3R - <u>213</u>

REPORTS

DATE:

Certified Mail: #7001 1940 0002 1371 7676

February 28, 2003

RECEIVED

MAR 0 5 2003

ENVIRONMENTAL BUREAU
OIL CONSERVATION DIVISION

Mr. William C. Olson New Mexico Oil Conservation Division 1220 St. Francis Dr. Santa Fe, NM 87504

RE: 2002 Pit Project Annual Groundwater Report

Dear Mr. Olson:

In accordance with reporting requirements, El Paso Field Services (EPFS) has enclosed annual reports for the 30 remaining groundwater impacted sites that were identified during our pit closure project of 1994 / 1995.

EPFS has organized the 30 Annual Reports (Volumes 1, 2 and 3) by land type. Volume 1 contains Annual Reports for sites found on Federal land. Volume 2 contains Non Federal sites and Volume 3 contains sites on Navajo land. Of the 30 reports submitted, EPFS is requesting closure of three sites located on Navajo lands. Of the three Navajo sites submitted for closure OCD has closed the Charley Pah #4 and the John Charles #8. The Rementa et al #1 has not been closed by either agency and EPFS reiterates request for closure of this site. EPFS understands closure of groundwater sites on Navajo land falls under jurisdiction of the Navajo Nation Environmental Protection Agency and original documents have been submitted to them for review. Other Navajo sites are included in the report for your information.

Three additional sites were submitted for closure in 2002. EPFS recently has received closure on the W.D. Heath B-5. Closure approval is pending on the D Loop Line Drip and Hammond # 41A. All of these sites are included in the 2002 Annual Report.

If you have any questions concerning the enclosed reports, please call me at (505) 599-2124.

Sincerely,

Scott T. Pope P.G.

Senior Environmental Scientist

xc: Mr. Denny Foust, NMOCD, Aztec - w / enclosures; Certified Mail # 7001 1940 0002 1371 7669 Mr. Bill Liesse, BLM - w / enclosures (federal sites only), Certified Mail # 7001 1940 0002 1371 7652

RECEIVED

MAR 0 5 2003

ENVIRONMENTAL BUREAU
OIL CONSERVATION DIVISION

El Paso Field Services

San Juan Basin Pit Program Groundwater Sites Project

2002 Annual Report Federal Sites (Volume 1)

March 2003

10619 South Jordan Gateway, Suite 100 Salt Lake City, Utah 84095

EL PASO FIELD SERVICES ANNUAL GROUNDWATER REPORT

FEDERAL SITES VOLUME I

TABLE OF CONTENTS

Site Map

METER or LINE ID	SITE NAME	TOWNSHIP	RANGE	SECTION	UNIT
89961	Fields A#7A	32N	11W	34	Е
89232	Johnston Fed #6A	31N	09W	35	F
94715	James F. Bell #1E	30N	13W	10	Р
89620	Sandoval GC A #1A	30N	09W	35	С
87493	W D Heath B-5	30N	09W	31	М
LD151	€ Lat 0-21 Line Drip	30N	09W	12	0
73220	Fogelson 4-1 Com. #14	29N	11W	4	Р
97213	Hamner #9	29N	09W	20	Α
72890	Ohio C Government #3	28N	11W	26	Р
LD169	D Loop Line Drip	28N	W80	33	1
LD174	LAT LD 40	28N	04W	13	Н
89894	Hammond #41A	27N	08W	25	0
94810	Miles Fed 1A	26N	07W	5	F
LD072	K27 LD072	25N	06W	4	E
87640	Canada Mesa #2	24N	06W	24	ı

