3R - 179

REPORTS

DATE:

Certified Mail: #7002 0510 0000 0307 7497

February 26, 2004

RECEIVED

MAR 03 2004

Oil Conservation Division Environmental Bureau

Mr. William C. Olson New Mexico Oil Conservation Division 1220 St. Francis Dr. Santa Fe, NM 87504

RE: 2003 Pit Project Annual Groundwater Report

Dear Mr. Olson:

In accordance with reporting requirements, El Paso Field Services (EPFS) has enclosed annual reports for the 24 remaining groundwater impacted sites that were identified during our pit closure project of 1994 / 1995.

EPFS has organized the 24 Annual Reports (Volumes 1, 2 and 3) by land type. Volume 1 contains Annual Reports for sites found on Federal land. Volume 2 contains Non Federal sites and Volume 3 contains sites on Navajo land. Of the 24 reports submitted, EPFS is requesting closure of one site located on Navajo lands (Jennepah #1). EPFS understands closure of groundwater sites on Navajo lands falls under jurisdiction of the Navajo Nation Environmental Protection Agency and original documents have been submitted to them for review. Other Navajo sites are included in the report for your information.

If you have any questions concerning the enclosed reports, please call me at (505) 599-2124.

Sincerely,

Scott T. Pope P.G.

Senior Environmental Scientist

xc: Mr. Denny Foust, NMOCD, Aztec - w / enclosures; Certified Mail # 7002 0510 0000 0307 7473
Mr. Bill Liesse, BLM - w / enclosures (federal sites only), Certified Mail # 7002 0510 0000 0307 7466

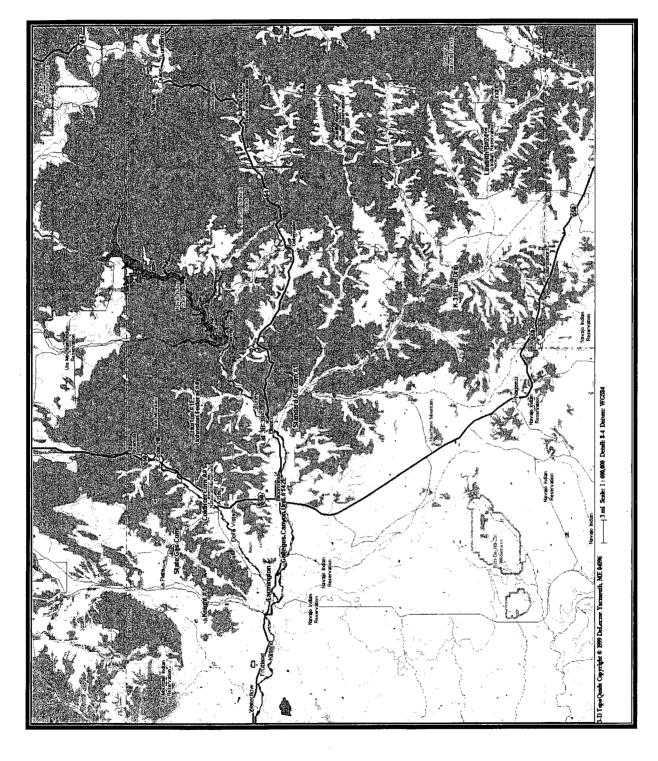

2003 ANNUAL GROUNDWATER REPORT NON-FEDERAL SITES VOLUME II EL PASO FIELD SERVICES

TABLE OF CONTENTS

METER OF LINE ID	SITE NAME	TOWNSHIP	RANGE	SECTION	UNIT
71669	State Gas Com N #1	31N	12W	16	Н
70194	Johnston Fed #4	31N	09W	33	Н
93388	Horton #1E	31N	09W	28	Н
72556	Knight #1	30N	13W	5	Α
73551	Coldiron A #1	30N	11W	2	K
03906	VGCU.Gom/A#142EP	29N	12W	25	Ð.
70445	Standard Oil Com #1	29N	09W	36	N
LD087	K-31 Line Drip	25N	06W	16	N
94967	Lindrith B #24	24N	03W	9	N

LIST OF ACRONYMS

B benzene

btoc below top of casing

E ethylbenzene

EPFS El Paso Field Services

ft foot/feet

GWEL groundwater elevation

ID identification

MW monitoring well

PSH phase-separated hydrocarbons

NMWQCC New Mexico Water Quality Control Commission

T toluene

TOC top of casing

NA not applicable

NE not established

NM not measured

NMOCD New Mexico Oil Conservation Division

NS not sampled

ORC oxygen-releasing compound

ppb parts per billion

μg/L micrograms per liter

X total xylenes

EPFS GROUNDWATER SITE 2003 ANNUAL GROUNDWATER REPORT

GCU Com A #142E Meter Code: 03906

SITE DETAILS

Legal Description:

Town: 29N

Range: 12W

Sec: 25

Unit: G

NMOCD Haz Ranking:

10

Land Type: Fee

Operator:

Amoco Production Company

PREVIOUS ACTIVITIES

Site Assessment:

4/94 **Excavation:** 4/94 (20 cy)

Soil Boring:

10/95

Monitor Well:

2/97

Geoprobe:

12/96

Additional MWs:

12/01

Downgradient

MWs:

12/01

Replace MW:

NA

Quarterly Initiated:

8/97

ORC Nutrient

Injection:

NA

Re-Excavation:

10/96 (882 cy)

PSH Removal Initiated:

NA

Annual

Initiated:

5/98

Quarterly Resumed:

NA

SUMMARY OF 2003 ACTIVITIES

MW-1: Semi-annual groundwater sampling and water level measurements were performed during 2003.

MW-2: Annual groundwater sampling was performed during 2003.

Site-Wide Activities: No other activities were performed at this site during 2003.

SITE MAPS

Site maps (March and September) are attached in Figures 1 and 2.

EPFS GROUNDWATER SITES 2003 ANNUAL GROUNDWATER REPORT

GCU Com A #142E Meter Code: 03906

SUMMARY TABLES AND GRAPHS

- Analytical data from 2003 are summarized in Table 1, and historic data are presented graphically in Figures 3 and 4.
- Laboratory reports are presented in Attachment 1.
- Field documentation is presented in Attachment 2.

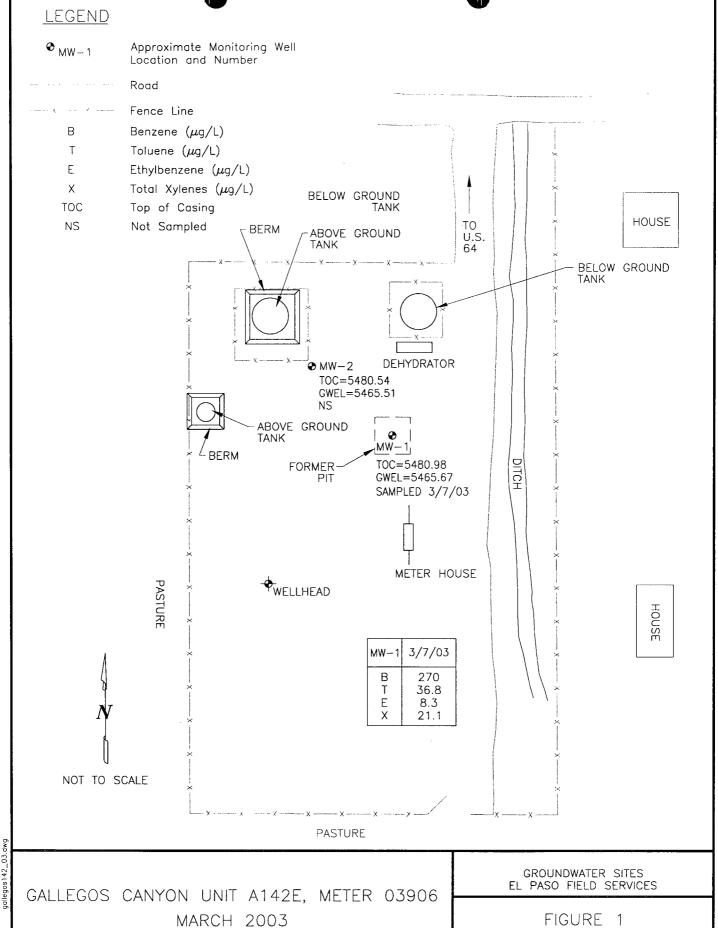
GEOLOGIC LOGS AND WELL COMPLETION DIAGRAMS

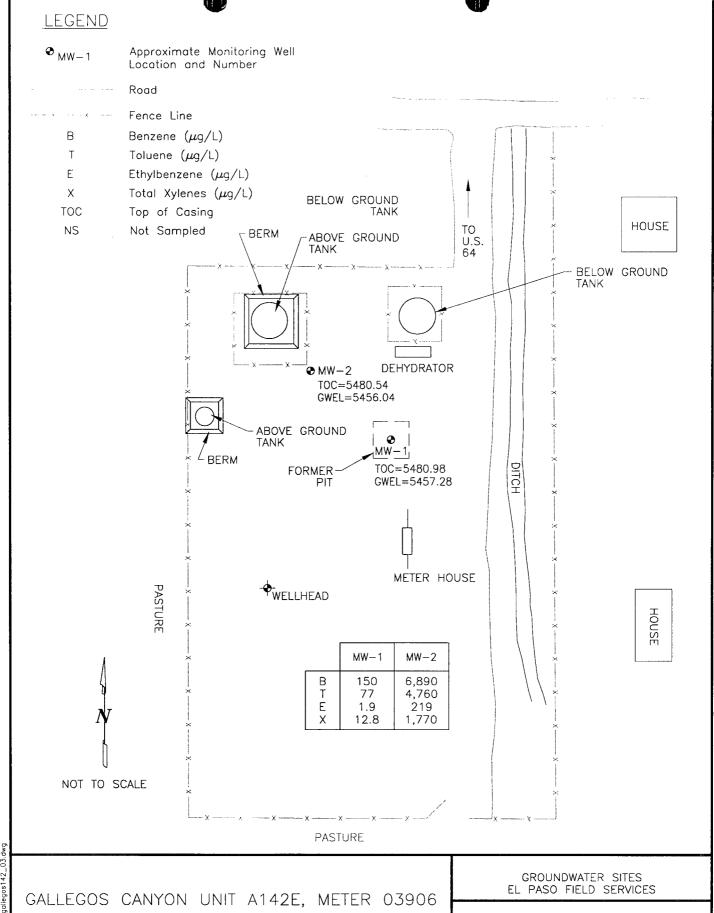
No subsurface activities were performed at this site during 2003.

