3R - <u>77</u>

REPORTS

DATE: Feb. 1988

DAMES & MOORE JOB NO. 14819-005-31

SALT LAKE CITY, UTAH

FEBRUARY 1988

PHASE I HYDROGEOLOGIC EVALUATION MAVERIK REFINERY AND TANK FARM KIRTLAND, NEW MEXICO FOR MAVERIK COUNTRY STORES, INC.

Dames & Moore

TABLE OF CONTENTS

5

n l

1i

EXECUTIVE SUMMARY 1
INTRODUCTION 2
PURPOSE AND SCOPE 2
TASK I - FIELD INVESTIGATIONS
TASK III - DATA EVALUATION
GEOLOGY 7
REGIONAL GEOLOGY 7
LOCAL GEOLOGY 7
GROUND WATER HYDROLOGY 8
REGIONAL 8
LOCAL 9
WATER QUALITY EVALUATIONS 10
SURFACE WATER QUALITY 10
BACKGROUND WATER QUALITY 10
INORGANIC CONSTITUENTS 11
ORGANIC COMPOUNDS 12
GROUND WATER QUALITY 14
BACKGROUND WATER QUALITY 14
INORGANIC CONSTITUENTS 14
ORGANIC COMPOUNDS 17 CONCLUSIONS 21
CONCLUSIONS 21
REFERENCES 23
APPENDIX A - TRC SOIL-GAS AND SOIL-WATER AND SURFACE WATER SURVEY RESULTS
APPENDIX B - GEOLOGIC, BOREHOLE AND WELL CONSTRUCTION SPECIFICATIONS
AND LOGS
APPENDIX C - SLUG TEST AND AQUIFER PUMP TEST DATA PLOTS AND RESULTS
APPENDIX D - WATER LEVEL ELEVATION AND WELL DEPTH DATA FOR LOCAL
PRIVATE WATER WELLS, MONITOR WELLS AND SURFACE WATER SITES
APPENDIX E - FIELD AND LABORATORY WATER QUALITY AND DRILL CUTTINGS
DATA AND QA/QC FOR ROUND 1 SAMPLING AND ANALYSES
APPENDIX F - EID PRIVATE WELL WATER QUALITY SAMPLING REPORT
FOR APRIL AND MAY 1987

Page

LIST OF TABLES

Table 1 - Water Quality Constituents Analyzed

Table 2 - Laboratory Results for Organic Constituents and Major Ions for Maverik Country Stores, Inc., Kirtland, New Mexico

Table 3 - Proposed Project Work Schedule

Table 4 - Characteristics of Organic Compounds Detected

LIST OF PLATES

Plate 1 - Vicinity Map

Plate 2 - Plot Plan: Monitor Well, Private Well, Well Point, Borehole, Cross-Section and TRC (Soil-Gas, Soil-Water, and Water Sample Locations

Plate 3 - Regional Geologic Map and Stratigraphic Section

Plate 4 - Regional Geologic Section Showing Major Aquifers

Plate 5 - Geologic Cross-Section, A-B

Plate 6 - Geologic Cross-Section, C-D

Plate 7 - Geologic Cross-Section, E-F

Plate 8 - Surface Water Elevation Levels and Water Table Contour Map

Plate 9 - Isoconcentration Contour Map - TDS

Plate 10 - Isoconcentration Contour Map - Sodium

Plate 11 - Isoconcentration Contour Map - Chloride

Plate 12 - Isoconcentration Contour Map - Sulfate

Plate 13 - Isoconcentration Contour Map - 1,2-Dichloroethane

EXECUTIVE SUMMARY

This progress report presents the results of the Phase I Hydrogeologic Investigation at the Maverik Refinery and Tank Farm, Kirtland, New Mexico. This study was authorized by Maverik Country Stores, Inc. following preliminary studies in 1985 by the Environmental Protection Agency (EPA) and the New Mexico Environmental Improvement Division (EID), that indicated past refinery operations had resulted in 1,2-dichloroethane (DCA) contamination of private water wells and surface waters southwest of the Maverik Refinery Tank Farm.

The Phase I investigation consisted of the following work elements: an area-wide survey for volatile organics using soil-gas techniques to determine the most appropriate locations for monitor wells; installation of 13 monitor wells, 5 well points and a deep borehole; sampling of the 13 monitor wells, 3 private wells and 6 surface water sites in November 1987 and analysis of these samples for organics and common ions; obtaining measurements of ground water and surface water elevations; performing aquifer characterization tests; conducting an inventory of private well locations and surface water users; review and analysis of data obtained during this and other investigations.

Significant concentrations of the typical refinery-related volatile organics benzene, toluene, xylene, ethylbenzene and DCA were found in one of six wells located on the refinery and at one location in the irrigation ditch along the west boundary of the refinery. The actual concentrations at these sites are exaggerated by the fact that the samples were contaminated with free product. After product was observed seeping from the tank farm into this nonflowing irrigation ditch, absorbent pads were placed in the ditch to contain this material. Only trace levels (l.l to l.6 ug/l, i.e., parts per billion) of DCA and xylene were found at one of two sampling sites farther downstream in this same ditch.

Benzene, ethylbenzene or xylene were found in 3 of 10 off-site wells at concentrations just above detection limits and far below New Mexico drinking water standards for these compounds. DCA was found in three other off-site wells, only one of which, at 16 ug/l, exceeded the New Mexico drinking water standard of 10 ug/l for this compound.

Ground water contamination by refinery-related organics appears, on the basis of this Phase I sampling as well as the additional EID sampling conducted during the spring of 1987, to be confined to the upper portion of the alluvial gravel aquifer in an area a few hundred feet in an east-west direction and about 1,800 feet downgradient (southwest) of the south-west corner of the tank farm. The low concentrations of the contaminants, their characteristics, the hydrogeologic setting, and the non-use of water from private wells in the contaminated area for drinking water purposes, all lead to the conclusion that the releases from the tank farm do not pose a threat to human health and the environment.

Additional investigations during 1988 have been agreed to by Maverik and the EID to further evaluate and remedy contamination problems.

has t pose a current

PHASE I HYDROGEOLOGIC EVALUATION MAVERIK REFINERY AND TANK FARM KIRTLAND, NEW MEXICO FOR MAVERIK COUNTRY STORES, INC.,

INTRODUCTION

This report presents the results of the Phase I hydrogeologic evaluation at the Maverik Refinery and Tank Farm in Kirtland, New Mexico. Hydrogeologic and water quality conditions were evaluated both on-site and approximately one mile downgradient (south) of the refinery property boundaries. The general site location map and detailed plot plan showing the monitor wells, private wells, well points, borehole, the soil-gas and soil-water sample locations are included on Plates 1 and 2, respectively.

PURPOSE AND SCOPE

The purpose of this study was to perform a hydrogeologic evaluation primarily to define the extent and magnitude of ground water contamination. Specifically, the EID in a letter dated December 31, 1986 to Maverik, stated that the refinery was the source of ground water contamination on-site as well as off-site, and that a hydrogeologic investigation was required that would:

- 1. Define the vertical and lateral extent of contaminated ground water and surface water.
- 2. Identify and quantify all contaminants present.
- 3. Identify all contaminant sources known or suspected.
- 4. Determine ground water flow directions and velocities.

The scope of the Phase I work conducted by Dames & Moore was approved by the New Mexico EID on May 11, 1987 prior to implementation. This report includes the information that accomplishes the above objectives, with the exception of the third objective, to identify all contaminant sources known or suspected. This will be more fully addressed in the Phase II work, which as

-2-

ante construction de la c

outlined by the EID (December 28, 1987), will define the source(s) and areal and vertical extent of soil contamination on-site, and the potential for such soil contamination to act as a continued source of ground water contamination.

Specifically, the following tasks were performed during the Phase I work:

TASK I - FIELD INVESTIGATIONS

- As a preliminary step to better characterizing the extent of volatile organics in the subsurface, 15 soil-gas, 21 soil-water and 2 surface water samples were analyzed by Tracer Research Corporation (TRC) for nine volatile organic compounds, both on-site and off-site (Appendix A and Plate 2).
- o Twelve 2-inch diameter PVC cased and one 2-inch stainless steel drive point water quality monitor wells and one deep boring were completed at critical locations (Plate 2). Five of the 13 monitor wells were completed on-site. Construction methods and specifications and the geologic data for the monitor wells are presented in Appendix B.
- o One 9-hour steady discharge aquifer pumping test and 12 slug tests were performed on the monitor wells (Appendix C).
- A site investigation of surface waters, on-site and off-site, to visually inspect for oil refinery waste product was conducted.
- o A private water well inventory was completed, water levels measured in 21 of the private wells, and those wells without pumps were depth-sounded. In addition, elevations of the water level measuring points of the monitor wells, 5 well points, 6 surface water sites and 27 private water wells were surveyed by San Juan Engineers, a licensed surveyor from Farmington, New Mexico (Table D-1). A discussion of the water level elevation data is also included in Appendix D.
- One round of comprehensive water quality sampling was conducted in November 1987, shortly after irrigation flow in the westside ditch ceased. A total of 13 monitor wells, 2 private wells, one on-site (8-inch diameter) steel-cased well and 6 surface water sites were sampled for the constituents listed in Table 1 with the data presented in Appendix E and Table 2.

TASK II - LABORATORY INVESTIGATIONS

- o Rocky Mountain Analytical Laboratory (RMAL) a division of ENSECO, Incorporated, a well known multi-state certified and EPA Contract-Laboratory-Program laboratory, in Arvada, Colorado, analyzed the water quality samples for halogenated volatile organics (26), aromatic volatile organics (9), total organic lead and metals (6) and common ions (11). Their comprehensive report is included in Appendix E.
- o Drill cuttings from contaminated on-site shallow monitor well 12, and deep monitor well 11 were sent to RMAL to evaluate EP toxicity for 8 RCRA metals and sulfide and cyanide reactivity. The drill cuttings were monitored in the field for volatile organics using an Organic Vapor Analyzer (OVA) meter. These results are presented in Appendix E.

TASK III - DATA EVALUATION

.]

÷

- o Initially, the TRC soil-gas, soil-water and water data were evaluated in conjunction with the existing water quality data obtained by the EPA and the EID. The method, results and limitations are discussed in detail in Appendix A. Also included in Appendix A is the TRC report, "Shallow Soil Gas Investigation at Maverik Refinery, Kirtland, New Mexico" (September 1987). Data results from the TRC survey are semi-quantitative, but were used successfully in optimizing the numbers and locations of the monitor wells.
- An evaluation was conducted of the regional geology and subsurface geology at the 13 monitor wells and one deep borehole as presented on Plates 3 to 7.
- o The water level elevation data, and the aquifer pump test and slug test data were analyzed to define the direction and rate of movement of the ground water in the study area.
- o The water quality data from these 13 monitor wells, surface water sites and private well sites were used to define the vertical and lateral extent of ground water contamination, both on-site and offsite, and to define the other factors, (the ditches and the natural ground water discharges) influencing the ground water quality. The analytical results which show the organic contaminants detected and major ions are summarized in Table 2 and Plates 9 to 13, with all of the data presented in Appendix E. Earlier water quality data (March and April 1987) analyzed by the New Mexico EID have also been included for comparison in Appendix F.

-4-

o The significance of the contamination was evaluated based on the toxicity of the contaminants detected, their potential for transport via ground water and surface water pathways and their potential impact on private water well users.

o This summary Phase I Report was prepared.

FACILITY DESCRIPTION AND BACKGROUND

Maverik Country Stores, Inc., previously known as Caribou Four Corners Inc., operated a small crude topping refinery near Kirtland, New Mexico from 1963 until April 1982 at which time it was shut down. During operation, crude oil was refined into regular and leaded gasoline, diesel fuel and No. 5 fuel oil. Within a few months of shutdown, all remaining product, feedstocks and intermediate products were removed from storage tanks and sold. Additional verification to ensure that all of the tanks were properly abandoned will be included in the Phase II work.

New Mexico EID personnel conducted a site inspection in December 1985. As part of this inspection, samples for chemical analysis were taken of soil, waste, surface water and ground water at and near the refinery. One of the samples, an oily water sample from a drainage ditch along the west boundary of the site, contained significant concentrations (280-1,850 ug/l) of the typical refinery-related volatile organics benzene, toluene, ethylbenzene and xylenes; in addition this sample contained 15 ug/l of DCA. DCA was also detected in a water sample about one mile further down this ditch at the detection limit of l ug/l. This same compound was also detected at a low level (9 ug/l) in a sample from a 40 foot deep private well located approximately 0.2 mile downgradient of the refinery site; DCA was the only organic detected in the aromatic and halogenated hydrocarbon volatile screen analysis performed (detection limits 1-2 ug/l).

-5-

A more recent water quality sampling round conducted by the EID in April and May 1987 of 24 private wells in the area did not reveal the presence of aromatic or halogenated volatiles above the 1-2 ug/l detection limits except for one downgradient private well, located approximately 0.2 miles from the refinery site, which exhibited DCA at 8 ug/l. This well is near MW-6, which in November 1987, also showed DCA at 16 ug/l (Plate 13). The New Mexico drinking water standard for DCA is set at 10 ug/l and the Federal EPA drinking water standard at 5 ug/l.

Maverik has addressed the contamination problem in a responsible manner. Maverik has covered the costs incurred by the local downgradient homeowners that have (or will be), as a result of contamination from the tank farm, hooking up their water lines to the Kirtland public water supply. In November 1987, immediately after being notified of oily waste product that had been observed along the westside irrigation ditch, Maverik placed a series of pads along the ditch to absorb the product.

The field work began in March 1987. Modifications to the original work plan (February 16, 1987) were made following the preliminary field site visit by Dames & Moore (October 12, 1987 letter to Dennis McQuillan, New Mexico EID).

Additional modifications to the scope of work and completion schedules were agreed to by the New Mexico EID, in early January 1988. These included, as agreed to in the January 8, 1988 letter to the EID, and as summarized in Table 3: a Phase II scope of work to include contaminant source and remedial action investigations and a Phase II completion report; and additional reduced selective water quality sampling (Round 3) with the subsequent Round 3 water quality report.

-6-

GEOLOGY

REGIONAL GEOLOGY

The study site is located in the San Juan Basin in old alluvial river channel deposits (cobbles, gravels, sands, silts) of the San Juan River. Upper Cretaceous shales and sandstones outcrop to the north and south, with the Kirtland Shale outcropping directly to the north and south of the site. The hogback monocline to the north-northwest is the only predominant geologic structural feature. It is located approximately 12 miles to the west of the study site (Plates 3 and 4).

The San Juan Basin is rich in energy resources and mineral and oil development is extensive. Surface coal mining has been developed in the Fruitland Coal area. Mine-power generation began in 1962 near Farmington. 011 505 well development, particularly to the north, is also prevalent.

LOCAL GEOLOGY

The study site is located approximately 0.4 mile north-northeast from the existing banks of the San Juan River (Plate 1). The tank farm is located within the floodplain of the San Juan River, with the northern boundary of the tank farm paralleling the edge of the floodplain. This is demonstrated by the obvious topographic rise from 5190 to greater than 5210 feet msl along the northern boundary, and the finer silty-clayey sands encountered at the northern refinery site is located immediately to the north, out of the floodplain above the 5210-foot contour. As noted, the tank farm is located in the floodplain, at elevations from about 5187 feet msl, in the southern part, to 5206 feet msl along the northern boundary.

Based on the U.S. Geological Survey map of the Kirtland Quadrangle (1955), the refinery site is located in an area consisting primarily of Quaternary valley fill alluvium (QAL), and Quaternary terrace gravel, which consists primarily of a veneer of unconsolidated gravel and sand on river and stream

-7-

· ?.

terrace surfaces. Bedrock at the site consists of the lower shale member of the Cretaceous Kirtland Shale Formation (Plates 3 through 7).

GROUND WATER HYDROLOGY

REGIONAL

The principal aquifers in the San Juan Basin of New Mexico occur in the coarser grained sandstones of Jurassic, Cretaceous and Tertiary age. These include the Entrada Sandstone, West Water Canyon Member of the Morrison Formation, Mesaverde Group sandstone members, and sandstones of Tertiary Age. Quaternary deposits filling stream channels are capable of yielding sufficient quantities of water for stock and domestic use in many areas. The major aquifers in the San Juan Basin are shown in cross-section on Plate 4. Major aquifers in this region are located in the sandstone of the Mesaverde Group. As shown on Plate 4, these sandstones are 1,000 to 2,000 feet below the Kirtland Shale, separated from it by the Fruitland Formation and Lewis Shale.

Most ground water flows from recharge areas on topographically high outcrops toward the San Juan River. Much of the water either moves through confining layers to other aquifers, to the land surface, or to alluvium-filled channels to streams or sinks.

Transmissivities of the more productive aquifers in the San Juan Basin range from 50 to 300 ft²/day. Dissolved-solids concentrations range from less than 500 mg/l near recharge areas to more than 10,000 mg/l near discharge areas (Lyford, 1979).

Valley fill, near perennial streams and major ephemeral streams, normally does not exceed a thickness of 50 feet. Transmissivities range from less than $1,000 \text{ ft}^2/\text{day}$ in ephemeral channels to more than $40,000 \text{ ft}^2/\text{day}$ in gravel-filled perennial stream channels. The transmissivity of valley fill is highest in the coarse gravels along the San Juan, Animas, and La Plata rivers. Recharge to valley fill along irrigated portions of these river valleys results largely from the percolation of irrigation water and from leaking ditches (Lyford, 1979).

-8-

Dissolved-solids concentrations in water from valley-fill deposits range from less than 1,000 mg/l in headwater areas to more than 4,000 mg/l where bedrock contributions are significant.

LOCAL

The aquifer in the study area is part of the regional ground water discharge system to the San Juan River. It consists of shallow coarse sandgravel-cobble river channel (alluvial) deposits along the floodplain of the San Juan River. Lithologic logs of the 13 monitor wells and the 1 boring are presented in Appendix B. As indicated in Table D-1, the private wells in the vicinity of the Maverik Refinery and Tank Farm (Plate 2) are generally about 20 feet deep, with the deepest well about 59 feet deep (Table D-1, Appendix D). These private water wells intercept the coarse alluvial deposits located within the floodplain of the San Juan River.

As indicated on the geologic logs from the monitor well drilling program, the underlying bedrock is the Kirtland Shale Formation which is dry, even though it is overlain by saturated highly transmissive river channel deposits. The thickness of this formation near the study site is not known. Borehole data from the monitor well drilling program verify it to be at least 20 feet thick.

Flows in the alluvial gravel aquifer are from the north-northeast to the south-southwest, ultimately discharging toward the San Juan River. The hydraulic gradient is approximately 0.01 ft/ft (Plate 8) along the top of the underlying unsaturated Kirtland Shale Formation. Flows in the shallower, siltier saturated zones near the irrigation ditches are probably significantly impacted by the irrigation ditch waters as well as by the topographic gradient toward the San Juan River. The topographic gradient is about 0.01 ft/ft, the same as the hydraulic gradient. Based on the water level elevation data at the two nested wells on-site (MW-11 and MW-12), there does not appear to be a significant vertical hydraulic gradient in the shallow alluvial aquifer.

-9-

1.000

The water table elevation map was constructed based on water level measurements taken from the monitor wells, well points and private wells during November 22-27, 1987, after inflow to the westside irrigation ditch had stopped.

Based on the water level elevations and field observation of ground water seepage into the westside irrigation ditch after ditch flows had stopped, the westside irrigation ditch appears to serve as a ground water sink when it is not flowing, and as a ground water recharge source and divide when it is flowing. The Farmer's Mutual Irrigation Ditch and tributary ditches probably contribute significant volumes of recharge of good quality water to the aquifer but may also serve as a transport mechanism for contaminants. Ground water would tend to flow in the same direction as the ditches, to the south-southwest, when they are flowing or empty, since the aquifer is part of the regional flow system toward the San Juan River. Additional water level elevation data (and water quality data) are needed to evaluate the impact of the ditches on the ground water flow directions. Private water wells in this area, if used at all, are used for irrigation and stock watering.

The ground water velocity in the coarse alluvial aquifer in the study site area is estimated at 3 ft/day. This is based on the hydraulic gradient of 0.01 ft/ft, the hydraulic conductivity computed for the coarse alluvial zone of 100 ft/day (see Appendix C), and a porosity of 0.3.

WATER QUALITY EVALUATIONS

SURFACE WATER QUALITY

BACKGROUND WATER QUALITY

Six surface water sites were sampled in November 1987, four of which (SW-2 to SW-5) were in the westside irrigation ditch after irrigation flow had stopped and the residual flow was less than 5 gpm. The background surface (irrigation) water site was upstream to the north (SW-1), in the Farmer's Mutual Irrigation Ditch. According to Jim Dunlap, President of Farmer's

-10-

Mutual Ditch Company, the Farmer's Mutual Ditch flows at about 46,675 gpm (telephone conversation 02/16/88). This water is diverted from the Animas River, and if the Animas River flow is low, also from the San Juan River. SW-1 is above the tank farm and refinery and just upstream from the diversion to the westside irrigation ditch. The sixth site (SW-6) was located to the west of the refinery, along Virginia Murray's drainage ditch.

The Farmer's Mutual Irrigation Ditch flows each year from March 1 to December 1. The flow is regulated by the Farmer's Mutual Ditch Company in Kirtland, New Mexico. The lateral irrigation ditches generally do not flow until early April, and the westside ditch generally does not flow until late April or early May. Flows in the lateral ditches are controlled by the water rights holders.

INORGANIC CONSTITUENTS

The concentrations of the major ions found in the ditch waters are summarized in Table 2 and Plates 9 through 12. A Piper diagram (Plate E-5 in Appendix E), summarizes the percentage concentrations of the cations and anions for waters from these sample sites. The waters are generally high in calcium, sodium and potassium, sulfate and bicarbonate.

Except for the Farmer's Mutual Irrigation Ditch water (which has very low TDS), the westside irrigation ditch waters downstream from the tank farm (SW-2 and SW-3) are fairly high TDS waters, primarily elevated in sulfate and sodium. The ditch waters immediately west of the tank farm (SW-4) are slightly lower in TDS, primarily lower in sulfate and sodium concentrations. Because irrigation flows had stopped just prior to sampling the westside irrigation ditch (SW-2, SW-3, SW-4 and SW-5), the water quality data from these sites at the time of sampling primarily reflect ground water inflow and possibly some of the better quality residual irrigation waters. SW-4 may have still been heavily impacted by these residual waters. When the Farmer's Mutual Irrigation ditch is flowing, the water quality as at SW-1.

The water quality in the Farmer's Mutual Irrigation Ditch is similar to that found in monitor well 1 probably as a result of recharge to the ground water from seepage from this ditch. The TDS level in the ditch is low, at about 400 mg/l, as are the sulfate, chloride and sodium concentrations (136 mg/l, 16 mg/l, and 29 mg/l, respectively).

The four westside irrigation ditch surface water sample sites, located downstream (from north to south), included SW-4, SW-5, SW-2 and SW-3.

In terms of inorganic parameters, the water quality at SW-4 is the best of the westside ditch water quality. There is an increase in TDS, from SW-1 to SW-4 from 400 mg/l to 790 mg/l, primarily due to increases in chloride, sodium, calcium and alkalinity (Table 2). The increases are believed to be due primarily to the fact that this is a major ground water discharge area and that the ditch waters at this time were a composite of poorer quality ground water inflow mixed with the better quality residual waters from the Farmer's Mutual Irrigation Ditch.

Water quality samples from SW-2 and SW-3 along the westside ditch and south of the tank farm and SW-4, have levels of sulfate, sodium and calcium elevated above those at SW-4, with TDS levels at 1,120 mg/l and 1,400 mg/l, respectively. SW-2 and SW-3 are located farthest south from the Farmer's Mutual Irrigation Ditch and probably reflect ground water inflows that are not as highly impacted by the good quality waters that seep from the Farmer's Mutual Irrigation Ditch. Also, these sample sites, especially SW-3, which is the farthest downstream site, would be expected at the time of sampling to be impacted most by the poorer quality ground water discharges in this area.

ORGANIC COMPOUNDS

Water quality samples at SW-4, SW-5 and SW-2 are impacted by tank farm product. In addition to visual observation, an OVA meter was used for locating the most highly contaminated sample points at SW-4 and SW-5. The OVA readings are included in Appendix E. SW-5 (which was an additional site added by Dames & Moore for comparison to SW-4) was only analyzed for organic consti-

-12-

tuents. SW-5 is located about 150 feet south of SW-4 in the westside irrigation ditch, across from the maximum contaminant area found on-site (at MW-12). The high concentrations of the 5 organic contaminants at SW-5, although probably due to contamination of the sample with free product, verify the movement of on-site contaminants to the westside irrigation ditch. Only trace levels of DCA and xylene were detected downstream at SW-2.

Only very low levels of the 5 organic contaminants were detected at SW-4. Total xylene was detected at 6l ug/l and total organic lead (TOL) at 0.3 mg/l. This is the highest TOL level found at any of the sample sites and the only surface water sample in which any organic lead was detected. The detection limit for the TOL was 0.2 mg/l.

The analytical method used for TOL is described in more detail in Appendix E and involves the preparation of three sample aliquots, using benzene for solvent extraction of TOL. The TOL and inorganic lead digests are finally analyzed by Graphite Furnace AA, with the final TOL concentration computed by subtracting the inorganic lead from the total lead result. Discussions with RMAL indicate that analyzing for TOL is difficult and that the analytical method is neither highly reliable nor reproducible.

The water sample from Virginia Murray's ditch (SW-6) was a sample site added to the sampling program by Dames & Moore and for comparison purposes was analyzed only for organic constituents. None were detected. This water is primarily ground water (as this particular ditch is closed and was constructed strictly for pasture drainage, not irrigation). The laboratory water-quality data indicate that this ditch has not been impacted by contaminants from the tank farm.

GROUND WATER QUALITY

BACKGROUND WATER QUALITY

The water quality at MW-1 to the north and Virginia Murray's well (W-2) to the west of the tank farm monitor ground waters that have not been affected by Maverik's tank farm but that are highly impacted by recharge of good quality irrigation waters that have seeped from the Farmer's Mutual Irrigation Ditch (Plate 9 and Table 2). As indicated in Table 2, the ground water at these two sites is basic (pH = 9.64 and 8) and for ground water in this region, very low in TDS and other common ions (sulfate, chloride, sodium, calcium and bicarbonate). These ground waters are very similar to the water in the Farmer's Mutual Irrigation Ditch.

The TDS concentrations from MW-1 and W-2 are low, at 360 and 600 mg/1, respectively. Sulfate, chloride and sodium concentrations are also low at 176 and 114 mg/1, 26 and 43 mg/1 and 44 and 147 mg/1, respectively.

Benzene was the only organic constituent detected at these two sites, at 1.0 ug/l at W-2 and 0.53 ug/l at MW-l. The detection limit at MW-l was 0.5 ug/l. The duplicate sample from MW-l did not indicate the presence of benzene above detection limits (Appendix E) and makes its reported detection in MW-l suspect.

INORGANIC CONSTITUENTS

The ground water quality at the remaining five on-site monitor wells (MW-2, MW-10, MW-11, MW-12 and W-3) varies significantly and is of much poorer quality than at MW-1 and W-2. The primary inorganic constituents found at these well sites include sodium, chloride, sulfate, calcium and bicarbonate. The water quality data are summarized by a series of plots, with the concentration levels as indicated, on Plates 9 through 12.

the program and the

The Piper diagram in Appendix E (Plate E-5) also summarizes and compares the percentages of the major ions found at the ground water sample sites and demonstrates the wide variability in the ground water quality. TDS levels ranged from the low of 950 mg/l at MW-8 to a high of 3,700 mg/l at MW-13. Based on the Piper diagram, the ground waters would be defined predominately as sulfate-sodium type.

The elevated levels of sodium, chloride, calcium, sulfate, bicarbonate and TDS demonstrates that the ground waters at and around the tank farm are significantly impacted by natural mineralization. The study site is located along the floodplain of the San Juan River along which major ground water discharge zones are typically found (Lyford, 1979). This, in conjunction with flushing of the mineralized zones with waters seeping from the irrigation ditches, can and does result in high levels and significant variability in the levels of the naturally occurring inorganic constituents. The ground surface in the study area is covered with alkaline (white evaporite) deposits, probably calcium carbonate, which is typical in a highly mineralized ground water discharge area.

1

Based on the 1,000 mg/l contour for TDS (Plate 9), the principal area impacted by ground water discharges and aquifer flushing appears to extend about 1,500 feet east-west and 2,500 feet north-south in the vicinity of the tank farm and irrigation ditches. The concentration contours are consistent with the direction of ground water flow, which is from the north-northeast toward the south-southwest. The concentration contours for TDS, sodium and sulfate also indicate elevated levels of these constituents to the east.

The water quality at all of the off-site monitor wells (MW-3 through MW-9, MW-13 and W-1) is highly variable but generally quite poor. The monitor wells with the poorest water quality, in terms of high levels of TDS, at or above 1,500 mg/l (and up to 3,700 mg/l at MW-13 just west of the tank farm), are all off-site to the west and to the south of the tank farm (MW-3, MW-4, MW-6, MW-9, MW-13, W-1).

(), v ten k v <u>v k</u>a

With the exception of well W-1 (to the southwest of the tank farm about 200 feet), all of these off-site wells have high sulfate levels above 600 mg/1 (to 1,980 mg/1 at MW-13), have moderately elevated chloride levels (from 43 mg/1 to 288 mg/1 at MW-6), moderately elevated sodium levels (from 146 mg/1 to 666 mg/1 at MW-13), and moderately elevated calcium levels (from 146 mg/1 to 364 mg/1 at MW-13).

1

The water quality in well W-1 (R. Ball well) is significantly different than at these other off-site wells. The <u>elevated TDS levels in well W-1</u> are due, primarily, to the very high chloride and sodium concentrations (1,170 mg/1 and 1,020 mg/1, respectively). Sulfate and calcium levels are much lower than in the other wells (433 mg/1 and 25 mg/1, respectively). The water quality in this well cannot be readily explained based on one round of water quality data. This well is significantly deeper than the other wells, at 58.8 feet below ground surface (Table B-1). It probably intercepts waters that flowed down the well casing from the gravel zone and came into contact with the lower shale zone. This shale zone would be expected to have significantly different mineralization than the upper gravel zone. Well W-1 is adjacent to the westside irrigation ditch and Highway 489, and since the well is not sealed at ground surface, it may have also received some surface water contamination.

The water quality in MW-13, about 300 feet north of W-1, is somewhat similar to W-1 in that it too is elevated in sodium and chloride. However, sodium and chloride concentrations in MW-13 are still much lower than in W-1, (666 mg/1 and 257 mg/1, respectively), but almost five times higher in sulfate (1,980 mg/1). The anomalous water quality at these two sites may be due to a combination of factors, which probably include the depth of W-1, the irrigation ditch, surface contamination and/or ground water discharge.

In addition to the wide variability and elevated levels of the inorganic constituents found in the ground waters both on-site and off-site, an anomalously low sulfate level (16 mg/l) was measured at shallow MW-12 on-site. The ion balance does not indicate an error in the analysis. The water quality

-16-

analyses from Round 2 sampling will verify if this sulfate concentration is valid.

ORGANIC COMPOUNDS

11

The five volatile organic constituents that were found on-site include benzene, toluene, xylene, ethylbenzene and DCA. These were found at very high levels only in shallow MW-12, on-site. A summary of the characteristics of these compounds is listed in Table 4. Benzene, toluene, xylene and ethylbenzene considered "typical" refinery-related volatile organics, are all light 6-8 carbon monocyclic aromatics, have a density less than water, relatively high vapor pressures, are quite soluble in water but do have more of an affinity to stay with an organic phase, and exhibit some moderate adsorption by organic material in soil. Volatilization and biodegradation along with some adsorption are probably the primary mechanisms tending to reduce concentrations of these chemicals in water and soils. Because of these active mechanisms, persistence of these compounds is probably not great.

DCA is used as an additive (lead scavenger) in tetraethyl lead antiknock mixtures added during the production of leaded gasoline; its function is to prevent lead oxide deposits from building up in engines by transforming the combustion products of lead alkyls to forms that are more likely to be vaporized and expelled with exhaust gases. The DCA detected in ground water at and near the tank farm could have resulted from leaded gasoline spills, disposal of waters present in the bottom of leaded gasoline storage tanks, or the leaching of land-disposed leaded tank bottoms.

This 2-carbon alkyl halide has a low molecular weight, but a high density, a high vapor pressure, is highly soluble in water and has a high affinity for the water rather than an organic liquid phase. Because of its low potential for being sorbed onto soil particles it is quite mobile and is often found at the leading edge of ground water contaminant plumes resulting from leaded gasoline spills. The primary removal mechanism of DCA from soil and water is probably volatilization. There is little data to indicate that biodegradation is a significant removal mechanism for this compound.

-17-

Although, as noted, DCA is dense (specific gravity of 1.25 gm/cm^3), so called "density effects" (i.e., concentration of this compound in lower parts of the aquifer) would not be expected since the DCA will be in the dissolved state rather than as a separate phase. Support for this contention is provided by comparing the results of the water quality analyses in shallow monitor well MW-l2 and adjacent deep monitor well MW-l1. In the former, DCA concentrations were measured at 450 ug/l while in the latter DCA was found at the detection limit of 1 ug/l.

Since DCA was the only organic contaminant found at detectable levels (at MW-6, MW-8 and MW-9, off-site and on-site at MW-10, MW-11 and MW-12), it was the only organic constituent for which an isoconcentration plot could be completed (Plate 13). As mentioned, DCA levels on-site were only 1.0 ug/1 at MW-11 and 3.2 ug/1 at MW-10. The lower DCA level at MW-11 versus MW-10 is believed to be due to dilution effects on MW-11 from the westside irrigation ditch and possibly DCA contaminant movement to the south from MW-12 to MW-10 in this area.

Well W-3, located on-site about 40 feet southeast of MW-12, exhibited xylene and ethylbenzene concentrations of 5.8 ug/l and 1.3 ug/l. The sample from MW-11 on-site also showed benzene at 0.81 ug/l. No DCA was detected in well W-3.

The water quality data from shallow MW-12 on-site shows very high levels of the organic compounds DCA (450 ug/l), total xylene (3,000 ug/l), ethylbenzene (1,300 ug/l), toluene (2,000 ug/l) and benzene (19,000 ug/l). The water sample from MW-12 was contaminated with free product and therefore is not truly representative of the shallow ground water at MW-12. This monitor well was constructed as the shallow nested monitor well next to deep well MW-11. MW-12 monitors the shallow silty-clayey sandy zone (2 to 12 feet) which overlies the deeper alluvial gravel zone monitored by MW-11 (23 to 33 feet). A comparison of the water quality in these two wells can be made from examining Table 2.

-18-

may not be representive of dissolved phase but does

Although the upper silty-clayey zone at MW-12 is highly contaminated in this area, the deeper primary alluvial aquifer zone is not. The completion depths for MW-12 and MW-11 were based on the lithology and OVA readings of the drill cuttings (see Appendix E). As previously discussed, the only organic compounds detected at MW-11 were DCA (1.0 ug/1) and benzene (0.81 ug/1), both at very low levels, near detection limits. Based on the existing data, it appears that a gasoline spill may have occurred in this area but only penetrated the upper low permeability silty-clayey sand zone.

Off-site, organic contaminant levels are extremely low with xylene, ethylbenzene and benzene being found at or just above detection levels in nearby off-site monitor wells MW-13, W-1 and W-2. MW-13 and W-1 are located directly to the southwest and within 200 feet of the tank farm boundaries. Total xylene and ethylbenzene were measured at 2.23 ug/1 and 0.54 ug/1, respectively, at MW-13. Ethylbenzene was measured at 0.89 ug/1 at W-1 and benzene was measured at 1.0 ug/1 at W-2. W-2 is located about 600 feet west of the tank farm's western boundary.

Total organic lead (TOL) was detected at very low concentrations at MW-6, MW-7 and MW-11, at 0.004 mg/1, 0.02 mg/1 and 0.007 mg/1, respectively. Detection limits were 0.002 mg/1, 0.02 mg/1 and 0.004 mg/1, respectively. Organic lead (primarily tetraethyl) is a relatively high molecular weight, dense, 8-carbon compound which has a very low water solubility, probably a high affinity for an organic phase, and has a high potential for being adsorbed by soils and sediments (Table 4). These data suggest that while organic lead would not be highly mobile, it would be highly persistent, slowly degrading to other organic and eventually inorganic compounds.

Based on the fact that the analysis for TOL is difficult, that very low TOL levels were detected in these three monitor wells, and that no TOL was detected at the highly contaminated shallow monitor well (MW-12) on-site, (Detection Limit = 0.02 mg/1) Dames & Moore believes these TOL results should be viewed with caution and interpretation of their significance should await the results of additional testing.

-19-

one impacted includes more than this what about product seeping into ditch MW-12 area should be in head of plane

Based on the concentration contour plot for DCA of 10 ppb (the New Mexico MCL for drinking water), the area impacted by the tank farm is about 200 feet in an east-west direction and 1,800 feet in a north-south direction (Plate 13). As previously discussed, the only ground water off-site that exceeded the drinking water standard of 10 ppb of DCA was at monitor well 6, at which DCA levels were measured at 16.0 ug/1. This well is located approximately 1,200 feet southwest of the Maverik tank farm property boundary. These data verify the New Mexico EID 1985 and 1987 water quality test results that ground water contamination off-site in the private wells to the southwest is limited to DCA contamination at very low levels in a limited number of wells. This is further discussed in Appendix F. In the EID surveys, only the Miller-Jackson #1 well and W. Walker well exhibited DCA levels above detection limits, at 8 ug/1 and 1 ug/1, respectively. The Miller-Jackson #1 well is located close to MW-6 in which a DCA level of 16 ug/1 was detected in November 1987 as part of this investigation.

Monitor well 8 and well W-1, located to the southwest of the property boundary only 400 feet and 200 feet, respectively, and in line with and upgradient of MW-6, both intercepted ground waters with very low and non-detectable DCA levels of 2.8 ug/l and l ug/l, respectively. Based on the concentrations of the common ions and DCA levels in these two wells (Plates 9 to 13) these wells have probably been strongly impacted by recharge from the irrigation ditches. The low to non-detectable levels of DCA in these wells may be due to dilution from recharge from irrigation ditch seepages. This could explain why a well farther from the site (MW-6), could have higher contaminant levels of DCA (at 16 ug/l) than would be detected in wells closer to the source area. Both DCA and organic lead, where detected, were present at very low concentrations in the off-site monitor wells (see Table 2, Plate 13 and Appendix E).

MW-13 - shallow MW-6,9,8 at approx. same elev.

Head of DCA plume should include MW-12

CONCLUSIONS

This Phase I hydrogeologic and water quality investigation at the Maverik Refinery and Tank Farm near Kirtland, New Mexico has produced the following major findings:

- 1. Significant concentrations of the typical refinery-related volatile organics benzene, toluene, xylene, ethylbenzene and 1,2-dichloroethane (DCA) were found in one of six monitor wells installed at the refinery tank farm.
- Benzene, xylene or ethylbenzene were found in 3 of 10 off-site monitor wells at concentrations just above detection limits and far below New Mexico drinking water standards for these compounds. DCA was found in three other off-site monitor wells, only one of which, at 16 ug/l, exceeded the New Mexico drinking water standard.
- 3. In more than 25 off-site private wells tested by the NMEID or Dames & Moore, DCA was found in two wells, benzene in another and ethylbenzene in yet another; without exception, the concentrations were below New Mexico's drinking water standards for these compounds. These wells are utilized for irrigation or stock-watering purposes rather than for drinking water.
- 4. Product seepage was observed from one area in the tank farm to the westside irrigation ditch. However, even under the low flow conditions which existed at the time of sampling, off-site downstream contamination of this water body was not significant.
- 5. The shallow alluvial aquifer that has been impacted by the tank farm is rapidly flushed as a result of its high permeability, recharge from the irrigation ditches, and the large volumes of water that move through this aquifer. This results in very low levels of contaminants observed in the monitor wells downgradient from the tank farm, and in particular the private water wells closer to the irrigation ditches. These private wells average about 20 feet in depth and are generally open through at least 15 feet of saturated, highly permeable gravels, cobbles and sands. The ground water flow velocity through the coarse alluvial aquifer has been estimated at 3 ft/day to the southwest toward the San Juan River.
- 6. Contamination of the shallow alluvial aquifer and westside irrigation ditch from the tank farm appears to have occurred over an area only a few hundred feet wide in an east-west direction and about 1,800-feet long in a north-south direction toward the San Juan River. Off-site contamination appears to be strongly influenced by the direction of and flows in the irrigation ditches and may be

restricted to a more permeable alluvial (gravel, cobble, sand) zone that trends northeast to southwest to the San Juan River.

7. The low concentrations of the contaminants detected off-site, their characteristics, the hydrogeologic setting, and the non-use of water from private wells in the contaminated area for drinking water purposes, all lead to the conclusion that the releases from the tank farm do not pose a threat to human health and the environment.

Pure product could pose H+E threat DCA in MLJ-6 above standards and therefore possible Health threat

REFERENCES

American Petroleum Institute, May 1984. Land Treatability of Appendix VIII Constituents In Petroleum Industry Wastes, Publication 4379.

Boulton, N.S., 1963. Analysis of Data From Non-equilibrium Pumping Tests Allowing for Delayed Yield From Storage. Inst. Civil Engineers Proc. [London], v.26, p.469-482.

Bouwer, H., 1978. Groundwater Hydrology: McGraw-Hill, Inc., New York.

4

Cooper, H.H., Jr., Bredehoeft, J.D., and Papadopulos, I.S., 1967. Response of a Finite-diameter Well to an Instantaneous Charge of Water. Water Resources Research, V.3, No. 1, p. 163-169.

Environmental Protection Agency, 1985. Health Assessment Document for 1,2-Dichloroethane (Ethylene Dichloride). EPA/600/8-84/006F.

Environmental Protection Agency, October 1986. Superfund Public Health Evaluation Manual. EPA 540/1-86/060.

Freeze, R.A., and Cherry, J.A., 1979. Groundwater. Prentice-Hall, Inc., p. 29.

Hvorslev, M.J., 1951, Time Lag and Soil Permeability in Groundwater Observations. U.S. Army Corps of Engineers Waterways Experiment Station, Bulletin No. 36.

Lohman, S.W., 1972. Ground-Water Hydraulics. USGS Professional Paper 708, p. 17-30.

Lyford, Forest P., 1979. Ground Water in the San Juan Basin, New Mexico and Colorado. U.S.G.S. Water Resources Investigations 79-73.

O'Sullivan, R.B. and Beikman, H.M., 1982. Geology, Structure and Uranium Deposits of the Shiprock Quadrangle New Mexico and Arizona. USGS Miscellaneous Geologic Investigations Map I-345.

Stallman, 1963. Type Curves for the Solution of Single Boundary Problems, in Bentall, Ray, Compiler, Shortcuts and Special Problems in Aquifer Tests. U.S. Geological Survey Water-Supply Paper 1545-C, p.C45-C47.

TABLE 1

LABORATORY WATER QUALITY PARAMETERS

HALOGENATED VOLATILE ORGANICS EPA METHOD 601	INORGANIC PARAMETERS	EPA METHOD
Bromoform Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Dibromochloromethane Bromodichloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroptopane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Bromoethane Chloromethane Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene trans-1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl chloride 1,1,2-Trichloro- 2,2,1-trifluoroethane 1,2-Dibromoethane (EDB)	pH Specific Conductance @ 25C Total Dissolved Solids Fluoride Chloride Nitrate + Nitrite as N Sulfate Total Alkalinity as CaCO ₃ Bicarbonate Alkalinity Carbonate Alkalinity as CaCO ₃ Ammonia as N	150.1 120.1/9050 160.1 340.2 300.0 353.2 300.0 310.1/403 310.1/403 310.1/403 350.1
AROMATIC VOLATILE ORGANICS EPA METHOD 602	METALS PARAMETERS	
Benzene Chlorobenzene Ethylbenzene Toluene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene m-Xylene o & p-Xylene(s)	Calcium Iron Magnesium Potassium Sodium Total Organic Lead	200.7 200.7 200.7 200.7 200.7 ENSECO Special

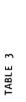
Note: For detail of methodology see ENSECO's (RMAL) attached report (Appendix E)

TABLE 2

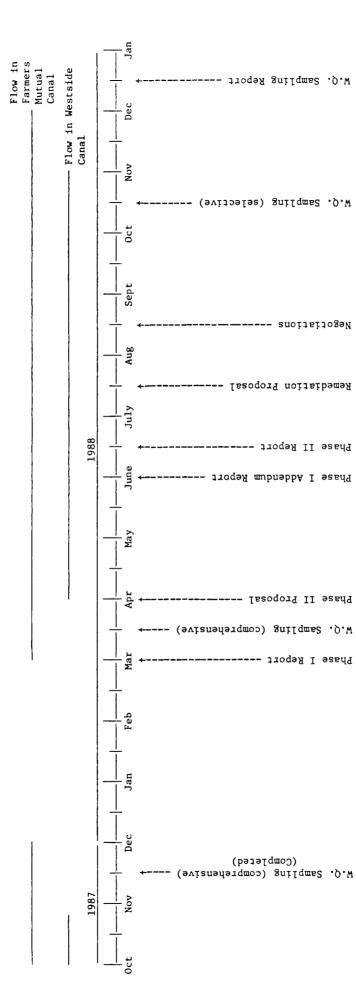
LABORATORY RESULTS FOR DETECTED ORGANIC CONSTITUENTS AND MAJOR IONS FOR MAVERIK COUNTRY STORES, INC., KIRTLAND, NEW MEXICO

ROUND 1

(Sampled November 10-27, 1987)


Sample Site Designation NM MCL EPA MCL	1-2 DCA (ug/1) 10 5	Total Xylene (ug/l) 620 NA	Ethylbenzene (ug/l) 750 NA	Toluene (ug/1) 750 2,000	Benzene (ug/l) 10 5	рн ТОS (field) mg/l 6-9 1,000 6.5-8.5 500		Sulfate mg/1 600 250	Chloride mg/l 250 250	Sodium mg/l NA NA	Calcíum mg/l NA NA	Total Alkalinity as CaCO3 mg/l NA NA
Wells												
On-Site												
IMM	< 1	< 0.5	< 0.5	< 0.5	0.53(1) 9	9.64	360	176	26	77	77	34
MW 2	< 1	< 0.5	< 0.5	< 0.5	< 0.5	7.75	1,360	526	67	243	152	309
0100	3.2	< 0.5	< 0.5	< 0.5	< 0.5	7.66	1,240	568	46	250	126	255
MWII MWI2(4)	1.U 450.*	3 000 *	<pre>< 0.5</pre>	< 0.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0	19.000 *	(b.) 47.A	1,250	592 16	45 101	234	138	267 508
W-3	1 >	5.8	1.3	< 0.5	< 0.5	1		2,	1	1	r i	2 I
Off-Site												
EMM	1 >	< 0.5	< 0.5	< 0.5	< 0.5	7.78	1,620	670	16	34.9	148	358
5MM	1.	< 0.5	< 0.5	< 0.5	< 0.5	1.46	1,540	654	87	337	142	332
C ME	1 >	< 0.5 2 0 2	< 0.5	< 0.5	< 0.5	() , , , , , , , , , , , , , , , , , , ,	1,250	667	68 700	258	129	397
C MM	19 1	5 U S		<pre></pre>	C 0 < 2 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0 < 5 < 0	10.1	7,13U	843 558	126	256 256	15.7	36/ 777
8 MM	2.8	< 0.5	< 0.5	< 0.5	< 0.5	1.4.1	950	401	67	166	159	273
6 M W	8.3	< 0.5	< 0.5	< 0.5	< 0.5	7.11	1,520	863	43	146	324	37.2
MW 13	< 1	2.23	0.54	< 0.5	< 0.5	8.14	3,700	1,980	257	666	364	419
R. Ball Well	< 1	< 0.5	0.89	< 0.5	< 0.5	7.96	2,300	433	1,170	1,020	25	221
V. Murray Well (W-2)	< 1	< 0.5	< 0.5	< 0.5	1.0	8.06	600	114	43	147	42	368
Farmer's Mutual Irrigation Ditch	rrigation Di	tch										
SWI	< 1	< 0.5	< 0.5	< 0.5	< 0.5	8.5	400	136	16	29	86	159
West Side Irrigation Ditch	ion Ditch											
SW4 (4) SW5(4)	<10 <250 *	61 57 000 *	<10 2 500 *	<10<	<10 <250 +	7.28	067	147	29 _	40	113	253
SW2	- 0(3)	- 000,10	- 0,5 - 0,5	4/0	- 0(7) - 0 - 5	7.6	- 1 20	476	67	159	162	116
SW3	< 1	< 0.5	< 0.5	< 0.5	< 0.5	8.05	1,400	602	11	223	178	297
V. Murray's Drainage Ditch	age Ditch											
SW6	< 1	< 0.5	< 0.5	< 0.5	< 0.5	7.28	ł	ı	ı	1	ł	t
Drill Cuttings Sample	anp le											

MWII & MWI2 (composite). Analyzed for EP Toxicity for 8 RCRA metals and sulfide and cyanide reactivity. Only barium detected at 0.94 mg/l.


Foutnotes: (1) Benzene was not detected in a blind duplicate of this sample.

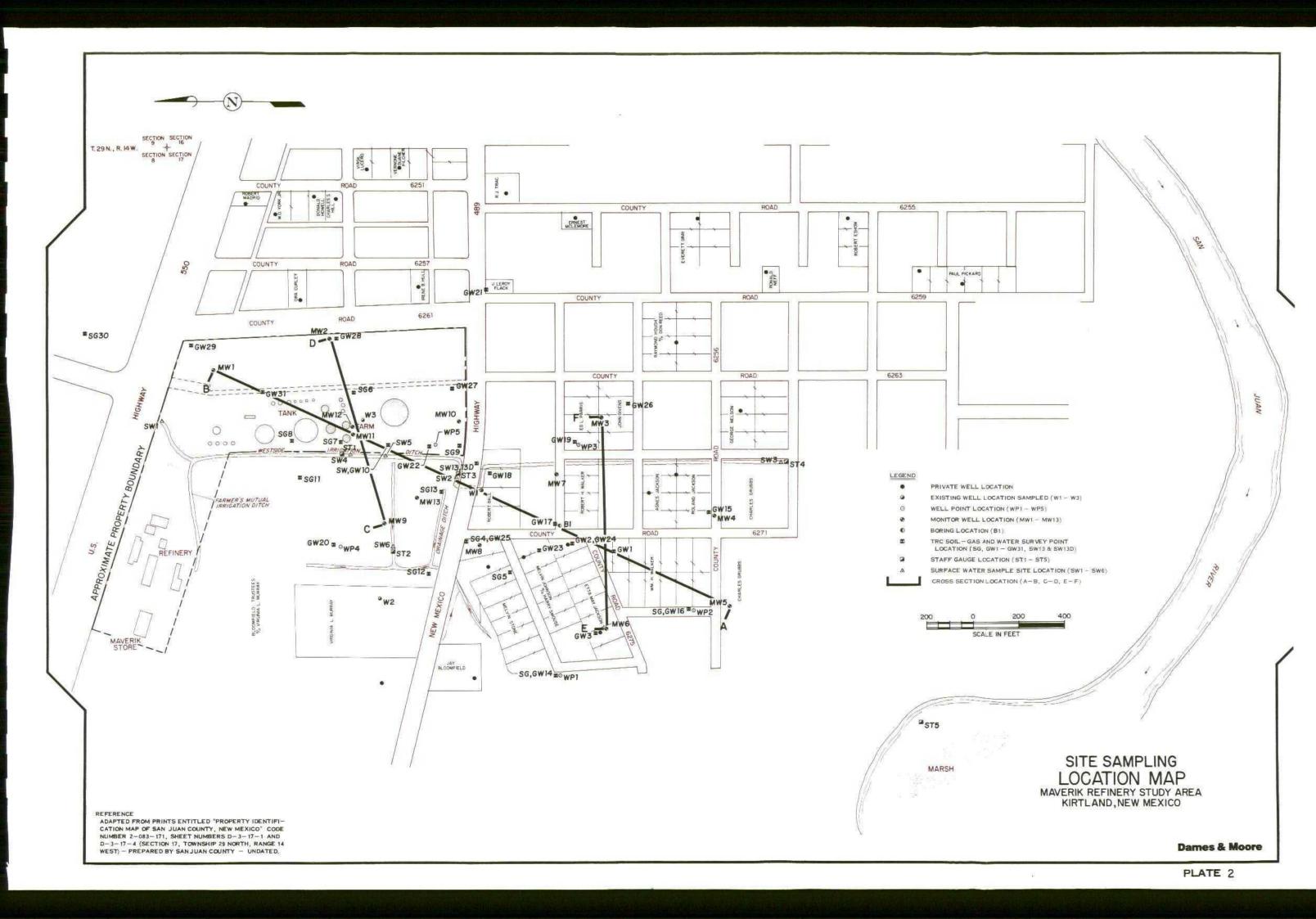
(2) The values indicated as less than (<) are detection limits only, and not actual concentrations.

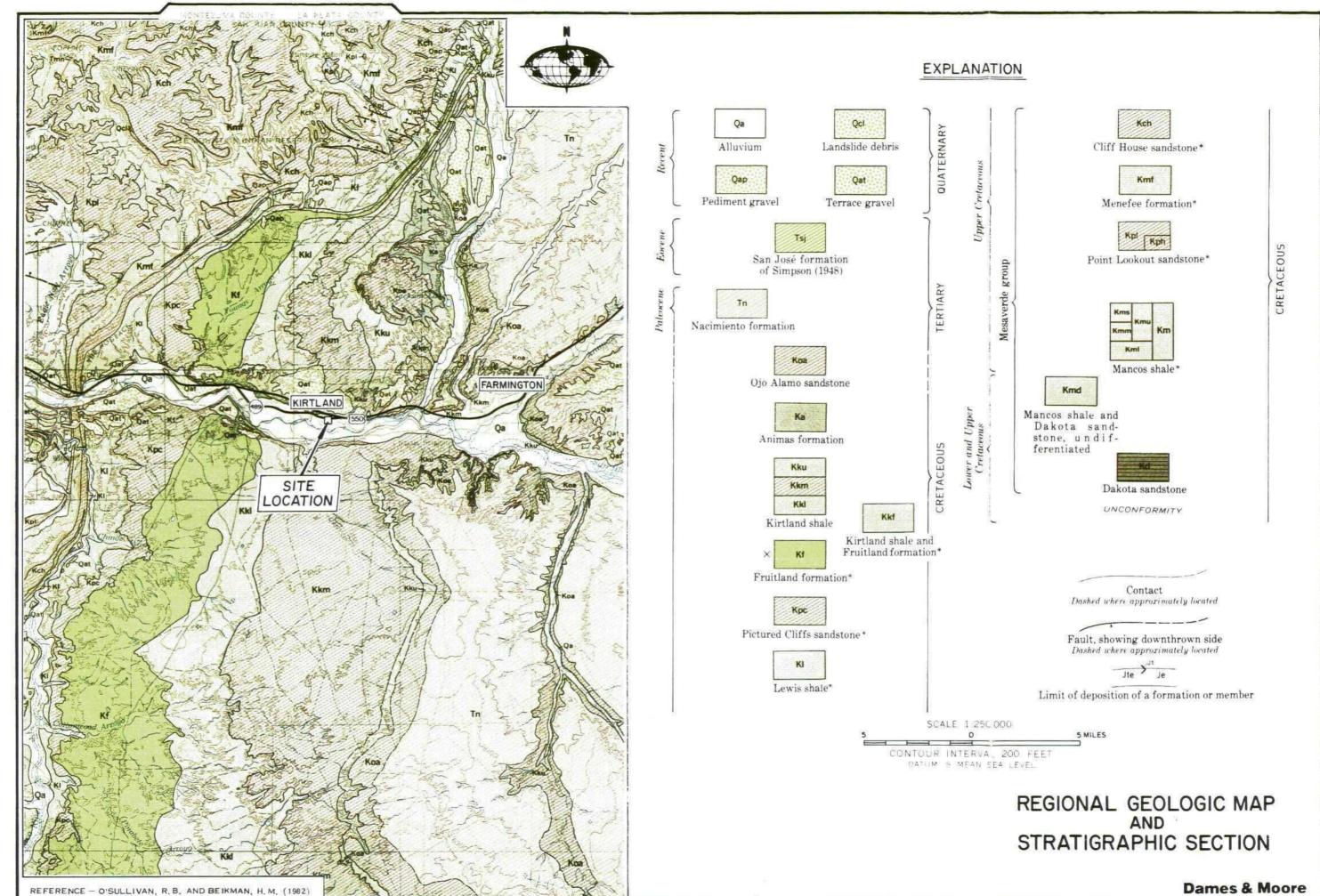
(3) Sample sites SW-4, SW-5, and MM-12 were contaminated with product and not representative of the water itself.
(4) Volatile organics in samples for MM-12, SW-4 and SW-5 were analyzed using GC/MS methods. All other samples were analyzed using GC methods.

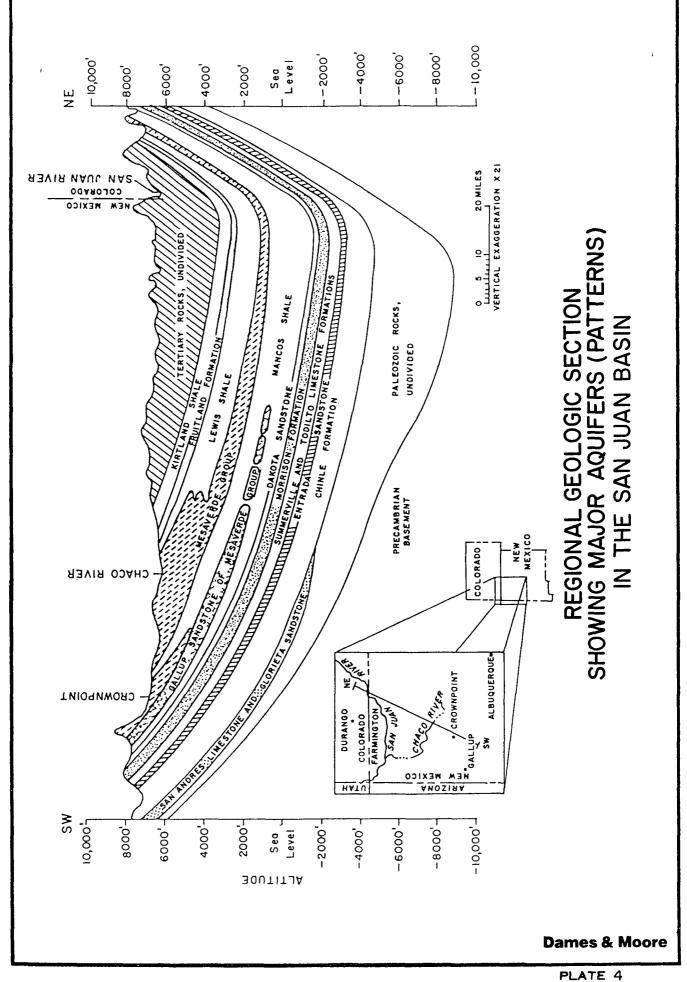
PROPOSED PROJECT WORK SCHEDULE MAVERIK KIRTLAND, N.M. REFINERY INVESTIGATIONS

TABLE 4

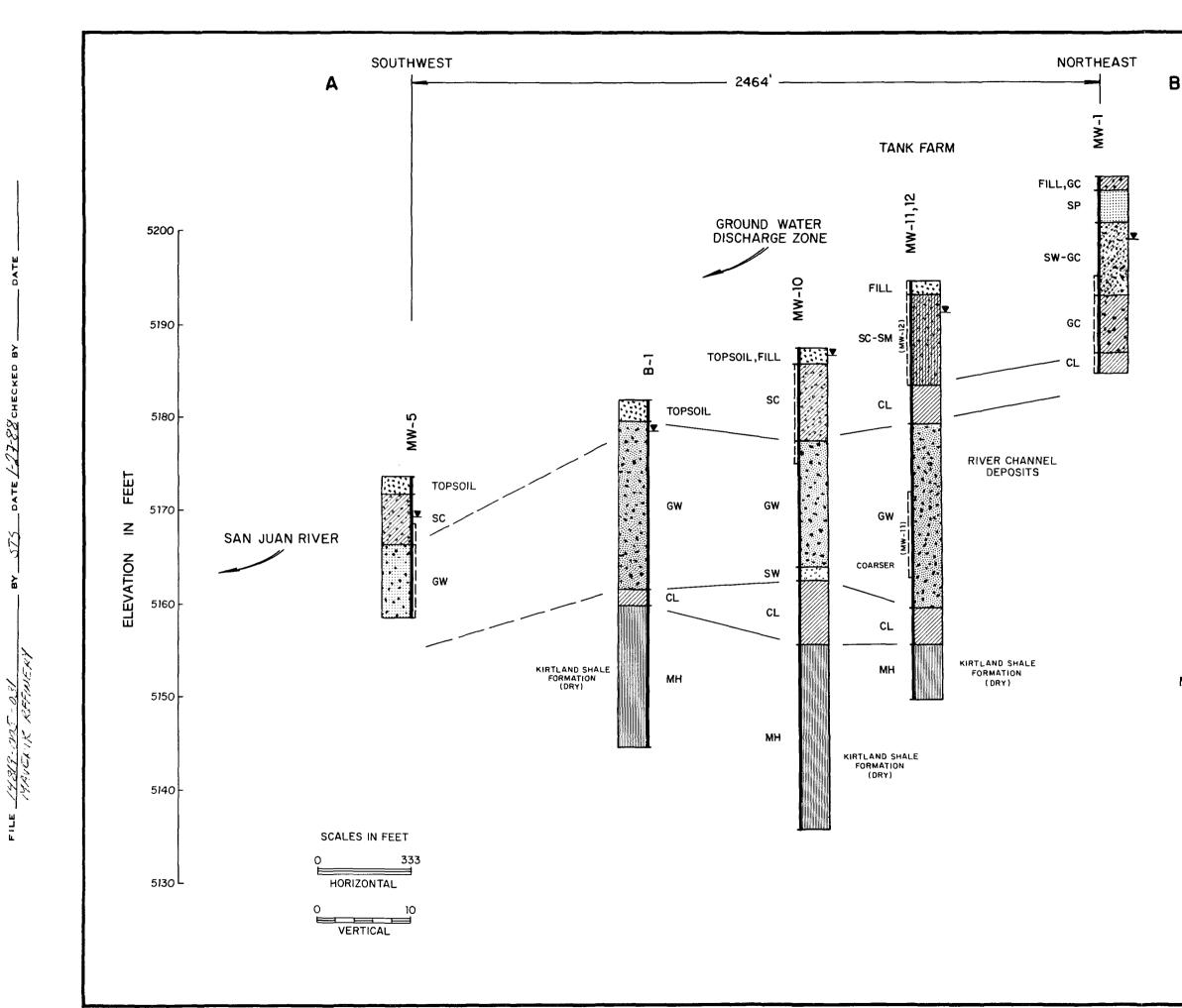
	Molecular _Weight	Density (gm/cm ³)	Water Solubility _(mg/l)	Vapor Pressure (mm Hg)	K _{oc} (1) (m1/g)	_{Kow} (2)
Benzene	78	0.88	1,750	95	83	132
Ethylbenzene	106	0.87	152	7	1,100	1,412
Toluene	92	0.87	535	28	300	537
Xylene, m	106	0.86	130	10	871	1,820
Xylene, p	106	0.86	192	10	676	1,412
Xylene, o	106	0.88	175	10	426	891
l,2-Dichloroethane	99	1.26	8,520	64	14	30
Tetraethyl lead	323	1.65	0.3-0.8	0.1	4,900	-


CHARACTERISTICS OF ORGANIC COMPOUNDS DETECTED


(1) Organic carbon partition coefficient, a measure of the tendency for organics to be adsorbed by soil and sediment.


(2) Octanol-water partition coefficient, a measure of the tendency of a chemical at equilibrium to distribute between an organic phase (octanol) and water.

Source: Superfund Public Health Evaluation Manual, EPA 540/1-86/060, October 1986; and of Appendix VIII Constituents in Petroleum Industry Wastes, American Petroleum Institute Publication 4379, May 1984.



1

FIL

μ

CH

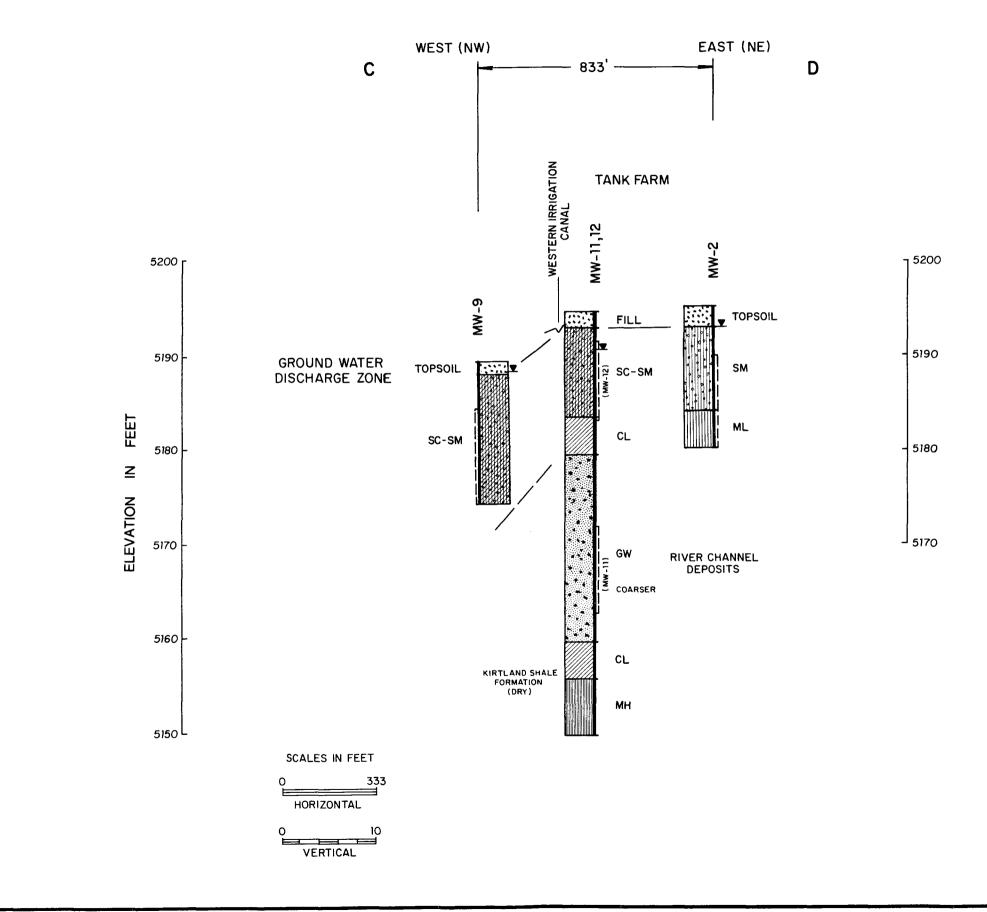
466 12 (11-82)

Dames & Moore

GEOLOGIC CROSS SECTION A-B

┸ WATER LEVEL SCREENED INTERVAL

LEGEND


WATER LEVEL GRADIENT MW-1 --- MW-5 = 29.72'/2464'= 0.012 ft./ft.

466 12 (11-82)

N STS DATE 1-27-28 CHECKED BY

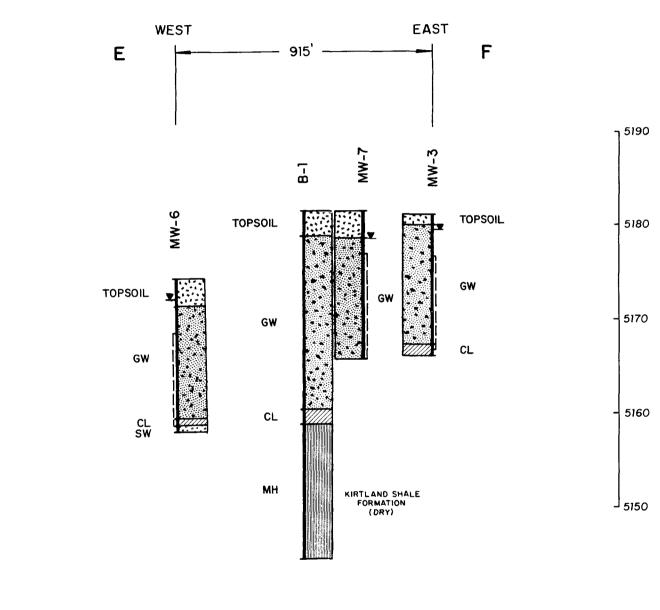
DAT

FILE 14219- 20 m. 001

PLATE 6

Dames & Moore

GEOLOGIC CROSS SECTION C - D


▼ WATER LEVEL SCREENED INTERVAL

LEGEND

WATER LEVEL GRADIENT MW-2 ---- MW-9 = 4.37'/833' = 0.005 ft./ft. 515 DATE 1-27-52 CHECKED BY

눎

ă ∩

SCALES IN FEET

5190 r

5180

5170

5160

5150

5140 L

FEET

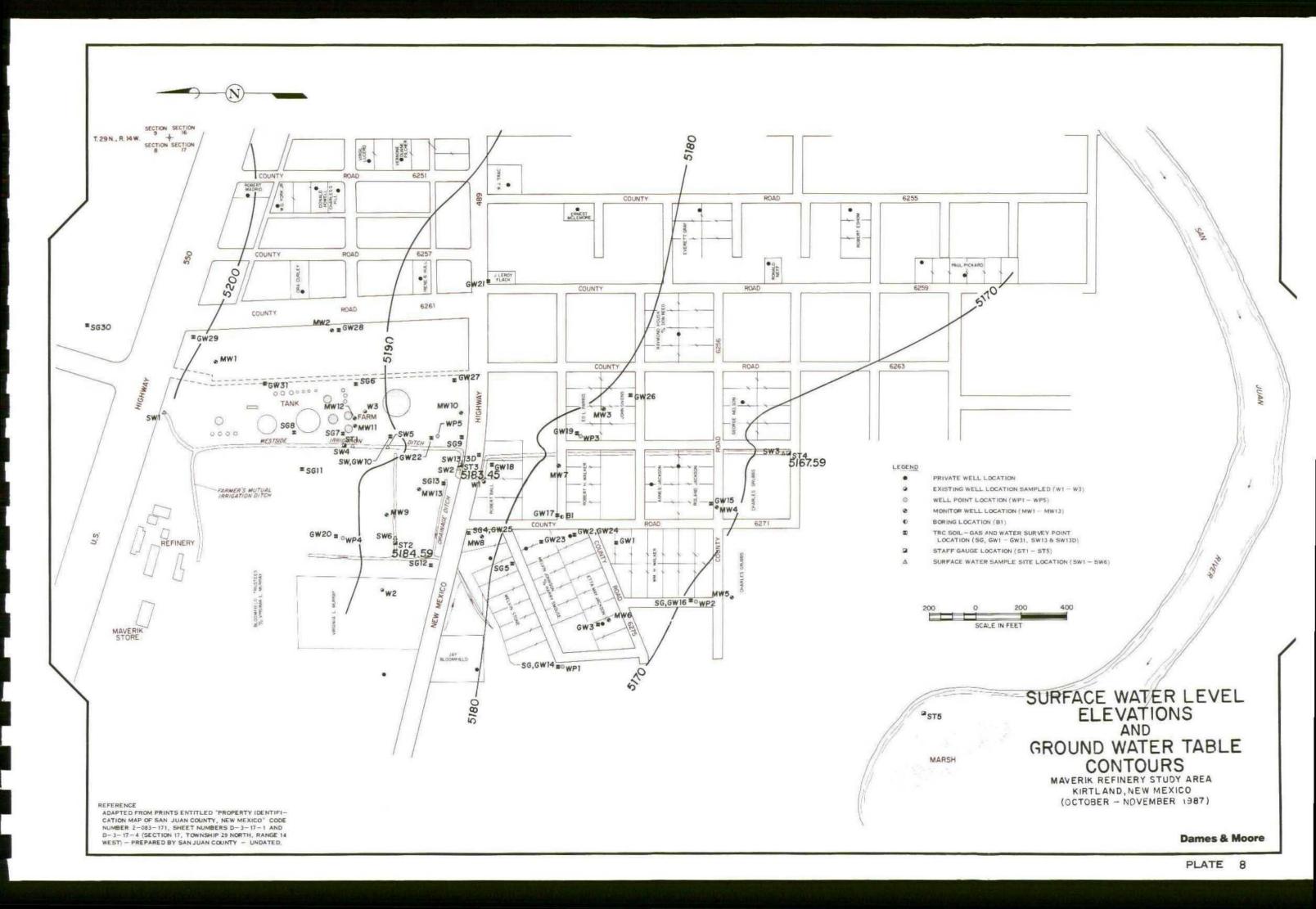
Z

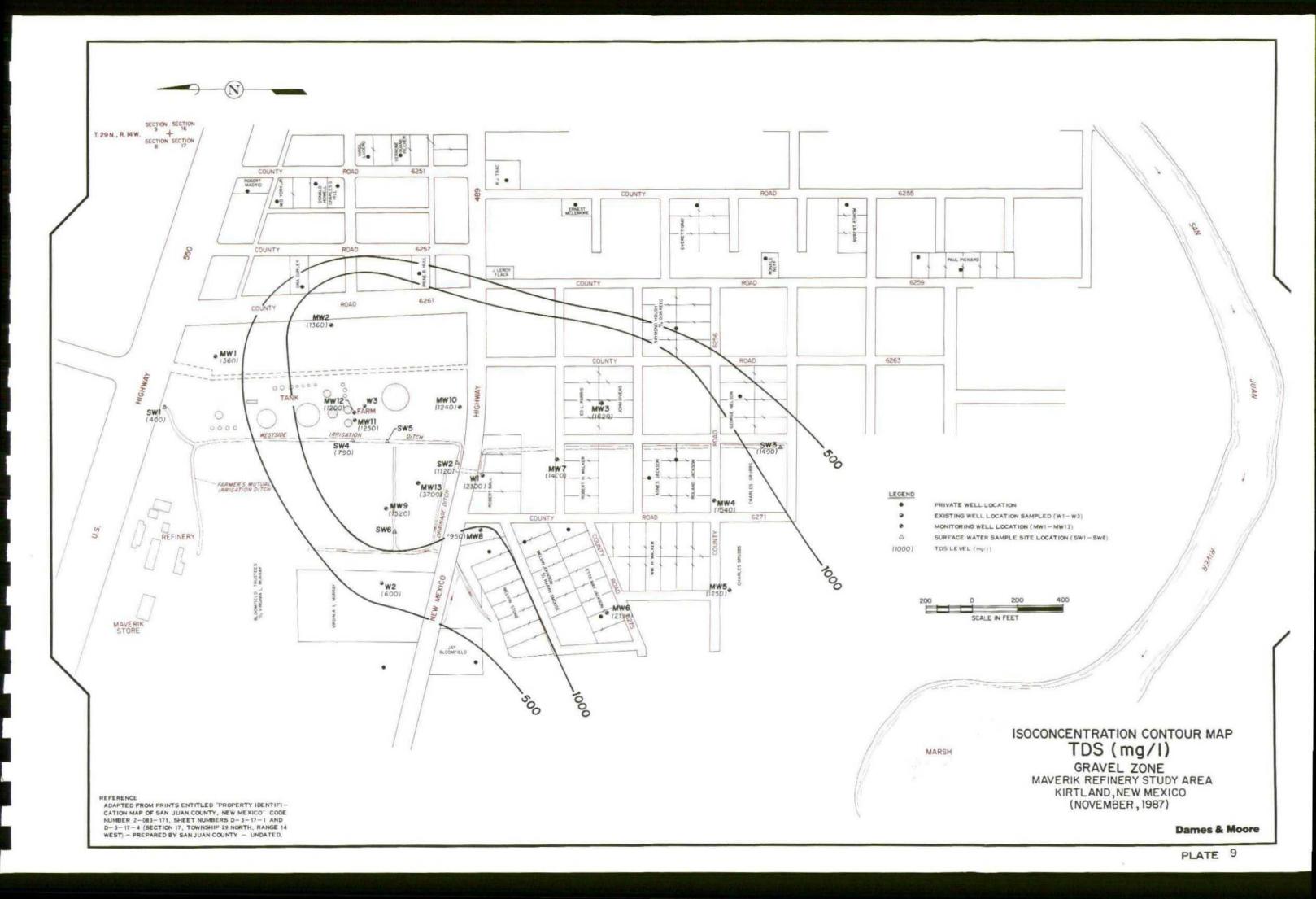
ELEVATION

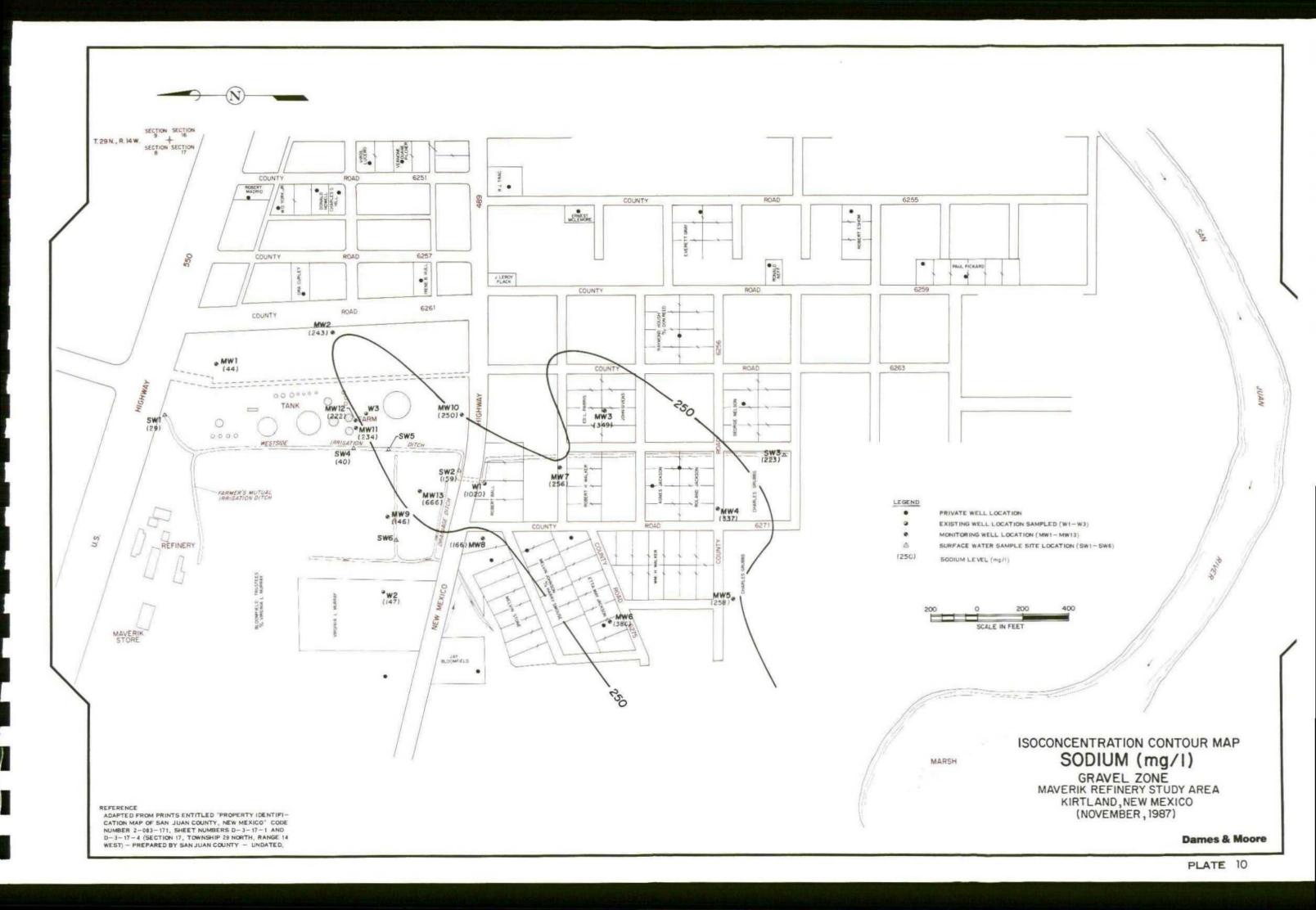
0 333 HORIZONTAL

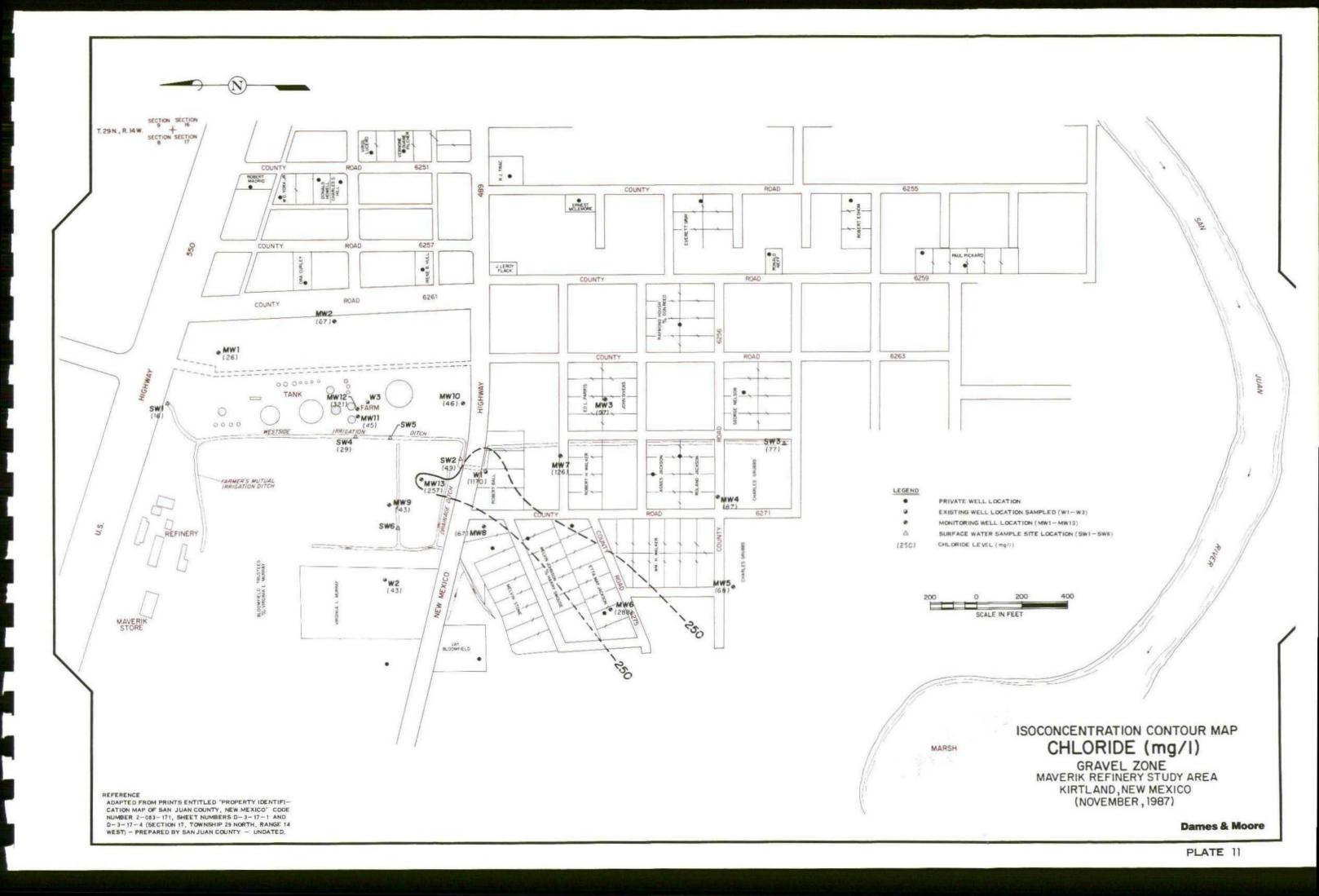
0 10 VERTICAL

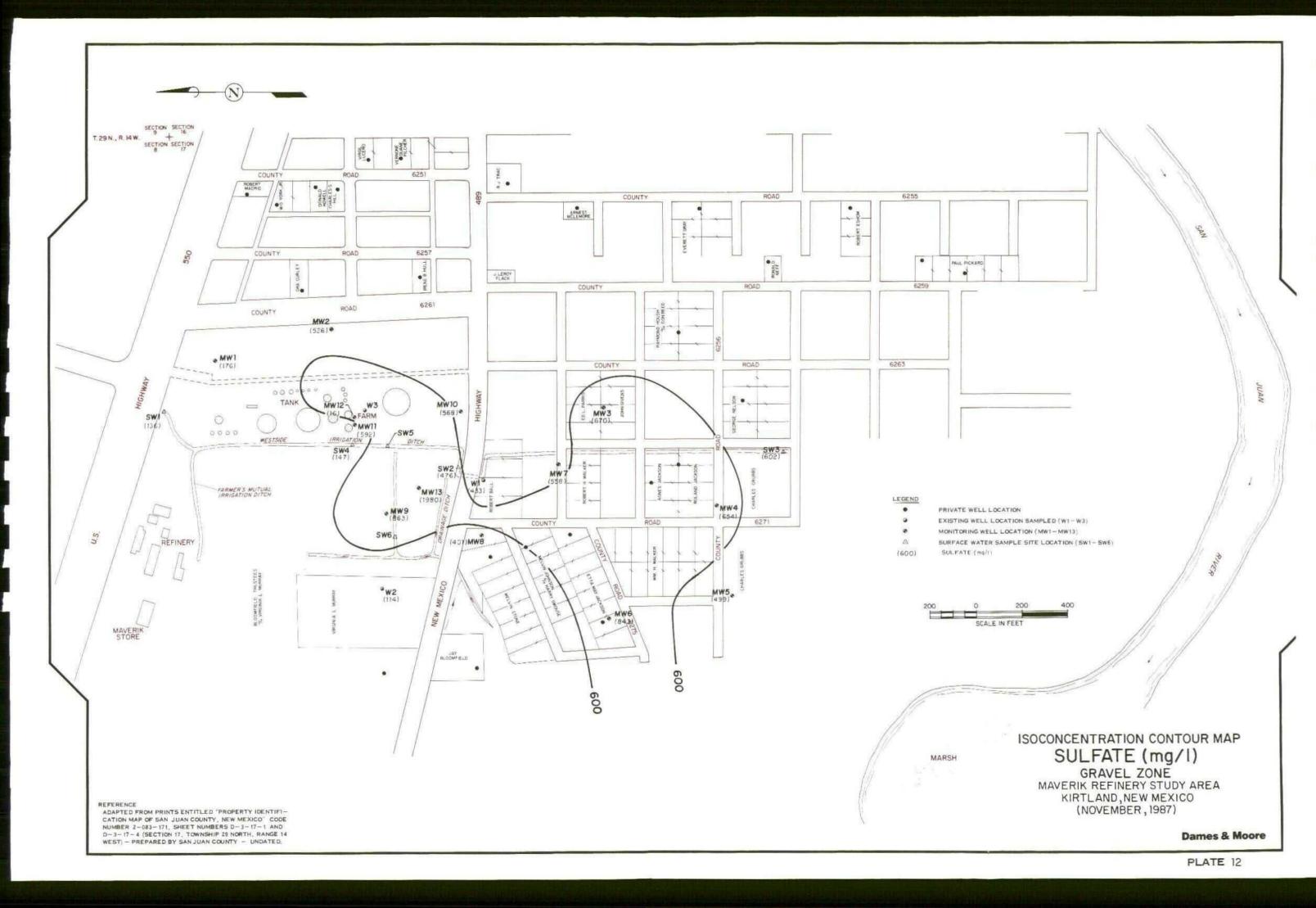
PLATE 7

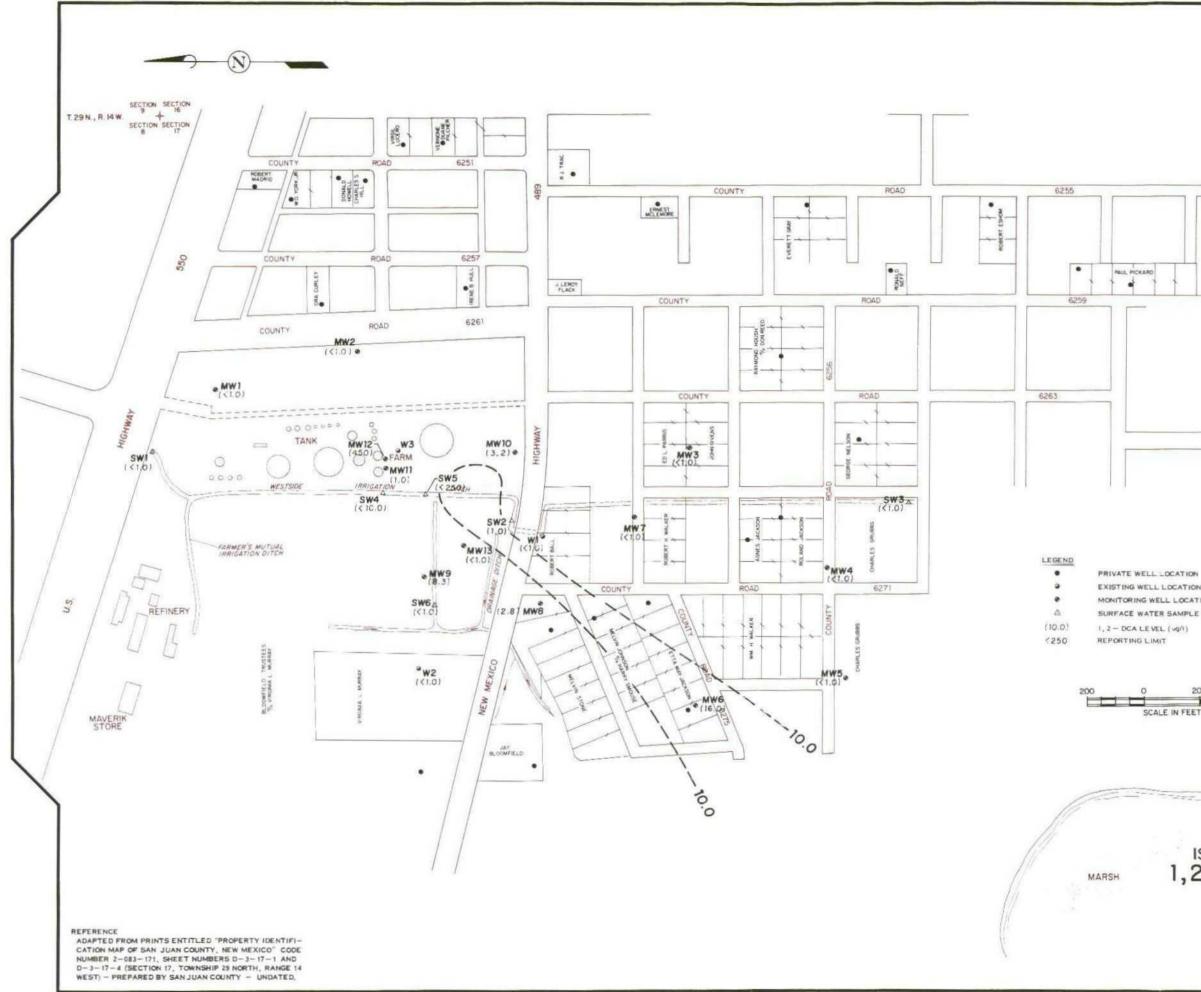

Dames & Moore

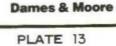

GEOLOGIC CROSS SECTION E-F


▼ WATER LEVEL SCREENED INTERVAL


LEGEND


WATER LEVEL GRADIENT MW-3 ---- MW-6 = 7.57'/915' = 0.008ft./ft.