ACRONYMS

B Benzene

E Ethylbenzene

EPFS El Paso Field Services

ft foot/feet

GWEL groundwater elevation

ID identifier

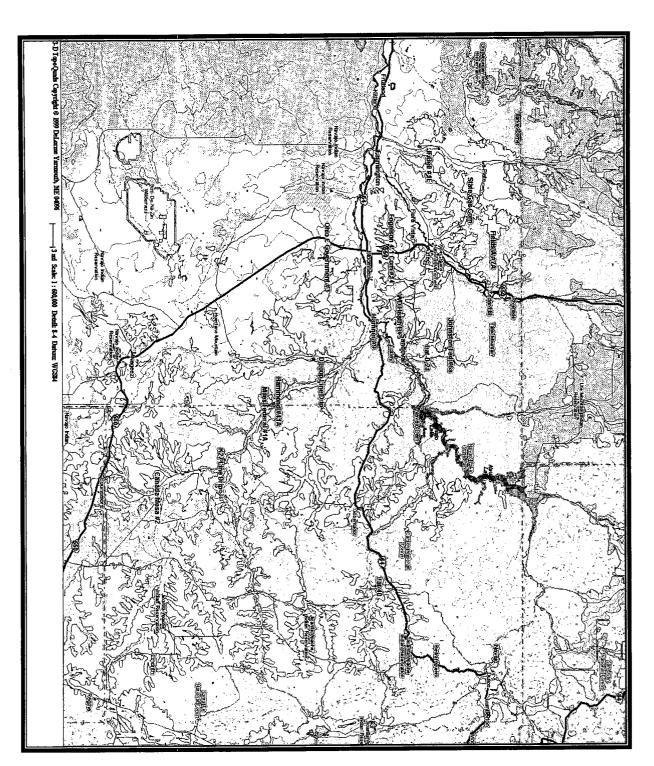
MW Monitoring Well

PSH Phase Separated Hydrocarbons

NMWQCC New Mexico Water Quality Control Commission

T Toluene

TOC Top Of Casing


NE not establihed NS not sampled

ORC oxygen release compound OCD Oil Conservation Division

ppb parts per billion

 μ g/L micrograms per liter

X Total Xylenes

Lat 0-21 Line Drip Meter Code: LD151

SITE DETAILS

LEGAL DESCRIPTION: Twn: 30N Rng: 9W Sec: 12 Unit: O

NMOCD Haz Ranking: 40 Land Type: Federal Operator: EPFS

PREVIOUS ACTIVITIES

Site Assessment: 1/95 Excavation: 1/95 Soil Boring: 10/95

Monitor Well: 10/95 Geoprobe: 11/96 Additional MWs: 7/00

Downgradient MWs: 7/00 Replace MW: NA Quarterly Initiated: 11/96

ORC Nutrient Injection: NA Re-Excavation: NA PSH Removal Initiated: NA

Annual Initiated: 5/97 Quarterly Resumed: NA

SUMMARY OF 2002 ACTIVITIES

MW-1: Annual groundwater sampling and quarterly water level monitoring were performed during 2002.

MW-2: Annual groundwater sampling and quarterly water level monitoring were performed during 2002.

MW-3: Annual groundwater sampling and quarterly water level monitoring were performed during 2002.

Site-Wide Activities: Per recommendations made in the 2001 Annual Report, the groundwater flow direction was evaluated. This evaluation included review of groundwater and top of casing elevations since 2000, a review of relative groundwater elevation changes over time, a review of free-product corrections for potentiometric surface, and review of local topography. The site was re-surveyed during November 2001.

SUMMARY TABLES AND GRAPHS

- Analytical data are summarized in Table 1 and presented graphically in Figures 4 through 6.
- Laboratory reports are presented in Attachment 1.
- Field documentation is presented in Attachment 2.

SITE MAP

Site maps are attached as Figures 1 through 3.

Lat 0-21 Line Drip Meter Code: LD151

GEOLOGIC LOGS AND WELL COMPLETION DIAGRAMS

No subsurface activities were performed at this site during 2002.

DISPOSITION OF GENERATED WASTES

All phase-separated hydrocarbons were disposed of at the EPFS Kutz Separator located in Bloomfield, New Mexico.

ISOCONCENTRATION MAPS

No isoconcentration maps were prepared for this site, however, the attached site maps present the potentiometric surface data collected during 2002.

CONCLUSIONS

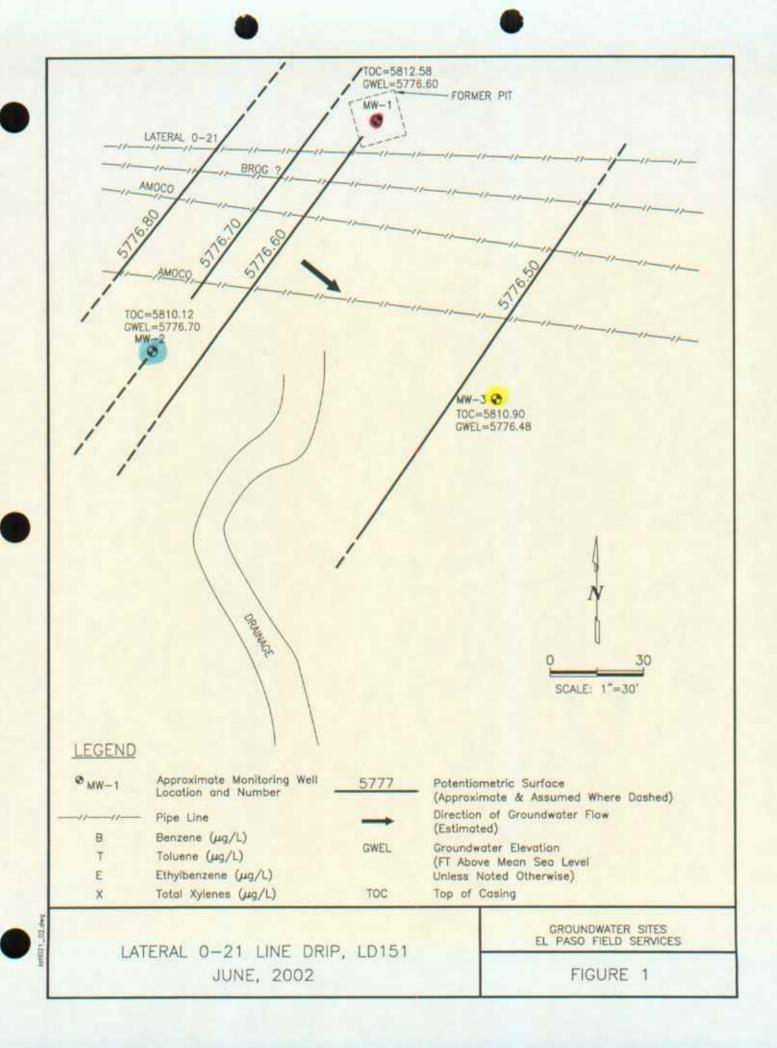
- During the scheduled groundwater sampling event in June 2002, free-product was measured in MW-1 at 0.32 feet thick. After removing the product and bailing the well a sample was collected for BTEX analysis that indicated an elevated benzene concentration of 270 μg/l. Free-product was also measured in this monitoring well during subsequent water level monitoring events in September (0.29 inches of free-product) and December (0.31 inches).
- During the scheduled water level monitoring event in September 2002, freeproduct was measured in MW-3 at 0.64 feet thick. Subsequent monitoring performed during December 02 indicated a free-product thickness of 0.55 feet.
- The groundwater gradient assessment described earlier in this report indicated that the groundwater flow direction during 2002 appears to trend to the southeast, similar to the flow direction presented in the 2001 Annual Report. However, the groundwater gradient is extremely flat making interpretation of groundwater data difficult and is not supported by the local topography which indicates a surface flow to the southwest.
- Benzene concentrations in MW-1 were reduced significantly in 2002, dropping from 1,400 μ g/l to 270 μ g/l. Benzene was below detection limits in MW-2, and were reduced from 34 μ g/l to 5.7 μ g/l in MW-3.

