3R - 164

REPORTS

DATE:

Certified Mail: #7002 0510 0000 0307 7497

February 26, 2004

RECEIVED

Mr. William C. Olson New Mexico Oil Conservation Division 1220 St. Francis Dr. Santa Fe, NM 87504 MAR 03 2004

Oil Conservation Division Environmental Bureau

RE: 2003 Pit Project Annual Groundwater Report

Dear Mr. Olson:

In accordance with reporting requirements, El Paso Field Services (EPFS) has enclosed annual reports for the 24 remaining groundwater impacted sites that were identified during our pit closure project of 1994 / 1995.

EPFS has organized the 24 Annual Reports (Volumes 1, 2 and 3) by land type. Volume 1 contains Annual Reports for sites found on Federal land. Volume 2 contains Non Federal sites and Volume 3 contains sites on Navajo land. Of the 24 reports submitted, EPFS is requesting closure of one site located on Navajo lands (Jennepah #1). EPFS understands closure of groundwater sites on Navajo lands falls under jurisdiction of the Navajo Nation Environmental Protection Agency and original documents have been submitted to them for review. Other Navajo sites are included in the report for your information.

If you have any questions concerning the enclosed reports, please call me at (505) 599-2124.

Sincerely,

Scott T. Pope P.G.

Senior Environmental Scientist

xc: Mr. Denny Foust, NMOCD, Aztec - w / enclosures; Certified Mail # 7002 0510 0000 0307 7473 Mr. Bill Liesse, BLM - w / enclosures (federal sites only), Certified Mail # 7002 0510 0000 0307 7466

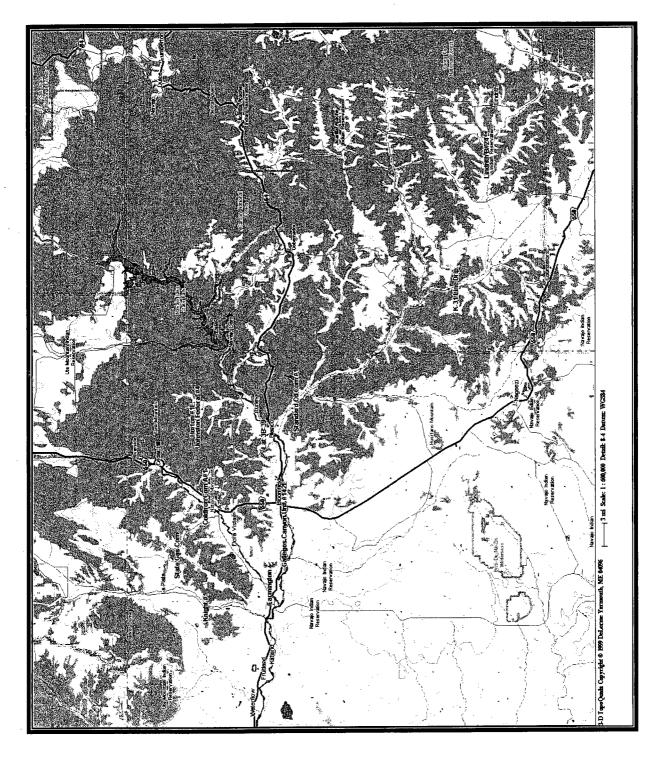

2003 ANNUAL GROUNDWATER REPORT NON-FEDERAL SITES VOLUME II EL PASO FIELD SERVICES

TABLE OF CONTENTS

METER or LINE (D)	SITE NAME	TOWNSHIP	RANGE	SECTION	UNIT
71669	State Gas Com N #1	31N	12W	16	Н
70194	Johnston Fed #4	31N	09W	33	Н
93388	Horton #1E	31N	09W	28	Н
72556	Knight #1	30N	13W	5	Α
73551	Coldiron A #1	30N	11W	2	К
03906	GCU Com A #142E	29N	12W	25	G
70445	Standard Oil Com #1	29N	09W	36	N
LD087	K-31 Line Drip	25N	06W	16	N
94967	Lindrith B #24	24N	03W	9	N

LIST OF ACRONYMS

B benzene

btoc below top of casing

E ethylbenzene

EPFS El Paso Field Services

ft foot/feet

GWEL groundwater elevation

ID identification

MW monitoring well

PSH phase-separated hydrocarbons

NMWQCC New Mexico Water Quality Control Commission

T toluene

TOC top of casing

NA not applicable

NE not established

NM not measured

NMOCD New Mexico Oil Conservation Division

NS not sampled

ORC oxygen-releasing compound

ppb parts per billion

μg/L micrograms per liter

X total xylenes

EPFS GROUNDWATER SITES 2003 ANNUAL GROUNDWATER REPORT

Coldiron A #1 Meter Code: 73551

SITE DETAILS

Legal Description: Town: 30N Range: 11W Sec: 2 Unit: K

NMOCD Haz 40 Land Fee Operator: Amoco Production Company

Ranking: Type:

PREVIOUS ACTIVITIES

Site Assessment: 3/94 Excavation: 4/94 (50 cy) Soil Boring: 10/95

Monitor Well: 10/95 Geoprobe: NA Additional MWs: NA

Downgradient Quarterly

MWs: NA Replace MW: NA Initiated: 4/96

ORC Nutrient Re- PSH Removal

Injection: NA Excavation: NA Initiated: NA

Quarterly

Annual Initiated: NA Resumed: NA

SUMMARY OF 2003 ACTIVITIES

MW-1: Quarterly groundwater sampling was performed during 2003.

Site-Wide Activities: No other activities were performed at this site during 2003.

SITE MAP

A site map (January) is attached in Figure 1.

SUMMARY TABLES AND GRAPHS

- Analytical data from 2003 are summarized on Table 1, and historic data are presented graphically in Figure 2.
- Laboratory reports are presented in Attachment 1.
- Field documentation is presented in Attachment 2.

GEOLOGIC LOGS AND WELL COMPLETION DIAGRAMS

No subsurface activities were performed at this site during 2003.

EPFS GROUNDWATER SITES 2003 ANNUAL GROUNDWATER REPORT

Coldiron A #1 Meter Code: 73551

DISPOSITION OF GENERATED WASTES

No wastes were generated at this site during 2003.

ISOCONCENTRATION MAPS

No isoconcentration maps were prepared for this site.

CONCLUSIONS

- Benzene concentrations in samples collected from MW-1 in January and April 2003 generally remained at the same level as 2001 and 2002. However, in July and October 2003, all BTEX concentrations (including benzene) were below NMOCD standards.
- Groundwater elevations in MW-1 fluctuated less than one foot during 2003.
- Dissolved oxygen and/or nutrients have not been introduced to the subsurface because concentrations of BTEX constituents are continuing to decline naturally.

RECOMMENDATIONS

• EPFS recommends that quarterly groundwater sampling at MW-1 continue until four consecutive quarterly samples are below closure criteria. If BTEX concentrations remain below standards in the first two quarters of 2004, this site will be submitted for closure.

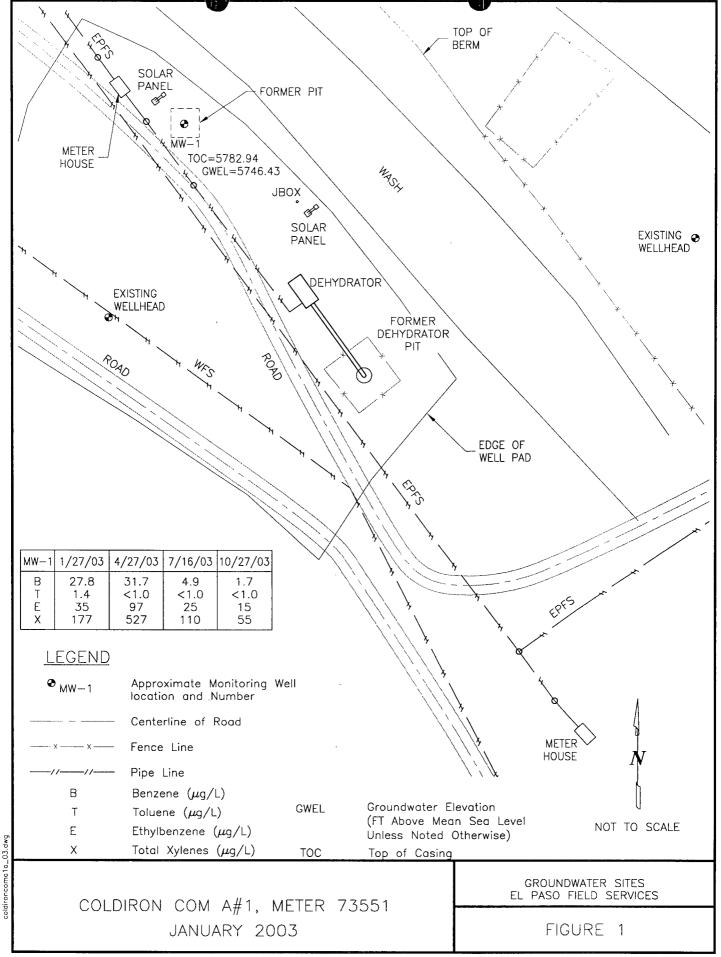
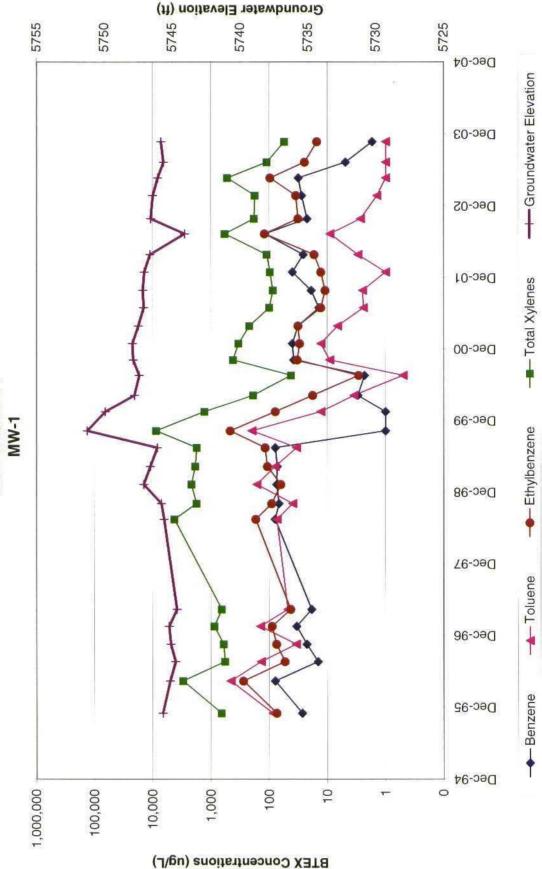



TABLE 1
SUMMARY OF BTEX COMPOUNDS IN 2003 GROUNDWATER SAMPLES
COLDIRON A#1 (METER #73551)

