3R - <u>77</u>

REPORTS

DATE: Jyne 1988

DAMES & MOORE JOB NO. 14819-005-31

SALT LAKE CITY, UTAH

JUNE 1988

.

ADDENDUM TO PHASE I HYDROGEOLOGIC EVALUATION MAVERIK REFINERY AND TANK FARM KIRTLAND, NEW MEXICO FOR MAVERIK COUNTRY STORES, INC.

à

Dames & Moore

TABLE OF CONTENTS

EXECUTIVE SUMMARY 1
INTRODUCTION 2
PURPOSE AND SCOPE 2
GROUND WATER AND SURFACE WATER LEVELS 3
WATER QUALITY EVALUATIONS 4
SURFACE WATER QUALITY 4
ROUND 2 SAMPLING CONDITIONS 4
INORGANIC CONSTITUENTS 5
ORGANIC COMPOUNDS 5
GROUND WATER QUALITY 6
BACKGROUND WATER QUALITY6
INORGANIC CONSTITUENTS 7
On-Site 7
Off-Site 8
ORGANIC CONSTITUENTS 10
On-Site 10
Off-Site 14
CONCLUSIONS 16
REFERENCES 18
APPENDIX A - ROUNDS 1 AND 2 WATER LEVEL ELEVATION DATA FOR LOCAL PRIVATE WATER WELLS, MONITOR WELLS AND SURFACE WATER SITES

1

11 C IS 11

1

APPENDIX B - FIELD AND LABORATORY WATER QUALITY DATA FOR ROUNDS 1 AND 2 SAMPLING AND ANALYSES AND QA/QC FOR ROUND 2

Page

LIST OF TABLES

Table 1 - Sample Rounds 1 and 2 Water Quality Parameters

Table 2 - Sample Rounds 1 and 2: Laboratory Results for Major Ions for Maverik Country Stores, Refinery Tank Farm, Kirtland, New Mexico

Table 3 - Sample Rounds 1 and 2: Laboratory Results for Detected Organic Constituents for Maverik Country Stores, Refinery Tank Farm, Kirtland, New Mexico

LIST OF PLATES

Plate 1 - Vicinity Map

;

ġ

Plate 2 - Site Sampling Location Map. (Monitor Well, Private Well, Surface Water, Well Point, and Rounds 1 and 2 Water Quality Sample Locations)

EXECUTIVE SUMMARY

This addendum report to the Dames & Moore Phase I Report "Hydrogeologic Evaluation, Maverik Refinery and Tank Farm" (February 1988), presents the results of Rounds 1 and 2 comprehensive water quality sampling, water level measurements and data analyses thereof, to complete the Phase I Hydrogeologic Investigation at the Maverik Refinery and Tank Farm, Kirtland, New Mexico. Background details of this investigation are presented in the February 1988 Phase I Report.

This addendum report includes Rounds 1 and 2 water quality data and water level elevation data and the evaluation thereof, for confirmation of the following: (1) Significant subsurface contamination from Maverik's Tank Farm is present in the west-southwest corner in the shallow silty-sand zone above the gravel aquifer. Movement of the organic compounds off-site has not been significant and will be reduced even further since the on-site construction in March 1988 and operation of a 350-foot long product interceptor trench. (2) The Farmer's Mutual and West Side Irrigation Ditches influence significantly the ground water quality and rate and direction of ground water movement near the Tank Farm. When the ditches are full and ditch seepage results, recharge and aquifer flushing occur. When dry, the ditches serve as hydarulic sinks and receive ground water inflow. (3) Biodegradation of organic compounds by bacteria on-site (and possibly off-site to the southwest) has been documented based on additional inorganic water quality data obtained in Round 2.

Rounds 1 and 2 water quality data results confirm that significant concentrations of the typical refinery-related volatile organics benzene, toluene, xylene, ethylbenzene and DCA are found in only one of the six wells located in the upper silty-sand zone in the southwest corner of the refinery and along the Westside Irrigation Ditch which parallels the west boundary of the refinery. Only trace levels (1.1 to 1.6 ug/1, i.e., parts per billion) of DCA and xylene have been detected once downstream in the Westside Irrigation Ditch.

Rounds 1 and 2 water quality data verified trace levels of benzene, ethylbenzene or xylene in 4 of 10 off-site wells at concentrations far below New Mexico drinking water standards. DCA was found in three other off-site wells, only one of which at 16 ug/1, dropping to 7.7 ug/1 in Round 2, exceeded the New Mexico drinking water standard of 10 ug/1 for this compound.

Based on both Rounds 1 and 2 sampling and the EID sampling conducted during the spring of 1987, ground water contamination by refinery-related organics appears to be confined to the upper portion of the alluvial aquifer over a 200 to 400 foot area in an east-west direction and about 1,800 to 2,000 feet downgradient (southwest) of the south-west corner of the tank farm. The low concentrations of the contaminants, their characteristics, the hydrogeologic setting, and the non-use of water for drinking water purposes from private wells in the contaminated area, all lead to the conclusion that the releases from the tank farm do not pose a threat to human health and the environment.

As agreed to by Maverik and the EID, the on-site interceptor trench product capture and cleanout will continue, while periodic water quality monitoring at critical sites and the Phase II detailed on-site hydrogeologic investigation and contaminant remediation are completed in 1988.

Dames & Hoore

ADDENDUM TO PHASE I HYDROGEOLOGIC EVALUATION MAVERIK REFINERY AND TANK FARM KIRTLAND, NEW MEXICO FOR MAVERIK COUNTRY STORES, INC.,

INTRODUCTION

This addendum report presents the final results of Rounds 1 and 2 comprehensive sampling analysis and completes the Phase I hydrogeologic evaluation at the Maverik Refinery and Tank Farm in Kirtland, New Mexico. Hydrogeologic and water quality conditions were evaluated both on-site and approximately one mile downgradient (south) of the refinery property boundaries. The general site location map and detailed plot plan showing the sample sites and water level elevation measuring points (monitor wells, private wells, well points, staff gauges), are included on Plates 1 and 2, respectively.

PURPOSE AND SCOPE

The purpose of the Phase I study was to perform a hydrogeologic evaluation to define the extent and characteristics of ground water contamination from the Maverik Tank Farm. Phase I data and study results are presented in part in the first Dames & Moore report (February 1988) and are finalized in this addendum report. The Phase I study scope is detailed in the February 1988 Dames & Moore report.

The Round 2 water quality sampling and water level measurements were necessary to complete the Phase I study, to verify the Round 1 water quality data and preliminary conclusions, and to evaluate the extent to which the irrigation ditch flows impact the ground water levels and contaminant flow rates and directions. Round 2 sampling included the same comprehensive parameter analyses and same sample and monitor sites as Round 1. The exception was that three surface water sites could not be sampled in Round 2 since they were dry.

GROUND WATER AND SURFACE WATER LEVELS

Water level elevation data and water level changes from Round 1 to Round 2 confirm the significant impact that the irrigation ditches have on ground water levels and flow directions. As presented in Appendix A (Plate A-1 and Table A-1), major water level declines were observed in the northern part of the study area near the Farmer's Mutual Irrigation Ditch and along the West-side Irrigation Ditch during Round 2 when there was no irrigation flow or subsequent seepage to the ground water. The largest ground water level decline of 5.65 feet occurred in monitor well 1 (MW-1), the well closest to and as observed in Round 1, nost significantly impacted by seepage from the Farmer's Mutual Irrigation Ditch.

The hydraulic gradient in the northern and eastern parts of the study area decreased from about 0.01 ft/ft in November 1987 to about 0.008 ft/ft in February 1988, three months after irrigation flows in and seepage from both ditches had stopped.

Other wells in the northern part of the study area also showed significant water level declines during Round 2 when there was no irrigation flow. These declines were measured in MW-2 at 2.07 feet, in MW-11 at 1.69 feet, in W-1 at 2.19 feet, in C. Curley's well at 3.17 feet, in R. Madrid's well at 5.25 feet and in four other private wells to the northeast (Table A-1). The declines resulted from the absence of irrigation water seepage from the Farmer's Mutual Irrigation Ditch and the Westside Irrigation Ditch.

Ground water flow into the Westside Irrigation Ditch was observed in the area between sample sites SW-5 and SW-3. This ditch functions as a hydraulic sink and receives ground water when it is not full with irrigation water. When it is full, the ditch serves as a ground water recharge source and localized shallow ground water divide. Much less pronounced ground water level declines from 0.12 to 1.04 feet were observed in wells to the south and southwest. These wells (MW-4, MW-5, MW-6, MW-7, MW-8 and W-1) are downgradient and close to the Westside Irrigation Ditch. Although these declines were not as significant as those declines to the north and east, they still demonstrate that the ground water table along the Westside Irrigation Ditch had declined from the lack of recharge from irrigation water seepage.

Ground water levels upgradient and farther from the irrigation ditches and to the southeast rose slightly (from 0.14 feet to 0.75 feet in MW-3 and the R. Neff, P. Pickard, R. Eshome, G. Nelson wells). These water level elevation increases in the four private wells may have been due to reduced pumpage or natural ground water recharge in this area.

Water levels also rose in well points 2 and 3, although the increases were small. The water level rise in well point 2 to the southwest was only +0.25 feet, although the surrounding monitor wells (MW-4, MW-5 and MW-6) all showed water level declines. The water level rise to the southeast in well point 3 was measured at +1.56 feet while the water level rise in nearby MW-3 was only 0.14 feet. Well points were completed in the upper 3 to 4 feet and monitor conditions in the upper subsurface zone that may differ from the monitor wells and neaarby private wells completed in the deeper saturated aquifer zone.

WATER QUALITY EVALUATIONS

SURFACE WATER QUALITY

ROUND 2 SAMPLING CONDITIONS

Only three of the six surface water quality sample sites sampled in Round I could be sampled again in Round 2 in late February 1988. This was due to the fact that the Farmer's Mutual Irrigation Ditch (SW-1) and Westside Irrigation Ditch (SW-4 and SW-5) had not been flowing since late November and early December 1987, respectively. The surface water quality samples that were

taken in February 1988 were taken along the southern part of the Westside Irrigation Ditch at SW-2 and SW-3 and at Virginia Murray's drainage ditch (SW-6). These samples were not surface waters but were actually ground water inflows into the ditch. Sample sites SW-1 and SW-4 were dry, and only refinery product was observed at SW-5.

INORGANIC CONSTITUENTS

The concentrations of the major ions found in the waters in the Farmer's Mutual and the Westside Irrigation Ditch for Rounds 1 and 2 are presented for comparison in Table 2 and Plates B-1 through B-6. The percentage concentrations of the cations and anions for Round 2 are presented in the Piper diagram, Plate B-11. The Round 2 water quality results at sites SW-2, SW-3 and SW-6 were nearly identical to Round 1 results. These waters are high in calcium, sodium and potassium, sulfate and bicarbonate.

The water quality improved at the southernmost downgradient site SW-3, but worsened considerably at SW-2, due to increases in sulfate and chloride levels. The water quality changes from Round 1 to Round 2 reflect the change from the better quality irrigation water quality to the poorer quality ground water, and are similar to the water quality changes observed in the nearby monitor wells. As a result of irrigation water seepage to the ground water when the ditches are full, and ground water inflow to the ditches when they are dry, the water quality in the ditches typically will be similar to the surrounding ground water quality.

ORGANIC COMPOUNDS

At the time of Round 2 sampling, pooled refinery product and ground water seepage were observed in the Westside Irrigation Ditch along an approximate 350-foot length, from sample site SW-4 to about 50 feet south of the large tank in the southwest corner (Plate 2). As a result, a 350-foot long interceptor trench was constructed on-site in March 1988 to parallel the Westside Irrigation Ditch along this contaminated zone. The trench intercepts the refinery tank farm product and prevents it from moving off-site into the Westside Irrigation Ditch. The interceptor trench was constructed about one foot below the water table and has been effective in collecting product. The product that is collected in the trench is pumped to the adjacent 2.4 million gallon storage tank. The product and water eventually will be disposed of at a proper waste disposal facility, or if feasible, shipped to a refinery for re-refining.

Round 1 and Round 2 organic water quality data are presented for comparison in Table 3 and Plates B-6 through B-10. Round 1 data showed that water quality samples at SW-4, SW-5 and SW-2 were impacted by tank farm product (Table 3). Visual observation of product during Round 2 at sites SW-4 and SW-5 also verified contamination in the Westside Irrigation Ditch. However, no organic contaminants were detected farther downstream at SW-2 or SW-3, and as in Round 1, no organic contaminants were detected in Virginia Murray's drainage ditch (SW-6).

Contamination of the Westside Irrigation Ditch appears to be restricted to a 350-foot length. The contamination has been and will continue to be significantly reduced with the construction and removal of product from the on-site interceptor trench.

GROUND WATER QUALITY

BACKGROUND WATER QUALITY

Round 2 data confirm that ground waters near the irrigation ditches are recharged by seepage of irrigation waters from the ditches when they are full. Specifically, upgradient well MW-1 north of the tank farm and Virginia Murray's well (W-2) to the west of the tank farm monitor ground waters most heavily impacted by irrigation water seepage from the ditches. These two wells are not impacted by Maverik's refinery tank farm and intercept the best quality ground water in the area. Lack of recharge from the inactive irrigation ditches at the time of Round 2 sampling resulted in higher TDS levels at MW-1 and W-2, at 537 mg/1 and 640 mg/1, respectively. In contrast, Round 1 TDS levels for MW-1 and W-2, during active irrigation flows, measured only 360 mg/1 and 600 mg/1, respectively.

-6-

Comparison of Round 1 and Round 2 data shows that the TDS concentration at MW-1 increased more than it did at W-2. MW-1 is closer to and was, therefore, during Round 1 sampling more heavily impacted by seepage of good quality irrigation waters from the Farmer's Mutual Irrigation Ditch.

No organic constituents were detected in the Round 2 samples at MW-1 or W-2 (Table 3). The detection of benzene in MW-1 at 0.53 ug/1 in the Round 1 sampling analysis is not representative for this well. The absence of benzene in the Round 1 MW-1 duplicate sample as well as in the Round 2 sample, verify that benzene is not present in MW-1.

INORGANIC CONSTITUENTS

<u>On-Site</u>

Both Round 1 and Round 2 inorganic water quality analytical results verify that the five on-site monitor wells (MW-2, MW-10, MW-11, MW-12 and W-3) intercept ground waters of much poorer quality than the ground waters at background monitor well sites MW-1 and W-2. However, these on-site monitor wells intercept ground waters of similar or slightly better quality than in the downgradient off-site monitor wells. As at the background wells, the ground water quality at the five on-site monitor wells in Round 2 was poorer than in Round 1. Total dissolved solids (TDS) levels increased from Round 1 to Round 2 by as much as 1,485 mg/1 at MW-10.

Increased TDS levels in the on-site monitor wells were primarily the result of increases in sulfate, chloride and sodium, with slight increases in calcium and bicarbonate. These increases resulted from the lack of good quality irrigation water recharge from the ditches to the aquifer. Rounds 1 and 2 ground water quality data are summarized by the concentration contour maps in Appendix B, Plates B-1 through B-4.

The manganese concentration contour map (Plate B-5) is included, although manganese is not considered a primary ion. However, as will be discussed later, it is significant with respect to its correlation with the organic contamination and bacterial biodegration.

Off-Site

The isoconcentration maps (Plates B-1 through B-4) for TDS and the major ions sodium, chloride and sulfate, for Rounds 1 and 2 sampling, are consistent. The maps show that near the tank farm, the highly mineralized zones of the alluvial aquifer extend about 1,500 feet to 1,700 feet east-west and about 2,500 feet to 2,700 feet north-south. The lack of recharge of good quality irrigation waters to the ground waters during Round 2 sampling, resulted in increased concentrations of these constituents. The concentration contour lines were expanded accordingly, primarily to the north and to a lesser extent to the east and west.

The Round 1 and Round 2 data indicate that the water quality in the offsite monitor wells is fairly stable (Table 2). The major exceptions were MW-8 and MW-9 southwest of the tank farm. These wells are in the major ground water discharge zone. Sulfate and sodium concentrations increased from Round 1 to Round 2. These increases probably resulted from mineralized ground water discharge in this area and the lack of irrigation water seepage to the ground water. These monitor wells are close to the Westside Irrigation Ditch, and during irrigation flows would be strongly influenced by seepage of good quality irrigation waters.

The Round 2 water quality data for off-site monitor wells MW-4, MW-5 and MW-6, located southwest of the irrigation ditches, showed slight improvement from Round 1. The TDS levels decreased by 130 mg/l to 160 mg/l. The lower TDS levels were primarily due to decreased levels of chloride, sodium and calcium. Lower water table conditions and less ground water contact with the upper mineralized zone of the aquifer during Round 2 sampling could account for the improvement in the water quality in this area.

-8-

The most significant improvement in ground water quality off-site was at MW-13 where TDS levels dropped from 3,700 mg/l (during Round 1) to 1,850 mg/l (during Round 2). Less dramatic declines in TDS levels were observed to the south of MW-13 about 300 feet at well W-1. TDS levels decreased from 2,300 mg/l to 2,140 mg/l. These declines in TDS were primarily due to large decreases in sulfate, chloride and sodium, with slight decreases in calcium levels. Well W-l is a deep (58.8 feet deep) private well that penetrates the gravel zone and MW-13 is a shallow (5-feet deep) stainless steel well point that monitors the upper silty sand zone. Both wells are in a localized, well-defined ground water discharge zone where evaporite deposits cover the ground surface.

The better quality waters at W-1 and MW-13 at the time of Round 2 sampling may have resulted from less discharge of highly mineralized ground waters in this major ground water discharge zone. As previously discussed, a lower water table condition resulting in less ground water contact with the upper mineralized zone would result in better water quality.

The Piper diagram in Appendix B (Plate B-ll) summarizes and compares the percentages of the major ions found at the ground water quality sample sites for Round 2. Both Round 1 and Round 2 water quality data indicate extreme variability in the ground water quality throughout the area. Both rounds of water quality data indicate that the ground water is predominately a sodium-sulfate type.

Rounds 1 and 2 water quality data demonstrate that the off-site ground water quality in this area is poor. Sulfate levels in the off-site monitor wells (except for W-2 a background water quality well) approached or exceeded the New Mexico drinking water standard of 600 mg/1. Sulfate levels for Round 2 for the off-site wells ranged from 545 mg/1 at MW-5 to 1,510 mg/1 at MW-9 (Plate B-4).

-9-

In summary, the concentrations of the major ions, chloride, sodium, sulfate and calcium are stable in 7 of the 10 off-site monitor wells (Table 2). The exceptions, as previously discussed, are wells W-1, MW-9 and MW-13 which are located southwest of the tank farm in the major ground water discharge area.

ORGANIC COMPOUNDS

<u>On-Site</u>

The five volatile organic constituents found on-site during Round 1 sampling were also found during Round 2 sampling, and include benzene, toluene, xylene, ethylbenzene and DCA. As with Round 1 analytical results, these constituents were found at very high levels only in the on-site shallow MW-12 completed in the upper silty sand above the deeper gravel aquifer.

As noted in our previous Phase I report (February 1988), volatilization and biodegradation along with some adsorption are probably the primary mechanisms tending to reduce concentrations of benzene, toluene, xylene and ethylbenzene in water and soils. Because of these active mechanisms, persistence of these compounds is probably not great.

The DCA which has been detected in ground water at and downgradient from the tank farm appears to have resulted from a leaded gasoline spill in the southwest corner of the tank farm, north of the large 2.4 million gallon tank. As discussed in our February 1988 report, DCA is a 2-carbon alkyl halide, has a low molecular weight, but a high density, a high vapor pressure, is highly soluble in water and has a high affinity for the water rather than an organic liquid phase. Because of its low potential for being sorbed onto soil particles it is quite mobile and is often found at the leading edge of ground water contaminant plumes resulting from leaded gasoline spills. The primary removal mechanism of DCA from soil and water is probably volatilization. Although DCA is dense (specific gravity of 1.25 gm/cm^3), DCA should only be expected in the dissolved state rather than as a separate phase, and is not likely to be found at significant concentration in the lower parts of an aquifer. This was verified by both Rounds 1 and 2 data by comparing the extremely high levels of DCA in shallow monitor well MW-12 (450 ug/1 and 2,400 ug /1) to the very low levels of DCA in the deeper adjacent monitor well MW-11 (1.0 ug/1 and 4.6 ug/1).

The Round 2 data for the on-site deeper well W-3 is highly suspect. Well W-3 is about 40 feet southeast of MW-12 and is believed to be open to both the upper shallow contaminated zone and the deeper zone. Round 1 results for W-3 indicated DCA <1.0 ug/1 but Round 2 results indicated that the DCA level increased to 30 ug/1. In addition, trace levels of ethylbenzene and xylene were found in W-3 in Round 1 but not in Round 2. This wide variability in the water quality may be due to the well construction. Well W-3 is probably open through the highly contaminated upper 17-foot zone, to its total depth of 21 feet. Its construction is not known, as it is an older steel-cased 8-inch diameter well that had been constructed prior to the Phase I study. The water sample collected at well W-3 was bailed from the bottom of the well through a The sample should primarily represent the water quality at the drop pipe. bottom of W-3. However, due to the likelihood of continuous perforated casing in W-3, the water samples are likely a mixture of both shallow highly contaminated and deeper uncontaminated ground waters.

The Round 1 and Round 2 water quality data results for the organic compounds were comparable in that DCA was the only organic contaminant found at detectable levels at enough sites (on-site at W-3, MW-10, MW-11 and MW-12), for which isoconcentration plots could be completed (Plate B-6). Round 2 DCA levels on-site measured 4.6 ug/1 at MW-11, 30 ug/1 at W-3, 1.3 ug/1 at MW-10 and as previously discussed, 2,400 ug/1 at MW-12. Higher DCA levels at MW-11 versus MW-10 and higher DCA levels in Round 2 in comparison to the Round 1 concentrations probably reflect the absence of localized dilution from irrigation water seepage out of the Westside Irrigation Ditch.

-11-

Round 1 and Round 2 water quality analytical results verified high concentrations of organic contaminants in the shallow silty-sand zone on-site at MW-12. Although the sample taken in Round 1 was contaminated because a drop pipe was not used in sampling, the Round 2 sample was not contaminated. A drop pipe was used in Round 2 and the oil and grease analysis did not indicate the presence of product in the water sample.

The Round 2 water quality data from MW-12 showed increased levels of organic compounds. In addition to the large increases in DCA levels in MW-12, total xylene increased from 3,000 ug/1 to 10,000 ug/1, ethylbenzene increased from 1,300 ug/1 to 1,500 ug/1, toluene increased from 2,000 ug/1 to 20,000 ug/1 and benzene increased from 19,000 ug/1 to 24,000 ug/1.

No other organic contaminants were detected in MW-11 or W-3 during Round 2, although trace levels of xylene, ethylbenzene and/or benzene had been detected in Round 1. Round 1 and Round 2 data verify that the significant contamination is on-site near MW-12 and within the upper 17 feet in the silty sand zone above the gravel zone monitored by MW-11.

A low sulfate level of 16 mg/l measured at shallow MW-12 on-site in Round l was verified by the correspondingly low sulfate level of 9 mg/l measured in Round 2. The explanation for the low sulfate levels at MW-12 (as well as the elevated manganese levels at six monitor well sites, discussed later) may be that the organic compounds are being oxidized while the oxidizing agents (NO₃, MnO_2 , $Fe(OH)_3$ and SO_4^{-2}) are reduced. As presented in Freeze and Cherry (1979), the redox processes that consume organic matter and reduce inorganic compounds in ground water include sulfate reduction in the later phase of the redox processes. This is defined by the equation:

 $CH_{2}O + 1/2 SO_{4}^{2-} = 1/2 HS^{-} + HCO_{3}^{-} + 1/2 H^{+}$

The redox processes in a ground water zone where organic matter exists, result from the action of bacterial microorganisms. The main source of energy for the bacteria in the ground water zone is the oxidation of organic matter. Many metals as well as carbon, nitrogen, sulfur and phosphorus compounds comprise the essential nutrients for bacterial growth.

Manganese (IV) reduction is one of the earlier redox processes that consumes organic matter. This process is defined by the equation (Freeze and Cherry (1979):

$CH_{2}O + 2MnO_{2}(s) + 3H^{+} = 2M_{n}^{2+} + HCO_{3-} + 2H_{2}O$

This process typically occurs before sulfate reduction. This would explain why elevated manganese levels were found in three of the on-site monitor wells where organic constituents were found (including MW-12). With the exception of MW-12, where the redox reactions have proceeded further due to the presence of more organic matter, sulfate levels are still elevated.

Manganese concentrations were elevated above 1.0 mg/l at a total of four on-site monitor wells sites (MW-2, MW-10, MW-11 and MW-12). Of these 4 sites, MW-2 was the only site at which no refinery contamination has been detected. Significant refinery contamination has been detected at MW-12 and only trace levels of DCA were found at MW-10 and MW-11.

As mentioned, the monitor wells with the highest manganese levels were not necessarily those with the highest levels of organic compounds. MW-12 had a manganese concentration of 3.6 mg/1, whereas MW-10, with a DCA level of only 1.3 mg/1, had a higher manganese level of 5.20 mg/1.

The low DCA and lower organic constituent levels at MW-10 and MW-11 where elevated manganese concentrations were detected may reflect the later redox process of manganese reduction where organic matter may have been partially consumed by bacteria and manganese dioxide (2Mn02) reduced to manganese (2Mn+2).

Based on the manganese levels at MW-1 and W-2, the background concentration for manganese in this area is about 0.01 to 0.03 mg/1. The New Mexico level for manganese in drinking water is 0.2 mg/1. Although manganese has a recommended concentration limit in drinking water, the limit is to mainly provide acceptable esthetic and taste characteristics, Freeze and Cherry (1979).

-13-

Off-Site

Off-site, organic contaminant levels decreased from Round 1 to Round 2. In both rounds the levels were extremely low. The slightly lower concentrations of the organic contaminants off-site during Round 2 versus Round 1 are believed to be due to the absence of ground water recharge from seepage from the irrigation ditches. Such recharge, present during Round 1, increased ground water levels and flow rates, thereby flushing contaminants away from the tank farm.

Xylene, ethylbenzene and/or benzene were found at or just above detection levels and only in nearby off-site monitor wells MW-13, W-1 and W-2 in Round 1. Only xylene was present and only in MW-13 in Round 2.

MW-13 and W-1 are located directly to the southwest and within 200 feet of the tank farm boundaries. W-2 is located farther west (see Plate 2). Total xylene and ethylbenzene at MW-13 for Round 1 were measured at 2.23 ug/1 and 0.54 ug/1, respectively. Only total xylene was detected at 1.68 ug/1 at MW-13 in Round 2. Ethylbenzene was detected at 0.89 ug/1 at W-1 in Round 1 as was benzene at 1.0 ug/1 at W-2. Neither of these compounds were found above detection limits in W-1 or W-2 in Round 2.

Based on the concentration contour plot for DCA of 10 ppb (the New Mexico MCL for drinking water), the area impacted by the tank farm is about 200 to 400 feet in an east-west direction and 1,800 to 2,000 feet in a north-south direction (Plate B-6). The area impacted off-site appears to decrease slightly when the irrigation ditches are not flowing and flushing contaminants offsite. The only ground water off-site that exceeded the drinking water standard of 10 ppb of DCA was at MW-6. DCA levels were measured at MW-6 at 16.0 ug/l during Round 1 but at only 7.7 ug/l for Round 2. Elevated manganese levels in this well of 2.3 mg/l probably reflect bacterial biodegradation and the reduction of manganese. This well is located approximately 1,200 feet southwest of the Maverik tank farm property boundary.

-14-

1 n n **2**

As discussed in the February 1988 report and as the data from Rounds 1 and 2 continue to confirm the results of the New Mexico EID 1985 and 1987 water quality data, ground water contamination off-site in private wells to the southwest is limited to DCA contamination at very low levels and in a Very low levels of DCA were also detected in Round 2 at off-site monitor wells MW-8 and MW-13 at 1.1 ug/1 and 1.9 ug/1, respectively. These wells also had elevated manganese levels of 2.7 mg/1 and 1.9 mg/1, respectively.

Although organic lead (TOL) has been detected at very low concentrations in both Rounds 1 and 2, the results are not considered to be significant. This is based on the fact that the analysis for TOL is difficult and that the TOL values were low and fluctuated considerably from Round 1 to Round 2. In addition, the highest TOL levels for both Rounds 1 and 2 were at monitor well MW-12 on-site (at 0.02 and 0.06 mg/l, respectively).

TOL levels at MW-6, MW-7 and MW-11 for Round 1 were 0.004 mg/1, 0.02 mg/1 and 0.007 mg/1, with detection limits of 0.002 mg/1, 0.02 mg/1 and 0.004 mg/1, respectively. TOL was then detected at 7 additional sites in Round 2, but also at very low concentrations (sites MW-2, MW-3, MW-4, MW-5, MW-9, and MW-10 and at well W-3). The TOL levels at these sites averaged only 0.004 mg/1 and ranged from 0.002 mg/1 at MW-7 to 0.009 mg/1 at MW-10.

Organic lead (primarily tetraethyl) is a relatively high molecular weight, dense, 8-carbon compound which has a very low water solubility, probably a high affinity for an organic phase, and has a high potential for being adsorbed by soils and sediments. While organic lead would not be highly mobile, it would be highly persistent, slowly degrading to other organic and eventually to inorganic compounds.

As discussed in the February 1988 report and as the data from Rounds 1 and 2 continue to confirm the results of the New Mexico EID 1985 and 1987 water quality data, ground water contamination off-site in private wells to the southwest is limited to DCA contamination at very low levels and in a limited number of wells.

-15-

CONCLUSIONS

The Phase I hydrogeologic and water quality investigation consists of the work presented in the Dames & Moore report (February 1988) and the data and evaluation presented herein of two rounds of comprehensive water quality data at the Maverik Refinery and Tank Farm near Kirtland, New Mexico. This work has confirmed the following major findings:

- 1. Significant concentrations of the typical refinery-related volatile organics benzene, toluene, xylene, ethylbenzene and 1,2-dichloroethane (DCA) have only been found in one of six monitor wells installed in the upper silty-sand zone at the refinery tank farm. Significant biodegradation of organic compounds appears to be occurring on-site, particularly in the shallow zone at the highly contaminated monitor well on-site.
- 2. Benzene, xylene or ethylbenzene have only been found in 3 of 10 offsite monitor wells at concentrations just above detection limits and far below New Mexico drinking water standards for these compounds. DCA was found in four other off-site monitor wells, only one of which, with DCA levels ranging from 7.7 to 16 ug/1, exceeded the New Mexico drinking water standard of 10 ug/1.
- 3. In more than 25 off-site private wells tested by the NMEID or Dames & Moore, DCA has only been found in two wells, benzene in another and ethylbenzene in yet another. The concentrations were below New Mexico's drinking water standards for all of these compounds. These wells are utilized for irrigation or stock-watering purposes rather than for drinking water.
- 4. Product seepage from contamination of the western part of the tank farm to the Westside Irrigation Ditch has been confirmed. However, even under no and low-flow conditions which existed during sampling, off-site downstream contamination of this water body has not been significant. Construction and pumpage at the on-site interceptor trench has reduced and should eventually eliminate product migration off-site to the Westside Irrigation Ditch.
- 5. The shallow silty sand alluvial zone on-site that has been significantly impacted by the tank farm, has not impacted the deeper gravel zone. Very low levels of contaminants are observed in the deeper monitor wells and private wells downgradient from the tank farm. This is a result of high permeability, recharge from the irrigation ditches, high flow rates and apparent lithologic separation of the gravel zone from the upper silty-sand zone. The private wells average about 20 feet in depth and are generally open through at least

15 feet of saturated, highly permeable gravels, cobbles and sands. The ground water flow velocity through the coarse alluvial aquifer has been estimated at 3 ft/day to the southwest toward the San Juan River.

- 6. Contamination of the shallow alluvial aquifer and Westside Irrigation Ditch from the tank farm appears to have occurred over an area about 200 to 400 feet wide in an east-west direction and about 1,800 to 2,000 feet long in a north-south direction toward the San Juan River. The areal extent of organic contamination off-site appears to increase slightly with the recharge and resultant on-site aquifer flushing from seepage of irrigation ditch waters. Ground water quality is strongly influenced by the direction of and flows in the irrigation ditches. Off-site contamination appears to be restricted to a more permeable alluvial (gravel, cobble, sand) zone that trends northeast to southwest to the San Juan River.
- 7. The low concentrations of the contaminants detected off-site, both during and after irrigation ditch flows, their characteristics, the hydrogeologic setting, and the non-use of water from private wells in the contaminated area for drinking water purposes, all verify that the releases from the tank farm do not pose a threat to human health and the environment.

REFERENCES

Dames & Moore, February 1988. Phase I Hydrogeologic Evaluation, Maverik Refinery and Tank Farm, Kirtland, New Mexico.

Freeze, R.A., and Cherry, J.A., 1979. Groundwater. Prentice-Hall, Inc.

а Ч

TABLE 1

SAMPLE ROUNDS 1 AND 2 LABORATORY WATER QUALITY PARAMETERS

HALOGENATED VOLATILE ORGANICS EPA METHOD 601	INORGANIC PARAMETERS	EPA METHOD
Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane Bromodichloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Bromoethane Chloromethane Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene trans-1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Vinyl chloride 1,1,2-Trichloro- 2,2,1-trifluoroethane 1,2-Dibromoethane (EDB)	pH Specific Conductance @ 25C Total Dissolved Solids Fluoride Chloride Nitrate + Nitrite as N Sulfate Total Alkalinity as CaCO ₃ Bicarbonate Alkalinity Carbonate Alkalinity as CaCO ₃ Ammonia as N	150.1 120.1/9050 160.1 340.2 300.0 353.2 300.0 310.1/403 310.1/403 310.1/403 350.1
AROMATIC VOLATILE ORGANICS EPA METHOD 602	METALS PARAMETERS	
Benzene Chlorobenzene Ethylbenzene Toluene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene m-Xylene o & p-Xylene(s)	Calcium Iron Magnesium Manganese Potassium Sodium Total Organic Lead	200.7 200.7 200.7 200.7 200.7 200.7 200.7 ENSECO Special

Note: For detail of methodology see ENSECO's (RMAL) attached report (Appendix B)

.11

. . . .

TABLE 2

1

SAMPLE ROUNDS 1 AND 2: LABORATORY RESULTS FOR MAJOR IONS FOR MAVERIK COUNTRY STORES, REFINERY TANK FARM, KIRTLAND, NEW MEXICO

(Round 1 Sampled November 10-27, 1987) (Round 2 Sampled February 22-24, 1988)

Sample Site Designation(1) NM MCL EPA MCL	pH (field) 6-9 6.5-8.5	TDS (mg/1) 1,000 500	Sulfate mg/l 600 250	Chloride mg/l 250 250	Sodium mg/l NA NA	Calcium mg/l NA NA	as CaCO ₃ mg/l NA NA	1 ron mg/1 1.0 0.3	Manganese mg/l 0.2 .05
Wells									
On-Site									
MW 1	9.64;7.51	360:537	176:198	26:33	44:50	44;112	34:159	<.05(2)	- :.013
MW 2	7.75:6.63	1,360;2,000	526;955	67;101	243:334	152;268	309;365	<.05	- ;1.10*
MW10	7.66;8.22	1,240;2,725	568;1,640	46:191	250;578	126;196	153:271	<.05	- ;5.20*
MW11	7.85;7.80	1,250;1,470	592;615	45;184	234;263	138;186	267;242	<.05	- ;1.0*
MW12(3)	6.74;7.25	1,200;1,310	16;9	321:360	222;239	148:133	508;541	.13;.09	- :3.6
W-3	- ;7.72	- ;960	- ; 387	- ;50	- ;207	- ;103	- ;363	- ;<.05	- ; . 28*
Off-Site									
MW 3	7.78:7.16	1,620;1,730	670;713	97;138	349:377	148;167	215;387	<.05	- :.64*
MW4	7.46.7.31	1,540;1,380	654;601	87:73	337;294	142;131	332;332	<.05	- ;.78*
MW5	7.85:7.19	1,250;1,190	499:545	68:61	258;244	129:142	397;301	<.05	- ;.76*
MW6	7.51;7.18	2,130;2,000	843;960	288;260	386;361	230:267	367;324	<.05	- ;2.3*
MW7	7.66;7.03	1,400;1,510	558:675	126;169	256;266	152;205	166;320	<.05	- ; .48*
MW8	7.41;7.00	950;1,230	401;605	67;65	166;174	159;193	273;256	<.05	- :2.7*
MW9	7.11;7.08	1,520;2,160	863;1,510	43:81	146:357	324:396	372;250	<.05	- ; .11
MW13				257;82	666;370		419;581	.39;.12	- ;1.90*
	8.14;8.36	3,700;1,850	1,980;920			364;219		<.10:<.05	•
R. Ball Well (W-1)	7.96;8.63	2,300;2,140	433;610	1,170;527	1,020;696	25;15	221;289	(.10;(.05	- ;.02
V. Murray Well (W-2)	8.06;8.55	600;640	114;97	43;37	147;126	42;28	368;297	.31;<.05	- ;.03
Farmer's Mutual 1	Irrigation Ditc	<u>h</u>							
SW1(3)	8.5	400	136	16	29	86	159	<.05; -	-
West Side Irrigal	ion Ditch								
SW4(3)	7.28	790	147	29	40	113	253	.12; -	-
SW5(3)	-	_	-	-	-	_	-	-	-
SW2	7.6:7.41	1,120;1,210	476;550	49;50	159;190	162;147	277;274	<.05	- ; .55*
SW3	8.05;8.16	1,400;1,200	602;550	77;52	223;205	178;146	297;253	.06;.13	- :.16*
V. Murray's Drain	nage Ditch								
SW6	7.28;7.95	-	-	-	-	-	-	-	-
						•			

MW11 & MW12

Analyzed for EP Toxicity for 8 RCRA metals and sulfide and cyanide reactivity. Only barium detected at 0.94 mg/l. (Composite of Cuttings)

Footnotes:

(1) Data from Rounds 1 and 2 presented for each sample site in the first and second columns, respectively.

Where Round 1 results = Round 2 results, column 2 left blank. -Indicates not analyzed.

(2) The values indicated as less than (\langle) are detection limits only, and not actual concentrations.

(3) Sample sites SW-4 and SW-5 (and MW-12 in Round 1 only) were contaminated with product and not representative of the water itself. SW-4 and SW-5, and SW-1 which was dry, were not sampled for Round 2.

* Exceeds New Mexico MCL For Drinking Water.