Lat 0-21 Line Drip Meter Code: LD151

GEOLOGIC LOGS AND WELL COMPLETION DIAGRAMS

No subsurface activities were performed at this site during 2002.

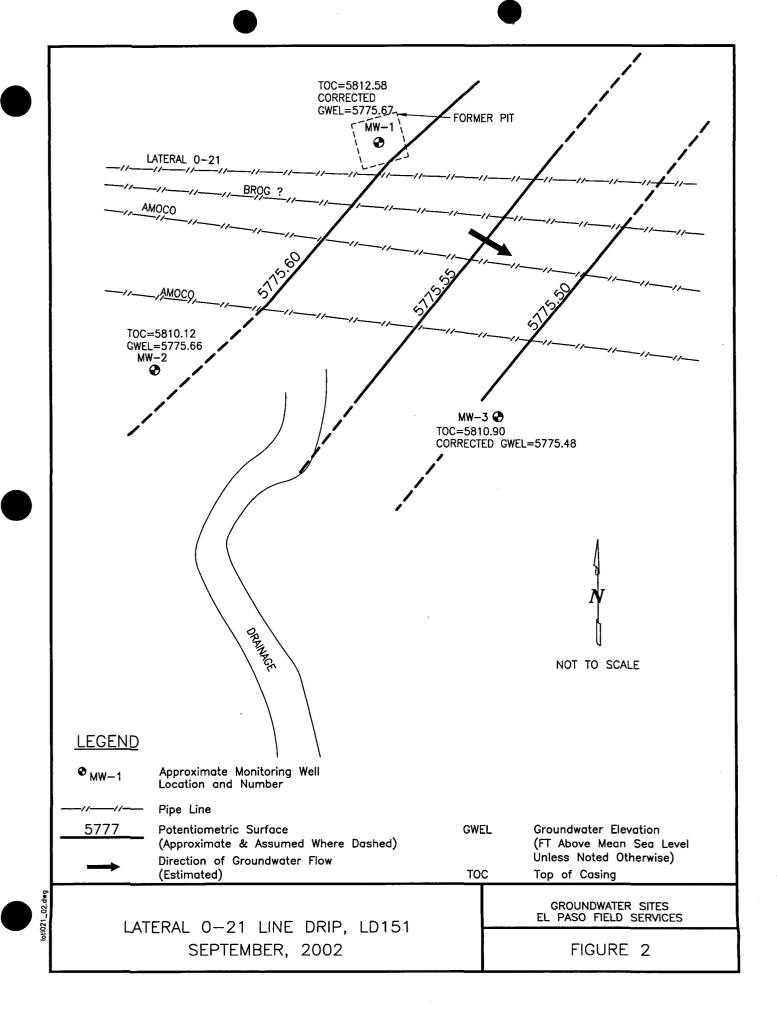
DISPOSITION OF GENERATED WASTES


All phase-separated hydrocarbons were disposed of at the EPFS Kutz Separator located in Bloomfield, New Mexico.

ISOCONCENTRATION MAPS

No isoconcentration maps were prepared for this site, however, the attached site maps present the potentiometric surface data collected during 2002.

