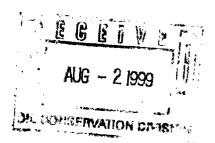
3R - 68

REPORTS

DATE: 7/30/1999

BURLINGTON RESOURCES

SAN JUAN DIVISION


July 30, 1999

Certified Mail: Z 186 732 847

Bill Olson New Mexico Oil Conservation Division 2040 S. Pacheco Santa Fe, NM 87505

RE: Fogelson #4-1

Unit Letter P, Section 4, Township 29N, Range 11W Notification of Groundwater above Chloride Standard

Dear Mr. Olson:

This letter is Burlington Resources' (BR) notification of groundwater that exceeded the chloride standard at the subject location. All BTEX constituents were below the standards, but the chlorides were over 250 MG/L. BR is also proposing a plan of action to address the groundwater concerns at the Fogelson #4-1.

BR excavated an earthen pit on the location to 41 feet below ground surface. At that point, soil samples from the walls and bottom of the excavation were collected and tested clean. The excavation was backfilled with clean fill. Due to El Paso having groundwater impacts at the location, BR installed a temporary groundwater monitoring well in the center of BR's former earthen pit on May 17, 1999. After developing the well and allowing it to stabilize for ten days, the well was purged and sampled on May 27, 1999. The sample tested below the groundwater standards for the BTEX constituents, but chlorides were 430 MG/L. Total dissolved solids (TDS) were 14,000 MG/L.

Included with this letter is the original Pit Remediation and Closure Report for the BR earthen pit along with the analytical results of the soil testing. Also attached are the groundwater lab analysis, the drilling log, the monitoring well installation record, and a location diagram from El Paso's 1997 Annual Groundwater Report.

Plan of Action: Since the TDS of the groundwater from the temporary source monitoring well were over 10,000 MG/L, BR proposes to install a temporary groundwater monitoring well upgradient of operations at the site. Due to the work conducted by El Paso at this location, the direction of groundwater flow has been determined to be in the westerly direction. The proposed upgradient monitoring well will be located at the edge of the southeast part of location. If the groundwater from the proposed upgradient monitoring well tests over 10,000 MG/L, the groundwater would not be considered "protected" and BR proposes no additional remediation/investigation work at the site. The 2-inch PVC casing would be removed to the extent practical from the two temporary wells and the wellbores would be filled to surface with a bentonite/cement grout.

If the upgradient water tests below 10,000 MG/L, BR would complete the existing temporary source well as permanent and initiate quarterly sampling of the source well.

Please provide written correspondence approving our proposed plan of action. If you have questions or additional information is needed, please contact me at (505) 326-9841.

Sincerely,

Ed Hasely

5) Hosely

Sr. Staff Environmental Representative

Attachments:

Pit Remediation and Closure Report

Drilling Log/Wellbore Diagram

Analytical Results Location Diagram

cc:

Denny Foust - NMOCD Aztec

Sandra Miller - El Paso

Johnny Ellis Bruce Gantner Facility File Correspondence

Pit Remediation and Closure Report

District I
P.O. Box 1980, Hobbs, NM
District II
P.O. Drawer DD, Artesia, NM 88211
District III
1000 Rio Brazos Rd, Azzec, NM 87410

State of New Mexico Energy, Minerals and Natural Resources Department

OIL CONSERVATION DIVISION
P.O. Box 2088
Santa Fe, New Mexico 87504-2088

SUBMIT 1 COPY TO APPROPRIATE DISTRICT OFFICE AND 1 COPY TO SANTA FE OFFICE

(Revised 3/9/94)

PIT REMEDIATION AND CLOSURE REPORT

Constant Buch de Rosmusas	Telephone: (505) 326 - 9700								
Address: 3535 E. 30" Farmington	ii ii								
Facility Or: Fogelson 4-1 Com Well Name									
Location: Unit or Qtr/Qtr Sec_P s	iec 4 T29N R 11 W County San Juan								
Pit Type: Separator Dehydrator	Other Unknown								
Land Type: BLM X , State, Fee	_, Other								
Pit Location: Pit dimensions: length 17 , width 20 , depth 1 Reference: wellhead X , other Footage from reference: 66 Direction from reference: 55 Degrees East North X of X West South									
Depth To Ground Water: (Vertical distance from contaminants to seasonal high water elevation of ground water)	Less than 50 feet (20 points) 50 feet to 99 feet (10 points) Greater than 100 feet (0 Points) 20								
Wellhead Protection Area: (Less than 200 feet from a private domestic water source, or; less than 1000 feet from all other water sources)	Yes (20 points) No (0 points) <u>c</u>								
Distance To Surface Water: (Horizontal distance to perennial lakes, ponds, rivers, streams, creeks, irrigation canals and ditches)	Less than 200 feet (20 points) 200 feet to 1000 feet (10 points) Greater than 1000 feet (0 points) 6								
	ranking score (total points): 20								

maka Bamaddahdan aka	
Date Remediation Sta	
Remediation Method: (Check all appropriate	Excavation X Approx. cubic yards 4574
sections)	Landfarmed X Insitu Bioremediation
	Other
Remediation Location	: Onsite X Offsite
(ie. landfarmed onsite, name and location of	
offsite facility)	
	Of Remedial Action: Souls were excernated to an
approximate d	lepth of 41 ft. and landfarmed on location Soil
samples were	collected from the walls and bottom and tested
chean The execus	tion was backfilled wir clean souls. Due to El Reso's
	at an location a temporary monitoring well was
installed in the	^
	tered: No X Yes Depth
during exceived	
minal Diba	
	Comple location () the
Final Pit: Closure Sampling:	Sample location Bittom of excavation.
Closure Sampling: (if multiple samples, attach sample results	
Closure Sampling: (if multiple samples,	Sample depth 41 ft
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths)	Sample depth 41 ft Sample date 11/24/98 Sample time
Closure Sampling: (if multiple samples, attach sample results and diagram of sample	Sample depth 41 ft
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths)	Sample depth 41 ft Sample date 11/24/98 Sample time
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths)	Sample depth 41 ft Sample date 11/24/98 Sample time Sample Results
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths)	Sample depth 41 ft Sample date 11/24/98 Sample time Sample Results Benzene(ppm) ND
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths)	Sample depth 41 ft Sample date 11/24/98 Sample time Sample Results Benzene(ppm) ND Total BTEX(ppm) 0.196
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths)	Sample depth 41 ft Sample date 11/24/98 Sample time Sample Results Benzene(ppm) ND Total BTEX(ppm) O.196 Field headspace(ppm) 20.1
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths)	Sample depth 41 ft Sample date 11/24/98 Sample time Sample Results Benzene(ppm) ND Total BTEX(ppm) 0.196 Field headspace(ppm) 20.1
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths) Ground Water Sample	Sample depth 41 ft Sample date 11/24/98 Sample time Sample Results Benzene(ppm) ND Total BTEX(ppm) O.196 Field headspace(ppm) 20.1
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths) Ground Water Sample I HEREBY CERTIFY THE OF MY KNOWLEDGE AND	Sample depth 41 ft Sample date 11/24/98 Sample time Sample Results Benzene(ppm) ND Total BTEX(ppm) O.196 Field headspace(ppm) 20.1 TPH 17.5 Yes No X (If yes, attach sample results) AT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST
Closure Sampling: (if multiple samples, attach sample results and diagram of sample locations and depths) Ground Water Sample I HEREBY CERTIFY THE	Sample depth 41 \$\frac{1}{1}\$ Sample date \(\frac{1\frac{1}{2\frac{1}{9}\text{8}}}{\frac{1}{2\frac{1}{9}\text{8}}} \) Sample Results Benzene(ppm) \(\frac{ND}{D} \) Total BTEX(ppm) \(\frac{0}{0}\) Field headspace(ppm) \(\frac{20}{20.1} \) TPH \(\frac{17.5}{0} \) Yes \(\frac{NO}{X} \) (If yes, attach sample results) AT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST BELIEF

