# 3R - 254

## REPORTS

DATE: Oct. 15, 1998



#### TIERRA ENVIRONMENTAL COMPANY, INC.

#### P.O. Drawer 15250

Farmington, New Mexico 87401 Phone 505-334-8894 Fax 505-334-9024 E-Mail teci@cyberport.com

October 20, 1998

OCT 27 1993

Mr. Bill Olsen New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505

RE: REQUEST FOR CLOSURE, BISTI CRUDE OIL STORAGE TANK FACILITY, Section 5, T-25 N, R-12 W, approximately six miles southwest of the El Paso Chaco Plant in San Juan County, New Mexico, owned by Bloomfield Refining Company eg. Gary Williams Energy.

Dear Mr. Olsen:

Enclosed herewith please find the complete report on voluntary cleanup activities conducted at the above described location by Tierra Environmental Company, Inc. ,on behalf of our client Gary Williams Energy.

A site assessment was preformed on September 29, 1998 by Tierra personnel. The rating sheet is enclosed. The assessment concluded that the depth to any usable groundwater was in excess of 100 feet and the distance to a surface water body was in excess of 1000 feet. As you may recall in December of 1995 Tierra successfully closed a tank battery at Bisti Station in the same general area four miles north east this location. In that report we relied on a 1992 report from El Paso Natural Gas Company wherein they had drilled three deep well ground beds to a depth of 505 feet. The drillers log indicated that groundwater was encountered at a depth of 120 feet. As the area surrounding this site is consistent with that of Bisti Station geologically, we have relied on that same report justifying the distance to groundwater. Enclosed with the report is a location map identifying this site as well as the Bisti Station site.

Therefore based on the preceding information including the site assessment we respectfully request that this site be considered for final closure pursuant to OCD regulations at 5000 ppm TPH, 10 ppm Benzene and 50 ppm BTEX.

Please call me if you have any questions or need additional information.

Thank you for your professional assistance in this matter. It is always a pleasure to work with you.

Sincerely,

Phillip C. Nobis

President

xc:

Chris Hawley GWE

D. Foust, OCD Aztec

Final Report

#### TIERRA ENVIRONMENTAL COMPANY, INC P.O. DRAWER 15250 FARMINGTON, N.M. 87401

"Working to save the environment, our legacy to our children"

### RECEIVED

OCT 27 1998

ENVIRONMENTAL BUREAU
OIL CONSERVATION DIVISION



VOLUNTARY CLEAN-UP OF CRUDE OIL STORAGE TANK FACILITY SECTION 5, T-25 N, R 12 W, SAN JUAN COUNTY, NEW MEXICO

**FOR** 

**GARY WILLIAMS ENERGY** 

#### TABLE OF CONTENTS

| 1.0 | SUMMARY OF ACTIVITY REPORT |
|-----|----------------------------|
| 2.0 | SITE ASSESSMENT            |
| 3.0 | CLOSURE REQUEST TO OCD     |
| 4.0 | PERMITS                    |
| 5.0 | SITE DIAGRAMS              |
| 6.0 | LABORATORY REPORTS         |
| 7.0 | SITE PHOTOGRAPHS           |

## VOLUNTARY TANK REMOVAL AND ENVIRONMENTAL CLEANUP BISTI CRUDE OIL STATION

#### Completed October 15, 1998

1.0

#### SUMMARY OF ACTIVITY

The Bisti Crude Oil Station is located at Section 5, T-25N, R-12 W in San Juan County, New Mexico approximately six miles southwest of the El Paso Chaco Plant. The site is owned by Gary Williams Energy. It consists of one ten thousand barrel steel crude oil storage tank, a manifold and abandoned lact unit location and several abandoned underground piping networks.

Tierra Environmental Company, Inc.(TECI), after consulting with Gary Williams Energy (GWE) environmental representative Chris Hawley, New Mexico Oil Conservation Division (OCD) environmental representative D. Foust and U.S. Bureau of Land Management (BLM) representative Rubin Sanchez the following scope of work was presented. The tank was to be steam cleaned and purged of any explosive potential. The tank rinsate would be removed to the TECI, OCD permitted landfarm facility located on Crouch Mesa in San Juan County N.M. for remediation. The tank would then be dismantled, all piping and manifolds were to be removed and any contaminated soil would be excavated and removed also to the TECI landfarm.

On September 17, 1998 TECI personnel deployed to prepare the site. Part of the berm on the west side of the location was removed in order to allow access by sub contractors equipment. A temporary sump was prepared with the backhoe at the tank clean out and the access roadway was repaired where a large wash out had occurred. A sample of the tank sludge was obtained for TCLP analysis.

On September 21, 1998, TECI Environmental Specialist Tim Nobis accompanied by SCAT Hot Wash and Safety Alliance deployed to the site. A TECI Frac tank, which would hold the storage

tank rinsate was delivered by Sunco Trucking. Clean out operations began. The clean out was completed on September 23, 1998. Following the clean out the floor of the tank was examined. It appeared to be intact and in good condition.

On that same date the rinsate was removed from the site to the TECI landfarm where it was placed in a Frac Tank pending the results of a TCLP analysis.

On September 28, 1998, TECI Environmental Specialist Tim Nobis accompanied by Valley Scrap Metal and their large hydraulic shears deployed to the site. Tank dismantling operation commenced. Safety Alliance was also present to monitor for explosive hazards while Valley Scrap Metal using a cutting torch made the first incision into the tank. The large hydraulic shears were then used to dismantle the tank. A site assessment following tank removal was then conducted. That operation was completed on October 1, 1998.

On October 5, 1998, TECI Environmental Specialist Tim Nobis accompanied by Doug Foust Construction deployed to the site. Excavation of the under ground piping system commenced. All underground piping was removed and stockpiled by October 7, 1998. Some contamination was discovered along the east border of location. It was removed and stockpiled on site. Contamination was also discovered on the northwest side of where the tank had been located. It was also excavated and stockpiled on site. The excavation did not exceed ten vertical feet. A total of two-hundred and fifty cubic yards of contaminated soil was excavated at the site and removed to the TECI landfarm. The excavations were backfilled using mostly the existing berm material. Prior to backfilling, five closure soil samples were obtained from the excavations to be analyzed for TPH and BTEX. The site was graded and compacted using a front end wheel loader.

On October 15, 1998 the closure sample analysis was received. The samples identified as Gary 1 & Gary 2 were composite samples taken from the bottom and sides of the excavation on the northwest side of the tank. The samples identified as Tank Line 2 through 4 were taken from the excavated piping area where a small amount of contamination was found. (See attached site

diagram).

Laboratory Results:

|             | ТРН       | BTEX       | Benzene    |
|-------------|-----------|------------|------------|
|             |           |            |            |
| Gary 1      | 845 mg/kg | 750 ug/kg  | ND         |
| Gary 2      | 325 mg/kg | 1520 ug/kg | 53.8 ug/kg |
| Tank Line 3 | 2.7 mg/kg | 182 ug/kg  | ND         |
| Tank Line 4 | ND        | 130 ug/kg  | 29.1 ug/kg |
| Tank Line 5 | ND        | 186 ug/kg  | 29.0 ug/kg |

As is evidenced by the laboratory analysis the site has been cleaned up to meet OCD standards of less that 5,000 ppm TPH, 50 ppm BTEX and 10 ppm Benzene.

Tim S. Nobis

**Environmental Specialist** 

Tierra Environmental Company, Inc.

October 20, 1998



#### TIERRA ENVIRONMENTAL COMPANY, INC.

P.O. Drawer 15250

Farmington, New Mexico 87401 Phone 505-334-8894 Fax 505-334-9024 E-Mail teci@cyberport.com

October 19, 1998

#### NOTICE OF CHANGE OF ADDRESS

Dear Valued Customer:

Due to a new business arrangement our company has a new accounts receivable address.

Please send all payments due to:

Tierra Environmental Company, Inc. 75 Remittance Drive, Suite `1235 Chicago, IL 60675-1235

Our business address for all other correspondence remains:

Tierra Environmental Company, Inc. P.O. Drawer 15250 Farmington, NM 87401

Thank you for your cooperation.

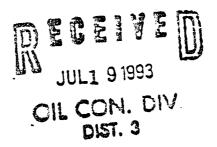
Sincerely,

Phillip C. Nobis

President

2.0

SITE ASSESSMENT


On September 29, 1998 a site assessment was completed in accordance with OCD Environmental Regulations section 7d-IV-A-2a.

| 1.)                   | Depth to Groundwater           | Ranking Score             |
|-----------------------|--------------------------------|---------------------------|
|                       | > 100 Feet                     | 0                         |
| 2.)                   | Wellhead Protection Area       | N/A                       |
| 3.)                   | Distance to Surface Water Body |                           |
|                       | > 1000 Horizontal Feet         | 0                         |
| Total I               | Ranking Score                  | 0                         |
| Degree                | e of remediation required:     |                           |
| Benzer<br>BTEX<br>TPH |                                | 10ppm<br>50ppm<br>5000ppm |

Note: All contaminated soil exceeding the parameters stated above was excavated and removed from the site to the Tierra Landfarm. The depth of contamination identified was less than ten feet. A substantial layer of sandstone was encountered at that depth after all contamination had been removed.

William J. Lemay New Mexico Oil Conservation Division 310 Old Santa Fe Trail Santa Fe, NV4 87501 July 14 . 1 3

RE Discharge Plan GW-71 Chaco Canyon Gas Processing Plant San Juan County, New Mexico



Dear Mr. Lemay:

E. Paso Natural Gas Company is requesting modification of the Chaco Gas Plant Discharge Pla — EPNAT would like to modify the Discharge Plan to allow the continued use of the unlined ponds for non-contact waster vater, and to waste the requirement to test the non-contact drain system. The current Discharge Plan requires the closure of all unlined ponds and the testing of all drain lines in excess of 25 years of These requirements were designed to ensure that ground water would not be adversely impacted in the vacinity of the plant. Based upon information obtained from wells drilled on Chaco Plant property, EPNAC occitives continued use of the unlined pond, and drain lines for non-contact water, poses no threat to ground water.

This view is cased upon the following.

- Quality of the non-contact waste water exceeds that of the ground water. In 1992 EPNG drilled three deep well ground beds to a depth of 505 feet in the northwest corner of Chaco Plant property. Water analysis were performed on all three deep well ground beds. A. B. and C cooling towers, and ponds 1 5. This analysis shows that discharge auxility exceeds that of the ground water. (See tab A)
- 2. At cast 59 feet of unsaturated low permeability shale is present above the regional aquifer at the proof site.

The driller's logs show the plant site resting on less than 50 feet of sandy deposits above the lower shale unit of the Nacimento Formation. A 15 to 20 foot thick sandstone of the Ojo Alamo Formation was encountered below the shale unit. (See tab B)

3. Depth to ground water of 120 feet

The drillers s logs did not indicate a shallow unconfined aquifer. Water was first energy tered at a depth of 120 feet in the Ojo Alamo Formation. No other water bearing rones were reported to the total depth of 505 feet. (See tab B)

- Mearest water well to the plant is over a mile away.
  The closest domestic water well to the plant site as reported by the State Engineer is in section 22 over a mile away. This well was drilled in 1963 to a depth of 255 feet. No information on the current status of the well is available.
- All contact waste water will be routed to a lined pond.

  To onsure continued protection of ground water quality, all contact waste water will be accused to a lined pond scheduled to be constructed in 1994.

6. The contact and non-contact waste water systems will be separate systems. A survey of all contact drain lines will be performed to ensure no contact drain lines are connected to the non-contact drain system.

EPNG believes for the above mentioned reasons that continued use of the unlined ponds for non-contact waste water will not pose a threat to ground water. EPNG also believes that if approval is granted to continue use of the unlined ponds, testing the non-contact discharge lines to the ponds would be unnecessary.

Enclosed is a check covering the filing fee. If you have any questions or comments feel free to call me 1: (505) 599-2175.