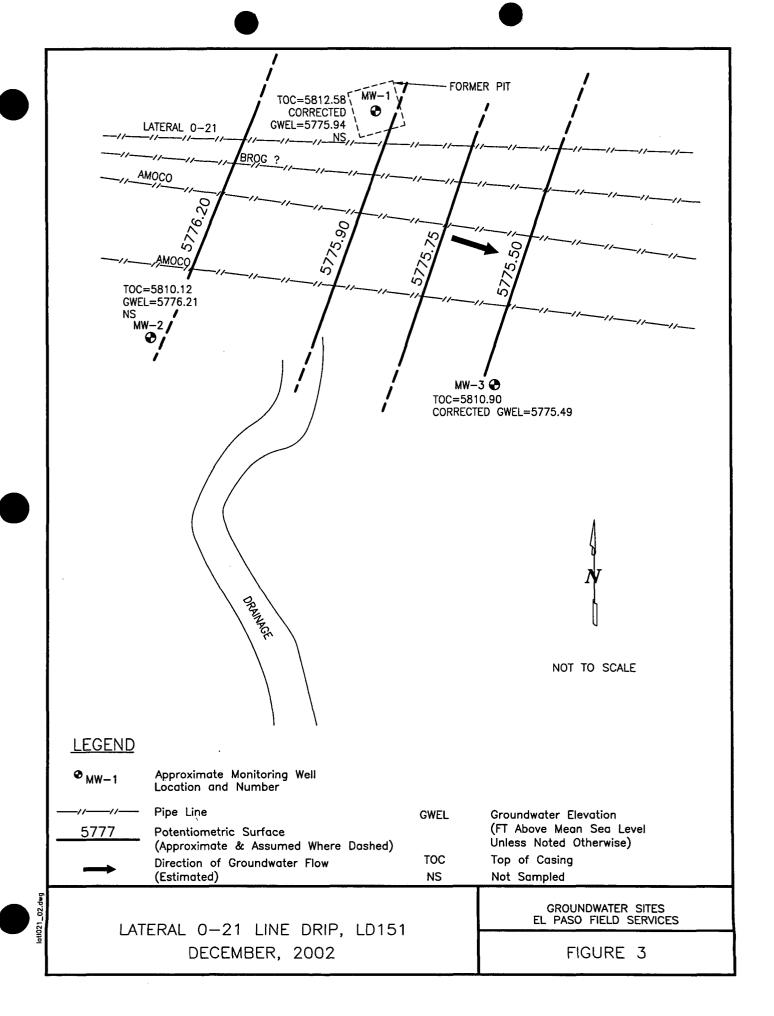
CONCLUSIONS

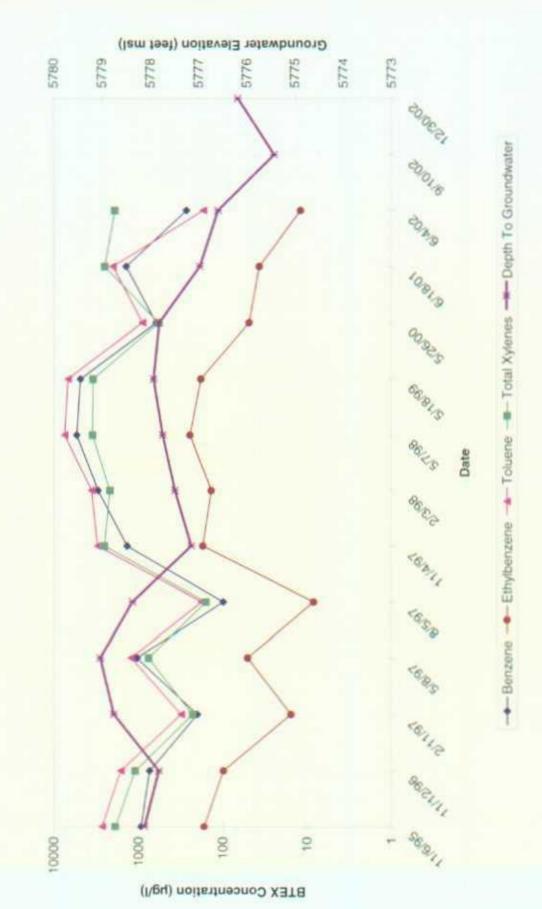

- During the scheduled groundwater sampling event in June 2002, free-product was measured in MW-1 at 0.32 feet thick. After removing the product and bailing the well a sample was collected for BTEX analysis that indicated an elevated benzene concentration of 270 µg/l. Free-product was also measured in this monitoring well during subsequent water level monitoring events in September (0.29 inches of free-product) and December (0.31 inches).
- During the scheduled water level monitoring event in September 2002, freeproduct was measured in MW-3 at 0.64 feet thick. Subsequent monitoring performed during December 02 indicated a free-product thickness of 0.55 feet.
- The groundwater gradient assessment described earlier in this report indicated that the groundwater flow direction during 2002 appears to trend to the southeast, similar to the flow direction presented in the 2001 Annual Report. However, the groundwater gradient is extremely flat making interpretation of groundwater data difficult and is not supported by the local topography which indicates a surface flow to the southwest.
- Benzene concentrations in MW-1 were reduced significantly in 2002, dropping from 1,400 μg/l to 270 μg/l. Benzene was below detection limits in MW-2, and were reduced from 34 μg/l to 5.7 μg/l in MW-3.