DISPOSITION OF GENERATED WASTES

No wastes were generated at this site during 2003.

ISOCONCENTRATION MAPS


No isoconcentration maps were prepared for this site, however, the attached site maps present the analytical data collected during 2003.


CONCLUSIONS

- BTEX concentrations from samples collected at MW-1 were similar to concentrations in 2002, and have generally declined historically. During the September 2003 sampling event, the benzene concentration in MW-1 was 150 µg/L, compared to over 5,000 µg/L during March 1997.
- BTEX concentrations in monitoring well MW-2, located adjacent to production equipment, were slightly below concentrations measured in 2001, but remained above closure standards.

RECOMMENDATIONS

- EPFS recommends that MW-1 continue to be sampled annually until concentrations of BTEX constituents approach closure criteria. This well will then be scheduled for quarterly sample collection until closure criteria have been met.
- EPFS recommends that monitoring well MW-2, located adjacent to production equipment, continue to be sampled annually until concentrations of BTEX constituents approach closure criteria. This well will then be scheduled for quarterly sample collection until closure criteria have been met.

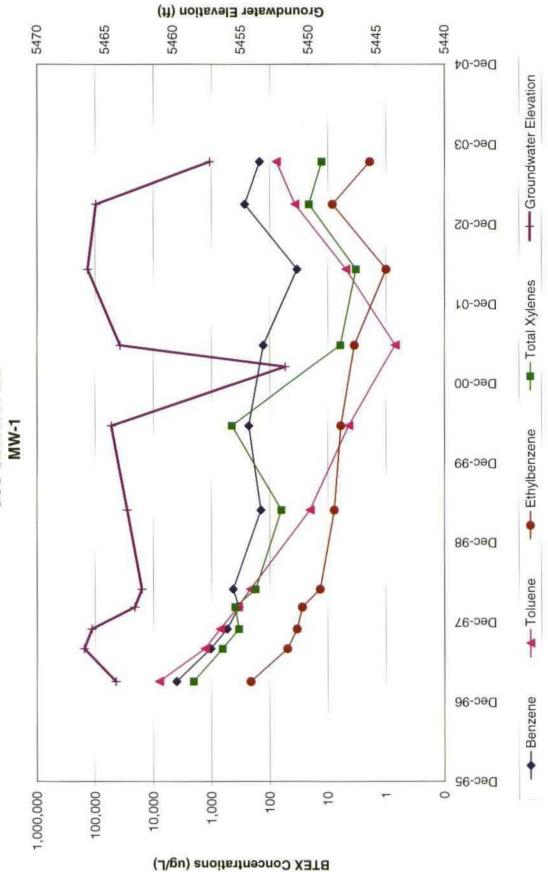
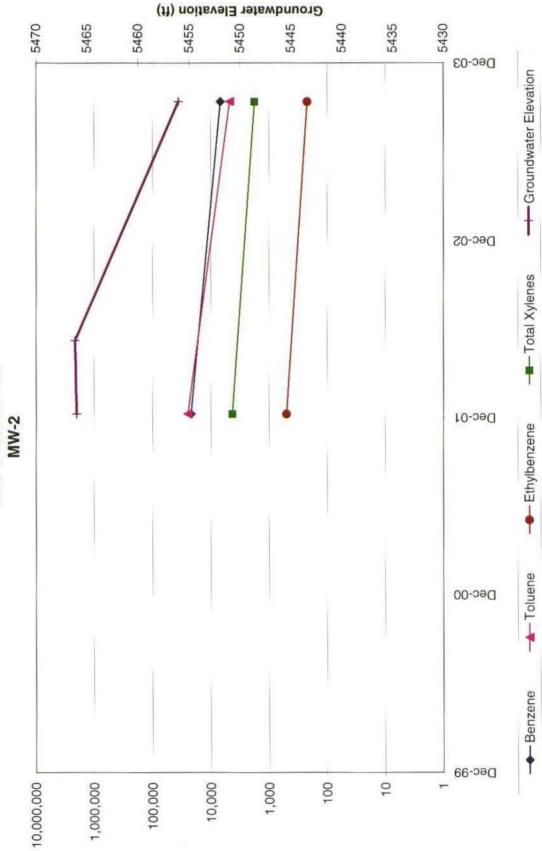

SEPTEMBER 2003

FIGURE 2


TABLE 1
SUMMARY OF BTEX COMPOUNDS IN 2003 GROUNDWATER SAMPLES
GCU COM A #142E (METER #03906)

Site Name	Monitoring Well	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Ethylbenzene Total Xylenes Depth to Water
			(ng/L)	(ng/L)	(ug/L)	(ng/L)	(ft btoc)
GCU Com A #142E	MW-1	3/7/2003	270	36.8	8.3	21.1	15.32
GCU Com A #142E	MW-1	9/17/2003	150	77	1.9	12.8	23.70
GCU Com A #142E	MW-2	9/17/2003	6,890	4,760	219	1,770	24.50

HISTORIC BTEX CONCENTRATIONS AND GROUNDWATER ELEVATIONS GCU COM A #142E FIGURE 3

HISTORIC BTEX CONCENTRATIONS AND GROUNDWATER ELEVATIONS GCU COM A #142E FIGURE 4

BTEX Concentrations (ug/L)

ATTACHMENT 1 LABORATORY REPORTS

DATA VALIDATION WORKSHEET (Page 1 of 2)

(1 uge 1 of 2)

Analytical Method/Analytes: SW-846 8021B (BTEX) Sample Collection Date(s): 09/17/03

Laboratory: Accutest MWH Job Number: EPC-SJRB

(Groundwater)

Batch Identification: T5403 Matrix: Water

MS/MSD Parent(s)^(a): T5403-02 Field Replicate Parent(s): None

г	T .	Г		<u> </u>	TT*	1	T
	Foot	C!4 ID	Committee	Tal m	Hits	01	Commence
\downarrow	Notes	Site ID	Sample ID	Lab. ID	(Y/N)	Quals.	Comments
1	1	GCUA 142E	MW-2	T5403-01	Y	J	Benzene @ 6890 µg/l
						J	Toluene @ 4760 μg/l
Ì						J	Ethylbenzene @ 219 μg/l
ļ						J	Xylenes (total) @ 1770 μg/l
İ						J	o-Xylene @ 324 μg/l
						J _	m,p-Xylene @ 1450 µg/l
Ţ	None	GCUA 142E	MW-1	T5403-02	Y		Benzene @ 150 µg/l
١							Toluene @ 77.0 µg/l
							Ethylbenzene @ 1.9 µg/l
							Xylenes (total) @ 12.8 µg/l
							o-Xylene @ 2.9 μg/l
ļ							m,p-Xylene @ 9.9 µg/l
	None	Trip Blank	170903TB02	T5403-03	N		
L							
L							
L							
L							
╁							
\vdash							
F							
ŀ	· · · · · · · · · · · · · · · · · · ·						
╁							
ŀ							
\vdash							
\mathbf{F}							
\vdash					-		
\mid							
L				-l	<u> </u>	L	L

Analytical Method:	SW-846 8021B (BTEX)	MWH Job Number:	EPC-SJRB (Groundwater)
Laboratory:	Accutest	Batch Identification:	T5403

Validation Criteria				 		
Sample ID	GCUA 142E MW-2	GCUA 142E MW-1	170903TB 02			
Lab ID	T5403-01	T5403-02	T5403-03			
Holding Time	A ¹	A	А			
Analyte List	A	A	A			
Reporting Limits	A	Α	A			
Trip Blank	A	Α	A			
Equipment Rinseate Blanks	N/A	N/A	N/A			
Field Duplicate/Replicate	N/A	N/A	N/A			
Surrogate Spike Recovery	A	A	A			
Initial Calibration	N	N	N			
Initial Calibration Verification (ICV)	N	N	N			
Continuing Calibration Verification (CCV)	N	N	N			
Laboratory Control Sample (LCS)	Α	A	Α			
Laboratory Control Sample Duplicate (LCSD)	N	N	N			
Method Blank	A	A	Α			
Matrix Spike/Matrix Spike Dup. (MS/MSD)	N/A	A	N/A			
Retention Time Window	N	N	N			
Injection Time(s)	N	N	N			
Hardcopy vs. Chain-of-Custody	A	A	Α			
EDD vs. Hardcopy	N	N	N			
EDD vs. Chain of Custody	N	N	N			

(a) List QC batch identification if different than Batch ID

A indicates validation criteria were met

 $\mbox{\ensuremath{A\!/\!L}}$ indicates validation criteria met based upon Laboratory's QC Summary Form

X indicates validation criteria were not met

N indicates data review were not a project specific requirement

N/A indicates criteria are not applicable for the specified analytical method or sample

N/R indicates data not available for review

NOTES:

1) Non-preserved sample holding time of seven days exceeded by five days, indicating a possible low bias. Qualify associated sample hits with "J" flags to indicated the data are estimated and potentially biased low and qualify associated non-detects with "UJ" flags to indicate the results are possible false negatives.

