3R - <u>276</u>

GENERAL CORRESPONDENCE

YEAR(S): 2003 - 2000

BLAGG ENGINEERING, INC.

P.O. Box 87, Bloomfield, New Mexico 87413 Phone: (505)632-1199 Fax: (505)632-3903

December 19, 2003

RECEIVED

3R276

Mr. William Olson New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87504

Re: Annual Monitoring Report Manana Gas, Inc. Nancy Hartman No. 1E NE/4 NE/4 (A) Sec 22 - T29N - R11W San Juan County, New Mexico DEC 26 2003

Oil Conservation Division Environmental Bureau

Dear Mr. Olson:

Enclosed, please find an annual groundwater monitoring report for the captioned well location. This report has been prepared by Blagg Engineering, Inc. on behalf of Manana Gas, Inc. Please direct any questions you may have concerning this site to myself at (505)632-1199 or to Mr. Ed Hartman of Manana at (505)856-1084.

Respectfully submitted, *Blagg Engineering, Inc.*

4 C. 3699

Jeffrey C. Blagg, President NMPE 11607

cc: Mr. Denny Foust, NMOCD - Aztec Dr. Harry Hayes, Bloomfield School District Mr. Ed Hartman, Manana Gas Inc.

File: manana3.rpt

BLAGG ENGINEERING, INC.

P.O. Box 87, Bloomfield, New Mexico 87413 Phone: (505)632-1199 Fax: (505)632-3903

October 10, 2001

Mr. William Olson New Mexico Oil Conservation Division 1220 St. Francis Drive Santa Fe, New Mexico 87504

Re: Annual Monitoring Report Manana Gas, Inc. Nancy Hartman No. 1E NE/4 NE/4 (A) Sec 22 - T29N - R11W San Juan County, New Mexico

RECEIVED

OCT 1 6 2001

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Dear Mr. Olson:

Enclosed, please find an annual groundwater monitoring report for the captioned well location. This report has been prepared by Blagg Engineering, Inc. on behalf of Manana Gas, Inc. Please direct any questions you may have concerning this site to myself at (505)632-1199.

Respectfully submitted, *Blagg Engineering, Inc.*

left C- Slogg

Jeffrey C. Blagg, President NMPE 11607

cc: Mr. Denny Foust, NMOCD - Aztec Dr. Harry Hayes, Bloomfield School District Mr. Ed Hartman, Manana Gas Inc.

File: manana2.rpt

P.01

BLAGG ENGINEERING, INC.

P.O. Box 87, Bloomfield, NM 87413 Phone: (505) 632-1199 Fax: (505) 632-3903

FACSIMILE COVER PAGE

Date: 10/02/01

To: William Olson

Company: ____ __NMOCD

Fax No.: _____(505)476-3462

From: _____ Jeff Blagg

No. Pages, Including Cover: 5

Message: Following is preliminary environmental monitoring data for the Manana Nancy Hartman #1 (A) Sec. 22 - T29N - R11W, San Juan County, NM. As previously discussed, we would appreciate your comments on our proposed location for an additional groundwater monitoring well to be located southeast of the source area. Please let us know if our proposed location meets NMOCD needs.

> Thanks, Jeff

· .

Uctual approval to Nelson Velez on 10/3/01

7_10

OCT-02-01 02:30 PM BLAGG+ENGINEERING

MANANA GAS, INC. GROUNDWATER MONITOR WELL LAB RESULTS SUBMITTED BY BLAGG ENGINEERING, INC.

NANCY	HART	MAN	#1E		
UNIT A,	SEC.	22,	T29N,	<u>R11W</u>	

REVISED DAT	IE: SEPTEM	BER 28,	2001					Fl	LENAME:	(NH-3QR01.)	WK4) NJV
					_			BTEX E	PA METHOI	D \$260 or \$0	21 (ppb)
SAMPLE	MONITOR	D.T.W.	T.D.	TDS	COND.	pН	PRODULT	Benzene	Toluene	Ethyl	Total Xylene
	WELL #		(11)	I III A I	(unnos/cm)	1	<u> (40 </u>			Denzene	//j/inc
06-Nov-00	MW #1	14.79	22.36		1,778	6.83				i.	
18-Sep-01	<u>MW #1A</u>	14.57	25.00	<u> </u>	900	7.17				is.	
11-Dec-00	MW #1M	16.00	24.00		1,200	7.37		ND	ND	O ¹ 1	ND
05-Nov-00		14.84	22.71		1,200	7.21			ND	01	ND
19-Feb-01		16.75			1,200	7.21			ND	015	0.56
21-May-01		17.10			600	8.10		ND	ND	MO	ND
21-Aug-01		15.26			500	8.44		ND	ND	(11)	<u>ND</u>
11-Dec-00		16.49	23.50		1,300	7.34					
19-Feb-01		17.91			1,300	7.24					
21-May-01		18.21			1,000	8.04		ND	96	17	280
21-Aug-01		16.13			900	8.10		ND	64	11	330
19-Feb-01		17.09	23.14		1,400	7.66		ND	ND	۲٬۰۶	ND
21-May-01		18.21		1	1,000	7.48		ND	ND	<u>(^)</u>	ND
06-Dec-00		14.24	23.50		901	7.10		ND	ND	Ci 1	ND
19-Feb-01		16.13			1,000	7.41		ND	ND	(¹ / ₁)	ND
21-May-01		16.39			700	7.87		ND	ND	<u>[10]</u>	ND
06-Nov-00	MW #4M	13.67	25.00		1,512	6.92			ND	N.)	ND
18-Sep-01	MW #4R	11.30	25.00		900	7.55		ND	ND	<u> </u>	ND
06-Nov-00	MW #5M	15.34	25.00		1,010	7.02				3.5	
18-Sep-01	<u>MW #5A</u>	14.25	25.00	ļ	1,000	7.38				319	
15-Nov-00	MW #6M	14.27	24.00		1,300	7.43		ND	ND		ND
19-Feb-01		15.70			1,100	7.41		ND	ND	pic)	ND
21-May-01		15.79			1,100	7.19		2.0	ND	C ^{eq}	NĎ
21-Aug-01		14.37			1,300	7.27		1.5	ND	(i))	ND
15-Nov-00	MW #7M	14.14	19.00		1,200	7.23		ND	ND	NO	ND
19-Feb-01		15.62			1,200	7.30		ND	ND	CITE	ND
21-May-01		15.74			1,200	7.18		ND	ND	67	ND
15-Nov-00	MW #8M	14.67	25.00		900	7.68		ND	ND	[['i)	ND

NOTES: 1) MW #'s 1, 4M, & 5M plugged and abandoned on November 16, 2000. 2) MW # 8M top of casing damaged by construction crew.

a www. the meridian are possibly are effected by air sparpe sector.

4) MW # 1M - background monitor well.

5) MW # 2M - monitor well within 1 of 2 probable source areas.

6) MW # 6M - furthest down gradient monitor well from source areas.

7) MW #'s 7M & 8M - down gradient, but lateral on west perimeter of plume.

8) Air sparge system start up initiated on March 9, 2001.

Page 1

BLAGG ENGINEERING, INC.

P.O. Box 87, Bloomfield, New Mexico 87413 Phone: (505)632-1199 Fax: (505)632-3903

December 20, 2000

Mr. William C. Olson - Hydrologist State of New Mexico Oil Conservation Division 2040 South Pacheco State Land Office Building Santa Fe, NM 87505

RE: MANANA GAS, INC. - Nancy Hartman #1E Unit A, Section 22, T29N, R11W, NMPM, San Juan County, New Mexico Proposed Reclamation Plan

Dear Mr. Olson:

Blagg Engineering, Inc. (BEI), on behalf of Manana Gas, Inc., respectfully submits the attached proposed reclamation plan for the Nancy Hartman #1E well site.

The reclamation systems recommended within this document is based on the enclosed information and BEI's past experience and successes with the installation and operation of such systems.

If you have any questions, please call and contact either myself or Jeffrey C. Blagg. Thank you for your cooperation and assistance.

Sincerely, BLAGG ENGINEERING, INC.

Nelson Velez Staff Geologist

Attachment: Proposed Reclamation Plan

cc: Denny Foust, Environmental Geologist, New Mexico Oil Conservation Division, Aztec, NM Ed Hartman, Manana Gas, Inc., Albuquerque, NM Dr. Harry Hayes, Bloomfield School District, Bloomfield, NM Robert Finch, Property Owner, Farmington, NM

NV/nv

MAN-PRP.CVL

3,11

PHASE II ENVIRONMENTAL EVALUATION

..

\$

PROPOSED EARLY CHILDHOOD CENTER BLOOMFIELD, NEW MEXICO

Submitted To:

Bloomfield Schools 325 North Bergin Lane Bloomfield, New Mexico 87413

Submitted By:

AMEC Earth & Environmental, Inc. 8519 Jefferson, N.E. Albuquerque, New Mexico 87113

AMEC Project No. 0-517-000110

Manana Wells 10-Th of Tence Line

6 October 2000 AMEC Project No. 0-517-000110

Bloomfield Schools 325 North Bergin Lane Bloomfield, New Mexico 87413

Attention: Mr. Adam Rogers

RE: PHASE II ENVIRONMENTAL EVALUATION PROPOSED EARLY CHILDHOOD CENTER BLOOMFIELD, NEW MEXICO

AMEC Earth & Environment, Inc. (AMEC) was contracted to perform a subsurface environmental evaluation for the Subject Property located on La Jara Street in Bloomfield, New Mexico shown on the Vicinity Map (Appendix A). Our exploratory drilling and analytical testing program for the subsurface environmental evaluation has been completed. Our scope of work consisted of drilling, field screening and sampling of subsurface soils, chemical analyses and reporting.