Lat 0-21 Line Drip Meter Code: LD151

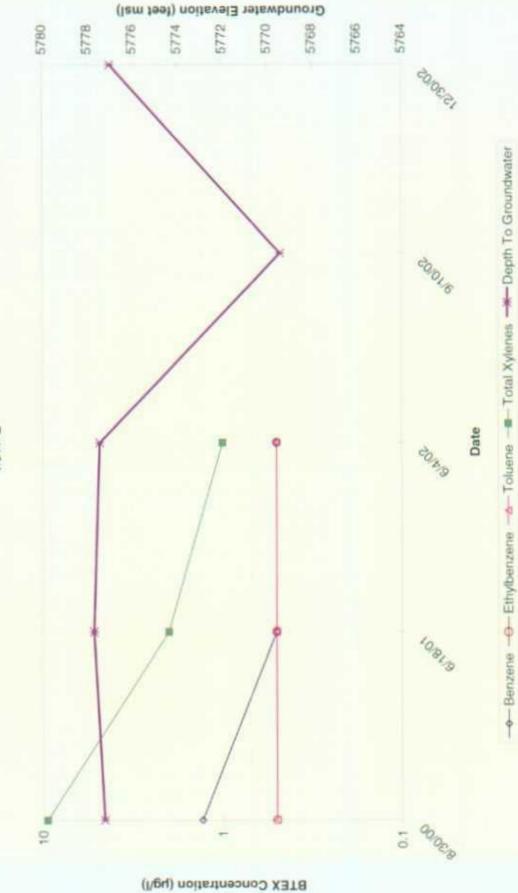
RECOMMENDATIONS

- EPFS recommends that free-product recovery efforts are initiated in MW-1 and MW-3 on a quarterly basis.
- EPFS recommends that annual groundwater sampling and quarterly water level monitoring continue at MW-2 during the next year.
- Once free-product removal has been completed at MW-1 and MW-3, these wells will be sampled on a semi-annual basis until sample results approach closure criteria. These wells will then be scheduled for quarterly sampling until closure criteria are met.




TABLE 1

SUMMARY OF BTEX COMPOUNDS IN GROUNDWATER LAT 0-21 LINE DRIP (METER #LD151)


(Page 1 of 1)

Sample Identification	Sample Date	MW Identification	Benzene Toluen (µg/l) (µg/l)	Toluene (µg/l)	Benzene Toluene Ethylbenzene Total Xylenes (μg/l) (μg/l) (μg/l)	Total Xylenes (μg/l)
151-0206-MW1	04-Jun-2002	1	270	170	12	1900
151-0206-MW2	04-Jun-2002	2	<0.5	<0.5	<0.5	<1.0
151-0206-MW3	04-Jun-2002	3	5.7	0.52	61	30

Figure 4
BTEX Concentration and Groundwater Elevation vs. Time
Lat 0-21 Line Drip (Meter #LD151)
MW-1

BTEX Concentration and Groundwater Elevation vs. Time Lat 0-21 Line Drip (Meter #LD151) Figure 5 MW-2

5776.5 5775.5 57773.5 5774.5 5776 5773 5774 -- Benzene -- Ethylbenzene -- Toluene -- Total Xylenes -- Depth To Groundwater BTEX Concentration and Groundwater Elevation vs. Time Lat 0-21 Line Drip (Meter #LD151) Figure 6 MW-3 Date COMO 'OBIO ODOCA 100 10 0.1 1000

BTEX Concentration (µg/I)

Groundwater Elevation (feet msl)

ATTACHMENT 1 LABORATORY REPORTS

Pinnacle Lab ID number June 17, 2002

206032

AMEC EARTH & ENVIRONMENTAL 2060 AFTON PLACE FARMINGTON, NM 87401

EL PASO FIELD SERVICES 614 RIELLY STREET FARMINGTON, NM 87401

Project Name **Project Number**

LAT 021 (LD 151)

1517000121

Attention:

LISA WINN/SCOTT POPE

On 06/07/02 Pinnacle Laboratories, Inc., (ADHS License No. AZ0592 pending), received a request to analyze aqueous samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (505)344-3777.

H. Mitchell Rubenstein, Ph. D.

General Manager

MR: jt

Enclosure

CLIENT	: AMEC EARTH & ENVIRONMENTAL	PINNACLE ID	: 206032
PROJECT#	: 1517000121	DATE RECEIVED	: 06/07/02
PROJECT NAME	: LAT 021 (LD 151)	REPORT DATE	: 06/17/02
PINNACLE			DATE
ID#	CLIENT DESCRIPTION	MATRIX	COLLECTED
206032 - 01	151-0206-MW1	AQUEOUS	06/04/02
206032 - 02	151-0206-MW2	AQUEOUS	06/04/02
206032 - 03	151-0206-MW3	AQUEOUS	06/04/02

PINNACLE I.D.: 206032

GAS CHROMATOGRAPHY RESULTS

TEST

: EPA 8021 MODIFIED

CLIENT

: AMEC EARTH & ENVIRONMENTAL

PROJECT#

: 1517000121

PROJECT NAME

: LAT 021 (LD 151)