Sincerely,

Kris Alan Sinclair Compliance Engineer

ce: W.D. Hail, EFMG N.K. Prince, EPMG William Olson, NMOCD Denny Foust, NMOCD

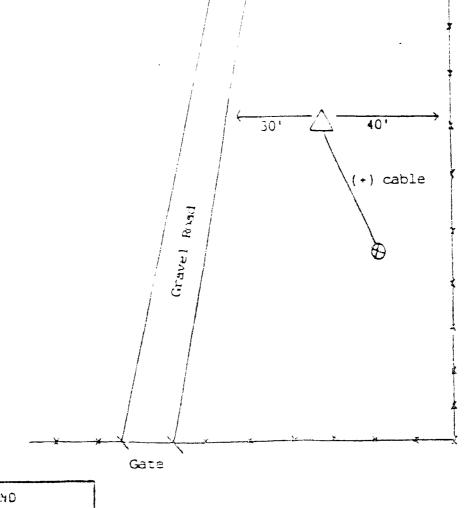
| DEEP WELL GROUN. D DATA         | D                       | A' Septem           | ber 1, 120°   |
|---------------------------------|-------------------------|---------------------|---------------|
| COMPANY El Paso Natural Gas Com |                         |                     | STATE N.M.    |
| CONTRACT NO. 5848               | UNIT NO                 | o. <u>ars 296</u> - | - ક           |
| LOCATION Chaco Sta 20 miles     | S. of Farmington,       | N.M                 |               |
| GROUNDBED: Depth 500 Ft         | ., Dia. <u>7 7/8</u> Ir | n., Anodes          | (25) 2 x 60   |
| CASING: Size 8 5/8 In           | 1., Depth 100           | Ft.                 | Amoter Fig. 1 |

;

| DEPTH             | DRILLER'S LOG     |             | YTIVIT                                 |              | DEPTH TO  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | `.                     |
|-------------------|-------------------|-------------|----------------------------------------|--------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| FT.               | DRILLER 5 LOG     | OHMS        | AMPS                                   | NUMBER       | ANODE TOP | COKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| 5 1               | Top Soil          |             |                                        | <del> </del> |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 10                | 0                 |             |                                        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~ ~~~~                |
| 15                | Sand              |             |                                        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Printed Street, Labor. |
| 20                | H                 |             | ······································ |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 25                | 14                |             |                                        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 30                | Blue Shale        |             |                                        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 35                | 13                | <del></del> |                                        | <del> </del> |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 40                | 79                |             |                                        | <del> </del> |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 45                | n                 |             |                                        | <del> </del> |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 50 1              | ¥                 |             |                                        | <del></del>  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 5.5               | <b>A</b>          |             |                                        | †            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 50                | #                 |             |                                        | <del></del>  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 55                | P                 |             |                                        |              | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 55<br>70          | 4                 |             |                                        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 7.5               | Я                 |             |                                        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 90                | 7                 |             |                                        | 1            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 85                | п                 |             |                                        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| . 30              | 19                | i           |                                        | <b></b>      |           | - A Part of the Control of the Contr |                        |
| 95                | / <del>•</del>    |             | <del></del>                            |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 100               | 78                |             |                                        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . <b></b>              |
| 105               | Sandstone         |             | 1.1                                    | 1            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 110               | п                 |             | 0.9                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 115               | 4                 |             | 0.9                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 120               | 7                 |             | 0.9                                    |              |           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| 125               | Mater             |             | 0.8                                    |              |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| 130               | н                 | i           | 1.0                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 135               | Sardstone         |             | 1-7                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 140               | 79                |             | 1-4                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 145               | Blue Clar & Shale |             | 1.7                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 150               | H                 |             | 1.7                                    |              | i         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| 155               | N                 |             | 2.0                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 160               | R                 |             | 1.8                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>!                  |
| 165               | n                 |             | 1.8                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 170               | ч                 |             | 1.8                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 175               | 16                |             | 1.3                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 180               | P                 |             | 1.8                                    | T            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 185               | Ħ                 |             | 1.7                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                      |
| 190               | <b>16</b>         |             | 1.7                                    | 25           | [         | 7 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| 195               | 3                 |             | 1.8                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 200               | .*                |             | 1.6                                    | 24           |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| 205               | **                |             | 1.6<br>1.5<br>1.5                      |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 210               | _                 |             | 1.5                                    | 23           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 715               | Ħ                 |             | 1.3                                    |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 20                | Ħ                 |             | 1.4                                    | 22           |           | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| 225               |                   |             | 1.6                                    | 1            |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| 230               |                   |             | 1.8                                    | 21           |           | 10 x 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| 235               | i                 |             | 1.7                                    | 1            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| $\frac{230}{240}$ | Blue Clay & Shale | <del></del> | 1.7                                    | 20           | 1         | And the state of t |                        |

CUMP-11 - - Pade in a part of the second of

LOCATION Chaco St. UNIT NUM 7 CPS 296-6


| CLEATH   DRILLER'S LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CATION <u>Chaco St.</u> | UN            | II NUM                                           | 7 CPS 296-6 | <u> </u>                              |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|--------------------------------------------------|-------------|---------------------------------------|---------------------------------------|
| 255   1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DRILLER'S LOG           |               | N .                                              |             | l.                                    | 1                                     |
| 255   1.6   19   1.5   2.5   2.5   2.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   | 1 205 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Blive Clay & Shala      | 116           |                                                  |             |                                       | :                                     |
| 255   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 19                                               |             | 1 0                                   |                                       |
| 260   1.5   18   1.9   5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | я                       |               | 1 -                                              |             |                                       | <del></del>                           |
| 295   1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                       |               | 18                                               | 1           | 1.9                                   | 1 5 5                                 |
| 2   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 1 10                                             | <u>:</u>    | ± • Z                                 | <del></del>                           |
| 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | п                       |               | 17                                               |             | 2.0                                   |                                       |
| 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                       |               | <del>                                     </del> |             | 2.9                                   |                                       |
| 2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                      |               | 16                                               |             | 1 0                                   |                                       |
| 250   1.5   1.5   1.7   1.7   1.7   1.0   1.6   1.0   1.6   1.6   1.7   1.0   1.6   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                       |               | 1 10                                             | ļ           | 1.7                                   |                                       |
| 295   1.0   1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                       |               | 1 75                                             | į           |                                       |                                       |
| 300   1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 15                                               |             |                                       | -                                     |
| 355   Sanderone Silve Shale   1.5   14   1.0   3.0   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.10   3.1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |                                                  |             |                                       | ·                                     |
| 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |                                                  |             |                                       |                                       |
| 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 14                                               |             |                                       |                                       |
| 320   1.0   1.0   330   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300   300  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |                                                  |             | · · · · · · · · · · · · · · · · · · · |                                       |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1 1 0         | <del> </del>                                     |             |                                       | <u> </u>                              |
| 310   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       |               | 1                                                |             |                                       | <u> </u>                              |
| 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                       |               | <del> </del>                                     |             |                                       |                                       |
| 340   1.6   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5   3.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | <del> </del>                                     |             |                                       | 1                                     |
| 345   1.5   13   1.7       350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |                                                  |             |                                       | ·                                     |
| 350   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 1                                                |             |                                       |                                       |
| 355   Sandstone   1.6   12   1.3       360   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ·             | 1 13                                             |             |                                       |                                       |
| 365   Slue Clay & Shale   1.6   11   2   5.5   370   7   1.9   1.5   10   1.8   2   2   385   7   1.5   10   1.8   2   385   7   1.6   9   1.9   6.1   385   7   1.6   9   1.9   6.1   385   7   1.6   9   1.9   6.1   395   7   1.8   3   395   7   1.8   3   395   7   1.7   8   2.0   6.2   6.2   400   7   1.5   7   400   7   1.5   7   405   7   1.5   7   405   7   4.1   4   4   4   4   4   4   4   4   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |                                                  |             |                                       | ;                                     |
| 365   Slue Clay & Shale   1.6   11   2   5.5   370   7   1.9   1.9   1.5   10   1.5   2   380   7   1.6   9   1.9   6.1   385   7   1.6   9   1.9   6.1   390   7   390   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   7   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 12                                               |             | 1.3                                   |                                       |
| 370   1.9   1.5   10   1.5   2   380   1.6   1.6   9   1.9   5.1   390   1.8   2.0   5.1   390   1.9   5.1   390   1.9   5.1   395   1.7   8   2.0   5.1   390   1.9   5.1   390   1.9   5.1   395   1.7   8   2.0   5.1   395   1.7   8   2.0   5.1   395   1.7   8   2.0   5.1   395   1.7   395   1.9   5.1   395   1.9   5.1   395   1.9   5.1   395   1.9   5.1   395   1.9   5.1   395   1.9   5.1   395   1.9   5.1   395   1.9   5.1   395   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   1.9   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ·             |                                                  |             |                                       | <u> </u>                              |
| 375   1.5   10   1.3   385   1   1.6   9   1.9   5.5   390   1.3   390   1.3   395   1.3   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   1.5   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395   395 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 11                                               |             | 2                                     |                                       |
| 380   1.6   9   1.9   5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |                                                  |             |                                       |                                       |
| 1.6   9   1.9   5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 10                                               |             | 1.3                                   | ·                                     |
| 390   1.8   1.7   8   2.0   5.1   400   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |                                                  |             |                                       |                                       |
| 395   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 1 9                                              |             | <u>1.9</u>                            | 7.5                                   |
| A00   1.5   1.4   7   1.7   6.7     A10   1.5   1.5   1.5     A15   1.6   1.5   6   1.3   1.6     A20   1.1   1.1   1.7     A20   1.1   1.1   1.7     A30   1.1   1.7     A35   1.1   1.7     A40   1.1   1.7     A50   1.1   1.7     A50   1.1   1.1     A60   1.1   1.7     A60   1.1   1.1     A70   1.1   1.5   3   1.8   5.3     A75   1.1   1.5   3   1.8   5.3     A65   1.1   1.1     A70   1.1   1.1     A80   1.1   1.1     A90   1.1     A90  | The second secon |                         |               | <del> </del>                                     |             |                                       | i                                     |
| 405   1.4   7   1.7   6.7     410   1.5   1.5   1.5     415   1.5   6   1.5   1.5     420   1.4   1.7     425   1.4   1.7     430   1.1   1.1     435   1.6   1.7     440   1.7   1.7     450   1.4   4   1.7     455   1.6   1.8     465   1.6   1.5     470   1.5   3   1.8   5.2     485   1.6   1.6     490   1.6   1.7     490   1.6   1.7     495   1.7     500   Blue Clay & Shale   1.7     500   Blue Clay & Shale   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     505   1.7   1.7     506   1.7   1.7     507   1.7   1.7     508   1.7   1.7     508   1.7   1.7     509   1.7   1.7     509   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     500   1.7   1.7     50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 8                                                |             | <u> </u>                              | <u> </u>                              |
| 410   1.5   1.5   6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.6   1.7   1.6   1.7   1.6   1.7   1.6   1.7   1.6   1.7   1.6   1.7   1.6   1.7   1.7   1.6   1.7   1.6   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>                    |               |                                                  |             |                                       |                                       |
| 415   1.5   6   1.5   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 7                                                |             | <u> </u>                              | <u> </u>                              |
| 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | <u> </u>                                         |             |                                       | · · · · · · · · · · · · · · · · · · · |
| 425    *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 6                                                |             | 1.                                    |                                       |
| A30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | ļ                                                |             |                                       | <del>!</del>                          |
| 435   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | _ <del></del> | 5                                                |             | 1.6                                   | <del>5</del>                          |
| 440       -       1.2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td></td> <td></td> <td></td> <td><del> </del></td> <td></td> <td></td> <td><del> </del></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | <del> </del>                                     |             |                                       | <del> </del>                          |
| 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | <del></del>   |                                                  |             |                                       |                                       |
| A50    1.4    4    1.7    5.4      A55    7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1-2           | +                                                |             |                                       | :                                     |
| 455   *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                |               |                                                  |             |                                       | <del>   </del>                        |
| 460   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | + 4                                              |             | 1.7                                   |                                       |
| 465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | <del> </del>                                     |             |                                       | -                                     |
| 470   1.5   3   1.8   5.8   475   7   1.7   1.6   2   1.8   5.9   485   7   1.6   1   2.0   6.0   495   7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7   1.7  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | <del> </del>                                     |             |                                       |                                       |
| 475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }                       |               | <del> </del>                                     | 1           |                                       |                                       |
| 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1.5           | <del>  3</del>                                   |             | 1.8                                   | <del>  5.5</del>                      |
| 485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1             | 1                                                |             |                                       | <del></del>                           |
| 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 1 2                                              |             | 1.3                                   | 2.7                                   |
| 495   *     1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | -                                                |             |                                       |                                       |
| 300 Blue Clay & Shale 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 1 1                                              |             | 4.0                                   | 0.0                                   |
| 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |                                                  |             |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Brue clay & Shale       | 1./           | 1                                                |             |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 1                                                |             |                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                       |               | 1                                                |             |                                       |                                       |



THE LOFTIS COMPANY
P O BOX 7847
MIDDAND, TLXAS 74703

AS-BUILT

Station Femor



|             | LEGEND        |
|-------------|---------------|
| $\triangle$ | Groundbed     |
| abla        | Rectifier     |
| <b>9</b>    | Negative      |
|             | Junction Box  |
| 4           | Marker/Vent   |
| $\otimes$   | Old Groundbed |
|             |               |

LOCATION: CPS 296-6, Chaco Station
San Juan County, N.M.
20 mi. S. of Farmington, N.M.
PROJECT: Cathodic Protection System
Contract #5848

LATE DRILLED: 09/01/92 DRAUN BY: JM/MI APPROVED BY:MFL DRAUTYL 10.

3.0

CLOSURE REQUEST TO OCD



#### TIERRA ENVIRONMENTAL COMPANY, INC.

#### P.O. Drawer 15250

Farmington, New Mexico 87401 Phone 505-334-8894 Fax 505-334-9024 E-Mail teci@cyberport.com

October 20, 1998

Mr. Bill Olsen New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, NM 87505

RE: REQUEST FOR CLOSURE, BISTI CRUDE OIL STORAGE TANK FACILITY, Section 5, T-25 N, R-12 W, approximately six miles southwest of the El Paso Chaco Plant in San Juan County, New Mexico, owned by Bloomfield Refining Company eg. Gary Williams Energy.

Dear Mr. Olsen:

Enclosed herewith please find the complete report on voluntary cleanup activities conducted at the above described location by Tierra Environmental Company, Inc. ,on behalf of our client Gary Williams Energy.

A site assessment was preformed on September 29, 1998 by Tierra personnel. The rating sheet is enclosed. The assessment concluded that the depth to any usable groundwater was in excess of 100 feet and the distance to a surface water body was in excess of 1000 feet. As you may recall in December of 1995 Tierra successfully closed a tank battery at Bisti Station in the same general area four miles north east this location. In that report we relied on a 1992 report from El Paso Natural Gas Company wherein they had drilled three deep well ground beds to a depth of 505 feet. The drillers log indicated that groundwater was encountered at a depth of 120 feet. As the area surrounding this site is consistent with that of Bisti Station geologically, we have relied on that same report justifying the distance to groundwater. Enclosed with the report is a location map identifying this site as well as the Bisti Station site.

Therefore based on the preceding information including the site assessment we respectfully request that this site be considered for final closure pursuant to OCD regulations at 5000 ppm TPH, 10 ppm Benzene and 50 ppm BTEX.