The objective of the assessment was to provide subsurface information concerning the reported presence of petroleum products in the soils underlying portions of the referenced property. The key elements of the scope of services for the site are as follows:

- Prepare a site specific health and safety plan;
- Evaluate near subsurface soils and groundwater as to the presence of petroleum related hydrocarbons through a limited sampling and analysis program;
- Report our findings;
- Provide recommendations regarding the requirements for additional site characterization and remediation, if necessary.

INTRODUCTION AND BACKGROUND

The Subject Property is the proposed site of a new Early Childhood Center located adjacent to an existing gas and oil field facility. Selected site photographs are presented in Appendix A. On 4 August, 2000, our field engineer noted an apparent hydrocarbon odor in a geotechnical boring drilled near the northern portion of the Site. As a result of encountering these odors, AMEC recommended that soils and groundwater beneath portions of the site be sampled and tested for the presence of hydrocarbons. Our scope of services included the following:

FIELD INVESTIGATION

Exploratory Drilling and Investigation Procedures

A health and safety meeting was held at the site. A copy of AMEC's <u>Health & Safety Plan</u> - <u>Signature Page</u> is presented in Appendix A. Prior to drilling, AMEC contacted New Mexico One Call for utility clearance.

A drill rig and AMEC Field Engineer was mobilized to the site on 21 September, 2000. Exploratory drilling consisted of the advancement of two (2) soil borings near the north perimeter of the Subject Property and one (1) soil boring located approximately 65 feet south of the property's northern perimeter. Soil Borings MW-1 and MW-2 were drilled to 21 feet below ground surface (bgs) and soil boring MW-3 was drilled to 22.5 feet bgs. Locations of the exploratory borings are shown on the Site Plan (Figure 2, Appendix A). As the soil borings were advanced, soil characteristics were examined, visually classified, and logged. Logs of the exploratory borings are presented in Appendix A.

Drilling was performed utilizing a truck-mounted CME drill rig equipped with 6-1/2 inch OD hollowstem auger. Penetration resistance and soil samples were obtained by 2.42-inch diameter split spoon samplers at five (5) foot intervals to total depth for each soil boring. The drill rig and hollowstem augers were steam cleaned prior to use on the site.

Drilling and sampling activities were completed in accordance with our standard Quality Assurance/Quality Control (QA/QC) procedures. These procedures have been designed to ensure that sampling is performed in a manner to minimize cross-contamination between samples and to collect representative samples that provide reliable, reproducible laboratory results.

Well Installation

A total of three (3) groundwater monitor wells (MW-1, -2 and -3) were installed within Borings MW-1, -2 and -3, respectively during this evaluation. Well MW-1 was installed in the vicinity where the apparent hydrocarbon odors were encountered during the previous geotechnical study. Wells MW-2 and -3 were installed to evaluate hydrocarbon impacts that may be attributed to nearby gas and oil field activities.

The well screens extended approximately 7 feet into the saturated sediments of the upper transmissive zone. The wells were constructed of new, 2-inch diameter Schedule 40 PVC. Each well was equipped with 10 feet of 0.010 slot screen. The well screens extended about 3 feet above the top of the saturated zone (as noted during drilling) to allow for fluctuations in water levels. A 10-20 silica sand pack was installed in the annulus between the well casing and the boring, and extended 2 to 3 feet above the top of the screen interval. A 5-foot thick bentonite seal was placed on top of the sand pack and hydrated in place prior to the installation` of a bentonite-cement sanitary seal. Well completion diagrams for wells completed during this evaluation have been included as Appendix A of this report.

Bloomfield Schools Phase II Environmental Evaluation Proposed Early Childhood Center Bloomfield, New Mexico AMEC Project No. 0-517-000110 6 October 2000

Well Development

The monitor wells were developed after the grout seal was set with a dedicated, disposable bailer to minimize the potential for cross contamination. Development continued until the wells were producing water substantially free of sediments.

Groundwater Sampling

Prior to bailing the wells for sampling, AMEC personnel measured water levels and collected standard indicator parameter readings, (temperature, conductivity, and pH). Water level measurements along with the standard indicator parameter readings measured during well purging have been included as Table 1 of this report. Disposable bailers were used to obtain groundwater samples and to minimize cross-contamination between wells. All groundwater samples were labeled, placed on ice and submitted to AMEC Analytical Laboratory for chemical analysis under chain-of-custody.

Surveying

Surveying at the three on-site monitor wells was performed by representatives of Greer/Stafford/SJCF, Inc.

Soil Analyses and Results

Seven (7) soil samples were collected and submitted for analysis by U.S. Environmental Protection Agency (EPA) methods. The selected soil samples were analyzed for gasoline, diesel and heavy oil range total petroleum hydrocarbons (TPH) in accordance with EPA Method 3545/8015B (modified) and for volatile organic compounds by EPA Method 8260. Copies of the chain-of-custodies and requests for chemical analyses for soil samples are provided with the laboratory reports in Appendix B.

Results of field headspace measurements of soil samples collected above the groundwater surface were below instrument detection limits. One sample, collected at the groundwater surface in MW-1, measured a headspace reading at greater than 2000 parts per million (ppm).

Results of analytical testing of selected soil samples revealed the presence of Benzene, Toluene, Ethyl benzene and Total Xylenes (BTEX) in MW-1 at the groundwater surface at a depth of 14.5 feet bgs. BTEX concentrations were 24, 230, 29 and 347 ppm, respectively. BTEX concentrations above laboratory detection limits were not reported in the remaining samples submitted for analysis. TPH concentrations (gasoline range) were measured in MW-1 at 14.5 feet bgs at 2,000 Bloomfield Schools Phase II Environmental Evaluation Proposed Early Childhood Center Bloomfield, New Mexico AMEC Project No. 0-517-000110 6 October 2000

ppm. TPH concentrations of gasoline, diesel and heavy oil were not reported in the remaining samples submitted for analysis.

Groundwater Analyses and Results

Four (4) groundwater (one from each monitor well, plus a duplicate) samples were collected and submitted for analysis by U.S. Environmental Protection Agency (EPA) methods. Groundwater samples were analyzed for the same constitutents as soil samples, including TPH in accordance with EPA Method 3545/8015B modified and for volatile organic compounds by EPA Method 8260. Copies of the chain-of-custodies and chemical analyses for groundwater samples are provided with the laboratory reports in Appendix B. A summary of these test results are presented in Table 2.

The analytical test results show the presence of gasoline related hydrocarbons in each of the three on-site monitor wells. The highest levels of gasoline related hydrocarbons as measured by the presence of BTEX were encountered in the southern most well, MW-1. Levels of BTEX in MW-1 were reported at 6300, 15000, 910 and 12000 micrograms per liter or parts per billion (ppb), respectively. TPH concentrations (gasoline range) were reported as 41 ppm in MW-1. Concentrations of BTEX in MW-2 were reported at 116, 1.01 ppb and nondetect (ND) for Ethylbenzene and total Xylenes. MW-3 revealed BTEX levels at less than 1, 2.59, ND and less than 3 ppb, respectively. Results of groundwater TPH analysis did not indicate the presence of petroleum related hydrocarbons in the diesel or heavy oil ranges.

Numerical action levels have been established by the New Mexico Water Quality Control Commission (NMWQCC) for BTEX, but not for TPH. At the present time, the NMWQCC action levels for BTEX are 10 ppb, 750 ppb, 750 ppb and 620 ppb, respectively. Comparison of the analytical test results and the current standards reveal that groundwater sampled at MW-1 has exceeded the NMWQCC standard for BTEX, while the benzene concentration in groundwater collected from MW-2 is above the standard. Although MW-3 has apparently been impacted by gasoline, BTEX concentrations do not exceed the standard.

CONCLUSIONS

The following evidence was observed and recorded during our evaluation.

- Subsurface soils beneath the site consist predominantly of silty sands which are fine to medium grained and nonplastic.
- Groundwater underlying the northern portion of the property was encountered at a depth of about 16 to 17 feet bgs.

Bloomfield Schools Phase II Environmental Evaluation Proposed Early Childhood Center Bloomfield, New Mexico AMEC Project No. 0-517-000110 6 October 2000

- Local groundwater flow direction, determined through measurements in the on-site monitor wells, is southwest.
- Field headspace testing along with chemical analysis of selected soil and groundwater samples revealed the presence of gasoline range petroleum hydrocarbons beneath portions of the site. Of the 3 existing on-site sampling locations, groundwater encountered at MW-1 appears to be most impacted to a greater degree than at the other well locations.
- As evidenced by non-detect headspace and analytical testing results of selected soils above the groundwater table, it would appear that the source of gasoline hydrocarbon has not been identified.
- Levels of BTEX exceeding State of New Mexico (NMWQCC) standards were encountered in MW-1 and MW-2.
- The lateral and vertical extent of subsurface contamination has not been defined.

