3R - 276

REPORTS

DATE: 2000

MANANA GAS, INC.

PROPOSED RECLAMATION PLAN

NANCY HARTMAN #1E WELL SITE (A) SECTION 22, T29N, R11W, NMPM SAN JUAN COUNTY, NEW MEXICO

PREPARED FOR: MR. WILLIAM C. OLSON NEW MEXICO OIL CONSERVATION DIVISION

DECEMBER 2000

PREPARED BY: BLAGG ENGINEERING, INC.

Consulting Petroleum / Reclamation Services P.O. Box 87 Bloomfield, New Mexico 87413

These and see

TABLE OF CONTENTS

PAGE

INTRODUCTION	• • • • • • • • • • • • • • • • • • • •	1
PURPOSE & SCOPE OF WORK		1
FIELD INVESTIGATION		2
ANALYTICAL RESULTS		4
DATA EVALUATION & INTERPRETATION		
SUMMATION		9
PROPOSED RECLAMATION PLAN		9
LIMITATION & CLOSURE		

LIST OF TABLES

	<u> PAGE #</u>
1.) GROUNDWATER MONITOR	3
WELL INFORMATION	
2.) GROUNDWATER BTEX RESULTS	5
3.) TRACE METALS RESULTS	5
4.) PAH RESULT FOR MW #1	6
5.) MONITOR WELL FIELD &	6
ANION RESULTS	
6.) SOIL RESULTS OF NORTHERN	7
EXCAVATION	
7.) SOIL RESULTS OF SOUTHERN	7
EXCAVATION	

LIST OF FIGURES

1.) AREA MAP
2.) SITE MAP
3.) EXCAVATION SCHEMATIC
4.) GROUNDWATER CONTOUR MAP
5.) BTEX CONCENTRATION SCHEMATIC
6.) HYDROCARBON PLUME SCHEMATIC
7.) VAPOR EXTRACTION SYSTEM
SCHEMATIC
8.) AIR SPARGE SYSTEM SCHEMATIC
9.) AIR SPARGE POINT SCHEMATIC
10.) REMEDIATION SYSTEM LAYOUT

APPENDIX A

- groundwater monitor well development & sampling procedures
- monitor well drilling & installation procedures
- monitor well survey notes
- monitor well development & sampling data sheets
- monitor well detail schematics
- 2001 tentative monitor well sampling schedule

APPENDIX B

- soil sampling & field analysis procedures
- soil boring log schematics

APPENDIX C

- laboratory reports, QA/QC, & chain of custody records

Blagg Engineering, Inc. December 20, 2000

GROUNDWATER REMEDIATION PLAN MANANA GAS, INC. NANCY HARTMAN # 1E WELL SITE NE/4, NE/4 (A) SECTION 22, T29N, R11W, NMPM SAN JUAN COUNTY, BLOOMFIELD, NEW MEXICO

INTRODUCTION & BACKGROUND

Blagg Engineering, Inc. (**BEI**), was contracted by Manana Gas, Inc. (**MGI**) to perform a groundwater investigation and remediation plan at the Nancy Hartman #1E well site. The site is located within the city limits of Bloomfield, New Mexico (Figure 1) and is situated north of a Bloomfield School District (**BSD**) property where a Family Learning Center facility is under construction (Figure 2).

BEI was contacted by MGI's representative Mr. Tom Evans on Monday, October 23, 2000 and with the assistance of Mr. Denny Foust from the New Mexico Oil Conservation Division (NMOCD), informed BEI of soil hydrocarbon contamination found at a shallow subsurface depth (approximated at 1.5 to 2.0 feet below grade) adjacent to the on-site production tank. Mr. Evans also delivered a report generated by AMEC Earth & Environmental, Inc. (AMEC) of Albuquerque, New Mexico, dated October 6, 2000, pertaining to its Phase II Environmental Evaluation of the adjacent BSD property. Upon discussing Mr. Evans' findings near the production tank and groundwater contamination results observed within the AMEC report, it was apparent that groundwater impacts extended off-site. Delineation of soil and groundwater contamination would be necessary to comply with NMOCD regulations.

BEI conducted an initial site inspection and surface survey of the well site on Friday, October 27, 2000. On Monday, October 30, 2000, the BSD's board members convened a special session meeting to discuss their options in proceeding with construction of the new facility at the site. Mr. Evans, BEI, NMOCD's Mr. Frank Chavez and Mr. Foust, an AMEC representative, and BSD's architectural representative Mr. Scott Stafford, were all in attendance to discuss the recently encountered groundwater contamination. Following review of their options, BSD's board members voted to award the construction bid and commence with the final drafted plan to erect the building structure on the BSD property as shown in Figure 2. BEI was granted permission by the BSD to conduct environmental investigations on their property during building construction.

PURPOSE AND SCOPE OF WORK

The purpose and scope of this initial investigation was multifaceted. The initial and primary goal was to delineate hydrocarbon contamination in groundwater on the BSD's property previously identified by its contractor (AMEC) in September, 2000. The secondary goal was to identify the contamination on the MGI Hartman well site. The third goal was to develop a remediation scheme using the best available technology.

Blagg Engineering, Inc. December 20, 2000

The scope of work consisted of the following:

- 1. Delineation of the groundwater hydrocarbon contamination impact on the BSD property by installing monitor wells.
- 2. Subsurface soil sampling using typical procedures from the boring advancements of the monitor wells.
- 3. Soil sampling of the excavated potential source(s) previously identified by MGI.
- 4. Groundwater sampling from previous existing and BEI's newly installed monitor wells (Figure 2).
- 5. Data evaluation and interpretation.
- 6. Communication with various entities having direct or incidental involvement associated with the groundwater contamination impact.
- 7. Generate this report which includes findings, evaluation of the data acquired, site schematics, boring logs, monitor well details, and recommendation(s) for accelerated cleanup of hydrocarbon impacted groundwater.

FIELD INVESTIGATION

Soil description

Subsurface soils encountered during the on-site excavations at two potential source areas (Figure 3) and boring advancements of each monitor well installed revealed a predominantly silty sand phasing into sand throughout the area. Intermittent intervals of silty clay and clay were also observed at various and irregular depths below grade. Apparent soil discoloration was only observed within the bottom portions of MW #2M (assumed source well) and MW #5M located on the BSD's property. MW #2M revealed a medium gray sand between 21-23 feet below grade and contained a strong hydrocarbon odor, whereas MW #5M revealed a light olive gray sand between 17-23 feet below grade with a slight hydrocarbon odor (see boring logs - Appendix B). The on-site southern excavated pit soils disclosed varying degrees of discoloration ranging from light olive gray (exposed west sidewall) to black and encompassing a strong hydrocarbon odor.

Groundwater Depths and Flow Direction

Groundwater depths measured prior to development and sampling of the monitor wells (between November 3th and December 11th, 2000) range between approximately 11.5 to 14.0 feet below grade. The static water levels were measured with a Solinst water level detector. The referred depths are measured from the top of the well casing to the water level and then subtracting the distance from the top of the well casing to grade. Table 1 presents pertinent dates and groundwater depth information associated with all monitor wells installed on and off-site.

Based upon groundwater measurements collected Monday, November 6, 2000 (see Monitor Well Development/Sampling Data sheet in Appendix A), the groundwater flow direction appears to be due south with a slight southwest component (Figure 4).