CHAIN CUSTODY 120403 mvb2

10165 Harwin Drive, Ste. 150, Houston, TX 77036 FEDEX Tracking #
TEL. 713-271-4700 FAX: 713-271-4770 Accutes! Quote #

Bottle Order Control #

Accutest Job #

	Glient / Reporting Information Project Information	on se	-			Proje	ect Information							Rednes	Requested Analysis			Matrix Codes	
Company Name	4		ag.	Project Name	,	1	/				_						AG	DW - Drinking Water	
MWH	7		1	ı	CANDUM WATER	m	400	7									6	GW - Ground Water	
Address (O)	Doille		<u> </u>	A CO	74,		7 / 1		(2)	14.2F								WW · Water	
息	State	P 12 / 2/1 / 20					State	y		Slate	<u> </u>						īS	SW - Surface Water	
dem	Attor NM	2/40					į											SO - Soil	
Project Contact	1 Posee	E-mail		Project #														SL - Sludge	
Phone #	100		Fax#		ENE 4997119	490	371	á										OI - Oil LIQ - Other Liquid	
	12/2/20			<u>.</u>							_							AIR - Air	
Sampler's Name	カナ メイト		<u>8</u>	Client Purchase Order #	Order #						3							SOL - Other Solid	
Acculest	Field ID / Point of Collection	SUMMA#	# *	Collection				Number of	Number of preserved Bottles	ottles								WP · Wipe	
Sample #		MEOH VISH#	Vial # Date	Time	Sampled By	Matrix bottles	offles Offles	HOPN HOPN	NTHROY NOME HSROY	ВИСОЬЕ МЕОН	7						<u> </u>	LAB USE ONLY	_
	C-MM-3541 AUDES	6-1	13-D	9-17-18/1255 Me WE	5 m	200	2 2				4								Γ
	-WM 8 241 AUDG	1-1	4.17	AM OW CHEI GOLI.P	Simo		2 2				4	<u> </u>							1
	C\$81805011		841.18	808	SUM MIN CIXO	3					_								1
																			
			_	-	_				-			-				F			Τ-
			-	+	-					+		-							1
			-	-	-			+											_
			-	1	-		-		+	-		 							Τ-
			-	-	ļ			_	-			<u> </u>							ī
									-			-							4
	Tumaround Time (Business Days)					٥	ata Delivera	Data Deliverable Information	uc					S	Comments / Remarks				
K 10 Day STANDARD	TANDARD Approved By: / Date:	/ Date:		§ 	Commercial 'A'			☐ EDD Format							1	5003	N		
D 5 Day RUSH	HST.		1	§ 	Commercial 'B'											7			
☐ 3 Day EMERGENCY	MERGENCY			₩ []	iced Tier 1														
☐ 2 Day EMERGENCY	MERGENCY		İ		Ter 1														1
☐ 1 Day EMERGENCY	MERGENCY]]	513														_
Sperior																			
				<u></u>	Commercial "A" = Results Only	= Result	s Only						١						7
Emergency	Emergency & Rush T/A data available VIA LabLink										į								_
			Sam	ple Custody	nust be doct	mented bek	ow each tim	e samples ci	ange posse	Sample Custody must be documented below each time samples change possession, including courier delivery.	ing courier (lelivery.							884
Refinquish on	Sample: (Lochus	Date Time. 7-17-03	Received by:	;			ï	Relinquished by 2	ā,				Date Time:		Received by.				
Reling Shed by		Date Time: 0/18 /0/59 06	S. Contraction		\			Refinquished	.ka				Date Time		eceived by:			 - 	
Retinquished by:		Date Time:						Custody Seal #	*			reserved wh	Preserved where applicable		o Muse	5	Cooler Jame.		

2 Cooler Jorge.

<u>\$</u>€

Preserved whore applicable

Technical Report for

Montgomery Watson

EPFS San Juan Basin Groundwater Site

Accutest Job Number: T5403

6CV 14ZE

Report to:

MWH

pamela.j.anderson@us.mwhglobal.com

ATTN: Pam Anderson

Total number of pages in report: 15

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Ron Martino Laboratory Manager

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Accutest Laboratories

Sample Summary

Montgomery Watson

Job No:

T5403

EPFS San Juan Basin Groundwater Site

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
T5403-1	09/17/03	12:55 MJN	09/18/03	AQ	Water	GCUA 142B MW-2
T5403-2	9 09/17/03	13:40 MJN	09/18/03	AQ	Water	GCUA 142B MW-I
T5403-3	09/17/03	07:00 MJN	09/18/03	AQ	Trip Blank Water	170903TB02

Client Sample ID: GCUA 142B MW-2

Lab Sample ID:

T5403-1

Matrix:

AQ - Water

SW846 8021B

Date Sampled:

09/17/03

Date Received:

09/18/03

Percent Solids: n/a

Method: Project:

EPFS San Juan Basin Groundwater Site

File ID DF Analyzed Prep Date Analytical Batch By Prep Batch Run #1 a KK005857.D 09/29/03 GKK315 10 BC n/a n/a Run #2 a KK005858.D 09/29/03 BC **GKK315** 50 n/a n/a 09/30/03 Run #3 KK005866.D 100 BC n/a n/a **GKK316**

Purge Volume Run #1 5.0 ml Run #2 5.0 ml Run #3 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	Units Q	
71-43-2 108-88-3 100-41-4 1330-20-7 95-47-6	Benzene Toluene Ethylbenzene Xylenes (total) o-Xylene m,p-Xylene	6890 b 4760 c 219 1770 324 1450	100 50 10 30 10 20	ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	88% 110%	89% 93%	85% 88%	64-121% 71-121%

- (a) Sample was not preserved to a pH < 2; reported results are considered minimum values.
- (b) Result is from Run# 3
- (c) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: GCUA 142B MW-1

Lab Sample ID:

T5403-2

Matrix: Method:

Project:

AQ - Water

SW846 8021B

DF

EPFS San Juan Basin Groundwater Site

Date Sampled: 09/17/03

Date Received: 09/18/03

Percent Solids: n/a

Prep Date	Prep Batch	Analytical Batch	
/	/	CVV01E	

Analyzed By 09/29/03 KK005859.D BC Run #1 1 n/a n/a GKK315 09/30/03 Run #2 KK005867.D 10 BC n/a **GKK316** n/a

Purge Volume

File ID

Run #1 5.0 ml Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	Units Q
71-43-2 108-88-3 100-41-4 1330-20-7 95-47-6	Benzene Toluene Ethylbenzene Xylenes (total) o-Xylene m,p-Xylene	150 ^a 77.0 1.9 12.8 2.9 9.9	10 1.0 1.0 3.0 1.0 2.0	ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	91% 95%	90% 92%	64-121% 71-121%

⁽a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: 170903TB02

T5403-3

Lab Sample ID: Matrix:

AQ - Trip Blank Water

SW846 8021B

Date Sampled:

09/17/03

Date Received:

09/18/03

Percent Solids: n/a

Method: Project:

EPFS San Juan Basin Groundwater Site

Prep Batch

Analytical Batch

Run #1 Run #2 File ID KK005810.D DF

Analyzed 09/22/03

By BC Prep Date n/a

n/a

GKK312

Purge Volume

Run #1

5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	Units Q
71-43-2 108-88-3 100-41-4 1330-20-7 95-47-6	Benzene Toluene Ethylbenzene Xylenes (total) o-Xylene m,p-Xylene	ND ND ND ND ND ND	1.0 1.0 1.0 3.0 1.0 2.0	ug/l ug/l ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	105% 99%		64-121% 71-121%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

GC Volatiles

QC Data Summaries

- Includes the following where applicable:
- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Page 1 of 1

Blank Spike Summary Job Number: T5403

Account:

MWHSLCUT Montgomery Watson

Project:

EPFS San Juan Basin Groundwater Site

Sample GKK312-BS File ID DF KK005791.D1

Analyzed 09/22/03

By BC

Prep Date n/a

Prep Batch

n/a

Analytical Batch GKK312

The QC reported here applies to the following samples:

Method: SW846 8021B

T5403-3

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylenes (total)	20 20 20 20 60	22.9 22.9 22.4 67.7	115 115 112 113	74-119 82-115 77-116 79-115
95-47-6	o-Xylene m,p-Xylene	20 40	22.4 45.2	112 113	78-114 79-116
CAS No.	Surrogate Recoveries	BSP	Li	mits	
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	115% 106%		-121% -121%	

Page 1 of 1

Job Number:

T5403

Account:

MWHSLCUT Montgomery Watson

Project:

EPFS San Juan Basin Groundwater Site

Sample
GKK315-BS a

File ID DF KK005849.D1 Analyzed 09/29/03

By BC Prep Date n/a

Prep Batch

n/a

Analytical Batch

GKK315

The QC reported here applies to the following samples:

Method: SW846 8021B

T5403-1, T5403-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
100-41-4 108-88-3 1330-20-7 95-47-6	Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	20 20 60 20 40	20.3 19.8 59.7 19.7 40.0	102 99 100 99 100	82-115 77-116 79-115 78-114 79-116
CAS No.	Surrogate Recoveries	BSP	Limits		
460-00-4 98-08-8	4-Bromofluorobenzene	104% 102%		-121% -121%	

⁽a) Spike recoveries were adjusted for double spike.