RECOMMENDATIONS

AMEC recommends that further site characterization activities be performed in order to determine the source of contamination as well to assess the extent of the hydrocarbon plume in groundwater. The following are suggestions to accomplish these tasks. These items are presented in a phased approach and are intended to maximize the amount of information obtained with minimal costs.

- Notify the New Mexico Environment Department of the findings of this report.
- Perform a Phase I Environmental Site Assessment of the property to identify potential sources of contamination. This assessment should be performed prior to conducting further field investigations.
- Perform a magnetic survey of the area in an attempt to locate possible abandoned UST buried beneath the property. We recommend starting with a 200 x 200 foot grid centered near MW-1 and expanded as necessary.
- Based on results of the Phase I and magnetic survey, further on-site activities may become necessary. These activities may include the removal of on-site tanks, and more extensive soil and groundwater sampling programs.

◆Bloomfield Schools
 Phase II Environmental Evaluation
 Proposed Early Childhood Center
 Bloomfield, New Mexico
 AMEC Project No. 0-517-000110
 6 October 2000

Should any questions arise concerning this report, we would be pleased to discuss them with you.

Respectively submitted,

AMEC Earth & Environmental, Inc.

1e

Fred Schelby, P.E. Engineering Manager

FTS:rrg

ĉ

Copies: Addressee (3)

Reviewed Otto C. Holmquist, P.E. Geotechnical Manager

AMEC Earth & Environmental, Inc. 8519 Jefferson, N.E. Albuquerque, New Mexico 87113 Telephone: 505/821-1801 Fax: 505/821-7371 www.amec.com

APPENDIX A

AMEC's Health and Safety Plan - Signature Page

Exploratory Boring Logs

Well Completion Logs

Field Procedures

Table 1 - Summary of Analytical Testing Results - SoilTable 2 - Summary of Analytical Testing Results - Groundwater

Figure 1 - Vicinity Map Figure 2 - Site Plan Figure 3 - Groundwater Flow Direction Figure 4 - Groundwater Contaminant Concentration Map

Recent Site Photographs

Bloomfield AGRA Earth and Environmental **Daily Safety Meeting** Childhand Early Development ctr Project # 0517-000110 Project Name JIM GUISS 10:15 Time Site Supervisor Bloomfold, pm Date 9-77-00 Location For July Jerrys to Zo'n be **Planned Activities** Safety Topics Presented PRINT NAME SIGNATURE . \mathcal{D}

) . <u>0</u> -	517-000) <u>11(</u>)		9/22/	00		_ LOCATION	Bloomfield, New Mexico
									RIG TYPE	CME 75-Auto
						(ud		_	BORING TYPE	6½" HSA
	ខ្លួន	Soil		ype	e	e/%)	°°⊂	ation	SURFACE ELEV	
د	inuo stan	hic (ble	ple 1	b. 3(6-i fall harr	Dide	lspa ppm	ed		
Dept in Feet	Cont Pene Resis	Grap Log	Sam	Sam	Blow 140 I free-t drop	Dowr	Head PID (Unifi Soil Class	ANALYTICAL SAMPLE NUMBER	
0								<u>SM</u>		SILTY SAND, predominantly fine, nonplastic,
										light brown
				-						
									1	
5				Ā	. 12	0	Q		MW1-110-01	
J			I							
				[]						
										•
			_							
10				A 		0	0		MW1-110-02	
								SM		SILTY SAND AND CLAY, low plasticity, light
										blown
				Ā	4	ō	- 2000		MW1-110-03	
15			I							
Ā								SM		SILTY SAND, predominantly fine to medium,
										nonplastic, grayish brown
20										
				-						Channed Connelse (2, 40)
										Stopped Sampler @ 16 Stopped Auger @ 21'
	+								ļ	
25						 				
20										
	GF	OUNDW	ATE	R		i	SAMPL	E TYPE	L	
Г	DEPTH	HOUR		D	ATE	A-ANAL	YTICAL			
_⊢			_							

İ

ļ

OB NO	0 . 0	-517-000	0110)	DAT	E 9/22/	00			Bloomfield. New Mexico
								T - · · ·	RIG TYPE	CME 75-Auto
						(mg			BORING TYPE	6½" HSA
	S S S	Soil		ype	o	e (%)	82	ation	SURFACE ELEV.	
÷ ۲	tinuo tetratio	phic S	nple	nple 1	vs/6-i Ib. 3(fall	/PID	dspa (ppm	fied ssifice		
Lee Field	Per C	Cra Log	Sar	Sar	140 free	2 E D O	PID	Clari	NUMBER	
0			<u> </u>	ţ:				[SM]	(SILTY SAND, predominantly fine, nonplastic,
										light brown
				-	-		+			
				-			}			
5				^	5	0/0			MVV2-110-01	
							+			
				[-					· ·	
			}		.)	
						• • • • • •				
								[
								+		
10				A	4	0/0	0	SM	MW2-110-02	SILTY SAND, very fine, trace of clay, low to
10										no plasticity, light brown
				+ -		+				
				[]	[[
				[]						
			-	đ	· · · <u>e</u> · ·	- 0/0 -				
15	-		₧	-	- 5	0/0		SM		SILTY SAND, predominantly fine to medium,
Ā			\square	[nonplastic, grayish brown
					.					
				+ -	-					
				[]						
			[
								+		
20	ļ			[]			[[
					<u> </u>			h		
				[[[<u> </u>	[[Otenned Comple C. 101
										Stopped Sampler @ 16 Stopped Auger @ 22'
				<u>-</u>						
	ļ			[]	[
_										
25				[-		•••••	<u> </u>			
ļ										
 ר	GI	ROUNDW			A.T.C.		SAMPL	E TYPE		
	DEPTH	12:00	<u> </u>	D. 9/1	AIE 23/00	A-ANAL S-STRA	YTICAL	SAMPLE HIC SAM	PLE	
						00.00		-		

DB NO	D0-	-517-000)11()		E <u>9/22/</u>	00			Bloomfield, New Mexico
				ē	Ja	(mqq/		Ę	RIG TYPE BORING TYPE SURFACE ELEV.	CME 75-Auto 61⁄2" HSA
	tinuous etration stance	ohic Soi	ple	ple Typ	/s/6-in. Ib. 30" fall hamme	nhole PID (%	dspace (ppm)	ied sificatic	DATUM	
Feet	Cont Pene Resi	Log Log	Sam	Sam	Blow 140 drop	Dow.	PID	Unifi Soil Clas	ANALYTICAL SAMPLE NUMBER	VISUAL CLASSIFICATION
0	· · · · · · ·							SM		SILTY SAND, predominantly fine, nonplastic,
5				Ā	4	0/0	0		MW3-110-01	
						+	·			
				† -						
				-	 					
			_	-						
10				A	5	0/0	0		MW3-110-02	
							• • • • • • •			
								SC		CLAYEY SAND, low plasticity, brown
			~ 7	ŝ		0/0				
15			X					 		
			\square							
,										
-							[SM		SILTY SAND predominantly fine to medium
										nonplastic, grayish to brown
	'									
20					•					
20										
				-						
				-						
						[]		[
25										Stopped Sampler @ 16'
										Stopped Auger @ 24.3
	GF	ROUNDW	ATE	ER	······		SAMPL	E TYPE	· · · · · · · · · · · · · · · · · · ·	
_F	DEPTH	HOUR	2	D,	ATE	A-ANAL	YTICAL	SAMPLE		

i

i T

|

FIELD PROCEDURES

Field testing would include using a photoionization detector to qualitatively identify the presence of volatile and semi-volatile petroleum-related hydrocarbons. Samples would be collected and measured using the heated headspace test method.

All borings would be abandoned with auger cuttings after sampling and field screening is completed. In the event that contamination is encountered in a boring(s), the boring(s) will be abandoned with a cement bentonite slurry at a slight additional cost.

All drilling and sampling will be completed in accordance with our standard Quality Assurance/ Quality Control (QA/QC) procedures. These procedures have been designed to ensure that sampling will be performed in a manner to prevent cross-contamination between samples and to provide reliable laboratory results. Selected QA/QC procedures that would be applicable to this project are summarized below:

Drilling Procedures

- Steam cleaning of auger prior to beginning work.
- Cleaning of used auger between each hole.
- No use of any petroleum-based oil or grease on auger.
- Only Teflon grease will be used.

Sampling Procedures

- Only cleaned sampling equipment will be used in the hole.
- Sampling equipment will be cleaned between each sample by washing thoroughly in a Liquinox or equivalent solution, then rinsing in two clean water baths.
- All soil samples will be kept in 4-ounce glass jars supplied by the testing laboratory. Jars will be filled completely to reduce headspace.
- Groundwater samples will be kept in pre-preserved containers provided by the analytical laboratory.

Each jar will be labeled with the following information:

- Hole number.
- Sample depth.
- Date and time.
- Job number.
- Name of sampler.
- Chain-of-custody report form will be completed for each sample taken.
- Sample jars and containers will be stored in an ice chest; temperature will be kept at about 40 degrees Fahrenheit.