,

TABLE 3

SAMPLE ROUNDS 1 AND 2: LABORATORY RESULTS FOR DETECTED ORGANIC CONSTITUENTS FOR MAVERIK COUNTRY STORES, REFINERY TANK FARM, KIRTLAND, NEW MEXICO

(Round 1 Sampled November 10-27, 1987) (Round 2 Sampled February 22-24, 1988)

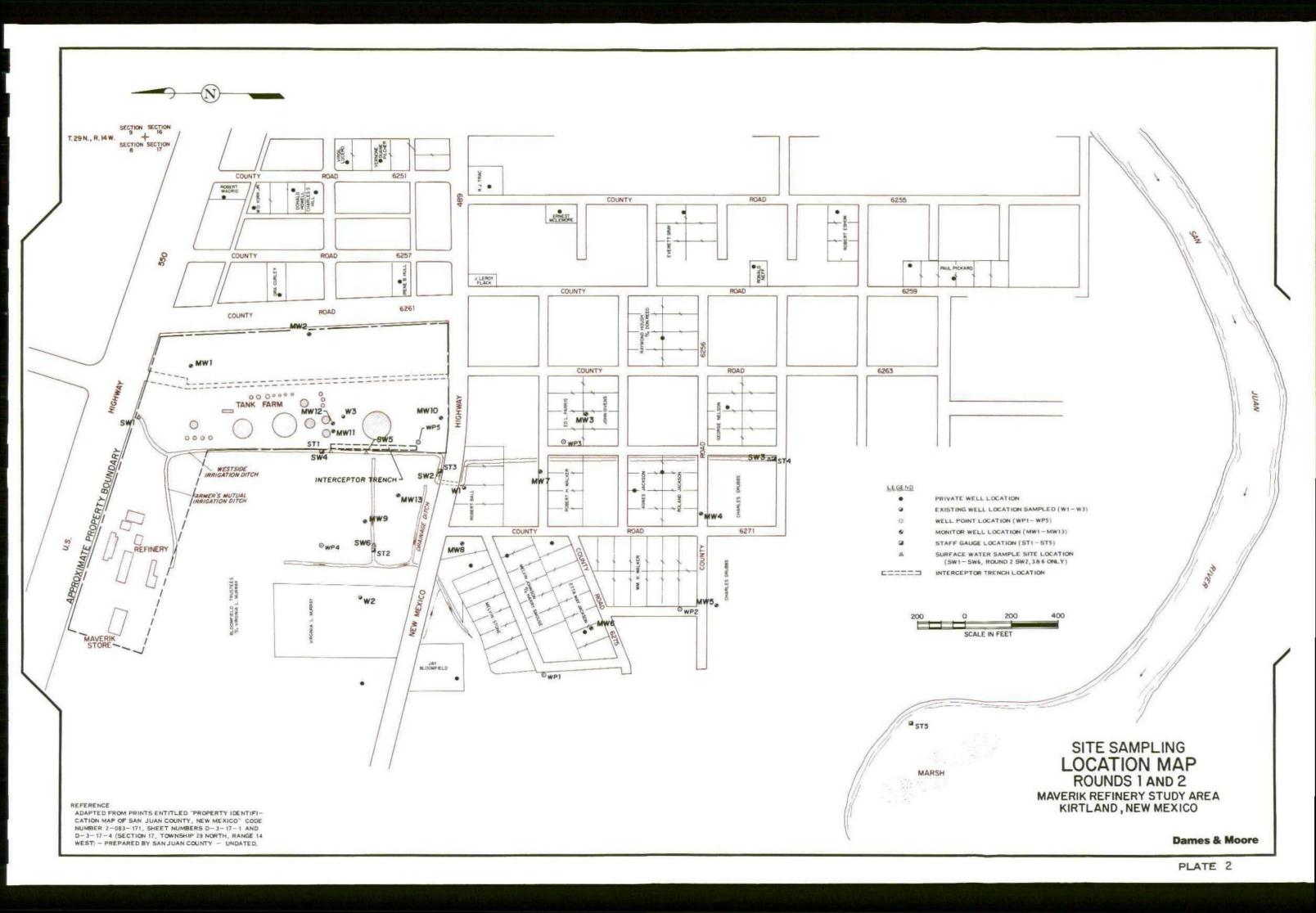
Sample Site Designation(1) NM MCL EPA MCL	1-2 DCA (ug/1) 10 5	Total Xylene (ug/l) 620 NA	Ethylbenzene (ug/l) 750 NA	Toluene (ug/1) 750 2,000	Benzene (ug/1) 10 5	Total Organic Lead mg/l NA NA			
Wells									
On-Site									
MW1 MW2 MW10 MW11 MW12(4,5) W-3	< 1 < 1 3.2;1.3 1.0;4.6 450.*;2,400* < 1;30*?	< 0.5 < 0.5 < 0.5 < 0.5 3,000.*;10,000* 5.8;<0.5	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 1,300.*;1,500* 1.3;<0.5</pre>	< 0.5 < 0.5 < 0.5 < 0.5 2,000.*;20,000* < 0.5	0.53 ⁽²⁾ ;<0.5 < 0.5 < 0.5 0.81;3.8;<0.5? 19,000.* ;24,000* < 0.5	<0.01;<0.002 0.004 0.02;0.009 0.007;0.004 0.02;0.06 - ;0.002			
Off-Site									
MW3 MW4 MW5 MW6 MW7 MW8 MW9 MW13 R. Ball Well (W-1) V. Murray Well (W-2)	< 1 < 1 < 1 16*;7.7 < 1 2.8;1.1 8.3;8.6 < 1;1.9 < 1 < 1	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 2.23;1.68 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.54;<0.50 0.89;<0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<pre><0.01;0.005 <0.002;0.003 <0.02;0.002 0.004;0.005 0.02;0.002 <0.02;0.004 <0.01;0.004 <0.01;<0.004 <0.002;<0.002 <0.002;<0.002 <0.01;<0.002</pre>			
Farmer's Mutual Irrigation Ditch									
SW1(4)	< 1	< 0.5	< 0.5	< 0.5	< 0.5				
West Side Irrigation Ditch									
SW4(4,5) SW5(4,5) SW2 SW3	<10 <250 1.1;<1.0 < 1	61 57,000* 1.6;<0.5 < 0.5	<10 2,500* < 0.5 < 0.5	<10 470 < 0.5 < 0.5	<10 <250 < 0.5 < 0.5	<0.002;0.002 <0.01;<0.004			
V. Murray's Drainage Ditch									
SW6	< 1	< 0.5	< 0.5	< 0.5	< 0.5	-			

Footnotes:

 Data from Rounds 1 and 2 presented for each sample site in the first and second columns, respectively. Where Round 1 results = Round 2 results, column 2 left blank. - Indicates not analyzed.

(2) Benzene was not detected in a blind duplicate of this sample in Round 1.


(3) The values indicated as less than (<) are detection limits only, and not actual concentrations.


(4) Sample sites SW-4 and SW-5 (and MW-12 in Round 1 only) were contaminated with product and not representative of the water itself. SW-4 and SW-5, and SW-1 which was dry, were not sampled for Round 2.

(5) Volatile organics in samples for SW-4 and SW-5 were analyzed using GC/MS methods in Round 1, and for MW-12 in Rounds 1 and 2. All other samples were analyzed using GC methods.

* Exceeds New Mexico MCL for drinking water.

? Data Questionable

APPENDIX A

WATER LEVEL ELEVATION DATA FOR LOCAL PRIVATE WATER WELLS, MONITOR WELLS AND SURFACE WATER SITES: ROUNDS 1 AND 2

-Ti

11 11 11

Ĭ,

APPENDIX A

ROUNDS 1 AND 2 WATER LEVEL ELEVATION DATA FOR LOCAL PRIVATE WATER WELLS, MONITOR WELLS AND SURFACE WATER SITES

An electric water level probe was used during Round 1 (November 22-27, 1987) and Round 2 (February 24-25, 1988) to obtain static water levels to within 0.01 foot at the 13 monitor well sites, at the 5 well points and at the 19 to 21 private water wells accessible for measuring during Rounds 1 and 2 sampling, respectively. These sites are located on Plate A-1. Two private wells measured in Round 1 were not accessible in Round 2. Well casing measuring point elevations, ground surface elevations and Rounds 1 and 2 water level elevations are presented in Table A-1. The well depths and screened intervals are included in Table D-1 of the February 1988 report.

The Westside Irrigation Ditch was in use through late October 1987 but was not in use during Rounds 1 and 2 water level data reconnaissance. Consequently, the water level elevation measurements in the ditch primarily reflect the ground water level elevation in mid-November 1987 and late February 1988. Except for similar water level measurements at staff gauges ST-3 and ST-4 where there is significant ground water inflow along the Westside Irrigation Ditch, surface water levels to the north in the irrigation ditches and in the San Juan River declined from Round 1 to Round 2.

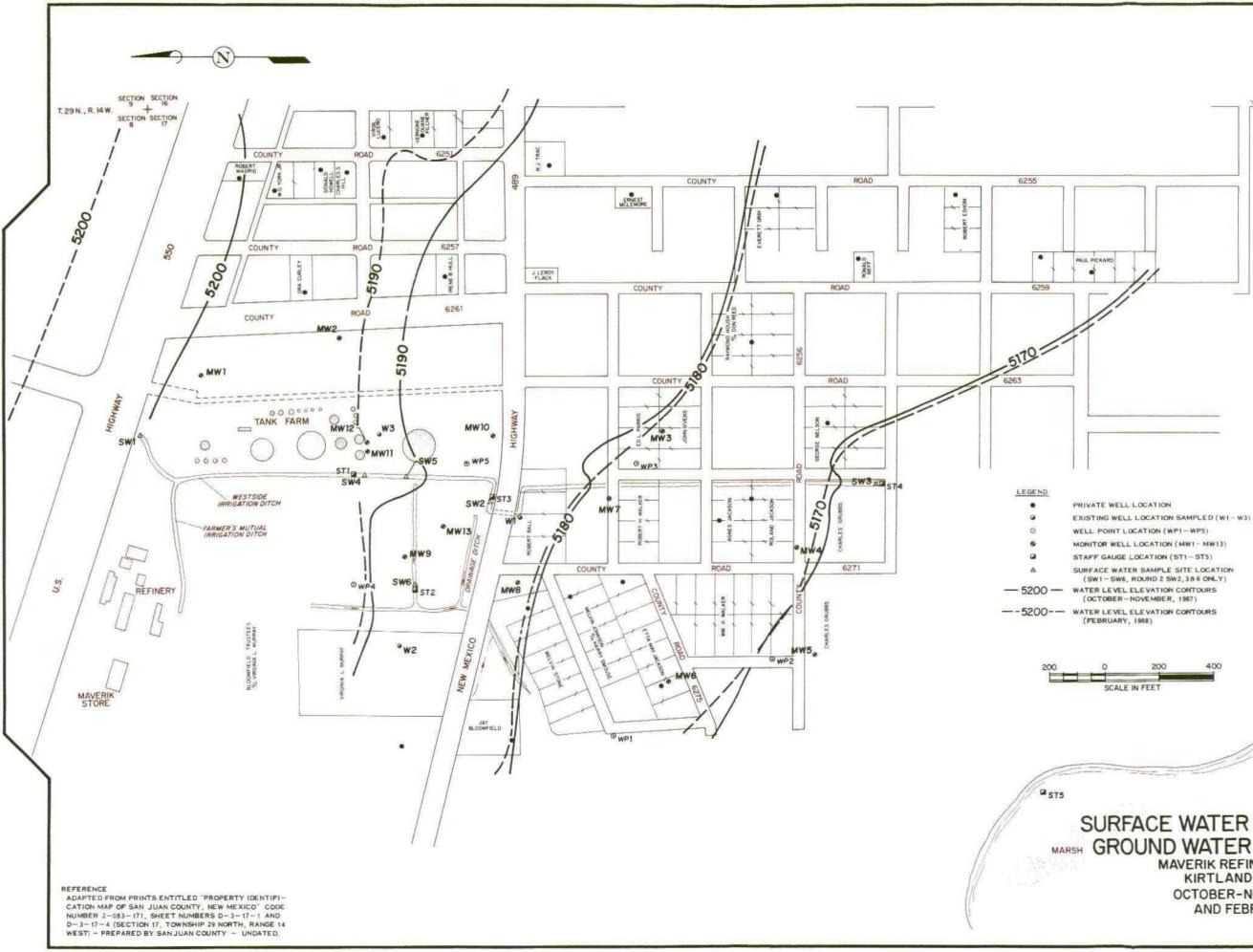
Both the Round 1 and Round 2 water level elevation data show that the water level elevations in MW-11 and MW-12, the two nested wells, located 33.5 feet apart, are essentially the same, and that there is no significant vertical hydraulic gradient from the upper silty-clayey sand zone to the deeper gravel zone. Based on the exact water level elevation data, the shallow zone had a slightly higher hydraulic potential. This can be accounted for by the horizontal distance between the wells and the horizontal hydraulic gradient. Consequently, any vertical hydraulic gradient that may exist is very small and not significant with respect to impacting vertical downward movement of contaminants to the deeper gravel zone.

A-1

As discussed in detail in the text and as summarized in Table A-1 and Plate A-1, significant ground water level declines from Round 1 to Round 2 of up to 5.65 feet were measured in the northern part of the study area. Ground water levels remained fairly stable in the southern part of the study area where the ground water levels are not as severely impacted by the Farmer's Mutual and Westside Irrigation Ditch.

Water level elevations at all of the ground water and surface water sites will continue to be collected, with the next round of measurements scheduled for October 1988 during Round 3 water quality sampling.

WATER LEVEL ELEVATION DATA⁽¹⁾ (Maverik Country Stores, Refinery Tank Farm, Kirtland, New Mexico)


Site Designation	Depth to ⁽¹⁾ Water From Measuring Point (ft)		Measuring Point Elevation (ft)		Water L Elevat (ft) Round l	ion	Water Level Change (4) (ft)	Ground Surface Elevation (ft)
	Round 1	Round 2			Kound I	Round 2		
Surface Water Sites								
Westside Irrigation Ditch								
Staff Gauge 1	3.90	Dry	5194		5190.75			
Staff Gauge 2 Staff Gauge 3	0.90 2.70	1.91 2.71	5186 5186		5185.70 5183.52		-1.11 -0.01	
Staff Gauge 4	2.83	2.84	5171			5168.75	-0.01	
San Juan River								
Staff Gauge 5	3.70	4.08		-			-0.38	
Monitor Well Sites			Steel Casing	PVC Casing				
MW-1	8.15	13.8	5207.79	5207.24	5199.09	5193.44	-5.65	5205.75
MW-2	3.85	5.92	5197.10	5196.93		5191.01	-2.07	5195.25
MW-3 MW-4	3.40(3) 6.71(3)	3.26 6.44	5183.00 5178.41	5181.46 5177.10	5179.6 5171.7	5179.74 5170.66	+0.14 -1.04	5181.06 5176.14
MW-5	5.72	5.84	5175.62	5175.09	5169.37		-0.12	5173.67
MW-6	4.37	4.41	5176.40	5176.01	5172.03	5171.6	-0.43	5174.23
MW-7 MW-8	5.13(3) 4.09	4.93 4.27	5183.71 5186.00	5182.84 5185.87	5178.58 5181.78	5177.91 5181.6	-0.67 -0.18	5181.73 5184.02
MW-9	2.51	3.43	5191.39	5191.22	5188.71		-0.92	5189.53
MW-10	2.70	3.43	5189.80	5189.30	5186.6	5185.87	-0.73	5187.47
MW-11	5.89	7.58	5197.26	5197.15		5189.57	-1.69	5194.97
MW-12 MW-13	4.86 0.34	6.35 0.56	5196.66 5187.76	5196.19 N.A.		5189.84 5187.20	-1.49 -0.22	5194.80 5187.56
W-3	5.10	6.78	5196.40	N.A.		5189.62	-1.68	5194.62
Well Drive Point Sites								
						5170 00		5175 07
WP1 WP2	3.65(2)	2.79 3.4	5175 5173		5169 78	5172.82 5170.03	+0.25	5175.07 5173.30
WP3	3.0 (2)	1.44	5180		5177.92	5179.48	+1.56	5180.79
WP4	1.36	Dry	5193		5191.83			5193.11
WP 5	0.34	1.35	5189	.54	5189.20	5188.19	-1.01	5189.23
Private Wells (Inventoried)								
William Walker		s No Acce						
E.M. Jackson (House)	4.0	3.83	5175		5171.73	5171.9	+0.17	
(Field) H. Smouse	3.5 No Acces	3.64 s No Acce	5175 ss (Build		5172.35	5172.21	-0.14	
M. Stone		s No Acce			~~			
J. Bloomfield	8.06	No Acce			5180.04			
V. Murray (Corral)W-2 (House)	3.2 3.55	4.27 5.74	5191		5188.49	5187.42	-1.07 -2.19	
R. Ball W-1	2.33	2.53	5184		5182.40	5182.20	-0.20	
A. Jackson		s No Acce						
R. Jackson (Field) R. Housh	4.95	4.63 s No Acce	5178 ess		5173.07	5173.39	+0.32	
R. Neff	5.22	4.47	5179		5174.31	5175.06	+0.75	
P. Pickard (Shed) (House)	9.25	8.68 s No Acce	5180	.14	5170.89		+0.57	
R. Eshome	6.65	5.98	5179		5173.11		+0.67	
G. Nelson	7.50	7.07	5178	.40	5170.90	5171.33	+0.43	
E. Mclemore	1.59	1.97	5186			5184.18	-0.36	
E. Grey I. Hull	NO Acces 4.49	s No Acce 4.98	ess 5194		 5189.83	 5189.34	-0.49	
C. Curley	4.68	7.85	5199		5195.27		-3.17	
R. Madrid	8.23	13.48	5208	.89	5200.66	5195.41	-5.25	
W. York C. Hill	8.80 6.40	11.25 9.47	5206 5202		5197.25	5194.8 5193.07	-2.45 -3.07	
D. Pilcher	6.61	9.47 8.85	5202			5193.07	-2.24	
D. Howell	8.18	No Acce			5196.35			
R. Tracey	1.63	2.39	5190		5188.69		-0.76	
V. Lucero	7.33	9.94	5200	•10	5192.83	5190.22	-2.61	

Measured November 22 - 27, 1987, for Round 1; and February 24-25, 1988 for Round 2, except where footnote (2) designated

(2) Measured October 30, 1987

(3) Measured officient 50, 1907
(3) Measured from the top of the steel casing, for Round 1 only.
(4) A negative number indicates a water level decline from Round 1 to Round 2. Round 1 measurements were taken immediately after irrigation ditch flows ceased. Round 2 measurements were taken about 3 months later, just prior to irrigation ditch flow start-up.

1 1

SURFACE WATER LEVEL ELEVATIONS MARSH GROUND WATER TABLE CONTOURS MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO OCTOBER-NOVEMBER, 1987 AND FEBRUARY, 1988

400

200

Dames & Moore

AJAR

SAN

AN

PLATE A-1

APPENDIX B

|

. 1

FIELD AND LABORATORY WATER QUALITY DATA FOR ROUNDS 1 AND 2 SAMPLING AND ANALYSES, AND QA/QC FOR ROUND 2

APPENDIX B

FIELD AND LABORATORY WATER QUALITY DATA FOR ROUNDS 1 AND 2 SAMPLING AND ANALYSES AND QA/QC FOR ROUND 2

WATER QUALITY SAMPLING

After purging the monitor wells with a teflon bailer and purging the three existing wells (W-1, W-2 and W-3) with a centrifugal pump, ground water and surface water samples were collected, preserved and analyzed in accordance with EPA guidance. Field measurements for pH, conductivity and temperature were measured by Dames & Moore at the time the water quality samples were collected. A Beckman No. 21 digital pH meter and an Amber Science, Inc. No. 605 electric conductivity meter were used and calibrated using solution standards of pH 4.0 and 10.0 buffer solutions and potassium chloride solutions of 718 umhos/cm and 6680 umhos/cm, respectively. Bottom samples were collected after 3 to 5 casing volumes of water had been removed, using a teflon bailer with an end ball valve lowered to the bottom of the wells.

Drop pipes were installed in monitor wells MW-12 and MW-13 and well W-3 prior to Round 2 sampling. These consist of 1-inch diameter PVC pipe that extends above the water table down into the 2-inch PVC casing and below the upper oil phase. The drop pipes block out contact of the teflon bailer with the product when the bailer is lowered. These were installed after a free oil phase had been detected in these monitor wells during Round 1 sampling. Such a phase was present only in monitor wells MW-12 and MW-13, and well W-3. The water quality samples from both Rounds 1 and 2 were sampled from below the upper oil phase. However, the Round 1 sample from monitor well 12 had been contaminated with product because the drop pipe had not yet been installed. This contamination in Round 2.

Sample bottles, with appropriate preservatives (as detailed in RMAL's report, herein), were shipped directly to the site by RMAL. All samples were iced immediately after collection and shipped to RMAL on the day of collection via overnight courier. Chain-of-custody documentation was maintained.

B-1

LABORATORY ANALYSIS

RMAL conducted the analysis on the water quality samples for both Round 1 and Round 2. A listing of the major inorganic and organic parameters for Rounds 1 and 2 are included in Table B-2 and are presented in columns for comparative purposes. The detailed report from RMAL for Round 2 analyses is also included in this appendix.

WATER QUALITY ANALYSES

Round 2 water quality analyses included the same comprehensive list of analytes as Round 1 with the addition of manganese. RMAL conducted analyses for 26 halogenated volatile organics, 9 aromatic volatile organics, total organic lead, 6 metals and 11 common ions and indicator parameters. The specific parameters are listed in Table 1 along with the analytical methods used. GC methods (601 and 602) were used to detect volatile organics in all water samples with the exception of one ground water sample (MW-12). Because of the presence of significant levels of volatiles a GC/MS method (624) was employed for the MW-12 sample.

Sample sites SW-1 and SW-4 could not be sampled during Round 2 sampling since they were dry. Sample sites SW-2 and SW-3 were not sampled as they consisted only of ground water inflow and site SW-5 was not sampled since it consisted entirely of product.

All water samples were analyzed for the full suite of parameters listed on Table 1. As with the Round 1 sampling, field OVA readings taken directly above the bottom of the ditch at sites SW-4 and SW-5 measured greater than 1,000 ppm volatile organics. As discussed in the text, elevated OVA readings were measured from SW-4 south along a 350-foot length of the Westside Irrigation Ditch.

ROCKY MOUNTAIN ANALYTICAL LABORATORY QA/QC PROGRAM

All analyses were conducted within approved holding times except for MW-ll and its duplicate. Consequently, this well was resampled and reanalyzed for the volatile organics in March 1988. Ion balances, detailed in RMAL's report, were all within the acceptance limits of \pm 5 percent except for MW-l0 with a percentage difference of -5.4. This difference was probably the result of high levels of sodium and sulfate.

Round 2 accuracy and precision of Laboratory Control Samples and Surrogate Control Samples for the organic compounds found on-site were within acceptance limits.

Two trip blanks were analyzed for volatile organics. Methylene chloride was detected in Round 2 in one sample at 11 ug/1 and in the other at 8.3 ug/1 and in Round 1 at 11 ug/1 and 9 ug/1. Laboratory contamination with this compound is very common and these levels are acceptable. No detections of this compound were made in any of the water samples or the equipment blank.

As in Round 1, an equipment blank was analyzed in Round 2 for the entire suite of parameters. No organics were detected and the concentrations of inorganics detected were in the range expected of the distilled water used to flush the equipment.

A duplicate of the sample from MW-11 was subjected to the full suite of analyses in Round 2. The relative percent difference for benzene between the two samples was not within acceptable limits. The benzene levels in the first two MW-11 samples were 25 ug/1 and 3.8 ug/1. A third sample, taken about one month later, before irrigation flow began in the Westside Irrigation Ditch, did not indicate the presence of benzene in MW-11 above the 0.5 ug/1 detection limit.

B-3

As indicated by RMAL in their "Overview," DCA was detected at 30 ug/l at W-3 in Round 2, whereas it was not detected in Round 1. We know of no explanation for this change. The wide range in concentrations of several volatile organics for MW-12 from Round 1 to Round 2 may be due to dilution impacts from the irrigation ditch waters at the time of Round 1 sampling. TABLE B-1

11.1.1

FIELD WATER QUALITY DATA ROUNDS 1 AND 2 SAMPLING (1,2) (Maverik Country Stores, Inc., Kirtland, New Mexico)

Remarks	(2) Same Conditions Same Conditions	(2)	Same Conditions	Same Conditions. Ground water inflow only.	Same Conditions. Ground water inflow only.	Dry	Same Conditions. Pooled product. Highly contaminated and not sam- pled for Round 2.	No distinct oil or sheen
Ren	(1) No oil or sheen noted in glass bailer No oil or sheen noted in glass bailer Yellow sheen, no odor, multi-colored No oil or sheen noted in glass bailer Yellow sheen, no odor, multi-colored No oil or sheen noted in glass bailer Yellow sheen, odoriferous	(1)	No distinct oil or sheen noted	No distinct oil or sheen noted	No distinct oil or sheen noted	Distinct oil and sheen noted	Distinct oil and sheen noted	<pre><0.5gpm Distinct oil and sheen noted</pre>
	(2)	(2)	Dry	1-2gpm	2-3gpm	Dry	Ponded	<0.5gpm
Flow CFS	3	(1)	-(3) 46,675gpm	<5gpm	Sgpm	<5gрш	ŚŚgpm	<2gpm
Temperature °C	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	(2)		8.9	8.3	-(3)	ami- h for	15.4
Temp	() () () () () () () () () () () () () ((1)	6.5	10.0	6.8	7.8	Upper surface layer too contami- nated to lower probes through for field tests.(3)	14.2
Hq	(2) 7.51 7.51 7.51 7.19 7.19 7.10 7.00 7.00 7.00 8.35 8.36 8.35 8.35 7.72	(2)	_(3)	7.41	8.16	-(3)	er toc obes t	7.95
Ч	(1) (1) (1) (1) (1) (1) (1) (1)	(1)	8.5	7.60	8.05	-(3) 7.28	ce lay wer pr .(3)	7.28
ivity /cm)	(2) 595 595 595 1,700 1,700 1,700 1,200 3,600 3,600 3,400 1,210 1,210 1,200 1,500 1,500	(2)	-(3)	1,800	1,620	-(3)	Upper surface layer too nated to lower probes t field tests.(3)	3,150
Conductivity (umhos/cm)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(1)	280	1,080 1,800 7.60 7.41	1,210 1,620	565	Upper nated field	3,080 3,150 7.28 7.95
Sample Site Designation	Ground Water MW-1 MM-2 MM-2 MW-5 MW-6 MW-6 MW-6 MW-6 MW-1 MW-1 MW-1 MW-12 MW-12 MW-12 MW-12 MW-13 MW-12 MW-13 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-14 MW-16 MW-17 MW-16 MW-17 MW-16 MW-10 MW-10 MW-10 MW-110 MW-112 MW-12 MW-1	Surface Water	SW-l Farmers Mutual Irriga- tion Ditch (Upstream)	SW-2 West Irrigation Ditch (at Hwy 489)	SW-3 West Irrigation Ditch (Downstream)	SW-4 West Irrigation Ditch (Across from Tank Farm)	SW-5 West Irrigation Ditch (Across from Tank Farm)	SW-6 V. Murray's Ditch (West of Tank Farm)

1 4 i if

:

i I

i |

1

į

ì

Round 1 Data
 Round 2 Data
 - Indicates no sample collected, where dry or not representative of the surface water.

TABLE B-2

MAVERIK-KIRTLAND WATER QUALITY

-	-	-	-	•	٠	-	-	-	-	•	-	-	•	-	•	•	-	-	۰.	•	٠	-	-	-	-	٠	-	-	-	-	-

SAMPLE IDENTIFICATION DATE SAMPLED	MW- 11-1	·1 L1-87	- MW 2 - 2	2-88
INORCANIC DADAMETERS (/I				
INORGANIC PARAMETERS (mg/L Calcium (Ca)	except a	44.0		112.0
Magnesium (Mg)		6.4		17.0
Sodium (Na)		44.0		50.0
Potassium (K)	<	5.0	<	5.0
Iron (Fe)	<	.05	$\overline{\langle}$.05
Manganese (Mn)		*		.013
Ammonia (as N)	<	.1	<	.015
Chloride (Cl)		26.0		33.0
Sulfate (SO4)		176.		198.
Fluoride (F)		.4		.3
Nitrate and Nitrite (as	N)	.2		.7
Total Alkalinity	,	20.4		159.0
Bicarbonate Alkalinity		20.4		159.0
Carbonate Alkalinity		5.0		*
Bicarbonate (HCO3)		24.9		193.9
Carbonate (CO3)		3.0		*
FIELD AND LABORATORY MEASUR	EMENTS			
Temperature (Degrees C)		15.3		*
Field pH		9.64		7.51
Lab pH (units)		8.60		7.85
Field Conductivity (umh	os/cm	400.0		595.0
Lab Conductivity (umhos		497.0		755.0
Total Dissolved Solids(mg/1)	360.0		537.0
VOLATILE ORGANICS DETECTED	(ug/L)			
Benzene		.53	<	. 50
Ethylbenzene	<	.50	<	. 50
Toluene	<	.50	<	. 50
m-Xylene	<	.50	<	.50
o,p-Xylene	<	.50	<	.50
Total Xylene		*		*
1,2 Dichloroethane	<	1.00	<	1.00
TOTAL ORGANIC LEAD (mg/L)				
Total Organic Lead	<	.010	<	.002

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 2)

MAVERIK-KIRTLAND WATER QUALITY

SAMPLE IDENTIFICATION	MW - 2	MW - 2
DATE SAMPLED	11-11-87	2-22-88

INORGANIC PARAMETERS (mg/L except	as noted)		
Calcium (Ca)	152.0		268.0
Magnesium (Mg)	25.0		43.0
Sodium (Na)	243.0		334.0
Potassium (K) <	5.0	<	5.0
Iron (Fe) <	.05	<	.05
Manganese (Mn)	*		1.100
Ammonia (as N) <	.1	<	.1
Chloride (Cl)	67.0		101.0
Sulfate (SO4)	526.		955.
Fluoride (F)	.4		.3
Nitrate and Nitrite (as N)	.4	<	.1
Total Alkalinity	309.0		365.0
Bicarbonate Alkalinity	309.0		365.0
Carbonate Alkalinity <	5.0		*
Bicarbonate (HCO3)	376.7		445.0
Carbonate (CO3) <	3.0		*
FIELD AND LABORATORY MEASUREMENTS			
Temperature (Degrees C)	14.2		*
Field pH	7.75		6.63
Lab pH (units)	7.65		7.63
Field Conductivity (umhos/cm	1100.0		2000.0
Lab Conductivity (umhos/cm)	1770.0		2500.0
Total Dissolved Solids(mg/l)	1360.0		2000.0
VOLATIE ODCANICE DETECTED (
VOLATILE ORGANICS DETECTED (ug/L) Benzene <	. 50		. 50
Benzene < Ethylbenzene <	.50	<	
Toluene	.50	< <	.50 .50
m-Xylene <	. 50	<	. 50
o,p-Xylene <	. 50	<	.50
Total Xylene			. JU *
1,2 Dichloroethane <	1.00	<	î.00
1,2 Dichtoroechalle	1.00		1.00
IUTAL URGANIC LEAD (mg/L)			
TOTAL ORGANIC LEAD (mg/L) Total Organic Lead <	.004		.004

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 3)

1

				/ERIK-KIRT	LAND WA	•	LITY
SAMPLE IDENTIFICATION DATE SAMPLED		-3 11-87	MW -				
INORGANIC PARAMETERS (mg/L e	vcent	as noted)					
Calcium (Ca)	xcept	148.0		167.0			
Magnesium (Mg)		21.0		24.0			
Sodium (Na)		349.0		377.0			
Potassium (K)	<		<	5.0			
Iron (Fe)	<	.05	<	5.0 .05			
Manganese (Mn)		*		.640			
Ammonia (as N)	<	.1	<				
Chloride (Cl)		97.0		138.0			
Sulfate (SO4)		670.		713.			
Fluoride (F)		.8		. 8			
Nitrate and Nitrite (as		. 2		. 3			
Total Alkalinity		214.8		387.0			
Bicarbonate Alkalinity		214.8		387.0			
Carbonate Alkalinity	<	5.0		*			
Bicarbonate (HCO3)		261.9		471.8			
		3.0		*			
FIELD AND LABORATORY MEASURE	EMENTS						
Temperature (Degrees C)		12.0		*			
Field pH		7.78		7.16			
Lab pH (units)		7.53		7.58			
Field Conductivity (umho	os/cm	1080.0		1700.0			
Lab Conductivity (umhos,	'cm)	2160.0		2300.0			
Total Dissolved Solids(n	ng/1)	1620.0		1730.0			
VOLATILE ORGANICS DETECTED (ug/L)						
Benzene	<	.50	<	.50			
Ethylbenzene	<	.50	<	.50			
Toluene	<	.50	<	.50			
m-Xylene	<	.50	<	.50			
o,p-Xylene	<	.50	<	. 50			
Total Xylene		*		*			
1,2 Dichloroethane	<	1.00	<	1.00			
TOTAL ORGANIC LEAD (mg/L)							
	<	.010		.005			

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 4)

1

MAVERIK-KIRTLAND WATER QUALITY

			MAV	ERIK-KIRT
SAMPLE IDENTIFICATION	MW	-4	MW -	4
DATE SAMPLED	11-	10-87	2-2	2-88
INORGANIC PARAMETERS (mg/L ex	cept	as noted)		
Calcium (Ca)	•	142.0		131.0
Magnesium (Mg)		20.0		19.0
Sodium (Na)		337.0		294.0
Potassium (K)	<	5.0	<	5.0
Iron (Fe)	<	.05	<	.05
Manganese (Mn)		*		.780
Ammonia (as N)	<	.1	<	.1
Chloride (Cl)		87.0		73.0
Sulfate (SO4)		654.		601.
Fluoride (F)		. 8		.7
Nitrate and Nitrite (as N	1)	.3		. 2
Total Alkalinity		332.0		332.0
Bicarbonate Alkalinity		332.0		332.0
Carbonate Alkalinity	<	5.0		*
Bicarbonate (HCO3)		404.8		404.8
Carbonate (CO3)	<	3.0		*
FIELD AND LABORATORY MEASUREN	IENTS			
Temperature (Degrees C)		14.1		*
Field pH		7.46		7.31
Lab pH (units)		7.44		7.84
Field Conductivity (umhos	s/cm	1510.0		1500.0
Lab Conductivity (umhos/c		2060.0		1920.0
Total Dissolved Solids(mg		1540.0		1380.0
VOLATILE ORGANICS DETECTED (1	1g/L)			
Benzene	<	.50	<	. 50
Ethylbenzene	<		<	.50
Toluene	<		<	.50
m-Xylene	<	.50	<	.50
o,p-Xylene	<		<	.50
Total Xylene		*		*
1,2 Dichloroethane	<	1.00	<	1.00
TOTAL ORGANIC LEAD (mg/L)				
Total Organic Lead	<	.002		.003
<: Less than given detection *: Parameter value not detection				

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.
+: Data questionable

ABLE B-2 (Cont. 5)

ł

ł

1

AVERIK-KIRTLAND WATER QUALITY

				ERIK-KIF	
SAMPLE IDENTIFICATION	MW	- 5	MW -		
DATE SAMPLED	11-	10-87		2-88	
INORGANIC PARAMETERS (mg/L e	except	as noted)			
Calcium (Ca)		129.0		142.0	
Magnesium (Mg)		20.0		22.0	
Sodium (Na)		258.0		244.0	
Potassium (K)	<			5.0	
Iron (Fe)	<				
Manganese (Mn)		*		.760	
Ammonia (as N)	<	.1	<	.1	
Chloride (Cl)		68.0		61.0	
Sulfate (SO4)		499.		545.	
Fluoride (F)		.8		.7	
Nitrate and Nitrite (as	N)	. 2		. 3	
Total Alkalinity	•	397.0		301.0	
Bicarbonate Alkalinity		397.0		301.0	
Carbonate Alkalinity	<	5.0		*	
Bicarbonate (HCO3)		484.0		367.0	
Carbonate (CO3)	<	3.0		*	
FIELD AND LABORATORY MEASUR	EMENTS				
Temperature (Degrees C)		15.5		*	
Field pH		7.85		7.19	
Lab pH (units)		7.42		7.60	
Field Conductivity (umho	os/cm	1310.0		1340.0	
Lab Conductivity (umhos,		1730.0		1700.0	
Total Dissolved Solids(1250.0		1190.0	
VOLATILE ORGANICS DETECTED	(ug/L)				
Benzene	<	. 50	<	.50	
Ethylbenzene	<	.50	<	.50	
Toluene	<	.50	<	.50	
m-Xylene	<	. 50	<	.50	
o,p-Xylene	<	. 50	<	.50	
Total Xylene		*		*	
1,2 Dichloroethane	<	1.00	<	1.00	
TOTAL ORGANIC LEAD (mg/L)					
Total Organic Lead	<	.020		.002	

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 6)

-KIRTLAND WATER QUALITY

			MAV	ERIK-KIR	TLA
SAMPLE IDENTIFICATION	MW	- 6	 MW-	 6	
DATE SAMPLED		11-87		2-88	
INORGANIC PARAMETERS (mg/L e	xcept	as noted)			
Calcium (Ca)	•	230.0		267.0	
Magnesium (Mg)		33.0		37.0	
Sodium (Na)		386.0		361.0	
Potassium (K)	<	5.0	<	5.0	
Iron (Fe)	<	.05	<	.05	
Manganese (Mn)		*		2.300	
Ammonia (as N)	<	.1	<	.1	
Chloride (C1)		288.0		260.0	
Sulfate (SO4)		843.		960.	
Fluoride (F)		.6		. 5	
Nitrate and Nitrite (as	N) <	.1	<	.1	
Total Alkalinity	-	367.0		324.0	
Bicarbonate Alkalinity		367.0		324.0	
Carbonate Alkalinity	<	5.0		*	
Bicarbonate (HCO3)		447.5		395.0	
Carbonate (CO3)	<	3.0		*	
FIELD AND LABORATORY MEASURE	MENTS				
Temperature (Degrees C)		12.1		*	
Field pH		7.51		7.18	
Lab pH (units)		7.42		7.53	
Field Conductivity (umho	s/cm	1880.0		2050.0	
Lab Conductivity (umhos/		2870.0		2700.0	
Total Dissolved Solids(m		2130.0		2000.0	
VOLATILE ORGANICS DETECTED (ug/L)				
Benzene	<	.50	<	.50	
Ethylbenzene	<	.50	<	.50	
Toluene	<	.50	<	.50	
m-Xylene	<	.50	<	.50	
o,p-Xylene	<	. 50	<	.50	
Total Xylene		*	-	*	
1,2 Dichloroethane		16.00		7.70	
TOTAL ORGANIC LEAD (mg/L)					
Total Organic Lead		.004		.005	
				.005	
<: Less than given detecti	on lim	ite			
*: Parameter value not det					

*: Parameter value not determined.@: At least one sample used in statistical

summary is below detection limit.

#: All samples are below detection limit.
+: Data questionable

TABLE B-2 (Cont. 7)

MAVERIK-KIRTLAND WATER QUALITY

-	 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 -	-	-	-	-	-	-	-	-
				_																										

SAMPLE IDENTIFICATION DATE SAMPLED		-7 11-87	MW - 2 - 2	7 22-88
INORGANIC PARAMETERS (mg/L	avaant	ac noted)		
Calcium (Ca)	except	152.0		205.0
Magnesium (Mg)		22.0		205.0
Sodium (Na)		22.0		29.0
Potassium (K)	<	5.0	/	
Iron (Fe)	<	.05	< <	.05
Manganese (Mn)		*		.480
Ammonia (as N)	<	.1	<	.480
Chloride (Cl)		126.0		.1 169.0
Sulfate (SO4)		558.		675.
				.5
Fluoride (F) Nitrate and Nitrite (as	N)	.6 .7		1.0
Total Alkalinity	NJ	./ 166.2		320.0
Bicarbonate Alkalinity		166.2		320.0
Carbonate Alkalinity	<	5.0		520.0 *
Bicarbonate (HCO3)		202.6		390.2
Carbonate (CO3)	<	3.0		*
FIELD AND LABORATORY MEASUR Temperature (Degrees C) Field pH Lab pH (units) Field Conductivity (umh Lab Conductivity (umhos Total Dissolved Solids(os/cm /cm) mg/1)	13.5 7.66 7.40 1060.0 1840.0 1400.0		* 7.03 7.64 1600.0 2100.0 1510.0
VOLATILE ORGANICS DETECTED				
Benzene	<	.50	<	.50
Ethylbenzene	<	. 50	<	.50
Toluene	<	. 50	<	. 50
m-Xylene	<	. 50	<	. 50
o,p-Xylene	<	. 50	<	. 50
Total Xylene		*		*
1,2 Dichloroethane	<	1.00	<	1.00

summary is below detection limit.
#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 8)

i

i.

I

D WATER QUALITY

			MAV	/ERIK-KIRT	'LANI
SAMPLE IDENTIFICATION	MW	- 8	MW	• 8	
DATE SAMPLED		23-87	2 - 2		
INORGANIC PARAMETERS (mg/L e:	vcent	as noted)			
Calcium (Ca)	leepe	159.0		193.0	
Magnesium (Mg)		21.0		26.0	
Sodium (Na)		166.0		174.0	
Potassium (K)	<			5.0	
Iron (Fe)	<		<	.05	
Manganese (Mn)	-	*	-	2.700	
Ammonia (as N)	<	.1	<	.1	
Chloride (Cl)	•	67.0		65.0	
Sulfate (SO4)		401.		605.	
Fluoride (F)		.7		.6	
Nitrate and Nitrite (as)	N) <		<	.1	
Total Alkalinity		273.0		256.0	
Bicarbonate Alkalinity		273.0		256.0	
Carbonate Alkalinity		*		*	
Bicarbonate (HCO3)		332.9		312.1	
Carbonate (CO3)		*		*	
FIELD AND LABORATORY MEASURE	MENTS				
Temperature (Degrees C)		14.8		*	
Field pH		7.41		7.00	
Lab pH (units)		7.52		7.61	
Field Conductivity (umho	s/cm	1060.0		1210.0	
Lab Conductivity (umhos/		1500.0		1640.0	
Total Dissolved Solids(m		950.0		1230.0	
VOLATILE ORGANICS DETECTED (ug/L)				
Benzene	<	. 50	<	.50	
Ethylbenzene	<		<	.50	
Toluene	<		<		
m-Xylene	<	.50	<	.50	
o,p-Xylene	<	.50	<	.50	
Total Xylene		*		*	
1,2 Dichloroethane		2.80		1.10	
TOTAL ORGANIC LEAD (mg/L)		.020		.004	

summary is below detection limit. #: All samples are below detection limit.