ISOCONCENTRATION CONTOUR MAP 1,2-DICHLOROETHANE (DCA) GRAVEL ZONE

MAVERIK REFINERY STUDY AREA KIRTLAND, NEW MEXICO (NOVEMBER, 1987)

400 200 SCALE IN FEET

EXISTING WELL LOCATION SAMPLED (W1-W3) MONITORING WELL LOCATION (MW1-MW13) SURFACE WATER SAMPLE SITE LOCATION (SW1-SW6)

SAN

V

JUAN

4

RIVER

APPENDIX A

TRC SOIL-GAS AND SOIL-WATER AND SURFACE WATER SURVEY RESULTS

11 1

Ŕ

APPENDIX A

TRC SOIL-GAS AND SOIL-WATER AND SURFACE WATER SURVEY

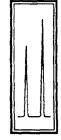
METHOD

Tracer Research Corporation's soil-gas and soil-water surveys involve pumping a small amount of soil-gas or soil-water out of the ground through a hollow probe driven a few feet into the ground and analyzing the gas or water for the presence of volatile contaminants. For this study nine volatile organic compounds were analyzed in the field using TRC's analytical field van, which is equipped with two gas chromatographs and two Spectra Physics SP4270 computing integrators. TRC has developed a QA/QC program that has been accepted by EPA for use on Superfund sites. This program is followed on all TRC jobs, and it is presented herein, along with details of the field study, the equipment and the condensed data, in TRC's report, "Shallow Soil Gas Investigation At Maverik Refinery, Kirtland, New Mexico" (September 1987).

RESULTS AND LIMITATIONS

The data obtained from the TRC survey are consistent with the earlier water quality data results from the EPA and EID sampling, with respect to the direction and approximate boundaries of the contaminant plume, and the original evaluation that ground water flow is toward the southwest from the Maverik Refinery and Tank Farm. However, DCA concentration levels based on the TRC survey were considerably higher than any of the historic or current laboratory water quality analyses. This is probably due to the fact that the TRC survey is only semi-quantitative and that the TRC survey was conducted over a very small interval (4-6 inches) generally at the top of the first "wet" zone encountered, not necessarily the top of the water table surface,

Data from the TRC survey were used to modify slightly the original proposed numbers and locations of the monitor wells as presented in the Phase I scope of work. The changes involved the addition of three monitor wells and the shifting of the nested monitor wells from the southwest to the north.


A-1

Because the TRC survey indicated that maximum contamination was on-site just north of the largest southernmost tank, the nested monitor wells were shifted to this area. This was done to evaluate worse case vertical contaminant migration, since the vertical downward movement of contaminants would be expected to show up first near the source and at the site where the maximum shallow contamination was observed.

The TRC survey results also indicated that maximum contamination extended off-site to the south and southwest and to the west of the westside irrigation ditch. Consequently, the number of monitor wells located to the east of the westside ditch and upgradient of the contaminant plume was limited to three (Plate 2). Only one monitor well was constructed off-site and to the east of the ditch. On-site, one well was completed along the eastern edge of the Tank Farm and one upgradient along the north-northeast boundary of the site. The remaining 10 monitor wells were constructed at critical downgradient sites to monitor potential and likely contamination.

Tracer Research Corporation

.

i

i

SHALLOW SOIL GAS INVESTIGATION AT MAVERICK REFINERY KIRTLAND, NEW MEXICO

SEPTEMBER, 1987

PREPARED FOR:

DAMES & MODRE 250 E. Broadway, Suite 200 Salt Lake City, Utah 84111-2480 SUBMITTED BY:

S Fa

Tracer Research Corporation

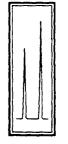

Tracer Research Corporation

TABLE OF CONTENTS

INTRODUCTION	1
BACKGROUND ON THE METHODOLOGY	2
SAMPLING AND ANALYTIC PROCEDURES	3
DETECTION LIMITS	5
QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES	7

APPENDIX A

CONDENSED	DATA	9
-----------	------	---



INTRODUCTION

A shallow soil gas investigation was performed by Tracer Research Corporation at the Maverick Refinery in Kirtland, New Mexico. The investigation was conducted on September 22 through 24, 1987 under contract to Dames and Moore. The primary purpose of the investigation was to use the soil gas technology in an effort to help characterize and determine the extent of volatile organic compounds in the subsurface.

A total of 15 soil gas samples and 21 water samples were collected and analyzed during the investigation for the following compounds:

> 1,2-Dichloroethane (1,2-DCA) 1,1,1-Trichloroethane (TCA) Trichloroethene (TCE) Tetrachloroethene (PCE) Benzene Toluene Ethylbenzene Xylene Total Hydrocarbons

BACKGROUND ON THE METHODOLOGY

The presence of volatile organic chemicals (VOCs) in shallow soil gas indicates the observed compounds may either be in the vadose zone near the probe or in groundwater below the probe. The soil gas technology is most effective in mapping low molecular weight halogenated solvent chemicals and petroleum hydrocarbons possessing high vapor pressures and low aqueous solubilities. These compounds readily partition out of the groundwater and into the soil gas as a result of their high gas/liquid partitioning coefficients. Once in the soil gas, VOCs diffuse vertically and horizontally through the soil to the ground surface where they dissipate into the atmosphere. The contamination acts as a source and the above ground atmosphere acts as a sink, and typically a concentration gradient develops between the two. The concentration gradient in soil gas between the source and ground surface may be locally distorted by hydrologic and geologic anomalies (e.g. clays, perched water); however, soil gas mapping generally remains effective because distribution of the contamination is usually broader in areal extent than the local geologic barriers and is defined using a large data base. The presence of geologic obstructions on a small scale tends to create anomalies in the soil gas-groundwater correlation, but generally does not obscure the broader areal picture of the contaminant distribution.

SAMPLING AND ANALYTIC PROCEDURES

Tracer Research Corporation utilized an analytical field van which was equipped with two gas chromatographs and two Spectra Physics SP4270 computing integrators. In addition, the van has two built-in gasoline powered generators which provide the electrical power (110 volts AC) to operate all of the gas chromatographic instruments and field equipment. A specialized hydraulic mechanism consisting of two cylinders and a set of jaws was used to drive and withdraw the sampling probes. Probes consist of 7-foot lengths of 3/4 inch diameter steel pipe which are fitted with detachable drive points. A hydraulic hammer was used to assist in driving probes past cobbles and through unusually hard soil.

Soil gas samples were collected by driving a hollow steel probe to a depth less than 14 feet into the ground. The aboveground end of the sampling probes was fitted with a steel reducer and a length of polyethylene tubing leading to a vacuum pump. Five to 10 liters of gas was evacuated with a vacuum pump. During the soil gas evacuation, samples were collected by inserting a syringe needle through a silicone rubber segment in the evacuation line and down into the steel probe. Ten milliliters of gas were collected for immediate analysis in the Soil gas was subsampled (duplicate TRC analytical field van. injections) in volumes ranging from 1 µL to 2 mL, depending on the VOC concentration at any particular location.

Groundwater samples were collected by driving a hollow steel probe to a maximum depth of 7 feet into the ground. A length of polyethylene tubing was inserted to the bottom of the probe. The tubing was attached to a peristaltic pump. Approximately 40 mL of water was collected in bottles with teflon lined septum caps so as to exclude air. Any sediment collected with the groundwater was allowed to settle. The water was subsampled (duplicate injections) in volumes ranging from 1 HL to 10 HL.

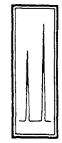
З

A gas chromatograph equipped with an electron capture detector was used for analyses of 1,2-DCA, TCA, TCE and PCE. Nitrogen was used as the carrier gas.

A second gas chromatograph , equipped with a flame ionization detector, was used for analyses of benzene, toluene, ethylbenzene, xylenes, and total hydrocarbons.

HEADSPACE ANALYSIS

Analytical instruments are calibrated each day by the use of chemical standards prepared in water by serial dilution from commercially available pure chemicals. A partition coefficient is generated for each analyte. The parition coefficient is generated by decanting 10 mL to 20 mL off of the aqueous standard so as to leave approximately the same amount of headspace that is in the water samples. The bottle is then resealed and shaken vigorously for 60 seconds. An analysis of the headspace and liquid in the bottle yields the partition coefficient. The value of the coefficient can then be used to accurately estimate the total mass of the analyte in the original water sample. Calibration and partition coefficient checks are also run after approximately every three hours.

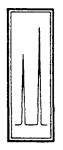

DETECTION LIMITS

Detection limits are a function of the injection volume as well as the detector sensitivity for individual compounds. Thus, the detection limit varies with the sample size. Generally, the larger the injection size the greater the sensitivity. However, peaks for compounds of interest must be kept within the linear range of the detector. If any compound has a high concentration, it is necessary to use small injections, and in some cases to dilute the sample to keep it within linear range. This may cause decreased detection limits for other compounds in the analyses. The detection limits range down to 0.00003 Hg/L for compounds such as TCA and PCE depending on the conditions of the measurement, in particular, the sample size. If any component being analyzed is not detected, the detection limit for that compound in that analysis is given as a "less than" value (e.g. <0.0001 µg/L). This number is calculated from the current response factor, the sample size, and the estimated minimum peak size (area) that would have been visible under the conditions of the measurement.

Date	Detection	n Limits 9	Septer	nber a	22-2	24, 198	37
9-22-87	1,2-DCA	TCA	TCE		PCE	E	Benzene
soil gas	<0.005	<0.00005	<0.00	0009	<0.	E0000	<0.02
water	<0.9	<0.01	<0.02	2	<0.	.06	<4
}	Toluene	Ethylben:	zene	Xyler	пe	Total	Hydrocarbons
soil gas	<0.05	<0.05		<0.02	2	<0.05	
water	<4	<4		<4		<4	
9-23-87	1,2-DCA	TCA	TCE		PCE	Ξ	Benzene
soil gas	<0.002	NA	NA		NA		<0.008
water	<0.2	NA	NA		NA		<0.8
	Toluene	Ethylbeze	ene	Xyler	пe	Total	Hydrocarbons
soil gas	<0.009	<0.01		<0.00)9	<0.008	3
water	<0.9	< 1		<0.9		<0.8	

NA-Not Analyzed

Tracer Research Corporation



9-24-87 1,2-0	CA TCA	TCE	PCE	Benzene
soil gas <0.00	AN S	NA	NA	<0.007
water <0.5	NA	NA	NA	<0.05
Tolue	ne Ethylb	enzene	Xylene T	otal Hydrocarbons
soil gas <0.00	0.00E	3	<0.008 <	0.008
soil gas <0.00 water <0.0	<0.05	5	<0.05	<0.05

QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

Tracer Research Corporation's normal quality assurance procedures were followed in order to prevent any crosscontamination of soil gas samples.

- . Steel probes are used only once during the day and then washed with high pressure soap and hot water spray or steam-cleaned to eliminate the possibility of crosscontamination. Enough probes are carried on each van to avoid the need to reuse any during the day.
- Probe adaptors (steel reducer and tubing) are used once during the course of the day and cleaned at the end of each working day by baking in the GC oven. The tubing is replaced periodically as needed during the job to insure cleanliness and good fit.
- Silicone tubing (connecting the adaptor to the vacuum pump) is replaced as needed to insure proper sealing around the syringe needle. This tubing does not directly contact soil gas samples.
- Glass syringes are usually used for only one sample per day and are washed and baked out at night. If they must be used twice, they are purged with carrier gas (nitrogen) and baked out between probe samplings.
- Septa through which soil gas samples are injected into the chromatograph are replaced on a daily basis to prevent possible gas leaks from the chromatographic column.
- Analytical instruments are calibrated each day by the use of chemical standards prepared in water by serial dilution from commercially available pure chemicals. Calibration checks are also run after approximately every five soil gas sampling locations.
- 2 cc subsampling syringes are checked for contamination prior to sampling each day by injecting nitrogen carrier gas into the gas chromatograph.
- Prior to sampling each day, system blanks are run to check the sampling apparatus (probe, adaptor, 10 cc syringe) for contamination by drawing ambient air from above ground through the system and comparing the analysis to a concurrently sampled air analysis.

All sampling and 2 cc subsampling syringes are decontaminated each day and no such equipment is reused before being decontaminated. Microliter size subsampling syringes are reused only after a nitrogen carrier gas blank is run to insure it is not contaminated by the previous sample.

Soil gas pumping is monitored by a vacuum gauge to insure that an adequate gas flow from the vadose zone is maintained. A negative pressure (vacuum) of 2 in. Hg less than the maximum capacity of the pump (evacuation rate >0.02 cfm) usually indicates that a reliable gas sample cannot be obtained because the soil has a very low air permeability. -

Tracer Research Corporation

ļ

i

1

APPENDIX A: CONDENSED DATA

DAMES & MODRE/MAVERICK REFINERY/KIRKLAND, NEW MEXICO

Tctal	Hydrac.	0.7 0.02 0.02	<0.02 107,000 114,000	19 55,000 0.8	1 0.8 <0.00€	<0.008 1 0.2	ৰ ৰ ব ∨ ∨ ∨	13,000 1 6	0.0 0.0 0.0	51 (0.8	<0.8 8 126	с. и О
	Kylene Cug/10	60.02 60.02	0.02 0.2 0.2	60.02 (0.02 (0.02	<pre><0.02 <0.02 <0.02 <0.006</pre>	<pre><0.9 <0.009 <0.003</pre>	য্য্য ∀∨∀	170 40.9 40.9	<pre><0.009 <0.9 <0.9 <0.9</pre>	0 0 0 0 0 0 0 0	€.09 €.09 €	0.08 <0.008
C+ 5., 1	Benzene Benzene (1/pu)	<pre></pre>	<pre><0.02 1,000 1,200</pre>	4 2,000 40.02	<pre><0.02 0.4 <0.6 </pre>	<1 <0.01 <0.008	ष ग प ∀ ∀ ∀	560 △1 △1	0.01 10 10	⊽⊽⊽	<1 <0.05 <0.05	<0.05 <0.05
	Toluene (ug/l)	60.02 60.02 60.02	<pre><0.02 10.000 4,200</pre>	<pre><0.02 5.500 <0.02 <0.02</pre>	<pre><0.02 0.3 <0.3 <0.06</pre>	<0.05 0.03 0.03 0.03	¥ ४ ४ ४ ४ ४	1,100 ≺0.9 <0.9	0.0 0.0 0.0	0 0 0 0 0 0 0 0	0.9 6 0.9	0.0 .0
	Benzene (ug/1)	<pre><0.02 <0.02 <0.02 <0.02</pre>	<0.02 30.000 28.000	16 1,200 <0.02	<pre><0.02 <0.02 <0.02 <0.006</pre>	<0.8 <0.008 0.1	ৰ ৰ ৰ ∀ ∨ ∨	7,000 40.8 4	0.1 <0.8 <0.8	8.0 0.0 0,0 0,0 0,0 0,0	0 0 8.⊄@	0.02 0.8
IEXICO	PCE (ug/1)	0.002 0.0004 0.0006	0.001 1 0.02	0.003 2 <0.00003	<0.00003 0.0008 N/A	R/N R/N R/N	 0.006 006 006 006 006 	N.N.S. N.A.S.	e n n n n	E N N N N N N	e e e N N N	NZA NZA
KY/KIKKLHNU, NEW MEXICO	TCE (ug/1)	0.002 0.002	0.003 0.1 0.08	0.08 0.2 0.006	0.000 0.002 N/A	e K K K K K K K K K K K K K K K K K K K	0.020.020.42	0.9 N/R N/R	A A	A A A A A A A A A A A A A A A A A A A A	E E E E E E E E E E E E E E E E E E E	R/N R/A
		0.0004 0.0004 0.007	0.0002 0.2 0.008	0.03 0.6 0.005	0.005 0.002 N/A	E E E N N N N	 0.01 0.01 0.1 	N H H O X X O X X	e e e Z Z Z	e V V V V	e e e v v v	N N N
DHMES & MOUKE/MHVERICK KEFINE	`	0.04	0.02 12 0.8	54 54 0.03	0.07 0.02 0.02	0.03 0.03	0.90.912	€8 <0.2 1	е 20.2 49	40.2 40.2 40.2	40.2 14 12	ທີ່ 4 ທີ
/MHVEKI	Depth Date	09/22 09/22 09/22	09/22 09/22 09/22	09/22 09/22 09/22	09/22 09/22 09/23	09 /23 09/23 09/24	09/22 09/22 09/22	09 /22 09/23 09/23	09/23 09/23 09/23	09/23 09/23 09/23	09/23 09/24 09/24	09724 09724
MOUKE	Dept	งิณณ	ในติติ	ິດ. 	រំហំ ក្តីពី	ໜໍ່ຫືນີ້		ឃំហំហំ	លំកំលំ	τυυ	លំលំង	ົ້ນບໍ່
UHMES &	Sample	5604 5604 5605	5606 5607 5608	5609 5610 5611	5612 5613 5614	5615 5616 5630	6401 6402 6403	6W10 6W14 6W15	GW16 GW17 GW18	GW19 GW20 GW21	gw23 Gw23 Gw24	6W25 6W26

Tracer Research Corporation

Proofed by L. Leplander

Checked by P. Craft

Analyzed by K. Larson

Notations: I interference with adjacent peaks NA not analyzed

| |

i

:

!

.

-

: T

ļ

ł

İ

DAMES & MOORE/MAVERICK REFINERY/KIRKLAND, NEW MEXICO

5)						
0 1 1) 	1,2 DCA	TCA	TCE	PCE 212/11	Benzene	Tuluene	Ethyl Benzene Ynyfyr	Kylene	Totel Hydrof.	
		And a sea under stamp	r show				or vñn v			r thr	1 /nn /	
	ື່ມ	09/24	20	N/A	N/A	N/H	<0.06	0.2	<0.05	<0.08	0.1	
6429	ŵ	09724	61	エイド	N/A	R/N	. D. 6	0.8	<0.05	<0.08	1	
6431	Ū	09724	0.04	R/N	R/A	N/A	0.04	<0.008	<0.008	<0.008	1	
e this		09/24	0.7	N/A	N/A	N/Я	Å	Q	ç	Ş	Ņ	
PEIMS		09/24	0.8	N/A	N/A	N/A	Ņ	0.05	<0.05	<0.08	4	

Analyzed by K. Larson Chacked by P. Craft Procfed by L. Laplander

Tracer Research Corporation

I

i I

Notations: I interference with adjacent peaks NR not analyzed

i

i

APPENDIX B

GEOLOGIC, BOREHOLE AND WELL CONSTRUCTION SPECIFICATIONS AND LOGS

APPENDIX B

GEOLOGIC, BOREHOLE AND WELL CONSTRUCTION SPECIFICATIONS AND LOGS

WELL POINTS, MONITOR WELLS AND BOREHOLE COMPLETIONS

As part of the Phase I subsurface hydrogeologic evaluation, four 3-foot long (well points 1,3,4,5) and one 4-foot long (well point 2), galvanized steel well points, 13 monitor wells (twelve of 2-inch PVC and one 2-inch stainless steel well point) and one deep borehole were completed. The detailed geologic logs and well construction specifications are presented on Plates B-1 through B-8. Table D-1 in Appendix D summarizes the well construction and water level data.

CONSTRUCTION METHODS AND SPECIFICATIONS

WELL POINTS

The 5 well points were completed in areas without private water wells where water level elevation data were needed for completing a water table contour map. The depths to water below ground surface in these well points ranged from 1 foot at well point 5 (on-site in the southwest corner in the major ground water discharge zone), to 3.6 feet at well point 2, (off-site and downgradient to the southwest, just above the existing flood plain of the San Juan River).

MONITOR WELLS

The 12 PVC monitor wells (MW-1 to MW-12) and deep borehole were drilled with an air-rotary casing driver Speedstar SS15THH drill rig owned by Beeman Brothers Drilling, Inc. from Durango, Colorado. The wells were drilled with air, with minimal water (of drinking water quality), injected to aid in cleaning the drill cuttings out of the borehole.

B-1

An OVA meter was used on site to monitor the drill cuttings for high levels of volatile organics as drilling commenced. To prevent potential cross-contamination between drill holes, the drill casing and drill rod were steam cleaned after drilling each monitor well. Drill cuttings and discharges were containerized and stored on site.

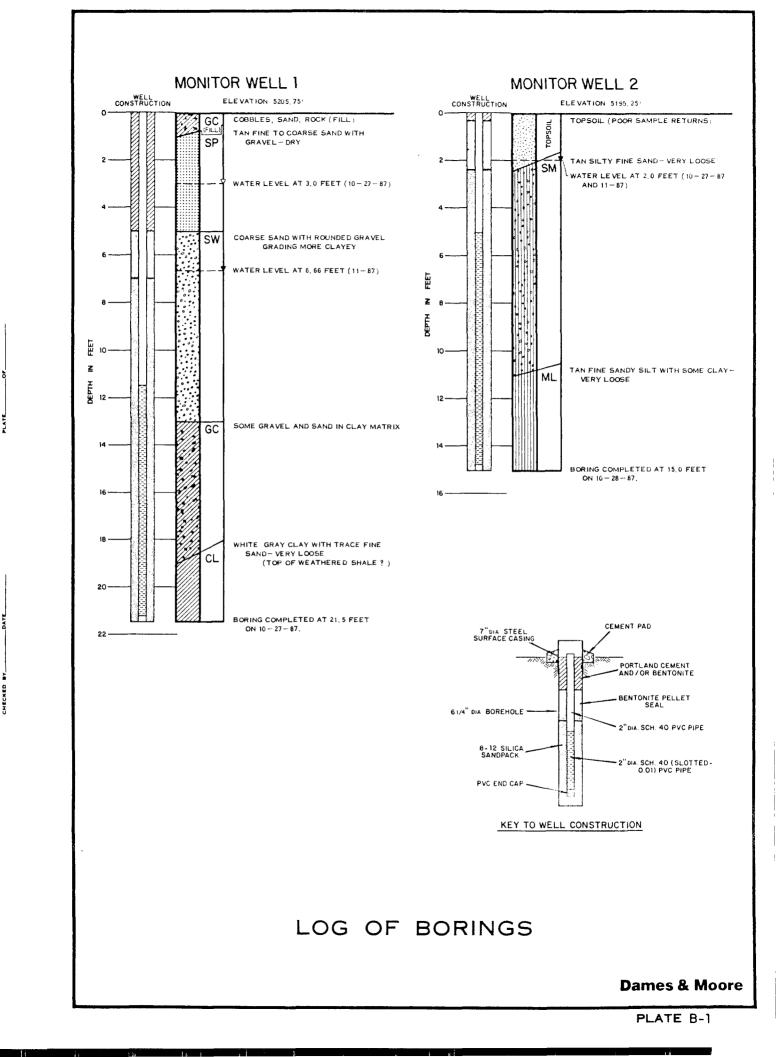
A Dames & Moore hydrogeologist was in the field at all times during the drilling, monitor well construction (i.e., screening, casing, sand packing, grouting) and monitor well development (pumping and bailing until sediment free). Two-inch diameter Schedule 40 PVC well screen (0.01 inch) and pipe were used to complete the monitor wells. The PVC pipe was threaded so that no glue was used for connecting the joints or bottom caps.

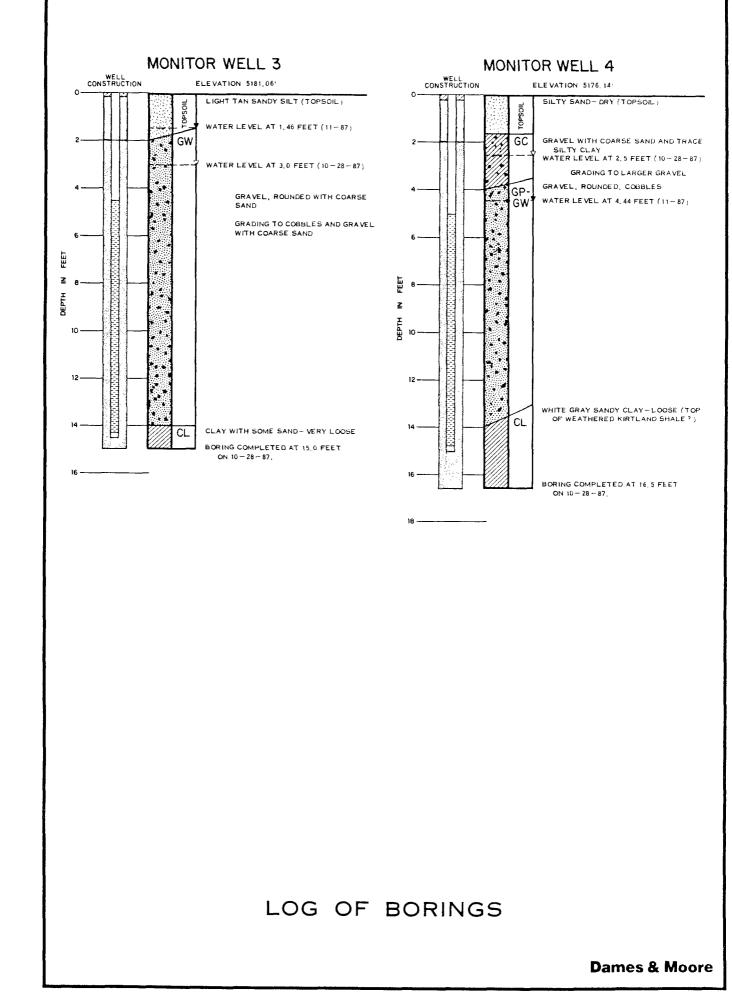
Monitor well 13 was completed with a 5-foot long, 2-inch diameter stainless steel well point. A well point was hand driven at this location (Plate 2) because the drill rig could not access this site. This site is immediately southwest of the Maverik Tank Farm in a major ground water discharge area. In fact, in this particular area, the ground water level is above land surface in many places.

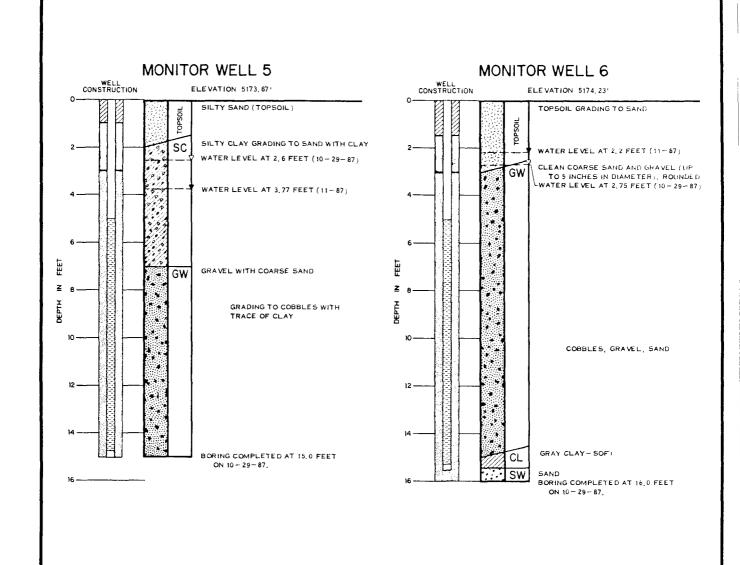
The shallow monitor wells were screened at or just below the water table into the gravel deposits. The silica sand pack varied from 8-12, 10-20 and 20-40 grain sizes, depending upon the type of material screened. The sand pack was extended up past the top of the water table to ensure interconnection with the top of the water table. The sand was extended as high as possible, while still permitting a good surface grout seal above the water table to land surface. The depth to water ranged from about 3.5 feet, to less than 1 foot in the ground water discharge zones. Monitor wells 2-9 were completed at about 15 feet, while monitor well 1 was completed at 21 feet, monitor well 10 at 12.5 feet and monitor well 12 at 12 feet.

Monitor well 11, the deep nested monitor well, was completed on-site in the gravel and coarse sand at 33 feet. Based on the drill cuttings at MW-12 and MW-11 and the OVA readings in the field, MW-11 was constructed to inter-

B-2


cept the zone just below the highly contaminated zone to monitor the extent of vertical contamination. Monitor well 12 was completed in the upper siltyclayey-sand zone 33.5 feet east of monitor well 11 in the upper highly contaminated zone. Based on the OVA meter readings, this contaminated zone extended down to about 17 feet. Although three nested wells were originally planned, only two nested wells were completed, since the "dry" gray shale (Kirtland Shale Formation) was encountered underlying the upper saturated gravel alluvial deposits. A deeper well completed in this underlying dry shale zone would have been of no value for monitoring since it would have been a dry well.


To verify the presence of this dry shale zone off-site, monitor well 10 was drilled to 52 feet, 20 feet into the upper dry Kirtland Shale Formation. The Kirtland Shale Formation consists of greenish gray shale members separated by the gray Farmington Sandstone member. It appears that some of the sandstone lenses were also encountered. The drill cuttings from this shale zone, as at monitor well 11, were also dry. The lower portion of this drill hole was backfilled with gravel pack and bentonite. Because the borehole started to slough in, the well screen was set in the hole and backfilled with gravel pack. A thicker bentonite seal was not possible. Monitor well 10 was then completed as a shallow monitor well in the saturated shallow alluvial deposits.


To document the presence of the Kirtland Shale Formation off-site, the decision was made to drill an additional deep borehole (B-1) approximately 550 feet to the southwest of the Tank Farm area. The top of the Kirtland Shale Formation was encountered at 23 feet. As at the other two sites, it was dry over this entire interval to the total borehole depth drilled of 38 feet.

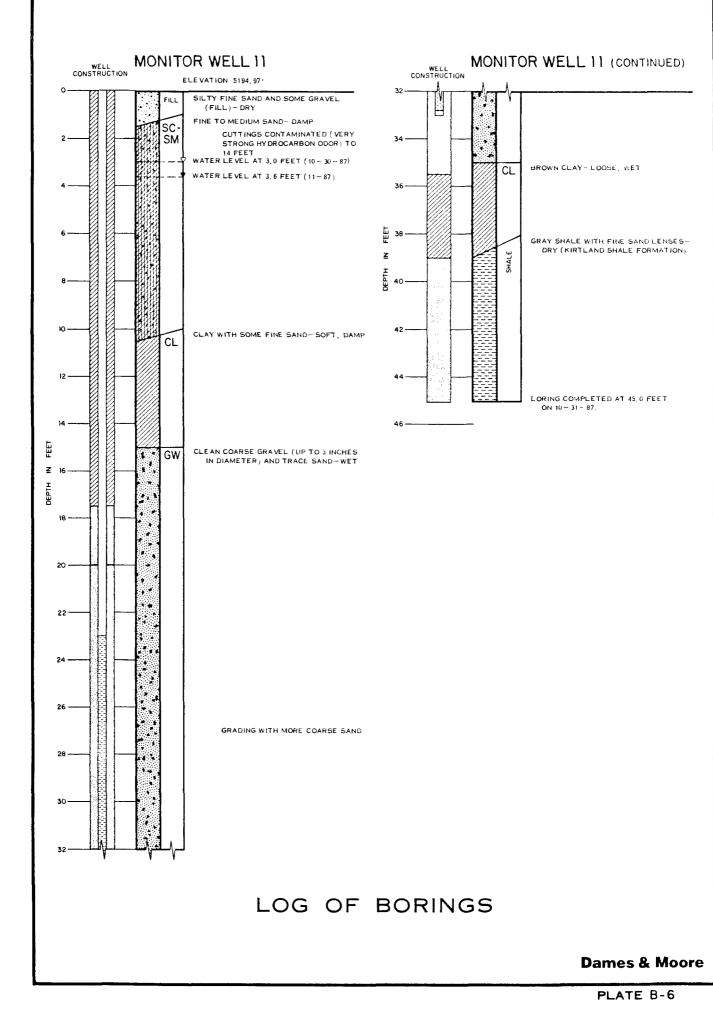
ì

B-3

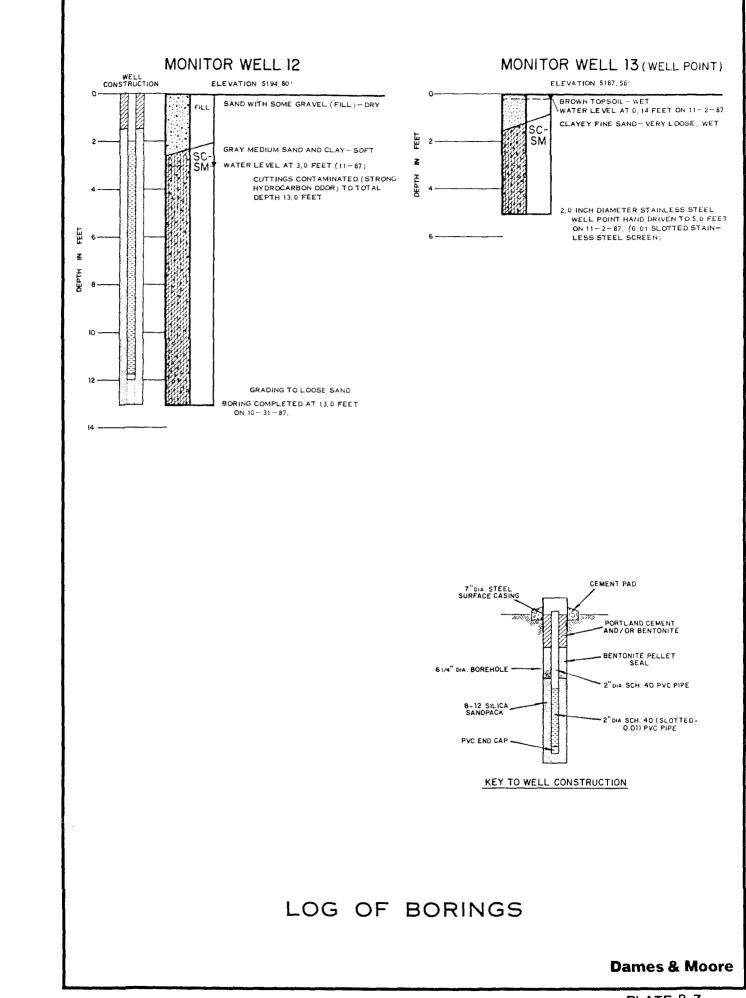
LOG OF BORINGS

Dames & Moore

PLATE B-3

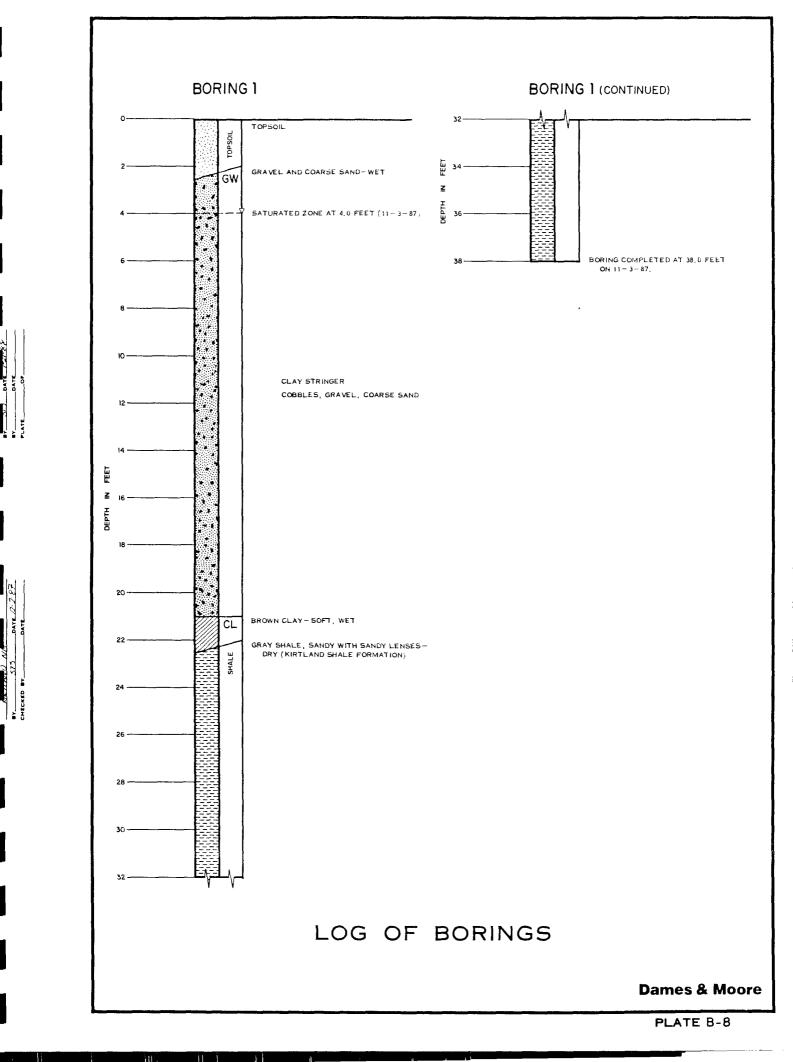


ļ



VIA DATE VAL

CALUTRY AND DATE / Z-Z-Z-ED IN DATE



CHECKED

CHECKED

PLATE B-7

APPENDIX C

.

1 i

i i

SLUG TEST AND AQUIFER PUMP TEST DATA PLOTS AND RESULTS

APPENDIX C

SLUG TEST AND AQUIFER PUMP TEST DATA PLOTS AND RESULTS

AQUIFER SLUG AND PUMPING TESTS

FIELD METHODS; SLUG TESTS

The slug tests on monitor wells 1 to 12 were conducted by injecting, then withdrawing a 1.5-inch diameter "slug" consisting of a sealed sand-filled piece of PVC pipe with a volume of 0.21 gallons. This pipe was used to measure the displacement, then the recovery of the water in the monitor wells. An electric transducer was used to monitor the static water level, the water level at the instant of displacement, and the residual water levels after the sand-packed PVC pipe was removed.

DATA ANALYSIS: SLUG TESTS

The data collected during the slug withdrawal tests were coded and entered into Dames & Moore's computer program SLUG which performed data reduction and preliminary analysis. The computer program plots and analyzes the data using the methods of Hvorslev (1951) Cooper, Bredehoeft, and Papadopulos (Cooper et al., 1967), and Bouwer (1978). Plots of slug test data suitable for analysis by the method of Cooper, Bredehoeft, and Papadopulos are presented in Plates C-4 through C-23 and by the methods of Hvorslev and Bouwer, presented in Plates C-24 through C-42.

The analyses performed on the computer were reviewed and checked for anomalous data and to verify the applicability of each method to the data used. The results are presented in Table C-1. Any unusual water level responses are described directly on the plots.

DATA ANALYSES RESULTS: SLUG TESTS

Slug test data analyses by the three methods used yielded similar results (Table C-1). In fact, analyses using the method of Bouwer (1978), for water table aquifers, actually yielded slightly lower permeability values at five of the sites (MW-3, MW-7, MW-8, MW-10 and MW-12).

Analysis of the slug test data (for monitor wells: MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, and MW-11) indicate that the coarse alluvial deposits are highly permeable, on the order of 10-100 feet/day. This is typical for coarse gravel deposits, (Freeze and Cherry, 1979). 3-30 m/day = Hydraudic Conductivity 3.5×10-5-3.5×10-4 m/s not permechdity

Slug test data analysis for monitor wells screened primarily in finer silty-clayey fine sand (monitor wells: MW-1, MW-2, MW-9, MW-10, MW-12), indicated permeabilities of less than or about 1 foot/day (Table C-1). > 10 x 10 3 × 10 1 1/day 4 × 10 6 m/s

FIELD METHODS: AQUIFER PUMPING TEST

A 9-hour aquifer pumping test was conducted on deep monitor well 11. The existing on-site 8-inch diameter, 21-foot deep, steel cased well, designated as well W-3, and shallow monitor well 12 were used for observation wells. Pumped well MW-ll was pumped with a centrifugal pump at 18 gpm for 9 hours, and recovery water level data were collected to near full recovery for 92 minutes. Water level data were collected at MW-ll with an electric transducer and with electric water level meters at observation wells MW-12 and W-3. Discharge rates were measured with a stop watch and calibrated bucket and regulated with the pump throttle.

DATA ANALYSIS: AQUIFER PUMPING TEST

Based on the subsurface geology and water level data from monitor wells MW-11, MW-12 and W-3, as well as from all of the other on-site and off-site monitor wells, and based on the water level responses in MW-11, MW-12 and W-3 during the aquifer pumping test, the alluvial gravel aquifer is an unconfined aquifer. There is no confining bed above the water table, although the upper

C-2

part of the saturated zone consists of very fine-grained, silty-clayey sands. This was evidenced during the pumping test in the form of delayed gravity drainage from these upper fine-grained sediments in MW-12.

Monitor well 11, the pumped well, is screened from 23 to 33 feet in the coarse gravel alluvial deposits. Monitor well 12 is screened from 2 feet to 12 feet in the upper clayey silty fine-grained sand zone. The existing well W-3 is believed to be open to its total depth of 21 feet. No well construction logs are available on this well.

The aquifer pump test data for MW-ll and W-3 were analyzed using the Boulton (1963) type-curve fitting technique for unconfined aquifers with delayed-yield, for early-time data (Type A curves) and for later-time data (Type B curves). Because the drawdown data plot for MW-ll matched with the type curve of r/D = 0, these data were actually analyzed with the Theis type curve. This does not affect the results since a value for S cannot be computed from the data from a pumped well anyway. The data from MW-l2, a partially penetrating observation well, was analyzed using the method of Stallman (1963), for unconfined anisotropic aquifers with partially penetrating pumped and/or observation wells.

DATA ANALYSES RESULTS: AQUIFER PUMP TEST

The data and data plots for the aquifer pumping test are presented in Table C-2 and Plates C-1 through C-3. The results of the aquifer pumping test indicate:

1. The upper fine-grained zone penetrated by MW-12 (the highly contaminated on-site shallow monitor well), is not directly interconnected with the underlying coarse gravel alluvial deposits intercepted by MW-11 and W-3. This was demonstrated by the fact that the maximum drawdown observed in shallow MW-12, located only 33.5 feet from pumped well MW-11, was 0.4 feet, whereas the maximum drawdown in the deeper well W-3, located 77 feet from pumped well MW-11 was 0.77 feet. However, this shallow zone was eventually impacted and water levels in MW-12 responded as a result of delayed gravity drainage.

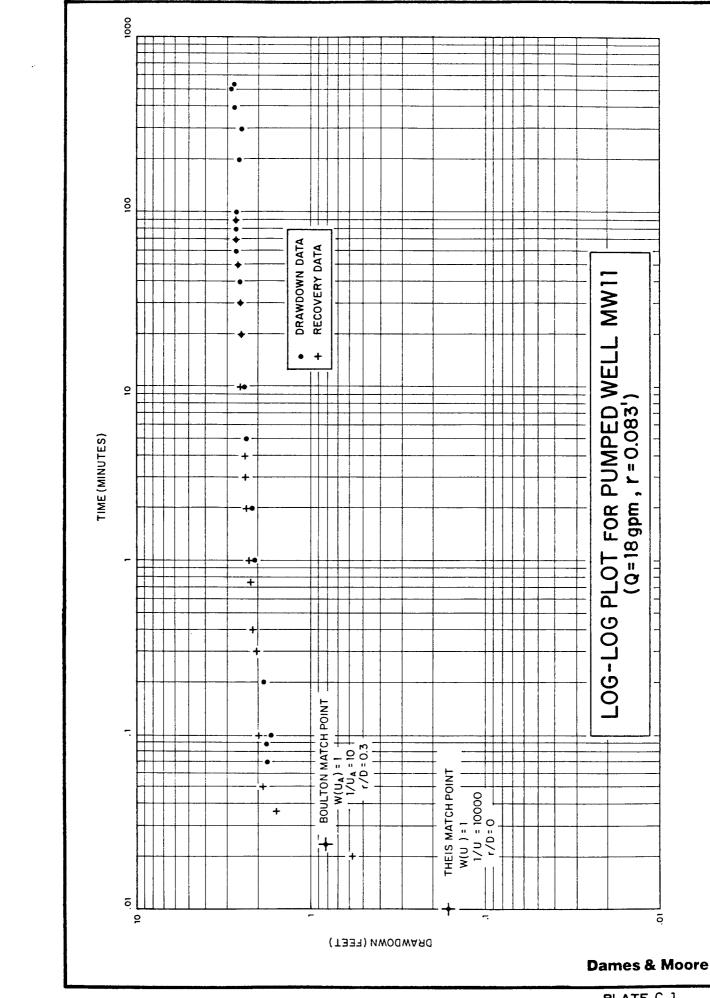
- 2. A representative transmissivity and horizontal hydraulic conductivity for the coarse alluvial deposits are about 12,000 gpd/ft, and 100 ft/day, respectively. Values for the specific yield based on calculations from well W-3 water level data, are too low. A representative value would be around 0.10.
- 3. A representative transmissivity, vertical and horizontal permeability and specific yield for the shallow siltier clayey sands, above the coarser alluvial deposits, are about 12,000 gpd/ft, 40 ft/day and 0.16 ft/day, and 0.20, respectively. This is significant in that this zone limits potential vertical contaminant movement, particularly on-site in the area near MW-12, where ground water movement (as well as contaminant movement) would (and as the water quality data indicate), preferentially move laterally rather than vertically.

ΤA	BL	E	C-	1

AQUIFER PUMP TEST AND SLUG TEST ANALYTICAL RESULTS

Aquifer Pump	Zone(s) Monitored	Saturated Thickness Tested and Monitored (ft)	Q/s ft	Maximum Drawdown (ft)	<u>gpd</u> (1) <u>T_ft</u>	<u>ft</u> (1) <u>K_day</u>	_s ⁽¹⁾
MW-11 (Pumped Well	coarse alluvial gravels with	20 (gravel aquifer)	6.55	2.75		$K_{\rm h} = 87(2)$	-
18 gpm)	silty sand					$K_{h} = 17(3)$	-
MW-12 (r=33.5')	silty-clayey sands	7	-	0.4	9,300(4)	$K_v = 0.16^{(4)}$ $K_h = 40^{(4)}$	0.20(4)
W-3 (r=77')	coarse alluvial gravels with silty sand	15	-	0.77		$K_{h} = 108^{(5)}$ $K_{h} = 108^{(3)}$	0.0001(5) 0.002(3)

.

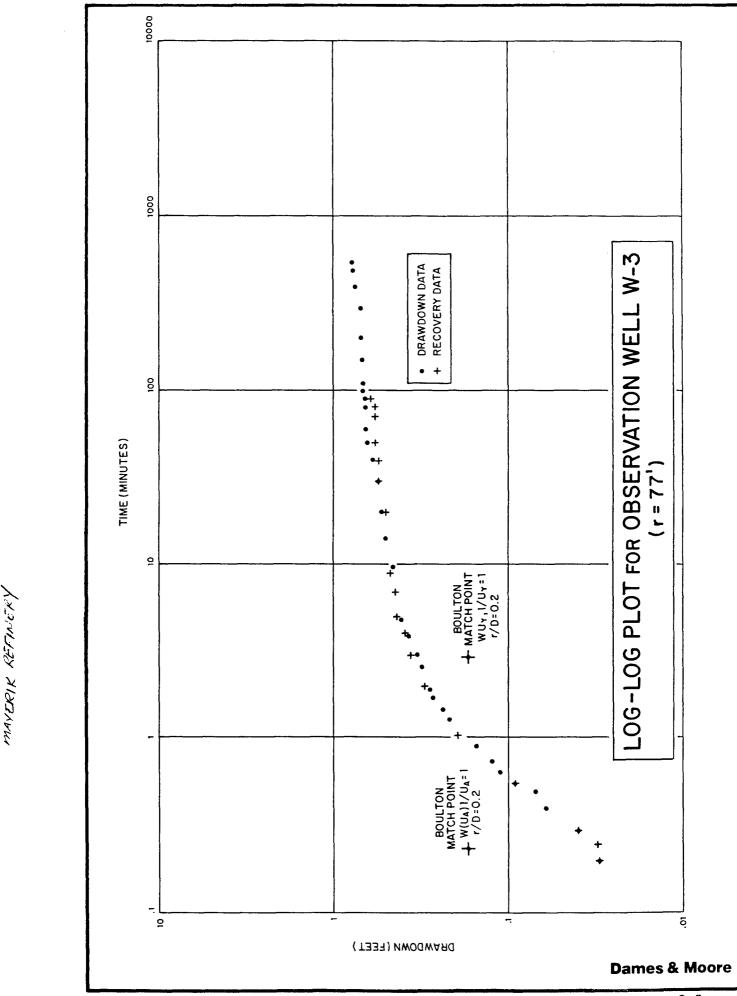

Aquifer Slug Test Results

Well	Primary Zone(s) Tested	$\frac{ft}{day}$	<u>ft</u> (7) <u>K</u> day	<u>ft</u> (8) <u>K</u> day
MW -1	silty-clayey sands/ some gravel	2.	2	2
MW-2	silty-clayey sands	0.2	0.6	0.5
MW-3	sand and gravel	25	48	18
MW-4	sand and gravel	90.	10	19
MW−5	sand and gravel	76	(9)	(9)
MW-6	sand and gravel	48	(9)	(9)
MW-7	sand and gravel	90.	46	27
MW-8	sand and gravel	25.	37	6
MW-9	silty-clayey sands	2.	0.6	0.9
MW-10	silty-clayey sands/ some gravel	1.	0.7	0.3
MW-11	sand and gravel	28.	17	37
MW-12	silty-clayey sands	0.9	1	0.3

Footnotes:

(1) Where T = Transmissivity; K = Hydraulic conductivity; S = Specific Yield (2) Based on drawdown data, Theis type curve fitting.

- (3) Based on recovery data, Boulton unconfined aquifer delayed yield type curve fitting.
- (4) Based on drawdown data, Stallman type curve fitting for partially penetrating observation wells and for aquifers where K_h (horizontal hydraulic conductivity) does not equal K_v (vertical hydraulic conductivity).
- (5) Based on drawdown data, Boulton unconfined aquifer delayed yield type curve fitting.
- (6) Based on the method of Cooper, H.H., Bredehoeft, J.D., and Papadopulos, I.S. (1967).
- (7) Based on the method of Hvorslev, M.J. (1978).
- (8) Based on the method of Bouwer, H. (1978).
 (9) Insufficient data to analyze by this method.



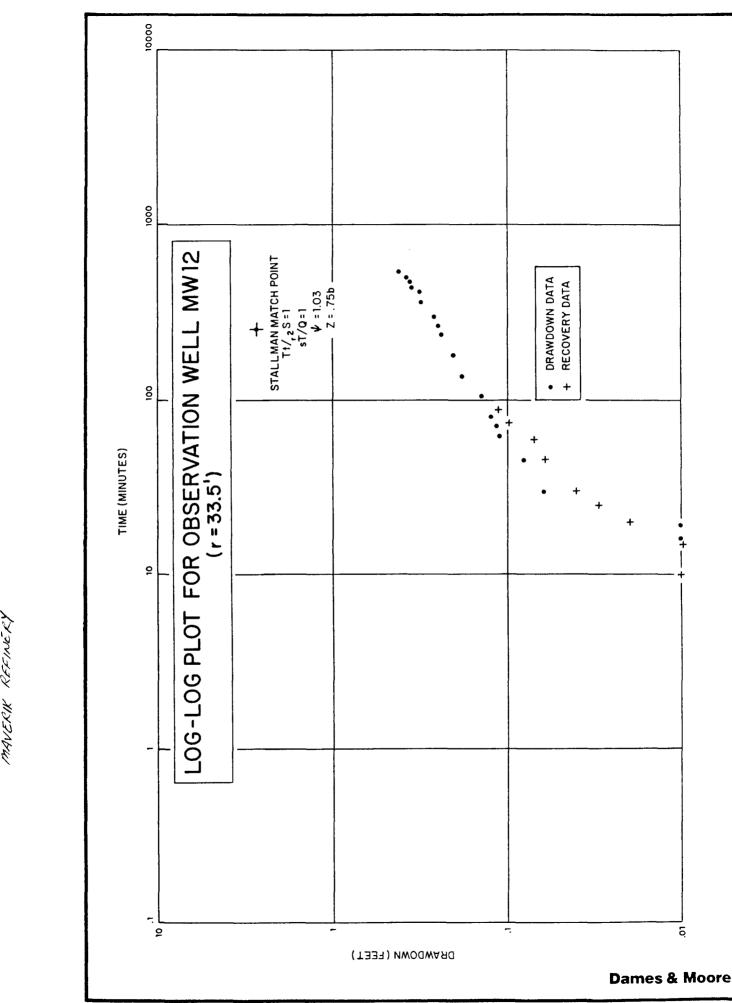
.

CHECKED BY

DATE

FILE 14819 - 00.5- 03) MAVERIK REFLAING

DATE

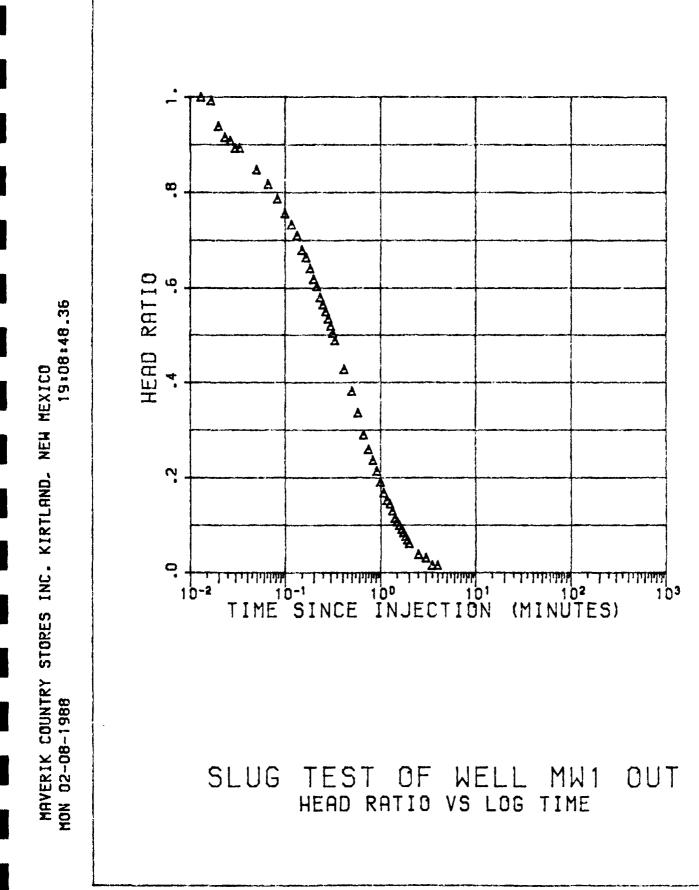

DATE 1273 98 CHECKED BY

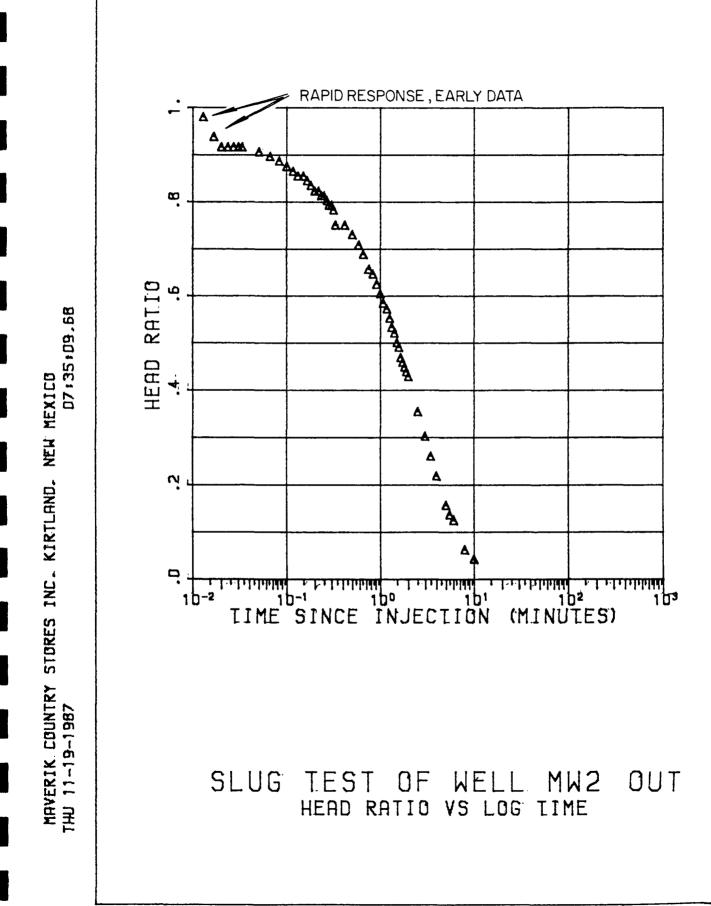
525

n N

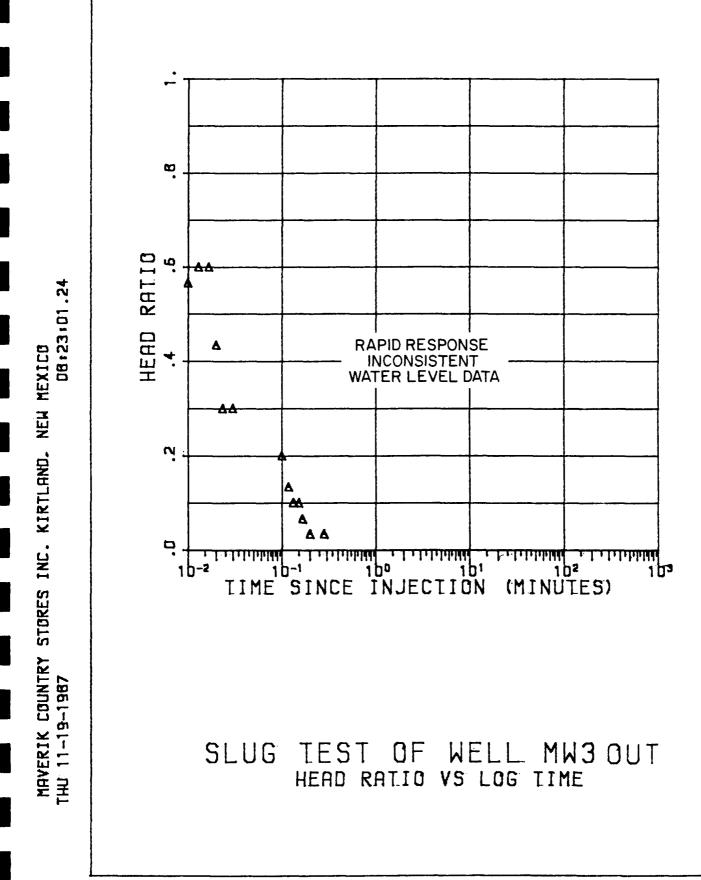
50

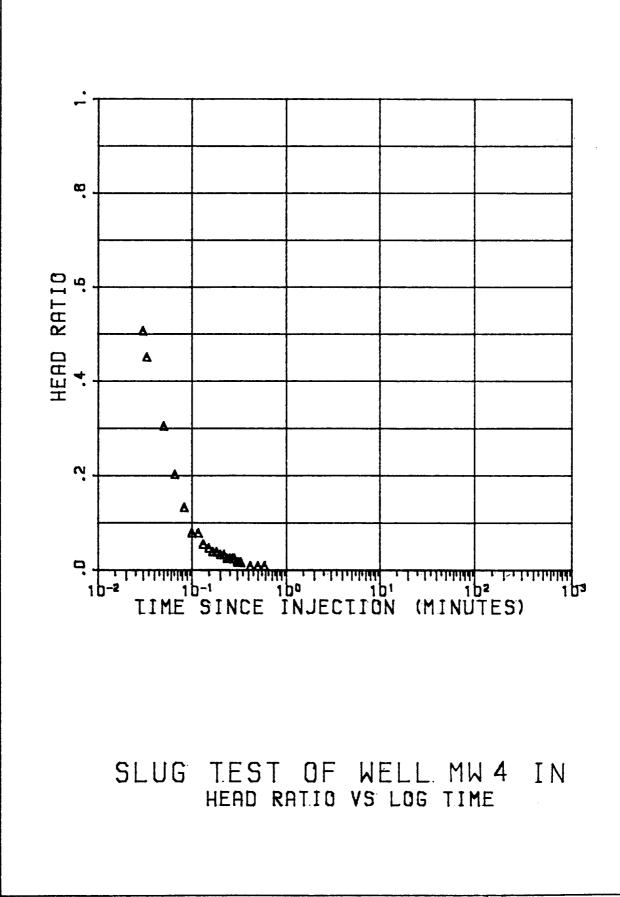
FILE


DATE

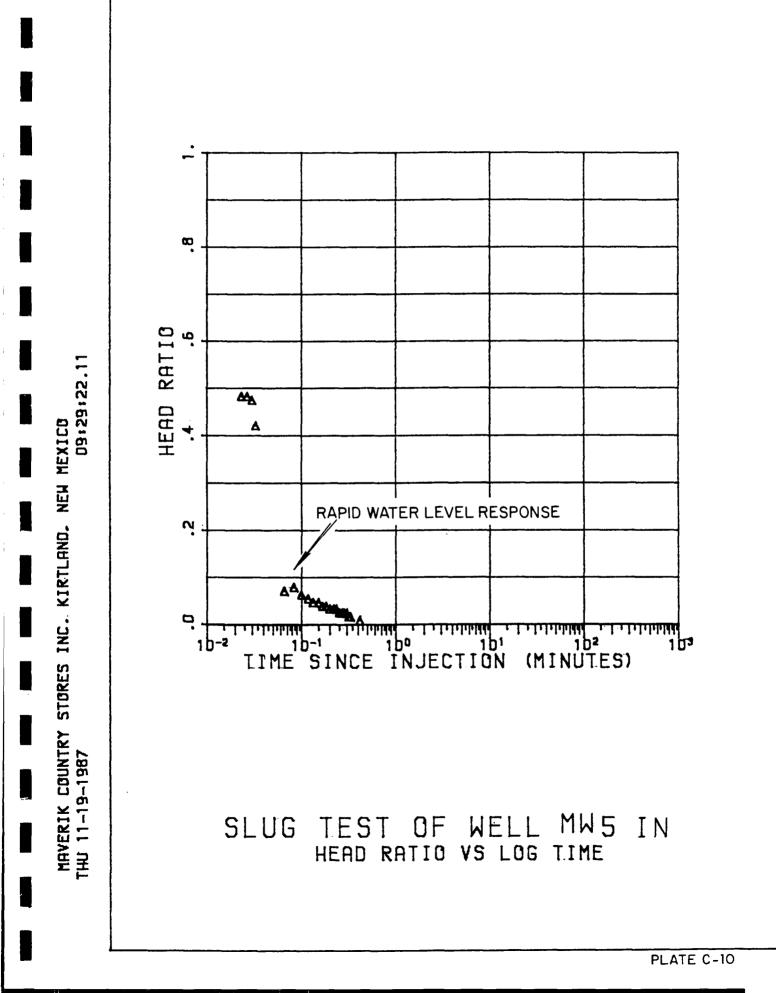

DATE 127.88 CHECKED BY

0/0


FILE



۸ ۸ 80 RATIO Ġ, 07:59:48.21 HEAD MAVERIK COUNTRY STORES INC. KIRTLAND, NEW MEXICO THU 11-19-1987 07:55 4 WATER LEVELS STABILIZED // A .33 MINUTES N Alt **** AAAA 9 אאוזידידיד 10³ 100 101 INCE INJECTION 10² (MINUTES) TIME SINCE 16-2 ΙN SLUG TEST 0F WELL MWЗ HEAD RATIO VS LOG TIME



MAVERIK COUNTRY STORES INC. KIRTLAND, NEW MEXICO THU 11-19-1987 08:44:49.65

ŝ RATIO .5 09:06:58.71 НЕАD MAVERIK COUNTRY STORES INC. KIRTLAND, NEW MEXICO THU 11-19-1987 09:00 4 4 ۵ A ۵ Ņ Δ 10² 10³ (MINUTES) CE INJECTION TIME SINCE SLUG TEST 0F WELL MW 4 OUT HEAD RATIO VS LOG TIME

PLATE (

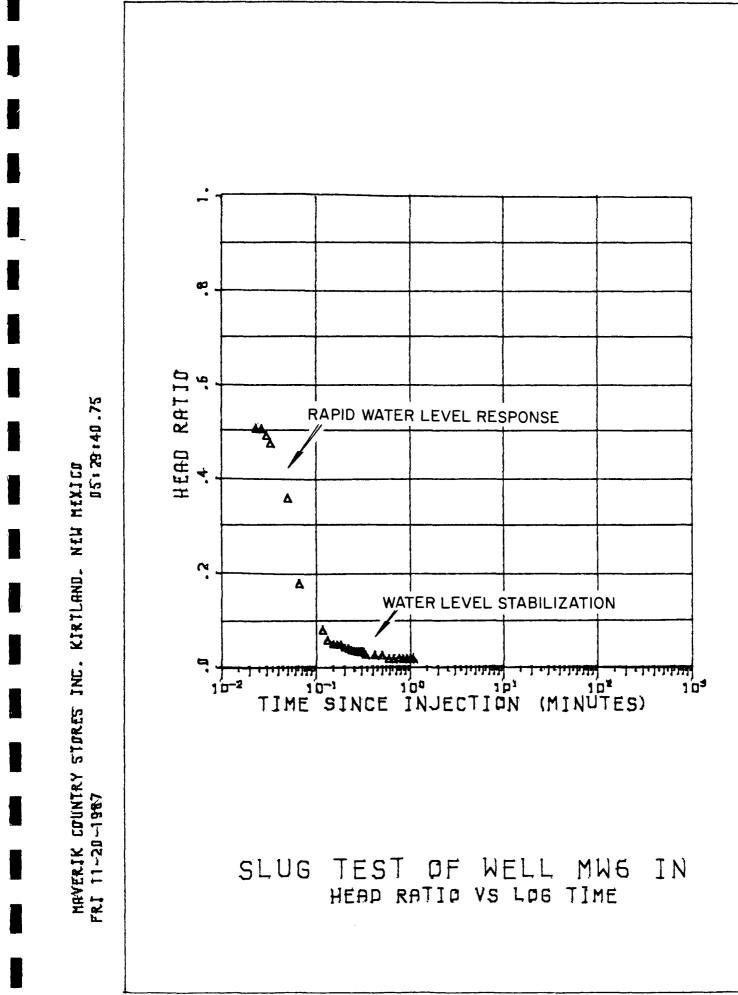
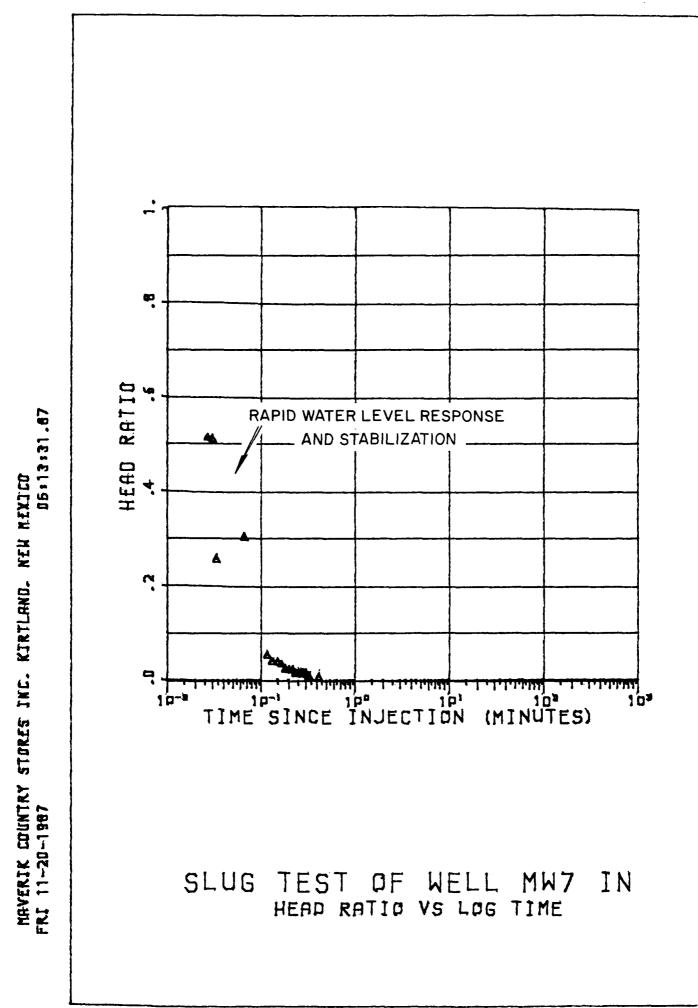

80 RATIO .6 09:51:21.03 HEAD MAVERIK COUNTRY STORES INC. KIRTLAND. NEW MEXICO THU 11-19-1987 09:51 4 RAPID WATER LEVEL RESPONSE ۵ N WATER LEVEL STABILIZATION Δ 22 TIME SINCE 10² 10³ (MINUTES) 10° 10' INCE INJECTION I SLUG TEST 0F WELL HEAD RATIO VS LOG

PLATE C-11


OUT

MW5

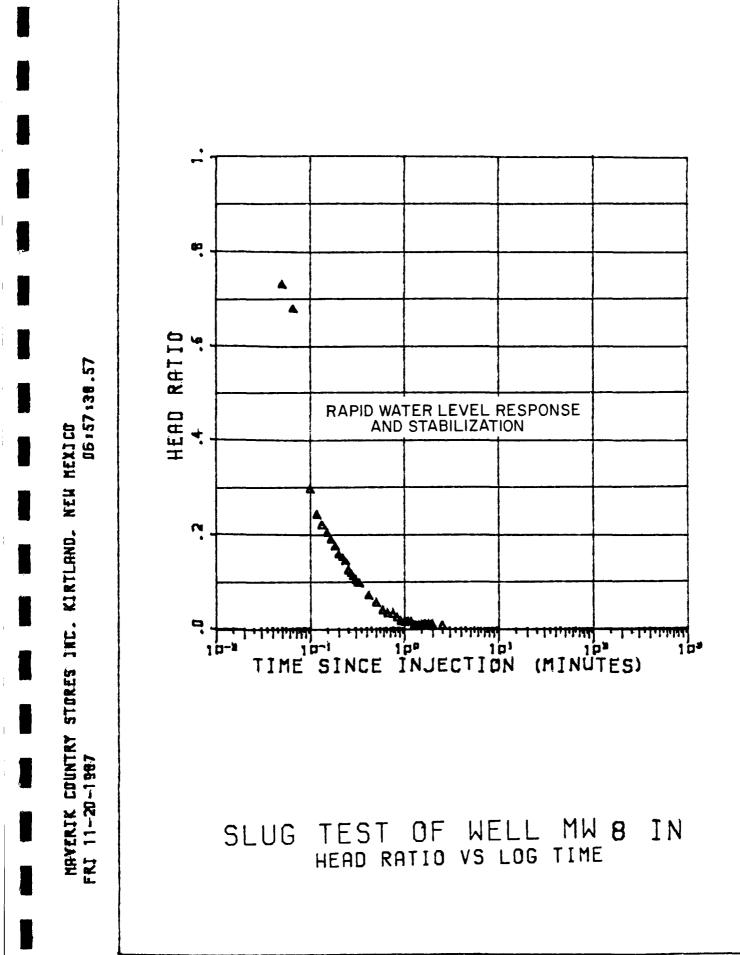
TIME

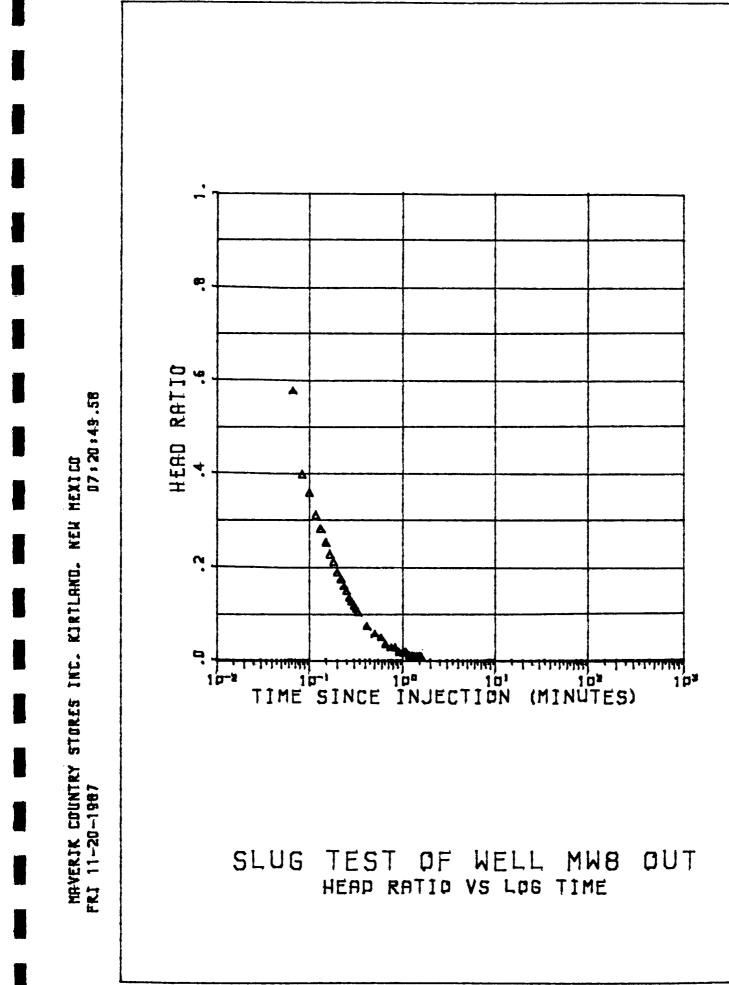
j d

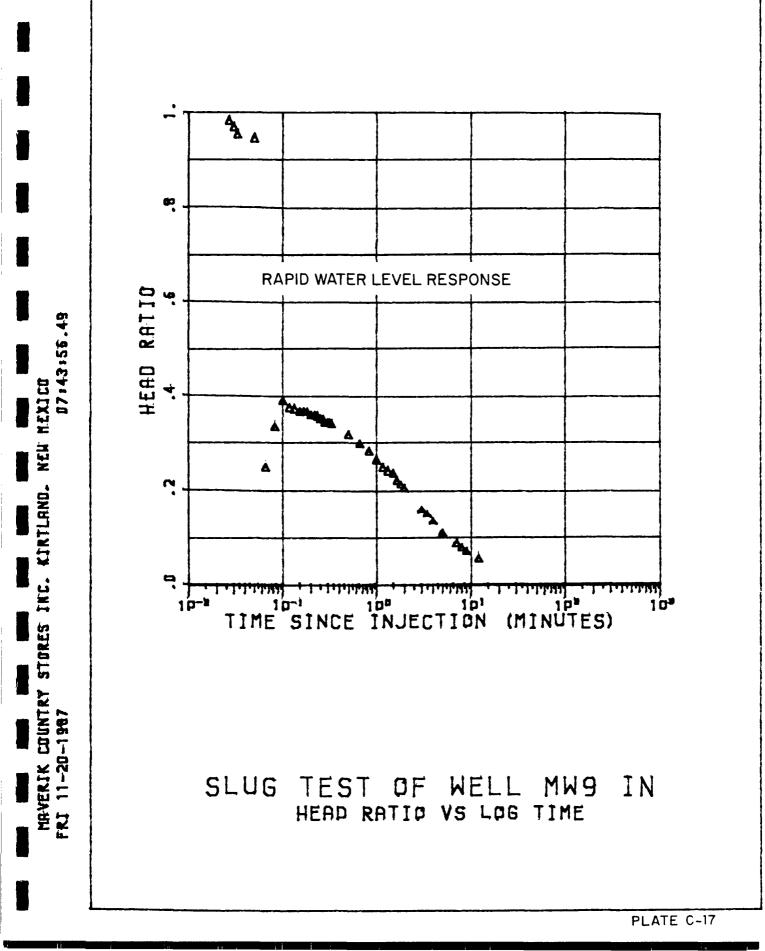
ļ

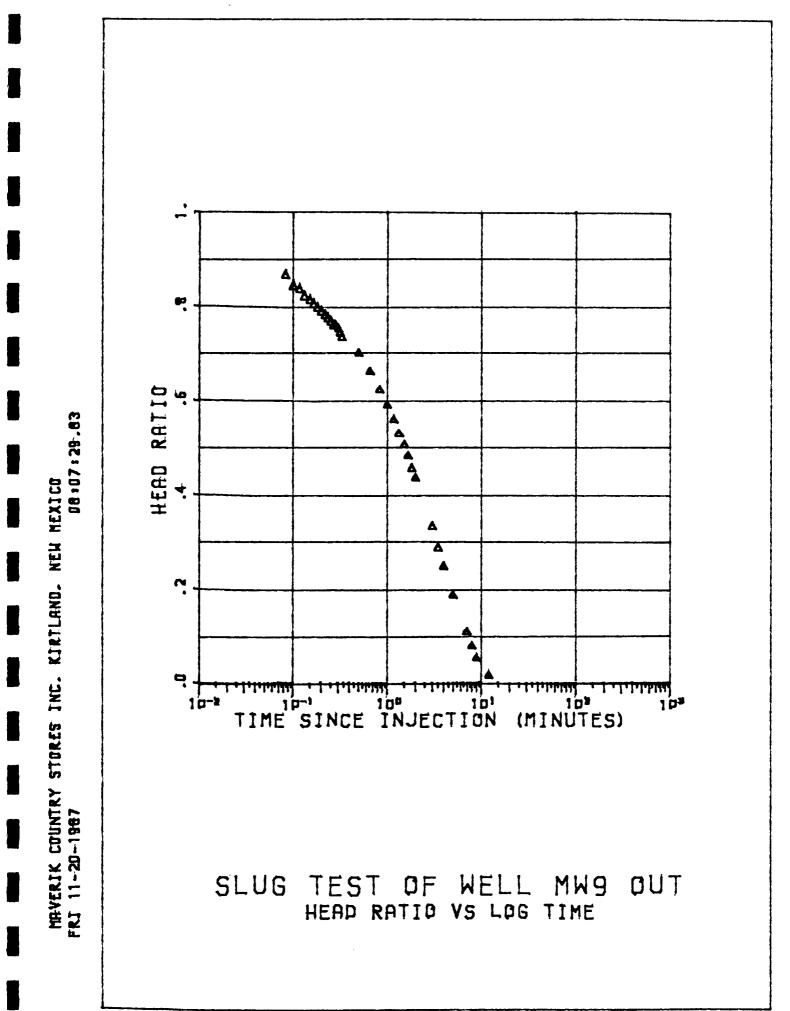
ę RATIO 4 HEA:D .4 RAPID WATER LEVEL RESPONSE ۵ AND STABILIZATION 3 ٩, TIME SINCE INJECTION 1.1.1.1.111 10-1 1p* (MINUTES) 103 SLUG TEST OF WELL MW7 DUT HEAP RATIO VS LOG TIME