Cito Nomo	Monitoning Well	Comple Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Depth to Water
Site inallie	Monitoring wen	Sample Date	(ng/L)	(ng/L)	(ug/L)	(ng/L)	(ft btoc)
Coldiron A #1	MW-1	1/27/2003	27.8	1.4	35	177	36.51
Coldiron A #1	MW-1	4/27/2003	31.7	<1.0	76	527	36.87
Coldiron A #1	MW-1	7/16/2003	4.9	< 1.0	25	110	37.30
Coldiron A #1	MW-1	10/27/2003	1.7	<1.0	15	55	37.11

HISTORIC BTEX CONCENTRATIONS AND GROUNDWATER ELEVATIONS **COLDIRON A#1** FIGURE 2

ATTACHMENT 1 LABORATORY REPORTS

DATA VALIDATION WORKSHEET (Page 1 of 2)

Analytical Method/Analytes: SW-846 8021B (BTEX) Sample Collection Date(s): 10/27/03

Laboratory: Accutest MWH Job Number: EPC-SJRB (Groundwater)

Batch Identification: T5819 Matrix: Water

MS/MSD Parent(s)^(a): None Field Replicate Parent(s): None

Validation Complete:

(Date/Signature)

E	oot				Hits		T
	otes	Site ID	Sample ID	Lab. ID	(Y/N)	Quals.	Comments
-	1	Coldiron	MW-1	T5819-01	Y	J	Benzene @ 1.7 μg/l
						J	Toluene @ µg/l
						J	Ethylbenzene @ 15.2 µg/l
						J	m/p-Xylene @ 42.1 µg/l
ŀ						J	o-Xylene @ 13.2 μg/l
L						J	Xylenes (total) @ 55.3 μg/l
No	one	Trip Blank	TB10270301	T5819-02	N		
							
<u></u>			<u>L</u>	L		<u> </u>	L

Analytical Method: SW-846 8021B (BTEX) MWH Job Number: EPC-SJRB (Groundwater)

Laboratory: Accutest Batch Identification: T5819

Validation Criteria						
Sample ID	Coldiron MW-1	TB102703				
Lab ID	T5819-01	T5819-02				
Holding Time	A	Α				
Analyte List	Α	A				
Reporting Limits	A	Α	_			
Surrogate Spike Recovery	A ¹	A				
Trip Blank	Α	A				
Equipment Rinseate Blanks	N/A	N/A				
Field Duplicate/Replicate	N/A	N/A				
Initial Calibration	N	N				
Initial Calibration Verification (ICV)	N	N				
Continuing Calibration Verification (CCV)	N	N	-			
Method Blank	A	Α				
Laboratory Control Sample (LCS)	A	Α				
Laboratory Control Sample Duplicate (LCSD)	N	N				
Matrix Spike/Matrix Spike Dup. (MS/MSD)	A	N/A				
Retention Time Window	N	N				
Injection Time(s)	N	N				
Hardcopy vs. Chain-of-Custody	A	A				
EDD vs. Hardcopy	N	N				
EDD vs. Chain of Custody	N	N				

(a) List QC batch identification if different than Batch ID

A indicates validation criteria were met

A/L indicates validation criteria met based upon Laboratory's QC Summary Form

X indicates validation criteria were not met

N indicates data review were not a project specific requirement

N/A indicates criteria are not applicable for the specified analytical method or sample

N/R indicates data not available for review

NOTES:

1) Surrogate percent recovery outside acceptance criteria for 4-bromofluorobenzene @ 139% (64-121) and aaa-trifluorotoluene @ 145% (71-121), indicating a possible high bias. Qualify associated sample hits with "J" flags to indicate the data are estimated and possibly biased high.

Technical Report for

Montgomery Watson

EPFS San Juan Basin Groundwater Site

D-MWH-04-01-03-MSG-01

Accutest Job Number: T5819

Report to:

Montgomery Watson

brian.buttars@us.mwhglobal.com

ATTN: Brian Buttars

Total number of pages in report: 12

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Ron Martino Laboratory Manager

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: T5819-1: COLDIRON MW-1	4
2.2: T5819-2: TB10270301	5
Section 3: Misc. Forms	6
3.1: Chain of Custody	7
Section 4: GC Volatiles - QC Data Summaries	9
4.1: Method Blank Summary	10
4.2: Blank Spike Summary	11
4.3: Matrix Spike/Matrix Spike Duplicate Summary	12

Sample Summary

Montgomery Watson

Job No:

T5819

EPFS San Juan Basin Groundwater Site Project No: D-MWH-04-01-03-MSG-01

Sample Number	Collected Date	Time By	Mat Received Cod		Client Sample ID
T5819-1	10/27/03	15:00 MN	10/29/03 AQ	Ground Water	COLDIRON MW-1
T5819-2	10/27/03	07:00 MN	10/29/03 AQ	Ground Water	TB10270301

Report of Analysis

Page 1 of 1

Client Sample ID: COLDIRON MW-1

Lab Sample ID:

T5819-1

Matrix: Method: AQ - Ground Water

SW846 8021B

Date Sampled: 10/27/03 Date Received: 10/29/03

Percent Solids: n/a

Project:

EPFS San Juan Basin Groundwater Site

Prep Batch File ID DF Analyzed Prep Date **Analytical Batch** By KK005988.D 11/06/03 BC **GKK322** Run #1 1 n/a n/a

Run #2

Purge Volume

Run #1 Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	Units Q
71-43-2 108-88-3 100-41-4 1330-20-7 95-47-6	Benzene Toluene Ethylbenzene Xylenes (total) o-Xylene m,p-Xylene	1.7 ND 15.2 55.3 13.2 42.1	1.0 1.0 1.0 3.0 1.0 2.0	ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	139% ^a 145% ^a		64-121% 71-121%

(a) Outside control limits due to matrix interference.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: TB10270301

Lab Sample ID:

T5819-2

Matrix: Method: AQ - Ground Water

SW846 8021B

EPFS San Juan Basin Groundwater Site

Date Sampled: 10/27/03 Date Received: 10/29/03

Percent Solids: n/a

Project:

File ID Run #1

DF KK005991.D 1

Analyzed 11/06/03

By BC **Prep Date** n/a

Prep Batch n/a

Analytical Batch

GKK322

Run #2

Purge Volume

Run #1 Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	Units Q
71-43-2 108-88-3 100-41-4 1330-20-7 95-47-6	Benzene Toluene Ethylbenzene Xylenes (total) o-Xylene m,p-Xylene	ND ND ND ND ND ND	1.0 1.0 1.0 3.0 1.0 2.0	ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	108% 111%		64-121% 71-121%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

EAC	C	U	E	<u>S</u>	T.

CHAIN OF CUSTOD # 03/027mlp/ 10165 Harwin Drive, Ste. 150, Houston, TX 77036 FED-EX Tracking # 8422524(4800) Bottle Order Control # 8422524(4800)

MALLUIEDI.			1 F.L., /13					/1-47	70	Accura	st Quote #	1700		Accutest Joi	2 #		
Laboratories				www.	accult	cst.co				ماسما	A GOOLG IF				• •		
			83 O	d lake		2000											224
Client / Reporting Information		eci Name		t Informa									Requ	ested Analysis	<u> </u>	- The same of the	Matrix Codes DW - Drinking Wate(
MWH/BL PERS	[[10]	SCPS	5 671	01	ndo	rel	_										GW - Ground Water
Aridrass	Stre									7					1		WW - Wate
64 Relly										┙.	1	1	ı		-	1 1	SW - Surface V
Examination NM 8740	Zip City			State											ł	1 1	SO - Soil
Project Contact E-mail	Proj	ect#								-	-	1 1	}	1 1	}	1	SL - Sludge
Scott Phyce										_				1 1	1		OI - OI
505 599 Z124	Fax	* 505 4	5992	201	9					اپ ا				<u> </u>			LIQ Other Liquid
Sampler's Name W Mee	Clier	nt Purchase Order #								\mathbb{Z}^{3}] [AIR - Air SOL - Other Solid
	UMMA#	Collection			Num	ber of p	veserv	red Bot	iles	$\dashv \setminus$	İ			1 1			WP - Wipe
Sample #	OHViel# Date	Sample Time By	d Matrix bo	of tiles 🗜		CO POSC			T S	Z 2					1		LAB USE ONLY
1 Coldiron mw-1	227.			2 X			+	1	٦	×			\top	1			
2 13/0270301	roh-	60000 mu	w	ΙX	П			Т	П	8							
	<u> </u>	70-			П		T				<u> </u>			1	1	1777	
			1-1-	_	\Box	\top	1		\vdash	+	_		T		+		
-		+	+		\vdash	+	╁	╁		+			+	 	┪		
		- 	 	_	┤┤	+	╁	╁	\vdash	+		 			+-	 	1
			+ +		1	+	+	-	-			1		} 			
			+ +		H	-	+	╄	\vdash			 	+-	 			
		 	-		-	+	+	╀-	4	-		 	-		<u> </u>		ļ
							┸	<u> </u>	\perp			 	_		↓_	 	
					Ц	_L	上					<u> </u>			<u> </u>		
			₩£ Da	a Deliver							T		line and	Comments / R	emarks		•
10 Day STANDARD Approved By: / Date:		Commercial "A"		Ц	EDD I	Format	_	_			1					_	
- · · · · · · · · · · · · · · · · · · ·		Reduced Tier 1												-	A	VA .	
3 Day EMERGENCY		☐ Full Tier 1											-	5	X		
2 Day EMERGENCY 1 Day EMERGENCY		TRRP13													J	•	
D Other																	
		Commercial */	A* = Results	Only													
Emergency & Rush T/A data available VIA LabLink													····				
		le Custody must be doc	umented belor	w each tir				ossess	ion, inc	luding cour	er delivery 💈					mayauza) A	
Rehnquished Manylor: Date Ime: Date Ime:	Received by:				Relino 2	quished t	Þγ					Date Time	•	Received by:			
Relinquished by: Doge Time	Recoverage.	/ /				quished t	òγ.					Date Time		Received by:			
3	200 3/C/1	utt		_	4									4			
Relinquished by: Date Time.	Received by.				Custo	dy Seal	Ħ				Preserved v	here applicable		On Ice		Cooler	18.0
5	5													~		<u></u>	· · ·

T5819: Chain of Custody

Page 1 of 2

U, <2, >12, NA	5 U, <2, >12, NA	5 U, <2, >12, NA	5 U, <2, >12, NA		EMP:	Form: SM012
1,2,3,4,5,6	1,2,3,4,5,6	1,2,3,4,5,6	1,2,3,4,5,6		COOLER TEMP:	- <u>-</u> -