Blagg Engineering, Inc. December 20, 2000

Manana Gas, Inc. Remediation Action Plan **TABLE 1**

MANANA GAS, INC. GROUNDWATER MONITOR WELL INFORMATION

COMMENTS	GW DEPTH= 12.29' BGS ²	GW DEPTH= 12.14' BGS ²	GW DEPTH= 12.04' BGS ²	GW DEPTH= 13.70' BGS	GW DEPTH= 14.04' BGS	GW DEPTH= 11.84' BGS	GW DEPTH= 11.77' BGS	GW DEPTH= 12.14' BGS	GW DEPTH= 11.47' BGS	GW DEPTH= 11.49' BGS	GW DEPTH= 12.47' BGS
ANALYTICAL RESULTS RECEIVED	9/29/00	9/29/00	9/29/00	NA	AN	12/06/00	12/06/00	12/06/00	12/06/00	12/06/00	12/06/00
INITIAL SAMPLING COMPLETED	9/23/00	9/23/00	9/23/00	12/11/00	12/11/00	11/06/00	11/06/00	11/06/00	11/15/00	11/15/00	11/15/00
SURVEY COMPLETED	9/26-29/00	9/26-29/00	9/26-29/00	12/15/00	12/15/00	11/03/00	11/03/00	11/03/00	11/14/00	11/14/00	11/14/00
DEVELOPMENT COMPLETED	9/22/00	9/22/00	9/22/00	12/07/00	12/07/00	11/03/00	11/03/00	11/03/00	11/14/00	11/14/00	11/14/00
DRILLING COMPLETED	9/22/00	9/22/00	9/22/00	12/06/00	12/06/00	11/01/00	11/01/00	11/01/00	11/13/00	11/13/00	11/13/00
# MW	-	2 1	31	1M	2M	ЭМ	4M	5M	6M	۸M	8M

NOTES: MW = MONITOR WELL; GW = GROUNDWATER; BGS = BELOW GROUND SURFACE; NA = NOT AVAILABLE AS OF THIS WRITING; GW DEPTHS RECORDED DURING DATES OF INITIAL SAMPLING; ¹ = INSTALLED BY OTHERS; ² = BASED ON 11/06/00 MEASUREMENTS.

ļ

Blagg Engineering, Inc. December 20, 2000

ANALYTICAL RESULTS

After developing each monitor well (see Groundwater Monitor Well Development & Sampling procedures - Appendix A), groundwater samples were collected and analyzed for benzene, toluene, ethylbenzene, and total xylenes (**BTEX**) per USEPA method 8260, polynuclear aromatic hydrocarbon (**PAH**) per USEPA method 8310 (MW #1 only), trace metals per USEPA method 200.7 (iron only) and 200.8 (MW #'s 1, & 4M), and regulated anions per USEPA method 300.0 (MW #'s 1, 2, & 4M). Soil samples collected from each boring advancement during the monitor well installation (see individual boring logs - Appendix B) and after the completion of the on-site excavations were also collected and analyzed in the field and/or by a qualified laboratory for total petroleum hydrocarbons (**TPH**) per USEPA method 8015B & BTEX per USEPA method 8021B. All sampling was performed in accordance with USEPA SW-846 protocol.

The field and laboratory results are summarized as follows:

- 1. Table 2 summarizes BTEX results from all monitor wells (except MW #3) collected by BEI between November 6th and 15th, 2000. *Note the New Mexico Water Quality Control Commissions (NMWQCC) allowable concentrations at the bottom of each table (1 through 5).*
- 2. Table 3 summarizes the trace metals laboratory analyses from MW #'s 1 & 4M collected on November 6, 2000.
- 3. Table 4 summarizes the PAH finding in MW #1 also collected on November 6, 2000.
- 4. Table 5 summarizes the field parameters [pH and calculated total dissolved solids (TDS)] and regulated anion results from MW #'s 1, 2, & 4M again collected on November 6, 2000.
- 5. Table 6 & 7 summarizes the field and laboratory results from the on-site excavations collected between November 3th and 29th, 2000. *Note the NMOCD's regulatory standards for the site at the bottom of each of these tables.*

Blagg Engineering, Inc. December 20, 2000

Manana Gas, Inc. **Remediation Plan**

	(see figure 5)									
MW #	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	TOTAL XYLENES					
1	11/06/00	5,000	10,000	830	12,000					
2	11/06/00	48	ND	ND	ND					
3M	11/06/00	ND	ND	ND	ND					
4M	11/06/00	680	ND	ND	ND					
5M	11/06/00	1,800	4,500	330	4,400					
6M	11/15/00	ND	ND	ND	ND					
7M	11/15/00	ND	ND	ND	ND					
8M	11/15/00	ND	ND	ND	ND					
NMWQCC STANDARDS		10	750	750	620					

TABLE 2 **BTEX RESULTS OF LABORATORY GROUNDWATER ANALYSIS**

NOTES :

1) BTEX = benzene, toluene, ethylbenzene, & total xylenes.

MW = monitor well. 2)

NMWQCC - New Mexico Water Quality Control Commission. 3)

4) Unit of data is parts per billion or µg/L.

ND = not detected at or above reporting limit. 5)

TABLE 3 **TRACE METALS RESULTS OF LABORATORY GROUNDWATER ANALYSIS**

MW #	Sample Date	Mercury	Alum- inum	Arsenic	Barium	Boron	Cad- mium	Chro- mium	Cobalt	Copper
1	11/06/00	ND	3.7	0.086	2.3	ND	ND	0.003	ND	0.03
4M	11/06/00	ND	4.0	0.001	0.23	ND	ND	0.001	ND	ND
NMWQCC STANDARDS		.002	5.0	0.1	1.0	0.75	0.01	0.05	0.05	1.0

MW #	Sample Date	Iron	Lead	Manganes e	Molybdenum	Nickel	Selenium	Silver	Zinc
1	11/06/00	27.4	0.022	9.6	ND	0.02	0.004	ND	0.03
4M	11/06/00	0.85	0.008	0.58	ND	0.01	0.002	ND	0.02
NMWQCC STANDARDS		1.0	0.05	0.2	1.0	0.2	0.05	0.05	10.0

NOTES :

1)

MW = monitor well.

NMWQCC - New Mexico Water Quality Control Commission.

2) 3) 4)

Unit of data is parts per million or mg/L. ND = not detected at or above reporting limit.

<u> TABLE 4</u>

PAH RESULTS OF LABORATORY GROUNDWATER ANALYSIS

MW #	Sample Date	Total Naphthalene	Benzo(a)pyrene
1	11/06/00	146	ND
NMWQCC STANDARDS		30	0.7

NOTES :

1)

- PAH = polynuclear aromatic hydrocarbons.
- 2) MW = monitor well.
- 3) NMWQCC New Mexico Water Quality Control Commission
- 4) Unit of data is parts per billion or $\mu g/L$.
- 5) ND = not detected at or above reporting limit.

TABLE 5 FIELD & LABORATORY ANION GROUNDWATER RESULTS

MW #	Sample Date	рН¹	TDS ²	Chloride	Sulfate	Fluoride	Nitrate
1	11/06/00	6.83	889	89	3.0	0.20	ND
2	11/06/00	7.03	568	13	140	0.20	1.0
4M	11/06/00	6.92	756	27	120	0.20	0.90
NMWQCC STANDARDS		6-9	1,000	250	600	1.60	10.0

NOTES :

1)

7)

MW = monitor well.

2) NMWQCC - New Mexico Water Quality Control Commission.

3) Unit of data is parts per million or mg/L (pH is unitless).

4) ND = not detected at or above reporting limit.
5) TDS = total dissolved solids.

5) TDS = total dissolved solids.
 6) ¹ - pH information derived from the solution derived from

1 - pH information derived from field parameter instrumentation.

6

² - TDS information derived from a 2:1 ratio of the electrical conductivity field parameter instrumentation and is used only as approximations.