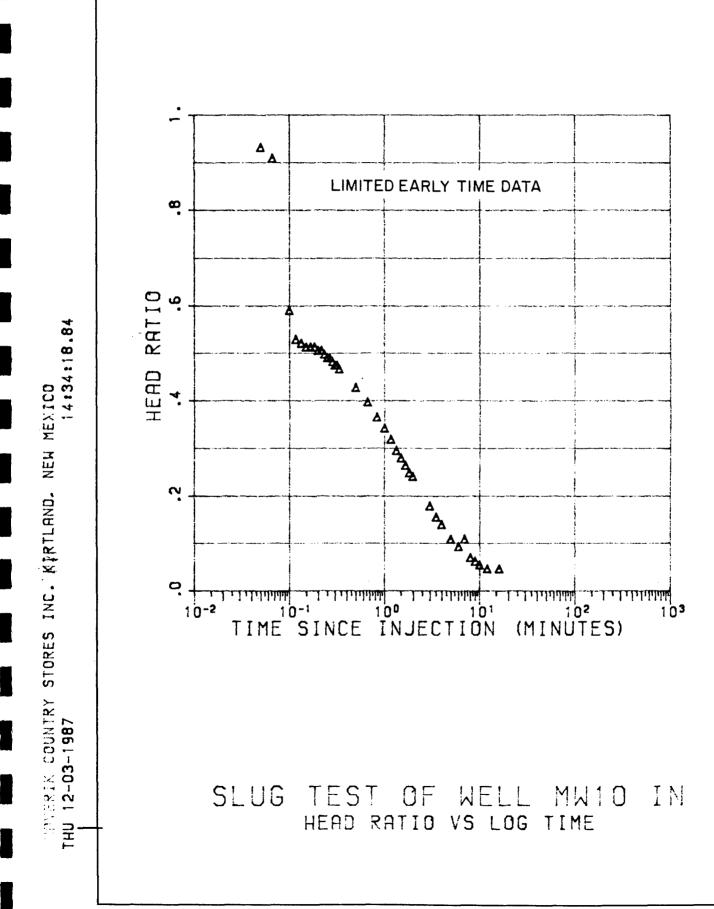
06:35:26.08

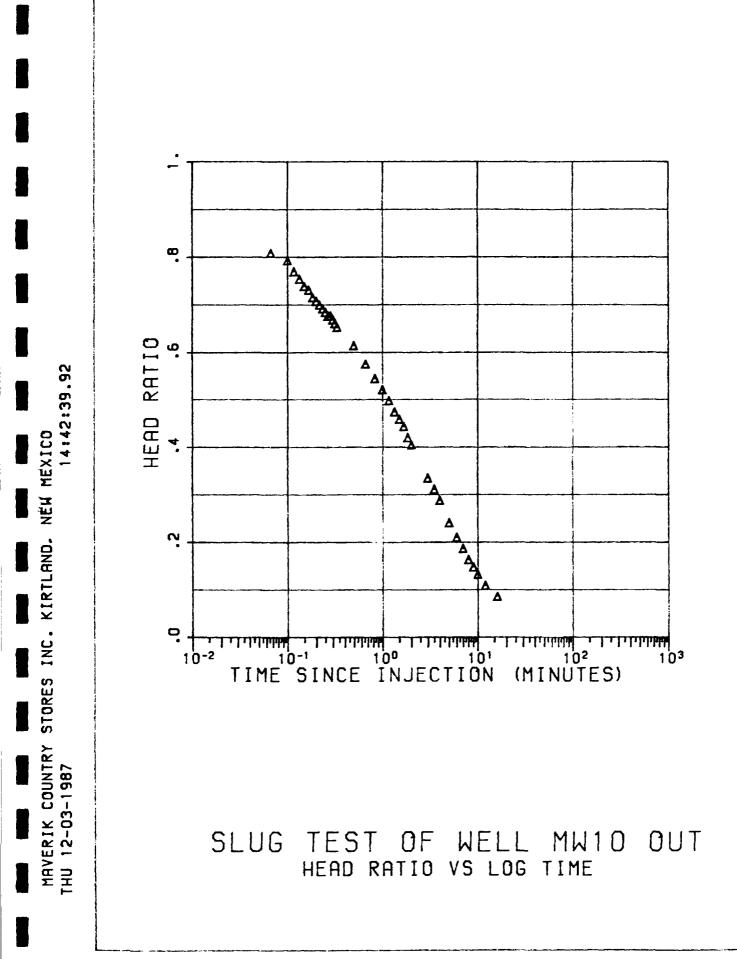

MAVERIK COUNTRY STORES INC. KIRTLAND, NEW MEXICO Pri 11-20-1987 D5:3

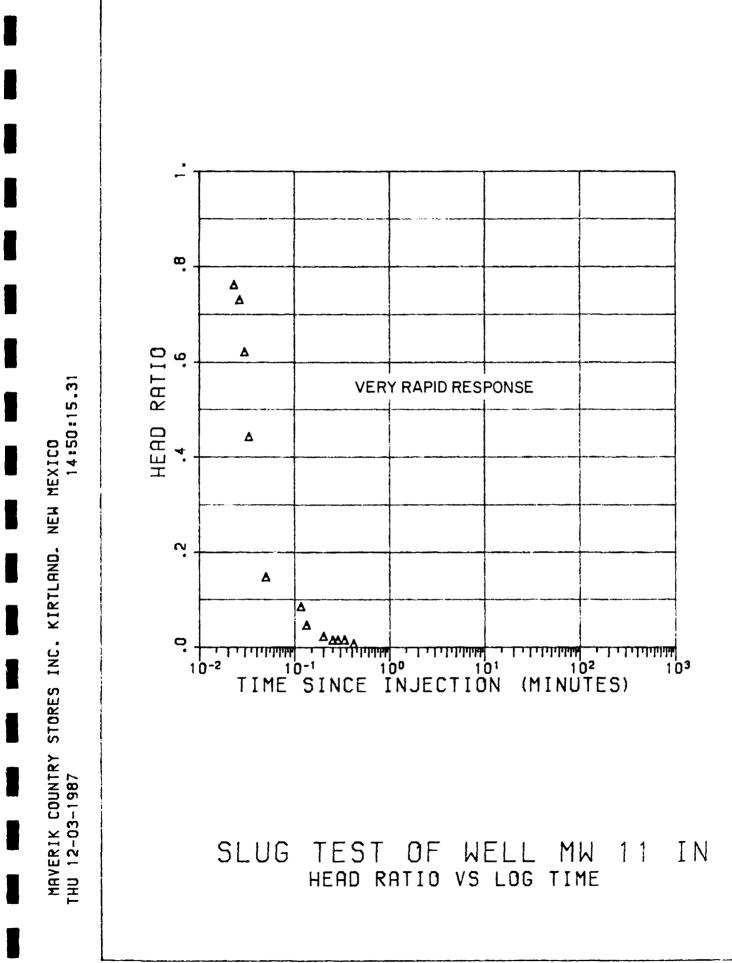


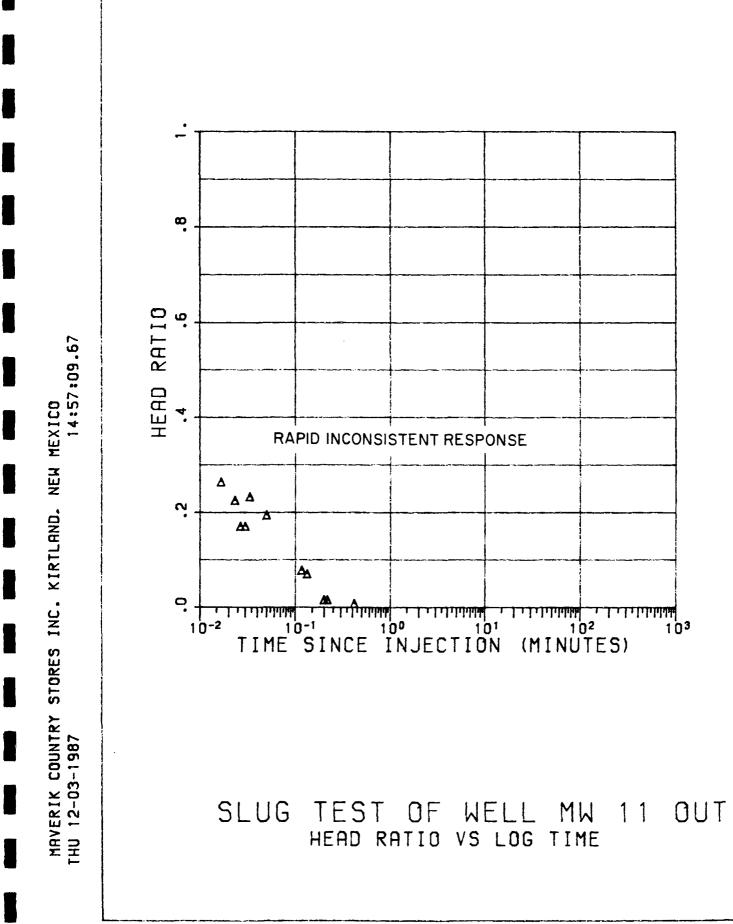

PLATE C-14

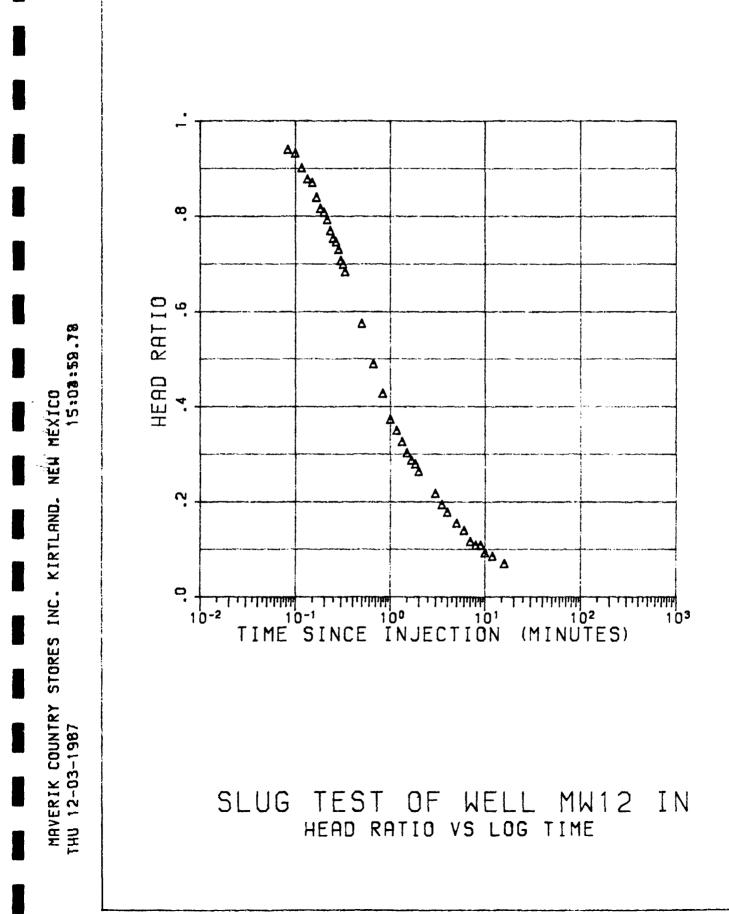

ł


i

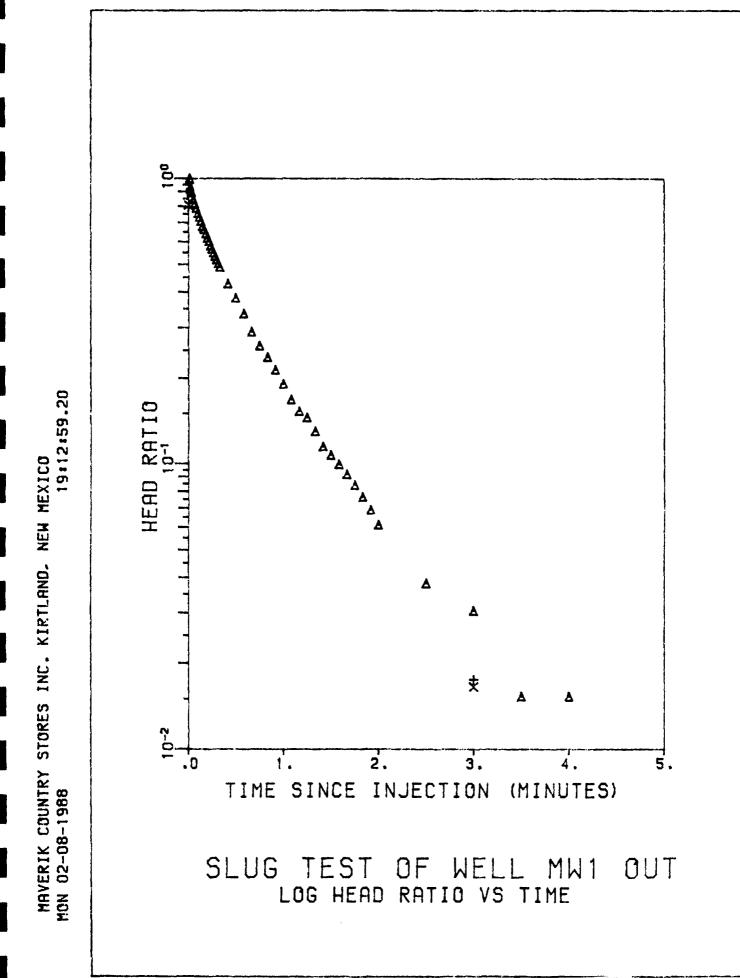

i

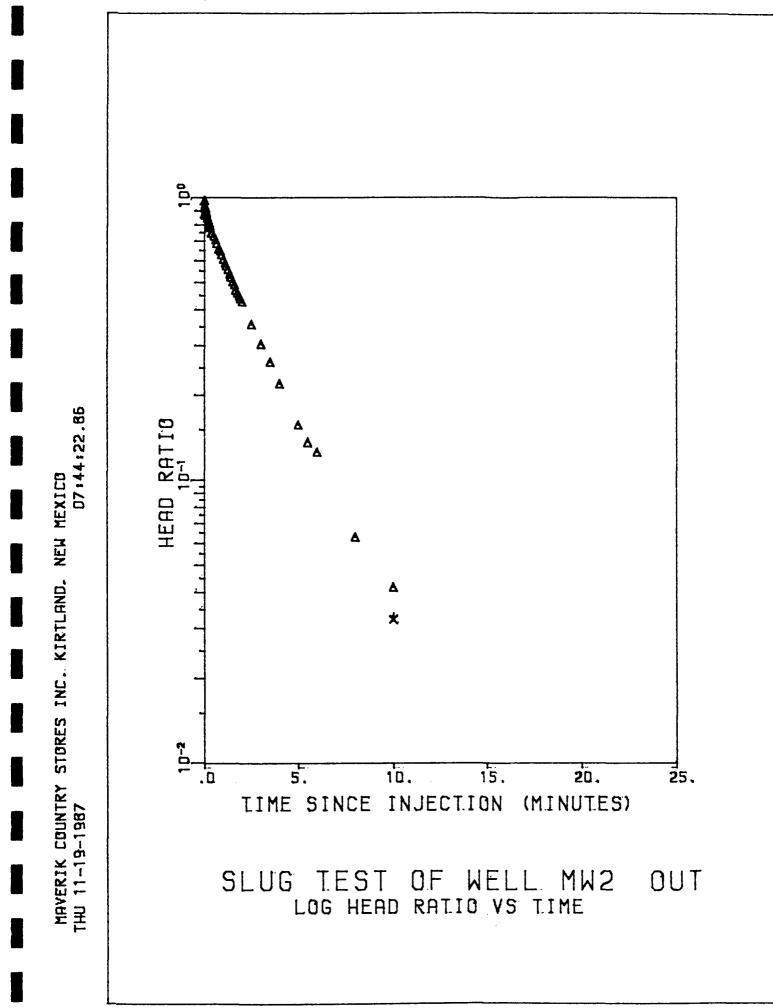

ł

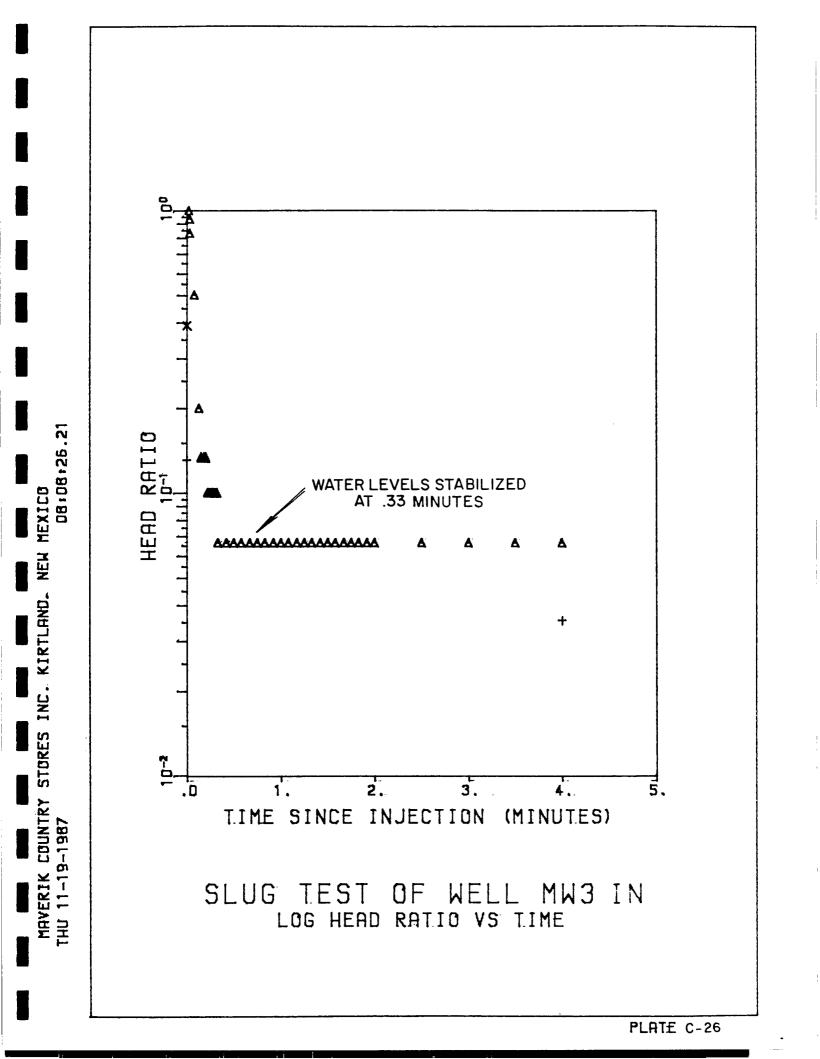

Ì

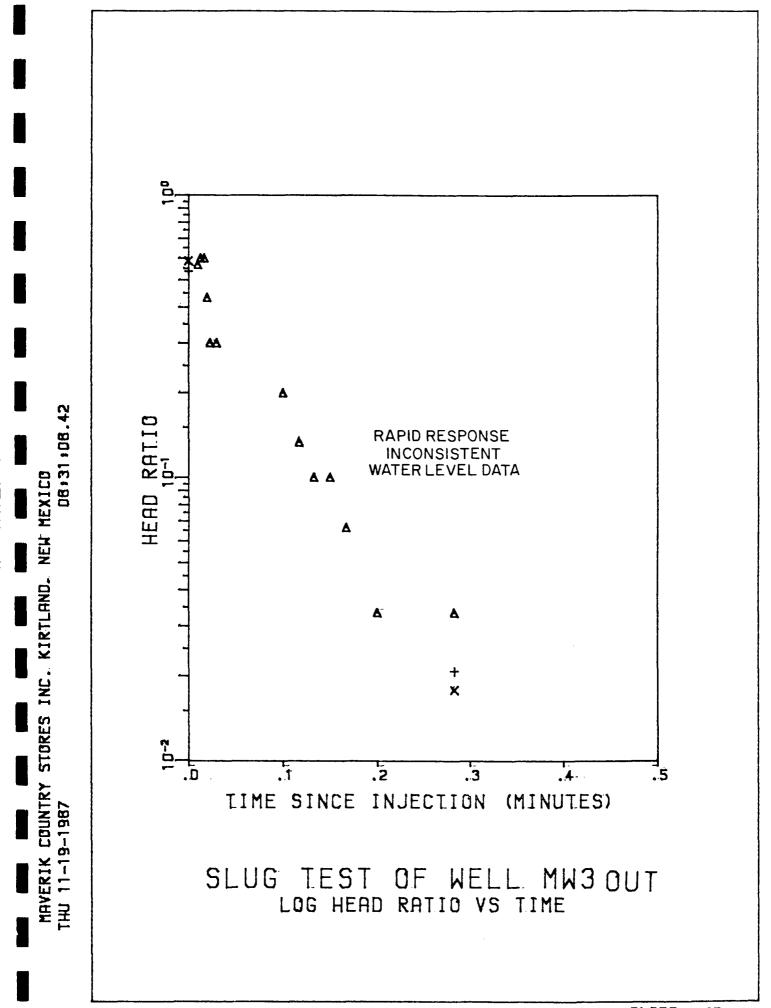

İ

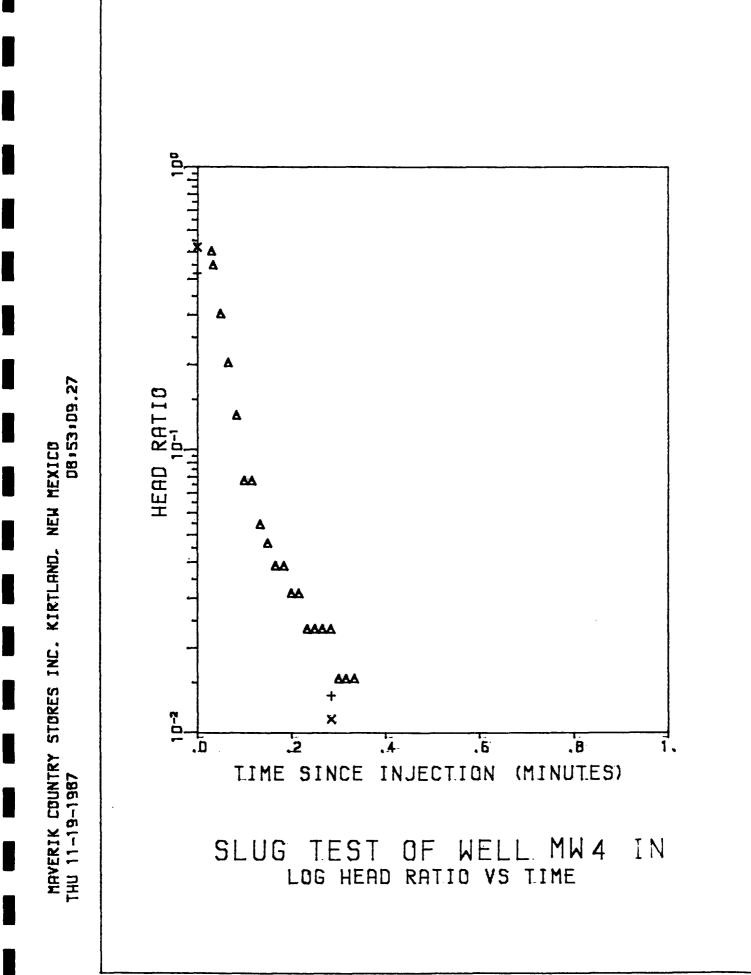
i

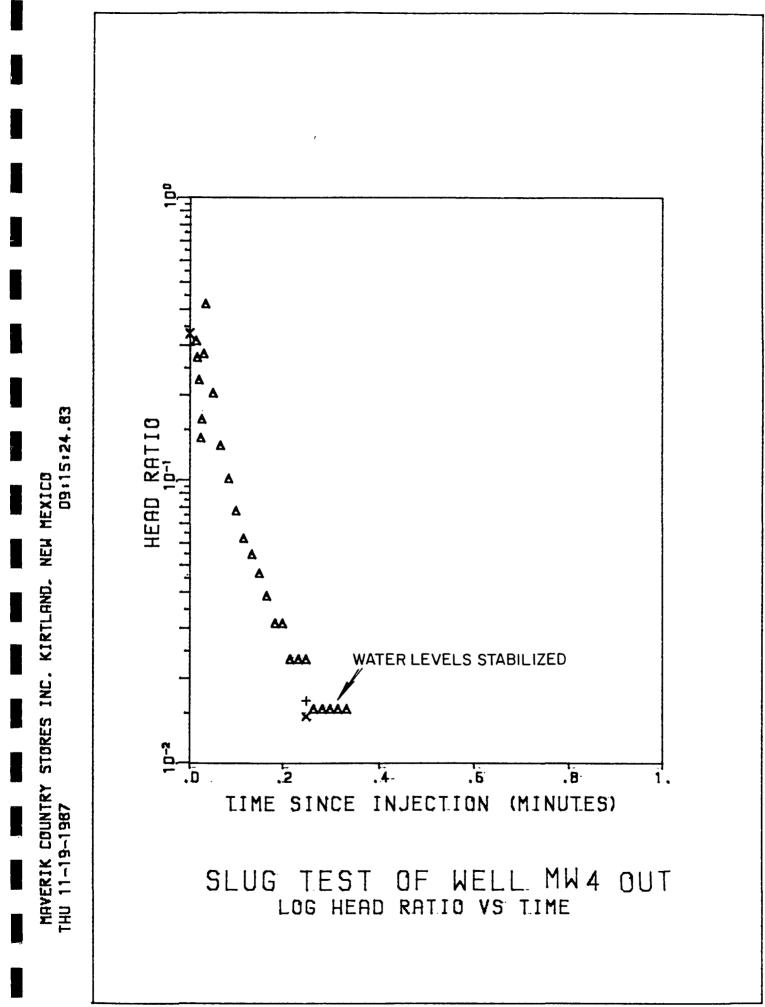


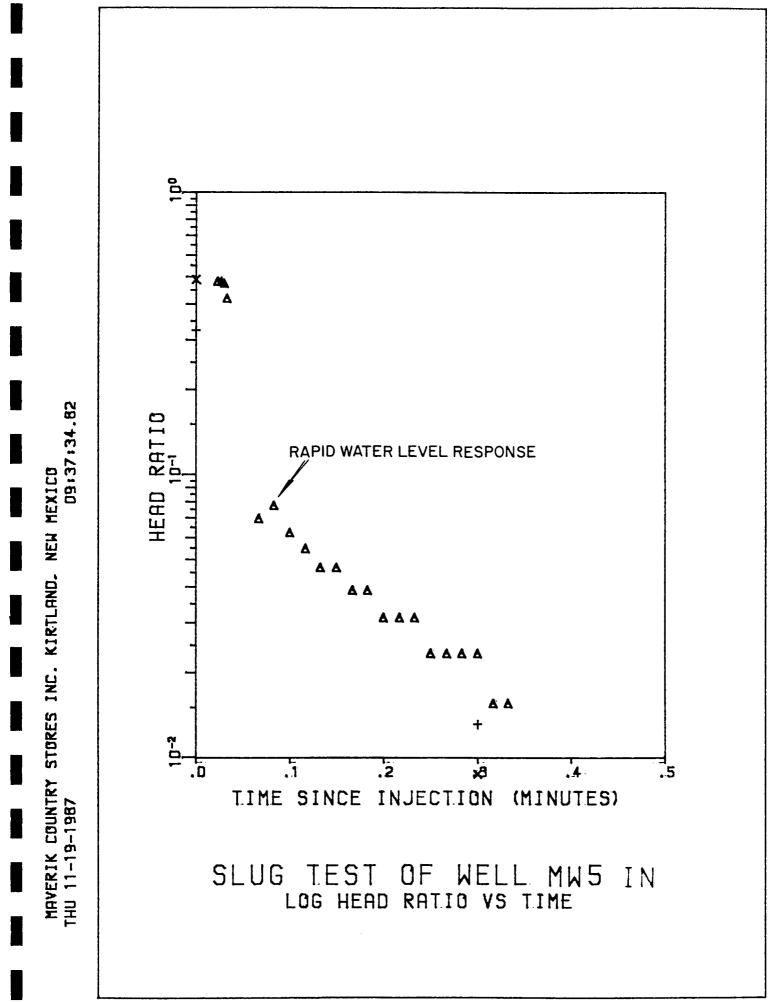


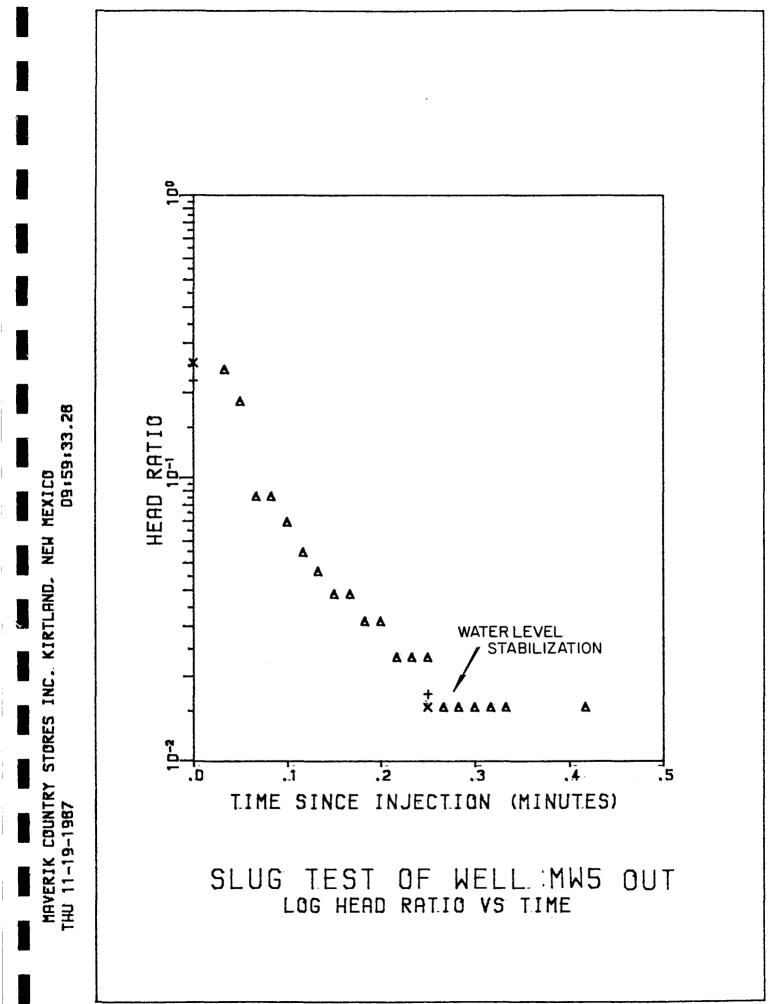


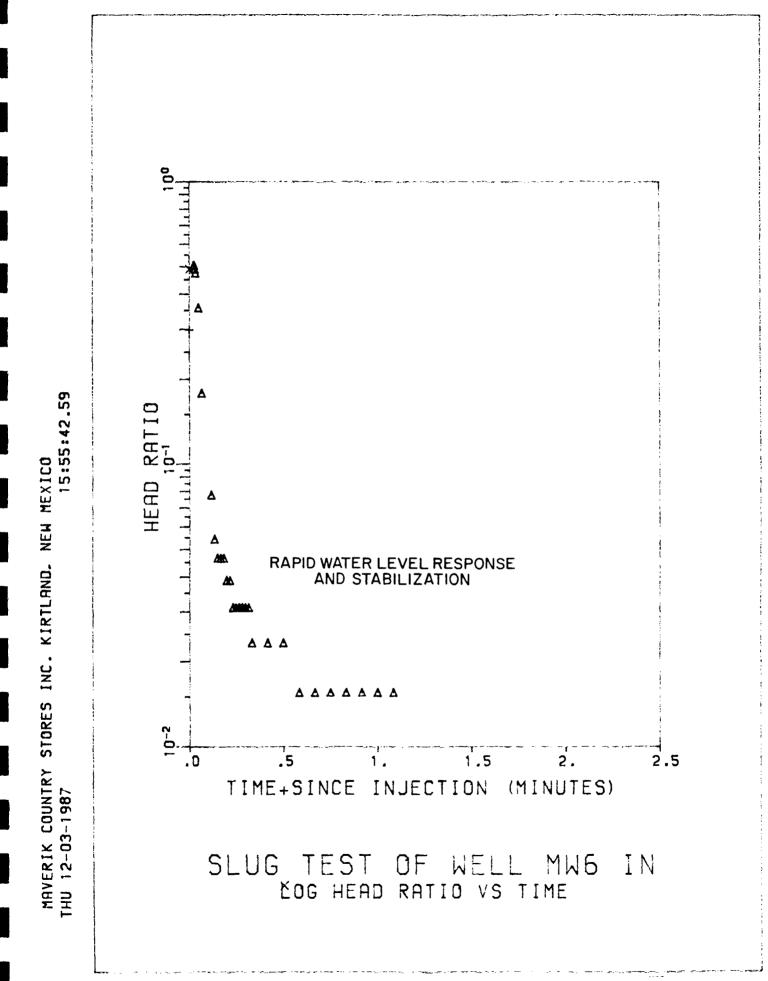

İ

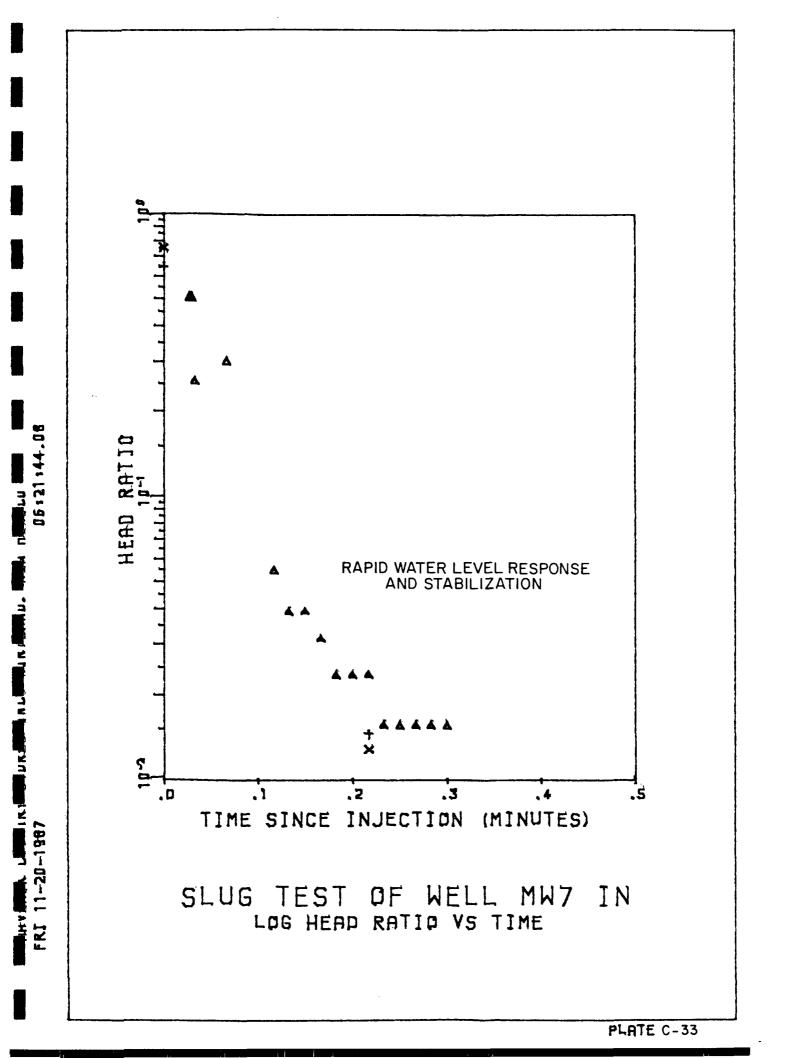


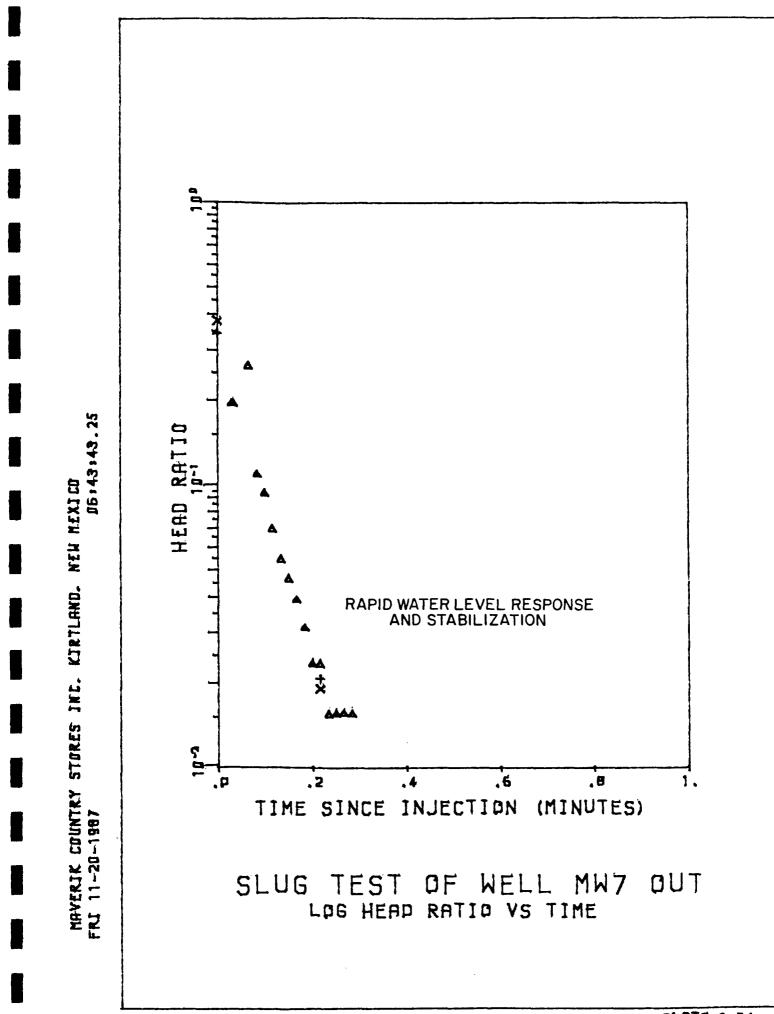


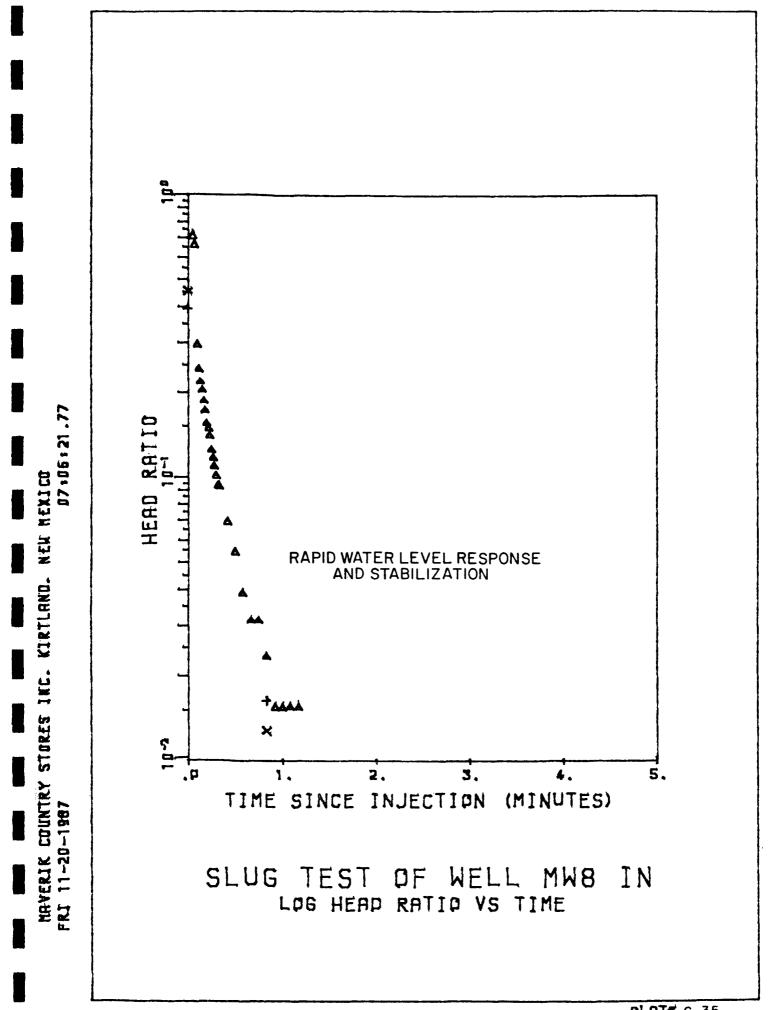

1

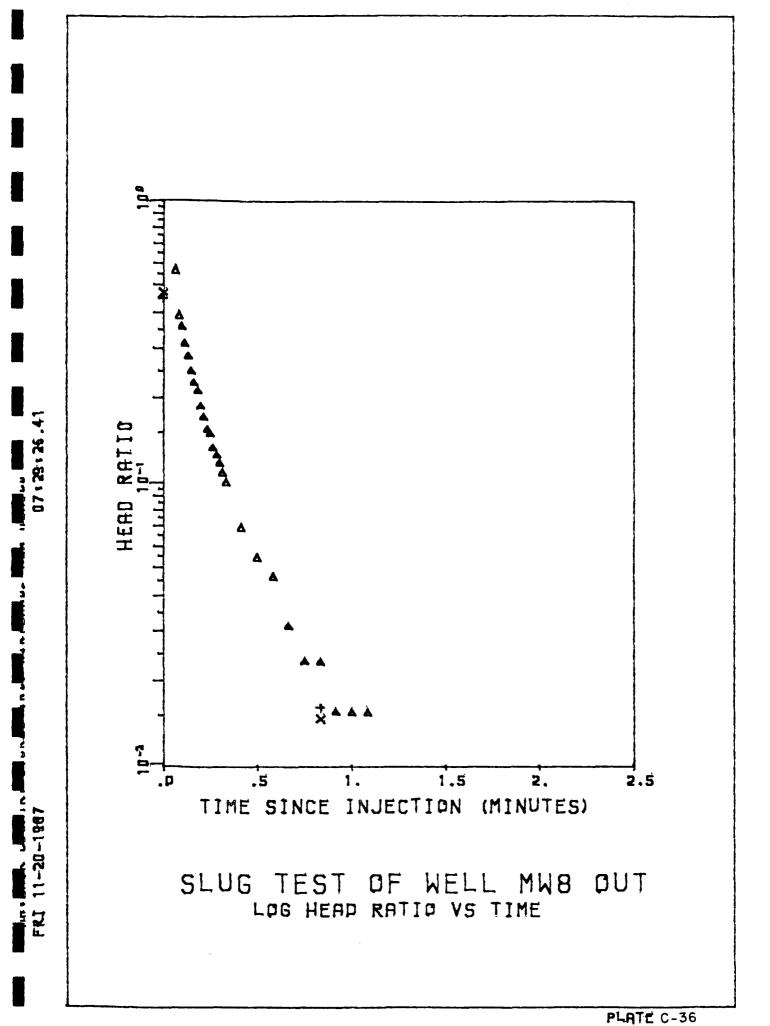


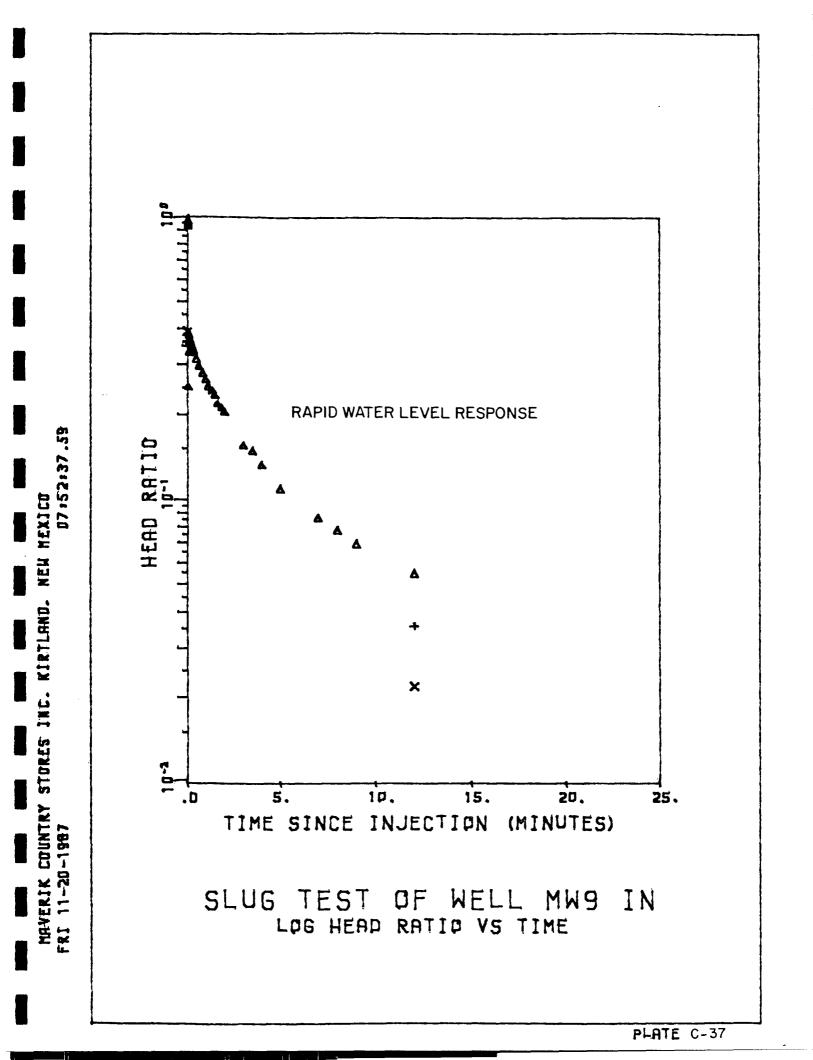


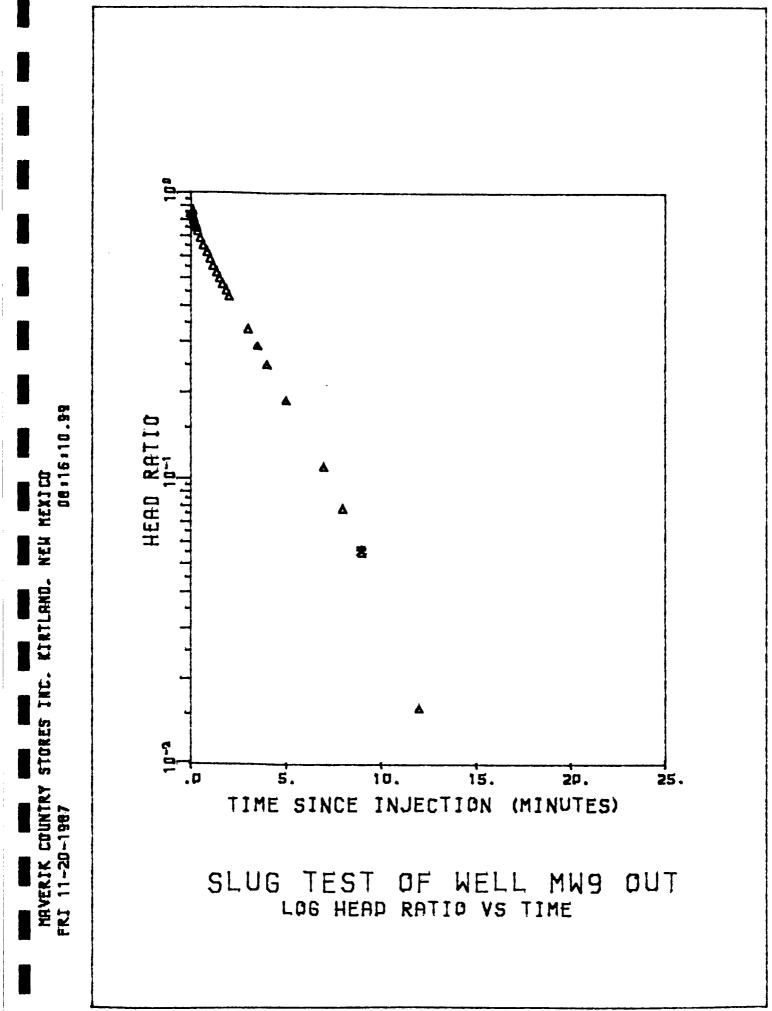


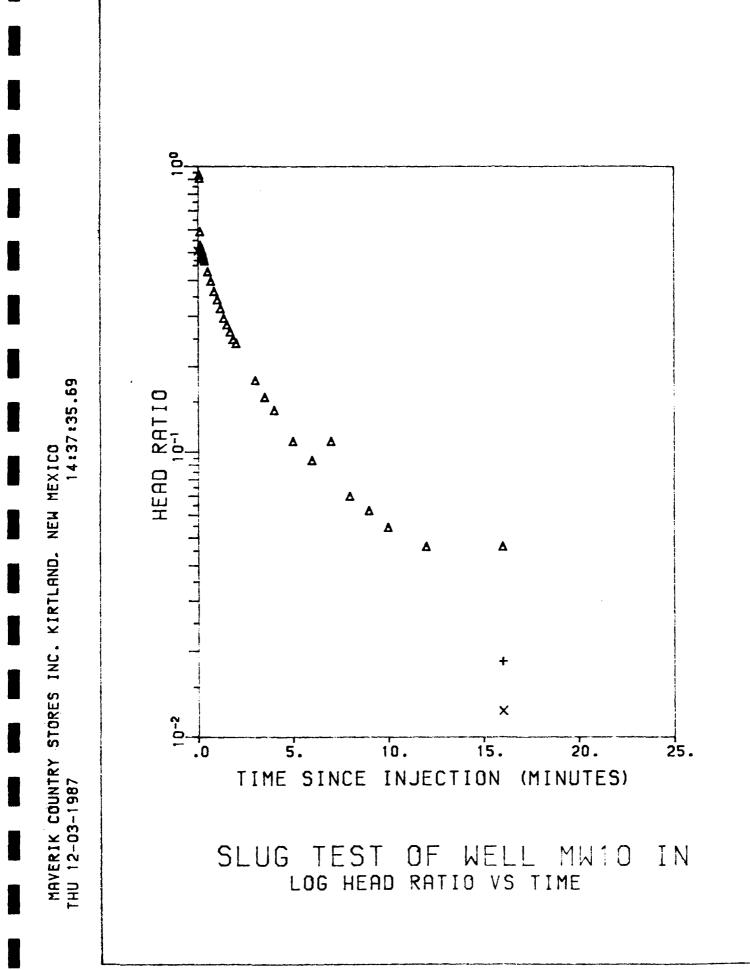


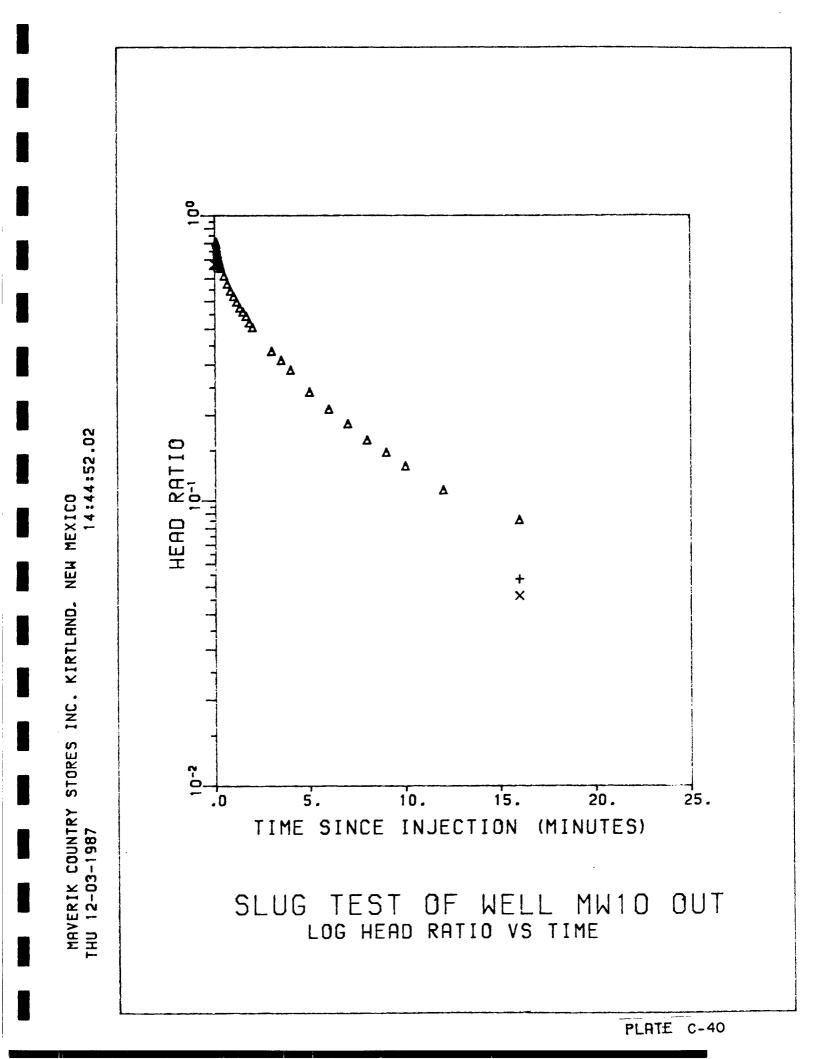


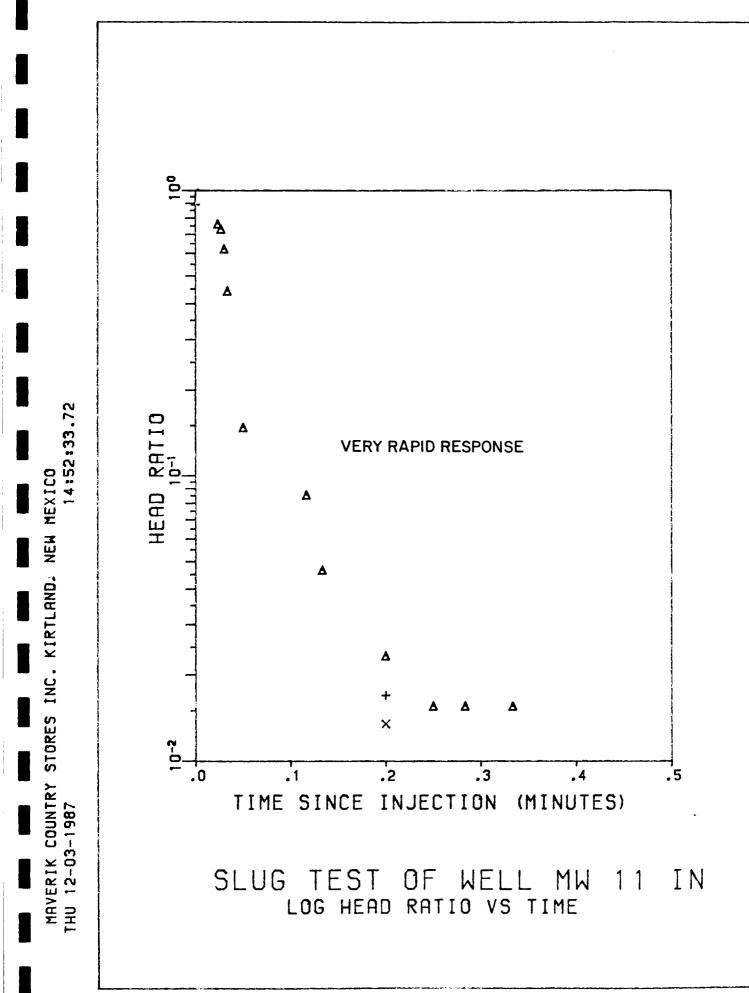


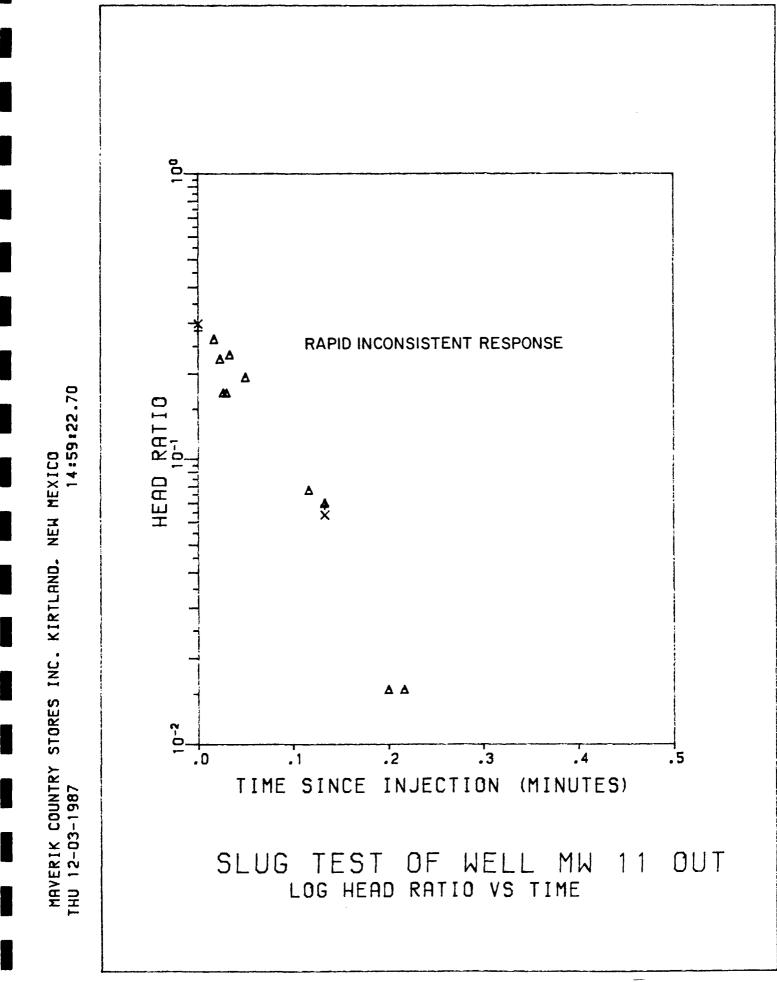


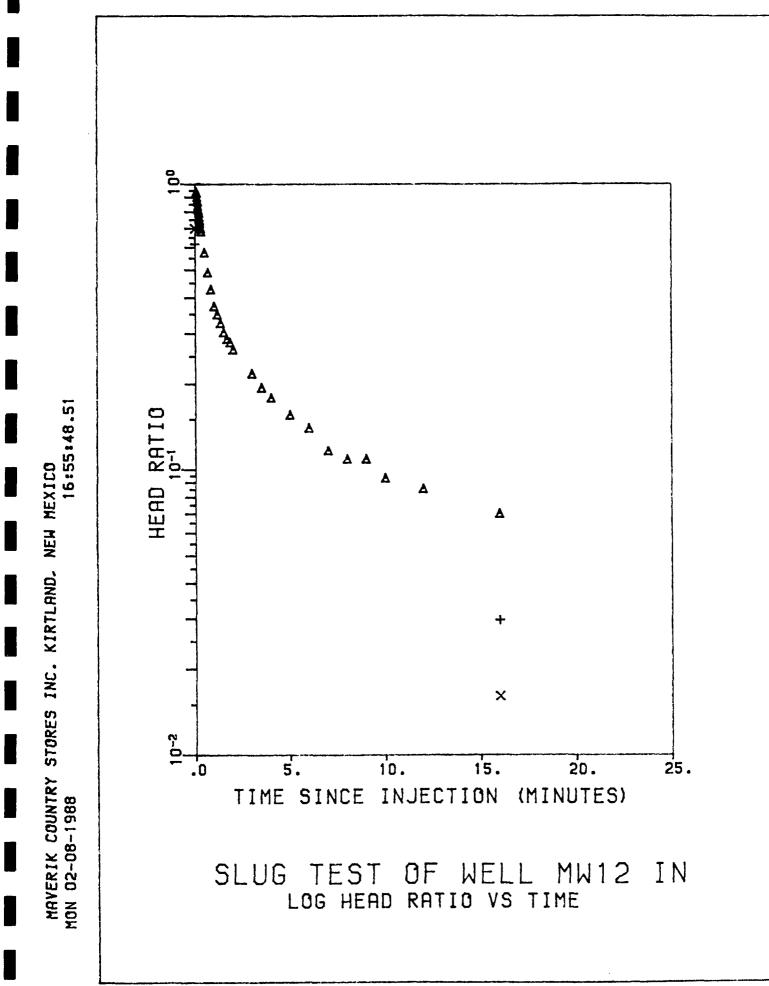



.









APPENDIX D

1

WATER LEVEL ELEVATION AND WELL DEPTH DATA FOR LOCAL PRIVATE WATER WELLS, MONITOR WELLS AND

SURFACE WATER SITES

APPENDIX D

WATER LEVEL ELEVATION AND WELL DEPTH DATA FOR LOCAL PRIVATE WATER WELLS, MONITOR WELLS AND SURFACE WATER SITES

WATER LEVEL ELEVATION DATA

Using an electric probe to within 0.01 foot, static water levels were measured at the 13 monitor well sites, at the 5 well points and at the 21 private water wells that were accessible for measuring. These sites are located on Plate 8 with the well depths, well casing measuring point elevations, ground surface elevations, water level elevations and screened intervals presented in Table D-1. Staff gauges were installed along the west side irrigation ditch and along the floodplain of the San Juan River for surface water elevation measurements. Except for the staff gauge along the San Juan River that could not be accessed, measuring points were surveyed in by San Juan Engineers, a licensed surveyor from Farmington, New Mexico.

The westside irrigation ditch was in use through late October 1987, but was not in use at the time water level surveying was conducted. Consequently, the water level elevations in the ditch primarily reflect the ground water level elevation in mid-November 1987.

The water level elevations in MW-ll and MW-l2, the two nested wells, located 33.5 feet apart, indicate essentially the same vertical hydraulic potential in the deeper gravel zone as in the upper silty-clayey sand zone at this site. Based on the exact water level elevations, the shallow zone, had a slightly higher hydraulic potential, but only about +0.07 feet (5191.33 feet versus 5191.26 feet). This can be accounted for by the horizontal distance between the wells and the horizontal hydraulic gradient. Consequently, any vertical hydraulic gradient that may exist is very small and is not significant with respect to impacting vertical downward movement of contaminants to the deeper gravel zone.

Water level elevations at all of the ground water and surface water sites will be collected again during Rounds 2 and 3 sampling in March 1987 and in October 1987.

D-1

WELL CONSTRUCTION AND WATER LEVEL ELEVATION DATA(1) (Maverik Country Stores, Inc., Kirtland, New Mexico)

	Depth to ⁽¹ Water From Measuring) Measur Poin	-	Water Level	We Ground Surface	ell Depth From Ground	Screene
Site Designation	Point (ft)	Elevat (ft)	ion	Elevation (ft)	Elevation (ft)	Surface (ft)	Interva (ft)
Surface Water Sites	<u> </u>						
Westside Irrigation Ditch	,						
	-	51.0.					
Staff Gauge l Staff Gauge 2	3.90 0.90	5194 5186		 5184.59			
Staff Gauge 3	2.70	5186	. 22	5183.45			
Staff Gauge 4	2.83	- 5171	.59	5167.59			
<u>San Juan River</u>							
Staff Gauge 5	3.70		-				
fonitor Well Sites		Steel Casing	PVC Casing				
MW-1	8.15	5207.79	5207.24	5199.09	5205.75	21.5	11.5-21.5
MW-2	3.85	5197.10	5196.93	5193.08	5195.25	15	5-15
MW-3 MW-4	3.40(3) 6.71(3)	5183.00 5178.41	5181.46 5177.10	5179.6 5171.7	5181.06 5176.14	14.5 15	4.5-14.5
MW-5	5.72	5175.62	5175.09	5169.37	5173.67	15	5-15 5-15
MW-6	4.37	5176.40	5176.01	5172.03	5174.23	15.5	5.5-15.5
MW-7	5.13(3)	5183.71	5182.84	5178.58	5181.73	15	5-15
MW-8 MV-0	4.09	5186.00	5185.87	5181.78	5184.02	15	5-15
MW-9 MW-10	2.51 2.70	5191.39 5189.80	5191.22 5189.30	5188.71 5186.6	5189.53 5187.47	15 12.5	5-15 2.5-12.5
MW-11	5.89	5197.26	5197.15	5191.26	5194.97	33	23-33
MW-12	4.86	5196.66	5196.19	5191.33	5194.80	12	2-12
MW-13 W-3	0.34 5.10	5187.76 5196.40	N.A. N.A.	5187.42 5191.30	5187.56 5194.62	5 21	0-5
WP1 WP2 WP3 WP4 WP5	3.65(2) 3.0 (2) 1.36 0.34	5175 5173 5180 5193 5189	.43 .92 .19	5169.78 5177.92 5191.83 5189.20	5175.07 5173.30 5180.79 5193.11 5189.23		0-3 1-4 0-3 0-3 0-3
WP 2 WP 3 WP 4 WP 5	3.0 (2) 1.36 0.34	5173 5180 5193	.43 .92 .19	5169.78 5177.92 5191.83	5173.30 5180.79 5193.11		1-4 0-3 0-3
WP2 WP3 WP4 WP5 <u>Private Wells (Inventoried</u>) William Walker	3.0 (2) 1.36 0.34 <u>)</u> No Acces	5173 5180 5193 5189 5189	.43 .92 .19 .54	5169.78 5177.92 5191.83 5189.20	5173.30 5180.79 5193.11	40	1-4 0-3 0-3
WP2 WP3 WP4 WP5 <u>private Wells (Inventoried</u> William Walker E.M. Jackson (House)	3.0 (2) 1.36 0.34 <u>)</u> No Acces 4.0	5173 5180 5193 5189 5189 5189	.43 .92 .19 .54	5169.78 5177.92 5191.83 5189.20	5173.30 5180.79 5193.11	30.7	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried) William Walker E.M. Jackson (House) (Field)	3.0 (2) 1.36 0.34 <u>)</u> No Acces 4.0 3.5	5173 5180 5193 5189 5189 5189 5175 5175 5175	.43 .92 .19 .54 .21 .73 .85	5169.78 5177.92 5191.83 5189.20	5173.30 5180.79 5193.11	30.7 40	1-4 0-3 0-3
WP2 WP3 WP4 <u>Private Wells (Inventoried</u> William Walker E.M. Jackson (House)	3.0 (2) 1.36 0.34 <u>)</u> No Acces 4.0	5173 5180 5193 5189 5189 5189 5175 5175 5175 5175 5175	.43 .92 .19 .54 .21 .73 .85 . Locked)	5169.78 5177.92 5191.83 5189.20	5173.30 5180.79 5193.11	30.7	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried. William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield	3.0 (2) 1.36 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0	5173 5180 5193 5189 5189 5189 5175 5175 5175 5175 5175 5175 5188	.43 .92 .19 .54 .73 .85 . Locked) -	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04	5173.30 5180.79 5193.11	30.7 40 _ 25	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried. William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral)	3.0 (2) 1.36 0.34 0 No Access 4.0 3.5 No Access 8.06 3.2	5173 5180 5193 5189 5189 5175 5175 5175 5175 5175 5175 5175 517	.43 .92 .19 .54	5169.78 5177.92 5191.83 5189.20	5173.30 5180.79 5193.11	30.7 40 - 25 20	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried. William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield	3.0 (2) 1.36 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0	5173 5180 5193 5189 5189 5189 5175 5175 5175 5175 5175 5175 5188	.43 .92 .19 .54	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49	5173.30 5180.79 5193.11	30.7 40 _ 25	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried) William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson	3.0 (2) 1.36 0.34 0 No Access No Access 8.06 3.2 3.55 2.33 No Access No Access 8.06	5173 5180 5193 5189 5189 5189 5175 5175 5175 5175 5175 5184 5188 5191 5184 5177	.43 .92 .19 .54 .21 .73 .85 . Locked) - .10 .69 - .73 .12	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 -	1-4 0-3 0-3
WP2 WP3 WP4 WP5 William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson R. Jackson (Field)	3.0 (2) 1.36 0.34 0 No Access 4.0 3.5 No Access 8.06 3.2 3.55 2.33 No Access 4.95	5173 5180 5193 5189 5189 5175 5175 5175 5188 5191 5184 5191 5184 5177	.43 .92 .19 .54 .54	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40 5173.07	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 - 12.7	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried) William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson	3.0 (2) 1.36 0.34 0 No Access No Access 8.06 3.2 3.55 2.33 No Access No Access 8.06	5173 5180 5193 5189 5189 5175 5175 5175 5188 5191 5184 5191 5184 5177	.43 .92 .19 .54 .55 .54	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 -	1-4 0-3 0-3
WP2 WP3 WP5 WP5 William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson R. Jackson (Field) R. Housh R. Neff P. Pickard (Shed)	3.0 (2) 1.36 0.34 0 No Access No Access 8.06 3.2 3.55 2.33 No Access 4.95 No Access 5.22 9.25	5173 5180 5193 5189 5189 5189 5175 5175 5175 5175 5188 5191 5184 5191 5184 5177 5178 5179 5179 5180	.43 .92 .19 .54 .21 .73 .85 . Locked) - .10 .69 - .73 .12 .02 .53 .14	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40 5173.07 5174.31 5170.89	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 - 12.7 - 20.2 17.3	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried) William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson R. Jackson R. Jackson R. Jackson R. Housh R. Neff P. Pickard (Shed) (House)	3.0 (2) 1.36 0.34 0 No Access 4.0 3.5 No Access 8.06 3.2 3.55 2.33 No Access 4.95 No Access 5.22 9.25 	5173 5180 5193 5189 5189 5185 5175 5175 5175 5175 5188 5191 5184 5191 5184 5177 5178 5178 5178 5179 5180 5180 5180 5180 5180 5180	.43 .92 .19 .54 .55 .54 .55 .5	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40 5173.07 5174.31 5170.89 	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 - 12.7 - 20.2 17.3 	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried) William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson R. Jackson R. Jackson (Field) R. Housh R. Neff P. Pickard (Shed) (House) R. Eshome	3.0 (2) 1.36 0.34 0 No Acces 4.0 3.5 No Acces 8.06 3.2 3.55 2.33 No Acces 4.95 No Acces 5.22 9.25 6.65	5173 5180 5193 5189 5189 5175 5175 5175 5175 5175 5175 5184 5191 5184 5177 5178 5179 5180 5180 5180 5180	.43 .92 .19 .54 .21 .73 .85 . Locked) - .10 .69 .73 .12 .02 .73 .14 .15 .76	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5172.35 5182.40 5182.40 5182.40 5173.07 5174.31 5170.89 5173.11	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 - 12.7 - 20.2 17.3 12.5	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried) William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson R. Jackson R. Jackson R. Jackson (Field) R. Housh R. Neff P. Pickard (Shed) (House)	3.0 (2) 1.36 0.34 0 No Access 4.0 3.5 No Access 8.06 3.2 3.55 2.33 No Access 4.95 No Access 5.22 9.25 	5173 5180 5193 5189 5189 5185 5175 5175 5175 5175 5188 5191 5184 5191 5184 5177 5178 5178 5178 5179 5180 5180 5180 5180 5180 5180	.43 .92 .19 .54	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40 5173.07 5174.31 5170.89 	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 - 12.7 - 20.2 17.3 	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried) William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson R. Jackson R. Jackson (Field) R. Housh R. Neff P. Pickard (Shed) (House) R. Eshome G. Nelson E. Mclemore E. Grey	3.0 (2) 1.36 0.34 0 No Access 4.0 3.5 No Access 8.06 3.2 3.55 2.33 No Access 4.95 No Access 5.22 9.25 6.65 7.50 1.59 No Access	5173 5180 5193 5189 5189 5189 5175 5175 5175 5175 5175 5188 5191 5184 5191 5184 5191 5184 5191 5180 5180 5179 5180 5180 5178 5179 5178 5180 5193 5180 5193 5180 5193 5180 5193 5189 5180 5193 5189 5193 5189 5193 5189 5193 5189 5193 5189 5193 5193 5193 5193 5193 5193 5193 519	.43 .92 .19 .54 .54 .10 .69 .10 .69 .73 .12 .02 .53 .14 .15 .76 .40 .15 	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40 5173.07 5174.31 5170.89 5173.11 5170.90 5184.56	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 - 12.7 - 20.2 17.3 12.5 19.7 17.7 -	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried) William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson R. Jackson (Field) R. Housh R. Neff P. Pickard (Shed) (House) R. Eshome G. Nelson E. Mclemore E. Grey I. Hull	3.0 (2) 1.36 0.34 0 No Access 8.06 3.2 3.55 2.33 No Access 8.06 3.2 3.55 2.33 No Access 4.95 No Access 5.22 9.25 6.65 7.50 1.59 No Access 4.99 No Access 4.95 No Access 5.22 9.25 6.45 7.50 1.59 No Access 4.99 No Access 5.22 9.25 6.45 7.50 1.59 No Access 4.99 No Access 5.22 9.25 6.45 7.50 1.59 No Access 4.99 No Access 5.22 9.25 6.45 7.50 1.59 No Access 5.42 7.50	5173 5180 5193 5189 5189 5175 5175 5175 5175 5175 5175 5175 517	.43 .92 .19 .54 .21 .73 .85 . Locked) - .73 .10 .69 - .73 .12 .02 .53 .14 .15 .76 .40 .15 .76 .32	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40 5173.07 5174.31 5170.89 5173.11 5170.90 5184.56 5189.83	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 - 12.7 - 20.2 17.3 - 12.5 19.7 17.7 - 15.2	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried) William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson R. Jackson R. Jackson (Field) R. Housh R. Neff P. Pickard (Shed) (House) R. Eshome G. Nelson E. Mclemore E. Grey	3.0 (2) 1.36 0.34 0 No Access No Access No Access 8.06 3.2 3.55 2.33 No Access 5.22 9.25 6.65 7.50 1.59 No Access 4.49 4.68	5173 5180 5193 5189 5189 5189 5185 5175 5175 5175 5175 5188 5191 5184 5197 5180 5180 5180 5180 5179 5188 5186 5179 5186 5179 5188	.43 .92 .19 .54 .54 .10 .69 .10 .69 .12 .02 .73 .12 .02 .73 .14 .15 .76 .40 .15 .32 .95	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40 5173.07 5174.31 5170.89 5173.11 5170.90 5184.56 5189.83 5195.27	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 - 12.7 - 20.2 17.3 12.5 19.7 17.7 - 15.2 23.0	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried) William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson R. Jackson R. Jackson (Field) R. Housh R. Neff P. Pickard (Shed) (House) R. Eshome G. Nelson E. Mclemore E. Grey I. Hull C. Curley R. Madrid W. York	3.0 (2) 1.36 0.34 0 No Access 8.06 3.2 3.55 2.33 No Access 8.06 3.2 3.55 2.33 No Access 4.95 No Access 5.22 9.25 6.65 7.50 1.59 No Access 4.99 No Access 4.95 No Access 5.22 9.25 6.45 7.50 1.59 No Access 4.99 No Access 5.22 9.25 6.45 7.50 1.59 No Access 4.99 No Access 5.22 9.25 6.45 7.50 1.59 No Access 4.99 No Access 5.22 9.25 6.45 7.50 1.59 No Access 5.42 7.50	5173 5180 5193 5189 5189 5175 5175 5175 5175 5175 5175 5175 517	.43 .92 .19 .54 .10 .69 - .10 .69 - .73 .12 .02 - .53 .14 .15 .76 .40 .15 - .32 .95 .89	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40 5173.07 5174.31 5170.89 5173.11 5170.90 5184.56 5189.83	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 - 12.7 - 20.2 17.3 - 12.5 19.7 17.7 - 15.2	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried) William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson R. Jackson (Field) R. Housh R. Neff P. Pickard (Shed) (House) R. Eshome G. Nelson E. Mclemore E. Grey I. Hull C. Curley R. Madrid W. York C. Hill	3.0 (2) 1.36 0.34 No Access 4.0 3.5 No Access 8.06 3.2 3.55 2.33 No Access 4.95 No Access 5.22 9.25 6.65 7.50 1.59 No Access 4.49 4.68 8.23 8.80 6.40	5173 5180 5193 5189 5189 5175 5175 5175 5175 5175 5175 5175 517	.43 .92 .19 .54 .10 .69 .10 .69 .73 .12 .02	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40 5173.07 5174.31 5170.89 5173.11 5170.90 5184.56 5189.83 5195.27 5200.66 5197.25 5196.14	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 - 12.7 - 20.2 17.3 12.5 19.7 17.7 - 15.2 23.0 34.9 21.6 21.0	1-4 0-3 0-3
WP2 WP3 WP4 WP5 <u>private Wells (Inventoried</u>) William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson R. Jackson (Field) R. Housh R. Neff P. Pickard (Shed) (House) R. Eshome G. Nelson E. Mclemore E. Grey I. Hull C. Curley R. Madrid W. York C. Hill D. Pilcher	3.0 (2) 1.36 0.34 0 No Access No Access No Access 8.06 3.2 3.55 2.33 No Access 5.22 9.25 6.65 7.50 1.59 No Access 4.49 4.68 8.23 8.80 6.40 6.61	5173 5180 5193 5189 5189 5189 5185 5175 5175 5175 5175 5188 5191 5184 5177 5178 5177 5178 5179 5180 5180 5180 5179 5180 5180 5179 5188 5199 5208 5206 5202 5201	.43 .92 .19 .54 .21 .73 .85 . Locked) - .10 .69 - .73 .12 .02 - .53 .14 .15 .76 .40 .15 - .32 .95 .89 .05 .54 .54	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40 5173.07 5174.31 5170.89 5173.11 5170.90 5184.56 5189.83 5195.27 5200.66 5197.25 5196.14 5194.90	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 - 12.7 - 20.2 17.3 12.5 19.7 17.7 - 15.2 23.0 34.9 21.6 21.0 25.8	1-4 0-3 0-3
WP2 WP3 WP4 WP5 Private Wells (Inventoried) William Walker E.M. Jackson (House) (Field) H. Smouse M. Stone J. Bloomfield V. Murray (Corral) (House) R. Ball A. Jackson R. Jackson (Field) R. Housh R. Neff P. Pickard (Shed) (House) R. Eshome G. Nelson E. Mclemore E. Grey I. Hull C. Curley R. Madrid W. York C. Hill	3.0 (2) 1.36 0.34 No Access 4.0 3.5 No Access 8.06 3.2 3.55 2.33 No Access 4.95 No Access 5.22 9.25 6.65 7.50 1.59 No Access 4.49 4.68 8.23 8.80 6.40	5173 5180 5193 5189 5189 5175 5175 5175 5175 5175 5175 5175 517	.43 .92 .19 .54 .10 .69 - .10 .69 - .10 .69 - .73 .12 .02 - .53 .14 .15 .76 .40 .15 - .32 .95 .89 .05 .51 .53	5169.78 5177.92 5191.83 5189.20 5171.73 5172.35 5180.04 5188.49 5182.40 5173.07 5174.31 5170.89 5173.11 5170.90 5184.56 5189.83 5195.27 5200.66 5197.25 5196.14	5173.30 5180.79 5193.11	30.7 40 - 25 20 18.5 58.8 - 12.7 - 20.2 17.3 12.5 19.7 17.7 - 15.2 23.0 34.9 21.6 21.0	1-4 0-3 0-3

Measured November 22 - 27, 1987, except where footnote (2) designated
 Measured October 30, 1987
 Measured from the top of the steel casing

APPENDIX E

FIELD AND LABORATORY WATER QUALITY AND DRILL CUTTINGS DATA, AND QA/QC FOR ROUND 1 SAMPLING AND ANALYSES

1

APPENDIX E

FIELD AND LABORATORY WATER QUALITY AND DRILL CUTTINGS DATA, AND QA/QC FOR ROUND 1 SAMPLING AND ANALYSES

WATER QUALITY SAMPLING

After well development with centrifugal and peristaltic pumps, ground water and surface water samples were collected, preserved and analyzed in accordance with EPA guidance. Field measurements for pH, conductivity and temperature were measured by Dames & Moore at the time the water quality samples were collected. A Beckman digital pH meter and an electric conductivity meter were used and calibrated using solution standards. Samples were collected after 3 to 5 casing volumes of water had been removed, using a teflon bailer lowered to the bottom of the wells.

The monitor wells were checked for the presence of a free oil phase using a borosilicate glass bailer. Such a phase was present only in monitor wells MW-12 and MW-13, and well W-3. Although the water quality samples collected were sampled from below the upper oil phase, the sample from monitor well 12 evidently was contaminated with product. This was confirmed with RMAL. Drop pipes will be installed in all three of these monitor wells for Round 2 sampling so that such contamination does not reoccur. A PVC drop pipe will be dedicated to each well, such that it will extend down into the existing 2-inch PVC casing, below the upper oil phase, thereby blocking out contact of the teflon bailer with the product when the bailer is lowered. The sample will be bailed from below the drop pipe and below the upper oil phase.

Sample bottles, with appropriate preservatives (as detailed in RMAL's report, herein), were shipped directly to the site by RMAL. All samples were iced immediately after collection and shipped to RMAL on the day of collection via overnight courier. Chain-of-custody documentation was maintained.

LABORATORY ANALYSIS

RMAL conducted the analysis on the water quality samples and the drill cuttings. Their detailed report is included in this appendix.

WATER QUALITY ANALYSES

RMAL conducted analyses for halogenated volatile organics (26), aromatic volatile organics (9), total organic lead and metals (6), and common ions (11). The specific parameters are listed in Table 1 along with the analytical methods used. GC methods (601 and 602) were used to detect volatile organics in all water samples with the exception of one ground water sample (MW-12) and two surface water samples (SW-4 and SW-5). Because of the presence of significant levels of volatiles a GC/MS method (624) was employed for these samples. The key organic and inorganic constituents found are presented in Plates E-1 and E-5.

All water samples were analyzed for the full suite of parameters listed on Table 1, with the exception of SW-5, SW-6 and well W-3 which were analyzed only for the organics. These three sites were added during the field study by Dames & Moore. They were included because of their accessibility for sampling, and strategic location with respect to defining and verifying the observed contaminated area on-site and immediately to the west. Field OVA readings at sites SW-4 and SW-5 measured at greater than 1,000 ppm volatile organics. OVA readings above 1,000 ppm were recorded directly above the ditch water at SW-4. OVA readings above 1,000 ppm were recorded at SW-5 about 4 to 6 feet above the ditch water over a radius of 5 to 8 feet from SW-5.

DRILL CUTTING SAMPLING AND ANALYSIS

Drill cuttings from on-site monitor wells 11 and 12 were evaluated for EP toxicity for 8 RCRA metals and sulfide and cyanide reactivity. This was done as a result of the high OVA readings (>1,000 ppm) measured in the field in the drill cuttings from the upper 13 feet. OVA readings dropped to about 500 ppm from 13 to 17 feet, and dropped to background levels below a depth of 17 feet. Barium was the only constituent detected and at a very low concentration of

E-2

0.94 mg/l (EP toxicity threshold = 100 mg/l). The analysis did not indicate the cuttings to be hazardous. Drill cuttings from MW-l0, MW-l1 and MW-l2 were, nonetheless, containerized on-site in 55-gallon drums, with plastic liners and lids. All other on-site as well as off-site drill cuttings were collected and disposed of on-site on a flat cement slab which was lined with plastic.

ROCKY MOUNTAIN ANALYTICAL LABORATORY QA/QC PROGRAM

All analyses were conducted within approved holding times. Ion balances, detailed in RMAL's report, were all within the acceptance limits of \pm 5 percent. As a result of the high levels of solids in the unfiltered water samples from MW-1, MW-3, MW-7 and MW-10, the initial alkalinity titration results reported by RMAL were high and not correct. The alkalinity titrations were re-run on the filtered samples, with these final corrected results included in RMAL's ion balance report.

Accuracy and precision of Laboratory Control Samples and Surrogate Control Samples were within acceptance limits with the exception of one QC lot in which the recovery of spiked concentrations of DCA was higher than the acceptable limit.

Two trip blanks were analyzed for volatile organics. Methylene chloride was detected in one sample at 11 ug/1 and in the other at 9 ug/1. Laboratory contamination with this compound is very common and these levels are acceptable. No detections of this compound were made in any of the water samples or the equipment blank.

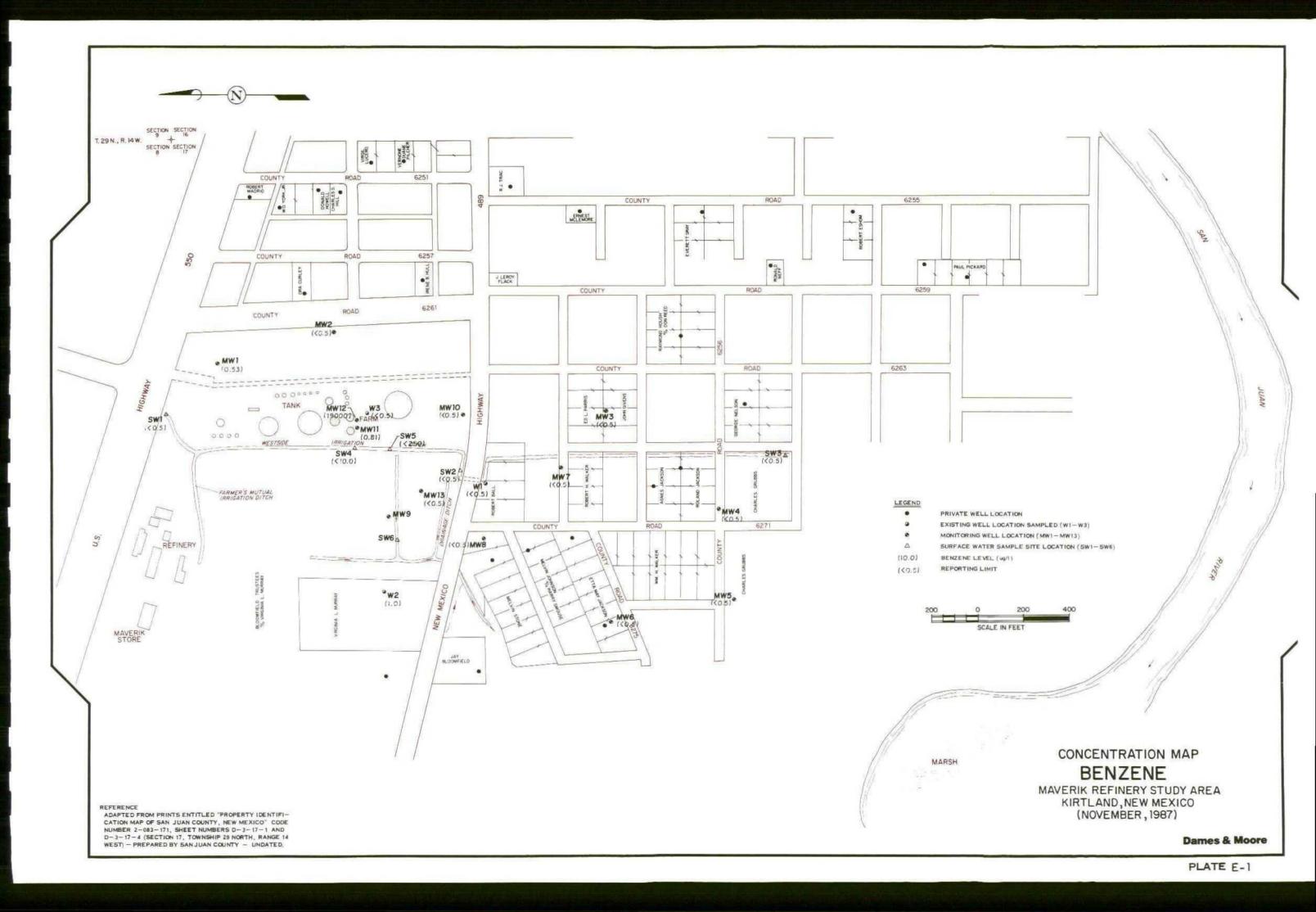
An equipment blank was analyzed for the entire suite of parameters. No organics were detected and the concentrations of inorganics detected were in the range expected of the distilled water used to flush the equipment.