Blank Spike Summary Job Number: T5403

Account:

MWHSLCUT Montgomery Watson

Project: Sample

EPFS San Juan Basin Groundwater Site

File ID DF GKK316-BS KK005863.D1

Analyzed 09/30/03

By BC

Prep Date n/a

Prep Batch

Analytical Batch

Page 1 of 1

n/a GKK316

The QC reported here applies to the following samples:

Method: SW846 8021B

T5403-1, T5403-2

CAS No.

CAS No. Compound 71-43-2 Benzene

BSP BSP Spike ug/l ug/l %

19.5

Limits 74-119

Surrogate Recoveries

BSP

20

Limits

98

460-00-4 4-Bromofluorobenzene 98-08-8 aaa-Trifluorotoluene

93% 96% 64-121% 71-121% Method Blank Summary Job Number: T5403

Account:

MWHSLCUT Montgomery Watson

Project: EPFS San Juan Basin Groundwater Site

Sample File ID DF Analyzed **Prep Date** Prep Batch Analytical Batch By GKK312-MB KK005792.D1 09/22/03 BC GKK312 n/a n/a

The QC reported here applies to the following samples:

aaa-Trifluorotoluene

Method: SW846 8021B

Page 1 of 1

T5403-3

98-08-8

CAS No.	Compound	Result	RL	Units	Q
71-43-2 100-41-4 108-88-3 1330-20-7 95-47-6	Benzene Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	ND ND ND ND ND	1.0 1.0 1.0 3.0 1.0 2.0	ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries		Limi	ts	
460-00-4	4-Bromofluorobenzene	104%	64-12	21%	

101%

71-121%

Method Blank Summary

Job Number:

T5403

Account: Project:

MWHSLCUT Montgomery Watson EPFS San Juan Basin Groundwater Site

DF

Sample GKK315-MB

File ID D KK005850.D 1 Analyzed 09/29/03 By Prep Date BC n/a

Prep Batch n/a Analytical Batch

Page 1 of 1

GKK315

The QC reported here applies to the following samples:

Method: SW846 8021B

T5403-1, T5403-2

CAS No.	Compound	Result	RL	Units	Q
100-41-4	Ethylbenzene	ND	1.0	ug/l	
108-88-3	Toluene	ND	1.0	ug/l	
1330-20-7	Xylenes (total)	ND	3.0	ug/l	
95-47-6	o-Xylene	ND	1.0	ug/l	
	m,p-Xylene	ND	2.0	ug/l	
CAS No.	Surrogate Recoveries	Limits			
460-00-4	4-Bromofluorobenzene	98% 64-121%			
98-08-8 aaa-Trifluorotoluene		98%	71-12	21%	

Method Blank Summary

Job Number:

T5403

Account: Project:

MWHSLCUT Montgomery Watson EPFS San Juan Basin Groundwater Site

Sample GKK316-MB

File ID KK005864.D1

DF

Analyzed 09/30/03

By BC

Prep Date n/a

Prep Batch

n/a

Analytical Batch GKK316

Page 1 of 1

The QC reported here applies to the following samples:

Method: SW846 8021B

T5403-1, T5403-2

CAS No.

Compound

Result

RL

Units Q

71-43-2

Benzene

ND

1.0

ug/l

CAS No.

Surrogate Recoveries

Limits

460-00-4 98-08-8

4-Bromofluorobenzene aaa-Trifluorotoluene

89% 94% 64-121% 71-121% Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 1

Job Number:

T5403

Account: Project:

MWHSLCUT Montgomery Watson EPFS San Juan Basin Groundwater Site

Sample	File ID DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
T5378-1MS	KK005800.D 10	09/2Ž/03	ВČ	n/a	n/a Î	GKK312
T5378-1MSD	KK005801.D10	09/22/03	BC	n/a	n/a	GKK312
T5378-1	KK005797.D1	09/22/03	BC	n/a	n/a	GKK312
T5378-1	KK005799.D 10	09/22/03	BC	n/a	n/a	GKK312

The QC reported here applies to the following samples:

Method: SW846 8021B

T5403-3

CAS No.	Compound	T5378-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7 95-47-6	Benzene Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	125 ^a 5.2 2.6 3.0 1.4 1.6 J	200 200 200 600 200 400	345 229 228 700 235 465	110 112 113 116 117 116	346 230 227 697 235 461	111 112 112 116 117 115	0 0 0 0 0	64-124/16 64-123/14 64-120/13 66-118/18 65-119/20 66-120/14
CAS No. 460-00-4 98-08-8	Surrogate Recoveries 4-Bromofluorobenzene aaa-Trifluorotoluene	MS 111% 99%	MSD 103% 90%	T5 103 96°		T5378-1 95% 89%	6	imits 4-121% 1-121%	

⁽a) Result is from Run #2.

Matrix Spike/Matrix Spike Duplicate Summary Job Number: T5403

Account: Project:

MWHSLCUT Montgomery Watson

EPFS San Juan Basin Groundwater Site

Sample File ID DF T5401-1MS KK005853.D 5 T5401-1MSD KK005854.D 5 T5401-1 KK005852.D 5	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	09/29/03	BC	n/a	n/a	GKK315
	09/29/03	BC	n/a	n/a	GKK315
	09/29/03	BC	n/a	n/a	GKK315

The QC reported here applies to the following samples:

Method: SW846 8021B

Page 1 of 1

T5403-1, T5403-2

CAS No.	Compound	T5401-1 ug/l	Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
100-41-4 108-88-3 1330-20-7 95-47-6	Ethylbenzene Toluene Xylenes (total) o-Xylene m,p-Xylene	ND 77.1 11.7 2.7 8.9	J J	100 100 300 100 200	101 181 297 95.4 202	101 104 95 93 97	103 184 313 101 212	103 107 100 98 102	2 2 5 6 5	64-123/14 64-120/13 66-118/18 65-119/20 66-120/14
CAS No.	Surrogate Recoveries	MS		MSD	T54	01-1	Limits			
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	87% 87%		91% 90%	76% 79%	_	64-121% 71-121%			

Matrix Spike/Matrix Spike Duplicate Summary Job Number: T5403

Page 1 of 1

Account: Project:

MWHSLCUT Montgomery Watson EPFS San Juan Basin Groundwater Site

The QC reported here applies to the following samples:

Method: SW846 8021B

T5403-1, T5403-2

CAS No.	Compound	T5403-2 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	150	200	343	97	342	96	0	64-124/16
CAS No.	Surrogate Recoveries	MS	MSD	T5-	403-2	Limits			
460-00-4 98-08-8	4-Bromofluorobenzene aaa-Trifluorotoluene	92% 92%	90% 91%	909 929	_	64-1219 71-1219	-		

ACCUTEST.

Laboratories

CHAIN CUSTODY 170903 MUB2

Bottle Order Control # Accutest Job # 10165 Harwin Drive, Stc. 150, Houston, TX 77036 FEDEX Tracking#
TEL. 713-271-4700 FAX: 713-271-4770 A42252414844
www.accutest.com

Client / Reporting Information	Project Information	Requested Analysis	Matrix Codes
a a	Superi Name	MG .	- Drinking Water
	ı	85	GW - Ground Water
Oly Reille	322/18405(mison Wit/6CU) A 142E	8	yww - Water
State State	City	5	SO - Soil
200	Project #		SL - Sludge
, color			
505 599 2/24	First 505 559 2119		LIQ - Other Liquid
Sampler's Name N. A.	Cirent Purchase Order #	\(\sigma\)	SOL - Other Solid
Accutest Field ID / Point of Collection SUMA	Number of preserved Bottles		WP · Wipe
	BYCOKE MECH MENN MONE MONE MONE MONE MONE MONE MONE		LAB USE ONLY
CACUA HEE MW-2	2 2	~	
GOCUM 142 B MW-1	2 2	7	
170903711402	1) 1) SM WM COCO 841.8		
1 17 2.			-
V 10 Day STANDARD Anaround 1 are (dusiness Days)	Usia Deliverable Information s	Comments / Remarks	
		15407	
☐ 3 Day EMERGENCY	C Reduced Tier 1		
LJ 2 Day EMERGENCY	TRRP13		
Other			
	Commercial "A" = Results Only		
Emergency & Rush T/A data available VIA LabLink	WANDOWN .		
Reinousbet De Barrole:	Received by Received by R	Counter delivery . [Date Time: Received by.	
MX . /LOCOMO			
Reling Ash duby Date Time G	3 Control of the Cont	Received by:	
Reinquished by: Date Time.	Recaved by: Custody Seal #	Preserved where applicable ONT Cooler Japon	
, i			1