TABLE 1

Summary of Groundwater Field Data

Location	Surveyed	Depth to Water	Groundwater	Stabilized Field Measurements				
	Elevation ^(1,2)	(feet)	Elevation ⁽¹⁾	рН	Conductivity µS ⁽³⁾	Temperature °C ⁽⁴⁾		
MW-1	5481.38	15.72	5465.66	7.29	1021	13.7		
MW-2	5481.88	15.83	5466.05	7.11	1131	14.1		
MW-3	5482.62	17.12	5465.50	7.42	1108	13.2		

Notes:

(1) Elevation in feet above mean sea level

(2) Survey performed by others

(3) µS = Micro Siemens per cubic centimeter (4)

°C = degrees Celsius

		TABL	E 2		
	0	Summary of Analytic iroundwater ⁽¹⁾ Concen	al Testing Results trations in ug/l (ppb) ⁽²⁾		
Sample No.	Benzene	Toluene	Ethyl benzene	Xylenes	TPH Gasoline ppm ⁽³⁾
MW-1	6,300	15,000	910	12,000	41
MW-2	116	1.0	ND	DN	<0.25
MW-3	0.63	2.6	ND	2.6	<0.25
NMWQCC ⁽⁵⁾	10	750	750	620	I
Notes: ⁽¹⁾ Selected soil si presented in Ap	amples were analyzed by ppendix B.	EPA Methods 8260 and 8	3015 Modified. Reports of te	st results provided by th	le analytical laboratory are

1

ppb - parts per billion or micrograms per liter. (2) (3) (5)

ppm - parts per million or milligrams/kilogram

ND - compound not detected

Shaded concentrations exceeded New Mexico Water Quality Control Commission (NMWQCC) regulatory standards.

Facing west along the adjacent gas well easment

Installation of monitor well No. 1

Facing east along gas well easement

Monitor well No. 2 - Facing west

Gas well located on adjacent property to the north

Facing northwest from the north perimeter of the property: Note the former ditch along the property boundary

Phase II Environmental Evaluation Proposed Early Childhood Center Bloomfield, New Mexico

Recent Site Photographs

APPENDIX B

Laboratory Test Results

September 29, 2000

AMEC Earth & Environmental 8519 Jefferson NE Albuquerque, NM 87113

Attention: Fred Schelby

Dear Mr. Schelby:

RE: Analytical Results for Project 0-517-000110

Attached are the results for the samples submitted on September 26, 2000 from the above referenced project. For your reference, our project number associated with these samples is NM000552.

The samples were analyzed at the AMEC Environmental Chemistry Laboratory. This report shall not be reproduced, except in its entirety, without written approval of the laboratory.

All analyses were conducted in accordance with applicable QA/QC guidelines. The results apply only to the samples submitted.

Please feel free to contact me if you have any questions regarding this report, or if I can be of any assistance in any other matter.

Respectfully submitted,

AMEC Earth & Environmental Sean Gormley

Laboratory Manager

AMEC Earth & Environmental, Inc. 7477 SW Tech Center Drive Portland, Oregon USA 97223

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055201 C.O.C. No.: 4105, 4103

	V	olatile Organ	ic Compoun	ds by GC/M	SD		
		EPA Me	ethods 5030E	3/8260B			
			mg/kg(ppm)				
	NA\A/1	N#\A/4	(a)	NA10	M/M/2	M/A/2-	
Comple Nome	140.01	110.02	110.02	110.01	110.02	110.01	Poporting
Sample Name:	F52 4	FF2 2	FED 2	FF2 4	FF2 F	FF2 6	Limit
Lab Code: _	<u> </u>	<u> </u>			002-0 ND	<u> </u>	
Dichlorodinuoromethane		ND	<2.0				0.1
			<2.0	ND			0.1
Vinyi Chloride			<2.0				0.1
Bromomethane			<2.0		ND		0.1
			<2.0				0.1
I richiorofiuoromethane		ND	<2.0				0.1
1,1-Dichloroethene		ND	<2.0		ND	ND	0.1
Acetone	ND	ND	<40	ND	ND	ND	2.0
Carbon Disulfide	ND	ND	<2.0	ND	ND	ND	0.1
Methylene Chloride	ND	ND	<10	ND	ND	ND	0.5
trans-1,2-Dichloroethene	ND	ND	<2.0	ND	ND	ND	0.1
MTBE	ND	ND	<2.0	ND	ND	ND	0.1
1,1-Dichloroethane	ND	ND	<2.0	ND	ND	ND	0.1
2,2-Dichloropropane	ND	ND	<2.0	ND	ND	ND	0.1
cis-1,2-Dichloroethene	ND	ND	<2.0	ND	ND	ND	0.1
2-Butanone(MEK)	ND	ND	<20	ND	ND	ND	1.0
Bromochloromethane	ND	ND	<2.0	ND	ND	ND	0.1
Chloroform	ND	ND	<10	ND	ND	ND	0.5
1,1,1-Trichloroethane	ND	ND	<2.0	ND	ND	ND	0.1
Carbon Tetrachloride	ND	ND	<2.0	ND	ND	ND	0.1
1,1-Dichloropropene	ND	ND	<2.0	ND.	ND	ND	0.1
Benzene	ND	ND	24	ND	ND	ND	0.1
1,2-Dichloroethane	ND	ND	<2.0	ND	ND	ND	0.1
Trichloroethene	ND	ND	<2.0	ND	ND	ND	0.1
1,2-Dichloropropane	ND	ND	<2.0	ND	ND	ND	0.1
Dibromomethane	ND	ND	<2.0	ND	ND	ND	0.1
Bromodichloromethane	ND	ND	<2.0	ND	ND	ND	0.1
cis-1,3-Dichloropropene	ND	ND	<2.0	ND	ND	ND	0.1
4-Methyl-2-Pentanone(MIBK)	ND	ND	<20	ND	ND	ND	1.0
Toluene	ND	ND	230	ND	ND	ND	0.1
trans-1,3-Dichloropropene	- ND	ND	<2.0	ND	ND	ND	0.1
1,1,2-Trichloroethane	ND	ND	<2.0	ND	ND	ND	0.1
Tetrachloroethene	ND	ND	<2.0	ND	ND	ND	0.1
2-Hexanone	ND	ND	<20	ND	ND	ND	1.0
1,3-Dichloropropane	ND	ND	<2.0	ND	ND	ND	0.1
Dibromochloromethane	ND	ND	<2.0	ND	ND	ND	0.1

<2.0

<2.0

<2.0

29

290

57

<2.0

ND

ND Not Detected

1,1,1,2-Tetrachloroethane

1,2-Dibromoethane

Chlorobenzene

Ethylbenzene

m,p-Xylene

o-Xylene

Styrene

÷

1

(a) Results are from a 1:20 dilution. Note elevated reporting limits.

ND

0.1

0.1

0.1

0.1

0.2

0.1

0.1

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055201b C.O.C. No.: 4105, 4103

Volatile Organic Compounds by GC/MSD EPA Methods 5030B/8260B mg/kg(ppm)

	MW1-	MW1-	MW1-	MW2-	MW2-	MW3-	
Sample Name:	110-01	110-02	110-03	110-01	110-02	110-01	Reporting
Lab Code:	552-1	552-2	552-3	552-4	552-5	552-6	Limit
Bromoform	ND	ND	<10	ND	ND	ND	0.5
lsopropylbenzene	ND	ND	5.0	ND	ND	ND	0.1
Bromobenzene	ND	ND	<2.0	ND	ND	ND	0.1
1,1,2,2-Tetrachloroethane	ND	ND	<2.0	ND	ND	ND	0.1
1,2,3-Trichloropropane	ND	ND	<2.0	ND	ND	ND	0.1
n-Propylbenzene	ND	ND	7.7	ND	ND	ND	0.1
2-Chlorotoluene	ND	ND	<2.0	ND	ND	ND	0.1
4-Chlorotoluene	ND	ND	<2.0	ND	ND	ND	0.1
1,3,5-Trimethylbenzene	ND	ND	29	ND	ND	ND	0.1
tert-Butylbenzene	ND	ND	<2.0	ND	ND	ND	0.1
1,2,4-Trimethylbenzene	ND	ND	49	ND	ND	ND	0.1
sec-Butylbenzene	ND	ND	1.8J	ND	ND	ND	0.1
1,3-Dichlorobenzene	ND	ND	<2.0	ND	ND	ND	0.1
4-Isopropyltoluene	ND	ND	2.2	ND	ND	ND	0.1
1,4-Dichlorobenzene	ND	ND	<2.0	ND	ND	ND	0.1
1,2-Dichlorobenzene	ND	ND	<2.0	ND	ND	ND	0.1
n-Butylbenzene	ND	ND	<10	ND	ND	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	ND	<10	ND	ND	ND	0.5
1,2,4-Trichlorobenzene	ND	ND	<50	ND	ND	ND	2.5
Hexachlorobutadiene	ND	ND	<50	ND	ND	ND	2.5
Naphthalene	ND	ND	10J	ND	ND	ND	2.5
1,2,3-Trichlorobenzene	ND	ND	<50	ND	ND	ND	2.5
Sample Date:	09/22/00	09/22/00	09/22/00	09/22/00	09/22/00	09/22/00	
Extraction Date:	09/26/00	09/26/00	09/26/00	09/26/00	09/26/00	09/26/00	
Analysis Date:	09/27/00	09/27/00	09/27/00	09/27/00	09/27/00	09/27/00	
Surrogate Recoveries:							Control Limits
Dibromofluoromethane:	98%	98%	(a)	94%	100%	91%	89%-115%
Toluene-d ₈ :	100%	99%	(a)	97%	103%	94%	89%-124%
4-Bromofluorobenzene:	105%	105%	(a)	101%	109%	96%	90%-127%

ND Not Detected

J - Estimated value because the analyte concentration is between the method reporting limit and the detection limit. (a) Not applicable because the analysis of the sample required a dilution that reduced the surrogate concentration below the analytical detection limit.