Please call me if you have any questions or need additional information.

Thank you for your professional assistance in this matter. It is always a pleasure to work with you.

Sincerely,

Phillip C. Nobis

President

xc: Chris Hawley GWE

D. Foust, OCD Aztec

Final Report

4.0

**PERMITS** 

District I - (505) 200 (15) P.O. Box 1980 P.bbs, NM 88241-1980 Estrict II - (505) 748-1283 811 S. First Attesia, NM 88210

#### New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division

2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131 Submit Origin Plus ( Co to addreding District Offi

Form C-13

Trict III - (505) 334-6178
Rio Brazos Road
Lice, NM 87410
District IY - (505) 827-7131

| REQUEST FOR APPR                                                                                                                                                                                                             | OVAL TO ACCEPT SOLID WASTE                     | 98085                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1. RCRA Exempt: Non-Exempt: X                                                                                                                                                                                                | 4. Generator                                   | Jary Williams Energy      |
| Verbal Approval Received: Yes 7-30-78                                                                                                                                                                                        |                                                | ' 4' - 9'                 |
| 2. Management Facility Destination Tierra Enviro                                                                                                                                                                             | nmental bandfarm 6. Transporter                | Sunco Trucking            |
| 3. Address of Facility Operator 420 C.R. 3100                                                                                                                                                                                | ztec Sin Juan County 8. State Ne               | w Mexico                  |
| 7. Location of Material (Street Address or ULSTR)                                                                                                                                                                            | 5 T-25N RIZW San Juan Coun                     | ty, New Mexico            |
| 9. <u>Circle One</u> :                                                                                                                                                                                                       | ,                                              | ,,                        |
| A. All requests for approval to accept oilfield exe Generator; one certificate per job.  B. All requests for approval to accept non-exemply PROVE the material is not-hazardous and the listing or testing will be approved. | t wastes must be accompanied by neces          | sary chemical analysis to |
| All transporters must certify the wastes delivered a                                                                                                                                                                         | e only those consigned for transport.          |                           |
| Tank BoHoms From Crude Oil Stor  Estimated Volume 300 BBIS  Known Volume                                                                                                                                                     | to be entered by the operator at the end of th | ne haul) ————— cv         |
| SIGNATURE: Waste Management Facility Authorized Agent TYPE OR PRINT NAME: 1 Nob. 5                                                                                                                                           | TITLE: Environmental Specialist TELEPHONE NO   |                           |
|                                                                                                                                                                                                                              | ·                                              |                           |
| (This space for State Use)                                                                                                                                                                                                   |                                                |                           |
| APPROVED BY:                                                                                                                                                                                                                 | TITLE:                                         | DATE:                     |

+ Submit 5 cop'es la Appropriate District Office <u>DISTRICT I</u> P.O.Box 1980, Hobbs, NM 88241-1980 <u>DISTRICT II</u>

P.O. Drawer DD, Artesia, NM 88211-0719

1000 Rio Brazos Rd, Aztec, NM 87410

DISTRICT III

#### State of New Mexico Energy, Minerals and Natural Resources Department

Form C-117 A Revised 4-1-91

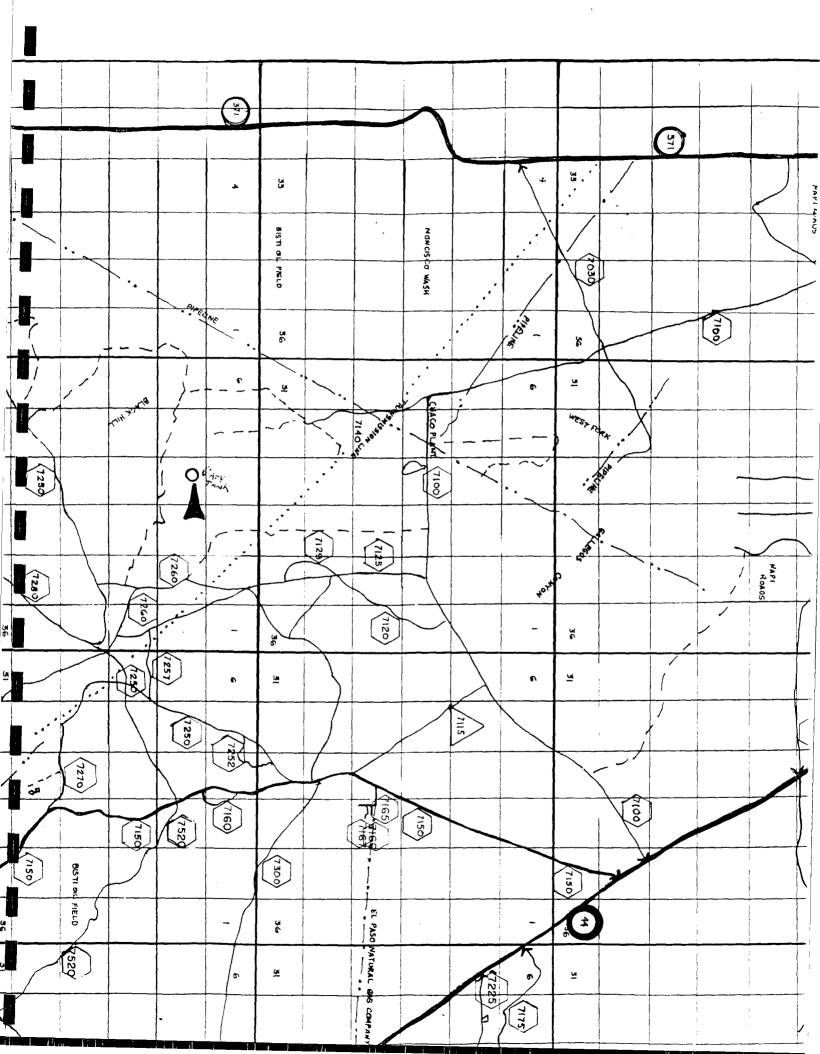
Operator
Transporter (2)

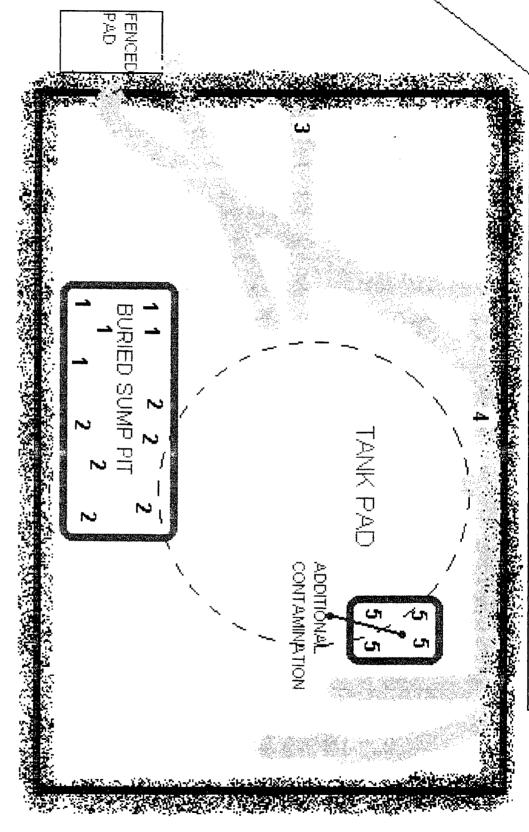
#### OIL CONSERVATION DIVISION

2040 S Pacheco

Santa Fe, New Mexico 8/504-2088

PERMIT NO. 3-592


| TANK CLEANING, SEDIMENT OIL REMOVAL, TRANSPORTATION OF MISCELLANEOUS HYDROCARBONS AND DISPOSAL PERMIT                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operator or Owner Gary Williams Energy Address Folger 305 Whatesons okl                                                                                                                                                                                |
| Lease or Facility Name Chaco Storage Tank Location 5-5, T-25N, R-12W                                                                                                                                                                                   |
| OPERATION TO BE PERFORMED:                                                                                                                                                                                                                             |
| Tank Cleaning Sediment Oil Removal Transportation of Miscellaneous Hydrocarbons                                                                                                                                                                        |
| Operator or Owner Representative authorizing work TICITA ENVISORMENTAL                                                                                                                                                                                 |
| Date Work to be Performed 9-24-98                                                                                                                                                                                                                      |
| TANK CLEANING DATA Tank Number 72293 Volume 42,000 GALLOW                                                                                                                                                                                              |
| Tank Type (LIELDED) PLATE Volume Below Load Line 1000 GALLON SEDIMENT OIL OR MISCELLANEOUS HYDROCARBON DATA                                                                                                                                            |
| Sediment Oil from: Pit Cellar Other DECEINED                                                                                                                                                                                                           |
| MISCELLANEOUS OIL Tank Bottoms From: Pipeline Station Crude Terminal Refinery Uther Pp 2 4 1998                                                                                                                                                        |
| Catchings From: Gasoline Plant Gathering Lines Galt Water Disposal System Other*                                                                                                                                                                       |
| Pipeline Break Oil or Spill                                                                                                                                                                                                                            |
| *Other (Explain)                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                        |
| VOLUME AND DESTINATION: Estimated Volume /20 Bbls. Field test volume of good oilBbls.                                                                                                                                                                  |
| Destination (Name and Location of treating plant or other facility) Tresport Land Form                                                                                                                                                                 |
| 420 RD 3100 AZTEC 87410                                                                                                                                                                                                                                |
| DESTRUCTION OF SEDIMENT OIL BY: Burning Pit Disposal Use on Roads or firewalls Other (Explain) LANDFARM                                                                                                                                                |
| Location of Destruction Tierre Landfarm                                                                                                                                                                                                                |
| Justification of Destruction ASIFRECONGRABUS                                                                                                                                                                                                           |
| CERTIFICATION: (APPLICATION MAY BE MADE BY EITHER OF THE FOLLOWING)  I hereby certify that the infomation above is true and complete to the best of my knowledge and belief.                                                                           |
| Owner Tierra Environmental Co. Inc. Transporter Sonco Trucking                                                                                                                                                                                         |
| By Tim Nobis IAIM Address 708 5. Tucker Fue fan.                                                                                                                                                                                                       |
| Tide Environmental Specialist. Signature AlM                                                                                                                                                                                                           |
| Date 9-24-98 Title Invironmental Specialist Date 9-24-98                                                                                                                                                                                               |
| DIL CONSERVATION DIVISION                                                                                                                                                                                                                              |
| Approved By Ernie Busch Tille Wat Ged Date 9-24-98                                                                                                                                                                                                     |
| COPY OF THIS FORM MUST BE ON LOCATION DURING TANK CLEANING, REMOVAL OF SEDIMENT OIL OR MISCELLANEOUS HYDROCARBONS, AND MUST BE PRESENTED WITH TANK BOTTOMS, SEDIMENT OIL OR MISCELLANEOUS HYDROCARBONS AT THE TREATING PLANT TO WHICH IT IS DELIVERED. |