PRODUCTION PIT REMEDIATION FORM

WELL NAME: Fogelson 4-1 Con#14 WELL No.: DP No.:
OPERATOR NAME: Burlington Resources P/L DISTRICT:
COORDINATES: LETTER: P SECTION: 4 TOWNSHIP: 29 RANGE: 11
PIT TYPE: DEHYDRATOR: X LOCATION DRIP: LINE DRIP: OTHER:
FOREMAN NO.: Somny ELLIS AREA:
INITIAL REMEDIATION ACTIVITIES
DATE: 11-4-98 TIME:
GROUND WATER ENCOUNTERED? TY / ZN
Inside NMOCD Zone
FINAL EXCAVATION DIMENSIONS: LENGTH: 76 WIDTH: 65 DEPTH: 41
FINAL EXCAVATION DIMENSIONS: LENGTH: 10 WIDTH: 90 DEPTH: 1
APPROX. CUBIC YARDS: 7,270 FINAL PID READING: 20.10pm Composite reading
,
REMEDIATION METHOD: ONSITE LANDFARM
OFFSITE LANDFARM LOCATION:
OTHER statelle
LANDFARM DIMENSIONS: LENGTH: WIDTH:
OUTSIDE NMOCD ZONE
FINAL SAMPLE DEPTH: 41' FINAL PID READING: 20,1
EXCAVATION SAMPLING INFORMATION
IF PID READINGS ARE LESS THAN 100 PPM, SAMPLE TAKEN DURING EXCAVATION)
SAMPLE DATE: SAMPLE NOS
SAMPLE ANALYSIS: TPH METHOD 8015 MODIFIED
IF PID READINGS ARE <u>GREATER THAN 100 PPM</u> , NO SAMPLE WILL BE TAKEN DURING EXCAVATION. THE EXCAVATION WILL BE SAMPLED PRIOR TO BACKFILLING (SEE ADDITIONAL SAMPLING SECTION).
REMARKS: Contaminated Soil 4.574 xds
REMARKS: Contaminated Soil 4,574 yds Clean Soil 3,067 yds
-
SIGNATURE: DATE: 11/4/98
SIGNATURE: DATE: 11/4/98

ADDITIONAL REME	DIATIC SCTIVIT	TES	
SOIL TILLING		,	
DATE:	PID READING:		SIGNATURE:
REMARKS:			
			SIGNATURE:
REMARKO.			
DATE:	PID READING:		SIGNATURE:
REMARKS:			
DATE:	PID READING:		SIGNATURE:
ADDITIONAL SAME	LING INFORMAT	ION	
EXCAVATION SAMPLIN	G(IF REQUIRED)		
IF NO SAMPLE BACKFILLING).	WAS TAKEN DURING	EXCAVATION, T	HE EXCAVATION WILL BE SAMPLED BEFORE
SAMPLE DATE	:	SAMPLE NOS_	
IF PID READINGS	ARE LESS THAN 100 PPM	, SAMPLE ANALYS	SIS: TPH METHOD 8015 MODIFIED
IF PID READINGS A 8015 MODIFIED	ARE GREATER THAN 100	PPM, SAMPLE ANA	ALYSES: BTEX METHOD 8020 AND TPH METHOD
SOIL REMEDIATION VI	ERIFICATION SAMPLE		
SAMPLE DATE		SAMPLE NOS_	
SIGNATURE:			
SAMPLE ANAL	YSIS: TPH METHOD	8015 MODIFIE	D
BACKFILLING INF	ORMATION		
DATE:		TIME:	
BACKFILL SOURCE:	ONSITE LANDEADM:		
DAONILL GOORGE.			APPROX. VOLUME:
REMARKS:			
-			
SIGNATURE:			DATE:

807 S. CARLTON AVE. FARMINGTON, NEW MEXICO 87401 PHONE (505) 326-2588 FAX (505) 326-2875

Philip Environmental Services

4000 Monroe Road

Farmington, NM 87401

Attn: Robert Thompson

Project:

BR Pits

Site:

Farmington Sampled By: R. Thompson

Sample ID:

112498140 - WALLS

Date: 12/16/98

Project No: 20440

Matrix:

Soil

Date Sampled:

11/24/98

Date Received: 11/30/98

Analytical Data

	Analytical Data		
PARAMETER	RESULTS	DETECTION LIMIT	UNITS
Benzene	ND	1.0 (P)	μg/Kg
Toluene	ND	1.0 (P)	μg/Kg
Ethylbenzene	ND	1.0 (P)	μg/Kg
Total Xylene	1.4	1.0 (P)	μg/Kg
Total Volatile Aromatic Hydrocarbons	1.4		μg/Kg

Surrogate	% Recovery
1,4,Difluorobenzene	103
4-Bromofluorobenzene	113

Method 8020A***

Analyzed by: AA

Date: 12/02/98

ND-Not Detected

MI-Matrix Interference

(P)-Practical Quantitation Limit

Notes:

*Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th Ed ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Billy G.YRich, Lab Director

Certificate of Analysis No. 9811133-02b

807 S. CARLTON AVE. FARMINGTON, NEW MEXICO 87401 PHONE (505) 326-2588 FAX (505) 326-2875

Philip Environmental Services

4000 Monroe Road

Farmington, NM 87401

Attn: Robert Thompson Date: 12/16/98

Project: BR Pits Project No: 20440

Site: Farmington Matrix: Soil

Sampled By: R. Thompson Date Sampled: 11/24/98

Sample ID: 112498145 - BOTTOM Date Received: 11/30/98

Analytical Data

PARAMETER RESULTS LIMIT UNITS

Gasoline Range Organics 7.5 0.5 (P) mg/kg

Cutronata 9/ Paggyany

Surrogate % Recovery

1.4.Difluorobenzene 80 '

4-Bromofluorobenzene 353MI

Method 8015B*** for Gasoline

Analyzed by: AA
Date: 12/03/98

Total Petroleum Hydrocarbons-Diesel 10 10 (P) mg/kg

Surrogate % Recovery

n-Pentacosane 44

Method 8015B*** for Diesel

Analyzed by: RR

Date: 12/03/98

MI-Matrix Interference (P)-Practical Quantitation Limit

D-Diluted, limits not applicable

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th Ed

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Comments: Sample contains petroleum hydrocarbons from C10 - c24 that do not resemble

a diesel pattern. (C10 - C24) RR

Billy G. Rich, Lab Director

Certificate of Analysis No. 9811133-02a

807 S. CARLTON AVE. FARMINGTON, NEW MEXICO 87401 PHONE (505) 326-2588 FAX (505) 326-2875

Philip Environmental Services

4000 Monroe Road

Farmington, NM 87401

Attn: Robert Thompson

Project: Site: BR Pits

Site: Farmington Sampled By: R. Thompson

Sample ID:

112498145 - BOTTOM

Date: 12/16/98

ect No: 20440

Project No: 2 Matrix:

Soil

Date Sampled:

11/24/98

Date Received: 11/30/98

	Analytical Data		
		DETECTION	
PARAMETER	RESULTS	LIMIT	UNITS
_			
Benzene	ND	5.0 (P)	μg/Kg
Toluene	26	5.0 (P)	μg/Kg
Ethylbenzene	ND	5.0 (P)	μg/Kg
Total Xylene	170	5.0 (P)	μg/Kg
Total Volatile Aromatic Hydrocarbons	196		μg/Kg

Surrogate 1,4,Difluorobenzene

4-Bromofluorobenzene

Method 8020A***
Analyzed by: AA

Date: 12/03/98

% Recovery

100 160MI

ND-Not Detected

MI-Matrix Interference

(P)-Practical Quantitation Limit

Notes:

*Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th Ed

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Comments:

Sample contains petroleum hydrocarbons from C10 - c24 that do not resemble

a diesel pattern. (C10 - C24) RR

Billy G. Rich, Lab Director

Certificate of Analysis No. 9811133-01b

807 S. CARLTON AVE. FARMINGTON, NEW MEXICO 87401 PHONE (505) 326-2588 FAX (505) 326-2875

Philip Environmental Services

4000 Monroe Road

Farmington, NM 87401

Attn: Robert Thompson Date: 12/16/98

Project: BR Pits Project No: 20440

Site: Farmington Matrix: Soil Sampled By: R. Thompson Date Sampled: 11/24/98

Sample ID: 112498140 - WALLS Date Received: 11/30/98

Analytical Data

PARAMETER RESULTS LIMIT UNITS

Gasoline Range Organics 0.11 0.1 (P) mg/kg

Surrogate % Recovery

1,4,Difluorobenzene 103
4-Bromofluorobenzene 127

Method 8015B*** for Gasoline

Analyzed by: AA

Date: 12/02/98

Total Petroleum Hydrocarbons-Diesel ND 10 (P) mg/kg

Surrogate % Recovery

n-Pentacosane 42

Method 8015B*** for Diesel

Analyzed by: RR

Date: 12/02/98

MI-Matrix Interference (P)-Practical Quantitation Limit

ND-Not Detected

DETECTION

Notes:

*Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA
**Ref: Standard Methods for Examination of Water & Wastewater, 18th Ed