Signature Chemist/

QA/QC Review

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055202 C.O.C. No.: 4105, 4103

Volatile Organic Compounds by GC/MSD EPA Methods 5030B/8260B mg/kg(ppm)

	MW3-		
Sample Name:	110-02	Lab Blank	Reporting
Lab Code:	552-7	552-MB	Limit
Dichlorodifluoromethane	ND	ND	0.1
Chloromethane	ND	ND	0.1
Vinyl Chloride	ND	ND	0.1
Bromomethane	ND	ND	0.1
Chloroethane	ND	ND	0.1
Trichlorofluoromethane	ND	ND	0.1
1,1-Dichloroethene	ND	ND	0.1
Acetone	ND	ND	2.0
Carbon Disulfide	ND	ND	0.1
Methylene Chloride	ND	ND	0.5
trans-1,2-Dichloroethene	ND	ND	0.1
MTBE	ND	ND	0.1
1,1-Dichloroethane	ND	ND	0.1
2,2-Dichloropropane	ND	ND	0.1
cis-1,2-Dichloroethene	ND	ND	0.1
2-Butanone(MEK)	ND	ND	1.0
Bromochloromethane	ND	ND	0.1
Chloroform	ND	ND	0.5
1,1,1-Trichloroethane	ND	ND	0.1
Carbon Tetrachloride	ND	ND	0.1
1,1-Dichloropropene	ND	ND	0.1
Benzene	ND	ND	0.1
1,2-Dichloroethane	ND	ND	0.1
Trichloroethene	ND	ND	0.1
1,2-Dichloropropane	ND	ND	0.1
Dibromomethane	ND	ND	0.1
Bromodichloromethane	ND	ND	0.1
cis-1,3-Dichloropropene	ND	ND	0.1
4-Methyl-2-Pentanone(MIBK)	ND	ND	1.0
Toluene	ND	ND	0.1
trans-1,3-Dichloropropene	- ND	ND	0.1
1,1,2-Trichloroethane	ND	ND	0.1
Tetrachloroethene	ND	ND	0.1
2-Hexanone	ND	ND	1.0
1,3-Dichloropropane	ND	ND	0.1
Dibromochloromethane	ND	ND	0.1
1,2-Dibromoethane	ND	ND	0.1
Chlorobenzene	ND	ND	0.1
1,1,1,2-Tetrachloroethane	ND	ND	0.1
Ethylbenzene	ND	ND	0.1
m,p-Xylene	ND	ND	0.2
o-Xylene	ND	ND	0.1
Stvrene	ND	ND	0.1

ND Not Detected

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055202b C.O.C. No.: 4105, 4103

Volatile Organic Compounds by GC/MSD EPA Methods 5030B/8260B mg/kg(ppm)

	MW3-		
Sample Name:	110-02	Lab Blank	Reporting
Lab Code:	552-7	552-MB	Limit
Bromoform	ND	ND	0.5
Isopropylbenzene	ND	ND	0.1
Bromobenzene	ND	ND	0.1
1,1,2,2-Tetrachloroethane	ND	ND	0.1
1,2,3-Trichloropropane	ND	ND	0.1
n-Propylbenzene	ND	ND	0.1
2-Chlorotoluene	ND	ND	0.1
4-Chlorotoluene	ND	ND	0.1
1,3,5-Trimethylbenzene	ND	ND	0.1
tert-Butylbenzene	ND	ND	0.1
1,2,4-Trimethylbenzene	ND	ND	0.1
sec-Butylbenzene	ND	ND	0.1
1,3-Dichlorobenzene	ND	ND	0.1
4-Isopropyltoluene	ND	ND	0.1
1,4-Dichlorobenzene	ND	ND	0.1
1,2-Dichlorobenzene	ND	ND	0.1
n-Butylbenzene	ND	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	ND	0.5
1,2,4-Trichlorobenzene	ND	ND	2.5
Hexachlorobutadiene	ND	ND	2.5
Naphthalene	ND	ND	2.5
1,2,3-Trichlorobenzene	ND	ND	2.5
Sample Date:	09/22/00	09/26/00	
Extraction Date:	09/26/00	09/26/00	
Analysis Date:	09/27/00	09/27/00	
-			Control
Currente Dependies			Limite
Surrogate Recoveries:	1029/	1010/	LIIIIIIS 80% 115%
	102%	101%	0970+11970
	101%	101%	0970-12470
4-Bromofluorobenzene:	108%	106%	90%-127%

ND Not Detected

ignatui nemist 0 QA/QC Review

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055203 C.O.C. No.: 4105, 4103

QC Data Report BS/BSD Summary Volatile Organic Compounds by GC/MSD EPA Methods 5030B/8260B mg/kg(ppm)

								Relative
		Spike		Percent	Blank	Percent	% Recovery	Percent
Sample Name:	Lab Blank	Level	Blank	Recovery	Spike	Recovery	Control	Difference
Lab Code:	552-MB	(mg/kg)	Spike	(BS)	Duplicate	(BSD)	Criteria	(RPD)
1,1 - Dichloroethene	<0.1	2.5	2.6	104	2.7	108	82% - 126%	4
Benzene	<0.1	2.5	2.6	104	2.6	104	96% - 115%	<1
Trichloroethene	<0.1	2.5	2.5	100	2.6	104	91% - 107%	4
Toluene	<0.1	2.5	2.6	104	2.6	104	96% - 116%	<1
Chlorobenzene	<0.1	2.5	2.6	104	2.6	104	97% - 112%	<1
							••	
Sample Date:	09/26/00	~	09/26/00	~	09/26/00	~		
Extraction Date:	09/26/00	~	09/26/00	~	09/26/00	~		
Analysis Date:	09/27/00	~	09/27/00	~	09/27/00	~		
							Control	
Surrogate Recovery:							Limits	
bibromofluoromethane:	101%	~	99%	~	99%	~	89%-115%	
Toluene-d ₈ :	101%	~	98%	~	101%	~	89%-124%	
-Bromofluorobenzene:	106%	~	104%	~	105%	~	90%-127%	

ND Not Detected

Spike Source: Accustandard, M-502, Lot B0010296. Accustandard, S-078, Lot A8100179. Accustandard, AS-E0285, Lot A8120333. Accustandard, M-8260-ADD, Lot B0050106.

nemist QA/QC Review

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055204 C.O.C. No.: 4105, 4103

QC Data Report MS/MSD Summary Volatile Organic Compounds by GC/MSD EPA Methods 5030B/8260B mg/kg(ppm)

						_		Relative
		Spike		Percent	Matrix	Percent	% Recovery	Percent
Sample Name:	Batch QC	Level	Matrix	Recovery	Spike	Recovery	Control	Difference
Lab Code:	548-2	(mg/kg)	Spike	(MS)	Duplicate	(MSD)	Criteria	(RPD)
1,1 - Dichloroethene	<0.1	2.5	2.6	104	2.7	108	61% - 119%	4
Benzene	<0.1	2.5	2.6	104	2.6	104	73% - 113%	<1
Trichloroethene	<0.1	2.5	2.6	104	2.6	104	72% - 113%	<1
Toluene	<0.1	2.5	2.6	104	2.6	104	70% - 117%	<1
Chlorobenzene	<0.1	2.5	2.6	104	2.6	104	73% - 114%	<1
Sample Date:	09/21/00	~	09/21/00	~	09/21/00	~		
Extraction Date:	09/26/00	~	09/26/00	~	09/26/00	~		
Analysis Date:	09/27/00	~	09/27/00	~	09/27/00	~		
							Control	
Surrogate Recovery:							Limits	
Dibromofluoromethane:	99%	~	100%	~	101%	~	89%-115%	
Toluene-d ₈ :	98%	~	100%	~	101%	~	89%-124%	
4-Bromofluorobenzene:	105%	~	105%	~	106%	~	90%-127%	

ND Not Detected

Spike Source: Ultra Scientific, CLP-100N, Lot M-1791.

gnature o Chemist QA/QC Review

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055207 C.O.C. No.: 4105, 4103

Total Petroleum Hydrocarbons - Gasoline, Diesel and Heavy Oil Ranges EPA Methods 3545/8015B mg/kg (ppm)

Sample	Lab	Sample	Extraction	Analysis	Gasoline	Diesel	Heavy Oil	Surrogate	e Recovery
Name	Code	Date	Date	Date	Result	Result	Result	4-BFB	O-Terphenyl
MW1-110-01	552-1	09/22/00	09/26/00	09/28/00	<25	<25	<100	67	57
MW1-110-02	552-2	09/22/00	09/26/00	09/28/00	<25	<25	<100	71	57
MW1-110-03	552-3	09/22/00	09/26/00	09/28/00	2000(a)	<125(b)	<100	(C)	56
MW2-110-01	552-4	09/22/00	09/26/00	09/28/00	<25	<25	<100	63	51
MW2-110-02	552-5	09/22/00	09/26/00	09/28/00	<25	<25	<100	61	52
MW3-110-01	552-6	09/22/00	09/26/00	09/28/00	<25	<25	<100	87	52
MW3-110-02	552-7	09/22/00	09/28/00	09/28/00	<25	<25	<100	81	66
Lab Blank	552-MB1	09/26/00	09/26/00	09/27/00	<25	<25	<100	88	61
Lab Blank	552-MB2	09/28/00	09/28/00	09/28/00	_ <25	<25	<100	72	63

Control Limits: 44%-111% 50%-125%

(a) Results are from a 1:5 dilution.