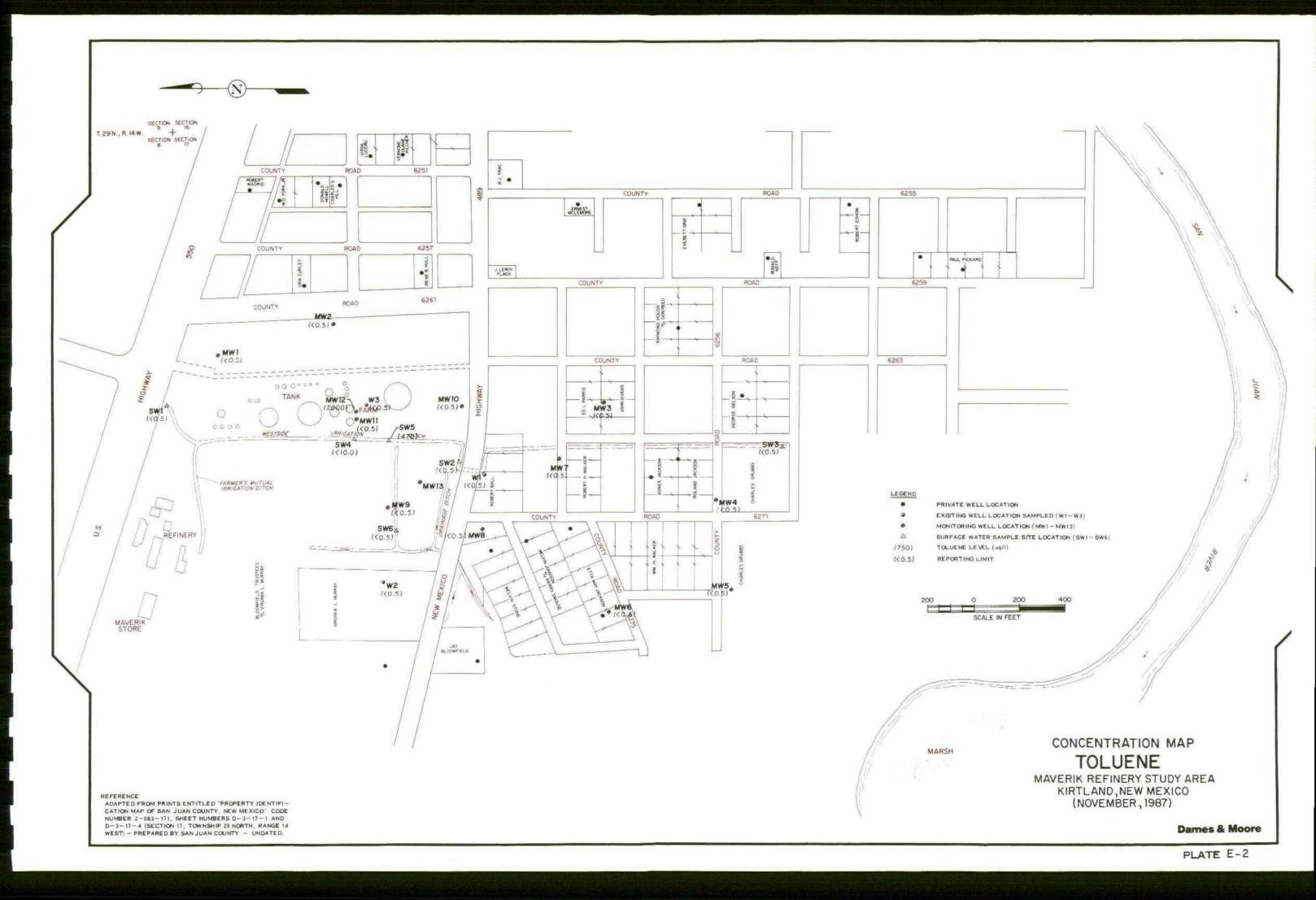
A blind duplicate of the sample from MW-1 was subjected to the full suite of analyses. Precision for non-volatile analytes, as measured by the relative percent difference between the two samples, was within acceptable ranges. The only detection of volatiles was the presence of benzene in the MW-1 sample at

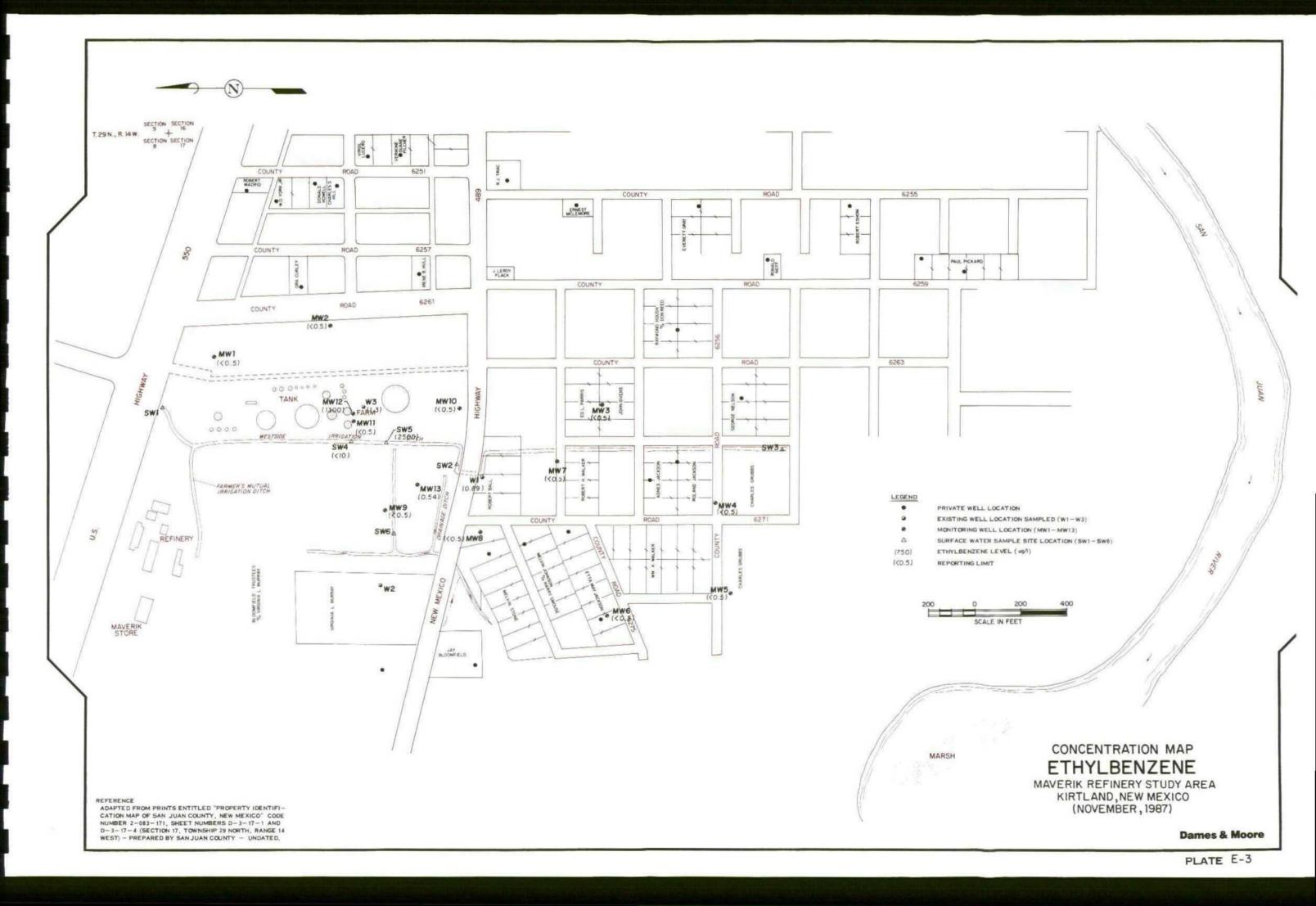
E-3

0.53 ug/l (detection limit, 0.50 ug/l); benzene was not detected in the blind duplicate sample. This variability is not unexpected at these very low detection limits.

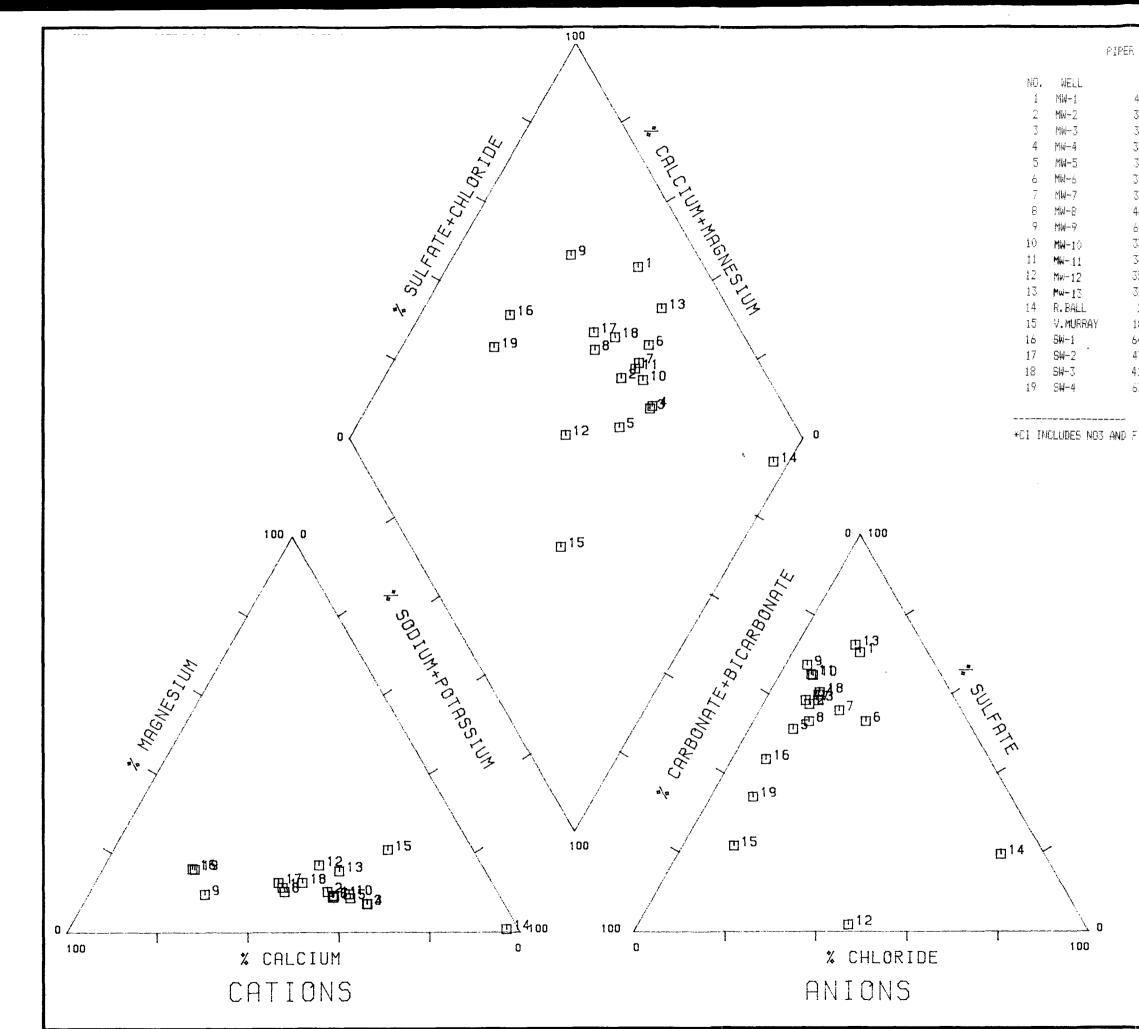
ł


TABLE E-I FIELD WATER QUALITY DATA⁽¹⁾


(Maverik Country Stores, Inc., Kirtland, New Mexico)


Sample Site Designation	Conductivity (umhos/cm)	Ha	Temperature °C	Flow	Remarks
Ground Water					
MW - 1	400	9.64	15.3	1	No oil or sheen noted in glass bailer
MW-2	1,100	7.75	14.2	ı	
MW3	1	7.78	12.0	ı	Ľ,
44 – 44 MM	I	7.46	14.1	ı	in
MW – 5	1,310	7.85	15.5	ı	No oil or sheen noted in glass bailer
MW-6	I	7.51	12.1	1	ŗ
MW - 7	Π	7.66	13.5	ı	No oil or sheen noted in glass bailer
MW-8	-	7.41	14.8	ı	No oil or sheen noted in glass bailer
6-MM	-	7.11	13.3	ı	No oil or sheen noted in glass bailer
MW-10	1,280	7.66	12.5	I	No oil or sheen noted in glass bailer
HW-11	-	7.85	14.5	١	No oil or sheen noted in glass bailer
MW-12	1,510	6.74	17.0	ŀ	Yellow sheen, odoriferous
MW-13		8.14	8.1	ı	Yellow sheen, no odor, multi-colored
Ball Well (W-1)	٣.	7.96	14.3	1	No oil or sheen noted in glass bailer
V. Murray Well (W-2)	700	8.06	12.9	t	No oil or sheen noted in glass bailer
On-Site Steel Well (W-3)	No field data recorded	a recorded			Yellow sheen, odoriferous
Surface Water					

<5 gpm Estimated No distinct oil or sheen noted 5 gpm Estimated No distinct oil or sheen noted <2 gpm Estimated Distinct oil and sheen noted</pre> <5 gpm Estimated Distinct oil and sheen noted</pre> <5 gpm Estimated Distinct oil and sheen noted</pre> 46,675 gpm Upper surface layer too contami-nated to lower probes through 6.5 14.2 10.0 6.8 7.8 7.60 7.28 8.05 7.28 8.5 280 1,080 1,210 565 3,080 SW-1 Farmers Mutual Irriga-tion Ditch (Upstream) SW-2 West Irrigation Ditch (at Hwy 489) SW-3 West Irrigation Ditch (Downstream) SW-4 West Irrigation Ditch (Across from Tank Farm) SW-5 West Irrigation Ditch (Across from Tank Farm) SW-6 V. Murray's Ditch (West of Tank Farm)


(1) Measured in November 1987

DATE 3.30 CHECKED BY

DATE

14819-005-031

FILE

노

PIPER DIAGRAM COORDINATES-IN PERCENT

						ION	
Ca	Mġ	K+Na	504	C1*	CG3+HCO3	BALANCE	SYMEOL
46,7	11.2	42.1	70.5	14.3	14.7	-5.0	0
37.4	10.1	52.4	57.4	10.2	32.4	3.1	0
30.3	7.1	62.6	58.4	11.7	30.0	.7	0
30.2	7.0	62.8	59.8	11.1	29.1	1.5	0
33.2	5,5	58.3	51.2	9.7	39.1	-2.3	()
37,0	8,7	54.3	53.1	24.7	22.2	-3.;	Ú.
36.8	8,8	54.4	55.9	17.5	26.5	5	0
46.8	10.2	43.0	53.1	12.3	34.7	3.7	Q
64.8	9.6	25.7	67.4	4.8	27.9	-3.3	0
33.0	7.5	57.5	64.7	7.4	27.9	2.1	0
36.5	9.2	54.3	65.0	6.9	28.2	3	0
35.9	16.8	47.3	1.7	46.4	51.9	2.5	()
32.2	15.3	52.5	72.4	12.9	14.7	5	Û
2.7	.7	96.6	17.4	71.1	9.5	+.5	()
18.8	20.7	60.5	21.6	11.3	67.1	.7	Ū
64.2	16.0	19.8	43,6	7.5	48.9	1.4	0
47.0	12.4	40.5	58.4	8.9	32.7	.7	0
41.7	12.4	45.9	60.4	11.0	28.6	1.3	0
63.8	15.8	20.4	34.1	9,3	56,5	7	Û

PIPER DIAGRAM (SAMPLE SITES 1-19)

Dames & Moore

PLATE E-5

I. OVERVIEW

On November 11 and 12, 1987, Enseco-Rocky Mountain Analytical Laboratory received sixteen samples from Dames & Moore Inc. A complete listing of tests requested, by sample, is given in Section III.

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- I. Overview
- II. Sample Description Information
- III. Analytical Tests Assigned (not included)
- IV. Analytical Results
- V. Quality Control Report
- VI. Description of Analytical Methodology.

Please note that the ion balances were calculated using alkalinity results from filtered bottles for samples 64971-009, -010, -011, and -013 due to the large amount of sediment in the samples. However, the alkalinity results listed in the report are on a total basis consistent with the standard methodology.

II. SAMPLE DESCRIPTION INFORMATION

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique five digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the five digit project code and the sample sequence number.

Enseco

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

IV. ANALYTICAL RESULTS

The analytical results for this project are presented in the following data tables. The results are presented by sample, by test, with tests reported in the following order: GC/MS, Chromatography, Metals and Inorganics.

Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization data is the date when the project was defined by the client such that laboratory work could begin.

Data sheets contain a listing of the parameters measured in each test, the analytical results and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content. All data is "blank corrected", i.e. the level of contamination, if any, found in the laboratory blank is subtracted from the analytical result before it is reported.

In addition, surrogate recovery data is presented for all GC/MS analyses. The surrogate recovery is an indication of the affect of the sample matrix on the performance of the method. The results from the Standard Enseco QA/QC Program, which generates data which are independent of matrix effects, is given in Section V.

SAMPLE DESCRIPTION INFORMATION

for

DAMES AND MOORE

RMAL <u>Sample_No.</u>	Sample Description	Sample Type	Date <u>Sampled</u>	Date <u>Received</u>
Sample No.	Sample Description	Sumple Type	Dumpreu	<u>Accelited</u>
64971-001	SW-1	Water	11/10/87	11/11/87
64971-002	SW-2	Water	11/10/87	11/11/87
64971-003	SW-3	Water	11/10/87	11/11/87
64971-004	MW-4	Water	11/10/87	11/11/87
64971-005	MW-5	Water	11/10/87	11/11/87
64971-006	SW-6	Water	11/10/87	11/11/87
64971-007	SW-4	Water	11/10/87	11/11/87
64971-008	SW-5	Water	11/10/87	11/11/87
64971-009	MW-7	Water	11/11/87	11/12/87
64971-010	Duplicate = MW1	Water	11/11/87	11/12/87
64971-011	MW-1	Water	11/11/87	11/12/87
64971-012	MW-2	Water	11/11/87	11/12/87
64971-013	MW-3	Water	11/11/87	11/12/87
64971-014	MW-11	Water	11/11/87	11/12/87
64971-015	MW-6	Water	11/11/87	11/12/87
64971-016	TRIP BLANK	Water	11/11/87	11/12/87

Ĩ.

Rocky Mountain Analytical Laboratory

Enseco Incorporated

1

ANALYTICAL RESULTS FOR DAMES & MOORE INC. DECEMBER 4, 1987

tempert Reviewed by: Jeannie B. Howbert J. Bollinger, Ph.D. Mar

4955 Yarrow Street Arvada, Colorado 80002 303/421-6611

Facsimile: 303/431-7171

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE Client ID: SW-1 Laboratory ID: 64971-001 Enseco ID: 64971-001 Matrix: Water Sampled: 11/10/87 Received: 11/11/87 Authorized: 11/11/87 Analyzed: 11/16/87 Reporting Result <u>Parameter</u> <u>Units</u> <u>Limit</u> Bromoform 5.0 N.D. ug/L Carbon tetrachloride ND ug/L0.50

Carbon tetrachioride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Mike Faught

Approved by: Robert Keck

€Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES A	AND MOORE
----------------------	-----------

Client ID: SW-1

Laboratory ID: 64971-001	Enseco ID: 64971-001				
Matrix: Water	Sampled: 11/10/87		Received: 11/11/87		
Authorized: 11/11/87	Analyzed: 11/16/87				
Parameter	Res	<u>ult</u>	<u>Units</u>	Reporting <u>Limit</u>	
Benzene	N	.D.	ug/L	0.50	
Chlorobenzene	N	.D.	ug/L	0.50	
Ethylbenzene	N	.D.	ug/L	0.50	
Toluene	N	n	ng/I	0.50	

Ethylbenzene	N .D.	ug/L	0.50
Toluene	N .D.	ug/L	0 .50
1,2-Dichlorobenzene	N. D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N. D.	ug/L	0.50
m-Xylene	N.D.	ug/L	0.50
o & p-Xylene(s)	N.D.	ug/L	0.50

N.D. = Not detected

Reported by: Mike Faught

Approved by: Robert Keck

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: SW-1

Matrix: Water

Laboratory ID: 64971-001

Enseco ID: 64971-001

Sampled: 11/10/87

Received: 11/11/87

Authorized: 11/11/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pH	8.12	units	0.01	150.1	11/11/87
Specific Conductance @ 25C	581	umhos/cm	1	120.1/9050	11/11/87
Total Dissolved Solids	400	mg/L	10	160.1	11/17/87
Fluoride	0.3	mg/L	0.1	340.2	11/14/87
Chloride	16	mg/L	3	300.0	11/25/87
Nitrate + Nitrite as N	0.3	mg/L	0.1	353.2	12/01/87
Sulfate	136	mg/L	5	300.0	11/25/87
Total Alkalinity as CaCO3	159	mg/L	5	310.1/403	11/11/87
Bicarbonate Alkalinity	159	mg/L	5	310.1/403	11/11/87
Carbonate Alkalinity as CaCC)3 N.D.	mg/L	5	310.1/403	11/11/87
Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
Total Cations	6.6	meq/L	0.1	104C	12/02/87
Total Anions	6.5	meg/L	0.3	104C	12/02/87
% Difference	0.9	%	0.1	104C	12/02/87

N.D. = Not detected

Approved by: Lindsay Breyer

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: SW-1

Laboratory ID: 64971-001

Enseco ID: 64971-001

Received: 11/11/87

Matrix: Water Authorized: 11/11/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Calcium	86	mg/L	0.1	200.7	11/19/87
Iron	N.D.	mg/L	0.05	200.7	11/19/87
Magnesium	13	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87
Sodium	29	mg/L	0.05	200.7	11/19/87
Total Organic Lead	N.D.	mg/L	0.002	Enseco	12/04/87

Sampled: 11/10/87

N.D. = Not detected

Approved by: Will Pratt

€Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE Client ID: SW-2 Laboratory ID: 64971-002 Enseco ID: 64971-002 Matrix: Water Sampled: 11/10/87 Received: 11/11/87 Authorized: 11/11/87 Analyzed: 11/16/87 Reporting Parameter <u>Result</u> <u>Units</u> <u>Limit</u> Benzene N.D. ug/L 0.50 Chlorobenzene N.D. ug/L 0.50 Ethylbenzene N.D. ug/L 0.50 Toluene N.D. ug/L 0.50 1,2-Dichlorobenzene 0.50 N.D. ug/L 1,3-Dichlorobenzene N.D. ug/L 0.50 1,4-Dichlorobenzene N.D. 0.50 ug/L m-Xylene N.D. ug/L 0.50 o & p-Xylene(s) 1.6 0.50 ug/L

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND	MOORE			
Client ID: SW-2				
Laboratory ID: 64971-002	Enseco ID: 6	4971-002		
Matrix: Water	Sampled: 11/10/87	Rece	ived: 11/11/87	
Authorized: 11/11/87		Anal	yzed: 11/16/87	
<u>Parameter</u>	Resu	<u>ult</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N	D.	ug/L	5.0
Carbon tetrachloride	N.	D.	ug/L	0.50
Chlorobenzene	N.:	D.	ug/L	2.0
Chloroethane	N.	D.	ug/L	5.0
Chloroform	N.	D.	ug/L	0.50
Dibromochloromethane	N	D.	ug/L	1.0
Bromodichloromethane	N.	D.	ug/L	1.0
1,1-Dichloroethane	N.	D.	ug/L	0.50
1,2-Dichloroethane		1.1	ug/L	1.0
1,1-Dichloroethene	N.	D.	ug/L	0.50
1,2-Dichloropropane	N.:	D.	ug/L	1.0
cis-1,3-Dichloropropene	N.	D.	ug/L	2.0
trans-1,3-Dichloropropene	N.:	D.	ug/L	0.50
Bromomethane	N.:	D.	ug/L	5.0
Chloromethane	N.:	D.	ug/L	5.0
Methylene chloride	N.	D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.:	D.	ug/L	1.0
Tetrachloroethene	N.:	D.	ug/L	0.50
trans-1,2-Dichloroethene	N.:	D.	ug/L	0.50
1,1,1-Trichloroethane	N.2	D.	ug/L	0.50
1,1,2-Trichloroethane	N .3	D.	ug/L	1.0
Trichloroethene	N.:	D.	ug/L	1.0
Vinyl chloride 1,1,2-Trichloro-	N .1	D.	ug/L	1.0
2,2,1-trifluoroethane	N.I	D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N .1		ug/L	2.0

N.D. = Not detected

Reported by: Mike Faught

Approved by: Robert Keck

INORGANIC PARAMETERS

Sampled: 11/10/87

Client Name: DAMES AND MOORE

Client ID: SW-2

Matrix: Water

Laboratory ID: 64971-002

Enseco ID: 64971-002

Received: 11/11/87

Authorized: 11/11/87

			Reporting	Analytical	
Parameter	<u>Result</u>	<u>Units</u>	<u>Limit</u>	Method	<u>Analyzed</u>
pH	7.64	units	0.01	150.1	11/11/87
Specific Conductance @ 25C	1480	umhos/cm	1	120.1/9050	11/11/87
Total Dissolved Solids	1120	mg/L	10	160.1	11/17/87
Fluoride	0.4	mg/L	0.1	340.2	11/14/87
Chloride	49	mg/L	3	300.0	11/25/87
Nitrate + Nitrite as N	1.5	mg/L	0.1	353.2	12/01/87
Sulfate	476	mg/L	5	300.0	11/25/87
Total Alkalinity as CaCO3	277	mg/L	5	310.1/403	11/11/87
Bicarbonate Alkalinity	277	mg/L	5	310.1/403	11/11/87
Carbonate Alkalinity as CaCC)3 n.d.	mg/L	5	310.1/403	11/11/87
Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
Total Cations	17.1	meq/L	0.1	104C	12/02/87
Total Anions	17.0	meq/L	0.3	104C	12/02/87
% Difference	0.6	%	0.1	104C	12/02/87

N.D. = Not detected

Approved by: Lindsay Breyer

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: SW-2

Laboratory ID: 64971-002

Enseco ID: 64971-002

Received: 11/11/87

Matrix: Water Authorized: 11/11/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Calcium	162	mg/L	0.1	200.7	11/19/87
Iron	N.D.	mg/L	0.05	200.7	11/19/87
Magnesium	26	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87
Sodium	159	mg/L	0.05	200.7	11/19/87
Total Organic Lead	N.D.	mg/L	0.002	Enseco	12/04/87

Sampled: 11/10/87

N.D. = Not detected

Approved by: Will Pratt

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE

Client ID: SW-3

Laboratory ID: 64971-003

Enseco ID: 64971-003

Matrix: Water Authorized: 11/11/87	Sampled: 11/10/87	Received: 11/11/87 Analyzed: 11/16/87	
Parameter	Resu	lt Units	Reporting <u>Limit</u>
Benzene	N.E	ug/L	0.50
Chlorobenzene	N.E		0.50
Ethylbenzene	N.E		0.50
Toluene	N.I	ug/L	0.50
1,2-Dichlorobenzene	N.I		0.50
1,3-Dichlorobenzene	N.E	ug/L	0.50
1,4-Dichlorobenzene	N.I	ug/L	0.50
m-Xylene	N.E	ug/L	0.50
o & p-Xylene(s)	N.E		0.50

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client	Name:	DAMES	AND	MOORE
Chent	reame.	DAMES	DIND	MOOKE

Client ID: SW-3

Laboratory ID: 64971-003	Enseco ID: 64971-003
--------------------------	----------------------

Matrix: Water	Sampled: 11/10/87	Received: 11/11/87
Authorized: 11/11/87		Analyzed: 11/16/87

. . .

<u>Parameter</u>	Result	Units	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Mike Faught

Approved by: Robert Keck

INORGANIC PARAMETERS

Sampled: 11/10/87

Client Name: DAMES AND MOORE

Client ID: SW-3

Matrix: Water

Laboratory ID: 64971-003

Enseco ID: 64971-003

Received: 11/11/87

Authorized: 11/11/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pН	8.00	units	0.01	150.1	11/11/87
Specific Conductance @ 25C	1830	umhos/cm	1	120.1/9050	11/11/87
Total Dissolved Solids	1400	mg/L	10	160.1	11/17/87
Fluoride	0.6	mg/L	0.1	340.2	11/14/87
Chloride	77	mg/L	3	300.0	11/25/87
Nitrate + Nitrite as N	1.0	mg/L	0.1	353.2	12/01/87
Sulfate	602	mg/L	5	300.0	11/25/87
Total Alkalinity as CaCO3	297	mg/L	5	310.1/403	11/11/87
Bicarbonate Alkalinity	297	mg/L	5	310.1/403	11/11/87
Carbonate Alkalinity as CaCC)3 N.D.	mg/L	5	310.1/403	11/11/87
Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
Total Cations	21.2	meq/L	0.1	104C	12/02/87
Total Anions	20.7	meq/L	0.3	104C	12/02/87
% Difference	1.2	%	0.1	104C	12/02/87

N.D. = Not detected

Approved by: Lindsay Breyer

Enseco

Analyzed

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: SW-3

Laboratory ID: 64971-003

Enseco ID: 64971-003

Matrix: WaterSampled: 11/10/87Received: 11/11/87Authorized: 11/11/87ParameterResultUnitsLimitMethod

Calcium	178	mg/L	0.1	200.7	11/19/87
Iron	0.06	mg/L	0.05	200.7	11/19/87
Magnesium	32	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87
Sodium	223	mg/L	0.05	200.7	11/19/87
Total Organic Lead	N.D.	mg/L	0.01	Enseco	12/04/87

N.D. = Not detected

Approved by: Will Pratt

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE Client ID: MW-4 Laboratory ID: 64971-004 Enseco ID: 64971-004 Matrix: Water Sampled: 11/10/87 Received: 11/11/87 Authorized: 11/11/87 Analyzed: 11/16/87 Reporting Parameter <u>Result</u> <u>Units</u> <u>Limit</u> Benzene 0.50 ug/L N.D. Chlorobenzene N.D. 0.50 ug/L Ethylbenzene 0.50 N.D. ug/L Toluene N.D. ug/L 0.50 1,2-Dichlorobenzene 0.50 N.D. ug/L 1,3-Dichlorobenzene N.D. ug/L 0.50 1,4-Dichlorobenzene 0.50 N.D. ug/L m-Xylene 0.50 N.D. ug/L o & p-Xylene(s) N.D. ug/L 0.50

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

🗲 Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Laboratory ID: 64971-004	Enseco ID: 64		
Matrix: Water	Sampled: 11/10/87	Received: 11/11/8	7
Authorized: 11/11/87		Analyzed: 11/16/8	37
<u>Parameter</u>	Resul	<u>t Units</u>	Reporting Limit
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride 1,1,2-Trichloro-	N.D.	ug/L	1.0
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Mike Faught

Client Name: DAMES AND MOORE

Client ID: MW-4

Approved by: Robert Keck

INORGANIC PARAMETERS

Sampled: 11/10/87

Client Name: DAMES AND MOORE

Client ID: MW-4

Matrix: Water

Laboratory ID: 64971-004

Enseco ID: 64971-004

Received: 11/11/87

Authorized: 11/11/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
pH	7.44	units	0.01	150.1	11/11/87
Specific Conductance @ 25C	2060	umhos/cm	1	120.1/9050	11/11/87
Total Dissolved Solids	1540	mg/L	10	160.1	11/17/87
Fluoride	0.8	mg/L	0.1	340.2	11/14/87
Chloride	87	mg/L	3	300.0	11/25/87
Nitrate + Nitrite as N	0.3	mg/L	0.1	353.2	12/01/87
Sulfate	654	mg/L	5	300.0	11/25/87
Total Alkalinity as CaCO3	332	mg/L	5	310.1/403	11/11/87
Bicarbonate Alkalinity	332	mg/L	5	310.1/403	11/11/87
Carbonate Alkalinity as CaCC)3 N.D.	mg/L	5	310.1/403	11/11/87
Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
Total Cations	23.4	meq/L	0.1	104C	12/02/87
Total Anions	22.8	meq/L	0.3	104C	12/02/87
% Difference	1.4	%	0.1	104C	12/02/87

N.D. = Not detected

Approved by: Lindsay Breyer

🗲 Enseco

11/19/87

12/04/87

METALS PARAMETERS

Client Name: DAMES Al	ND MOORE				
Client ID: MW-4					
Laboratory ID: 64971-004	4	Enseco ID:	64971-004		
Matrix: Water	Sample	d: 11/10/87	Received:	11/11/87	
Authorized: 11/11/87					
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting Limit	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	142	mg/L	0.1	200.7	11/19/87
Iron	N.D.	mg/L	0.05	200.7	11/19/87
Magnesium	20	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87

mg/L

mg/L

337

N.D.

N.D. = Not detected

Sodium

Total Organic Lead

Approved by: Will Pratt

0.05

0.002

200.7

Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE

Client ID: MW-5

Laboratory ID: 64971-005

Enseco ID: 64971-005

Matrix: Water Authorized: 11/11/87	Sampled: 11/10/87		Received: 11/11/87 Analyzed: 11/16/87	
Parameter	Resu	1 <u>1t</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene	N.I	D.	ug/L	0.50
Chlorobenzene	N.I	D.	ug/L	0.50
Ethylbenzene	N.I	D.	ug/L	0.50
Toluene	N.I	D.	ug/L	0.50
1,2-Dichlorobenzene	N.I	D.	ug/L	0.50
1,3-Dichlorobenzene	N.I	D.	ug/L	0.50
1,4-Dichlorobenzene	N.I	D.	ug/L	0.50
m-Xylene	N.I	D.	ug/L	0.50
o & p-Xylene(s)	N.I	D.	ug/L	0.50

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Cheffer Name. DAMES AND			
Client ID: MW-5			
Laboratory ID: 64971-005	Enseco ID: 64	971-005	
Matrix: Water	Sampled: 11/10/87	Received: 11/11/8	7
Authorized: 11/11/87		Analyzed: 11/16/8	7
<u>Parameter</u>	Resu	<u>lt</u> <u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D	· • • • • • • • • • • • • • • • • • • •	5.0
Carbon tetrachloride	N.D	0,	0.50
Chlorobenzene	N.D	0,	2.0
Chloroethane	N.D	· · · · · · · · · · · · · · · · · · ·	5.0
Chloroform	N.D	87	0.50
Dibromochloromethane	N.D		1.0
Bromodichloromethane	N.D		1.0
l,l-Dichloroethane	N.D	- 0/	0.50
1,2-Dichloroethane	N.D	•	1.0
1,1-Dichloroethene	N.D	e ,	0.50
1,2-Dichloropropane	N.D	<i>U</i> ,	1.0
cis-1,3-Dichloropropene	N.D	S ,	2.0
trans-1,3-Dichloropropene	N.D	.	0.50
Bromomethane	N.D	0.	5.0
Chloromethane	N.D	· · · · · · · · · · · · · · · · · · ·	5.0
Methylene chloride	N.D		5.0
1,1,2,2-Tetrachloroethane	N.D	0,	1.0
Tetrachloroethene	N.D	•	0.50
trans-1,2-Dichloroethene	N.D	5,	0.50
1,1,1-Trichloroethane	N.D	÷.	0.50
1,1,2-Trichloroethane	N.D	ug/L	1.0
Trichloroethene	N.D	ug/L	1.0
Vinyl chloride	N.D	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D	ug/L	2.0

N.D. = Not detected

Reported by: Mike Faught

Client Name: DAMES AND MOORE

Approved by: Robert Keck

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-5

Matrix: Water

Laboratory ID: 64971-005

Enseco ID: 64971-005

Sampled: 11/10/87

Received: 11/11/87

Authorized: 11/11/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
pH	7.42	units	0.01	150.1	11/11/87
Specific Conductance @ 25C	1730	umhos/cm	1	120.1/9050	11/11/87
Total Dissolved Solids	1250	mg/L	10	160.1	11/17/87
Fluoride	0.8	mg/L	0.1	340.2	11/14/87
Chloride	68	mg/L	3	300.0	11/25/87
Nitrate + Nitrite as N	0.2	mg/L	0.1	353.2	12/01/87
Sulfate	499	mg/L	5	300.0	11/25/87
Total Alkalinity as CaCO3	397	mg/L	5	310.1/403	11/11/87
Bicarbonate Alkalinity	397	mg/L	5	310.1/403	11/11/87
Carbonate Alkalinity as CaCC)3 N.D.	mg/L	5	310.1/403	11/11/87
Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
Total Cations	19.3	mcq/L	0.1	104C	12/02/87
Total Anions	20.3	meq/L	0.3	104C	12/02/87
% Difference	2.5	%	0.1	104C	12/02/87

N.D. = Not detected

Approved by: Lindsay Breyer

Enseco

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-5

Matrix: Water

Laboratory ID: 64971-005

Enseco ID: 64971-005

Received: 11/11/87

Authorized: 11/11/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	129	mg/L	0.1	200.7	11/19/87
Iron	N.D.	mg/L	0.05	200.7	11/19/87
Magnesium	20	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87
Sodium	258	mg/L	0.05	200.7	11/19/87
Total Organic Lead	N.D.	mg/L	0.02	Enseco	12/04/87

Sampled: 11/10/87

N.D. = Not detected

Approved by: Will Pratt

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE

Client ID: SW-6

Laboratory ID: 64971-006

Enseco ID: 64971-006

Matrix: Water	Sampled: 11/10/87	Received: 11/11/87
Authorized: 11/11/87		Analyzed: 11/16/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	0.50
Ethylbenzene	N.D.	ug/L	0.50
Toluene	N.D.	ug/L	0.50
1,2-Dichlorobenzene	N.D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N.D.	ug/L	0.50
m-Xylene	N.D.	ug/L	0.50
o & p-Xylene(s)	N.D.	ug/L	0.50

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Laboratory ID: 64971-006	Enseco ID: 64	971-006	
Matrix: Water	Sampled: 11/10/87	Received: 11/11/87	
Authorized: 11/11/87		Analyzed: 11/16/87	
<u>Parameter</u>	Resu	t <u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D	· 07	5.0
Carbon tetrachloride	N.D	- 0/ -	0.50
Chlorobenzene	N.D		2.0
Chloroethane	N.D	0,	5.0
Chloroform	N.D		0.50
Dibromochloromethane	N.D	- 0,	1.0
Bromodichloromethane	N.D	- 07	1.0
1,1-Dichloroethane	N.D	· 07	0.50
1,2-Dichloroethane	N.D		1.0
1,1-Dichloroethene	N.D	- 0/ -	0.50
1,2-Dichloropropane	N.D	. 37	1.0
cis-1,3-Dichloropropene	N.D	- U/	2.0
trans-1,3-Dichloropropene	N.D	- U/	0.50
Bromomethane	N.D	- 0/	5.0
Chloromethane	N.D	- O /	5.0
Methylene chloride	N.D	0,	5.0
1,1,2,2-Tetrachloroethane	N.D	· 0/ =	1.0
Tetrachloroethene	N.D	0/	0.50
trans-1,2-Dichloroethene	N.D	G,	0.50
1,1,1-Trichloroethane	N.D	01	0.50
1,1,2-Trichloroethane	N.D	· 0/	1.0
Trichloroethene	N.D	0,	1.0
Vinyl chloride	N.D	ug/L	1.0
1,1,2-Trichloro-		·-	
2,2,1-trifluoroethane	N.D	0/	1.0
1,2-Dibromoethane (EDB)	N.D	ug/L	2.0

N.D. = Not detected

Reported by: Mike Faught

Client Name: DAMES AND MOORE

Approved by: Robert Keck

🔊 Enseco

HAZARDOUS SUBSTANCE LIST (HSL) VOLATILE ORGANICS (CONT.) EPA METHOD 624

Client Name: DAMES AND MOORE

Client ID: SW-4

Laboratory ID: 64971-007

Enseco ID: 64971-007

Matrix: Water Authorized: 11/11/87	Sampled: 11/10/87	Received: 11/11/87 Analyzed: 11/19/87	
Parameter	Resu	<u>lt</u> <u>Units</u>	Reporting <u>Limit</u>
Trichloroethene	N.I). ug/L	10
Vinyl acetate	N.I	D. ug/L	20
Vinyl chloride	N.I	D. ug/L	20
Total Xylenes	61	ug/L	10
Surrogate			
Toluene-D8	100) %	-
Bromofluorobenzene(BFB)	113	%	-
1,2-Dichloroethane-D4	106	%	-

N.D. = Not detected

Reported by: Jenifer Tavernier

Approved by: Jeffrey Lowry

Enseco

HAZARDOUS SUBSTANCE LIST (HSL) VOLATILE ORGANICS EPA METHOD 624

Client Name: DAMES AND MOORE

Client ID: SW-4

Laboratory ID: 64971-007 Enseco ID: 64971-007

 Matrix: Water
 Sampled: 11/10/87
 Received: 11/11/87

 Authorized: 11/11/87
 Analyzed: 11/19/87

Parameter	Result	Units	Reporting <u>Limit</u>
Acetone	N.D.	ug/L	· 50
Benzene	N.D.	ug/L	10
Bromoform	N.D.	ug/L	10
Bromomethane	N.D.	ug/L	20
2-Butanone	N.D.	ug/L	50
Carbon disulfide	N.D.	ug/L	10
Carbon tetrachloride	N.D.	ug/L	10
Chlorobenzene	N.D.	ug/L	10
Dibromochloromethane	N.D.	ug/L	10
Chloroethane	N.D.	ug/L	20
2-Chloroethyl vinyl ether	N.D.	ug/L	20
Chloroform	N.D.	ug/L	10
Chloromethane	N.D.	ug/L	20
Bromodichloromethane	N.D.	ug/L	10
1,1-Dichloroethane	N.D.	ug/L	10
1,2-Dichloroethane	N.D.	ug/L	10
1,1-Dichloroethene	N.D.	ug/L	10
1,2-Dichloropropane	N.D.	ug/L	10
cis-1,3-Dichloropropene	N.D.	ug/L	10
trans-1,3-Dichloropropene	N.D.	ug/L	10
Ethylbenzene	N.D.	ug/L	10
2-Hexanone	N.D.	ug/L	20
Methylene chloride	N.D.	ug/L	50
4-Methyl-2-pentanone	N.D.	ug/L	20
Styrene	N.D.	ug/L	10
1,1,2,2-Tetrachloroethane	N.D.	ug/L	10
Tetrachloroethene	N.D.	ug/L	10
Toluene	N.D.	ug/L	10
trans-1,2-Dichloroethene	N.D.	ug/L	10
1,1,1-Trichloroethane	N.D.	ug/L	10
1,1,2-Trichloroethane	N.D.	ug/L	10

N.D. = Not detected

INORGANIC PARAMETERS

Sampled: 11/10/87

Client Name: DAMES AND MOORE

Client ID: SW-4

Matrix: Water

Laboratory ID: 64971-007

Enseco ID: 64971-007

Received: 11/11/87

Authorized: 11/11/87

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
pH	7.29	units	0.01	150.1	11/11/87
Specific Conductance @ 25C	790	umhos/cm	1	120.1/9050	11/11/87
Total Dissolved Solids	790	mg/L	10	160.1	11/17/87
Fluoride	0.3	mg/L	0.1	340.2	11/14/87
Chloride	29	mg/L	3	300.0	11/25/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	147	mg/L	5	300.0	11/25/87
Total Alkalinity as CaCO3	253	mg/L	5	310.1/403	11/11/87
Bicarbonate Alkalinity	253	mg/L	5	310.1/403	11/11/87
Carbonate Alkalinity as CaCC)3 N.D.	mg/L	5	310.1/403	11/11/87
Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
Total Cations	8.8	meq/L	0.1	104C	12/02/87
Total Anions	9.0	meq/L	0.3	104C	12/02/87
% Difference	0.9	%	0.1	104C	12/02/87

N.D. = Not detected

Approved by: Lindsay Breyer

METALS PARAMETERS

Client	Name:	DAMES	AND	MOORE
Client	ID: SW	-4		

Laboratory ID: 64971-007

Enseco ID: 64971-007

Received: 11/11/87

Matrix: Water Authorized: 11/11/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	113	mg/L	0.1	200.7	11/19/87
Iron	0.12	mg/L	0.05	200.7	11/19/87
Magnesium	17	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87
Sodium	40	mg/L	0.05	200.7	11/19/87
Total Organic Lead	0.3	mg/L	0.2	Enseco	12/04/87

Sampled: 11/10/87

N.D. = Not detected

Approved by: Will Pratt

€ Enseco

HAZARDOUS SUBSTANCE LIST (HSL) VOLATILE ORGANICS (CONT.) EPA METHOD 624

Client Name: DAMES AND MOORE

Client ID: SW-5

Laboratory ID: 64971-008

Enseco ID: 64971-008

Matrix: Water Authorized: 11/11/87	Sampled: 11/10/87	Received: 11/11/87 Analyzed: 11/19/87	
Parameter	Resu	<u>t Units</u>	Reporting Limit
Trichloroethene	N.D	ug/L	250
Vinyl acetate	N.D	ug/L	500
Vinyl chloride	N.D	. ug/L	500
Total Xylenes	57000	ug/L	250
Surrogate			
Toluene-D8	98	%	-
Bromofluorobenzene(BFB)	114	%	-
1,2-Dichloroethane-D4	105	%	-

N.D. = Not detected Reported by: Jenifer Tavernier

Approved by: Jeffrey Lowry

Enseco

HAZARDOUS SUBSTANCE LIST (HSL) VOLATILE ORGANICS EPA METHOD 624

Client Name: DAMES AND MOORE

Client ID: SW-5

Laboratory ID: 64971-008 Enseco ID: 64971-008

Matrix: Water	Sampled: 11/10/87	Received: 11/11/87	
Authorized: 11/11/87		Analyzed: 11/19/87	
			Reporting

<u>Parameter</u>	Result	<u>Units</u>	Limit
Acetone	N.D.	ug/L	1200
Benzene	N.D.	ug/L	250
Bromoform	N.D.	ug/L	250
Bromomethane	N.D.	ug/L	500
2-Butanone	N.D.	ug/L	1200
Carbon disulfide	N.D.	ug/L	250
Carbon tetrachloride	N.D.	ug/L	250
Chlorobenzene	N.D.	ug/L	250
Dibromochloromethane	N.D.	ug/L	250
Chloroethane	N.D.	ug/L	500
2-Chloroethyl vinyl ether	N.D.	ug/L	500
Chloroform	N.D.	ug/L	250
Chloromethane	N.D.	ug/L	500
Bromodichloromethane	N.D.	ug/L	250
1,1-Dichloroethane	N.D.	ug/L	250
1,2-Dichloroethane	N.D.	ug/L	250
1,1-Dichloroethene	N.D.	ug/L	250
1,2-Dichloropropane	N.D.	ug/L	250
cis-1,3-Dichloropropene	N.D.	ug/L	250
trans-1,3-Dichloropropene	N.D.	ug/L	250
Ethylbenzene	2500	ug/L	250
2-Hexanone	N.D.	ug/L	500
Methylene chloride	N.D.	ug/L	1200
4-Methyl-2-pentanone	N.D.	ug/L	500
Styrene	N.D.	ug/L	250
1,1,2,2-Tetrachloroethane	N.D.	ug/L	250
Tetrachloroethene	N.D.	ug/L	250
Toluene	470	ug/L	250
trans-1,2-Dichloroethene	N.D.	ug/L	250
1,1,1-Trichloroethane	N.D.	ug/L	250
1,1,2-Trichloroethane	N.D.	ug/L	250

N.D. = Not detected

Sample: 64971-008

1

🗲 Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE Client ID: MW-7 Laboratory ID: 64971-009 Enseco ID: 64971-009 Matrix: Water Sampled: 11/11/87 Received: 11/12/87 Authorized: 11/11/87 Analyzed: 11/16/87 Reporting Parameter <u>Result</u> <u>Units</u> <u>Limit</u> Benzene 0.50 ug/L N.D. Chlorobenzene 0.50 N.D. ug/L Ethylbenzene 0.50 N.D. ug/L Toluene 0.50 N.D. ug/L 1,2-Dichlorobenzene 0.50 N.D. ug/L 1,3-Dichlorobenzene N.D. 0.50 ug/L 1,4-Dichlorobenzene N.D. ug/L 0.50 m-Xylene ug/L 0.50 N.D. o & p-Xylene(s) N.D. ug/L 0.50

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

=

		¥ 7 • 4	Reporting
<u>Parameter</u>	Result	<u>Units</u>	<u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
l,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N .D.	ug/L	0.50
1,1,2-Trichloroethane	N .D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Mike Faught

Approved by: Robert Keck

🗲 Enseco

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-7

Matrix: Water

Laboratory ID: 64971-009

Enseco ID: 64971-009

Sampled: 11/11/87

Received: 11/12/87

Authorized: 11/11/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
pH	7.40	units	0.01	150.1	11/12/87
Specific Conductance @ 25C	1840	umhos/cm	1	120.1/9050	11/12/87
Total Dissolved Solids	1400	mg/L	10	160.1	11/17/87
Fluoride	0.6	mg/L	0.1	340.2	11/14/87
Chloride	126	mg/L	3	300.0	11/25/87
Nitrate + Nitrite as N	0.7	mg/L	0.1	353.2	12/01/87
Sulfate	558	mg/L	5	300.0	11/25/87
Total Alkalinity as CaCO3	430	mg/L	5	310.1/403	11/12/87
Bicarbonate Alkalinity	430	mg/L	5	310.1/403	11/12/87
Carbonate Alkalinity as CaCC)3 n.d.	mg/L	5	310.1/403	11/12/87
Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
Total Cations	20.5	meq/L	0.1	104C	12/03/87
Total Anions	20.8	meq/L	0.3	104C	12/03/87
% Difference	0.6	%	0.1	104C	12/03/87

N.D. = Not detected

Approved by: Lindsay Breyer

Enseco

METALS PARAMETERS

Client Name: DAMES AN	D MOORE				
Client ID: MW-7					
Laboratory ID: 64971-009		Enseco ID:	64971-009		
Matrix: Water	Sampleo	1: 11/11/87	Received:	11/12/87	
Authorized: 11/11/87					
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Calcium	152	mg/L	0.1	200.7	11/19/87
Iron	N.D.	mg/L	0.05	200.7	11/19/87
Magnesium	22	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87
Sodium	256	mg/L	0.05	200.7	11/19/87
Total Organic Lead	0.02	mg/L	0.02	Enseco	12/04/87

N.D. = Not detected

Approved by: Will Pratt

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE

Client ID: Duplicate

Laboratory ID: 64971-010

Enseco ID: 64971-010

Matrix: Water	Sampled: 11/11/87	Received: 11/12/87	
Authorized: 11/11/87		Analyzed: 11/16/87	
Parameter	Resu	lt Units	Reporting <u>Limit</u>
Benzene	N.I	D. ug/L	0.50
Chlorobenzene	N.I	ug/L	0.50
Ethylbenzene	N.I	ug/L	0.50
Toluene	N.I	ug/L	0.50
1,2-Dichlorobenzene	N.I	ug/L	0.50
1,3-Dichlorobenzene	N.I	o. ug/L	0.50
1,4-Dichlorobenzene	N.I	0. ug/L	0.50
m-Xylene	N.I	ug/L	0.50
o & p-Xylene(s)	N.I	D. ug/L	0.50

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client	Name:	DAMES	AND	MOORE

Client ID: Duplicate

Laboratory ID: 64971-010 Enseco ID: 64971-010

 Matrix: Water
 Sampled: 11/11/87
 Received: 11/12/87

 Authorized: 11/11/87
 Analyzed: 11/16/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-		0,	
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Mike Faught

Approved by: Robert Keck

Enseco

INORGANIC PARAMETERS

Sampled: 11/11/87

Client Name: DAMES AND MOORE

Client ID: Duplicate

Laboratory ID: 64971-010

Enseco ID: 64971-010

Received: 11/12/87

Authorized: 11/11/87

Matrix: Water

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pH	9.01	units	0.01	150.1	11/12/87
Specific Conductance @ 25C	488	umhos/cm	1	120.1/9050	11/12/87
Total Dissolved Solids	360	mg/L	10	160.1	11/17/87
Fluoride	0.4	mg/L	0.1	340.2	11/14/87
Chloride	25	mg/L	3	300.0	11/30/87
Nitrate + Nitrite as N	0.2	mg/L	0.1	353.2	12/01/87
Sulfate	178	mg/L	5	300.0	11/30/87
Total Alkalinity as CaCO3	125	mg/L	5	310.1/403	11/12/87
Bicarbonate Alkalinity	110	mg/L	5	310.1/403	11/12/87
Carbonate Alkalinity as CaCC	03 15	mg/L	5	310.1/403	11/12/87
Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
Total Cations	4.6	meq/L	0.1	104C	12/03/87
Total Anions	5.0	meg/L	0.3	104C	12/03/87
% Difference	4.5	%	0.1	104C	12/03/87

N.D. = Not detected

Approved by: Lindsay Breyer

Enseco

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: Duplicate

Laboratory ID: 64971-010

Enseco ID: 64971-010

Received: 11/12/87

Authorized: 11/11/87

Matrix: Water

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Calcium	44	mg/L	0.1	200.7	11/19/87
Iron	N.D.	mg/L	0.05	200.7	11/19/87
Magnesium	6.2	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87
Sodium	43	mg/L	0.05	200.7	11/19/87
Total Organic Lead	N.D.	mg/L	0.02	Enseco	12/04/87

Sampled: 11/11/87

N.D. = Not detected

Approved by: Will Pratt

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE Client ID: MW-1 Laboratory ID: 64971-011 Enseco ID: 64971-011 Matrix: Water Sampled: 11/11/87 Received: 11/12/87 Authorized: 11/11/87 Analyzed: 11/16/87 Reporting <u>Parameter</u> <u>Result</u> <u>Units</u> <u>Limit</u> Benzene 0.53 ug/L 0.50 Chlorobenzene ug/L 0.50 N.D. Ethylbenzene N.D. ug/L 0.50 Toluene N.D. ug/L 0.50 1,2-Dichlorobenzene N.D. ug/L 0.50 1,3-Dichlorobenzene N.D. ug/L 0.50 1,4-Dichlorobenzene N.D. ug/L 0.50 m-Xylene 0.50 N.D. ug/L o & p-Xylene(s) N.D. ug/L 0.50

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

Enseco 🖉

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client 1	Name:	DAMES	AND	MOORE
----------	-------	-------	-----	-------

Client ID: MW-1

Laboratory ID: 64971-011 Enseco ID: 64971-011

Matrix: Water	Sampled: 11/11/87	Received: 11/12/87
Authorized: 11/11/87		Analyzed: 11/16/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N .D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Mike Faught

Approved by: Robert Keck

INORGANIC PARAMETERS

Sampled: 11/11/87

Client Name: DAMES AND MOORE

Client ID: MW-1

Matrix: Water

Laboratory ID: 64971-011

Enseco ID: 64971-011

Received: 11/12/87

Authorized: 11/11/87

	Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
	рН	8.60	units	0.01	150.1	11/12/87
	Specific Conductance @ 25C	497	umhos/cm	1	120.1/9050	11/12/87
	Total Dissolved Solids	360	mg/L	10	160.1	11/17/87
	Fluoride	0.4	mg/L	0.1	340.2	11/14/87
	Chloride	26	mg/L	3	300.0	11/30/87
	Nitrate + Nitrite as N	0.2	mg/L	0.1	353.2	12/01/87
_	Sulfate	176	mg/L	5	300.0	11/30/87
ſ	Total Alkalinity as CaCO3	166	mg/L	5	310.1/403	11/12/87
	Bicarbonate Alkalinity	161	mg/L	5	310.1/403	11/12/87
L	Carbonate Alkalinity as CaCO3	35	mg/L	5	310.1/403	11/12/87
_	Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
	Total Cations	4.6	meq/L	0.1	104C	12/03/87
	Total Anions	5.1	meq/L	0.3	104C	12/03/87
	% Difference	4.9	%	0.1	104C	12/03/87

N.D. = Not detected

Approved by: Lindsay Breyer

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-1

Laboratory ID: 64971-011

Enseco ID: 64971-011

Received: 11/12/87

Matrix: Water Authorized: 11/11/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Calcium	44	mg/L	0.1	200.7	11/19/87
Iron	N.D.	mg/L	0.05	200.7	11/19/87
Magnesium	6.4	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87
Sodium	44	mg/L	0.05	200.7	11/19/87
Total Organic Lead	N.D.	mg/L	0.01	Enseco	12/04/87

Sampled: 11/11/87

N.D. = Not detected

Approved by: Will Pratt

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE								
Enseco ID: 64	4971-012							
Sampled: 11/11/87	87							
	Analyzed: 11/16/	/87						
Resu	<u>lt Unit</u>	Reporting ts Limit						
N.I). ug/I	0.50						
N.I). ug/I	0.50						
N.I). ug/I	L 0.50						
N.I). ug/I	0.50						
N.I). ug/I	0.50						
N.I	o. ug/I	0.50						
N.I). ug/I	0.50						
N.I). ug/I	0.50						
N.I	o. ug/I	0.50						
	Enseco ID: 64 Sampled: 11/11/87 <u>Resu</u> N.I N.I N.I N.I N.I N.I N.I N.I	Enseco ID: 64971-012 Sampled: 11/11/87 Received: 11/12/ Analyzed: 11/16/ Result Unit N.D. ug/I N.D. ug/I						

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client	Name:	DAMES	AND	MOORE	
--------	-------	-------	-----	-------	--

Client ID: MW-2

Laboratory ID: 64971-012 Enseco ID: 64971-012

Matrix: Water	Sampled: 11/11/87	Received: 11/12/87
Authorized: 11/11/87		Analyzed: 11/16/87

Parameter	Result	<u>Units</u>	Reporting Limit
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-		-	
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Mike Faught

Approved by: Robert Keck

INORGANIC PARAMETERS

Sampled: 11/11/87

Client Name: DAMES AND MOORE

Client ID: MW-2

Matrix: Water

Laboratory ID: 64971-012

Enseco ID: 64971-012

Received: 11/12/87

Authorized: 11/11/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
pH	7.65	units	0.01	150.1	11/12/87
Specific Conductance @ 25C	1770	umhos/cm	1	120.1/9050	11/12/87
Total Dissolved Solids	1360	mg/L	10	160.1	11/17/87
Fluoride	0.4	mg/L	0.1	340.2	11/14/87
Chloride	67	mg/L	3	300.0	11/30/87
Nitrate + Nitrite as N	0.4	mg/L	0.1	353.2	12/01/87
Sulfate	526	mg/L	5	300.0	11/30/87
Total Alkalinity as CaCO3	309	mg/L	5	310.1/403	11/12/87
Bicarbonate Alkalinity	309	mg/L	5	310.1/403	11/12/87
Carbonate Alkalinity as CaCC)3 N.D.	mg/L	5	310.1/403	11/12/87
Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
Total Cations	20.2	meq/L	0.1	104C	12/02/87
Total Anions	19.1	meq/L	0.3	104C	12/02/87
% Difference	2.9	%	0.1	104C	12/02/87

N.D. = Not detected

Approved by: Lindsay Breyer

<u>Analyzed</u>

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-2

Laboratory ID: 64971-012

Enseco ID: 64971-012

 Matrix: Water
 Sampled: 11/11/87
 Received: 11/12/87

 Authorized: 11/11/87
 Reporting
 Analytical

 Parameter
 Result
 Units
 Reporting
 Analytical

 On hold
 150
 160
 200.7

Calcium	152	mg/L	0.1	200.7	11/19/87
Iron	N.D.	mg/L	0.05	200.7	11/19/87
Magnesium	25	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87
Sodium	243	mg/L	0.05	200.7	11/19/87
Total Organic Lead	N.D.	mg/L	0.004	Enseco	12/04/87

N.D. = Not detected

Approved by: Will Pratt

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND	MOORE				
Client ID: MW-3					
Laboratory ID: 64971-013	Enseco ID: 64971-013				
Matrix: Water	Sampled: 11/11/87				
Authorized: 11/11/87	***	Analyzed: 11/16/87			
<u>Parameter</u>	Resul	t <u>Units</u>	Reporting Limit		
Benzene	N.D	ug/L	0.50		
Chlorobenzene	N.D	ug/L	0.50		
Ethylbenzene	N.D	ug/L	0.50		
Toluene	N.D	ug/L	0.50		
1,2-Dichlorobenzene	N.D	ug/L	0.50		
1,3-Dichlorobenzene	N.D	ug/L	0.50		
1,4-Dichlorobenzene	N.D	ug/L	0.50		
m-Xylene	N.D	ug/L	0.50		
o & p-Xylene(s)	N.D	ug/L	0.50		

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

	D (10 P)		
Laboratory ID: 64971-013 Enseco I	D: 64971	-013	
Matrix: Water Sampled: 11/11/87		Received: 11/12/87	
Authorized: 11/11/87		Analyzed: 11/16/87	
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			_
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Mike Faught

Client Name: DAMES AND MOORE

Approved by: Robert Keck

INORGANIC PARAMETERS

Sampled: 11/11/87

Client Name: DAMES AND MOORE

Client ID: MW-3

Matrix: Water

Laboratory ID: 64971-013

Enseco ID: 64971-013

Received: 11/12/87

Authorized: 11/11/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
pH	7.53	units	0.01	150.1	11/12/87
Specific Conductance @ 25C	2160	umhos/cm	1	120.1/9050	11/12/87
Total Dissolved Solids	1620	mg/L	10	160.1	11/17/87
Fluoride	0.8	mg/L	0.1	340.2	11/14/87
Chloride	97	mg/L	3	300.0	11/30/87
Nitrate + Nitrite as N	0.2	mg/L	0.1	353.2	12/01/87
Sulfate	670	mg/L	5	300.0	11/30/87
Total Alkalinity as CaCO3	517	mg/L	5	310.1/403	11/12/87
Bicarbonate Alkalinity	517	mg/L	5	310.1/403	11/12/87
Carbonate Alkalinity as CaCO)3 n.d.	mg/L	5	310.1/403	11/12/87
Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
Total Cations	24.3	meq/L	0.1	104C	12/03/87
Total Anions	23.9	meq/L	0.3	104C	12/03/87
% Difference	0.8	%	0.1	104C	12/03/87

N.D. = Not detected

Approved by: Lindsay Breyer

<u>Analyzed</u>

METALS PARAMETERS

Client Name: DAMES AND MOORE Client ID: MW-3

Laboratory ID: 64971-013

Enseco ID: 64971-013

Matrix: WaterSampled: 11/11/87Received: 11/12/87Authorized: 11/11/87ParameterResultUnitsReporting
LimitAnalytical
Method

Calcium	148	mg/L	0.1	200.7	11/19/87
Iron	N.D.	mg/L	0.05	200.7	11/19/87
Magnesium	21	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87
Sodium	349	mg/L	0.05	200.7	11/19/87
Total Organic Lead	N.D.	mg/L	0.01	Enseco	12/04/87

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-11

Matrix: Water

Laboratory ID: 64971-014

Enseco ID: 64971-014

Sampled: 11/11/87

Received: 11/12/87

Authorized: 11/11/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рH	7.80	units	0.01	150.1	11/12/87
Specific Conductance @ 25C	1720	umhos/cm	1	120.1/9050	11/12/87
Total Dissolved Solids	1250	mg/L	10	160.1	11/17/87
Fluoride	0.5	mg/L	0.1	340.2	11/14/87
Chloride	45	mg/L	3	300.0	11/30/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	592	mg/L	5	300.0	11/30/87
Total Alkalinity as CaCO3	267	mg/L	5	310.1/403	11/12/87
Bicarbonate Alkalinity	267	mg/L	5	310.1/403	11/12/87
Carbonate Alkalinity as CaCC)3 n.d.	mg/L	5	310.1/403	11/12/87
Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
Total Cations	18.8	meq/L	0.1	104C	12/02/87
Total Anions	18.9	meq/L	0.3	104C	12/02/87
% Difference	0.4	%	0.1	104C	12/02/87

N.D. = Not detected

Approved by: Lindsay Breyer

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-11

Matrix: Water

Laboratory ID: 64971-014

Enseco ID: 64971-014

Sampled: 11/11/87 Received: 11/12/87

Authorized: 11/11/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Calcium	138	mg/L	0.1	200.7	11/19/87
Iron	N.D.	mg/L	0.05	200.7	11/19/87
Magnesium	21	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87
Sodium	234	mg/L	0.05	200.7	11/19/87
Total Organic Lead	0.007	mg/L	0.004	Enseco	12/04/87

N.D. = Not detected

Approved by: Will Pratt

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Sampled: 11/11/87

Client Name: DAMES AND MOORE

Client ID: MW-11

Matrix: Water

Laboratory ID: 64971-014

Enseco ID: 64971-014

Received: 11/12/87

Authorized: 11/11/87	Anal	yzed: 11/16/87	
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene	0.81	ug/L	0.50
Chlorobenzene	N.D.	ug/L	0.50
Ethylbenzene	N.D.	ug/L	0.50
Toluene	N.D.	ug/L	0.50
1,2-Dichlorobenzene	N.D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N.D.	ug/L	0.50
m-Xylene	N.D.	ug/L	0.50
o & p-Xylene(s)	N.D.	ug/L	0.50

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND	MOORE		
Client ID: MW-11			
Laboratory ID: 64971-014	Enseco ID: 6	4971-014	
Matrix: Water	Sampled: 11/11/87 Received: 11/12/87		/87
Authorized: 11/11/87		Analyzed: 11/16	/87
		····	Reporting
<u>Parameter</u>	Resu	ult Uni	its <u>Limit</u>
Bromoform	N.I	D. ug/	L 5.0
Carbon tetrachloride	N.I	D. ug/	L 0.50
Chlorobenzene	N.I	D. ug/	L 2.0
Chloroethane	N.I	D. ug/	L 5.0
Chloroform	N.I	d. ug/	L 0.50
Dibromochloromethane	N.1	D. ug/	L 1.0
Bromodichloromethane	N.I	D. ug/	L 1.0
1,1-Dichloroethane	N.I	D. ug/	L 0.50
1,2-Dichloroethane]	l.0 ug/	L 1.0
1,1-Dichloroethene	N.I	0. ug/	L 0.50
1,2-Dichloropropane	N.I	D. ug/	L 1.0
cis-1,3-Dichloropropene	N.I	D. ug/	L 2.0
trans-1,3-Dichloropropene	N.I	D. ug/	L 0.50
Bromomethane	N.I	D. ug/	L 5.0
Chloromethane	N.I	0. ug /	L 5.0
Methylene chloride	N.I	0. ug /	L 5.0
1,1,2,2-Tetrachloroethane	N.I	D. ug/	L 1.0
Tetrachloroethene	N.I	D. ug/	L 0.50
trans-1,2-Dichloroethene	N.I	D. ug/	L 0.50
1,1,1-Trichloroethane	N.I	0. ug /	L 0.50
1,1,2-Trichloroethane	N.I	D. ug /	L 1.0
Trichloroethene	N.I	D. ug /	L 1.0
Vinyl chloride	N.I	D. ug/	L 1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.I). ug/	L 1.0
1,2-Dibromoethane (EDB)	N.I). ug/	L 2.0

N.D. = Not detected

Reported by: Mike Faught

Approved by: Robert Keck

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE

Client ID: MW-6

Laboratory ID: 64971-015

Enseco ID: 64971-015

 Matrix: Water
 Sampled: 11/11/87
 Received: 11/12/87

 Authorized: 11/11/87
 Analyzed: 11/16/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	0.50
Ethylbenzene	N.D.	ug/L	0.50
Toluene	N.D.	ug/L	0.50
1,2-Dichlorobenzene	N.D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N.D.	ug/L	0.50
m-Xylene	N.D.	ug/L	0.50
o & p-Xylene(s)	N.D.	ug/L	0.50

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

🗐 Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client	Name:	DAMES	AND	MOORE
--------	-------	-------	-----	-------

Client ID: MW-6

Laboratory ID: 64971-015 Enseco ID: 64971-015

 Matrix: Water
 Sampled: 11/11/87
 Received: 11/12/87

 Authorized: 11/11/87
 Analyzed: 11/16/87

<u>Parameter</u>	Result	Units	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	16	ug/L	1.0
l,l-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Mike Faught

Approved by: Robert Keck

INORGANIC PARAMETERS

Sampled: 11/11/87

Client Name: DAMES AND MOORE

Client ID: MW-6

Matrix: Water

Laboratory ID: 64971-015

Enseco ID: 64971-015

Received: 11/12/87

Authorized: 11/11/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pH	7.42	units	0.01	150.1	11/12/87
Specific Conductance @ 25C	2870	umhos/cm	1	120.1/9050	11/12/87
Total Dissolved Solids	2130	mg/L	10	160.1	11/17/87
Fluoride	0.6	mg/L	0.1	340.2	11/14/87
Chloride	288	mg/L	3	300.0	11/30/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	843	mg/L	5	300.0	11/30/87
Total Alkalinity as CaCO3	367	mg/L	5	310.1/403	11/12/87
Bicarbonate Alkalinity	367	mg/L	5	310.1/403	11/12/87
Carbonate Alkalinity as CaCC)3 n.d.	mg/L	5	310.1/403	11/12/87
Ammonia as N	N.D.	mg/L	0.1	350.1	11/30/87
Total Cations	31.0	meg/L	0.1	104C	12/02/87
Total Anions	33.0	meg/L	0.3	104C	12/02/87
% Difference	3.2	%	0.1	104C	12/02/87

N.D. = Not detected

Approved by: Lindsay Breyer

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-6

Matrix: Water

Laboratory ID: 64971-015

Enseco ID: 64971-015

Received: 11/12/87

Authorized: 11/11/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	230	mg/L	0.1	200.7	11/19/87
Iron	N.D.	mg/L	0.05	200.7	11/19/87
Magnesium	33	mg/L	0.1	200.7	11/19/87
Potassium	N.D.	mg/L	5	200.7	11/19/87
Sodium	386	mg/L	0.05	200.7	11/19/87
Total Organic Lead	0.004	mg/L	0.002	Enseco	12/04/87

Sampled: 11/11/87

N.D. = Not detected

Approved by: Will Pratt

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE

Client ID: TRIP BLANK

Laboratory ID: 64971-016

Enseco ID: 64971-016

Matrix: Water Authorized: 11/11/87	Sampled: 11/11/87		Received: 11/12/87 Analyzed: 11/16/87	
Parameter	Res	<u>ult</u>	Units	Reporting Limit
Benzene	Ν	.D.	ug/L	0.50
Chlorobenzene	N	.D.	ug/L	0.50
Ethylbenzene	Ν	.D.	ug/L	0.50
Toluene	N	.D.	ug/L	0.50
1,2-Dichlorobenzene	N	.D.	ug/L	0.50
1,3-Dichlorobenzene	Ν	.D.	ug/L	0.50
1,4-Dichlorobenzene	Ν	.D.	ug/L	0.50
m-Xylene	N	.D.	ug/L	0.50
o & p-Xylene(s)	N	.D.	ug/L	0.50

N.D. = Not detected Reported by: Mike Faught

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client ID: TRIP BLANK			
Laboratory ID: 64971-016	Enseco ID: 649	71-016	
Matrix: Water	Sampled: 11/11/87	Received: 11/12/87	
Authorized: 11/11/87		Analyzed: 11/16/87	
			Reporting
<u>Parameter</u>	Result	Units	<u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	9.1	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N .D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Client Name: DAMES AND MOORE

Reported by: Mike Faught Approved by: Robert Keck

V. QUALITY CONTROL REPORT

The Enseco laboratories operate under a vigorous QA/QC program designed to ensure the generation of scientifically valid, legally defensible data by monitoring every aspect of laboratory operations. Routine QA/QC procedures include the use of approved methodologies, independent verification of analytical standards, use of duplicate Laboratory Control Samples to assess the precision and accuracy of the methodology on a routine basis, and a rigorous system of data review.

🚱 Enseco

In addition, the Enseco laboratories maintain a comprehensive set of certifications from both state and federal governmental agencies which require frequent analyses of blind audit samples. Enseco - Rocky Mountain Analytical Laboratory is certified by the EPA under the EPA/CLP program for both Organic and Inorganic analyses, under the USATHAMA (U.S. Army) program, by the Army Corps of Engineers, and the states of Colorado, New Jersey, New York, Utah, and Florida, among others.

The standard laboratory QC package is designed to:

- 1) establish a strong, cost-effective QC program that ensures the generation of scientifically valid, legally defensible data
- 2) assess the laboratory's performance of the analytical method using control limits generated with a well-defined matrix
- 3) establish clear-cut guidelines for acceptability of analytical data so that QC decisions can be made immediately at the bench, and
- provide a standard set of reportables which assures the client of the quality of his data.

🔆 Enseco

The Enseco QC program is based upon monitoring the precision and accuracy of an analytical method by analyzing a set of duplicate Laboratory Control Samples (LCS) at frequent, well-defined intervals. An LCS is a wellcharacterized matrix which is spiked with target compounds at 5-100 times the reporting limit, depending upon the methodology being monitored. The purpose of the LCS is not to duplicate the sample matrix, but rather to provide an interference-free, homogeneous matrix from which to gather data to establish control limits. These limits are used to determine whether data generated by the laboratory on any given day is in control.

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/- 3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate LCS results) to the average, historical relative percent difference + 3 standard deviation units. These control limits are fairly narrow based on the consistency of the matrix being monitored and are updated on a quarterly basis.

For Organic analyses an additional control measure is taken in the form of a Surrogate Control Sample (SCS). The SCS is a control sample spiked with surrogate standards which is analyzed with every analytical lot. The recovery of the SCS is charted in exactly the same manner as described for the LCS, and provides a daily check on the performance of the method.

Accuracy for LCS and SCS is measured by Percent Recovery.

Precision for LCS is measured by Relative Percent Difference (RPD).

All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, LCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report.

Enseco

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Laboratory			Number	
Sample Number	<u>QC Matrix</u>	Test	LCS	<u>SCS</u>
64971-007-00 64971-008-00	Reagent Water	VOA	VOA 057AK	VOA 057BK
049/1-008-00	Reagent Water	VOA	VOA 057AK	VOA 057BK

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Analyte	Concentration <u>Spiking</u> Measured <u>LCS1 LCS2</u>	Accuracy(%) LCS1 LCS2 Limits	Precision(RPD) <u>LCS Limits</u>
Test: VOA on Reagent Water QC Lot: VOA 057AK Concentration Units: (ug/L)			
l,l-Dichloroethene Trichloroethene Chlorobenzene Toluene Benzene	50.054.154.550.051.252.350.056.157.250.053.854.750.054.454.9	10810961-14510210571-12011211475-13010810976-12510911076-127	0.7142.1141.9131.7130.911

SURROGATE CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Analyte	Conce	ntration	Accu	racy(%)
	<u>Spiking</u>	<u>Measured</u>	<u>SCS</u>	<u>Limits</u>
Test: VOA on Reagent Water QC Lot: VOA 057BK <u>Concentration Units: (ug/L)</u>				
Toluene-D8	50.0	49.8	100	88-110
Bromofluorobenzene (BFB)	50.0	49.8	100	86-115
1,2-Dichloroethane-D4	50.0	46.4	93	76-114

Ì

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY

Laboratory			QC Lot 1	Number
Sample Number	<u>OC Matrix</u>	Test	LCS	<u>SCS</u>
64971-001-00	Persent Weter	601	601 108AP	601 108AP
64971-001-00	Reagent Water	602	602 112AP	602 112AP
	Reagent Water			
64971-002-00	Reagent Water	601	601 108AP	601 108AP
64971-002-00	Reagent Water	602	602 112AP	602 112AP
64971-003-00	Reagent Water	601	601 108AP	601 108AP
64971-003-00	Reagent Water	602	602 112AP	602 112AP
64971-004-00	Reagent Water	601	601 108AP	601 108AP
64971-004-00	Reagent Water	602	602 112AP	602 112AP
64971-005-00	Reagent Water	601	601 108AP	601 108AP
64971-005-00	Reagent Water	602	602 112AP	602 112AP
64971-006-00	Reagent Water	601	601 108AP	601 108AP
64971-006-00	Reagent Water	602	602 112AP	602 112AP
64971-009-00	Reagent Water	601	601 108AP	601 108AP
64971-009-00	Reagent Water	602	602 112AP	602 112AP
64971-010-00	Reagent Water	601	601 108AP	601 108AP
64971-010-00	Reagent Water	602	602 112AP	602 112AP
64971-011-00	Reagent Water	601	601 108AP	601 108AP
64971-011-00	Reagent Water	602	602 112AP	602 112AP
64971-012-00	Reagent Water	601	601 108AP	601 108AP
64971-012-00	Reagent Water	602	602 112AP	602 112AP
64971-013-00	Reagent Water	601	601 108AP	601 108AP
64971-013-00	Reagent Water	602	602 112AP	602 112AP
64971-014-00	Reagent Water	601	601 108AP	601 108AP
64971-014-00	Reagent Water	602	602 112AP	602 112AP
64971-015-00	Reagent Water	601	601 108AP	601 108AP
64971-015-00	Reagent Water	602	602 112AP	602 112AP
64971-015-00	-	602 601	601 108AP	601 108AP
	Reagent Water			
64971-016-00	Reagent Water	602	602 112AP	602 112AP

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Concentration <u>Spiking</u> Measured <u>LCS1 LCS2</u>	Accuracy(%) <u>LCS1 LCS2 Limits</u>	Precision(RPD) <u>LCS Limits</u>
Test: 601 on Reagent Water QC Lot: 601 108AP <u>Concentration Units: (ug/L)</u>			
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene Chloroform 1,1,2-Trichloro- 2,2,1-trifluoroethane 1,2-Dichloroethane 1,1,1-Trichloroethane	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88 81 59-140 73 70 58-141 111 107 68-132 104 103 77-123 108 105 77-123 101 106 66-134 101 98 63-137 104 108 84-116 104 109 64-136 112 114 75-125 103 108 67-134 108 112 72-129 86 88 71-129	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Carbon tetrachloride Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene 1,1,2-Trichloroethane Dibromochloromethane cis-1,3-Dichloropropene 1,2-Dibromoethane (EDB) Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene Chlorobenzene	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86 88 $71-129$ 101 103 $68-131$ 93 96 $76-124$ 101 102 $74-126$ 108 109 $64-136$ 105 106 $77-123$ 115 112 $69-132$ 115 112 $69-132$ 115 112 $69-132$ $128#$ $143#$ $74-127$ 92 93 $60-140$ 92 93 $60-140$ 97 114 $72-128$	2.9 20 2.5 20 3.7 20 0.5 20 0.9 20 0.5 20 2.1 20 2.1 20 2.1 20 2.1 20 11.1 20 2.6 20 0.5 20 0.5 20 16.1 20
Test: 602 on Reagent Water QC Lot: 602 112AP <u>Concentration Units: (ug/L)</u> Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene o & p-Xylene(s) 1,3-Dichlorobenzene	2019.319.12018.818.52019.118.92019.519.22019.619.34038.838.22019.118.7	979677-123949377-123969481-119989663-137989777-123979677-123969377-123	1.0201.6201.1201.6201.5201.6202.120

= Recovery outside standard QC limits.

Į

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Con <u>Spikin</u>	centrat g Me <u>LCS1</u>	ion asured <u>LCS2</u>	Ac <u>LCS1</u>	curacy LCS2	(%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 602 on Reagent Water QC Lot: 602 112AP <u>Concentration Units: (ug/L)</u>								
1,2-Dichlorobenzene 1,4-Dichlorobenzene	20 20	18.5 18.5	18.6 17.8	93 93	93 89	63-137 70-130	0.5 3.9	20 20

SURROGATE CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analuta	Concentration			acy(%)
Analyte	<u>Spiking</u>	Measured	<u>SCS</u>	<u>Limits</u>
Test: 601 on Reagent Water QC Lot: 601 108AP <u>Concentration Units: (ug/L)</u>				
Bromochloromethane	30	25.4	85	20-160
Test: 602 on Reagent Water QC Lot: 602 112AP Concentration Units: (ug/L)				
a,a,a-Trifluorotoluene	30	32.7	109	20-160

QC LOT ASSIGNMENT REPORT INORGANICS - METALS

Laboratory			QC Lot Number
Sample Number	OC Matrix	Test	LCS
64971-001-00	Reagent Water	FPBD	FPBD097AA
64971-001-00	Reagent Water	ICPD	ICPD173AA
64971-002-00	Reagent Water	FPBD	FPBD097AA
64971-002-00	Reagent Water	ICPD	ICPD173AA
64971-003-00	Reagent Water	FPBD	FPBD097AA
64971-003-00	Reagent Water	ICPD	ICPD173AA
64971-004-00	Reagent Water	FPBD	FPBD097AA
64971-004-00	Reagent Water	ICPD	ICPD173AA
64971-005-00	Reagent Water	FPBD	FPBD097AA
64971-005-00	Reagent Water	ICPD	ICPD173AA
64971-007-00	Reagent Water	FPBD	FPBD097AA
64971-007-00	Reagent Water	ICPD	ICPD173AA
64971-009-00	Reagent Water	FPBD	FPBD097AA
64971-009-00	Reagent Water	ICPD	ICPD173AA
64971-010-00	Reagent Water	FPBD	FPBD097AA
64971-010-00	Reagent Water	ICPD	ICPD173AA
64971-011-00	Reagent Water	FPBD	FPBD097AA
64971-011-00	Reagent Water	ICPD	ICPD173AA
64971-012-00	Reagent Water	FPBD	FPBD097AA
64971-012-00	Reagent Water	ICPD	ICPD173AA
64971-013-00	Reagent Water	FPBD	FPBD097AA
64971-013-00	Reagent Water	ICPD	ICPD173AA
64971-014-00	Reagent Water	FPBD	FPBD097AA
64971-014-00	Reagent Water	ICPD	ICPD173AA
64971-015-00	Reagent Water	FPBD	FPBD097AA
64971-015-00	Reagent Water	ICPD	ICPD173AA

LABORATORY CONTROL SAMPLE REPORT INORGANICS - METALS

Analyte	Concentration <u>Spiking</u> Measured <u>LCS1 LCS2</u>	Accuracy(%) <u>LCS1 LCS2 Limits</u>	Precision(RPD) <u>LCS Limits</u>
Test: FPBD on Reagent Water QC Lot: FPBD097AA <u>Concentration Units: (mg/L)</u>			
Lead	0.04 0.038 0.038	95 95 75-125	0.0 20
Test: ICPD on Reagent Water QC Lot: ICPD173AA <u>Concentration Units: (mg/L)</u>			
Aluminum	2.0 2.1 2.1	105 105 75-125	0.0 20
Antimony	0.5 0.51 0.50	102 100 75-125	2.0 20
Arsenic	0.5 0.46 0.46	92 92 75-125	0.0 20
Barium	2.0 2.0 2.0	100 100 75-125	0.0 20
Beryllium	0.05 0.048 0.047	96 94 75-125	2.1 20
Cadmium	0.05 0.046 0.049	92 98 75-125	6.3 20
Calcium	100 106 105	106 105 75-125	0.9 20
Chromium	0.2 0.20 0.20	100 100 75-125	0.0 20
Cobalt	0.5 0.50 0.50	100 100 75-125	0.0 20
Copper	0.25 0.27 0.27	108 108 75-125	0.0 20
Iron	1.0 1.0 1.0	100 100 75-125	0.0 20
Lead	0.5 0.50 0.49	100 98 75-125	2.0 20
Magnesium	50 49 49	98 98 75-125	0.0 20
Manganese	0.2 0.21 0.21	105 105 75-125	0.0 20
Nickel	0.4 0.41 0.40	103 100 75-125	2.5 20
Potassium	50 54 53	108 106 75-125	1.9 20
Silver	0.05 0.052 0.048	104 96 75-125	8.0 20
Sodium	100 104 104	104 104 75-125	0.0 20
Tin	0.4 0.44 0.43	110 108 75-125	2.3 20
Vanadium	0.5 0.51 0.50	102 100 75-125	2.0 20
Zinc	0.2 0.21 0.20	105 100 75-125	4.9 20

QC LOT ASSIGNMENT REPORT INORGANICS - NON-METALS

Laboratory			QC Lot Number
Sample Number	<u>OC Matrix</u>	<u>Test</u>	LCS
	D		
64971-001-00	Reagent Water	ALK	ALK 194AA
64971-001-00 64971-001-00	Reagent Water	CL	CL 171AA
	Reagent Water	COND	COND196AA
64971-001-00	Reagent Water	F	F 107AA
64971-001-00 64971-001-00	Reagent Water	NH3	NH3 119AC
64971-001-00	Reagent Water	NO3	NO3 161AF
64971-001-00	Reagent Water	PH	PH 239AA
64971-001-00	Reagent Water	SO4	SO4 162AA
64971-002-00	Reagent Water	TDS	TDS 095AA
64971-002-00	Reagent Water	ALK	ALK 194AA
64971-002-00	Reagent Water	CL	CL 171AA
64971-002-00	Reagent Water	COND	COND196AA
64971-002-00	Reagent Water	F	F 107AA
64971-002-00	Reagent Water	NH3	NH3 119AC
64971-002-00	Reagent Water	NO3	NO3 161AF
64971-002-00	Reagent Water Reagent Water	PH SO4	PH 239AA
64971-002-00	Reagent Water		SO4 162AA TDS 095AA
64971-003-00	-	TDS ALK	ALK 194AA
64971-003-00	Reagent Water Reagent Water	CL	CL 171AA
64971-003-00	Reagent Water	COND	COND196AA
64971-003-00	Reagent Water	F	F 107AA
64971-003-00	Reagent Water	NH3	NH3 119AC
64971-003-00	Reagent Water	NO3	NO3 161AF
64971-003-00	Reagent Water	PH	PH 239AA
64971-003-00	Reagent Water	SO4	SO4 162AA
64971-003-00	Reagent Water	TDS	TDS 095AA
64971-004-00	Reagent Water	ALK	ALK 194AA
64971-004-00	Reagent Water	CL	CL 171AA
64971-004-00	Reagent Water	COND	COND196AA
64971-004-00	Reagent Water	F	F 107AA
64971-004-00	Reagent Water	NH3	NH3 119AC
64971-004-00	Reagent Water	NO3	NO3 161AF
64971-004-00	Reagent Water	РН	PH 239AA
64971-004-00	Reagent Water	SO4	SO4 162AA
64971-004-00	Reagent Water	TDS	TDS 095AA
64971-005-00	Reagent Water	ALK	ALK 194AA
64971-005-00	Reagent Water	CL	CL 171AA
64971-005-00	Reagent Water	COND	COND196AA
64971-005-00	Reagent Water	F	F 107AA
64971-005-00	Reagent Water	NH3	NH3 119AC
64971-005-00	Reagent Water	NO3	NO3 161AF

QC LOT ASSIGNMENT REPORT INORGANICS - NON-METALS (cont.)