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Billy G./Rich, Lab Director

Chain of Custody Record

4000 Monroe Road Farmington, NM 87401 (505) 326-2262 Phone (505) 326-2388 FAX

COC Serial No. C 228

									1, LiA	<u> </u>		- Maria	ide-1	7 .					
				ttles	Type	of ysis	**	/25	ν,	80.0									
Project Number	Phase . T	ask	[.]]	Bo	and I	Sottle	,	<u>ζ</u> , Ψ	(10)	Ζ,	/ ,	/ /	/ ,	/	/ ,	Ζ,	/ /		
	Buch			Total Number of Bottles				N.	DIT					/		/	/.	//	/ [
Laboratory Name	PL			Ē	1		. /	56/											
Location	Tunto	76 / KU17		Z		124	()	Ί,		Ζ,	/ :	/ /	Ζ,	Ζ,	/ ,	/ ,	/ /		
Sample Number (and depth)	Date	Time	Matrix	Ď			<u> </u>	_	20/20/20/20/20/20/20/20/20/20/20/20/20/2			1	\angle	_		\angle		Commer	ıts
1125181-15 - WALLS	11 : 1.3	1" 41	< ^ \	1	X	\times			1		3.0	9.64	y - 5	-		ļ			
117/19/195- BOTTOM	11-11-12	11.46	1.5	1	X	×		1.	jin la		i de	in page	, sa., i						
									ýš.			p Sys						,	;
								15	- v. 75	11	1. L ²	1-42	14 Mg.	į.	ž.				
;												:	,						
									¹										
			<u> </u>						1. , .			ړ				,,,,,,,,			
												35.4						······	
								1 .	编曲			7.14			1.5				
								`4 ,	2.5	9 <u>/</u>	(North	1 1	· 5 · 48	C ₂ ,					
,										<u> </u>	14,000	e in final and a	, pp. 4 -	1.85	11.50		<u> </u>	.,	, ,
Relinquished by:		···	<u> </u>		<u></u>			Para	ived	Rv	اا	. 电量人			٠.,		<u> </u>		
Signature			Date		Ti	me	<u> </u>	1/2			nature		₹ 4 °	—		Date		Tir	ne
2 Set Victor	L)	11	11 . (1)		,),	17.2	7 3	fu	· ·	Z	-		d _a r.		11-3	30-9	18	100	
Agrantauf.		1,	130 9	8	10	15		K	1	-7	X_	Z # 5	- 1			30		10:1	7 AM
								٧.,	apara ajir	sappra	6.647	pur jan daj	ի:հ ար ⊁արք	,				- 1	
Samples Iced: 🖺 Yes			Carrier:					74 v	1.艾诺维	C.N.	K). ~ 7	#3°4	#4 ⁵ §	×. /	Airbill N	lo.			
Preservatives (ONLY for Water 5	Samples) Sodium hyro	oxide (NaOH)	Shipping an	d Lab N	lotes:		. '		1.4	**		. le		•		. •		,	
☐ Volatile Organic Analysis										3 .									
☐ Metals		, 1								•		. "So	• .		•				
TPH (418.1)	Sulfuric	acid (H2SO4)						•					:						
Other (Specify)					1 + 1, Wig	, Au	Any a	指揮的	2. 年後的	print.	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(i:	parent.	. j}. ' _e (411季	8 - J. P.	·		

Certificate of Analysis No. 9811030-01a

807 S. CARLTON AVE. FARMINGTON, NEW MEXICO 87401 PHONE (505) 326-2588 FAX (505) 326-2875

Philip Environmental Services

4000 Monroe Road

Farmington, NM 87401

Attn: Scott Pope

Project: Site:

Fogelson 4-1 Com #14 1733ppm

Sampled By: Paul Archuleta

Sample ID: 11498315 23' Date: 11/17/98

Project No: Matrix: 20440 Soil

Date Sampled:

11/04/98

Date Received: 11/05/98

	Analytical Data		
		DETECTION	
PARAMETER	RESULTS	LIMIT	UNITS
Benzene	1600	500 (P)	μg/Kg
Toluene	19000	500 (P)	μg/Kg
Ethylbenzene	12000	500 (P)	μg/Kg
Total Xylene	92000	500 (P)	μg/Kg
Total Volatile Aromatic Hydrocarbons	124600		μg/Kg

Surrogate	% Recovery
1,4,Difluorobenzene	100
4-Bromofluorobenzene	273 MI

Method 8020A***

Analyzed by: FAB

Date: 11/06/98

ND-Not Detected

MI-Matrix Interference

(P)-Practical Quantitation Limit

Notes:

*Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th Ed

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Billy G. Rich, Lab Director

A. Rush

Certificate of Analysis No. 9811030-01b

807 S. CARLTON AVE. FARMINGTON, NEW MEXICO 87401 PHONE (505) 326-2588 FAX (505) 326-2875

Philip Environmental Services

4000 Monroe Road

Farmington, NM 87401

Attn: Scott Pope

Fogelson 4-1 Com #14

Project: Site:

1733ppm

Sampled By: Paul Archuleta

Sample ID:

PARAMETER

11498315 23'

Date: 11/17/98

Project No:

20440 Soil

Matrix: Date Sampled:

11/04/98

Date Received:

11/05/98

Analytical Data

RESULTS

DETECTION LIMIT

UNITS

mg/kg

Gasoline Range Organics

Surrogate

1900 % Recovery

127

1,4,Difluorobenzene 4-Bromofluorobenzene

1070 MI

Method 8015B*** for Gasoline

Analyzed by: FAB

Date: 11/06/98

Total Petroleum Hydrocarbons-Diesel

520 % Recovery

0

250 (P)

50 (P)

mg/kg

Surrogate

n-Pentacosane

Method 8015B*** for Diesel

Analyzed by: RR

Date: 11/10/98

(P)-Practical Quantitation Limit

D-Diluted, limits not applicable

A. Red

Notes:

MI-Matrix Interference

*Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA

**Ref: Standard Methods for Examination of Water & Wastewater, 18th Ed

***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Comments:

Sample contains petroleum hydrocarbons from C10 - C24 that do no resemble a

diesel pattern. (C10 - C24) RR

Billy G. Rich, Lab Director

Chain of Custody Record

4000 Monroe Road Farmington, NM 87401 (505) 326-2262 Phone (505) 326-2388 FAX

coc Serial No. C 2286

Project Name Focge 18074-1 Com#		les	Type o	of ele			//			7 /	//	7	7 /	//	7 /	77	/
Project Number 20410 Phase . Task 300	165,00	Bott	and B	ottle	,										/ ,	/ / /	
Samplers Pula Rycholate		Total Number of Bottles			/	/							/				İ
Laboratory Name SPL		đ E					/					/		/ /	/ /		1
Location Franciscon		Z S	/	QX)		Ζ,	/ ,	/ ,	/	/ .	/ ,				/ /		-
		Tot	//	/0)/											Oo onto	- [
	Matrix Soil	1	\ \\\\	, V			\leftarrow	$\overline{}$		\leftarrow	(-	\leftarrow	$\overline{}$	\leftarrow	13	Comments 33 PPM	
11498315 23 174198 0315	1300			4				ļ	<u> </u>	-	 	ļ	 			3311	
	_							ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	 	<u> </u>		
10 A																	
	1 1			1													
	Transport of the last of the l																
			**************************************						<u> </u>		-	1	1	 			
	_					···.			 -	 			 		 -		
									·		ļ	7	ļ	ļ	-	<u></u>	
										• -				<u> </u>			
		ļ				į				ļ	İ		-				
															1	· · · · · · · · · · · · · · · · · · ·	
	- 			-									1	 	 		the state, Age.
Relinquished by:			<u></u>					By:		l	L		<u> </u>		<u>. L</u>		
Signature	Date		Tin			ece	iveu		nature					Date		Time	_
3.70	1-4-98			2.4					gar ²		· · · · · · · · · · · · · · · · · · ·		11/	. /	17	1.65	
	11-5 18		11:0	153,					,					,-			
) A ²	:	¢ 3.					41.	8 / C	1	116 1	29.4
Samples Iced: X Yes No	Carrier:												Airbill	No.			
Preservatives (ONLY for Water Samples) CyanideSodium hyroxide (NaOH)	Shipping and	Lab No	otes:														
☐ Volatile Organic Analysis																	- [
☐ Metals Nitric scid (HNO3)																	
TPH (418.1) Sulfuric acid (H ₂ SO ₄)	}																1
Other (Specify) Other (Specify)																	- 1

SITE SKETCH

######################################	Serial No. <u>SS-</u>	Title		
Project Name _	BR PITS		Project No.	20440
Project Manage	Robert Thomps	0~	Phase.Task No	3000.77
Client Company	Burlington Reso	<u>070eS</u>		· · · · · · · · · · · · · · · · · · ·
Site Name	ogelson 4-1 Com	#14		
Site Address	sloomfield N.M.			
(Include north arrow	and scale or dimensions. If available, p	reprint CAD drawing of site on this form.)		
	3 -	TN .		
	PIT 41	90'		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	well O Hen	7	•	0 - *
	21.9 Node	20 (containmed	(

Sketched by (signature)

AGRA Earth & Environmental, Inc. 2060 Afton Place Farmington, NM 87401 Tel: (505) 327-7928 Fax: (505) 326-5721

November 10, 1998 AEE Project No. 8529-000188

Philip Environmental Services Corp. 4000 Monroe Road Farmington, New Mexico 87401

Attention:

Mr. Robert Thompson

Regarding:

Environmental Cleanup Excavation

Burlington Resources Oil and Gas Company Fogelson 4-1 Com # 14-08-0001 Well Site

SF 043260C, 1190 Feet FSL and 1190 Feet FEL

Section 4, Township 29 North, Range 11 West, N.M.P.M.