(b) Method reporting limit is elevated because the sample required dilution.

(c) Not applicable because the analysis of the sample required a dilution that reduced the surrogate concentration below the analytical detection limit.

Signature of Chemist QA/QC Review

Quantitation Report

Data File : Acq On : Sample : Misc : Quant Time:	C:\HPCHAM\5\DATA\092700\552-3D.D 28 Sep 00 12:03 PM 8015 soil 1:5 Sep 28 13:05 2000	•	Vial: Operator: Inst : Multiplr:	21 MLB/dth HP GC/FID 1.00
Method Title Last Update Response via	: C:\HPCHEM\5\METHODS\TPH0918.M : : Tue Sep 19 12:46:35 2000 a : Multiple Level Calibration			

```
Volume Inj. :
Signal Phase :
Signal Info :
```


Page 2

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055208 C.O.C. No.: 4105, 4103

QC Data Report - Blank Spike Recoveries Total Petroleum Hydrocarbons by GC/FID EPA Methods 3545/8015B mg/kg(ppm)

Sample Name: Lab Code:	Lab Blank 552-MB1	Spike Level (mg/kg)	Blank Spike	Percent Recovery (BS)	Blank Spike Duplicate	Percent Recovery (BSD)	Relative Percent Difference
Diesel:	<25	250	160	64	190	76	17
Acceptance Limits:	~	~	~	60%-125%	~	60%-125%	<25
Extraction Date:	09/26/00	~	09/26/00	~	09/26/00	~	~
Analysis Date: Surrogate Recoverv:	09/27/00	~	09/27/00	~	09/27/00	~	~ Control Limits
4-Bromofluorobenzene:	88%	~	80%	~	77%	~	44%-111%
O-Terphenyl:	61%	~	81%	~	80%	~	50%-125%

Spike Source: #2 Diesel Fuel (AEE Lot #00-06-27-1).

Signature of Chemist QA/QC Review

0010

Service Request No.: NM000552 Report Date: 09/29/00 Report No.: 00055213 C.O.C. No.: 4105, 4103

QC Data Report - Blank Spike Recoveries Total Petroleum Hydrocarbons by GC/FID EPA Methods 3545/8015B mg/kg(ppm)

Lab Blank 552-MB2	Spike Level (mg/kg)	Blank Spike	Percent Recovery (BS)	Blank Spike Duplicate	Percent Recovery (BSD)	Relative Percent Difference
<25	250	190	76	210	84	10
~	~	~	60%-125%	~	60%-125%	<25
09/28/00	~	09/28/00	~	09/28/00	~	~
09/28/00	~	09/28/00	~	09/28/00	· ~	~
72% 63%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	81% 77%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	91% 88%	~ ~	Control Limits 44%-111% 50%-125%
	Lab Blank 552-MB2 <25 ~ 09/28/00 09/28/00 72% 63%	Spike Spike Lab Blank Level 552-MB2 (mg/kg) <25	Spike Blank Lab Blank Level Blank 552-MB2 (mg/kg) Spike <25	Lab BlankSpike LevelPercent Recovery552-MB2(mg/kg)Spike(BS)<25	Lab Blank Lab Blank $552-MB2$ Spike (mg/kg)Blank Blank Spike 190 Percent Recovery (BS)Blank Spike Duplicate<25	Lab Blank LevelSpike Blank (mg/kg)Percent Blank SpikeBlank Recovery (BS)Percent Spike Duplicate<25

Spike Source: #2 Diesel Fuel (AEE Lot #00-06-27-1).

Signature of Chemist

QA/QC Review

4-

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055209 C.O.C. No.: 4105, 4103

QC Data Report - Duplicate Summary Total Petroleum Hydrocarbons by GC/FID EPA Methods 3545/8015B mg/kg(ppm)

Sample Name	MW/2-110-02	Sample	Relative Percent
Lab Code:	552-5	Duplicate	Difference
Gasoline:	<25	<25	(a)
Diesel:	<25	<25	(a)
Heavy Oil:	<100	<100	(a)
Acceptance Limits:	~	~	<25
Sample Date:	09/22/00	09/22/00	~
Extraction Date:	09/26/00	09/26/00	~
Analysis Date:	09/28/00	09/28/00	~
•			Control
Surrogate Recovery:			Limits
4-Bromofluorobenzene:	61%	82%	44%-111%
O-Terphenyl:	52%	66%	50% -125%

ND Not Detected

(a) Not applicable when sample concentration is less than the method reporting limit.

Signature of Chemist QA/QC Review

Service Request No.: NM000552 Report Date: 09/29/00 Report No.: 00055214 C.O.C. No.: 4105, 4103

QC Data Report - Duplicate Summary Total Petroleum Hydrocarbons by GC/FID EPA Methods 3545/8015B mg/kg(ppm)

Sample Name: Lab Code:	MW3-110-02 552-7	Sample Duplicate	Relative Percent Difference
Gasoline:	<25	<25	(a)
Diesel:	<25	<25	(a)
Heavy Oil:	<100	<100	(a)
Acceptance Limits:	~	~	<25
Sample Date:	09/22/00	09/22/00	~
Extraction Date:	09/28/00	09/28/00	~
Analysis Date:	09/28/00	09/28/00	~
Surrogate Recovery:			Control Limits
4-Bromofluorobenzene:	81%	85%	44%-111%
O-Terphenyl:	66%	76%	50%-125%

ND Not Detected

(a) Not applicable when sample concentration is less than the method reporting limit.

Signature of Chemist QA/QC Review

(a)

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055210 C.O.C. No.: 4105, 4103

Volatile Organic Compounds by GC/MSD EPA Methods 5030B/8260B µg/L(ppb)

	MW1	MW2	MW3	TEMP			
Sample Name:	-110-101	-110-101	-110-101	-BH-4	Blank	Lab Blank	Reporting
Lab Code:	552-9	552-10	552-11	552-12	552-13	552-MB	Limit
Dichlorodifluoromethane ⁻	<100	ND	ND	ND	ND	ND	1.0
Chloromethane	<100	ND	ND	ND	ND	ND	1.0
Vinyl Chloride	<100	ND	ND	ND	ND	ND	1.0
Bromomethane	<100	ND	ND	ND	ND	ND	1.0
Chloroethane	<100	ND	ND	ND	ND	ND	1.0
Trichlorofluoromethane	<100	ND	ND	ND	ND	ND	1.0
1,1-Dichloroethene	<100	ND	ND	ND	ND	ND	1.0
Acetone	<2000	ND	ND	ND	ND	ND	20
Carbon Disulfide	<100	ND	ND	ND	ND	ND	1.0
Methylene Chloride	<500	ND	ND	ND	ND	ND	5.0
trans-1,2-Dichloroethene	<100	ND	ND	ND	ND	ND	1.0
MTBE	<100	ND	ND	ND	ND	ND	1.0
1,1-Dichloroethane	<100	ND	ND	ND	ND	ND	1.0
2,2-Dichloropropane	<100	ND	ND	ND	ND	ND	1.0
cis-1,2-Dichloroethene	<100	ND	ND	ND	ND	ND	1.0
2-Butanone(MEK)	<1000	ND	ND	ND	ND	ND	10
Bromochloromethane	<100	ND	ND	ND	ND	ND	1.0
Chloroform	<500	ND	2.10J	2.10J	ND	ND	5.0
1,1,1-Trichloroethane	<100	ND	ND	ND	ND	ND	1.0
Carbon Tetrachloride	<100	ND	ND	ND	ND	ND	1.0
1,1-Dichloropropene	<100	ND	ND	ND	ND	ND	1.0
Benzene	6300	116	0.63J	0.54J	ND	ND	1.0
1,2-Dichloroethane	<100	ND	ND	ND	ND	ND	1.0
Trichloroethene	<100	ND	ND	ND	ND	ND	1.0
1,2-Dichloropropane	<100	ND	ND	ND	ND	ND	1.0
Dibromomethane	<100	ND	ND	ND	ND	ND	1.0
Bromodichloromethane	<100	ND	ND	ND	ND	ND	1.0
cis-1,3-Dichloropropene	<100	ND	ND	ND	ND	ND	1.0
4-Methyl-2-Pentanone(MIBK)	<1000	ND	ND	ND	ND	ND	10
Toluene	15,000	1.01	2.59	2.31	ND	ND	1.0
trans-1,3-Dichloropropene	- <100	ND	ND	ND	ND	ND	1.0
1,1,2-Trichloroethane	<100	ND	ND	ND	ND	ND	1.0
Tetrachloroethene	<100	ND	ND	ND	ND	ND	1.0
2-Hexanone	<1000	ND	ND	ND	ND	ND	10
1,3-Dichloropropane	<100	ND	ND	ND	ND	ND	1.0
Dibromochloromethane	<100	ND	ND	ND	ND	ND	1.0
1,2-Dibromoethane	<100	ND	ND	ND	ND	ND	1.0
Chlorobenzene	<100	ND	ND	ND	ND	ND	1.0
1,1,1,2-Tetrachloroethane	<100	ND	ND	ND	ND	ND	1.0
Ethylbenzene	910	ND	ND	ND	ND	ND	1.0
m,p-Xylene	9600	ND	2.07	1.85J	ND	ND	2.0
o-Xylene	2400	ND	0.49J	0.41J	ND	ND	1.0
Styrene	<100	ND	ND	ND	ND	ND	1.0

ND Not Detected

J - Estimated value because the analyte concentration is between the method reporting limit and the detection limit. (a) Results are from a 1:100 dilution. Note elevated reporting limits.