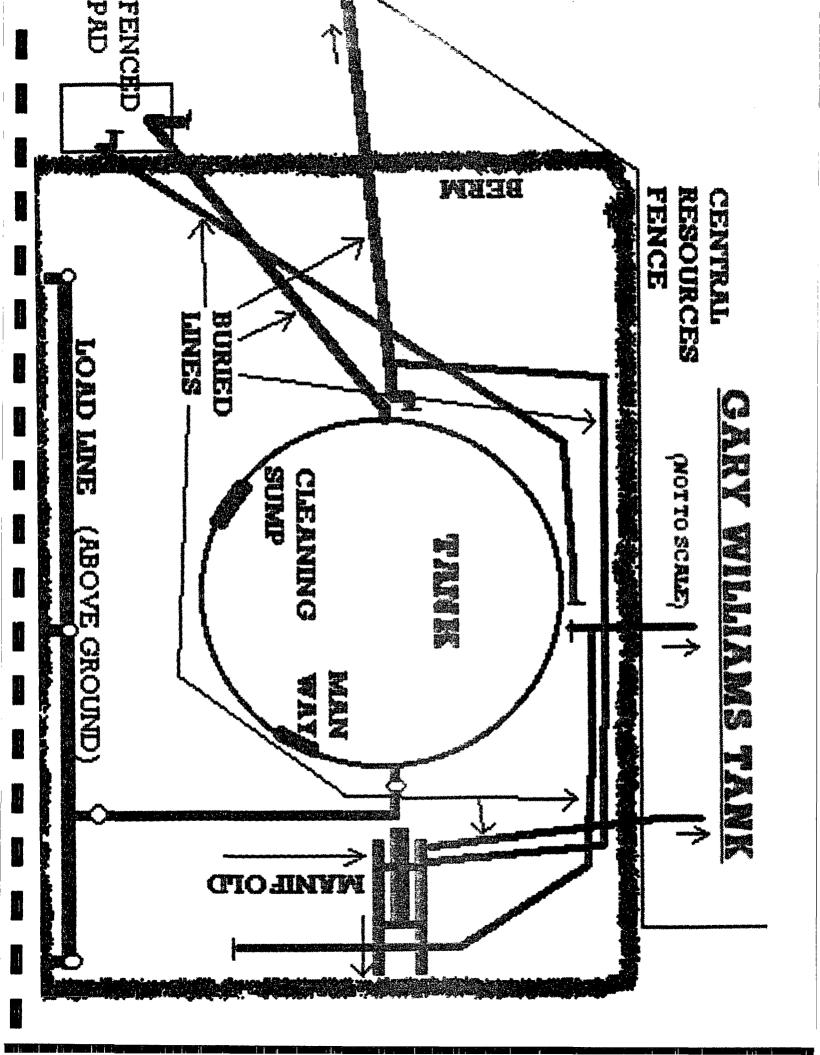

#### CERTIFICATE OF WASTE STATUS

| 1. Generator Name and Address:                                                                      | 2. Destination Name:                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gary Williams Energy                                                                                | Tierra Environmental Landfarm                                                                                                                                   |
|                                                                                                     | 420 C.R 3100                                                                                                                                                    |
|                                                                                                     | Aztec, New Mexico 87410                                                                                                                                         |
| 3. Originating Site (name):                                                                         | Location of the Waste (Street address &/or ULSTR):                                                                                                              |
| Chaco Storage Tank                                                                                  | sec. 5, T-25N, R 12W                                                                                                                                            |
|                                                                                                     | San Juan County                                                                                                                                                 |
| Attach list of originating sites as appropriate                                                     | ·                                                                                                                                                               |
| 4. Source and Description of Waste                                                                  |                                                                                                                                                                 |
| Tank Bottoms from Crude O.                                                                          | 1 Storage Tanks                                                                                                                                                 |
|                                                                                                     |                                                                                                                                                                 |
|                                                                                                     |                                                                                                                                                                 |
|                                                                                                     |                                                                                                                                                                 |
|                                                                                                     |                                                                                                                                                                 |
|                                                                                                     |                                                                                                                                                                 |
| 4/1/                                                                                                |                                                                                                                                                                 |
| 1,                                                                                                  | representative for:                                                                                                                                             |
| (Print Name)                                                                                        | do hereby certify that                                                                                                                                          |
| according to the Resource Conservation and R. 1988, regulatory determination, the above description | representative for:  do hereby certify that, ecovery Act (RCRA) and Environmental Protection Agency's July, cribed waste is: (Check appropriate classification) |
|                                                                                                     |                                                                                                                                                                 |
| EXEMPT oilfield waste X NON analy                                                                   | -EXEMPT oilfield waste which is non-hazardous by characteristic ysis or by product identification                                                               |
| and that nothing has been added to the exempt                                                       | or non-exempt non-hazardous waste defined above.                                                                                                                |
| and the standy had been deduce to the exempt                                                        | To non example non realised by traditional desires.                                                                                                             |
| For NON-EXEMPT waste only the following                                                             | documentation is attached (check appropriate items):                                                                                                            |
| MSDS Information                                                                                    | Other (description):                                                                                                                                            |
| RCRA Hazardous Waste Analy                                                                          | <i>y</i> sis                                                                                                                                                    |
| Chain of Custody                                                                                    |                                                                                                                                                                 |
|                                                                                                     |                                                                                                                                                                 |
| $\rightarrow$ , //                                                                                  |                                                                                                                                                                 |
| Name (Original Signature):                                                                          |                                                                                                                                                                 |
|                                                                                                     |                                                                                                                                                                 |
| Title: <u>Euvironmental</u> Specialist                                                              | <del></del>                                                                                                                                                     |
| 0 22 00                                                                                             |                                                                                                                                                                 |

5.0

SITE DIAGRAMS






TREVOHING

GARY WILLIAMS TANK
EXCAVATION DIAGRAM

(NOT TO SCALE)

,2,3,4,5 SAMPLE LOCATIONS



#### LABORATORY REPORTS



September 23, 1998

Mr. Phil Nobis
Tierra Environmental Services, Inc.
P.O. Drawer 15250
Farmington, New Mexico 87499

Project No.: 04074-03

Dear Mr. Nobis,

Enclosed are the analytical results for the sample collected from the location identified as "Chaco - GWE-1". One soil sample was collected by Tierra Environmental designated personnel on 09/17/98, and received by the Envirotech laboratory on 09/17/98 for Hazardous Waste Characterization analysis (Volatile and Semi-volatile Organics, Trace Metals, Reactivity, Corrosivity, and Ignitability).

The sample was documented on Envirotech Chain of Custody No. 6269 and assigned Laboratory No. D937 for tracking purposes.

The sample was extracted on 09/17/98, and analyzed 09/17/98 through 09/23/98 using USEPA or equivalent methods.

Should you have any questions or require additional information, please do not hesitate to contact us at (505) 632-0615. It is always a pleasure doing business with you.

Respectfully submitted,

Envirotech, Inc.

Stacy W. Sendler

Environmental Scientist/Laboratory Manager

acu W Lendler

enc.

SWS\sws 03.l21/wpd 04074/04074-



#### SUSPECTED HAZARDOUS **WASTE ANALYSIS**

Client:

Tierra Environmental

04074-03

Sample ID:

**GWE - 1** 

09-17-98

Lab ID#:

D937

Date Reported:

Sample Matrix:

Date Sampled: Soil / Sludge

09-15-98

Preservative:

Cool

Date Received: 09-17-98

Stacy W Sendler

Condition:

Cool & Intact

Date Analyzed: Chain of Custody:

Project #:

09-17-98

6269

**Parameter** 

Result

**IGNITABILITY:** 

Negative

**CORROSIVITY:** 

Negative

pH = 6.57

REACTIVITY:

**Negative** 

RCRA Hazardous Waste Criteria

Parameter

Hazardous Waste Criterion

IGNITABILITY:

Characteristic of Ignitability as defined by 40 CFR, Subpart C, Sec. 261.21.

(i.e. Sample ignition upon direct contact with flame or flash point < 60° C.)

CORROSIVITY:

Characteristic of Corrosivity as defined by 40 CFR, Subpart C, Sec. 261.22.

(i.e. pH less than or equal to 2.0 or pH greater than or equal to 12.5)

REACTIVITY:

Characteristic of Reactivity as defined by 40 CFR, Subpart C, Sec. 261.23. (i.e. Violent reaction with water, strong base, strong acid, or the generation of Sulfide or Cyanide gases at STP with pH between 2.0 and 12.5)

Reference:

40 CFR part 261 Subpart C sections 261.21 - 261.23, July 1, 1992.

Comments:

Chaco.



### EPA METHODS 8010/8020 AROMATIC / HALOGENATED VOLATILE ORGANICS

| Client:            | Tierra Environmental | Project #:          | 04074-03 |
|--------------------|----------------------|---------------------|----------|
| Sample ID:         | GWE - 1              | Date Reported:      | 09-21-98 |
| Laboratory Number: | D937                 | Date Sampled:       | 09-15-98 |
| Chain of Custody:  | 6269                 | Date Received:      | 09-17-98 |
| Sample Matrix:     | Soil                 | Date Extracted:     | 09-17-98 |
| Preservative:      | Cool :               | Date Analyzed:      | 09-21-98 |
| Condition:         | Cool & Intact        | Analysis Requested: | TCLP     |

| Parameter            | Concentration (mg/L) | Detection<br>Limit<br>(mg/L) | Regulatory<br>Limits<br>(mg/L) |
|----------------------|----------------------|------------------------------|--------------------------------|
| Vinyl Chloride       | ND                   | 0.0001                       | 0.2                            |
| 1,1-Dichloroethene   | ND                   | 0.0001                       | 0.7                            |
| 2-Butanone (MEK)     | ND                   | 0.0001                       | 200                            |
| Chloroform           | ND                   | 0.0001                       | 6.0                            |
| Carbon Tetrachloride | ND                   | 0.0001                       | 0.5                            |
| Benzene              | 0.0012               | 0.0001                       | 0.5                            |
| 1,2-Dichloroethane   | ND                   | 0.0001                       | 0.5                            |
| Trichloroethene      | ND                   | 0.0003                       | 0.5                            |
| Tetrachloroethene    | ND                   | 0.0005                       | 0.7                            |
| Chlorobenzene        | ND                   | 0.0003                       | 100                            |
| 1,4-Dichlorobenzene  | ND                   | 0.0002                       | 7.5                            |

ND - Parameter not detected at the stated detection limit.

| OA | JOC. | Accen  | tance  | Criteria |
|----|------|--------|--------|----------|
| wn |      | $\neg$ | Lailot | Oliteria |

**Parameter** 

**Percent Recovery** 

Trifluorotoluene Bromofluorobenzene 98% 99%

References:

Method 1311, Toxicity Characteristic Leaching Procedure, SW-846, USEPA, July 1992.

Method 5030, Purge-and-Trap, SW-846, USEPA, July 1992.

Method 8010, Halogenated Volatile Organics, SW-846, USEPA, Sept. 1994. Method 8020, Aromatic Volatile Organics, SW-846, USEPA, Sept. 1994.

Note:

Regulatory Limits based on 40 CFR part 261 Subpart C section 261.24, July 1, 1992.

Comments:

Chaco.

Arralyst L. Guar

Review V. fen de



#### EPA METHOD 8040 PHENOLS

| Client:            | Tierra Environmental | Project #:          | 04074-03 |
|--------------------|----------------------|---------------------|----------|
| Sample ID:         | GWE - 1              | Date Reported:      | 09-21-98 |
| Laboratory Number: | D937                 | Date Sampled:       | 09-15-98 |
| Chain of Custody:  | 6269                 | Date Received:      | 09-17-98 |
| Sample Matrix:     | Soil                 | Date Extracted:     | 09-17-98 |
| Preservative:      | Cool                 | Date Analyzed:      | 09-21-98 |
| Condition:         | Cool & Intact        | Analysis Requested: | TCLP     |

| Parameter             | Concentration (mg/L) | Detection<br>Limit<br>(mg/L) | Regulatory<br>Limit<br>(mg/L) |
|-----------------------|----------------------|------------------------------|-------------------------------|
| o-Cresol              | ND                   | 0.020                        | 200                           |
| p,m-Cresol            | ND                   | 0.040                        | 200                           |
| 2,4,6-Trichlorophenol | ND                   | 0.020                        | 2.0                           |
| 2,4,5-Trichlorophenol | ND ·                 | 0.020                        | 400                           |
| Pentachlorophenol     | ND                   | 0.020                        | 100                           |

ND - Parameter not detected at the stated detection limit.

| Surrogate Recoveries: | Parameter            | Percent Recovery |  |
|-----------------------|----------------------|------------------|--|
|                       | 2-Fluorophenol       | 97%              |  |
|                       | 2,4,6-Tribromophenol | 100%             |  |

References:

Method 1311, Toxicity Characteristic Leaching Procedure Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 8040, Phenols, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C section 261.24, July 1, 1992.

Comments:

Chaco.

Deur L. Oguce

Review Jan de-



### EPA Method 8090 Nitroaromatics and Cyclic Ketones TCLP Base/Neutral Organics

| Client:            | Tierra Environmental | Project #:          | 04074-03 |
|--------------------|----------------------|---------------------|----------|
| Sample ID:         | GWE - 1              | Date Reported:      | 09-21-98 |
| Laboratory Number: | D937                 | Date Sampled:       | 09-15-98 |
| Chain of Custody:  | 6269                 | Date Received:      | 09-17-98 |
| Sample Matrix:     | Soil .               | Date Extracted:     | 09-17-98 |
| Preservative:      | Cool                 | Date Analyzed:      | 09-21-98 |
| Condition:         | Cool and Intact      | Analysis Requested: | TCLP     |

----

| Parameter           | Concentration (mg/L) | Det.<br>Limit<br>(mg/L) | Regulatory<br>Limit<br>(mg/L) |
|---------------------|----------------------|-------------------------|-------------------------------|
| Pyridine            | ND                   | 0.020                   | 5.0                           |
| Hexachloroethane    | ND                   | 0.020                   | 3.0                           |
| Nitrobenzene        | ND                   | 0.020                   | 2.0                           |
| Hexachlorobutadiene | ND                   | 0.020                   | 0.5                           |
| 2,4-Dinitrotoluene  | ND                   | 0.020                   | 0.13                          |
| HexachloroBenzene   | 0.040                | 0.020                   | 0.13                          |

ND - Parameter not detected at the stated detection limit.

| QA/QC Acceptance Criteria | <br>Parameter    | Percent Recovery |
|---------------------------|------------------|------------------|
|                           | 2-fluorobiphenyl | 100%             |

References: Method 1311, Toxicity Characteristic Leaching Procedure, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, SW-846, USEPA, July 1992.

Method 8090, Nitroaromatics and Cyclic Ketones, SW-846, USEPA, Sept. 1986.

Note: Regulatory Limits based on 40 CFR part 261 Subpart C section 261.24, July 1, 1992.

Deu L. Open

Chaco.

Comments:

Stay W. Sende



## EPA METHOD 1311 TOXICITY CHARACTERISTIC LEACHING PROCEDURE TRACE METAL ANALYSIS

| Client:            | Tierra Environmental | Project #:       | 04074-03         |
|--------------------|----------------------|------------------|------------------|
| Sample ID:         | GWE - 1              | Date Reported:   | 09-22-98         |
| Laboratory Number: | D937                 | Date Sampled:    | 09-15-98         |
| Chain of Custody:  | 6269                 | Date Received:   | 09-17-98         |
| Sample Matrix:     | Soil :               | Date Analyzed:   | 09-22-98         |
| Preservative:      | Cool                 | Date Extracted:  | <b>09-</b> 17-98 |
| Condition:         | Cool & Intact        | Analysis Needed: | TCLP metals      |
|                    |                      | Det.             | Regulatory       |
|                    | Concentration        | Limit            | Level            |
| Parameter          | (mg/L)               | (mg/L)           | (mg/L)           |
| Arsenic            | 0.0046               | 0.0001           | 5.0              |
| Barium             | 2.97                 | 0.001            | 21               |
| Cadmium            | ND                   | 0.0001           | 0.11             |
| Chromium           | 0.0074               | 0.0001           | 0.60             |
| Lead               | 0.0498               | 0.0001           | 0.75             |
| Mercury            | ND                   | 0.0001           | 0.025            |
| Selenium           | 0.0083               | 0.0001           | 5.7              |
| Silver             | ND                   | 0.0001           | 0.14             |

ND - Parameter not detected at the stated detection limit.