San Juan County, New Mexico

Ladies and Gentlemen:

In accordance with the request of Mr. Robert Thompson of Philip Environmental, AGRA Earth and Environmental, Inc. (AEE) personnel visited the referenced site on Thursday, November 5, 1998, to observe the existing excavation and provide excavation guidelines for continuing the excavation below the 20 foot depth, which was excavated at the time of our site visit. It is understood that the excavation will continue to a depth near 40 feet, where groundwater is expected to be encountered.

The soils observed consisted of a fairly loose silty sand which exhibited signs of sloughing in the open excavation. It is recommended that in all areas, where personnel or equipment will be working in the excavation, the sides of the excavation be laid-back at an angle not to exceed 2:1 (horizontal to vertical). Spoils should be kept away from the edge of the excavation a distance at least equal to the depth of the excavation. The edges of the excavation should be checked regularly for tension cracks or other signs of possible slope failure. Any areas showing signs of slope failure should be repaired prior to personnel or equipment entering the excavation.

We appreciate the opportunity to be of service on this project. If you should have any questions, please do not hesitate to contact the undersigned.

11871

PROFESSIONAL

Respectfully submitted,

AGRA Earth & Environmental, Inc.

Kim M. Preston, P.E.

Four Corners Area Manager

Addressee (3) Copies:

Drilling Log/Wellbore Diagram

RECORD OF SUBSURFACE EXPLORATION

Philip Environmental Services Corp. 4000 Monroe Road

Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation **Borehole Location** GWL Depth Logged By

Drilled By Date/Time Started Date/Time Completed 57/17/95

Borehole #	1
Well #	MW-BI
Page /	of 7

Project Name Phase **Project Number** 1000.99 Project Location Forelson

P. Cheney Well Logged By Personnel On-Site Contractors On-Site Client Personnel On-Site

Drilling Method Air Monitoring Method

Depth (Feet)	Sample Interval	Sample Type & Recovery (inches)	Sample Description Classification System: USCS	USCS Symbol	Depth Lithology Change (feet)		Monitor Inits: ND BH	-	Drilling Conditions & Blow Counts	
5 10 - 15 -			Pit has been excavated to 211' (Ed llasely, pers. com 5/17). Will collect first sample at 35' to 37! Fill material is brown, medium to coarse grained sand.							
20										
25				·				·	·	,
	-35	6"	ucry pale brown, mediam grained sandstone No odor		35"	0.0	0.0		Be= 50 (0") s/Hs = 0.0	

Comments:	Anger refusal at	48!	141/5	amples	appeared	clan	מי	118	! Set,	10 of	screen	
	From 48' 10 38!	Sand	pack	ro 35	, open	hore	hole	10	ground	surlace	. Appres	
	sh water to we	11				,	3	<u></u>				
				Geo	logist Signatu	ure į	ram	L	Cha			

5/6/99\Drillog.xls

RECORD OF SUBSURFACE EXPLORATION

Philip Environmental Services Corp. 4000 Monroe Road Farmington, New Mexico 87401 (605) 328-2282 FAX (505) 328-2388

Elevation
Borehole Location
GWL Depth
Logged By
Drilled By
Date/Time Started
Date/Time Completed

5/17/99 0930

ŧ		/	
	MW	7	
2	of	<u>م</u>	
	, 2	MW	MW-BI

Project Name
Project Number
Project Number
Project Location

Well Logged By
Personnel On-Site
Contractors On-Site
Client Personnel On-Site

Drilling Method

Phase 1000, 99

Project Number

Phase 1000, 99

P

Drilling Method

2/12/,//3/7

Air Monitoring Method

PID

Depth	Sample	Sample Type &	Sample Description	USCS	Depth Lithology	Air	Monitor	ine	Drilling Conditions
(Feet)	Interval	Recovery (inches)	Classification System: USCS	Symbol	Change (foot)	1	nite: ND BH		& Ellow Counts
F 40	-40 -42	10"	very pale brown, medium to coarse grained sandstone, No udor. comented			0.0	0.0	0.0	BC= SO (6") SO (4") S/HS=010
45 	45	70	color change at 45,5 Ret. to light gray, medium grained sandstone, remented			0.0	010		BC= 50/6" 50/4" S/115= 0.0
10			Anger refusal at approx 48! Take Sample at 48! Light gray, meditum grained sandsons, remented			0.0	0.0	0,0	Be= 50/4" 50/4"
15			Set 16' of 2" screen at approx 48". Sand pack to 35! open bare hole 35" no"						
20 				ŧ					
25		:		<u>.</u>					·
30									
35									
40									

Comments:	

MONITORING WELL INSTALLATION RECORD

Philip Environmental Services Corp. 4000 Monroe Road Farmington, New Mexico 87401 (606) 326-2262 FAX (606) 326-2388

Elevation Well Location GWL Depth Installed By K. Pack! Date/Time Started

Oate/Time Completed

5/17/55

	Borehole # Well # Page/_	MW- of 1	<i>B1</i>	
Project Name	·			-
Project Number 210 Project Location For	57 elson 4-	Phase	1000.	99
On-Site Geologist	P. Cher Tradilla,	ney		heney

Depths in Reference to Ground S	Surface			Top of Protective Casing Top of Riser	
ltem	Material	Depth		Ground Surface	
Top of Protective Casing					
Bottom of Protective Casing Top of Permanent Borehole					
Casing Bottom of Permanent Borehole Casing					
Top of Concrete					
Bottom of Concrete					
Top of Grout	<u> </u>				
Bottom of Grout					
Top of Well Riser					
Bottom of Well Riser					
Top of Well Screen				Top of Seal	N.A
Bottom of Well Screen					
Top of Peltonite Seal					35-1
Bottom of Peltonite Seal				Top of Screen	381
Top of Gravel Pack				,	
Bottom of Gravel Pack					
Top of Natural Cave-In					
Bottom of Natural Cave-In					
Top of Groundwater				Bottom of Screen Bottom of Borehole	481
Total Depth of Borehole			<u> </u>		

Comments: Temperary well installation
Epen porchole from 35 1

Geologist Signature

Analytical Results - Groundwater

2709-D Pan American Freeway NE Albuquerque, New Mexico 87107 Phone (505) 344-3777 Fax (505) 344-4413

Pinnacle Lab ID number June 14, 1999

905106

PHILIP ENVIRONMENTAL 4000 MONROE ROAD FARMINGTON, NM

Project Name

BURLINGTON DRILLING

87401

Project Number

21057

Attention:

PAUL CHENEY

On 5/28/99 Pinnacle Laboratories, Inc., (ADHS License No. AZ0592), received a request to analyze aqueous samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

EPA method 8021 was performed by Pinnacle Laboratories, Inc., Albuquerque, NM.

All other parameters were performed by Severn Trent (FL) Inc., Pensacola, FL.

If you have any questions or comments, please do not hesitate to contact us at (505)344-3777.

Kimberly D. McNeill

Project Manager

H. Mitchell Rubenstein, Ph. D.

General Manager

MR: mt

Enclosure

2709-D Pan American Freeway NE Albuquerque, New Mexico 87107 Phone (505) 344-3777 Fax (505) 344-4413

CLIENT	: PHILIP ENVIRONMENTAL	PINNACLE ID	: 905106
PROJECT#	: 21057	DATE RECEIVED	: 5/28/99
PROJECT NAME	: BURLINGTON DRILLING_	REPORT DATE	: 6/14/99
PIN			DATE
ID. #	CLIENT DESCRIPTION	MATRIX	COLLECTED
01	BR-TAYLOR MW1	AQUEOUS	5/27/99
02	BR-FOGELSON MW1	AQUEOUS	5/27/99

GAS CHROMATOGRAPHY RESULTS

TEST

: EPA 8021 MODIFIED

CLIENT

: PHILIP ENVIRONMENTAL

PINNACLE I.D.: 905106

PROJECT#

: 21057

PROJECT NAME

: BURLINGTON DRILLING

SAMPLE			DATE	DATE	DATE	DIL.
ID.#	CLIENT I.D.	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
01	BR-TAYLOR MW1	AQUEOUS	5/27/99	NA	5/28/99	1
02	BR-FOGELSON MW1	AQUEOUS	5/27/99	NA	5/28/99	10