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055210b C.O.C. No.: 4105, 4103

Volatile Organic Compounds by GC/MSD EPA Methods 5030B/8260B μg/L(ppb)

	MW1	MW2	MW3	TEMP	-		
Sample Name:	-110-101	-110-101	-110-101	-BH-4	Blank	Lab Blank	Reporting
Bromoform	<u></u>	 ND	ND	<u>552-12</u>	ND		<u> </u>
Isopropyibenzene	74.1	1.81			ND		5.0 1 0
Bromobenzene	<100		ND		ND		1.0
1 1 2 2-Tetrachloroethane	<100	ND	ND				1.0
1 2 3-Trichloropropage	<100	ND	ND	ND	ND	ND	1.0
n-Pronvibenzene	95.1	ND	ND	ND	ND	ND	1.0
2-Chlorotoluene	<100	ND	ND	ND	ND	ND	1.0
4-Chlorotoluene	<100	ND	ND	ND	ND	ND	1.0
1 3 5-Trimethylbenzene	460	ND	ND	ND	ND	ND	1.0
tert-Butylbenzene	<100	ND	ND	ND	ND	ND	1.0
1.2.4-Trimethylbenzene	910	ND	ND	ND	ND	ND	1.0
sec-Butylbenzene	<100	ND	ND	ND	ND	ND	1.0
1.3-Dichlorobenzene	<100	ND	ND	ND	ND	ND	1.0
4-isopropyltoluene	<100	ND	ND	ND	ND	ND	1.0
1,4-Dichlorobenzene	<100	ND	ND	ND	ND	ND	1.0
1,2-Dichlorobenzene	<100	ND	ND	ND	ND	ND	1.0
n-Butylbenzene	<500	ND	ND	ND	ND	ND	5.0
1,2-Dibromo-3-Chloropropane	<500	ND	ND	ND	ND	ND	5.0
1,2,4-Trichlorobenzene	<2500	ND	ND	ND	ND	ND	25
Hexachlorobutadiene	<2500	ND	ND	ND	ND	ND	25
Naphthalene	<2500	ND	ND	ND	ND	ND	25
1,2,3-Trichlorobenzene	<2500	ND	ND	ND	ND	ND	25
Sample Date:	09/23/00	09/23/00	09/23/00	09/23/00	09/18/00	09/28/00	
Analysis Date:	09/28/00	09/28/00	09/28/00	09/28/00	09/28/00	09/28/00	
							Control
Surrogate Recoveries:							Limits
Dibromofluoromethane:	98%	97%	99%	97%	96%	98%	81%-115%
Toluene-d ₈ :	- 97%	99%	100%	99%	97%	100%	88%-106%
4-Bromofluorobenzene:	101%	104%	106%	105%	101%	104%	88%-111%

ND Not Detected

remist (\underline{N}) QA/QC Review

Service Request No.: NM000552 Report Date: 09/29/00 Report No.: 00055211 C.O.C. No.: 4105, 4103

Relative

QC Data Report **BS/BSD Summary** Volatile Organic Compounds by GC/MSD EPA Methods 5030B/8260B µg/L(ppb)

		Spike		Percent	Blank	Percent	% Recovery	Percent
Sample Name:	Lab Blank	Level	Blank	Recovery	Spike	Recovery	Control	Difference
Lab Code:	552-MB	(µg/L)	Spike	(BS)	Duplicate	(BSD)	Criteria	(RPD)
1,1 - Dichloroethene	<1.0	50.0	55.3	111	54.7	109	88% - 125%	1
Benzene	<1.0	50.0	50.8	102	50.6	101	91% - 115%	<1
Trichloroethene	<1.0	50.0	52.6	105	52.5	105	90% - 111%	<1
Toluene	<1.0	50.0	50.8	102	50.4	101	96% - 111%	<1
Chlorobenzene	<1.0	50.0	52.1	104	52.0	104	95% - 110%	<1
Sample Date:	09/28/00	~	09/28/00	~	09/28/00	~		
Analysis Date:	09/28/00	~	09/28/00	~	09/28/00	~		
							Control	
Surrogate Recovery:							Limits	
Dibromofluoromethane:	98%	~	98%	~	98%	~	81%-115%	
Toluene-d ₈ :	100%	~	99%	~	99%	~	88%-106%	
4-Bromofluorobenzene:	104%	~	98%	~	98%	~	88%-111%	

ND Not Detected

Spike Source: Accustandard, M-502, Lot B0010296. Accustandard, S-078, Lot A8100179. Accustandard, AS-E0285, Lot A8120333. Accustandard, M-8260-ADD, Lot B0050106.

ŏnat iemis QA/QC Review

Service Request No.: NM000552 Report Date: 09/29/00 Report No.: 00055212 C.O.C. No.: 4105, 4103

Relative

QC Data Report MS/MSD Summary Volatile Organic Compounds by GC/MSD EPA Methods 5030B/8260B µg/L(ppb)

	TEMP-	Spike		Percent	Matrix	Percent	% Recovery	Percent
Sample Name:	BH-4	Level	Matrix	Recovery	Spike	Recovery	Control	Difference
Lab Code:	552-12	(µg/L)	Spike	(MS)	Duplicate	(MSD)	Criteria	(RPD)
1,1 - Dichloroethene	<1.0	50.0	53.1	106	50.4	101	84% - 136%	5
Benzene	0.54J	50.0	51.8	103	51.0	101	92% - 112%	2
Trichloroethene	<1.0	50.0	50.2	100	49.3	99	86% - 116%	2
Toluene	2.31	50.0	53.2	102	52.4	100	79% - 116%	2
Chlorobenzene	<1.0	50.0	52.1	104	51.4	103	90% - 111%	1
Sample Date:	09/23/00	~	09/23/00	~	09/23/00	~		
Analysis Date:	09/28/00	~	09/28/00	~	09/28/00	~		
							Control	
Surrogate Recovery:							Limits	
Dibromofluoromethane:	97%	~	97%	~	99%	~	81%-115%	
Toluene-d ₈ :	99%	~	98%	~	99%	~	88%-106%	
4-Bromofluorobenzene:	105%	~	106%	~	106%	~	88%-111%	

ND Not Detected

Spike Source: Ultra Scientific, CLP-100N, Lot M-1791.

J - Estimated value because the analyte concentration is between the method reporting limit and the detection limit.

Signature of Chemist

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055205 C.O.C. No.: 4105, 4103

Total Petroleum Hydrocarbons - Gasoline, Diesel and Heavy Oil Ranges EPA Methods 3510/8015B mg/L (ppm)

Sample	Lab	Sample	Extraction	Analysis	Gasoline	Diesel	Heavy Oil	Surroga	te Recovery
Name	Code	Date	Date	Date	Result	Result	Result	4-BFB	O-Terphenyi
MW1-110-101	552-9	9/23/00	9/26/00	9/28/00	41(a)	<6.2(b)	<12(b)	(C)	(C)
MW2-110-101	552-10	9/23/00	9/26/00	9/27/00	'<0.25	<0.25	<0.50	66	70
MW3-110-101	552-11	9/23/00	9/26/00	9/27/00	<0.25	<0.25	<0.50	68	94
Temp-BH-4	552-12	9/23/00	9/26/00	9/27/00	<0.25	<0.25	<0.50	61	81
Lab Blank	552-MB	9/26/00	9/26/00	9/27/00	<0.25	<0.25	<0.50	61	74

Control Limits: 37%-88% 45%-132%

(a) Result is from a 1:25 dilution.

(b) Method reporting limit is elevated because the sample required dilution.

(c) Not applicable because the analysis of the sample required a dilution that reduced the surrogate concentration below the analytical detection limit.

Signature of Chemist QA/QC Review

Quantitation Report

Data File : Acq On : Sample : Misc : Quant Time:	C:\HPCHEM\5\DATA\092700\552-9.D 27 Sep 00 09:16 PM 8015 water Sep 28 7:36 2000	Vial: Operator: Inst : Multiplr:	7 MLB/dth HP GC/FID 1.00
Method Title Last Update Response vi	: C:\HPCHEM\5\METHODS\TPH0918.M : : Tue Sep 19 12:46:35 2000 a : Multiple Level Calibration		
Volume Inj. Signal Phas Signal Info	: e : :		

Service Request No.: NM000552 Report Date: 09/28/00 Report No.: 00055206 C.O.C. No.: 4105, 4103

QC Data Report - Blank Spike Recoveries Total Petroleum Hydrocarbons by GC/FID EPA Methods 3510/8015B mg/L(ppm)

		Spike		Percent	Blank	Percent	Relative
Sample Name:	Lab Blank	Level	Blank	Recovery	Spike	Recovery	Percent
Lab Code:	552-MB	(mg/L)	Spike	(BS)	Duplicate	(BSD)	Difference
Diesel:	<0.25	1.0	0.81	81	0.77	77	5
Acceptance Limits:	~	~	~	71%-112%	~	71%-112%	<25
Extraction Date:	09/26/00	~	09/26/00	~	09/26/00	~	~
Analysis Date:	09/27/00	~	09/27/00	~	09/27/00	~	~
-							Control
Surrogate Recovery:							Limits
4-Bromofluorobenzene:	61%	~	57%	~	58%	~	37%-88%
O-Terphenyi:	74%	~	85%	~	82%	~	45%-132%

ND Not Detected

Spike Source: Diesel Fuel (AEE Lot #00-06-27-1).