References:

Method 1311. Toxicity Characteristic Leaching Procedure, SW-846, USEPA,

December 1996.

Methods 3010, 3020, Acid Digestion of Aqueous Samples and Extracts for Total

Metals, SW-846, USEPA, December 1996.

Methods 7060, 7080, 7131, 7191, 7470, 7421, 7740, 7761 Analysis of Metals by

GFAA and Cold Vapor Techniques, SW-846, USEPA. December 1996.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C

section 261.24, August 24, 1998.

Comments:

Chaco.

Analyst

Stacy W. Sende-



# QUALITY ASSURANCE / QUALITY CONTROL DOCUMENTATION



## EPA METHODS 8010/8020 AROMATIC / HALOGENATED VOLATILE ORGANICS Quality Assurance Report

| Client:            | QA/QC            | Project #:          | N/A      |
|--------------------|------------------|---------------------|----------|
| Sample ID:         | Laboratory Blank | Date Reported:      | 09-21-98 |
| Laboratory Number: | 09-21-TCV-Blank  | Date Sampled:       | N/A      |
| Sample Matrix:     | TCLP Extract     | Date Received:      | N/A      |
| Preservative:      | N/A :            | Date Analyzed:      | 09-21-98 |
| Condition:         | N/A              | Analysis Requested: | TCLP     |

|                      | WELLOW A MILE AND A CONTROL OF THE C | Detection | Regulatory |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|
|                      | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limit     | Limits     |
| Parameter            | (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mg/L)    | (mg/L)     |
| Vinyl Chloride       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0001    | 0.2        |
| 1,1-Dichloroethene   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0001    | 0.7        |
| 2-Butanone (MEK)     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0001    | 200        |
| Chloroform           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0001    | 6.0        |
| Carbon Tetrachloride | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0001    | 0.5        |
| Benzene              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0001    | 0.5        |
| 1,2-Dichloroethane   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0001    | 0.5        |
| Trichloroethene      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0003    | 0.5        |
| Tetrachloroethene    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0005    | 0.7        |
| Chlorobenzene        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0003    | 100        |
| 1.4-Dichlorobenzene  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0002    | 7.5        |

ND - Parameter not detected at the stated detection limit.

| QA/QC Acceptance Criteria | Parameter |  |     | Percent Recovery |  |
|---------------------------|-----------|--|-----|------------------|--|
|                           |           |  | 4.1 | 4000/            |  |

Trifluorotoluene 100% Bromofluorobenzene 100%

References: Method 1311, Toxicity Characteristic Leaching Procedure, SW-846, USEPA, July 1992.

Method 5030, Purge-and-Trap, SW-846, USEPA, July 1992.

Method 8010, Halogenated Volatile Organic, SW-846, USEPA, Sept. 1994. Method 8020, Aromatic Volatile Organics, SW-846, USEPA, Sept. 1994.

Note: Regulatory Limits based on 40 CFR part 261 Subpart C section 261.24, July 1, 1992.

Comments: QA/QC for samples D932 and D937.

Dem P. Ojecen

Stacy W. Sende



# EPA METHODS 8010/8020 AROMATIC / HALOGENATED VOLATILE ORGANICS Quality Assurance Report

| Client:            | QA/QC        | Project #:          | N/A              |
|--------------------|--------------|---------------------|------------------|
| Sample ID:         | Method Blank | Date Reported:      | <b>09</b> -21-98 |
| Laboratory Number: | 09-17-TV-MB  | Date Sampled:       | N/A              |
| Sample Matrix:     | TCLP Extract | Date Received:      | N/A              |
| Preservative:      | N/A :        | Date Analyzed:      | <b>09</b> -21-98 |
| Condition:         | N/A          | Date Extracted:     | <b>09-</b> 17-98 |
|                    |              | Analysis Requested: | TCLP             |

|                      |               | Detection | Regulatory |
|----------------------|---------------|-----------|------------|
|                      | Concentration | Limit     | Limits     |
| Parameter            | (mg/L)        | (mg/L)    | (mg/L)     |
| Vinyl Chloride       | ND            | 0.0001    | 0.2        |
| 1,1-Dichloroethene   | ND            | 0.0001    | 0.7        |
| 2-Butanone (MEK)     | ND            | 0.0001    | 200        |
| Chloroform           | ND            | 0.0001    | 6.0        |
| Carbon Tetrachloride | ND            | 0.0001    | 0.5        |
| Benzene              | ND            | 0.0001    | 0.5        |
| 1,2-Dichloroethane   | ND            | 0.0001    | 0.5        |
| Trichloroethene      | ND            | 0.0003    | 0.5        |
| Tetrachloroethene    | ND            | 0.0005    | 0.7        |
| Chlorobenzene        | ND            | 0.0003    | 100        |
| 1,4-Dichlorobenzene  | ND            | 0.0002    | 7.5        |

ND - Parameter not detected at the stated detection limit.

| QA/QC Acceptance Criteria | Parameter          | Percent Recovery |
|---------------------------|--------------------|------------------|
|                           | Trifluorotoluene   | 99%              |
|                           | Bromofluorobenzene | 98%              |

References: Method 1311, Toxicity Characteristic Leaching Procedure, SW-846, USEPA, July 1992.

Method 5030, Purge-and-Trap, SW-846, USEPA, July 1992.

Method 8010, Halogenated Volatile Organic, SW-846, USEPA, Sept. 1994. Method 8020, Aromatic Volatile Organics, SW-846, USEPA, Sept. 1994.

Note: Regulatory Limits based on 40 CFR part 261 Subpart C section 261.24, July 1, 1992.

Comments: QA/QC for samples D932 and D937.

Analyst L. Oficer



# EPA METHODS 8010/8020 AROMATIC / HALOGENATED VOLATILE ORGANICS QUALITY ASSURANCE REPORT

| Client:             | QA/QC            | Project #:      | N/A              |
|---------------------|------------------|-----------------|------------------|
| Sample ID:          | Matrix Duplicate | Date Reported:  | 09-21-98         |
| Laboratory Number:  | D932             | Date Sampled:   | N/A              |
| Sample Matrix:      | TCLP Extract     | Date Received:  | N/A              |
| Analysis Requested: | TCLP :           | Date Analyzed:  | <b>09</b> -21-98 |
| Condition:          | N/A              | Date Extracted: | N/A              |

|                      |        | Duplicate |           |            |
|----------------------|--------|-----------|-----------|------------|
|                      | Sample | Sample    | Detection |            |
|                      | Result | Result    | Limits    | Percent    |
| Parameter            | (mg/L) | (mg/L)    | (mg/L)    | Difference |
| Vinyl Chloride       | ND     | ND        | 0.0001    | 0.0%       |
| 1,1-Dichloroethene   | ND     | ND        | 0.0001    | 0.0%       |
| 2-Butanone (MEK)     | ND     | ND        | 0.0001    | 0.0%       |
| Chloroform           | ND     | ND        | 0.0001    | 0.0%       |
| Carbon Tetrachloride | ND     | ND        | 0.0001    | 0.0%       |
| Benzene              | ND     | ND        | 0.0001    | 0.0%       |
| 1,2-Dichloroethane   | ND     | ND        | 0.0001    | 0.0%       |
| Trichloroethene      | ND     | ND        | 0.0003    | 0.0%       |
| Tetrachloroethene    | ND     | ND        | 0.0005    | 0.0%       |
| Chlorobenzene        | ND     | ND        | 0.0003    | 0.0%       |
| 1,4-Dichlorobenzene  | ND     | ND        | 0.0002    | 0.0%       |

ND - Parameter not detected at the stated detection limit.

References:

Method 1311, Toxicity Characteristic Leaching Procedure, SW-846, USEPA, July 1992.

Method 5030, Purge-and-Trap, SW-846, USEPA, July 1992.

Method 8010, Halogenated Volatile Organic, SW-846, USEPA, Sept. 1994. Method 8020, Aromatic Volatile Organics, SW-846, USEPA, Sept. 1994.

Comments:

QA/QC for samples D932 and D937.

Deur L. Gjeccu

Stay W. Sende-



# EPA METHODS 8010/8020 AROMATIC / HALOGENATED VOLATILE ORGANICS QUALITY ASSURANCE REPORT

| Client:             | QA/QC        | Project #:      | N/A      |
|---------------------|--------------|-----------------|----------|
| Sample ID:          | Matrix Spike | Date Reported:  | 09-21-98 |
| Laboratory Number:  | D932         | Date Sampled:   | N/A      |
| Sample Matrix:      | TCLP Extract | Date Received:  | N/A      |
| Analysis Requested: | TCLP         | Date Analyzed:  | 09-21-98 |
| Condition:          | N/A          | Date Extracted: | N/A      |

| ·                    | Sample | Spike  | Spiked<br>Sample | Det.   |          | SW-846<br>% Rec. |
|----------------------|--------|--------|------------------|--------|----------|------------------|
|                      | Result | Added  | Result           | Limit  | Percent  | Accept.          |
| Parameter            | (mg/L) | (mg/L) | (mg/L)           | (mg/L) | Recovery | Range            |
| Vinyl Chloride       | ND     | 0.050  | 0.0495           | 0.0001 | 99%      | 28-163           |
| 1,1-Dichloroethene   | ND     | 0.050  | 0.0494           | 0.0001 | 99%      | 43-143           |
| 2-Butanone (MEK)     | ND     | 0.050  | 0.0495           | 0.0001 | 99%      | 47-132           |
| Chloroform           | ND     | 0.050  | 0.0498           | 0.0001 | 100%     | 49-133           |
| Carbon Tetrachloride | ND     | 0.050  | 0.0491           | 0.0001 | 98%      | 43-143           |
| Benzene              | ND     | 0.050  | 0.0498           | 0.0001 | 100%     | 39-150           |
| 1,2-Dichloroethane   | ND     | 0.050  | 0.0494           | 0.0001 | 99%      | 51-147           |
| Trichloroethene      | ND     | 0.050  | 0.0494           | 0.0003 | 99%      | 35-146           |
| Tetrachloroethene    | ND     | 0.050  | 0.0494           | 0.0005 | 99%      | 26-162           |
| Chlorobenzene        | ND     | 0.050  | 0.0494           | 0.0003 | 99%      | 38-150           |
| 1,4-Dichlorobenzene  | ND     | 0.050  | 0.0494           | 0.0002 | 99%      | 42-143           |

ND - Parameter not detected at the stated detection limit.

References:

Method 1311, Toxicity Characteristic Leaching Procedure, SW-846, USEPA, July 1992.

Method 5030, Purge-and-Trap, SW-846, USEPA, July 1992.

Method 8010, Halogenated Volatile Organic, SW-846, USEPA, Sept. 1994. Method 8020, Aromatic Volatile Organics, SW-846, USEPA, Sept. 1994.

Comments:

QA/QC for samples D932 and D937.

Analyst Lecu L. Chicecu

Sacy W. Sender



# EPA METHOD 8040 PHENOLS Quality Assurance Report Laboratory Blank

| Client:            | QA/QC            | Project #:          | N/A      |
|--------------------|------------------|---------------------|----------|
| Sample ID:         | Laboratory Blank | Date Reported:      | 09-21-98 |
| Laboratory Number: | 09-21-TCA-Blank  | Date Sampled:       | N/A      |
| Sample Matrix:     | 2-Propanol       | Date Received:      | N/A      |
| Preservative:      | N/A              | Date Analyzed:      | 09-21-98 |
| Condition:         | N/A              | Analysis Requested: | TCLP     |

| Analytical Results    |                      | Detection       | Regulatory      |
|-----------------------|----------------------|-----------------|-----------------|
| Parameter             | Concentration (mg/L) | Limit<br>(mg/L) | Limit<br>(mg/L) |
| o-Cresol              | ND                   | 0.020           | 200             |
| p,m-Cresoi            | ND                   | 0.040           | 200             |
| 2,4,6-Trichlorophenol | ND                   | 0.020           | 2.0             |
| 2,4,5-Trichlorophenol | ND                   | 0.020           | 400             |
| Pentachlorophenol     | ND                   | 0.020           | 100             |

ND - Parameter not detected at the stated detection limit.

| Surrogate Recoveries: | Parameter            | Percent Recovery |
|-----------------------|----------------------|------------------|
|                       | 2-fluorophenol       | 99 %             |
|                       | 2.4.6-tribromonhenol | 99 %             |

References:

Method 1311, Toxicity Characteristic Leaching Procedure Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 8040, Phenols, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C section 261.24, July 1, 1992.

Comments:

QA/QC for samples D932 and D937.

Analyst Column

Hacy W. Jende



## EPA METHOD 8040 PHENOLS Quality Assurance Report

| Client:            | QA/QC           | Project #:          | N/A      |
|--------------------|-----------------|---------------------|----------|
| Sample ID:         | Method Blank    | Date Reported:      | 09-21-98 |
| Laboratory Number: | 09-17-TCA-MB    | Date Sampled:       | N/A      |
| Sample Matrix:     | TCLP Extraction | Date Received:      | N/A      |
| Preservative:      | Cool            | Date Extracted:     | 09-17-98 |
| Condition:         | Cool & Intact   | Date Analyzed:      | 09-21-98 |
|                    |                 | Analysis Requested: | TCLP     |

| Parameter             | Concentration (mg/L) | Det.<br>Limit<br>(mg/L) | Regulatory<br>Limit<br>(mg/L) |
|-----------------------|----------------------|-------------------------|-------------------------------|
| o-Cresol              | ND                   | 0.020                   | 200                           |
| p,m-Cresol            | ND                   | 0.040                   | 200                           |
| 2,4,6-Trichlorophenol | ND                   | 0.020                   | 2.0                           |
| 2,4,5-Trichlorophenol | ND                   | 0.020                   | 400                           |
| Pentachlorophenol     | ND                   | 0.020                   | 100                           |

ND - Parameter not detected at the stated detection limit.

| Surrogate Recoveries: | Parameter            | Percent Recovery |
|-----------------------|----------------------|------------------|
|                       | 2-Fluorophenol       | 96%              |
|                       | 2,4,6-Tribromophenol | 99%              |

References:

Method 1311, Toxicity Characteristic Leaching Procedure Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 8040, Phenols, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C section 261.24, July 1, 1992.