BACCUTEST	,

SAMPLE RECEIPT LOG

рв#:	23	DATE/TIME RECE	IVED:	1/18/03	0900		
CLIENT: El Pa.	so MWH			9/18/03 INITIALS:	jet		
Condition/Variance (Cir 1. N Sample rece 3. Y Sample rece 5. N Sample volu 7. N Chain of Cus	rcle "Y" for yes an eived in undamag eived with proper me sufficient for a stody matches sa il received intact a	ed condition. 2. 6 pH. 4. 6 analysis. 6. 6 mple IDs on conta	is circled, se N Sample N Sample N Sample iners.	ee variance for es received we e received in	or explanation)	nge. ners.	
SAMPLE or FIELD ID	BOTTLE#	DATE SAMPLED	MATRIX	VOLUME	LOCATION	PRESERV.	PH
/	<u> </u>	9/17/03	WW	VOA	UREF	1,2,3,4,5,6	U, <2, >12, (AA)
2	1-2					1,2,3,4,5,6	U, <2, >12, (A)
3		V	V	V	4	1,2,3,4,5,6	U, <2, >12, NA
						1,2,3,4,5,6	U, <2, >12, NA
						1,2,3,4,5,6	U_42, >12, NA
						1,2,3,4,5,6	U, <2, >12, NA
	·					1,2,3,4,5,6	U, <2, >12, NA
						1,2,3,4,5,6	U, <2, >12, NA
			1			1,2,3,4,5,6	U, <2, >12, NA
	·	1003				1,2,3,4,5,6	U, <2, >12, NA
		9110				1,2,3,4,5,6	U, <2, >12, NA
						1,2,3,4,5,6	U, <2, >12, NA
						1,2,3,4,5,6	U, <2, >12, NA
			·			1,2,3,4,5,6	U, <2, >12, NA
./						1,2,3,4,5,6	U, <2, >12, NA
						1,2,3,4,5,6	U, <2, ≥12, NA
LOCATION: WI: Walk-In PRESERVATIVES: 1: Nor pH of waters checked excl	1e 2: HCL 3: HNO		H 6: Other				
pH of soils N/A	8 -0100163						
elivery method: Cour Tracking	ier: #:			COOLER TEN	P: 2,6°C		MP:
Method of sample dis	sposal: (circle on	e) Accutest disp	osal Hoid	Return to	Client	F	orm: SM012

Analytical Method/Analytes: SW-846 8021B (BTEX) Sample Collection Date(s): 03/07/03

Laboratory: APCL MWH Job Number: EPC-SJRB (Groundwater)

Batch Identification: 03-02085 Matrix: Water

MS/MSD Parent(s)^(a): None Field Replicate Parent(s): None

Validation Complete: 3-3/-03

Foot Notes	Site ID	Sample ID	Lab. ID	Hits (Y/N)	Quals.	Comments
1	GW	GCU A 142E	03-02085-01	Y	B B	Toluene @ 36.8 µg/l
1	GW	Ohio C Govt 3 MW-2	03-02085-02	Y	UB	Toluene @ 0.6 µg/l
1	GW	Ohio C Govt 3 MW-3	03-02085-03	Y	UB	Toluene @ 0.9 μg/l
1	GW	Ohio C Govt 3 MW-4	03-02085-04	Y	UB	Toluene @ 0.4 T μg/l
1	GW	TB 260203-1	03-02085-05	Y	OB	Toluene @ 0.3 T µg/l
		12 200203 1	00 02000 00			1010010 0 0.3 1 [65,1
-	<u></u>					
		. , , ,				
						
<u>-i </u>					'	
						<u> </u>
					-	

Analytical Method:	SW-846 8021B (BTEX)	MWH Job Number:	EPC-SJRB (Jaquez)
Laboratory:	APCL	Batch Identification:	03-02085

Validation Criteria							
Sample ID	GCU A 142E MW-1	Ohio C Govt 3 MW-2	Ohio C Govt 3 MW-3	Ohio C Govt 3 MW-4	TB 260203-1		
Lab ID	03-02085- 01	03-02085- 02	03-02085- 03	03-02085- 04	03-02085- 05		
Holding Time	Α	A	A	Α	Α		
Analyte List	Α	Α	A	А	Α		
Reporting Limits	A	Α	Α	Α	Α		
Trip Blank	A ¹	A ¹	A ¹	A ¹	A ¹		
Equipment Rinseate Blanks	N/A	N/A	N/A	N/A	N/A		
Field Duplicate/Replicate	N/A	N/A	N/A	N/A	N/A		
Initial Calibration	N	N	N	N	N		
Initial Calibration Verification (ICV)	N	N	N	N	N		
Continuing Calibration Verification (CCV)	A	· A	Α	Α	Α		
Method Blank	A	Α	Α	Α	A		
Laboratory Control Sample (LCS)	Α	Α	A	A	A		
Laboratory Control Sample Duplicate (LCSD)	N	N	N	N	N		
Matrix Spike/Matrix Spike Dup. (MS/MSD)	N/A	N/A	N/A	N/A	N/A		
Surrogate Spike Recovery	A	Α	A	Α	Α		
Retention Time Window	N	N	N	N	N		
Injection Time(s)	· N	N	N	N	N		
Hardcopy vs. Chain-of-Custody	А	A	A	Α	A		
EDD vs. Hardcopy	N	N	N	N	N		
EDD vs. Chain of Custody	N	N	N	N	N		

(a) List QC batch identification if different than Batch ID

A indicates validation criteria were met

A/L indicates validation criteria met based upon Laboratory's QC Summary Form

X indicates validation criteria were not met

N indicates data review were not a project specific requirement

N/A indicates criteria are not applicable for the specified analytical method or sample

N/R indicates data not available for review

NOTES:

- 1) The following compounds were detected in the trip blank (TB 270203-1):
 - a) Toluene @ 0.3 T μg/l, qualify associated sample concentrations greater than 1.5 μg/l with "B" flags and associated sample concentrations less than 1.5 μg/l with "UB" flags.

Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Montgomery Watson Harza Attention: Brian Buttars 10619 South Jordan Gateway Salt Lake City UT 84095

Tel: (801)617-3200 Fax: (801)617-4200

APCL Analytical Report

Service ID #: 801-032085

Collected by: M.J Nee

Collected on: 03/07/03

Sample Description: Water

Project Description: 220013

Received: 03/10/03

Extracted: N/A Tested: 03/11/03 Reported: 03/14/03

San Juan River Basin

Analysis of Water Samples

				Analysis Result		
Component Analyzed	Method	Unit	PQL	MW-1 03-02085-1	MW-2 03-02085-2	
BTXE		70			V -	
Dilution Factor				1	λı	
BENZENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	270	/ 0 \ 6	
ETHYLBENZENE	8021B	$_{\mu\mathrm{g/L}}$	0.5	8.3	/1.\2	
TOLUENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	36.8	/o.a	
O-XYLENE	8021B	$_{\mu \mathrm{g/L}}$	0.5	5.1	/ 0.6	
M,P-XYLENE	8021B	$_{\mu}\mathrm{g/L}$	1	16	2.3	

Component Analyzed	Method	Unit	PQL	MW-3 08-02085-3	Abalysis Result MW-4 03-02085-4	TB 03-02085-5
BTXE				\ /	$\overline{}$	
Dilution Factor				\ 1 /	\1/	1
BENZENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	d \ 1 /	λ,∕1	< 0.5
ETHYLBENZENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	1 \/ 4	9 /∖ 3	< 0.5
TOLUENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	9/.\b	0/.4)	0.3J
O-XYLENE	8021B	$_{\mu}\mathrm{g/L}$	0.5	∅.7\	/1.8\	< 0.5
M,P-XYLENE	8021B	$_{\mu}\mathrm{g/L}$.1	β.1 \	$\int 6.3$	< 1

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

N.D.: Not Detected or less than the practical quantitation limit.

CRDL: Contract Required Detection Limit

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Dominic Lau

Laboratory Director

Applied P & Ch Laboratory

CADHS ELAP No.: 1431

CI-0984 D004 X 03-2085 D

Page: 1 of 1

J: Reported between PQL and MDL.

Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Montgomery Watson Harza Attention: Brian Buttars 10619 South Jordan Gateway Salt Lake City, UT 84095

Tel: (801)617-3200 Fax: (801)617-4200

APCL QA/QC Report

Service ID #: 801-032085

Collected by: M.J Nee

Collected on: 03/07/03

Sample description:

Water

Project: San Juan River Basin /220013

Analysis of Water

801-032085QC

Received: 03/10/03

Reported: 03/26/03

Tested: 03/11/03

Component Name	Analysis Batch #	CCV (µg/L)	CCV %Rec	M-Blank	Conc. Unit	SP Level	LCS %Rec	MS %Rec	MSD %Rec	MS/MSD %RPD	Contro %Rec	l Limit %Diff
BTXE			,									
Benzene	03G1682	100	105	N.D.	$_{\mu}\mathrm{g/L}$	18.0	103	96	96	0	71-126	28
Toluene	03G1682	100	110	N.D.	$_{\mu}\mathrm{g/L}$	70.0	104	96	96	0	70-117	24
Ethylbenzene	03G1682	100	114	N.D.	$_{\mu}\mathrm{g/L}$	18.0	107	96	96	1	65-131	33
m/p-Xylene	03G1682	200	107	N.D.	$_{\mu}\mathrm{g/L}$	70.0	102	94	94	0	66-122	28
o-Xylene	03G1682	100	105	N.D.	$_{\mu}\mathrm{g/L}$	25.0	97	95	94	0	65-130	33

Notation:

ICV - Initial Calibration Verification

CCV - Continuation Calibration Verification

LCS - Lab Control Spike MS - Matrix Spike

MSD - Matrix Spike Duplicate ICS - Interference Check Standard

MD - Matrix Duplicate

N.D. - Not detected or less than PQL

CCB - Continuation Calibration Blank

M-blank - Method Blank SP Level - Spike Level %Rec - Recovery Percent

%RPD - Relative Percent Differences

%Diff - Control Limit for %RPD ICP-SD - ICP Serial Dilution

N.A. - Not Applicable

Respectfully submitted,

Regina Kirakozova, Associate QA/QC Director Applied P & Ch Laboratory

FORM-2A

Applied P & Ch Laboratory

Surrogate Recovery Summary for Method 8021B

Client Name:

Montgomery Watson Harza

Contract No:

Lab Code:

APCL

Case No:

SAS No:

SDG Number: 220013

032085

Project ID:

San Juan River Basin

Project No:

31682

Sample Matrix:

Water

		Batch	No:	03G:

	Client	Lab	S1	TOT
#	Sample No	Sample ID	% #	OUT
1		03G1682-LCS-01	94	0
2		03G1682-LSD-01	90	0
3		03G1682-MB-01	96	0
4	ТВ	03-2085-5	97	0
5	MW-1	03-2085-1	94	0
6	MW-2	03-2085-2	99	0
7	MW-3	03-2085-3	100	0
8	MW-4	03-2085-4	100	0
9	842092-0052	03-2086-1MS	90	0
10	842092-0052	03-2086-1MSD	90	0
11				
12				
13				
14	***************************************			
15				
16				
17				
18				
19				
20				
21				
22				
23	1			
24				
25				

QC Control Limit

S1 = 4-BROMO-FLUOROBENZENE (PID)

66-133

Column to be used to flag recovery values:

* - Values outside of contract required QC Limits

D - Surrogate diluted out

I - Matrix Interference

CHAIN OF CUSTODY RECORD/LAB WORK REQUEST

Chain of Custody ID 670303 MN-1

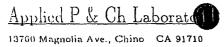
ONLY

LABORATORY AR.

Contract El Paso Corp., San Jaun River Basin

HME.

Phone (801) 617-3200 FAX (801) 617-4200 MWH Contact Brian Buffars Projec Projec


LABORATORY USE	SAMPLES WERE:	1 Shipped or hand deli	Notes:	Notes:	3 Temperature	4 Received Broken/Le (Improperly Sealed)	Z	Nofes:	5 Properly Preserved Y N	Notes:	6 Received Within	N Y Y	Notes:	COC Tape Was:	1 Present on Outer Pa	N	2 Unbroken on Outer	Package V
į																		
TED	0.0	0E A	JSEP.	Mitrite L	}	-	-	-	G		-		-	_	-	-	_	
ANALYSES REQUESTED	0.00	DE A	NSEP	Nitrate	1	-	\vdash			-		-			-	-		-
ES RE	0.00	€ A	nzeb	snoinA		<u> </u>										<u> </u>		
ALYS	80108	978	3-MS	noitsO														
AN	A0747	etal 8 8	2 6010 CC W	SW-846														
	ı	160,	A438	eu sat														
	B0 3	1 533	M2 (Ji	Alkalin														
	218	08 9	₱8-MS	BTEX :	×	X	×	×	X									
	dne _(p)	inda	eT Gn	ilqms2	2	R	8	X										
			(e)	Matrix	\$	33	15 B	3	3									
	I	oəjo	oelloC	əmiT	0831	6346	1036	14//	5-7-63 6700 WA									
		paja	oelloc) ətsQ	3.7.48 0837	3.7.08 0949	3-7-63 1036	3703 1141	3-7-63									
				Depth Interval (ft)														
]]]	9		Sample	MWZ	mes	#OM	アジア	76									
Project Centifican Casin	Project Number 220003	NIM	(print clearly)	Location ID	1910 Chioc bout 3	SAW OPHIS C GROWT 3	W		18070303-1									,

North Flare Pit=NF South Flare Pit=SF San Juan River Plant=SJ Groundwater Sites=GW Bisti=BI Location IDs: Jaquez=JA Bailer=B Wellhead Faucet=WF Hydropunch=HP Submersible Pump=SP Bladder Pump=BP (b) Sampling Technique: Hand Auger=HA Composite=C Grab=G AA – Air WQ – Trip Blank/ Equipment Blanks SO – Soil WQ – Trip Blank/ WS – Surface Water Equipment B WG – Ground Water WW – Wastewater (a) Matrix:

Discrepancies Between Sample Labels and COC Record? Notes: Notes: <u>くつつ</u> Time 3.7-02 150C 3/10/03 Date Received by/Affiliation Relinquished by/Affiliation

z

Package NA Leaking d) elivered ۲ ۲ 4 Unbroken on Sample Present on Sample Y z

Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Receiving Checklist

1	. Sample Arrival
	Date/Time Received 3/10/03 (03) Date/Time Opened 3/10/03 (03) By (name): Part Cent Custody Transfer: Client Golden State UPS US Mail FedEx APCL Empl: _
2	. Chain-of-Custody (CoC) With Samples?
3.	Shipping Container/Cooler Cooler Used? # of Cooled by:
1	. Sample Preservation
7,	☐ pH <2 ☐ pH >12 If Not, pH = Preserved by: ☐ Client ☐ APCL ☐ Third Party
5.	Holding-time Requirements □ pH 24hr □ BACT 6/24hr □ Cr ^{VJ} 24hr □ NO ₃ 48hr □ BOD 48hr □ Cl ₂ ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP □ HT Expired? □ Client notified?
6.	Sample Container Condition Intact? Broken? Documented? Number: Type: plastic glass Tube: brass/SS Tedlar Bag Quantity OK? Leaking? Anomaly? Caps tight? Air Bubbles? Anomaly? Labels: Unique ID? Date/Time Preserved?
7.	Turn Around Time Std (7-10 days) Not Marked
8.	Sample Matrix Drinking H20 Other Liq Soil Wipe Polymer Air Other: Ground H20 Sludge Filter Oil/Petro Paint W. Water Extract Unknow
	Pre-Login Check List Completed & OK?

Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Login: Check List

$03\text{-}02085\ (0984_1034)\ (2721900_1034)$

03/10/03

Part 1: General Information

Company Information	Name:	Montgomery Watson Harza
	Address:	10619 South Jordan Gateway ,Salt Lake City ,UT 84095
Project Information	Project Description:	San Juan River Basin
		Hill AFB
	Project #:	220013
Billing Information	P.O. #:	
	Bill Address:	10619 South Jordan Gateway ,Salt Lake City ,UT 84095
	Lab Project ID:	1999_0746
	Client Database #:	04
Receiving Information	Who Received Sample?	Paul Kou
 	Receiving Date/Time:	03/10/03 1000
	CDC No.	
Shipping Information	Shipping Company	Express
	Packing Information:	Cooler/Ice Chester
	Cooler Temperature:	4.3 ° C
Container Information	Container Provider:	Client
Sampling Information	Sampling Person:	
	Sampling Company:	Client
Turn-Around-Time Opti	on:	Rush 5 working day(s)
QC Option:		QC and Surro. Rep.
Disposal Option:		Not specify

03-02085 Check List Login on 03/10/03 File: TMP006c.tex Page: 1

Part 2: Sample Information

Seq.	Sample ID	Sample	APCL		Cont-	Preser-	Vol, ml	# of	Condition	Collected		Composite	TAT	
#	(on COC)	Sub-ID	Sample ID	Matrix	tainer	vative	Am. g	Replica	G, L, B	mmddyy	Hold?	Group	Days	
1	MW-3 7	VOA	03-02085-3	W	V	С	40	2	G	030703	N	0	6	
2	MW-2 /	VOA	03-02085-2	W	V	С	40	2	G	030703	N	0	6	
3	MW-4 ,	VOA	03-02085-4	W	V	C	40	2	G	030703	N	0	6	
4	MW-1 /	VOA	03-02085-1	W	V	C	40	2	G	030703	N	0	6	
5	TB ,	VOA	03-02085-5	W	V	C	40	1	G	030703	N	0	6	

Part 3: Analysis Information

Test Items:	Ø8021B	BTXE				
Seq. #	Client"s Sample ID (as given on COC)	Sample Sub-ID	APCL Sample ID	Matrix	втхе	
l	MW-3	VOA	03-02085-3	W	Х	
2	MW-2	VOA	03-02085-2	W	Х	
3	MW-4	VOA	03-02085-4	W	x	
4	MW-1	VOA	03-02085-1	W	X	
5	'l'B	VOA	03-02085-5	W	X	