1,2,3,4,5,6 U, <2, >12, NA U, <2, >12, 16 U, <2, >12,(NA U, 52,512, NA 1,2,3 4,5,6 U, <2, >12, NA 1,2,3,4,5,6 U, <2, >12, NA 1,2,3,4,5,6 U, <2, >12, NA 1,2,3,4,5,6 U, <2, >12, NA U, <2, >12, NA U, <2, >12, NA U, <2, >12, NA 1.2.3.4.5.6 11.-27, NA COOLER TEM COOLER TEM 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 PRESERV. Sample received in undamaged condition. 2. N Samples received within temp, range. Sample received with proper pH. 4. N Sample received with chain of custody. Sample volume sufficient for analysis. 6. N Sample received with chain of custody. Condition/Variance (Circle "Y" for yes and "N" for no. If "N" is circled, see variance for explanation) URB LOCATION COOLER TEMP: 40°C COOLER TEMP: VOLUME INITIALS: AOV SUB; Subcontract EF: Encore Freezer Custody seal received intact and tamper evident on cooler. Custody seal received intact and tamper evident on bottles MB MATRIX 23 Comments: 4: H2SO4 5: NAOH 6: Other Chain of Custody matches sample IDs on containers. DATE SAMPLED rate of Ea/L2/01 1. W Sample received in unuameges. 3. Y (A) Sample received with proper p.H. PRESERVATIVES: 1: None 2: HCL 3: HNO3 VR: Volatile Refrig. BOTTLE # 2 AH Of waters checked excluding volatiles Paso Tracking#: LOGATION: WILL WARKIT SAMPLE or FIELD ID CLIENT: E pH of soils N/A N z z z z

0060

50/22/01

DATE/TIME RECEIVED:

30B#:

SAMPLE RECEIPT LOG

T5819: Chain of Custody Page 2 of 2 Method of sample disposal: (circle one) Accutest disposal Hold Return to Client

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike SummariesMatrix Spike and Duplicate Summaries

Method Blank Summary Job Number: T5819

Job Number:

Account:

MWHSLCUT Montgomery Watson

Project:

EPFS San Juan Basin Groundwater Site

Sample GKK322-MB

File ID DF KK005986.D1

Analyzed 11/06/03

By ВČ Prep Date n/a

Prep Batch n/a

Analytical Batch

GKK322

The QC reported here applies to the following samples:

Method: SW846 8021B

T5819-1, T5819-2

CAS No.	Compound	Result	RL	Units Q
71-43-2 100-41-4 108-88-3 1330-20-7 95-47-6	Benzene Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	ND ND ND ND ND	1.0 1.0 1.0 3.0 1.0 2.0	ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries		Limit	ts
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	109% 109%	64-12 71-12	

Page 1 of 1

Blank Spike Summary Job Number: T5819

Account:

MWHSLCUT Montgomery Watson

Project:

EPFS San Juan Basin Groundwater Site

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
GKK322-BS	KK005985.D	1	11/06/03	BC	n/a	n/a	GKK322

The QC reported here applies to the following samples:

Method: SW846 8021B

T5819-1, T5819-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2 100-41-4 108-88-3 1330-20-7 95-47-6	Benzene Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	20 20 20 60 20 40	21.3 21.6 21.2 63.4 21.0 42.4	107 108 106 106 105 106	74-119 82-115 77-116 79-115 78-114 79-116
CAS No.	Surrogate Recoveries	BSP	Lir	nits	
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	103% 102%	_	-121% -121%	

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:

T5819

Account: Project:

MWHSLCUT Montgomery Watson EPFS San Juan Basin Groundwater Site

Sample T5819-1MS T5819-1MSD T5819-1	File ID KK005989.I KK005990.I KK005988.I	D1	Analyzed 11/06/03 11/06/03 11/06/03	By BC BC BC	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch GKK322 GKK322 GKK322	

The QC reported here applies to the following samples:

Method: SW846 8021B

T5819-1, T5819-2

CAS No.	Compound	T5819-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7 95-47-6	Benzene Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	1.7 15.2 ND 55.3 13.2 42.1	20 20 20 60 20 40	23.9 35.3 22.1 113 32.7 80.0	111 101 111 96 98 95	24.6 35.5 22.6 109 31.5 77.7	115 102 113 90 92 89	3 1 2 4 4 3	64-124/16 64-123/14 64-120/13 66-118/18 65-119/20 66-120/14
CAS No. 460-00-4 98-08-8	Surrogate Recoveries 4-Bromofluorobenzene aaa-Trifluorotoluene	MS 121% 123%* b	MSD 121% 127%* ¹	139	319-1 %* a %* a	Limits 64-1219 71-1219	_		

⁽a) Outside control limits due to matrix interference.

⁽b) Outside control limits due to matrix interference. Confirmed by reanalysis.

DATA VALIDATION WORKSHEET (Page 1 of 2)

Analytical Method/Analytes:	SW-846 8021B (BTEX)	Sample Collection Date(s):	07/16/03
Laboratory:	Accutest	MWH Job Number:	EPC-SJRB
			(Groundwater)
Batch Identification:	T4890	Matrix:	Water
MS/MSD Parent(s) ^(a) :	T4890-02	Field Replicate Parent(s):	None
Validation Complete: _	Brian	Buttars - 07/28/03	
		(Data/Signature)	

Foot				Hits		
Notes	Site ID	Sample ID	Lab. ID	(Y/N)	Quals.	Comments
None	Coldiron	MW-1	T4890-01	Y		Benzene @ 4.9 T µg/l
ļ			<u> </u>	}		Ethylbenzene @ 24.7 µg/l
						Xylenes, total @ 110 μg/l
		1				o-Xylenes @ 27.3
						m,p-Xylenes @ 82.8 µg/l
None	Trip Blank	160703TB01	T4890-02	N		
				<u> </u>		
<u> </u>						
) 	
						
				 		
						
	<u> </u>					
J		L		L		<u> </u>

DATA VALIDATION WORKSHEET

(Page 2 of 2)

Analytical Method: _	SW-846 8021B (BTEX)	MWH Job Number:	EPC-SJRB (Groundwater)
Laboratory: _	Accutest	Batch Identification:	T4890

Validation Criteria				 		
Sample ID	Coldiron MW-1	160703TB 01				
Lab ID	T4890-01	T4890-02				
Holding Time	A	А				
Analyte List	А	А				
Reporting Limits	A	A				
Trip Blank	А	А				
Equipment Rinseate Blanks	N/A	N/A				
Field Duplicate/Replicate	N/A	N/A			I	
Surrogate Spike Recovery	A	A				
Initial Calibration	N	N				
Initial Calibration Verification (ICV)	N	N				
Continuing Calibration Verification (CCV)	N	N				
Laboratory Control Sample (LCS)	A	А				
Laboratory Control Sample Duplicate (LCSD)	N	N				
Method Blank	A	Α				
Matrix Spike/Matrix Spike Dup. (MS/MSD)	N/A	A				
Retention Time Window	N	N				
Injection Time(s)	N	N				
Hardcopy vs. Chain-of-Custody	A	A				
EDD vs. Hardcopy	N	N				
EDD vs. Chain of Custody	N	N				

(a) List QC batch identification if different than Batch ID

A indicates validation criteria were met

A/L indicates validation criteria met based upon Laboratory's QC Summary Form

X indicates validation criteria were not met

N indicates data review were not a project specific requirement N/A indicates criteria are not applicable for the specified analytical method or sample

N/R indicates data not available for review

NOTES:

Technical Report for
Montgomery Watson
EPFS San Juan Basin Groundwater Site
Accutest Job Number: T4890
Report to:
El Paso
lynn.benally@elpaso.com
ATTN: Lynn Benally

Total number of pages in report: 8

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Ron Martino Laboratory Manager

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Accutest Laboratories

Sample Summary

Montgomery Watson

Job No:

T4890

EPFS San Juan Basin Groundwater Site

Sample	Collected	Matrix	Client
Number	Date Time By	Received Code Type	Sample ID
T4890-1	07/16/03 09:50 MN	07/17/03 AQ Ground Water	COLDIRON MW-1
T4890-2	07/16/03 07:00 MN	07/17/03 AQ Ground Water	160703TB01

Report of Analysis

Ву

JH

Page 1 of 1

Client Sample ID: COLDIRON MW-1

Lab Sample ID:

T4890-1

Matrix:

AQ - Ground Water

DF

5

SW846 8021B

Date Sampled: 07/16/03

Date Received: 07/17/03

Percent Solids: n/a

Method: Project:

EPFS San Juan Basin Groundwater Site

Analyzed

07/24/03

Prep Date Prep Batch

Analytical Batch

GKK290 n/a n/a

Run #1 Run #2

Purge Volume

KK005494.D

Run #1

5.0 ml

File ID

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 95-47-6	Benzene Toluene Ethylbenzene Xylenes (total) o-Xylene m,p-Xylene	4.9 ND 24.7 110 27.3 82.8	5.0 5.0 5.0 15 5.0	ug/l ug/l ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	95% 98%		64-12 71-12	

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: 160703TB01 Lab Sample ID:

T4890-2

Matrix:

AQ - Ground Water

DF

1

Date Sampled: 07/16/03 Date Received: 07/17/03

Method:

SW846 8021B

Percent Solids: n/a

Project:

EPFS San Juan Basin Groundwater Site

Prep Batch **Analytical Batch**

Run #1

KK005490.D

Analyzed 07/24/03

Ву JH Prep Date n/a

n/a

GKK290

Run #2

Purge Volume

Run #1

5.0 ml

File ID

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	Units Q
71-43-2 108-88-3 100-41-4 1330-20-7 95-47-6	Benzene Toluene Ethylbenzene Xylenes (total) o-Xylene m,p-Xylene	ND ND ND ND ND ND	1.0 1.0 1.0 3.0 1.0 2.0	ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	87% 89%		64-121% 71-121%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

GC Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Blank Spike Summary

Job Number:

T4890

Account:

MWHSLCUT Montgomery Watson

Project:

EPFS San Juan Basin Groundwater Site

Sample GKK290-BS File ID DF KK005488.D1

aaa-Trifluorotoluene

Analyzed 07/24/03 By

JH

Prep Date n/a Prep Batch

Analytical Batch

Page 1 of 1

n/a Î

GKK290

The QC reported here applies to the following samples:

Method: SW846 8021B

T4890-1, T4890-2

98-08-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2 100-41-4 108-88-3 1330-20-7 95-47-6	Benzene Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	20 20 20 60 20 40	19.6 20.1 19.6 59.1 19.3 39.9	98 101 98 99 97 100	74-119 82-115 77-116 79-115 78-114 79-116
CAS No.	Surrogate Recoveries	BSP	Liı	nits	
460-00-4	4-Bromofluorobenzene	101%	64-	121%	

99%

71-121%

Method Blank Summary Job Number: T4890

Page 1 of 1

Account:

MWHSLCUT Montgomery Watson

Project:

EPFS San Juan Basin Groundwater Site

Sample	File ID D	F Analyzed 07/24/03	By	Prep Date	Prep Batch	Analytical Batch
GKK290-MB	KK005489.D1		JH	n/a	n/a	GKK290

The QC reported here applies to the following samples:

Method: SW846 8021B

T4890-1, T4890-2

CAS No.	Compound	Result	RL	Units Q	
71-43-2 100-41-4 108-88-3 1330-20-7 95-47-6	Benzene Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	ND 1.0 ND 1.0 ND 1.0 ND 3.0 ND 1.0 ND 2.0		ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries		Limi	ts	
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	93% 94%	64-12 71-12		