Comments:

QA/QC for samples D932 and D937.

Alexander L. Cepter

Macy W. Sen der Review



## EPA METHOD 8040 PHENOLS Quality Assurance Report

Client: QA/QC Project
Sample ID: Matrix Duplicate Date Re
Laboratory Number: D932 Date Sa
Sample Matrix: TCLP Extraction Date Re
Preservative: Cool Date Ex
Condition: Cool & Intact Date Ar

Project #: N/A

Date Reported: 09-21-98

Date Sampled: N/A

Date Received: N/A

Date Extracted: 09-17-98

Date Analyzed: 09-21-98

Analysis Requested: TCLP

| Parameter             | Sample<br>Result<br>(mg/L) | Duplicate<br>Result<br>(mg/L) | Detection<br>Limit<br>(mg/L) | Percent<br>Difference |
|-----------------------|----------------------------|-------------------------------|------------------------------|-----------------------|
| o-Cresol              | ND                         | ND                            | 0.020                        | 0.0%                  |
| p,m-Cresol            | 0.089                      | 0.089                         | 0.040                        | 0.0%                  |
| 2,4,6-Trichlorophenol | 0.036                      | 0.036                         | 0.020                        | 0.0%                  |
| 2,4,5-Trichlorophenol | 0.022                      | 0.022                         | 0.020                        | 0.0%                  |
| Pentachlorophenol     | 0.079                      | 0.079                         | 0.020                        | 0.0%                  |

ND - Parameter not detected at the stated detection limit.

QA/QC Acceptance Criteria:

**Parameter** 

**Maximum Difference** 

8040 Compounds

30.0%

References:

Method 1311, Toxicity Characteristic Leaching Procedure Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 8040, Phenols, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C section 261.24, July 1, 1992.

Comments:

QA/QC for samples D932 and D937.

Analyst

Review



# EPA Method 8090 Nitroaromatics and Cyclic Ketones TCLP Base/Neutral Organics Quality Assurance Report

| Client:            | QA/QC            | Project #:          | N/A              |
|--------------------|------------------|---------------------|------------------|
| Sample ID:         | Laboratory Blank | Date Reported:      | <b>09-</b> 21-98 |
| Laboratory Number: | 09-21-TBN-Blank  | Date Sampled:       | N/A              |
| Sample Matrix:     | Hexane           | Date Received:      | N/A              |
| Preservative:      | N/A              | Date Extracted:     | N/A              |
| Condition:         | N/A              | Date Analyzed:      | <b>09</b> -21-98 |
|                    |                  | Analysis Requested: | TCLP             |

|                     | Concentration | Det.<br>Limit | Regulatory<br>Limit |
|---------------------|---------------|---------------|---------------------|
| Parameter           | (mg/L)        | (mg/L)        | (mg/L)              |
| Pyridine            | ND            | 0.020         | 5.0                 |
| Hexachloroethane    | ND            | 0.020         | 3.0                 |
| Nitrobenzene        | ND            | 0.020         | 2.0                 |
| Hexachlorobutadiene | ND            | 0.020         | 0.5                 |
| 2,4-Dinitrotoluene  | ND            | 0.020         | 0.13                |
| HexachloroBenzene   | ND            | 0.020         | 0.13                |

ND - Parameter not detected at the stated detection limit.

| QA/QC Acceptance Criteria | Parameter        | Percent Recovery |
|---------------------------|------------------|------------------|
|                           | 2-fluorobiphenyl | 100%             |

References:

Method 1311, Toxicity Characteristic Leaching Procedure, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, SW-846, USEPA, July 1992.

Method 8090, Nitroaromatics and Cyclic Ketones, SW-846, USEPA, Sept. 1986.

Note:

Regulatory Limits based on 40 CFR part 261 Subpart C section 261.24, July 1, 1992.

Comments:

QA/QC for samples D932 and D937.

Deur L. Quece

Review Lande



# EPA Method 8090 Nitroaromatics and Cyclic Ketones TCLP Base/Neutral Organics QUALITY ASSURANCE REPORT

| Client:            | QA/QC           | Project #:          | N/A      |
|--------------------|-----------------|---------------------|----------|
| Sample ID:         | Method Blank    | Date Reported:      | 09-21-98 |
| Laboratory Number: | 09-17-TBN-MB    | Date Sampled:       | N/A      |
| Sample Matrix:     | TCLP Extract    | Date Received:      | N/A      |
| Preservative:      | Cool            | Date Extracted:     | 09-17-98 |
| Condition:         | Cool and Intact | Date Analyzed:      | 09-21-98 |
|                    |                 | Analysis Requested: | TCLP     |

| Parameter           | Concentration<br>(mg/L) | Det.<br>Limit<br>(mg/L) | Regulatory<br>Limit<br>(mg/L) |
|---------------------|-------------------------|-------------------------|-------------------------------|
| Pyridine            | ND                      | 0.020                   | 5.0                           |
| Hexachloroethane    | ND                      | 0.020                   | 3.0                           |
| Nitrobenzene        | ND                      | 0.020                   | 2.0                           |
| Hexachlorobutadiene | ND                      | 0.020                   | 0.5                           |
| 2,4-Dinitrotoluene  | ND                      | 0.020                   | 0.13                          |
| HexachloroBenzene   | ND                      | 0.020                   | 0.13                          |

ND - Parameter not detected at the stated detection limit.

| QA/QC Acceptance Criteria | <br>Parameter    | Percent Recovery |
|---------------------------|------------------|------------------|
|                           | 2-fluorobiphenyl | 99%              |

References:

Method 1311, Toxicity Characteristic Leaching Procedure, SW-846, USEPA, July 1992. Method 3510, Separatory Funnel Liquid-Liquid Extraction, SW-846, USEPA, July 1992.

Method 8090, Nitroaromatics and Cyclic Ketones, SW-846, USEPA, Sept. 1986.

Note:

Regulatory Limits based on 40 CFR part 261 Subpart C section 261.24, July 1, 1992.

Comments:

QA/QC for samples D932 and D937.

Artalyst Que a

Stary W. Jendle-



# EPA Method 8090 Nitroaromatics and Cyclic Ketones TCLP Base/Neutral Organics QA/QC Matrix Duplicate Report

| Client:            | QA/QC            | Project #:          | N/A              |
|--------------------|------------------|---------------------|------------------|
| Sample ID:         | Matrix Duplicate | Date Reported:      | 09-21-98         |
| Laboratory Number: | D932             | Date Sampled:       | N/A              |
| Sample Matrix:     | TCLP Extract     | Date Received:      | N/A              |
| Preservative:      | N/A              | Date Extracted:     | N/A              |
| Condition:         | N/A              | Date Analyzed:      | <b>09-</b> 21-98 |
| 2 2                |                  | Analysis Requested: | TCLP             |

| Parameter           | Sample<br>Result<br>(mg/L) | Duplicate<br>Result<br>(mg/L) | Percent<br>Difference | Det.<br>Limit<br>(mg/L) |
|---------------------|----------------------------|-------------------------------|-----------------------|-------------------------|
| Pyridine            | ND                         | ND                            | 0.0%                  | 0.020                   |
| Hexachloroethane    | ND                         | ND                            | 0.0%                  | 0.020                   |
| Nitrobenzene        | ND                         | ND                            | 0.0%                  | 0.020                   |
| Hexachlorobutadiene | ND                         | ND                            | 0.0%                  | 0.020                   |
| 2,4-Dinitrotoluene  | ND                         | ND                            | 0.0%                  | 0.020                   |
| HexachloroBenzene   | ND                         | ND                            | 0.0%                  | 0.020                   |

ND - Parameter not detected at the stated detection limit.

| QA/QC Acceptance Criteria | <br>Parameter |       | Maximum Difference |
|---------------------------|---------------|-------|--------------------|
|                           | 8090 Comp     | ounds | 30%                |

References: Method 1311, Toxicity Characteristic Leaching Procedure, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, SW-846, USEPA, July 1992.

Method 8090, Nitroaromatics and Cyclic Ketones, SW-846, USEPA, Sept. 1986.

Note: Regulatory Limits based on 40 CFR part 261 Subpart C section 261.24, July 1, 1992.

Comments: QA/QC for samples D932 and D937.

Men L. Geren

Review May W. Jancke



#### **EPA METHOD 1311 TOXICITY CHARACTERISTIC** LEACHING PROCEDURE TRACE METAL ANALYSIS **Quality Assurance Report**

| Client:<br>Sample ID:<br>Laboratory Number: |                     | QA/QC<br>09-22-TCM<br>D932 |                    | Project #:<br>Date Repor<br>Date Samp | led:      | (          | N/A<br>09-22-98<br>N/A |
|---------------------------------------------|---------------------|----------------------------|--------------------|---------------------------------------|-----------|------------|------------------------|
| Sample Matrix:                              |                     | TCLP Extra                 |                    | Date Recei                            |           |            | N/A                    |
| Analysis Requested:                         |                     | TCLP Metal                 | s                  | Date Analyz                           |           |            | 09-22-98               |
| Condition:                                  |                     | N/A                        |                    | Date Extrac                           | ted:      | (          | 09-17-98               |
| Blank & Duplicate<br>Conc. (mg/L)           | Instrument<br>Blank | Method<br>Blank            | Detection<br>Limit | Sample                                | Duplicate | %<br>Diff. | Acceptance<br>Range    |
| Arsenic                                     | ND                  | ND                         | 0.0001             | ND                                    | ND        | 0.0%       | 0% - 30%               |
| Barium                                      | ND                  | ND                         | 0.001              | 0.762                                 | 0.760     | 0.3%       | 0% - 30%               |
| Cadmium                                     | ND                  | ND                         | 0.0001             | 0.0224                                | 0.0222    | 0.9%       | 0% - 30%               |
| Chromium                                    | ND                  | ND                         | 0.0001             | 0.0028                                | 0.0028    | 0.0%       | 0% - 30%               |
| Lead                                        | ND                  | ND                         | 0.0001             | ND                                    | ND        | 0.0%       | 0% - 30%               |
| Mercury                                     | ND                  | ND                         | 0.0001             | ND                                    | ND        | 0.0%       | 0% - 30%               |
| Selenium                                    | ND                  | ND                         | 0.0001             | ND                                    | ND        | 0.0%       | 0% - 30%               |
| Silver                                      | ND                  | ND                         | 0.0001             | NĐ                                    | ND        | 0.0%       | 0% - 30%               |
| Spike                                       |                     | Spike                      | Sample             | Spiked                                | Percent   |            | Acceptance             |
| Conc. (mg/L)                                |                     | Added                      | tura e tura e      | Sample                                | Recovery  | Andrews    | Range                  |
| Arsenic                                     |                     | 0.1000                     | ND                 | 0.0998                                | 99.8%     |            | 80% - 120%             |
| Barium                                      |                     | 1.000                      | 0.762              | 1.759                                 | 99.8%     |            | 80% - 120%             |
| Cadmium                                     |                     | 0.0500                     | 0.022              | 0.0725                                | 100.1%    |            | 80% - 120%             |
| Chromium                                    |                     | 0.0500                     | 0.0028             | 0.0527                                | 99.8%     |            | 80% - 120%             |
| Lead                                        |                     | 0.1000                     | ND                 | 0.0999                                | 99.9%     |            | 80% - 120%             |
| Mercury                                     |                     | 0.0250                     | ND                 | 0.0249                                | 99.6%     |            | 80% - 120%             |
| Selenium                                    |                     | 0.1000                     | ND                 | 0.0997                                | 99.7%     |            | 80% - 120%             |
| Silver                                      |                     | 0.0500                     | ND                 | 0.0499                                | 99.8%     |            | 80% - 120%             |

ND - Parameter not detected at the stated detection limit.

References:

Method 1311, Toxicity Characteristic Leaching Procedure, SW-846, USEPA, Dec. 1996

Methods 3010, 3020, Acid Digestion of Aqueous Samples and Extracts for Total Metals,

SW-846, USEPA, December 1996.

Methods 7060B, 7081, 7131A, 7191, 7470A, 7421, 7740, 7761 Analysis of Metals by

GFAA and Cold Vapor Techniques, SW-846, USEPA, December 1996.

Comments:

QA/QC for samples D932 and D937.