+: Data questionable

1

TABLE B-2 (Cont. 9)

ļ

MAVERIK-KIRTLAND WATER QUALITY

			MAV	ERIK-KIF	tT:
SAMPLE IDENTIFICATION	MW	1-9	MW-	9	-
DATE SAMPLED		23-87	2-2	2-88	
INORGANIC PARAMETERS (mg/L	except	as noted)			
Calcium (Ca)	-	324.0		396.0	
Magnesium (Mg)		29.0		41.0	
Sodium (Na)		146.0		357.0	
Potassium (K)	<	5.0	<	5.0	
Iron (Fe)	<	.05	<	.05	
Manganese (Mn)		*		.110	
Ammonia (as N)	<	.1	<	.1	
Chloride (Cl)		43.0		81.0	
Sulfate (SO4)		863.		1510.	
Fluoride (F)		1.0		.8	
Nitrate and Nitrite (as	N) <	.1	<	.1	
Total Alkalinity		372.0		250.0	
Bicarbonate Alkalinity		372.0		250.0	
Carbonate Alkalinity		*		*	
Bicarbonate (HCO3)		453.6		304.8	
Carbonate (CO3)		*		*	
FIELD AND LABORATORY MEASUR	EMENTS				
Temperature (Degrees C)		13.3		*	
Field pH		7.11		7.08	
Lab pH (units)		7.59		7.71	
Field Conductivity (umh	los/cm	1400.0		2200.0	
Lab Conductivity (umhos	s/cm)	1850.0		3000.0	
Total Dissolved Solids(mg/1)	1520.0		2160.0	
VOLATILE ORGANICS DETECTED	(ug/L)				
Benzene	<	.50	<	.50	
Ethylbenzene	<	.50	<	.50	
Toluene	<	.50	<	. 50	
m-Xylene	<	.50	<	. 50	
o,p-Xylene	<	.50	<	.50	
Total Xylene		*		*	
1,2 Dichloroethane		8.30		8.60	
TOTAL ORGANIC LEAD (mg/L)					
	<	.010		.004	

- *: Parameter value not determined.
- @: At least one sample used in statistical summary is below detection limit.
- #: All samples are below detection limit.
- +: Data questionable
- DUP: Indicates duplicate sample

TABLE B-2 (Cont. 10)

i

VERIK-KIRTLAND WATER QUALITY

			MAV	/ERIK-KI	TABI RTLAND		
SAMPLE IDENTIFICATION DATE SAMPLED		-10 23-87	MW - 2 - 2	-10 23-88	3		
INORGANIC PARAMETERS (mg/L ex	vcent	as noted)					
Calcium (Ca)	rcept	126.0		196.0			
Magnesium (Mg)		22.0		41.0			
Sodium (Na)		250.0		578.0			
Potassium (K)	<	5.0	<				
Iron (Fe)	<	.05		.05			
Manganese (Mn)	-	*	•	5.200			
Ammonia (as N)	<	.1	<	.1			
Chloride (Cl)	-	46.0	-	191.0			
Sulfate (SO4)		568.		1640.			
Fluoride (F)		.8		.7			
Nitrate and Nitrite (as)	N) <	_	<				
Total Alkalinity		153.0		271.0			
Bicarbonate Alkalinity		153.0		271.0			
Carbonate Alkalinity		*		*			
Bicarbonate (HCO3)		186.5		330.4			
Carbonate (CO3)		*		*			
FIELD AND LABORATORY MEASURE	MENTS						
Temperature (Degrees C)		12.5		*			
Field pH		7.66		8.22			
Lab pH (units)		7.74		7.70			
Field Conductivity (umho	s/cm	1280.0		3600.0			
Lab Conductivity (umhos/		1640.0		3720.0			
Total Dissolved Solids(m		1240.0		2725.0			
VOLATILE ORGANICS DETECTED (ug/L)						
Benzene	<	. 50	<	.50			
Ethylbenzene	<	.50	<				
Toluene	<	.50	<				
m-Xylene	<	.50	<	, 50			
o,p-Xylene	<	. 50	<	.50			
Total Xylene		*	•	*			
1,2 Dichloroethane		3.20		1.30			
TOTAL ORGANIC LEAD (mg/L)							
Total Organic Lead	<	.020		.009			
Total Organic Lead <: Less than given detecti *: Parameter value not det	on lim	its.		.009			

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.
+: Data questionable

TABLE B-2 (Cont. 11) MAVERIK-KIRILAND WATER QUALITY

			1.81			
SAMPLE IDENTIFICATION DATE SAMPLED		-11 11-87	MW-11 2-23-88		MW-1 3-23	L1 3-88
INORGANIC PARAMETERS (mg/L exca	ont	as noted)				
Calcium (Ca)	-pc	138.0		186.0		*
Magnesium (Mg)		21.0		28.0		*
Sodium (Na)		234.0		263.0		*
Potassium (K)	<		<			*
Iron (Fe)	<		<			*
Manganese (Mn)		*		1.000		*
Ammonia (as N)	<	.1	<			*
Chloride (Cl)		45.0		184.0		*
Sulfate (SO4)		592.		615.		*
Fluoride (F)		.5		.5		*
Nitrate and Nitrite (as N)	<	.1	<	.1		*
Total Alkalinity		267.0		242.0		*
Bicarbonate Alkalinity		267.0		242.0		*
Carbonate Alkalinity	<	5.0		*		*
Bicarbonate (HCO3)		325.5		295.1		*
Carbonate (CO3)	<	3.0		*		*
FIELD AND LABORATORY MEASUREMEN	NIS					
Temperature (Degrees C)		14.5		*		*
Field pH		7.85		7.80		*
Lab pH (units)		7.80		7162		*
Field Conductivity (unhos/		1050.0		2050.0		*
Lab Conductivity (umhos/cm				2120.0		*
Total Dissolved Solids (mg/	I)	1250.0		1470.0		*
VOLATILE ORGANICS DETECTED (ug	/T.)					
Benzene	-,	.81		25.00+	<	.50
Ethylbenzene	<	.50	<		<	.50
Toluene	<		<		<	.50
m-Xylene	<		<		<	.50
o,p-Xylene	<					.50
Total Xylene		*		*		*
1,2 Dichloroethane		1.00		4.60	<	.50
TOTAL ORGANIC LEAD (mg/L)						
Total Organic Lead		.007	<	.004		*

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

÷

TABLE B-2 (Cont. 12)

i |

WATER QUALITY

.

			MAVI	ERIK-KIRT	LAND
SAMPLE IDENTIFICATION		12	MW - 2		
DATE SAMPLED	11-2	27-87	2-23	3-88	
	veent e	a noted)			
INORGANIC PARAMETERS (mg/L e: Calcium (Ca)	xcept a	148.0		133.0	
Magnesium (Mg)		42.0		39.0	
Sodium (Na)		222.0		239.0	
Potassium (K)	<	5.0	<	5.0	
Iron (Fe)		.13		.09	
Manganese (Mn)		.12		3.600	
Ammonia (as N)	<				
Chloride (C1)		.1 321.0	<	.1	
				360.0	
Sulfate (SO4) Fluoride (F)		16.		9.	
		.3		.3	
Nitrate and Nitrite (as 1	N) <	.1	<	.1	
Total Alkalinity		508.0		541.0	
Bicarbonate Alkalinity		508.0		541.0	
Carbonate Alkalinity		*		*	
Bicarbonate (HCO3)		619.4 *		659.6 *	
Carbonate (CO3) TELD AND LABORATORY MEASURE	MENTO				
Temperature (Degrees C)	FIEN I S	17.0		*	
Field pH		6.74		7.25	
Lab pH (units)		6.99		7.05	
Field Conductivity (umho	a /am	1510.0		2010.0	
Lab Conductivity (umhos/		1930.0		2010.0	
Total Dissolved Solids(m		1200.0		1310.0	
Total Dissolved Sollds(m	g/1)	1200.0		1310.0	
OLATILE ORGANICS DETECTED (0.4		
Benzene		000.00		000.00	
Ethylbenzene		1300.00		500.00	
Toluene		2000.00	20	00.00	
m-Xylene		*		*	
o,p-Xylene		*		*	
Total Xylene	-	3000.00		000.00	
1,2 Dichloroethane		450.00	2	400.00	
TOTAL ORGANIC LEAD (mg/L)					
Total Organic Lead	<	.020		.060	
<: Less than given detecti	on lim:	its.			
*: Parameter value not det					
@: At least one sample use			1		
summary is below detect					
#: All samples are below d					

#: All samples are below detection limit. +: Data questionable

DUP: Indicates duplicate sample

53

ļ

TABLE B-2 (Cont. 13)

I

MAVERIK-KIRTLAND WATER QUALITY

SAMPLE IDENTIFICATION		7-13	MW -			
DATE SAMPLED	11-	27-87	2 - 2	24-88		
INORGANIC PARAMETERS (mg/L e	except	as noted)				
Calcium (Ca)	•	364.0		219.0		
Magnesium (Mg)		105.0		47.0		
Sodium (Na)		666.0		370.0		
Potassium (K)		24.0	<	5.0		
Iron (Fe)		. 39		.12		
Manganese (Mn)		*		1.900		
Ammonia (as N)		.5		.5		
Chloride (Cl)		257.0		82.0		
Sulfate (SO4)		1980.		920.		
Fluoride (F)		1.0		.8		
Nitrate and Nitrite (as	N)	.3	<	.1		
Total Alkalinity		419.0		581.0		
Bicarbonate Alkalinity		419.0		581.0		
Carbonate Alkalinity		*		*		
Bicarbonate (HCO3)		510.9		708.4		
Carbonate (CO3)		*		*.00		
FIELD AND LABORATORY MEASURE	LMENIS	0.1				
Temperature (Degrees C)		8.1		*		
Field pH		8.14		8.36		
Lab pH (units)	,	7.89		8.11		
Field Conductivity (umho		2300.0		2600.0		
Lab Conductivity (umhos,		4300.0		2650.0		
Total Dissolved Solids(r	ng/1)	3700.0		1850.0		
VOLATILE ORGANICS DETECTED	(ug/L)					
Benzene	<	.50	<	.50		
Ethylbenzene		. 54	<	.50		
Toluene	<	. 50	<	. 50		
m-Xylene		1.40		1.10		
o,p-Xylene		.83		. 58		
Total Xylene		*		*		
1,2 Dichloroethane	<	. 50		1.90		
IOTAL ORGANIC LEAD (mg/L)						
Total Organic Lead	<	.010	<	.004		
Bunto Bold			•	.004		

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit. #: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 14)

L

MAVERIK-KIRTLAND WATER QUALITY

SAMPLE IDENTIFICATION	MW-1DUP	MW-11DUP
DATE SAMPLED	11-11-87	2-23-88
		· · · · · · · · · · · · · · · · · · ·

INORGANIC PARAMETERS (mg/L exc	ept a	as noted)		
Calcium (Ca)		44.0		182.0
Magnesium (Mg)		6.2		28.0
Sodium (Na)		43.0		277.0
Potassium (K)	<	5.0	<	5.0
Iron (Fe)	<	.05		.19
Manganese (Mn)		*		1.200
Ammonia (as N)	<	.1	<	.1
Chloride (Cl)		25.0		171.0
Sulfate (SO4)		178.		615.
Fluoride (F)		.4		. 5
Nitrate and Nitrite (as N))	. 2	<	.1
Total Alkalinity		16.8		254.0
Bicarbonate Alkalinity		16.8		254.0
Carbonate Alkalinity		15.0		*
Bicarbonate (HCO3)		20.5		309.7
Carbonate (CO3)		9.0		*
FIELD AND LABORATORY MEASUREM	NTO			
	21112	*		*
Temperature (Degrees C) Field pH		*		*
Lab pH (units)		9.01		7.64
Field Conductivity (umhos)	/ am	9.01		/.04
		488.0		2130.0
Lab Conductivity (umhos/cr		488.0 360.0		1470.0
Total Dissolved Solids(mg,	(T)	300.0		1470.0
VOLATILE ORGANICS DETECTED (ug	g/L)			
Benzene	<	.50		3.80
Ethylbenzene	<	.50	<	.50
Toluene	<	.50	<	.50
m-Xylene	<	. 50	<	.50
o,p-Xylene	<	. 50	<	.50
Total Xylene		*		*
1,2 Dichloroethane	<	1.00		3.60
TOTAL ORGANIC LEAD (mg/L)				
Total Organic Lead	<	.020		.003
C C				

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 15)

÷

j

		,
MAVERIK-K	IRTLAND WATER	QUALITY

			MAV	ERIK-KIR	T
SAMPLE IDENTIFICATION	W-	1	W-1		-
DATE SAMPLED		20-87			
				• • • • • • • •	
INORGANIC PARAMETERS (mg/L	except	as noted)			
Calcium (Ca)	•	25.0		15.0	
Magnesium (Mg)		3.8		2.6	
Sodium (Na)		1020.0		696.0	
Potassium (K)	<	5.0	<	5.0	
Iron (Fe)	<		<	.05	
Manganese (Mn)		*		.021	
Ammonia (as N)		.3	<	.1	
Chloride (Cl)		1170.0		527.0	
Sulfate (SO4)		433.		610.	
Fluoride (F)		1.0		1.2	
Nitrate and Nitrite (as	s N) <		<	.1	
Total Alkalinity		221.0		289.0	
Bicarbonate Alkalinity		221.0		289.0	
Carbonate Alkalinity		*		207.0	
Bicarbonate (HCO3)		269.5		352.4	
Carbonate (CO3)		*		*	
FIELD AND LABORATORY MEASU	REMENTS				
Temperature (Degrees C)		14.3		*	
Field pH	/	7.96		8.63	
Lab pH (units)		8.38		8.39	
Field Conductivity (um		3500.0		3400.0	
Lab Conductivity (umho		4520.0		3360.0	
Total Dissolved Solids		2300.0		2140.0	
iocal Dissolved Sollas	(mg/1)	2300.0		2140.0	
VOLATILE ORGANICS DETECTED		50		50	
Benzene	<	. 50	<		
Ethylbenzene	<		<	.50	
Toluene	<	. 50	<	. 50	
m-Xylene	<	.50	<	.50	
o,p-Xylene	<	. 50	<	.50	
Total Xylene		*		*	
1,2 Dichloroethane	<	1.00	<	1.00	
TOTAL ORGANIC LEAD (mg/L)					
Total Organic Lead	<	.020	<	.002	

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

- #: All samples are below detection limit.
- +: Data questionable
- DUP: Indicates duplicate sample

TABLE B-2 (Cont. 16)

MAVERIK-KIRTLAND WATER QUALITY

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	٠	-	-	-	-	-	-	-	-	-	-	-	•	-	
	W	-	2																													

DATE SAMPLED	W-2	W-2 2-24-88					
	11-2	23-87	2-2	4-88			
INORGANIC PARAMETERS (mg/L e	veent	as noted)					
Calcium (Ca)	xcept a	42.0		28.0			
Magnesium (Mg)		28.0		26.0			
Sodium (Na)		147.0		126.0			
Potassium (K)		13.0		7.0			
Iron (Fe)		.31	<	.05			
Manganese (Mn)		*	-	.032			
Ammonia (as N)		.9		.7			
Chloride (Cl)		43.0		37.0			
Sulfate (SO4)		114.		97.			
Fluoride (F)		.4		. 2			
Nitrate and Nitrite (as	N) <	.1	<	.1			
Total Alkalinity		368.0		297.0			
Bicarbonate Alkalinity		368.0		297.0			
Carbonate Alkalinity		*		*			
Bicarbonate (HCO3)		448.7		362.1			
Carbonate (CO3)		*		*			
ETELD AND IABODATORY MEACUDE	MENTO						
FIELD AND LABORATORY MEASURE Temperature (Degrees C)	MENIS	12.9		*			
Field pH		8.06		8.55			
Lab pH (units)		8.24		8.25			
Field Conductivity (umho		700.0		840.0			
Lab Conductivity (umhos/		895.0		845.0			
Total Dissolved Solids(m		600.0		640.0			
VOLATILE ORGANICS DETECTED ('ug /I)						
Benzene	ч <u>в</u> / ц)	1.00	<	. 50			
Ethylbenzene	<	.50	<	. 50			
Toluene	<	.50	~	. 50			
m-Xylene	<	.50	~	. 50			
o,p-Xylene	<	.50	<	.50			
Total Xylene		*		*			
1,2 Dichloroethane	<	1,00	<	1.00			
TOTAL OPCANIC LEAD ((1)							
TOTAL ORGANIC LEAD (mg/L)	/	.010	/	002			
Total Organic Lead	\ \	.010		.002			

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

ļ

TABLE B-2 (Cont. 17)

MAVERIK-KIRTLAND WATER QUALITY

SAMPLE IDENTIFICATION	W-3	W-3
DATE SAMPLED	11-27-87	2-23-88

INORGANIC PARAMETERS (mg/L ex	cept as no	ted)	
Calcium (Ca)	cept as in	*	103.0
Magnesium (Mg)		*	22.0
Sodium (Na)		*	207.0
Potassium (K)		*	6.0
Iron (Fe)			
Manganese (Mn)		*	< .05 .280
Ammonia (as N)		*	.280
Chloride (Cl)		*	9.8 50.0
Sulfate (SO4)		*	387.
		*	
Fluoride (F)	1	*	.4
Nitrate and Nitrite (as N)	*	1.1
Total Alkalinity			363.0
Bicarbonate Alkalinity		*	363.0
Carbonate Alkalinity			*
Bicarbonate (HCO3)		*	442.6
Carbonate (CO3)		*	*
FIELD AND LABORATORY MEASUREM	ENTS		
Temperature (Degrees C)		*	*
Field pH		*	7.72
Lab pH (units)		*	7.81
Field Conductivity (umhos	/cm	*	1500.0
Lab Conductivity (umhos/c		*	1550.0
Total Dissolved Solids(mg		*	960.0
	,/ - /		20010
VOLATILE ORGANICS DETECTED (u	g/L)		
Benzene	< .	50 •	< .50
Ethylbenzene	1.	30 •	< .50
Toluene	< .	.50 •	< .50
m-Xylene	2.	60 •	< .50
o,p-Xylene	3.	20 •	< .50
Total Xylene		*	*
1,2 Dichloroethane	< 1.	00	30.00+
TOTAL ORGANIC LEAD (mg/L)			
Total Organic Lead		*	.002
iocal organic Lead		.,	.002

<: Less than given detection limits.

- *: Parameter value not determined.
- @: At least one sample used in statistical summary is below detection limit.
- #: All samples are below detection limit.
- +: Data questionable
- DUP: Indicates duplicate sample

TABLE B-2 (Cont. 18)

1

AVERIK-KIRTLAND WATER QUALITY

			MAVERIK-KIRT
SAMPLE IDENTIFICATION	SW	-1	SW-1
DATE SAMPLED	11-	10-87	0-0-0
INORGANIC PARAMETERS (mg/L	excent	as noted)	
Calcium (Ca)	0	86.0	*
Magnesium (Mg)		13.0	*
Sodium (Na)		29.0	*
Potassium (K)	<	5.0	*
Iron (Fe)	<	.05	*
Manganese (Mn)		*	*
Ammonia (as N)	<	.1	*
Chloride (Cl)		16.0	*
Sulfate (SO4)		136.	*
Fluoride (F)		. 3	*
Nitrate and Nitrite (a	s N)	. 3	*
Total Alkalinity		159.0	*
Bicarbonate Alkalinity		159.0	*
Carbonate Alkalinity	<	5.0	*
Bicarbonate (HCO3)		193.9	*
Carbonate (CO3)	<	3.0	*
FIELD AND LABORATORY MEASU			
Temperature (Degrees C)	6.5	*
Field pH		8.50	*
Lab pH (units)	. ,	8.12	*
Field Conductivity (um		280.0	*
Lab Conductivity (umho		581.0	*
Total Dissolved Solids	(mg/1)	400.0	*
VOLATILE ORGANICS DETECTED			
Benzene	<	.50	*
Ethylbenzene	<	.50	*
Toluene	<	. 50	*
m-Xylene	<	. 50	*
o,p-Xylene	<	.50	*
Total Xylene		*	*
1,2 Dichloroethane	<	1.00	*
TOTAL ORGANIC LEAD (mg/L)			
Total Organic Lead	<	. 002	*

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 19)

AND WATER QUALITY

11-	2-2 10-87 as noted) 162.0	SW - 2 - 2		
	as noted) 162.0	2-2	24-88	
ept	162.0			
ept	162.0			
			147.0	
	26.0		25.0	
	159.0		190.0	
<	5.0	<		
<	.05	<	.05	
	*		.550	
<	.1		. 2	
	49.0		50.0	
	476.		550.	
	.4		. 5	
	1.5		.7	
	277.0		274.0	
	277.0		274.0	
<	5.0		*	
			334.1	
<	3.0		*	
NTS				
	10.0		*	
	7.60		7.41	
cm	1080.0			
)	1480.0			
			1210.0	
/L)				
<	. 50	<	.50	
<		<	.50	
<	.50			
<				
	*	-	*	
	1.10	<	1.00	
<	.002		.002	
	< < NTS (cm) (l) (l) (l) (l) (l) (l) (l)	<pre>< .1 49.0 476. .4 1.5 277.0 277.0 < 5.0 337.7 < 3.0 * * * * * * * * * * * * * * * * * * *</pre>	<pre>< .1</pre>	$< .1 .2 \\ 49.0 50.0 \\ 476. 550. \\ .4 .5 \\ 1.5 .7 \\ 277.0 274.0 \\ 277.0 274.0 \\ 277.0 274.0 \\ < 5.0 * \\ 337.7 334.1 \\ < 3.0 * \\ 337.7 334.1 \\ < 3.0 * \\ 10.0 * \\ 7.60 7.41 \\ 7.64 7.82 \\ 7.60 7.41 \\ 7.64 7.82 \\ 7.60 1800.0 \\ 1800.0 \\ 1 1120.0 1800.0 \\ 1210.0 \\ 1210.0 \\ 1210.0 \\ 1210.0 \\ 1.10 < 50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .50 \\ < .$

#: All samples are below detection limit.
+: Data questionable

DUP: Indicates duplicate sample

E B-2 (Cont. 20)

WATER QUALITY

|--|

			MAV	ERIK-KIR	TABLE TLAND
SAMPLE IDENTIFICATION		- 3	SW-		
DATE SAMPLED		10-87		24-88	
INORGANIC PARAMETERS (mg/L exc	ont	as noted)			
Calcium (Ca)	ept	178.0		146.0	
Magnesium (Mg)		32.0		26.0	
Sodium (Na)		223.0		205.0	
Potassium (K)	<	5.0	<		
Iron (Fe)		.06		5.0 .13	
Manganese (Mn)		*		.160	
Ammonia (as N)	<		<	.100	
Chloride (Cl)	•	77.0	•	52.0	
Sulfate (SO4)		602.		550.	
Fluoride (F)		.6		.5	
Nitrate and Nitrite (as N)		1.0		.5	
Total Alkalinity		297.0		253.0	
Bicarbonate Alkalinity		297.0		253.0	
Carbonate Alkalinity	<			*	
Bicarbonate (HCO3)		362.1		308.5	
Carbonate (CO3)	<			*	
FIELD AND LABORATORY MEASUREME	INTS				
Temperature (Degrees C)		6.8		*	
Field pH		8.05		8.16	
Lab pH (units)		8.00		8.19	
Field Conductivity (umhos/	'cm	1210.0		1620.0	
Lab Conductivity (umhos/cm	n)	1830.0		1650.0	
Total Dissolved Solids(mg/	'1)	1400.0		1200.0	
VOLATILE ORGANICS DETECTED (ug	;/L)				
Benzene	<	. 50	<		
Ethylbenzene	<			.50	
Toluene	<		<		
m-Xylene	<	. 50	<	. 50	
o,p-Xylene	<	. 50	<	.50	
Total Xylene		*		*	
1 0 0 1 1 . 1		1 00		1 00	

TOTAL ORGANIC LEAD (mg/L) Total Organic Lead .010 .004 < <

1.00

<

<

1.00

<: Less than given detection limits.

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

1,2 Dichloroethane

TABLE B-2 (Cont. 21)

i

i

MAVERIK-KIRTLAND WATER QUALITY

		MAVERIK-KIRTLAN
SAMPLE IDENTIFICATION DATE SAMPLED	SW-4 11-10-87	SW-4 0- 0- 0
INORGANIC PARAMETERS (mg/L e	xcept as note	d)
Calcium (Ca)	113.0	*
Magnesium (Mg)	17.0	*
Sodium (Na)	40.0	*
Potassium (K)	< 5.0	*
Iron (Fe)	.12	*
Manganese (Mn)	*	*
Ammonia (as N)	< .0	
Chloride (Cl)	29.0	*
Sulfate (SO4)	147.	*
Fluoride (F)	.3	*
Nitrate and Nitrite (as	•	
Total Alkalinity	253.0	
Bicarbonate Alkalinity	253.0	*
Carbonate Alkalinity	< 5.0	
Bicarbonate (HCO3)	308.5	
Carbonate (CO3)	< 3.0	*
FIELD AND LABORATORY MEASURE	MENTS	
Temperature (Degrees C)	7.8	*
Field pH	7.28	
Lab pH (units)	7.29	
Field Conductivity (umho		
Lab Conductivity (umhos/		
Total Dissolved Solids(m		
VOLATILE ORGANICS DETECTED (ug/L)	
Benzene	***	*
Ethylbenzene	*	*
Toluene	*	*
m-Xylene	*	*
o,p-Xylene	*	*
Total Xylene	*	*
1,2 Dichloroethane	10.00	*
TOTAL ORGANIC LEAD (mg/L)		
Total Organic Lead	. 300	*
Total olbanio held		
<: Less than given detecti *: Parameter value not det @: At least one sample use	ermined. d in statisti	cal

summary is below detection limit.
#: All samples are below detection limit.
+: Data questionable
DUP: Indicates duplicate sample

TABLE B-2 (Cont. 22)

Į.

i.

MAVERIK-KIRTLAND WATER QUALITY

		MAVERIK-KIRTLAND WATER	R QUALITY
SAMPLE IDENTIFICATION DATE SAMPLED	SW-5 11-10-87	SW-5 0- 0- 0	
INORGANIC PARAMETERS (mg/L	except as noted)		
Calcium (Ca)	*	*	
Magnesium (Mg)	*	*	
Sodium (Na)	*	*	
Potassium (K)	*	*	
Iron (Fe)	*	*	
Manganese (Mn)	*	*	
Ammonia (as N)	*	*	
Chloride (Cl)	*	*	
Sulfate (SO4)	*	*	
Fluoride (F)	*	*	
Nitrate and Nitrite (as	s N) *	*	
Total Alkalinity	*	*	
Bicarbonate Alkalinity	*	*	
Carbonate Alkalinity	*	*	
Bicarbonate (HCO3)	*	*	
Carbonate (CO3)	*	*	
FIELD AND LABORATORY MEASU			
Temperature (Degrees C		*	
Field pH	*	*	
Lab pH (units)	*	*	
Field Conductivity (um		*	
Lab Conductivity (unho:		*	
Total Dissolved Solids	(mg/1) *	*	
VOLATILE ORGANICS DETECTED	(ug/L)		
Benzene	< 250.00	*	
Ethylbenzene	2500.00	*	
Toluene	470.00	*	
m-Xylene	*	*	
o,p-Xylene	*	*	
	*	*	
Total Xylene	< 050 00	*	
Total Xylene 1,2 Dichloroethane	< 250.00		
-	< 250.00		

#: All samples are below detection limit.

+: Data questionable

B-2 (Cont. 23)

i

VATER QUALITY

-	-	-	-	-	-	-	-	-	-	-	-	•	•	•	-	-	-	-	-	-	•	-	-	-	٠	-	-	٠	-	-	•
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

		MAV	-	TABLE
11-	10-87	2-2	4-88	
evcent	as noted)			
L'except	as noceu) *		*	
	*		*	
	*		*	
	*		*	
	*		*	
	*		*	
	*		*	
	*		*	
	*		*	
	*		*	
as N)	*		*	
	*		*	
у	*		*	
	*		*	
	*		*	
	*		*	
UREMENTS				
C)	14.2		*	
	7.28		7.95	
	*		*	
	3080.0		3150.0	
	*		*	
s(mg/1)	*		*	
D (ug/L)				
<	.50	<	.50	
<	. 50	<	.50	
<	. 50	<	. 50	
<	.50	<	.50	
<	. 50	<	. 50	
	*		*	
<	.50	<	1.00	
	*		*	
	<pre>11 L except As N) y UREMENTS C) mhos/cm os/cm) s(mg/1) D (ug/L) < < < < <</pre>	* * * * * * * * * * * * * * * * * * *	SW-6 SW- 11-10-87 2-2 L except as noted) * * * * * * * * * * * * *	MAVERIK-KIRTI SW-6 SW-6 11-10-87 2-24-88 L except as noted) * * * * * * * * * * * * * * *

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 24)

MAVERIK-KIRTLAND WATER QUALITY

			MAV	ERIK-KIR	г. -
SAMPLE IDENTIFICATION		LK	EQB		
DATE SAMPLED	11-2	3-87	2-2	3-88	
INORGANIC PARAMETERS (mg/L e	except a	s noted)			
Calcium (Ca)	•	5.5		3.6	
Magnesium (Mg)		. 5		.6	
Sodium (Na)		2.5		5.6	
Potassium (K)	<	5.0	<	5.0	
Iron (Fe)	<	.05	<	.05	
Manganese (Mn)		*		.021	
Ammonia (as N)	<	.0	<	.1	
Chloride (Cl)	<	3.0	<	3.0	
Sulfate (SO4)	<	5.	<	5.	
Fluoride (F)	<	.1	<	.1	
Nitrate and Nitrite (as	N) <	.0	<		
Total Alkalinity	<	5.0		5.0	
Bicarbonate Alkalinity		*	<	5.0	
Carbonate Alkalinity		*		*	
Bicarbonate (HCO3)		*	<	6.1	
Carbonate (CO3)		*		*	
FIELD AND LABORATORY MEASURE	EMENTS				
Temperature (Degrees C)		*		*	
Field pH		*		*	
Lab pH (units)		5.17		5.14	
Field Conductivity (umho		*		*	
Lab Conductivity (umhos/		2.0		2.0	
Total Dissolved Solids(n	ng/1)<	10.0	<	10.0	
VOLATILE ORGANICS DETECTED ((ug/L)				
Benzene	<	. 50	<	. 50	
Ethylbenzene	<	. 50	<	.50	
Toluene	<	.50	<	. 50	
m-Xylene	<	.50	<	.50	
o,p-Xylene	<	.50	<	.50	
Total Xylene		*		*	
1,2 Dichloroethane	<	. 50	<	1.00	
TOTAL ORGANIC LEAD (mg/L)					
	<	.020		.002	

*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 25)

MAVERIK-KIRTLAND WATER QUALITY

DATE SAMPLED	11-23-87	2-23-88	
SAMPLE IDENTIFICATION	TB-007	TB-017	
		·····	

INORGANIC PARAMETERS (mg/L e	xcept	as noted)		
Calcium (Ca)	noopo	*		*
Magnesium (Mg)		*		*
Sodium (Na)		*		*
Potassium (K)		*		*
Iron (Fe)		*		*
Manganese (Mn)		*		*
Ammonia (as N)		*		*
Chloride (Cl)		*		*
Sulfate (SO4)		*		*
Fluoride (F)		*		*
Nitrate and Nitrite (as	N)	*		*
Total Alkalinity		*		*
Bicarbonate Alkalinity		*		*
Carbonate Alkalinity		*		*
Bicarbonate (HCO3)		*		*
Carbonate (CO3)		*		*
FIELD AND LABORATORY MEASURE	MENTS			
Temperature (Degrees C)		*		*
Field pH		*		*
Lab pH (units)		*		*
Field Conductivity (umho		*		*
Lab Conductivity (umhos/		*		*
Total Dissolved Solids(n	ng/1)	*		*
VOLATILE ORGANICS DETECTED ('11g/L)			
Benzene	<	. 50	<	.50
Ethylbenzene	<	.50	<	.50
Toluene	<	. 50	<	.50
m-Xylene	<	.50	<	.50
o,p-Xylene	<	. 50	<	. 50
Total Xylene		*		*
1,2 Dichloroethane	<	.50	<	1.00
TOTAL ORGANIC LEAD (mg/L)				
Total Organic Lead		*		*

<: Less than given detection limits.

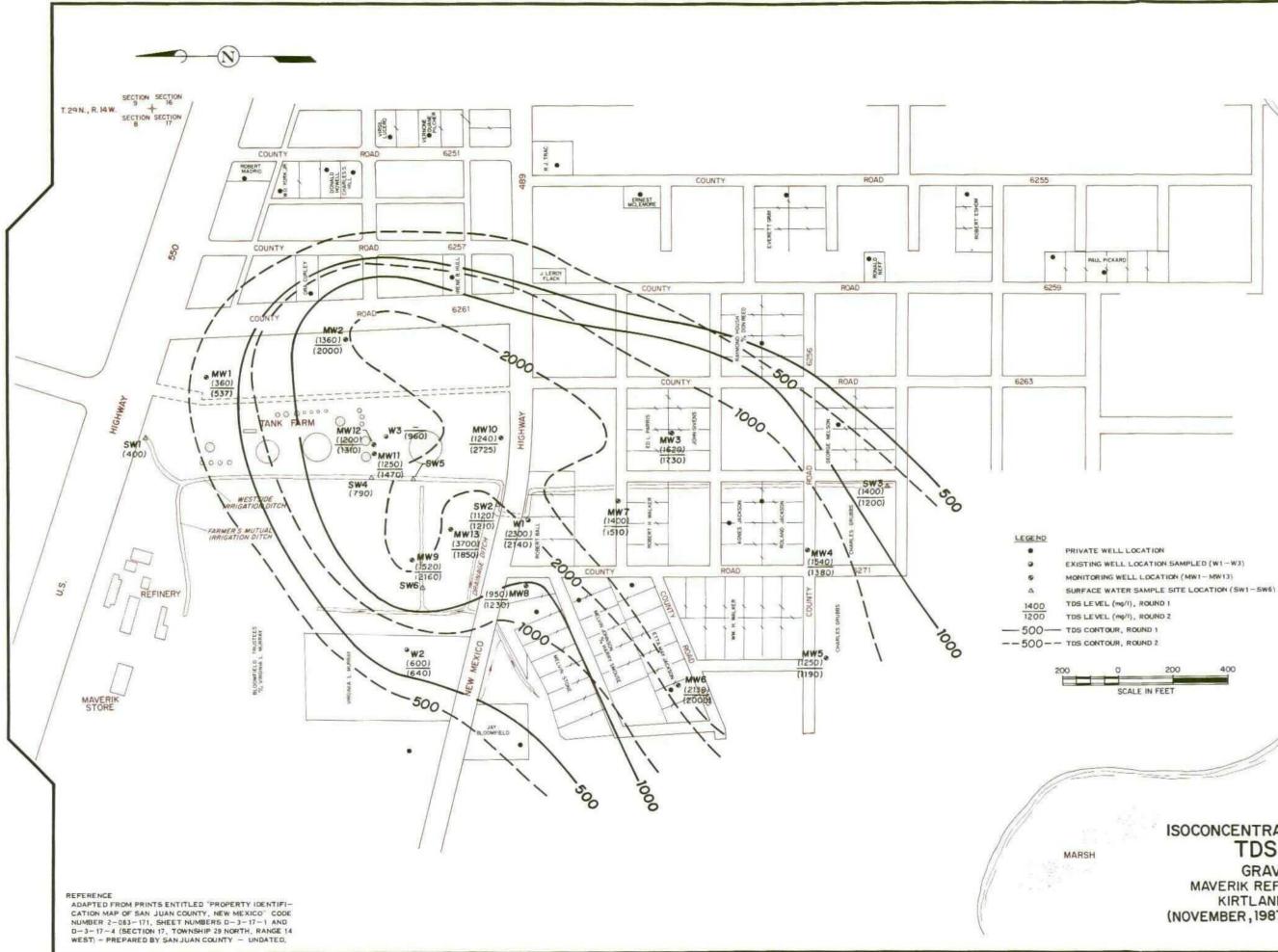
*: Parameter value not determined.

@: At least one sample used in statistical summary is below detection limit.

#: All samples are below detection limit.

+: Data questionable

TABLE B-2 (Cont. 26)


MAVERIK-KIRTLAND WATER QUALITY

·····

11-11-87	2-24-88	
TB-016	TB-023	
	11-11-87	TB-016 TB-023

INORGANIC PARAMETERS (mg/L exc	ent as	s noted)		
Calcium (Ca)	opo	*		*
Magnesium (Mg)		*		*
Sodium (Na)		*		*
Potassium (K)		*		*
Iron (Fe)		*		*
Manganese (Mn)		*		*
Ammonia (as N)		*		*
Chloride (Cl)		*		*
Sulfate (SO4)		*		*
Fluoride (F)		*		*
Nitrate and Nitrite (as N)		*		*
Total Alkalinity		*		*
		*		*
Bicarbonate Alkalinity		*		*
Carbonate Alkalinity		*		
Bicarbonate (HCO3)				*
Carbonate (CO3)		*		*
FIELD AND LABORATORY MEASUREME	NTS			
Temperature (Degrees C)		*		*
Field pH		*		*
Lab pH (units)		*		*
Field Conductivity (umhos/	cm	*		*
Lab Conductivity (umhos/cm		*		*
Total Dissolved Solids(mg/		*		*
VOLATIE ORCANICE DETECTED (
VOLATILE ORGANICS DETECTED (ug	• •	50		50
Benzene	<	.50	<	.50
Ethylbenzene	<	.50	<	.50
Toluene	<	.50	<	.50
m-Xylene	<	.50	<	.50
o,p-Xylene	<	. 50	<	. 50
Total Xylene		*		*
1,2 Dichloroethane	<	.50	<	1.00
TOTAL ORGANIC LEAD (mg/L)				
Total Organic Lead		*		*
5				
	1.4. 4	• -		
<: Less than given detection	11m1	CS.		