Blagg Engineering, Inc. December 20, 2000

TABLE 6

(See ngure 3)									
SAMPLE ID	SAMPLE DATE	OVM	BENZENE	TOTAL BTEX	TOTAL TPH				
1 @ 10 ft.	11/03/00	56.6	-	-	-				
2 @ 10 ft.	11/03/00	55.2	-	-					
3 @ 10 ft.	11/03/00	38.6	-						
4 @ 10 ft.	11/03/00	2.6	-	-	**				
5 @ 13 ft.	11/03/00	1,122	24	1,027	6,540				
5 @ 18 ft.	11/03/00	1,083	-	-	-				
NMOCD STANDARDS		100	10	50	100				

RESULTS OF SOIL ANALYSIS FROM NORTHERN EXCAVATION (see figure 3)

NOTES :

1)

OVM = Organic Vapor Meter (field instrument).

2) BTEX = benzene, toluene, ethylbenzene, & total xylenes.

3) TPH = total petroleum hydrocarbons.

4) NMOCD - New Mexico Oil Conservation Division.

5) Unit of data is parts per million or mg/kg.

6) Sample ID indicates depths collected below grade (approximated).

TABLE 7

RESULTS OF SOIL ANALYSIS FROM SOUTHERN EXCAVATION (see figure 3)

SAMPLE ID	SAMPLE DATE	OVM	BENZENE	TOTAL BTEX	TOTAL TPH
1 @ 8 ft.	11/29/00	0.0	-		-
2 @ 8 ft.	12/05/00	4.2	-	-	-
3 @ 8 ft.	11/29/00	0.0	-	-	-
4 @ 7ft.	11/29/00	866	NA	NA	NA
5 @ 12 ft.	11/29/00	173	NA	NA	NA
NMOCD STANDARDS		100	10	50	100

NOTES :

1)

OVM = Organic Vapor Meter (field instrument).

2) BTEX = benzene, toluene, ethylbenzene, & total xylenes.

3) TPH = total petroleum hydrocarbons.

4) NMOCD - New Mexico Oil Conservation Division.

5) Unit of data is parts per million or mg/kg.

6) Sample ID indicates depths collected below grade (approximated).

Blagg Engineering, Inc. December 20, 2000

DATA EVALUATION and INTERPRETATION

Hydrocarbon and General Chemistry Concentrations in Groundwater

Test results (Table 2 & Figure 5) from monitor wells #1 & #5M reveal concentrations exceeding NMWQCC 's regulatory standards for all BTEX constituents except for ethylbenzene in MW #5M. Benzene concentration from monitor wells #2 (48 ppb) & #4M (680 ppb) were also found to exceed the NMWQCC's regulatory standards. As evident in Table 1 & Figure 5, all other monitor wells sampled disclose non detectable levels at the laboratory reporting limits for BTEX. Finally, as of this writing, the BTEX results for MW #1M (predicted background well) and MW #2M (assumed source well) have not been received by BEI to include in this report.

The PAH, trace metals barium, iron, and manganese all exceeded NMWQCC's standards in MW #1. The trace metal manganese also exceed NMWQCC's standards in MW #4M. All other targeted NMWQCC's regulated constituents appear to meet the allowable concentrations.

Site Excavations

The abatement was limited to excavation of the areas suspected as the principal sources (Figure 3). Following pit excavation, the sidewalls were not visibly contaminated with the exception of the west sidewall and pit bottom in close proximity to groundwater of the southern excavation. The northern excavation dimensions were measured at approximately 26 feet in width by 31 feet in length by 15 feet in depth. The southern excavation dimensions were measured at approximately 29 feet in width by 35 feet in length by 13 feet in depth. The southern excavation dimensions were measured at approximately 29 feet in width by 35 feet in length by 13 feet in depth. The estimated soil removed and transported off-site to the private property of Hartman, Edward M. ET. AL. (located in Unit L, Section 10, T29N, R11W) were 450 & 475 cubic yards respectively. The soil was landfarmed and bermed to adhered to NMOCD's guidelines. Finally, as of this writing, the soil TPH & BTEX results from the pit bottom and west sidewall of the southern excavation have not been received by BEI to include in this report.

Hydrocarbon Plume Interpretation in Groundwater

Based on the data collected to date, it appears that the hydrocarbon impact in groundwater has been adequately defined. It is evident that the down gradient limit does not extend beyond MW #'s 6M, 7M, & 8M. A reasonable interpretation can be construed and BEI believes that the plume may cover as much as approximately 1.5 areal acres as illustrated in Figure 6. It is important to note that since there is no control towards the east and southeast direction in reviewing the schematic mentioned, the eastern edge of this interpretation is based on the current data including the assumption that groundwater flow will remain due south or toward the southwest direction.

SUMMATION

The following summarizes the findings of the investigation and the necessitated conditions confronting both MGI and the BSD;

- 1. Soil conditions on and off-site appear to be a silty sand phasing into a sand at greater depth.
- 2. Groundwater depths are approximately between 11.5 to 14 feet below grade in the immediate vicinity.
- 3. Groundwater flow direction was relatively due south during the November 6, 2000 sampling event.
- 4. Hydrocarbon concentrations in groundwater exceed NMWQCC's standards in MW #'s 1, 2, 4M, & 5M for at least one constituent of BTEX and PAH (MW #1).
- 5. Three (3) trace metals in MW #1 exceed NMWQCC's standards, and manganese was exceeded in MW #4M.
- 6. The hydrocarbon plume in groundwater appears to have been delineated according to the data collected.
- 7. Source area hydrocarbon contaminated soils above the groundwater interface appear to have been remediated by the excavation undertaken in November, 2000 (with the exception of the west sidewall of the southern excavation).
- 8. Due to the ongoing dirt construction activities for the BSD's facility, BEI performed the following site work on an expedited time schedule;
 - 1. MW #'s 1, 4M, & 5M were abandoned on November 16, 2000 as to not impede the contractors progress for the building foundation preparation work. The monitor wells were grouted with a 5% bentonite concrete slurry either within the 2 inch PVC piping or within the boring after the piping was removed. Reinstallation of those wells is planned, however the exact date is unknown and is pending upon construction time frames.
 - 2. As illustrated in Figure 7, a vapor extraction system was installed subgrade below the proposed building foundation on November 27, 2000. Because of the time restrictions and cost effectiveness, it was necessary to install this remediation system to insure no possible hydrocarbon vapors accumulate underneath the building's concrete slab once in place. Details of the materials used and construction details are depicted on Figure 7.

PROPOSED RECLAMATION PLAN

Based on the results of the site investigation, BEI believes that air sparging is the best available technology for site remediation. Soil conditions above and below the water table interface appear to be ideal for allowing volatilization of residual soil and groundwater hydrocarbons. Due to the pending BSD school building construction it will not be feasible or desirable to install air sparge points in the immediate vicinity of the proposed structure. Therefore, BEI proposes installation of air sparge points within the contamination plume on the Hartman No. 1E well site and along the Manana/BSD property line only. A vapor extraction system has already been installed below the proposed footprint of the school building (Figure 7) to limit the potential for vapor accumulation below the building concrete slab. Additional vapor extraction will be installed in the area of air sparging if monitoring indicates that vapors are accumulating in subsurface soils.

Blagg Engineering, Inc. December 20, 2000

Air Sparge System

The proposed air sparge system will be constructed using normal hollow stem auger drilling equipment. The proposed layout of the sparge system will include nine (9) air sparge points (Figure 8). The sparge points will be installed using 2-inch diameter PVC piping with a 1.5 foot screened interval located between approximately 10 - 11.5 feet below the water table surface (Figure 9). The setting depth of the sparge points has been designed to allow for a substantial deviation in the water table elevation. An expansion of the system can be accomplished in the future if adequate remediation of groundwater is not achieved.

Air injection into the sparge points will be from a typical oilfield compressor capable of moving approximately 100 mcfd of ambient air at the anticipated system back pressure (< 15 psig). This will allow for between 5 and 10 cfm of air into each sparge point. Actual injection rates can be varied depending on engine RPM and installation of a relief valve.