Login By En-Yu Paul Kou

Page: 2

CHAIN OF CUSTODY RECORD/LAB WORK REQUEST

Chain of Custody ID 670363 MA-

Page / of / of / Air Bill No. £363 81674323

LABORATORY APC L

Contract El Paso Corp., San Jaun River Basin

Sample Depth Date Collected MW3 MW3 3.703	Sample Depth Interval (#) ANALYSES REQUES Sample Depth Date Collected Date Collected Sample Depth Sampling Technique (b) Sample Depth Sampling Technique (b) ANALYSES REQUES Sample Depth Sampling Technique (b) ANALYSES REQUES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANALYSES ANA
Sample ACC A WAY A Time Collected ACC A WAY A CAN BEEX SW-846 8021B AND ACC Metals AND ACC	imple imple in popth
Sample Sample M.C. A imple Depth Depth (ii) Interval (iii) Date Collected (iii) A 2 2 2 3 4 4 4 6 4 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6	
Sample MUCA MUCA MUCA MUCA MUCA MUCA MUCC Metals Matrix (a) MANGCC Metals MANGC Metals MANGCC ANGCC Metals MANGC MANGCC Metals MANGC MANGC MANGC Metals MANGC M	### Date Collected Interval (ft) Date Collected Dat
Sample Depth Interval (#) Date Collected Depth Date Collected Date Collected Sampling Technique (b) Signal Matrix (a) AMWACC Metals Signal Matrix (a) AMWACC Metals Signal Matrix (a) AMWACC Metals Signal Matrix (a) Cations Sw-846 8021B MM WGCC Metals Signal Matrix (a) AMWAGC Metals Signal Matrix (a) AMWAGC Metals Signal Matrix (a) AMWAGC Metals AMWAGC Metals Signal Matrix (a) AMWAGC Metals imple imple Depth Interval (ft) 10 Date Collected 10 Date Collected 2 2 3 C837 (£5) 10 Date Collected 2 2 8 C837 (£5) 10 Date Collected 2 2 8 C837 (£5) 2 2 8 C837 (£5) 2 3 2 8 C837 (£5) 2 3 2 8 C837 (£5) 2 3 2 8 C837 (£5) 2 4 2 5 5 5 6 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7	
Sample Sample Collected Date Collected Date Collected Date Collected Alwarrix (a)	ample Depth Date Collected Date Collected Amatrix (a) Sampling Technique (b) Sampling Technique (b) Sampling Technique (b) Sampling Technique (b) Alkalinity 5M 2320B TDS USEPA 160.1
Sample Date Collected Time Collected Sampling Technique (b) BTEX SW-846 8021B The USEPA 160.1 Thy WGCC Metals SW-846 6010B & 7470A SW-846 6010B & 7470A Cations SW-846 6010B Cations SW-846 6010B Cations SW-846 6010B	imple Collected Date Collected Time Collected Sampling Technique (b) BTEX SW-846 8021B BARSInity SM 2320B Alkalinity SM 2320B TDS USEPA 160.1
Collected Collected (a) Collected (b) Collected (c) Coweled (c)	Collected Collected (a) Ining Technique (b) (b) (c) (c) (c) (c) (c) (c)

Discrepancies Between Sample Labels and COC Record?

زن ت |

3/10/03

5-7-03 1500

ATTACHMENT 2 FIELD DOCUMENTATION

WELL DEVELOPMENT AND SAMPLING LOG

					·						
Project No.:	30001.0			Project	Name:_	SJB	Groundw	ater	Client	: MWH	/EL Paso
Location: G	allegos	Canyor	unit A 1	<u>42 E</u> We	ll No:	MW.	X2	espa		Deve	lopment <u>Sampling</u>
oject Man	ager	<u>MJN</u>			Date	9/1	7/03	Start T	ime	1234	Weather Sunny 80s
Depth to Wa	ater	24.50	Dep	th to Produ	ict <u>na</u>	F	Product T	hickness_	na	Meas	suring Point <u>TOC</u>
Water Colur	nn Heigl	ht <u>12</u>	2.22	Well	Dia	2"					
Sampling M				• —						•	Other
Criteria: 3											el Kemmerer Other or bail dry
Cintend. 0			T				ne in Well			CICIO X	Outei_ <u>or barrety</u>
Gal/ft >	cft of wa	iter _		Gallons				Ounces			Gal/oz to be removed
12.2	22 x 0.16	}		1.95 x 3	3						5.86
Time	pH	1	SC	Temp	ORF (millivo		D.O.	Turbidit	- 1	ol Evac.	
(military)	(su)		hos/cm)	(°C)	(manvo	115)	(mg/L)	(NTU)	(6	gallons) 1	Flow rate
	6.62		990	21.3						2	sewer odor
	6.69		865	21.0					_	2.25	
	6.81		842	19.4						2.44	
	6.83		835	19.3						2.69	
	6.70		827	19.3						2.94	
	6.78		838	19.3						4	silty
	6.84		844	19.3						5	
<u>1253</u>	6.82		855	19.3						6	still silty
Final:	4.3, 5					Ι	1.1 1	Ferrous			
Time pl	н :	SC	Temp	Eh-ORP	D.O.	Tu	rbidity	Iron	Vol E	vac.	Comments/Flow Rate
	5.82	855	19.3						•		still silty
				<u>l</u>	[1	·	1.00	<u></u>		
COMMENT	S:										•
INSTRUME	NTATIO	N· i	oH Meter	X	<u></u>			Tei	mperat	ure Met	Ar v
INO TROME		•	DO Mo	nitor					her		GI A
NAL-ton Diam-			tivity Met			410				. 4055	
Water Dispo			•							<u>1255</u> WQCC	Metals Total Phosphorus
S/MSD_		·									TB <u>170903tb02</u>
				·							

WELL DEVELOPMENT AND SAMPLING LOG

Time (military) pH (su) SC (umhos/cm) Temp (°C) ORP (millivolts) D.O. (mg/L) Turbidity (NTU) Vol Evac. (gallons) Comments Flow rate 1302 6.63 1002 21.0 1 clear 1304 6.86 1005 20.3 2 2 7.14 1001 19.9 3 3 6.92 985 19.6 5 5 7.05 965 18.4 10 well is bailing do 7.08 969 18.5 15 20 clear 1334 7.02 1002 18.5 22 clear 1336 7.10 991 18.5 22 clear	Project No.	> 20001		-	Project	Name: 9	SIR	Groundy	pter .	Client	M/M/H	/FI Paso
Depth to Water	-											
Depth to Water 23.70 Depth to Product na												
Sampling Method: Submersible Pump												
Sampling Method: Submersible Pump	•			_					nickness	na	weas	suring Point
Bottom Valve Bailer x Double Check Valve Bailer	Water Col	umn Heiç	ght	11.08	vveii	Dia	4"	<u></u>				
Criteria: 3 to 5 Casing Volumes of Water Removal X Stabilization of Indicator Parameters X Other_or bail dr	Sampling	Method:	Subm	ersible Pun	np 🗆	Centrifu	gal I	Pump [] Peristal	tic Pump) []	Other
Gal/fit x ft of water	Criteria:											
Time		•					olum	ne in Wel			J	
Time (military) (su) (umhos/cm) (°C) (millivolts) (mg/L) (NTU) (gallons) Flow rate (military) (su) (umhos/cm) (°C) (millivolts) (mg/L) (NTU) (gallons) Flow rate (gallons) Flow rate (gallons) 1 clear (gallons) 2 clear (gallons) 7.14 1001 19.9 3 3 5 5 7.14 1001 19.9 3 3 7.14 1001 19.9 3 3 7.05 965 18.4 10 well is bailing do (gallons) 7.08 969 18.5 15 15 15 15 15 15 15 15 15 15 15 15 15								ļ	Ounces			Gal/oz to be removed
(military) (su) (umhos/cm) (°C) (millivolts) (mg/L) (NTU) (gallons) Flow rate 1302 6.63 1002 21.0 1 clear 1304 6.86 1005 20.3 2 2 7.14 1001 19.9 3 5 5 6.92 985 19.6 5 10 well is bailing do 7.08 969 18.5 15 15 1334 7.02 1002 18.5 20 clear 1336 7.10 991 18.5 22 2 comments/Flow Rate COMMENTS: NSTRUMENTATION: pH Meter X DO Monitor Conductivity Meter X Temperature Meter X Other Temperature Meter X Other Other Temperature Meter X Other Temperatur	11	1.08 x 0.6	 		7.20 x	3 					<u> </u>	21.61
1 Clear 304 6.63 1002 21.0 1 Clear 304 6.86 1005 20.3 2			(111			1						· I
7.14 1001 19.9 3 3			<u>_</u>		<u> </u>			(3-)	()			<u> </u>
6.92 985 19.6 5 10 well is bailing do	304	6.86	+	1005	20.3						2	
7.05 965 18.4 10 well is bailing do		7.14	-	1001	19.9						3	
		6.92	:	985	19.6						5	
334 7.02 1002 18.5 20 clear		7.05	;	965	18.4						10	well is bailing down
1336		7.08		969	18.5					1	15	
Final: pH SC Temp Eh-ORP D.O. Turbidity Iron Vol Evac. Comments/Flow Rat 336 7.10 991 18.5 22 COMMENTS: NSTRUMENTATION: pH Meter X Temperature Meter x DO Monitor Other Conductivity Meter X Temperature Meter x DO Monitor Other Other Other Other Other DO Monitor Other 334	7.02	?	1002						2	20	clear	
Time pH SC Temp Eh-ORP D.O. Turbidity Iron Vol Evac. Comments/Flow Rate 336 7.10 991 18.5 22 COMMENTS: NSTRUMENTATION: pH Meter X	336	7.10		991	18.5						22	
Time pH SC Temp Eh-ORP D.O. Turbidity Iron Vol Evac. Comments/Flow Rate 336 7.10 991 18.5 22 COMMENTS: NSTRUMENTATION: pH Meter X												
ime pH SC Temp Eh-ORP D.O. Turbidity Iron Vol Evac. Comments/Flow Rates 336 7.10 991 18.5 22 22 COMMENTS: NSTRUMENTATION: pH Meter X DO Monitor Conductivity Meter X DO Monitor Conductivity Meter X DO Monitor Conductivity Meter X DO Monitor Conductivity Meter X DO Monitor Conductivity Meter X	inal:								Ferrous			
336 7.10 991 18.5 22		рН	sc	Temp	Eh-ORP	D.O.	Tu	ırbidity	Iron	Vol Eva	ac. (Comments/Flow Rate
NSTRUMENTATION: pH Meter X DO Monitor Conductivity Meter X DO Monitor Conductivity Meter X			991	18.5						22		
NSTRUMENTATION: pH Meter X DO Monitor Conductivity Meter X DO Monitor Conductivity Meter X												
DO Monitor Other Conductivity Meter X	OMMEN	ITS:										
Conductivity Meter X	NSTRUM	IENTATIO	ON:	pH Meter	X				_ Ten	nperatur	e Met	er x
			Cond						_ Oth	ner _		
valer Dispusar <u>Nulz</u> Sample IID_ <u>GCU A 142 E IVIVV-1</u> Sample Time <u> 1340</u>	Notos D:-	nocel		•		142 E LA	Λ/ 4	"	- Com-	ole Time	104	40
BTEX VOCs Alkalinity TDS Cations Anions Nitrate Nitrite Ammonia TKN NMWQCC Metals Total Phosph				-								
	J IS/MSD			BD			BD	Name/Ti	me			TB <u>170903tb02</u>