T) Signature of Chemist QA/QC Review

AGRA Earth & Fironmental Portland Chemistry Labora Sample Receipt Documentation Form

Devices Fig. at Alla tables at Alasta			
Project: Farly Criver roally fel -		ooler remperatu	ires
SRING.: NIVOCOLUB DIOONFIELC	1830		2700
Date: UBUICO		0700	0.1C
	4	$\mathcal{O} \circ \mathcal{O}$	
Temperature of Cooler Upon Receipt (Record to the Right):	- D. 2°C		, 2°01 [
Received By: 6D	Tork C		
Section One: Shipping/Delivery Issues			
1. Method of Sample Delivery: UPS			
2. Airbill or Courier Receipt Number: 12 910E 188 33	1000 215	ļ	
3. Is a copy of the airbill or courier receipt available to			1
be placed in the job file?	(Yes)	No	NA
Section Two: Sample Custody Issues			
4. Are custody seals on the shipping container intact?	Yes	No	(NA)
5. Is a COC or other sample transmittal document present?	Yes	No	NA
6. Is the COC complete?	(Jes)	No	NA
7. Are the sample seals intact?	Yes	No	(NA)
8. Does the COC match the samples received?	Yes	No	NA
Section Three: Sample Integrity Issues			·.
9. Are all sample containers intact and not leaking?	(Yes)	No	NA
10. Are all samples preserved properly?	Yes	No	NA
11. Are all samples within holding time for the required tests?	Yes	No	NA
12. *Were all samples received at the proper temperature?	Yes	No	NA
13. Are samples for volatiles and other headspace sensitive			
parameters free of headspace or bubbles?	Yes	No	NA
Section Four: Sample Containers Received:			
14. 4 oz. glass jars: 1 19	. 2oz. amber (MeC	PH):	
15. 8 oz. glass jars: 7 20	. Encore sampler	s:	
16. 40ml VOA vials: 1 나 21	. 500ml plastic:		
17.1 liter glass: 4 22	. 1liter plastic:		
18. Other (describe):			
*Temperatures for: soil and water = 4°C-6°C. MeOH jars = 25°C. a	air = not required		
(b) Original (white mon) not present			

(12) None were frozen

3 552-106+C & 552-130 buddes <.25"

Reviewed By:

Laboratory Manager or Designee

	diff for each of			11 11 11 11						
AGRA ENGINEERING GLOBAL SOLUTIONS 7477 SW Tech Center Drive								41	021 1	
Portland, Oregon, U.S.A. 97223-8025 Tel (503)639-3400 Fax (503) 620-7892				NMOOO	05J	С Н	IAIN	OF C	USTO	λdC
					1997 - 19					
E. N. Child bear 1 to -13 how 2 + 12	0-5-17-000/10		ANALYSIS RE	auested (circle, ch	neck box or w	rite preferre	ed metho	d in box)		
PROJECT MANGER 11	рноле No. 505-821-180 РНОЛЕ No.) 1	/ 0	35108 d3	səlifslov 08	səlifislov-imə r SO21	1				
SAMPLER'S NAME (Please print) CV155	PHONE No. 1 {	1208 / 20	EXTENDE		2 / 8270 S	808 / 1808			- ;	· · · · · ·
SAMPLER'S MONATURE)9 A93 v	ЕРА 801 ТРН-D ID	00M 1.1 814 Aq3 29 Aq3	59 A93 1 F09 A9	\ 803 A 0103 A b9vioss	SJATAI			
SAMPLE I.D. DATE TIME MATRIX	PRESERVATIVE CONTAIN	Ž HH-G	ген _{ру} 8 ген-ру 8 ген-нсі	9C / W2 .bH P [,] E		CBs EP	M JATO	сгь		
" Mul-1-110-01 64-22 945 Soil					N D		L			
2. M. W1-110-02 1000										
" M. W / . / . / . / . / / / / / / / / /										
M 112- 2-110-11 11:53									·	
6 mm-3-110-02 12:3/24-12				- \						
V 10 - 3-1107 V 36 24-20 1			X	×						
8. Lornposite 4:22 4:10 .	Newer	A NICH	x 1 1 1 2 4 1 x	1-1-1-2-12	5					
10.										
SAMPLE RECEIPT	LABORATORY		I	RNAROUND TIME	QC Reporting	Requirement	cov	MENTS / IN	ISTRUCT	
TOTAL # CONTAINERS	SHIPPING I.D. / AIRBILL #		30	вноив	DIEVELI					
CONDITION OF CONTAINERS	CARRIER			24 HOURS - JE	D LEVEL II D LEVEL II W Duplicates	د جزید project specific Spikes				يس ريم ريم
CONDITION OF SEALS	DOT DESIGNATION			2 WEEK (standard) DTHER	C Level III (Full validat	on package)				
RELINGUISHED BY / AFFILIATION	DATE TIME	A	CCEPTED BY / AFFII	LIATION	DATE	TIME	r			
have for (J. W. livill)	5. 11 N-52.9	1.					002	5		<u>_</u>
5		<u>ci</u>								
3.		Kumber	24 a Bart	D AMEC	9 Broke	(D30	PAGE	OF		
AGRA Earth & Environmental, Inc. (10/97)			Ь		.			~	:	

						- 2000 A							1
AGRA ENGINE RIDBAL SOLUTIONS		<i>o</i>						*			41	03	
7477 SW Tech Center Drive Portland, Oregon, U.S.A. 97223-8025 Tel (503)639-3400 Fax (503) 620-7892		•				NN	10005	20	Ċ	HAIN	OF C	USTO	
	PROJECT No. 2	100-615-00	0110				TED (citale o		it.	1			
East (Mulch back 1. tr - 15/a	mereld				ANALYSIS	HEQUES	I EU (circle, c	heck box or	write preterr	ed methoo	1 In box)		
PROJECT MANGER	PHONE No.	1-18-11		<u></u>	a	85108	290 Volaties	seliitelov-imes	85 	$\overline{\langle}$			
SAMPLER'S NAME (please pring)	· PHONE No. 1)		1208 / 8021	,	EXTENDE		54 (Eby 8; 231	/ 602 or El	VED 1 1808			 	
SAMPLEH'S SIGNATURE		L	9 493 v	9-Hd.	а-нат	r08 A93 GOM F.	814 493 29 493	29 493	\ 803 A 0103 A 0103 A	SJATE			;
SAMPLE I.D. DATE TIME MATE	RIX PRESERVATIVE	CONTAINERS	втех ь _у	r / x318	/ O-Hall	3 vd H9T	SC / WS	NOCE EI SW / DE	- CBs EP EAD EF	M JATOT	сгь		
1. Mart 1- 1/27-) 	2				- 	<u>,</u>
2 Mul-110-101 9-23 11.15 NG	2 HeL	4 374	1 40	110		イ	×			Mun	0,1%0	10 > 3	00
" Mut 7-110-101 10:00		4: 340ml	Vod 1 1	+ + + + + + + + + + + + + + + + + + +									Ş
4 Mu 3-110-M/ 10.50		ы I									·		[
5 TEMP-1314-4 1 9:45 4	ý	H				X	×		ر ر				
Ó		2				Å	1996	،					
» 12/14 27 /S		<i>L1</i>				10Xiv	×) 		
j. o			-								4		_
											-1		
										, ,	\sim		
SAMPLE RECEIPT	LABORATOR	~				TURNARC	DUND TIME	OC Reportin (Add'I charges	j Requiremen may apply)	ts COM	MENTS CIN	ISTRUCTIO	
TOTAL # CONTAINERS	SHIPPING I.D. / A	IRBILL #				B HOUR		arever 1		A9	3	ple-F	N N
CONDITION OF CONTAINERS	CARRIER						6-28	O LEVEL II Duplicates	//project specific //project specific	W tr	12/ ex	inel e d	
CONDITION OF SEALS	DOT DESIGNATIO	N				a 2 week a other	(standard)	CJ Level III (Full valida	tion package)	100	n elel oc	L F S	र
RELINQUISHED BY / AFFILIATION	DATE	TIME		ACCEPT	ED BY / A	FFILIATIO	Z	DATE	TIME	V r	X		
" Pray Carine Time Conto	au-12-1) (11:30	÷							0 	023	• .	
			N								,ť		
е Ю			Kunk	بالماللا	Q YO	latura	AMEC	glada	1330		PO	e	
AGRA Earth & Environmental. Inc. (10/97)		· ·	-	J						.,]