Vacuum extraction points, as indicated on Figure 10, will be installed in the event that monitoring of the school building vapor extraction system exhibits the collection of volatile gases. The extraction points will consist of slotted 2-inch PVC piping placed in the vadose zone between approximately 4' - 6' above the water table interface. Vacuum extraction from the extraction points, and from the building vapor extraction system, will be accomplished with a typical regenerative blower. The blower will be sized depending on anticipated extraction requirements following startup of the sparging system.

Monitoring Program

Site groundwater monitor wells will be monitored on a quarterly basis following standard NMOCD protocol. This will include sampling select wells in the monitoring system on a quarterly basis and testing for BTEX constituents following U.S. EPA Method 8260. Annually, certain wells will be tested for PAH constituents following U.S. EPA Method 8310 and for select metals analysis based on historical trends.

Vapors from the building monitoring system will be tested weekly using a calibrated organic vapor meter photo-ionization detector (PID) following system startup. In the event that volatile vapors are detected monitoring will be initiated on a daily basis. If vapors are detected to exceed 100 ppm deflection on the PID then samples will be collected for laboratory determination of BTEX concentration. If no volatile gases from the building vapor monitor system are detected following the first quarter of monitoring, then vapor monitoring will be placed on a monthly basis until the air sparge system is taken out of service.

Reporting Schedule

Following receipt of analytical test results from the annual sample event, a report will prepared for NMOCD review. This report will contain the analytical results of each quarterly sample event including site diagrams and maps indicating the extent of groundwater contamination and flow gradient. Field sampling parameters will also be included in the report. Recommendations for future monitoring or proposed revisions to the reclamation plan will be included.

Reclamation Termination

Blagg Engineering, Inc. December 20, 2000

Reclamation will be terminated when each of the site groundwater monitor wells reach NMWQCC standards or are below background well levels for contaminates of concern for a minimum of four consecutive sampling events. In the event that site remediation can not be achieved, alternative methods for site clean up will be proposed. Such alternative methods could include expansion of the sparge system, bioremediation technologies or natural attenuation. In the event that reclamation may not be feasible using best available technology a revised closure standard to the NMWQCC may be requested.

LIMITATIONS AND CLOSURE

The scope of Blagg Engineering, Inc. services was limited to monitor well installations, sampling of the designated monitor wells, measurements of the standard field parameters in those wells, and soil sampling associated with the boring advancements and on-site excavations. All work has been performed in accordance with generally accepted professional practices in geotechnical/ environmental engineering and hydrogeology.

This Remediation Plan has been prepared for the exclusive use of Manana Gas, Inc. as it pertains to their Nancy Hartman #1E facility located within the NE/4 of the NE/4 of Section 22, Township 29N, Range 11W, NMPM, San Juan County, New Mexico.

I certify that I am personally familiar with the investigative work at the site, the site conditions, and the reported information as described and this document.

Respectfully Submitted, BLAGG ENGINEERING, INC.

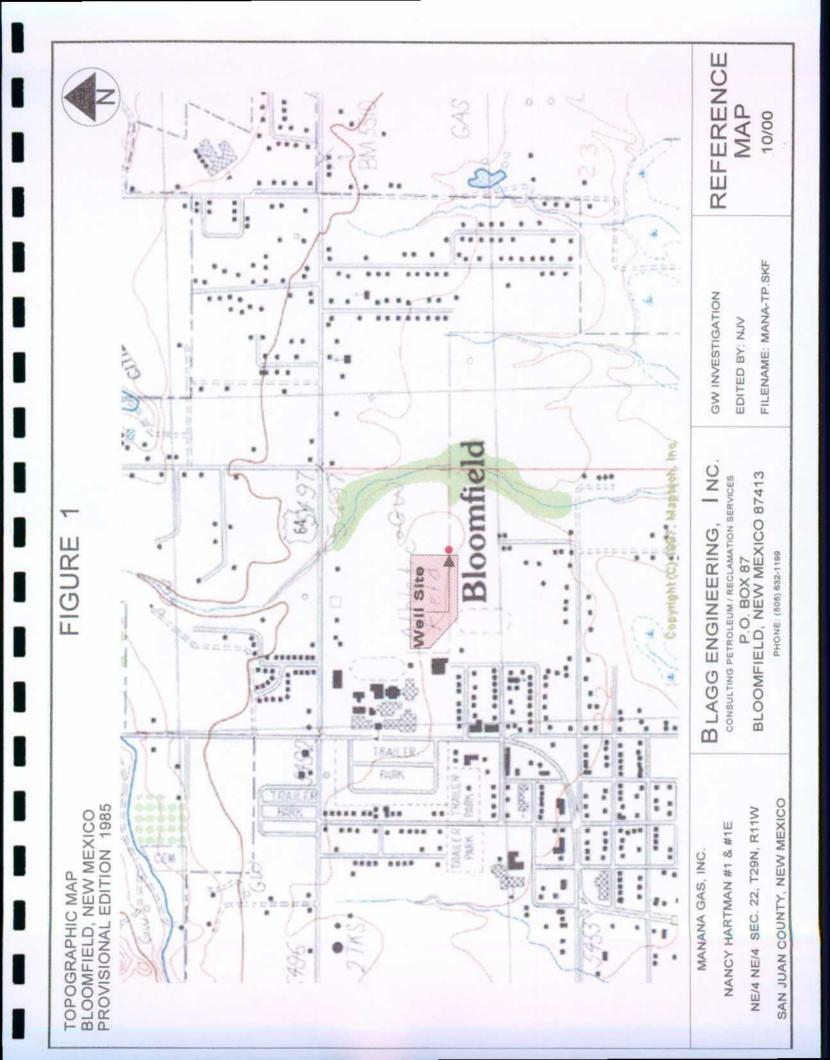
lion

Nelson Velez Staff Geologist

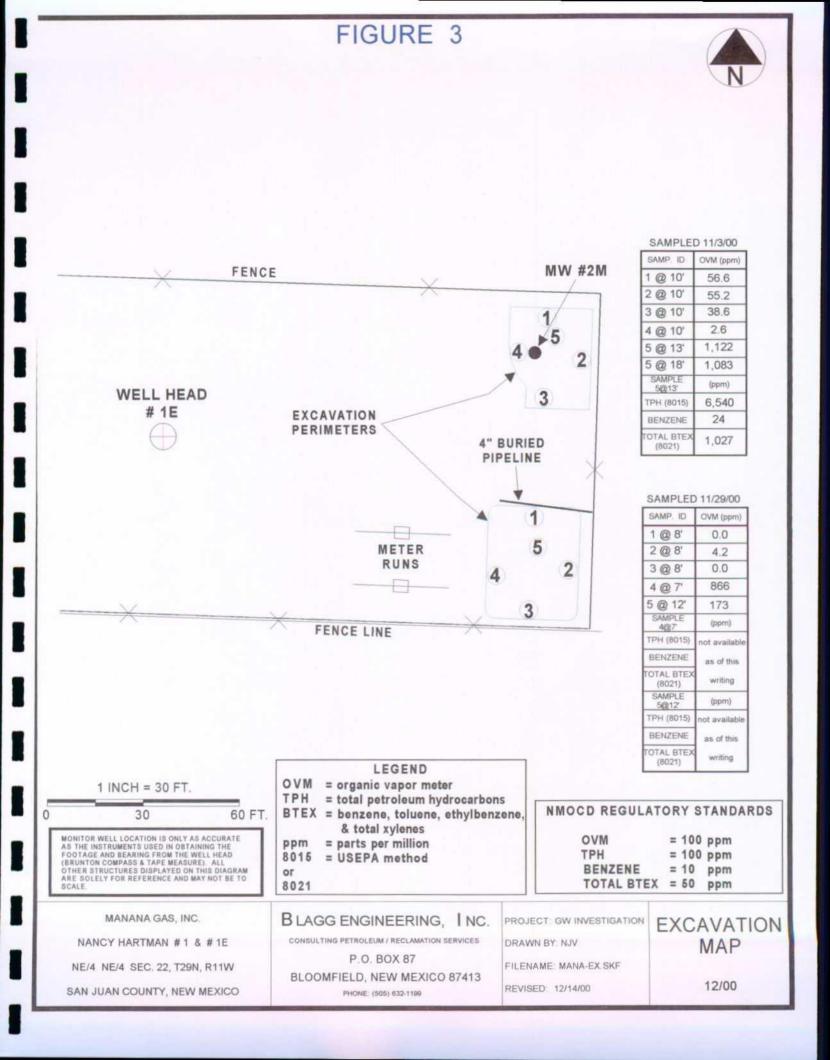
Reviewed By:

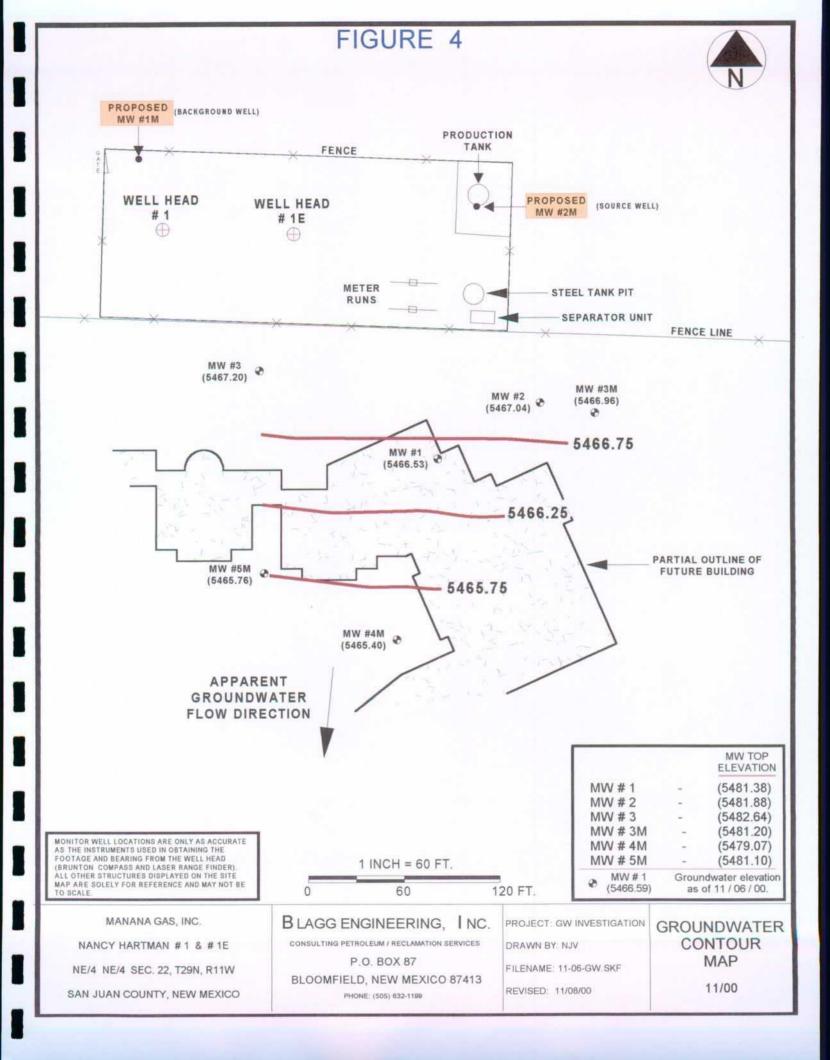
Jeffrey C. Blagg, P.E.