PARAMETER	DET. LIMIT	UNITS	BR-TAYLOR MW1	BR-FOGELSON MW1	
BENZENE	0.5	UG/L	64	5.0	
TOLUENE	0.5	UG/L	< 0.5	< 5.0	
ETHYLBENZENE	0.5	UG/L	23	210	
TOTAL XYLENES	0.5	UG/L	98	420	
SURROGATE: TRIFLUOROTOLUENE (%)			85	95	
SURROGATE LIMITS	(69 - 117)				

CHEMIST NOTES:

N/A

2709-D Pan American Freeway NE Albuquerque, New Mexico 87107 Phone (505) 344-3777 Fax (505) 344-4413

N/A

GAS CHROMATOGRAPHY RESULTS REAGENT BLANK

TEST	: EPA 8021 MODIFIED	PINNACLE I.D.	: 905106
BLANK I. D.	: 052899	DATE EXTRACTED	: NA
CLIENT	: PHILIP ENVIRONMENTAL	DATE ANALYZED	: 5/28/99
PROJECT #	: 21057	SAMPLE MATRIX	: AQUEOUS
PROJECT NAME	: BURLINGTON DRILLING		
PARAMETER	UNITS		
BENZENE	UG/L	<0.5	
TOLUENE	UG/L	<0.5	
ETHYLBENZENE	· UG/L	- <0.5	
TOTAL XYLENES	UG/L	<0.5	
SURROGATE:			
TRIFLUOROTOLEUEN (%)		100	
SURROGATE LIMITS:	(69 - 117)		
CHEMIST NOTES:			

2709-D Pan American Freeway NE Albuquerque, New Mexico 87107 Phone (505) 344-3777 Fax (505) 344-4413

GAS CHROMATOGRAPHY QUALITY CONTROL **MSMSD**

TEST

: EPA 8021 MODIFIED

MSMSD#

: 905111-01

CLIENT

: PHILIP ENVIRONMENTAL

PROJECT #

PROJECT NAME

: 21057

: BURLINGTON DRILLING

PINNACLE I.D.

905106

DATE EXTRACTED

NA

DATE ANALYZED

5/28/99

SAMPLE MATRIX

AQUEOUS

UNITS

UG/L

	SAMPLE	CONC	SPIKED	%	DUP	DUP	-	REC	RPD
PARAMETER	RESULT	SPIKE	SAMPLE	REC	SPIKE	% REC_	RPD	LIMITS	LIMITS
BENZENE	<0.5	10.0	10.1	101	10.5	105	4	(80 - 120)	20
TOLUENE	<0.5	10.0	10.5	105	10.5	105	0	(80 - 120)	20
ETHYLBENZENE	<0.5	10.0	10.8	108	10.8	108	0	(80 - 120)	20
TOTAL XYLENES	<0.5	30.0	32.2	107	32.0	107	1	(80 - 120)	20

CHEMIST NOTES:

N/A

(Spike Sample Result - Sample Result)

% Recovery =

-- X 100

Spike Concentration

(Sample Result - Duplicate Result)

RPD (Relative Percent Difference) =

Average Result

X 100

Severn Trent Laboratories 11 East Olive Road Pensacola FL 32514

Tel: (850) 474-1001 Fax: (850) 478-2671

SIGNATURE PAGE

Reviewed by:

Client:

PINNACLE LABORATORIES ALBUQUERQUE, NEW MEXICO

STL Project Manager

Project Name:

PHIL

Project Number:

905106

Project Location:

BURLINGTON DRILLING

Accession Number:

905635

Project Manager:

KIMBERLY D. MCNEILL

Sampled By:

N/S

Other Laboratory Locations:

149 Pangeway Road, North Billerica MA 01862
16203 Park Row, Suite 110, Houston TX 77084
200 Monroe Turrpke, Monroe CT 05468
55 South Park Drive, Colchester VT 05446

315 Fullenton Avenue, Newburgh NY 12550
Westfield Executive Park, 53 Southampton Road, Westfield MA 01085
528 Route 10, Whippany NY 07981
77 New Durham Road, Edson NJ 08817

a part of

SEVERN TRENT LABORATORIES, INC. – PENSACOLA, FLORIDA STATE CERTIFICATIONS

Atabam to Depart the hour of the month of the Management, Laboratory ID No. 40150 (Drinking Water by Reciprocity with FL)

Arizona Department of Health Services, Lab ID No. AZ0589 (Hazardous Waste & Wastewater)

Arkansas Department of Pollution Control and Ecology, (No Laboratory ID No. assigned by state) (Environmental)

State of California, Department of Health Services, Laboratory ID No. 2338 (Hazardous Waste and Wastewater)

State of Connecticut, Department of Health Services, Connecticut Lab Approval No. PH-0697 (Drinking Water, Hazardous Waste and Wastewater)

Delaware Health & Social Services, Division of Public Health, Laboratory ID No. FL094 (Drinking Water by Reciprocity with FL)

Florida DOH Laboratory ID No. 81142 (Drinking Water), Laboratory ID No. E81010 (Hazardous Waste and Wastewater)

Florida, Radioactive Materials License No. G0733-1

Foreign Soil Permit, Permit No. S-37599

Kansas Department of Health & Environment, Laboratory ID No. E10253 (Wastewater and Hazardous Waste)

Commonwealth of Kentucky, Natural Resources and Environmental Protection Cabinet, Laboratory ID No. 90043 (Drinking Water)

State of Louisiana, DHH, Office of Public Health Division of Laboratories, Laboratory ID No. 98-25 (Drinking Water)

State of Maryland, DH&MH Laboratory ID No. 233 (Drinking Water by Reciprocity with Florida)

Commonwealth of Massachusetts, DEP, Laboratory ID No. M-FL094 (Hazardous Waste and Wastewater)

State of Michigan, Bureau of E&OccH, Laboratory ID No.9912 (Drinking Water by Reciprocity with Florida)

New Hampshire DES, Laboratory ID No. 250598-A (Wastewater)

State of New Jersey, Department of Environmental Protection & Energy, Laboratory ID No. 49006 (Wastewate and Hazardous Waster)

New York State, Department of Health, Laboratory ID No. 11503 (Wastewater and Solids/Hazardous Waste)

North Carolina Department of Environment, Health, & Natural Resources, Laboratory ID No. 314 (Hazardous Waste and Wastewater)

North Dakota DH&Consol Labs, Laboratory ID No. R-108 (Hazardous Waste and Wastewater by Reciprocity with Florida)

State of Oklahoma, Oklahoma Department of Environmental Quality, Laboratory ID No. 9810 (Hazardous Waste and Wastewater)

Commonwealth of Pennsylvania, Department of Environmental Resources, Laboratory ID No. 68-467 (Drinking Water)

South Carolina DH&EC, Laboratory ID No. 96026 (Wastewater by Reciprocity with FL and Solids/Hazardous Waste by Reciprocity with CA)

Tennessee Department of Health & Environment, Laboratory ID No. 02907 (Drinking Water)

Tennessee Division of Underground Storage Tanks Approved Laboratory

Virginia Department of General Services, Laboratory ID No. 00008 (Drinking Water by Reciprocity with FL)

State of Washington, Department of Ecology, Laboratory ID No. C282 (Hazardous Waste and Wastewater)

West Virginia Division of Environmental Protection, Office of Water Resources, Laboratory ID No. 136 (Hazardous Waste and Wastewater by Reciprocity with FL)

American Industrial Hygiene Association (AIHA) Accredited Laboratory, Laboratory ID No. 9133

a part of	

SEVERN TRENT LABORATORIES

Analysis Report

Analysis: Group of Single Wetchem

Accession: Client:

Project Number:

Project Name: Project Location:

Department:

905635 PINNACLE LABORATORIES 905106

PHIL BURLINGTON DRILLING WET CHEM

[0) Page 1
Date 07-Jun-99

"FINAL REPORT FORMAT - SINGLE"

Client: Project Number: Project Name: Project Location: Test:	905106 PHIL BURLINGT	INNACLE LABORATORIES 05106 HIL JRLINGTON DRILLING coup of Single Wetchem					
Lab ID: Client Sample Id:	001 905106-0)1		Sample Date/Tim Received Date:		27-MAY-99 29-MAY-99	1015
Parameters:		Units:	Results:	Rpt Lmts:	Q:	Batch:	Analyst:
CHLORIDE (4500-CL	E)	MG/L	45	2		CKW22C	WH
NITRITE-NITRATE, NITROGEN (353.2) SULFATE (375.4/4500E/9038)		MG/L	2.0	0.1		N3W36A	WH
	TTDC	MG/L	1000	200	+	SEW052	BE
TOTAL DISSOLVED SO (160.1)	דדחפ	MG/L	1800	5		TDW027	ED

Comments:

11 East Olive Road Pensacola, Florida 32514 (850) 474-1001

[0] Page 2 Date 07-Jun-99

"FINAL REPORT FORMAT - SINGLE"

Accession:

905635

PINNACLE LABORATORIES

Client:
Project Number: 905106
Project Name: PHIL
Project Location: BURLINGTON DRILLING
Test: Group of Single Wetchem
Watrix: WATER

Lab ID: 002 Client Sample Id: 905106	Sample Date/Time: Received Date:		27-MAY-99 29-MAY-99	1215		
Parameters:	Units:	Results:	Rpt Lmts:	Q:	Batch:	Analyst:
CHLORIDE (4500-CL E)	MG/L	430	10	+	CKW22C	WH
NITRITE-NITRATE, NITROGEN (353.2)	MG/L	ND	0.1		N3W36A	WH
SULFATE (375.4/4500E/9038)	MG/L	9300	2000	+	SEW052	BE
TOTAL DISSOLVED SOLIDS (160.1)	MG/L	14000	5		TDW027	ED

Comments:

11 East Olive Road Pensacola, Florida 32514 (850) 474-1001

[0) Page 3
Date 07-Jun-99

"Method Report Summary"

Accession Number: Client: Project Number: Project Name: Project Location: Test:	905635 PINNACLE LABORATORIES 905106 PHIL BURLINGTON DRILLING Group of Single Wetchem		
Client Sample Id:	Parameter:	Unit:	Result:
905106-01	CHLORIDE (4500-CL E) NITRITE-NITRATE, NITROGEN	MG/L	45
	(353.2) SULFATE (375.4/4500E/9038) TOTAL DISSOLVED SOLIDS (160.1)	MG/L MG/L MG/L	2.0 1000 1800
905106-02	CHLORIDE (4500-CL E) SULFATE (375.4/4500E/9038) TOTAL DISSOLVED SOLIDS (160.1)	MG/L MG/L MG/L	430 9300 14000

Analysis Report

Analysis: RCRA METALS - AXIAL

Accession:

Accession.
Client:
Project Number: 90510
Project Name: PHIL
BURLI

Project Name: Project Location: Department:

905635

PINNACLE LABORATORIES

905106

BURLINGTON DRILLING

METALS

11 East Olive Road Pensacola, Florida 32514 (850) 474-1001

[0) Page 1 Date 10-Jun-99

"FINAL REPORT FORMAT - SINGLE"

Accession:

905635

PINNACLE LABORATORIES

Client:
Project Number: 905106
Project Name: PHIL
Project Location: BURLINGTON DRILLING
RCRA METALS - AXIAL

QC Level:

Ι

Lab Id: Client Sample Id:	Sample Date/Tim Received Date:	27-MAY-99 29-MAY-99	1015			
Parameters:	Units:	Results:	Rpt Lmts:	Q:	Batch:	Analyst:
SILVER (6010B) ARSENIC (6010B) BARIUM (6010B) CADMIUM (6010B) CHROMIUM (6010B) MERCURY (7470A) LEAD (6010B) SELENIUM (6010B)	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	ND ND 0.38 ND 0.008 ND 0.042 ND	0.005 0.005 0.01 0.005 0.005 0.0002 0.005 0.01		AYW154 RYW154 BYW154 CYW154 HYW154 M7W047 PYW154 SYW154	GSP GSP GSP GSP JL GSP GSP

Comments:

[0) Page 2 Date 10-Jun-99

"FINAL REPORT FORMAT - SINGLE"

Accession:

905635

PINNACLE LABORATORIES

Client:
Project Number: 905106
Project Name: PHIL
Project Location: BURLINGTON DRILLING
RCRA METALS - AXIAL
WATER

Matrix: QC Level:

I

Lab Id: Client Sample Id:	002 905106-02		Sample Date/T. Received Date		27-MAY-99 29-MAY-99	1215
Parameters:	Units:	Results:	Rpt Lmts:	Q:	Batch:	Analyst:
SILVER (6010B)	MG/L	ND	0.005		AYW154	GSP
ARSENIC (6010B)	MG/L	0.006	0.005		RYW154	GSP
BARIUM (6010B)	MG/L	0.14	0.01		BYW154	GSP
CADMIUM (6010B)	MG/L	ND	0.005		CYW154	GSP
CHROMIUM (6010B)	MG/L	0.019	0.005		HYW154	GSP
MERCURY (7470A)	MG/L	ND	0.0002		M7W047	JĿ
LEAD (6010B)	MG/L	0.007	0.005		PYW154	GSP
SELENIUM (6010B)	MG/L	ND	0.01		SYW154	GSP

Comments:

11 East Olive Road Pensacola, Florida 32514 (850) 474-1001

[0) Page 3 Date 10-Jun-99

"Method Report Summary"

Accession Number: 905635 Client: PINNACLE LABORATORIES

SEVERN TRENT LABORATORIES

Client:
Project Number: 905106
Project Name: PHIL
Project Location: BURLINGTON DRILLING
RCRA METALS - AXIAL

Client Sample Id:	Parameter:	Unit:	Result:
905106-01	BARIUM (6010B) CHROMIUM (6010B) LEAD (6010B)	MG/L MG/L MG/L	0.38 0.008 0.042
905106-02	ARSENIC (6010B) BARIUM (6010B) CHROMIUM (6010B) LEAD (6010B)	MG/L MG/L MG/L MG/L	0.006 0.14 0.019 0.007

Data Qualifiers for Final Report

STL-Pensacola Inorganic	Organic and AFCEE Proj	ects (under QAPP)
J4	(For positive results)	Temperature limits exceeded (<2°C or ≥ 6°C)
J5	(TICs)	The reported value is quantitated as a TIC; therefore, it is estimated
J6	(For positive results)	LCS or Surrogate %R is > upper control limit (UCL) or < lower control limit (LCL)
J7	(For positive results)	The reported value is > the laboratory MDL and < lowest calibration standards;
		therefore, the quantitation is an estimation.
J (AFCEE description)	The analyte was positive	ly identified, the quantitation is an estimation
R1	(For nondetects)	Temperature limits exceeded (<2°C or > 6°C)
R2	Improper preservation, n	o preservative present in sample upon receipt
R3	Improper preservation, in	ncorrect preservative present in sample upon receipt
R4	Holding time exceeded	
R5		not met, improper container used for sample
R6	LCS or surrogate %R is	< LCL and analyte is not detected or surrogate %R is < 10% for detects/nondetects
R7	Internal standard area or	utside –50% to +100% of initial calibration midpoint standard.
R8	Second source calibratio	n verification exceeds acceptance criteria.
R9		ample not filtered in the field.
R (AFCEE description)		ue to deficiencies in the ability to analyze the sample and meet QC criteria
F	< laboratory or AFCEE R	
F (AFCEE description)		ly identified but the associated numerical value is below the AFCEE or lab RL
U2		e for result will be the MDL, never below the MDL)
U (AFCEE description)		ed for but not detected. The associated numerical value is at or below the MDL
B (AFCEE description)		n the associated blank, as well as in the sample
@		due to sample matrix (dilution prior to digestion and/or analysis)
+		due to dilution into calibration range
•		due to matrix interference (dilution prior to digestion and/or analysis)
#		due to insufficient sample size
D	Diluted out	
M		sent (sample was analyzed twice to confirm or chromatogram had interfering peaks)
S		nt was submitted to the laboratory for analysis
T	Second-column confirm	ation exceeded the SW-846 criteria of 40% RPD for this compound.

RL = Reporting Limit (AFCEE RLs are listed in the AFCEE QAPP)

Any time a sample arrives at the laboratory improperly preserved (at improper pH or temperature) or after holding time has expired or prepared or analyzed after holding time, client must be notified in writing (i.e. case narrative)

Florida Projects Inorganic/Organic Refer to back side of this page

ICR Projects Inorganic/Organic_

A1 Acceptable

R6

Rejected

Examples: ICR Flags

R6 = Laboratory extracted the sample but the refrigerator malfunctioned so the extract became warm and client was notified

R6 = Sample arrived in laboratory in good condition; however, the laboratory did not analyze it within EPA's established holding time limit.