- *: Parameter value not determined.
- @: At least one sample used in statistical
- summary is below detection limit.
- #: All samples are below detection limit.
- +: Data questionable
- DUP: Indicates duplicate sample

Dames & Moore

ISOCONCENTRATION CONTOUR MAP TDS (mg/l) GRAVEL ZONE MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO (NOVEMBER, 1987 AND FEBRUARY, 1988)

200 400 SCALE IN FEET

SAN

JAN

1

BUR

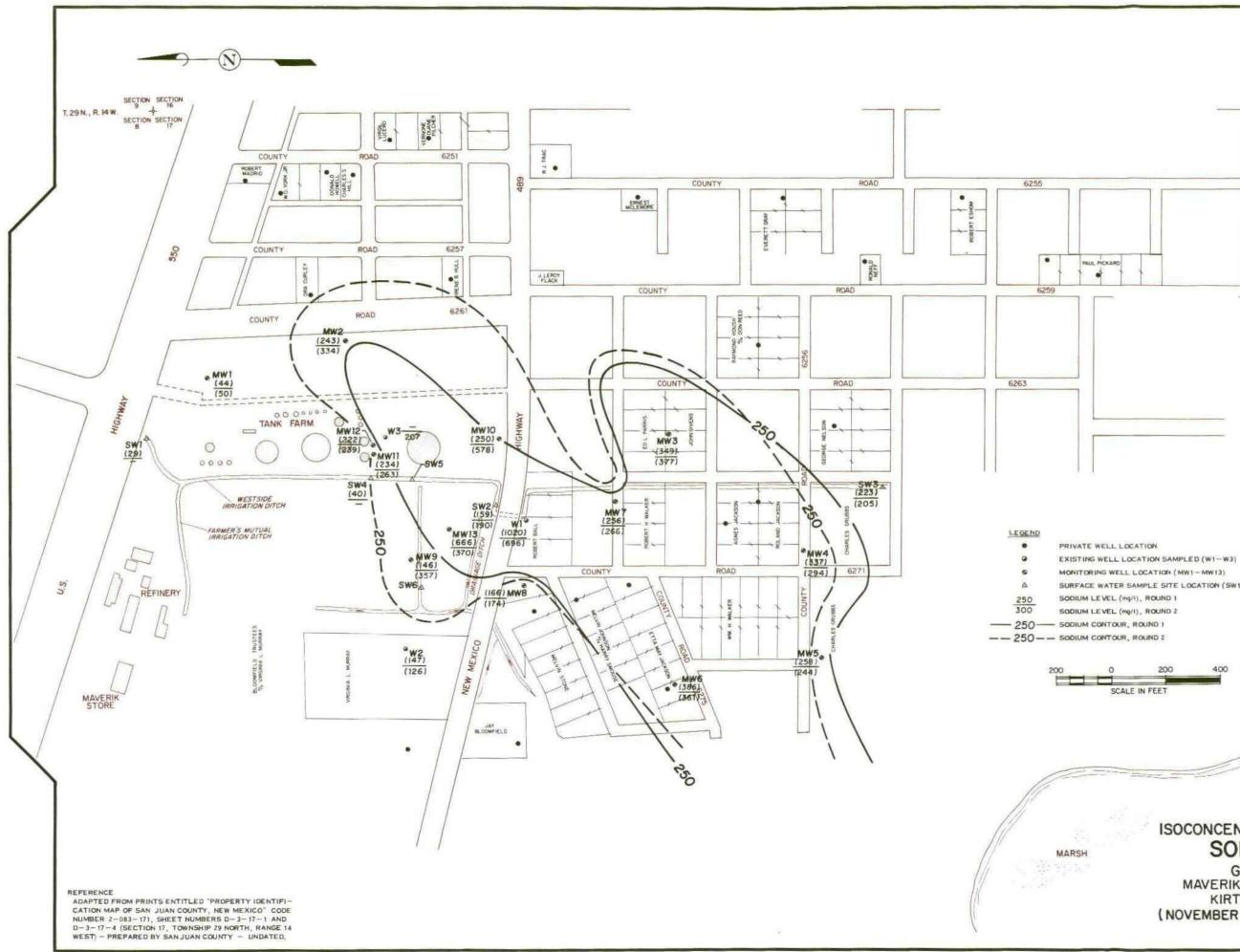
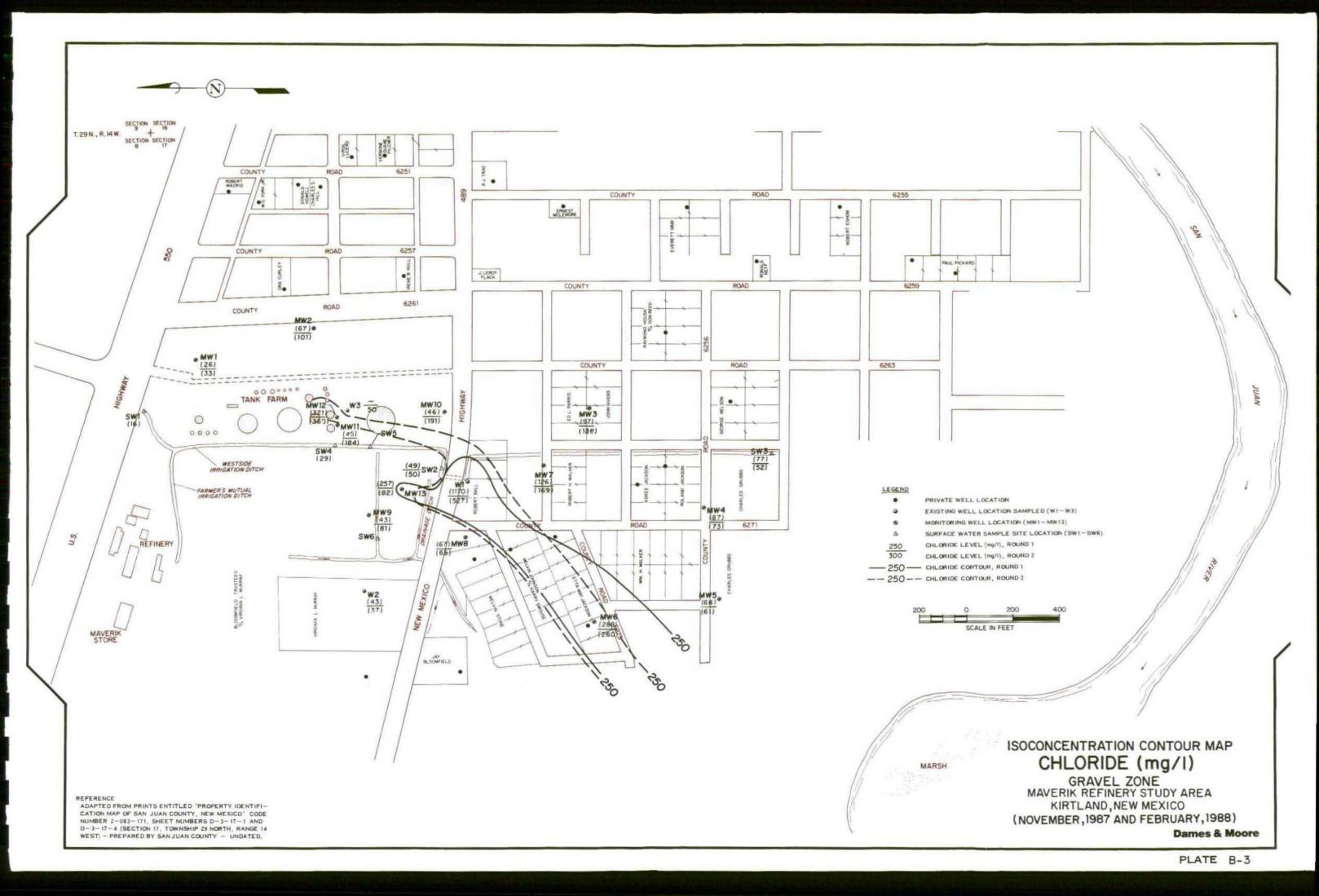


PLATE B-2

ISOCONCENTRATION CONTOUR MAP SODIUM (mg/I) GRAVEL ZONE MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO (NOVEMBER, 1987 AND FEBRUARY, 1988) **Dames & Moore**

SCALE IN FEET

200 400


SURFACE WATER SAMPLE SITE LOCATION (SW1-SW6)

SAN

JAN

1

AJUS

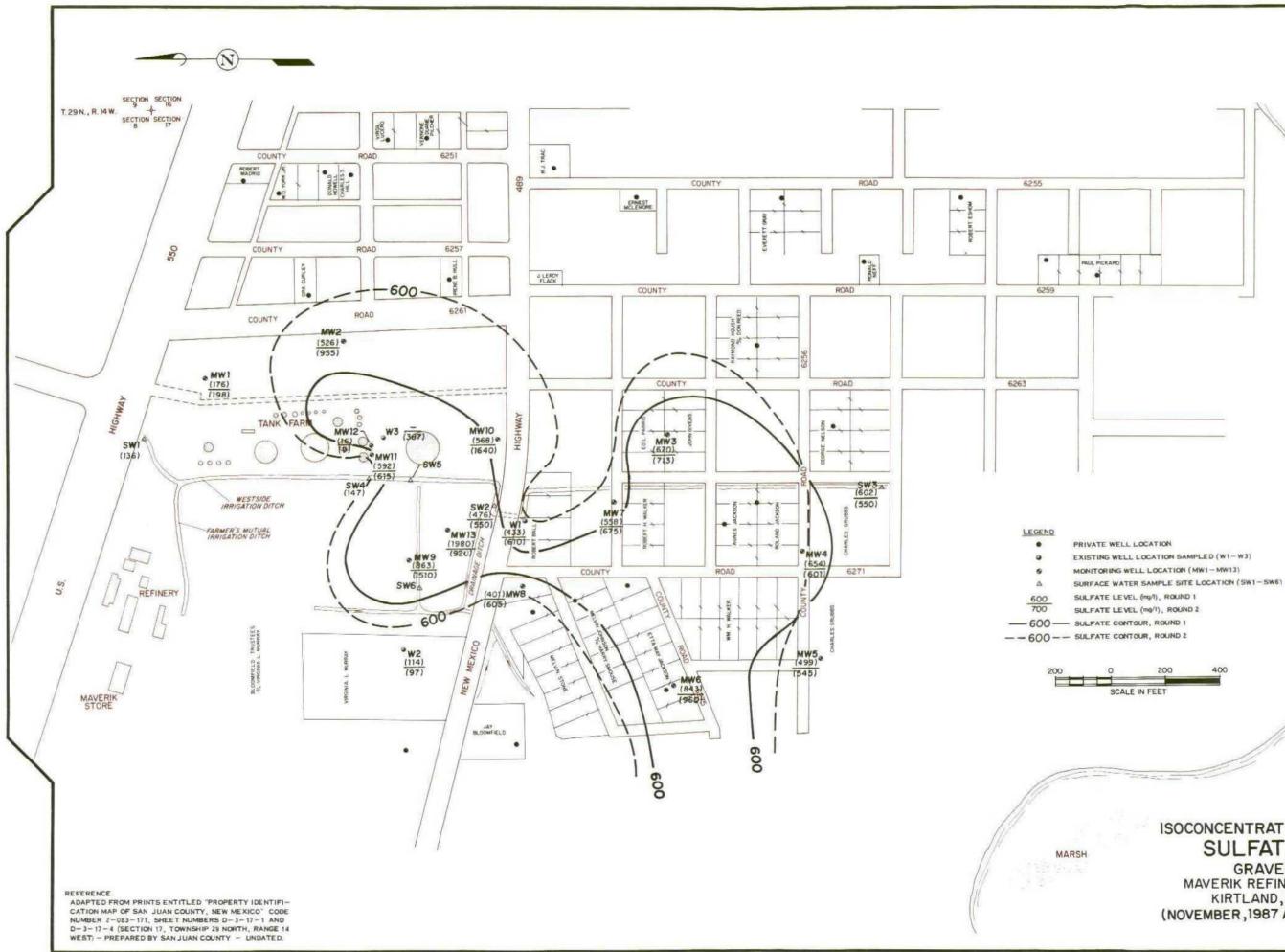
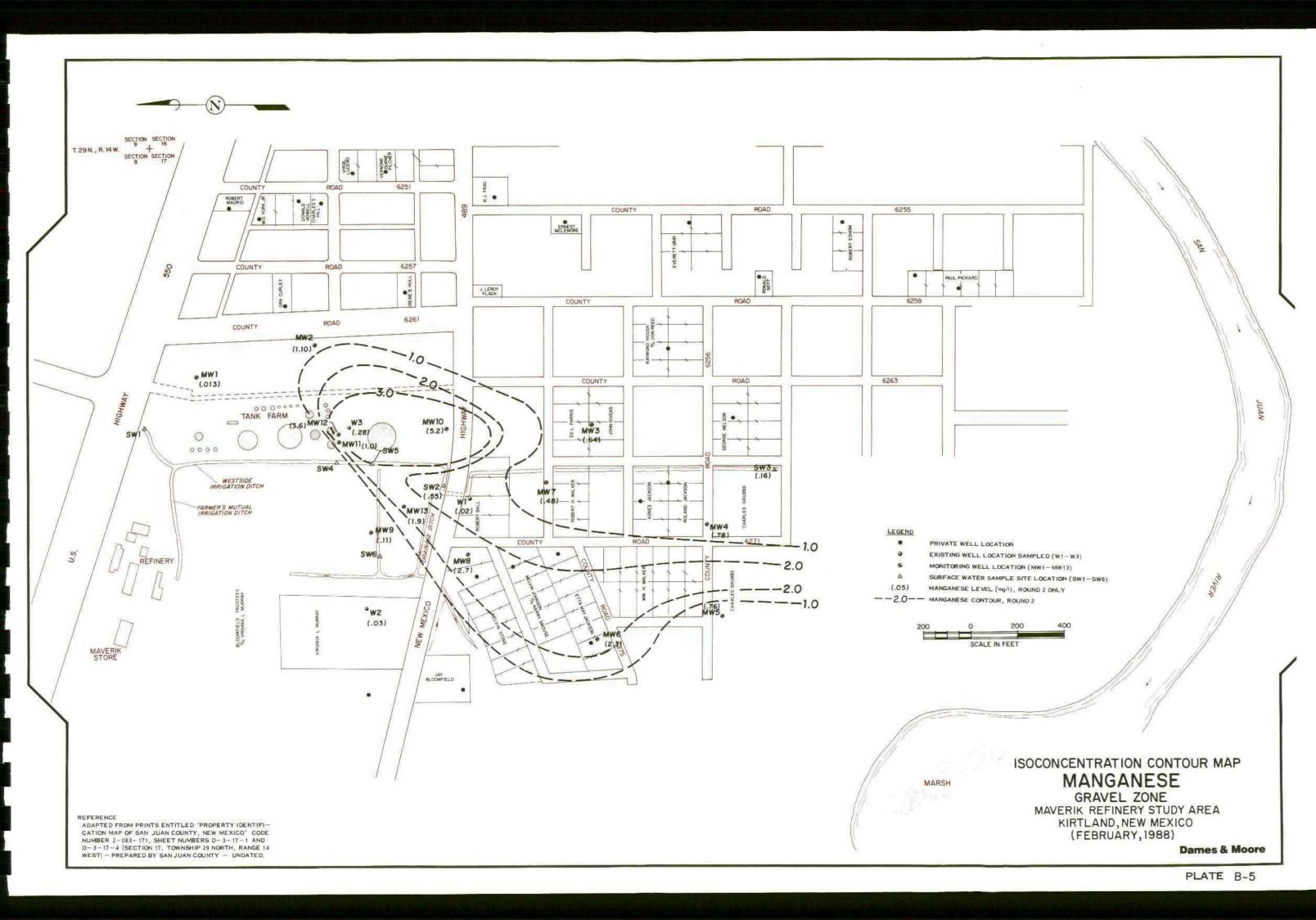
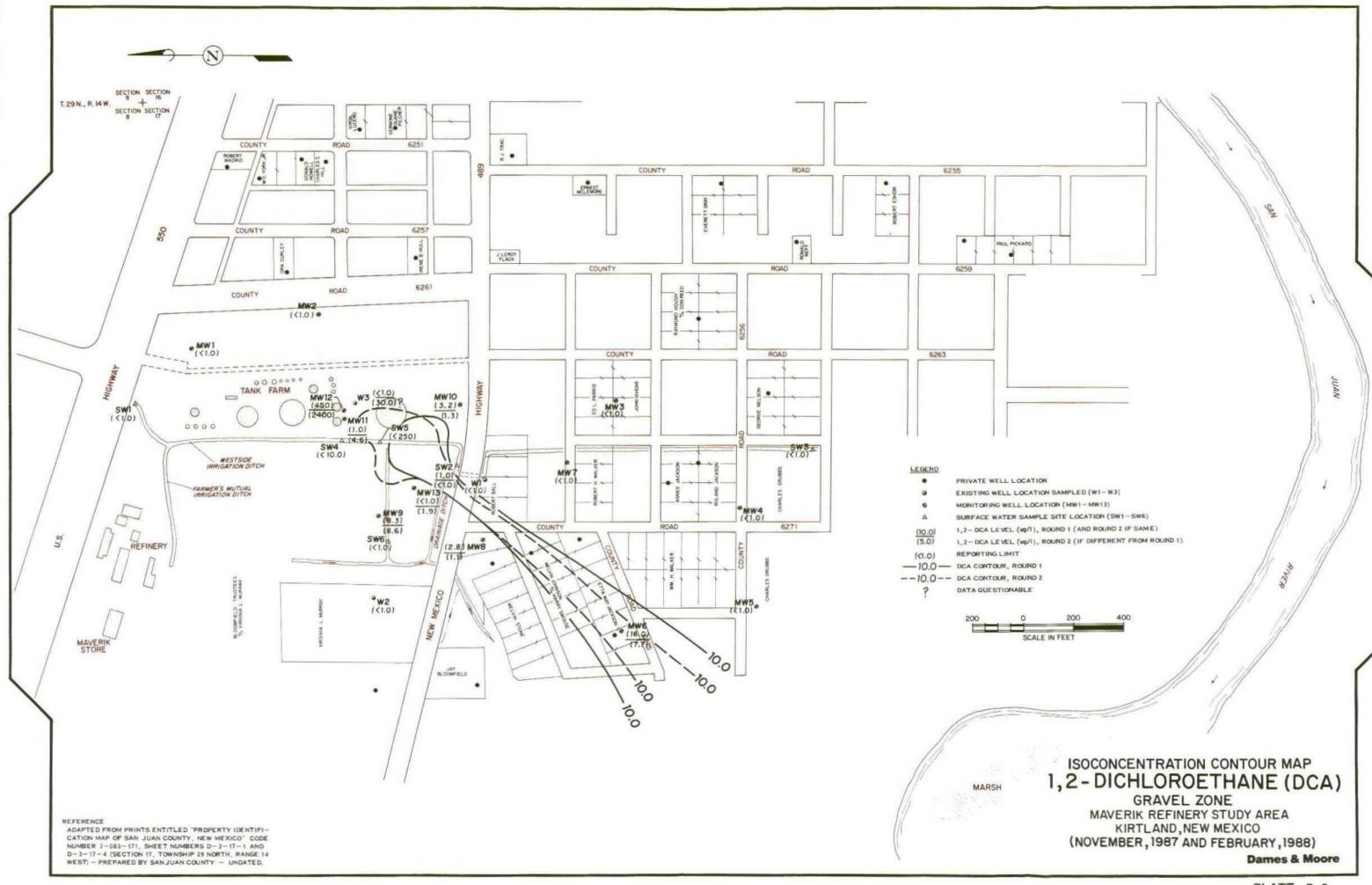
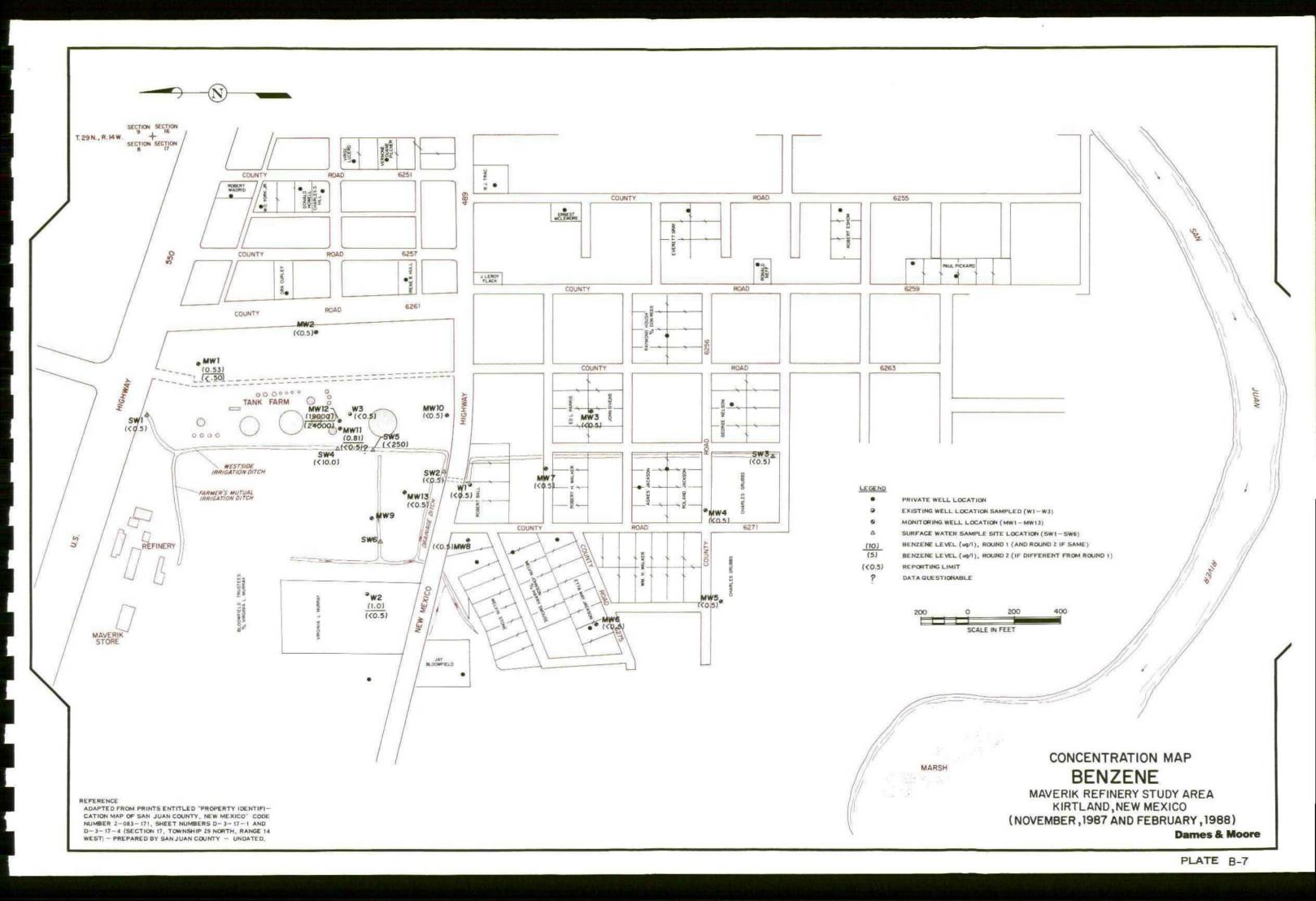


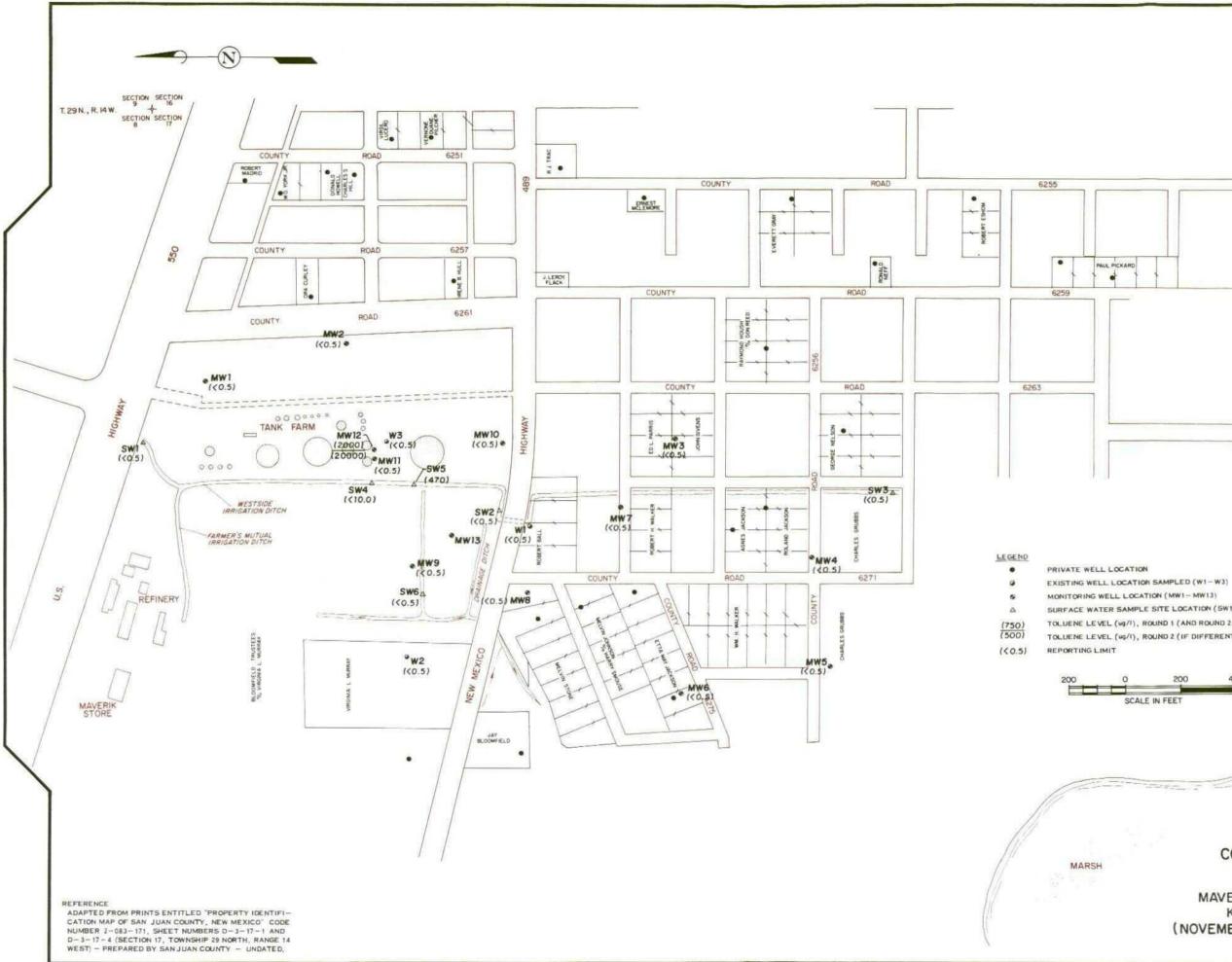
PLATE B-4

SAN

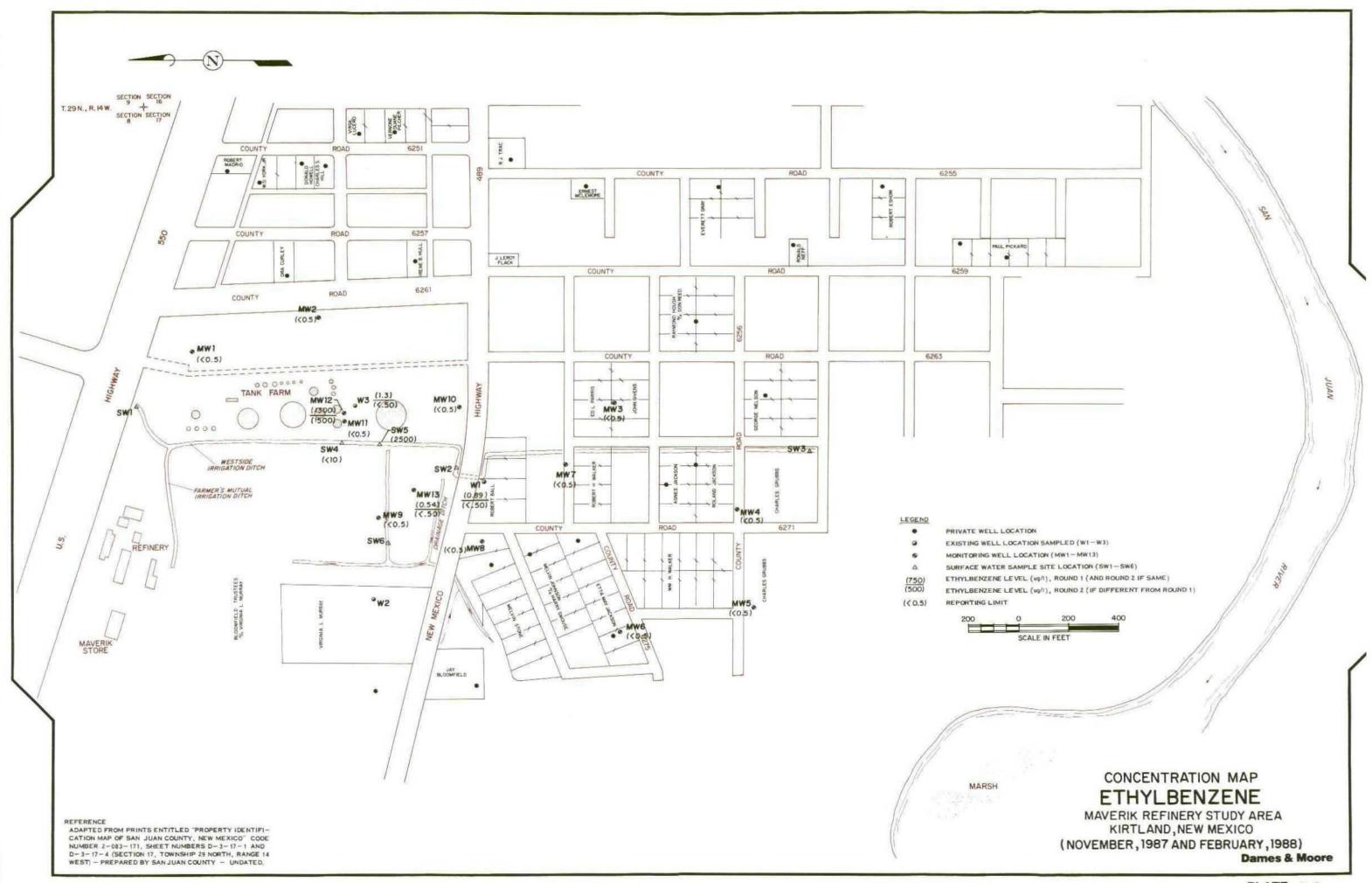

JUAN


1

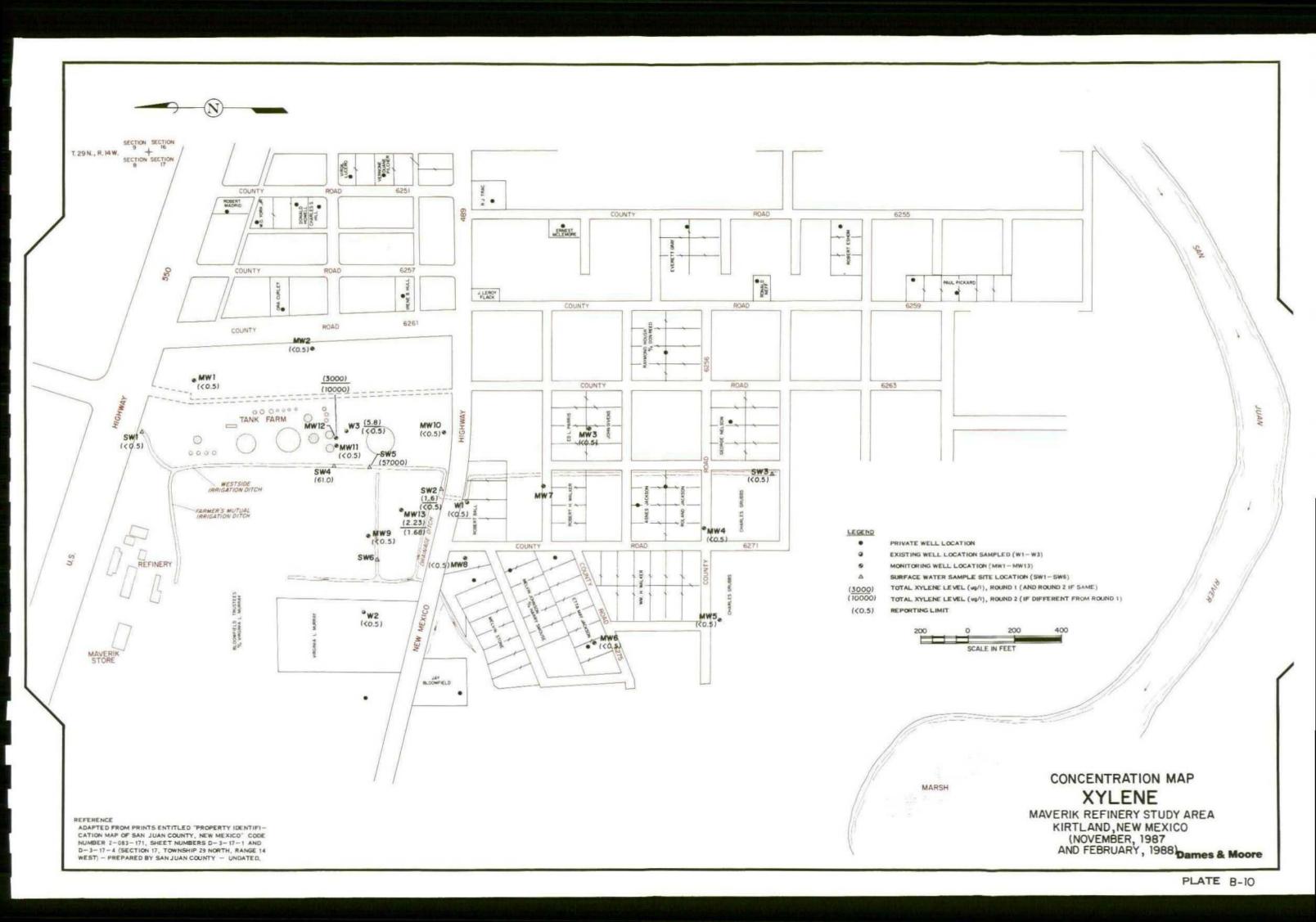

ARA

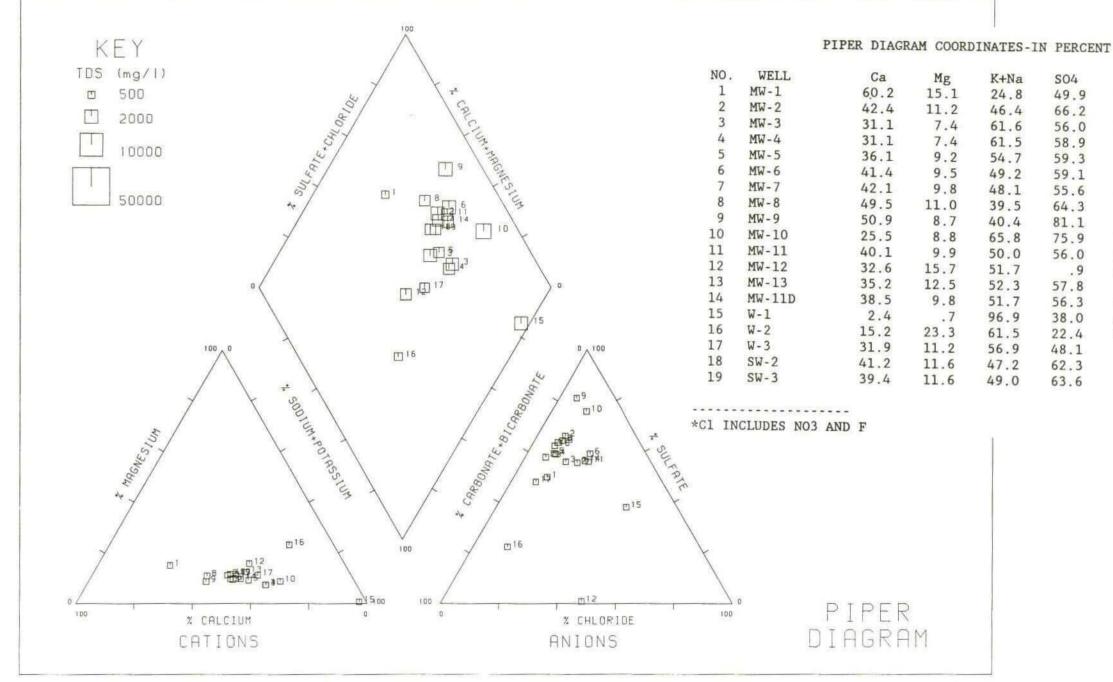

ISOCONCENTRATION CONTOUR MAP SULFATE (mg/l) GRAVEL ZONE MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO (NOVEMBER, 1987 AND FEBRUARY, 1988)

Dames & Moore



SAN


JUAN


1

SURFACE WATER SAMPLE SITE LOCATION (SW1-SW6) PILEP TOLUENE LEVEL (49/1), ROUND 1 (AND ROUND 2 IF SAME) TOLUENE LEVEL (ug/I), ROUND 2 (IF DIFFERENT FROM ROUND 1) 200 400 SCALE IN FEET CONCENTRATION MAP TOLUENE MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO (NOVEMBER, 1987 AND FEBRUARY, 1988) Dames & Moore PLATE B-8

CHECKED BY DATE

ž

DATE

FILE

ł	S04	C1*	CO3+HCO3
3	49.9	11.6	38.5
+	66.2	9.5	24.3
+	56.0		29.2
5	58.9	9.9	31.2
	59.3		31.5
	59.1		19.1
20	55.6		25.3
	55.6	9.5	26.1
2	81.1	6.0	12.9
	Contraction of the second	12.1	12.0
	56.0	22.8	21.2
	. 9		51.1
	57.8		35.1
	56.3	21.3	22.3
	38.0		17.3
	22.4		65.9
			43.3
			29.8
		8.3	

PIPER DIAGRAM ROUND 2 WATER QUALITY DATA MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO

Dames & Moore

PLATE B-11

Rocky Mountain Analytical Laboratory

Enseco

ANALYTICAL RESULTS FOR

DAMES & MOORE

MARCH 16, 1988

Dan Jeanne B. Howbert

Mulael 7. Phillips, Ph.D.

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

Reviewed by:

I. OVERVIEW

On February 23 and 25, 1988, Enseco-Rocky Mountain Analytical Laboratory received 23 samples from Dames & Moore. A complete listing of tests requested, by sample, is given in Section III.

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- I. Overview
- II. Sample Description Information
- III. Analytical Tests Assigned
- IV. Analytical Results
- V. Quality Control Report
- VI. Description of Analytical Methodology

In general, the data compared well with the results from the November, 1987 round of sampling. 1,2-Dichloroethane is detected at 30 ug/L in W-3 this round whereas it was not detected in the November, 1987 round. The concentrations of the volatile compounds in MW-12 have fluctuated somewhat. The benzene value in MW-11 is 25 ug/L and the value in the duplicate sample is 3.8 ug/L. MW-11 and its duplicate were reanalyzed outside the holding times for methods 601 and 602. The 601 results compare well with the original results; however, no benzene was detected in either of the reanalyzed samples. It is conceivable that the 602 compounds degraded before reanalysis was performed; however, this is improbable for samples of a groundwater matrix. If resampling MW-11 is feasible, we will be happy to reanalyze the sample.

II. SAMPLE DESCRIPTION INFORMATION

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique five digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the five digit project code and the sample sequence number.

Enseco

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

SAMPLE DESCRIPTION INFORMATION

for

DAMES AND MOORE

RMAL			Date	Date
Sample No.	Sample Description	Sample Type	Sampled	<u>Received</u>
65703-001-00	MW-1	Groundwater	02/22/88	02/23/88
65703-002-00	MW-2	Groundwater	02/22/88	02/23/88
65703-003-00	MW-3	Groundwater	02/22/88	02/23/88
65703-004-00	MW-4	Groundwater	02/22/88	02/23/88
65703-005-00	MW-5	Groundwater	02/22/88	02/23/88
65703-006-00	MW-6	Groundwater	02/22/88	02/23/88
65703-007-00	MW-7	Groundwater	02/22/88	02/23/88
65703-008-00	MW-8	Groundwater	02/22/88	02/23/88
65703-009-00	MW-9	Groundwater	02/22/88	02/23/88
65703-010-00	MW-10	Groundwater	02/23/88	02/24/88
65703-011-00	MW-11	Groundwater	02/23/88	02/24/88
65703-012-00	MW-12	Groundwater	02/23/88	02/24/88
65703-013-00	W-3	Groundwater	02/23/88	02/24/88
65703-014-00	ROBERT BALL WELL W-I	Groundwater	02/23/88	02/24/88
65703-015-00	MW-11 DUPLICATE	Groundwater	02/23/88	02/24/88
65703-016-00	EQUIPMENT BLANK	Groundwater	02/23/88	02/24/88
65703-017-00	TRIP BLANK	Water	02/23/88	02/24/88
65703-018-00	SW-3	Groundwater	02/24/88	02/25/88
65703-019-00	SW-2	Groundwater	02/24/88	02/25/88
65703-020-00	V. MURRAY DITCH SW-6	Groundwater	02/24/88	02/25/88
65703-021-00	MW-13	Groundwater	02/24/88	02/25/88
65703-022-00	V. MURRAY WELL W-2	Groundwater	02/24/88	02/25/88
65703-023-00	TRIP BLANK	Water	02/24/88	02/25/88
			• •	• •

IV. ANALYTICAL RESULTS

The analytical results for this project are presented in the following data tables. The results are presented by sample, by test, with tests reported in the following order: GC/MS, Chromatography, Metals and Inorganics.

Enseco

Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization data is the date when the project was defined by the client such that laboratory work could begin.

Data sheets contain a listing of the parameters measured in each test, the analytical results and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content. All data is "blank corrected", i.e. the level of contamination, if any, found in the laboratory blank is subtracted from the analytical result before it is reported.