Matrix Spike/Matrix Spike Duplicate Summary Job Number: T4890

Page 1 of 1

Account:

MWHSLCUT Montgomery Watson

Project: EPFS San Juan Basin Groundwater Site

Sample File ID	2.D1	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
T4890-2MS KK0054		07/24/03	JH	n/a	n/a	CKK290
T4890-2MSD KK0054		07/24/03	JH	n/a	n/a	GKK290
T4890-2 KK0054		07/24/03	JH	n/a	n/a	GKK290

The QC reported here applies to the following samples:

Method: SW846 8021B

T4890-1, T4890-2

CAS No.	Compound	T4890-2 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7 95-47-6	Benzene Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	ND ND ND ND ND ND	20 20 20 60 20 40	19.1 19.1 18.6 56.3 18.3 37.9	96 96 93 94 92 95	20.6 20.1 19.9 59.2 19.4 39.8	103 101 100 99 97 100	8 5 7 5 6 5	64-124/16 64-123/14 64-120/13 66-118/18 65-119/20 66-120/14
CAS No. 460-00-4 98-08-8	Surrogate Recoveries 4-Bromofluorobenzene aaa-Trifluorotoluene	MS 91% 94%	MSD 88% 94%	T48 879 899	-	Limits 64-1219 71-1219	-		

WELL DELOPMENT AND SAMPLING LOCAL

Project No: 30003	-	20/60n 025/n					
_	Well No: MW-,	•		Sampling 💆			
Project Manager MTAU Date 7-16-03 Start Time 090Z Weather 95+							
		Product Thickness /	va n	Measuring Point <u>fc</u>			
Water Column Height 7	89 Well Dia. 411						
Sampling Method: Sub	mersible Pump 🔲 , Centrifug	gal Pump 🔲 Peristaltic I	Pump 🔲	Other			
Bott	tom Valve Bailer 🔣 Double	Check Valve Bailer	Stainless	-Steel Kemmerer			
Criteria: 3 to 5 Casing V			or Paramo	eters 10 Other or ballay			
Gal/ft x ft of water	Water Volur Gallons	ne In Well Ounces	-	Gal/oz to be removed			
7.89x.65	5.15×3		1	15-89			
Time pH (military) (um	SC Temp Eh-ORP (°C) (millivolts)	D.O. Turbidity V (mg/L) (NTU)	ol Evac. (gal.)	Comments/ Flow rate			
0920 653 3	430 219		1	Gray Transluced			
1// 4/	790 Z0°		Z	block			
167 2	770 187		3_				
625 3	280 189		14	greg			
680 3	190 184		15	7-77			
0942 6 30	200 182		10	11ght grag			
			 .				
Final: Time pH	SC Temp Eh-ORP	F.O. Turbidity	errous Iron	Vol Evac. Comments/Flow rate			
NRUZ 686 3	200 182	b.o. Turblany		16 lighton			
OJTE D. JE	<u> </u>			11 Marian			
COMMENTS:			_				
INSTRUMENTATION: pH Meter ∕∰ Temperature Meter ☒							
DO Monitor							
Conductivity Meter 🔀							
Water Disposal KUTZ Sample ID (2014) A Sample Time GGCO DITEXT NO. 10 TO AND THE AND THE SAMPLE TIME GGCO DITEXT NO. 10 TO AND THE AND THE SAMPLE TIME GGCO DITEXT NO. 10 TO AND THE AND THE SAMPLE TIME GGCO DITEXT NO. 10 TO AND THE AND THE SAMPLE TIME GGCO DITEXT NO. 10 TO AND THE SAMPLE TIME GGCO DIT THE GGCO DITEXT NO. 10 TO AND THE SAMPLE TIME GGCO DITEXT NO. 1							
Sample ID Coldina MW- Sample Time 6950 BTEX VOCs Alkilinity							
TDS Cations Anions Nitrate Nitrite Ammonia TKN NM WQCC Metals							
Total Phosphorus							
MS/MSD BD BD Name/Time TB/60263TBФI							

DATA VALIDATION WORKS LET (Page 1 of 2)

Analytical Method/Analytes: _	SW-846 8021B (BTEX)	Sample Collection Date(s):	07/16/03
Laboratory: _	Accutest	MWH Job Number:	EPC-SJRB
		_	(Groundwater)
Batch Identification:	T4890	Matrix:	Water
MS/MSD Parent(s) ^(a) : _	T4890-02	Field Replicate Parent(s):	None
Validation Complete: _	Ban Bittair	7-28-23	
		(Date/Signature)	

		T	771		
Site ID	Sample ID	Lab. ID	Hits (Y/N)	Quals.	Comments
Coldiron	MW-1	T4890-01	Y		Benzene @ 4.9 T μg/l Ethylbenzene @ 24.7 μg/l Xylenes, total @ 110 μg/l o-Xylenes @ 27.3 m,p-Xylenes @ 82.8 μg/l
Trip Blank	160703TB01	T4890-02	N		
				ļ	
	Coldiron	Coldiron MW-1	Coldiron MW-1 T4890-01	Coldiron MW-1 T4890-01 Y	Site ID Sample ID Lab. ID (Y/N) Quals. Coldiron MW-1 T4890-01 Y

Analytical Method: _	SW-846 8021B (BTEX)	MWH Job Number:	EPC-SJRB (Groundwater)
Laboratory: _	Accutest	Batch Identification:	T4890

Validation Criteria					
Sample ID	Coldiron MW-1	160703TB 01			
Lab ID	T4890-01	T4890-02			
Holding Time	A	Α			
Analyte List	Α	A			
Reporting Limits	A	A			
Trip Blank	А	Α			
Equipment Rinseate Blanks	N/A	N/A			
Field Duplicate/Replicate	N/A	N/A			
Surrogate Spike Recovery	Α	Α			
Initial Calibration	N	N			Ţ
Initial Calibration Verification (ICV)	N	N			
Continuing Calibration Verification (CCV)	N	N	;		
Laboratory Control Sample (LCS)	Α	Α			
Laboratory Control Sample Duplicate (LCSD)	N	N			
Method Blank	Α	Α			
Matrix Spike/Matrix Spike Dup. (MS/MSD)	N/A	Α			
Retention Time Window	N	N			İ
Injection Time(s)	N	N			
Hardcopy vs. Chain-of-Custody	Α	A			
EDD vs. Hardcopy	N	N			
EDD vs. Chain of Custody	N	N			

(a) List QC batch identification if different than Batch ID

A indicates validation criteria were met

A/L indicates validation criteria met based upon Laboratory's QC Summary Form

X indicates validation criteria were not met

N indicates data review were not a project specific requirement

N/A indicates criteria are not applicable for the specified analytical method or sample

N/R indicates data not available for review

NOTES:

CHAIN CUSTODY# 160703 mvb/

10165 Harwin Drive, Ste. 150, Houston, TX 77036 FED-EX Tracking #

TEL. 713-271-4700 FAX: 713-271-4770 A S LS S 77239 Accutes Job#

Client / Reporting Information grammers	V.				ž	Project Information								Request	Requested Analysis	S			Matrix Codes
/2/		Proje	Project Name	ľ	1		-									-		DW - Dri	DW - Drinking Water
MWH / CL 1-050		-	V)	7	12	1	ひゃいて	7		Ţ								& . ₩2	GW - Ground Water
July Reilly Are		1	Į	/,	7 6	2011.	•	45%	۶,							-		WW	ww - water
State	dZ	4	-	-		State				Γ								as S as	SW Surface Water
Framington WW!	04/8	7	16	9	ごこ	2				7			_					R 	100 - 00
Project Contact	E-mail	Proj	Project #											_				St	SL · Sludge
Cynn 1. sonally		+								T	_		,					5	OI - Oil
Phone # NOS NOS ALLA		# Xe	* ±								X :							o 91	LIO Other Liquid
11/10		Ş	Client Purchase Order #	rder #														¥ .	AIR - Air
Marin No		-								-c 	/ 3							205	SOL - Other Solid
Accutest Field ID / Point of Collection	SUMMA #	#	Collection	l i		Ц	Number	ğ	served Bottles	_	57							WP	WP · Wipe
Sample #	MEOH Val#	Date	Time	Sampled By	Matrix bottles	# of bottles	HOSN EQNH	HS204	MEOH MªH20	B(CO)6								UAB U	LAB USE ONLY
Coldinan MW-1		7/16/63	130150	3	mu wa	22				*								Work	16
2 160703 MAGT841		2.15	DC0 60-91-6		Day Med					×	<u> </u>								
\$													-		\vdash		_	7	,
		-	-	_									-		_		-		
				-				1	\perp	_	_		+		+		-		
		1	1	1	1	+	1		\pm	$\frac{1}{1}$	$\prod_{i=1}^{n}$		+	\downarrow	-	1	-	1	
				_		-					_		-		-		-		
	_												-		-				
															_				
		_		_		_			L				_		-	Ŀ			
		igg				\vdash							-		-		-	<u> </u>	
Turnaround Time (Business Days)						Data Deliverable Information	able Inform	#iou					-	Comments / Remarks	nments / R	emarks			
DARD	Date:		Comm	ercial "A"		U	EDD Format	l ag	,										
C 5 Day RUSH			Comm.	ercial "B"								•	1	¢					
☐ 3 Day EMERGENCY		-	Reduced Tier 1	ed Tier 1							·			く	2 2				
☐ 2 Day EMERGENCY		ı	<u> </u>	# #							1_			>	-				T
☐ 1 Day EMERGENCY		-		ជ												(
Other Other																/			
		1	Com	Commercial "A" = Results Only	r" = Resu	Its Only									7	+			
Emergency & Rush T/A data available VIA LabLink															7	$\sqrt{}$			
		Samp	Sample Custody must be documented below each time samples change possession, including couner delivery	ust be doct	mented by	elow each ti	me samples	change p	ossession.	including c	ourier deliv	Cry.							
The sa	Date Time: F	Received by					Relinquished by	led by					17.43 Time: 04.	360			i		
Refinquished by:	Date Time R	Received by:					Relinquisi	red by:					Date Time:		icelved by	^			
Relinquished by:	Date Time:	Received by:					Custody Seal #	# # #			Pres	Preserved where applicable	applicable	1	\$ E	b	Copler Temp.	Тетр.	

MACCU	TEST.