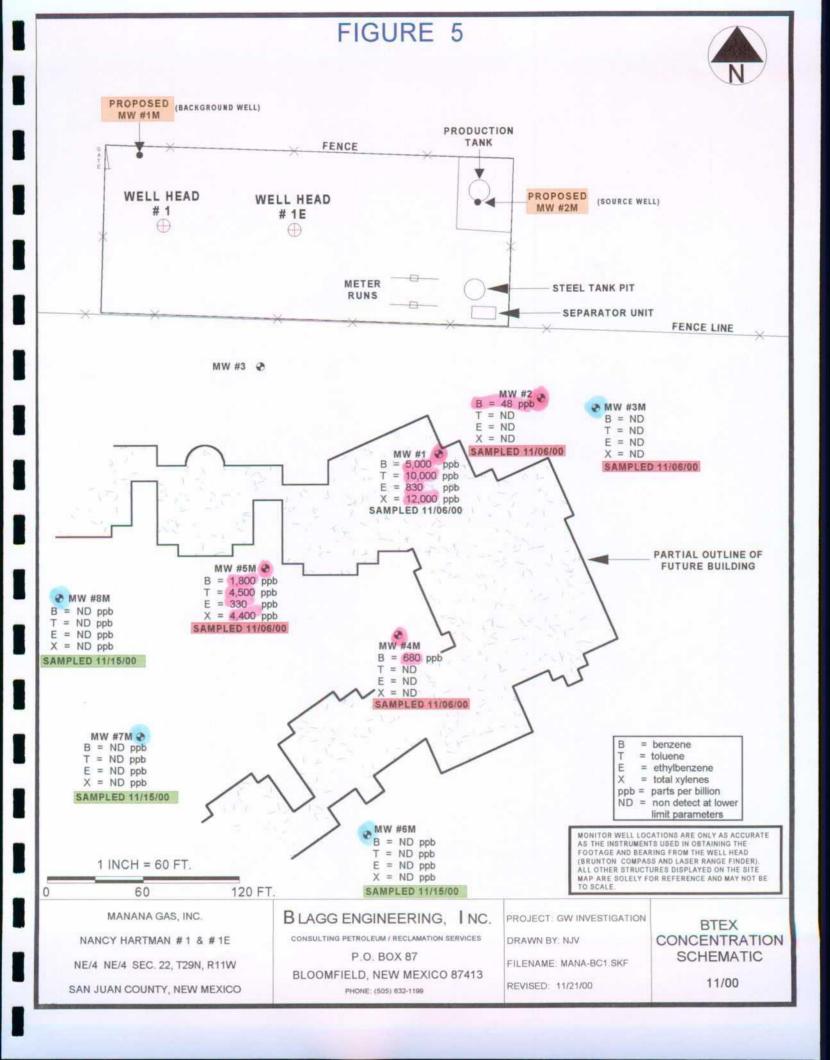
// Jeffrey C. Blagg, P.E. / President

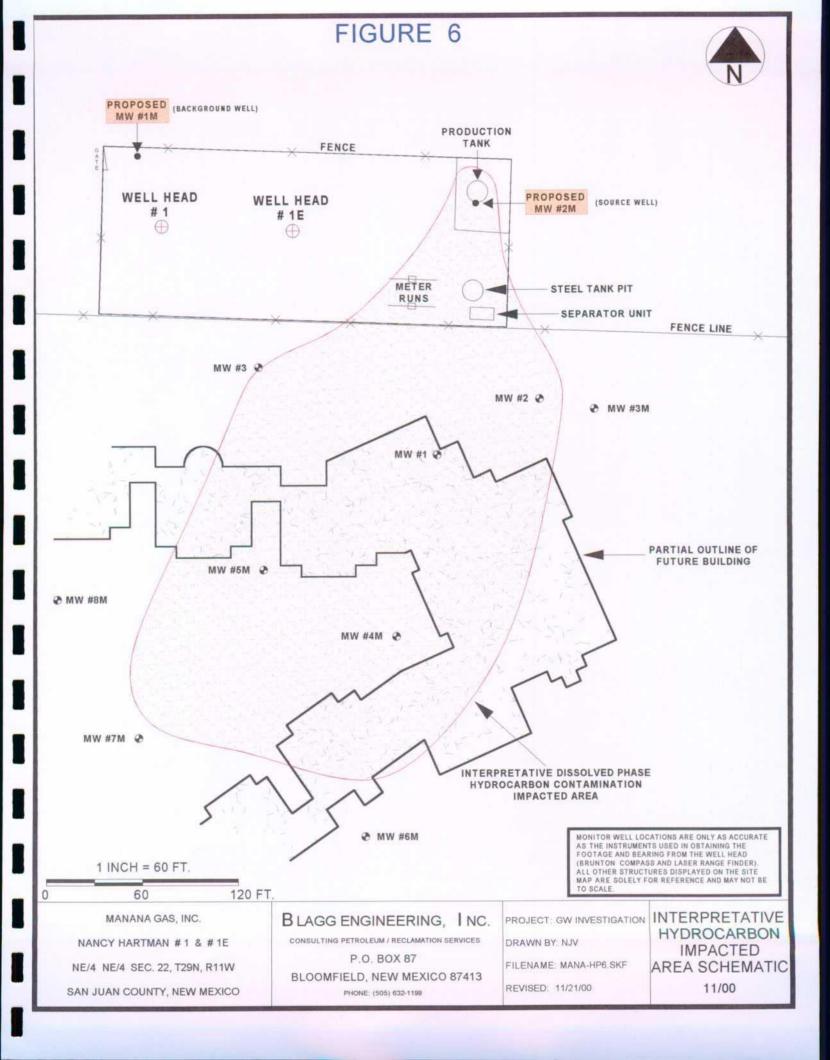

Appendices

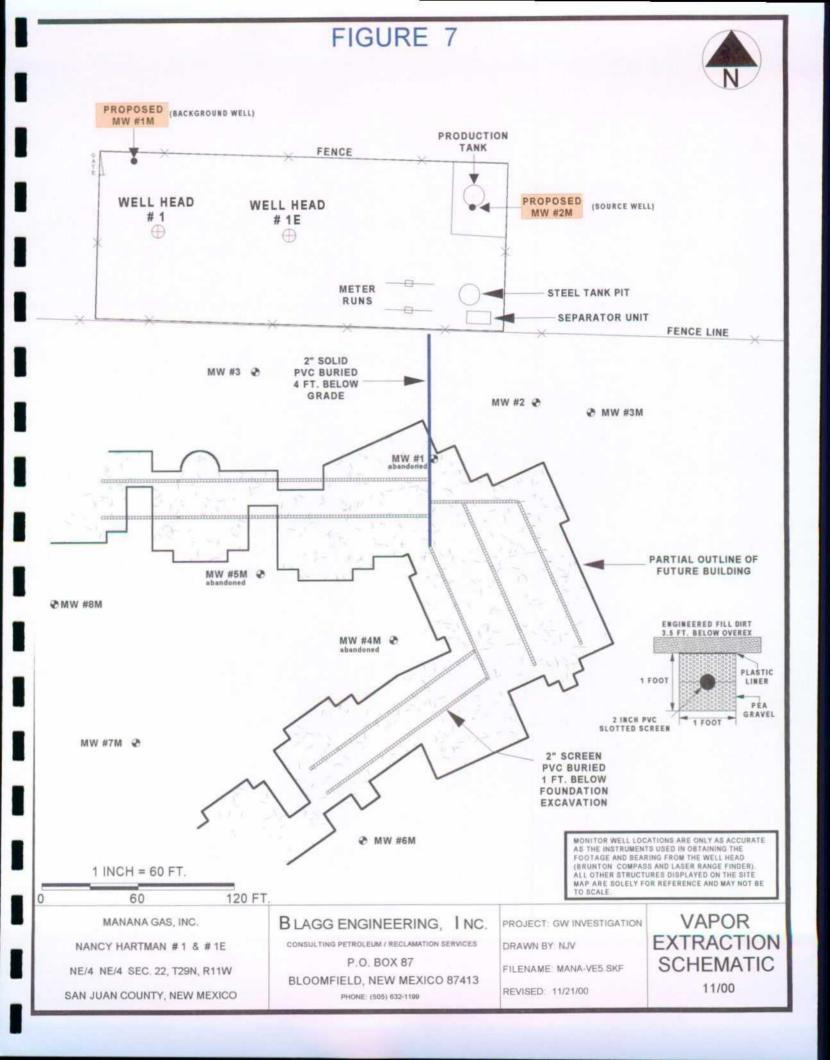
NV/nv

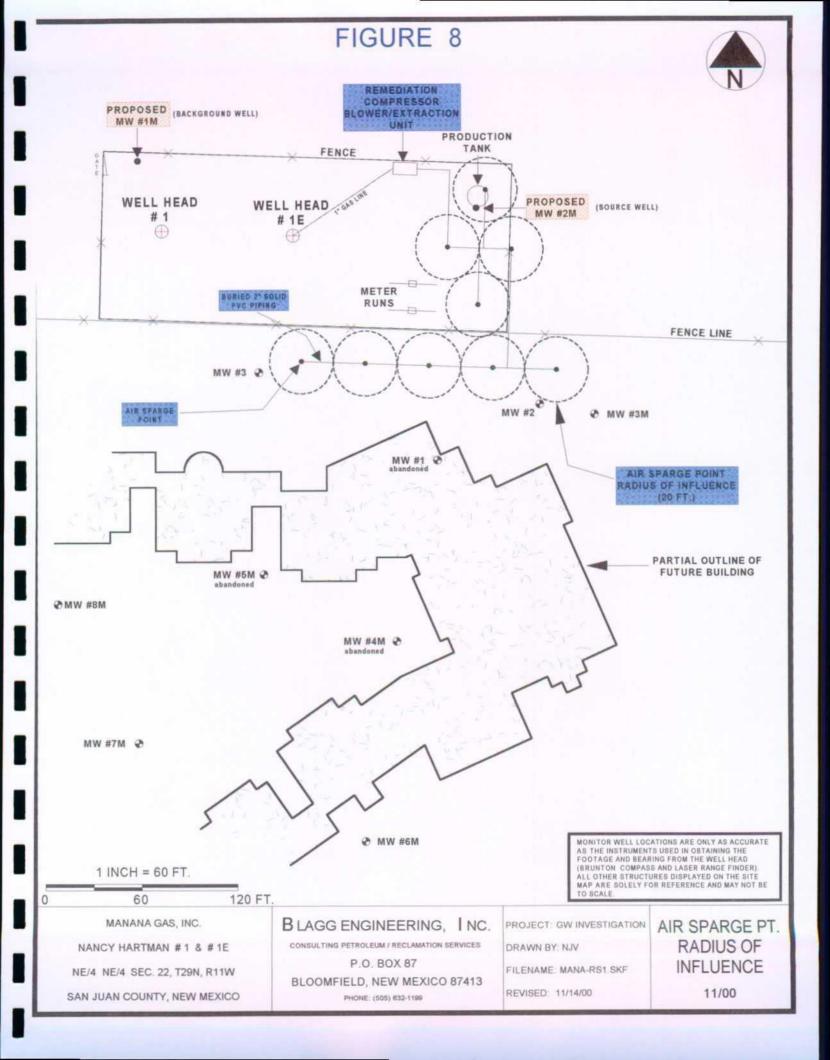

MGI-RP.RPT

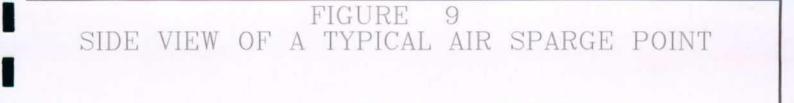

LIST OF FIGURES

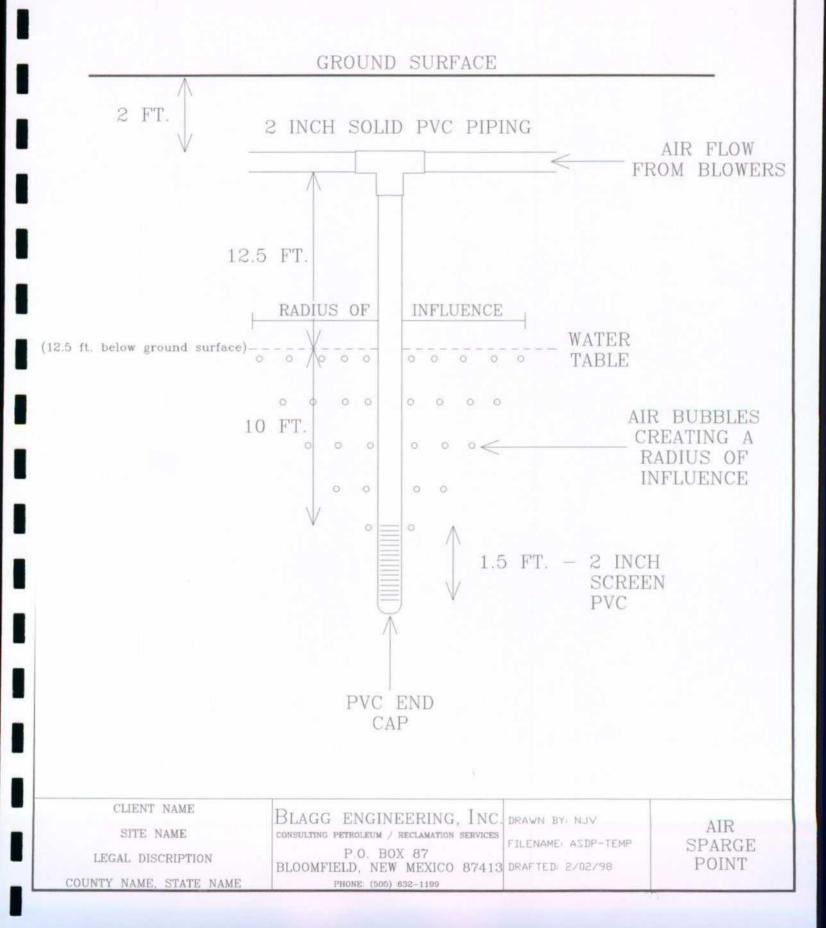

AREA MAP	FIGURE 1
SITE MAP	FIGURE 2
EXCAVATION SCHEMATIC	FIGURE 3
GROUNDWATER CONTOUR MAP	FIGURE 4
BTEX CONCENTRATION SCHEMATIC	FIGURE 5
HYDROCARBON PLUME SCHEMATIC	FIGURE 6
VAPOR EXTRACTION SCHEMATIC	FIGURE 7
AIR SPARGE SYSTEM SCHEMATIC	FIGURE 8
AIR SPARGE POINT SCHEMATIC	FIGURE 9
REMEDIATION SYSTEM SCHEMATIC	FIGURE 10

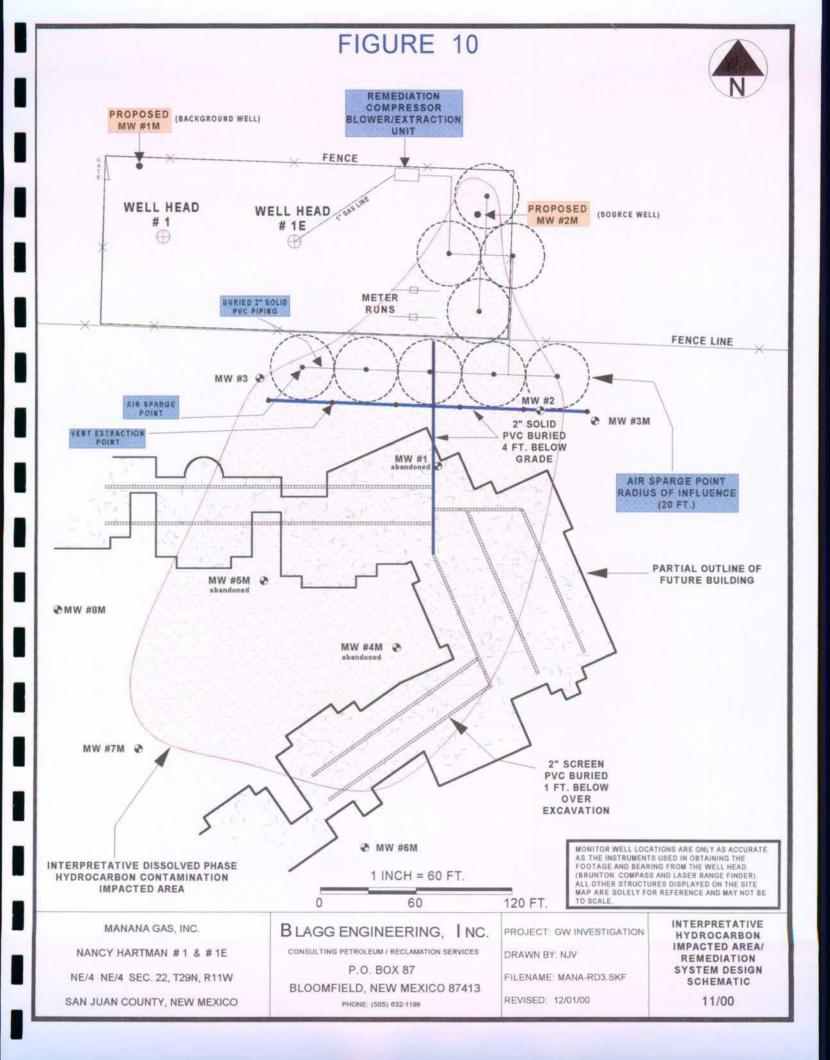












APPENDIX A

GROUNDWATER MONITOR WELL
DEVELOPMENT & SAMPLING PROCEDURES 1 ST PAGE
MONITOR WELL DRILLING &
INSTALLATION PROCEDURES 1 ST PAGE
MONITOR WELL SURVEY NOTES 1 st PAGE
SURVEY NOTES - 11/03/00, 11/14/00, 12/15/00
MONITOR WELL DEVELOPMENT /SAMPLING DATA SHEETS
MONITOR WELL DEVELOPMENT SHEETS
MONITOR WELL DETAIL SCHEMATICS (MW #1M - #8M)
2001 TENTATIVE MONITOR WELL SAMPLING SCHEDULE

Blagg Engineering, Inc. December 20, 2000

Groundwater Monitor Well Development & Sampling Procedures:

For the initial sampling, all monitor wells were developed by bailing with new disposable bailers until the field parameters had achieved static equilibrium and/or a minimum of three (3) well volumes had been removed prior to the day of sampling (see Monitor Well Development Data sheet within this Appendix). On the day of sampling, each monitor well was again developed (same procedure just noted) and groundwater samples were collected. The samples were collected using new disposable bailers at each monitor well.

BTEX samples were collected using laboratory supplied new 40 ml VOA vials preserved with hydrochloric acid (HCl); PAH in a new 1 liter amber coated glass container with teflon closure (MW #1 only), anion samples in laboratory supplied and cleaned 500 ml plastic containers [2 samples collected on 12/11/00 were preserved with sulfuric acid (H_2SO_4) and 2 without]; and trace metals in laboratory supplied and cleaned 500 ml plastic containers preserved with nitric acid. A trip blank sample was included with the sample set as a quality control screening procedure and was analyzed per USEPA method 8260. All laboratory samples were stored in a cooler with blue ice pack(s) and transported the same day to a qualified laboratory via United Parcel Service (UPS) overnight delivery.