Laboratory			QC Lot Number
Sample Number	<u>OC Matrix</u>	<u>Test</u>	LCS
64971-005-00	Reagent Water	PH	PH 239AA
64971-005-00	Reagent Water	SO4	SO4 162AA
64971-005-00	Reagent Water	TDS	TDS 095AA
64971-007-00	Reagent Water	ALK	ALK 194AA
64971-007-00	Reagent Water	CL	CL 171AA
64971-007-00	Reagent Water	COND	COND196AA
64971-007-00	Reagent Water	F	F 107AA
64971-0 07 - 00	Reagent Water	NH3	NH3 119AC
64971-007-00	Reagent Water	NO3	NO3 161AF
64971-007-00	Reagent Water	РН	PH 239AA
64971-007-00	Reagent Water	SO4	SO4 162AA
64971-007-00	Reagent Water	TDS	TDS 095AA
64971-009-00	Reagent Water	ALK	ALK 195AA
64971-009-00	Reagent Water	CL	CL 171AA
64971-009-0 0	Reagent Water	COND	COND197AA
64971-009-00	Reagent Water	F	F 107AA
64971-009-00	Reagent Water	NH3	NH3 119AC
64971-0 09-00	Reagent Water	NO3	NO3 161AF
64971-009-00	Reagent Water	РН	PH 241AA
64971-009-00	Reagent Water	SO4	SO4 162AA
64971 - 009-00	Reagent Water	TDS	TDS 095AA
64971-010-00	Reagent Water	ALK	ALK 195AA
64971-010-00	Reagent Water	CL	CL 173AA
64971-010-00	Reagent Water	COND	COND197AA
64971-010-00	Reagent Water	F	F 107AA
64971-010-00	Reagent Water	NH3	NH3 119AC
64971-010-00	Reagent Water	NO3	NO3 161AF
64971-010-00	Reagent Water	PH	PH 241AA
64971-010-00	Reagent Water	SO4	SO4 164AA
64971-010-00	Reagent Water	TDS	TDS 095AA
64971-011-00	Reagent Water	ALK	ALK 195AA
64971-011-00	Reagent Water	CL	CL 173AA
64971-011-00	Reagent Water	COND	COND197AA
64971-011-00	Reagent Water	F	F 107AA
64971-011-00	Reagent Water	NH3	NH3 119AC
64971-011-00	Reagent Water	NO3	NO3 162AF
64971-011-00	Reagent Water	РН	PH 241AA
64971-011-0 0	Reagent Water	SO4	SO4 164AA
64971-011-00	Reagent Water	TDS	TDS 095AA
64971-012-00	Reagent Water	ALK	ALK 195AA
64971-012-00	Reagent Water	CL	CL 173AA
64971-012-00	Reagent Water	COND	COND197AA

QC LOT ASSIGNMENT REPORT INORGANICS - NON-METALS (cont.)

Laboratory			QC Lot Number
Sample Number	OC Matrix	Test	LCS
64971-012-00	Reagent Water	F	F 107AA
64971-012-00	Reagent Water	NH3	NH3 119AC
64971-012-00	Reagent Water	NO3	NO3 162AF
64971-012-00	Reagent Water	РН	PH 241AA
64971-012-00	Reagent Water	SO4	SO4 164AA
64971-012-00	Reagent Water	TDS	TDS 095AA
64971-013-00	Reagent Water	ALK	ALK 195AA
64971-013-00	Reagent Water	CL	CL 173AA
64971-013-00	Reagent Water	COND	COND197AA
64971-013-00	Reagent Water	F	F 107AA
64971-013-00	Reagent Water	NH3	NH3 119AC
64971-013-00	Reagent Water	NO3	NO3 162AF
64971-013-00	Reagent Water	PH	PH 241AA
64971-013-00	Reagent Water	SO4	SO4 164AA
64971-013-00	Reagent Water	TDS	TDS 095AA
64971-014-00	Reagent Water	ALK	ALK 195AA
64971-014-00	Reagent Water	CL	CL 173AA
64971-014-00	Reagent Water	COND	COND197AA
64971-014-00	Reagent Water	F	F 107AA
64971-014-00	Reagent Water	NH3	NH3 119AC
64971-014-00	Reagent Water	NO3	NO3 162AF
64971-014-00	Reagent Water	РН	PH 241AA
64971-014-00	Reagent Water	SO4	SO4 164AA
64971-014-00	Reagent Water	TDS	TDS 095AA
64971-015-00	Reagent Water	ALK	ALK 195AA
64971-015-00	Reagent Water	CL	CL 173AA
64971-015-00	Reagent Water	COND	COND197AA
64971-015-00	Reagent Water	F	F 108AA
64971-015-00	Reagent Water	NH3	NH3 119AC
64971-015-00	Reagent Water	NO3	NO3 162AF
64971-015-00	Reagent Water	PH	PH 241AA
64971-015-00	Reagent Water	SO4	SO4 164AA
64971-015-00	Reagent Water	TDS	TDS 095AA

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

Analyte	Con <u>Spikin</u> y		ion isured <u>LCS2</u>		curacy LCS2	v(%) Limits	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: ALK on Reagent Water QC Lot: ALK 194AA <u>Concentration Units: (mg/L)</u>								
Total Alkalinity as CaCO3	134	141	140	105	104	9 0-110	0.7	20
Test: ALK on Reagent Water QC Lot: ALK 195AA <u>Concentration Units: (mg/L)</u>								
Total Alkalinity as CaCO3	134	142	142	106	106	90-110	0.0	20
Test: CL on Reagent Water QC Lot: CL 171AA <u>Concentration Units; (mg/L)</u>								
Chloride	20	18.4	18.6	92	93	92-108	1.1	10
Test: CL on Reagent Water QC Lot: CL 173AA <u>Concentration Units: (mg/L)</u>								
Chloride	20	19.7	19.1	98	96	92-108	3.1	10
Test: COND on Reagent Water QC Lot: COND196AA Concentration Units: (umhos/cm	Σ							
Specific Conductance @ 25C	1290	1250	1250	97	97	95-105	0.0	5
Test: COND on Reagent Water QC Lot: COND197AA <u>Concentration Units: (umhos/cm</u>)							
Specific Conductance @ 25C	1290	1230	1230	95	95	95-105	0.0	5

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

Analyte		icentrat g Me <u>LCS1</u>			curacy <u>LCS2</u>	v(%) Limits	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: F on Reagent Water QC Lot: F 107AA <u>Concentration Units: (mg/L)</u>								
Fluoride	6.5	6.8	6.7	105	103	88-112	1.5	15
Test: F on Reagent Water QC Lot: F 108AA <u>Concentration Units: (mg/L)</u>								
Fluoride	6.5	6.1	6.4	94	98	88-112	4.8	15
Test: NH3 on Reagent Water QC Lot: NH3 119AC <u>Concentration Units: (mg/L)</u>								
Ammonia as N	4.1	4.0	4.0	98	98	93-107	0.0	10
Test: NO3 on Reagent Water QC Lot: NO3 161AF <u>Concentration Units: (mg/L)</u>			·					
Nitrate as N	3.5	3.5	3.5	100	100	91-109	0.0	20
Test: NO3 on Reagent Water QC Lot: NO3 162AF <u>Concentration Units: (mg/L)</u>								
Nitrate as N	3.5	3.4	3.5	9 7	100	91-109	2.9	20
Test: PH on Reagent Water QC Lot: PH 239AA <u>Concentration Units: (Units)</u>								
рH	9.06	8.98	8.98	99	9 9	98-102	0.0	5

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

Analyte	Con <u>Spikin</u>		ion asured <u>LCS2</u>		curacy LCS2	v(%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: PH on Reagent Water QC Lot: PH 241AA <u>Concentration Units: (Units)</u>								
рН	9.06	9.01	9.01	99	9 9	98-102	0.0	5
Test: SO4 on Reagent Water QC Lot: SO4 162AA <u>Concentration Units: (mg/L)</u>								
Sulfate	100	94.1	95.3	94	95	93-107	1.3	15
Test: SO4 on Reagent Water QC Lot: SO4 164AA <u>Concentration Units: (mg/L)</u>								
Sulfate	100	93.4	95.1	93	95	93-107	1.8	15
Test: TDS on Reagent Water QC Lot: TDS 095AA <u>Concentration Units: (mg/L)</u>								
Total Dissolved Solids	9 40	98 6	967	105	103	90-110	1.9	10

-4 Enseco

BLIND DUPLICATE RESULTS

FOR 64971

Parameter	64971-010	<u>64971-011</u>	Relative Percent Difference
HALOGENATED VOLATILES			
Bromoform	ND	ND	*
Carbon tetrachloride Chlorobenzene	ND ND	ND	*
Chloroethane	ND	ND ND	*
Chloroform	ND	ND	*
Dibromochloromethane	ND	ND	*
Bromodichloromethane	ND	ND	*
1,1-Dichloroethane	ND	ND	*
1,2-Dichloroethane 1,1-Dichloroethene	ND ND	ND ND	*
1,2-Dichloropropane	ND	ND	*
cis-1,3-Dichloropropene	ND	ND	*
trans-1,3-Dichloropropene	ND	ND	*
Bromomethane	ND	ND	*
Chloromethane Mothylene chloride	ND ND	ND	*
Methylene chloride 1,1,2,2-Tetrachloroethane	ND	ND ND	*
Tetrachloroethene	ND	ND	*
trans-1,2-Dichloroethene	ND	ND	*
1,1,1-Trichloroethane	ND	ND	*
1,1,2-Trichloroethane	ND	ND	*
Trichloroethene	ND	ND	*
Vinyl chloride 1,1,2-Trichloro-	ND	ND	~
2,2,1-trifluoroethane	ND	ND	*
1,2-Dibromoethane (EDB)	ND	ND	*
AROMATIC VOLATILES			
Benzene	ND	0.53	200
Chlorobenzene	ND	ND	*
Ethylbenzene	ND	ND	*
Toluene	ND	ND	*
1,2 Dichlorobenzene 1,3 Dichlorobenzene	ND ND	ND ND	*
1,4 Dichlorobenzene	ND	ND	*
m-xylene	ND	ND	*
o & p xylene(s)	ND	ND	*

*RPD cannot be calculated when both values are not detected.

ND = Not detected.

------ Enseco

BLIND DUPLICATE RESULTS

FOR 64971

<u>Parameter</u> METALS	<u>64971-010</u>	<u>64971-011</u>	Relative Percent <u>Difference</u>
Calcium Iron Magnesium Potassium Sodium Total Organic Lead	44 ND 6.2 ND 43 ND	44 ND 6.4 ND 44 ND	0.0 * 3.2 * 2.3
INORGANICS			
pH Specific Conductance TDS Fluoride Chloride Nitrate + Nitrite Sulfate Total Alkalinity Bicarbonate Alkalinity Carbonate Alkalinity Ammonia	9.01 488 360 0.4 25 0.2 178 125 110 15 ND	8.60 497 360 0.4 26 0.2 176 166 161 5 ND	4.7 1.8 0.0 0.0 3.9 0.0 1.1 28 38 100 0.0

*RPD cannot be calculated when both values are not detected.

ND = Not detected.

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Laboratory		QC Lot Number		
Sample Number	<u>QC Matrix</u>	<u>Test</u>	LCS	<u>SCS</u>
65039-008-00	Reagent Water	VOA	VOA 059AK	VOA 059AK

CATION ANALYSIS ELEMENT mg∕L meq/L _____ Ca 86.000 4.2914 Fe+2 ND 0.0000 Fe+3 ND 0.0000 13.000 1.0699 Mg ĸ ND 0.0000 Na 29.000 1.2615 NH4 ND 0.0000 -----TOTAL 128.000 6.6228 ----------------------

ELEMENT	ANION ANALYSIS mg/l	meq/L
C1 F S04 A1k N02+N03	16.000 0.400 136.000 95.400 0.300	0.4512 0.0210 2.8288 3.1800 0.0214
TOTAL	248.100	6.5025

```
SUMMARY
```

% DIFFERENCE = 0.917 CATIONS + ANIONS (mg/L) = 376.100 TDS =400.000 HARDNESS = 268.300 CALCULATED THEORETICAL CONDUCTIVITY = 780.0731 MEASURED CONDUCTIVITY = 581.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.343 MEASURED CONDUCTIVITY/TDS RATIO = 1.453

ND - Not Detected

ELEMENT	CATION ANALYSIS mg/L	meq/L
 Ca	1،62.000	8.0838
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	26.000	2.1398
- K	ND	0.0000
Na	159.000	6.9165
NH4	ND	0.0000
TOTAL	347.000	17.1401

ELEMENT	ANION ANALYSIS mg/L	meq/L
C1 F S04 A1k N02+N03	49.000 0.400 476.000 166.200 1.500	1.3818 0.0210 9.9008 5.5400 0.1071
TOTAL	693.100	16.9507

SUMMARY

% DIFFERENCE = 0.555 CATIONS + ANIONS (mg/L) =1040.100 TDS =%1120.000 HARDNESS = 511.600 CALCULATED THEORETICAL CONDUCTIVITY =2092.3243 MEASURED CONDUCTIVITY =1480.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.414 MEASURED CONDUCTIVITY/TDS RATIO = 1.321

ND - Not Detected

ELEMENT	CATION ANALYSIS mg/L	meq∕L
Ca	178.000	8.8822
Fe+2	ND	0.0000
Fe+3	0.060	0.0032
Mg	32.000	2.6336
ĸ	ND	0.0000
Na	223.000	9.7005
NH4	ND	0.0000
TOTAL	433.060	21.2195

ELEMENT	ANION ANALYSIS mg/l	meq/L
C1 F	77.000 0.600	2.1714 0.0316
S04 A1k	602.000 178.200	12.5216 5.9400
N02+N03	1.000	0.0714
TOTAL	858.800	20.7360

SUMMARY

% DIFFERENCE = 1.153 CATIONS + ANIONS (mg/L) =1291.860 TDS =%1400.000 HARDNESS = 576.200 CALCULATED THEORETICAL CONDUCTIVITY =2590.8811 MEASURED CONDUCTIVITY =1830.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.416 MEASURED CONDUCTIVITY/TDS RATIO = 1.307

ND - Not Detected

CATION ANALYSIS mg/L	me q⁄L
142.000	7.0858
ND	0.0000
ND	0.0000
20.000	1.6460
ND	0.0000
337.000	14.6595
ND	0.0000
499.000	23.3913
	mg/L 142.000 ND 20.000 ND 337.000 ND

ELEMENT	ANION ANALYSIS mg/L	meq∕L
C1	87.000	2.4534
F 504	0.800 654.000	0.0421 13.6032
A1k N02+N03	199.200 0.300	6.6400 0.0214
		010221
TOTAL	941.300	22.7601

SUMMARY

% DIFFERENCE = 1.368 CATIONS + ANIONS (mg/L) =1440.300 TDS =%1540.000 HARDNESS = 437.000 CALCULATED THEORETICAL CONDUCTIVITY =2815.8871 MEASURED CONDUCTIVITY =2060.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.367 MEASURED CONDUCTIVITY/TDS RATIO = 1.338

ND - Not Detected

1

CATION ANALYSIS ELEMENT meg/L mg/L _____ _____ 129.000 6.4371 Ca Fe+2 ND 0.0000 ND 0.0000 Fe+3 20.000 1.6460 Mg ND 0.0000 ĸ 258.000 11.2230 Na NH4 ND 0.0000 TOTAL 407.000 19.3061 _ _ _ _ _ _ _ _ _

ELEMENT	ANION ANALYSIS mg/l	meq∕L
C1	68.000	1.9176
F	0.800	0.0421
S04	499.000	10.3792
Alk	238.200	7.9400
N02+N03	0.200	0.0143
TOTAL	806.200	20.2932

SUMMARY

11

% DIFFERENCE =-2.493 CATIONS + ANIONS (mg/L) =1213.200 TDS =%1250.000 HARDNESS = 404.500 CALCULATED THEORETICAL CONDUCTIVITY =2364.2453 MEASURED CONDUCTIVITY =1730.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.367 MEASURED CONDUCTIVITY/TDS RATIO = 1.384

ND - Not Detected

ELEMENT	CATION ANALYSIS mg/L	meq/L
Ca	113.000	5.6387
Fe+2	ND	0.0000
Fe+3	0.120	0.0064
Mg	17.000	1.3991
K	ND	0.0000
Na	40.000	1.7400
NH4	NU	0.0000
TOTAL	170.120	8.7842

ANION ANALYSIS			
ELEMENT	mg/L	meq/L	
C1	29.000	0.8178	
F	0.300	0.0158	
S04	147.000	3.0576	
Alk	151.800	5.0600	
N02+N03	ND	0.0000	
TOTAL	328.100	8.9512	
		0,/012	

SUMMARY

% DIFFERENCE =-0.941 CATIONS + ANIONS (mg/L) = 498.220 TDS =790.000 HARDNESS = 352.200 CALCULATED THEORETICAL CONDUCTIVITY =1029.5665 MEASURED CONDUCTIVITY = 790.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.303 MEASURED CONDUCTIVITY/TDS RATIO = 1.000

ND - Not Detected

	CATION ANALYSIS	
ELEMENT	mg/L	meq∕L
Ca	152.000	7.5848
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	22.000	1.8106
к	ND	0.0000
Na	256.000	11.1360
NH4	ND	0.0000
TOTAL	430.000	20.5314

ELEMENT	ANION ANALYSIS mg/l	meq/L
C1 F S04 A1k N02+N03	126.000 0.600 558.000 166.200	3.5532 0.0316 11.6064 5.5400
TOTAL	0.700	0.0500 20.7811

SUMMARY

% DIFFERENCE =-0.605 CATIONS + ANIONS (mg/L) =1281.500 TDS =%1400.000 HARDNESS = 470.200 CALCULATED THEORETICAL CONDUCTIVITY =2554.7436 MEASURED CONDUCTIVITY =1840.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.388 MEASURED CONDUCTIVITY/TDS RATIO = 1.314

ND - Not Detected

.

· • •

CATION ANALYSIS			
ELEMENT	mg/L	meq/L	
Ca	44.000	2.1956	
Fe+2	ND	0.0000	
Fe+3	ND	0.0000	
Mg	6.200	0.5103	
ĸ	ND	0.0000	
Na	43.000	1.8705	
NH4	ND	0.0000	
TOTAL	93.200	4.5764	
V ML		4,3704	

ELEMENT	ANION ANALYSIS mg/l	meq/L
C1	25.000	0.7050
F	0.400	0.0210
S04	178.000	3.7024
A1k	16.800	0.5600
N02+N03	0.200	0.0143
TOTAL	220.400	5.0027

SUMMARY

% DIFFERENCE =-4.451 CATIONS + ANIONS (mg/L) = 313.600 TDS =360.000 HARDNESS = 135.420 CALCULATED THEORETICAL CONDUCTIVITY = 629.8664 MEASURED CONDUCTIVITY = 488.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.291 MEASURED CONDUCTIVITY/TDS RATIO = 1.356

ND - Not Detected

ELEMENT	CATION ANALYSIS mg/L	meq∕L
Ca	44.000	2.1956
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	6.400	0.5267
ĸ	ND	0.0000
Na	44.000	1.9140
NH4	ND	0.000
TOTAL	94.400	4. 6363

ELEMENT	ANION ANALYSIS mg/L	meq∕L
C1	26.000	0.7332
F	0.400	0.0210
S04	176.000	3.6608
Alk	20.400	0.6800
N02+N03	0.200	0.0143
TOTAL	223.000	5.1093

SUMMARY

% DIFFERENCE =-4.853 CATIONS + ANIONS (mg/L) = 317.400 TDS =360.000 HARDNESS = 136.240 CALCULATED THEORETICAL CONDUCTIVITY = 635.8555 MEASURED CONDUCTIVITY = 488.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.303 MEASURED CONDUCTIVITY/TDS RATIO = 1.356

ND - Not Detected

CATION ANALYSIS		
ELEMENT	mg/L	meq/L
Ca	152.000	7.5848
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	25.000	2.0575
ĸ	ND	0.0000
Na	243,000	10.5705
NH4	ND	0.0000
TOTAL	420.000	20.2128

ELEMENT	ANION ANALYSIS	
	mg/L	meq/L
C1	67.000	1.8894
F	0.400	0.0210
S04	526.000	10.9408
A1k	185.400	6.1800
N02+N03	0.400	0.0286
TOTAL	779.200	19.0598

SUMMARY

% DIFFERENCE = 2.936 CATIONS + ANIONS (mg/L) =1199.200 TDS =%1360.000 HARDNESS = 482.500 CALCULATED THEORETICAL CONDUCTIVITY =2385.9461 MEASURED CONDUCTIVITY =1770.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.348 MEASURED CONDUCTIVITY/TDS RATIO = 1.301

ND - Not Detected

ELEMENT	CATION ANALYSIS mg/l	meq∕L
Ca	148.000	7.3852
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	21.000	1.7283
к	ND	0.0000
Na	349.000	15.1815
NH4	ND	0.0000
TOTAL	518.000	24.2950

ELEMENT	ANION ANALYSIS mg/l	meq∕L
C1 F S04 A1k N02+N03	97.000 0.800 670.000 214.800 0.200	2.7354 0.0421 13.9360 7.1600 0.0143
TOTAL	982.800	23,8878

SUMMARY

% DIFFERENCE = 0.845 CATIONS + ANIONS (mg/L) =1500.800 TDS =%1620.000 HARDNESS = 456.100 CALCULATED THEORETICAL CONDUCTIVITY =2934.9373 MEASURED CONDUCTIVITY =2160.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.359 MEASURED CONDUCTIVITY/TDS RATIO = 1.333

ND - Not Detected

Ti

ELEMENT	CATION ANALYSIS mg/L	meq.∕L
Ca Fe+2 Fe+3	138.000 NE ND	6.8862 0.0000 0.0000
Mg K Na	21.000 ND 234.000	1.7283 0.0000 10.1790
NH4	ND	0.0000
TOTAL	393.000	18.7935

ELEMENT	ANION ANALYSIS mg/L	meq/L
C)	45.000	1.2690
F	0.500	0.0263
S04	592.000	12.3136
Alk	160.200	5.3400
N02+N03	ND	0.0000
TOTAL	797,700	18.9489

SUMMARY

% DIFFERENCE =-0.412 CATIONS + ANIONS (mg/L) =1190.700 TDS =%1250.000 HARDNESS = 431.100 CALCULATED THEORETICAL CONDUCTIVITY =2330.4302 MEASURED CONDUCTIVITY =1720.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.355 MEASURED CONDUCTIVITY/TDS RATIO = 1.376

ND - Not Detected

CATION ANALYSIS meq∕L ELEMENT mg∕L _____ _____ _____ 11.4770 Ca 230.000 0.0000 Fe+2 ND 0.0000 Fe+3 ND 33.000 2.7159 Mg 0.0000 K ND Na 386.000 16.7910 0.0000 NH4 ND 649.000 30.9839 TOTAL

ELEMENT	ANION ANALYSIS mg/L	meq/L
C1	288.000	8.1216
F	0.600	0.0316
S04 A1k	843.000 220.200	17.5344 7.3400
N02+N03	ND	0.0000
TOTAL	1351.800	33.0276

SUMMARY

% DIFFERENCE =-3.193 CATIONS + ANIONS (mg/L) =2000.800 TDS =%2130.000 HARDNESS = 710.300 CALCULATED THEORETICAL CONDUCTIVITY =4015.8053 MEASURED CONDUCTIVITY =2870.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.399 MEASURED CONDUCTIVITY/TDS RATIO = 1.347

ND - Not Detected

11

	an an an an an an an an an an an an an a				CHAIN OF CUSTODY			160701	· · ·
RMAL Client . Sampling Co		Ann 1 Prove			RMAL Project No.		Correct K	2 Cardword Correro Kulley MM 1181945	1819
Project 1	Project Name/No.				Sampling Site	Nape c.D			-
Date	Time	Sample ID/	Sample ID/Description	- Type	No. Containers	Parameters		Remarks	•
1/1	OUL	SW			Z	104 Lead, 1m2	• • •		1
	0011	CMS			2			C.	
	1030	SW-3			2	11		e	
11/	-1130-	1,-MS			CX .	11		41	
11	00t1	S-MS			do bulla,	Not	-	88	
	1215	2-M2	1			Ver		0	
C	1500	- MW	5			and hour Roy		75	
\mathcal{N}	1600	M M - 4			9	""		1 8 4	
				-			,	•	
	•								
	-								
Relinquished	Turshed by: (Signatura)	•) Date / Time	Received by: (Staneure)	Date / Time	Relinquished by: (Signature)	/: (Signature) Date / Time	Received by: (Signature)	eture) Date / Time	e Line
Method	Method of Shipment:		Shipped by: (Signatura)		Delivered by: (seneture)		Received for Laboratory by:	by: Date //	lime 1/11

11

1

6

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L Client Deca Marc Harle CHAIN OF CUSTODY Ping Co. Experiments En Time Sampling Sile Freement L Cased Sampling Sile Freement L Cased Sampling Sile Freement L Cased Sampling Sile Freement L Cased Pill S M W - 7 V/M Br. Reference 1130 M W - 13 V/M Br. Reference 1130 M W - 13 V/M Br. Reference 1130 M W - 2 V/M Br. Reference 1130 M W - 2 V/M Br. Reference 1130 M W - 2 V/M Br. Reference 1130 M W - 2 V/M Br. Reference 1130 M W - 2 V/M Br. Reference 1130 M W - 2 V/M Br. Reference 1130 M W - 2 V/M Br. Reference 1130 M W - 2 V/M Br. Reference 1130 M W - 2 V/M Br. Reference 1130 M W - 2 V/M Br. Reference 1130 M W - 1 V/M Br. Reference 1140 M W - 1 V/M Br. Reference 1150 M W - 1 V/M Br. Reference 1150 M W - 1 V/M Br. Reference 1150 M W - 1 V/M Br. Reference 1150 M W - 1 V/M Br. Reference 1150 M W - 1 V/M Br. Reference 1150 M W - 1 V/M Br. Reference 1150 M W - 1 V/M Br. Reference 1150 M W - 1 V/M Br. Reference 1150 M W - 1 V/M		W Street, Arver					•••
N. Clear Jone Mark R.M., Projer No. Certabu M. M. M. Wing Co. Empirical Sample ID (Description Type Wing Co. Empirical Sample ID (Description Type RM InterNo Empirical Sample ID (Description Type R1 Jac Mu - 7 U/M R1 Jac Mu - 7 U/M R1 Jac Mu - 7 U/M R1 Jac Mu - 7 U/M R1 Jac Mu - 13 U/M R1 Jac Mu - 13 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M R1 Jac Mu - 2 U/M <td< th=""><th>N. Client Jarca, Mark R.M.I. Projecti No. Certabus 4 Cu. will glo Sampling Piersonnal L. Zazuk will glo Time sempling Sile Parameter est Name/No. Sampling Sile est Name/No. Sampling Sile est Name/No. Sampling Sile est Name/No. Sampling Sile P. 1130 M. W 7 N. 1130 M. W 13 N. 1130 M. W 1 N. 1130 M. 11 N. 1130 <td< th=""><th></th><th>· · · · ·</th><th></th><th>H</th><th></th><th></th><th>· 16000</th></td<></th></td<>	N. Client Jarca, Mark R.M.I. Projecti No. Certabus 4 Cu. will glo Sampling Piersonnal L. Zazuk will glo Time sempling Sile Parameter est Name/No. Sampling Sile est Name/No. Sampling Sile est Name/No. Sampling Sile est Name/No. Sampling Sile P. 1130 M. W 7 N. 1130 M. W 13 N. 1130 M. W 1 N. 1130 M. 11 N. 1130 <td< th=""><th></th><th>· · · · ·</th><th></th><th>H</th><th></th><th></th><th>· 16000</th></td<>		· · · · ·		H			· 16000
Number Continues Sampling Sile Dec NameNo Sampling Sile Dec NameNo Time Sampling Sile Dec NameNo Time Sampling Sile Parameters	opling Co. Sampling Pieconnel L. Acual ext Naminko. Sampling Sile ext Naminko. Sampling Sile ext Naminko. Sampling Sile for 145 M.M7 for 143 N. Containers for 143 N. Containers for 143 N. Containers for 143 N. Vor Jack for 144 N. Vor Jack <th>Ŭ.</th> <th></th> <th>i have</th> <th></th> <th>RMAL Project</th> <th>et No. Certher 9 Contro Hillent</th> <th>. w. m.</th>	Ŭ.		i have		RMAL Project	et No. Certher 9 Contro Hillent	. w. m.
The Sample Difference of the Sample Differenc	lect Nameriko Tima Sample (D/Description Type Ko. Containers Parameter 27 0/15 m. W7 / 1.0.9. An. B. d	ampling	8			Sampling P	Breannel L Bandwell	
Bit Time Sample ID/Description Type No. Container Parameters Parameters P1 10 (15 M W - 7 $U_0 A_1 \Delta_0 A_1 \Delta_0 A_1$ $M_1 - 1$ $U_1 A_1 \Delta_0 A_1 \Delta_0 A_1$ P1 $M_1 U - 2$ $U_1 A_1 - 1$ $U_1 A_1 - 1$ $U_1 A_1 \Delta_0 A_1 \Delta_0 A_1$ P1 $M_1 U - 2$ $U_1 A_1 - 1$ $U_1 A_1 - 1$ $U_1 A_1 \Delta_0 A_1 \Delta_0 A_1$ P1 $M_1 U - 2$ $U_1 A_1 - 1$ $U_1 A_1 - 1$ $U_1 A_1 - 1$ P1 $M_1 U - 2$ $U_1 A_1 - 1$ $U_1 A_1 - 1$ $U_1 A_1 - 1$ P1 $M_1 U - 2$ $U_1 - 1$ $U_1 - 1$ $U_1 A_1 - 1$ P1 $M_1 U - 1$ $U_1 - 1$ $U_1 - 1$ $U_1 A_1 - 1$ P1 $M_1 U - 1$ $U_1 - 1$ $U_1 - 1$ $U_1 - 1$ P1 $M_1 U - 1$ $U_1 - 1$ $U_1 - 1$ $U_1 - 1$ P1 $M_1 U - 1$ $U_1 - 1$ $U_1 - 1$ $U_1 - 1$ P1 $M_1 U - 1$ $U_1 - 1$ $U_1 - 1$ $U_1 - 1$ P1 $M_1 U - 1$ $U_1 - 1$ $U_1 - 1$ $U_1 - 1$ P1 $M_1 U - 1$ $U_1 - 1$ $U_1 - 1$ $U_1 - 1$ P1 $U_1 - 1$ $U_1 - 1$ $U_1 - 1$ $U_1 - 1$	III Time Sample ID/Description Type No. Containers Parameter 87 1015 $Mu - 7$ $Crose-Juntic 7 Urs 3n. Glo-Glo-Glo-Glo-Glo-Glo-Glo-Glo-Glo-Glo-$	oject N	ame/No.			Sampling Si		
87 1015 M.W7 Crowdrwdd, 7 Ven dan Gelered / 2010 11130 M.W13 Y Y Y 11130 M.W2 Y Y Y 11130 M.W2 Y Y Y 1130 M.W2 Y Y Y 130 M.W2 Y Y Y 130 M.W2 Y Y Y 130 M.V6 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	B7 1015 M.W7 Created with 7 Unit 11130 M.W13 7 11130 M.W13 7 11130 M.W2 7 1000 M.W3 7 1000 M.W6 7 1130 M.V6 7 1130 M.V6 7 1130 M.V6 7 1 T-4 7 1 T-4 7 1 T-4 <th>Date</th> <th></th> <th></th> <th>Type</th> <th>No. Containers</th> <th>Parameters</th> <th>Remarks</th>	Date			Type	No. Containers	Parameters	Remarks
1 30 $mu - 13$ $mu - 13$ $mu - 13$ $mu - 13$ $ 1 00$ $mu - 2$ $mu - 2$ $mu - 1$ $ 1000$ $mu - 2$ $mu - 3$ $mu - 3$ $ 1000$ $mu - 3$ $mu - 3$ $mu - 3$ $ 130$ $mu - 4$ $mu - 4$ $mu - 4$ $ 130$ $mu - 6$ $mu - 7$ $mu - 6$ $ 130$ $mu - 6$ $mu - 6$ $mu - 6$ $ 130$ $mu - 6$ $mu - 6$ $mu - 6$ $ 130$ $mu - 6$ $mu - 6$ $mu - 6$ $ 130$ $mu - 6$ $mu - 6$ $mu - 6$ $ 130$ $mu - 6$ $mu - 6$ $mu - 6$ $ 130$ $mu - 6$ $mu - 6$ $mu - 6$ $ 130$ $mu - 6$ $mu - 6$ $mu - 6$ $ 130$ $mu - 6$ $mu - 6$ $mu - 6$ $ 1130$ $mu - 6$ $mu - 6$ $mu - 6$ $ 1130$ $mu - 6$ $mu - 6$ $mu - 6$ $ 1110$ $mu - 6$ $mu - 6$ $mu - 6$ $ 1110$ $mu - 6$ $mu - 6$ $mu - 6$ $ 1110$ $mu - 6$ $mu - 6$ $mu - 6$ $ 1110$ $mu - 6$ $mu - 6$ $mu - 6$ <	1130 $mu - 13$ r r r r 1190 $mu - 2$ r r r r 1000 $mu - 2$ r r r r 1000 $mu - 2$ r r r r 1000 $mu - 11$ r r r r 130 $mu - 11$ r r r r 1130 $mu - 11$ r r r 1130 $mu - 1$ r r r 1110 $mu - 1$ r 111	181			Crown with	7		Ω^{Q}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		02111			4	"	0/
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0411	1-MW	4	~		"
NW-11 W-11 W-11 W-11 W-11 W-14 W-27 W-77	NW-JI W6 W6 W4 W-1 MJ-4 MJ-4 MJ-4 MJ-4 MJ-4 MJ-4 MJ-4 MJ-4			AW-2		N	1	12
W-1 W-6 W-6 Work Marken Marken Work Marken Work Marken Work True Ree. True Ree. True Ree. Marken Marken Marken Marken Work Marken Work Marken Da Date / Time Received by: Sepanne Date / Time Received by: Sepanne Da Shipped by Sepanne Date / Time Relinquished by: Sepanne Da	W-11 W-6 W-4 W-4 Try Re- Try Re- Try Re- Pate / Time Recolved DY: Separation Date / Time Relinquished DY: Separation Date / Time Relinquished DY: Separation Date / Time Relinquished DY: Separation Based DY: Separation Based DY: Separation Date / Time Relinded DY: Separation Relinded DY: Separation Date / Time Relinded DY: Separation Date / Time Relinded DY: Separation Date / Time Relinded DY: Separation Relinde		000/	MW-3		2	-	13
W-6 W-4 Ly-4 Ly-4 Ly-4 Ly-4 Ly-4 Received by: Repairing Date / Time Received by: Received by: Repairing Date / Time Received by: Re	W-6 W-4 True React True React M// JS3 Shipped by Suprement Shipped by Suprement Shipped by Suprement Shipped by Suprement Shipped by Suprement Shipped by Suprement		1330	//-mw		2		hί
W-4 True Real Non-Carlo Non-Carlo True Real Bate / Time Bate / Time Bate / Time Bate / Time Date / Time Received by: Remained Date / Time Bate / Time Date / Time Date / Time Received by: Remained Date / Time Bate / Time Date / Time Date / Time Received by: Remained Date / Time Received by: Remained Date / Time Shipped by: Remained Date / Time Bate / Time Received by: Remained Date / Time Shipped by: Remained Date / Time Received by: Remained Date / Time Date / Time	Wu-U True Real True True True True True Date / Time Received by: (Sepreture) Date / Time Date / Time Mu/U Shipped by: (Sepreture) Date / Time Delivered by: (Sepreture) Date / Time Shipped by: (Sepreture) Delivered by: (Sepreture) Delivered by: (Sepreture) Delivered by: (Sepreture)		1130	9-MW		Ν	•	. 15
True Received by: (Signature) Date / Time Received by: (Signature)	True Received by: (Signature) Date / Time Received by: (Signature) Parte / Time Received by: (Signature) Shipped by: (Signature) Shipped by: (Signature) Delivered by: (Signature) Signature)		9115	h-mw	~~	/	· torbadance	
Date / Time Received by: (service) Date / Time Received by: (service) Date / Time Received by: (service) Date / Time Received by: (service) Date / Time Received by: (service) Date / Time Received by: (service) Date / Time Received by: (service) Date / Time Received by: (service) Date / Time Received by: (service) Date / Time Received by: (service)	Date / Time Received by: (Separature) (1////////////////////////////////////	//	"	Try Reak				16 -
Date / Time Received by: (Signeture) Date / Time Relinquished by: (Signeture) Date / Time Received by: (Signeture) Date / Date / Time ////////////////////////////////////	Date / Time Received by: (Signature) Date / Time M// I// I// I// Shipped by: (Signature) M// Delivered by: (Signature) Circl By Otoco M//		-~					
Date / Time Received by: Representation Date / Time Received by: Representation Date / Time ////////////////////////////////////	Date / Time Received by: (Supreture) Date / Time Relinquished by: (Supreture) Date / Time Shipped by: (Supreture) Date / Time Shipped by: (Supreture) Date / Time Relinquished by: (Supreture) Shipped by: (Supreture) Date / Time Relind by: (Supreture) Shipped by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Date / Time Relind by: (Supreture) Relind by: (Relind by: (Supreture) Relind by: (Sup						A	
al goras in the little of the little in the little of the little	21 grand	elinquit ethod	Shipment, (Support	Date / Time Received by		Relinquished by Delivered by: ₍₃₄	Date / Time	
		EL	Elpino	13				12. 11/12 ABD

VI. ANALYTICAL METHODOLOGY

Enseco - Rocky Mountain Analytical Laboratory performs analytical services according to methods approved by EPA and other regulatory agencies, whenever possible.

Methods for metals and organic compounds are primarily derived from three sources of EPA methods, 1) the methods promulgated in 40 CFR 136 for priority pollutants, 2) the methods published in SW-846 and 3) methods developed by the EPA-EMSL/LV for Superfund investigations, as well as several documents published by the EPA and Enseco - Rocky Mountain Analytical Laboratory in 1984 and 1985. These methods all use the same generic technology as summarized below:

- Metals: acid digestion followed by analyses by ICP supported by graphite furnace AA
- Volatile Organics: purge and trap GC/MS or purge and trap GC with a selective detector.
- Semivolatile (base/neutral and acid) organics: solvent extraction followed by capillary column GC/MS, and
- Pesticides/Herbicides: solvent extraction, followed by gas chromatography.

Exact method references are given in the following tables.

🗟 Enseco

ANALYTICAL METHODOLOGY - INORGANIC TESTS

ICPTrace MetalsICP Emission Spectroscopy200.7(1)/6010(2)FSBAntimonyFurnace Atomic Absorption204.2(1)/7041(2)FASArsenicFurnace Atomic Absorption206.2(1)/7060(2)FCDCadmiumFurnace Atomic Absorption213.2(1)/7131(2)FPBLeadFurnace Atomic Absorption239.2(1)/7421(2)FSESeleniumFurnace Atomic Absorption270.2(1)/7740(2)FAGSilverFurnace Atomic Absorption272.2(1)/7761(2)FTLThalliumFurnace Atomic Absorption279.2(1)/7841(2)CVHGMercuryCold Vapor Atomic245.1(1)/7471(2)CR + 6Chromium (VI)Colorimetric312B(3)IC CLChlorideIon Chromatography300.0(1)BURCLChlorideManual Titrimetric325.3(1)METFFluorideElectrode340.2(1)
IC S04SulfateIC300.0(1)SPES04SulfateManual Turbidimetric375.4(1)METALKAlkalinity, TotalTitrimetric310.1(1)METALKAlkalinity, FormsTitrimetric403(3)TECNOXTNitrate+Witrite as NCd Reduction Colorimetric353.2(1)METPHPHMeter150.1(1)/9045(2)CELSPSpecific Conductance @ 25°CBridge120.1(1)BALTDSTotal Dissolved SolidsGravimetric, 180°C160.2(1)BALTSTotal Suspended SolidsGravimetric, 105°C160.3(1)BALTSTotal Volatile SolidsGravimetric, 550°C160.4(1)TECO POrtho-Phosphate as PTwo Reagent Colorimetric365.3(1)IECT PTotal Phosphorus as PDigestion-Colorimetric370.1(1)METRHSSilica as Si02Colorimetric370.1(1)METRODBiochemical Oxygen DemandMicro Colorimetric350.3(1)IECNNAAmmonia as NElectrode350.3(1)TECNNATotal Kjeldahl Nitrogen as NDigestion-Electrode351.4(1)TECKNTotal Granic HalogenColorimetric350.3(1)IECKNTotal Granic HalogenColorimetric351.4(1)IECKNTotal Granic HalogenColorimetric351.4(1)TECKNTotal Granic HalogenColorimetric351.4(1)IECKNTotal Granic HalogenColorimetric351.4(1)IECKNTotal Granic HalogenColorimetric351.4(1)IECKNTotal Gra
COLIF T Total Coliform Membrane Filter 909A(3)

Enseco

ANALYTICAL METHODOLOGY - INORGANIC TESTS (CONT.)

Test	Description	Methodology	Reference
IC BR	Bromide	Ion Chromatography	300.0(1)
POTCL2R	Residual Chlorine	Amperometric	330.2(1)
NESCOLR	Color	Pt-Co Colorimetric	110.2(1)
ICPHAR	Hardness as CaCog	Calculation	200.7(1)/314A(3)
TECNO2	Nitrite as N	Colorimetric	354.1(1)
SPES	Sulfide	Colorimetric	376.2(1)/9030(2)
BURSO3	Sulfite	Titrimetric	377.1(1)
SPEMBAS	MBAS (Surfactants)	Colorimetric	425.1(1)
SPETURB	Turbidity	Turbidimeter	180.1(1)
Gross Alph	1	Proportional Counter	703(3)
Gross Beta		Proportional Counter	703(3)
Radium 226		Separation - Counter	705(3)
Radium 228		Separation - Counter	707(3)
Uranium		Fluorimetric	D2907.75(4)

References

(1) Code of Federal Regulations, Chapter 40, Part 136 (40 CFR 136).
 (2) SW-846, 2nd Edition, 1984.
 (3) "Standard Methods for the Examination of Water and Wastewater", 15th Edition, 1980.
 (4) "Annual Book of ASTM Standards", Part 31, Water, 1980.

- 🛃 Enseco

ANALYTICAL METHODOLOGY - ORGANIC TESTS

<u>Test</u>	Description	<u>Methodology</u>	Reference
VOA BNA DXN	Volatile Organics Semivolatile Organics Dioxin	Purge & Trap, GC/MS Extraction, GC/MS Extraction, GC/MS	624(1)/8240(2) 625(1)/8270(2) 613(1)/8280(2)
601 THM 602 OCP 619 LC CARB PCB HRB 603 604 605 606 607 609 PNA 611 612 GD FID GC BPD	Halogenated Volatile Organics Trihalomethanes Aromatic Volatile Organics Organochlorine Pesticides Organophosphate Pesticides Triazine Pesticides Carbamate and Urea Pesticides PCB's Phenoxyacid Herbicides Acrolein & Acrylonitrile Phenols Benzidines Phthalate Esters Nitrosamines Nitroaromatics & Cyclic Ketones Polynuclear Aromatic Hydrocarbons Haloethers Chlorinated Hydrocarbons Hydrocarbon Scan Boiling Point Determination	Purge & Trap GC/Hall Purge & Trap GC/Hall Purge & Trap GC/PID Extraction, GC/ECD Extraction, GC/FPD Extraction, GC/NPD Extraction, GC/ECD Extraction, GC/ECD Purge & Trap GC/FID Extraction, GC/FID Extraction, GC/FID Extraction, GC/FID Extraction, GC/NPD Extraction, GC/NPD Extraction, GC/NPD Extraction, GC/NPD Extraction, GC/PD Extraction, GC/FID Extraction, GC/ECD Extraction, GC/FID Extraction, GC/FID Extraction, GC/FID	601(1)/8010(2) 601(1)/8010(2) 602(1)/8020(2) 608(1)/8080(2) 614(1)/8140(2) 619(1) 632(1) 608(1)/8080(2) 615(1)/8150(2) 603(1)/8030(2) 604(1)/8040(2) 605(1)/8050(2) 605(1)/8050(2) 606(1)/8060(2) 607(1) 609(1)/8090(2) 610(1)/8310(2) 611(1) 612(1)/8120(2) D3328-78(3) D2887-84(4)

References

(1) Code of Federal Regulations, Chapter 40, Part 136 (40 CFR 136).
 (2) SW-846, 2nd Edition, 1984.
 (3) "Annual Book of ASTM Standards", Volume 11.01, 1985.
 (4) "Annual Book of ASTM Standards", Volume 05.02, 1984.

Rocky Mountain Analytical Laboratory Enseco Incorporated

December 17, 1987

Peter F. Olsen, Ph.D. Dames & Moore 250 East Broadway, Suite 200 Salt Lake City, UT 84111

Dear Pete:

Enclosed is a summary of the method we are currently using to analyze for Organic Lead. It is based on a method from <u>Analytical</u> <u>Chemistry</u> which I have also included.

Please call if you have any questions.

Sincerely,

earnie B. Hewbert

Jeannie B. Howbert Project Coordinator

JBH/brm Enclosures

4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Facsimile: 303/431-7171

ORGANIC LEAD METHOD SUMMARY

Enseco

- 1. Prepare a 100 mL aliquot of sample for Total Lead by Method 3020.
- Aliquot a second 100 mL sample and pour into a separatory funnel. Add 10 mL benzene, shake by hand for 2 minutes and remove the benzene.
- 3. Repeat Step 2 using the same sample aliquot with another 10 mL benzene.
- Place the rinsed sample in a beaker and prepare by Method 3020 for Inorganic Lead.
- 5. Analyze the Total Lead and Inorganic Lead digests by Graphite Furnace AA.
- 6. Calculate the Total Organic Lead by subtracting the Inorganic Lead from the Total Lead result.

30 Aug 07

Determination of Tetraalkyllead Compounds in Water, Sediment, and Fish Samples

Y. K. Chau,* P. T. S. Wong, G. A. Bengert, and O. Kramar

Canada Centre for Inland Waters, Burlington, Ontario L7R 4A6, Canada

A simple and rapid extraction procedure to extract five tetraalkyllead compounds (Me₄Pb, Me₃EtPb, Me₂Et₂Pb, MeEt₃Pb, and Et₄Pb) from water, sediment, and fish samples is described. The extracted compounds are analyzed in their authentic forms by a gas chromatographic-atomic adsorption spectrometry system. Other forms of inorganic and organic lead do not interfere. The detection limits for water (200 mL), sediment (5 g), and fish (2 g) are 0.50 μ g/L, 0.01 μ g/g, and 0.025 μ g/g, respectively. The methods were developed to investigate the occurrence of these compounds in environmental samples. Experiments have established that tetramethyllead can be accumulated by fish and remains in its authentic form for some time.

Organolead compounds are generally more toxic than inorganic lead compounds (1) and the toxicity of the alkylated lead compounds varies with the degree of alkylation, with tetraalkyllead being the most toxic (2). Recently several research laboratories (3-6) have reported the biological methylation of inorganic and organic lead compounds in the aquatic environment by microorganisms. Subsequently, methods are being developed to detect the occurrence of these compounds in water, sediment, and biological samples. Tetraalkyllead in fish samples has been determined by solvent extraction, followed by digestion of the extract and atomic absorption measurement of the total lead (7). The procedure is based primarily on the assumption that only tetraalkyllead compounds are extracted from fish tissues. It suffers from the interferences of other organolead compounds co-extracted in the solvent, and the lack of specific differentiation of the alkyl groups. Another procedure (8) employs vacuum extraction of the tetraalkyllead into a cold trap under liquid nitrogen, followed by solvent extraction of the condensate for gas chromatographic determination. In both methods, tetraalkyllead compounds have been found in fish and mussels. Fairly high concentration of tetraethyllead (30 ppm) was detected in mussels collected at a buoy near the S.S. Cavtat incident where a shipload of tetraethyllead was sunk (9) in the Adriatic Sea. High organolead concentrations, mainly of tetraethyllead, were also found in mussels in other parts of Italian seas. The presence of tetraethyllead in aquatic organisms may indicate that the alkyllead compounds are not immediately metabolized by living organisms and may remain in their authentic forms in the living tissues for a long time (8). The occurrence of tetraalkyllead compounds in aquatic biota is highly significant because of the possibility of their incorporation into the food chain.

The present study describes techniques for separation and speciation in the determination of tetraalkyllead compounds in water, sediment, and fish samples.

EXPERIMENTAL

The gas chromatograph-atomic absorption spectrophotometer (GC-AAS) system reported elsewhere (10) and specific for the analysis of tetraalkyllead compounds was used without the sample trap. The extract was injected directly into the column injection port of the chromatograph. Instrumental parameters were identical as previously described. A Perkin-Elmer Electrodeless Discharge Lead Lamp was used; peak areas were integrated with an Autolab-Minigrator (Spectra-Physics, Calif.).

Tetramethyllead, 80% in toluene, and tetraethyllead, 99%, were obtained from Alfa Chemicals (Beverly, Mass.). The mixed lead alkyls, Me₃EtPb, Me₂Et₂Pb, MeEt₃Pb, were provided by the Ethyl Corporation, Ferndale, Mich. The purity of these compounds was assessed by gas chromatography and standardization was done by atomic absorption determination of the lead content as described in a previous study (11). High purity hexane was used for all extractions. EDTA 0.1 M was prepared by dissolving 37 g Na₂EDTA·2H₂O in 1 L of distilled water.

Procedures. Water Analysis. Place 200 mL of lake water and 5 mL of hexane in a 250-mL separatory funnel. Shake rigorously for 30 min in a reciprocating shaker. Let stand for about 20 min for phase separation. Drain off approximately 195 mL of the water and transfer the remaining mixture into a 25-mL tube with a Teflon-lined cap. Without separating the phases, inject a suitable aliquot, 5-10 μ L of the hexane, to the GC-AAS system.

Sediment Analysis. Place 5 g of wet sediment, 5 mL of EDTA reagent, and 5 mL of hexane in a 25-mL test tube with a Teflon-lined screw cap. Shake rigorously in a reciprocating shaker for 2 h. Centrifuge the sample for 10 min at $2000 \times g$. Inject a suitable aliquot, 5-10 μ L, of the hexane extract to the GC-AAS system.

Fish Analysis. Homogenize fish tissue in a Hobart grinder and a Polytron homogenizer. Place 2 g of the fish homogenated with 5 mL of EDTA reagent and 5 mL of hexane in a 25-mL test tube with a Teflon-lined screw cap. Shake rigorously for 2 h in a reciprocating shaker. Centrifuge to facilitate phase separation. Carefully withdraw a suitable aliquot, 5-10 μ L, of the hexane phase and inject to the GC-AAS system.

Calibration. Add a known amount of standard tetramethyllead, 5 μ g, to the hexane layer after injection of the ϵ mple. Mix gently, centrifuge again if necessary. Inject into the instrument the same volume as used in sample analysis. The increase in peak area due to the standard added is used to calculate the amount of tetraalkyllead in the sample. It is not necessary to separate the phases or to know the volume of hexane after extraction.

The calibration curves for each of the five tetraalkyllead compounds expressed as Pb were identical and linear up to at least 200 ng above which overlapping of peaks occurred. If only one compound was present (e.g., tetramethyllead), the curve was linear up to at least 2000 ng.

RESULTS AND DISCUSSION

Extraction of Tetraalkyllead Compounds. As the authenticity of the compounds to be analyzed must be preserved, any of the digestion methods with acids or alkalis are not suitable. Solvent extraction seems to be the method of choice for removing these compounds from samples. Benzene has been used to extract tetramethyllead and tetraethyllead from fish homogenates suspended in aqueous EDTA solution (7). Quantitative recoveries for both compounds were reported. Ionic forms of lead such as Pb(II), diethyllead dichloride, and trimethyllead acetate were not extracted in the benzene phase. However, the possibility of extraction of other non-ionic forms of organolead into the benzene phase was not extensively investigated by these workers. Their method, therefore, determines any lead compounds that distribute into the benzene phase as tet
 Table I.
 Extraction of Tetraalkyllead Compounds from

 Fish Tissue by Different Solvents^a

solvent	averaged recovery, %				
hexane	80.0				
c yclohexane	54.0				
octanol	9 0.0				
butyl acetate	55.0				
methylisobutyl ketone	30.0				
chloroform	57.0				
benzene	78.0				
^a Fish homogenate 2 g; EDTA, 5 mL; solvent, 5 mL.					

raalkyllead. It has been found in this laboratory that there are other forms of organolead compounds extracted into the organic phase but they were not volatile enough to be analyzed by the GC-AAS techniques. A speciation-specific detection system is therefore necessary for the analysis of tetraalkyllead compounds.

Experiments were carried out to investigate the optimum solvent system for extraction. Fish homogenate, 2 g, spiked with approximately 10 μ g each of the five tetraalkyllead compounds, Me₄Pb, Me₃EtPb, Me₂Et₂Pb, MeEt₃Pb, Et₄Pb, was suspended in 5 mL of EDTA reagent and extracted with 5 mL of each of the following solvents: hexane, cyclohexane, octanol, butyl acetate, methylisobutyl ketone, chloroform, or benzene. Hexane, benzene, and octanol gave the most satisfactory recovery of the tetraalkyllead compounds (Table I). There were only traces of tetraalkyllead compounds recovered in a second extraction which did not contribute significantly to the overall recovery. Such practice was therefore not considered necessary. Hexane was considered more suitable for extraction and for gas chromatographic analysis because of its relative insolubility, lower boiling point, and lower viscosity. Benzene produced an emulsified layer between the phases which may affect the distribution of the lead compounds in the organic extract. The resultant extract of octanol was too viscous to be suitable for gas chromatographic injection.

The use of tetramethylammonium hydroxide (12) to dissolve fish tissue prior to solvent extraction was also investigated. It was found that the resultant solution was a thick gel and the organic layer after extraction became very viscous. Its use was not investigated further.

The use of EDTA in the extraction served to disperse the sediment and fish homogenate in a suspension to provide better extraction and to produce a clarified organic phase and cleaner boundary between the aqueous and organic phases. It has no effect on the recovery of the tetraalkyllead compounds.

Calibration of the Method. When an extraction procedure is used to remove certain compounds from a sample, the solvent after extraction must either be separated and adjusted to its original volume, or its volume must be known in order to calculate the quantity of the analytes contained in the original sample. Unfortunately, in spite of the relative insolubility of hexane, the volume after extraction still varies and depends on the components in the sample. In addition, with biological samples, quantitative phase separation after extraction often presents difficulties. In the method presented here, phase separation after extraction is avoided through use of the standard addition method. After injection of an aliquot of the extract, a known amount of a standard (volume less than 50 μ L) is added to the hexane phase. The same aliquot of extract is withdrawn for analysis. The increase in peak area represents the amount of standard in the extract and is used to calculate the total quantity of the analyte in the original sample not requiring knowing the volume of the extract.

Recovery of Tetraalkyllead Compounds from Environmental Samples. The recoveries of the alkyllead compounds from lake water, sediment, and fish samples were evaluated by adding a mixture of five tetraalkyllead compounds to respectively 200 mL of lake water, 5 g of sediment, and 2 g of fish homogenate. The spiked samples were equilibrated for approximately 1 h and processed as described in the procedures.

The recoveries of five tetraalkyllead compounds added to environmental samples are summarized in Table II. For water, the recoveries averaged about 89%. Addition of 5 g of sodium chloride to the water sample for "salting out" effect did not improve recovery to any significant extent. Sediment is a much more complex matrix and the recoveries of the five compounds ranged 81-85% at the concentration level of 2-3 ppm. The sediment used in this experiment was taken from Hamilton Harbor, Ontario, and was fine and silty, and high • in organic matter. It is not known whether the loss of spiked compounds is due to adsorption or interactions with some components of the sediment.

There are several limitations in the evaluation of recovery of lead alkyls from fish tissues. It is difficult to assure that the spiked compounds are completely incorporated into the fish tissues. Another difficulty arises from the nonhomogeneous distribution of lipid and protein in different organs and tissues which exhibit variation in solubilization of the lead alkyl compounds. For accurate calculations of the concentration of these compounds in fish, assessment of extraction efficiency from a batch of similar samples should be made by adding a known amount of a standard to a separate aliquot of fish sample and analyzing in parallel with the other samples.

The recovery of the five alkylated lead from fish tissue averaged 74%. The reproducibility of the procedure was evaluated by analyzing 11 replicates of a fish homogenate, 1 g, each spiked with 5 μ g of tetramethyllead. The coefficient of variation was 7.3%.

The detection limits based on the given procedures are 0.50 μ g/L, 0.01 μ g/g and 0.025 μ g/g, respectively, for water, sediment, and fish.

Treatment and Storage of Samples. Tetraalkyllead compounds have high vapor pressures and are not stable in water. It is observed that water containing $4.2 \ \mu g/L$ Me₄Pb decreased to 2.8 and $3.9 \ \mu g/L$ when stored respectively at room temperature and at 4 °C overnight. For this reason, water samples should not be filtered by suction but should be extracted with hexane immediately after collection. It was

Table II. Recovery of Tetraalkyllead Compounds from Water, Sediment and Fish Samples^a

		w	ater	sed	iment	t	lish
compound	added, µg	found, µg	recovery, %	found, µg	recovery, %	found, µg	recovery, %
Me,Pb	10.00	8.78	87.8 ± 3	8.27	82.7 ± 9	7.22	72.2 ± 8
Me, EtPb	13.15	11.80	89.7 ± 4	10.65	81.0 ± 5	9.15	72.3 ± 5
Me, Et, Pb	14.30	12.50	87.4 ± 3	11.68	81.0 ± 7	10.26	76.2 ± 5
MeEt,Pb	10.15	9.08	89.5 ± 4	8.32	82.0 ± 2 ·	· 7.22	75.2 ± 9
Et,Pb	14.20	12.82 • •	90.3 ± 7	12.09	85.2 ± 6	10.69	75.3 ± 8
	2	average	88.9 ± 7		83.7 ± 9		74.2 ± 9

^a Four determinations for each sample.

	Accumu ow Trout	lation of T	etramet	hyllead	
		•		cn of Pb in	
expo- sure, day	wt. of fish, g	fish, alive or dead	water aver- aged, µg/L	fish, µg/g wet wt.	concn fac- tors ^a
1 2	0.1211 0.3661 0.7982	dead dead dead	3.46	0.43 1.08 2.00	124 312 578
3	0.4116 0.6300	dead dead		1.32 2.09	382 604
7	1.3045 1.5466 0.8100 0.4926	alive alive alive alive		2.94 3.23 2.25 1.73	850 934 650 500

^a Concentration factor = Concentration of Me,Pb in fish/ concentration of Me.Pb in water.

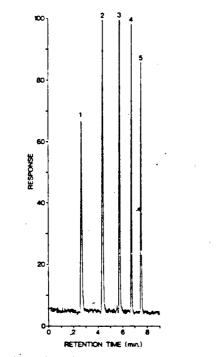


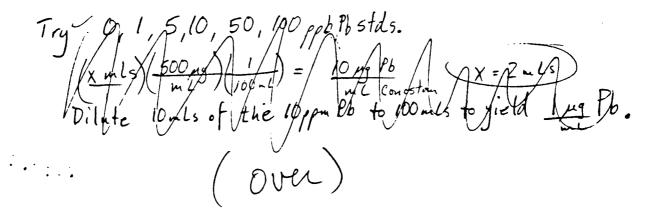
Figure 1. Recorder tracings of five tetraalkyllead compounds analyzed by the GC-AAS system. Each peak represents approximately 5 ng of the compound expressed as Pb. (1) Me₄Pb, (2) MeEt₃Pb, (3) Me₂Et₂Pb, (4) Me₃EtPb, (5) Et₄Pb

found convenient to add 5-mL hexane to the water sample (200 mL) and to shake the mixture briefly for 5 min. The sample can then be stored for at least up to one week for further process in the laboratory.

Similar practice is recommended for sediment samples. After collection, the sediment is weighed (5 g) and shaken with

5 mL of EDTA and 5 mL hexane for 5 min in a 25-mL stoppered tube. The treated samples can be stored for at least up to one week for further analysis.

Fish samples should be frozen immediately after collection. Extraction should be carried out immediately after homogenization.


Environmental Samples. Experiments were carried out to establish that tetramethyllead can be taken up by fish and can be recovered with hexane in its authentic form. Rainbow trout after exposure to water containing 3.5 μ g/L Me₄Pb for different periods of time were found to contain tetramethyllead, see Table III. Preliminary results show that this compound was mainly concentrated in the lipid layer of the tissues.

Many environmental samples, including water, sediment, and fish from high lead areas, have been examined for the presence of tetraalkyllead compounds. Of some 50 fish samples analyzed, only one sample (Ganaraska River, Ontario) so far was found to contain detectable amounts $(0.26 \ \mu g/g)$ of Me₄Pb in the fillet. Since there is no known tetraalkyllead industry and tetramethyllead is not used in gasoline in this area, the source of Me₄Pb is not yet known. The possibility that Me₄Pb comes from in-vivo lead methylation in the sediment or in the fish cannot be totally disregarded. Analysis of more environmental samples for the occurrence of these compounds is now underway. Figure 1 illustrates the recording tracings of the tetraalkyllead compounds analyzed by the GC-AAS system operated according to the parameters described in a previous study (10).

LITERATURE CITED

- (1) P. T. S. Wong, B. A. Silverberg, Y. K. Chau and P. V. Hodson, "Lead and the aquatic blota" in "Biogeochemistry of Lead", J. Nriagu, Ed., Elsevier
- Press, New York, 1978, Chapter 17, pp 279–342.
 (2) B. G. Muddock and D. Taylor, "The acute toxicity and bioaccumulation of some lead alkyl compounds in marine animals", in Proceedings of the International Experts Discussion on "Lead-Occurrence, fate and pollution in the marine environment", Rovinj, Yugoslavia, 1977, in pre
- (3) P. T. S. Wong, Y. K. Chau, and P. L. Luxon, Nature (London), 253, 263
- (1975). A. W. P. Jarvis, R. N. Markall, and H. R. Potter, Nature (London), 255. (4) 217 (1975).
- U. Schmidt and F. Huber, Nature (London), 259, 159 (1976).
- J. P. Dumas, LeRoy Pazdemik, S. Belloncik, D. Bouchard, and G. (6) Vaillancourt, Proc. 12th Can. Symp. Water Pollut. Res., 12, 91-100 (1977).
- (7) G. R. Sirota and J. F. Uthe, Anal. Chem., 49, 823-825 (1977).
- (8) E. D. Mor and A. M. Beccaria, "A dehydration method to avoid loss of trace elements in biological samples", in Proceedings of the International Experts Discussion on "Lead-Occurrence, fate and pollution in the marine environment", Rovinj, Yugoslavia, 1977, in press.
- (9) G. F. Harrison. "The Cavtat Incident", in Proceedings of the International Experts Discussion on "Lead-Occurrence, fate and pollution in the marine environment", Rovinj, Yugoslavia, 1977, in press. Y. K. Chau, P. T. S. Wong, and P. D. Goulden, Anal. Chim. Acta, 85,
- (10)421-424 (1976).
- (11) Y. K. Chau, P. T. S. Wong, and H. Saltoh, J. Chrometogr. Sci., 14, 162-164 (1976).
- (12) L. Murthy, E. E. Menden, P. M. Eller, and H. G. Petering, Anal. Biochem., 53, 365–372 (1973).

RECEIVED for review September 25, 1978. Accepted November 9, 1978.

Enseco

GUIDELINES FOR SAMPLE BOTTLES AND PRESERVATIVES D = DISSOLVED (FILTERED) T = TOTAL (UNFILTERED)

Number	Parameters	Container	Preservatives
1D ·	Cl, Cl ₂ , F, Tot. Alk., CO ₃ Alk., HCO ₃ Alk., OH Alk., pH, Sp. Cond., TDS, Ortho-PO ₄ , SiO ₂ , Br, Cr+6, NO ₂ , SO ₃ , MBAS, Color, SO ₄ , Ion Balance	500 mL poly	4°C
1T	pH, TSS, TS, TVS, BOD, Residual Cl ₂ , Turbidity, MBAS	500 mai poly	400
2	Tot. P, COD, TOC, NH_3 , TKN, TON Phenolics, NO_3+NO_2 , Ion Balance	16 oz. glass	2 mL 50% Sul. Acid, 49
3	011 & Grease .	1 L glass	4 mL 50% Sul. Acid, 44
4T	Metals in wastewater, Hardness	500 mL poly	5 mL 50% Nitric Acid
40	Metals in groundwater, Ion Balance, Hardness	500 mi_poly	5 mL 50% Nitric Acid
5	Alpha, Beta, Ra226, Ra228, U	1 L poly (no Ra228) 1/2 gal. poly (with Ra228)	10 mL 50% Nitric Acid 20 mL 50% Nitric Acid
6	Free CN, Total CN	500 mL poly	2 mL 50% NaOH,4°C
7	Sulfide	250 mi_poly	1 mi 1N zinc acetate 1 mi 50% NaOH, 4°C
8	Fecal or Total Coliform	4 1/2 oz. Sterile poly	4°C
10	ТНИ	Three 40 mL glass vials	100 uL Sodium thiosulfate, 4°C
11	VOA, Purgeable Organics (may use Bottle ≇33)	Three 40 mL glass vials	4°C
12	Base Neutral/Acid Compounds	Two 1 L glass	4°C
13	Pesticides/PCBs	Two 1 L glass	4°C
14	Herbicides	1 L glass	400
15	TOX	1 L glass-quad 8 oz. glass-single	4°C
21	Bulk Water Analysis	1/2	4°C
	Wastes, Sludges, Soils	16 oz. widemouth glass jar	4°C
31	Wastes, Sludges, Soils	32 oz. widemouth glass jar	4°C
32	Soils for Metals, Inorganics	4 oz. widemouth plastic	4°C
33	VOA in Soils, Sludges	7 oz. glass jar	4°C
34	Soils for Metals, Inorganics	16 oz. widemouth plastic	4°C

·

INSTRUCTIONS

BE CAREFUL! Preservatives are highly corrosive. Do not Safety: wash bottles. To avoid contamination, do not mix contents of bottles or interchange caps. Filtering: Groundwaters Filter for the following bottles: 1, 2, 4, 5, 6, 7, 15 Surface Waters and Industrial Waste Waters DO NOT FILTER unless Dissolved Parameters are specifically requested. Bulk Water RMAL will filter and preserve if requested. T=Total (unfiltered). D=Dissolved (filtered). Bottle Codes: Use a separate sample label for each individual 1) Notes: bottle. 2) Do not use dry ice for preservative. Place ice in plastic bag provided or use Blue-Ice packs. Fill #11 bottles (vials) completely. Leave no air 3) bubbles. To check, turn upside down. Label each vial. Samples must arrive at the lab within 24 hours of 4) sampling for the following parameters: Total Coliform Fecal Coliform ъHа Specific Conductivity Hexavalent Chromium Residual Chlorine Sulfite BOD .Color

> MBAS Nitrate Nitrite

Ortho-Phosphate

Turbidity

Rocky Mountain Analytical Laboratory

Enseco Incorporated

ANALYTICAL RESULTS

DAMES AND MOORE

DECEMBER 23, 1987

Reviewed by:

<u>Jlanne</u> Jeanne B. Howbert

Michael P. Phillips, Ph.D.

4955 Yarrow Street Arvada, Colorado 80002 303/421-6611

Facsimile: 303/431-7171

I. OVERVIEW

Between November 21 and 27, 1987, Enseco-Rocky Mountain Analytical Laboratory received 11 samples from Dames and Moore.

The #1 bottle for sample MW-10 contained a considerable amount of solids. The total alkalinity result shown in the report was analyzed using the unfiltered sample; however, for the ion balance, a filtered aliquot was used. Copies of the ion balance calculations are included.

SAMPLE DESCRIPTION INFORMATION

for

DAMES AND MOORE

RMAL <u>Sample No.</u>	Sample Description	Sample Type	Date <u>Sampled</u>	Date <u>Received</u>
65039-001	R. BALL WELL	Water	11/20/87	11/21/87
65039-002	MW-9	Water	11/23/87	11/24/87
65039-003	V-MURRAY	Water	11/23/87	11/24/87
65039-004	EQUIP BLK	Water	11/23/87	11/24/87
65039-005	MW-10	Water	11/23/87	11/24/87
65039-006	MW-8	Water	11/23/87	11/24/87
65039-007	TRIP BLANK	Water	11/23/87	11/24/87
65039-008	MW-12	Water	11/27/87	11/28/87
65039-009	W-3	Water	11/27/87	11/27/87
65039-010	STAINLESS WELL POINT	Water	11/27/87	11/27/87
65039-011	COMP. MW-11,12	Solid	11/27/87	11/27/87
			• •	

IV. ANALYTICAL RESULTS

The analytical results for this project are presented in the following data tables. The results are presented by sample, by test, with tests reported in the following order: GC/MS, Chromatography, Metals and Inorganics.

Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization data is the date when the project was defined by the client such that laboratory work could begin.

Data sheets contain a listing of the parameters measured in each test, the analytical results and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content. All data is "blank corrected", i.e. the level of contamination, if any, found in the laboratory blank is subtracted from the analytical result before it is reported.

In addition, surrogate recovery data is presented for all GC/MS analyses. The surrogate recovery is an indication of the affect of the sample matrix on the performance of the method. The results from the Standard Enseco QA/QC Program, which generates data which are independent of matrix effects, is given in Section V.

Reporting

<u>Limit</u>

5.0

0.50

2.0

5.0

0.50

1.0

1.0 0.50

1.0 0.50

1.0 2.0

0.50

5.0

5.0 5.0

1.0

0.50 0.50

0.50

1.0

1.0

1.0

1.0

2.0

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE						
Enseco ID: 65039-009						
Sampled: 11/27/87	Received: 11/27/87					
	Analyzed: 12/04/87					
<u>Result</u>	Units					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
N.D.	ug/L					
	Enseco ID: 65039 Sampled: 11/27/87					

N.D. = Not detected

1,1,2-Trichloroethane

2,2,1-trifluoroethane

1,2-Dibromoethane (EDB)

Trichloroethene

1,1,2-Trichloro-

Vinyl chloride

Reported by: Helmer Morse

Approved by: Robert Keck

N.D.

N.D.

N.D.

N.D.

N.D.

Sample: 65039-009

ug/L

ug/L

ug/L

ug/L

ug/L

Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE						
Client ID: W-3						
Laboratory ID: 65039-009	Enseco ID: 650					
Matrix: Water	Sampled: 11/27/87	Received: 11/27/87				
Authorized: 11/21/87	Analyzed: 12/04/87					
Parameter	<u>Resul</u>	<u>t</u> <u>Units</u>	Reporting <u>Limit</u>			
Benzene	N.D	ug/L	0.50			
Chlorobenzene	N.D.	ug/L	0.50			
Ethylbenzene	1	3 ug/L	0.50			
Toluene	N.D.	ug/L	0.50			
1,2-Dichlorobenzene	N.D.	ug/L	0.50			
1,3-Dichlorobenzene	N.D.	ug/L	0.50			
1,4-Dichlorobenzene	N.D	ug/L	0.50			
m-Xylene	2.	6 ug/L	0.50			
o & p-Xylene(s)	3	2 ug/L	0.50			

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Sample: 65039-009

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Sampled: 11/27/87

Client Name: DAMES AND MOORE

Client ID: STAINLESS WELL POINT

Laboratory ID: 65039-010

Enseco ID: 65039-010

Matrix: Water Authorized: 11/21/87

Analyzed: 11/30/87

Received: 11/27/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N. D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Sample: 65039-010

😼 Enseco

Reporting <u>Limit</u>

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE

Client ID: STAINLESS WELL POINT

Laboratory ID: 65039-010	Enseco II	010	
Matrix: Water	Sampled: 11/27/87		Received: 11/27/87
Authorized: 11/21/87			Analyzed: 12/04/87
Parameter		<u>Result</u>	Units

Benzene	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	0.50
Ethylbenzene	0.54	ug/L	0.50
Toluene	N.D.	ug/L	0.50
1,2-Dichlorobenzene	N.D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N.D.	ug/L	0.50
m-Xylene	1.4	ug/L	0.50
o & p-Xylene(s)	0.83	ug/L	0.50

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: STAINLESS WELL POINT

Laboratory ID: 65039-010

Enseco ID: 65039-010

Matrix: Water Authorized: 11/21/87	Sampled: 11/27/87		Received: 11/27/87		
Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Calcium Iron Magnesium	364 0.39 105	mg/L mg/L mg/L	0.1 0.05 0.1	200.7 200.7 200.7	12/10/87 12/10/87 12/10/87

Iron	0.39	mg/L	0.05	200.7	12/10/87
Magnesium	105	mg/L	0.1	200.7	12/10/87
Potassium	24	mg/L	5	200.7	12/10/87
Sodium	666	mg/L	0.05	200.7	12/10/87
Total Organic Lead	N.D.	mg/L	0.01	Enseco	12/22/87

N.D. = Not detected

Approved by: Will Pratt

✓ Enseco

INORGANIC PARAMETERS

Sampled: 11/27/87

Client Name: DAMES AND MOORE

Client ID: STAINLESS WELL POINT

Laboratory ID: 65039-010

Enseco ID: 65039-010

Received: 11/27/87

Matrix: Water Authorized: 11/21/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
рН	7.89	units	0.01	150.1	11/28/87
Specific Conductance @ 25C	4300	umhos/cm	1	120.1/9050	11/28/87
Total Dissolved Solids	3700	mg/L	10	160.1	12/04/87
Fluoride	1.0	mg/L	0.1	340.2	12/03/87
Chloride	257	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	0.3	mg/L	0.2	353.2	12/07/87
Sulfate	1980	mg/L	5	300.0	12/15/87
Total Alkalinity as CaCO3	419	mg/L	5	310.1/403	11/28/87
Ammonia as N	0.5	mg/L	0.1	350.1	12/04/87
Total Cations	56.4	meq/L	0.1	104C	12/17/87
Total Anions	56.9	meq/L	0.3	104C	12/17/87
% Difference	0.4	%	0.1	104C	12/17/87

N.D. = Not detected

Approved by: Lindsay Breyer

METALS PARAMETERS EPI TOXICITY METALS

Client Name: DAMES AND MOORE

Client ID: COMP. MW-11,12

Laboratory ID: 65039-011

Enseco ID: 65039-011

Matrix: Solid

Sampled: 11/27/87

Received: 11/27/87

Authorized: 11/21/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Arsenic	N.D.	mg/L	0.1	200.7	12/14/87
Barium	0.94	mg/L	0.005	200.7	12/14/87
Cadmium	N.D.	mg/L	0.005	200.7	12/14/87
Chromium	N.D.	mg/L	0.01	200.7	12/14/87
Lead	N.D.	mg/L	0.05	200.7	12/14/87
Mercury	N.D.	mg/L	0.001	245.1	12/09/87
Selenium	N.D.	mg/L	0.02	7740	12/14/87
Silver	N.D.	mg/L	0.005	200.7	12/14/87

N.D. = Not detected

Approved by: Will Pratt

Sample: 65039-011

.

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE Client ID: COMP. MW-11,12 Laboratory ID: 65039-011 Enseco Matrix: Solid Sampled: 11/27/87 Authorized: 11/21/87

Parameter	<u>Result</u>	Units (as <u>received)</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Reactive Sulfide	N.D.	mg/kg	0.5	EPA/OSW	12/03/87
Reactive Cyanide	N.D.	mg/kg	0.1	EPA/OSW	12/02/87

Enseco ID: 65039-011

Received: 11/27/87

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: R. BALL WELL

Laboratory ID: 65039-001

Authorized: 11/21/87

Enseco ID: 65039-001

Matrix: Water Sampled: 11/20/87

Received: 11/21/87 Analyzed: 11/30/87

1

Parameter	Result	Units	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND N	MOORE			
Client ID: R. BALL WELL				
Laboratory ID: 65039-001	Enseco ID:	65039-001		
Matrix: Water	Sampled: 11/20/87	Rece	ived: 11/21/87	
Authorized: 11/21/87		Anal	yzed: 11/30/87	
Parameter	<u>Re</u>	<u>sult</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene	1	1.D.	ug/L	0.50
Chlorobenzene	1	1.D.	ug/L	0.50
Ethylbenzene		0.89	ug/L	0.50
Toluene	1	N.D.	ug/L	0.50
1,2-Dichlorobenzene	1	N.D.	ug/L	0.50
1,3-Dichlorobenzene	1	1.D.	ug/L	0.50
1,4-Dichlorobenzene	1	N.D.	ug/L	0.50
m-Xylene	1	N.D.	ug/L	0.50
o & p-Xylene(s)	1	N.D.	ug/L	0.50

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

METALS PARAMETERS

Client Name: DAMES AND MOORE Client ID: R. BALL WELL

Laboratory ID: 65039-001

Enseco ID: 65039-001

Matrix: Water Sampled: 11/20/87 Received: 11/21/87 Authorized: 11/21/87 Reporting Analytical <u>Units</u> **Parameter** <u>Result</u> <u>Limit</u> <u>Method</u> <u>Analyzed</u> Calcium 25 0.2 200.7 12/08/87 mg/L Iron N.D. mg/L 0.1 200.7 12/08/87 Magnesium 3.8 0.2 200.7 12/08/87 mg/L Potassium N.D. mg/L 10 200.7 12/08/87 12/08/87 Sodium 1020 mg/L 0.1 200.7 Total Organic Lead 0.02 12/22/87 N.D. mg/L Enseco

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Sampled: 11/20/87

Client Name: DAMES AND MOORE

Client ID: R. BALL WELL

Laboratory ID: 65039-001

Enseco ID: 65039-001

Received: 11/21/87

Authorized: 11/21/87

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pН	8.38	units	0.01	150.1	11/21/87
Specific Conductance @ 25C	4520	umhos/cm	1	120.1/9050	11/21/87
Total Dissolved Solids	2300	mg/L	10	160.1	11/23/87
Fluoride	1.0	mg/L	0.1	340.2	11/25/87
Chloride	1170	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	433	mg/L	5	300.0	12/15/87
Total Alkalinity as CaCO3	221	mg/L	5	310.1/403	11/21/87
Ammonia as N	0.3	mg/L	0.1	350.1	12/01/87
Total Cations	46.0	meq/L	0.1	104C	12/17/87
Total Anions	46.5	meq/L	0.3	104C	12/17/87
% Difference	0.5	%	0.1	104C	12/17/87

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name:	DAMES	AND	MOORE
--------------	-------	-----	-------

Client ID: MW-9

Laboratory ID: 65039-002

Authorized: 11/21/87

Enseco ID: 65039-002

Matrix: Water Sampled: 11/23/87

Received: 11/24/87 Analyzed: 11/30/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N. D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	8.3	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND	MOORE		
Client ID: MW-9			
Laboratory ID: 65039-002	Enseco ID: 650	39-002	
Matrix: Water	Sampled: 11/23/87	Received: 11/24/87	
Authorized: 11/21/87		Analyzed: 11/30/87	· · · · · · · · · · · · · · · · · · ·
Parameter	Resul	<u>Units</u>	Reporting <u>Limit</u>
Benzene	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	0.50
Ethylbenzene	N.D.	ug/L	0.50
Toluene	N.D.	ug/L	0.50
1,2-Dichlorobenzene	N.D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N.D.	ug/L	0.50
m-Xylene	N.D.	ug/L	0.50
o & p-Xylene(s)	N.D.	ug/L	0.50

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

METALS PARAMETERS

Sampled: 11/23/87

Client Name: DAMES AND MOORE

Client ID: MW-9

Matrix: Water

Laboratory ID: 65039-002

Enseco ID: 65039-002

Received: 11/24/87

Authorized: 11/21/87

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	324	mg/L	0.1	200.7	12/08/87
Iron	N.D.	mg/L	0.05	200.7	12/08/87
Magnesium	29	mg/L	0.1	200.7	12/08/87
Potassium	N.D.	mg/L	5	200.7	12/08/87
Sodium	146	mg/L	0.05	200.7	12/08/87
Total Organic Lead	N.D.	mg/L	0.01	Enseco	12/22/87

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-9

Total Anions

% Difference

Laboratory ID: 65039-002

Enseco ID: 65039-002

Sampled: 11/23/87 Received: 11/24/87 Matrix: Water Authorized: 11/21/87 Reporting Analytical Method **Parameter** <u>Result</u> <u>Units</u> <u>Limit</u> <u>Analyzed</u> 7.59 0.01 pН units 150.1 11/24/87 Specific Conductance @ 25C 1850 umhos/cm 1 120.1/9050 11/24/87 11/29/87 Total Dissolved Solids 10 160.1 1520 mg/L Fluoride 0.1 340.2 12/03/87 1.0 mg/L 3 300.0 12/15/87 Chloride 43 mg/L 0.1 353.2 12/01/87 Nitrate + Nitrite as N N.D. mg/L Sulfate 863 mg/L 5 300.0 12/15/87 Total Alkalinity as CaCO3 372 5 310.1/403 11/24/87 mg/L 0.1 350.1 12/01/87 Ammonia as N N.D. mg/L **Total Cations** 24.9 0.1 104C 12/17/87 meq/L

meq/L

%

26.7

3.4

N.D. = Not detected

Approved by: Lindsay Breyer

Sample: 65039-002

104C

104C

12/17/87

12/17/87

0.3

0.1

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: V-MURRAY

Laboratory ID: 65039-003

Enseco ID: 65039-003

Received: 11/24/87 Analyzed: 11/30/87

Matrix: Water Sampled:	11/2	3/87
------------------------	------	------

Authorized: 11/21/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N. D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Reporting <u>Limit</u>

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client	Name:	DAMES	AND	MOORE

Client ID: V-MURRAY

Laboratory ID: 65039-003	Enseco ID: 65039-003			
Matrix: Water	Sampled: 11/23/87	Received: 11/24/87		
Authorized: 11/21/87			Analyzed: 11/30/87	
<u>,</u>				
<u>Parameter</u>	Ē	lesult	<u>Units</u>	
Banzana		1.0	11 <i>7</i> /I	

Benzene	1.0	ug/L	0.50
Chlorobenzene	N.D.	ug/L	0.50
Ethylbenzene	N.D.	ug/L	0.50
Toluene	N.D.	ug/L	0.50
1,2-Dichlorobenzene	N.D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N.D.	ug/L	0.50
m-Xylene	N.D.	ug/L	0.50
o & p-Xylene(s)	N.D.	ug/L	0.50

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

12/22/87

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: V-MURRAY

Laboratory ID: 65039-003

Total Organic Lead

Enseco ID: 65039-003

0.01

Enseco

Sampled: 11/23/87 Received: 11/24/87 Matrix: Water Authorized: 11/21/87 Reporting Analytical **Parameter** <u>Result</u> <u>Units</u> <u>Limit</u> <u>Method</u> **Analyzed** Calcium 42 mg/L 0.1 200.7 12/08/87 0.05 200.7 12/08/87 Iron 0.31 mg/L Magnesium 28 0.1 200.7 12/08/87 mg/L 200.7 12/08/87 Potassium 13 5 mg/L Sodium 147 0.05 200.7 12/08/87 mg/L

mg/L

N.D.