NAME :	LAIUZI (LD 18))				
			DATE	DATE	DATE	DIL.
CLIENT I.D.		MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
151-0206-MW1		AQUEOUS	06/04/02	NA	06/09/02	1
151-0206-MW2		AQUEOUS	06/04/02	NA	06/10/02	1
151-0206-MW3		AQUEOUS	06/04/02	NA	06/09/02	1
ER .	DET. LIMIT		UNITS	151-0206-MW1	151-0206-MW2	151-0206-MW3
	0.5		UG/L	270 - D10	< 0.5	5.7
	0.5		UG/L	170	< 0.5	0.52
IZENE	0.5		UG/L	12	< 0.5	19
LENES	1.0		UG/L	1900 - D10	< 1.0	30
TE:						
	(%)			118	97	108
TE LIMITS	(80 - 120)					
	CLIENT I.D. 151-0206-MW1 151-0206-MW2 151-0206-MW3 ER NZENE LENES	CLIENT I.D. 151-0206-MW1 151-0206-MW2 151-0206-MW3 ER DET. LIMIT 0.5 0.5 NZENE 0.5 LENES 1.0 TE: UOROBENZENE (%)	CLIENT I.D. MATRIX 151-0206-MW1 AQUEOUS 151-0206-MW2 AQUEOUS 151-0206-MW3 AQUEOUS ER DET. LIMIT 0.5 0.5 0.5 NZENE 0.5 LENES 1.0 TE: UOROBENZENE (%)	DATE	DATE DATE DATE CLIENT I.D. MATRIX SAMPLED EXTRACTED 151-0206-MW1 AQUEOUS 06/04/02 NA 151-0206-MW2 AQUEOUS 06/04/02 NA 151-0206-MW3 AQUEOUS 06/04/02 NA AQUEOUS 06/04/02 NA AQUEOUS 06/04/02 NA DET. LIMIT UNITS 151-0206-MW1 UG/L 270 - D10 UG/L 170 UG/L 170 UG/L 12 LENES 1.0 UG/L 1900 - D10 TE: UOROBENZENE (%) 118	DATE DATE DATE DATE DATE DATE DATE SAMPLED EXTRACTED EXTRACTED ANALYZED EXTRACTED ANALYZED EXTRACTED ANALYZED EXTRACTED ANALYZED EXTRACTED ANALYZED EXTRACTED ANALYZED NA 06/09/02 NA 06/09/

CHEMIST NOTES:

D10 = These compounds were reported from a 10X dilution, analyzed on 06/10/02.

GAS CHROMATOGRAPHY RESULTS **REAGENT BLANK**

EST

: EPA 8021 MODIFIED

PINNACLE I.D.

206032

LANK I. D.

: 060902

DATE EXTRACTED

N/A

LIENT

: AMEC EARTH & ENVIRONMENTAL

DATE ANALYZED

06/09/02

ROJECT#

: 1517000121

SAMPLE MATRIX

AQUEOUS

ROJECT NAME

(80 - 120)

: LAT 021 (LD 151)

ARAMETER **ENZENE**

OLUENE

UG/L UG/L

UG/L

UNITS

< 0.5 < 0.5

THYLBENZENE OTAL XYLENES

UG/L

< 0.5 <1.0

URROGATE:

/A

ROMOFLUOROBENZENE (%)

ATE LIMITS:

T NOTES:

99

GAS CHROMATOGRAPHY RESULTS REAGENT BLANK

EST

: EPA 8021 MODIFIED

PINNACLE I.D.

206032

LANK I. D.

: 061002

DATE EXTRACTED

N/A

:LIENT

: AMEC EARTH & ENVIRONMENTAL

DATE ANALYZED

06/10/02

'ROJECT#

: 1517000121

SAMPLE MATRIX

AQUEOUS

'ROJECT NAME 'ARAMETER

: LAT 021 (LD 151)

IENZENE **OLUENE** UG/L UG/L

UNITS

< 0.5 < 0.5

:THYLBENZENE

UG/L

<0.5 <1.0

'OTAL XYLENES

UG/L

SURROGATE:

ROMOFLUOROBENZENE (%)

95

FATE LIMITS:

T NOTES:

(80 - 120)

J/A

GAS CHROMATOGRAPHY QUALITY CONTROL LCS/LCSD

EST	: EPA 8021 MC	DIFIED			PINNACLE I	PINNACLE I.D.		206032	
ATCH#	: 060902				DATE EXTR	ACTED	:	N/A	
LIENT	: AMEC EARTI	4 & ENVIRO	ONMENTAL		DATE ANAL	YZED	:	06/09/02	•
'ROJECT#	: 1517000121				SAMPLE MA	ATRIX	:	AQUEOUS	
ROJECT NAME	: LAT 021 (LD	151)			UNITS		:	UG/L	
	SAMPLE	CONC	SPIKED	%	DUP	DUP		REC	RPD
'ARAMETER	RESULT	SPIKE	SAMPLE	REC	SPIKE	% REC	RPD	LIMITS	LIMITS
ENZENE	<0.5	20.0	19.1	. 96	19.4	97	2	(80 - 120)	20
OLUENE	<0.5	20.0	20.0	100	20.8	104	4	(80 - 120)	20
THYLBENZENE	<0.5	20.0	20.3	102	20.9	105	3 ,	(80 - 120)	20
OTAL XYLENES	<1.0	60.0	62.9	105	64.6	108	3	(80 - 120)	20

X 100

:HS...oT NOTES:

(Spike Sample Result - Sample Result)

Recovery =

-----X 100

Spike Concentration

PD (Relative Percent Difference) =

(Sample Result - Duplicate Result)

Average Result

206032

(80 - 120)

20

GAS CHROMATOGRAPHY QUALITY CONTROL LCS/LCSD

PINNACLE I.D.