CLP and CLP-like Projects: Refer to referenced CLP Statement of Work (SOW) for explanation of data qualifiers

Quality Control Report

Analysis: Group of Single Wetchem

Accession:

Client:
Project Number:
Project Name:
Project Location:
Department:

905635 PINNACLE LABORATORIES

905106

PHIL BURLINGTON DRILLING WET CHEM

(0) Page 1 Date 07-Jun-99

Parameter: Batch Id: Blank Result: Anal. Method: Prep. Method: Analysis Date: Prep. Date:	CHLORIDE CKW22C <2 CL4500E N/A 02-JUN-99 01-JUN-99	"WetChem NO2NO3 N3W36A <0.1 353.2 N/A 07-JUN-99 01-JUN-99	Ouality Con SULFATE SEW052 <5 375.4 N/A 02-JUN-99 02-JUN-99	trol Report" TDS TDW027 <5 160.1 N/A 03-JUN-99 02-JUN-99
Sample Dup	lication			
Sample Dup: Rept Limit:	905608-10 <2	905611-1	905608-9	905635-1
Sample Result: Dup Result: Sample RPD: Max RPD: Dry Weight%	48.4 48.4 0 20 N/A	<0.1 <0.1 N/C 0.1 N/A	19 19 0 G 5 N/A	1794 1856 3 17 N/A
Matrix Spi	ke			
Sample Spiked: Rept Limit:	905608-10 <2	905611-1	905608-9	N/A N/A
Sample Result: Spiked Result: Spike Added: % Recovery: % Rec Limits: Dry Weight%	48.4 73.4 25.0 100 79-132 N/A	<0.1 0.97 1.00 97 71-123 N/A	19 38 20 95 61-138 N/A	
ICV				
ICV Result: True Result: % Recovery: % Rec Limits:	50.2 50.0 100 90-110	1.94 2.00 97 90-110	20 20 100 90-110	
LCS				
LCS Result: True Result: % Recovery: % Rec Limits:				296 293 101 73-125

SEVERN TRENT LABORATORIES

11 East Olive Road Pensacola, Florida 32514 (850) 474-1001

[0) Page 2 Date 07-Jun-99

"Quality Control Comments"

Batch Id:

Comments:

TDW027 TDW027 906013-1,2,3,4,5,6,7,8,9,10 were added to batch on 03-Jun-99 906043-1,2,3 were added to batch on 04-Jun-99

[0) Page 3 Date 07-Jun-99

---- Common Footnotes WetChem -----

N/A = NOT APPLICABLE.

N/S = NOT SUBMITTED.

N/C = SAMPLE AND DUPLICATE RESULTS ARE AT OR BELOW STL REPORTING LIMIT;
THEREFORE, THE RPD IS "NOT CALCULABLE" AND NO CONTROL LIMITS APPLY.
N/D = NOT DETECTED AT OR ABOVE THE STL-PENSACOLA REPORTING LIMIT (RL).

R = REACTIVE

TOTAL

T = TOTAL

G = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X STL REPORTING LIMIT AND
THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT
OR BELOW STL REPORTING LIMIT; THEREFORE, THE RESULTS ARE "IN CONTROL".

Q = THE ANALYTICAL (POST-DISTILLATION) SPIKE IS REPORTED DUE TO PERCENT RECOVERY
BEING OUTSIDE ACCEPTANCE LIMITS ON THE MATRIX (PRE-DISTILLATION) SPIKE.

= ELEVATED REPORTING LIMIT DUE TO INSUFFICIENT SAMPLE.
+ = ELEVATED REPORTING LIMIT DUE TO DILUTION INTO CALIBRATION RANGE.

* = ELEVATED REPORTING LIMIT DUE TO MATRIX INTERFERENCE (DILUTION PRIOR DIGESTION AND/OR ANALYSIS)

AND/OR ANALYSIS)

= ADJUSTED REPORTING LIMIT DUE TO SAMPLE MATRIX (DILUTION PRIOR TO DIGESTION AND/OR ANALYSIS)

= ANALYTICAL (POST DIGESTION) SPIKE.

I = DUPLICATE INJECTION.

& = AUTOMATED

RH

F = SAMPLE SPIKED > 4 X SPIKE CONCENTRATION.

N/C+ = NOT CALCULABLE

H = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X STL REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE STL REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".

A = SAMPLE AND DUPLICATE RESULTS ARE "OUT OF CONTROL".

Z = THE SAMPLE RESULT FOR THE SPIKE IS BELOW THE REPORTING LIMIT. HOWEVER,

THIS RESULT IS REPORTED FOR ACCURATE QC CALCULATIONS.

NH= SAMPLE AND / OR DUPLICATE RESULT IS BELOW 5 X STL REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE STL REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".

SAMPLE IS NON-HOMOGENEOUS.

(*) = REPORTING LIMITS RAISED DUE TO CLP METHOD NOT REQUIRING A CONCENTRATION STEP FOR CN. (CA) = SEE CORRECTIVE ACTIONS FORM.

**= MATRIX INTERFERENCE

SW-846, 3rd Edition, latest EPA-approved edition.

SW-846, 3rd Edition, latest EPA-approved edition.

EPA 600/4-79-020, Revised March 1983.

STANDARD METHODS, For the Examination of Water and Wastewater, latest EPA-approved edition.

NIOSH Manual of Analytical Methods, 4th Edition.

ANNUAL BOOK OF ASTM STANDARDS, VOLUMES 11.01 and 11.02, latest EPA-approved edition.

METHODS FOR THE DETERMINATION OF INORGANIC SUBSTANCES IN ENVIRONMENTAL SAMPLES,

EPA600/R-93/100, AUGUST 1993

METHODS FOR SOIL ANALYSIS, PART 2, CHEMICAL AND MICROBILOGICAL PROPERTIES, 2ND EDITION.

STILED HOSE THE MOST CHEMENT PROMILECTED METHODS FROM THE DEPENDING ADDRESS.

STL-PN USES THE MOST CURRENT PROMULGATED METHODS FROM THE REFERENCES LISTED ABOVE.

COLIFORM PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN THE LOGARITHM OF COLONIES PER 100 MLS OF SAMPLE ON DUPLICATE PLATES. PH PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN THE 1. COLIFORM.

SAMPLE AND DUPLICATE ANALYSIS.

3. FLASHPOINT. FLASHPOINT PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE ANALYSIS.

RPD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION).

RPD LMTS = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES.

COE = EPA/COE, EPA/CE-81-1, 1981, AMMONIA, TKN, NO3-NO2, T-PO4 AND PHENOL PREPARATION METHODS.

SAMPLES AND QC SAMPLES ARE NOT ADJUSTED FOR DRY WEIGHT UNLESS REQUESTED BY THE CLIENT.

DPH = DOLLY P. HWANG RB = REBECCA BROWN WH = WENDY HAGGARD CR = CYNTHIA ROBERTS AB = AMY BRADLEYED = ESTHER DANTIN

= BETTY EVERTON PLD = PAULA L. DOI = RICKY HAGENDORFER LT = LISA TORRES PLD = PAULA L. DOUGHTY Quality Control Report

Analysis: RCRA METALS - AXIAL

905635

PINNACLE LABORATORIES 905106

Accession: Client: Project Number:

PHIL

Project Name: Project Location:

BURLINGTON DRILLING

Department:

METALS

[0) Page 1 Date 10-Jun-99

						Date 10-Jun-	99
Parameter: Batch Id: Blank Result: Anal. Method: Prep. Method: Analysis Date: Prep. Date:	SILVER AYW154 <0.005 6010B 3010A 08-JUN-99 07-JUN-99	"Metals Q ARSENIC RYW154 <0.005 6010B 3010A 08-JUN-99 07-JUN-99	uality Cont BARIUM BYW154 <0.01 6010B 3010A 08-JUN-99 07-JUN-99	rol Report" CADMIUM CYW154 <0.005 6010B 3010A 08-JUN-99 07-JUN-99	CHROMIUM HYW154 <0.005 6010B 3010A 08-JUN-99 07-JUN-99	MERCURY M7W047 <0.0002 7470A 7470A 09-JUN-99 09-JUN-99	
Sample Dup	lication						
Sample Dup: Rept Limit:	905635-2 <0.005	905635-2 <0.005	905635-2	905635-2	905635-2	905588-1	
Sample Result: Dup Result: Sample RPD: Max RPD: Dry Weight%	0.55 0.54 2 20 N/A	1.0 1.0 0 20 N/A	1.1 1.1 0 20 N/A	0.48 0.48 0 20 N/A	0.99 0.99 0 20 N/A	0.0050 0.0048 4 20 N/A	
Matrix Spi	ke						
Sample Spiked: Rept Limit:	905635-2 <0.005	905635-2	905635-2	905635-2	905635-2	905588-1	
Sample Result: Spiked Result: Spike Added: % Recovery: % Rec Limits: Dry Weight%	<0.005 0.55 0.5 110 75-125 N/A	0.006 1.0 1.0 99 75-125 N/A	0.14 1.1 1.0 96 75-125 N/A	<0.005 0.48 0.5 96 75-125 N/A	0.019 0.99 1.0 97 75-125 N/A	<0.0002 0.0050 0.0050 100 75-125 N/A	
ICV							
ICV Result: True Result: % Recovery: % Rec Limits:	0.49 0.5 98 90-110	1.0 1.0 100 90-110	1.0 1.0 100 90-110	0.50 0.5 100 90-110	1.0 1.0 100 90-110	0.0039 0.0040 98 90-110	
LCS							
LCS Result: True Result: % Recovery: % Rec Limits:	0.52 0.5 104 80-120	1.0 1.0 100 80-120	1.0 1.0 100 80-120	0.52 0.5 104 80-120	1.0 1.0 100 80-120	0.0051 0.0050 102 85-115	