In addition, surrogate recovery data is presented for all GC/MS analyses. The surrogate recovery is an indication of the affect of the sample matrix on the performance of the method. The results from the Standard Enseco QA/QC Program, which generates data which are independent of matrix effects, is given in Section V.

The analytical data reported are subject to the following limitations of the analytical methodology:

<u>GC/MS</u>

Volatile Organics

 a) The cis- and trans-isomers of dichloroethylene cannot be distinguished using EPA Method 624. All dichloroethylene present is reported as trans-dichloroethylene.

Chromatography

Methods 601 and 8010

- a) Dichlorodifluoromethane (Freon 12) and vinyl chloride coelute under the specified analytical conditions. All data are reported as a combined value for the two compounds.
- b) Dibromochloromethane, cis-1,3-dichloropropene and 1,1,2trichloroethane are unresolved. The three compounds are reported as a single combined value.
- c) Tetrachloroethene and 1,1,2,2-tetrachloroethane coelute and are reported as a combined result.

Method 602 and 8020

a) The ortho and para isomers of xylene coelute and are reported as a single concentration value.

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE									
Client ID: MW-1									
Laboratory ID: 65703-001	Enseco ID: 6	5703-001							
Matrix: Groundwater	Sampled: 02/22/88	Received:	02/23/88						
Authorized: 02/23/88		Analyzed	: 02/26/88						
				Reporting					
<u>Parameter</u>	Res	<u>ult</u>	<u>Units</u>	Limit					
Bromoform	N	.D.	ug/L	5.0					
Carbon tetrachloride	N	.D.	ug/L	0.50					
Chlorobenzene	N	.D.	ug/L	2.0					
Chloroethane	N	.D.	ug/L	5.0					
Chloroform	N	.D.	ug/L	0.50					
Dibromochloromethane	N	.D.	ug/L	1.0					
Bromodichloromethane	N	.D.	ug/L	1.0					
1,1-Dichloroethane	N	.D.	ug/L	0.50					
1,2-Dichloroethane	N	.D.	ug/L	1.0					
1,1-Dichloroethene	N	.D.	ug/L	0.50					
1,2-Dichloropropane	N	.D.	ug/L	1.0					
cis-1,3-Dichloropropene	N	.D.	ug/L	2.0					
trans-1,3-Dichloropropene	N	.D.	ug/L	0.50					
Bromomethane	N	.D.	ug/L	5.0					
Chloromethane	N	.D.	ug/L	5.0					
Methylene chloride	N	.D.	ug/L	5.0					
1,1,2,2-Tetrachloroethane	N	.D.	ug/L	1.0					
Tetrachloroethene	N	.D.	ug/L	0.50					
trans-1,2-Dichloroethene	N	.D.	ug/L	0.50					
1,1,1-Trichloroethane	N	.D.	ug/L	0.50					
1,1,2-Trichloroethane	N	.D.	ug/L	1.0					
Trichloroethene	N	.D.	ug/L	1.0					
Vinyl chloride	N	.D.	ug/L	1.0					
1,1,2-Trichloro-									
1,2,2-trifluoroethane	N	.D.	ug/L	1.0					
1,2-Dibromoethane (EDB)	N	.D.	ug/L	2.0					

N.D. = Not detected

P

Reported by: Cindy Ingram

Approved by: Susan Brillante

🦕 Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE								
Client ID: MW-1								
Laboratory ID: 65703-001	Enseco 1D: 6	5703-001						
Matrix: Groundwater	Sampled: 02/22/88	88						
Authorized: 02/23/88		Analyzed: 02/26/	88					
<u>Parameter</u>	Res	alt Uni	Reporting ts Limit					
Benzene	N	D. ug/.	L 0.50					
Chlorobenzene	N	D. $ug/$						
Ethylbenzene	• N.	D. $ug/$						
Toluene	N	D. $ug/$	L 0.50					
1,2-Dichlorobenzene	N	D. ug/	L 0.50					
1,3-Dichlorobenzene	N	D. $ug/$	L 0.50					
1,4-Dichlorobenzene	N	D. $ug/$	L 0.50					
m-Xylene	N	D. ug /	L 0.50					
o & p-Xylene(s)	N.	D. $ug/$	L 0.50					

N.D. = Not detected Reported by: Cindy Ingram

Approved by: Susan Brillante

- 🤄 Enseco

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-1

Laboratory ID: 65703-001

Enseco ID: 65703-001

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	112	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	17	mg/L	0.1	200.7	03/07/88
Manganese	0.013	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	50	mg/L	0.05	200.7	03/07/88
Total Organic Lead	N.D.	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-1

Laboratory ID: 65703-001

Enseco ID: 65703-001

Matrix: Groundwater

Received: 02/23/88

Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	7.85	units	0.01	150.1	02/23/88
Specific Conductance @ 25C	755	umhos/cm	1	120.1/9050	02/23/88
Total Dissolved Solids	537	mg/L	10	160.1	02/26/88
Fluoride	0.3	mg/L	0.1	340.2	03/01/88
Chloride	33	mg/L	3	300.0	03/01/88
Nitrate + Nitrite as N	0.7	mg/L	0.1	353.2	02/25/88
Sulfate	198	mg/L	5	300.0	03/01/88
Total Alkalinity as CaCO3	159	mg/L	5	310.1/403	03/09/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	9.2	meq/L	0.1	104C	03/10/88
Total Anions	8.3	meq/L	0.3	104C	03/10/88
% Difference	5.0	%	2	104C	03/10/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE Client ID: MW-2

Laboratory ID: 65703-002

Authorized: 02/23/88

Enseco ID: 65703-002

Matrix: Groundwater Sampled: 02/22/88

Received: 02/23/88 Analyzed: 02/26/88

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N. D.	ug/L	0.50
trans-1,2-Dichloroethene	N .D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Cindy Ingram

Approved by: Susan Brillante

- 🤄 Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE								
Client ID: MW-2								
Laboratory ID: 65703-002	Laboratory ID: 65703-002 Enseco ID: 65703-002							
Matrix: Groundwater	Sampled: 02/22/88 Received: 02/23/88							
Authorized: 02/23/88		Analyzed: 02	/26/88					
<u>Parameter</u>	Res	<u>llt</u>	<u>Units</u>	Reporting <u>Limit</u>				
Benzene	N	D.	ug/L	0.50				
Chlorobenzene	N	D.	ug/L	0.50				
Ethylbenzene	N	D.	ug/L	0.50				
Toluene	N	D.	ug/L	0.50				
1,2-Dichlorobenzene	N	D.	ug/L	0.50				
1,3-Dichlorobenzene	N	D.	ug/L	0.50				
1,4-Dichlorobenzene	N	D.	ug/L	0.50				
m-Xylene	N	D.	ug/L	0.50				
o & p-Xylene(s)	N	D.	ug/L	0.50				

N.D. = Not detected

E

Reported by: Cindy Ingram

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-2

Į

Laboratory ID: 65703-002

Enseco ID: 65703-002

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	268	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	43	mg/L	0.1	200.7	03/07/88
Manganese	1.1	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	334	mg/L	0.05	200.7	03/07/88
Total Organic Lead	0.004	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

🗄 Enseco

INORGANIC PARAMETERS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-2

Laboratory ID: 65703-002

Enseco ID: 65703-002

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pН	7.63	units	0.01	150.1	02/23/88
Specific Conductance @ 25C	2500	umhos/cm	1	120.1/9050	02/23/88
Total Dissolved Solids	2000	mg/L	10	160.1	02/26/88
Fluoride	0.3	mg/L	0.1	340.2	03/01/88
Chloride	101	mg/L	3	300.0	03/09/88
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	02/25/88
Sulfate	955	mg/L	5	300.0	03/09/88
Total Alkalinity as CaCO3	365	mg/L	5	310.1/403	02/23/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	31.4	meq/L	0.1	104C	03/10/88
Total Anions	30.0	meq/L	0.3	104C	03/10/88
% Difference	2.3	%	0.1	104C	03/10/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND Client ID: MW-3							
Laboratory ID: 65703-003 Enseco ID: 65703-003							
Matrix: Groundwater	Sampled: 02/22/88	Recei	ved: 02/23/88				
Authorized: 02/23/88	Analyzed: 02/26/88						
Parameter	Res	<u>ult</u>	Units	Reporting <u>Limit</u>			
Bromoform		D	ng/I	5.0			

Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N .D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N. D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N. D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N .D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N. D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Cindy Ingram

Approved by: Susan Brillante

💪 Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE

Client ID: MW-3

Laboratory ID: 65703-003

Enseco ID: 65703-003

Authorized: 02/23/88 Analyzed: 02/26/88 Report	Matrix: Groundwater	Sampled: 02/22/88	Received: 02/23/88	
Report	Authorized: 02/23/88		Analyzed: 02/26/88	······································
<u>Parameter Result Units Limi</u>	Parameter	Pos	sult limite	Reporting <u>Limit</u>

_			
Benzene	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	0.50
Ethylbenzene	N.D.	ug/L	0.50
Toluene	N.D.	ug/L	0.50
1,2-Dichlorobenzene	N .D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N.D.	ug/L	0.50
m-Xylene	N.D.	ug/L	0.50
o & p-Xylene(s)	N.D.	ug/L	0.50

N.D. = Not detected Reported by: Cindy Ingram

Approved by: Susan Brillante

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-3

Laboratory ID: 65703-003

Enseco ID: 65703-003

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	167	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	24	mg/L	0.1	200.7	03/07/88
Manganese	0.64	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	377	mg/L	0.05	200.7	03/07/88
Total Organic Lead	0.005	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

🔆 Enseco

INORGANIC PARAMETERS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-3

Laboratory ID: 65703-003

Enseco 1D: 65703-003

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pН	7.58	units	0.01	150.1	02/23/88
Specific Conductance @ 25C	2300	umhos/cm	1	120.1/9050	02/23/88
Total Dissolved Solids	1730	mg/L	10	160.1	02/26/88
Fluoride	0.8	mg/L	0.1	340.2	03/01/88
Chloride	138	mg/L	3	300.0	03/09/88
Nitrate + Nitrite as N	0.3	mg/L	0.1	353.2	02/25/88
Sulfate	713	mg/L	5	300.0	03/09/88
Total Alkalinity as CaCO3	387	mg/L	5	310.1/403	02/23/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	26.7	meq/L	0.1	104C	03/10/88
Total Anions	26.5	meq/L	0.3	104C	03/10/88
% Difference	0.3	40	0.1	104C	03/10/88

N.D. = Not detected

Approved by: Lindsay Breyer

_

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND	MOORE		
Client ID: MW-4			
Laboratory ID: 65703-004	Enseco ID: 6	55703-004	
Matrix: Groundwater	Sampled: 02/22/88	Received: 02/23/88	
Authorized: 02/23/88		Analyzed: 02/26/88	
			Reporting

<u>Parameter</u>	Pacult	Unite	Keporting
<u>raiameter</u>	<u>Result</u>	<u>Units</u>	<u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N .D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N .D.	ug/L	0.50
trans-1,2-Dichloroethene	N. D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N. D.	ug/L	1.0
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Cindy Ingram

Approved by: Susan Brillante

0.50

0.50

0.50

0.50

0.50

0.50

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE				
Client ID: MW-4				
Laboratory ID: 65703-004	Enseco ID: 6	5703-004		
Matrix: Groundwater	Sampled: 02/22/88	Rec	eived: 02/23/88	
Authorized: 02/23/88		Ana	lyzed: 02/26/88	
Parameter	Res	<u>ult</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene	N	.D.	ug/L	0.50
Chlorobenzene	N	.D.	ug/L	0.50
Ethylbenzene	N	.D.	ug/L	0.50

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D. = Not detectedReported by: Cindy Ingram

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

o & p-Xylene(s)

Toluene

m-Xylene

Approved by: Susan Brillante

Sample: 65703-004

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-4

Laboratory ID: 65703-004

Enseco ID: 65703-004

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	131	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	19	mg/L	0.1	200.7	03/07/88
Manganese	0.78	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	294	mg/L	0.05	200.7	03/07/88
Total Organic Lead	0.003	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

- Enseco

INORGANIC PARAMETERS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-4

Laboratory ID: 65703-004

Enseco ID: 65703-004

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	7.84	units	0.01	150.1	02/23/88
Specific Conductance @ 25C	1920	umhos/cm	1	120.1/9050	02/23/88
Total Dissolved Solids	1380	mg/L	10	160.1	02/26/88
Fluoride	0.7	mg/L	0.1	340.2	03/01/88
Chloride	73	mg/L	3	300.0	03/09/88
Nitrate + Nitrite as N	0.2	mg/L	0.1	353.2	02/25/88
Sulfate	601	mg/L	5	300.0	03/09/88
Total Alkalinity as CaCO3	332	mg/L	5	310.1/403	02/23/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	20.9	meq/L	0.1	104C	03/10/88
Total Anions	21.3	meg/L	0.3	104C	03/10/88
% Difference	0.9	%	0.1	104C	03/10/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND 1	MOORE			
Client ID: MW-5				
Laboratory ID: 65703-005	Enseco ID:	65703	-005	
Matrix: Groundwater	Sampled: 02/22/88		Received: 02/23/88	
Authorized: 02/23/88			Analyzed: 02/26/88	
				Reporting
Parameter	Re	<u>sult</u>	<u>Units</u>	Limit
Bromoform	1	N.D.	ug/L	5.0
Carbon tetrachloride	1	N.D.	ug/L	0.50
Chlorobenzene	1	N.D.	ug/L	2.0
Chloroethane	1	N.D.	ug/L	5.0
Chloroform	1	N.D.	ug/L	0.50
Dibromochloromethane	1	N.D.	ug/L	1.0
Bromodichloromethane	1	N.D.	ug/L	1.0
1,1-Dichloroethane	1	N.D.	ug/L	0.50
1,2-Dichloroethane	1	N.D.	ug/L	1.0
1,1-Dichloroethene	I	N.D.	ug/L	0.50
1,2-Dichloropropane	1	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	1	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	1	N.D.	ug/L	0.50
Bromomethane	1	N.D.	ug/L	5.0
Chloromethane	1	N.D.	ug/L	5.0
Methylene chloride	1	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	1	N.D.	ug/L	1.0
Tetrachloroethene	1	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	I	N.D.	ug/L	0.50
1,1,1-Trichloroethane	1	N.D.	ug/L	0.50
1,1,2-Trichloroethane	1	N.D.	ug/L	1.0
Trichloroethene	1	N.D.	ug/L	1.0
Vinyl chloride	1	N.D.	ug/L	1.0
1,1,2-Trichloro-				
1,2,2-trifluoroethane	1	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	1	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Cindy Ingram

1

Approved by: Susan Brillante

🖞 Enseco

1 1

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND I	MOORE			
Client ID: MW-5				
Laboratory ID: 65703-005	Enseco ID: 6	5703-005		
Matrix: Groundwater	Sampled: 02/22/88	Received: 0	02/23/88	
Authorized: 02/23/88		Analyzed: (02/26/88	
<u>Parameter</u>	Res	<u>ult</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene	N	.D.	ug/L	0.50
Chlorobenzene	N	.D.	ug/L	0.50
Ethylbenzene	N	.D.	ug/L	0.50
Toluene	N	.D.	ug/L	0.50
1,2-Dichlorobenzene	N	.D.	ug/L	0.50
1,3-Dichlorobenzene	N	.D.	ug/L	0.50
1,4-Dichlorobenzene	N	.D.	ug/L	0.50
m-Xylene	N	.D.	ug/L	0.50
o & p-Xylene(s)	N	.D.	ug/L	0.50

N.D. = Not detected Reported by: Cindy Ingram

Approved by: Susan Brillante

🖕 Enseco

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-5

Laboratory ID: 65703-005

Enseco ID: 65703-005

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Calcium	142	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	22	mg/L	0.1	200.7	03/07/88
Manganese	0.76	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	244	mg/L	0.05	200.7	03/07/88
Total Organic Lead	0.002	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

П.

🔨 Enseco

INORGANIC PARAMETERS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-5

Laboratory ID: 65703-005

Enseco ID: 65703-005

Received: 02/23/88

Authorized: 02/23/88

Matrix: Groundwater

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	7.60	units	0.01	150.1	02/23/88
Specific Conductance @ 25C	1700	umhos/cm	1	120.1/9050	02/23/88
Total Dissolved Solids	1190	mg/L	10	160.1	02/26/88
Fluoride	0.7	mg/L	0.1	340.2	03/01/88
Chloride	61	mg/L	3	300.0	03/01/88
Nitrate + Nitrite as N	0.3	mg/L	0.1	353.2	02/25/88
Sulfate	545	mg/L	5	300.0	03/01/88
Total Alkalinity as CaCO3	301	mg/L	5	310.1/403	02/23/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	19.5	meq/L	0.1	104C	03/08/88
Total Anions	19.1	meq/L	0.3	104C	03/08/88
% Difference	1.0	4c	0.1	104C	03/08/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND M	IOORE			
Client ID: MW-6				
Laboratory ID: 65703-006	Enseco ID:	65703-006		
Matrix: Groundwater	Sampled: 02/22/88	Re	ceived: 02/23/88	
Authorized: 02/23/88		Ал	alyzed: 02/26/88	
				Reporting
Parameter	<u>Re</u> :	<u>sult</u>	<u>Units</u>	Limit
Bromoform	1	N.D.	ug/L	5.0
Carbon tetrachloride	1	N.D.	ug/L	0.50
Chlorobenzene	1	N.D.	ug/L	2.0
Chloroethane	1	N.D.	ug/L	5.0
Chloroform	1	N.D.	ug/L	0.50
Dibromochloromethane	1	N.D.	ug/L	1.0
Bromodichloromethane	1	N.D.	ug/L	1.0
1,1-Dichloroethane	1	N.D.	ug/L	0.50
1,2-Dichloroethane		7.7	ug/L	1.0
1,1-Dichloroethene	1	N.D.	ug/L	0.50
1,2-Dichloropropane	1	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	1	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	1	N.D.	ug/L	0.50
Bromomethane	1	N.D.	ug/L	5.0
Chloromethane	1	N.D.	ug/L	5.0
Methylene chloride	1	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	1	N.D.	ug/L	1.0
Tetrachloroethene	1	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	1	N.D.	ug/L	0.50
1,1,1-Trichloroethane	1	N.D.	ug/L	0.50
1,1,2-Trichloroethane	1	N.D.	ug/L	1.0
Trichloroethene	1	N.D.	ug/L	1.0
Vinyl chloride	1	N.D.	ug/L	1.0
1,1,2-Trichloro-				
1,2,2-trifluoroethane	1	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	1	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Cindy Ingram

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE						
Client ID: MW-6						
Laboratory ID: 65703-006	Enseco ID: 6	65703-	006			
Matrix: Groundwater	Sampled: 02/22/88					
Authorized: 02/23/88			Analyzed: 02/26/88			
Parameter	<u>Re</u> :	<u>sult</u>	<u>Units</u>	Reporting <u>Limit</u>		
Benzene	1	N.D.	ug/L	0.50		
Chlorobenzene	1 I	N.D.	ug/L	0.50		
Ethylbenzene	1	N.D.	ug/L	0.50		
Toluene	1	N.D.	ug/L	0.50		
1,2-Dichlorobenzene	1	N.D.	ug/L	0.50		
1,3-Dichlorobenzene	1	N.D.	ug/L	0.50		
1,4-Dichlorobenzene	1	N.D.	ug/L	0.50		
m-Xylene	1	N.D.	ug/L	0.50		
o & p-Xylene(s)	1	N.D.	ug/L	0.50		

N.D. = Not detected Reported by: Cindy Ingram

Approved by: Susan Brillante

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-6

Laboratory ID: 65703-006

Enseco ID: 65703-006

Received: 02/23/88

Matrix: Groundwater

Authorized: 02/23/88

Reporting Analytical **Parameter** Result <u>Units</u> <u>Limit</u> <u>Method</u> <u>Analyzed</u> Calcium 267 mg/L0.1 200.7 03/07/88 Iron N.D. mg/L 0.05 200.7 03/07/88 Magnesium 37 mg/L 0.1 200.7 03/07/88 Manganese 2.3 mg/L 0.005 200.7 03/07/88 Potassium N.D. 5 200.7 03/07/88 mg/LSodium 0.05 200.7 03/07/88 361 mg/L0.005 Total Organic Lead 0.002 03/09/88 mg/L Enseco

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Sampled: 02/22/88

Client Name: DAMES AND MOORE Client ID: MW-6

Laboratory ID: 65703-006

Enseco ID: 65703-006

Received: 02/23/88

Matrix: Groundwater

Authorized: 02/23/88

Parameter	<u>Result</u>	Units	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pН	7.53	units	0.01	150.1	02/23/88
Specific Conductance @ 25C	2700	umhos/cm	1	120.1/9050	02/23/88
Total Dissolved Solids	2000	mg/L	10	160.1	02/26/88
Fluoride	0.5	mg/L	0.1	340.2	03/01/88
Chloride	260	mg/L	3	300.0	03/01/88
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	02/25/88
Sulfate	9 60	mg/L	5	300.0	03/01/88
Total Alkalinity as CaCO3	324	mg/L	5	310.1/403	02/23/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	32.1	meg/L	0.1	104C	03/08/88
Total Anions	33.8	meg/L	0.3	104C	03/08/88
% Difference	2.6	%	0.1	104C	03/08/88

N.D. = Not detected

Approved by: Lindsay Breyer

🔩 Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND N	MOORE			
Client ID: MW-7				
Laboratory ID: 65703-007	Enseco ID: 6	5703-007		
Matrix: Groundwater	Sampled: 02/22/88	Re	eceived: 02/23/88	
Authorized: 02/23/88		Aı	nalyzed: 02/26/88	
			· · · · · · · · · · · · · · · · · · ·	Reporting
<u>Parameter</u>	Res	<u>ult</u>	<u>Units</u>	Limit
Bromoform	N	.D.	ug/L	5.0
Carbon tetrachloride	N	.D.	ug/L	0.50
Chlorobenzene	N	.D.	ug/L	2.0
Chloroethane	N	. D .	ug/L	5.0
Chloroform	N	.D.	ug/L	0.50
Dibromochloromethane	N	.D.	ug/L	1.0
Bromodichloromethane	N	.D.	ug/L	1.0
1,1-Dichloroethane	N	.D.	ug/L	0.50
1,2-Dichloroethane	N	.D.	ug/L	1.0
1,1-Dichloroethene	N	I.D.	ug/L	0.50
1,2-Dichloropropane	N	I.D.	ug/L	1.0
cis-1,3-Dichloropropene	N	I.D.	ug/L	2.0
trans-1,3-Dichloropropene	N	I.D.	ug/L	0.50
Bromomethane	N	I.D.	ug/L	5.0
Chloromethane	N	I.D.	ug/L	5.0
Methylene chloride	N	I.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N	I.D.	ug/L	1.0
Tetrachloroethene	N	I.D.	ug/L	0.50
trans-1,2-Dichloroethene	N	I.D.	ug/L	0.50
1,1,1-Trichloroethane	N	I.D.	ug/L	0.50
1,1,2-Trichloroethane	N	I.D.	ug/L	1.0
Trichloroethene	N	I.D.	ug/L	1.0
Vinyl chloride	N	I.D.	ug/L	1.0
1,1,2-Trichloro-				
1,2,2-trifluoroethane	N	.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N	I.D.	ug/L	2.0

N.D. = Not detected

Reported by: Cindy Ingram

Approved by: Susan Brillante

🤄 Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND	MOORE		
Client ID: MW-7			
Laboratory ID: 65703-007	Enseco ID: 65	703-007	
Matrix: Groundwater	Sampled: 02/22/88	88	
Authorized: 02/23/88		Analyzed: 02/26/	88
Parameter	Resu	<u>It</u> <u>Uni</u>	Reporting ts <u>Limit</u>
Benzene	N .1). ug/l	L 0.50
Chlorobenzene	N.1	D. ug/l	L 0.50
Ethylbenzene	N.1). ug/1	L 0.50
Toluene	N.1	D. ug/1	L 0.50
1,2-Dichlorobenzene	N .1	D. ug/1	L 0.50
1,3-Dichlorobenzene	N.:	D. ug/]	L 0.50
1,4-Dichlorobenzene	N.:	D. ug/1	L 0.50
m-Xylene	N.). u g/1	L 0.50
o & p-Xylene(s)	N.:	D. ug/1	L 0.50

N.D. = Not detected Reported by: Cindy Ingram

Approved by: Susan Brillante

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-7

Laboratory 1D: 65703-007

Enseco 1D: 65703-007

Received: 02/23/88

Matrix: Groundwater

Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	205	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	29	mg/L	0.1	200.7	03/07/88
Manganese	0.48	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	266	mg/L	0.05	200.7	03/07/88
Total Organic Lead	0.002	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

Enseco

INORGANIC PARAMETERS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-7

Laboratory ID: 65703-007

Enseco ID: 65703-007

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pН	7.64	units	0.01	150.1	02/23/88
Specific Conductance @ 25C	2100	umhos/cm	1	120.1/9050	02/23/88
Total Dissolved Solids	1510	mg/L	10	160.1	02/26/88
Fluoride	0.5	mg/L	0.1	340.2	03/01/88
Chloride	169	mg/L	3	300.0	03/01/88
Nitrate + Nitrite as N	1.0	mg/L	0.1	353.2	02/25/88
Sulfate	675	mg/L	5	300.0	03/01/88
Total Alkalinity as CaCO3	320	mg/L	5	310.1/403	02/23/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	24.2	meq/L	0.1	104C	03/08/88
Total Anions	25.3	meq/L	0.3	104C	03/08/88
% Difference	2.3	%	0.1	104C	03/08/88

N.D. = Not detected

2

- 🗧 Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND	MOORE		
Client ID: MW-8			
Laboratory ID: 65703-008	Enseco ID: 6	5703-008	
Matrix: Groundwater	Sampled: 02/22/88	Received: 02/23/88	
Authorized: $02/23/88$		Analyzed: 02/26/88	

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	1.1	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-		-	
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Cindy Ingram

Approved by: Susan Brillante

- 🌜 Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND Client ID: MW-8	MOORE			
Laboratory ID: 65703-008	Enseco ID:	65703	-008	
Matrix: Groundwater	Sampled: 02/22/88		Received: 02/23/88	
Authorized: 02/23/88			Analyzed: 02/26/88	
<u>Parameter</u>	<u>R</u> (<u>esult</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene		N.D.	ug/L	0.50
Chlorobenzene		N.D.	ug/L	0.50
Ethylbenzene		N.D.	ug/L	0.50
Toluene		N.D.	ug/L	0.50
1,2-Dichlorobenzene		N.D.	ug/L	0.50
1,3-Dichlorobenzene		N.D.	ug/L	0.50
1,4-Dichlorobenzene		N.D.	ug/L	0.50
m-Xylene		N.D.	ug/L	0.50
o & p-Xylene(s)		N.D.	ug/L	0.50

N.D. = Not detected Reported by: Cindy Ingram

- 🦕 Enseco

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-8

Laboratory ID: 65703-008

Enseco ID: 65703-008

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	193	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	26	mg/L	0.1	200.7	03/07/88
Manganese	2.7	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	174	mg/L	0.05	200.7	03/07/88
Total Organic Lead	N.D.	mg/L	0.004	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

- 🤄 Enseco

INORGANIC PARAMETERS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-8

Laboratory ID: 65703-008

Enseco ID: 65703-008

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	7.61	units	0.01	150.1	02/23/88
Specific Conductance @ 25C	1640	umhos/cm	1	120.1/9050	02/23/88
Total Dissolved Solids	1230	mg/L	10	160.1	02/26/88
Fluoride	0.6	mg/L	0.1	340.2	03/01/88
Chloride	65	mg/L	3	300.0	03/01/88
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	02/25/88
Sulfate	605	mg/L	5	300.0	03/01/88
Total Alkalinity as CaCO3	256	mg/L	5	310.1/403	02/23/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	19.3	meg/L	0.1	104C	03/08/88
Total Anions	19.6	meq/L	0.3	104C	03/08/88
% Difference	0.6	%	0.1	104C	03/08/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND	MOORE		
Client ID: MW-9			
Laboratory ID: 65703-009	Enseco ID: 6	5703-009	
Matrix: Groundwater	Sampled: 02/22/88	Received: 02/23/88	
Authorized: 02/23/88		Analyzed: 02/26/88	

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	8.6	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0
		-	

N.D. = Not detected

Reported by: Cindy Ingram

Approved by: Susan Brillante

- Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND 2 Client ID: MW-9	MOORE		
Laboratory ID: 65703-009	Enseco ID: 65	703-009	
Matrix: Groundwater	Sampled: 02/22/88	Received: 02/23/8	38
Authorized: 02/23/88		Analyzed: 02/26/8	38
Parameter	Resu	<u>lt</u> <u>Unit</u>	Reporting <u>s Limit</u>
Benzene	N.1). ug/I	. 0.50
Chlorobenzene	N.1	ug/I	. 0.50
Ethylbenzene	N.I	ug/I	. 0.50
Toluene	N.1	D. ug/l	. 0.50
1,2-Dichlorobenzene	N.I	D. ug/l	. 0.50
1,3-Dichlorobenzene	N.I	D. ug/l	. 0.50
1,4-Dichlorobenzene	N.1	D. ug/ I	. 0.50
m-Xylene	N.1	ug/I	. 0.50
o & p-Xylene(s)	N.1	D. ug/I	0.50

N.D. = Not detected Reported by: Cindy Ingram

Approved by: Susan Brillante

- Enseco

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-9

Laboratory ID: 65703-009

Enseco ID: 65703-009

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Calcium	396	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	41	mg/L	0.1	200.7	03/07/88
Manganese	0.11	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	357	mg/L	0.05	200.7	03/07/88
Total Organic Lead	0.004	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

🤄 Enseco

INORGANIC PARAMETERS

Sampled: 02/22/88

Client Name: DAMES AND MOORE

Client ID: MW-9

Laboratory ID: 65703-009

Enseco ID: 65703-009

Received: 02/23/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
pН	7.71	units	0.01	150.1	02/23/88
Specific Conductance @ 25C	3000	umhos/cm	1	120.1/9050	02/23/88
Total Dissolved Solids	2160	mg/L	10	160.1	02/26/88
Fluoride	0.8	mg/L	0.1	340.2	03/01/88
Chloride	81	mg/L	3	300.0	03/01/88
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	02/25/88
Sulfate	1510	mg/L	5	300.0	03/01/88
Total Alkalinity as CaCO3	250	mg/L	5	310.1/403	03/09/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	38.7	meq/L	0.1	104C	03/10/88
Total Anions	38.7	meq/L	0.3	104C	03/10/88
% Difference	0	%	0.1	104C	03/10/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: MW-10

Laboratory ID: 65703-010

Enseco ID: 65703-010

Matrix: Groundwater	Sampled: 02/23/88	Received: 02/24/88
Authorized: 02/23/88		Analyzed: 02/27/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N .D.	ug/L	5.0
Chloroform	N .D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	1.3	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N. D.	ug/L	1.0
cis-1,3-Dichloropropene	N .D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N .D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N. D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Michael Hoffman

Approved by: Susan Brillante

Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND 1	MOORE			
Client ID: MW-10				
Laboratory ID: 65703-010	Enseco ID: 6	5703-010		
Matrix: Groundwater	Sampled: 02/23/88	Received: 02/24	/88	
Authorized: 02/23/88		Analyzed: 02/27	/88	
<u>Parameter</u>	Resi	ilt <u>Ur</u>	Reporti nits Limi	~
Benzene	N.	D. Ug	/L 0.	50
Chlorobenzene	N.	D. Ug	/L 0	50
Ethylbenzene	N.	D. u g	J/L 0.:	50
Toluene	N.	D. ug	/L 0.:	50
1,2-Dichlorobenzene	N.	D. Ug	/L 0.:	50
1,3-Dichlorobenzene	N.	D. Ug	J/L 0.	50
1,4-Dichlorobenzene	N.	D. Ug	,/L 0.	50
m-Xylene	N.	D. Ug	/L 0.	50
o & p-Xylene(s)	N.	D. ug	/L 0	50

N.D. = Not detected

Reported by: Michael Hoffman

METALS PARAMETERS DISSOLVED METALS

Client Name: DAMES AND MOORE

Client ID: MW-10

Laboratory ID: 65703-010

Enseco ID: 65703-010

Sampled: 02/23/88 Received: 02/24/88

Matrix: Groundwater Authorized: 02/23/88

<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
196	mg/L	0.1	200.7	03/07/88
N.D.	mg/L	0.05	200.7	03/07/88
41		0.1	200.7	03/07/88
5.2		0.005	200.7	03/07/88
N.D.	÷.	5	200.7	03/07/88
578	-	0.05	200.7	03/07/88
0.009	mg/L	0.002	Enseco	03/09/88
	196 N.D. 41 5.2 N.D. 578	196 mg/L N.D. mg/L 41 mg/L 5.2 mg/L N.D. mg/L 578 mg/L	Result Units Limit 196 mg/L 0.1 N.D. mg/L 0.05 41 mg/L 0.1 5.2 mg/L 0.005 N.D. mg/L 5 578 mg/L 0.05	Result Units Limit Method 196 mg/L 0.1 200.7 N.D. mg/L 0.05 200.7 41 mg/L 0.1 200.7 5.2 mg/L 0.005 200.7 N.D. mg/L 5 200.7 5.2 mg/L 0.005 200.7 S78 mg/L 0.05 200.7

N.D. = Not detected

Approved by: Will Pratt

👍 Enseco

INORGANIC PARAMETERS

Sampled: 02/23/88

Client Name: DAMES AND MOORE

Client ID: MW-10

Laboratory ID: 65703-010

Enseco ID: 65703-010

Received: 02/24/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	7.70	units	0.01	150.1	02/24/88
Specific Conductance @ 25C	3720	umhos/cm	1	120.1/9050	02/24/88
Total Dissolved Solids	2725	mg/L	10	160.1	02/26/88
Fluoride	0.7	mg/L	0.1	340.2	03/01/88
Chloride	191	mg/L	3	300.0	03/02/88
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	02/25/88
Sulfate	1640	mg/L	5	300.0	03/09/88
Total Alkalinity as CaCO3	271	mg/L	5	310.1/403	03/09/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	38.3	meq/L	0.1	104C	03/10/88
Total Anions	42.7	meq/L	0.3	104C	03/10/88
% Difference	5.4	%	0.1	104C	03/10/88

N.D. = Not detected

Approved by: Lindsay Breyer

==

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

MOORE		
Enseco ID: 6	55703-011	
Sampled: 02/23/88	Received: 02/24/88	
	Analyzed: 02/27/88	
	Enseco ID: 6	Enseco ID: 65703-011 Sampled: 02/23/88 Received: 02/24/88

<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
N.D.	ug/L	5.0
N.D.	ug/L	0.50
N.D.	ug/L	2.0
N.D.	ug/L	5.0
N.D.	ug/L	0.50
N.D.	ug/L	1.0
N.D.	ug/L	1.0
N.D.	ug/L	0.50
4.6	ug/L	1.0
N.D.	ug/L	0.50
N.D.	ug/L	1.0
N.D.	ug/L	2.0
N.D.	ug/L	0.50
N.D.	ug/L	5.0
N.D.	ug/L	5.0
N.D.	ug/L	5.0
N.D.	ug/L	1.0
N.D.	ug/L	0.50
N.D.	ug/L	0.50
N.D.	ug/L	0.50
N.D.	ug/L	1.0
N .D.	ug/L	1.0
N .D.	ug/L	1.0
N.D.	ug/L	1.0
N.D.	ug/L	2.0
	N.D. N.D. N.D. N.D. N.D. N.D. N.D. A.6 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.	N.D. ug/L N.D.

N.D. = Not detected

Reported by: Michael Hoffman

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND I	MOORE			
Client ID: MW-11				
Laboratory ID: 65703-011	Enseco ID: 65	5703-011		
Matrix: Groundwater	Sampled: 02/23/88	Received: 02/24	/88	
Authorized: 02/23/88		Analyzed: 02/27	/88	
<u>Parameter</u>	Resu	<u>lt Ur</u>	<u>nits</u>	Reporting <u>Limit</u>
Benzene	2:	5 ug	/L	0.50
Chlorobenzene	N .1		/L	0.50
Ethylbenzene	N.1	D. Ug	/L	0.50
Toluene	N .1	D. Ug	/L	0.50
1,2-Dichlorobenzene	N.1	D. u g	j/L	0.50
1,3-Dichlorobenzene	N.1	D. ug	/L	0.50
1,4-Dichlorobenzene	N.1	D. Ug	;/L	0.50
m-Xylene	N.1	D. u g	/L	0.50
o & p-Xylene(s)	N.I	D. ug	;/L	0.50

N.D. = Not detected Reported by: Michael Hoffman

Approved by: Susan Brillante

Enseco

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/23/88

Client Name: DAMES AND MOORE

Client ID: MW-11

Laboratory ID: 65703-011

Enseco ID: 65703-011

Received: 02/24/88

Matrix: Groundwater Authorized: 02/23/88

<u>Parameter</u>	Result	<u>Units</u>	Reporting Limit	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	186	mg/L	0.1	200.7	03/15/88
lron	N.D.	mg/L	0.05	200.7	03/15/88
Magnesium	28	mg/L	0.1	200.7	03/15/88
Manganese	1.0	mg/L	0.005	200.7	03/15/88
Potassium	N.D.	mg/L	5	200.7	03/15/88
Sodium	263	mg/L	0.05	200.7	03/15/88
Total Organic Lead	N.D.	mg/L	0.004	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

🗧 Enseco

INORGANIC PARAMETERS

Sampled: 02/23/88

Client Name: DAMES AND MOORE

Client ID: MW-11

Laboratory ID: 65703-011

Enseco ID: 65703-011

Received: 02/24/88

Matrix: Groundwater Authorized: 02/23/88

-

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pН	7.62	units	0.01	150.1	02/24/88
Specific Conductance @ 25C	2120	umhos/cm	1	120.1/9050	02/24/88
Total Dissolved Solids	1470	mg/L	10	160.1	02/26/88
Fluoride	0.5	mg/L	0.1	340.2	03/01/88
Chloride	184	mg/L	3	300.0	03/02/88
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	02/25/88
Sulfate	615	mg/L	5	300.0	03/09/88
Total Alkalinity as CaCO3	242	mg/L	5	310.1/403	03/09/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	23.0	meq/L	0.1	104C	03/10/88
Total Anions	23.1	meq/L	0.3	104C	03/10/88
% Difference	0.1	%	0.1	104C	03/10/88

N.D. = Not detected

Approved by: Lindsay Breyer

- Enseco

.