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: V-MURRAY

Laboratory ID: 65039-003

Enseco ID: 65039-003

Matrix: Water Sampled: 11/23/87 Received: 11/24/87 Authorized: 11/21/87 Reporting Analytical <u>Result</u> Parameter Units Method <u>Limit</u> **Analyzed** pН 8.24 units 0.01 150.1 11/24/87 Specific Conductance @ 25C 895 120.1/9050 11/24/87 umhos/cm 1 Total Dissolved Solids 600 ma/I 10 160 1

Total Dissolved Solids	600	mg/L	10	160.1	11/29/87
Fluoride	0.4	mg/L	0.1	340.2	12/03/87
Chloride	43	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	114	mg/L	5	300.0	12/17/87
Total Alkalinity as CaCO3	368	mg/L	5	310.1/403	11/24/87
Ammonia as N	0.9	mg/L	0.1	350.1	12/01/87
Total Cations	11.2	meq/L	0.1	104C	12/17/87
Total Anions	11.0	meq/L	0.3	104C	12/17/87
% Difference	1.1	%	0.1	104C	12/17/87

N.D. = Not detected

Approved by: Lindsay Breyer

-

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND N	IOORE		
Client ID: EQUIP BLK			
Laboratory ID: 65039-004	Enseco ID: 650	39-004	
Matrix: Water	Sampled: 11/23/87	Received: 11/24/87	
Authorized: 11/21/87		Analyzed: 11/30/87	
<u>Parameter</u>	Result	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.		0.50
Chlorobenzene	N.D.		2.0
Chloroethane	N.D.		5.0
Chloroform	N.D.	.	0.50
Dibromochloromethane	N.D.		1.0
Bromodichloromethane	N.D.		1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.		1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.		1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	÷	1.0
1,1,2-Trichloro-		0.	
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE					
Client ID: EQUIP BLK					
Laboratory ID: 65039-004	Enseco ID: 650	39-004			
Matrix: Water	Sampled: 11/23/87	Received: 11/24/87			
Authorized: 11/21/87		Analyzed: 11/30/87			
<u>Parameter</u>	Resul	<u>Units</u>	Reporting <u>Limit</u>		
Benzene	N.D.	ug/L	0.50		
Chlorobenzene	N.D.	ug/L	0.50		
Ethylbenzene	N.D.	ug/L	0.50		
Toluene	N.D.	ug/L	0.50		
1,2-Dichlorobenzene	N.D.	ug/L	0.50		
1,3-Dichlorobenzene	N.D.	ug/L	0.50		
1,4-Dichlorobenzene	N.D.	ug/L	0.50		
m-Xylene	N.D.	ug/L	0.50		
o & p-Xylene(s)	N.D.	ug/L	0.50		

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

METALS PARAMETERS

Sampled: 11/23/87

Client Name: DAMES AND MOORE Client ID: EQUIP BLK

Laboratory ID: 65039-004

Enseco ID: 65039-004

Received: 11/24/87

Authorized: 11/21/87

Matrix: Water

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	5.5	mg/L	0.1	200.7	12/08/87
Iron	N.D.	mg/L	0.05	200.7	12/08/87
Magnesium	0.5	mg/L	0.1	200.7	12/08/87
Potassium	N.D.	mg/L	5	200.7	12/08/87
Sodium	2.5	mg/L	0.05	200.7	12/08/87
Total Organic Lead	N.D.	mg/L	0.02	Enseco	12/22/87

N.D. = Not detected

Approved by: Will Pratt

€ Enseco

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: EQUIP BLK

Laboratory ID: 65039-004

Enseco ID: 65039-004

Received: 11/24/87

Sampled: 11/23/87

Authorized: 11/21/87

Matrix: Water

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	5.17	units	0.01	150.1	11/24/87
Specific Conductance @ 25C	2	umhos/cm	1	120.1/9050	11/24/87
Total Dissolved Solids	N.D.	mg/L	10	160.1	11/29/87
Fluoride	N.D.	mg/L	0.1	340.2	12/03/87
Chloride	N.D.	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	N.D.	mg/L	5	300.0	12/15/87
Total Alkalinity as CaCO3	N.D.	mg/L	5	310.1/403	11/24/87
Ammonia as N	N.D.	mg/L	0.1	350.1	12/01/87
Total Cations	0.4	meq/L	0.1	104C	12/17/87
Total Anions	N.D.	meq/L	0.3	104C	12/17/87

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client ID: MW-10

Laboratory ID: 65039-005

Enseco ID: 65039-005

Matrix: Water	Sampled: 11/23/87	Received: 11/24/87	
Authorized: 11/21/87		Analyzed: 11/30/87	

		Reporting
<u>Result</u>	Units	<u>Limit</u>
N.D.	ug/L	5.0
N.D.	ug/L	0.50
N.D.	ug/L	2.0
N.D.	ug/L	5.0
N.D.	ug/L	0.50
N.D.	ug/L	1.0
N.D.	ug/L	1.0
N.D.	ug/L	0.50
3.2	ug/L	1.0
N.D.	ug/L	0.50
N.D.	ug/L	1.0
N.D.	ug/L	2.0
N.D.	ug/L	0.50
N.D.	ug/L	5.0
N.D.	ug/L	5.0
N.D.	ug/L	5.0
N.D.	ug/L	1.0
N.D.	ug/L	0.50
N.D.	ug/L	0.50
N.D.	ug/L	0.50
N.D.	ug/L	1.0
N.D.	ug/L	1.0
N.D.	ug/L	1.0
N.D.	ug/L	1.0
N.D.	ug/L	2.0
	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	N.D. ug/L N.D.

N.D. = Not detected

Reported by: Helmer Morse

h f

Approved by: Robert Keck

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND	MOORE		
Client ID: MW-10			
Laboratory ID: 65039-005	Enseco ID: 650	39-005	
Matrix: Water	Sampled: 11/23/87	Received: 11/24/87	
Authorized: 11/21/87	·····	Analyzed: 11/30/87	<u></u>
Parameter	Resul	<u>Units</u>	Reporting <u>Limit</u>
Benzene	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	0.50
Ethylbenzene	N.D.	ug/L	0.50
Toluene	N.D.	ug/L	0.50
1,2-Dichlorobenzene	N.D.	ug/L	0.50
1,3-Dichlorobenzene	N.D.	ug/L	0.50
1,4-Dichlorobenzene	N.D.	ug/L	0.50
m-Xylene	N.D.	ug/L	0.50
o & p-Xylene(s)	N.D.	ug/L	0.50

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

METALS PARAMETERS

Sampled: 11/23/87

Client Name: DAMES AND MOORE Client ID: MW-10

Laboratory ID: 65039-005

Enseco ID: 65039-005

Received: 11/24/87

Authorized: 11/21/87

Matrix: Water

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	126	mg/L	0.1	200.7	12/08/87
Iron	N.D.	mg/L	0.05	200.7	12/08/87
Magnesium	22	mg/L	0.1	200.7	12/08/87
Potassium	N.D.	mg/L	5	200.7	12/08/87
Sodium	250	mg/L	0.05	200.7	12/08/87
Total Organic Lead	N.D.	mg/L	0.02	Enseco	12/22/87

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Sampled: 11/23/87

Client Name: DAMES AND MOORE

Client ID: MW-10

Laboratory ID: 65039-005

Enseco ID: 65039-005

Received: 11/24/87

Matrix: Water Authorized: 11/21/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pН	7.74	units	0.01	150.1	11/24/87
Specific Conductance @ 25C	1640	umhos/cm	1	120.1/9050	11/24/87
Total Dissolved Solids	1240	mg/L	10	160.1	11/29/87
Fluoride	0.8	mg/L	0.1	340.2	12/03/87
Chloride	46	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	568	mg/L	5	300.0	12/15/87
Total Alkalinity as CaCO3	669	mg/L	5	310.1/403	11/24/87
Ammonia as N	N.D.	mg/L	0.1	350.1	12/01/87
Total Cations	19.0	meq/L	0.1	104C	12/17/87
Total Anions	18.3	meq/L	0.3	104C	12/17/87
% Difference	1.9	%	0.1	104C	12/17/87

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE	
------------------------------	--

Client ID: MW-8

Laboratory ID: 65039-006

Enseco ID: 65039-006

Matrix: Water	Sampled: 11/23/87	Received: 11/24/87
Authorized: 11/21/87		Analyzed: 11/30/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	2.8	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D .	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND	MOORE		
Client ID: MW-8			
Laboratory ID: 65039-006	Enseco ID: 65	039-006	
Matrix: Water	Sampled: 11/23/87	Received: 11/24/87	
Authorized: 11/21/87		Analyzed: 11/30/87	
Parameter	Resu	t <u>Units</u>	Reporting <u>Limit</u>
Benzene	N.C	ug/L	0.50
Chlorobenzene	N.C		0.50
Ethylbenzene	N.D	ug/L	0.50
Toluene	N.D	ug/L	0.50
1,2-Dichlorobenzene	N.D	ug/L	0.50
1,3-Dichlorobenzene	N.D	ug/L	0.50
1,4-Dichlorobenzene	N.D	ug/L	0.50
m-Xylene	N.D	ug/L	0.50
o & p-Xylene(s)	N.D	ug/L	0.50

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

METALS PARAMETERS

Client Name: DAMES AND	MOORE				
Client ID: MW-8					
Laboratory ID: 65039-006		Enseco ID:	65039-006		
Matrix: Water	Sample	d: 11/23/87	Received:	11/24/87	
Authorized: 11/21/87					
<u>Parameter</u>	Result	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
Calcium	159	mg/L	0.1	200.7	12/08/87
Iron	N.D.	mg/L	0.05	200.7	12/08/87
Magnesium	21	mg/L	0.1	200.7	12/08/87
Potassium	N.D.	mg/L	5	200.7	12/08/87
Sodium	166	mg/L	0.05	200.7	12/08/87
Total Organic Lead	N.D.	mg/L	0.02	Enseco	12/22/87

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Sampled: 11/23/87

Client	Name:	DAMES	AND	MOORE

Client ID: MW-8

Matrix: Water

Laboratory 1D: 65039-006

Enseco ID: 65039-006

Received: 11/24/87

Authorized: 11/21/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pН	7.52	units	0.01	150.1	11/24/87
Specific Conductance @ 25C	1500	umhos/cm	1	120.1/9050	11/24/87
Total Dissolved Solids	950	mg/L	10	160.1	11/29/87
Fluoride	0.7	mg/L	0.1	340.2	12/03/87
Chloride	67	mg/L	3	300.0	12/17/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	401	mg/L	5	300.0	12/17/87
Total Alkalinity as CaCO3	273	mg/L	5	310.1/403	11/24/87
Ammonia as N	N.D.	mg/L	0.1	350.1	12/01/87
Total Cations	16.9	meq/L	0.1	104C	12/17/87
Total Anions	15.7	meq/L	0.3	104C	12/17/87
% Difference	3.5	%	0.1	104C	12/17/87

N.D. = Not detected

Approved by: Lindsay Breyer

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE							
Client ID: TRIP BLANK							
Laboratory ID: 65039-007	Enseco	ID: 65039	-007				
Matrix: Water	Sampled: 11/23/87		Received: 11/24/87				
Authorized: 11/21/87			Analyzed: 11/30/87				
				Reporting			
<u>Parameter</u>		<u>Result</u>	<u>Units</u>	Limit			
Bromoform		N.D.	ug/L	5.0			
Carbon tetrachloride		N.D.	ug/L	0.50			
Chlorobenzene		N.D.	ug/L	2.0			
Chloroethane		N.D.	ug/L	5.0			
Chloroform		N.D.	ug/L	0.50			
Dibromochloromethane		N.D.	ug/L	1.0			
Bromodichloromethane		N.D.	ug/L	1.0			
1,1-Dichloroethane		N.D.	ug/L	0.50			
1,2-Dichloroethane		N.D.	ug/L	1.0			
1,1-Dichloroethene		N.D.	ug/L	0.50			
1,2-Dichloropropane		N.D.	ug/L	1.0			
cis-1,3-Dichloropropene		N.D.	ug/L	2.0			
trans-1,3-Dichloropropene		N.D.	ug/L	0.50			
Bromomethane		N.D.	ug/L	5.0			
Chloromethane		N.D.	ug/L	5.0			
Methylene chloride		11	ug/L	5.0			
1,1,2,2-Tetrachloroethane		N.D.	ug/L	1.0			
Tetrachloroethene		N.D.	ug/L	0.50			
trans-1,2-Dichloroethene		N.D.	ug/L	0.50			

N.D. = Not detected

1,1,1-Trichloroethane

1,1,2-Trichloroethane

2,2,1-trifluoroethane

1,2-Dibromoethane (EDB)

Trichloroethene

1,1,2-Trichloro-

Vinyl chloride

Reported by: Helmer Morse

Approved by: Robert Keck

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

Sample: 65039-007

0.50

1.0

1.0 1.0

1.0

2.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

- 🛃 Enseco

AROMATIC VOLATILE ORGANICS

EPA METHOD 602

Client Name: DAMES AND MOORE							
Client ID: TRIP BLANK							
Laboratory ID: 65039-007 Enseco ID: 65039-00							
Matrix: Water	Sampled: 11/23/87	Received: 11/24/87					
Authorized: 11/21/87	Authorized: 11/21/87 Analyzed: 11/30/87						
Parameter	Res	<u>ult</u>	<u>Units</u>	Reporting <u>Limit</u>			
Benzene	N	.D.	ug/L	0.50			
Chlorobenzene	N	.D.	ug/L	0.50			
Ethylbenzene	N	.D.	ug/L	0.50			
Toluene	N	.D.	ug/L	0.50			
1,2-Dichlorobenzene	N	.D.	ug/L	0.50			
1,3-Dichlorobenzene	N	.D.	ug/L	0.50			
1,4-Dichlorobenzene	N	.D.	ug/L	0.50			
m-Xylene	N	.D.	ug/L	0.50			
o & p-Xylene(s)	N	.D.	ug/L	0.50			

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Enseco

HAZARDOUS SUBSTANCE LIST (HSL) VOLATILE ORGANICS EPA METHOD 624

Client Name: DAMES AND MOORE

Client ID: MW-12

Authorized: 11/21/87

Laboratory ID: 65039-008

Enseco ID: 65039-008

Received: 11/28/87

Analyzed: 12/04/87

Matrix: Water Sampled: 11/27/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Acetone	N.D.	ug/L	500
Benzene	19000	ug/L	100
Bromoform	N.D.	ug/L	100
Bromomethane	N.D.	ug/L	200
2-Butanone	N.D.	ug/L	500
Carbon disulfide	N.D.	ug/L	100
Carbon tetrachloride	N.D.	ug/L	100
Chlorobenzene	N.D.	ug/L	100
Dibromochloromethane	N.D.	ug/L	100
Chloroethane	N.D.	ug/L	200
2-Chloroethyl vinyl ether	N.D.	ug/L	200
Chloroform	N.D.	ug/L	100
Chloromethane	N.D.	ug/L	200
Bromodichloromethane	N.D.	ug/L	100
1,1-Dichloroethane	N.D.	ug/L	100
1,2-Dichloroethane	450	ug/L	100
1,1-Dichloroethene	N.D.	ug/L	100
1,2-Dichloropropane	N.D.	ug/L	100
cis-1,3-Dichloropropene	N.D.	ug/L	100
trans-1,3-Dichloropropene	N.D.	ug/L	100
Ethylbenzene	1300	ug/L	100
2-Hexanone	N.D.	ug/L	200
Methylene chloride	N.D.	ug/L	500
4-Methyl-2-pentanone	N.D.	ug/L	200
Styrene	N.D.	ug/L	100
1,1,2,2-Tetrachloroethane	N.D.	ug/L	100
Tetrachloroethene	N.D.	ug/L	100
Toluene	2000	ug/L	100
trans-1,2-Dichloroethene	N.D.	ug/L	100
1,1,1-Trichloroethane	N.D.	ug/L	100
1,1,2-Trichloroethane	N.D.	ug/L	100

N.D. = Not detected

Sample: 65039-008

1

1

🖅 Enseco

HAZARDOUS SUBSTANCE LIST (HSL) VOLATILE ORGANICS (CONT.) EPA METHOD 624

Client Name: DAMES AND MOORE

Client ID: MW-12

Laboratory ID: 65039-008	Enseco ID: 650			
Matrix: Water	Sampled: 11/27/87	Received: 11/28/87		
Authorized: 11/21/87		Analyzed: 12/04/87		
Parameter	<u>Resul</u>	t <u>Units</u>	Reporting <u>Limit</u>	
Trichloroethene	N.D	. ug/L	100	
Vinyl acetate	N.D	. ug/L	200	
Vinyl chloride	N.D	. ug/L	200	
Total Xylenes	3000	ug/L	100	
Surrogate				
Toluene-D8	99	%	-	
Bromofluorobenzene(BFB)	100	%	-	
1,2-Dichloroethane-D4	98	%	-	

N.D. = Not detected

Reported by: Jenifer Tavernier

Approved by: Jeffrey Lowry

2

12/22/87

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-12

Total Organic Lead

Laboratory ID: 65039-008

Enseco ID: 65039-008

0.02

Enseco

Matrix: Water Sampled: 11/27/87 Received: 11/28/87 Authorized: 11/21/87 Reporting Analytical <u>Units</u> **Parameter** <u>Result</u> <u>Limit</u> <u>Method</u> **Analyzed** Calcium 148 mg/L 0.1 200.7 12/10/87 Iron 0.13 mg/L 0.05 200.7 12/10/87 Magnesium 42 mg/L 0.1 200.7 12/10/87 Potassium 5 200.7 12/10/87 N.D. mg/L 0.05 Sodium 222 mg/L 200.7 12/10/87

mg/L

N.D.

N.D. = Not detected

Approved by: Will Pratt

INORGANIC PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-12

Laboratory ID: 65039-008

Enseco ID: 65039-008

Matrix: Water Sampled: 11/27/87 Received: 11/28/87 Authorized: 11/21/87 Reporting Analytical <u>Units</u> <u>Limit</u> <u>Method</u> **Analyzed** Result Parameter 6.99 0.01 150.1 11/28/87 units pН 120.1/9050 11/28/87 Specific Conductance @ 25C 1930 umhos/cm 1 10 1200 ma/I ad Calid

Total Dissolved Solids	1200	mg/L	10	160.1	12/04/87
Fluoride	0.3	mg/L	0.1	340.2	12/03/87
Chloride	321	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/07/87
Sulfate	16	mg/L	5	300.0	12/15/87
Total Alkalinity as CaCO3	508	mg/L	5	310.1/403	11/28/87
Ammonia as N	N.D.	mg/L	0.1	350.1	12/04/87
Total Cations	20.5	meq/L	0.1	104C	12/17/87
Total Anions	19.6	meq/L	0.3	104C	12/17/87
% Difference	2.4	%	0.1	104C	12/17/87

N.D. = Not detected

Approved by: Lindsay Breyer

INORGANIC PARAMETERS

Sampled: 11/27/87

Client Name: DAMES AND MOORE

Client ID: MW-12

Laboratory ID: 65039-008

Enseco ID: 65039-008

Received: 11/28/87

Matrix: Water Authorized: 11/21/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
рН	6.99	units	0.01	150.1	11/28/87
Specific Conductance @ 25C	1930	umhos/cm	1	120.1/9050	11/28/87
Total Dissolved Solids	1200	mg/L	10	160.1	12/04/87
Fluoride	0.3	mg/L	0.1	340.2	12/03/87
Chloride	321	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/07/87
Sulfate	16	mg/L	5	300.0	12/15/87
Total Alkalinity as CaCO3	508	mg/L	5	310.1/403	11/28/87
Ammonia as N	N.D.	mg/L	0.1	350.1	12/04/87
Total Cations	20.5	meq/L	0.1	104C	12/17/87
Total Anions	19.6	meq/L	0.3	104C	12/17/87
% Difference	2.4	%	0.1	104C	12/17/87

N.D. = Not detected

- Fi

Approved by: Lindsay Breyer

Analyzed

12/10/87

12/10/87

12/10/87

12/10/87

12/10/87

12/22/87

METALS PARAMETERS

Client Name: DAMES AND MOORE Client ID: MW-12 Enseco ID: 65039-008 Laboratory ID: 65039-008 Matrix: Water Sampled: 11/27/87 Received: 11/28/87 Authorized: 11/21/87 Reporting Analytical <u>Units</u> **Parameter** <u>Result</u> <u>Limit</u> Method Calcium 148 mg/L 0.1 200.7 Iron 0.13 mg/L 0.05 200.7 Magnesium 42 mg/L 0.1 200.7 Potassium N.D. mg/L 5 200.7

mg/L

mg/L

222

N.D.

N.D. = Not detected

Sodium

Total Organic Lead

Approved by: Will Pratt

0.05

0.02

200.7

Enseco

Enseco 🖉

HAZARDOUS SUBSTANCE LIST (HSL) VOLATILE ORGANICS (CONT.) EPA METHOD 624

Client Name: DAMES AND MOORE

Client ID: MW-12

Laboratory ID: 65039-008 Enseco ID: 65039-008				
Matrix: Water	Sampled: 11/27/87	Received: 11/28/87		
Authorized: 11/21/87		Analyzed: 12/04/87		
<u>Parameter</u>	Resi	alt Units	Reporting <u>Limit</u>	
Trichloroethene	N.	D. ug/L	100	
Vinyl acetate	N.	D. ug/L	200	
Vinyl chloride	N.	D. ug/L	200	
Total Xylenes	300	0 ug/L	100	
Surrogate				
Toluene-D8	9	9 %	-	
Bromofluorobenzene(BFB)	10	0 %	-	
1,2-Dichloroethane-D4	9	8 %	-	

N.D. = Not detected

Reported by: Jenifer Tavernier

Approved by: Jeffrey Lowry

HAZARDOUS SUBSTANCE LIST (HSL) VOLATILE ORGANICS EPA METHOD 624

Client Name: DAMES AND MOORE

Client ID: MW-12

Authorized: 11/21/87

Laboratory ID: 65039-008

Enseco ID: 65039-008

Received: 11/28/87 Analyzed: 12/04/87

Matrix: Water Sampled: 11/27/87

<u>Parameter</u>	Result	<u>Units</u>	Reporting <u>Limit</u>
Acetone	N.D.	ug/L	500
Benzene	19000	ug/L	100
Bromoform	N.D.	ug/L	100
Bromomethane	N.D.	ug/L	200
2-Butanone	N.D.	ug/L	500
Carbon disulfide	N.D.	ug/L	100
Carbon tetrachloride	N.D.	ug/L	100
Chlorobenzene	N.D.	ug/L	100
Dibromochloromethane	N.D.	ug/L	100
Chloroethane	N.D.	ug/L	200
2-Chloroethyl vinyl ether	N.D.	ug/L	200
Chloroform	N.D.	ug/L	100
Chloromethane	N.D.	ug/L	200
Bromodichloromethane	N.D.	ug/L	100
1,1-Dichloroethane	N.D.	ug/L	100
1,2-Dichloroethane	450	ug/L	100
1,1-Dichloroethene	N.D.	ug/L	100
1,2-Dichloropropane	N.D.	ug/L	100
cis-1,3-Dichloropropene	N.D.	ug/L	100
trans-1,3-Dichloropropene	N.D.	ug/L	100
Ethylbenzene	1300	ug/L	100
2-Hexanone	N.D.	ug/L	200
Methylene chloride	N.D.	ug/L	500
4-Methyl-2-pentanone	N.D.	ug/L	200
Styrene	N.D.	ug/L	100
1,1,2,2-Tetrachloroethane	N.D.	ug/L	100
Tetrachloroethene	N.D.	ug/L	100
Toluene	2000	ug/L	100
trans-1,2-Dichloroethene	N.D.	ug/L	100
1,1,1-Trichloroethane	N.D.	ug/L	100
1,1,2-Trichloroethane	N.D.	ug/L	100

N.D. = Not detected

Sample: 65039-008

Enseco

1

EPA METHOD 602

Client ID: TRIP BLANK

Laboratory ID: 65039-007 Enseco ID: 65039-007

Matrix: Water	Sampled: 11/23/87		Received: 11/24/87		
Authorized: 11/21/87	Analyzed: 11/30/87				
<u>Parameter</u>		<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	
Benzene		N.D.	ug/L	0.50	
Chlorobenzene		N.D.	ug/L	0.50	
Ethylbenzene		N.D.	ug/L	0.50	
Toluene		N.D.	ug/L	0.50	
1,2-Dichlorobenzene		N.D.	ug/L	0.50	
1,3-Dichlorobenzene		N.D.	ug/L	0.50	
1,4-Dichlorobenzene		N.D.	ug/L	0.50	
m-Xylene		N.D.	ug/L	0.50	
o & p-Xylene(s)		N.D.	ug/L	0.50	

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: TRIP BLANK

Laboratory ID: 65039-007

Enseco ID: 65039-007

Matrix: Water	Sampled: 11/23/87	Received: 11/24/87	
Authorized: 11/21/87		Analyzed: 11/30/87	(

			Reporting
Parameter	<u>Result</u>	<u>Units</u>	Limit
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	11	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N. D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Sampled: 11/23/87

Client Name: DAMES AND MOORE

Client ID: MW-8

Laboratory 1D: 65039-006

Enseco ID: 65039-006

Received: 11/24/87

Matrix: Water

Authorized: 11/21/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
pН	7.52	units	0.01	150.1	11/24/87
Specific Conductance @ 25C	1500	umhos/cm	1	120.1/9050	11/24/87
Total Dissolved Solids	9 50	mg/L	10	160.1	11/29/87
Fluoride	0.7	mg/L	0.1	340.2	12/03/87
Chloride	67	mg/L	3	300.0	12/17/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	401	mg/L	5	300.0	12/17/87
Total Alkalinity as CaCO3	273	mg/L	5	310.1/403	11/24/87
Ammonia as N	N.D.	mg/L	0.1	350.1	12/01/87
Total Cations	16.9	meq/L	0.1	104C	12/17/87
Total Anions	15.7	meq/L	0.3	104C	12/17/87
% Difference	3.5	%	0.1	104C	12/17/87

N.D. = Not detected

Ì.

11

Approved by: Lindsay Breyer

Analyzed

12/08/87 12/08/87 12/08/87

12/08/87

12/08/87

12/22/87

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-8

Sodium

Total Organic Lead

Laboratory ID: 65039-006

Enseco ID: 65039-006

0.05

0.02

200.7

Enseco

Matrix: Water Authorized: 11/21/87	Sample	d: 11/23/87	Received: 11/24/87		
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	
Calcium	159	mg/L	0.1	200.7	
Iron	N.D.	mg/L	0.05	200.7	
Magnesium	21	mg/L	0.1	200.7	
Potassium	N.D.	mg/L	5	200.7	

mg/L

mg/L

166

N.D.

N.D. = Not detected

Approved by: Will Pratt

Sample: 65039-006

EPA METHOD 602

Client Name: DAMES AND	MOORE			
Client ID: MW-8				
Laboratory ID: 65039-006	Enseco ID: 6	5039-006		
Matrix: Water	Sampled: 11/23/87	Recei	ved: 11/24/87	
Authorized: 11/21/87		Analy	zed: 11/30/87	
Parameter	Res	<u>ult</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene	N	.D.	ug/L	0.50
Chlorobenzene	N	.D.	ug/L	0.50
Ethylbenzene	N	.D.	ug/L	0.50
Toluene	N	.D.	ug/L	0.50
1,2-Dichlorobenzene	N	.D.	ug/L	0.50
1,3-Dichlorobenzene	N	.D.	ug/L	0.50
1,4-Dichlorobenzene	N	.D.	ug/L	0.50
m-Xylene	N	.D.	ug/L	0.50
o & p-Xylene(s)	N	.D.	ug/L	0.50

N.D. = Not detected Reported by: Helmer Morse

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: MW-8

Laboratory ID: 65039-006

Enseco ID: 65039-006

 Matrix: Water
 Sampled: 11/23/87
 Received: 11/24/87

 Authorized: 11/21/87
 Analyzed: 11/30/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	2.8	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N. D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Sampled: 11/23/87

Client Name: DAMES AND MOORE

Client ID: MW-10

Laboratory ID: 65039-005

Enseco ID: 65039-005

Received: 11/24/87

Matrix: Water Authorized: 11/21/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
рH	7,74	units	0.01	150.1	11/24/87
Specific Conductance @ 25C	1640	umhos/cm	1	120.1/9050	11/24/87
Total Dissolved Solids	1240	mg/L '	10	160.1	11/29/87
Fluoride	0.8	mg/L	0.1	340.2	12/03/87
Chloride	46	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	568	mg/L	5	300.0	12/15/87
Total Alkalinity as CaCO3	669	mg/L	5	310.1/403	11/24/87
Ammonia as N	N.D.	mg/L	0.1	350.1	12/01/87
Total Cations	19.0	meq/L	0.1	104C	12/17/87
Total Anions	18.3	meq/L	0.3	104C	12/17/87
% Difference	1.9	%	0.1	104C	12/17/87

N.D. = Not detected

Approved by: Lindsay Breyer

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-10

Laboratory ID: 65039-005

Enseco ID: 65039-005

Matrix: Water Authorized: 11/21/87	Sample	d: 11/23/87	Received:		
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Calcium	126	mg/L	0.1	200.7	12/08/87
Iron	N.D.	mg/L	0.05	200.7	12/08/87
Magnesium	22	mg/L	0.1	200.7	12/08/87
Potassium	N.D.	mg/L	5	200.7	12/08/87
Sodium	250	mg/L	0.05	200.7	12/08/87
Total Organic Lead	N.D.	mg/L	0.02	Enseco	12/22/87

N.D. = Not detected

Approved by: Will Pratt

Sample: 65039-005

EPA METHOD 602

Client Name: DAMES AND	MOORE			
Client ID: MW-10				
Laboratory ID: 65039-005	Enseco ID: 6	5039-00	5	
Matrix: Water	Sampled: 11/23/87	R	eceived: 11/24/87	
Authorized: 11/21/87		A	nalyzed: 11/30/87	
Parameter	Res	<u>ılt</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene	N	D.	ug/L	0.50
Chlorobenzene	N	D.	ug/L	0.50
Ethylbenzene	N	D.	ug/L	0.50
Toluene	N	D.	ug/L	0.50
1,2-Dichlorobenzene	N	D.	ug/L	0.50
1,3-Dichlorobenzene	N	D.	ug/L	0.50
1,4-Dichlorobenzene	N	D.	ug/L	0.50
m-Xylene	N	D.	ug/L	0.50
o & p-Xylene(s)	N	D.	ug/L	0.50

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: MW-10

Laboratory ID: 65039-005

Enseco ID: 65039-005

Matrix: Water	Sampled: 11/23/87	Received: 11/24/87
Authorized: 11/21/87		Analyzed: 11/30/87

			Reporting
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Limit
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	3.2	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N .D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Sampled: 11/23/87

Client ID: EQUIP BLK

Laboratory ID: 65039-004

Enseco ID: 65039-004

Received: 11/24/87

Matrix: Water

Authorized: 11/21/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	5.17	units	0.01	150.1	11/24/87
Specific Conductance @ 25C	2	umhos/cm	1	120.1/9050	11/24/87
Total Dissolved Solids	N.D.	mg/L	10	160.1	11/29/87
Fluoride	N.D.	mg/L	0.1	340.2	12/03/87
Chloride	N.D.	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	N.D.	mg/L	5	300.0	12/15/87
Total Alkalinity as CaCO3	N.D.	mg/L	5	310.1/403	11/24/87
Ammonia as N	N.D.	mg/L	0.1	350.1	12/01/87
Total Cations	0.4	meg/L	0.1	104C	12/17/87
Total Anions	N.D.	meq/L	0.3	104C	12/17/87

N.D. = Not detected

i.

Approved by: Lindsay Breyer

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: EQUIP BLK

Laboratory ID: 65039-004

Enseco ID: 65039-004

Matrix: Water Authorized: 11/21/87	Sampleo	i: 11/23/87	Received: 11/24/87			
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed	
Calcium	5.5	mg/L	0.1	200.7	12/08/87	
Iron	N.D.	mg/L	0.05	200.7	12/08/87	
Magnesium	0.5	mg/L	0.1	200.7	12/08/87	
Potassium	N.D.	mg/L	5	200.7	12/08/87	
Sodium	2.5	mg/L	0.05	200.7	12/08/87	
Total Organic Lead	N.D.	mg/L	0.02	Enseco	12/22/87	

N.D. = Not detected

Approved by: Will Pratt

Sample: 65039-004

EPA METHOD 602

Client Name: DAMES AND	MOORE		
Client ID: EQUIP BLK			
Laboratory ID: 65039-004	Enseco ID: 6	5039-004	
Matrix: Water	/87		
Authorized: 11/21/87		Analyzed: 11/30	/87
<u>Parameter</u>	Resi	ilt Un	Reporting <u>its Limit</u>
Benzene	N.	D. ug/	L 0.50
Chlorobenzene	N.	D. ug/	L 0.50
Ethylbenzene	N.	D. ug/	L 0.50
Toluene	N.	D. ug/	L 0.50
1,2-Dichlorobenzene	N.	D. ug/	
1,3-Dichlorobenzene	N.	D. ug/	
1,4-Dichlorobenzene	N.	D. ug/	
m-Xylene	N.	D. ug/	L 0.50
o & p-Xylene(s)	N.	D. ug/	L 0.50

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE									
Client ID: EQUIP BLK									
Laboratory ID: 65039-004	Enseco ID: 65039-004								
Matrix: Water	Sampled: 11/23/87	Received: 11/24/87	1						
Authorized: 11/21/87		Analyzed: 11/30/87	· · ·						
,			Reporting						
<u>Parameter</u>	Resu	lt Units							
Bromoform	N.E	ug/L	5.0						
Carbon tetrachloride	N.E	ug/L	0.50						
Chlorobenzene	N.C	ug/L	2.0						
Chloroethane	N.E	ug/L	5.0						
Chloroform	N.E	ug/L	0.50						
Dibromochloromethane	N.C	ug/L	1.0						
Bromodichloromethane	N.E	o. ug/L	1.0						
1,1-Dichloroethane	N.E		0.50						
1,2-Dichloroethane	N.E		1.0						
1,1-Dichloroethene	N.E	ug/L	0.50						
1,2-Dichloropropane	N.E	ug/L	1.0						
cis-1,3-Dichloropropene	N.D	ug/L	2.0						
trans-1,3-Dichloropropene	N.E	ug/L	0.50						
Bromomethane	N.E	ug/L	5.0						
Chloromethane	N.E	ug/L	5.0						
Methylene chloride	N.E	ug/L	5.0						
1,1,2,2-Tetrachloroethane	N.E	ug/L	1.0						
Tetrachloroethene	N.E	ug/L	0.50						
trans-1,2-Dichloroethene	N.E	ug/L	0.50						
1,1,1-Trichloroethane	N.D	ug/L	0.50						
1,1,2-Trichloroethane	N.C	ug/L	1.0						
Trichloroethene	N.E		1.0						
Vinyl chloride	N.C		1.0						
1,1,2-Trichloro-									
2,2,1-trifluoroethane	N.E	ug/L	1.0						
1,2-Dibromoethane (EDB)	N.C	÷.	2.0						

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Sampled: 11/23/87

Client Name: DAMES AND MOORE

Client ID: V-MURRAY

Laboratory ID: 65039-003

Enseco ID: 65039-003

Received: 11/24/87

Matrix: Water Authorized: 11/21/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	8.24	units	0.01	150.1	11/24/87
Specific Conductance @ 25C	895	umhos/cm	1	120.1/9050	11/24/87
Total Dissolved Solids	600	mg/L	10	160.1	11/29/87
Fluoride	0.4	mg/L	0.1	340.2	12/03/87
Chloride	43	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	114	mg/L	5	300.0	12/17/87
Total Alkalinity as CaCO3	368	mg/L	5	310.1/403	11/24/87
Ammonia as N	0.9	mg/L	0.1	350.1	12/01/87
Total Cations	11.2	meq/L	0.1	104C	12/17/87
Total Anions	11.0	meq/L	0.3	104C	12/17/87
% Difference	1.1	%	0.1	104C	12/17/87

N.D. = Not detected

L I

Approved by: Lindsay Breyer

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: V-MURRAY

Laboratory ID: 65039-003

Enseco ID: 65039-003

Matrix: Water Sampled: 11/23/87 Received: 11/24/87 Authorized: 11/21/87 Reporting Analytical <u>Limit</u> Parameter **Result** <u>Units</u> Method Analyzed 12/08/87 Calcium 42 mg/L 0.1 200.7 12/08/87 0.05 Iron 0.31 mg/L 200.7 Magnesium 28 0.1 200.7 12/08/87 mg/L Potassium 12/08/87 13 mg/L 5 200.7 Sodium 147 mg/L 0.05 200.7 12/08/87 Total Organic Lead 0.01 Enseco 12/22/87

mg/L

N.D.

N.D. = Not detected

Approved by: Will Pratt

EPA METHOD 602

Client Name: DAMES AND	MOORE			
Client ID: V-MURRAY				
Laboratory ID: 65039-003	Enseco ID:	65039-0)03	
Matrix: Water	Sampled: 11/23/87	Sampled: 11/23/87 Received: 11/		
Authorized: 11/21/87	Analyzed: 11/30/87			
Parameter	Re	<u>sult</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene		1.0	ug/L	0.50
Chlorobenzene	1	N.D.	ug/L	0.50
Ethylbenzene	1	N.D.	ug/L	0.50
Toluene	I	N.D.	ug/L	0.50
1,2-Dichlorobenzene	1	N.D.	ug/L	0.50
1,3-Dichlorobenzene	1	N.D.	ug/L	0.50
1,4-Dichlorobenzene	1	N.D.	ug/L	0.50
m-Xylene	:	N.D.	ug/L	0.50
o & p-Xylene(s)	1	N.D.	ug/L	0.50

N.D. = Not detected

Reported by: Helmer Morse

1:

Ì

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: V-MURRAY

Authorized: 11/21/87

Laboratory ID: 65039-003

Enseco ID: 65039-003

Sampled: 11/23/87 Received: 11/24/87 Matrix: Water Analyzed: 11/30/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N,D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Sampled: 11/23/87

Client Name: DAMES AND MOORE

Client ID: MW-9

Laboratory ID: 65039-002

Enseco ID: 65039-002

Received: 11/24/87

Matrix: Water Authorized: 11/21/87

Authorized: 11/21/87					
Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
pH	7.59	units	0.01	150.1	11/24/87
Specific Conductance @ 25C	1850	umhos/cm	1	120.1/9050	11/24/87
Total Dissolved Solids	1520	mg/L	10	160.1	11/29/87
Fluoride	1.0	mg/L	0.1	340.2	12/03/87
Chloride	43	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	863	mg/L	5	300.0	12/15/87
Total Alkalinity as CaCO3	372	mg/L	5	310.1/403	11/24/87
Ammonia as N	N.D.	mg/L	0.1	350.1	12/01/87
Total Cations	24.9	meq/L	0.1	104C	12/17/87
Total Anions	26.7	meq/L	0.3	104C	12/17/87
% Difference	3.4	%	0.1	104C	12/17/87

N.D. = Not detected

i.

Approved by: Lindsay Breyer

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: MW-9

Laboratory ID: 65039-002

Enseco ID: 65039-002

Sampled: 11/23/87 Received: 11/24/87 Matrix: Water Authorized: 11/21/87 Reporting Analytical Parameter <u>Result</u> <u>Units</u> <u>Limit</u> <u>Method</u> **Analyzed** 12/08/87 Calcium 200.7 324 mg/L 0.1 12/08/87 Iron mg/L 0.05 200.7 N.D. 0.1 12/08/87 Magnesium 29 mg/L 200.7 Potassium 5 200.7 12/08/87 N.D. mg/L 12/08/87 Sodium 146 mg/L 0.05 200.7 Total Organic Lead 0.01 Enseco 12/22/87 N.D. mg/L

N.D. = Not detected

Approved by: Will Pratt

EPA METHOD 602

Client Name: DAMES AND MOORE

Client ID: MW-9

Laboratory ID: 65039-002	Enseco ID: 6	5039-002		
Matrix: Water	Sampled: 11/23/87	Received:	11/24/87	
Authorized: 11/21/87		Analyzed:	11/30/87	
<u>Parameter</u>	Res	ult	<u>Units</u>	Reporting <u>Limit</u>
Benzene	N	.D.	ug/L	0.50
Chlorobenzene	N	.D.	ug/L	0.50
Ethylbenzene	N	.D.	ug/L	0.50
Toluene	N	.D.	ug/L	0.50
1,2-Dichlorobenzene	N	.D.	ug/L	0.50
1,3-Dichlorobenzene	N	.D.	ug/L	0.50
1,4-Dichlorobenzene	N	.D.	ug/L	0.50
m-Xylene	N	.D.	ug/L	0.50
o & p-Xylene(s)	N	.D.	ug/L	0.50

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: MW-9

Laboratory ID: 65039-002

Enseco ID: 65039-002

Matrix: Water Sampled: 11/23/87

Received: 11/24/87 Analyzed: 11/30/87

Authorized:	11/21/87

			Reporting
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Limit
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	8.3	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Enseco ID: 65039-001

Client Name: DAMES AND MOORE

Client ID: R. BALL WELL

Laboratory ID: 65039-001

Sampled: 11/20/87

Received: 11/21/87

Authorized: 11/21/87

Matrix: Water

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
рН	8.38	units	0.01	150.1	11/21/87
Specific Conductance @ 25C	4520	umhos/cm	1	120.1/9050	11/21/87
Total Dissolved Solids	2300	mg/L	10	160.1	11/23/87
Fluoride	1.0	mg/L	0.1	340.2	11/25/87
Chloride	1170	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	N.D.	mg/L	0.1	353.2	12/01/87
Sulfate	433	mg/L	5	300.0	12/15/87
Total Alkalinity as CaCO3	221	mg/L	5	310.1/403	11/21/87
Ammonia as N	0.3	mg/L	0.1	350.1	12/01/87
Total Cations	46.0	meq/L	0.1	104C	12/17/87
Total Anions	46.5	meq/L	0.3	104C	12/17/87
% Difference	0.5	%	0.1	104C	12/17/87

N.D. = Not detected

Approved by: Lindsay Breyer

METALS PARAMETERS

Client Name: DAMES AND MOORE Client ID: R. BALL WELL Laboratory ID: 65039-001 Enseco ID: 65039-001 Matrix: Water Sampled: 11/20/87 Received: 11/21/87 Authorized: 11/21/87 Reporting Analytical <u>Result</u> <u>Units</u> <u>Limit</u> Method **Parameter** Analyzed 25 0.2 Calcium mg/L 200.7 12/08/87 0.1 200.7 Iron N.D. mg/L 12/08/87 Magnesium 3.8 0.2 200.7 mg/L 12/08/87 Potassium 10 200.7 12/08/87 N.D. mg/L 0.1 200.7 Sodium 1020 mg/L 12/08/87 Total Organic Lead N.D. mg/L 0.02 Enseco 12/22/87

N.D. = Not detected

Approved by: Will Pratt

EPA METHOD 602

Client Name: DAMES AND Client ID: R. BALL WELL	MOORE			
Laboratory ID: 65039-001	Enseco ID: (65039-001		
Matrix: Water	Sampled: 11/20/87	Receiv	ved: 11/21/87	
Authorized: 11/21/87		Analy	zed: 11/30/87	
Parameter	Re	sult	Units	Reporting <u>Limit</u>
Benzene	1	N.D.	ug/L	0.50
Chlorobenzene	1	N.D.	ug/L	0.50
Ethylbenzene		0.89	ug/L	0.50
Toluene	1	N.D.	ug/L	0.50
1,2-Dichlorobenzene	1	1.D.	ug/L	0.50
1,3-Dichlorobenzene	1	N.D.	ug/L	0.50
1,4-Dichlorobenzene	ז	N.D.	ug/L	0.50
m-Xylene	1	N.D.	ug/L	0.50
o & p-Xylene(s)	1	N.D.	ug/L	0.50

N.D. = Not detected Reported by: Helmer Morse

1

Approved by: Robert Keck

Enseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: R. BALL WELL

Laboratory ID: 65039-001

Enseco ID: 65039-001

1

Received: 11/21/87

Analyzed: 11/30/87

Matrix: Water Sampled: 11/20/87

Authorized: 11/21/87

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N. D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Client Name: DAMES AND MOORI	Client Nat	me: DAM	ES AND) MOORE
------------------------------	------------	---------	--------	---------

Client ID: COMP. MW-11,12

Laboratory ID: 65039-011

Enseco ID: 65039-011

 Matrix: Solid
 Sampled: 11/27/87
 Received: 11/27/87

 Authorized: 11/21/87
 Units (as
 Reporting

 Analytical
 Limit
 Method

<u>Parameter</u>	<u>Result</u>	<u>received)</u>	<u>Limit</u>	Method	<u>Analyzed</u>
Reactive Sulfide	N.D.	mg/kg	0.5	EPA/OSW	12/03/87
Reactive Cyanide	N.D.	mg/kg	0.1	EPA/OSW	12/02/87

N.D. = Not detected

Approved by: Lindsay Breyer

Enseco

METALS PARAMETERS EPI TOXICITY METALS

Client Name: DAMES AND MOORE

Client ID: COMP. MW-11,12

Laboratory ID: 65039-011

Enseco ID: 65039-011

Matrix: Solid

Sampled: 11/27/87

Received: 11/27/87

Authorized: 11/21/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	<u>Analyzed</u>
Arsenic	N.D.	mg/L	0.1	200.7	12/14/87
Barium	0.94	mg/L	0.005	200.7	12/14/87
Cadmium	N.D.	mg/L	0.005	200.7	12/14/87
Chromium	N.D.	mg/L	0.01	200.7	12/14/87
Lead	N.D.	mg/L	0.05	200.7	12/14/87
Mercury	N.D.	mg/L	0.001	245.1	12/09/87
Selenium	N.D.	mg/L	0.02	7740	12/14/87
Silver	N.D.	mg/L	0.005	200.7	12/14/87

N.D. = Not detected

Approved by: Will Pratt

Sampled: 11/27/87

Client Name: DAMES AND MOO

Client ID: STAINLESS WELL POINT

Laboratory ID: 65039-010

Enseco ID: 65039-010

Received: 11/27/87

Authorized: 11/21/87

Matrix: Water

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	Analytical <u>Method</u>	Analyzed
pН	7.89	units	0.01	150.1	11/28/87
Specific Conductance @ 25C	4300	umhos/cm	1	120.1/9050	11/28/87
Total Dissolved Solids	3700	mg/L	10	160.1	12/04/87
Fluoride	1.0	mg/L	0.1	340.2	12/03/87
Chloride	257	mg/L	3	300.0	12/15/87
Nitrate + Nitrite as N	0.3	mg/L	0.2	353.2	12/07/87
Sulfate	1980	mg/L	5	300.0	12/15/87
Total Alkalinity as CaCO3	419	mg/L	5	310.1/403	11/28/87
Ammonia as N	0.5	mg/L	0.1	350.1	12/04/87
Total Cations	56.4	meq/L	0.1	104C	12/17/87
Total Anions	56.9	meq/L	0.3	104C	12/17/87
% Difference	0.4	%	0.1	104C	12/17/87

N.D. = Not detected

Approved by: Lindsay Breyer

12/10/87

12/22/87

METALS PARAMETERS

Client Name: DAMES AND MOORE

Client ID: STAINLESS WELL POINT

Laboratory ID: 65039-010

Sodium

Total Organic Lead

Enseco ID: 65039-010

0.05

0.01

200.7

Enseco

Sampled: 11/27/87 Matrix: Water Received: 11/27/87 Authorized: 11/21/87 Reporting Analytical Parameter **Result** <u>Units</u> <u>Limit</u> Method Analyzed Calcium 364 mg/L 0.1 200.7 12/10/87 0.05 200.7 12/10/87 Iron 0.39 mg/L Magnesium 105 mg/L 0.1 200.7 12/10/87 5 200.7 12/10/87 24 Potassium mg/L

mg/L

mg/L

666

N.D.

N.D. = Not detected

Approved by: Will Pratt

EPA METHOD 602

Client Name: DAMES AND	MOORE			
Client ID: STAINLESS WEL	L POINT			
Laboratory ID: 65039-010	Enseco ID:	65039-010		
Matrix: Water	Sampled: 11/27/87	Rece	eived: 11/27/87	
Authorized: 11/21/87		Anal	yzed: 12/04/87	
Parameter	Re	<u>sult</u>	<u>Units</u>	Reporting <u>Limit</u>
Benzene		N.D.	ug/L	0.50
Chlorobenzene		N.D.	ug/L	0.50
Ethylbenzene		0.54	ug/L	0.50
Toluene		N.D.	ug/L	0.50
1,2-Dichlorobenzene		N.D.	ug/L	0.50
1,3-Dichlorobenzene		N.D.	ug/L	0.50
1,4-Dichlorobenzene		N.D.	ug/L	0.50
m-Xylene		1.4	ug/L	0.50
o & p-Xylene(s)		0.83	ug/L	0.50

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

€Ænseco

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: STAINLESS WELL POINT

Laboratory ID: 65039-010

Enseco ID: 65039-010

Matrix: Water	Sampled: 11/27/87	Received: 11/27/87
Authorized: 11/21/87		Analyzed: 11/30/87

			Reporting	
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>Limit</u>	
Bromoform	N.D.	ug/L	5.0	
Carbon tetrachloride	N.D.	ug/L	0.50	
Chlorobenzene	N.D.	ug/L	2.0	
Chloroethane	N.D.	ug/L	5.0	
Chloroform	N.D.	ug/L	0.50	
Dibromochloromethane	N.D.	ug/L	1.0	
Bromodichloromethane	N.D.	ug/L	1.0	
1,1-Dichloroethane	N.D.	ug/L	0.50	
1,2-Dichloroethane	N.D.	ug/L	1.0	
1,1-Dichloroethene	N.D.	ug/L	0.50	
1,2-Dichloropropane	N.D.	ug/L	1.0	
cis-1,3-Dichloropropene	N.D.	ug/L	2.0	
trans-1,3-Dichloropropene	N.D.	ug/L	0.50	
Bromomethane	N.D.	ug/L	5.0	
Chloromethane	N.D.	ug/L	5.0	
Methylene chloride	N.D.	ug/L	5.0	
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0	
Tetrachloroethene	N.D.	ug/L	0.50	
trans-1,2-Dichloroethene	N.D.	ug/L	0.50	
1,1,1-Trichloroethane	N.D.	ug/L	0.50	
1,1,2-Trichloroethane	N .D.	ug/L	1.0	
Trichloroethene	N.D.	ug/L	1.0	
Vinyl chloride	N.D.	ug/L	1.0	
1,1,2-Trichloro-			•	
2,2,1-trifluoroethane	N.D.	ug/L	1.0	
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0	

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

EPA METHOD 602

Client Name: DAMES AND MOORE						
Client ID: W-3						
Laboratory ID: 65039-009	Enseco ID: 65039-009					
Matrix: Water	Sampled: 11/27/87	Sampled: 11/27/87 Received: 11/27/87				
Authorized: 11/21/87	Analyzed: 12/04/87					
Parameter	Resi	<u>ult</u>	<u>Units</u>	Reporting <u>Limit</u>		
Benzene	N.	D.	ug/L	0.50		
Chlorobenzene	N.	D.	ug/L	0.50		
Ethylbenzene		1.3	ug/L	0.50		
Toluene	N.	D.	ug/L	0.50		
1,2-Dichlorobenzene	N.	D.	ug/L	0.50		
1,3-Dichlorobenzene	N.	D.	ug/L	0.50		
1,4-Dichlorobenzene	N.	.D.	ug/L	0.50		
m-Xylene		2.6	ug/L	0.50		
o & p-Xylene(s)		3.2	ug/L	0.50		

N.D. = Not detected Reported by: Helmer Morse

1.

Approved by: Robert Keck

HALOGENATED VOLATILE ORGANICS

EPA METHOD 601

Client Name: DAMES AND MOORE

Client ID: W-3

Laboratory ID: 65039-009

Enseco ID: 65039-009

Received: 11/27/87

Analyzed: 12/04/87

Matrix:	Water	Sampled:	11/27/87	
Matrix:	water	Sampled:	11/2//8/	

Authorized: 11/21/87

			Reporting
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Limit
Bromoform	N.D.	ug/L	5.0
Carbon tetrachloride	N.D.	ug/L	0.50
Chlorobenzene	N.D.	ug/L	2.0
Chloroethane	N.D.	ug/L	5.0
Chloroform	N.D.	ug/L	0.50
Dibromochloromethane	N.D.	ug/L	1.0
Bromodichloromethane	N.D.	ug/L	1.0
1,1-Dichloroethane	N.D.	ug/L	0.50
1,2-Dichloroethane	N.D.	ug/L	1.0
1,1-Dichloroethene	N.D.	ug/L	0.50
1,2-Dichloropropane	N.D.	ug/L	1.0
cis-1,3-Dichloropropene	N.D.	ug/L	2.0
trans-1,3-Dichloropropene	N.D.	ug/L	0.50
Bromomethane	N.D.	ug/L	5.0
Chloromethane	N.D.	ug/L	5.0
Methylene chloride	N.D.	ug/L	5.0
1,1,2,2-Tetrachloroethane	N.D.	ug/L	1.0
Tetrachloroethene	N.D.	ug/L	0.50
trans-1,2-Dichloroethene	N.D.	ug/L	0.50 💼
1,1,1-Trichloroethane	N.D.	ug/L	0.50
1,1,2-Trichloroethane	N.D.	ug/L	1.0
Trichloroethene	N.D.	ug/L	1.0
Vinyl chloride	N.D.	ug/L	1.0
1,1,2-Trichloro-			
2,2,1-trifluoroethane	N.D.	ug/L	1.0
1,2-Dibromoethane (EDB)	N.D.	ug/L	2.0

N.D. = Not detected

Reported by: Helmer Morse

Approved by: Robert Keck

Sample: 65039-009

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

Analyte	Con <u>Spikin</u>	centrati Mei <u>LCS1</u>	on asured <u>LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	%) <u>Limits</u>	Precisi <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: VOA on Reagent Water QC Lot: VOA 059AK Concentration Units: (ug/L)								
1,1-Dichloroethene	50.0	68.7	73.4	137	147#	61-145	6.6	14
Trichloroethene	50.0	49.2	50.3	98	101	71-120	2.2	14
Chlorobenzene	50.0	55.1	58.2	110	116	75-130	5.5	13
Toluene	50.0	54.7	58.2	109	116	76-125	6.2	13
Benzene	50.0	52.8	59.1	106	118	76-127	11.3*	11

= Recovery outside standard QC limits.* = RPD outside standard QC limits.

ļ

SURROGATE CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY/MASS SPECTROMETRY

	Conce	ntration	Accu	racy(%)
Analyte	<u>Spiking</u>	Measured	<u>SCS</u>	Limits
Test: VOA on Reagent Water QC Lot: VOA 059AK <u>Concentration Units: (ug/L)</u>				
Toluene-D8	50.0	49.7	9 9	88-110
Bromofluorobenzene (BFB)	50.0	50.9	102	86-115
1,2-Dichloroethane-D4	50.0	48.0	96	76-114

QC LOT ASSIGNMENT REPORT GAS CHROMATOGRAPHY

Laboratory			QC Lot M	Number
Sample Number	QC Matrix	<u>Test</u>	LCS	<u>SCS</u>
65039-001-00	Reagent Water	601	601 114AW	601 114AW
65039-001-00	Reagent Water	602	602 116AW	602 116AW
65039-002-00	Reagent Water	601	601 114AW	601 114AW
65039-002-00	Reagent Water	602	602 116AW	602 116AW
65039-003-00	Reagent Water	601	601 114AW	601 114AW
65039-003-00	Reagent Water	602	602 116AW	602 116AW
65039-004-00	Reagent Water	601	601 114AW	601 114AW
65039-004-00	Reagent Water	602	602 116AW	602 116AW
65039-005-00	Reagent Water	601	601 114AW	601 114AW
65039-005-00	Reagent Water	602	602 116AW	602 116AW
65039-006-00	Reagent Water	601	601 114AW	601 114AW
65039-006-00	Reagent Water	602	602 116AW	602 116AW
65039-007-00	Reagent Water	601	601 114AW	601 114AW
65039-007-00	Reagent Water	602	602 116AW	602 116AW
65039-009-00	Reagent Water	601	601 117AW	601 117AW
65039-009-00	Reagent Water	602	602 117AW	602 117AW
65039-010-00	Reagent Water	601	601 117AW	601 117AW
65039-010-00	Reagent Water	602	602 117AW	602 117AW

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

<u>Analyte</u>	Cone <u>Spiking</u>	centratio Mea <u>LCS1</u>	on isured <u>LCS2</u>		curacy(' <u>LCS2</u>	%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 601 on Reagent Water QC Lot: 601 114AW Concentration Units: (ug/L)								
Chloromethane	20	12.3	12.9	62	65	59-140	4.8	25
Bromomethane	20	9.50	9.47	48#		58-141	0.3	25
Vinyl chloride	20	13.4	13.1	67#		68-132	2.3	25
Chloroethane	20	14.7	15.2	74#		77-123	3.3	25
Methylene chloride	20	18.0	18.8	9 0	94	77-123	4.3	20
Trichlorofluoromethane	20	17.4	18.1	87	91	66-134	3.9	25
1,1-Dichloroethene	20	17.5	17.5	88	88	63-137	0.0	20
1,1-Dichloroethane	20	20.7	20.8	103	104	84-116	0.5	20
trans-1,2-Dichloroethene	20	18.8	18.7	94	93	64-136	0.5	20
Chloroform	20	20.6	20.8	103	104	75-125	1.0	20
1,1,2-Trichloro-								
2,2,1-trifluoroethane	20	15.8	16.1	79	81	67-134	1.9	20
1,2-Dichloroethane	20	20.5	21.1	103	106	72-129	2.9	20
1,1,1-Trichloroethane	20	15.4	15.9	77	8 0	71-129	3.2	20
Carbon tetrachloride	20	18.5	18.5	93	93	68-131	0.0	20
Bromodichloromethane	20	19.9	20.4	9 9	102	76-124	2.5	20
1,2-Dichloropropane	20	19.2	19.7	96	98	74-126	2.6	20
trans-1,3-Dichloropropene	20	20.7	20.5	103	103	64-136	1.0	2 0
Trichloroethene	20	23.9	24.2	119	121	77-123	1.2	20
1,1,2-Trichloroethane	60	71.9	74.5	120	124	69-132	3.6	20
Dibromochloromethane	6 0	71.9	74.5	120	124	69-132	3.6	20
cis-1,3-Dichloropropene	6 0	71.9	74.5	120	124	69-132	3.6	20
1,2-Dibromoethane (EDB)	20	13.5	14.0	68#	70#	74-127	3.6	20
Bromoform	20	20.2	20.9	101	104	74-127	3.4	20
1,1,2,2-Tetrachloroethane	40	35.0	35.2	8 8	88	60-140	0.6	20
Tetrachloroethene	40	35.0	35.2	88	88	60-140	0.6	20
Chlorobenzene	20	19.6	19.8	9 8	9 9	72-128	1.0	20
1,3-Dichlorobenzene	20	23.2	22.1	116	111	50-150	4.9	20
1,2-Dichlorobenzene	20	23.8	21.9	119	109	70-130	8.3	20
1,4-Dichlorobenzene	20	25.7	23.5	128	118	70-130	8.9	20
Test: 601 on Reagent Water QC Lot: 601 117AW <u>Concentration Units: (ug/L)</u>								
Chloromethane	20	9.80	10.3	49#	57#	59-140	5.0	25
Bromomethane	20 20	9.80 10.0	10.3	49# 50#		59-140 58-141	3.9	25
Vinyl chloride	20 20	10.0 12.9	10.4	50 #		68-132	3.8	25
Chloroethane	20 20	12.9	15.4	75#		77-123	5.2	25
	20	14.7	12.7	12#	13	11-123	2.2	

= Recovery outside standard QC limits.

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Con <u>Spiking</u>	centrati Mea <u>LCS1</u>	on asured <u>LCS2</u>		curacy(<u>LCS2</u>	%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 601 on Reagent Water QC Lot: 601 117AW <u>Concentration Units: (ug/L)</u>								
Methylene chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane	20 20 20 20	18.1 17.9 20.8 23.5	19.3 19.3 21.8 24.6	91 89 104 118#	97 97 109 123#	77-123 66-134 63-137 84-116	6.4 7.5 4.7 4.6	20 25 20 20
trans-1,2-Dichloroethene Chloroform 1,1,2-Trichloro-	20 20	20.6 23.1	21.4 23.8	103 116	107 119	64-136 75-125	3.8 3.0	20 20
2,2,1-trifluoroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride	20 20 20 20	16.0 21.0 18.0 19.1	16.3 21.3 18.9 19.5	80 105 90 96	82 107 94 98	67-134 72-129 71-129 68-131	1.9 1.4 4.9 2.1	20 20 20 20
Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene	20 20 20 20	19.8 20.7 20.5	20.4 21.4 20.5	99 103 103	102 107 103	76-124 74-126 64-136	3.0 3.3 0.0	20 20 20 20
Trichloroethene 1,1,2-Trichloroethane Dibromochloromethane	20 60 60	25.0 70.0 70.0	25.3 69.6 69.6	125# 117 117	116 116	77-123 69-132 69-132	1.2 0.6 0.6	20 20 20
cis-1,3-Dichloropropene 1,2-Dibromoethane (EDB) Bromoform 1,1,2,2-Tetrachloroethane	60 20 20 40	70.0 14.1 18.3 32.3	69.6 14.5 18.7 32.1	117 71# 92 81	116 73# 93 80	69-132 74-127 74-127 60-140	0.6 2.8 2.2 0.6	20 20 20 20
Tetrachloroethene Chlorobenzene 1,3-Dichlorobenzene	40 20 20	32.3 21.1 23.4	32.1 21.7 23.5	81 106 117	80 108 118	60-140 72-128 50-150	0.6 2.8 0.4	20 20 20
1,2-Dichlorobenzene 1,4-Dichlorobenzene	20 20	23.8 26.3	23.7 26.1	119 132#	118 131#	70-130 70-130	0.4 0.8	20 20
Test: 602 on Reagent Water QC Lot: 602 116AW <u>Concentration Units: (ug/L)</u>								
Benzene Toluene Chlorobenzene Ethylbenzene m-Xylene	20 20 20 20 20	18.4 18.9 18.1 18.5 18.5	18.4 18.7 17.9 18.2 18.4	92 94 91 93 93	92 93 89 91 92	77-123 77-123 81-119 63-137 77-123	0.0 1.1 1.1 1.6 0.5	20 20 20 20 20
o & p-Xylene(s) 1,3-Dichlorobenzene 1,2-Dichlorobenzene	40 20 20	38.3 19.9 24.7	38.7 18.6 18.3	96 99 123	92 97 93 92	77-123 77-123 63-137	1.0 6.8 29.8*	20 20 20 20

= Recovery outside standard QC limits.
* = RPD outside standard QC limits.

LABORATORY CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Analyte	Conc <u>Spiking</u>	entratio Mea <u>LCS1</u>	on isured <u>LCS2</u>		curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precis: <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: 602 on Reagent Water QC Lot: 602 116AW Concentration Units: (ug/L)								
1,4-Dichlorobenzene	20	22.1	19.0	111	95	70-130	15.1	20
Test: 602 on Reagent Water QC Lot: 602 117AW Concentration Units: (ug/L)								
Benzene	20	19.3	20.1	97	101	77-123	4.1	20
Toluene	20	19.7	20.3	98	102	77-123	3.0	20
Chlorobenzene	20	18.4	19.0	92	95	81-119	3.2	20
Ethylbenzene	20	19.0	19.5	95	9 8	63-137	2.6	20
m-Xylene	20	18.9	19.3	94	97	77-123	2.1	20
o & p-Xylene(s)	40	3 9.0	39.9	98	100	77-123	2.3	20
1,3-Dichlorobenzene	20	18.3	18.4	92	92	77-123	0.5	20
1,2-Dichlorobenzene	20	18.4	18.3	92	92	63-137	0.5	20
1,4-Dichlorobenzene	20	19.2	19.6	96	98	70-130	2.1	20

SURROGATE CONTROL SAMPLE REPORT GAS CHROMATOGRAPHY

Apolisto	Concer		Accura	•
Analyte	<u>Spiking</u>	Measured	<u>SCS</u>	<u>Limits</u>
Test: 601 on Reagent Water QC Lot: 601 114AW <u>Concentration Units: (ug/L)</u>				
Bromochloromethane	30	25.7	86	20-160
Test: 601 on Reagent Water QC Lot: 601 117AW				
Concentration Units: (ug/L)				
Bromochloromethane	30	26.3	8 8	20-160
Test: 602 on Reagent Water QC Lot: 602 116AW <u>Concentration Units: (ug/L)</u> a,a,a-Trifluorotoluene	30	30.1	100	20-160
Test: 602 on Reagent Water QC Lot: 602 117AW Concentration Units: (ug/L)				
a,a,a-Trifluorotoluene	30	30.8	103	20-160

QC LOT ASSIGNMENT REPORT INORGANICS - METALS

Laboratory Sample Number	QC Matrix	Test	QC Lot Number <u>LCS</u>
65039-001-00	Reagent Water	ICPD	ICPD179AA
65039-002-00	Reagent Water	ICPD	ICPD179AA
65039-003-00	Reagent Water	ICPD	ICPD179AA
65039-004-00	Reagent Water	ICPD	ICPD179AA
65039-005-00	Reagent Water	ICPD	ICPD179AA
65039-006-00	Reagent Water	ICPD	ICPD179AA
65039-008-00	Reagent Water	ICPD	ICPD183AA
65039-010-00	Reagent Water	ICPD	ICPD183AA
65039-011-00		EP1P	EP1P095AA
65039-011-00		EPSE	EPSE103AA
65039-011-00	Reagent Water	HGT	HGT 235AB
65039-011-00	Reagent Water Reagent Water Reagent Water	EPSE	EPSE103AA

LABORATORY CONTROL SAMPLE REPORT INORGANICS - METALS

Analyte	Concentrat <u>Spiking</u> Me <u>LCS1</u>	ion easured <u>LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: EP1P on Reagent Water QC Lot: EP1P095AA <u>Concentration Units: (mg/L)</u>							
Aluminum	2.0 2.04	2.08	102	104	75-125	1.9	20
Antimony	0.5 0.56	0.57	112	114	75-125	1.8	20
Arsenic	0.5 0.48	0.48	96	96	75-125	0.0	20
Barium	2.0 2.00	2.03	100	101	75-125	1.5	20
Beryllium	0.05 0.047	0.048	94	96	75-125	2.1	20
Cadmium	0.05 0.047	0.046	94	92	75-125	2.2	20
Calcium	100 104	106	104	106	75-125	1.9	20
Chromium	0.2 0.20	0.21	100	105	75-125	4.9	20
Cobalt	0.5 0.49	0.50	98	100	75-125	2.0	20
Copper	0.25 0.26	0.27	104	108	75-125	3.8	20
Iron	1.0 1.02	1.03	102	103	75-125	1.0	20
Lead	0.5 0.50	0.49	100	98	75-125	2.0	20
Magnesium	50 47.8	48.9	96	98	75-125	2.3	20
Manganese	0.2 0.21	0.21	105	105	75-125	0.0	20
Nickel	0.4 0.40	0.41	100	103	75-125	2.5	20
Potassium	50 54.5	55.4	109	111	75-125	1.6	20
Silver	0.05 0.053	0.052	106	104	75-125	1.9	20
Sodium	100 9 9.4	101	99	101	75-125	1.6	20
Tin	0.4 0.41	0.42	103	105	75-125	2.4	20
Vanadium	0.5 0.50	0.51	100	102	75-125	2.0	20
Zinc	0.2 0.21	0.21	105	105	75-125	0.0	20
Test: EPSE on Reagent Water QC Lot: EPSE103AA Concentration Units: (mg/L)							
Selenium	0.01 0.010	0.010	100	100	75-125	0.0	20
Test: HGT on Reagent Water QC Lot: HGT 235AB Concentration Units: (ug/L)							
Mercury	1.0 1.06	1.12	106	112	75-125	5.5	20

ч.

LABORATORY CONTROL SAMPLE REPORT INORGANICS - METALS

Analyte	Concentration Spiking Measured LCS1 LCS2	Accuracy(%) LCS1 LCS2 Limits	Precision(RPD) <u>LCS Limits</u>
Test: ICPD on Reagent Water QC Lot: ICPD179AA <u>Concentration Units: (mg/L)</u>			
Aluminum	2.0 2.09 2.09	105 105 75-125	0.0 20
Antimony	0.5 0.54 0.54	108 108 75-125	0.0 20
Arsenic	0.5 0.48 0.48	96 96 75-125	0.0 20
Barium	2.0 2.04 2.04	102 102 75-125	0.0 20
Beryllium	0.05 0.049 0.049	98 98 75-125	0.0 20
Cadmium	0.05 0.047 0.047	94 94 75-125	0.0 20
Calcium	100 108 108	108 108 75-125	0.0 20
Chromium	0.2 0.21 0.21	105 105 75-125	0.0 20
Cobalt	0.5 0.51 0.50	102 100 75-125	2.0 20
Copper	0.25 0.27 0.27	108 108 75-125	0.0 20
Iron	1.0 1.04 1.04	104 104 75-125	0.0 20
Lead	0.5 0.51 0.52	102 104 75-125	1.9 20
Magnesium	50 50 50	100 100 75-125	0.0 20
Manganese	0.2 0.21 0.21	105 105 75-125	0.0 20
Nickel	0.4 0.41 0.41	103 103 75-125	0.0 20
Potassium	50 55 55	110 110 75-125	0.0 20
Silver	0.05 0.050 0.051	100 102 75-125	2.0 20
Sodium	100 103 103	103 103 75-125	0.0 20
Tin	0.4 0.41 0.42	103 105 75-125	2.4 20
Vanadium	0.5 0.50 0.51	100 102 75-125	2.0 20
Zinc	0.2 0.21 0.21	105 105 75-125	0.0 20
Test: ICPD on Reagent Water QC Lot: ICPD183AA Concentration Units: (mg/L)			
Aluminum	2.0 2.04 2.05	102 103 75-125	0.5 20
Antimony	0.5 0.55 0.54	110 108 75-125	1.8 20
Arsenic	0.5 0.46 0.46	92 92 75-125	0.0 20
Barium	2.0 2.01 2.01	101 101 75-125	0.0 20
Beryllium	0.05 0.046 0.047	92 94 75-125	2.2 20
Cadmium	0.05 0.051 0.049	102 98 75-125	4.0 20
Calcium	100 104 105	104 105 75-125	1.0 20
Chromium	0.2 0.20 0.20	100 100 75-125	0.0 20
Cobalt	0.5 0.49 0.49	98 98 75-125	0.0 20
Соррег	0.25 0.26 0.27	104 108 75-125	3.8 20
	0.20 0.20 0.27		
Iron	1.0 1.00 1.00	100 100 75-125	0.0 20
Lead			0.0 20 6.1 20 0.4 20

. Enseco

Т

LABORATORY CONTROL SAMPLE REPORT INORGANICS - METALS

Analyte	Concentration Spiking Measured LCS1 LCS2	Accuracy(%) <u>LCS1 LCS2 Limits</u>	Precision(RPD) <u>LCS Limits</u>
Test: ICPD on Reagent Water QC Lot: ICPD183AA <u>Concentration Units: (mg/L)</u>			
Manganese	0.2 0.20 0.21	100 105 75-125	4.9 20
Nickel	0.4 0.40 0.40	100 100 75-125	0.0 20
Potassium	50 53.8 53.9	108 108 75-125	0.2 20
Silver	0.05 0.053 0.053	106 106 75-125	0.0 20
Sodium	100 99.1 99.3	99 99 75-125	0.2 20
Tin	0.4 0.43 0.44	108 110 75-125	2.3 20
Vanadium	0.5 0.50 0.50	100 100 75-125	0.0 20
Zinc	0.2 0.21 0.21	105 105 75-125	0.0 20

1

QC LOT ASSIGNMENT REPORT INORGANICS - NON-METALS

Laboratory			QC Lot Number
Sample Number	QC Matrix	Test	LCS
65039-001-00	Reagent Water	ALK	ALK 200AA
65039-001-00	Reagent Water	CL	CL 180AA
65039-001-00	Reagent Water	COND	COND198AA
65039-001-00	Reagent Water	F	F 113AA
65039-001-00	Reagent Water	NH3	NH3 120AC
65039-001-00	Reagent Water	NO3	NO3 161AF
65039-001-00	Reagent Water	PH	PH 247AA
65039-001-00	Reagent Water	SO4	SO4 171AA
65039-001-00	Reagent Water	TDS	TDS 097AA
65039-002-00	Reagent Water	ALK	ALK 205AA
65039-002-00	Reagent Water	CL	CL 180AA
65039-002-00	Reagent Water	COND	COND201AA
65039-002-00	Reagent Water	F	F 114AA
65039-002-00	Reagent Water	NH3	NH3 120AC
65039-002-00	Reagent Water	NO3	NO3 161AF
65039-002-00	Reagent Water	PH	PH 250AA
65039-002-00	Reagent Water	SO4	SO4 171AA
65039-002-00	Reagent Water	TDS	TDS 099AA
65039-003-00	Reagent Water	ALK	ALK 205AA
65039-003-00	Reagent Water	CL	CL 180AA
65039-003-00	Reagent Water	COND	COND201AA
65039-003-00	Reagent Water	F	F 114AA
65039-003-00	Reagent Water	NH3	NH3 120AC
65039-003-00	Reagent Water	NO3	NO3 161AF
65039-003-00	Reagent Water	РН	PH 250AA
65039-003-00	Reagent Water	SO4	SO4 173AA
65039-003-00	Reagent Water	TDS	TDS 099AA
65039-004-00	Reagent Water	ALK	ALK 205AA
65039-004-00	Reagent Water	CL	CL 180AA
65039-004-00	Reagent Water	COND	COND201AA
65039-004-00	Reagent Water	F	F 114AA
65039-004-00	Reagent Water	NH3	NH3 120AC
65039-004-00	Reagent Water	NO3	NO3 161AF
65039-004-00	Reagent Water	PH	PH 250AA
65039-004-00	Reagent Water	SO4	SO4 171AA
65039-004-00	Reagent Water	TDS	TDS 099AA
65039-005-00	Reagent Water	ALK	ALK 205AA
65039-005-00	Reagent Water	CL	CL 180AA
65039-005-00	Reagent Water	COND	COND201AA
65039-005-00	Reagent Water	F	F 114AA
65039-005-00	Reagent Water	NH3	NH3 120AC
65039-005-00	Reagent Water	NO3	NO3 161AF

QC LOT ASSIGNMENT REPORT INORGANICS - NON-METALS (cont.)

Laboratory			QC Lot Number
Sample Number	QC Matrix	<u>Test</u>	LCS
65039-005-00	Reagent Water	PH	PH 250AA
65039-005-00	Reagent Water	SO4	SO4 171AA
65039-005-00	Reagent Water	TDS	TDS 099AA
65039-006-00	Reagent Water	ALK	ALK 205AA
65039-006-00	Reagent Water	CL	CL 182AA
65039-006-00	Reagent Water	COND	COND201AA
65039-006-00	Reagent Water	F	F 114AA
65039-006-00	Reagent Water	NH3	NH3 120AC
65039-006-00	Reagent Water	NO3	NO3 161AF
65039-006-00	Reagent Water	РН	PH 250AA
65039-006-00	Reagent Water	SO4	SO4 173AA
65039-006-0 0	Reagent Water	TDS	TDS 099AA
65039-008-00	Reagent Water	ALK	ALK 206AA
65039-008-00	Reagent Water	CL	CL 180AA
65039-008-00	Reagent Water	COND	COND202AA
65039-008-00	Reagent Water	F	F 114AA
65039-008-00	Reagent Water	NH3	NH3 122AC
65039-008-00	Reagent Water	NO3	NO3 167AC
65039-008-00	Reagent Water	PH	PH 251AA
65039-008-00	Reagent Water	SO4	SO4 171AA
65039-008-00	Reagent Water	TDS	TDS 101AA
65039-010-00	Reagent Water	ALK	ALK 206AA
65039-010-00	Reagent Water	CL	CL 180AA
65039-010-00	Reagent Water	COND	COND202AA
65039-010-00	Reagent Water	F	F 114AA
65039-010-00	Reagent Water	NH3	NH3 122AC
65039-010-00	Reagent Water	NO3	NO3 167AC
65039-010-00	Reagent Water	PH	PH 251AA
65039-010-00	Reagent Water	SO4	SO4 171AA
65039-010-00	Reagent Water	TDS	TDS 101AA
65039-011-00	Standard Soil	CNR	CNR 035AB
65039-011-00	Standard Soil	SR	SR 039AA

I.

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

Analyte	Con(<u>Spiking</u>		on Isured <u>LCS2</u>		curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precisi <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: ALK on Reagent Water QC Lot: ALK 200AA Concentration Units: (mg/L)								
Total Alkalinity as CaCO3	134	141	141	105	105	90-110	0.0	20
Test: ALK on Reagent Water QC Lot: ALK 205AA Concentration Units: (mg/L)								
Total Alkalinity as CaCO3	134	139	139	104	104	90-110	0.0	20
Test: ALK on Reagent Water QC Lot: ALK 206AA <u>Concentration Units: (mg/L)</u> Total Alkalinity as CaCO3	134	140	139	104	104	90-110	0.7	20
Test: CL on Reagent Water QC Lot: CL 180AA <u>Concentration Units: (mg/L)</u>								
Chloride	20	18.6	18.6	93	93	92- 108	0.0	10
Test: CL on Reagent Water QC Lot: CL 182AA Concentration Units: (mg/L)								
Chloride	20	21.6	21.4	108	107	92-108	0.9	10
Test: COND on Reagent Water QC Lot: COND198AA Concentration Units: (umhos/cm)								
Specific Conductance @ 25C	1290	1280	1290	99	100	95-105	0.8	5

- Enseco

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

Analyte	Con Spiking	centratio Mea <u>LCS1</u>	on isured <u>LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precis: <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: COND on Reagent Water QC Lot: COND201AA Concentration Units: (umhos/cm)								
Specific Conductance @ 25C	1290	1270	1280	98	99	95-105	0.8	5
Test: COND on Reagent Water QC Lot: COND202AA <u>Concentration Units: (umhos/cm)</u>								
Specific Conductance @ 25C	1290	1270	1270	98	98	95-105	0.0	5
Test: F on Reagent Water QC Lot: F 113AA Concentration Units: (mg/L)								
Fluoride	6.5	6.53	6.59	100	101	88-112	0.9	15
Test: F on Reagent Water QC Lot: F 114AA <u>Concentration Units: (mg/L)</u> Fluoride	6.5	7.29	7.29	112	112	88-112	0.0	15
Test: NH3 on Reagent Water QC Lot: NH3 120AC Concentration Units: (mg/L)								
Ammonia as N	4.1	4.06	4.06	99	9 9	93-107	0.0	10
Test: NH3 on Reagent Water QC Lot: NH3 122AC Concentration Units: (mg/L)								
Ammonia as N	4.5	4.57	4.68	102	104	93- 107	2.4	10

-/ Enseco

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

Analyte	Con <u>Spiking</u>	centratio Mea <u>LCS1</u>	on isured <u>LCS2</u>	Ac <u>LCS1</u>	curacy(<u>LCS2</u>	(%) <u>Limits</u>	Precis <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: NO3 on Reagent Water QC Lot: NO3 161AF Concentration Units: (mg/L)								
Nitrate as N	3.5	3.47	3.54	99	101	9 1-109	2.0	20
Test: NO3 on Reagent Water QC Lot: NO3 167AC Concentration Units: (mg/L)								
Nitrate as N	3.5	3.48	3.42	99	98	91-109	1.7	20
Test: PH on Reagent Water QC Lot: PH 247AA Concentration Units: (Units)								
рН	9.06	9.03	9.03	100	100	98-102	0.0	5
Test: PH on Reagent Water QC Lot: PH 250AA <u>Concentration Units: (Units)</u>								
рН	9.06	9.04	8.98	100	9 9	98-102	0.7	5
Test: PH on Reagent Water QC Lot: PH 251AA Concentration Units: (Units)								
рН	9.06	8.98	8.98	99	9 9	98-102	0.0	5
Test: SO4 on Reagent Water QC Lot: SO4 171AA <u>Concentration Units: (mg/L)</u>								
Sulfate	100	105	105	105	105	93- 107	0.0	15

1.

LABORATORY CONTROL SAMPLE REPORT INORGANICS - NON-METALS

Analyte	Con <u>Spikin</u> g	centratio Mea <u>LCS1</u>	n sured <u>LCS2</u>		curacy(LCS2	(%) <u>Limits</u>	Precis: <u>LCS</u>	ion(RPD) <u>Limits</u>
Test: SO4 on Reagent Water QC Lot: SO4 173AA Concentration Units: (mg/L)								
Sulfate	100	107	107	107	107	93-107	0.0	15
Test: TDS on Reagent Water QC Lot: TDS 097AA <u>Concentration Units: (mg/L)</u>								
Total Dissolved Solids	94 0	944	967	100	103	90-110	2.4	10
Test: TDS on Reagent Water QC Lot: TDS 099AA <u>Concentration Units: (mg/L)</u>								
Total Dissolved Solids	9 40	9 08	938	97	100	90-110	3.3	10
Test: TDS on Reagent Water QC Lot: TDS 101AA <u>Concentration Units: (mg/L)</u> Total Dissolved Solids	040	972	029	103	00	00-110	4.6	10
Total Dissolved Solids	9 40	972	928	103	9 9	90-110	4.0	10
Test: CNR on Standard Soil QC Lot: CNR 035AB <u>Concentration Units: (mg/kg)</u> Reactive Cyanide	1.0	0.15	ND	15	ND	0-100	200	200
Test: SR on Standard Soil QC Lot: SR 039AA <u>Concentration Units: (mg/kg)</u>								
Reactive Sulfide	5.0	ND	ND	NC	NC	0-200	NC	2 00

ND = Not detected NC = Not calculated

CATION ANALYSIS

mg/L	meq/L
25.000	1.2475
ND	0.0000
ND ND	0.0000
3.800	0.3127
ND	0.0000
1020.000	44.3700
0.300	0.0214
1049.100	45.9517
	25.000 ND ND 3.800 ND 1020.000 0.300

ELEMENT	ANION ANALYSIS mg/L	meq/L
C1	1170.000	32.9940
F	1.000	0.0526
S04	433.000	9.0064
Alk	132.600	4,4200
N02+N03	ND	0.000
TOTAL	1736.600	46.4730

SUMMARY

% DIFFERENCE =-0.564 CATIONS + ANIONS (mg/L) =2785.700 TDS =%2300.000 HARDNESS = 78.080 CALCULATED THEORETICAL CONDUCTIVITY =5750.2191 MEASURED CONDUCTIVITY =4520.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.272 MEASURED CONDUCTIVITY/TDS RATIO = 1.965

324.000	
ND	0.0000
ND	0.0000
29.000	2.3867
ND	0.0000
146.000	6.3510
ND	0.0000
499.000	24.9053
	ND 29.000 ND 146.000

ELEMENT	ANION ANALYSIS mg/l	meq./L
C1	43.000	1.2126
F	1.000	0.0526
S04	863.000	17.9504
Alk	223.200	7.4400
N02+N03	ND	0.0000
TOTAL	1130.200	26.6556

SUMMARY

% DIFFERENCE =-3.395 CATIONS + ANIONS (mg/L) =1629.200 TDS =%1520.000 HARDNESS = 928.900 CALCULATED THEORETICAL CONDUCTIVITY =3266.3859 MEASURED CONDUCTIVITY =1850.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.766 MEASURED CONDUCTIVITY/TDS RATIO = 1.217

CATION ANALYSIS ELEMENT mg/L meq/L ------_______ 2.0958 Ca 42.000 Fe+2 · ND 0.0000 Fe+3 0.310 0.0166 Mg 28.000 2.3044 0.3328 K 13.000 6.3945 Na 147.000 NH4 0.900 0.0643 11.2084 231.210 TOTAL ------

ELEMENT	ANION ANALYSIS mg/l	meq/L
C1	43.000	1.2126
F S04	0.4 00 114.000	0.0210 2.3712
A1k N02+N03	220.800 ND	7.3600 0.0000
:		
TOTAL	378.200	10.9648

SUMMARY

% DIFFERENCE = 1.098 CATIONS + ANIONS (mg/L) = 609.410 TDS =600.000 HARDNESS = 219.800 CALCULATED THEORETICAL CONDUCTIVITY =1206.6280 MEASURED CONDUCTIVITY = 895.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.348 MEASURED CONDUCTIVITY/TDS RATIO = 1.492

ND - Not Detected

.