SAMPLE RECEIPT LOG

DB #: 148	90_	DATE/TIME RECE	EIVED:	7-17.	03	0900	
CLIENT: 5	PARO	**************************************		INITIALS:	2		
1. Y N Sample 3. Y N Sample 5. Y N Sample 7. Y N Chain o 8. Y N Custody	e (Circle "Y" for yes a received in undamag received with proper volume sufficient for f Custody matches so y seal received intact y seal received intact	ged condition. 2./ pH. 4. analysis. 6. ample IDs on conta and tamper evider	Y N Sampl Y N Sampl Y N Sampl anners. It on cooler.		or explanatio vithin temp. r proper conta	ange. iners.	
SAMPLE or FIELD	ID BOTTLE#	DATE SAMPLED	MATRIX	VOLUME	LOCATION	PRESERV.	PH
1	1-2	7-16-03		2X Uml	VRZR	1/2)3,4,5,6	U, <2, >12, NA
2)			1x Yan L		1,0,3,4,5,6	U, <2, >12 NA
						1,2,3,4,5,6	U, <2, >12, NA
					· ·	1,2,3,4,5,6	U, ~2, >12, NA
						1,2,8,4,5,6	U, <2,>12, NA
						1,2,3,4,5,6	U, <2, >12, NA
				4/	<u>/</u>	1,2,3,4,5,6	U, <2, >12, NA
			03			1,2,3,4,5,6	U, <2, >12, NA
						1,2,3,4,5,6	U, <2, >12, NA
		111				1,2,3,4,5,6	U, <2,>12, NA
					<u></u>	1,2,3,4,5,6	U, <2, >12, NA
						1,2,3,4,5,6	U, <2, >12, NA
						1,2,3,4,5,6	U, <2,>12, NA
						1,2,3,4,5,6	U, <2,>12, NA
						1,2,3,4,5,6	U, <2,>12, NA
	4					1,2,3,4,5,6	U, <2, >12, NA
	None 2: HCL 3: HNO:	3 4: H2SO4 5: NAO		e Freezer			
livery method: C Track	ourier: FED- king#: SEE	-m.tr. 001-0		COOLER TEMP	÷	COOLER TEN	

DATA VALIDATION WORKSHEET (Page 1 of 2)

	Analytical Method/Analytes: _	SW-846 8021B (BTEX)	Sample Collection Date(s):	04/27/03
	Laboratory: _	Accutest	MWH Job Number:	EPC-SJRB
			_	(Groundwater)
	Batch Identification: _	T4248	Matrix:	Water
	MS/MSD Parent(s) ^(a) : _	None	Field Replicate Parent(s):	None
	Validation Complete: _	Brian	Buttars – 05/05/03	
ŀ			(Data/Signatura)	

Foot Notes	Site ID	Sample ID	Lab. ID	Hits (Y/N)	Quals.	Comments
None	Trip Blank	27040302 TB	T4248-01	N	- Quaisi	Commones
None	Coldiron	MW-1	T4248-02	Y		
:		<u> </u>				

				-		
				<u></u>		

DATA VALIDATION WORKSHEET

(Page 2 of 2)

Analytical Method: _	SW-846 8021B (BTEX)	MWH Job Number:	EPC-SJRB (Groundwater)
Laboratory:	Accutest	Batch Identification:	T4248

Validation Criteria			 	 	
Sample ID	27040302 TB	Coldiron MW-1			
Lab ID	T4248-01	T4248-02			
Holding Time	А	Α			
Analyte List	A	Α			
Reporting Limits	A	Α			
Trip Blank	A	Α			
Equipment Rinseate Blanks	N/A	N/A			
Field Duplicate/Replicate	N/A	N/A			
Surrogate Spike Recovery	A	Α			
Initial Calibration	N	N			
Initial Calibration Verification (ICV)	N	N			
Continuing Calibration Verification (CCV)	N	N			
Laboratory Control Sample (LCS)	A	A	,		
Laboratory Control Sample Duplicate (LCSD)	N	N			
Method Blank	A	A			
Matrix Spike/Matrix Spike Dup. (MS/MSD)	N/A	N/A			
Retention Time Window	N	N			
Injection Time(s)	N	N			
Hardcopy vs. Chain-of-Custody	А	A			
EDD vs. Hardcopy	N	N			
EDD vs. Chain of Custody	N	N			

(a) List QC batch identification if different than Batch ID

A indicates validation criteria were met

A/L indicates validation criteria met based upon Laboratory's QC Summary Form

X indicates validation criteria were not met

N indicates data review were not a project specific requirement

N/A indicates criteria are not applicable for the specified analytical method or sample

N/R indicates data not available for review

NOTES:

Tec	hnical	Report	for
		TIOPOIL	

Montgomery Watson

EPFS San Juan Basin GS

San Juan Basin / #270403MN02

Accutest Job Number: T4248

Report to:

Elpaso

Lynn.Benally@elpaso.com

ATTN: Lynn Benally

Total number of pages in report: 8

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Ron Martino Laboratory Manager

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Accutest Laboratories

Sample Summary

Montgomery Watson

Job No:

T4248

EPFS San Juan Basin GS Project No: San Juan Basin / #270403MN02

Sample Number	Collected Date Time By	Matrix Received Code Type	Client Sample ID
T4248-1	04/27/03 07:00 M	N 04/29/03 AQ Trip Blank Water	27040302 TB
T4248-2	04/27/03 11:51 MI	N 04/29/03 AQ Ground Water	GW COLDIROM MW-1

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

27040302 TB

T4248-1

Matrix: Method: AQ - Trip Blank Water

SW846 8021B

Project:

EPFS San Juan Basin GS

Date Sampled: 04/27/03

Date Received: 04/29/03

Percent Solids: n/a

File ID DF Ву Analytical Batch Analyzed Prep Date Prep Batch Run #1 KK005099.D 04/30/03 BC GKK266 n/a n/a

Run #2

Purge Volume

Run #1 Run #2

5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	Units Q
71-43-2 108-88-3 100-41-4 1330-20-7 95-47-6	Benzene Toluene Ethylbenzene Xylenes (total) o-Xylene m,p-Xylene	ND ND ND ND ND	1.0 1.0 1.0 3.0 1.0 2.0	ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	100% 99%		64-121% 71-121%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Ву

BC

BC

Page 1 of 1

Client Sample ID: GW COLDIROM MW-1

Lab Sample ID:

T4248-2

Matrix:

AQ - Ground Water

Date Sampled: 04/27/03

Method:

Date Received:

04/29/03

SW846 8021B

Percent Solids: n/a

Project:

EPFS San Juan Basin GS

DF

1

20

Prep Date

Prep Batch

Analytical Batch

Run #1 Run #2 KK005100.D

04/30/03

Analyzed

n/a

n/a

GKK266

KK005101.D

04/30/03

n/a

n/a

GKK266

Purge Volume

Run #1

5.0 ml

File ID

5.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	Units Q
71-43-2 108-88-3 100-41-4 1330-20-7 95-47-6	Benzene Toluene Ethylbenzene Xylenes (total) o-Xylene m,p-Xylene	31.7 ND 97.4 ^a 527 ^a 131 ^a 396 ^a	1.0 1.0 20 60 20 40	ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	114% 119%	93% 100%	64-121% 71-121%

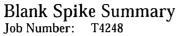
(a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value


B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

GC Volatiles QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike SummariesMatrix Spike and Duplicate Summaries

Account:

MWHSLCUT Montgomery Watson

Project:

EPFS San Juan Basin GS

98-08-8

Sample File ID GKK266-BS KK005096.D1

DF

Ву Analyzed 04/30/03 BC

71-121%

Prep Date

n/a

Prep Batch

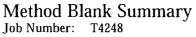
Analytical Batch

Page 1 of 1

n/a

GKK266

The QC reported here applies to the following samples:


aaa-Trifluorotoluene

Method: SW846 8021B

T4248-1, T4248-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2 100-41-4 108-88-3 1330-20-7 95-47-6	Benzene Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	20 20 20 60 20 40	20.2 20.3 20.3 61.3 19.9 41.4	101 102 102 102 100 104	74-119 82-115 77-116 79-115 78-114 79-116
CAS No.	Surrogate Recoveries	BSP	Liı	mits	
460-00-4	4-Bromofluorobenzene	95%	64	-121%	

96%

GKK266-MB

Account:

MWHSLCUT Montgomery Watson

Project:

EPFS San Juan Basin GS

KK005097.D1

Sample File ID

DF

Analyzed 04/30/03

Ву вČ Prep Date n/a

Prep Batch n/a

Analytical Batch GKK266

Page 1 of 1

The QC reported here applies to the following samples:

Method: SW846 8021B

T4248-1, T4248-2

CAS No.	Compound	Result	RL	Units	Q
71-43-2 100-41-4 108-88-3 1330-20-7 95-47-6	Benzene Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	ND ND ND ND ND ND	1.0 1.0 1.0 3.0 1.0 2.0	ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	ND	Limi	J	
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	95% 94%	64-12 71-12		

Matrix Spike/Matrix Spike Duplicate Summary Job Number: T4248

Account:

MWHSLCUT Montgomery Watson

Project:

EPFS San Juan Basin GS

Sample File ID DF T4247-2MS KK005104.D 5 T4247-2MSD KK005105.D 5 T4247-2 KK005102.D 1 T4247-2 KK005103.D 5	Analyzed 04/30/03 04/30/03 04/30/03 04/30/03	By BC BC BC BC	Prep Date n/a n/a n/a n/a	Prep Batch n/a n/a n/a n/a	Analytical Batch GKK266 GKK266 GKK266 GKK266
--	--	----------------------------	---------------------------	--	--

The QC reported here applies to the following samples:

Method: SW846 8021B

Page 1 of 1

T4248-1, T4248-2

CAS No.	Compound	T4247-2 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7 95-47-6	Benzene Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	ND 164 ^a ND 452 ^a ND 452 ^a	100 100 100 300 100 200	102 264 102 755 103 652	102 100 102 101 103 99	101 267 101 761 102 659	101 103 101 103 102 103	1 1 1 1 1	64-124/16 64-123/14 64-120/13 66-118/18 65-119/20 66-120/14
CAS No.	Surrogate Recoveries	MS	MSD	T4:	247-2	T4247-2	2 L	imits	
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	99% 99%	98% 99%	104 103		104% 104%		l-121% l-121%	

⁽a) Result is from Run #2.