WELL DEVELOPMENT AND SAMPLING LOG Project No: ZZCO13 Project Name: San Juan Basin Client: MWH GCUA1425 Well No: MUJ-1 Development Sampling Date 3-7-63 Start Time Weather Clean 465 MIN Project Manager _ Depth to Water 15-3/5 Depth to Product NA Product Thickness NA Measuring Point 100 Water Column Height 634 Well Dia. Sampling Method: Submersible Pump ☐ Centrifugal Pump ☐ Peristaltic Pump ☐ Other ☐ Bottom Valve Bailer 🖸 Double Check Valve Bailer 🔲 Stainless-Steel Kemmerer 🗖 Criteria: 3 to 5 Casing Volumes of Water Removal M Sabilization of Indicator Parameters W Other Water Volume In Well Gal/ft x ft of water Gal/oz to be removed Gallons Ounces 6134x,65 4-12 x 3 12-35 Temp Eh-ORP D.O. Turbidity Vol Evac. Time SC Comments/ (military) (umhos/cm) (°C) (millivolts) (mg/L) (NTU) Flow rate (gal.) 154 1152 374 1100 140 3.75 1160 1150 1220 145 146 1350 3.86 i310 3A0 142 9.69 143 1180 10.56 143 1170 145 343 1226 1180 Final: **Ferrous** SC Temp Eh-ORP Time pН D.O. **Turbidity** Iron Vol Evac. Comments/Flow rate-3-77 1180 しひつら COMMENTS:____ INSTRUMENTATION: pH Meter 🔼 Temperature Meter 🖾 -DO Monitor Other 🔲 _ Conductivity Meter Water Disposal Sample ID A 142E MW-1 Sample Time 1228 BTEX VOCs Alkilinity TDS Cations Anions 🔲 Nitrate ______ Total Phosphorus BD Name/Time ______ TB <u>670303-1</u> BD __

Product Reovery and Well Observation Data

Well	Time	Depth to Water (ft)	Depth to Product (ft)	Total Well Depth (ft)	Product Thickness (ft)	Volume Removed	Comment
mw+	1141	15-315	No	Nº	No		
MW 2	1235	15.03	No	No	No		
					·		***
						·	
		,					· · · · · · · · · · · · · · · · · · ·
							
			_ len				

Signature:

Date: 3.10-03

Certified Mail: #7001 1940 0002 1371 7676

February 28, 2003

RECEIVED

MAR 0 5 2003

ENVIRONMENTAL BUREAU
OIL CONSERVATION DIVISION

Mr. William C. Olson New Mexico Oil Conservation Division 1220 St. Francis Dr. Santa Fe, NM 87504

RE: 2002 Pit Project Annual Groundwater Report

Dear Mr. Olson:

In accordance with reporting requirements, El Paso Field Services (EPFS) has enclosed annual reports for the 30 remaining groundwater impacted sites that were identified during our pit closure project of 1994 / 1995.

EPFS has organized the 30 Annual Reports (Volumes 1, 2 and 3) by land type. Volume 1 contains Annual Reports for sites found on Federal land. Volume 2 contains Non Federal sites and Volume 3 contains sites on Navajo land. Of the 30 reports submitted, EPFS is requesting closure of three sites located on Navajo lands. Of the three Navajo sites submitted for closure OCD has closed the Charley Pah #4 and the John Charles #8. The Rementa et al #1 has not been closed by either agency and EPFS reiterates request for closure of this site. EPFS understands closure of groundwater sites on Navajo land falls under jurisdiction of the Navajo Nation Environmental Protection Agency and original documents have been submitted to them for review. Other Navajo sites are included in the report for your information.

Three additional sites were submitted for closure in 2002. EPFS recently has received closure on the W.D. Heath B-5. Closure approval is pending on the D Loop Line Drip and Hammond # 41A. All of these sites are included in the 2002 Annual Report.

If you have any questions concerning the enclosed reports, please call me at (505) 599-2124.

Sincerely,

Scott T. Pope P.G.

Senior Environmental Scientist

xc: Mr. Denny Foust, NMOCD, Aztec - w / enclosures; Certified Mail # 7001 1940 0002 1371 7669 Mr. Bill Liesse, BLM - w / enclosures (federal sites only), Certified Mail # 7001 1940 0002 1371 7652

RECEIVED

MAR 0 5 2003

ENVIRONMENTAL BUREAU O!L CONSERVATION DIVISION

El Paso Field Services

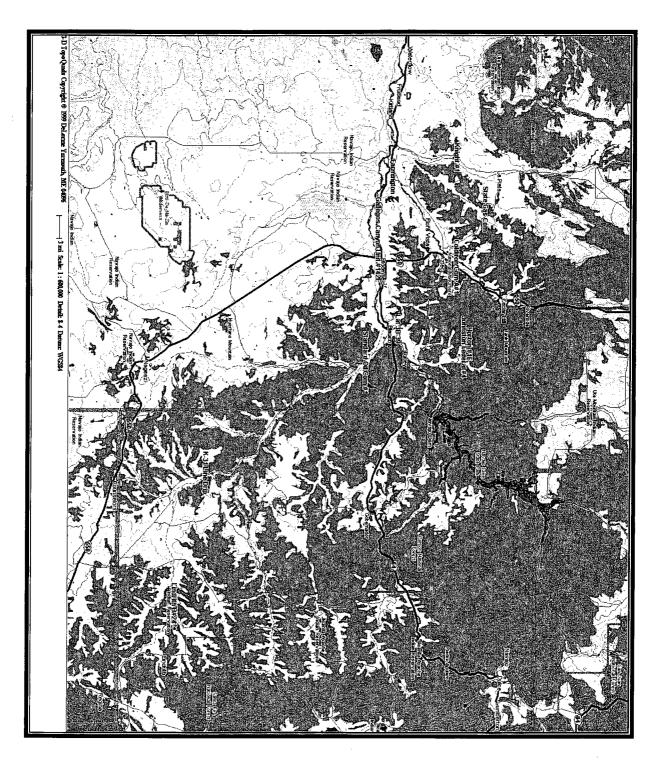
San Juan Basin Pit Program Groundwater Sites Project

2002 Annual Report Non-Federal Sites (Volume 2)

March 2003

EL PASO FIELD SERVICES ANNUAL GROUNDWATER REPORT

NON-FEDERAL SITES VOLUME II


TABLE OF CONTENTS

Site Map

METEROPLINEID	SITE NAME	TOWNSHIP	RANGE	SECTION	UNIT
71669	State Gas Com N #1	31N	12W	16	Н
70194	Johnston Fed #4	31N	09W	33	Н
93388	Horton #1E	31N	09W	28	Н
72556	Knight #1	30N	13W	5	Α
73551	Coldiron A #1	30N	11W	2	K
03906	GCU Com A #142E	29N	12W	25	G
70445	Standard Oil Com #1	29N	09W	36	N
LD146	Lat 3B-39 Line Drip	29N	09W	10	М
LD087	K-31 Line Drip	25N	06W	16	N
94967	Lindrith B #24	24N	03W	9	N

