division

Mr. William C. Olson, Hydrologist New Mexico Oil Conservation Division Environmental Bureau P.O. Box 2088 Santa Fe, New Mexico 87504-2088

Re: Quarterly Monitoring Report Amoco Production Company Gallegos Canyon Unit (K) #162, Sec. 36-T29N-R12W San Juan County, New Mexico

Dear Mr. Olson:

Amoco Production Company has retained Blagg Engineering, Inc. to conduct environmental monitoring of groundwater reclamation at Gallegos Canyon Unit (K) Well No. 162 (Figure 1). Following are quarterly monitoring results as required by the New Mexico Oil Conservation Division (NMOCD), pursuant to reclamation plan approval by the NMOCD with letter dated January 27, 1994.

Operation of the groundwater reclamation system at the site was suspended on January 26, 1995 after pumping and re-infiltrating a total volume of 217,732 gallons of water. Amoco exercised the option to excavate contaminated soil in lieu of operating the pump-and-treat system. This excavation is presently on-going, as discussed below under "Current and Proposed Activities". Future reactivation of the pump-and-treat system may be necessary depending on the results of water quality testing.

Summary Laboratory Analytical Results

Groundwater monitor wells at the site were sampled on March 8, 1995. Certain wells have been abandoned during excavation of contaminated soil and laboratory analytical testing data is not available for those wells. A summary of available laboratory analytical results is included in Table 1 on the following page. Laboratory data reports are included in Appendix B.

1

<u>TABLE 1</u> Summary Laboratory Analytical Results Amoco Production Company GCU Com "F" No. 162

2

1

Ag	mg/L	ND NA NA NA	UN NA NA NA	ND NA NA NA NA	ND NA NA NA NA	ND NA NA NA NA	UN NA NA NA NA	N N N N N N N N N N N N N N N N N N N	0.05
Se	mg/L	0.0011 NA NA NA	0.0015 NA NA NA	0.0037 NA NA NA NA	0.0007 NA NA NA NA NA	0.0012 NA NA NA NA	0.0018 NA NA NA NA NA	N N N N N N N N N N N N N N N N N N N	0.05
Hg	mg/L	UN NA NA NA	ND NA NA NA	ND NA NA NA	ND NA NA NA	UD NA NA NA	ND NA NA NA NA	A U V V V V V V V V V V V V V V V V V V	0.002
Pp	mg/L	0.0034 NA NA NA	0.0373 NA NA NA	ND NA NA NA NA	ND NA NA NA NA	ND NA NA NA	0.0012 NA NA NA NA	AN DN AN AN AN AN AN AN	0.05
Ľ	mg/L	ND NA NA NA	UN NA NA NA	ND NA NA NA NA	ND NA NA NA NA	UN NA NA NA NA	ND NA NA NA NA	NA ND NA NA NA NA NA NA	0.05
cq	mg/L	0.0001 NA NA NA	0.0016 NA NA NA	0.0034 NA NA NA NA NA	0.0002 NA NA NA NA	0.0011 NA NA NA NA NA	0.0140 ND NA NA NA NA	N DN ND NA NA NA NA NA NA NA	0.01
Ba	mg/L	3.27 NA NA NA	5.09 NA NA NA	3.16 NA NA NA NA NA	2.68 NA NA NA NA	1.17 NA NA NA NA NA	2.64 NA NA NA NA	AN AN AN AN AN AN AN AN AN AN AN AN AN A	1.0
As	mg/L	ND NA NA NA	0.0022 NA NA NA	0.0064 NA NA NA NA	UN NA NA NA NA NA	UN AN AN AN AN	UN NA NA NA NA	A N N N N N N N N N N N N N N N N N N N	0.1
Anions	meq/L	15.49 NA NA NA	18.50 NA NA NA	33.50 NA NA NA NA NA	12.34 NA NA NA NA	13.47 NA NA NA NA	15.45 NA NA NA NA NA	NA 1,513 NA NA NA NA NA	
Cations	meq/L	15.80 NA NA NA	17.74 NA NA NA	34.59 NA NA NA NA NA	13.39 NA NA NA NA	13.73 NA NA NA NA	15.04 NA NA NA NA	NA 698.1 NA NA NA NA NA	
Benzo(a) pyrene	ug/L	UD NA NA NA	UD NA NA NA	ND NA NA NA NA	ND NA NA NA NA	ND NA NA NA NA	UN NA NA NA NA	AN AN AN AN AN AN AN AN AN AN AN AN AN A	0.7
Naptha- lene	ug/L	ND NA NA NA	UD NA NA NA	UD NA NA NA NA	UD NA NA NA NA	UN NA NA NA NA	UN AN AN AN AN AN	NN NN NN NN NN NN	30
Total Xylenes	ug/L	1.9 ND 10.8 223.1	469 113 352 1575	2.2 32.3 5.4 ND	140 98 109 212.2 8.2	1.4 UN 3.6 ND ND	1.7 UN 3.0 ND UN	846 61.9 0.5 2.5 3.2 0.9	620
Ethyl Benzene	ug/L	ND ND 0.9 12.7	40.2 34.7 59.4 241.3	ND 4.5 1.0 ND ND	5.3 2.6 1.9 ND	an 68 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.	CIN CIN CIN CIN CIN CIN CIN	116 3.6 0.1 0.1 0.3 ND	750
Toluene	ug/L	0.7 ND 3.4 101.1	3.1 2.2 0.7 7.6	1.0 2.7 0.5 ND	3.2 1.9 3.7 A4.9 ND	1: 6 4: 6 9 1: 6 7: 6 9 1: 7 9 1: 6 9 1: 7 9	0.7 UN 0.3 UN UN UN	920 93 8.9 3.9 0.7	750
Benzene	ug/L	476 13.6 20.9 241.5	240 273 355 1694	ND 2.1 2.3 0.8 ND	15.9 15.3 70.1 154.8 7.0	6 1 1 1 1 1 1 1 1 1 1	UN UN 8.0 UN UN	710 37.5 ND 1.8 0.9 0.9 0.8	10
Sample ID		MW-3 2/25/94 6/17/94 9/27/94 12/7/94	MW-4 2/25/94 6/17/94 9/27/94 12/7/94	MW-5 2/25/94 6/17/94 9/27/94 12/7/94 3/8/95	MW-6 2/25/94 6/17/94 9/27/94 12/7/94 3/8/95	MW-9 2/25/94 6/17/94 9/27/94 12/7/94 3/8/95	MW-10 2/25/94 6/17/94 9/27/94 12/7/94 3/8/95	Stripper Effluent 5/11/94 6/17/94 7/8/94 8/11/94 9/29/94 10/13/94	WQCC LIMITS