DATA VALIDATION WORKSHEET (Page 1 of 2)

Analytical Method/Analytes: SW-846 8021B (BTEX) Sample Collection Date(s): 01/27/03

Laboratory: APCL MWH Job Number: EPC-SJRB (Groundwater)

Batch Identification: 03-01361 Matrix: Water

MS/MSD Parent(s)(a): None Field Replicate Parent(s): None

Validation Complete: 3-3-03 (Date/Signature)

ı	Foot	Site		T	Hits	<u> </u>	
	Notes	ID	Sample ID	Lab. ID	(Y/N)	Quals.	Comments
	1	GW	Coldiron Com A#1 MW-1	03-01361-01	Y	Quais.	Benzene @ 27.8 µg/l
	1	GW	Coldifoli Colli A#1 WW-1	03-01301-01	1		Ethylbenzene @ 35.0 µg/l
						UB	Toluene @ 1.4 µg/l
						OB	o-Xylene @ 46.8 μg/l
						В	m/p-Xylene @ 130 μg/l
	1	GW	Lat 3B-39 MW-1	03-01361-02			Benzene @ 8.4 µg/l
							Ethylbenzene @ 239 µg/l
						UB	Toluene @ 1.9 µg/l
							o-Xylene @ 6.8 µg/l
						В	m/p-Xylene @ 587 µg/l
	1	GW	Trip Blank (2) 03	03-01361-03			Toluene @ 0.5 T μg/l
							m/p-Xylene @ 1 μg/l
Į							
١		·····					
ļ							
							į.
						. <u>.</u>	
Į							
ı							1

Analytical Method:	SW-846 8021B (BTEX)	MWH Job Number:	EPC-SJRB (Groundwater)
Laboratory:	APCL	Batch Identification:	03-01361

Validation Criteria						
Sample ID	Coldiron Com A#1 MW-1	Lat 3B-39 MW-1	Trip Blank (2) 03			
Lab ID	03-01361- 01	03-01361- 02	03-01361- 03			
Holding Time	А	Α	Α			
Analyte List	A	Α	A			
Reporting Limits	A	Α	А			
Method Blank	Α	Α	Α			
Trip Blank	A ¹	A ¹	A ¹			
Equipment Rinseate Blanks	N/A	N/A	N/A			
Field Duplicate/Replicate	N/A	N/A	N/A			
Initial Calibration	N	N	N			
Initial Calibration Verification (ICV)	N	N	N			
Continuing Calibration Verification (CCV)	A	Α	Α			
Laboratory Control Sample (LCS)	A	A	Α			
Laboratory Control Sample Duplicate (LCSD)	N	N	N			
Matrix Spike/Matrix Spike Dup. (MS/MSD)	N/A	N/A	N/A			
Surrogate Spike Recovery	Α	A	Α			
Retention Time Window	N	N	N			
Injection Time(s)	N	N	N			
Hardcopy vs. Chain-of-Custody	A	A	A			
EDD vs. Hardcopy	N	N	N			
EDD vs. Chain of Custody	N	N	N			

(a) List QC batch identification if different than Batch ID

A indicates validation criteria were met

A/L indicates validation criteria met based upon Laboratory's QC Summary Form

X indicates validation criteria were not met

N indicates data review were not a project specific requirement

N/A indicates criteria are not applicable for the specified analytical method or sample

N/R indicates data not available for review

NOTES:

- 1) The following analytes were detected in the trip blank:
 - a) Toluene @ $0.5T \mu g/L$, qualify all sample concentrations less than or equal to $2.5 \mu g/L$ with a "UB" flag and all sample concentrations greater than $2.5 \mu g/l$ with a "B" flag.
 - b) m/p-Xylene @ 1.0 μg/L, qualify all sample concentrations less than or equal to 5 μg/L with a "UB" flag and all sample concentrations greater than 5 μg/l with a "B" flag.

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Montgomery Watson Harza Attention: Brian Buttars 10619 South Jordan Gateway

Salt Lake City UT 84095

Tel: (801)617-3200 Fax: (801)617-4200

APCL Analytical Report

Service ID #: 801-031361

Collected by: M. Hee

Collected on: 01/27/03

Received: 01/29/03

Extracted: N/A

Tested: 01/29-30/03

Reported: 02/06/03

Sample Description: Water

Project Description: 220013

San Juan River Basin

Analysis of Water Samples

					Analysis Result	
Component Analyzed	Method	Unit	PQL	Cold Iron Com A #1 03-01361-1	LAT3B-39 03-01361-2	Trip Blank (2)03 03-01361-3
втхе		-				
Dilution Factor				1	\/I	1
BENZENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	27.8	A .4	< 0.5
ETHYLBENZENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	35.0	/23\0	< 0.5
TOLUENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	1.4	/ 1.9\	0.5J
O-XYLENE	8021B	$_{\mu \mathrm{g/L}}$	0.5	46.8	6.8	< 0.5
M,P-XYLENE	8021B	$_{\mu}\mathrm{g/L}$	1	130	587	1

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted,

Dominic Lau

Laboratory Director

Applied P & Ch Laboratory

CADHS ELAP No.: 1431

Cl-0984 D004 N 03-1361 h

Page: 1 of 1

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Montgomery Watson Harza Attention: Brian Buttars 10619 South Jordan Gateway Salt Lake City, UT 84095

Tel: (801)617-3200 Fax: (801)617-4200

APCL QA/QC Report

Service ID #: 801-031361

Collected by: M. Hee

Collected on: 01/27/03 Sample description:

Water

Project: San Juan River Basin /220013

Analysis of Water

801-031361QC

Received: 01/29/03

Tested: 01/29-30/03

Reported: 02/18/03

	Analysis	CCV	CCV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	$(\mu_{\rm g}/{ m L}$)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
BTXE												
Benzene	03G1243	100	93	N.D.	$_{\mu}\mathrm{g/L}$	18.0	87	86	90	5	68-130	31
Toluene	03G1243	100	99	N.D.	$_{\mu}\mathrm{g/L}$	70.0	88	86	89	4	66-133	33
Ethylbenzene	03G1243	100	101	N.D.	$_{\mu}\mathrm{g/L}$	18.0	92	91	93	2	65-134	35
m/p-Xylene	03G1243	200	94	N.D.	$_{\mu}\mathrm{g/L}$	70.0	88	85	87	2	65-134	35
o-Xylene	03G1243	100	95	N.D.	$_{\mu}\mathrm{g/L}$	25.0	85	89	88	1	65-134	35

Notation:

ICV - Initial Calibration Verification

CCV - Continuation Calibration Verification

LCS - Lab Control Spike MS - Matrix Spike

MSD - Matrix Spike Duplicate ICS - Interference Check Standard

MD - Matrix Duplicate

N.D. - Not detected or less than PQL

CCB - Continuation Calibration Blank

M-blank - Method Blank SP Level - Spike Level

%Rec - Recovery Percent %RPD - Relative Percent Differences %Diff - Control Limit for %RPD ICP-SD - ICP Serial Dilution N.A. - Not Applicable

Respectfully submitted,

Regina Kirakozova, Associate QA/QC Director Applied P & Ch Laboratory

CADHS ELAP No: 1431

APCL QA/QC Report: 801-031361 02/18/03

Page: 1

FORM-2A

Applied P & Ch Laboratory

Surrogate Recovery Summary for Method 8021B

Client Name:

Montgomery Watson Harza

Contract No:

Lab Code:

APCL

Case No:

SAS No:

SDG Number:

031361

Project 1D:

San Juan River Basin

Project No: Batch No.

220013

Sample Matrix:

Water

		Batch No:	03G1243

	Client	Lab	S1	TOT
#	Sample No	Sample ID	% #	OUT
1		03G1243-LCS-01	83	0
2		03G1243-LSD-01	83	0
3	TRIP BLANK (2)03	03-1361-3	86	0
4	10723-TW06-GW01	03-1357-4MS	82	0
5	10723-TW06-GW01	03-1357-4MSD	82	0
6	COLD IRON COM A #1	03-1361-1	113	0
7	LAT3B-39	03-1361-2	129	0
8		03G1243-MB-02	89	0
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				

QC Control Limit

S1 = 4-BROMO-FLUOROBENZENE (PID)

66-133

Column to be used to flag recovery values:

* - Values outside of contract required QC Limits

D - Surrogate diluted out

I - Matrix Interference

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Montgomery Watson Harza

Attention: Brian Buttars 10619 South Jordan Gateway

Salt Lake City UT 84095

Tel: (801)617-3200 Fax: (801)617-4200

APCL Analytical Report

Service ID #: 801-031361

Collected by: M. Hee

Collected on: 01/27/03

Received: 01/29/03

Extracted: N/A

Tested: 01/29-30/03 Reported: 02/06/03

Sample Description: Water

Project Description: 220013 Sa

San Juan River Basin

Analysis of Water Samples

				I	Analysis Result	
Component Analyzed	Method	Unit	PQL	Cold Iron Com A #1 03-01361-1	LAT3B-39 03-01361-2	Trip Blank (2)03 03-01361-3
BTXE						
Dilution Factor				1	1	1
BENZENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	27.8	8.4	< 0.5
ETHYLBENZENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	35.0	239	< 0.5
TOLUENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	1.4	1.9	0.5J
O-XYLENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	46.8	6.8	< 0.5
M,P-XYLENE	8021B	$_{\mu}\mathrm{g/L}$	1	130	587	1

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted

Dominic Lau
Laboratory Director

Applied P & Ch Laboratory

CADHS ELAP No.: 1431

CI-0984 D004 X 03-1361

Page: 1 of 1

13760 Magnolia Ave. Chino CA 91710Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Montgomery Watson Harza Attention: Brian Buttars 10619 South Jordan Gateway Salt Lake City, UT 84095

Analysis of Water

Tel: (801)617-3200 Fax: (801)617-4200

APCL QA/QC Report

Service ID #: 801-031361

Collected by: M. Hee Collected on: 01/27/03

Sample description:

Water

Project: San Juan River Basin /220013

.ci. (001)011 0200 1 ax. (001)017 1200

801-031361QC

Received: 01/29/03

Tested: 01/29-30/03

Reported: 02/18/03

	Analysis	CCV	CCV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	$(\mu_{\rm g/L})$	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
втхе												
Benzene	03G1243	100	93	N.D.	$_{\mu}\mathrm{g/L}$	18.0	87	86	90	5	68-130	31
Toluene	03G1243	100	99	N.D.	$_{\mu}\mathrm{g/L}$	70.0	88	86	89	4	66-133	33
Ethylbenzene	03G1243	100	101	N.D.	$_{\mu}\mathrm{g/L}$	18.0	92	91	93	2	65-134	35
m/p-Xylene	03G1243	200	94	N.D.	$_{\mu}\mathrm{g/L}$	70.0	88	85	87	2	65-134	35
o-Xylene	03G1243	100	95	N.D.	$_{\mu}\mathrm{g/L}$	25.0	85	89	88	1	65-134	35

Notation

ICV - Initial Calibration Verification

CCV - Continuation Calibration Verification

LCS - Lab Control Spike MS - Matrix Spike

MSD - Matrix Spike Duplicate ICS - Interference Check Standard

MD - Matrix Duplicate

N.D. - Not detected or less than PQL

CCB - Continuation Calibration Blank

M-blank – Method Blank SP Level – Spike Level

%Rec - Recovery Percent %RPD - Relative Percent Differences

%RPD - Relative Percent Difference %Diff - Control Limit for %RPD ICP-SD - ICP Serial Dilution

N.A. - Not Applicable

Respectfully submitted,

Regina Kirakozova,

Associate QA/QC Director Applied P & Ch Laboratory

Surrogate Recovery Summary for Method 8021B

Client Name:

Montgomery Watson Harza

Contract No:

Lab Code:

Sample Matrix:

APCL

Case No: Project ID:

San Juan River Basin

SAS No:

SDG Number:

031361 Water

Project No: Batch No: 220013

tch No: 03G1243

		T	T	T
ļ.,.	Client	Lab	S1	TOT
#	Sample No	Sample ID	% #	OUT
1		03G1243-LCS-01	83	0
2		03G1243-LSD-01	83	0
3	TRIP BLANK (2)03	03-1361-3	86	0
4	10723-TW06-GW01	03-1357-4MS	82	0
5	10723-TW06-GW01	03-1357-4MSD	82	0
6	COLD IRON COM A #1	03-1361-1	113	0
7	LAT3B-39	03-1361-2	129	0 .
8		03G1243-MB-02	89	0
9				
10				
11				
12				
13			· · · · · ·	
14			1	
15				
16				
17				
18				
19				
20				
21			<u> </u>	
22				
23			-	
24				
25				

QC Control Limit

S1 = 4-BROMO-FLUOROBENZENE (PID)

66-133

Column to be used to flag recovery values:

* - Values outside of contract required QC Limits

D - Surrogate diluted out

I - Matrix Interference

APCL Data Highway to Montgomery Watson Harza

Tele: $(909)590-1828 \times 228$

31361 File: FORM-2 02/18/2003 17:40 [p1]

CHAIN OF CUSTODY RECORD/LAB WORK REQUEST

Air BIII No. 8363811074459

Page ___

Chain of Custody ID 12703

LABORATORY APCL

Contract El Paso Corp., San Jaun River Basin

=		ľ	
ï			
ä	ř		
ř	ł	į	ļ
Ė	ı	•	

	80	W 232	S Yiin	kali
	818	208 9148	s-ws	LEX
	_(q) ənl	echnic	T gnil	dш
			(5)	cintr
		ected	Colle	əw
		beta	Colle	əjı
				Depth
00				Sample
Phone (801) 617-3200 FAX (801) 617-4200 MWH Contact Brian Buttars	Project Number 220013	Date Due Date DI Kee	(print clearly)	Location

MWH Contact Brian Buttars							Ā	IALYSE	ANALYSES REQUESTED	UEST	ED	LABORATORY USE ONLY
Project Project Number 220013				ine _(p)		 	ļ					SAMPLES WERE:
Date Due Date Dil Kee		peteed	Collected	(a) ng Techniq	208 9¢8-MS	ity SM 2320	SEPA 160.1 CC Metals 6 6010B & 7	9 948-WS s	NSEPA 30	USEPA 300	OSE AGEN	1 Shipped or hand delivered Notes: 2 Ambient or Chilled
Location Sample ID	le Depth Interval (ft)	Date C		xintsM Sampli							2111111	Notes:
ion (on 4#1 mo-1		1-276	11/1/2	UN UN	×	-	-			├-		4 Received Broken/l eaking
+3B-39 mot	Ť	1.2763	1413 6	SMC	イ							(Improperly Sealed)
10 Black (2)03					メ				 			Notes:
									- 10 mg/s			5 Properly Preserved
									,			
												6 Received Within
												Z
							_			-		Notes:
												COC Tape Was:
						-				-		1 Present on Outer Packar
									-	-		nbroken on Outer
						+						Package N NA
(a) Matrix: AA – Air SO – Soil WQ – Trip Blank/	(b) Sampling Tec Composite=C	(b) Sampling Technique: Composite=C		Submersible Pump=SP Bladder Pump=BP	mp=SP BP		Location IDs: Groundwater S	n IDs: water Si	Location IDs: Groundwater Sites=GW		North Flare Pit=NF South Flare Pit=SF	3 Present on Sample Y N NA
WG – Sutrace Water WW – Wastewater	Grab≃G Hand Au	orab≃o Hand Auger≃HA	baller≍b Wellhead Hydropul	baller≂b Wellhead Faucet≃WF Hydropunch=HP	t=WF		bisu-bi Jaquez=JA	Ϋ́-		o	odii Judii Kiver Pidiit-55	4 Unbroken on Sample Y NA
								I		l		Note:

Alotoo.	NOIES.	Discrepancies Between	Record?	Z >-	Notes:
	Time				
	Date				
	Received by/Affiliation	C. Thecher 1-28-03 1600 has	Pan ((1/4/03 0930		
	Relinguished by/Affiliation	After 1-27-03 1800hrs	1-28-03 1600 he		

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Receiving Checklist

	APCL ServiceID: Client Name/Project: Montgoreug Watson									
	1. Sample Arrival									
	Date/Time Received 1/29/03 0930 Date/Time Opened 1/29/03 0930 By (name): Faul Con									
	Custody Transfer: 🗌 Client 🔲 Golden State 🔲 UPS 🗀 US Mail 🖾 FedEx 🚨 APCL Empl:									
	2. Chain-of-Custody (CoC)									
	✓ With Samples? ☐ Faxed? ☐ Client has Copy? ☐ Signed, dated? By:									
	3. Shipping Container/Cooler									
	Cooler Used? # of Cooled by: ce Blue Ice Dry Ice None Temp °C 4-2°c ————————————————————————————————————									
	(Cooler temperature measured from temp blank if present, otherwise measured from the cooler). Cooler Custody Seal?									
	4. Sample Preservation									
	☐ pH <2 ☐ pH >12 If Not, pH = Preserved by: ☐ Client ☐ APCL ☐ Third Party									
	5. Holding-time Requirements									
☐ pH 24hr ☐ BACT 6/24hr ☐ Cr ^{VI} 24hr ☐ NO₃ 48hr ☐ BOD 48hr ☐ Cl₂ ASAP ☐ Turbidity 48hr ☐ DO ASAP ☐ Fe(II) ASAP ☐ HT Expired? ☐ Client notified?										
	6. Sample Container Condition									
	☐ Intact? ☐ Broken? ☐ Documented? Number:									
	Type: Delastic glass Tube: brass/SS Tedlar Bag									
	Quantity OK? Leaking? Anomaly? Caps tight? Air Bubbles? Anomaly?									
	Labels: Unique ID? Date/Time Preserved?									
	7. Turn Around Time									
	☐ RUSH TAT: 5 0-49 ☐ Std (7-10 days) ☐ Not Marked									
	8. Sample Matrix									
	☐ Drinking H ₂ O☐ Other Liq ☐ Soil ☐ Wipe ☐ Polymer ☐ Air ☐ Other: ☐ Ground H ₂ O ☐ Sludge ☐ Filter ☐ Oil/Petro ☐ Paint ☐ W. Water ☐ Extract ☐ Unknown									
	9. Pre-Login Check List Completed & OK?									
	ALL OK? (if not, attach docs),									
	Received/Checked by: Paul Date: 29 Jan 2003 Time: 7:35 a.m.									
*HT:	Samples must be analyzed for results to reflect total concentrations. Results generated outside required of holding times are considered minimal									

values and may be used to define waste as hazardous but not as non-hazardous.

DocumentFile: [nest.texfiles]smprcl.tex.

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Login: Check List

$03-01361 \ (0984_1017) \ (2721900_1017)$

01/29/03

Part 1: General Information

	Company Information	Name:	Montgomery Watson Harza
		Address:	10619 South Jordan Gateway ,Salt Lake City ,UT 84095
	Project Information	Project Description:	San Juan River Basin
			Hill AFB
		Project #:	1166121.061609
	Billing Information	P.O. #:	
		Bill Address:	10619 South Jordan Gateway ,Salt Lake City ,UT 84095
		Lab Project ID:	1999_0746
		Client Database #:	04
	Receiving Information	Who Received Sample?	Paul Kou
		Receiving Date/Time:	01/29/03 0930
)		COC No.	
	Shipping Information	Shipping Company	Express
		Packing Information:	Cooler/Ice Chester
		Cooler Temperature:	4.2 ° C
	Container Information	Container Provider:	Client
	Sampling Information	Sampling Person:	
		Sampling Company:	Client
	Turn-Around-Time Option	n:	Rush 5 working day(s)
	QC Option:		QC and Surro. Rep.
	Disposal Option:		Not specify

File: TMP006c.tex

Part 2: Sample Information

Seq.	Sample ID	Sample	APCL		Cont-	Preser-	Vol, ml	# of	Condition	Collected		Composite	TAT	
#	(on COC)	Sub-ID	Sample ID	Matrix	tainer	vative	Am. g	Replica	G, L, B	mmddyy	Hold ?	Group	Days	i
1	Cold Iron Com A #1	BTXE	03-01361-1	w	V	С	40	2	G	012703	N	0	7	
2	LAT3B-39 ,	BTXE	03-01361-2	W	v	C	40	2	G	012703	N	0	7	
3	Trip Blank (2)03,	BTXE	03-01361-3	W	V	С	40	1	G	012703	N	0	7	

Part 3: Analysis Information Test Items: 8021B

Test Items:	₩ 8021B	BTXE				
Seq.	Client"s Sample ID	Sample	APCL			
#	(as given on COC)	Sub-ID	Sample ID	Matrix	BTXE	
1	Cold Iron Com A #1	BTXE	03-01361-1	w	х	
2	LAT3B-39	BTXE	03-01361-2	w	x	
3	Trip Blank (2)03	BTXE	03-01361-3	w	X	

Login By _	En-Yu Paul Kou	
Check By _	174	

Page: 2

File: TMP006c.tex

CHAIN OF CUSTODY RECORD/LAB WORK REQUEST

Air BIII No. 836 381674459

Chain of Custody ID 12703

LABORATORY APCL

Contract El Paso Corp., San Jaun River Basin

_			
•	١	Ľ	
•	•		
:	3		١
5	9	ì	
:			
ŀ	٩	ī	
ı		ä	į

Phone (801) 617-3200 FAX (801) 617-4200	
MWH Contact Brian Buttans	
Project	
770513	
Project Number	
Date Due	
7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

LABORATORY USE ONLY	SAMPLES WERE:	1 Shipped or hand delivered Notes:	2 Amblent or Chilted Notes:		4 Neceived BrokeryLeaking (Improperly Sealed)	Notes:	5 Property Dresenved		Notes:	6 Received Within Holding Times	Z .	Notes:	COC Tape Was:	1 Present on Outer Packa	2 Unbroken on Outer	Y N NA	3 Present on Sample Y NA	4 Unbroken on Sample Y NA	Notes:
																	AN FO	r Plant=SJ	Time
																	North Flare Pit=NF South Flare Pit=SF	San Juan River Planl=SJ	Date
JESTE			Mitrate U							-							Sou	San	
ANALYSES REQUESTED			U enoinA	+			6	•				 		_	-		es=GW		
ALYSE	l		Sations 3														Location IDs: Groundwater Sites=GW	Ą	
A	A07₽7	C Metals	SW-846 6									_					Location IDs: Groundwater S	Bisti=BI Jaquez=JA	ation
			esu sot	1											-		9 6	m -3	//Affilia
			BTEX SV Alkalini <i>t</i>	+	. /					-					+		g S	L	Received by/Affillation
	(q) ent	indəəT į	guildmed	// S//	3	メ									+		Submersible Pump=SP Bladder Pump=BP	Bailer≂B Wellhead Faucet≕WF Hydropunch≕HP	Rece
			(s) xhjsM	١ ـ	3												Submersible Pump Bladder Pump=BP	Bailer=B Wellhead Faucet Hydropunch=HP	
		peteel	oO amiT	11/4														Bailer≂B Wellheac Hydropur	
		hected	oO ətsQ	1-278	-												(b) Sampling Technique: Composite=C	jer=HA	
·		788	Depth Interval (ff)														(b) Sampling Ter Composite=C	Grab=G Hand Auger=HA	
8			Sample	Mer	mut												-	ianks	filiation
FAX (801) 617-42(5000	Xee (print clearly)	lon	4#		2 (2)03											AA – Air WQ – Trip Blank/	Equipment bi WW – Wastewater	Relinquíshed by/Affiliation
Phone (801) 617-3200 FAX (801) 617-4200 MWH Contact Brian Buttars	Project Number 22001	Sampler's Name 177	Location	Chicon Com	14+312-39	TWP Blenk												WS – Surface Water (WG) – Ground Water	R

Discrepancies Between Sample Labels and COC Record?