HAZARDOUS SUBSTANCE LIST (HSL) VOLATILE ORGANICS EPA METHOD 624

Client Name: DAMES AND MOORE

Client ID: MW-12

Laboratory ID: 65703-012

Enseco ID: 65703-012

Matrix: Groundwater	Sampled: 02/23/88	Received: 02/24/88
Authorized: 02/23/88		Analyzed: 03/01/88

ParameterResultUnitsLimitAcetoneN.D.ug/L3500Benzene24000ug/L700BromoformN.D.ug/L700BromomethaneN.D.ug/L1400	
Benzene 24000 ug/L 700 Bromoform N.D. ug/L 700	
Bromoform N.D. ug/L 700	
01	
Bromomethane N.D. ug/L 1400	
2-Butanone N.D. ug/L 3500	
Carbon disulfide N.D. ug/L 700	
Carbon tetrachloride N.D. ug/L 700	
Chlorobenzene N.D. ug/L 700	
Dibromochloromethane N.D. ug/L 700	
Chloroethane N.D. ug/L 1400	
2-Chloroethyl vinyl ether N.D. ug/L 1400	
Chloroform N.D. ug/L 700	
Chloromethane N.D. ug/L 1400	
Bromodichloromethane N.D. ug/L 700	
1,1-Dichloroethane N.D. ug/L 700	
1,2-Dichloroethane 2400 ug/L 700	
1,1-Dichloroethene N.D. ug/L 700	
1,2-Dichloropropane N.D. ug/L 700	
cis-1,3-Dichloropropene N.D. ug/L 700	
trans-1,3-Dichloropropene N.D. ug/L 700	
Ethylbenzene 1500 ug/L 700	
2-Hexanone N.D. ug/L 1400	
Methylene chloride N.D. ug/L 3500	
4-Methyl-2-pentanone N.D. ug/L 1400	
Styrene N.D. ug/L 700	
1,1,2,2-Tetrachloroethane N.D. ug/L 700	
Tetrachloroethene N.D. ug/L 700	
Toluene 20000 ug/L 700	
trans-1,2-Dichloroethene N.D. ug/L 700	
1,1,1-Trichloroethane N.D. ug/L 700	
1,1,2-Trichloroethane N.D. ug/L 700	

N.D. = Not detected

🗧 Enseco

HAZARDOUS SUBSTANCE LIST (HSL) VOLATILE ORGANICS (CONT.) EPA METHOD 624

Client Name: DAMES AND M	IOORE		
Client ID: MW-12			
Laboratory ID: 65703-012	Enseco ID: 6570	03-012	
Matrix: Groundwater	Sampled: 02/23/88	Received: 02/24/88	
Authorized: 02/23/88		Analyzed: 03/01/88	
<u>Parameter</u>	<u>Result</u>	Units	Reporting <u>Limit</u>
Trichloroethene	N.D.	ug/L	700
Vinyl acetate	N.D.	ug/L	1400
Vinyl chloride	N.D.	ug/L	1400
Total Xylenes	10000	ug/L	700
Surrogate			
Toluene-D8	102	%	-
Bromofluorobenzene(BFB)	97	¢⁄o	-
1,2-Dichloroethane-D4	96	¢⁄ه	-

N.D. = Not detected Reported by: Julie Niermann

Approved by: Jeffrey Lowry

2

💪 Enseco

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/23/88

Client Name: DAMES AND MOORE

Client ID: MW-12

Laboratory ID: 65703-012

Enseco ID: 65703-012

Received: 02/24/88

Matrix: Groundwater

Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Calcium	133	mg/L	0.1	200.7	03/07/88
Iron	0.09	mg/L	0.05	200.7	03/07/88
Magnesium	39	mg/L	0.1	200.7	03/07/88
Manganese	3.6	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	239	mg/L	0.05	200.7	03/07/88
Total Organic Lead	0.060	mg/L	0.004	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

🔄 Enseco

INORGANIC PARAMETERS

Sampled: 02/23/88

Client Name: DAMES AND MOORE

Client ID: MW-12

Laboratory ID: 65703-012

Enseco ID: 65703-012

Received: 02/24/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting Limit	Analytical <u>Method</u>	<u>Analyzed</u>
рН	7.05	units	0.01	150.1	02/24/88
Specific Conductance @ 25C	2070	umhos/cm	1	120.1/9050	02/24/88
Total Dissolved Solids	1310	mg/L	10	160.1	03/10/88
Fluoride	0.3	mg/L	0.1	340.2	03/01/88
Chloride	36 0	mg/L	3	300.0	03/03/88
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	02/25/88
Sulfate	9	mg/L	5	300.0	03/02/88
Total Alkalinity as CaCO3	541	mg/L	5	310.1/403	02/24/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	20.2	meq/L	0.1	104C	03/08/88
Total Anions	21.2	meq/L	0.3	104C	03/08/88
% Difference	2.2	%	0.1	104C	03/08/88

N.D. = Not detected

Approved by: Lindsay Breyer

INORGANIC PARAMETERS

Client Name: DAMES ANI	D MOORE				
Client ID: MW-12					
Laboratory ID: 67011-001		Enseco ID:	67011-001		
Matrix: Water	Sample	Sampled: 02/23/88 Received: 04/04/88			
Authorized: 04/04/88					
Parameter	<u>Result</u>	<u>Units</u>	Reporting Limit	Analytical <u>Method</u>	Analyzed
Oil & Grease	3	mg/L	1	413.1	04/07/88

N.D. = Not detected

Approved by: Lindsay Breyer

Sample: 67011-001

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND N	MOORE		
Client ID: W-3			
Laboratory ID: 65703-013	Enseco 1D: 65	703-013	
Matrix: Groundwater	Sampled: 02/23/88	Received: 02/24/8	8
Authorized: 02/23/88		Analyzed: 02/27/8	8
<u>Parameter</u>	Resu	lt Units	Reporting <u>Limit</u>
Bromoform	N.I). ug/L	5.0
Carbon tetrachloride	N.I	o. ug/L	0.50
Chlorobenzene	N.I	D. ug/L	2.0
Chloroethane	N.I	ug/L	
Chloroform	N.L	D. ug/L	0.50
Dibromochloromethane	N.I	ug/L	
Bromodichloromethane	N.I). ug/L	
1,1-Dichloroethane	N.I	07	
1,2-Dichloroethane	30) ug/L	
1,1-Dichloroethene	N.I	D. ug/L	
1,2-Dichloropropane	N.I). ug/L	
cis-1,3-Dichloropropene	N.I	D. ug/L	
trans-1,3-Dichloropropene	N.I). ug/L	
Bromomethane	N.I	D. ug/L	
Chloromethane	N.I	D. ug/L	
Methylene chloride	N.I). ug/L	
1,1,2,2-Tetrachloroethane	N.I	D. ug/L	
Tetrachloroethene	N.I	D. ug/L	
trans-1,2-Dichloroethene	N.I	D. ug/L	
1,1,1-Trichloroethane	N.I	D. ug/L	
1,1,2-Trichloroethane	N.I	D. ug/L	
Trichloroethene	N.I	D. Ug/L	
Vinyl chloride	N.I). ug/L	1.0
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.I	0,	
1,2-Dibromoethane (EDB)	N.I	D. ug/L	2.0

N.D. = Not detected

Reported by: Michael Hoffman

Approved by: Susan Brillante

🥃 Enseco

AROMATIC VOLATILE ORGANICS

.

EPA METHOD 602

Client Name: DAMES AND I Client ID: W-3	MOORE			
Laboratory ID: 65703-013	Enseco ID	. 65703	012	
Laboratory 1D. 05/05-015	Eliseco ID	: 05705	-013	
Matrix: Groundwater	Sampled: 02/23/88		Received: 02/24/88	
Authorized: 02/23/88			Analyzed: 02/27/88	
Parameter	R	lesult	<u>Units</u>	Reporting <u>Limit</u>
Benzene		N.D.	ug/L	0.50
Chlorobenzene		N.D.	ug/L	0.50
Ethylbenzene		N.D.	ug/L	0.50
Tolucne		N.D.	ug/L	0.50
1,2-Dichlorobenzene		N.D.	ug/L	0.50
1,3-Dichlorobenzene		N.D.	ug/L	0.50
1,4-Dichlorobenzene		N.D.	ug/L	0.50
m-Xylene		N.D.	ug/L	0.50
o & p-Xylene(s)		N.D.	ug/L	0.50

N.D. = Not detected Reported by: Michael Hoffman

Approved by: Susan Brillante

Enseco

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/23/88

Client Name: DAMES AND MOORE

Client ID: W-3

Laboratory ID: 65703-013

Enseco ID: 65703-013

Received: 02/24/88

Matrix: Groundwater Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	103	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	22	mg/L	0.1	200.7	03/07/88
Manganese	0.28	mg/L	0.005	200.7	03/07/88
Potassium	6	mg/L	5	200.7	03/07/88
Sodium	207	mg/L	0.05	200.7	03/07/88
Total Organic Lead	0.002	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

- 🤤 Enseco

INORGANIC PARAMETERS

Sampled: 02/23/88

Client Name: DAMES AND MOORE

Client ID: W-3

Laboratory ID: 65703-013

Enseco ID: 65703-013

Received: 02/24/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	7.81	units	0.01	150.1	02/24/88
Specific Conductance @ 25C	1550	umhos/cm	1	120.1/9050	02/24/88
Total Dissolved Solids	960	mg/L	10	160.1	03/10/88
Fluoride	0.4	mg/L	0.1	340.2	03/01/88
Chloride	50	mg/L	3	300.0	03/02/88
Nitrate + Nitrite as N	1.1	mg/L	0.1	353.2	02/25/88
Sulfate	387	mg/L	5	300.0	03/03/88
Total Alkalinity as CaCO3	363	mg/L	5	310.1/403	02/24/88
Ammonia as N	9.8	mg/L	0.1	350.1	02/26/88
Total Cations	16.8	meg/L	0.1	104C	03/08/88
Total Anions	16.8	meg/L	0.3	104C	03/08/88
% Difference	0	%	0.1	104C	03/08/88

N.D. = Not detected

Approved by: Lindsay Breyer

🔄 Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: ROBERT BALL WELL

Laboratory ID: 65703-014

Authorized: 02/23/88

Enseco ID: 65703-014

Matrix:	Groundwater	Sampled:	02/23/88

Received: 02/24/88 Analyzed: 02/27/88

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Michael Hoffman

Approved by: Susan Brillante

🗧 Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND	MOORE		
Client ID: ROBERT BALL V	VELL		
Laboratory ID: 65703-014	Enseco 1D: 6	5703-014	
Matrix: Groundwater	Sampled: 02/23/88	Received: 02/24/88	
Authorized: 02/23/88		Analyzed: 02/27/88	
			Reporting

Parameter	<u>Result</u>	<u>Units</u>	Limit
Benzene	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	0.50
Ethylbenzene	N.D.	ug/L	0.50
Toluene	N.D.	ug/L	0.50
1,2-Dichlorobenzene	N.D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N.D.	ug/L	0.50
m-Xylene	N.D.	ug/L	0.50
o & p-Xylene(s)	N.D.	ug/L	0.50

N.D. = Not detected Reported by: Michael Hoffman

1.

- 1 i

Approved by: Susan Brillante

🐇 Enseco

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/23/88

Client Name: DAMES AND MOORE

Client ID: ROBERT BALL WELL

Laboratory ID: 65703-014

Matrix: Groundwater

Enseco ID: 65703-014

Received: 02/24/88

Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	15	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	2.6	mg/L	0.1	200.7	03/07/88
Manganese	0.021	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	696	mg/L	0.05	200.7	03/07/88
Total Organic Lead	N.D.	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

🖞 Enseco

INORGANIC PARAMETERS

Sampled: 02/23/88

Client Name: DAMES AND MOORE

Client ID: ROBERT BALL WELL

Laboratory ID: 65703-014

Enseco ID: 65703-014

Received: 02/24/88

Matrix: Groundwater Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	8.39	units	0.01	150.1	02/24/88
Specific Conductance @ 25C	3360	umhos/cm	1	120.1/9050	02/24/88
Total Dissolved Solids	2140	mg/L	10	160.1	03/10/88
Fluoride	1.2	mg/L	0.1	340.2	03/01/88
Chloride	527	mg/L	3	300.0	03/02/88
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	02/25/88
Sulfate	610	mg/L	5	300.0	03/02/88
Total Alkalinity as CaCO3	289	mg/L	5	310.1/403	02/24/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	31.2	meq/L	0.1	104C	03/08/88
Total Anions	33.4	meq/L	0.3	104C	03/08/88
% Difference	3.3	%	0.1	104C	03/08/88

N.D. = Not detected

Approved by: Lindsay Breyer

- Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND N	100RE			
Client ID: MW-11 DUPLICAT	ГЕ			
Laboratory ID: 65703-015	Enseco ID:	65703-015		
Matrix: Groundwater	Sampled: 02/23/88	Rec	eived: 02/24/88	
Authorized: 02/23/88		Ana	lyzed: 02/27/88	
Parameter	Re	sult	Units	Reporting <u>Limit</u>
Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane Bromodichloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Bromomethane Chloromethane Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene trans-1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl chloride		N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 5.0\\ 0.50\\ 2.0\\ 5.0\\ 0.50\\ 1.0\\ 1.0\\ 0.50\\ 1.0\\ 0.50\\ 1.0\\ 0.50\\ 1.0\\ 2.0\\ 0.50\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\end{array}$
1,1,2-Trichloro- 1,2,2-trifluoroethane 1,2-Dibromoethane (EDB)		N.D. N.D.	ug/L ug/L	1.0 2.0

N.D. = Not detected

Reported by: Michael Hoffman

1

11

Approved by: Susan Brillante

🝹 Enseco

0.50

0.50

1

ug/L

ug/L

•

i.

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND	MOORE				
Client ID: MW-11 DUPLICA	TE				
Laboratory ID: 65703-015	Enseco ID:				
Matrix: Groundwater	Sampled: 02/23/88		Received: 02/24/88		
Authorized: 02/23/88		Analyze		ed: 02/27/88	
Parameter	Re	esult	Units	Reporting <u>Limit</u>	
Benzene		3.8	ug/L	0.50	
Chlorobenzene		N.D.	ug/L	0.50	
Ethylbenzene		N.D.	ug/L	0.50	
Toluene		N.D.	ug/L	0.50	
1,2-Dichlorobenzene		N.D.	ug/L	0.50	
1,3-Dichlorobenzene		N.D.	ug/L	0.50	
1,4-Dichlorobenzene		N.D.	ug/L	0.50	
- Vulana				0.50	

N.D.

N.D.

N.D. = Not detected

o & p-Xylene(s)

m-Xylene

Reported by: Michael Hoffman

🔄 Enseco

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/23/88

Client Name: DAMES AND MOORE Client ID: MW-11 DUPLICATE Laboratory ID: 65703-015

Enseco ID: 65703-015

Received: 02/24/88

Matrix: Groundwater

Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	182	mg/L	0.1	200.7	03/07/88
Iron	0.19	mg/L	0.05	200.7	03/07/88
Magnesium	28	mg/L	0.1	200.7	03/07/88
Manganese	1.2	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	277	mg/L	0.05	200.7	03/07/88
Total Organic Lead	0.003	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

- Enseco

INORGANIC PARAMETERS

Sampled: 02/23/88

Client Name: DAMES AND MOORE

Client ID: MW-11 DUPLICATE

Laboratory ID: 65703-015

Enseco ID: 65703-015

Received: 02/24/88

Matrix: Groundwater Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	7.64	units	0.01	150.1	02/24/88
Specific Conductance @ 25C	2130	umhos/cm	1	120.1/9050	02/24/88
Total Dissolved Solids	1470	mg/L	10	160.1	02/26/88
Fluoride	0.5	mg/L	0.1	340.2	03/01/88
Chloride	171	mg/L	3	300.0	03/03/88
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	02/25/88
Sulfate	615	mg/L	5	300.0	03/03/88
Total Alkalinity as CaCO3	254	mg/L	5	310.1/403	02/24/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	23.4	meq/L	0.1	104C	03/08/88
Total Anions	22.7	meq/L	0.3	104C	03/08/88
% Difference	1.6	%	0.1	104C	03/08/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE Client ID: EQUIPMENT BLANK Laboratory ID: 65703-016 Enseco 1D: 65703-016 Matrix: Groundwater Sampled: 02/23/88 Received: 02/24/88 Authorized: 02/23/88 Analyzed: 02/27/88

			Reporting
Parameter	<u>Result</u>	<u>Units</u>	Limit
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-		-	
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Michael Hoffman

Approved by: Susan Brillante

Enseco

0.50

0.50

0.50

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE								
Client ID: EQUIPMENT BLANK								
Laboratory ID: 65703-016 Enseco ID: 65703-016								
Sampled: 02/23/88 Received: 02/24/88								
Analyzed: 02/27/88								
Res	<u>ult</u>	<u>Units</u>	Reporting <u>Limit</u>					
N	D.	ug/L	0.50					
N	D.	ug/L	0.50					
N	.D.	ug/L	0.50					
N	.D.	ug/L	0.50					
N	.D.	ug/L	0.50					
N	D.	ug/L	0.50					
	NK Enseco ID: 6 Sampled: 02/23/88 <u>Res</u> N N N N N N N N N N N N N N N N N N N	NK Enseco ID: 65703-016 Sampled: 02/23/88 Received:	NK Enseco ID: 65703-016 Sampled: 02/23/88 Received: 02/24/88 Analyzed: 02/27/88 <u>Result</u> <u>Units</u> N.D. ug/L N.D. ug/L N.D. ug/L N.D. ug/L N.D. ug/L N.D. ug/L					

N.D.

N.D.

N.D.

N.D. = Not detected Reported by: Michael Hoffman

1,4-Dichlorobenzene

o & p-Xylene(s)

m-Xylene

Approved by: Susan Brillante

Sample: 65703-016

ug/L

ug/L

ug/L

- 🚑 Enseco

ļ

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/23/88

Client Name: DAMES AND MOORE

Client ID: EQUIPMENT BLANK

Laboratory ID: 65703-016

Enseco ID: 65703-016

Received: 02/24/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	3.6	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	0.6	mg/L	0.1	200.7	03/07/88
Manganese	0.021	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	5.6	mg/L	0.05	200.7	03/07/88
Total Organic Lead	0.002	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Sampled: 02/23/88

Client Name: DAMES AND MOORE

Client ID: EQUIPMENT BLANK

Laboratory ID: 65703-016

Enseco ID: 65703-016

Received: 02/24/88

Matrix: Groundwater Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	5.14	units	0.01	150.1	02/24/88
Specific Conductance @ 25C	2	umhos/cm	1	120.1/9050	02/24/88
Total Dissolved Solids	N.D.	mg/L	10	160.1	02/26/88
Fluoride	N.D.	mg/L	0.1	340.2	03/01/88
Chloride	N.D.	mg/L	3	300.0	03/03/88
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	02/25/88
Sulfate	N.D.	mg/L	5	300.0	03/03/88
Total Alkalinity as CaCO3	N.D.	mg/L	5	310.1/403	02/24/88
Ammonia as N	N.D.	mg/L	0.1	350.1	02/25/88
Total Cations	0.4	meq/L	0.1	104C	03/08/88
Total Anions	N.D.	meq/L	0.3	104C	03/08/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: TRIP BLANK

Laboratory ID: 65703-017

Enseco ID: 65703-017

Matrix: Water	Sampled: 02/23/88	Received: 02/24/88
Authorized: 02/23/88		Analyzed: 02/27/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	8.3	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Michael Hoffman

Approved by: Susan Brillante

- 🔄 Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE Client ID: TRIP BLANK

Laboratory ID: 65703-017

Enseco ID: 65703-017

Matrix: Water	Sampled: 02/23/88		Received: 02/24/88	
Authorized: 02/23/88			Analyzed: 02/27/88	
				Reporting
<u>Parameter</u>		<u>Result</u>	<u>Units</u>	<u>Limit</u>

Benzene	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	0.50
Ethylbenzene	N.D.	ug/L	0.50
Toluene	N .D.	ug/L	0.50
1,2-Dichlorobenzene	N.D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N.D.	ug/L	0.50
m-Xylene	N.D.	ug/L	0.50
o & p-Xylene(s)	N.D.	ug/L	0.50

N.D. = Not detected

Reported by: Michael Hoffman

Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: SW-3

Laboratory ID: 65703-018

Enseco ID: 65703-018

Matrix: Groundwater	Sampled: 02/24/88	Received: 02/25/88
Authorized: 02/23/88		Analyzed: 02/27/88

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Michael Hoffman

1 1 1 1

Approved by: Susan Brillante

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE

Client ID: SW-3

Laboratory ID: 65703-018

Enseco ID: 65703-018

Matrix: Groundwater	Sampled: 02/24/88	R	Received: 02/25/88	
Authorized: 02/23/88	Analyzed: 02/27/88			<u> </u>
Parameter	<u>Re:</u>	ult	<u>Units</u>	Reporting Limit
Benzene	Ν	I.D.	ug/L	0.50
Chlorobenzene	Ν	I.D.	ug/L	0.50
Ethylbenzene	Ν	I.D.	ug/L	0.50
Toluene	Ν	I.D.	ug/L	0.50
1,2-Dichlorobenzene	И	I.D.	ug/L	0.50
1,3-Dichlorobenzene	И	I.D.	ug/L	0.50
1,4-Dichlorobenzene	Ν	I.D.	ug/L	0.50
m-Xylene	Л	I.D.	ug/L	0.50
o & p-Xylene(s)	1	I.D.	ug/L	0.50

N.D. = Not detected

Reported by: Michael Hoffman

- Enseco

1

Ì

METALS PARAMETERS DISSOLVED METALS

Client Name: DAMES AND MOORE

Client ID: SW-3

Laboratory ID: 65703-018

Enseco ID: 65703-018

Matrix: Groundwater Authorized: 02/23/88	Sampled: 02/24/88		Received:		
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Calcium	146	mg/L	0.1	200.7	03/07/88
lron	0.13	mg/L	0.05	200.7	03/07/88
Magnesium	26	mg/L	0.1	200.7	03/07/88
Manganese	0.16	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	205	mg/L	0.05	200.7	03/07/88
Total Organic Lead	N.D.	mg/L	0.004	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

😓 Enseco

INORGANIC PARAMETERS

Sampled: 02/24/88

Client Name: DAMES AND MOORE

Client ID: SW-3

Laboratory ID: 65703-018

Enseco ID: 65703-018

Received: 02/25/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pН	8.19	units	0.01	150.1	02/25/88
Specific Conductance @ 25C	1650	umhos/cm	1	120.1/9050	02/25/88
Total Dissolved Solids	1200	mg/L	10	160.1	02/29/88
Fluoride	0.5	mg/L	0.1	340.2	03/06/88
Chloride	52	mg/L	3	300.0	03/03/88
Nitrate + Nitrite as N	0.5	mg/L	0.1	353.2	03/03/88
Sulfate	550	mg/L	5	300.0	03/03/88
Total Alkalinity as CaCO3	253	mg/L	5	310.1/403	02/25/88
Ammonia as N	N.D.	mg/L	0.1	350.1	03/03/88
Total Cations	18.3	meg/L	0.1	104C	03/08/88
Total Anions	18.0	meq/L	0.3	104C	03/08/88
% Difference	0.9	%	0.1	104C	03/08/88

N.D. = Not detected

Approved by: Lindsay Breyer

ļ

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND N	100RE			
Client ID: SW-2				
Laboratory ID: 65703-019	Enseco ID:	65703-019)	
Matrix: Groundwater	Sampled: 02/24/88	Re	eceived: 02/25/88	
Authorized: 02/23/88		A	nalyzed: 02/27/88	
				Reporting
Parameter	Re	sult	<u>Units</u>	Limit
Bromoform	1	N.D.	ug/L	5.0
Carbon tetrachloride	1	N.D.	ug/L	0.50
Chlorobenzene	ľ	N.D.	ug/L	2.0
Chloroethane	1	N.D.	ug/L	5.0
Chloroform	1	N.D.	ug/L	0.50
Dibromochloromethane	1	N. D.	ug/L	1.0
Bromodichloromethane	1	N.D.	ug/L	1.0
1,1-Dichloroethane	1	N.D.	ug/L	0.50
1,2-Dichloroethane	1	N.D.	ug/L	1.0
1,1-Dichloroethene	1	N.D.	ug/L	0.50
1,2-Dichloropropane	1	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	1	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	1	N.D.	ug/L	0.50
Bromomethane	1	N.D .	ug/L	5.0
Chloromethane	1	N.D.	ug/L	5.0
Methylene chloride	1	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	J	N.D.	ug/L	1.0
Tetrachloroethene	I	N.D .	ug/L	0.50
trans-1,2-Dichloroethene	1	N.D.	ug/L	0.50
1,1,1-Trichloroethane	I	N.D.	ug/L	0.50
1,1,2-Trichloroethane	1	N.D.	ug/L	1.0
Trichloroethene	I	N.D.	ug/L	1.0
Vinyl chloride	1	N.D.	ug/L	1.0
1,1,2-Trichloro-				
1,2,2-trifluoroethane	1	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	1	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Michael Hoffman

Approved by: Susan Brillante

Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND M	MOORE			
Client ID: SW-2				
Laboratory ID: 65703-019	Enseco ID: 65	703-019		
Matrix: Groundwater	Sampled: 02/24/88	Received: 02	/25/88	
Authorized: 02/23/88		Analyzed: 02	/27/88	
<u>Parameter</u>	Resi	<u>lt</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene	N	D.	ug/L	0.50
Chlorobenzene	N.I	Э.	ug/L	0.50
Ethylbenzene	N.	D.	ug/L	0.50
Toluene	N	Э.	ug/L	0.50
1,2-Dichlorobenzene	N.) .	ug/L	0.50
1,3-Dichlorobenzene	N.	D.	ug/L	0.50
1,4-Dichlorobenzene	N.:	D.	ug/L	0.50
m-Xylene	N).	ug/L	0.50
o & p-Xylene(s)	N.	Э.	ug/L	0.50

N.D. = Not detected

Reported by: Michael Hoffman

Enseco

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/24/88

Client Name: DAMES AND MOORE

Client ID: SW-2

Laboratory ID: 65703-019

Enseco ID: 65703-019

Received: 02/25/88

Matrix: Groundwater Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	147	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	25	mg/L	0.1	200.7	03/07/88
Manganese	0.55	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	190	mg/L	0.05	200.7	03/07/88
Total Organic Lead	0.002	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

🌾 Enseco

INORGANIC PARAMETERS

Sampled: 02/24/88

Client Name: DAMES AND MOORE

Client ID: SW-2

Laboratory ID: 65703-019

Enseco ID: 65703-019

Received: 02/25/88

Authorized: 02/23/88

Matrix: Groundwater

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pН	7.82	units	0.01	150.1	02/25/88
Specific Conductance @ 25C	1680	umhos/cm	1	120.1/9050	02/25/88
Total Dissolved Solids	1210	mg/L	10	160.1	02/29/88
Fluoride	0.5	mg/L	0.1	340.2	03/06/88
Chloride	50	mg/L	3	300.0	03/03/88
Nitrate + Nitrite as N	0.7	mg/L	0.1	353.2	03/03/88
Sulfate	550	mg/L	5	300.0	03/03/88
Total Alkalinity as CaCO3	274	mg/L	5	310.1/403	02/25/88
Ammonia as N	0.2	mg/L	0.1	350.1	03/03/88
Total Cations	17.7	meq/L	0.1	104C	03/08/88
Total Anions	18.4	meq/L	0.3	104C	03/08/88
% Difference	2.0	%	0.1	104C	03/08/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE Client ID: V. MURRAY DITCH Laboratory ID: 65703-020 Enseco ID: 65703-020 Matrix: Groundwater Sampled: 02/24/88 Received: 02/25/88 Authorized: 02/23/88 Analyzed: 02/27/88

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Michael Hoffman

Approved by: Susan Brillante

- 🗧 Enseco 🛛 🖒

I

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE						
Client ID: V. MURRAY DIT	СН					
Laboratory ID: 65703-020	Enseco ID: 65	Enseco ID: 65703-020				
Matrix: Groundwater	Sampled: 02/24/88	Receiv	ed: 02/25/88			
Authorized: 02/23/88		Analyz	zed: 02/27/88			
Parameter	Resu	<u>lt</u>	<u>Units</u>	Reporting <u>Limit</u>	g	
Benzene	N.1	D.	ug/L	0.50		
Chlorobenzene	N.1	D.	ug/L	0.50		
Ethylbenzene	N.I	D .	ug/L	0.50		
Toluene	N.I	Э.	ug/L	0.50		
1,2-Dichlorobenzene	N.I	D.	ug/L	0.50		
1,3-Dichlorobenzene	N.I	D.	ug/L	0.50		
1,4-Dichlorobenzene	N.I) .	ug/L	0.50		
m-Xylene	N.I	Э.	ug/L	0.50		
o & p-Xylene(s)	N.J	Э.	ug/L	0.50		

N.D. = Not detected

Reported by: Michael Hoffman

Approved by: Susan Brillante

- 🗧 Enseco

I

ł

ļ

i

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND N	MOORE			
Client ID: MW-13				
Laboratory ID: 65703-021	Enseco ID: 6	5703-021		
Matrix: Groundwater	Sampled: 02/24/88	Received: 02	/25/88	
Authorized: 02/23/88		Analyzed: 02	/29/88	
<u>Parameter</u>	Resi	<u>ilt</u>	<u>Units</u>	Reporting Limit
Benzene	N	D.	ug/L	0.50
Chlorobenzene	N.	D.	ug/L	0.50
Ethylbenzene	N.	D.	ug/L	0.50
Toluene	N.	D.	ug/L	0.50
1,2-Dichlorobenzene	N.	D.	ug/L	0.50
1,3-Dichlorobenzene	N.	D.	ug/L	0.50
1,4-Dichlorobenzene	N.	D.	ug/L	0.50
m-Xylene		1.1	ug/L	0.50
o & p-Xylene(s)		0.58	ug/L	0.50

N.D. = Not detected

Reported by: Cindy Ingram

- 🤄 Enseco

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/24/88

Client Name: DAMES AND MOORE

Client ID: MW-13

Laboratory ID: 65703-021

Enseco ID: 65703-021

Received: 02/25/88

Matrix: Groundwater Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	219	mg/L	0.1	200.7	03/07/88
Iron	0.12	mg/L	0.05	200.7	03/07/88
Magnesium	47	mg/L	0.1	200.7	03/07/88
Manganese	1.9	mg/L	0.005	200.7	03/07/88
Potassium	N.D.	mg/L	5	200.7	03/07/88
Sodium	370	mg/L	0.05	200.7	03/07/88

N.D. = Not detected

Approved by: Will Pratt

Enseco

INORGANIC PARAMETERS

Sampled: 02/24/88

Client Name: DAMES AND MOORE

Client ID: MW-13

Laboratory ID: 65703-021

Enseco ID: 65703-021

Received: 02/25/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pН	8.11	units	0.01	150.1	02/26/88
Specific Conductance @ 25C	2650	umhos/cm	1	120.1/9050	02/26/88
Total Dissolved Solids	1850	mg/L	10	160.1	03/03/88
Fluoride	0.8	mg/L	0.1	340.2	03/06/88
Chloride	82	mg/L	3	300.0	03/03/88
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	03/03/88
Sulfate	92 0	mg/L	5	300.0	03/03/88
Total Alkalinity as CaCO3	581	mg/L	5	310.1/403	02/26/88
Ammonia as N	0.5	mg/L	0.1	350.1	03/03/88
Total Cations	30.9	meq/L	0.1	104C	03/08/88
Total Anions	33.1	meq/L	0.3	104C	03/08/88
% Difference	3.4	%	0.1	104C	03/08/88

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE Client ID: V. MURRAY WELL Laboratory ID: 65703-022 Enseco ID: 65703-022 Matrix: Groundwater Sampled: 02/24/88 Received: 02/25/88 Authorized: 02/23/88 Analyzed: 02/29/88

			Reporting
<u>Parameter</u>	Result	<u>Units</u>	Limit
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N .D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N. D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N .D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N .D.	ug/L	0.50
1,1,1-Trichloroethane	N .D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N .D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Cindy Ingram

Approved by: Susan Brillante

🚑 Enseco

İ

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND M	IOORE			
Client ID: V. MURRAY WEL	L			
Laboratory ID: 65703-022	Enseco ID: 65	703-022		
Matrix: Groundwater	Sampled: 02/24/88	Received: 02/2	25/88	
Authorized: 02/23/88		Analyzed: 02/2	29/88	
Parameter	Resu	<u>t L</u>	<u>Jnits</u>	Reporting <u>Limit</u>
Benzene	N.E	. u	ig/L	0.50
Chlorobenzene	N.E	. u	g/L	0.50
Ethylbenzene	N.E	. u	ig/L	0.50
Toluene	N.E	u. u	ig/L	0.50
1,2-Dichlorobenzene	N.C	. u	ıg/L	0.50
1,3-Dichlorobenzene	N.E	. u	ig/L	0.50
1,4-Dichlorobenzene	N.E	. ນ	ig/L	0.50
m-Xylene	N.E	. u	ig/L	0.50
o & p-Xylene(s)	N.E	u. u	ig/L	0.50

N.D. = Not detected

Reported by: Cindy Ingram

🖞 Enseco

METALS PARAMETERS DISSOLVED METALS

Sampled: 02/24/88

Client Name: DAMES AND MOORE

Client ID: V. MURRAY WELL

Laboratory ID: 65703-022

Enseco ID: 65703-022

Received: 02/25/88

Matrix: Groundwater Authorized: 02/23/88

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	28	mg/L	0.1	200.7	03/07/88
Iron	N.D.	mg/L	0.05	200.7	03/07/88
Magnesium	26	mg/L	0.1	200.7	03/07/88
Manganese	0.032	mg/L	0.005	200.7	03/07/88
Potassium	7	mg/L	5	200.7	03/07/88
Sodium	126	mg/L	0.05	200.7	03/07/88
Total Organic Lead	N.D.	mg/L	0.002	Enseco	03/09/88

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Sampled: 02/24/88

Client Name: DAMES AND MOORE

Client ID: V. MURRAY WELL

Laboratory ID: 65703-022

Enseco ID: 65703-022

Received: 02/25/88

Matrix: Groundwater Authorized: 02/23/88

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	8.25	units	0.01	150.1	02/25/88
Specific Conductance @ 25C	845	umhos/cm	1	120.1/9050	02/25/88
Total Dissolved Solids	64 0	mg/L	10	160.1	03/10/88
Fluoride	0.2	mg/L	0.1	340.2	03/06/88
Chloride	37	mg/L	3	300.0	03/03/88
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	03/03/88
Sulfate	97	mg/L	5	300.0	03/03/88
Total Alkalinity as CaCO3	297	mg/L	5	310.1/403	02/25/88
Ammonia as N	0.7	mg/L	0.1	350.1	03/03/88
Total Cations	9.2	meq/L	0.1	104C	03/08/88
Total Anions	9.0	meq/L	0.3	104C	03/08/88
% Difference	1.3	%	0.1	104C	03/08/88

N.D. = Not detected

Approved by: Lindsay Breyer

- Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Authorized: 02/23/88	• • •	Analyzed: 02/29/88				
Matrix: Water	Sampled: 02/24/88	Received: 02/25/88				
Laboratory ID: 65703-023 Enseco ID: 65703-023						
Client ID: TRIP BLANK						
Client Name: DAMES AND N	MOORE					

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	11	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-		.	
1,2,2-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Cindy Ingram

Approved by: Susan Brillante

- 🛬 Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Parameter	Ŧ	Result	Units	Reporting <u>Limit</u>		
Authorized: 02/23/88		Anal	yzed: 02/29/88			
Matrix: Water	Sampled: 02/24/88	Rece	ived: 02/25/88			
Laboratory ID: 65703-023	Enseco ID: 65703-023					
Client ID: TRIP BLANK						
Client Name: DAMES AND	MOORE					

Benzene	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	0.50
Ethylbenzene	N.D.	ug/L	0.50
Toluene	N.D.	ug/L	0.50
1,2-Dichlorobenzene	N.D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N.D.	ug/L	0.50
m-Xylene	N.D.	ug/L	0.50
o & p-Xylene(s)	N.D.	ug/L	0.50

N.D. = Not detected Reported by: Cindy Ingram

Approved by: Susan Brillante

Enseco

V. QUALITY CONTROL REPORT

The Enseco laboratories operate under a vigorous QA/QC program designed to ensure the generation of scientifically valid, legally defensible data by monitoring every aspect of laboratory operations. Routine QA/QC procedures include the use of approved methodologies, independent verification of analytical standards, use of duplicate Laboratory Control Samples to assess the precision and accuracy of the methodology on a routine basis, and a rigorous system of data review.

In addition, the Enseco laboratories maintain a comprehensive set of certifications from both state and federal governmental agencies which require frequent analyses of blind audit samples. Enseco - Rocky Mountain Analytical Laboratory is certified by the EPA under the EPA/CLP program for both Organic and Inorganic analyses, under the USATHAMA (U.S. Army) program, by the Army Corps of Engineers, and the states of Colorado, New Jersey, New York, Utah, and Florida, among others.

The standard laboratory QC package is designed to:

- 1) establish a strong, cost-effective QC program that ensures the generation of scientifically valid, legally defensible data
- assess the laboratory's performance of the analytical method using control limits generated with a well-defined matrix
- 3) establish clear-cut guidelines for acceptability of analytical data so that QC decisions can be made immediately at the bench, and
- 4) provide a standard set of reportables which assures the client of the quality of his data.

The Enseco QC program is based upon monitoring the precision and accuracy of an analytical method by analyzing a set of duplicate Laboratory Control Samples (LCS) at frequent, well-defined intervals. An LCS is a wellcharacterized matrix which is spiked with target compounds at 5-100 times the reporting limit, depending upon the methodology being monitored. The purpose of the LCS is not to duplicate the sample matrix, but rather to provide an interference-free, homogeneous matrix from which to gather data to establish control limits. These limits are used to determine whether data generated by the laboratory on any given day is in control.

5 Enseco

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/- 3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate LCS results) to the average, historical relative percent difference + 3 standard deviation units. These control limits are fairly narrow based on the consistency of the matrix being monitored and are updated on a quarterly basis.

For Organic analyses an additional control measure is taken in the form of a Surrogate Control Sample (SCS). The SCS is a control sample spiked with surrogate standards which is analyzed with every analytical lot. The recovery of the SCS is charted in exactly the same manner as described for the LCS, and provides a daily check on the performance of the method.

Accuracy for LCS and SCS is measured by Percent Recovery.

% Recovery = Measured Concentration % Recovery = ----- x 100 Actual Concentration

Precision for LCS is measured by Relative Percent Difference (RPD).

RPD = ______(Measured Concentration LCS1 - Measured Concentration LCS2 //2

All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, LCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report. The test codes assigned are defined in Section VI., Analytical Methodology.

Enseco

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Laboratory			QC Lot N	lumber
Sample Number	QC Matrix	<u>Test</u>	LCS	<u>SCS</u>
65703-012-00	Reagent Water	VOA	VOA 018AW	VOA 018CW

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

	Con	Concentration			curacy	Precision(RPD)		
Analyte	<u>Spikin</u>	Mea LCS1	asured LCS2	<u>LCS1</u>	LCS2	<u>Limits</u>	<u>LCS</u>	<u>Limits</u>
Test: VOA on Reagent Water QC Lot: VOA 018AW Concentration Units: (ug/L)								
1,1-Dichloroethene	50.0	41.3	41.5	83	83	61-145	0.5	14
Trichloroethene	50.0	53.5	52.6	107	105	71-120	1.7	14
Chlorobenzene	50.0	55.0	54.8	110	110	75-130	0.4	13
Toluene	50.0	49.1	49.0	98	9 8	76-125	0.2	13
Benzene	50.0	51.7	51.7	103	103	76-127	0.0	11

SURROGATE CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Analyte	Conce	ntration	Accu	racy(%)
	<u>Spiking</u>	<u>Measured</u>	<u>SCS</u>	<u>Limits</u>
Test: VOA on Reagent Water QC Lot: VOA 018CW Concentration Units: (ug/L)				
Toluene-D8	50.0	51.2	102	88-110
Bromofluorobenzene (BFB)	50.0	51.1	102	86-115
1,2-Dichloroethane-D4	50.0	47.0	94	76-114

ł

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY

Laboratory		QC Lot Number				
Sample Number	<u>QC Matrix</u>	Test	LCS	<u>SCS</u>		
65703-001-00	Reagent Water	601	601 128AW	601 128AW		
65703-001-00	Reagent Water	602	602 133AW	602 133AW		
65703-002-00	Reagent Water	601	601 128AW	601 128AW		
65703-002-00	Reagent Water	602	602 133AŴ	602 133AW		
65703-003-00	Reagent Water	601	601 128AW	601 128AW		
65703-003-00	Reagent Water	602	602 133AW	602 133AW		
65703-004-00	Reagent Water	601	601 128AW	601 128AW		
65703-004-00	Reagent Water	602	602 133AW	602 133AW		
65703-005-00	Reagent Water	601	601 128AW	601 128AW		
65703-005-00	Reagent Water	602	602 133AW	602 133AW		
65703-006-00	Reagent Water	601	601 128AW	601 128AW		
65703-006-00	Reagent Water	602	602 133AW	602 133AW		
65703-007-00	Reagent Water	601	601 128AW	601 128AW		
65703-007-00	Reagent Water	602	602 133AW	602 133AW		
65703-008-00	Reagent Water	601	601 128AW	601 128AW		
65703-008-00	Reagent Water	602	602 133AW	602 133AW		
65703-009-00	Reagent Water	601	601 128AW	601 128AW		
65703-009-00	Reagent Water	602	602 133AW	602 133AW		
65703-010-00	Reagent Water	601	601 133AP	601 133AP		
65703-010-00	Reagent Water	602	602 143AP	602 143AP		
65703-011-00	Reagent Water	601	601 133AP	601 133AP		
65703-011-00	Reagent Water	602	602 143AP	602 143AP		
65703-013-00	Reagent Water	601	601 133AP	601 133AP		
65703-013-00	Reagent Water	602	602 143AP	602 143AP		
65703-014-00	Reagent Water	601	601 133AP	601 133AP		
65703-014-00	Reagent Water	602	602 143AP	602 143AP		
65703-015-00	Reagent Water	601	601 133AP	601 133AP		
65703-015-00	Reagent Water	602	602 143AP	602 143AP		
65703-016-00	Reagent Water	601	601 133AP	601 133AP		
65703-016-00	Reagent Water	602	602 143AP	602 143AP		
65703-017-00	Reagent Water	601	601 133AP	601 133AP		
65703-017-00	Reagent Water	602	602 143AP	602 143AP		
65703-018-00	Reagent Water	601	601 133AP	601 133AP		
65703-018-00	Reagent Water	602	602 143AP	602 143AP		
65703-019-00	Reagent Water	601	601 133AP	601 133AP		
65703-019-00	Reagent Water	602	602 143AP	602 143AP		
65703-020-00	Reagent Water	601	601 133AP	601 133AP		
65703-020-00	Reagent Water	602	602 143AP	602 143AP		
65703-021-00	Reagent Water	601	601 129AW	601 129AW		
65703-021-00	Reagent Water	602	602 134AW	602 134AW		
65703-022-00	Reagent Water	601	601 129AW	601 129AW		
65703-022-00	Reagent Water	602	602 134AW	602 134AW		

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY (cont.)