Water Table Elevations

Depth to groundwater measurements in monitor wells was measured during the March 8, 1995 sample event. Table 2 includes water depth measurements, surface casing relative elevations and groundwater elevations. A contour map of relative water table elevations for this sample event is included in Figure 2.

TABLE 2

Relative Groundwater Elevations Amoco Production Company GCU Com "F" No. 162 December 7, 1994

Monitor Well	Total Depth (feet)	Depth to Fluid (feet)	Relative Casing Elevation (feet)	Relative Groundwater Elevation (feet)
MW-1	Well	abandoned	during	excavation
MW-2	23.1	na	100.16	na
MW-3	Well	abandoned	during	excavation
MW-4	Well	abandoned	during	excavation
MW-5	25.1	22.30	102.50	80.20
MW-6	26.8	20.62	98.68	78.06
MW-7	25.3	na	97.39	na
MW-8	Well	abandoned	during	excavation
MW-9	19.6	12.48	88.50	76.02
MW-10	20.3	14.85	91.58	76.73

na = water table elevation not measured

Current and Proposed Activities

The extent of contaminated soil and groundwater has previously been investigated and reported (Figure 3). Amoco is presently stockpiling clean top soil on location and removing contaminated soil for off-site composting operations. This excavation is proposed for remediation of contamination found within the confines of the well location. It is proposed to install an air sparge/vacuum extract system for remediation of contaminated soil and groundwater on private property immediately west of the location (Figure 4). Horizontal vent piping is to be installed in

3

Blagg Engineering, Inc. Consulting Engineers borings at an elevation of 3 feet to 10 feet above the water table surface. Vertical air sparge points installed at a depth of 5 feet to 10 feet below the water table surface are proposed for introduction of air to the reclamation system. Air pumps and/or compressors to operate the air sparge/vacuum extract system will be located on the well site. The location of horizontal vent piping and air sparge points as indicated on Figure 4 is conceptual only. The final locations of these systems will be dependent on surface and subsurface restrictions and the actual magnitude of contamination found during site work.

Summary

This report has been prepared by Blagg Engineering, Inc. on behalf of Amoco Production Company. Questions or comments may be directed to Jeff Blagg at (505)632-1199.