	CATION ANALYSIS	
ELEMENT	mg/L	meq/L
Ca	5.500	0.2745
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	0.500	0.0412
K	ND	0.0000
Na	2.500	0.1088
NH4	ND	0.0000
		0.4244
TOTAL	8.500	U,4244

ELEMENT	ANION ANALYSIS mg/L	meq∕L
		ine q/ L
C1	ND	0.0000
F	ND	0.0000
S04	ND	0.0000
Alk	ND	0.0000
N02+N03	ND	0.0000
TOTAL	0.000	

SUMMARY

% DIFFERENCE =%100.000* CATIONS + ANIONS (mg/L) = 8.500 TDS = 0.000 HARDNESS = 15.800 CALCULATED THEORETICAL CONDUCTIVITY = 26.3352 MEASURED CONDUCTIVITY = 2.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO =13.168 MEASURED CONDUCTIVITY/TDS RATIO = DIVISION BY ZERO ERROR IN 1000

I

ELEMENT	CATION ANALYSIS mg/L	meq/L
Ca	126.000	6.2874
Fe+2	ND	0.0000
Fe+3	ND	0.0000
Mg	22.000	1.8106
ĸ	ND	0.0000
Na	250.000	10.8750
NH4	ND	0.000
TOTAL	398.000	18.9730

ELEMENT	ANION ANALYSIS mg/l	meq/L
C1 F S04 A1k N02+N03	46.000 0.800 568.000 153.000 ND	1.2972 0.0421 11.8144 5.1000 0.0000
TOTAL	767.800	18.2537

SUMMARY

% DIFFERENCE = 1.932 CATIONS + ANIONS (mg/L) =1165.800 TDS =%1240.000 HARDNESS = 405.200 CALCULATED THEORETICAL CONDUCTIVITY =2286.5250 MEASURED CONDUCTIVITY =1640.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.394 MEASURED CONDUCTIVITY/TDS RATIO = 1.323

1 11

ND - Not Detected

TE I

CATION ANALYSIS	
mg/L	meq/L
159.000	7.9341
ND	0.0000
ND	0.0000
21.000	1.7283
ND	0.0000
166.000	7.2210
ND	0.0000
346.000	16.8834
	ND ND 21.000 ND 166.000 ND

ELEMENT	ANION ANALYSIS mg/l	meq/L
<u>C1</u>	67.000	1.8894
F S04	0.700 401.000	0.0368 8.3408
A1k N02+N03	-163,800 ND	5.4 600 0.0000
TOTAL	632.500	15.7270

SUMMARY

% DIFFERENCE = 3.546 CATIONS + ANIONS (mg/L) = 978.500 TDS =950.000 HARDNESS = 483.600 CALCULATED THEORETICAL CONDUCTIVITY =1980.6660 MEASURED CONDUCTIVITY =1500.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.320 MEASURED CONDUCTIVITY/TDS RATIO = 1.579

ELEMENT	CATION ANALYSIS mg/L	meq∕L
Ca	148.000	7.3852
Fe+2	ND	0.0000
Fe+3	0.130	0.0070
Mg	42.000	3.4566
ĸ	ND	0.0000
Na	222.000	9.6570
NH4	ND	0.0000
TOTAL	412.130	20.5058

ELEMENT	ANION ANALYSIS mg/l	meq/L
C1	321.000	9.0522
F	0.300	0.0158
S04	16.000	0.3328
AIK	304.800	10.1600
N02+N03	ND	0.0000
TOTAL	642.100	19.5608

SUMMARY

% DIFFERENCE = 2.359 CATIONS + ANIONS (mg/L) =1054.230 TDS =%1200.000 HARDNESS = 542.200 CALCULATED THEORETICAL CONDUCTIVITY =%352076.7600 MEASURED CONDUCTIVITY =1930.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO =%182.423 MEASURED CONDUCTIVITY/TDS RATIO = 1.608

	CATION ANALYSIS	
ELEMENT	mg/L	meq/L
Ca	364.000	18.1636
Fe+2	ND	0.0000
Fe+3	0.390	0.0209
Mg	105.000	8.6415
ĸ	24.000	0.6144
Na	666.000	28.9710
NH4	0.500	0.0357
TOTAL	1159.890	56.4471

ELEMENT	ANION ANALYSIS mg/l	meq/L
C1	257.000	7.2474
F S04	1.000 1980.000	0.0528 41.1840
A1K N02+N03	251.400 0.300	8.3800 0.0214
TOTAL	2489.700	56.8854

SUMMARY

% DIFFERENCE =-0.387 CATIONS + ANIONS (mg/L) =3649.590 TDS =%3700.000 HARDNESS =1340.500 CALCULATED THEORETICAL CONDUCTIVITY =7256.3460 MEASURED CONDUCTIVITY =4300.0000 THEORETICAL/MEASURED CONDUCTIVITY RATIO = 1.688 MEASURED CONDUCTIVITY/TDS RATIO = 1.162

•		Remarks	51								: (Signature) Date / Time toryby: Date / Time
60	st No. rsonnel L. Cardwell	Sampling Site Marcuich Refuty ontainers Parameters	vor's had, don blance	1							(Signature) Date / Time Received by: (Signature) nature) Received for Laboyatory by:
	Littend N. M.	Sampling Site Type No. Containers	Crambuster 7	-	but n n al	manoa' P				•	Date / Time Relinquished by: (Signature)
Rocky Mountain Analytical Laboratory 4955 Yarrow Street, Arvada, CO 80002 (303) 421-6611 A DIVISION OF ENSECTO INCORPORATED	autou 4 Come hourd centry Stor	Sample ID/Description	R. Ball Will	1. A-mar ANDA	r Isangle not cla		j.				Date / Time Received by: (Signature)
Rocky Mountain Analytical L 4955 Yarrow Street, Arvada, CO 80002 (303) 421-8611	RMAL Client Caribor & Corres have sampling co. Darts & Dare	Project Name/No.									Relinguished by (Signature) Lany Chi Mural Method of Shipment:

Personnel 65039 Personnel 65039 B Site 65039 L L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Distriction Electron Ensection Ensection Ensection Environment Environment Sampling Personnel Environment Sampling Site Type No. Containers PET Leafe DET Leafe Interfect Version PET Leafe Interfect Version PET Leafe Interfect Version PET Leafe Interfect Version PET Version PEN Version PEN Version PEN Version PEN Version <	CHAIN OFICUSTODY RMAL Project No. 65039 Sempling Personnel Search Sempling Site Sempling Site Sempling Site Sempling Site Provided to Containers Provided by Symmum Delivered by Symmum	Pro or	Ear durell	In Belone 02	03	oł	oS	٥¢	07			Received by: (Signature) Date / Time	for Laboratory by: Date / Time
	Type CHAIN OF CHAIN O	ADVISION OF ADVISION OF ENSECO RESECO Income SLC, ILL Indre SLC, ILL INDRE		Personnel Site	6 5,141	4 - 19		7	Z				Date / Time	ivered by: (Signature) Received for L

28 8:154 SS - 001 Date / Time Date / Time Remarks <u>م</u> 60 7 Q 1 Received by: (Signature) Received for Laboratory by: Signature 200 EP TOL & LOVA Vor's Ton Balance, Mal Var's Tan salan Mith Seac. 5 CN " cancel 65039 Parameters Vag's ali willcle Yellow Copy to Sampler Date / Time am Sampling Personnel __ Date / Time Relinquished by: (Signature) RMAL Project No. Delivered by: (Signatura) Sampling Site . No. Containers Ν З ſ Pink Copy to Client 1705 Crankuth and the second second Type . . Received by: signature) nature) Cuthas Concert AW-11(1) Rocky Mountain Analytical Laboratory MW - 13/Lange diel will White Copy to Lab arw-1D RMAL Client Guilby & Owno Litt Sample ID/Description Stanked WIL Sampling Co. Daynes Mark SLC 1955 Yarrow Street, Arvada, CO 80002 (303) 421-6611 e m 4- MW Date Relinguished by: (signeture triduct Method of Shipment 200 330 UUH Project Name/No. _ 609 Time Uth Date \mathbf{v} \hat{c}

APPENDIX F

EID PRIVATE WELL WATER QUALITY SAMPLING REPORT FOR APRIL AND MAY 1987

APPENDIX F

EID PRIVATE WELL WATER QUALITY SAMPLING REPORT (For April and May 1987)

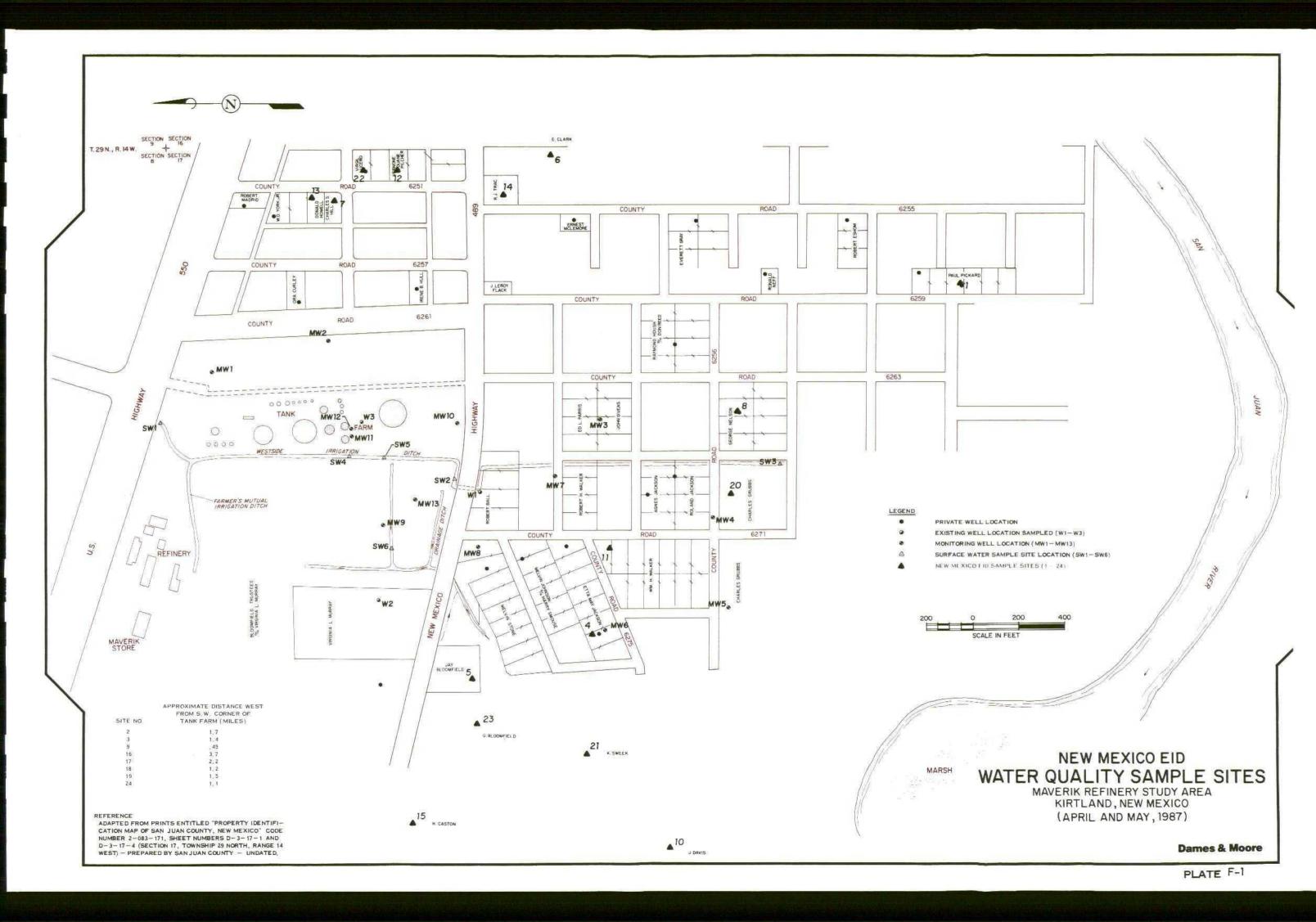
The New Mexico EID collected water quality samples at selected sites near the Maverik Kirtland Refinery site, in December of 1985 and in April and May of 1987.

The results of the April and May 1987 sampling are included herein. The results are summarized in Table F-1 and the sample site locations are shown on Plate F-1. The EID sample sheets and results are also included.

As indicated in Table F-1 and as shown on Plate F-1, the only two private wells that showed any elevated levels of DCA were the Miller-Jackson well #1 (site 4), and the Walker well (site 11). However, the concentrations are very low and are still below New Mexico EID Drinking Water Standards. Trace levels of tetrachloroethene were found in three private wells (sites 15, 18 and 19) located about 0.3, 1.2 and 1.5 miles west of the refinery site and trace levels of trichloroethene were also found at site 15. It is doubtful that these three private wells (sites 15, 18 and 19) were impacted by the refinery because of their distances from the site and the fact that none of the other closer private wells sampled showed any contamination from DCA or any of the other more mobile constituents.

TABLE F-1

SUMMARY OF NMEID PRIVATE WELL ANALYSES


(April and May 1987)

Reference No.		
on Map(1)	Owner	Analytical Results ⁽²⁾
1	P. Pickard	ND
2	J. Frasure	ND
3	C. Christensen	ND
4	Miller- Jackson #1	1,2-dichloroethane = 8 ug/1
5	J. Bloomfield	ND
6 7	Ed. Clark	ND
	C. Hill	ND
8	G. Nelson	ND
9	C. Brimhall (city water	(6) ND
10	J. Davis	ND
11	W. Walker	1,2-dichloroethane = 1 ug/1(3)
12	D. Pilcher	ND
13	D. Howell	ND
14	R. Tracey	ND
15	H. Caston	(4,5)
16	J. Fleming	ND
17	T. Reynold	ND
18	B. Laudenslager	(5)
19	K. Decker	(5)
20	C. Grubb	ND
21	K. Sweek	ND
22	V. Lucero	ND
23	G. Bloomfield	ND
24	T. Guillory	ND
	•	

Footnotes:

(1) Approximate sample site locations shown on Plate F-1

- (2) ND = No specific aromatic or halogenated purgeable organics found above detection limits of 1 ug/1 for aromatics and 0.5 ug/1 for halogenated compounds.
- (3) Sample taken 12/12/85 by the New Mexico EID indicated presence of this compound at 9 ug/1.
- (4) Trace of trichloroethane found.
- (5) Trace of tetrachloroethene found.
- (6) As per discussion with Len Murray, New Mexico EID Farmington, New Mexico, C. Brimhall's water line was connected to city water at the time of sampling.

Post Office Box 968 Santa Fe, New Mexico 87504-0968

ENVIRONMENTAL IMPROVEMENT DIVISION

Michael J. Burkhart Director GARREY CARRUTHERS Governor ł

LARRY GORDON Secretary

CARLA L. MUTH Deputy Secretary

October 7, 1987

William Call, President Caribou Four Corners, Inc. Post Office Box 457 Afton, Wyoming 83110

Re Kirtland Refinery

Dear Mr. Call:

Please find enclosed the results of our private well sampling program in Kirtland, N.M. The residences are identified by County Road and lot numbers.

Mr. Stuart Castle with the Division's Drinking Water Section will furnish you with information on the households that need to be hooked up to public water or need to be reimbursed for hooking up within the next week.

I realize that you are somewhat behind on the site investigation schedule originally proposed by Dames and Moore. Please send me a revised schedule.

If there is anything else that I can do to assist you or your consultant, please let me know.

Sincerely, Atennis Mc Quillan

Dennis McQuillan, Geologist Ground Water Bureau

c.c. w/enc.
Pete Olsen, Dames and Moore, Salt Lake City office
c.c. w/o enc.
Stuart Castle, Drinking Water Section
Steve Cary, CERCLA Section
David Tomko, EID Farmington Office
Dave Boyer, OCD
Jennifer Pruett, Office of General Counsel

	de Salud NE 87106 841-2570 RECT
REPORT TO: David Tomko	S.L.D. No. OR?
$E T \Lambda$	DATE REC. 5-1-87
724 W. ANimas	PRIORITY Z
Farmington, NM 5740	0/ PHONE(S): 327-985/
	; COUNTY: San' JUCN
COLLECTION DATE/TIME CODE: (Year-Month-Day-Hour-	
OCATION CODE: (Township Bases Section Tracts) 1.21	$9 N_{+} 1 4 W_{+} 1 7_{+} 1 (10N06E24342)$
	Ken Murray CODE:
AMPLE TYPE: WATER $[X]$, SOIL [], FOOD [], OTH	HER:
his form accompanies Septum Vials, Glass	lug and/or
amples were preserved as follows:	• upo, end/or
NP: No Preservation; Sample stored at room	temperature.
P-Ice Sample stored in an ice bath (Not Froze	n).
$P-Na \underset{2}{} SO$ Sample Preserved with Sodium Thiosulfate	e to remove chlorine residual.
NALYSES REQUESTED: Please check the appropriate bo	v(as) helpsy to indicate the type of englytical economic
equired. Whenever possible list specific compounds suspecte	
PURGEABLE SCREENS	EXTRACTABLE SCREENS
(753) Aliphatic Headspace (1-5 Carbons)	(751) Aliphatic Hydrocarbons
🗙 (754) Aromatic & Halogenated Purgeables	(755) Base/Neutral Extractables
(765) Mass Spectrometer Purgeables	(758) Herbicides, Chlorophenoxy acid
(766) Trihalomethanes	(759) Herbicides, Triazines
Other Specific Compounds or Classes	(760) Organochlorine Pesticides
A 1,2-Dichlorethue	(761) Organophosphate Pesticides
	(767) Polychlorinated Biphenyls (PCB's)
	(764) Polynuclear Aromatic Hydrocarbons
<u> </u>	. (762) SDWA Pesticides & Herbicides
Remarks: Vias: PP-1 + PP-2	
TIELD DATA:	
oH=; Conductivity=umho/cm at0	C: Chlorine Beridual - mg/l
Dissolved Oxygen=mg/l; Alkalinity=mg/l; F	
Depth to water <u>uk</u> ft.; Depth of well <u>uk</u> ft.; Perfo	pration Intervalft.; Casing:4 <
Sampling Location, Methods and Remarks (i.e. odors, etc.)	
Paul Pickard wellhouse taw.	CR 6259 # 57
certify that the results in this block accurately reflect th	he results of my field analyses, observations and
sctivities.(signature collector):	Method of Shipment to the Lab: Filin bar
CHAIN OF CUSTODY	
	•-
certify that this sample was transferred from	
ut (location)	on/: and that
the statements in this block are correct. Evidentiary Seals:	

Н

,

ANALYSES PERFORMED

. .

LAB. No.: OR- 779

THIS PAGE	FOR LAI	BORATORY	RESULTS	ONLY

DIDC PADI D. SCORDA				
PURGEABLE SCREENS		EXTRACTABLE SCREENS		
] (753) Aliphatic Purgeables (1-3 Carbons) (754) Aromatic & Halogenated Purgeables (765) Mass Spectrometer Purgeables		(751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides		
Other Specific Compounds or Classes				
		(759) Heroicides, Thaines		
		(761) Organophosphate Pesticides		
		(767) Polychlorinated Biphenyls (PCB's)		
_!		(764) Polynuclear Aromatic Hydrocarbons		
		(762) SDWA Pesticides & Herbicides		
ΑΝ		RESULTS		
COMPOUND(S) DETECTED	CONC. [PPB]	COMPOUND(S) DETECTED	CONC PPB1	
			<u>IID</u>	
aromatic Ausealles	$-\underline{\mathcal{N}}$. $\underline{\mathcal{D}}$			
ha connated Auranakles	N.D.			
- man				
/	-∔			
	╶┥────┤┟			
		2		
	╺┪────┤┟			
	1			
	-{} -			
· . · ·				
• DETECTION LIMIT • 🗡	144/L	+ DETECTION LIMIT -		
BBREVIATIONS USED:				
N D = NONE DETECTED AT OR ABOV				
T R = DETECTED AT A LEVEL BELOW				
[RESULTS IN BRACKETS] ARE UNCON	FIRMED AND/O	R WITH APPROXIMATE QUANTITATION		
DRATORY REMARKS:				
CERTIFIC	ATE OF ANALYI	NICAL PERSONNEL		
		e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l		
s) Intact: Yes 🔄 No 庄 Seal(s) broken	by: met so	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l	.nd	
s) Intact: Yes 🔄 No 庄 Seal(s) broken	by: <u>met si</u> dures or handling	and analysis of this sample unless otherwise noted a	.nd	
s) Intact: Yes No Seal(s) broken tify that I followed stancard laboratory proceed the statements on this page accurately reflect	by: <u>met so</u> dures or handling the analytical res	date:	.nd	
s) Intact: Yes No C Seal(s) broken tify that I followed stancard laboratory proced	by: <u>met so</u> dures or handling the analytical res	date:	.nd	
s) Intact: Yes No Seal(s) broken the statements on this page accurately reflect (s) of analysis: 5/12/47. Analyst's the statement of the state	by: <u>met sin</u> lures or handling the analytical res signature:	date:		
s) Intact: Yes No Seal(s) broken the statements on this page accurately reflect (s) of analysis: 5/12/47. Analyst's the statement of the state	by: <u>met sin</u> lures or handling the analytical res signature: <u></u>	date:		

57- 6700-0 SCIENTIFIC LABORATORY DIVISION -1 SCIENTIFIC LABORATORY DIVISION 700 Camino de Salud NE - EVEN - 37 Albuquerque, NM 87106 841-2570
HENVRONMENT Albuquerque, NM 87106 841-2570 REPORT TO: $A N d TO M KO$ S.L.D. No. OR- $7(C)$ EID DATE REC. $5.7.37$ $= 24 W. Avialos$ PRIORITY $E I D$ DATE REC. $5.7.37$ $= 724 W. Avialos$ PRIORITY $E I D$ DATE REC. $5.7.37$ $= 724 W. Avialos$ PRIORITY $E I D$ DATE REC. $5.7.37$ $= 724 W. Avialos$ PRIORITY $= 1000000000000000000000000000000000000$
NP:No Preservation; Sample stored at room temperature.P-IceSample stored in an ice bath (Not Frozen).P-Na S O 2 2 3Sample Preserved with Sodium Thiosulfate to remove chlorine residual.
ANALYSES REQUESTED: Please check the appropriate box(es) below to indicate the type of analytical screens required. PURGEABLE SCREENS (753) Aliphatic Headspace (1-5 Carbons) (751) Aliphatic Hydrocarbons (754) Aromatic & Haiogenated Purgeables (755) Base/Neutral Extractables (765) Mass Spectrometer Purgeables (758) Herbicides, Chlorophenoxy acid (766) Trihalomethanes (759) Herbicides, Triasines Other Specific Compounds or Classes (760) Organochlorine Pesticides (761) Organophosphate Pesticides (762) SDWA Pesticides & Herbicides (762) SDWA Pesticides & Herbicides (762) SDWA Pesticides & Herbicides
PIELD DATA: pH=; Conductivity=umho/cm at°C; Chlorine Residual=mg/l Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow Rate/ Depth to waterft.; Depth of wellft.; Perforation Intervalft.; Casing: Sampling Location, Methods and Remarks (i.e. odors, etc.)
ETO Field Office, 724 W. Awimas I certify that the results in this block accurately reflect the results of my field analyses, observations and activities.(signature collector): <u>Sur Alustacy</u> Method of Shipment to the Lab: <u>Atalant</u>
CHAIN OF CUSTODY I certify that this sample was transferred from to at (location) on
Signatures

| :

.

LAB. No.: OR- 780

THIS PAGE FOR LABORATORY RESULTS ONLY					
This sample was tested using the analytical screening method(s) checked below:					
PURGEABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) (754) Aromatic & Halogenated Purgeables (765) Mass Spectrometer Purgeables (766) Trihalomethanes Other Specific Compounds or Classes	EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyla (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides				
COMPOUND(S) DETECTED CONC.	COMPOUND(S) DETECTED CONC.				
[PPB]	[PPB]				
asamatia susacables N.U.					
Calsgerated gurgalitie N.D.					
· DETECTION LIMIT · X 145/L	+ DETECTION LIMIT +				
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:					
CERTIFICATE OF ANAL	YTICAL PERSONNEL				
Seal(s) Intact: Yes \square No \square . Seal(s) broken by: $\underline{\gamma}_{44}$ I certify that I followed standard laboratory procedures on handlin that the statements on this page accurately reflect the analytical Date(s) of analysis: $5/\frac{1}{2}/87$. Analyst's signature:	ng and analysis of this sample unless otherwise noted azd results for this sample.				
· · · · · ·					
I certify that I have reviewed and concur with the mailytical resu Reviewers signature: <u>A Clince of Meyon Con</u> MA					
·					

ENVIRONMENT	Albuquerque, NM	87106 841-257)	· · · · · · · · · · · · · · · · · · ·
REPORT TO: David	1 Tomko		S.L.D. No. 01	a- 281
EI			DATE REC.	5-7-37
724	W. ANimas			Z
	gton, NM 8740			3-27-985/
COLLECTION CITY: Kir	/ / .			v Juan
COLLECTION DATE/TIME CODE				
LOCATION CODE: (Township-Ran				
USER CODE: 15 2 01/1				
SAMPLE TYPE: WATER 1			/	
This form accompanies Z Sep	otum Vials, Glass J	lugs, and/or		
Samples were preserved as follows:				
P-Ice Sample stored in	Sample stored at room t n an ice bath (Not Frozen	a).		
\overrightarrow{P} P-Na S O Sample Preserved	d with Sodium Thiosulfate	to remove chlorine	residual.	. *
ANALYSES REQUESTED: Please				nalvtical acreens
required. Whenever possible list sp	ecific compounds suspected		•••	
PURGEABLE SC (753) Aliphatic Headspace (1-			TRACTABLE SC Aliphatic Hydrox	
(754) Aromatic & Halogenated	•		Base/Neutral Ex	
(765) Mass Spectrometer Purg	eabies		Herbicides, Chior	
(766) Trihalomethanes			Berbicides, Triaz	
Other Specific Compour			Organochlorine P	
A 1,2-Dichlor	o ethone	·	Organophosphate	
			•	Biphenyls (PCB's) natic Hydrocarbons
			SDWA Pesticides	=
			.=	
Remarks: Vials! JF	-1 & JF-2	=		<u> </u>
FIELD DATA:				N/= 184. /
pH=; Conductivity=	umho/cm_at°C	; Chlorine Residual=	mg/l	
Dissolved Oxygen=mg/l; A	lkalinity=mg/l; Flc	ow Rate	/	
Depth to water <u>UK</u> ft.; Depth	n of wellft.; Perfor	ation Interval	ft.; Casin	s:UK
Sampling Location, Methods and F	Remarks (i.e. odors, etc.)			
James Frascure	wellhouse tay	0, CR 633	2,#44	
I certify that the results in this activities.(signature collector):				
CHAIN OF CUSTODY				
CHAIN OF CUSTODY I certify that this sample was tra	nsferred from		to	

	LAB.	No.:	OR-	7521
--	------	------	-----	------

THIS PAGE FOR LABORATORY RESULTS ONLY					
This sample was tested using the analytical screening method(s) checked below:					
PURCEABLE SCREENS (753) Aliphatic Headspace (1-5 Carbons) (754) Aromatic & Halogenated Purgeables (765) Mass Spectrometer Purgeables (766) Trihalomethanes Other Specific Compounds or Classes	EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (761) Organophosphate Pesticides (762) Polychlorinated Biphenyls (PCB's) (762) SDWA Pesticides & Herbicides DECLUITC				
COMPOUND(S) DETECTED CONC.	COMPOUND(S) DETECTED CONC.				
anomatic surscaller N.D.					
ha have the ausscelles N.D.	· I				
	· · · ·				
	······································				
	······································				
	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·				
• DETECTION LIMIT • 1/93/L	+ DETECTION LIMIT -				
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) { RESULTS IN BRACKETS } ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION					
LABORATORY REMARKS:	· ·				
CERTIFICATE OF ANALY	TICAL PERSONNEL				
Seal(s) Not Sealed Intact: Yes No Seal(s) broken b I certify that I followed standard laboratory procedures on handling that the statements on this page accurately reflect the analytical res	and analysis of this sample unless otherwise noted and sults for this sample.				
Date(s) of analysis: 5/12/87	1				
I certify that I have reviewed and congur with the analytical result Reviewers signature: <u>Meyer</u> 1861 7 7 AV					
<u> </u>					

87-0782-C F SCIENTIFIC LABORA	
Albuquerque, NM 871	•
REPORT TO: David Tomko	S.L.D. No. OR- 782
<u> </u>	DATE REC. 5- 2-37
724 W. Avinas	PRIORITY Z
Farmington, Nal 87401	PHONE(S): 327-985/
COLLECTION CITY: Kirtland	; COUNTY: Say (Jugs)
COLLECTION DATE/TIME CODE: (Year-Month-Day-Hour-Minut	
LOCATION CODE: (Township-Range-Section-Tracts) 2 9	
USER CODE: $5201/1$ submitter: 20	
SAMPLE TYPE: WATER M , SOIL [], FOOD [], OTHER:	
SAMPLE TYPE: WATER [A, SOIL [], FOOD [], OTHER:_	
This form accompanies 2 Septum Vials, Glass Jugs,	and/or
Samples were preserved as follows: NP: No Preservation; Sample stored at room tempe	rature.
P-Ice Sample stored in an ice bath (Not Frozen).	a na an an an an an an an an an an an an
\square P-Na S O Sample Preserved with Sodium Thiosulfate to a	remove chlorine residual.
ANALYSES REQUESTED: Please check the appropriate box(es)	below to indicate the type of analytical acreens
required. Whenever possible list specific compounds suspected or	
PURGEABLE SCREENS	EXTRACTABLE SCREENS
(753) Aliphatic Headspace (1-5 Carbons)	(751) Aliphatic Hydrocarbons
(754) Aromatic & Halogenated Purgeables	(755) Base/Neutral Extractables
(765) Mass Spectrometer Purgeables (766) Trihalomethanes	(758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines
Other Specific Compounds or Classes	(760) Organochlorine Pesticides
× 1,2-Dichloroethane	(761) Organophosphate Pesticides
	(767) Polychlorinated Biphenyls (PCB's)
	(764) Polynuclear Aromatic Hydrocarbons
	(762) SDWA Pesticides & Herbicides
Remarks: Vials: CC-1 & CC-Z	
• • • • • • • • • • • • • • • • • • • •	
PIELD DATA:	
pH=; Conductivity=umho/cm at°C; Ch	lorine Residual=mg/l
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow R	late/
Depth to water <u>UK_ft.;</u> Depth of well <u>UK_ft.;</u> Perforation	Intervalft.; Casing: UK
Sampling Location, Methods and Remarks (i.e. odors, etc.)	
Charlotte Christensen wellhouse -	tap, CR 6330, #26
میں کار بار کرنے کی ایرین بارے میں ہی کہ میں ہی کہ میں میں کہ اور میں میں میں میں میں میں میں میں میں میں	
I certify that the results in this block accurately reflect the res activities.(signature collector): <u>Ken Muthay</u>	
CHAIN OF CUSTODY	
CHAIN OF CUSTODY I certify that this sample was transferred from	to
I certify that this sample was transferred from	
	on/: and that

İ

•••

LAB. No .: OR- 78-2

THIS PAGE FOR LABORATORY RESULTS ONLY

DETENDABLE SCREEN EXTRACTABLE SCREEN (73) Aliphakis Furgeskies (73) Aliphakis flydrescribons (74) Aliphakis flydrescribons (75) Aliphakis flydrescribons (75) Aliphakis flydrescribons (75) Main Spectrometer Pergeskies (75) Aliphakis flydrescribons (75) Pergeskies (75) Aliphakis flydrescribons (75) Pergeskies (75) Aliphakis flydrescribons (75) Perges	This sample was tested using the analytical scre	ening method(s)	checked below:		
Compounds () Status ()	• -				
Create the statements of the statements in the statements in the statements of the statements					
(780) Trhbaomstrases (780) Trhbaomstrase (780) Trhbaomstra					
Other Specific Compounds or Classes [759] Harbiddes, Trainies [760] Organophosphare Pericides [761] Organophosphare Pericides [762] Organophosphare Pericides [763] Polychlorinased Biphrys (PCB's) [764] Polychlorinased Biphrys (PCB's) [765] Digmondical Atomatic Hydrocarbona [766] Digmondical Atomatic Hydrocarbona [766] Digmondical Atomatic Hydrocarbona [766] Digmondical Atomatic Hydrocarbona [766] Digmondical Atomatic Hydrocarbona [766] Digmondical Atomatic Hydrocarbona [766] Digmondical Atomatic Hydrocarbona [766] Digmondical Atomatic Hydrocarbona [766] Digmondical Atomatic Hydrocarbona [767] Digmondical Atomatic Hydrocarbona [768] Digmondical Atomatic Hydrocarbona [768] Digmondical Atomatic Hydrocarbona [768] Digmondical Atomatic Hydrocarbona [768] Digmondical Hydrocarbona [768] Digmondical Hydrocarbona [768] Digmondical Hydrocarbona [768] Digmondical Hydrocarbona <td>Testante I</td> <td></td> <td></td> <td>1</td>	Testante I			1	
Image: State of the state					
CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL Seal(s) Intext: Yes NS Seal(s) broken by:	Other Specific Compounds or Classes				
CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSON					
(764) Polynuclear Anomatic Hydrocarbons (762) SDWA Pesticides & Harbicides ANALYTICAL RESULTS COMPOUND(S) DETECTED CONC. COMPOUND(S) DETECTED CONC. IPPB Integratic gaugedits N.D. Integratic Seal(s) broken by: Integratic gaugedits of this sample. Integratic gaugedits N.D. Integratic Seal(s) broken by: Integratic results for this sample. Integratic M.D. Inte					
□ □					
ANALYTICAL RESULTS COMPOUND(S) DETECTED CONC. (PPB) (Intermedical M.D.) (Intermidical M.D.) (Int					
COMPOUND(S) DETECTED CONC. COMPOUND(S) DETECTED CONC. Image:			[_] (762) SDWA Pesticides & Herbicides	Ę	
COMPOUND(S) DETECTED CONC. COMPOUND(S) DETECTED CONC. Image:	•				
Image: Pressure of the statements of the statements in the block.		NALTICA	L RESULIS		
Image: Seal(s) Intact: Yes Image: Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	COMPOUND(S) DETECTED		COMPOUND(S) DETECTED	1	
	assamatic purceables	N.D.			
	Integenated aussistes	N.D.			
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:		,			
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:	/				
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:					
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:					
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:				1	
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:					
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:				9	
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:					
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:			·		
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:					
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:					
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:					
N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 	• DETECTION LIMIT • 🗶	1 stight	+ DETECTION LIMIT +		
N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 					
T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 			DETECTION IDUT	Ĺ	
[RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:					
LABORATORY REMARKS:					
CERTIFICATE OF ANALYTICAL PERSONNEL Seal(s) Intact: Yes No Seal(s) broken by: <u>met statice</u> date:	[RESULTS IN BRACKETS] ARE UNCO.	NFIRMED AND/	SR WITH APPROXIMATE QUANTITATION		
CERTIFICATE OF ANALYTICAL PERSONNEL Seal(s) Intact: Yes No Seal(s) broken by: <u>met statice</u> date:					
CERTIFICATE OF ANALYTICAL PERSONNEL Seal(s) Intact: Yes No Seal(s) broken by: <u>met statice</u> date:	LABORATORY REMARKS		•		
Seal(s) Intact: Yes \square No \square Seal(s) broken by: <u>mathematical</u> date: <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u>					
Seal(s) Intact: Yes \square No \square Seal(s) broken by: <u>mathematical</u> date: <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u>					
Seal(s) Intact: Yes \square No \square Seal(s) broken by: <u>mathematical</u> date: <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u>					
Seal(s) Intact: Yes \square No \square Seal(s) broken by: <u>mathematical</u> date: <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u>					
Seal(s) Intact: Yes \square No \square Seal(s) broken by: <u>mathematical</u> date: <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u>					
Seal(s) Intact: Yes \square No \square Seal(s) broken by: <u>mathematical</u> date: <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u>					
Seal(s) Intact: Yes \square No \square Seal(s) broken by: <u>mathematical</u> date: <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u> <u>date:</u>		ATE OF ANALS	TICAL PERSONNEL		
I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: <u>5/12/67</u> . Analyst's signature: <u>factory controls</u> I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this block.		,		1	
I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: <u>5/12/67</u> . Analyst's signature: <u>factory controls</u> I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this block.	Seal(s) Intact: Yes 📃 No 🖵 Seal(s) broken	by:	siaila date:		
Date(s) of analysis: <u>5/12/57</u> . Analyst's signature: <u>Harry L-Edim</u> I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this block.	I certify that I followed standard laboratory proce	dures on handlin	g and analysis of this sample unless otherwise note	d and	
I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this block.	• •			1	
I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this block.	Date(s) of analysis: 5/1.2/87 . Analyst's signature: There C. Edin				
	I certify that I have reviewed and concur with th	he analytical resu	Its for this sample and with the statements in this	block.	
Reviewers signature: <u>-11 / / / / / / / / / // // // /// //////</u>					
<i>y</i>	Reviewers signature:				
	<u>_</u>				
				-	

	Albuquerque, NM	le Salud NE H	AIRONMENT
REPORT TO:	Dave Tomko Environmental Improvement 724 W. Animas	Div. DATE REC.	<u>561 A+B</u> 4-8-87
PHONE(S):	Farmington, NM 87401 327-9851		3,0,0
SUBMITTER:	Len Murray	USER CODE: <u>0 7 1</u>	
	CTION CODE: (YYMMDDHHMMIII) 8	······································	
	WATER \square , SOIL \square , FOOD \square , OTH		
	w Juan ; CITY: Kirt		
	E: (Township-Range-Section-Tracts) 2 9	·····	(10N06E24342)
ANALYSES REQ required. Whenev (753) Alipha (754) Aroma (765) Mass (766) Trihalo Other (766)	UESTED: Please check the appropriate box(er possible list specific compounds suspected <u>PURGEABLE SCREENS</u> tic Purgeables (1-3 Carbons) tic & Halogenated Purgeables Spectrometer Purgeables	es) below to indicate the type of anal	EENS Dons icides tables nenoxy acid s icides tsticides henyls (PCB's) ic Hydrocarbons
pH= ; Co	onductivity=umho/cm_at°C;	Chlorine Residual=mg/l	
Dissolved Oxygen	=mg/l; Alkalinity=mg/l; Flo		
	6 ft.; Depth of well 45 ft.; Perfor:		ик
	n, Methods and Remarks (i.e. odors, etc.) Jackson well <u>#1</u> , wellhou 71	se Tap, No observable	odor or color
activities.(signatur This form accom	e results in this block accurately reflect the e collector): <u>An Munday</u> panies <u>2</u> Septum Vials, <u>Blass</u> J eserved as follows:	Method of Shipment to th	e Lab:
NP: P-Ice	No Preservation; Sample stored at room to Sample stored in an ice bath (Not Frozen Sample Preserved with Sodium Thiosulfate).	RECEIVED MAY 2 198
	in anaple was transferred from	to	LIQUID WASTE/GROUN
at (location)	· -	on/	LIQUID WASTELUIANC

LAB.	No.:	OR-	561
		÷ • •	

THIS PAGE FOR LABORATORY RESULTS ONLY					
This sample was tested using the analytical screen	This sample was tested using the analytical screening method(s) checked below:				
PURGEABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) (754) Aromatic & Halogenated Purgeables (765) Mass Spectrometer Purgeables (766) Trihalomethanes Other Specific Compounds or Classes	· · · ·	EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides			
		L RESULTS			
COMPOUND(S) DETECTED	CONC. [PPB]	COMPOUND(S) DETECTED	CONC. [PPB]		
halogenated purpelles	ND				
aromatic purpables	N.D				
1,2 dickloroethane	8	·			
		· · · · · · · · · · · · · · · · · · ·			
		-			
• DETECTION LIMIT • 米	1ppb-	+ DETECTION LIMIT + +			
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:					
CERTIFICAT Seal(s) Intact: Yes $[]$ No $[]$. Seal(s) broken by: I certify that I followed standard laboratory procedur that the statements on this page accurately reflect th iDate(n) of analysis: $\frac{4}{20}$ 87. Analyst's sign i certify that I have reviewed and concur with the iterative signature: $\frac{4}{20}$ 87. Analyst's sign	es on handling ne analytical m natura:	g and analysis of this sample unless otherwise noted esults for this sample. Canne Sauce	and		

	RECENTED LEVE	*.>
87-0564-C	SCIENTIFIC LABORATORY DIVISION TANK	μλιζο
REPORT TO:	David Tomko S.L.D. No. OR- <u>564</u> AYB ENVIRONMENTAL Improvement Div, DATE REC. <u>4-8-87</u> 724W. Animas	754 1219
PHONE(S):	<u>Farmington, NM & 740/</u> <u>327-985/</u> <u>USER CODE: [5]9]3]0]0</u> Len Murray <u>CODE: []</u>	
SAMPLE TYPE:	TION CODE: (YYMMDDHHMMIII) $ 8 7 0 4 0 6 /15 4 5 L E M $ WATER $[\Delta]$, SOIL $[]$, FOOD $[]$, OTHER: SN JULLA ; CITY: Kirtland	
	: (Township-Range-Section-Tracts) $ _2 _9 _N+ _4 _W+ _7+ _ (10N06E24342)$	
required. Wheneve [] (753) Aliphati (754) Aromati (765) Mass S (766) Trihalor Other (766) Trihalor Other	DESTED: Please check the appropriate box(es) below to indicate the type of analytical screens PURGEABLE SCREENS EXTRACTABLE SCREENS c Purgeables (1-3 Carbons) (751) Aliphatic Hydrocarbons c & Halogenated Purgeables (760) Organochlorine Pesticides pectrometer Purgeables (755) Base/Neutral Extractables methanes (759) Herbicides, Chlorophenoxy acid Specific Compounds or Classes (760) Organochlorine Pesticides 2 - M: MOVO EXAME (760) Organochlorine Pesticides (761) Organophosphate Pesticides (761) Organophosphate Pesticides (762) SDWA Pesticides & Herbicides (762) SDWA Pesticides & Herbicides	
Dissolved Oxygen=	uductivity=umho/cm_at°C; Chlorine Residual=mg/l =mg/l; Alkalinity=mg/l; Flow Rate/	
Sampling Location	3 ft.; Depth of well 30 ft.; Perforation Intervalft.; Casing: <u>UK</u> , Methods and Remarks (i.e. odors, etc.) mfield wellhouse tap, CR 6/00, # 333	
activities.(signature This form accomp Samples were pres NP: NP: P-Ice	No Preservation; Sample stored at room temperature. Sample stored in an ice bath (Not Frozen). Sample Preserved with Sodium Thiosulfate to remove chlorine residual.	
	sample was transferred from to	
	this block are correct. Evidentiary Seals: Not Sealed Seals Intact: Yes No	
Signatures		

IAR	Not	02	564
LAD.	INO.:	0R-	101

TIIIS PAGE	FOR LABO	RATORY RESULTS ONLY	
This sample was tested using the analytical screening	ng method(s)	checked below:	
PURGEABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons)	.,	EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons	
(754) Aromatic & Halogenated Purgeables		(760) Organochlorine Pesticides	
(765) Mass Spectrometer Purgeables		[] (755) Base/Neutral Extractables	
(766) Trihalomethanes			
Other Specific Compounds or Classes		(758) Herbicides, Chlorophenoxy acid	
Coner Specific Compounds or Classes		(759) Herbicides, Triazines	
		(760) Organochlorine Pesticides	
		(761) Organophosphate Pesticides	
		(767) Polychlorinated Biphenyls (PCB's)	
		(764) Polynuclear Aromatic Hydrocarbons	
		(762) SDWA Pesticides & Herbicides	1
ANA	LYTICA	L RESULTS	
COMPOUND(S) DETECTED	CONC. [PPB]	COMPOUND(S) DETECTED	CONC. [PPB]
aromatin surgeables	ND		
		· · · · · · · · · · · · · · · · · · ·	
halogenated surgeables			
0			14
D DD AF	70		
1.2 Dichloroethane	T.R.		[
	1		
		· · · · · · · · · · · · · · · · · · ·	
		c .	
• DETECTION LIMIT • *			
• DETECTION LIMIT • 1	JAPP 1	+ DETECTION LIMIT +	l_
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE 7 T R = DETECTED AT A LEVEL BELOW T [RESULTS IN BRACKETS] ARE UNCONFIR	HE STATED	DETECTION LIMIT (NOT CONFIRMED)	
LABORATORY REMARKS:			
		1	
		· · · · · · · · · · · · · · · · · · ·	
CERTIFICATE	OF ANALY	TICAL PERSONNEL	
Senl(s) Intact: Yes No A. Seal(s) broken by:		date:	
I certify that I followed standard laboratory procedure			1 (0))
that the statements on this page accurately reflect the	()	esults for this sample.	
Date(s) of analysis: $\frac{4}{20}/87$. Analyst's sign	ature:	anne Garrisa	
I certify that I have reviewed and concur with the α	nalytical resul	Its for this sample and with the statements in this	s+0-
Reviewers signature: <u>KMzylahila</u>			

0566-C	SCIENTIFIC LABORA 700 Camino de Albuquerque, NM 8'	Salud NE	STATE OF MEMORY
REPORT TO:	David Tomko Environnewal Improvement 724 W, Animas	S.L.D. No. OR- <u>566</u> DIV DATE REC. <u>4-8</u>	
PHONE(S):	Farnington, NM 87401 327-9851	USER CODE: 59300	21
	$\angle e \mathcal{M} urray$ ction code: (YYMMDDHHMMIII) $\frac{8}{7}$ water [X], soil [], food [], other		M
OCATION COD	W JUAN; CITY: Kirtle E: (Township-Range-Section-Tracts) 12191 UESTED: Please check the appropriate box(es	N + / 4 W + 7 + (10)	
equired. Whenev (753) Alipha (754) Aroma (765) Mass (766) Trihald Other / /	er possible list specific compounds suspected o <u>PURGEABLE SCREENS</u> tic Purgeables (1-3 Carbons) tic & Halogenated Purgeables Spectrometer Purgeables	 below to indicate the type of analytical scree required. EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCI) (762) SDWA Pesticides & Herbicides 	B's) rbons
	onductivity=umho/cm_at°C; (=mg/l; Alkalinity=mg/l; Flow	Chlorine Residual=mg/l Rate/	
ampling Locatio	n, Methods and Remarks (i.e. odors, etc.)	on Intervalft.; Casing: <u>UK</u> 93, <u>NO observable oder er c</u>	
activities.(signatur This form accom Samples were pr NP: XP-Ice	panies Septum Vials, Glass Jug eserved as follows: No Preservation; Sample stored at room tem Sample stored in an ice bath (Not Frozen). Sample Preserved with Sodium Thiosulfate t	Method of Shipment to the Lab:	
at (location)		to . 	und til e
	n this block are correct. Evidentiary Seals: No	ot Sealed [] Seals Intact: Yes [] No []	······································

LAB. No.: OR- 566

<u>TIIIS PAGE</u>	FOR LABO	RATORY RESULTS ONLY	
This sample was tested using the analytical screen	ing method(s)	checked below:	
PURGEABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) (754) Aromatic & Halogenated Purgeables (765) Mass Spectrometer Purgeables (766) Trihalomethanes Other Specific Compounds or Classes		EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides	
COMPOUND(S) DETECTED	CONC. [PPB]	COMPOUND(S) DETECTED	CONC.
Roomentin Duras bles	AID		[PPB]
Winnor pergeaves	VD	· · · · · · · · · · · · · · · · · · ·	
Hologenales purgeables		·	
1,2 JICHIODEL TAKE	NP		
		· · · · · · · · · · · · · · · · · · ·	<u> </u>
• DETECTION LIMIT • *			
・ DETECTION LIMIT ・ イ		+ DETECTION LIMIT +	
N D = NONE DETECTED AT OR ABOVE T R = DETECTED AT A LEVEL BELOW [RESULTS IN BRACKETS] ARE UNCONFI	THE STATED	DETECTION LIMIT (NOT CONFIRMED) OR WITH APPROXIMATE QUANTITATION	
	• • • • • • • • • • • • • • • • • • •		
CERTIFICAT	E OF ANALY	TICAL PERSONNEL	
eal(s) Intact: Yes 🔲 No 🗹. Séal(s) broken by:	:	date:	
eal(3) Intact: Yes [] No []. Seal(8) broken by: certify that I followed standard laboratory procedur	es on handling	date: g and analysis of this sample unless otherwise noted	and
eal(3) Intact: Yes [] No [2]. Seal(8) broken by: certify that I followed standard laboratory procedur bat the statements on this page accurately reflect th	: es on handling ne analytical r	date: g and analysis of this sample unless otherwise noted esults for this sample.	and
eal(s) Intact: Yes \square No \square . Seal(s) broken by: certify that I followed standard laboratory procedur bat the statements on this page accurately reflect the sate(s) of analysis: $\frac{4}{20}87$. Analyst's sign	: es on handling ne analytical r nature:	date: g and analysis of this sample unless otherwise noted esults for this sample. The Barets	and
eal(3) Intact: Yes [] No [2]. Seal(8) broken by: certify that I followed standard laboratory procedur bat the statements on this page accurately reflect th	es on handling ne analytical r nature:	date:da	and

- 0560 -C ₎	SCIENTIFIC LABORATORY DIVISION TA STATE OF NEW MIE 700 Camino de Salud NE Albuquerque, NM 87106 841-2570
REPORT TO:	David Tomko S.L.D. No. OR- <u>560 A+B</u> <u>Environmental Improvement Div.</u> DATE REC. <u>4-8-87</u> 724 W. Animas
PHONE(S):	Farmington, NM 87401 PRIORITY Z 327-9851 USER CODE: 15191310101
	$\frac{2 e_{W} M_{W} r_{AY}}{CODE: (YYMMDDHHMMIII) 8 7 0 4 0 6 14 25 2 5 14 E M}$
COUNTY: 5	WATER M , SOIL \square , FOOD \square , OTHER: Gw Juan; CITY: Kirtland E: (Township-Range-Section-Tracts) $29N+14W+17+$ (10N06E24342)
NALYSES REC	UESTED: Please check the appropriate box(es) below to indicate the type of analytical screens er possible list specific compounds suspected or required.
(754) Aroma (765) Mass	PURGEABLE SCREENS EXTRACTABLE SCREENS tic Purgeables (1-3 Carbons) (751) Aliphatic Hydrocarbons tic & Halogenated Purgeables (760) Organochlorine Pesticides Spectrometer Purgeables (755) Base/Neutral Extractables
(766) Trihal Other	omethanes [] (758) Herbicides, Chlorophenoxy acid Specific Compounds or Classes [] (759) Herbicides, Triazines Z - Dichlara ethane [] (760) Organochlorine Pesticides [] (761) Organophosphate Pesticides
	(767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides (762) SDWA Pesticides & Herbicides
IELD DATA:	ο
)issolved Oxyger	onductivity=umho/cm at°C; Chlorine Residual=mg/l =mg/l; Alkalinity=mg/l; Flow Rate/ ft.; Depth of well_3Z ft.; Perforation Intervalft.; Casing:20 44.
ampling Locatic	
ctivities.(signatu This form accom	re results in this block accurately reflect the results of my field analyses, observations and re collector): <u>For Murring</u> Method of Shipment to the Lab: updates Z Septum Vials, Glass Jugs, and/or eserved as follows:
NP: P-Ice	No Preservation; Sample stored at room temperature. Sample stored in an ice bath (Not Frozen). Sample Preserved with Sodium Thiosulfate to remove chlorine residual.
	is sample was transferred from
at (location)	on and that
he statements i	n this block are correct. Evidentiary Seals: Not Sealed 🛄 Seals Intact: Yes 🥅 No 🛄
Signatures	

| | :

LAB. No.: OR- 560	LAB.	No.:	OR-	560
-------------------	------	------	-----	-----

This sample was tested using the analytical acreaning method(s) checked below: UTRGEARLE SCREEMS [753] Aliphatic Purgeables [751] Aliphatic Hydrocarbons [754] Acomatic & Halogenated Purgeables [750] Organochlorine Pesticides [756] Trihsionethanes [757] Organochlorine Pesticides [766] Trihsionethanes [750] Organochlorine Pesticides [766] Trihsionethanes [750] Organochlorine Pesticides [767] Organochlorine Pesticides [760] Organochlorine Pesticides [768] Organochlorine Pesticides [769] Herbicides, Othorphenoxy acid [769] Trihsionethanes [760] Organochlorine Pesticides [760] Organochlorine Pesticides [760] Organochlorine Pesticides [760] Detected [760] Organochlorine [770] Polychlorine [770] Organochlorine </th <th>`</th>	`
(753) Aliphatic Purgeables (1-3 Carbons) (751) Aliphatic Hydrocarbons (754) Acomatic & Haloganated Purgeables (760) Organochlorine Pesticides (765) Mass Spectrometer Purgeables (761) Aliphatic Hydrocarbons (766) Trihalomethanes (753) Bas/Neutral Extractables (760) Organochlorine Pesticides (760) Organochlorine Pesticides (761) Organochlorine Pesticides (760) Organochlorine Pesticides (762) Organochlorine Pesticides (761) Polynuclear Aromatic Hydrocarbons (763) Polynuclear Aromatic Hydrocarbons (761) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides (762) SDWA Pesticides & Herbicides (763) Detected CONC. COMPOUND(S) DETECTED COMPOUND (S) DETECTED CONC. COMPOUND(S) DETECTED Alocgenated purgeables ND 1,2 DicAlboroethane ND 1,2 DicAlboroethane ND 1,2 DicAlboroethane ND	· ·
COMPOUND(S) DETECTED CONC. COMPOUND(S) DETECTED Indegenated purphies ND aromatic purphies ND 1,2 Dichlowethane ND . Detection Limit • X I pate . Detection Limit • X I pate . Detected at or above the stated detection Limit T R = DETECTED AT OR ABOVE THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION	
Image: Period of the second	
aromatic purgables N.D 1,2 Dichlowethane ND ND Detection Limit • X I poble + DETECTION LIMIT • X I poble + DETECTION LIMIT • X I poble + DETECTION LIMIT + + ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION	CONC.
aromatic purgables N.D 1,2 Dichlowethane ND 1,2 Dichlowethane ND	
I a dichlowethane ND I a dichlowethane ND · DETECTION LIMIT · X I pol + DETECTION LIMIT + + ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (RESULTS IN BRACKETS) ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION	
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION	
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION	
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION	
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION	
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION	
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION	
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION	
BORATORY REMARKS:	
CERTIFICATE OF ANALYTICAL PERSONNEL	
al(s) Intact: Yes No Seal(s) broken by: date: date: certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted a at the statements on this page accurately reflect the analytical results for this sample.	and
ato(n) of analysin: 4/20/87 Analyse's signature: Jeanne Larrera	
certify that I have reviewed and concur with the analytical results for this sample and with the sustements in the	· 3.
- Manualine: _ KM7 eyer helm	

7-0562-C	SCIENTIFIC LABORATORY DIVISION 700 Camino de Salud NE Albuquerque, NM 87106 841-2570	<u>Nico</u>
REPORT TO:	David Tomko S.L.D. No. OR- 562 A+B ENVIRONMENTAL Improvement Div, DATE REC. 4-8-87	75%
PHONE(S):	<u>724 W. ANIMAS</u> <u>Farmington, NM 8740/</u> <u>727-9851</u> USER CODE: <u>59300</u> UDAN NELSON CODE: <u>111</u>	
	$\frac{1}{1} \underbrace{\mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}$	
COUNTY:	:: WATER X, SOIL , FOOD ,, OTHER: <u>GN Juan</u> ; CITY: <u>Kirtland</u> DE: (Township-Range-Section-Tracts) <u>29 N+14 W+17+</u> (10N06E21312)	
	QUESTED: Please check the appropriate box(es) below to indicate the type of analytical screens ever possible list specific compounds suspected or required. PURGEABLE SCREENS EXTRACTABLE SCREENS	
(754) Arom (765) Mass (766) Triha	natic Purgeables (1-3 Carbons) (751) Aliphatic Hydrocarbons natic & Halogenated Purgeables (760) Organochlorine Pesticides Spectrometer Purgeables (755) Base/Neutral Extractables slomethanes (758) Herbicides, Chlorophenoxy acid er Specific Compounds or Classes (759) Herbicides, Triazines	
	ias: N-1 and N-Z. Bubbles in Vials,	
FIELD DATA:	Conductivity=umho/cm at°C; Chlorine Residual=mg/l	
Dissolved Oxyge	en=mg/l; Alkalinity=mg/l; Flow Rate/	
Sampling Locati	. <u>uk</u> ft.; Depth of well <u>uk</u> ft.; Perforation Interval ft.; Casing: <u>uk</u> ion, Methods and Remarks (i.e. odors, etc.) Wellhouse Tap, CR 6263 . No observable odor or color	
activities.(signat This form acco	the results in this plock accurately reflect the results of my field analyses, observations and ure collector): <u>After F. Attacorff</u> Method of Shipment to the Lab: mpanies <u>Z</u> Septum Vials, Glass Jugs, and/or	
NP: P-Ice	No Preservation; Sample stored at room temperature. Sample stored in an ice bath (Not Frozen). Sample Preserved with Sodium Thiosulfate to remove chlorine residual.	
I certify that i	to to	
at (location)	on/ and that	
the statements	in this block are correct. Evidentiary Seals: Not Sealed 🔄 Seals Intact: Yes 🥅 No []	
Signatures		

IAB	No:	OR-	562
LAD.	110	UN-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

THIS PAGE FOR LABORATORY RESULTS ONLY using the analytical screening method(s) checked below:

This sample was tested using the analytical screer	ning method(s)	checked below:	
PURGEABLE SCREENS		EXTRACTABLE SCREENS	-
[] [753) Aliphatic Purgeables (1-3 Carbons)		(751) Aliphatic Hydrocarbons	
(754) Aromatic & Halogenated Purgeables		(760) Organochlorine Pesticides	1
(765) Mass Spectrometer Purgeables		[] (755) Base/Neutral Extractables	
(766) Trihalomethanes		(758) Herbicides, Chlorophenoxy acid	
Other Specific Compounds or Classes		(759) Herbicides, Triazines	
		(760) Organochlorine Pesticides	
		[] (761) Organophosphate Pesticides	
		(767) Polychlorinated Biphenyls (PCB's)	
		(764) Polynuclear Aromatic Hydrocarbons	
		(762) SDWA Pesticides & Herbicides	
AN		LRESULTS	
COMPOUND(S) DETECTED	CONC.	COMPOUND(S) DETECTED	CONC.
	[PPB]	۰ 	
aromatic burgables	NP		
hologentited suria bles	NO		
1.2 Dialization	N.D	······································	
1, a alcassiver have			
		· · · · · · · · · · · · · · · · · · ·	· · ·
	┨──────│	·	
		<u> </u>	
		c	
• DETECTION LIMIT • X	100b-11	+ DETECTION LIMIT +	
		······································	
ABBREVIATIONS USED:			
N D = NONE DETECTED AT OR ABOVE			
T R = DETECTED AT A LEVEL BELOW			
[RESULTS IN BRACKETS] ARE UNCONF	IRMED AND/O	R WITH APPROXIMATE QUANTITATION	
· · · · · · · · · · · · · · · · · · ·	<u>. </u>		
LABORATORY REMARKS:			
······································		:	
CERTIFICAT	TE OF ANALY	TICAL PERSONNEL	
Seal(s) Intact: Yes No Y. Seal(s) broken by I certify that I followed standard laboratory procedure		date:	
I certify that I followed standard laboratory procedu that the statements on this page accurately reflect t			u
	()		
Date(s) of analysis: $4/20/87$. Analyst's sig	gnature:	anne Varrera	
I certify that I have reviewed and concur , with the			inck.
Reviewers signature: X 777 eue-hein			

0563-C	SCIENTIFIC LABORATORY DIVISION 700 Camino de Salud NE Albuquerque, NM 87106 841-2570
REPORT TO:	David Tomko S.L.D. No. OR- <u>563 A+B</u> <u>ENVIRONMENTAL Improvement Div.</u> DATE REC. <u>4-8-87</u> 724 W. Animas
PHONE(S):	Farming ton, NM 87401 PRIORITY Z 327-9851 USER CODE: 15191310101
SUBMITTER: SAMPLE COLLE	<u>Len Murvay</u> CODE: <u> </u> CTION CODE: (YYMMDDHHMMIII) <u>877040610610625</u>
COUNTY: Sou	WATER X, SOIL , FOOD , OTHER: J Juan ; CITY:KirHand
ANALYSES REQ	E: (Township-Range-Section-Tracts) $ 2 9 N+1 4 W+1 7+ (10N0GE24342)$ UESTED: Please check the appropriate box(es) below to indicate the type of analytical screens
(753) Alipha (754) Aroma (755) Mass S (766) Trihale Other	Specific Compounds or Classes (759) Herbicides, Triazines 2 - Dich Ovo ethawe (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides
	nductivity=umho/cm_at°C; Chlorine Residual=mg/l
	=mg/l; Alkalinity=mg/l; Flow Rate/ / Z_ft.; Depth of well_60_ft.; Perforation Intervalft.; Casing:30 ff
	n, Methods and Remarks (i.e. odors, etc.) mhall house tap, CR 6100, # 336. No observable odor or color
activities.(signatur This form accom Samples were pro NP: NP: P-Ice P-Na S O	e results in this block accurately reflect the results of my field analyses, observations and e collector): <u>Yest Mustary</u> Method of Shipment to the Lab: panies <u></u> Septum Vials, <u></u> Glass Jugs, and/or eserved as follows: No Preservation; Sample stored at room temperature. Sample stored in an ice bath (Not Frozen). Sample Preserved with Sodium Thiosulfate to remove chlorine residual.
$\frac{1}{1} \frac{1}{1} TODY	
at (location)	on and that
	a this block are correct. Evidentiary Seals: Not Sealed 🛄 Seals Intact: Yes 🥅 No 🛄

LAB. No.: OR- 563

	S FOR LABO	RATORY RESULTS ONLY	
This sample was tested using the analytical screen	ing method(s)	checked below:	
PURGEABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) (754) Aromatic & Halogenated Purgeables (765) Mass Spectrometer Purgeables (766) Trihalomethanes Other Specific Compounds or Classes		EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides	
COMPOUND(S) DETECTED	CONC. [PPB]	COMPOUND(S) DETECTED	CONC.
nomate. and les	NO		[899]
aromatic purgeables		· · · · · · · · · · · · · · · · · · ·	
halogenated surgeables	NO		
1,2 & ichiover have	ND	N	
· · · · · · · · · · · · · · · · · · ·			
3			
· · · · · · · · · · · · · · · · · · ·		: 	
	_	ана — — — — — — — — — — — — — — — — — —	
• DETECTION LIMIT • *	1 colo		
• DETECTION LIMIT • 1	- mar-	+ DETECTION LIMIT +	/ ·· · · · · · ·
N D = NONE DETECTED AT OR ABOVE T R = DETECTED AT A LEVEL BELOW [RESULTS IN BRACKETS] ARE UNCONF: 	THE STATED	DETECTION LIMIT (NOT CONFIRMED) OR WITH APPROXIMATE QUANTITATION	
		·	
CERTIFICAT	TE OF ANALY	TICAL PERSONNEL	
Seal(s) Intact: Yes 🦳 No 🎦. Seal(s) broken by	;	date:	
I certify that I followed standard laboratory procedur that the statements on this page accurately reflect th			ed and
That the statements on this page accurately relect to $Date(s)$ of analysis: $\frac{1}{20}$ $\frac{8}{2}$. Analyst's sig	()		
I certify that I have reviewed and concur with the	0		· · · ·
			I

.

0567-C	SCIENTIFIC LABORATORY DIVISION T 700 Camino de Salud NE Albuquerque, NM 87106 841-2570	TE OF NEW MENN
REPORT TO:	David Tomko S.L.D. No. OR- 567 Environmental Improvement Div. DATE REC. 4-8- 724 W. Animas	
	Farmington, NM 87401 PRIORITY Z 327-9851 USER CODE: 59300 Len Munray CODE: 1000 CODE: (YYMMDDHHMMIII) 870407 CODE: 10054	1
COUNTY: 50 LOCATION COD	WATER $[X]$, SOIL $[]$, FOOD $[]$, OTHER: $N \overline{J}_{UON}$; CITY: Kirtland E: (Township-Range-Section-Tracts) $ 2 9 N+ 4 W+ 7+ (10N06E)$ [UESTED: Please check the appropriate box(es) below to indicate the type of analytical screens	224342)
required. Whenev (753) Alipha (754) Aroma (765) Mass (766) Trihal Other (766)	er possible list specific compounds suspected or required. PURGEABLE SCREENS tic Purgeables (1-3 Carbons) (751) Aliphatic Hydrocarbons tic & Halogenated Purgeables (760) Organochlorine Pesticides Spectrometer Purgeables (755) Base/Neutral Extractables	3
Dissolved Oxygen Depth to water Sampling Locatio	penductivity=umho/cm at^C; Chlorine Residual=mg/l =mg/l; Alkalinity=mg/l; Flow Rate/ ft.; Depth of well <u>43</u> ft.; Perforation Intervalft.; Casing: <u>UK</u> n, Methods and Remarks (i.e. odors, etc.) and the summer of \mathcal{R} (286 at \mathcal{T} and check a large the sum of (c)	
I certify that th activities.(signatu: This form accom Samples were pr NP: NP: P-Ice	avis house Tap, CR 6235, #7, NO observable cdor or colo re results in this block accurately reflect the results of my field analyses, observations and re collector): <u>Muthay</u> Method of Shipment to the Lab: panies <u>Z</u> Septum Vials, <u>Glass Jugs, and/or</u> escrved as follows: No Preservation; Sample stored at room temperature. Sample stored in an ice bath (Not Frozen). Sample Preserved with Sodium Thiosulfate to remove chlorine residual. STODY	
at (location)	in nample was transferred from to on and on on and on on on on on on on on on on on on on on on on on	that

1

.

- Li

1. 1

I

1.1

	,		$\sim \sim \sim$
	No.	00	
LAD.	110.:	-πυ	567

THIS PAGE FOR LABORATORY RESULTS ONLY

	L LOR LADO	RATORY RESULTS ONLY			
This sample was tested using the analytical screen	ning method(s)	checked below:			
PURGEABLE SCREENS		EXTRACTAR E SCORENC	`		
(753) Aliphatic Purgeables (1-3 Carbons)		EXTRACTABLE SCREENS			
[7] (753) Aliphatic Purgeables (1-3 Carbons) [7] (754) Aromatic & Halogenated Purgeables		(751) Aliphatic Hydrocarbons			
		(760) Organochlorine Pesticides			
(765) Mass Spectrometer Purgeables		(755) Base/Neutral Extractables			
[] (766) Trihalomethanes		(758) Herbicides, Chlorophenoxy acid			
Other Specific Compounds or Classes		(759) Herbicides, Triazines			
		(760) Organochlorine Pesticides			
		(761) Organophosphate Pesticides			
		(767) Polychlorinated Biphenyls (PCB's)			
		(764) Polynuclear Aromatic Hydrocarbons			
		(762) SDWA Pesticides & Herbicides			
···•					
AN	ALYTICA	L RESULTS			
COMPOUND(S) DETECTED	CONC.	COMPOUND(S) DETECTED	CONC.		
	[PPB]		[PPB]		
asomatic purgeables	ND				
1 1 1 1 1 1 1 1 1 1					
narogenaria yurgearres					
1.2 Alichlowethom	ND				
	 				
		ji			
	ł				
· ·]]				
	<u> </u>]				
	1				
	 	1	—		
* DETECTION LIMIT * *	Lagi				
• DETECTION LIMIT • 个	17m	+ DETECTION LIMIT +			
ABBREVIATIONS USED:					
N D = NONE DETECTED AT OR ABOVE	THE STATES	D DETECTION LIMIT			
T R = DETECTED AT A LEVEL BELOW	THE STATED	DETECTION LIMIT (NOT CONFIRMED)			
[RESULTS IN BRACKETS] ARE UNCONF	IRMED AND/	OR WITH APPROXIMATE QUANTITATION			
-					
LABORATORY REMARKS:			· <u> </u>		
		······································			
CERTIFICAT	TE OF ANALY	TICAL PERSONNEL			
Seal(s) Intact: Yes 🔄 No 🖃. Seal(s) broken by	<i>r</i> :	date:			
I certify that I followed standard laboratory procedure	res on handling	g and analysis of this sample unless otherwise noted	d and		
that the statements on this page accurately reflect t					
	/ \				
Date(a) of analysis: 4/20/87 Analyst's sig	(naturo:	anne arres			
I certify that I may revised and concur with blo	analytical read	to for this sample and with the statements on the			
Iteviewers signature: Knilligenheigenheigen					
			-		
v					

0631-C	SCIENTIFIC LABOR 700 Camino d Albuquerque, NM	e Salud NE		
REPORT TO:	David Tomko Environmental Improvement 724 W. Animas	S.L.D. No. OR- <u><u>(U</u>LC. 63) DATE REC. <u>4-16-37</u></u>		
	Farmington, NM 82401	PRIORITY 2		
PHONE(S):		USER CODE: 1519300		
SUBMITTER:	Len Murray	CODE:		
		704/13/12052EM		
	WATER \square , soil \square , food \square , othe			
	D JUAN ; CITY: Kirt			
	E: (Township-Range-Section-Tracts) 29			
	ver possible list specific compounds suspected	es) below to indicate the type of analytical screens or required.		
	PURGEABLE SCREENS	EXTRACTABLE SCREENS		
	tic Purgeables (1-3 Carbons)	(751) Aliphatic Hydrocarbons		
	itic & Halogenated Purgeables Spectrometer Purgeables	(760) Organochlorine Pesticides (755) Base/Neutral Extractables		
(766) Trihalo		(758) Herbicides, Chlorophenoxy acid		
Other	Specific Compounds or Classes	(759) Herbicides, Triazines		
(1, 2, -1), $(2, -1)$, $(2, -1$				
		(761) Organophosphate Pesticides		
		(767) Polychlorinated Biphenyls (PCB's)		
<u> </u>		(764) Polynuclear Aromatic Hydrocarbons		
		(762) SDWA Pesticides & Herbicides		
Remarks: <u>Vic</u>	S: EW-1 + EW-Z			
FIELD DATA:				
		Chlorine Residual=mg/l		
	m=mg/l; Alkalinity=mg/l; Flor			
Depth to water	<u>_UK_ft.;</u> Depth of well <u>_UK_ft.;</u> Perfora	ntion Intervalft.; Casing: <u>UK</u>		
Sampling Locatio	on, Methods and Remarks (i.e. odors, etc.)			
Bill & E	len walker well house ta	D, County Road 6271		
L contifu that th	the products in this block accurately reflect the	results of my field analyses, observations and		
		Method of Shipment to the Lab:		
		ugs, and/or		
	reserved as follows:			
	No Preservation; Sample stored at room te	-		
	Sample stored in an ice bath (Not Frozen			
$ _ P-Na_{2}S_{2}O_{3}$ CIIAIN OF CU:	Sample Preserved with Sodium Thiosulfate STODY	to remove chlorine residual.		
		to		
		on/: and that		
and the set 1		on / / - · and that		
		Not Sealed \square Seals Intact: Yes \square No \square		

	A.	В.	No.:	OR-	631
--	----	----	------	-----	-----

THIS PAGE FOR LABORATORY RESULTS ONLY This sample was tested using the analytical screening method(s) checked below: PURGEABLE SCREENS EXTRACTABLE SCREENS [[(753) Aliphatic Purgeables (1-3 Carbons) (751) Aliphatic Hydrocarbons 🔀 (754) Aromatic & Halogenated Purgeables (760) Organochlorine Pesticides (765) Mass Spectrometer Purgeables [] (755) Base/Neutral Extractables [(766) Trihalomethanes (758) Herbicides, Chlorophenoxy acid Other Specific Compounds or Classes (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides ANALYTICAL RESULTS COMPOUND(S) DETECTED CONC. COMPOUND(S) DETECTED CONC. [PPB] [CPB] ΝD 24 C. Spob * and to e DETECTION LIMIT * DETECTION LIMIT + ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: CERTIFICATE OF ANALYTICAL PERSONNEL Seal(s) Intact: Yes [] No 2 Seal(s) broken by: _ date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: 4-22-87 . Analyst's signature: 41-5 Lune I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this Mack Reviewers signature: MAY 1 8 1987

	F	ECEIVED MAY 1 4 1997
	SCIENTIFIC LABORAT	TORY DIVISION - 87- 0628 -C
	700 Camino de S	ENUDONNENT
·	Albuquerque, NM 871	06 841-2570
REPORT TO:	David Touto	S.L.D. No. OR- 628 44
	Eavironmental Improvement	Div. DATE REC. 4-16-87
l l	724W. ANIMOS	
1	Farmington, NM 87401	priority Z
PHONE(S):	327-9851	USER CODE: 15191310101
SUBMITTER:	Len Murray	
SAMPLE COLLE	ECTION CODE: (YYMMDDHHMMIII) 8 7	014131045LEM
SAMPLE TYPE:	WATER K. SOIL . FOOD . OTHER:	
COUNTY:	an Juan ; CITY: Kirtla	and
LOCATION COL	DE: (Township-Range-Section-Tracts) $ \frac{2}{2} \frac{9}{1} \mathcal{N} $	$\frac{1}{14}$ $\frac{14}{14}$ $\frac{17}{17}$ $\frac{1}{17}$ $\frac{1}{10006E24342}$
	QUESTED: Please check the appropriate box(es) t	
required. Wheney	ver possible list specific compounds suspected or r	
, (753) Aliphz	PURGEABLE SCREENS atic Purgeables (1-3 Carbons)	EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons
🕅 (754) Aroma	atic & Halogenated Purgeables	(760) Organochlorine Pesticides
	Spectrometer Purgeables	(755) Base/Neutral Extractables
[_] (766) Trihal		(758) Herbicides, Chlorophenoxy acid
	5 - Michalan et Way	(759) Herbicides, Triazines (760) Organochlorine Pesticides
¥≏ -4	L-DICKIOVO CIVILE	(761) Organophosphate Pesticides
		(767) Polychlorinated Biphenyls (PCB's)
		(764) Polynuclear Aromatic Hydrocarbons
		(762) SDWA Pesticides & Herbicides
Remarks: 11	rla: DP-1 & DP-2	
FIELD DATA:		
	onductivity=umho/cm_at°C; Chl	lesine Besiduelar and /
	m=mg/l; Alkalinity=mg/l; Flow Ri	
		Intervalft.; Casing: <u>UK</u>
Δ.	on, Methods and Remarks (i.e. odors, etc.) $h \land 1$	
_Duane	- Pilcher wellhouse tap,	, CR6251, #Z
	<u></u>	
I certify that the	he results in this block accurately reflect the resu	ults of my field analyses, observations and Method of Shipment to the Lab:
activities.(signatu	re collector): Len Murray	Method of Shipment to the Lab:
	reserved as follows:	and/or
NP:	No Preservation; Sample stored at room tempe	erature.
·!	Sample stored in an ice bath (Not Frozen).	
· · · · ·	Sample Preserved with Sodium Thiosulfate to a	remove chlorine residual.
- CIIAIN OF CU		
t		to
		on/ and that
at (location)	in this block are correct. Evidentiary Seals: Not	

new lister 5-15-57

LAB. No.: OR- 626

IMS FAGE FOR LABORATORY RESULTS ONLY					
This sample was tested using the analytical screening method(s) checked below:					
PURCEABLE SCREENS EXTRACTABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) (751) Aliphatic Hydrocarbons (754) Aromatic & Halogenated Purgeables (760) Organochlorine Pesticides (765) Mass Spectrometer Purgeables (755) Base/Neutral Extractables (766) Trihalomethanes (759) Herbicides, Chlorophenoxy acid Other Specific Compounds or Classes (760) Organochlorine Pesticides (761) Organophosphate Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides (762) SDWA Pesticides					
ANALYTICAL RESULTS					
COMPOUND(S) DETECTED CONC. COMPOUND(S) DETECTED CONC. [PPB]					
halogenated purgeables ND+					
· DETECTION LIMIT · * /mb + DETECTION LIMIT + + C.Smb					
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS:					
CERTIFICATE OF ANALYTICAL PERSONNEL					
Seal(s) Intact: Yes No X. Seal(s) broken by: date: date: date:					
Date(s) of analysis: <u>4-22-67</u> . Analyst's signature: <u>A Finance 4</u> I certify that I have reviewed and concur with the analytical results for this sample and with the statements in the Reviewers signature: <u>A Analytical MAY 8 1987</u>					

REPORT TO: Darvid Tomko SLD. No. OR. 6.3.2 #46 EDUITOR MERGIAI Jug INNEWENT Dir. DATE REC. 4-1(C-87 F224 W. Animas Franzingtan, NM 8740/ PRIORITY FIONE(S): J27-885/ USER CODE: [5.19.13.10.0] SUBMITTER: 4.4.10.00 CODE: [5.19.13.10.10] SAMPLE COLLECTION CODE: (YYMMDDHMMIII) [5.7.10.4/13.10.15.13.0.21.51.41.51.41] SAMPLE TYPE: WATER [\$ SOIL [], FOOD [] OTHER: COUNTY: Con Jugan GTY: Farmingtan LOCATION CODE: (Township-Range-Section-Tracts) [2.1.14/1.31.01.41.16.41.11.11.11.11.11.11.11.11.11.11.11.11.		SCIENTIFIC LABORATORY DIVISION - 700 Camino de Salud NE Albuquerque, NM 87106 841-2570
PHONE(5): ¹ / ₂ 2 - ¹ / ₈ 5/ ¹ / ₂ USER CODE: ¹ / ₂ 3 0 0 SUBMITTER: ¹ / ₂ MUMTYAY ¹ / ₂ CODE: ¹ / ₂ 1 1 1 1 SAMPLE COLLECTION CODE: (YYMMDDHHMMIII) ¹ / ₂ 1 0 1 4 1 3 0 5 1 3 0 1 2 1 2 1 4 SAMPLE TYPE: WATER [\$\frac{1}/{2} SOL 1 = 0 FOD 1; OTHE: COUNTY: Saw Juca) CITY: Thermity fow LOCATION CODE: (Township-Range-Section-Tracts) ¹ / ₂ 2 1 4 1 3 W + 1 6 + (10006223362) CATION CODE: (Township-Range-Section-Tracts) ¹ / ₂ 2 1 2 4 4 1 3 W + 1 6 + (10006223362) CATION CODE: (Township-Range-Section-Tracts) ¹ / ₂ 2 1 2 4 4 1 3 W + 1 6 + (10006223362) CATION CODE: (Township-Range-Section-Tracts) ¹ / ₂ 2 1 2 4 4 1 3 W + 1 6 + VINCETES OFFERS EXTRACTABLE SOFERS EXTRACTABLE SOFERS EXTRACTABLE SOFERS (763) Aliphatic Purpeable (753) Horiticides, Chorphorphate Perivicides (760) Organochiorine Perivicides (761) <th>REPORT TO:</th> <th>ENVIRONMENTAL Importement Div. DATE REC. 4-16-87 724 W. Animas</th>	REPORT TO:	ENVIRONMENTAL Importement Div. DATE REC. 4-16-87 724 W. Animas
SUBMITTER:	PHONE(S)	
SAMPLE COLLECTION CODE: (YYMMDDHHMMIII) SI7.0.4.1.3.0.5.3.0.2.6.1.4.1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		
SAMPLE TYPE: WATER \$\[\$ SOIL \[], FOOD \[], OTHER:		
COUNTY: Saw Judas ; OITY: Farming tost LOCATION CODE: (Township-Range-Section-Tracts) [2] 9] (1 + (13) (10 + (16 + 1)) (10 + 000000000000000000000000000000000	1	
LOCATION CODE: (Township-Range-Section-Tracts) 2.191/+131W+166+(10006E24342) ANALYSES REQUESTED: Please check the appropriate box(es) below to indicate the type of analytical screens required. Whenever possible list apecific compounds suspected or required. PURCEARLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) [751) Aliphatic Hydrocarbons [756] Mass Spectrometer Purgeables [756] Base/Neutral Extractables [756] Mass Spectrometer Purgeables [756] Base/Neutral Extractables [756] Mass Spectrometer Purgeables [756] Base/Neutral Extractables [756] Organochlorine Pesticides [757] Aliphatic Anomatic & Halogensted Purgeables [758] Herbicides, Thiatines [759] Herbicides, Thiatines [759] Herbicides, Thiatines [759] Herbicides, Thiatines [759] Herbicides, Thiatines [759] Herbicides, Thiatines [759] Herbicides, Thiatines [759] Herbicides, Thiatines [759] Herbicides, Thiatines [759] Herbicides, Thiatines [759] Herbicides, Thiatines [759] Herbicides, Thiatines [759] Herbicides, Thiatines [750] Organochlorine Pesticides [750] Organochlorine Pesticides [750] Organochlorine Pesticides [750] Organochlorine Pesticides [750] Organochlorine Pesticides [750] Organochlorine Pesticides [750] Herbicides, Thiatines [750] Herbicid	1	
ANALYSES REQUEETED: Please check the appropriate box(se) below to indicate the type of analysical screens required. PURGEADLE SCREENS EXTRACTABLE SCREENS (733) Aliphatic Furgesbies (1-3 Carbons) [(751) Aliphatic Hydrocarbons [(756) Arionated Purgesbies [(760) Organochlorine Pesticides [(766) Trihalomethanes [(750) Organochlorine Pesticides [(766) Trihalomethanes [(750) Organochlorine Pesticides [(766) Trihalomethanes [(760) Organochlorine Pesticides [(760) Organochlorine Pesticides [(760) Organochlorine Pesticides [(761) Dribonethanes [(760) Organochlorine Pesticides [(761) Organochlorine Pesticides [(760) Organochlorine Pesticides [(761) Organochlorine Pesticides [(760) Organochlorine Pesticides [(762) SDWA Pesticides, Chierophenoxy acid [(761) Organochlorine Pesticides [(761) Organochlorine Pesticides [(762) SDWA Pesticides & Herbicides [(762) SDWA Pesticides & Iterbicules [(763) SDWA Pesticides & Herbicules Remarks: Via S1 RhawKS & Z - Distilled Water [[162] [(761) SDWA Pesticides & Herbicules Remarks: Via S1 RhawKS & Z - Distilled Water [[162] [(761) SDWA Pesticides & Herbicules Pile		
required. Whenever possible list specific compounds suspected or required. PURCEABLE SCREENS (753) Aliphatic Ergenbles 12 Garbon) (754) Aliphatic Hydrocarbons (755) Base/Neutral Extractables (756) Arisalonethanes (757) Aliphatic Hydrocarbons (758) Herbicides. Chicrophenoxy acid (759) Trihalomethanes (759) Trihalomethanes (759) Trihalomethanes (759) Arishides. Chicrophenoxy acid (759) Trihalomethanes (759) Trihalomethanes (759) Trihalomethanes (759) Trihalomethanes (759) Trihalomethanes (750) Organochlorine Pesticides (759) Trihalomethanes (750) Organochlorine Pesticides (759) Trihalomethanes (750) Organochlorine Pesticides (759) Trihalomethanes (750) Organochlorine Pesticides (750) Organochlorine Pesticides (750) Organochlorine Pesticides (750) Organochlorine Pesticides (751) Aliphatic Hydrocarbons (752) Base/Neutral Extractables (759) Trihalomethanes (750) Organochlorine Pesticides (759) Trihalomethanes (750) Organochlorine Pesticides (750) Organochlorine Pesticides (750) Organochlorine Pesticides (750) Organochlorine Pesticides (751) Aliphatic Hydrocarbons (752) Base/Neutral Extractables (753) Aliphatic Hydrocarbons (754) Polyncient Ammatic Hydrocarbons (757) Polyncient Ammatic Hydrocarbons (751) Organophosphate Pesticides (752) SDWA Pesticides & Harbicides Remarks: ViaK: PlackS & Z - Distile& Wafer PHELD DATA: pH=Conductivity=umho/cm atC; Chlorine Residual=mg/l Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow Rate Depth to waterf; Depth of weilft:; Perforation Intervalft; Casing:	LOCATION COI	DE: (Township-Range-Section-Tracts) $ \frac{2}{2} \frac{7}{N+1} \frac{3}{N+1} \frac{6}{6+1} $ (10N06E24342)
Sampling Location, Methods and Remarks (i.e. odors, etc.)	required. Whenev (753) Alipha (754) Aroma (755) Mass (766) Trihal Other Remarks: // // // // // // // // // /	er possible list specific compounds suspected or required. EXTRACTABLE SCREENS EXTRACTABLE SCREENS tic Purgeables (1-3 Carbons) itic Purgeables (1-3 Carbons) [751] Aliphatic Hydrocarbons (760) Organochlorine Pesticides Spectrometer Purgeables [755] Base/Neutral Extractables omethanes [759] Herbicides, Chlorophenoxy acid Specific Compounds or Classes [760] Organochlorine Pesticides 2-Widelow-Othewe [760] Organochlorine Pesticides [761] Organophosphate Pesticides [762] SDWA Pesticides & Herbicides [762] SDWA Pesticides & Herbicides [762] SDWA Pesticides & Herbicides [51] Blawks & Z - Distilled Wabew [762] SDWA Pesticides & Herbicides [51] Blawks & Z - Distilled Wabew [762] SDWA Pesticides & Herbicides [51] Blawks & Z - Distilled Wabew [762] SDWA Pesticides & Herbicides [52] Blawks & Z - Distilled Wabew [762] SDWA Pesticides & Herbicides [52] Blawks & Z - Distilled Wabew [762] SDWA Pesticides & Herbicides
	Depth to water	ft.; Depth of wellft.; Perforation Intervalft.; Casing:
I certify that the results in this block accurately reflect the results of my field analyses, observations and activity of gnature collector). <u>Jean Method</u> Method of Shipment to the Lab:		
activit of gnature collector) Jen Muth Method of Shipment to the Lab: This table accompanies 2 Septum Vials, Gloss Jugs, and/or Samples were preserved as follows: Image: Septum Vials, Gloss Jugs, and/or NP: No Preservation; Sample stored at room temperature. P-Ice Sample stored in an ice bath (Not Frozen). P-Na S O Sample Preserved with Sodium Thiosulfate to remove chlorine residual. CHAIN OF CUSTODY I I certify that this sample was transferred from to at (location) on -	_ tarmin	gtow tield Uttice
CHAIN OF CUSTODY I certify that this sample was transferred from to	activit of rematu This ture accon Samples were pr NP: NP: P-Ice	re collector): <u>Jen Juliul</u> Method of Shipment to the Labi panies <u>2</u> Septum Vials, <u>Glifes Jugs, and/or</u> eserved as follows: No Preservation; Sample stored at room temperature. Sample stored in an ice bath (Not Frozen).
I certify that this sample was transferred from to at (location) on and that	1 - 223	
at (location) on and that		

l k

AB.	No.:	OR-	632

THIS PAGE FOR LABORATORY RESULTS ONLY This sample was tested using the analytical screening method(s) checked below: PURGEABLE SCREENS EXTRACTABLE SCREENS [[753) Aliphatic Purgeables (1-3 Carbons) (751) Aliphatic Hydrocarbons (754) Aromatic & Halogenated Purgeables (760) Organochlorine Pesticides (765) Mass Spectrometer Purgeables (755) Base/Neutral Extractables [(766) Trihalomethanes (758) Herbicides, Chlorophenoxy acid Other Specific Compounds or Classes (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons [] (762) SDWA Pesticides & Herbicides ANALYTICAL RESULTS COMPOUND(S) DETECTED CONC. COMPOUND(S) DETECTED CONC. [PPB] [PPB] XD ΝD C.S. pph 米 aseniatic . DETECTION LIMIT . mb DETECTION LIMIT + ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: CERTIFICATE OF ANALYTICAL PERSONNEL Seal(s) Intact: Yes [] No X. Seal(s) broken by: _ _ date:_ I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: 11-22-67 Analyst's signature: 5- - 11 I certify that I have reviewed and concur with the analytical results for this semple and with the statements in this block 1 m2-2 MAY 8 1987 6 . Reviewers signature:

	Mail SCIENTIFIC LABORATORY DIVISION I 87-0629-C 700 Camino de Salud NE Albuquerque, NM 87106 841-2570
	REPORT TO: <u>David Tomko</u> S.L.D. No. OR- <u>627</u> A415 <u>Environmental Improvement Div.</u> DATE REC. <u>4-16-87</u>
	$\frac{724}{64} W. Animak Farming ton, NM $7401 PRIORITY Z PHONE(S): 327-9851 USER CODE: 59300 SUBMITTER: 2000 Murray CODE: 1000 SAMPLE COLLECTION CODE: (YYMMDDHHMMIII) 8700 4100 512 EM SAMPLE COLLECTION CODE: (YYMMDDHHMMIII) 8700 4100 512 EM SAMPLE TYPE: WATER 500 0, OTHER: COUNTY: 500 Juan; CITY: 4104 40 LOCATION CODE: (Township-Range-Section-Tracts) 21910 + 11410 + 174 10 LOCATION CODE: (Township-Range-Section-Tracts) 21910 + 11410 + 174 10 ANALYSES REQUESTED: Please check the appropriate box(es) below to indicate the type of analytical screens required. Whenever possible list specific compounds suspected or required. MI (753) Aliphatic Purgeables (1-3 Carbons) (751) Aliphatic Hydrocarbons$
ţ.	(753) Aliphatic Furgeables (1-3 Carbons) [(753) Aliphatic Hydrocarbons [(754) Aromatic & Halogenated Purgeables [(760) Organochlorine Pesticides [(765) Mass Spectrometer Purgeables [(755) Base/Neutral Extractables [(766) Trihalomethanes [(757) Herbicides, Chlorophenoxy acid [(766) Organochlorine Pesticides [(759) Herbicides, Triazines [(761) Organophosphate Pesticides [(761) Organophosphate Pesticides [(761) Organophosphate Pesticides [(761) Organophosphate Pesticides [(762) SDWA Pesticides & Herbicides [(762) SDWA Pesticides & Herbicides [(762) SDWA Pesticides & Herbicides [(762) SDWA Pesticides
	FIELD DATA: pII=; Conductivity=umho/cm at°C; Chlorine Residual=mg/l Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow Rate/ Depth to water7_ft.; Depth of well_20_ft.; Perforation Intervalft.; Casing:20' Sampling Location, Methods and Remarks (i.e. odors, etc.) Davald_Howell well house tap, CR 6255, #444
	I certify that the results in this block accurately reflect the results of my field analyses, observations and activities.(signature collector): ////////////////////////////////////
	I certify that this sample was transferred from to and that at (location) on and that the statements in this block are correct. Evidentiary Seals: Not Sealed Seals Intact: Yes No [
	Signatures

ł

LAB. No.: OR- 629

THIS PAGE FOR LABORATORY RESULTS ONLY					
This sample was tested using the analytical screening m	ethod(s) checked below:				
PURG EABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) (754) Aromatic & Halogenated Purgeables (765) Mass Spectrometer Purgeables (766) Trihalomethanes Other Specific Compounds or Classes	EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides				
ANALY	TICAL RESULTS				
COMPOUND(S) DETECTED CON	B][PPB]				
aromatic purgeables N					
na cogence can specific s per					
	· · · · · · · · · · · · · · · · · · ·				
• DETECTION LIMIT • * /m	6 + DETECTION LIMIT + + D. Sppb				
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE T R = DETECTED AT A LEVEL BELOW THE [RESULTS IN BRACKETS] ARE UNCONFIRMED LABORATORY REMARKS:	STATED DETECTION LIMIT (NOT CONFIRMED)				
CERTIFICATE OF	ANALYTICAL PERSONNEL				
Seal(s) Intact: Yes [] No A. Seal(s) broken by: I certify that I followed standard laboratory procedures on that the statements on this page accurately reflect the ana	date:				
Date(s) of analysis: $\frac{\sqrt{-22-\beta}}{\sqrt{-22-\beta}}$. Analyst's signature:					
I certify that I have reviewed and concur with the analyti					
Icriencia aignature. In chilippin """ a ladi					

		RECE LABORAT Camino de Sa rque, NM 8710	ORY DIV		C <u>AMAGEN</u>
REPORT TO:	David Tom Environmental 724 W. Aning	KO Improvement	Div.	S.L.D. No. OR- 6.27 DATE REC. 4/-16-	A4 19 87
	Farmington, NM	1 87401			
PHONE(S):				CODE: 15191310101	
SUBMITTER:	Les Marvoy		· · · · · · · · · · · · · · · · · · ·	······································	
			2 4 /3	109504EM	
	WATER X, SOIL , FOO		0		
	an Juan; CITY				•
LOCATION COL	E: (Township-Range-Section-Tra	$(cts) \underline{\chi} \underline{q} \underline{N}$	+ 1141W	+////+//(10N06E2	1342)
required. Wheney (753) Alipha (754) Aroma (765) Mass (766) Trihal	QUESTED: Please check the app for possible list specific compound PURGEABLE SCREENS thic Purgeables (1-3 Carbons) thic & Halogenated Purgeables Spectrometer Purgeables comethanes Specific Compounds or Classes	nds suspected or re	quired. (751) (760) (760) (755) 1 (755) 1 (758) 1	e the type of analytical screens <u>FRACTABLE SCREENS</u> Aliphatic Hydrocarbons Organochlorine Pesticides Base/Neutral Extractables Herbicides, Chlorophenoxy acid Herbicides, Triazines	
	, 2-Dichloroethan		(760) ((761) ((767) 1 (764) (Organochlorine Pesticides Organophosphate Pesticides Polychlorinated Biphenyls (PCB's) Polynuclear Aromatic Hydrocarbons SDWA Pesticides & Herbicides	
Dissolved Oxyger	onductivity=umho/cm_at n=mg/l; Alkalinity=	mg/l; Flow Rat			
Depth to water	UK ft.; Depth of well U	<u>K</u> ft.; Perforation 1	Interval	ft.; Casing:ÜK	•
	on, Methods and Remarks (i.e.				
Kuth	racy wellhouse	tap, C	<u>e 6255</u>	#2	
activities.(signatu	ne results in this block accurate re collector):	lurhan	Method	analyses, observations and of Shipment to the Lab:	······································
Samples were pi	eserved as follows:				
· · · · · · · · · · · · · · · · · · ·	No Preservation; Sample store Sample stored in an ice bath Sample Preserved with Sodiur STODY	(Not Frozen).		residual.	·
				_ to	
				• and th	
				,	
	n this block are correct. Evide				

AB.	No.:	OR-	627

THIS PAGE FOR LABORATORY RESULTS ONLY This sample was tested using the analytical screening method(s) checked below: PURGEABLE SCREENS EXTRACTABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) (751) Aliphatic Hydrocarbons (754) Aromatic & Halogenated Purgeables (760) Organochlorine Pesticides (765) Mass Spectrometer Purgeables [(755) Base/Neutral Extractables (766) Trihalomethanes (758) Herbicides, Chlorophenoxy acid Other Specific Compounds or Classes (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) [] (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides ANALYTICAL RESULTS CONC. COMPOUND(S) DETECTED COMPOUND(S) DETECTED CONC. [PPB] [PPB] ж C.S.Mpb * DETECTION LIMIT * + DETECTION LIMIT ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 26.V CERTIFICATE OF ANALYTICAL PERSONNEL Seal(s) Intact: Yes | No X. Seal(s) broken by: date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: 21 st 21 Am B? Analyst's signature:_ theneu CA I certify that I have reviewed and concur with the analytical results for this sample and with the statements in the back Reviewers signature:

REPORT TO:	David Tomko Environmental Improve 724 W. Animas	neut Div,	s.l.d. no. or- <u>(-36 A+B</u> date rec. <u>4-16-87</u>
	Farmington, NM 87 327-985/ Len Murroy CTION CODE: (YYMMDDHHMMIII) WATER X, SOIL , FOOD ,	401user 8_7_0_4_11_3	PRIORITY 2 CODE: 59300 CODE: 1100 CODE: 1100 31/1/352EM
LOCATION COD	N JUAN ; CITY: E: (Township-Range-Section-Tracts) <u>.</u>	2 9 N+1 4 0	
required. Whenever (753) Aliphat (754) Aromat (765) Mass S (766) Trihalo (766) Trihalo	<u>UESTED</u> : Please check the appropriate er possible list specific compounds sus <u>PURGEABLE SCREENS</u> tic Purgeables (1-3 Carbons) tic & Halogenated Purgeables Spectrometer Purgeables somethanes Specific Compounds or Classes 12 - Nichloro ethome	spected or required. [] (751) [] (760) [] (755) [] (758) [] (759) [] (760) [] (761) [] (764) [] (762)	Ate the type of analytical screens CTRACTABLE SCREENS Aliphatic Hydrocarbons Organochlorine Pesticides Base/Neutral Extractables Herbicides, Chlorophenoxy acid Herbicides, Chlorophenoxy acid Herbicides, Triazines Organochlorine Pesticides Organophosphate Pesticides Polychlorinated Biphenyls (PCB's) Polynuclear Aromatic Hydrocarbons SDWA Pesticides & Herbicides
Dissolved Oxygen Depth to water Sampling Location	nductivity=umho/cm_atmg =mg/l; Alkalinity=mg 18ft.; Depth of well_40_ft.; n, Methods and Remarks (i.e. odors, astow Wellhouse ta	Perforation Interval	ft.; Casing: <u>40 f7.</u>
activities.(signatur This form accom Samples were pre NP: NP: NP-Ice	panies Septum Vials, (eserved as follows: No Preservation; Sample stored at a Sample stored in an ice bath (Not Sample Preserved with Sodium Thio	Mass Jugs, and/or Froom temperature.	l of Shipment to the Lab:
I certify that th at (location)	is sample was transferred from	on/	to and that
	n this block are correct. Evidentiary		eals Intact: Yes 🔲 No 🔄

.