Laboratory			QC Lot 1	Number
Sample Number	QC Matrix	Test	LCS	<u>SCS</u>
65703-023-00	Reagent Water	6 01	601 129AW	601 129AW
65703-023-00	Reagent Water	602	602 134AW	602 134AW

- Enseco

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Conc <u>Spiking</u>	centratio Mea <u>LCS1</u>	on asured <u>LCS2</u>		uracy(' <u>LCS2</u>	%) <u>Limits</u>	Precis LCS	ion(RPD) <u>Limits</u>
Test: 601 on Reagent Water QC Lot: 601 128AW Concentration Units: (ug/L)								
Chloromethane	20	14.7	14.3	74	72	59-140	2.8	25
Bromomethane	20	10.8	10.7	54#		58-141	0.9	25
Vinyl chloride	20	12.5	12.0	63#		68-132	4.1	25
Chloroethane	20	17.4	16.6	87	83	77-123	4.7	25
Methylene chloride	20	18.9	18.5	94	93	77-123	2.1	20
Trichlorofluoromethane	20	17.9	17.4	89	87	66-134	2.8	25
1,1-Dichloroethene	20	18.5	18.0	93	9 0	63-137	2.7	20
1,1-Dichloroethane	20	21.0	20.2	105	101	84-116	3.9	20
trans-1,2-Dichloroethene	20	20.0	19.8	100	9 9	64-136	1.0	20
Chloroform	20	20.0	19.7	100	98	75-125	1.5	20
1,1,2-Trichloro-1,2,2-trifluor	20	15.7	15.6	79	78	67-134	0.6	20
1,2-Dichloroethane	20	19.6	19.9	98	99	72-129	1.5	20
1,1,1-Trichloroethane	20	16.6	16.2	83	81	71-129	2.4	20
Carbon tetrachloride	20	18.7	18.9	93	94	68-131	1.1	20
Bromodichloromethane	20	19.5	19.5	98	9 8	76-124	0.0	20
1,2-Dichloropropane	20	21.1	20.4	106	102	74-126	3.4	20
trans-1,3-Dichloropropene	20	19.5	19.4	98	97	64-136	0.5	20
Trichloroethene	20	20.1	19.9	101	9 9	77-123	1.0	20
1,1,2-Trichloroethane	60	72.8	74.2	121	124	69-132	1.9	20
Dibromochloromethane	60	72.8	74.2	121	124	69-132	1.9	20
cis-1,3-Dichloropropene	6 0	72.8	74.2	121	124	69-132	1.9	20
1,2-Dibromoethane (EDB)	20	21.8	23.0	109	115	74-127	5.4	20
Bromoform	20	21.4	23.5	107	118	74-127	9.4	20
1,1,2,2-Tetrachloroethane	40	45.7	44.9	114	112	60-140	1.8	20
Tetrachloroethene	40	45.7	44.9	114	112	60-140	1.8	20
Chlorobenzene	20	21.5	21.0	108	105	72-128	2.4	20
1,3-Dichlorobenzene	20	24.3	21.5	122	108	50-150	12.2	20
1,2-Dichlorobenzene	20	23.9	20.9	119	104	70-130	13.4	20
1,4-Dichlorobenzene	20	24.7	21.9	123	109	70-130	12.0	20
Test: 601 on Reagent Water QC Lot: 601 129AW <u>Concentration Units: (ug/L)</u>								
Chloromathana	20	12 4	170	40	٤ ،	50 140	61	25
Chloromethane	20	13.6	12.8	68 52#	64 49-44	59-140	6.1	25 25
Bromomethane Vinyl chloride	20	10.3	9.66	52#		58-141	6.4 9.4	25 25
Chloroethane	20 20	12.2 16.6	11.1 15.5	61#		68-132	9.4 6.9	23 25
Methylene chloride	20 20	10.0 19.0		83	78 88	77-123	6.9 7.1	23 20
methylene chloride	20	19.0	17.7	95	60	77-123	1.1	20

= Recovery outside standard QC limits.

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Conc Spiking	centrati Me <u>LCS1</u>	on asured <u>LCS2</u>		curacy(' <u>LCS2</u>	%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 601 on Reagent Water QC Lot: 601 129AW Concentration Units: (ug/L)					١			
Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethene trans-1,2-Dichloroethene Chloroform 1,1,2-Trichloro-1,2,2-trifluor 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene 1,1,2-Trichloroethane Dibromochloromethane cis-1,3-Dichloropropene 1,2-Dibromoethane (EDB) Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,3-Dichlorobenzene 1,3-Dichlorobenzene	$\begin{array}{c} 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\$	$17.8 \\18.4 \\20.5 \\19.7 \\20.2 \\15.2 \\19.5 \\16.1 \\19.0 \\19.5 \\20.7 \\19.9 \\20.1 \\76.6 \\76.6 \\76.6 \\23.1 \\21.1 \\47.4 \\47.4 \\21.9 \\24.0 \\24.0 \\$	$16.9 \\ 17.1 \\ 19.8 \\ 18.7 \\ 19.5 \\ 14.8 \\ 18.9 \\ 15.7 \\ 17.9 \\ 19.5 \\ 19.1 \\ 19.9 \\ 19.3 \\ 73.2 \\ 73.2 \\ 73.2 \\ 24.5 \\ 23.1 \\ 44.6 \\ 44.6 \\ 20.6 \\ 22.3 \\ 100000000000000000000000000000000000$	 89 92 103 98 101 76 98 81 95 98 103 99 101 128 128 128 128 116 106 119 119 109 120 	84 86 99 93 98 74 94 79 89 98 96 99 97 122 122 122 122 122 122 122 122 123 116 112 112	66-134 63-137 84-116 64-136 75-125 67-134 72-129 71-129 68-131 76-124 74-126 64-136 77-123 69-132 69-132 69-132 69-132 74-127 74-127 60-140 60-140 72-128 50-150	$5.2 \\ 7.3 \\ 3.5 \\ 5.2 \\ 3.5 \\ 2.7 \\ 3.1 \\ 2.5 \\ 6.0 \\ 0.0 \\ 8.0 \\ 0.0 \\ 4.1 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 5.9 \\ 9.0 \\ 6.1 \\ 6.1 \\ 6.1 \\ 7.3 \\ $	$\begin{array}{c} 25\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20$
1,2-Dichlorobenzene 1,4-Dichlorobenzene Test: 601 on Reagent Water QC Lot: 601 133AP Concentration Units: (ug/L)	20 20	23.2 24.5	21.0 23.3	116 123	105 117	70-130 70-130	10.0 5.0	20 20
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene Chloroform	20 20 20 20 20 20 20 20 20 20 20	15.8 11.3 11.9 17.0 18.0 17.7 17.9 19.8 19.3 19.6	15.8 11.2 11.6 17.1 18.9 18.3 18.4 20.4 19.7 19.8	79 57# 60# 85 90 88 89 99 97 98		59-140 58-141 68-132 77-123 77-123 66-134 63-137 84-116 64-136 75-125	0.0 0.9 2.6 0.6 4.9 3.3 2.8 3.0 2.1 1.0	25 25 25 20 25 20 20 20 20 20

= Recovery outside standard QC limits.

- Enseco

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Con <u>Spiking</u>	centrati Me <u>LCS1</u>	on asured <u>LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 601 on Reagent Water QC Lot: 601 133AP Concentration Units: (ug/L)								
1,1,2-Trichloro-1,2,2-trifluor	20	15.5	16.3	78	82	67-134	5.0	20
1,2-Dichloroethane	20	21.1	21.3	106	107	72-129	0.9	20
1,1,1-Trichloroethane	20	16.5	16.7	83	83	71-129	1.2	20
Carbon tetrachloride	20	18.2	18.8	91	94	68-131	3.2	20
Bromodichloromethane	20	18.7	18.8	93	94	76-124	0.5	20
1,2-Dichloropropane	20	19.5	19.7	98	9 8	74-126	1.0	20
trans-1,3-Dichloropropene	20	18.2	18.3	91	92	64-136	0.5	20
Trichloroethene	20	20.0	20.2	100	101	77-123	1.0	20
1,1,2-Trichloroethane	6 0	75.7	81.8	126	136#	69-132	7.7	20
Dibromochloromethane	60	75.7	81.8	126	136#	69-132	7.7	20
cis-1,3-Dichloropropene	60	75.7	81.8	126	136#	69-132	7.7	20
1,2-Dibromoethane (EDB)	20	18.4	18.6	92	93	74-127	1.1	20
Bromoform	20	19.9	20.2	99	101	74-127	1.5	20
1,1,2,2-Tetrachloroethane	40	39.7	44.8	99	112	60-140	12.1	20
Tetrachloroethene	40	39.7	44.8	99	112	60-140	12.1	20
Chlorobenzene	20	20.4	23.2	102	116	72-128	12.8	20
1,3-Dichlorobenzene	20	17.4	18.1	87	91	50-150	3.9	20
1,2-Dichlorobenzene	20	17.1	18.8	86	94	70-130	9.5	20
1,4-Dichlorobenzene	20	17.3	17.9	87	89	70-130	3.4	20
Test: 602 on Reagent Water QC Lot: 602 133AW <u>Concentration Units: (ug/L)</u>								
Benzene	20	16.4	16.4	82	82	77-123	0.0	20
Toluene	20	17.6	17.6	88	88	77-123	0.0	20
Chlorobenzene	20	18.5	18.3	93	92	81-119	1.1	20
Ethylbenzene	20	18.3	18.1	92	91	63-137	1.1	20
m-Xylene	20	19.2	18.8	96	94	77-123	2.1	20
o & p-Xylene(s)	40	38.2	37.4	96	93	77-123	2.1	20
1,3-Dichlorobenzene	20	19.9	19.1	99	96	77-123	4.1	20
1,2-Dichlorobenzene	20	19.4	18.5	97	93	63-137	4.7	20
1,4-Dichlorobenzene	20	20.0	19.4	100	97	70-130	3.0	20

= Recovery outside standard QC limits.

-^k Enseco

ļ

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Concentrat <u>Spiking</u> Ma LCS1	easured	Acc LCS1	curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 602 on Reagent Water QC Lot: 602 134AW Concentration Units: (ug/L)							
Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene o & p-Xylene(s) 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	$\begin{array}{cccccc} 20 & 16.3 \\ 20 & 17.4 \\ 20 & 18.6 \\ 20 & 18.3 \\ 20 & 19.4 \\ 40 & 38.2 \\ 20 & 20.1 \\ 20 & 19.3 \\ 20 & 20.2 \end{array}$	16.3 17.3 18.4 18.1 19.1 37.7 19.6 18.7 20.0	82 87 93 92 97 96 101 97 101	82 87 92 91 96 94 98 93 100	77-123 77-123 81-119 63-137 77-123 77-123 77-123 63-137 70-130	$\begin{array}{c} 0.0\\ 0.6\\ 1.1\\ 1.1\\ 1.6\\ 1.3\\ 2.5\\ 3.2\\ 1.0\\ \end{array}$	20 20 20 20 20 20 20 20 20 20
Test: 602 on Reagent Water QC Lot: 602 143AP <u>Concentration Units: (ug/L)</u>							
Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene o & p-Xylene(s) 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.0 18.1 18.9 18.2 18.2 36.8 18.0 17.4 18.3	82 87 92 88 88 90 90 88 89	85 91 94 91 92 90 87 92	77-123 77-123 81-119 63-137 77-123 77-123 77-123 63-137 70-130	4.2 3.9 3.2 3.4 3.4 2.8 0.0 1.1 2.2	20 20 20 20 20 20 20 20 20 20

SURROGATE CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Conce: <u>Spiking</u>	Concentration Spiking Measured		cy(%) <u>Limits</u>
Test: 601 on Reagent Water QC Lot: 601 128AW Concentration Units: (ug/L)	<u>-1</u>	<u></u>	<u>SCS</u>	
Bromochloromethane	30	23.9	80	20-160
Test: 601 on Reagent Water QC Lot: 601 129AW Concentration Units: (ug/L)				
Bromochloromethane	30	27.2	91	20-160
Test: 601 on Reagent Water QC Lot: 601 133AP <u>Concentration Units: (ug/L)</u> Bromochloromethane	30	31.8	106	20-160
Test: 602 on Reagent Water QC Lot: 602 133AW Concentration Units: (ug/L)				
a,a,a-Trifluorotoluene	30	28.8	96	20-160
Test: 602 on Reagent Water QC Lot: 602 134AW <u>Concentration Units: (ug/L)</u> a,a,a-Trifluorotoluene	30	31.0	103	20-160
Test: 602 on Reagent Water QC Lot: 602 143AP Concentration Units: (ug/L)				
a,a,a-Trifluorotoluene	30	34.4	115	20-160

QC LOT ASSIGNMENT REPORT INORGANICS - METALS

Laboratory <u>Sample Number</u>	QC Matrix	Test	QC Lot Number LCS
65703-001-00	Reagent Water	ICPD	ICPD227AA
65703-001-00	Reagent Water	ICPD	ICPD227AA
65703-002-00	Reagent Water	ICPD	ICPD227AA
65703-002-00	Reagent Water	ICPD	ICPD227AA
65703-003-00	Reagent Water	ICPD	ICPD227AA
65703-003-00	Reagent Water	ICPD	ICPD227AA
65703-004-00	Reagent Water	ICPD	ICPD227AA
65703-004-00	Reagent Water	ICPD	ICPD227AA
65703-005-00	Reagent Water	ICPD	ICPD227AA
65703-005-00	Reagent Water	ICPD	ICPD227AA
65703-006-00	Reagent Water	ICPD	ICPD227AA
65703-006-00	Reagent Water	ICPD	ICPD227AA
65703-007-00	Reagent Water	ICPD	ICPD227AA
65703-007-00	Reagent Water	ICPD	ICPD227AA
65703-008-00	Reagent Water	ICPD	ICPD227AA
65703-008-00	Reagent Water	ICPD	ICPD227AA
65703-009-00	Reagent Water	ICPD	ICPD227AA
65703-009-00	Reagent Water	ICPD	ICPD227AA
65703-010-00	Reagent Water	ICPD	ICPD227AA
65703-010-00	Reagent Water	ICPD	ICPD227AA
65703-011-00	Reagent Water	ICPD	ICPD236AA
65703-011-00	Reagent Water	ICPD	ICPD236AA
65703-012-00	Reagent Water	ICPD	ICPD227AA
65703-012-00	Reagent Water	ICPD	ICPD227AA
65703-013-00	Reagent Water	ICPD	ICPD227AA
65703-013-00	Reagent Water	ICPD	ICPD227AA
65703-014-00	Reagent Water	ICPD	ICPD227AA
65703-014-00	Reagent Water	ICPD	ICPD227AA
65703-015-00	Reagent Water	ICPD	ICPD227AA
65703-015-00	Reagent Water	ICPD	ICPD227AA
65703-016-00	Reagent Water	ICPD	ICPD227AA
65703-016-00	Reagent Water	ICPD	ICPD227AA
65703-018-00	Reagent Water	ICPD	ICPD227AA
65703-018-00	Reagent Water	ICPD	ICPD227AA
65703-019-00	Reagent Water	ICPD	ICPD227AA
65703-019-00	Reagent Water	ICPD	ICPD227AA
65703-021-00	Reagent Water	ICPD	ICPD227AA
65703-021-00	Reagent Water	ICPD	ICPD227AA
65703-022-00	Reagent Water	ICPD	ICPD227AA
65703-022-00	Reagent Water	ICPD	ICPD227AA

- 🤄 Enseco

LABORATORY CONTROL SAMPLE REPORT INORGANICS - METALS

Analyte	Concentration Spiking Measured LCS1 LCS2	Accuracy(%) <u>LCS1 LCS2 Limits</u>	Precision(RPD) LCS Limits
Test: ICPD on Reagent Water QC Lot: ICPD227AA Concentration Units: (mg/L)			
Aluminum	2.0 2.04 2.03	102 101 75-125	0.5 20
Antimony	0.5 0.52 0.51	104 102 75-125	1.9 20
Arsenic	2.0 1.93 1.91	97 96 75-125	1.0 20
Barium	2.0 2.02 2.01	101 101 75-125	0.5 20
Beryllium	0.05 0.049 0.048	98 96 75-125	2.1 20
Cadmium	0.05 0.052 0.048	104 96 75-125	8.0 20
Calcium	100 105 104	105 104 75-125	1.0 20
Chromium	0.2 0.22 0.22	110 110 75-125	0.0 20
Cobali	0.5 0.50 0.49	100 98 75-125	2.0 20
Copper	0.25 0.27 0.27	108 108 75-125	0.0 20
Iron	1.0 1.03 1.02	103 102 75-125	1.0 20
Lead	0.5 0.51 0.50	102 100 75-125	2.0 20
Magnesium	50 48.3 47.9	97 96 75-125	0.8 20
Manganese	0.5 0.52 0.52	104 104 75-125	0.0 20
Nickel	0.5 0.54 0.53	108 106 75-125	1.9 20
Potassium	50 51.2 47.9	102 96 75-125	6.7 20
Silver	0.05 0.047 0.047	94 94 75-125	0.0 20
Sodium	100 103 101	103 101 75-125	2.0 20
Tin	0.5 0.53 0.53	106 106 75-125	0.0 20
Vanadium	0.5 0.50 0.50	100 100 75-125	0.0 20
Zinc	0.5 0.54 0.54	108 108 75-125	0.0 20
Test: ICPD on Reagent Water QC Lot: ICPD236AA			
Concentration Units: (mg/L)			
Aluminum	2.0 2.03 2.04	101 102 75-125	0.5 20
Antimony	0.5 0.54 0.53	108 106 75-125	1.9 20
Arsenic	2.0 1.91 1.94	96 97 75-125	1.6 20
Barium	2.0 2.01 2.02	101 101 75-125	0.5 20
Beryllium	0.05 0.049 0.049	98 98 75-125	0.0 20
Cadmium	0.05 0.050 0.052	100 104 75-125	3.9 20
Calcium	100 108 108	108 108 75-125	0.0 20
Chromium	0.2 0.19 0.19	95 95 75-125	0.0 20
Cobalt	0.5 0.49 0.50	98 100 75-125	2.0 20
Copper	0.25 0.27 0.27	108 108 75-125	0.0 20
Iron	1.0 1.04 1.03	104 103 75-125	1.0 20
Lead	0.5 0.49 0.49	98 98 75-125	0.0 20
Magnesium	50 48.9 49.0	98 98 75-125	0.2 20

i i i

Ś

LABORATORY CONTROL SAMPLE REPORT INORGANICS - METALS

Analyte	Con <u>Spiking</u>	centrati g Me <u>LCS1</u>	ion asured <u>LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precis: <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: ICPD on Reagent Water QC Lot: ICPD236AA <u>Concentration Units: (mg/L)</u>			,					
Manganese	0.5	0.52	0.52	104	104	75-125	0.0	20
Nickel	0.5	0.52	0.52	104	104	75-125	0.0	20
Potassium	50	51.8	52.1	104	104	75-125	0.6	20
Silver	0.05	0.045	0.045	90	9 0	75-125	0.0	20
Sodium	100	103	103	103	103	75-125	0.0	20
Tin	0.5	0.53	0.54	106	108	75-125	1.9	20
Vanadium	0.5	0.49	0.50	98	100	75-125	2.0	20
Zinc	0.5	0.52	0.53	104	106	75-125	1.9	20

QC LOT ASSIGNMENT REPORT INORGANICS - NON-METALS

Laboratory			QC Lot Number
Sample Number	<u>QC Matrix</u>	Test	LCS
	.		
65703-001-00	Reagent Water	ALK	ALK 289AA
65703-001-00	Reagent Water	CL	CL 214AA
65703-001-00	Reagent Water	COND	COND266AA
65703-001-00	Reagent Water	F	F 135AA
65703-001-00	Reagent Water	NH3	NH3 149AC
65703-001-00	Reagent Water	NO3	NO3 201AF
65703-001-00	Reagent Water	PH	PH 334AA
65703-001-00	Reagent Water	SO4	SO4 200AA
65703-001-00	Reagent Water	TDS	TDS 140AA
65703-002-00	Reagent Water	ALK	ALK 271AA
65703-002-00	Reagent Water	CL	CL 214AA
65703-002-00	Reagent Water	COND	COND266AA
65703-002-00	Reagent Water	F	F 135AA
65703-002-00	Reagent Water	NH3	NH3 149AC
65703-002-00	Reagent Water	NO3	NO3 201AF
65703-002-00	Reagent Water	PH	PH 334AA
65703-002-00	Reagent Water	SO4	SO4 209AA
65703-002-00	Reagent Water	TDS	TDS 145AA
65703-003-00	Reagent Water	ALK	ALK 271AA
65703-003-00	Reagent Water	CL	CL 214AA
65703-003-00	Reagent Water	COND	COND266AA
65703-003-00	Reagent Water	F	F 135AA
65703-003-00	Reagent Water	NH3	NH3 150AC
65703-003-00	Reagent Water	NO3	NO3 202AF
65703-003-00	Reagent Water	РН	PH 334AA
65703-003-00	Reagent Water	SO4	SO4 209AA
65703-003-00	Reagent Water	TDS	TDS 145AA
65703-004-00	Reagent Water	ALK	ALK 271AA
65703-004-00	Reagent Water	CL	CL 214AA
65703-004-00	Reagent Water	COND	COND266AA
65703-004-00	Reagent Water	F	F 135AA
65703-004-00	Reagent Water	NH3	NH3 150AC
65703-004-00	Reagent Water	NO3	NO3 202AF
65703-004-00	Reagent Water	PH	PH 334AA
65703-004-00	Reagent Water	SO4	SO4 209AA
65703-004-00	Reagent Water	TDS	TDS 145AA
65703-005-00	Reagent Water	ALK	ALK 271AA
65703-005-00	Reagent Water	CL	CL 206AA
65703-005-00	Reagent Water	COND	COND266AA
65703-005-00	Reagent Water	F	F 135AA
65703-005-00	Reagent Water	NH3	NH3 150AC
65703-005-00	Reagent Water	NO3	NO3 202AF
	Rougent Water	1100	NO9 202AI

QC LOT ASSIGNMENT REPORT INORGANICS - NON-METALS (cont.)

Laboratory			QC Lot Number
Sample Number	QC Matrix	<u>Test</u>	LCS
•			
65703-005-00	Reagent Water	PH	PH 334AA
65703-005-00	Reagent Water	SO4	SO4 200AA
65703-005-00	Reagent Water	TDS	TDS 145AA
65703-006-00	Reagent Water	ALK	ALK 271AA
65703-006-00	Reagent Water	CL	CL 206AA
65703-006-00	Reagent Water	COND	COND266AA
65703-006-00	Reagent Water	F	F 135AA
65703-006-00	Reagent Water	NH3	NH3 150AC
65703-006-00	Reagent Water	NO3	NO3 202AF
65703-006-00	Reagent Water	РН	PH 334AA
65703-006-00	Reagent Water	SO4	SO4 200AA
65703-006-00	Reagent Water	TDS	TDS 145AA
65703-007-00	Reagent Water	ALK	ALK 271AA
65703-007-00	Reagent Water	CL	CL 206AA
65703-007-00	Reagent Water	COND	COND266AA
65703-007-00	Reagent Water	F	F 135AA
65703-007-00	Reagent Water	NH3	NH3 150AC
65703-007-00	Reagent Water	NO3	NO3 202AF
65703-007-00	Reagent Water	PH	PH 334AA
65703-007-00	Reagent Water	SO4	SO4 200AA
65703-007-00	Reagent Water	TDS	TDS 145AA
65703-008-00	Reagent Water	ALK	ALK 271AA
65703-008-00	Reagent Water	CL	CL 206AA
65703-008-00	Reagent Water	COND	COND266AA
65703-008-00	Reagent Water	F	F 135AA
65703-008-00	Reagent Water	NH3	NH3 150AC
65703-008-00	Reagent Water	NO3	NO3 202AF
65703-008-00	Reagent Water	PH	PH 334AA
65703-008-00	Reagent Water	SO4	SO4 200AA
65703-008-00	Reagent Water	TDS	TDS 145AA
65703-009-00	Reagent Water	ALK	ALK 289AA
65703-009-00	Reagent Water	CL	CL 206AA
65703-009-00	Reagent Water	COND	COND266AA
65703-009-00	Reagent Water	F	F 135AA
65703-009-00	Reagent Water	NH3	NH3 150AC
65703-009-00	Reagent Water	NO3	NO3 202AF
65703-009-00	Reagent Water	РН	PH 334AA
65703-009-00	Reagent Water	SO4	SO4 200AA
65703-009-00	Reagent Water	TDS	TDS 145AA
65703-010-00	Reagent Water	ALK	ALK 289AA
65703-010-00	Reagent Water	CL	CL 207AA
65703-010-00	Reagent Water	COND	COND267AA

QC LOT ASSIGNMENT REPORT INORGANICS - NON-METALS (cont.)

Laboratory			QC Lot Number
Sample Number	<u>QC Matrix</u>	Test	LCS
•			
65703-010-00	Reagent Water	F	F 135AA
65703-010-00	Reagent Water	NH3	NH3 149AC
65703-010-00	Reagent Water	· NO3	NO3 201AF
65703-010-00	Reagent Water	РН	PH 336AA
65703-010-00	Reagent Water	SO4	SO4 209AA
65703-010-00	Reagent Water	TDS	TDS 145AA
65703-011-00	Reagent Water	ALK	ALK 289AA
65703-011-00	Reagent Water	CL	CL 207AA
65703-011-00	Reagent Water	COND	COND267AA
65703-011-00	Reagent Water	F	F 135AA
65703-011-00	Reagent Water	NH3	NH3 149AC
65703-011-00	Reagent Water	NO3	NO3 201AF
65703-011-00	Reagent Water	ΡH	PH 336AA
65703-011-00	Reagent Water	SO4	SO4 209AA
65703-011-00	Reagent Water	TDS	TDS 145AA
65703-012-00	Reagent Water	ALK	ALK 273AA
65703-012-00	Reagent Water	CL	CL 208AA
65703-012-00	Reagent Water	COND	COND267AA
65703-012-00	Reagent Water	F	F 135AA
65703-012-00	Reagent Water	NH3	NH3 149AC
65703-012-00	Reagent Water	NO3	NO3 201AF
65703-012-00	Reagent Water	PH	PH 336AA
65703-012-00	Reagent Water	SO4	SO4 201AA
65703-012-00	Reagent Water	TDS	TDS 156AA
65703-013-00	Reagent Water	ALK	ALK 273AA
65703-013-00	Reagent Water	CL	CL 207AA
65703-013-00	Reagent Water	COND	COND267AA
65703-013-00	Reagent Water	F	F 135AA
65703-013-00	Reagent Water	NH3	NH3 151AC
65703-013-00	Reagent Water	NO3	NO3 201AF
65703-013-00	Reagent Water	РН	PH 336AA
65703-013-00	Rcagent Water	SO4	SO4 202AA
65703-013-00	Reagent Water	TDS	TDS 156AA
65703-014-00	Reagent Water	ALK	ALK 273AA
65703-014-00	Reagent Water	CL	CL 207AA
65703-014-00	Reagent Water	COND	COND267AA
65703-014-00	Reagent Water	F	F 136AA
65703-014-00	Reagent Water	NH3	NH3 149AC
65703-014-00	Reagent Water	NO3	NO3 201AF
65703-014-00	Reagent Water	PH	PH 336AA
65703-014-00	Reagent Water	SO4	SO4 201AA
65703-014-00	Reagent Water	TDS	TDS 156AA

QC LOT ASSIGNMENT REPORT INORGANICS - NON-METALS (cont.)

Laboratory			QC Lot Number
Sample Number	<u>QC Matrix</u>	Test	LCS
•			
65703-015-00	Reagent Water	ALK	ALK 273AA
65703-015-00	Reagent Water	CL	CL 208AA
65703-015-00	Reagent Water	COND	COND267AA
65703-015-00	Reagent Water	F	F 136AA
65703-015-00	Reagent Water	NH3	NH3 149AC
65703-015-00	Reagent Water	NO3	NO3 201AF
65703-015-00	Reagent Water	РН	РН 336АА
65703-015-00	Reagent Water	SO4	SO4 202AA
65703-015-00	Reagent Water	TDS	TDS 145AA
65703-016-00	Reagent Water	ALK	ALK 273AA
65703-016-00	Reagent Water	CL	CL 208AA
65703-016-00	Reagent Water	COND	COND267AA
65703-016-00	Reagent Water	F	F 136AA
65703-016-00	Reagent Water	NH3	NH3 149AC
65703-016-00	Reagent Water	NO3	NO3 201AF
65703-016-00	Reagent Water	РН	PH 336AA
65703-016-00	Reagent Water	SO4	SO4 202AA
65703-016-00	Reagent Water	TDS	TDS 145AA
65703-018-00	Reagent Water	ALK	ALK 275AA
65703-018-00	Reagent Water	CL	CL 208AA
65703-018-00	Reagent Water	COND	COND268AA
65703-018-00	Reagent Water	F	F 138AA
65703-018-00	Reagent Water	NH3	NH3 157AC
65703-018-00	Reagent Water	NO3	NO3 209AC
65703-018-00	Reagent Water	РН	PH 338AA
65703-018-00	Reagent Water	SO4	SO4 202AA
65703-018-00	Reagent Water	TDS	TDS 149AA
65703-019-00	Reagent Water	ALK	ALK 275AA
65703-019-00	Reagent Water	CL	CL 208AA
65703-019-00	Reagent Water	COND	COND268AA
65703-019-00	Reagent Water	F	F 138AA
65703-019-00	Reagent Water	NH3	NH3 157AC
65703-019-00	Reagent Water	NO3	NO3 209AC
65703-019-00	Reagent Water	РН	PH 338AA
65703-019-00	Reagent Water	SO4	SO4 202AA
65703-019-00	Reagent Water	TDS	TDS 149AA
65703-021-00	Reagent Water	ALK	ALK 277AA
65703-021-00	Reagent Water	CL	CL 208AA
65703-021-00	Reagent Water	COND	COND270AA
65703-021-00	Reagent Water	F	F 138AA
65703-021-00	Reagent Water	NH3	NH3 157AC
65703-021-00	Reagent Water	NO3	NO3 209AC
	2		

— Énseco

Laboratory			QC Lot Number
Sample Number	<u>QC Matrix</u>	Test	LCS
	_		
65703-021-00	Reagent Water	PH	PH 341AA
65703-021-00	Reagent Water	SO4	SO4 202AA
65703-021-00	Reagent Water	. TDS	TDS 150AA
65703-022-00	Reagent Water	ALK	ALK 275AA
65703-022-00	Reagent Water	CL	CL 208AA
65703-022-00	Reagent Water	COND	COND268AA
65703-022-00	Reagent Water	F	F 138AA
65703-022-00	Reagent Water	NH3	NH3 157AC
65703-022-00	Reagent Water	NO3	NO3 209AC
65703-022-00	Reagent Water	РН	PH 338AA
65703-022-00	Reagent Water	SO4	SO4 202AA
65703-022-00	Reagent Water	TDS	TDS 156AA

💪 Enseco

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

Analyte	Conc <u>Spiking</u>		on isured <u>LCS2</u>		curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: ALK on Reagent Water QC Lot: ALK 271AA Concentration Units: (mg/L)		-						
Total Alkalinity as CaCO3	158	162	162	103	103	90-110	0.0	20
Test: ALK on Reagent Water QC Lot: ALK 273AA <u>Concentration Units: (mg/L)</u>								
Total Alkalinity as CaCO3	158	165	160	104	101	90-110	3.1	20
Test: ALK on Reagent Water QC Lot: ALK 275AA <u>Concentration Units: (mg/L)</u> Total Alkalinity as CaCO3	158	158	160	100	101	90-110	1.3	20
Test: ALK on Reagent Water QC Lot: ALK 277AA Concentration Units: (mg/L)								
Total Alkalinity as CaCO3	158	162	161	103	102	90-110	0.6	20
Test: ALK on Reagent Water QC Lot: ALK 289AA <u>Concentration Units: (mg/L)</u>								20
Total Alkalinity as CaCO3	158	156	158	99	100	90-110	1.3	20
Test: CL on Reagent Water QC Lot: CL 206AA <u>Concentration Units: (mg/L)</u>								
Chloride	20	19.4	20.1	97	101	92-108	3.5	10

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

ų,

ĺ

Ĩ

Analyte	Con Spiking		on isured <u>LCS2</u>		curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precis: <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: CL on Reagent Water QC Lot: CL 207AA Concentration Units: (mg/L)								
Chloride	20	18.9	19.0	94	95	92-108	0.5	10
Test: CL on Reagent Water QC Lot: CL 208AA Concentration Units: (mg/L)								
Chloride	20	19.5	19.1	98	96	92-108	2.1	10
Test: CL on Reagent Water QC Lot: CL 214AA <u>Concentration Units: (mg/L)</u> Chloride	20	18.6	18.7	93	93	92-108	0.5	10
Test: COND on Reagent Water QC Lot: COND266AA <u>Concentration Units: (umhos/cm)</u>								
Specific Conductance @ 25C	1680	1590	1600	95	95	95-105	0.6	5
Test: COND on Reagent Water QC Lot: COND267AA Concentration Units: (umhos/cm)								
Specific Conductance @ 25C	1680	1670	1680	99	100	95-105	0.6	5
Test: COND on Reagent Water QC Lot: COND268AA <u>Concentration Units: (umhos/cm)</u>								
Specific Conductance @ 25C	1680	165 0	1680	9 8	100	95-105	1.8	5

-'; Enseco

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

Analyte	Con <u>Spikin</u> g	centrati Me <u>LCS1</u>	asured	Ac <u>LCS1</u>	curacy <u>LCS2</u>	Precision(RPD) <u>LCS Limits</u>		
Test: NH3 on Reagent Water QC Lot: NH3 151AC Concentration Units: (mg/L)								
Ammonia as N	4.1	4.21	4.23	103	103	93-107	0.5	10
Test: NH3 on Reagent Water QC Lot: NH3 157AC Concentration Units: (mg/L)								
Ammonia as N	4.1	4.32	4.16	105	101	93-107	3.8	10
Test: NO3 on Reagent Water QC Lot: NO3 201AF Concentration Units: (mg/L)								
Nitrate as N	3.5	3.56	3.52	102	101	91-109	1.1	20
Test: NO3 on Reagent Water QC Lot: NO3 202AF Concentration Units: (mg/L)								
Nitrate as N	3.5	3.52	3.51	101	100	91-109	0.3	20
Test: NO3 on Reagent Water QC Lot: NO3 209AC Concentration Units: (mg/L)								
Nitrate as N	3.5	3.50	3.48	100	9 9	91-109	0.6	20
Test: PH on Reagent Water QC Lot: PH 334AA <u>Concentration Units: (Units)</u>								
рН	9.1	9.06	9.03	100	9 9	98-102	0.3	5

- 🧶 Enseco

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

<u>Analyte</u>	Con <u>Spiking</u>		on isured <u>LCS2</u>	Acc <u>LCS1</u>	uracy(<u>LCS2</u>		Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: PH on Reagent Water QC Lot: PH 336AA Concentration Units: (Units)								
рН	9.1	8.91	8.93	98	9 8	98-102	0.2	5
Test: PH on Reagent Water QC Lot: PH 338AA Concentration Units: (Units)								
pН	9.1	8.89	8.88	98	98	98-102	0.1	5
Test: PH on Reagent Water QC Lot: PH 341AA Concentration Units: (Units)								
рН	9.1	8.99	8.99	99	9 9	98-102	0.0	5
Test: SO4 on Reagent Water QC Lot: SO4 200AA Concentration Units: (mg/L)								
Sulfate	100	98.5	97.9	99	9 8	93-107	0.6	15
Test: SO4 on Reagent Water QC Lot: SO4 201AA <u>Concentration Units: (mg/L)</u>								
Sulfate	100	97.2	96.8	97	97	93-107	0.4	15
Test: SO4 on Reagent Water QC Lot: SO4 202AA Concentration Units: (mg/L)								
Sulfate	100	95.9	97.5	96	9 8	93-107	1.7	15

-∕⊊ Enseco

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

Analyte	Conc <u>Spiking</u>	centratic Mea <u>LCS1</u>	sured		curacy(<u>LCS2</u>	%) <u>Limits</u>	Precisi <u>LCS</u>	on(RPD) <u>Limits</u>
Test: SO4 on Reagent Water QC Lot: SO4 209AA <u>Concentration Units: (mg/L)</u>								
Sulfate	100	92.7	93.4	93	93	93-107	0.8	15
Test: TDS on Reagent Water QC Lot: TDS 140AA <u>Concentration Units: (mg/L)</u>								
Total Dissolved Solids	1270	1220	1230	96	97	90-110	0.8	10
Test: TDS on Reagent Water QC Lot: TDS 145AA Concentration Units: (mg/L)								
Total Dissolved Solids	1270	1240	1260	98	9 9	90-110	1.6	10
Test: TDS on Reagent Water QC Lot: TDS 149AA <u>Concentration Units: (mg/L)</u>								
Total Dissolved Solids	1270	1160	1250	91	98	90-110	7.5	10
Test: TDS on Reagent Water QC Lot: TDS 150AA <u>Concentration Units: (mg/L)</u>								
Total Dissolved Solids	1270	1230	1280	97	101	90-110	4.0	10
Test: TDS on Reagent Water QC Lot: TDS 156AA Concentration Units: (mg/L)								
Total Dissolved Solids	1360	1230	1270	90	93	90-110	3.2	10

- 🦾 Enseco

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

Analyte	Cone <u>Spiking</u>	centratio Mea <u>LCS1</u>	isured		curacy(<u>LCS2</u>	%) <u>Limits</u>	Precisi <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: COND on Reagent Water QC Lot: COND270AA Concentration Units: (umhos/cm)								
Specific Conductance @ 25C	16 80	1670	1660	99	99	95-105	0.6	5
Test: F on Reagent Water QC Lot: F 135AA Concentration Units: (mg/L)								
Fluoride	9.4	8.63	8.70	92	93	88-112	0.8	15
Test: F on Reagent Water QC Lot: F 136AA Concentration Units: (mg/L)								
Fluoride	12	11.3	11.6	94	97	88-112	2.6	15
Test: F on Reagent Water QC Lot: F 138AA Concentration Units: (mg/L)								
Fluoride	9.4	9.42	9.54	100	101	88-112	1.3	15
Test: NH3 on Reagent Water QC Lot: NH3 149AC <u>Concentration Units: (mg/L)</u>								
Ammonia as N	4.1	4.22	4.28	103	104	93-107	1.4	10
Test: NH3 on Reagent Water QC Lot: NH3 150AC <u>Concentration Units: (mg/L)</u>								
Ammonia as N	4.1	4.20	4.16	102	101	93-1 07	1.0	10

I.