Respectfully submitted: *Blagg Engineering, Inc.*

My C. Blogg

Jeffrey C. Blagg, P.E. President

cc: Mr. Denny Foust, NMOCD Mr. Wayne Cannon, NM State Engineers Office Mr. Buddy Shaw, Amoco Production Company

APPENDIX A

•

1

FIGURES

APPENDIX B

1 i e

LABORATORY ANALYTICAL DATA REPORTS

ON SITE TECHNOLOGIES, LTD.

OFF: (505) 325-8786

LAB: (505) 325-5667

AROMATIC VOLATILE ORGANICS

Attn:	Nelson V	'elez			Date:	3/8/95
Company:	Blagg En	gineering			Lab ID:	2635
Address:	P.O. Box	87			Sample ID:	5413
City, State: Bloomfield, NM 87413					Job No.	2-1000
Project Nam	ne:	GCU Cor	n "F" 162			
Project Loca	ation:	MW #5				
Sampled by:		NV	Date:	3/7/95	Time:	14:00
Analyzed by	/:	DLA	Date:	3/8/95		
Sample Matrix:		Water				

Aromatic Volatile Organics

Component	Measured Concentration ug/l	Detection Limit
Benzene	ND	0.2
Toluene	ND	0.2
Ethylbenzene	ND	0.2
m,p-Xylene	ND	0.2
o-Xylene	ND	0.2
	TOTAL 0.0 ug/L	

ND - Not Detectable

Method - SW-846 EPA Method 8020 Aromatic Volatile Organics by Gas Chromatography

Approved by:)~ 4 Date: 3/8/15

P. O. BOX 2606 • FARMINGTON, NM 87499

ON SITE TECHNOLOGIES, LTD.

OFF: (505) 325-8786

LAB: (505) 325-5667

AROMATIC VOLATILE ORGANICS

Attn:	Nelson V	/elez			Date:	3/8/95
Company:	Blagg En	gineering			Lab ID:	2635
Address:	P.O. Box	c 87			Sample ID:	5414
City, State: Bloomfield, NM 87413					Job No.	2-1000
Project Nam	ne:	GCU Cor	m "F" 162			
Project Loca	ation:	MW #6				
Sampled by	:	NV	Date:	3/7/95	Time:	13:30
Analyzed by	/:	DLA	Date:	3/8/95		
Sample Mat	rix:	Water				

Aromatic Volatile Organics

Component	Measured Concentration ug/l	Detection Limit
Component	Concentration by/L	
Benzene	7.0	0.2
Toluene	ND	0.2
Ethylbenzene	ND	0.2
m,p-Xylene	8.2	0.2
o-Xylene	ND	0.2
	тотац 15.2 ug/L	

ND - Not Detectable

Method - SW-846 EPA Method 8020 Aromatic Volatile Organics by Gas Chromatography

Approved by: Da 4 Date: 3 / 8 / 95

P. O. BOX 2606 • FARMINGTON, NM 87499

OFF: (505) 325-8786

LAB: (505) 325-5667

AROMATIC VOLATILE ORGANICS

Attn:	Nelson \	/elez			Date:	3/8/95
Company:	Blagg Er	ngineering			Lab ID:	2635
Address:	P.O. Box	c 87			Sample ID:	5415
City, State: Bloomfield, NM 87413					Job No.	2-1000
Project Nan	ne:	GCU Co	m "F" 162			
Project Loca	ation:	MW #9				
Sampled by:		NV	Date:	3/7/95	Time:	15:00
Analyzed by	y:	DLA	Date:	3/8/95		
Sample Ma	trix:	Water				

Aromatic Volatile Organics

Component	Measured Concentration ug/L	Detection Limit Concentration ug/L
		0.0
Benzene	U	0.2
Toluene	ND	0.2
Ethylbenzene	ND	0.2
m,p-Xylene	ND	0.2
o-Xylene	ND	0.2
	TOTAL 0.0 ug/L	

ND - Not Detectable

Method - SW-846 EPA Method 8020 Aromatic Volatile Organics by Gas Chromatography

Approved by: 3/8/95 Date:

P. O. BOX 2606 • FARMINGTON, NM 87499

OFF: (505) 325-8786

LAB: (505) 325-5667

AROMATIC VOLATILE ORGANICS

Attn:	Nelson \	/elez			Date:	3/8/95
Company:	Blagg Er	ngineering	Lab ID:	2635		
Address:	P.O. Box	x 87			Sample ID:	5416
City, State: Bloomfield, NM 87413					Job No.	2-1000
Project Nan	ne:	GCU Cor	n "F" 162			
Project Loca	ation:	MW #10)			
Sampled by:		NV	Date:	3/7/95	Time:	14:30
Analyzed b	y:	DLA	Date:	3/8/95		
Sample Ma	trix:	Water				

Aromatic Volatile Organics

Component	Measured Concentration ug/L	Detection Limit Concentration ug/L
Baazana	ND	0.2
Toluene	ND	0.2
Ethylbenzene	ND	0.2
m,p-Xylene	ND	0.2
o-Xylene	ND	0.2
	TOTAL 0.0 ug/l	

ND - Not Detectable

Method - SW-846 EPA Method 8020 Aromatic Volatile Organics by Gas Chromatography

Approved by: 3/3/95 Date:

P.O. BOX 2606 • FARMINGTON, NM 87499

OFF: (505) 325-8786

LAB: (505) 325-5667

QUALITY ASSURANCE REPORT

for EPA Method 8020

Date Analyzed: 3/8/95

Internal QC No.: 0222-STD Surrogate QC No.: 0223-STD Reference Standard QC No.: 0300-STD

Method BlankAnalytes in BlankAmountAverage Amount of All Analytes In Blank<0.1 ppb</td>

Calibration Check

Calibration Standards	Units of Measure	* True Value	Analyzed Value	% Diff	Limit
Benzene	ppb	20	20	1	15%
Toluene	ppb	20	19	3	15%
Ethylbenzene	ppb	20	20	1	15%
m,p-Xylene	ppb	40	40	1	15%
o-Xylene	ppb	20	20	1	15%

Spike Results

	1- Percent	2 - Percent				
Analyte	Recovered	Recovered	Limit	%RSD	Limit	
Benzene	102	101	(39-150)	0	20%	
Toluene	101	100	(46-148)	1	20%	
Ethylbenzene	95	92	(32-160)	3	20%	
m,p-Xylene	108	107	(35-145)	1	20%	
o-Xylene	94	91	(35-145)	2	20%	

Surroga	ate Recoveries		
Laboratory	S1	S2	\$3
Identification	Percent	Percent	Percent
	Recovered	Recovered	Recovered
Limits	(70-130)		
5413-2635	100		

S1: Flourobenzene

P. O. BOX 2606 • FARMINGTON, NM 87499

- Technology Blending Industry with the Environment -

	CHAIN OF CUSTC		RECORD			2030
/ ON SITE	Date: _	3/-	1/95		Page /	
TECHNOLOGIES, LTD. 457 W. Maple • P LAB: (505)	 O. Box 2606 • Farmington NM 87499 325-5667 • FAX: (505) 325-6256 					
Purchase Order No.: Job No.			ame NELSON	VELEZ	Title PE	
Name		тяс рт 21 0	ompany 500	15		
BOD Company BURGE ENSINEERING	Dept.	≥ c SULT SEPC	iv State Zin	1 1 1		
City, State, Zip & ComFIELD NM	87413	214 214	elephone No. 632	-1199	Telefax No.	
Sampling Location: どこと Corr F	162	· · · · · · · · · · · · · · · · · · ·		ANALYSIS REQI	UESTED	
		ners Iners	/ /ċ./			
Sampler: Reland VI		Numbé Numbé	las las			
SAMPLE IDENTIFICATION	SAMPLE MATRIX PRES.					LABID
MW # 5	#1/95 1400 WATTA #9Cl.	N			1/12	3-7635
MW # 6	3/95 1330 WATER Hacle	2			24	4-2636
0 # 4 M	3/AS 1500 WKECHJ212	N			12-2-1	5- 2635
mu #10	3/2/95/430 WAFE HACL	2				1-7635
				·		
Relinquished by:	Date/Time 3 1 4 5 1615	Receive	d by:	-	Date/Time 7	111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Relinquished by:	Date/Time	Receive	d by:		Date/Time	
Relinquished by:	Date/Time	Receive	d by:		Date/Time	
Method of Shipment:		Rush	24-48 Hours	10 Working Days	s Special Instructions	
Authorized by: (Client Signature <u>Must</u> Accompany Requ	lest) Date			÷		
	Distribution: White - On Site Vallow - I AB	Dink _ Car	nier Goldenrod – Ottent			

η,

I i