62.3

X 100

104

3ATCH#	: 061002				DATE EXRA	CTED	:	N/A	
CLIENT	: AMEC EARTI	H & ENVIRO	ONMENTAL		DATE ANAL	YZED	:	06/10/02	
PROJECT #	: 1517000121				SAMPLE MA	TRIX	:	AQUEOUS	
PROJECT NAME	: LAT 021 (LD	151)		•	UNITS		:	UG/L	
	SAMPLE	CONC	SPIKED	%	DUP	DUP		REC	RPD
PARAMETER	RESULT	SPIKE	SAMPLE	REC	SPIKE	% REC	RPD	LIMITS	LIMITS
BENZENE	<0.5	20.0	19.1	96	18.9	95	1	(80 - 120)	20
FOLUENE	<0.5	20.0	20.0	100	19.8	99	1	(80 - 120)	20
ETHYLBENZENE	<0.5	20.0	20.3	102	20.1	101	1	(80 - 120)	20-

105

62.8

FOTAL XYLENES

FEST

(Spike Sample Result - Sample Result)

<1.0

60.0

: EPA 8021 MODIFIED

% Recovery = ----- X 100

Spike Concentration

RPD (Relative Percent Difference) =

(Sample Result - Duplicate Result)

Average Result

206032

GAS CHROMATOGRAPHY QUALITY CONTROL MS/MSD

ASMSD #	: 206037-01				DATE EXTRACTED			N/A	
CLIENT	: AMEC EARTH	4 & ENVIR	ONMENTAL		DATE ANAL	YZED	:	06/09/02	
PROJECT#	: 1517000121				SAMPLE MA	ATRIX	:	AQUEOUS	
PROJECT NAME	: LAT 021 (LD	151)			UNITS		:	UG/L	
	SAMPLE	CONC	SPIKED	%	DUP	DUP		REC	RPD
PARAMETER	RESULT	SPIKE	SAMPLE	REC	SPIKE	% REC	RPD	LIMITS	LIMITS
BENZENE	<0.5	20.0	19.4	97	19.2	96	1	(80 - 120)	20
FOLUENE	<0.5	20.0	20.4	102	20.4	102	0	(80 - 120)	20
ETHYLBENZENE	<0.5	20.0	20.8	104	20.6	103	1	(80 - 120)	20
FOTAL XYLENES	<1.0	60.0	64.3	107	64.2	107	0	(80 - 120)	20

EST

(Spike Sample Result - Sample Result) -- X 100 6 Recovery = **Spike Concentration**

: EPA 8021 MODIFIED

RPD (Relative Percent Difference) =

(Sample Result - Duplicate Result)

Average Result

X 100

PINNACLE I.D.

ATTACHMENT 2 FIELD DOCUMENTATION

Product Recovery and Well Observation Data

Project Name: San Juan Rwer Basin	Project No: 2700/3
Project Manager: Delbert Belcis	Date: 12/30/02
Client Company: MWH	•
Site Name: Lat 0-21	

Well	Time	Depth to Water (ft)	Depth to Product (ft)	Total Well Depth (ft)	Product Thickness (ft)	Volume Removed	Comments
mw-1	1550	36.390	36.080	46.467	0.31	<i>&</i>	Strong odor
MW-2	1600	33.91		41,330		_	Strong odor NO Propuct
MW-3	1610	34.97	34.420		0.55		strong oder
	-						
							· · · · · · · · · · · · · · · · · · ·
-							

COMMENTS:					
mw-1 =	= strong oder	, light	culered	product	Strongedor
mw-3 =	strong odor				· · · · · · · · · · · · · · · · · · ·
MW-Z=	houn silty s	aud en	probe.		
		···········			
	1140 1=		17.	/- a / i -	
Signature:	Mut Bet		Date:	30/02	

Product Recovery and Well Observation Data

Project Name: San Juan River Basin	Project No: 220013
Project Manager: Ashley Lowe	Date: 09/10/02
Client Company: MWH'	
Site Name: Lat 0-21	

				•				_ '
Well	Time	Depth to Water (ft)	Depth to Product (ft)	Total Well Depth (ft)	Product Thickness (ft)	Volume Removed	Comments	
MW-3	8:20	35.920	35.285	31.640	0.635	0	Not a solid botton	ļ
MW-1	8:30	37.145		46.467	0.293			
MW-Z	8:36	34.468		41.480		0	Not a said bottom; No product indica	fed
					,			

MW-3: odorous gray silt on probe after	er measuring TD	
MW-2: light brown sift on probe		-
	,	
Signature: Ashley & Lowe	Date: 09/10/02	

WELL DEVELOPMENT AND PURGING DATA FORM

Well Number MW 1 Project Name Epts GW project Client Company EL pass Field Services		Page 1 of 1 Project No. 15/700013-1
Site NameLAT-ODJ (LD 151)	Site Address Rmral SAN JAUN (D.	UN (D.
Development Criteria (13) to 5 Casing Volumes of Water Removal (13) Stabilization of Indicator Parameters (13) Other	Water Volume Calculation (6.5) Initial Depth of Well (feet) 35.98 Initial Depth to Water (feet) 35.98	Instruments Serial No. (If applicable D pH Meter 2 ph Meter 2 ph Meter 2 ph Meter 3 ph Meter 4 ph
Methods of Development	Diameter (inches): Well 4" Gravel Pack Gallons to be	Meter
Pump Bäjler 🛘 Centrifugal 📝 Bottom Valve	Well Casing (1) SY (2 SYX 3) 20 (SY	Themperature Meter $y \le 2 63$
ō	Gravel Pack	Li Omer
☐ Pensianic ☐ Signiless-steel Kemmerer	Drilling Fluids	Water Disposal
□ Other	[Fotal 20,64]	LUIZ SCOENTUR Bloomfield (I.M.