# CHAIN OF CUSTODY RECORD

|                     |                      |        |                | Relinquished by: (Signature) | Relinquished by: (Signature) | Relinquished by: (Signature)                      |  |  |  |  | (5WE-) 9.898 1500 | Sample No./ Sample Sample Identification Date Time | Tim Nobis   | Sampler:   | Tierra Envivonmental    | Client / Project Name |
|---------------------|----------------------|--------|----------------|------------------------------|------------------------------|---------------------------------------------------|--|--|--|--|-------------------|----------------------------------------------------|-------------|------------|-------------------------|-----------------------|
|                     |                      |        |                |                              | ,                            |                                                   |  |  |  |  | D937              | Lab Number                                         | ED-42010    | Client No. | Chaco                   | Project Location      |
| (505) 632-0615      | 5796 U.S. Highway 64 |        | FOVIROTECH I   | Rece                         | Rece                         | Date Time Rece                                    |  |  |  |  | So:1/Sludge       | Sample<br>Matrix                                   | ද           |            |                         |                       |
| 0615                | hway 64              |        | CHINC          | Received by: (Signature)     | Received by: (Signature)     | Received by: (Signature)                          |  |  |  |  | 7                 |                                                    | o. of taine |            |                         |                       |
|                     |                      |        |                |                              |                              | Q.                                                |  |  |  |  | -                 |                                                    |             |            | ANALYSIS / PAHAME I EHS |                       |
| Cool - Ice/Blue Ice | Received Intact      |        | Sample Receipt |                              |                              | 0                                                 |  |  |  |  |                   |                                                    |             | 71         | AMETERS                 |                       |
| -                   | 7                    | ۲<br>2 | Receipt        |                              |                              | Date         Time           ₹.1>\$F         ∞ ₹ ∀ |  |  |  |  |                   |                                                    |             | Remarks    |                         |                       |

ENVIRONMENTAL

11111111111111111

|                                         |                   | 7                |              | Date/       | (Client Signature Must Accompany Request) | Authorized by:      |
|-----------------------------------------|-------------------|------------------|--------------|-------------|-------------------------------------------|---------------------|
|                                         |                   |                  | 100/00       | /6          | 111111                                    |                     |
| 10 Working Days   Special Instructions: | 24-48 Hours 10 Wo | Rush             |              |             |                                           | Method of Shipment: |
|                                         |                   | Received by:     |              | Date/Time   |                                           | Relinquished by:    |
|                                         |                   | Received by:     | Dochu        | Date/Time   |                                           | Relinquished by:    |
|                                         | DC NA             | Received by:     | 86/11/12     | Date/Time 5 | Tin Nobis                                 | Relinquished by:    |
|                                         |                   |                  |              |             |                                           |                     |
|                                         |                   |                  |              |             |                                           |                     |
|                                         |                   |                  |              |             |                                           |                     |
|                                         |                   |                  |              |             |                                           |                     |
|                                         |                   |                  |              |             |                                           |                     |
|                                         |                   |                  |              |             |                                           |                     |
|                                         |                   |                  |              |             |                                           |                     |
|                                         |                   |                  |              |             |                                           |                     |
|                                         |                   |                  |              |             | C                                         |                     |
|                                         |                   |                  |              | 1/0/10/1/2  | 1000000                                   |                     |
| \<br>-\                                 |                   |                  |              | 8           | - 1 5 1 /2/ 1                             | 2/1/2               |
| \<br>\<br>\                             |                   | 70               | MATRIX PRES. | SAMPLE N    | SAMPLE IDENTIFICATION                     |                     |
| \                                       |                   | Cor              |              |             | Nebis                                     | 7.7                 |
| \<br>\<br>\                             |                   | nbe              |              |             |                                           | Sampler:            |
| 7                                       |                   | r of<br>ers      |              |             |                                           | Chaco.              |
| ANALYSIS REQUESTED                      | ANALYS            |                  | ···          |             |                                           | Sampling Location:  |
| Telefax No.                             | elephone No.      |                  |              |             | ē                                         | City, State, Zip    |
|                                         | City, State, Zip  | RESI<br>City, St |              |             |                                           | SEINVO T Address    |
|                                         | Mailing Address   |                  |              | Dept.       |                                           | ND Company          |
|                                         | my /              | S TO<br>Company  |              |             |                                           | Name '              |
| Title                                   |                   | O Name           |              |             | Job No.                                   | Purchase Order No.: |
|                                         |                   | A                |              |             |                                           | ,                   |
|                                         |                   | -                |              |             | P.O. DRAWER 15250 FARMINGTON, NM 87401    | P.O. DRAWER 15250   |
| Page                                    | 35/               | 7/17             | Date:        |             | Inc.                                      | COMPANY Inc.        |

## Safety Alliance, inc.

"Partnerships for Safe Working Environments"

September 23, 1998

Tierra Environmental Corp. ATTN: Tim Nobis PO Drawer 15250 Farmington, NM 87401

RE: NORM READINGS ON SLUDGE SAMPLE

Mr. Nobis,

At your request, a sample was checked for NORM. No levels above background were detected.

Please call Safety Alliance, Inc. at 505-325-SAFE (7233) if you have questions regarding procedures or instrumentation.

Sincerely,

Kirk & Bennett

KJB/dm



| Client:              | Tierra Environmental | Project #:          | 04074-03 |
|----------------------|----------------------|---------------------|----------|
| Sample ID:           | Gary 1               | Date Reported:      | 10-14-98 |
| Laboratory Number:   | E055                 | Date Sampled:       | 10-13-98 |
| Chain of Custody No: | 6350                 | Date Received:      | 10-13-98 |
| Sample Matrix:       | Soil                 | Date Extracted:     | 10-13-98 |
| Preservative:        | Cool                 | Date Analyzed:      | 10-13-98 |
| Condition:           | Cool and Intact      | Analysis Requested: | 8015 TPH |

| Parameter                    | Concentration (mg/Kg) | Det.<br>Limit<br>(mg/Kg) |
|------------------------------|-----------------------|--------------------------|
| Gasoline Range (C5 - C10)    | 258                   | 0.2                      |
| Diesel Range (C10 - C28)     | 587                   | 0.1                      |
| Total Petroleum Hydrocarbons | 845                   | 0.2                      |

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Bisti Tank.

Andrest Climen

Stacy W Sendler

hway 64 • Farmington, NM 87401 • Tal 505 • 632 • 0615 • Fax 505 • 632 • 1865



| Client:              | Tierra Environmental | Project #:          | 04074-03          |
|----------------------|----------------------|---------------------|-------------------|
| Sample ID:           | Gary 2               | Date Reported:      | 10-14-98          |
| Laboratory Number:   | E056                 | Date Sampled:       | 10-13-98          |
| Chain of Custody No: | 6350                 | Date Received:      | 1 <b>0-</b> 13-98 |
| Sample Matrix:       | Soil                 | Date Extracted:     | 10-13-98          |
| Preservative:        | Cool                 | Date Analyzed:      | 10-13-98          |
| Condition:           | Cool and Intact      | Analysis Requested: | 8015 TPH          |

| Parameter                    | Concentration<br>(mg/Kg) | Det.<br>Limit<br>(mg/Kg) |
|------------------------------|--------------------------|--------------------------|
| Gasoline Range (C5 - C10)    | 121                      | 0.2                      |
| Diesel Range (C10 - C28)     | 204                      | 0.1                      |
| Total Petroleum Hydrocarbons | 325                      | 0.2                      |

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Bisti Tank.

Analyst P. Chieren

Stacy W Sendler

505 • 632 • 0615 • Fax 505 • 632 •



| Client:              | Tierra Environmental | Project #:          | 04074-03 |
|----------------------|----------------------|---------------------|----------|
| Sample ID:           | Tank Line # 3        | Date Reported:      | 10-14-98 |
| Laboratory Number:   | E057                 | Date Sampled:       | 10-13-98 |
| Chain of Custody No: | 6350                 | Date Received:      | 10-13-98 |
| Sample Matrix:       | Soil                 | Date Extracted:     | 10-13-98 |
| Preservative:        | Cool                 | Date Analyzed:      | 10-13-98 |
| Condition:           | Cool and Intact      | Analysis Requested: | 8015 TPH |

| Parameter                    | Concentration (mg/Kg) | Det.<br>Limit<br>(mg/Kg) |
|------------------------------|-----------------------|--------------------------|
| Gasoline Range (C5 - C10)    | ND                    | 0.2                      |
| Diesel Range (C10 - C28)     | 2.7                   | 0.1                      |
| Total Petroleum Hydrocarbons | 2.7                   | 0.2                      |

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Bisti Tank.

Analyst . Oglecce

Stacy W Sendler

n NM 97401 • Tol 505 • 632 • 0615 • Fay 505 • 632 • 1865



| Client:              | Tierra Environmental | Project #:          | 04074-03 |
|----------------------|----------------------|---------------------|----------|
| Sample ID:           | Tank Line # 4        | Date Reported:      | 10-14-98 |
| Laboratory Number:   | E058                 | Date Sampled:       | 10-13-98 |
| Chain of Custody No: | 6350                 | Date Received:      | 10-13-98 |
| Sample Matrix:       | Soil                 | Date Extracted:     | 10-13-98 |
| Preservative:        | Cool                 | Date Analyzed:      | 10-13-98 |
| Condition:           | Cool and Intact      | Analysis Requested: | 8015 TPH |

| Parameter                    | Concentration<br>(mg/Kg) | Det.<br>Limit<br>(mg/Kg) |
|------------------------------|--------------------------|--------------------------|
| Gasoline Range (C5 - C10)    | ND                       | 0.2                      |
| Diesel Range (C10 - C28)     | ND                       | 0.1                      |
| Total Petroleum Hydrocarbons | ND                       | 0.2                      |

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Bisti Tank.

Analyst L. Cerece

Stacy W Sendler

NN 97101 - Tol 505 - 622 - 0615 - Eav 505 - 632 - 186



| Client:              | Tierra Environmental | Project #:          | 04074-03 |
|----------------------|----------------------|---------------------|----------|
| Sample ID:           | Tank Line # 5        | Date Reported:      | 10-14-98 |
| Laboratory Number:   | E059                 | Date Sampled:       | 10-13-98 |
| Chain of Custody No: | 6350                 | Date Received:      | 10-13-98 |
| Sample Matrix:       | Soil                 | Date Extracted:     | 10-13-98 |
| Preservative:        | Cool                 | Date Analyzed:      | 10-13-98 |
| Condition:           | Cool and Intact      | Analysis Requested: | 8015 TPH |

| Parameter                    | Concentration<br>(mg/Kg) | Det.<br>Limit<br>(mg/Kg) |
|------------------------------|--------------------------|--------------------------|
| Gasoline Range (C5 - C10)    | ND                       | 0.2                      |
| Diesel Range (C10 - C28)     | ND                       | 0.1                      |
| Total Petroleum Hydrocarbons | ND                       | 0.2                      |

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Bisti Tank.

Analyst P. Ogleece

Stacy W Sendler

706 U.S. Highway 64 • Farmington NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 186



#### **Quality Assurance Report**

| Client:                      | QA/QC          |               | Project #:     |                 | N/A           |
|------------------------------|----------------|---------------|----------------|-----------------|---------------|
| Sample ID:                   | 10-13-TPH .Q/  | 4/QC          | Date Reported: |                 | 10-14-98      |
| Laboratory Number:           | E055           |               | Date Sampled:  |                 | N/A           |
| Sample Matrix:               | Methylene Chlo | ride          | Date Received: |                 | N/A           |
| Preservative:                | N/A            |               | Date Analyzed: |                 | 10-12-98      |
| Condition:                   | N/A            |               | Analysis Reque | ested:          | TPH           |
|                              | I-Cal Date     | I-Cal RF:     | C-Cal RF:      | % Difference    | Accept. Range |
| Gasoline Range C5 - C10      | 04-28-98       | 4.9098E-002   | 4.9054E-002    | 0.09%           | 0 - 15%       |
| Diesel Range C10 - C28       | 04-28-98       | 3.9029E-002   | 3.9005E-002    | 0.06%           | 0 - 15%       |
| Blank Conc. (mg/L - mg/Kg)   |                | Concentration |                | Detection Limit |               |
| Gasoline Range C5 - C10      |                | ND            |                | 0.2             |               |
| Diesel Range C10 - C28       |                | ND            |                | 0.1             |               |
| Total Petroleum Hydrocarbons |                | ND            |                | 0.2             |               |
| Duplicate Conc. (mg/Kg)      | Sample         | Duplicate     | % Difference   | Accept. Range   |               |
| Gasoline Range C5 - C10      | 258            | 256           | 0.8%           | 0 - 30%         |               |
| Diesel Range C10 - C28       | 587            | 582           | 0.8%           | 0 - 30%         |               |
| Spike Conc. (mg/Kg)          | Sample         | Spike Added   | Spike Result   | % Recovery      | Accept. Range |
| Gasoline Range C5 - C10      | 258            | 250           | 507            | 100%            | 75 - 125%     |
| Diesel Range C10 - C28       | 587            | 250           | 835            | 100%            | 75 - 125%     |

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for samples E055 - E059.

Apalvit

Review Stacy W Sendler

# ENVIROTECH LABS

October 15, 1998

Mr. Phil Nobis Tierra Environmental Services, Inc. P.O. Drawer 15250 Farmington, New Mexico 87499

Project No.: 04074-03

Dear Mr. Nobis,

Enclosed are the analytical results for the samples collected from the location designated as "Bisti Tank". Five soil samples were collected by Tierra Environmental designated personnel on 10/13/98, and received by the Envirotech laboratory on 10/13/98 for Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) analysis per USEPA Method 8021, and for Total Petroleum Hydrocarbons (TPH) analysis per USEPA Method 8015 Modified.

The samples were documented on Envirotech Chain of Custody No. 6350 and assigned Laboratory Nos. E055 (Gary 1), E056 (Gary 2), E057 (Tank Line #3), E058 (Tank Line #4), and E059 (Tank Line #5) for tracking purposes.

The sample were extracted and analyzed on 10/13/98 using USEPA or equivalent methods.

Should you have any questions or require additional information, please do not hesitate to contact us at (505) 632-0615. It is always a pleasure doing business with you.

Respectfully submitted,

Envirotech, Inc.

Stacy W. Sendler

Environmental Scientist/Laboratory Manager

ru W Lendler

enc.