İ

İ

ł

ļ

ł

i

ELEMENT	CATION ANALYSIS Movil	meosil	
Ē a	112.000	5.5888	
Fe+2	ND	0.0000	
Fe+3	ND	0.0000	
Mg	17.000	1.3791	
k l	NC .	9.0009	
Na	50.000	2.1756	
NH4	NE	0.000	
TOTAL	179.000	9.1629	

ELEMENT	ANION ANALYSIS , mg/l	meq/L
C1	33.000	0.9308
F S04	0.300 198.000	0.0158 4.1184
A1k NG2+NG3	95.400 0.700	3.1800 0.0500
	0	0.0000
TOTAL	327.400	8.2948

SUMMARY

% DIFFERENCE = 4.973 CATIONS + ANIONS (mg/L) = 50c.400 TDS =537.000 HARDNESS = 349.700 CALCULATED THEORETICAL CONDUCTIVITY =10c1.6548 MEASURED CONDUCTIVITY = 755.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.40c MEASURED CONDUCTIVITY/TDS RATIO = 1.40c

ND - Not Detected

CATION ANALYSIS ELEMENT mg/L m				
	mg/L	mea/L		
 Ce	268.000	13.3732		
≠e+2	ND	0.0000		
Fe+3	ND	0.0000		
Mg	43.000	3.5389		
-KŪ	ND	6,0000		
Na	334.000	14.5290		
NH4	ND	0.0000		
TOTAL	 645,000	31.4411		

ANION ANALYSIS			
ELEMENT	mg/L	meq∕L	
C1	101.000	2.8482	
F	0.300	0,0158	
S04	°55.000	19.8640	
Alk	219.000	7.3000	
N02+N03	ND	0.000ū	
TOTAL		30.0280	

S UMMA F

% DIFFERENCE = 2.299 CATIONS + ANIONS (mg/L) =1920.300 TDS =%2000.000 HARDNESS = 846.300 CALCULATED THEORETICAL CONDUCTIVITY =3840.2525 MEASURED CONDUCTIVITY =2500.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.536 MEASURED CONDUCTIVITY/TDS RATIO = 1.250

ELEMENT	CATION ANALYSIS ng/L	meeziL
Ca	167.000	8,3333
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	24.000	1.9752
ĸ	ND	0.0000
Na	377.000	16.3995
NH4	ND	0.0000
TOTAL	538.000	26.7080

!

i

ELEMENT	ANION ANALYSIS mg/l	req∕i
 C1	138.000	3,8916
F	0.800	0.0421
S04	713.000	14.6304
41 k	232.200	7.7400
N02+N03	0.300	0.6214
TOTAL	1084.300	26.5255

SUMMARY

% DIFFERENCE = 0.343 CATIONS + ANIONS (mg/L) =1652.300 TDS =%1730.000 HARDNESS = 515.900CALCULATED THEORETICAL CONDUCTIVITY =3251.3743 MEASURED CONDUCTIVITY =2300.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.414 MEASURED CONDUCTIVITY/TDS RATIO = 1.329

ND - Not Detected

ELEMENT	CATION ANALYSIS mg/l	meq/L
 Ca	131.000	6.5369
Fe÷2	ND	0.0000
Fe+3	ND	0.0 010
Mg	19.000	1.5637
ĸ	ND	0.0003
Na	294.000	12.7870
NH4	ND	0.0000
TOTAL	444.000	20.9893

ELEMENT	ANION ANALYSIS mg/l	me q. ¹ L
C]	73.000	2.0586
F	0.700	0.0368
S04	601.000	12.5003
Alk	199.200	á.6400
N02+N03	0.200	0.0143
TOTAL	874.100	21.2505

I

SUMMARY

% DIFFERENCE =-0.85% CATIONS + ANIONS (mg/L) =1318.100 TDS =%1380.000 HARDNESS = 405.400 CALCULATED THEORETICAL CONDUCTIVITY =25%6.3018 MEASURED CONDUCTIVITY =1920.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.337 MEASURED CONDUCTIVITY/TDS RATIO = 1.391

ND - Not Detected

-

ELEMENT	CATION ANALYSIS mg/l	meq/L	
Ca	142.000	7.0858	
Fe+2	ND	0.00 0	
Fet3	ND	0.0000	
Mg	22.000	1.8106	
K	ND	0.0000	
Ne	244.000	10,6140	
NH4	NE	0.0000	
TOTAL	408.000	19.5104	

ELEMENT	ANION ANALYSIS mg/l	meq∕L
C1	éi.000	1.7203
F 504	0.700 545.000	0.03a8 11.3360
Alk	180.600	6.0200
N02+N03	0.300	0.0214
TOTAL	787.600	19.1344

SUMMARY

I

% DIFFERENCE = 0.973 CATIONS + ANIONS (mg/L) =1195.600 TDS =%1190.000 HARDNESS = 445.200 CALCULATED THEORETICAL CONDUCTIVITY =2357.1875 MEASURED CONDUCTIVITY =1700.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.387 MEASURED CONDUCTIVITY/TDS RATIO = 1.429

CATION ANALYSIS ELEMENT meq∕L πig/L ------13.3233 267.000 Ca Fe+2 ND 0.0000 Fe+3 ND 0.0000 Mg 37.000 3.0451 К ND 0.0000 361.000 Na 15.7035 NH4 NÐ 0.0000 32.0719 TOTAL 665.000 _____ _______ _____

ELEMENT	ANION ANALYSIS mg/l	meq∕L
C1 F S04 A1k N02+N03	260.000 0.500 960.000 194.400 ND	7.3320 0.6263 19.9680 6.4800 0.0000
TOTAL	1414.900	33.8063

SUMMARY

% DIFFERENCE =-2.633 CATIONS + ANIONS (mg/L) =2079.900 TDS'=%2000.000 HARDNESS = 819.200 CALCULATED THEORETICAL CONDUCTIVITY =4184.1473 MEASURED CONDUCTIVITY =2700.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.550 MEASURED CONDUCTIVITY/TDS RATIO = 1.350

ND - Not Detected

CATION ANALYSIS ELEMENT me o∕ E mg∕L 10.2275 Ca 205.000 Fe+2 0.0000 ND Fe+3 NÐ 0.0000 Mg 29.000 2.3857 ĸ ND 0.0000 Na 265.000 11.5710 NH4 NÐ 0.0000 _____ TOTAL 500.000 24,1872

ELEMENT	ANION ANALYSIS mg/l	meq∕L
C1 F S04 A1k N02+N03	169.000 0.500 675.000 192.000 1.000	4.7658 0.0263 14.0400 6.4000 0.0714
TOTAL	1037.500	25.3035

SUMMARY

% DIFFERENCE =-2.256 CATIONS + ANIONS (mg/L) =1537.500 TDS =%1510.000 HARDNESS = 631.400 CALCULATED THEORETICAL CONDUCTIVITY =3090.7543 MEASURED CONDUCTIVITY =2100.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.472 MEASURED CONDUCTIVITY/TDS RATIO = 1.391

ND - Not Detected

CATION ANALYSIS ELEMENT mg/L meq∕⊾ _____ 193.000 9.6307 Ca 0.0000 Fe+2 ND 0.0000 Fe+3 NÐ 2.1398 26.000 Mg K ND 0.0000 7.5690 Na 174.000 NH4 ND 0.0000 TOTAL 393.000 19.3395 _____ _____ _____ ______

Ì

i

1

ELEMENT	ANION ANALYSIS	me q/L
C1 F S04 A1k N02+N03	໔5.000 0.600 ໔05.000 153.600 ND	1.8330 0.0318 12.5840 5.1200 0.0000
TOTAL	224.200	19.5686

SUMMARY

% DIFFERENCE =-0.589 CATIONS + ANIONS (mg/L) =1217.200 TDS =%1230.000 HARDNESS = 589.100 CALCULATED THEORETICAL CONDUCTIVITY =2439.8691 MEASURED CONDUCTIVITY =1640.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.488 MEASURED CONDUCTIVITY/TDS RATIO = 1.333 ND - Not Detected

ELEMENT	CATION ANALYSIS mg/l	me q / L
Ca	396.000	19,7604
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	41.000	3.3743
ĸ	ND	0.0009
Na	357.000	15.5295
NH4	. NG	0.0000
TOTAL	794.000	38.6642

ANION ANALYSIS		
ELEMENT	mg∕L	me q/L
с1	81.000	2,2842
F	0.600	0.0316
S04	1510.000	31.4080
Alk	150.000	5,0000
N02+N03	ND	5000.0
TOTAL	1741.600	38.7238

SUMMARY

į

% DIFFERENCE =-0.077 CATIONS + ANIONS (mg/L) =2535.600 TDS =%2160.000 HARDNESS =1158.100 CALCULATED THEORETICAL CONDUCTIVITY =5038.6482 MEASURED CONDUCTIVITY =3000.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.680 MEASURED CONDUCTIVITY/TDS RATIO = 1.389

ELEMENT	CATION ANALYSIS mg/l	me q×L
 Ca	196.000	9.7834
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	41.000	3.3743
ĸĨ	ND	0.0 000
Na	578.000	25.1430
NH4	ND	0.0009
TOTAL	815,000	38.2977

ELEMENT	ANION ANALYSIS mg/l	meq/L
C1	191.000	5,3862
F	0.700	0.03:5
504	1530.000	31.8240
Alk	162.600	5.4200
N02+N03	ND	0.0000
TOTAL	1884.300	42.6670

SUMMARY

% DIFFERENCE =-5.397 CATIONS + ANIONS (mg/L) =2699.300 TDS =%2725.000 HARDNESS = 658.100 CALCULATED THEORETICAL CONDUCTIVITY =5215.1060 MEASURED CONDUCTIVITY =3720.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.402 MEASURED CONDUCTIVITY/TDS RATIO = 1.365

ND - Not Detected

.

ELEMENT	CATION ANALYSIS mg/l	ne g×L
	186.000	
Ca Fe+2	188.000 ND	0.0600
Fe+3	ND	0.0000
Mg	28.000	2.3044
ĸ	ND	0.0000
Na	263.000	11.4405
NH4	ND	0.0000
TOTAL	477,000	23.0363

I

ELEMENT	ANION ANALYSIS mg/L	meq∕i
C)	184.000	5.1888
F	0.500	0.0263
504	615.000	12.7920
Alk	152.400	5.0800
N02+N03	ND	0.0000
TOTAL		23.0871
	/ 51 . 700	

SUMMARY

% DIFFERENCE =-0.132 CATIONS + ANIONS (mg/L) =1428.900 TDS =%1470.000 HARDNESS = 577.800 CALCULATED THEORETICAL CONDUCTIVITY =2892.2208 MEASURED CONDUCTIVITY =2120.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.364 MEASURED CONDUCTIVITY/TDS RATIO = 1.442

ND - Not Detected

ELEMENT	CATION ANALYSIS mg/l	me q/L
Ca	133.000	6.6367
Fe+2	ND	0.0000
Fe+3	0.090	0.0048
Mg	39.000	3.2997
ĸ	ND	0.0000
Na	239.000	10.3965
NH4	ND	0.0000
TOTAL	411.090	20.2477

ANION ANALYSIS mg/l	meq∕L
	10.1520
0.300	0.0158
9.000	6.1872
324.600	10.8200
ND	0.0000
693.900	21.1750
	mg/L 360.000 0.300 9.000 324.600 ND

SUMMARY

% DIFFERENCE =-2.238 CATIONS + ANIONS (mg/L) =1104.990 TDS =%1540.000 HARDNESS = 492.400 CALCULATED THEORETICAL CONDUCTIVITY =2357.8134 MEASURED CONDUCTIVITY =2070.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.139 MEASURED CONDUCTIVITY/TDS RATIO = 1.344

ND - Not Detected

CATION ANALYSIS ELEMENT mg∕L me c∕iL ____ -----Ca 5.1377 103.000 Fe+2 0.0000 ND Fe+3 0.0000 ND 22.000 Mg 1.8103 К 6.000 0.1538 9.0045 Na 207.000 NH4 9.800 0.6997 TOTAL 347.800 16.8081

ELEMENT	ANION ANALYSIS mg/l	med/L
C1 F S04 A1k N02+N03	50.000 0.400 387.000 217.800 1.100	1.4100 0.0210 8.0475 7.2500 0.0785
TOTAL	65 6.300	16.8192

```
SUMMARY
```

% DIFFERENCE =+0.033 C4TIONS + ANIONS (mg/L) =1004.100 TDS =792.000 HARDNESS = 347.700 CALCULATED THEORETICAL CONDUCTIVITY =1994.8178 MEASURED CONDUCTIVITY =1550.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.287 MEASURED CONDUCTIVITY/TDS RATIO = 1.957

	CATION ANALYSIS	
ELEMENT	mg/L	meq/L
Ca	15.000	0.7485
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	2.600	0.2140
ĸ	ND	0.0000
Na	696.000	30.2760
NH4	ND	0.0000
TOTAL	713.600	31.2385

ELEMENT	ANION ANALYSIS mg/l	meq∕L
C1	527.000	14.8614
F	1.200	0.0331
504	610.000	12.6880
A1k	173.400	5.7800
N02+N03	ND	0.0000
TOTAL	1311.600	33.3925

SUMMARY

% DIFFERENCE =-3.333 CATIONS + ANIONS (mg/L) =2025.200 TDS =%1740.000 HARDNESS = 48.160 CALCULATED THEORETICAL CONDUCTIVITY =3980.0185 MEASURED CONDUCTIVITY =3360.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.185 MEASURED CONDUCTIVITY/TDS RATIO = 1.931

1

Ì

ł

I

CATION ANALYSIS ELEMENT me o / L mg∕L _____ Сa 182,000 9.0818 0.0000 Fe+2 ND Fe+3 0.190 6.0102 28.000 2.3044 Mg К ND 0.0000 277.000 Na 12.0495 NH4 0.0000 ND ---------23.4459 487.190 TOTAL ______

ELEMENT	ANION ANALYSIS mg/l	meq∕L
C1 F S04 A1k N02+N03	171.000 0.500 615.000 152.400 ND	4.8222 0.0263 12.7929 5.0800 0.0000
TOTAL	938.900	22.7205

SUMMARY

X DIFFERENCE = 1.571 CATIONS + ANIONS (mg/L) =1426.090 TDS =X1470.000 HARDNESS = 569.800 CALCULATED THEORETICAL CONDUCTIVITY =2882.9143 MEASURED CONDUCTIVITY =2130.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.353 MEASURED CONDUCTIVITY/TDS RATIO = 1.449

	CATION ANALYSIS	
ELEMENT	mg/L	me q / L
 Ca	3.600	0.1796
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	0.600	8.0494
ĸ	ND	0.0000
Na	5.600	0.2436
NH4	ND	0.0000
TOTAL	۶.800	0.4726

ELEMENT	ANION ANALYSIS mg/l	meq/L
C1	ND	0.0000
F	ND	0.0090
504	ND	0.000
Alk	ND	0.0000
N02+N03	ND	0.000
TOTAL	0.000	0.0000*

SUMMARY

% DIFFERENCE =%100.000* CATIONS + ANIONS (mg/L) = 9.800 TDS = 1.000 HARDNESS = 11.460 CALCULATED THEORETICAL CONDUCTIVITY = 28.0563 MEASURED CONDUCTIVITY = 2.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO =14.028 MEASURED CONDUCTIVITY/TDS RATIO = 2.000

ND - Not Detected

* - TOTAL meq/L are below limit of quantification and should be viewed as semi-quantitative.

ELEMENT	CATION ANALYSIS mg/L	meq∕L
 Ca	143.000	7.2854
Fe+2	ND	0.0000
Fe+3	0.130	0.0070
Mg	26.000	2.1398
ĸ	ND	0.0000
Na	205.000	8.9175
NH4	ND	0.0000
TOTAL	377.130	18.3497

1.4664
0.0263
11.4400
5.0600
0.0357
18.0284

```
SUMMARY
```

% DIFFERENCE = 0.883 CATIONS + ANIONS (mg/L) =1131.930 TDS =%1200.000 HARDNESS = 471.600 CALCULATED THEORETICAL CONDUCTIVITY =2248.4183 MEASURED CONDUCTIVITY =1650.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.363 MEASURED CONDUCTIVITY/TDS RATIO = 1.375

ELEMENT	CATION ANALYSIS mg/L	me q 🗸 L
Ca.	147.000	7.3353
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	25.000	2.0575
K	ND	0.0000
Na	190.000	8.2650
NH4	0.200	0.0143
TOTAL	362.200	17.6721

ł

ELEMENT	ANION ANALYSIS mg/L	meq/L
C1	50.000	1.4100
F	0.500	0.0263
S04	550.000	11.4400
Alk	164.490	5.4800
N02+N03	0.700	0.0500
TOTAL	765.600	18.4063

SUMMARY

% DIFFERENCE =-2.035 CATIONS + ANIONS (mg/L) =1127.800 TDS =%1210.000 HARDNESS = 470.000 CALCULATED THEORETICAL CONDUCTIVITY =2230.4253 MEASURED CONDUCTIVITY =1680.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.328 MEASURED CONDUCTIVITY/TDS RATIO = 1.338

	CATION ANALYSIS	
ELEMENT	mg/L	meç/L
Ca	219.000	10.9281
Fe+2	ND	0.8300
Fe+3	0.120	0.0064
Mg	47.000	3.8681
ĸ	ND	0.0000
Na	370.000	16.0950
NH4	0.500	0.0357
TOTAL	 636.620	30.9333

ELEMENT	ANION ANALYSIS mg/l	meq∕L
C1	82.000	2.3124
F S04	6.800 920.000	0.0421 19.1330
A1k N02+N53	348.600 ND	11.6200 0.0000
102.103		0.0000
TOTAL	1351.400	33.1105

SUMMARY

% DIFFERENCE =-3.399 CATIONS + ANIONS (mg/L) =1988.020 TDS =%1850.000 HARDNESS = 740.200 CALCULATED THEORETICAL CONDUCTIVITY =3887.5870 MEASURED CONDUCTIVITY =2650.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.467 MEASURED CONDUCTIVITY/TDS RATIO = 1.432

ELEMENT	CATION ANALYSIS mg/l	me c ZL
Ca	28.000	1.3972
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Иg	26.000	2.1398
ĸ	7.000	0.1792
Na	126.000	5.4810
NH4	0.700	0.0500
TOTAL	187.700	9.2472

ELEMENT	ANION ANALYSIS mg/l	me q/L				
C1	37.000	1.0434				
F	0.200	0.0105				
S04	97.000	2.0176				
Alk	178.200	5.9400				
N02+N03	ND	0.0000				
TOTAL	312.400	9,0115				

SUMMARY

% DIFFERENCE = 1.291 CATIONS + ANIONS (mg/L) = 500.100 TDS =%1180.000 HARDNESS = 176.600 CALCULATED THEORETICAL CONDUCTIVITY = 993.0290 MEASURED CONDUCTIVITY = 845.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.175 MEASURED CONDUCTIVITY/TDS RATIO = 0.716

ND - Not Detected

.

¥ • . . .

*~ 525 RemarksRMA # SS - 001 9 Date / Time Date / Time 20 G 3 5 $c\beta$ 90 रु 03 0 23/89 agania lead mitals the Palanel Received by: (Signatura) Received for Laboratory by: Sampling Personnel Lang Bardwell 65702 Parameters Yellow Copy to Sampler Date / Time • ? 2 2 2 2 ~ 2 will GC 15 Relinquished by: (Signature) RMAL Project No. Delivered by: (Signature) Sampling Site No. Containers CHAIN OF CUSTODY 1 7 1 N 1 r 1 1 Pink Copy to Client 7/22 1202 Date / Time Cran with Type ~ 2 2 2 2 2 2 ~ A DIVISION OF ENSECO INCORPORATED Project Name/No. Kitland N.M. Centry 4. Corner Herentred by Ganeture Shipped by: (Signatura) Rocky Mountain Analytical Laboratory White Copy to Lab Sample ID/Description 4955 Yarrow Street, Arvada, CO 80002 (303) 421-6611 Date / Time RMAL Client Chr. / None SLC MW-7 8-mw 8-MW MW-9 n-mw S-MW MW-2 AW.S M N. Sampling Co. Core P Trone Relinquished by: (Supreture) shoi Method of Shipment: 000 130 549/ 1230 1330 009/ tron (Soulud PEH/ 1515 Time × Date んしん 2/22 21/2 re/e 222 2/27 202 いって ž

, <i>t</i> 0	en 10 - 16	Remarks RMA	11	- 12	2	14	21	16	2)		y: (Signature) Date / Time	atory by: Date / Time
	RMAL Project No. 65703 AM	Parameters	1 come - 1		.,	· ·	"	//			y: (Signature) Date / Time Received by: (Signature)	ignature) Received for Laboratory by:
CHAIN OF CUSTODY	RMAL Project No. Sampling Personn Sampling Site	No. Containers	7	. ~	7	7	2	7			Relinquished by: (Signature)	Delivered by: (Signature)
	Katland N.M.	Type	1.	''			.,	D-I HO			Date / Time	-
Rocky Mountain Analytical Laboratory 1955 Yarrow Street, Arvada, CO 80002 (303) 421-6611 ADIVISION OF ENSECO INCORPORATED	marenich,	cription		SM5	6C	D well ic	O walitate U				Received by: (Signature)	
Rocky Mountain Analytical L 4955 Yarrow Street, Arvada, CO 80002 (303) 421-6611	Dans Marie SIC Done Mord	Sample ID/Dese	[1-mw	21-M W	1 W-3	Repet Bull well	11-MW	Education	fue blow	-	Pate Time	+
Ky Mounta rrow Street, Arvada,	RMAL Client <u>OOns</u> Sampling Co. <u>One</u> Project Name/No. <u>G</u>	Date Time			Qoh1	1500	13 1030	1600			Relinquished by: (Signaluge	Method of Shipment:

1 1 1

	en 18-23	Remarks RMAT rel 101/102 18 601/102 18 601/102 18 101/102 20 101/102 20	neture) Date / Time by: Date / Time
	nel Larry Bardwell	Parameters Remarks Parameters Remarks 11 11 11 11 11 11 11 11 11 1	ure) Date / Time Received by: (Signature) Received for Laboratory by:
CHÀIN OF CUSTODY	RMAL Project No.	No. Containers	/ Time Relinquished by: (Signatura)
aboratory A DIVISION OF ENSECO INCORPORATED	Le Al	scription Type Stark Under Nell Charl Whith	Received by: (Signature) Date / Tin Fed-X un 1 0004 17
Rocky Mountain Analytical Laboratory ABSS Yarrow Street, Arvada, CO 80002 (303) 421-8611 A DIVISIC RECENSION	RMAL Client Dames & hone Sampling Co. Project Name/No. Cariber 4 Carero, Mererich	 Sample ID/Description SW-3 SW-3 SW-3 SW-3 N-13 Thy bank WU 	Date / Time
Pocky Mo	RMAL Client Sampling Co Project Name/No	Pate Time 2/24 /300 2/24 /400 2/24 /400 2/24 /400 2/24 /400	Refinquished by: (Signature) Anny Con Lucel Method of Shipment:

ow Street, Arvada, CO BC	4955 Yarrow Street, Arvada, CO 80002 (303) 421-5611 A Division of ENSECO INCORPORATED INCORPORATED		CHAIN OF CUSTODY			
RMAL Client Dame 1	4 Corres breveride.	Kitten n	RMAL Project No.	et No. 65	E0152) /2019	
Time		Type	No. Containers	Parameters	α 	Remarks AMPL#
N 0611	MW-13 6	and with	m	ton Below Kith	april end	#21
			•			
Relinquished by: (Signature)	Date / Time Received by: (Signature)	Date / Time	Control Dy: Rignature)	Date / Time	Received by: (Signatura)	Date / Time
Method of Shipment:	Shipped by: (Signeture)		1 by. (Signature)	nature) Received for (Signature)	or Laboratory by:	Date / Time

ANALYTICAL RESULTS FOR DAMES AND MOORE

MARCH 30, 1988

Rocky Mountain Analytical Laboratory

Enseco

ANALYTICAL RESULTS FOR

DAMES AND MOORE

MARCH 30, 1988

ОЦ

Reviewed by:

Jeanne Β. Howbert

Michael 7. Phillips, Ph.D.

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171 I. OVERVIEW

On March 24, 1988, Enseco-Rocky Mountain Analytical Laboratory received one water sample from Dames and Moore. A complete listing of tests requested, by sample, is given in Section III.

Enseco

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- I. Overview
- II. Sample Description Information
- III. Analytical Tests Assigned
- IV. Analytical Results
- V. Quality Control Report
- VI. Description of Analytical Methodology

Standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. All laboratory QC samples analyzed in conjunction with the samples in this project were within established control limits.

Enseco

SAMPLE DESCRIPTION INFORMATION

for

DAMES AND MOORE

RMAL <u>Sample No.</u>	Sample Description	Sample Type	Date <u>Sampled</u>	Date <u>Received</u>
65928-001-00	MW-11	Groundwater	03/23/88	03/24/88

😔 Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE

Client ID: MW-11

Laboratory ID: 65928-001

Enseco ID: 65928-001

Matrix: Groundwater	Sampled: 03/23/88	Received: 03/24/88	
Authorized: 03/24/88		Analyzed: 03/28/88	·····

<u>Parameter</u>	Result	Units	Reporting <u>Limit</u>
Benzene	N.D.	ug/L	0.50
Chlorobenzene	N. D.	ug/L	0.50
Ethylbenzene	N.D.	ug/L	0.50
Toluene	N.D.	ug/L	0.50
1,2-Dichlorobenzene	N.D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N.D.	ug/L	0.50
m-Xylene	N.D.	ug/L	0.50
o & p-Xylene(s)	N.D.	ug/L	0.50

N.D. = Not detected Reported by: Helmer Morse

Approved by: Susan Brillante

Sample: 65928-001

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY

Laboratory			QC Lot	Number
Sample Number	QC Matrix	Test	LCS	<u>SCS</u>
65928-001-00	Reagent Water	602	602 125AL	602 125AL

		ŝ	,			•		₩.,			, ,		(a / Time
		Hemarks							 1			Date	Date
								,,	 4 g			Signature)	ry by:
228	ell 11		-		· · ·							Received by:	Received for Laboratory by:
· · · · · · · · · · · · · · · · · · ·	11 11 - 11 - 12 - 12 - 13 - 14 - 14 - 14 - 14 - 14 - 14 - 14	Parameters			-				- 1			Date / Time Received by: (Signature)	Receive
		NON)y: (Signatura)	Signatura)
CUSTODY RMAL Project No.	Sampling Personnel Sampling Site $\frac{\sqrt{2}}{2}$	No. Contauners		•		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		- 14 	. A. 		Relinquished by: (Signatura)	Delivered by: (Signatural
CHAIN OF	e de la composición de la comp	Type				· · · ·						Date / Time	
A DIVISION OF ENSECO INCORPORATED	0							-				: (Signature)	(Signature)
Sund Co	w Mexic	Sample ID/Description									· · · ·	Received by: (Signature) $f_{f,i}$	Shipped by: (Signeture)
	With New Mexic	. 0										Date / Time	•
1- 	No	30 PM			- 	د. معر ، مربعه برای هور برای معرف برای معرف برای معرف برای معرف			 · · · · · · · · · · · · · · · · · · ·			Relinquished by: (Signature)	hipment:
RMAL	Nan			A				-	 			dinquished by	Method of Shipment:

I

1

1

ļ

i

1

ļ

!

ļ

ļ

Į

VI. ANALYTICAL METHODOLOGY

Enseco - Rocky Mountain Analytical Laboratory performs analytical services according to methods approved by EPA and other regulatory agencies, whenever possible.

Enseco

Methods for metals and organic compounds are primarily derived from three sources of EPA methods, 1) the methods promulgated in 40 CFR 136 for priority pollutants, 2) the methods published in SW-846 and 3) methods developed by the EPA-EMSL/LV for Superfund investigations, as well as several documents published by the EPA and Enseco - Rocky Mountain Analytical Laboratory in 1984 and 1985. These methods all use the same generic technology as summarized below:

- Metals: acid digestion followed by analyses by ICP supported by graphite furnace AA
- Volatile Organics: purge and trap GC/MS or purge and trap GC with a selective detector.
- Semivolatile (base/neutral and acid) organics: solvent extraction followed by capillary column GC/MS, and
- Pesticides/Herbicides: solvent extraction, followed by gas chromatography.

Exact method references are given in the following tables.

Enseco

ANALYTICAL METHODOLOGY - INORGANIC TESTS

Test Description

İ.

ļ

Methodology

<u>Reference</u>

ICP	Trace Metals	ICP Emission Spectroscopy	200.7(1)/6010(2)
FSB	Antimony	Furnace Atomic Absorption	204.2(1)/7041(2)
FAS	Arsenic	Furnace Atomic Absorption	
			206.2(1)/7060(2)
FCD	Cadmium	Furnace Atomic Absorption	213.2(1)/7131(2)
FPB	Lead	Furnace Atomic Absorption	239.2(1)/7421(2)
FSE	Selenium	Furnace Atomic Absorption	270.2(1)/7740(2)
FAG	Silver	Furnace Atomic Absorption	272.2(1)/7761(2)
FTL	Thallium	Furnace Atomic Absorption	279.2(1)/7841(2)
CVHG	Mercury	Cold Vapor Atomic	245.1(1)/7471(2)
CR + 6	Chromium (VI)	Colorimetric	312B(3)
IC CL			
	Chloride	Ion Chromatography	300.0(1)
BURCL	Chloride	Manual Titrimetric	325.3(1)
	Fluoride	Electrode	340.2(1)
	Sulfate	IC	300.0(1)
SPES04	Sulfate	Manual Turbidimetric	375.4(1)
METALK	Alkalinity, Total	Titrimetric	310.1(1)
METACK	Alkalinity, Forms	Titrimetric	403(3)
TECNOXT	Nitrate+Nitrite as N	Cd Reduction Colorimetric	353.2(1)
METPH	pH	Meter	150.1(1)/9045(2)
	•		
CELSP	Specific Conductance @ 25°C	Bridge	120.1(1)
	Total Dissolved Solids	Gravimetric, 180°C	160.1(1)
BALTSS	Total Suspended Solids	Gravimetric, 105°C	160.2(1)
BALTS	Total Solids	Gravimetric, 105°C	160.3(1)
BALTVS	Total Volatile Solids	Gravimetric, 550°C	160.4(1)
TECO P	Ortho-Phosphate as P	Two Reagent Colorimetric	365.3(1)
TECT P	Total Phosphorus as P	Digestion-Colorimetric	365.3(1)
ICP	Total Phosphorus as P	Digestion-ICP/AES	200.7(1)
ICP	Silica as SiO ₂	ICP/AES	200.7(1)
SPESI02		Colorimetric	370.1(1)
METBOD	Biochemical Oxygen Demand	Dilution Bottle-D.O. probe	405.1(1)
METCOD	Chemical Oxygen Demand	Micro Colorimetric	410.4(1)
TOCTOC	Total Organic Carbon	UV Oxidation-IR	415.2(1)
METNH3	Ammonia as N	Electrode	350.3(1)
TECNH3	Ammonia as N	Automated Colorimetric	350.1(1)
METTKN	Total Kjeldahl Nitrogen as N	Digestion-Electrode	351.4(1)
TECTKN	Total Kjeldahl Nitrogen as N	Digestion-Colorimetric	351.2(1)
τοχτοχ	Total Organic Halogen	Combustion-Titrimetric	9020(2)
TONO1	Total Organic Nitrogen	Calculation (TKN-NH ₃)	-
	011 and Grease	Freon Extraction-	
DAL Vad	ori and drease	Gravimetric	413.1(1)
	Oil and Cusses		
	Oil and Grease	Freon Extraction-IR	413.2(1)
TECCN F	Cyanide Amendable to	Chlorination-Distillation-	
	Chlorination	Colorimetric	335.1(1)
TECCN W		Distillation-Colorimetric	412H(3)
	Total Cyanide	Distillation-Colorimetric	335.2(1)/9010(2)
	Phenolics	Distillation-Colorimetric	420.1(1)
	Fecal Coliform	Membrane Filter	909C(3)
	Total Coliform	Membrane Filter	909A(3)

ANALYTICAL METHODOLOGY - INORGANIC TESTS (CONT.)

Test	Description	Methodology	Reference
IC BR POTCL2R NESCOLR ICPHAR TECNO2 SPES BURSO3 SPEMBAS SPETURB	Bromide Residual Chlorine Color Hardness as CaCo ₃ Nitrite as N Sulfide Sulfite MBAS (Surfactants) Turbidity	Ion Chromatography Amperometric Pt-Co Colorimetric Calculation Colorimetric Colorimetric Titrimetric Colorimetric Turbidimeter	300.0(1) 330.2(1) 110.2(1) 200.7(1)/314A(3) 354.1(1) 376.2(1)/9030(2) 377.1(1) 425.1(1) 180.1(1)
Gross Alph Gross Beta Radium 228 Radium 228 Uranium	a 5	Proportional Counter Proportional Counter Separation - Counter Separation - Counter Fluorimetric	703(3) 703(3) 705(3) 707(3) D2907.75(4)

References

- (1) Code of Federal Regulations, Chapter 40, Part 136 (40 CFR 136).
 (2) SW-846, 2nd Edition, 1984.
 (3) "Standard Methods for the Examination of Water and Wastewater", 15th Edition, 1980.
 (4) "Annual Book of ASTM Standards", Part 31, Water, 1980.

Enseco

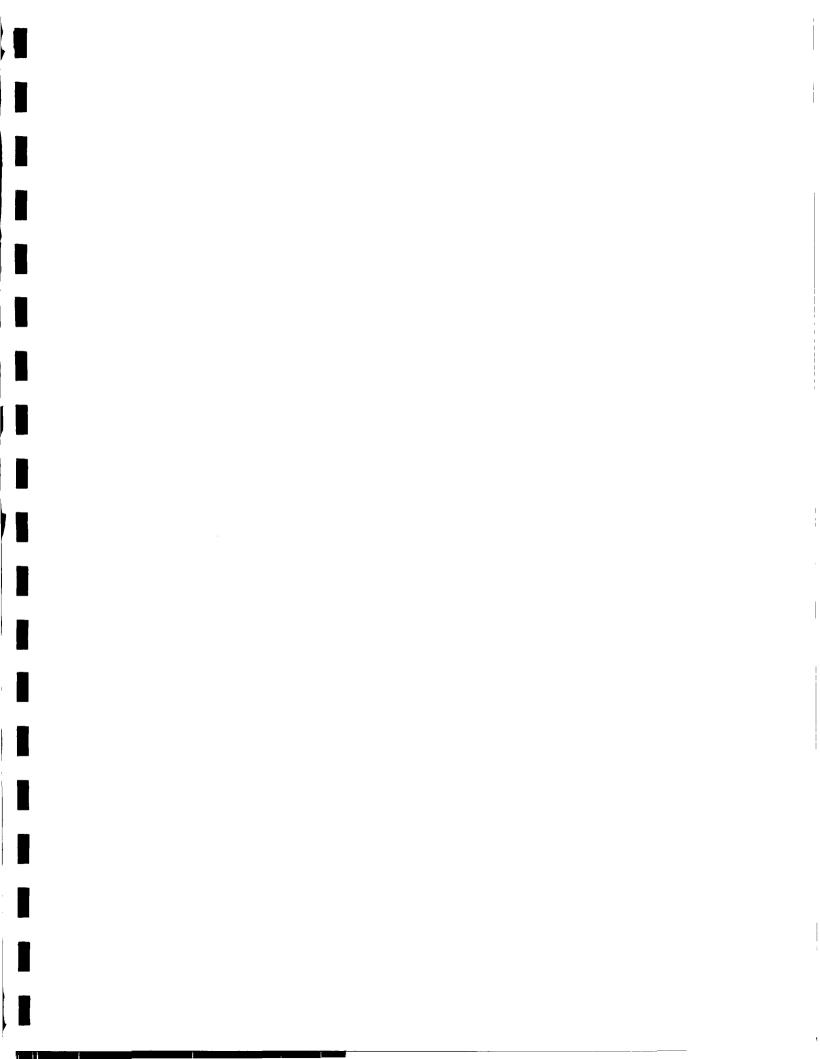
ANALYTICAL METHODOLOGY - ORGANIC TESTS

y <u>Reference</u>
GC/MS624(1)/8240(2):/MS625(1)/8270(2):/MS613(1)/8280(2)
iC/Hall 601(1)/8010(2) iC/Hall 601(1)/8010(2) iC/FID 602(1)/8020(2) i/ECD 608(1)/8080(2) i/FPD 614(1)/8140(2) i/FPD 619(1) i/ECD 608(1)/8080(2) i/ECD 632(1) i/ECD 608(1)/8080(2) i/ECD 603(1)/8080(2) i/FED 603(1)/8030(2) i/FID 604(1)/8040(2) i/FID 604(1)/8040(2) i/FID 606(1)/8050(2) i/FID 606(1)/8050(2) i/FID 607(1) i/NPD 609(1)/8090(2) i/C 610(1)/8310(2) i/ECD 611(1) i/ECD 612(1)/8120(2) i/FID D3328-78(3)
FID 6 LC 6 /FID 6 /NPD 6 /NPD 6 /LC 6 /LC 6 /ECD 6

References

(1) Code of Federal Regulations, Chapter 40, Part 136 (40 CFR 136).
 (2) SW-846, 2nd Edition, 1984.
 (3) "Annual Book of ASTM Standards", Volume 11.01, 1985.
 (4) "Annual Book of ASTM Standards", Volume 05.02, 1984.

] Ensecc


Enseco

GUIDELINES FOR SAMPLE BOTTLES AND PRESERVATIVES D = DISSOLVED (FILTERED) T = TOTAL (UNFILTERED)

Number	Parameters	Container	Preservatives
1D [.]	C1, C1 ₂ , F, Tot. Alk., C0 ₃ Alk., HCO ₃ Alk., OH Alk., pH, Sp. Cond., TDS, Ortho-PO ₄ , SiO ₂ , Br, Cr+6, NO ₂ , SO ₃ , MBAS, Color, SO ₄ , Ion Balance	500 mi poly	4°C
17	pH, TSS, TS, TVS, BOD, Residual Cl ₂ , Turbidity, MBAS	500 mi poly	400
2	Tot. P, CCD, TOC, NH_3 , TKN, TON Phenolics, NO_3+NO_2 , Ion Balance	16 oz. glass	2 mL 50% Sul. Acid, 44
3	011 & Grease	1 L glass	4 mL 50% Sul. Acid, 44
4T	Metals in wastewater, Hardness	500 mi poly	5 mL 50% Nitric Acid
40	Metals in groundwater, Ion Balance, Hardness	500 mL poly	5 mL 50% Nitric Acid
5	Alpha, Beta, Ra225, Ra228, U	<pre>1 L poly (no Ra228) 1/2 gal. poly (with Ra228)</pre>	10 mL 50% Nitric Acic 20 mL 50% Nitric Acic
6	Free CN, Total CN	500 mL poly	2 mL 50% NaCH,4°C
7	Sulfide	250 mL poly	1 mi 1N zinc acetate 1 mi 50% NaOH, 4°C
8	Fecal or Total Coliform	4 1/2 oz. Sterile poly	4°C
10	THM	Three 40 mL glass vials	100 uL Sodium thiosulfate, 4°C
11	VOA, Purgeable Organics (may use Bottle #33)	Three 40 mL glass vials	4°C
12	Base Neutral/Acid Compounds	Two 1 L glass	4°C
13	Pesticides/PCBs	Two 1 L glass	400
14	Herbicides	1 L glass	400
15	ΤΟΧ	1 L glass-quad 8 oz. glass-single	4°C
21	Bulk Water Analysis	1/2	4°C
	Wastes, Sludges, Soils	16 oz. widemouth glass jar	4°C
31	Wastes, Slucges, Soils	32 oz. widemouth glass jar	4°C
32	Soils for Metals, Inorganics	4 oz. widemouth plastic	400
33	VOA in Soils, Sludges	7 oz. glass jar	400
34	Soils for Hetals, Inorganics	16 oz. widemouth plastic	400

INSTRUCTIONS

<u>Safety:</u>	BE CAREFUL! Preservatives are highly corrosive. Do not wash bottles. To avoid contamination, do not mix contents of bottles or interchange caps.
<u>Filtering:</u>	<u>Groundwaters</u> Filter for the following bottles: 1, 2, 4, 5, 6, 7, 15 <u>Surface Waters and Industrial Waste Waters</u> DO NOT FILTER unless Dissolved Parameters are specifically requested. <u>Bulk Water</u> RMAL will filter and preserve if requested.
Bottle Codes:	T=Total (unfiltered). D=Dissolved (filtered).
Notes:	 Use a separate sample label for each individual bottle.
	 Do not use dry ice for preservative. Place ice in plastic bag provided or use Blue-Ice packs.
	 Fill #11 bottles (vials) completely. Leave no air bubbles. To check, turn upside down. Label each vial.
	4) Samples must arrive at the lab within 24 hours of sampling for the following parameters:
	Total Coliform Fecal Coliform pH Specific Conductivity Hexavalent Chromium Residual Chlorine Sulfite BOD Color MBAS Nitrate Nitrite Ortho-Phosphate Turbidity