[0] Page 2 Date 10-Jun-99

"Metals	Quality	Control	Report"

Parameter:	LEAD	SELENIUM
Batch Id:	PYW154	SYW154
Blank Result:	<0.005	<0.01
Anal. Method:	6010B	6010B
Prep. Method:	3010A	3010A
Analysis Date:	08-JUN-99	08-JUN-99
Prep. Date:	07-JUN-99	07-JUN-99

Sample Duplication

Sample Dup: Rept Limit:	905635-2 <0.005	905635-2
Sample Result: Dup Result: Sample RPD: Max RPD: Dry Weight%	0.96 0.97 1 20 N/A	1.0 1.0 0 20 N/A

Matrix Spike

Sample Spiked: Rept Limit:	905635-2 <0.005	905635-2
Sample Result:	0.007	<0.01
Spiked Result:	0.96	1.0
Spike Added:	1.0	1.0
% Recovery:	95	100
% Rec Limits:	75-125	75-125
Dry Weight%	N/A	N/A

ICV

ICV Result:	0.98	0.99
True Result:	1.0	1.0
% Recovery:	98	99
<pre>% Recovery: % Rec Limits:</pre>	90-110	1.0 99 90-110

LCS

LCS Result:	1.0	0.99
True Result:	1.0	1.0
<pre>% Recovery: '</pre>	100	99
% Rec Limits:	80-120	80-120

[0) Page 3 Date 10-Jun-99

--- Data Qualifiers for Metals QC Report ----

N/A = NOT APPLICABLE. N/S = NOT SUBMITTED.

N/C = SAMPLE AND DUPLICATE RESULTS ARE AT OR BELOW THE REPORTING LIMIT; THEREFORE, THE RPD IS "NOT CALCULABLE" AND NO CONTROL LIMITS APPLY.

N/D = NOT DETECTED AT OR ABOVE THE STL-PENSACOLA REPORTING LIMIT (RL).

DISS. OR D = DISSOLVED

T & D = TOTAL AND DISSOLVED

R = REACTIVE

T = TOTAL

- G = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X THE REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT
- OR BELOW STL REPORTING LIMIT; THEREFORE, THE RESULTS ARE "IN CONTROL".

 Q = THE ANALYTICAL (POST-DIGESTION) SPIKE IS REPORTED DUE TO PERCENT RECOVERY BEING OUTSIDE ACCEPTANCE LIMITS ON THE MATRIX (PRE-DIGESTION) SPIKE.

- # = ELEVATED REPORTING LIMIT DUE TO INSUFFICIENT SAMPLE.
 + = ELEVATED REPORTING LIMIT DUE TO DILUTION INTO CALIBRATION RANGE.
 * = ELEVATED REPORTING LIMIT DUE TO MATRIX INTERFERENCE. (DILUTION PRIOR TO ANALYSIS)
- @ = ADJUSTED REPORTING LIMIT DUE TO SAMPLE MATRIX. (DILUTION PRIOR TO DIGESTION)
- P = ANALYTICAL (POST DIGESTION) SPIKE.
- I = DUPLICATE INJECTION.

& = AUTOMATED

F = SAMPLE SPIKED > 4 X SPIKE CONCENTRATION.

N/C+ = NOT CALCULABLE

- N/C* = NOT CALCULABLE; SAMPLE SPIKED > 4 X SPIKE CONCENTRATION.
- H = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X STL REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE STL REPORTING

LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".

A = SAMPLE AND DUPLICATE RESULTS ARE "OUT OF CONTROL".

- Z = THE SAMPLE RESULT FOR THE SPIKE IS BELOW THE STL REPORTING LIMIT. HOWEVER,
- THIS RESULT IS REPORTED FOR ACCURATE OC CALCULATIONS.

 NH= THE RELATIVE PERCENT DIFFERENCE (RPD) EXCEEDS THE STL CONTROL LIMIT
- AND IS "OUT OF CONTROL; DUE TO A NON-HOMOGENEOUS SAMPLE MATRIX.

 J = (FLORIDA DEP 'J' FLAG) MATRIX SPIKE AND POST SPIKE RECOVERY IS OUT OF
 THE ACCEPTABLE RANGE. SEE OUT OF CONTROL EVENTS FORM.

 U = (FLORIDA DEP 'U' FLAG) THE CONTROL EVENTS FORM, BUT NOT DETECTED.
- S = METHOD OF STANDARD ADDITIONS (MSA) WAS PERFORMED ON THIS SAMPLE.
 M = A MATRIX EFFECT WAS PRESENT (SAMPLE WAS ANALYZED TWICE TO CONFIRM).

SCN = SEE CASE NARRATIVE.

FROM QUALITY CONTROL REPORT:

RPD= RELATIVE PERCENT DEVIATION.

REPT LIMIT= REPORTING LIMIT BASED ON METHOD DETECTION LIMIT STUDIES.

NOTE: ALL RESULTS REPORTED UNDER 'SAMPLE DUPLICATION' ARE THE MS/MSD.

THE UNITS REPORTED ON THE QUALITY CONTROL REPORT ARE REPORTED ON AN AS NOTE: RUN BASIS. (NOT ADJUSTED FOR DRY WEIGHT).

SW-846, 3rd Edition. EPA 600/4-79-020, Revised March 1983.

NIOSH Manual of Analytical Methods, 4th Edition.

Standard Methods For the Examination of Water and Wastewater, 18th Edition, 1992. Methods For the Determination of Metals in Environmental Samples - Supplement I, EPA 600/R-94-111, May 1994.

GSP = GARY ST PERE

LT = LISA TORRES

KN = KAREN NALL MPE = MARTY EDWARDS

CH = CHRIS HIGH

JL = JANET LECLEAR

Data Qualifiers for Final Report

STL-Pensacola Inorganio	dOrganic and AFCEE Proj	ects (under QAPP)
J4	(For positive results)	Temperature limits exceeded (<2°C or > 6°C)
J5	(TICs)	The reported value is quantitated as a TIC; therefore, it is estimated
J6	(For positive results)	LCS or Surrogate %R is > upper control limit (UCL) or < lower control limit (LCL)
J7	(For positive results)	The reported value is > the laboratory MDL and < lowest calibration standards;
		therefore, the quantitation is an estimation.
J (AFCEE description)	The analyte was positive	ly identified, the quantitation is an estimation
R1	(For nondetects)	Temperature limits exceeded (<2°C or ≥ 6°C)
R2	Improper preservation, n	o preservative present in sample upon receipt
R3	Improper preservation, in	ncorrect preservative present in sample upon receipt
R4	Holding time exceeded	
R5	Collection requirements	not met, improper container used for sample
R6	LCS or surrogate %R is	< LCL and analyte is not detected or surrogate %R is < 10% for detects/nondetects
R7	Internal standard area or	utside -50% to +100% of initial calibration midpoint standard.
R8		on verification exceeds acceptance criteria.
R9		ample not filtered in the field.
R (AFCEE description)	The data are unusable d	lue to deficiencies in the ability to analyze the sample and meet QC criteria
F		RL and > laboratory MDL
F (AFCEE description)		ely identified but the associated numerical value is below the AFCEE or lab RL
U2		e for result will be the MDL, never below the MDL)
U (AFCEE description)		ed for but not detected. The associated numerical value is at or below the MDL
B (AFCEE description)		n the associated blank, as well as in the sample
@		due to sample matrix (dilution prior to digestion and/or analysis)
+		due to dilution into calibration range
•		due to matrix interference (dilution prior to digestion and/or analysis)
#	• -	due to insufficient sample size
D	Diluted out	
M		sent (sample was analyzed twice to confirm or chromatogram had interfering peaks)
S	•	nt was submitted to the laboratory for analysis
T	Second-column confirm	ation exceeded the SW-846 criteria of 40% RPD for this compound.

ND = Not Detected at or above the STL-Pensacola reporting limit (RL)
--

IDL = Laboratory Instrument Detection Limit

RL = Reporting Limit (AFCEE RLs are listed in the AFCEE QAPP)

N/S = Not Submitted

N/A = Not Applicable

MDL = Laboratory Method Detection Limit

Any time a sample arrives at the laboratory improperly preserved (at improper pH or temperature) or after holding time has expired or prepared or analyzed after holding time, client must be notified in writing (i.e. case narrative)

Florida Projects Inorganic/Organic Refer to back side of this page

ICR Projects Inorganic/Organic_

Acceptable Examples: ICR Flags

Rejected

R6 = Laboratory extracted the sample but the refrigerator malfunctioned so the extract became warm and client was notified

R6 = Sample arrived in laboratory in good condition; however, the laboratory did not analyze it within EPA's established holding time limit-

CLP and CLP-like Projects: Refer to referenced CLP Statement of Work (SOW) for explanation of data qualifiers

R6