SWS\sws 03.l23/wpd 04074/04074-



| Client:            | Tierra Environmental | Project #:          | 04074-03 |
|--------------------|----------------------|---------------------|----------|
| Sample ID:         | Gary 1               | Date Reported:      | 10-14-98 |
| Laboratory Number: | E055                 | Date Sampled:       | 10-13-98 |
| Chain of Custody:  | 6350                 | Date Received:      | 10-13-98 |
| Sample Matrix:     | Soil                 | Date Analyzed:      | 10-13-98 |
| Preservative:      | Cool                 | Date Extracted:     | 10-13-98 |
| Condition:         | Cool & Intact        | Analysis Requested: | BTEX     |

| Parameter    | Concentration (ug/Kg) | Det.<br>Limit<br>(ug/Kg) |
|--------------|-----------------------|--------------------------|
| Benzene      | ND                    | 17.5                     |
| Toluene      | 78.1                  | 16.7                     |
| Ethylbenzene | 53.9                  | 15.2                     |
| p,m-Xylene   | 399                   | 21.6                     |
| o-Xylene     | 219                   | 10.4                     |
| Total BTEX   | 750                   |                          |

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:

Parameter

Percent Recovery

Trifluorotoluene Bromofluorobenzene 98 % 98 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Bisti Tank.

Aleur L. Genen

Stacy W Sendler



| Client:            | Tierra Environmental | Project #:          | 04074-03 |
|--------------------|----------------------|---------------------|----------|
| Sample ID:         | Gary 2               | Date Reported:      | 10-14-98 |
| Laboratory Number: | E056                 | Date Sampled:       | 10-13-98 |
| Chain of Custody:  | 6350                 | Date Received:      | 10-13-98 |
| Sample Matrix:     | Soil .               | Date Analyzed:      | 10-13-98 |
| Preservative:      | Cool                 | Date Extracted:     | 10-13-98 |
| Condition:         | Cool & Intact        | Analysis Requested: | BTEX     |

|              |               | Det.    |
|--------------|---------------|---------|
|              | Concentration | Limit   |
| Parameter    | (ug/Kg)       | (ug/Kg) |
|              |               |         |
| Benzene      | 53.8          | 17.5    |
| Toluene      | 172           | 16.7    |
| Ethylbenzene | 81.7          | 15.2    |
| p,m-Xylene   | 725           | 21.6    |
| o-Xylene     | 485           | 10.4    |
| Total BTEX   | 1,520         |         |

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:

Parameter

Percent Recovery

101 %

101 %

Fax 505 • 632 • 1865

Trifluorotoluene Bromofluorobenzene

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Bisti Tank.

Analyst P. Chierce

Stacy W Sendler



Dat

| Client:            | Tierra Environmental | Project #:          | 04074-03 |
|--------------------|----------------------|---------------------|----------|
| Sample ID:         | Tank Line #3         | Date Reported:      | 10-14-98 |
| Laboratory Number: | E057                 | Date Sampled:       | 10-13-98 |
| Chain of Custody:  | 6350                 | Date Received:      | 10-13-98 |
| Sample Matrix:     | Soil                 | Date Analyzed:      | 10-13-98 |
| Preservative:      | Cool                 | Date Extracted:     | 10-13-98 |
| Condition:         | Cool & Intact        | Analysis Requested: | BTEX     |

| Parameter    | Concentration (ug/Kg) | Limit<br>(ug/Kg) |
|--------------|-----------------------|------------------|
| Benzene      | ND                    | 17.5             |
| Toluene      | 19.6                  | 16.7             |
| Ethylbenzene | ND                    | 15.2             |
| p,m-Xylene   | 93.4                  | 21.6             |
| o-Xylene     | 68.8                  | 10.4             |

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries: Parameter Percent Recovery

Trifluorotoluene 98 % Bromofluorobenzene 98 %

References:

**Total BTEX** 

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

182

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Bisti Tank.

Analyst P. Queun

Stacy W Sendler

1505 • 632 • 0615 • Fax 505 • 632 • 1865



| Client:            | Tierra Environmental | Project #:          | 04074-03 |
|--------------------|----------------------|---------------------|----------|
| Sample ID:         | Tank Line #4         | Date Reported:      | 10-14-98 |
| Laboratory Number: | E058                 | Date Sampled:       | 10-13-98 |
| Chain of Custody:  | 6350                 | Date Received:      | 10-13-98 |
| Sample Matrix:     | Soil                 | Date Analyzed:      | 10-13-98 |
| Preservative:      | Cool                 | Date Extracted:     | 10-13-98 |
| Condition:         | Cool & Intact        | Analysis Requested: | BTEX     |

| Parameter    | Concentration<br>(ug/Kg) | Det.<br>Limit<br>(ug/Kg) |
|--------------|--------------------------|--------------------------|
| Benzene      | 29.1                     | 17.5                     |
| Toluene      | ND                       | 16.7                     |
| Ethylbenzene | ND                       | 15.2                     |
| p,m-Xylene   | 63.9                     | 21.6                     |
| o-Xylene     | 36.8                     | 10.4                     |
| Total BTEX   | 130                      |                          |

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries: F

Parameter

Percent Recovery

Trifluorotoluene 101 % Bromofluorobenzene 101 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Bisti Tank.

Alexa L. Queen

Review Stacy W Lendler



| Client:            | Tierra Environmental | Project #:          | 04074-03                  |
|--------------------|----------------------|---------------------|---------------------------|
| Sample ID:         | Tank Line #5         | Date Reported:      | 10-14-98                  |
| Laboratory Number: | E059                 | Date Sampled: .     | 10-13-98                  |
| Chain of Custody:  | 6350                 | Date Received:      | 10-13-98                  |
| Sample Matrix:     | Soil                 | Date Analyzed:      | 10-13-98                  |
| Preservative:      | Cool                 | Date Extracted:     | <b>10</b> -13 <b>-</b> 98 |
| Condition:         | Cool & Intact        | Analysis Requested: | BTEX                      |

| Parameter    | Concentration<br>(ug/Kg) | Det.<br>Limit<br>(ug/Kg) |
|--------------|--------------------------|--------------------------|
| Benzene      | 29.0                     | 17.5                     |
| Toluene      | 19.6                     | 16.7                     |
| Ethylbenzene | ND                       | 15.2                     |
| p,m-Xylene   | 93.5                     | 21.6                     |
| o-Xylene     | 43.9                     | 10.4                     |
| Total BTEX   | 186                      |                          |

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries: Parameter

Percent Recovery

Trifluorotoluene 97 % Bromofluorobenzene 97 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Bisti Tank.

Analyst . Cylum

Stacy W Sendler



| Client: Sample ID: Laboratory Number: Sample Matrix: Preservative: Condition: | N/A<br>10-13-BTEX QA/Q0<br>E055<br>Soil<br>N/A<br>N/A | <b>:</b>      | Project #: Date Reported: Date Sampled: Date Received: Date Analyzed: Analysis: |              | N/A<br>10-14-98<br>N/A<br>N/A<br>10-13-98<br>BTEX |
|-------------------------------------------------------------------------------|-------------------------------------------------------|---------------|---------------------------------------------------------------------------------|--------------|---------------------------------------------------|
| Calibration and                                                               | I-Cal RF:                                             | C-Cal RF:     | %Diff.                                                                          | Blank        | Detect.                                           |
| Detection Limits (ug/L)                                                       |                                                       | Accept. Ran   | ige 0 - 15%                                                                     | Conc         | Limit                                             |
| Benzene                                                                       | 3.7569E-002                                           | 3.7690E-002   | 0.3%                                                                            | ND           | 0.2                                               |
| Toluene                                                                       | 1.2324E-002                                           | 1.2366E-002   | 0.3%                                                                            | ND           | 0.2                                               |
| Ethylbenzene                                                                  | 1.5149E-002                                           | 1.5207E-002   | 0.4%                                                                            | ND           | 0.2                                               |
| p,m-Xylene                                                                    | 1.2209E-002                                           | 1.2270E-002   | 0.5%                                                                            | ND           | 0.2                                               |
| o-Xylene                                                                      | 1.2474E-002                                           | 1.2587E-002   | 0.9%                                                                            | ND           | 0.1                                               |
| Duplicate Conc. (ug/Kg)                                                       | Sample                                                | Duplicate:    | %Diff.                                                                          | Accept Range | Detect. Limit                                     |
| Benzene                                                                       | ND                                                    | ND            | 0.0%                                                                            | 0 - 30%      | 17.5                                              |
| Toluene                                                                       | 78.1                                                  | 79.2          | 1.4%                                                                            | 0 - 30%      | 16.7                                              |
| Ethylbenzene                                                                  | 53.9                                                  | 54.7          | 1.5%                                                                            | 0 - 30%      | 15.2                                              |
| p,m-Xylene                                                                    | 399                                                   | 405           | 1.6%                                                                            | 0 - 30%      | 21.6                                              |
| o-Xylene                                                                      | 219                                                   | 223           | 2.2%                                                                            | 0 - 30%      | 10.4                                              |
| Spike Conc. (ug/Kg)                                                           | Sample                                                | Amount Spiked | Spiked Sample                                                                   | % Recovery   | Accept Range                                      |
| Benzene                                                                       | ND                                                    | 50.0          | 50.0                                                                            | 100%         | 39 - 150                                          |
| Toluene                                                                       | 78.1                                                  | 50.0          | 127                                                                             | 99%          | 46 - 148                                          |
| Ethylbenzene                                                                  | 53.9                                                  | 50.0          | 103                                                                             | 99%          | 32 - 160                                          |
| p,m-Xylene                                                                    | 399                                                   | 100.0         | 494                                                                             | 99%          | 46 - 148                                          |
| o-Xylene                                                                      | 219                                                   | 50.0          | 266                                                                             | 99%          | 46 - 148                                          |
| u,.uu                                                                         | 213                                                   | 50.5          | 200                                                                             | 00,0         | .5 .10                                            |

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

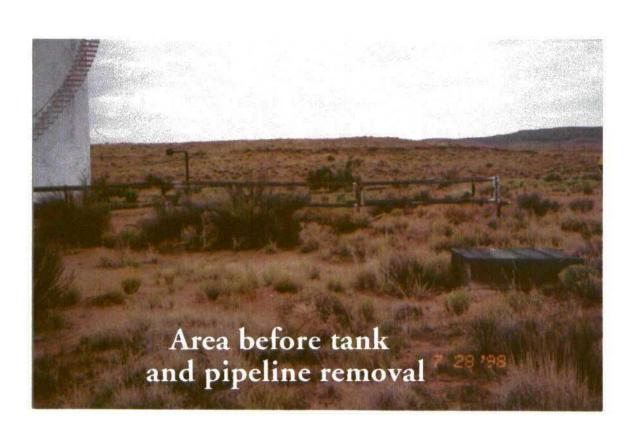
Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

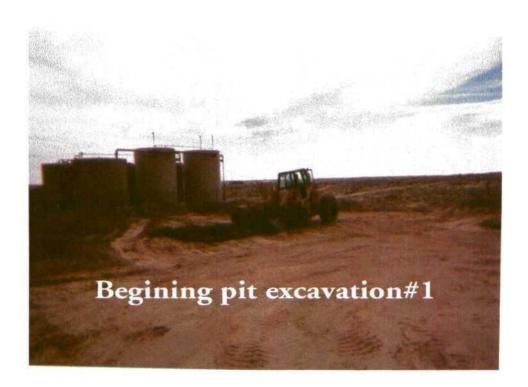
QA/QC for samples E055 - E059.

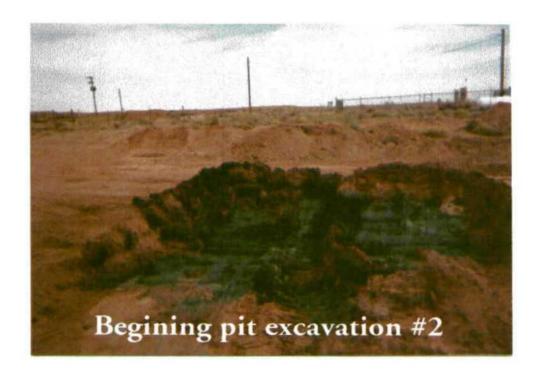
Analyst

Review


• 0615 • Eav 505 • 632 • 1869

Stacy W Sendler


| Far                                                                               | Relinquished by: (Signature) | Relinquished by: (Signature)  Relinquished by: (Signature) |   |  | TANKFINET 5 6/13 11:404 5059 | TANKLINC#4 10/13 11:354 FOSS | TANK LINIC #3 10/13 11:301 2057 | GACY 2 10/13 11:204 2056              | GARY 1 10/13 11:15/1 EOSS | Sample No./ Sample Sample Lab Number | DC Nob; 5 04074-03 | Client No. | Client / Project Name  Project Location  Sisting |
|-----------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------|---|--|------------------------------|------------------------------|---------------------------------|---------------------------------------|---------------------------|--------------------------------------|--------------------|------------|--------------------------------------------------|
| ENVIROTECH INC.  5796 U.S. Highway 64 Farmington, New Mexico 87401 (505) 632-0615 | Received by: (Signature)     | Time Received by: (Signature)  Received by: (Signature)    |   |  |                              | - 5                          | 7                               | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 2                         | Con<br>&c                            | lo. of otaine      | rs         | ANALYSIS / PARAMETERS                            |
| Sample Receipt  Y N N/A  Received Intact  Cool - Ice/Blue Ice                     |                              | Date Time ///3:78/13:25                                    | 4 |  |                              |                              |                                 |                                       |                           |                                      |                    | Remarks    | IAMETERS                                         |


-----

7.0 SITE PHOTOGRAPHS