14103 0930

1-28-03

-27-03 1800hrs

Notes:

ATTACHMENT 2 FIELD DOCUMENTATION

Project No.:	30001.0		Projec	t Name: <u>SJB</u>	Groundw	ater C	lient: <u>MWH</u>	/EL Paso
cation: co	ldiron		Well No	o:MW-1			Deve	lopment <u>Sampling</u>
		MJN		Date 10/	27/03	Start Time	e <u>1414</u>	Weather_Sunny 60s
Depth to Wa	iter37	7.11_ Dept	h to Produ	ıct <u>na</u> l	Product Th	nickness <u>n</u>	a Meas	uring PointTOC
1 '		8.09						
Sampling Mo		ubmersible Pum		Centrifugal				
Criteria: 3								el Kemmerer Other or bail dry
<u></u>				Water Volum	a in Wall			
Gal/ft x	ft of water	er —	Gallons		le iii vveii	Ounces		Gal/oz to be removed
	9 x .65		5.25 x					15.74
Time	mll	SC	Tomp	ORP	D.O.	Turbidity	Vol Evac.	Comments/
(military)	pH (su)	(umhos/cm)	Temp (°C)	(millivolts)	(mg/L)	(NTU)	(gallons)	Flow rate
1425	6.51	3650	15.6				1	Black, sheen
li	6.52	2730	15.9				2	
	6.44	2750	16.2				3	
	6.77	3140	17.5				5	gray, translucent
	6.83	3210	17.9				10	
	6.87	3250	17.8				15	
<u>1446</u>	6.87	3220	17.9				16	gray translucent
Final:	- s	C Temp	Eh-ORP	D.O. Tu	rbidity	Ferrous Iron V	ol Evac.	Comments/Flow Rate
The second secon		220 17.9						ray translucent
COMMENTS	S:							
	<u> </u>							
INSTRUME	NTATION	•				•	erature Mete	er x
	^	DO Mor onductivity Mete				Other		along Angus Angus Angus Angus Angus Angus Angus Angus Angus Angus Angus Angus Angus Angus Angus Angus Angus Ang
1	sal <u>Kı</u>	<u>ıtz</u> Sample II	O_Coldiron		•	e Time <u>150</u> monia TKN I		Metals Total Phosphorus
S/MSD		BD_	····	BD	Name/Tin	ne		TB <u>102703TB01</u>

WELL DIELOPMENT AND SAMPLING LOG

Development Sampling Project Manager MTA Date 2-16-03 Start Time 970 Weather 9.5 +
Depth to Water \$7295 Depth to Product N2 Product Thickness N3 Measuring Point FCC Water Column Height 2.89 Well Dia. Sampling Method: Submersible Pump Centrifugal Pump Peristaltic Pump Other Stainless-Steel Kemmerer Criteria: 3 to 5 Casing Volumes of Water Removal Sabilization of Indicator Parameters Other Depth Sabilization of
Depth to Water \$7295 Depth to Product N2 Product Thickness N3 Measuring Point FCC Water Column Height 2.89 Well Dia. Sampling Method: Submersible Pump Centrifugal Pump Peristaltic Pump Other Stainless-Steel Kemmerer Criteria: 3 to 5 Casing Volumes of Water Removal Sabilization of Indicator Parameters Other Depth Sabilization of
Water Column Height 282 Well Dia. Sampling Method: Submersible Pump Centrifugal Pump Peristaltic Pump Other Solution Valve Bailer Double Check Valve Bailer Stainless-Steel Kemmerer Criteria: 3 to 5 Casing Volumes of Water Removal Sabilization of Indicator Parameters Other Solution Other Sabilization of Indicator Parameters Other Sabilization of Indicator Paramete
Sampling Method: Submersible Pump Centrifugal Pump Peristaltic Pump Other Settom Valve Bailer Double Check Valve Bailer Stainless-Steel Kemmerer Centrifugal St
Bottom Valve Bailer Double Check Valve Bailer Stainless-Steel Kemmerer Criteria: 3 to 5 Casing Volumes of Water Removal Sabilization of Indicator Parameters Other Calculate Sabilization of In
Criteria: 3 to 5 Casing Volumes of Water Removal Sabilization of Indicator Parameters Other Cashaday Water Volume In Well Gal/oz to be removed
Gal/ft x ft of water Gallons Ounces Gal/oz to be removed
Time pH SC Temp Eh-ORP D.O. Turbidity Vol Evac. Comments/ (military) (umhos/cm) (°C) (millivolts) (mg/L) (NTU) (gal.) Flow rate G920 653 3430 219
Time (military) pH SC (umhos/cm) Temp Eh-ORP D.O. Turbidity Vol Evac. (gal.) Flow rate 3470 653 3430 219
3 1 Gray Fransluck 640 2790 20° 2 6/3 ck 650 3190 18° 1 Gray Fransluck 2 6/3 ck 3 14 gray 15
- 65 3280 189 14 gray 65 3190 184 15
- 65 3280 189 14 gray 65 3190 184 15
65 3280 189 14 gray 650 3190 184 15
685 3280 189 14 grun 680 3190 184 15
680 3190 184 15
0942 (3 3200 182 16 light grag
Final: Ferrous
Time pH SC Temp Eh-ORP D.O. Turbidity Iron Vol Evac. Comments/Flow rate 0942 686 3200 182 16 1ichtorn
0542 686 3200 182 HE 16 lighting
COMMENTS
COMMENTS:
INSTRUMENTATION: pH Meter 2 Temperature Meter 2 Other Other
Conductivity Meter 🖼
Water DisposalKJ2
Sample ID Coldicon MW- Sample Time 8950 BTEX VOCs Alkilinity
TDS Cations Anions Nitrate Nitrite Ammonia TKN NM WQCC Metals
Total Phosphorus Total Phospho
MS/MSDBDBD Name/TimeTB/60263TBΦ/

Site Visit

Martin J. Nee PO Box 3861 Farmington, NM 87499-3861 (505)334-2791 (505)320-9675cell

Project Name_	San Juan Basin Ground Water	Project No.	30001.0
Project Manager	MJN		
Client Company	MWH	Date	5-9-03
Site Name	Coldiron		

Well	Time				Dissolved Oxygen
MW-1	0944	-	-	-	1.13
			1		
]				

Comments

Signature:	Martin J. Nee	Date:	May 9, 200	3

WELL DEVELOPMENT AND SAMPLING LOG

	Project No: 30001.0 Project Name: San Turn Basin Client: MWH
	Location: Cold Iron Well No: MW-/ Development Sampling Sampling
	Project Manager MTN Date 4-27-03 Start Time 1053 Weather PC 505
	Depth to Water 36 87 Depth to Product No Product Thickness No Measuring Point TOC
	Water Column Height 8-3/ Well Dia. 4"
1	Sampling Method: Submersible Pump Centrifugal Pump Peristaltic Pump Other Bottom Valve Bailer Double Check Valve Bailer Stainless-Steel Kemmerer D
	Criteria: 3 to 5 Casing Volumes of Water Removal Sabilization of Indicator Parameters Other on ballour
	Water Volume In Well
Ì	Gal/ft x ft of water Gallons Ounces Gal/oz to be removed -65 \ 8-31
	Time pH SC Temp Eh-ORP D.O. Turbidity Vol Evac. Comments/
	(military) (umhos/cm) (°C) (millivolts) (mg/L) (NTU) (gal.) Flow rate
	1107 607 2350 193 1 usta is black
	67 3630 197 2 W/ Vous strong Sew
	100 2570 194 2 - 4 diana 9 mm
	64 2840 219
	1084 3020 208 7 Yellow parethin
	687 3010 21° 9 porticles 1/00 lles on
	688 2980 209 11 uste
	708 2870 217
	<u>695 3300 205</u> 15
	15 705 7200 702 1) Water 6 Stay
	1151 70 3380 202
Į	
	Final: Ferrous
	Time pH SC Temp Eh-ORP D.O. Turbidity Iron Vol Evac. Comments/Flow rate
	1151 705 3380 20.2 19
	COMMENTS:
ŀ	OCIMINENTO.
Ī	INCTUINGENTATION:
	INSTRUMENTATION: pH Meter 🔀 Temperature Meter 🔀 DO Monitor 🖾 Other 🔲
	Conductivity Meter 🖸
	Water Disposal
	Sample ID GW Cold Ivon MW Sample Time 1/5/ BTEX W VOCs Alkilinity
	TDS Cations Anions Nitrate Nitrite Ammonia TKN NM WQCC Metals
	Total Phosphorus
	MS/MSD BD BD Name/Time TB <u>270403.01</u>

WELL DEVELOPMENT AND SAMPLING LOC

	, -			e Bailer [of Water F	Double (Check Val Sabiliza	ve Bailer 🗀] Stainles:	Other 🗹 s-Steel Kemmerer 🔲 neters 🗹 Other
		ft of water		Gallons			Dunces		Gal/oz to be removed
	165 × 5=			5-6			· · · · · · · · · · · · · · · · · · ·		16.95
	Time (military)	pН	SC (umhos/cm)	Temp (°C)	Eh-ORP (millivolts)	D.O. (mg/L)	Turbidity (NTU)	Vol Evac. (gal.)	Comments/ Flow rate
	1020	1.77	3200	113				,38 325	desk gray soverestor
		676	1980	129				4 ²⁵ 5 ²⁵	
		687	<u>2160</u> 2330	12 ·				625	b/sck uster
		681	2410	125				725	
	1047	704	2550 2820	125				1425	
		7/1	2910 2990	133				1475	·
		7/3	3820	145				1575	
	///4	712	3090	<u>/4+</u>		1-16		1625	Sznyde
F	inal:	рН	sc	Temp	Eh-ORP	D.O.	Turbidity	Ferrous Iron	Vol Evac. Comments/Flow rate
	_///4	7/2	3090	144		1-16			1625
	COMMEN	TS:							
				_					· ·
Ī	INSTRUME	NTATION	DÓ	Monitor (Tempe		er 🖸
	Water Disp	77	Conductivity 10+2 1000 Mu				вт	FX FY \	/OCs ☐ Alkilinity ☐