Water Removal Data

		Development Method	Removal Rate	Intake Depth (feet)	h Ending Water Depth (feet)		Water Volume Removed (gallons)	Product Volume Removed (gallons)		Temperature (°C)	рн	Conductivity (mmhos/cm)	Dissolved Oxygen	Comments
Date	Time	Pump Bailer				Increment	Cumulative	increment Cumulative	umulative					٠
[-4-02/1/5/	1151	×		·		25.4	26.4 SE.4			17.5	6.83	6.83 24.38		Dondy Visible
	11/88	×				2.2 58.4	2.8			10.3	682	6,92 2524,		11
	1200	メ				56.4	3c. cl 36.4			/G . I	てから	5,82,2577		11
	12/5	بر				4,25	7			16,2	6.88	2638		/
	Das.	×			35.90	4.28	35.904.26 21.25			16,0	C83	12633	0.42	no Change
														C
					-					•				
						٠								•
comments Oroduct Love 35.86 pipolic Thick NESS , 32 Builed	Droδ~	CT LOV	e 35.	86 p	12-60	Thick	NESS.	32	Baile	>	Timus (porur immsely , 25 gerl product	scri pro	d-cT
SAMpled for BTEX 1230	ed for	- 13Te	X	8 7					•	,				
)				(

Signature(s)

ate 6 - 4 - 0) Reviewed

L:\forms\MW Dvlpmnt 2.do

Development
Purging

MELL DEVELOPMENT AND PURGING DATA FORM

th runging VV ELL DE	WELL DEVELOPMENT AND FORGING DATA LORM	JAIN!
Well Number MW 2		Pageof
Project Name EOFS GAL DIOSECT	Project Manager LISA bring	Project No. (5/ 700)2
Client Company EL DOSO FIELD SCYVICES	Ces	
Site Name LAT-ON (LD 151)	Site Address Rural SAN JAUN CO	AUN CO.
Development Criteria	Water Volume Calculation	Instruments Serial No. (If applicable)
D(3) o 5 Casing Volumes of Water Removal.	Initial Depth of Well (feet) 41.74	Aph Meter YST 63
☐ Other	Height of Water Column in Well (feet) 8.37	DO Monitor YST 5
	Diameter (inches): Well 2" Gravel Pack	
Methods of Development	Water Volume in Well Gallons to be	E CONDUCTIVITY METER
Pump Bäller	Item Cubic Feet Gallons Removed	Temperature Meter ySL 65
1	Well Casing 18.37 11.36 x 3 14.08	
ë	Gravel Pack	Cinei
LI Pensialitic Li Stainless-steel Kemmerer	Drilling Fluids	Water Disposed
□ Other	Total	Full Strong Tor Bloomfield (V.M.
	,	

		Developmen Method	Removal Rate (gal/min)	intake Depth (feet)	Intake Depth Ending (feet) Water Depth (feet)	Water Volu (ga	Water Volume Removed (gallons)	Product	Product Volume Removed (gallons)	Temperature (°C)	욧	Conductivity (mmhos/cm)	Dissolved Oxygen {mg/L}
Date	Time	Pump Bailer	i			Increment	Cumulative	Increment Cumulative	Cumulative				
6-4-02/308	1338	X								12.4	200	2193	
	303	×					نر			/S. 9	6.93	2134	
	/3//	<u>ک</u>					Cu			15.3	િ 43	30S I	
	1314	×				/	7			15.1		2059	
	1319				33.47	/	5			. /	16.3	7093	0.3
			-							•			
						ť							
											•		

Date (-4-02 Reviewer L:\forms\MW Dvlpmnt?

rs Signature(s)

comments SAMpled for BTex 1330

L:\forms\MW Dvlpmn

PROJECT MANAGER

Pinnacle Laboratories Inc. CHAN OF CUSTODY

			Company: New Mexico 87107 • (505) 344-3777 • Fax (505) 344-4413 • E-mail: PIN LAB@ATT.NFT
COMPANY: ANYEC AFTON DILCE ADDRESS: To GO AFTON DILCE FAX: (SOS) 329 292-8 FAX: (SOS) 329-8 FAX	NW 1 6404 1230 14,0 00 00 14 10 14,0 00 00 00 00 00 00 00 00 00 00 00 00 0	PROJ. NO.: ST 7000 12 1 (RUSH) L24hr T2hr T2hr T90. NO.: SHIPPED VIA G YEY HOUND COMMENTS: FIXED FEE SAMPLE RECEIPT COMMENTS: FIXED FEE NO. BOOK OF THE PROJECT CLOSED CLOSED NO. BOOK OF THE PROJECT CLOSED CLOSED CLOSED NO. BOOK OF THE PROJECT CLOSED CLOSED	DE TOTAL STORT OF THE STORT OF