1

LAB. No.: OR- 63	5 U
------------------	-----

THIS PAGE FOR LABORATORY RESULTS ONLY

This sample was tested using the analytical scree	ning method(s)	checked below:	
PURGEABLE SCREENS		EXTRACTABLE SCREENS	_
(753) Aliphatic Purgeables (1-3 Carbons)		(751) Aliphatic Hydrocarbons	
(754) Aromatic & Halogenated Purgeables		(760) Organochlorine Pesticides	
(765) Mass Spectrometer Purgeables		[] (755) Base/Neutral Extractables	
[(766) Trihalomethanes		(758) Herbicides, Chlorophenoxy acid	r
Other Specific Compounds or Classes		(759) Herbicides, Triazines	
		(760) Organochlorine Pesticides	
		(761) Organophosphate Pesticides	
		(767) Polychlorinated Biphenyls (PCB's)	
		(764) Polynuclear Aromatic Hydrocarbons	
		(762) SDWA Pesticides & Herbicides	
AN	ALYTIC	AL RESULTS	
COMPOUND(S) DETECTED	CONC.	COMPOUND(S) DETECTED	CON C. [PPB]
T the allo	T I I		
and man Anglables	KD A		
Aziel Vosas Thomas	-70		·
12ccheoroe ineni	+		· I
totrar bloroethene	TR I		
			1
			1
	-	2	
· · · · · · · · · · · · · · · · · · ·	·[]		
		·····	-
arenute DETECTION LIMIT . *	Inch	halogenited + DETECTION LIMIT +	15mb
		Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan	
ABBREVIATIONS USED:			
N D = NONE DETECTED AT OR ABOVE			
T R = DETECTED AT A LEVEL BELOW			
[RESULTS IN BRACKETS] ARE UNCONF	IRMED AND	OR WITH APPROXIMATE QUANTITATION	i
		·	
LABORATORY REMARKS:		**	
EABORATORT REMARKS.	······		·····
		۵٬	
			l
	· · · · · ·		
		· _	
CERTIFICA	TE OF ANAL	YTICAL PERSONNEL	
Seal(s) Intact: Yes 🥅 No 🕅. Seal(s) broken b	у:	date:	
I certify that I followed standard laboratory procedu			ed and
that the statements on this page accurately reflect (the analytical	results for this sample.	
Date(s) of analysis: $4-22-67$. Analyst's si	, /		
I certify that I have reviewed and concur with the	analytical rem	are for this sample and with the statements in the	ia i i
Reviewers signature: Kmenerhim M	AY 8 1987	,	
Activities Bigliacule. A Eyernan			

	4	1 3 3 E 1 97 (197
- 0683 -C	700 Cami	BORATORY DIVISION
REPORT TO:	Dewid Tourko	
REPORT TO:	Environmental Impro	S.L.D. No. OR- U15.673
	724 W. Animas	
	Farmington NAT 871	
DHONE(S).	_ /	USER CODE: 52011
PHONE(S): SUBMITTER:	Len Murray	
	ECTION CODE: (YYMMDDHHMMIII)	
	: WATER $[\Sigma]$, SOIL $[]$, FOOD $[]$,	
COUNTY.	Say Juan ; CITY: F	
	DE: (Township-Range-Section-Tracts)	+(10N06E24342)
	QUESTED: Please check the appropriate ver possible list specific compounds susp	e box(es) below to indicate the type of analytical screens pected or required.
	PURGEABLE SCREENS	EXTRACTABLE SCREENS
	atic Purgeables (1-3 Carbons) atic & Halogenated Purgeables	(751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides
	Spectrometer Purgeables	[] (755) Base/Neutral Extractables
(766) Trihal		(758) Herbicides, Chlorophenoxy acid
A 1	r Specific Compounds or Classes 12-Dichwid ethanc	(759) Herbicides, Triazines
A -4	10- Man Old ENVANC	(760) Organochlorine Pesticides [] (761) Organophosphate Pesticides
<u> </u>		(767) Polychlorinated Biphenyls (PCB's)
		(764) Polynuclear Aromatic Hydrocarbons
	15: B-1 + R-2 H	(762) SDWA Pesticides & Herbicides
Remarks: <u>VIA</u>	15: B-1 + B-2 H	3 lauk
FIELD DATA:		
		<u> </u>
oH=; C	Conductivity=umho/cm at	°C; Chlorine Residual=mg/l
	Conductivity=umho/cm_at n=mg/l; Alkalinity=mg/	
)issolved Oxyger	n=mg/l; Alkalinity=mg/	
)issolved Oxyger)epth to water	n=mg/l; Alkalinity=mg/	l; Flow Rate/ Perforation Intervalft.; Casing:/A
)issolved Oxyger Depth to water ampling Locatio	n=mg/l; Alkalinity=mg/ MA_ft.; Depth of wellAft.; H on, Methods and Remarks (i.e. odors, e	i; Flow Rate/ Perforation Intervalft.; Casing:/A etc.)
Dissolved Oxyger Depth to water Sampling Locatio	n=mg/l; Alkalinity=mg/ A_ft.; Depth of weilA_ft.; I	i; Flow Rate/ Perforation Intervalft.; Casing:/A etc.)
Dissolved Oxyger Depth to water Sampling Location Furming	$m = mg/l; Alkalinity = mg/l; Alkalinity = mg/l; Alkalinity = mg/l; MA_ft.; Bepth of well NA_ft.; Bepth of the second seco$	i; Flow Rate
Dissolved Oxyger Depth to water Sampling Location Furthing I certify that th	n=mg/l; Alkalinity=mg/l MA_ft.; Depth of wellAft.; I on, Methods and Remarks (i.e. odors, e $ML_1 + C = L$ he results in this block accurately reflec	i; Flow Rate
Dissolved Oxyger Depth to water Sampling Location Farming certify that the activities.(signatu	m = mg/l; Alkalinity = mg/l; Alkalinity = mg/l; Alkalinity = mg/l; Alkalinity = mg/l; MA ft.; Hon, Methods and Remarks (i.e. odors, e M2, Hon, Field Office M/l; Hon, Field Office M/l; Hon, Hon, Hon, Hon, Hon, Hon, Hon, Hon,	i; Flow Rate
Dissolved Oxyger Depth to water Sampling Location From the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify that the certify the certify that the certify that the certify that the certify the certify the certify the certify the certify the certify the certify the certify the certify	n=mg/l; Alkalinity=mg/ <u>ft.;</u> Depth of well <u>ft.;</u> H on, Methods and Remarks (i.e. odors, e <u>ft.;</u> <u>Field Office //</u> he results in this block accurately reflect are collector): <u></u>	i; Flow Rate
Dissolved Oxyger Depth to water Sampling Location From form certify that the activities.(signatu This form accon Samples were pro- NP:	n=mg/l; Alkalinity=mg/l; $MA_{ft.}$; Depth of well <u></u> ft.; Hon, Methods and Remarks (i.e. odors, e <u></u>	i; Flow Rate
Dissolved Oxyger Depth to water Sampling Location From Location From Location Control for the second control for t	n=mg/l; Alkalinity=mg/ ft.; Depth of wellAft.; H on, Methods and Remarks (i.e. odors, e <u>N2, H2 n2</u> Field Office <u>M</u> he results in this block accurately reflect are collector): <u></u> <u>Clubic</u> npanies <u></u> Septum Vials, <u></u> G reserved as follows: No Preservation; Sample stored at ro Sample stored in an ice bath (Not H	i; Flow Rate
Dissolved Oxyger Depth to water Sampling Location Furthing I certify that the activities.(signatu This form accom Samples were pro- NP: NP: P-Ice P-Na S 0 2 2 3	n=mg/l; Alkalinity=mg/ ft.; Depth of wellAft.; H on, Methods and Remarks (i.e. odors, e Aft.; Field Office he results in this block accurately reflect ire collector):Aft. npanies Septum Vials,G reserved as follows: No Preservation; Sample stored at ro Sample stored in an ice bath (Not H Sample Preserved with Sodium Thiose	i; Flow Rate
Dissolved Oxyger Depth to water Sampling Locatio Furth 1 I certify that the activities.(signatu This form accon Samples were pro- NP: NP: NP: NP: NP: NP: NP: NP: NP: NP:	m=mg/l; Alkalinity=mg/l; MA_ft.; Depth of weilMA_ft.; H on, Methods and Remarks (i.e. odors, e MY, HON Field Office M he results in this block accurately reflect are collector):Management paniesSeptum Vials,G reserved as follows: No Preservation; Sample stored at ro Sample stored in an ice bath (Not H Sample Preserved with Sodium Thiose ISTOD Y	I; Flow Rate
Dissolved Oxyger Depth to water Sampling Locatio Furth 1 I certify that the activities.(signatu This form accon Samples were pro- NP: NP: NP: NP: NP: NP: NP: NP: NP: NP:	n=mg/l; Alkalinity=mg/l MA_ft.; Depth of wellAf_ft.; H on, Methods and Remarks (i.e. odors, e MA_ft.; Depth of wellAf_ft.; H on, Methods and Remarks (i.e. odors, e MA_ft.; Depth of wellAf_ft.; H on, Methods and Remarks (i.e. odors, e MA_ft.; Depth of wellAf_ft.; H he results in this block accurately reflect irre collector):Af_ft.c.c. // he results in this block accurately reflect irre collector):Af_ft.c.c. // mpaniesSeptum Vials,G reserved as follows: No Preservation; Sample stored at ro Sample stored in an ice bath (Not H Sample Preserved with Sodium Thiose STOD Y his sample was transferred from	i; Flow Rate
Dissolved Oxyger Depth to water Sampling Locatio From 1 I certify that the activities (signatu This form accon Samples were pro- NP: NP: P-Ice P-Na S 0 CHAIN OF CU I certify that the at (location)	n=mg/l; Alkalinity=mg/ MA_ft.; Depth of wellAft.; H on, Methods and Remarks (i.e. odors, e MY, HONField Office he results in this block accurately reflect are collector):M(1111111111111111111111111111111	i; Flow Rate

|

i

LAB. No.: OR- 683

THIS PAGE	FOR	LABORATORY	RESULTS	ONLY

This sample was tested using the analytical screer	ning method(s)	checked below:		
			· ·	
PURGEABLE SCREENS		EXTRACTABLE SCREENS		
(753) Aliphatic Purgeables (1-3 Carbons)		(751) Aliphatic Hydrocarbons	-	
(754) Aromatic & Halogenated Purgeables		(760) Organochlorine Pesticides		
(765) Mass Spectrometer Purgeables		(755) Base/Neutral Extractables		
(766) Trihalomethanes		(758) Herbicides, Chlorophenoxy scid		
Other Specific Compounds or Classes		(759) Herbicides, Triazines	_	
			•	
		(760) Organochlorine Pesticides		
		(761) Organophosphate Pesticides		
		[] (767) Polychlorinated Biphenyls (PCB's)		
		(764) Polynuclear Aromatic Hydrocarbons		
		🦳 (762) SDWA Pesticides & Herbicides		
. A NI			1	
AN	ALYTICA	AL RESULTS	1	
COMPOUND(S) DETECTED	CONC.	COMPOUND(S) DETECTED	CONC.	
	[PPB]		[PPB]	
		1	i	
MARINATIC ARINGRA MES	NU			
I have the Carller	AIN			
haugena with ful refal-les				
			1	
	┨───────┦			
	. !			
	I			
drematic DETECTION LIMIT . *	Imb	hatragitated + DETECTION LIMIT + +	C. Sarb 1	
		(WO PRESENTION BRAIL T		
ABBREVIATIONS USED:	//	\bigcirc	//	
N D = NONE DETECTED AT OR ABOVE	THE STATE	D DETECTION LIMIT		
T R = DETECTED AT A LEVEL BELOW	THE STATE	D DETECTION LIMIT (NOT CONFIRMED)		
[RESULTS IN BRACKETS] ARE UNCONF	IRMED AND/	OR WITH APPROXIMATE QUANTITATION	1	
LABORATORY REMARKS:				
	- <u>u</u>	· · · · · · · · · · · · · · · · · · ·		
	~ <u>==(=</u>			
		· · · · · · · · · · · · · · · · · · ·		
	PE OF ANAT	VTICAL PERSONNEL	Ę	
7		YTICAL PERSONNEL	Į	
Seal(s) Intact: Yes No X. Seal(s) broken by	<i>r</i> :	date:		
Seal(s) Intact: Yes [] No . Seal(s) broken by: date: date: date:				
that the statements on this page accurately reflect t			ļ	
Date(s) of analysis: 4-24-67 Analyst's mi	anture:	1- Humen		
i certify that I have reviewed and concur with the		R 1027	сноск 🚦	
I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this block Reviewers signature: <u>May 8</u> 1987				

0682-C	bic mail (SCIENTIFIC LABORAT 700 Camino de Sa Albuquerque, NM 8710	lud NE			
REPORT TO	David Tomko Environmental Improvement	Div DATE REC. 4-201-87			
	724 W. ANIMOR Farming ton, NH 87401 327-9851 Len Murray ECTION CODE: (YYMMDDHHMMIII) 18171 WATER X, SOIL , FOOD , OTHER:	$\frac{1}{2} = \frac{1}{2}	COUNTY:	DE: (Township-Range-Section-Tracts) 12191	
required. Whene (753) Aliphi (754) Arom (765) Mass (766) Trihal	QUESTED: Please check the appropriate box(es) be ver possible list specific compounds suspected or re <u>PURGEABLE SCREENS</u> atic Purgeables (1-3 Carbons) atic & Halogenated Purgeables Spectrometer Purgeables lomethanes r Specific Compounds or Classes 2- Vichloro than e				
Dissolved Oxyge Depth to water Sampling Locatio	onductivity=umho/cm at°C; Chlor n=mg/l; Alkalinity=mg/l; Flow Rat 3_ft.; Depth of well_33_ft.; Perforation I on, Methods and Remarks (i.e. odors, etc.) =[eucling_well house_tap_, #3	intervalft.; Casing:33'			
activities.(signatu This form accor Samples were p NP: NP: P-Ice	npenies Sectum Vials, Giass Jugs, a secured as follows: No Preservation; Sample stored at room tempera Sample stored in an ice bath (Not Frozen). Sample Preserved with Sodium Thiosulfate to re	Method of Shipment to the Lab:			
	his sample was transferred from				
	in this block are correct. Evidentiary Seals: Not S				

•

LAB. No.: OR- 68	
------------------	--

THIS PAGE FOR LABORATORY RESULTS ONLY

DIRCEADLE SCREENS EXTRACTABLE SCREENS (73) Aliphatic Europeande Furgebies (73) Aliphatic Hydroszbers (73) Mais Spectrometer Purgebies (73) Construct & Hadomethanse (74) Mais Spectrometer Purgebies (73) Mais Spectrometer Purgebies (74) Mais Spectrometer Purgebies (73) Mais Spectrometer Purgebies (74) Mais Spectrometer Purgebies (74) Markating Extractibles (75) Mais Spectrometer Purgebies (75) Herbicket, Triatines (75) Mais Spectrometer Purgebies (75) Herbicket, Triatines (75) Mais Spectrometer Purgebies (75) Markater Atomatic & Hadomethanse (75) Mais Spectrometer Purgebies (75) Markater Atomatic & Hadomethanse (75) Mais Spectrometer Purgebies (75) Markater Atomatic & Markater Atomat	This sample was tested using the analytical screening method(s) checked below:					
(713) Aliphatic Purgables (1-3 Carbon) (713) Aliphatic Purgables (715) Purgables (715) Purgables (715) Purgables (715) Purgables (715) Purgables (715) Purgables (715) Purgables (715) Purgables (715) Purgables (715) Purgables (715) Purgables (715) Purgables (715) Purgables (715) Purgables (715) Purgables	PURGEABLE SCREENS		FYTTRACTARLE SCREENS			
Crist) Aromatic & Haldsmarked Purpeklike [780] Organocholmin Petitides [780] Mais Spectrometer Purgeblies [780] Organocholmin Petitides [780] Other Specific Compounds or Classes [780] Herbiddes, Chlorophenoxy acid [780] Other Specific Compounds or Classes [780] Herbiddes, Chlorophenoxy acid [780] Organocholmic Petitides [780] Organocholmic Petitides [
Compounds or Classes (765) Mass Spectrometer Purgeables (765) Dest/Neutral Extractions (765) Other Specific Compounds or Classes (765) Mehiddas, Thainae (765) Other Specific Compounds or Classes (765) Mehiddas, Thainae (765) Destruction in the specific Compounds or Classes (765) Mehiddas, Thainae (765) Destruction in the specific Compounds or Classes (765) Mehiddas, Thainae (765) Destruction in the specific Compounds or Classes (765) Destruction Peeticides (765) Destruction in the specific Compounds or Classes (765) Destruction Peeticides (765) Destruction in the specific Compounds or Classes (765) Destruction Peeticides (765) Destruction President Compounds (765) Destruction President Compounds (765) Destruction Peeticides (765) Destruction President Compounds (765) Destruction Period (765) Destruction President Compounds (765) Destruction Peeticides (765) Destruction President Compounds (765) Destruction President Compounds (765) Destruction President Compounds (766) Destruction President Compounds						
(766) Trihalemethanee						
Other Specific Compounds or Classes [760] Organochlotine Ptailides [760] Merbinders Atomatic Hestilides [760] Organochlotine Ptailides [761] Organochlotine Ptailides [761] Organochlotine Ptailides [761] Organochlotine Ptailides [761] Organochlotine Ptailides [761] Organochlotine Ptailides [761] Organochlotine Ptailides [761] Organochlotine Ptailides [761] Organochlotine Ptailides [762] Merbinders Atomatic Horge [761] Organochlotine Ptailides [763] Organochlotine Ptailides [761] Organochlotine Ptailides [763] Organochlotine Ptailides [761] Organochlotine Ptailides [764] Polymbioris Atomatic Atoma						
Image: Second						
Image: Second second	Other Specific Compounds or Classes		·			
CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL CERTIFICATE OF ANALYTICAL PERSONNEL Secil(s) Intext: Yes No [0]. Secil(s) broken by:						
(763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (763) SDWA Pesitides & Herbleides (764) SDWA Pesitides & Herbleides (764) SDWA Pesitides & Herbleides (764) SDWA Pesitides & Herbleides (764) SDWA Pesitides & Herbleides (764) SDWA Pesitides & Herbleides (764) SDWA Pesitides						
COMPOUND(S) DETECTED CONC. COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI COMPOUND(S) DETECTED CONC. RPPI CONC. RPP				-		
DATE OF A DETECTED DATE OF A DETECTION LIMIT + COMPOUND(S) DETECTED				5		
COMPOUND(S) DETECTED CONC. COMPOUND(S) DETECTED CONC. Image: Compound in the provided inthe provided in the provided in the provided inthe provi			[_] (762) SDWA Pesticides & Herbicides			
COMPOUND(S) DETECTED CONC. COMPOUND(S) DETECTED CONC. PPDI PPDI PPDI PPDI	··•					
PPBI [PPB] At the purgeables ND Independent of this page accurreative redect the analytical regular for t	AN	ALYTICA	L RESULTS			
PPBI IPPBI Attractive purgeables ND Individual purgeables ND Indinteres ND <td>COMPOUND(S) DETECTED</td> <td>CONC</td> <td>COMPOIND(S) DETECTED</td> <td>CONC</td>	COMPOUND(S) DETECTED	CONC	COMPOIND(S) DETECTED	CONC		
Crange to purgeatles ND Autorigenetial purgeatles ND Autorigenetial purgeatles ND Intelligenetial purgeatles ND Intelligenetial purgeatles ND Intelligenetial purgeatles ND Intelligenetial purgeatles Intelligenetial purgeatles Inte			COMPOUND(S) DETECTED			
Autorgenetic products ND Image: The second secon				·LL		
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 	around purgeables	IVP				
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 	halinen tid Assign Lies	ND		1		
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 	Truck of the top for the court of the					
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 			· · · · · · · · · · · · · · · · · · ·			
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 						
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 						
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 						
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 						
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 			·			
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 						
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 						
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 						
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 						
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 			_			
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 	4			-1		
N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION 	1 lenner / LC. * DETECTION LIMIT * 1	mb	Malogenalit DETECTION LIMIT + T	16. Smab		
N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION 	ABBREVIATIONS USED.	11	0	// -		
T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: 		THE STATE	DETECTION LIMIT			
[RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY ŘEMARKS:						
LABORATORY REMARKS: CERTIFICATE OF ANALYTICAL PERSONNEL Seal(s) Intact: Yes No . Seal(s) broken by: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: <u>4-24-6</u> Analyst's signature: <u>6.25500000000000000000000000000000000000</u>			. , ,			
LABORATORY REMARKS: CERTIFICATE OF ANALYTICAL PERSONNEL Seal(s) Intact: Yes No No Seal(s) broken by: date: date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $4 - 24 - 6 - 7$ Analyst's signature: $4 - 24 - 6 - 7$ I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this contents in this contents.						
CERTIFICATE OF ANALYTICAL PERSONNEL Seal(s) Intact: Yes $[]$ No $[X]$. Seal(s) broken by: date: date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $\frac{f-2f-G}{f-2f}$. Analyst's signature: $\frac{f-2f-G}{f-2f-G}$. Analyst's signature: $for this sample and with the statements in this is the statements in this is the statements in this is the statements in the is the statements in the is the statements in the is the statements in the is the statements in the is the statements in the is the statements in the is the statements in the is the statements in the is the is the statements in the is the statements in the is the is the statements in the is the is the statement is in the is the statement in the is the is the statement is the is the statement in the is the is the statement is in the is the i$			· ·			
CERTIFICATE OF ANALYTICAL PERSONNEL Seal(s) Intact: Yes $[]$ No $[X]$. Seal(s) broken by: date: date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $\frac{\int -2 \int -\hat{C} -\hat{C}}{2 \int -\hat{C}}$. Analysi's signature: $\underbrace{\int -\frac{1}{2 \int -\frac{1}{2} \int -\hat{C}}{2 \int -\hat{C}}$. I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this for the statements of the statements in the statements	LABORATORY REMARKS					
Seal(s) Intact: Yes \square No \square . Seal(s) broken by: date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $\frac{1}{24-6}$. Analyst's signature: $\frac{1}{24-6}$. Analyst's signature: $\frac{1}{24-6}$.	biboidtioiti itbiinitite					
Seal(s) Intact: Yes \square No \square . Seal(s) broken by: date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $\frac{1}{24-6}$. Analyst's signature: $\frac{1}{24-6}$. Analyst's signature: $\frac{1}{24-6}$.		-				
Seal(s) Intact: Yes \square No \square . Seal(s) broken by: date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $\frac{1}{24-6}$. Analyst's signature: $\frac{1}{24-6}$. Analyst's signature: $\frac{1}{24-6}$.						
Seal(s) Intact: Yes \square No \square . Seal(s) broken by: date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $\frac{1}{24-6}$. Analyst's signature: $\frac{1}{24-6}$. Analyst's signature: $\frac{1}{24-6}$.						
Seal(s) Intact: Yes \square No \square . Seal(s) broken by: date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $\frac{1}{24-6}$. Analyst's signature: $\frac{1}{24-6}$. Analyst's signature: $\frac{1}{24-6}$.	······································	<u></u>				
Seal(s) Intact: Yes \square No \square . Seal(s) broken by: date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $\frac{1}{24-6}$. Analyst's signature: $\frac{1}{24-6}$. I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this large						
Seal(s) Intact: Yes \square No \square . Seal(s) broken by: date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $\frac{1}{24-6}$. Analyst's signature: $\frac{1}{24-6}$. I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this large						
I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $\frac{2}{-2}$. Analyst's signature: $\frac{2}{-2}$. Analyst's signature: $\frac{2}{-2}$. I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this large	CERTIFICAT	E OF ANAL	YTICAL PERSONNEL			
I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $\frac{\sqrt{-24}-6}{2}$. Analyst's signature: $\frac{\sqrt{-24}-6}{2}$. Analyst's signature: $\frac{\sqrt{-24}-6}{2}$.	Seal(a) Intact: Yes V No X Seal(s) broken by:					
that the statements on this page accurately reflect the analytical results for this sample. Date(s) of analysis: $\frac{24-23}{-24-6}$. Analysi's signature: $\frac{24-23}{-24-6}$. Analysi's signature: $\frac{24-23}{-24-6}$. I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this latter.		es on handlin	g and analysis of this sample unless otherwise not	ed		
Date(s) of analysis: <u>4-24-67</u> . Analyst's signature: <u>Analysical results</u> for this sample and with the statements in this lists				-		
I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this first						
I certify that I have reviewed and concur with the analytical results for this sample and with the statements in this first	Date(s) of analysis: <u>7-27-6</u> . Analyst's signature: <u>(Charbannary</u>					
				ia toolo		
Reviewers signature: K CM 2-102 Mile Miles						
	Reviewers signature: K M 2-16 have MAI & SOI					
	//	•••••••••••••••••••••••••••••				

	μ/ 700 Camin	DRATORY DIVISION
REPORT TO:	David Tomko	S.L.D. No. OR- Uls. 6-1
	Environmental Improvement	
	724 W. ANIMOS	
	Farmington, NM 5740	priority Z
PHONE(S):		USER CODE: 52011
SUBMITTER:	Leu Murray	
SAMPLE COLLE	CTION CODE: (YYMMDDHHMMIII)	17042011100LEM
	WATER X, SOIL , FOOD , O	
COUNTY: <u>5</u>	TAL JUAN ; CITY: Ki	rtland
LOCATION COD	E: (Township-Range-Section-Tracts) 12	9 N + 15 N + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
		pox(es) below to indicate the type of analytical screens
	er possible list specific compounds suspec PURGEABLE SCREENS	ted or required.
(753) Alipha	tic Purgeables (1-3 Carbons)	(751) Aliphatic Hydrocarbons
	tic & Halogenated Purgeables	(760) Organochlorine Pesticides
_	Spectrometer Purgeables	(755) Base/Neutral Extractables
] (766) Trihale Other	Specific Compounds or Classes	(758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines
	- Dichlorethave	(760) Organochlorine Pesticides
		(761) Organophosphate Pesticides
	· · · · · · · · · · · · · · · · · · ·	(767) Polychlorinated Diphenyls (PCB's)
<u> </u>		(764) Polynuclear Aromatic Hydrocarbons
		(764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides
	s: CR-1 * CR-Z	
Remarke: Vial FIELD DATA:		
Remarks: Vial FIELD DATA: pII=; Co Dissolved Oxygen	onductivity=umho/cm_at =mg/l; Alkalinity=mg/l;	C; Chlorine Residual=mg/l
Remarks: <u>Vial</u> FIELD DATA: pII=; Co Dissolved Oxygen	onductivity=umho/cm_at =mg/l; Alkalinity=mg/l;	C; Chlorine Residual=mg/l
Remarks: Vial FIELD DATA: pH=; Co Dissolved Oxygen Depth to water	onductivity=umho/cm_at =mg/l; Alkalinity=mg/l;	(762) SDWA Pesticides & Herbicides °C; Chlorine Residual=mg/l Flow Rate/ rforation Intervalft.; Casing:Z5'
Remarks: Vial FIELD DATA: pII=; Co Dissolved Oxygen Depth to water Sampling Locatio	onductivity=umho/cm_at =mg/l; Alkalinity=mg/l; 7_ft.; Depth_of_well_30_ft.; Per	(762) SDWA Pesticides & Herbicides °C; Chlorine Residual=mg/l Flow Rate/ rforation Intervalft.; Casing:Z5')
Remarks: Vial FIELD DATA: pII=; Co Dissolved Oxygen Depth to water Sampling Locatio	onductivity=umho/cm_at =mg/l; Alkalinity=mg/l; 7_ft.; Depth of well_30_ft.; Per n, Methods and Remarks (i.e. odors, etc.	(762) SDWA Pesticides & Herbicides °C; Chlorine Residual=mg/l Flow Rate/ rforation Intervalft.; Casing:Z5')
Remarks: Vial FIELD DATA: pII=; Co Dissolved Oxygen Depth to water Sampling Locatio Zuu & Ciu I certify that th activities.(signatur	onductivity=umho/cm_at =mg/l; Alkalinity=mg/l; 7ft.; Depth of well_ <u>30</u> _ft.; Per n, Methods and Remarks (i.e. odors, etc. wis <u>Reyubld</u> wellbouse to the results in this block accurately reflect re collector):	C; Chlorine Residual=mg/l Flow Rate/ rforation Intervalft.; Casing: $25'$ p, $#8$ CK 6553 the results of my field analyses, observations and Method of Shipment to the Lab:
Remarks: Vial FIELD DATA: pII=; Co Dissolved Oxygen Depth to water Sampling Locatio <u>Tom & Cik</u> I certify that th activities.(signatur This form accom	onductivity=umho/cm_at =mg/l; Alkalinity=mg/l; 7ft.; Depth of well_ <u>30</u> _ft.; Per n, Methods and Remarks (i.e. odors, etc. wis <u>Reyubld</u> wellbouse to the results in this block accurately reflect re collector):	C; Chlorine Residual=mg/l Flow Rate/ rforation Intervalft.; Casing: $25'$ p, $#8$ CK 6553 the results of my field analyses, observations and
Remarks: Vial FIELD DATA: pII=; Co Dissolved Oxygen Depth to water Sampling Locatio <u>Tous 4 fin</u> I certify that th activities.(signatur This form accom Samples were pro- NP:	e results in this bjock accurately reflect re collector): <u>Multiany</u> panies <u>Z</u> Septum Vials, <u>Gias</u> <u>con reservation; Sample stored at roor</u>	C; Chlorine Residual=mg/l Flow Rate/ rforation Intervalft.; Casing: $25'$ p, $# 8$ CK 6553 the results of my field analyses, observations and Method of Shipment to the Lab: is Jugs, and/or
Remarks: Vial FIELD DATA: pII=; Co Dissolved Oxygen Depth to water Sampling Locatio <u>Tom 4 fik</u> I certify that th activities.(signatur This form accom Samples were pro NP: P-Ice	onductivity=umho/cm at =mg/l; Alkalinity=mg/l; ft.; Depth of well_30_ft.; Per n, Methods and Remarks (i.e. odors, etc. wis Keynold wellhouse to the results in this block accurately reflect re collector):fun ipaniesSeptum Vials,Gias eserved as follows: No Preservation; Sample stored at roor Sample stored in an ice bath (Not Free	C; Chlorine Residual=mg/l Flow Rate/ reforation Intervalft.; Casing: $25'$ p = # g CK6553 the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and $f = \frac{1}{2}$ the results of my field analyses, observations and f
Remarks: Vial FIELD DATA: pH=; Co Dissolved Oxygen Depth to water Sampling Locatio <u>Tom 4 fik</u> I certify that th activities.(signatur This form accom Samples were pro NP: NP: P-Ice	onductivity=umho/cm at =mg/l; Alkalinity=mg/l; ft.; Depth of well_30_ft.; Per n, Methods and Remarks (i.e. odors, etc. wis Reynold wellhouse to the results in this block accurately reflect re collector):wmul	C; Chlorine Residual=mg/l Flow Rate/
Remarks: Vial FIELD DATA: pII=; Co Dissolved Oxygen Depth to water Sampling Locatio <u>Tota 4 ^ in</u> I certify that th activities.(signatur This form accom Samples were pro- NP: P-Ice P-Na S 0 CILAIN OF CUS	onductivity=umho/cm at =mg/l; Alkalinity=mg/l; ft.; Depth of well_30_ft.; Per n, Methods and Remarks (i.e. odors, etc. wis keywold wellbouse to be results in this block accurately reflect re collector):Wellbouse to the collector):Wellbouse to served as follows: No Preservation; Sample stored at roor Sample stored in an ice bath (Not Fro Sample Preserved with Sodium Thiosulf STODY	C; Chlorine Residual=mg/l Flow Rate/ rforation Intervalft.; Casing: $Z5'$) p, $# S CK6553the results of my field analyses, observations andMethod of Shipment to the Lab:is Jugs, and/orn temperature.Dzen).iate to remove chlorine residual.$
Remarks: Vial FIELD DATA: pII=; Co Dissolved Oxygen Depth to water Sampling Locatio <u>Touch 4 fin</u> I certify that th activities.(signatur This form accom Samples were pro- NP: P-Ice P-Na S 0 CILAIN OF CUS	onductivity=umho/cm at =mg/l; Alkalinity=mg/l; ft.; Depth of well_30_ft.; Per n, Methods and Remarks (i.e. odors, etc. wis Keywold wellbouse to the results in this block accurately reflect re collector):Mustic paniesSeptum Vials,Giae eserved as follows: No Preservation; Sample stored at roor Sample stored in an ice bath (Not Fro Sample Preserved with Sodium Thiosulf STOD Y his sample was transferred from	(762) SDWA Pesticides & Herbicides (762) SDWA
Remarks: Vial FIELD DATA: pII=; Co Dissolved Oxygen Depth to water Sampling Locatio Tom & Ciu I certify that th activities.(signatur This form accom Samples were pro- NP: P-Ice P-Na S 0 CILAIN OF CUS I certify that th at (location)	anductivity=umho/cm at =mg/l; Alkalinity=mg/l; ft.; Depth of well_30_ft.; Per n, Methods and Remarks (i.e. odors, etc. wig Keynold wellhouse to the results in this block accurately reflect the collector):wmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	(762) SDWA Pesticides & Herbicides (762) SDWA

.

LAB. No.: OR- 681

The second secon	TIIIS	PAGE	FOR	LABORAT	ORY	RESULTS	ONLY
--	-------	------	-----	---------	-----	---------	------

	DOLETIONT RESOLITS ONLY
This sample was tested using the analytical screening method	(s) checked below:
PURGEABLE SCREENS	EVER A CT A DE R. COD DE MC
	EXTRACTABLE SCREENS
(753) Aliphatic Purgeables (1-3 Carbons)	(751) Aliphatic Hydrocarbons
(754) Aromatic & Halogenated Purgeables	(760) Organochlorine Pesticides
(765) Mass Spectrometer Purgeables	[(755) Base/Neutral Extractables
(766) Trihalomethanes	(758) Herbicides, Chlorophenoxy acid
Other Specific Compounds or Classes	(759) Herbicides, Triazines
	(760) Organochlorine Pesticides
	(761) Organophosphate Pesticides
	(767) Polychlorinated Biphenyls (PCB's)
	(764) Polynuclear Aromatic Hydrocarbons
	. (762) SDWA Pesticides & Herbicides
· · ·	
ANALYTIC	CAL RESULTS
COMPOUND(S) DETECTED CONC.	COMPOUND(S) DETECTED CONC.
[PPB]	
arountic Aurgeables ND	
Li Ci az It / Li King A/D	
halt find pungeables NU	
· · · · · · · · · · · · · · · · · · ·	
	_
arounation DETECTION LIMIT . * / pp/s	had ogen tit DETECTION LIMIT + - C.S makes
	- <u> </u>
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STAT	
T R = DETECTED AT A LEVEL BELOW THE STAT	
[RESULTS IN BRACKETS] ARE UNCONFIRMED AN	D/OR WITH REFROMMATE QUANTITATION
LABORATORY REMARKS:	
EABORATORT REMARKS.	
	·······
CERTIFICATE OF ANA	ALYTICAL PERSONNEL
Seal(s) Intact: Yes [] No A. Seal(s) broken by:	date:
I certify that I followed standard laboratory procedures on hand	Ung and analysis of this sample unless otherwise nature
that the statements on this page accurately reflect the analytica	
Date(s) of analysis: 424-67 . Analyst's signature:	15fthanen
I certify that I have reviewed and concur with the analytical r	
	contro for the building and welt the bratefilder in the
Reviewers signature: Kmenahen	
	X

7-0678-C	RECE! SCIENTIFIC LABORATOR 700 Camino de Salud Albuquerque, NM 87106	NE
REPORT TO:	David Tomko Environmental Improvement Div.	S.L.D. No. OR- 627.675 DATE REC. 4-24-87
PHONE(S):	724 W, Animas Farmington, NM 87401 327-9851	USER CODE: $5 20/1/1$
SUBMITTER:	Lex Murray CTION CODE: (YYMMDDHHMMIII) 8 7 01	CODE:
SAMPLE TYPE:	WATER [X], SOIL [], FOOD [], OTHER:	
		14 W + 18 + 10000621312)
required. Whenever (753) Aliphat (754) Aromat (755) Mass S (766) Trihalo Other (766) Trihalo Other (766) Trihalo Other (766) Trihalo Other (767) Mass S (768) Trihalo Other (769) Trihalo Other (760) Trihalo Other (766) Trihalo Other (767) (766) Trihalo (768) (766) Trihalo (769) (766) Trihalo (760) (766) Trihalo (761) (766) Trihalo (761) (766) (767) Remarks: (760) (760) pli=	Specific Compounds or Classes	ed. <u>EXTRACTABLE SCREENS</u> (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (762) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides Residual=mg/l
Sampling Location	<u>4k</u> ft.; Depth of well <u>30</u> ft.; Perforation Inter n, Methods and Remarks (i.e. odors, etc.) <u>Laudeuslages</u> wellhouse tax	
activities.(signatur This form accomp Samples were pre NP: NP: P-Ice	te results in this block accurately reflect the results of re collector): <u>Jew Murtay</u> panies <u>Septum Vials</u> , <u>Gass Jugs</u> , and/o eserved as follows: No Preservation; Sample stored at room temperature Sample stored in an ice bath (Not Frozen). Sample Preserved with Sodium Thiosulfate to remove STODY	Method of Shipment to the Lab:
I certify that thin at (location)	ais sample was transferred fromon	
the statements in	n this block are correct. Evidentiary Seals: Not Sealed	
Signatures		

LAB. No .: OR- 678

TILS PAG	E FOR LABO	RATORY RESULTS ONLY		
This sample was tested using the analytical screening method(s) checked below:				
PURCEABLE SCREENS [] (753) Aliphatic Purgeables (1-3 Carbons) [] (754) Aromatic & Halogenated Purgeables [] (765) Mass Spectrometer Purgeables [] (766) Trihalomethanes Other Specific Compounds or Classes		EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbon (762) SDWA Pesticides & Herbicides	3	
<u>AN</u>	ALYTIC	AL RESULTS		
COMPOUND(S) DETECTED	CONC. [PPB]	COMPOUND(S) DETECTED	CONC.	
aranietic purgables Tatrachieroethene aranietic · Detection Limit · *	TR TR TR	halogenated + DETECTION LIMIT + +	C. Szob_	
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE T R = DETECTED AT A LEVEL BELOW [RESULTS IN BRACKETS] ARE UNCONF	THE STATE	D DETECTION LIMIT (NOT CONFIRMED)		
LABORATORY REMARKS:				
		بر مریک این این این این این این این این این این		
	··· · · ·			
CERTIFICA	TE OF ANAL	YTICAL PERSONNEL		
Scal(s) Intact: Yes No Scal(s) broken by I certify that I followed standard laboratory procedu	/: handlin	date:		
that the statements on this page accurately reflect t	he analytical,	results for this sample.		
Date(s) of analysis: $\frac{1}{2!}$ Analysis signal $\frac{1}{2!}$	gnature:	journe y		
I certify that I have reviewed and concur with the	analytical resu	ilts for this sample and with the statements in th	is i set	
Reviewers signature: <u>KMeyerher</u>				

7-0680-C	not meil al SCIENTIFIC LABORA	RECEIVED HAY 1 4 1987
·	Albuquerque, NM 871	Salud NE
REPORT TO:	David Tomko	S.L.D. No. OR- 22. 8. 6. 12
	Environmental Improvement Di	V. DATE REC. 4-2437
	724 W, Avinas	
	Farmington, NM 87401	PRIORITY Z
PHONE(S):	327-4851	USER CODE: 5 2 0 1 1
SUBMITTER:	Len Marray	CODE:
SAMPLE COLL	ECTION CODE: (YYMMDDHHMMIII) 8 7	0,4,2,0,1,1,4,0,6,EM
	WATER X, SOIL , FOOD , OTHER:	
COUNTY:	San Juan ; CITY: Kir	· · · · · · · · · · · · · · · · · · ·
LOCATION CO	DE: (Township-Range-Section-Tracts) $ 2 9 \lambda$	
	QUESTED: Please check the appropriate box(es)	
	ver possible list specific compounds suspected or	
	PURGEABLE SCREENS	EXTRACTABLE SCREENS
	atic Purgeables (1-3 Carbons) atic & Halogenated Purgeables	(751) Aliphatic Hydrocarbons
_	Spectrometer Purgeables	(760) Organochlorine Pesticides (755) Base/Neutral Extractables
[] (766) Triha		(100) Decylicatia Distributes (758) Herbicides, Chlorophenoxy acid
Othe	r Specifig Compounds or Classes	(759) Herbicides, Triazines
	2-Dichloroethave	(760) Organochlorine Pesticides
	n and approximation and a second se	(761) Organophosphate Pesticides
<u> </u>		[] (767) Polychlorinated Biphenyls (PCB's)
		(764) Polynuclear Aromatic Hydrocarbons
ii		(762) SDWA Pesticides & Herbicides
Remarks: V	als: KD-1 + KD-2	

FIELD DATA:		
pH=; C	conductivity=umho/cm_atC; Ch	nlorine Residual=mg/l
	n=mg/l; Alkalinity=mg/l; Flow H	
	•	n Intervalft.; Casing: <u>UK</u>
	on, Methods and Remarks (i.e. odors, etc.)	
	Decker- wellhouse tap, =	EZA CR6353
<u></u>	where a contraction of the	
I certify that t	he results in this block accurately reflect the re	sults of my field analyses observations and
		Method of Shipment to the Lab:
This form acces	npanies Septum Vials, Glass Jugs,	, and/or
	reserved as follows:	
	No Preservation; Sample stored at room temp	erature.
	Sample stored in an ice bath (Not Frozen).	
$\square P-Na S O CILAIN OF CU$	Sample Preserved with Sodium Thiosulfate to	remove chlorine residual.
	his sample was transferred from	to
at (location)		on/: and that
	in this block are correct. Evidentiary Seals: Not	
Signatures		

Meid limbert 5-15-57

.

LAB. No.: OR- 680

TIUS PAGE FOR	LABORATORY RESULTS ONLY
This sample was tested using the analytical screening me	thod(s) checked below:
PURCEABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) (754) Aromatic & Halogenated Purgeables (765) Mass Spectrometer Purgeables (766) Trihalomethanes Other Specific Compounds or Classes	EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (755) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides
ANALY	TICAL RESULTS
COMPOUND(S) DETECTED CON	
I am it i burner his A	
CULTING LLC ATTUISTICS NI	<u> </u>
-+ T the +	
1. Charfutmaethene	
	(
	· · · · · · · · · · · · · · · · · · ·
,	
anoninatic · DETECTION LIMIT · * /m	6 pologenated+ DETECTION LIMIT + + E.Spps
ABBREVIATIONS USED:	
N D = NONE DETECTED AT OR ABOVE THE S T R = DETECTED AT A LEVEL BELOW THE S [RESULTS IN BRACKETS] ARE UNCONFIRMED	TATED DETECTION LIMIT (NOT CONFIRMED)
ABORATORY REMARKS: There is a piro	rible trace amount of one other
mutaund that was dated	
the Aturn an Til The second	
mai man nor An heren	
CERTIFICATE OF	ANALYTICAL PERSONNEL
enl(s) Intact: Yes 🔲 No 🔯. Seal(s) broken by:	
certify that I followed standard laboratory procedures on h but the statements on this page accurately reflect the analy	handling and analysis of this sample unless otherwise noted and ytical results for this sample.
certify that I followed standard laboratory procedures on l	handling and analysis of this sample unless otherwise noted and ytical results for this sample.
certify that I followed standard laboratory procedures on 1 nut the statements on this page accurately reflect the analysis: $\frac{L^2-72L^2}{2}$. Analyst's signature:	handling and analysis of this sample unless otherwise noted and ytical results for this sample.

7- 0555-C SCIENTIFIC LABORATORY DIVISION Interview 700 Camino de Salud NE Albuquerque, NM 87106 841-2570 Interview REPORT TO: Maula Tomako SLD. Ne. OR. <u>565</u> A+B <u>EAUITOMAENTAL TUPTOWENT DIV.</u> DATE REC. <u>4-8-87</u> <u>724'WJ. Animako</u> SLD. Ne. OR. <u>565</u> A+B <u>EAUITOMAENTAL TUPTOWENT DIV.</u> DATE REC. <u>4-8-87</u> <u>724'WJ. Animako</u> SLD. Ne. OR. <u>565</u> A+B <u>SAMPLE COLLECTION CODE:</u> USER CODE: [5] 4] 0.00 SAMPLE COLLECTION CODE: ODD. OTERL COUNTY: Sci Di DO OTERL COUNTY: Sci Di DO OTERL COUNTY: Sci Di Concella CONCOC			No Contraction of the second	507 IN
	7-0565-C	700 Camino de	Salud NE	STATE OF NEW MENT
Far wingtow, NM \$740/	REPORT TO:	Environmental Improvem		
SAMPLE COLLECTION CODE: (YYMMDDHHMMIII) S 7 0 4 0 6 1 6 1 1 4 0 0 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	PHONE(S):	<u>Farmington, NM 8740,</u> 327-9851		2
COUNTY: <u>Scol Juce</u> ; CTTY: <u>kinHawk</u> LOCATION CODE: (Township-Range-Section-Tracts) <u>2191N+1/41W+/7+1</u> ((10N06E24342) ANALYSES REQUESTED: Please check the appropriate box(es) below to indicate the type of analytical screens required. Whenever possible list specific compounds supected or required. [753] Aliphatic Purgesbies (1-3 Carbon) [751] Aliphatic Hydrocarbons [753] Aliphatic Purgesbies (1-3 Carbon) [750] Main Specific compounds of [750] Main Specific meanted Purgesbies [755] Mas Specific compounds or Classes [750] Herbicides. Chicorphenoxy acid [755] Trihalomethanes [759] Herbicides. Chicorphenoxy acid [750] Other Specific Compounds or Classes [750] Herbicides. Chicorphenoxy acid [750] Other Specific Compounds or Classes [750] Herbicides. Chicorphenoxy acid [750] Herbicides. Chicorphenoxy acid [750] Herbicides. Chicorphenoxy acid [750] Polychlorinate & Hicorphenoxy acid [750] Polychlorinate & Hicorphenoxy acid [750] Polychlorinate & Hicorphenoxy acid [750] Polychlorinate Particides [750] Daraochiorine Petricides [750] Polychlorinate Particides [750] Polychlorinate Aromatic Hydrocarbons [752] SDWA Petricides & Herbicides. Chicorphenox [750] Polychlorinate Aromatic Hydrocarbons [750] Polychlorinate Aromatic Hydrocarbons [751] Organochiorine Petricides [750] Daraochiorine Petricides [750] Daraochiorine Petricides [750] Daraochiorine Petricides [751] Organochiorine Petricides [752] SDWA Petricides & Herbicides. COUNT [752] DATA: [751] Daraochiorine Petricides [752] Daraochiorine Petricides [753] Aliphate Hydrocarbons [754] Polychlorinate & Herbicides. COUNT [755] Daraochiorine Petricides [756] Daraochiorine Petricides [756] Daraochiorine Petricides [756] Daraochiorine Petricides [756] Daraochiorine Petricides [757] Polychlorinate Counter [750] [750] Daraochiorine Petricides [750] Daraochiorine Petricides [755] Daraochiorine Petricides [755] Daraochiorine Petricides [750] Daraochiorine Petricides [750] Daraochiorine Petricides [750] Daraochiorine Petricides [750] Da	SAMPLE COLLE	CTION CODE: (YYMMDDHHMMIII) $ \frac{8}{7}$	101410161141410161E1	M
<pre>required. Whenever possible list specific compounds suspected or required. PUID CADLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) (751) Aliphatic Hydrocarbons (764) Aromatic & Halogenated Purgeables (765) Mass Spectrometer Purgeables (765) Mass Spectrometer Purgeables (765) Trihalomethanes (766) Organochlorine Pesticides (765) Mass Spectrometer Purgeables (765) Herbicides, Chlorophenoxy acid (765) Mass Spectrometer Purgeables (765) Mass Spectrometer Purgeables (765) Mass Spectrometer Purgeables (765) Mass Spectrometer Purgeables (766) Organochlorine Pesticides (765) Herbicides, Chlorophenoxy acid (766) Organochlorine Pesticides (767) Polyabolicinated Biphenyls (PCB's) (768) Organochlorine Pesticides (769) Organochlorine Pesticides (760) Organochlorine Pesticides (760) Organochlorine Pesticides (761) Organophorphate Pesticides (762) SDWA Pesticides & Herbicides (763) Mass Spectrometerfl; Flow Rate</pre>	LOCATION COD	E: (Township-Range-Section-Tracts) $ 2 9 $	N+14W+17+ 1111	, ,
pH=; Conductivity=umho/cm at°C; Chlorine Residual=mg/l Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow Rate/ Depth to waterLK_ft.; Depth of well_LK_ft.; Perforation Intervalft.; Casing:LK Sampling Location, Methods and Remarks (i.e. odors, etc.) Charles Grubbs wellhouse tap , CR 6271. No observable odor or color I certify that the results in this block accurately reflect the results of my field analyses, observations and activities.(signature collector):MumayMethod of Shipment to the Lab: This form accompanies ZSeptum Viale,Glass Jugs, and/or Sample were preserved as follows: NP: No Preservation; Sample stored at room temperature. P-lee Sample stored in an ice bath (Not Frozen). P-Na \$0_0 Sample was transferred from	required. Whenev (753) Alipha (754) Aroma (765) Mass (766) Trihale Other	er possible list specific compounds suspected o <u>PURGEABLE SCREENS</u> tic Purgeables (1-3 Carbons) tic & Halogenated Purgeables Spectrometer Purgeables omethanes Specific Compounds or Classes <u>7 NiChlovo ethawe</u>	required. EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCE (764) Polynuclear Aromatic Hydrocard	:'a)
Sampling Location, Methods and Remarks (i.e. odors, etc.) <u>Charles Grubbs wellhouse tap</u> , <u>CR 6271</u> . <u>No observable addr or color</u> I certify that the results in this block accurately reflect the results of my field analyses, observations and activities.(signature collector): <u>Yur Murray</u> This form accompanies <u>Z</u> Septum Vials, <u>Glass Jugs, and/or</u> Samples were preserved as follows: NP: No Preservation; Sample stored at room temperature. P-Ice Sample stored in an ice bath (Not Frozen). P-Na S.O. Sample Preserved with Sodium Thiosulfate to remove chlorine residual. CHAIN OF CUSTODY I certify that this sample was transferred from <u>to</u> and that the statements in this block are correct. Evidentiary Seals: Not Sealed <u>Scals</u> Intact: Yes <u>No</u> <u>No</u>	oH=; Co			
activities.(signature collector): Yim Muttay Method of Shipment to the Lab: This form accompanies Septum Vials, Glass Jugs, and/or Samples were preserved as follows: NP: No Preservation; Sample stored at room temperature. P-Ice Sample stored in an ice bath (Not Frozen). P-Na \$20\$ P-Na \$20\$ Sample Preserved with Sodium Thiosulfate to remove chlorine residual. CHAIN OF CUSTODY to I certify that this sample was transferred from to at (location) on	Sampling Locatio	n, Methods and Remarks (i.e. odors, etc.)		
nt (location) on and that the statements in this block are correct. Evidentiary Seals: Not Sealed Seals Intact: Yes No [activities.(signatur This form accom Samples were pro NP: P-Ice P-Na S 0 3	re collector): You Muttery panies Z Septum Vials, Glass Jug eserved as follows: No Preservation; Sample stored at room tem Sample stored in an ice bath (Not Frozen). Sample Preserved with Sodium Thiosulfate to	Method of Shipment to the Lab:	
	at (location)		on/: ;	and that

ł. k

LAB. No .: OR- 565

THIS PAGE	E FOR LABO	RATORY RESULTS ONLY		
This sample was tested using the analytical screen	This sample was tested using the analytical screening method(s) checked below:			
PURGEABLE SCREENS		EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (761) Organophosphate Pesticides (762) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides		
COMPOUND(S) DETECTED	CONC.	COMPOUND(S) DETECTED		
	[PPB]		CONC. [PPB]	
Aromatic surcesbles	ND			
hologenated surgerblis	NO			
12 Michlood hours	110	······································		
i				
• DETECTION LIMIT • *	ppt	+ DETECTION LIMIT + +		
ABBREVIATIONS USED:	· • •			
N D = NONE DETECTED AT OR ABOVE				
T R = DETECTED AT A LEVEL BELOW [RESULTS IN BRACKETS] ARE UNCONF:			-	
······································	,		1	
		· · · · · · · · · · · · · · · · · · ·		
LABORATORY REMARKS:	······			
	<u></u>	· · · · · · · · · · · · · · · · · · ·		
		{		
		· .		
CERTIFICAT	E OF ANALY	TICAL PERSONNEL .		
Seal(s) Intact: Yes 🔄 No 🔼 Seal(s) broken by		date:		
I certify that I followed standard laboratory procedur	-	· · · · · · · ·	d od	
that the statements on this page accurately reflect the	1 1		-	
Date(s) of analysis: $\frac{4/30/87}{2}$. Analyst's sig				
I certify that I have reviewed and concur with the analytical results for this sample and with the statements in the				
Reviewers signature: Km 242 hel				

	RECEIVED MAR - 4 1837
SCIENTIFIC LABORA 700 Camino de Albuquerque, NM 87	Salud NE
REPORT TO: David Tomko	S.L.D. No. OR- 559 A+B
Environmental Improveme	
724W, ANIMAS	
Farminaton, NM 8740	/ priority Z
PHONE(S): 327-9851	USER CODE: 5 9 3 0 0
SUBMITTER: Len Murray	CODE: _ _ .
SAMPLE COLLECTION CODE: (YYMMDDHHMMIII) 8 7	01401611511512EM
SAMPLE TYPE: WATER 🔀 SOIL 🖂, FOOD 🖂, OTHER:	
COUNTY: San Juan ; CITY: Kirth	rad
LOCATION CODE: (Township-Range-Section-Tracts) 291	
ANALYSES REQUESTED: Please check the appropriate box(es)	
required. Whenever possible list specific compounds suspected or	required.
PURGEABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons)	EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons
(754) Aromatic & Halogenated Purgeables	(760) Organochlorine Pesticides
(765) Mass Spectrometer Purgeables	(755) Base/Neutral Extractables
(766) Trihalomethanes	(758) Herbicides, Chlorophenoxy acid
Other Specific Compounds or Classes /, Z-U: Choroethane	(759) Herbicides, Triazines (760) Organochlorine Pesticides
	(761) Organophosphate Pesticides
	(767) Polychlorinated Biphenyls (PCB's)
	(764) Polynuclear Aromatic Hydrocarbons
	🔲 (762) SDWA Pesticides & Herbicides
Remarks: Vials: KS-land K5-Z	
FIELD DATA:	
	hlorine Itenidual=ug/l
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow 1	
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow 1 Depth to waterft.; Depth of wellft.; Perforation Sampling Location, Methods and Remarks (i.e. odors, etc.)	n Intervalft.; Casing:UK
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow 1 Depth to waterft.; Depth of wellft.; Perforation Sampling Location, Methods and Remarks (i.e. odors, etc.)	n Intervalft.; Casing:UK
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow 1 Depth to waterft.; Depth of wellft.; Perforation	n Intervalft.; Casing:K
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow I Depth to waterft.; Depth of well <u>30</u> ft.; Perforation Sampling Location, Methods and Remarks (i.e. odors, etc.) <u>Kew Sweek well house tap</u> , <u>CR</u>	n Intervalft.; Casing: UK 6281, $\#$ 7, No observable odor or color,
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow I Depth to waterft.; Depth of well_ <u>30</u> ft.; Perforation Sampling Location, Methods and Remarks (i.e. odors, etc.) <u>KEN Sweek wellhouse tap</u> , <u>CR</u> I certify that the results in this block accurately reflect the re activities.(signature collector):Xin Muuruy	n Intervalft.; Casing: <u>UK</u> 6281, <u>#7, No observable odor or color</u> , sults of my field analyses, observations and Method of Shipment to the Lab:
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow I Depth to water3ft.; Depth of well_30_ft.; Perforation Sampling Location, Methods and Remarks (i.e. odors, etc.) Ken Sweek wellhouse tap, CR I	n Intervalft.; Casing: <u>UK</u> 6281, <u>#7, No observable odor or color</u> , sults of my field analyses, observations and Method of Shipment to the Lab:
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow I Depth to water3ft.; Depth of well_30_ft.; Perforation Sampling Location, Methods and Remarks (i.e. odors, etc.) KEN_SWEEK_WELLHOUSE Tap, CR I certify that the results in this block accurately reflect the re activities.(signature collector):KEM_MUMARY This form accompaniesSeptem Vials,Glass Jugs Samples were preserved as follows:	n Intervalft.; Casing: UK 6ZSI, $#$ 7, No observable odor or color, esults of my field analyses, observations and Method of Shipment to the Lab: , and/or
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow I Depth to waterft.; Depth of wellft.; Perforation Sampling Location, Methods and Remarks (i.e. odors, etc.) KEN_SWEEK_WELL HOUSE TAP, CR I certify that the results in this block accurately reflect the re activities.(signature collector):XEN_MUMARY This form accompaniesSeptem Vials,Glass Jugs Samples were preserved as follows: [NP:No Preservation; Sample stored at room temp	n Intervalft.; Casing: UK 6ZSI, $#$ 7, No observable odor or color, esults of my field analyses, observations and Method of Shipment to the Lab: , and/or
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow I Depth to waterft.; Depth of wellft.; Perforation Sampling Location, Methods and Remarks (i.e. odors, etc.) KENSWEEKWELL HOUSE TAP, CR I certify that the results in this block accurately reflect the re activities.(signature collector):KEN This form accompaniesSeptum Vials,Glass Jugs Samples were preserved as follows: NP: No Preservation; Sample stored at room temp [P-IceSample stored in an ice bath (Not Frozen).	n Intervalft.; Casing: <u>UK</u> <u>6281, #7, No observable odor or color,</u> esults of my field analyses, observations and <u>Method of Shipment to the Lab:</u> , and/or
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow I Depth to waterft.; Depth of wellft.; Perforation Sampling Location, Methods and Remarks (i.e. odors, etc.) KPAJ_Sweek_well house tap, CR I certify that the results in this block accurately reflect the re activities.(signature collector):XIA This form accompaniesSeptum Vials,Glass Jugs Samples were preserved as follows: NP: No Preservation; Sample stored at room temp	n Intervalft.; Casing: <u>UK</u> <u>6281, #7, No observable odor or color,</u> esults of my field analyses, observations and <u>Method of Shipment to the Lab:</u> , and/or
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow I Depth to waterft.; Depth of wellft.; Perforation Sampling Location, Methods and Remarks (i.e. odors, etc.) KENSWEEKWELL HOUSE Tap, CR I certify that the results in this block accurately reflect the re- activities.(signature collector):KIMMUNEY This form accompaniesSeptum Vials,Glass Jugs Samples were preserved as follows: NP:NO Preservation; Sample stored at room temp [S] P-IceSample stored in an ice bath (Not Frozen). P-Na_2S_0Sample Preserved with Sodium Thiosulfate to	n Intervalft.; Casing: <u>UK</u> <u>6281, #7, No observable odor or color</u> , esults of my field analyses, observations and <u></u> Method of Shipment to the Lab: , and/or perature. remove chlorine residual.
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow I Depth to waterft.; Depth of wellft.; Perforation Sampling Location, Methods and Remarks (i.e. odors, etc.) KPASWEEK_WELL HOUSE Taps, CR I I certify that the results in this block accurately reflect the re activities.(signature collector):XIA	n Intervalft.; Casing: <u>UK</u> <u>6231, #7. No observable odor or color</u> , esults of my field analyses, observations and <u>Method of Shipment to the Lab:</u> , and/or perature. remove chlorine residual.
Dissolved Oxygen=mg/l; Alkalinity=mg/l; Flow I Depth to waterft.; Depth of wellft.; Perforation Sampling Location, Methods and Remarks (i.e. odors, etc.) KPAD_SWEEK_WELL house tap, CR I I certify that the results in this block accurately reflect the re- activities.(signature collector):XIA_MAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	n Intervalft.; Casing: <u>UK</u> <u>6281, #7, No observable oder or celer</u> , esults of my field analyses, observations and <u>Method of Shipment to the Lab:</u> <u></u>

|

			Fra
IAR	Nia -	ND	
LAD.	110	UN-	559

THIS PAGE FOR LABORATORY RESULTS ONLY				
This sample was tested using the analytical screening method(s) checked below:				
PURGEABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) (754) Aromatic & Halogenated Purgeables (765) Mass Spectrometer Purgeables (766) Trihalomethanes Other Specific Compounds or Classes		EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (755) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides	``````````````````````````````````````	
ANA	ALYTICA	L RESULTS		
COMPOUND(S) DETECTED	CONC. [PPB]	COMPOUND(S) DETECTED	CONC.	
hologenated pergables aromatic purgables 1,2 dichloroethare	N.D			
			•	
aromatic purgables	N.D			
1,2 dichloroethane	N.P			
		·		
• DETECTION LIMIT • *	1 ppb			
• DETECTION LIMIT • 4	, pp	+ DETECTION LIMIT + I		
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE T R = DETECTED AT A LEVEL BELOW [RESULTS IN BRACKETS] ARE UNCONFI LABORATORY REMARKS:	THE STATED IRMED AND/	DETECTION LIMIT (NOT CONFIRMED) OR WITH APPROXIMATE QUANTITATION		
Seal(s)-Intact: Yes No Seal(s) broken by I certify that I foilowed standard laboratory procedur that the statements on this page accurately reflect th Date(n) of analysin: 4/20/57 Analyst's sig i certaly that i have reviewed and concur with the	res on handlin he analytical mature:	g and analysis of this sample unless otherwise noted guilts for this sample. Canne Basses Its for this sample and with the statements of	and J	
iternewers signature: <u>A My seyla hite</u>				

	mail	RECEIVE	EU HAY 1 4 1	1987	87-0624-C
		ABORATOR amino de Salud 1e, NM 87106	NE	N L BNURONM	STATE OF NEW MI
REPORT TO:	David Tomko Environmental Ing	provement Div		No. OR- <u>6</u>	24 A+B
SAMPLE TYPE: W	724 W; Animas Farmington, NH 327-985/ Len Murray Morray Mon code: (YYMMDDHHMMII VATER [2], SOIL [], FOOD [N JUGA]; CITY: _], OTHER:	PRIO USER CODE: CODE: 4/1/131/14		EM
ANALYSES REQUI required. Whenever [] (753) Aliphatic [] (754) Aromatic [] (765) Mass Spi [] (766) Trihalom Other S []	(Township-Range-Section-Tracts) ESTED: Please check the appropriate possible list specific compounds URGEABLE SCREENS Purgeables (1-3 Carbons) & Halogenated Purgeables ectrometer Purgeables ethanes pecific Compounds or Classes - Dich OVO ethane 5 : VL-1 & VL-1	riate box(es) below suspected or require [to indicate the ty ed. EXTRACTA (751) Aliphatic (760) Organoch (755) Base/Neu (758) Herbicide (759) Herbicide (760) Organoch (761) Organopl (767) Polychlon (764) Polynuch	BLE SCREENS Hydrocarbons nlorine Pesticides utral Extractables es, Chlorophenoxy	acid e (PCB's) frocarbons
Dissolved Oxygen=_ Depth to water Sampling Location,	Iuctivity=umho/cm_at mg/l; Alkalinity= 2 ft.; Depth of well 40 f Methods and Remarks (i.e. odor Well Wouse	(t.; Perforation Inter rs, etc.)	/f	it.; Casing: <u></u> μ	K
activities.(signature This form accompa Samples were prese NP: I P-Ice S	No Preservation; Sample stored a Sample stored in an ice bath (N Sample Preserved with Sodium T	Giuss Jugs, and/c it room temperature lot Frozen).	_ Method of Ship pr	ment to the Lab	
I certify that this at (location)	nample was transferred from		to		
	this block are correct. Evidentiar	10 0	I Seals Intac	st: Yes 🔲 No	

,

ļ

1

i L t

LAB. No .: OR- 624

THIS PAGE FOR LABORATORY RESULTS ONLY

This sample was tested using the analytical screen PURGEABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) (754) Aromatic & Halogenated Purgeables (765) Mass Spectrometer Purgeables (766) Trihalomethanes Other Specific Compounds or Classes ANA		EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (751) Aliphatic Hydrocarbons (750) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides	
COMPOUND(S) DETECTED	CONC.	COMPOUND(S) DETECTED	CONC.
· DETECTION LIMIT · *			
• DETECTION LIMIT • 7 ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE T R = DETECTED AT A LEVEL BELOW [RESULTS IN BRACKETS] ARE UNCONFI	THE STATED	DETECTION LIMIT (NOT CONFIRMED)	<u>. 4 999</u>
ABORATORY REMARKS:			
		· · · · · · · · · · · · · · · · · · ·	
		、 、	
			-
CERTIFICAT	TE OF ANALY	TICAL PERSONNEL	
renl(s) Intact: Yes \square No \square . Seal(s) broken by certify that I followed standard laboratory procedur hat the statements on this page accurately reflect th Date(s) of analysis: $21 + 24 + 9 + 5^{-2}$. Analyst's sig	res on handling he analytical re mature:	and analysis of this sample unless otherwise note sults for this sample.	
certify that I have reviewed and concur with the Reviewers signature: <u>K Manahar</u>		is for this sample and with the statements in the 1987	

	SCIENTIFIC LABOR 700 Camino d Albuquerque, NM 1	e Salud NE
REPORT TO:	David Tomko Environmental Improvement 724 W. Atninas	S.L.D. No. OR- 6-26 A41 Div. DATE REC.
PHONE(S):	Farmington, NM 87401 327-9851	$\frac{\text{PRIORITY}}{\text{USER CODE: } 5 9 3 0 0 }$
	2 Con Murray TION CODE: (YYMMDDHHMMIII) <u>8</u>] WATER Δ , SOIL \Box , FOOD \Box , OTHE	
	N Juan ; CITY: Kirtl C: (Township-Range-Section-Tracts) 1219	
required. Whenever (753) Aliphat (754) Aromat (765) Mass S (766) Trihalo Other Remarks: 10 FIELD DATA: pII=; Co Dissolved Oxygen: Depth to water Sampling Location	r possible list specific compounds suspected PURGEABLE SCREENS ic Purgeables (1-3 Carbons) ic & Halogenated Purgeables pectrometer Purgeables methanes Specific Compounds or Classes 2 - 0ichoro ethawe 5 - 0ichoro ethawe 5 - 0ichoro ethawe $6 - 1 \pm 6 - 2$ nductivity=umho/cm at°C; =mg/l; Alkalinity=mg/l; Flow	EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides (762) SDWA Pesticides & Z //
activities.(signatur This form accomp Samples were pre NP: X P-Ice	e collector): <u>Len Murhay</u> panies <u>Z</u> Septum Vials, <u>Glass</u> Ju).
I certify that thing at (location)	s sample was transferred from	to and that
	this block are correct. Evidentiary Seals: I	

LAB. No .: OR- 626

		LATORY RESULTS ONLY	
This sample was tested using the analytical screeni	ng method(s)	checked below:	· · · · ·
PURG EABLE SCREENS (753) Aliphatic Purgeables (1-3 Carbons) (754) Aromatic & Halogenated Purgeables (765) Mass Spectrometer Purgeables (766) Trihalomethanes Other Specific Compounds or Classes		EXTRACTABLE SCREENS (751) Aliphatic Hydrocarbons (760) Organochlorine Pesticides (755) Base/Neutral Extractables (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines (760) Organochlorine Pesticides (761) Organophosphate Pesticides (761) Organophosphate Pesticides (762) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides LRESULTS	
COMPOUND(S) DETECTED	CONC.	COMPOUND(S) DETECTED	CONC.
aromatic purgeables halogenated purgeables	[PPB] ND* ND+		[:"']]
		3	· · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	·
• DETECTION LIMIT • *	1.1	+ DETECTION LIMIT +	C.Sph
ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE T R = DETECTED AT A LEVEL BELOW [RESULTS IN BRACKETS] ARE UNCONFIL LABORATORY REMARKS: <u>CMC Machine</u> <u>Muit Machine</u>	THE STATED RMED AND/C	DETECTION LIMIT DETECTION LIMIT (NOT CONFIRMED) OR WITH APPROXIMATE QUANTITATION	
CERTIFICAT Seal(s) Intact: Yes [] No [X]. Seal(s) broken by: I certify that I followed standard laboratory procedure that the statements on this page accurately reflect th Date(s) of analysis 21224 A 22. Analyst's sign I certify that I have reviewed and concur with the m	ee on handling e analytical re nature:	and analysis of this sample unless otherwise note- sults for this sample.) 1
jieviewers signature:			

	SCIENTIFIC LABORATORY DIVISION
۶	700 Camino de Salud NE Albuquerque, NM 87106 841-2570
REPORT TO:	David TOMKO S.L.D. No. OR- CUI. 675
	Environmental Infrovenent Div, DATE REC. 4-24-87 724 W. Animas
	Farmington, NM 87401 PRIORITY Z
PHONE(S):	$\frac{32.7 - 9851}{2000000000000000000000000000000000000$
SUBMITTER:	Len Munday CODE: 1
	CTION CODE: (YYMMDDHHMMIII) $8770470475071556EM$
	WATER [X], SOIL [], FOOD [], OTHER: Con Juan; CITY:Ki-Hand
	E: (Township-Range-Section-Tracts) $ Z 9 N+1 4 W+0 7+ (10N06E24342)$
	UESTED: Please check the appropriate box(es) below to indicate the type of analytical screens
required. Wheneve	er possible list specific compounds suspected or required.
	PURGEABLE SCREENS EXTRACTABLE SCREENS ic Purgeables (1-3 Carbons) [751] Aliphatic Hydrocarbons
=	ic & Halogenated Purgeables (760) Organochlorine Pesticides
· <u> </u>	pectrometer Purgeables [] (755) Base/Neutral Extractables
(766) Trihalo Other	methanes [(758) Herbicides, Chlorophenoxy acid Specific Compounds or Classes [(759) Herbicides, Triazines
	2 - 1 (10) OF Detugate (10) Organochlorine Pesticides
	(761) Organophosphate Pesticides
	(767) Polychlorinated Biphenyls (PCB's)
<u> </u>	(764) Polynuclear Aromatic Hydrocarbons
	[(762) SDWA Pesticides & Herbicides
Remarks: VIC	ls; TG-1 + TG-2
FIELD DATA:	······································
pH=; Cor	nductivity=umho/cm atC; Chlorine Residual=mg/l
	=mg/l; Alkalinity=mg/l; Flow Rate/
	•
	<u>S</u> ft.; Depth of well <u>31</u> ft.; Perforation Intervalft.; Casing: <u>UK</u>
Depth to water Sampling Location	a, Methods and Remarks (i.e. odors, etc.)
Depth to water Sampling Location	
Depth to water Sampling Location	a, Methods and Remarks (i.e. odors, etc.)
Depth to water Sampling Location <u>Troy & Ma</u> I certify that the	a, Methods and Remarks (i.e. odors, etc.) <u>Agie Guillory Wellhouse tap</u> , <u><u>H</u>/1 CK 6345 e results in this block accurately reflect the results of my field analyses, observations and</u>
Depth to water Sampling Location <u>Troy & Ma</u> I certify that the activities.(signature	a, Methods and Remarks (i.e. odors, etc.) <u>Agie Guillory Wellhouse tap</u> , <u><u>H</u>/1 CK 6345 e results in this block accurately reflect the results of my field analyses, observations and</u>
Depth to water Sampling Location <u>Troy & Ma</u> I certify that the activities.(signature This form accomp Samples were pre	a, Methods and Remarks (i.e. odors, etc.) Agie Guillory Wellbouse tap, #11 CR 6345 e results in this block accurately reflect the results of my field analyses, observations and e collector):
Depth to water Sampling Location <u>Troy & Ma</u> I certify that the activities (signature This form accomp Samples were pre NP:	a, Methods and Remarks (i.e. odors, etc.) Agie Guillory Wellbouse tap, #11 CR 6345 e results in this block accurately reflect the results of my field analyses, observations and e collector): <u>flue flue tap</u> Method of Shipment to the Lab: panies <u>Z</u> Septum Vials, Glass Jugs, and/or served as follows: No Preservation; Sample stored at room temperature.
Depth to water Sampling Location <u>Troy & Ma</u> I certify that the activities.(signature This form accomp Samples were pre NP: P-Ice	a, Methods and Remarks (i.e. odors, etc.) Agie Guillory Wellhouse tap, #11 CR 6345 e results in this block accurately reflect the results of my field analyses, observations and e collector): <u>Yelly following</u> Method of Shipment to the Lab: banies <u>Z</u> Septum Vials, Glass Jugs, and/or served as follows: No Preservation; Sample stored at room temperature. Sample stored in an ice bath (Not Frozen).
Depth to water Sampling Location <u>Troy & Ma</u> I certify that the activities.(signature This form accomp Samples were pre NP: P-Ice	a, Methods and Remarks (i.e. odors, etc.) Agie Guillory Wellbouse tap, #11 CR 6345 e results in this block accurately reflect the results of my field analyses, observations and e collector): <u>Har fourtar</u> Method of Shipment to the Lab: panies Z Septum Viale, Glass Jugs, and/or served as follows: No Preservation; Sample stored at room temperature. Sample stored in an ice bath (Not Frozen). Sample Preserved with Sodium Thiosulfate to remove chlorine residual.
Depth to water Sampling Location <u>Troy & Ma</u> I certify that the activities.(signature This form accomp Samples were pre NP: P-Ice P-Na S O CIIAIN OF CUST	a, Methods and Remarks (i.e. odors, etc.) Agie Guillory Wellbouse tap, #11 CR 6345 e results in this block accurately reflect the results of my field analyses, observations and e collector): <u>Har fourtar</u> Method of Shipment to the Lab: panies Z Septum Viale, Glass Jugs, and/or served as follows: No Preservation; Sample stored at room temperature. Sample stored in an ice bath (Not Frozen). Sample Preserved with Sodium Thiosulfate to remove chlorine residual.
Depth to water Sampling Location <u>Troy & Ma</u> I certify that the activities.(signature This form accomp Samples were pre NP: P-Ice P-Na S O CIIAIN OF CUST	a, Methods and Remarks (i.e. odors, etc.) Agie Guillory Wellhouse tap, #11 CR 6345 e results in this block accurately reflect the results of my field analyses, observations and e collector): <u>fun functor</u> Method of Shipment to the Lab: <u>banies</u> Z Septum Vials, <u>Glass Jugs, and/or</u> served as follows: No Preservation; Sample stored at room temperature. Sample stored in an ice bath (Not Frozen). Sample Preserved with Sodium Thiosulfate to remove chlorine residual. TODY s sample was transferred from <u>to</u>

| ;

I

1ŀ

.

t u

			• ••	1-10
1	ΔR	No.	OR_{-}	670
-	πo .	140	O_{N}	6

THIS PAGE FOR LABORATORY RESULTS ONLY This sample was tested using the analytical screening method(s) checked below: PURGEABLE SCREENS EXTRACTABLE SCREENS [] (753) Aliphatic Purgeables (1-3 Carbons) [] (751) Aliphatic Hydrocarbons 🔀 (754) Aromatic & Halogenated Purgeables (760) Organochlorine Pesticides (765) Mass Spectrometer Purgeables [] (755) Base/Neutral Extractables (766) Trihalomethanes (758) Herbicides, Chlorophenoxy acid (759) Herbicides, Triazines Other Specific Compounds or Classes (760) Organochlorine Pesticides (761) Organophosphate Pesticides (767) Polychlorinated Biphenyls (PCB's) (764) Polynuclear Aromatic Hydrocarbons (762) SDWA Pesticides & Herbicides ANALYTICAL RESULTS COMPOUND(S) DETECTED CONC. COMPOUND(S) DETECTED CONC. [PPB] [PPB] Λ / \cap ND \mathbf{X} 1 muli Tur . DETECTION LIMIT . DETECTION LIMIT ABBREVIATIONS USED: N D = NONE DETECTED AT OR ABOVE THE STATED DETECTION LIMIT T R = DETECTED AT A LEVEL BELOW THE STATED DETECTION LIMIT (NOT CONFIRMED) [RESULTS IN BRACKETS] ARE UNCONFIRMED AND/OR WITH APPROXIMATE QUANTITATION LABORATORY REMARKS: CERTIFICATE OF ANALYTICAL PERSONNEL _ Seal(s) Intact: Yes [No 🔀. Seal(s) broken by: date: I certify that I followed standard laboratory procedures on handling and analysis of this sample unless otherwise noted and that the statements on this page accurately reflect the analytical results for this sample. di-Date(s) of analysis: 4-24-67 ___. Analyst's signature:____ -inc in I certify that I have reviewed and concur, with the analytical results for this sample and with the statements of the statements of the me