Waste generated during monitor well sampling and development was disposed of utilizing the separator tank pit located on the well site. The laboratory reports, quality assurance/quality control (QA/QC), and Chain-of-Custody Records are presented in Appendix C.


Monitor Well Drilling & Installation Procedures:

A CME truck mounted drill rig with five foot sections of six inch outer diameter auger flights was utilized for the groundwater monitor well installations. The boring advancements were reamed to a depth of approximately 10-12 feet below the groundwater surface. The inner rods and drill bit was then removed. The monitor well, [constructed of new, threaded coupling Schedule 40 PVC casing, fifteen feet of 0.010 inch slotted screen (ideally, 10' below water level, 5' above water level), and a threaded end cap], was then placed within the hollow stem augers. Once in place, a sand filter pack with 8-12 mesh grade Colorado silica sand was placed between the piping and boring annular to approximately three feet above the top slot of the PVC screen portion. The remaining portion, approximately four to five feet, was filled with a bentonite seal and hydrated above the filter pack to surface grade. The monitor well was secured with a locking end cap and a steel protector cover and then pad locked. All augers, drill rods, and bits were pressure cleaned prior to drilling and between borings to minimize the possibility of cross-contamination.

Monitor Well Survey Notes:

The surveying of the monitor well casing tops was performed by BEI utilizing a standard surveyor level and hand held measuring rod. The following notes show the calculated measurements for each monitor well surveyed.

WELL TOP FLUTTING WELL TOP SWELT TOPPOND IT - 22 NV ROD NV ROD NW ROD NW H = 5481.38 $MW^{H} = 5481.38$ $MW^{H} = 5481.38$ $MW^{H} = 5481.88$ $MW^{H} = 5481.88$	
55 5481.38 0.97 5481.38 0.27 5481.38 1.65 5481.20 3.78 5479.07 1.75 5431.10 1.47 5481.10	

and the second second

MONITOR WELL DEVELOPMENT / SAMPLING DATA

CLIENT: MANANA GAS, INC.

CHAIN-OF-CUSTODY # :

NA

NANCY HARTMAN #1E UNIT A, SEC. 22, T29N, R11W LABORATORY (S) USED : HALL ENVIRONMENTAL

SAMPLER: NJV

Date: November 6, 2000

Filename .	11-06-00	.WK4	<u></u>		PR	OJECT	MANAGER :	J	СВ
WELL	WELL	WATER	DEPTH TO	TOTAL	SAMPLING	pН	CONDUCT	TEMP.	VOLUME
#	ELEV.	ELEV.	WATER	DEPTH	TIME	·	(umhos)	(celcius)	PURGED
	(ft)	(ft)	(ft)	(ft)					(gal.)
3M	5481.20	5466.96	14.24	23.50	-	7.14	829	13.0	INITIAL
					-	7.09	890	13.5	4.00
					-	7.09	937	13.7	4.25
					-	7.10	916	13.9	4.50
					-	7.09	902	15.3	4.75
					1205	7.10	901	14.8	5.00
4M	5479.07	5465.40	13.67	25.00	-	6.92	1,579	12.9	5.00
					-	6.94	1,546	12.6	5.25
					-	6.92	1,500	13.0	5.50
					-	6.90	1,496	13.6	5.75
					1100	6.92	1,512	13.4	6.00
5M	5481.10	5465.76	15.34	25.00	-	7.04	1,073	18.4	INITIAL
					-	7.04	1,080	16.3	4.00
					-	7.09	990	20.8	4.25
					-	7.03	1,011	18.0	4.50
					-	7.02	1,012	17.7	4.75
					1255	7.02	1,010	17.9	5.00
1	5481.38	5466.59	14.79	22.36	-	6.73	1,615	13.7	INITIAL
				•	-	6.77	1,759	13.9	3.25
	 				-	6.81	1,765	13.5	3.50
						6.84	1,783	12.1	3.75
		 			1440	6.83	1,778	11.5	4.00
2	5481.88	5467.04	14.84	22.71	-	6.92	1,144	14.4	INITIAL
			ļ		-	6.99	1,222	11.9	3.25
					-	6.97	1,142	11.7	3.50
			ļ		-	6.97	1,149	12.6	3.75
					1340	7.03	1,136	12.4	4.00
3	5482.64	5467.20	15.44	23.14	-	-	-	-	-

NOTES: Volume of water purged from well prior to sampling; V = pi X r2 X h X 7.48 gal./ft3) X 3 (wellbores). (i.e. 2" MW r = (1/12) ft. h = 1 ft.) (i.e. 4" MW r = (2/12) ft. h = 1 ft.)

Ideally a minimum of three (3) wellbore volumes:

2.00 " well diameter = 0.49 gallons per foot of water.

Comments or note well diameter if not standard 2 ".

Excellent recovery in all MW's developed and sampled. Faint hc odor detected in MW #5M, hc odor detected during development/purging of MW #1.

MONITOR WELL DEVELOPMENT / SAMPLING DATA

CLIENT: MANANA GAS, INC.

CHAIN-OF-CUSTODY # :

NANCY HARTMAN #1E

LABORATORY (S) USED : HALL ENVIRONMENTAL

SAMPLER :

NA

NJV

UNIT A, SEC. 22, T29N, R11W

Date: November 15, 2000

Filename : 11-15-00.WK4			PROJECT MANA			R:JCB			
WELL	WELL	WATER	DEPTH TO	TOTAL	SAMPLING	pН	CONDUCT	TEMP.	VOLUME
#	ELEV.	ELEV.	WATER	DEPTH	TIME		(umhos)	(celcius)	PURGED
	(ft)	(ft)	(ft)	(ft)					(gal.)
1	5481.38	5466.50	14.88	22.36	-	-	-	-	-
2	5481.88	5466.93	14.95	22.71	-	-	-	-	-
3	5482.64	5467.25	15.39	23.14	-	-	-	-	
3M	5481.20	5466.85	14.35	23.50	-	-	-	-	-
4M	5479.07	5465.36	13.71	25.00	-	-	-	-	-
5M	5481.10	5465.74	15.36	25.00	-	-	-	-	-
6M	5478.38	5464.11	14.27	24.00	-	7.41	1,200	11.00	INITIAL
					-	7.55	1,300	12.11	3.00
					-	7.50	1,300	12.61	4.50
					-	7.45	1,300	13.00	4.75
					1110	7.43	1,300	13.11	5.00
7M	5478.76	5464.62	14.14	19.00	-	7.44	1,000	13.00	INITIAL
					-	7.57	1,100	13.11	1.00
					-	7.45	1,100	13.61	2.00
					-	7.40	1,100	13.39	2.50
					-	7.24	1,200	13.61	2.75
					1220	7.23	1,200	13.50	3.00
8M	5480.16	5465.49	14.67	25.00	-	7.52	1,000	13.11	INITIAL
					-	7.61	1,000	13.78	1.75
					-	7.75	900	13.22	3.50
					-	7.65	900	13.11	5.25
					-	7.64	900	13.17	5.50
					1335	7.68	900	13.00	5.75

NOTES: Volume of water purged from well prior to sampling; V = pi X r2 X h X 7.48 gal./ft3) X 3 (wellbores). (i.e. 2" MW r = (1/12) ft. h = 1 ft.) (i.e. 4" MW r = (2/12) ft. h = 1 ft.)

Ideally a minimum of three (3) wellbore volumes:

2.00 " well diameter = 0.49 gallons per foot of water.

Comments or note well diameter if not standard 2 ".

Excellent recovery in MW's #7M & #8M. Fair recovery in MW #6M.

Collected USEPA Method 8260 from MW #'s 6M, 7M, & 8M only.

MONITOR WELL DEVELOPMENT / SAMPLING DATA

CLIENT: MANANA GAS, INC.

CHAIN-OF-CUSTODY # :

NA

NANCY HARTMAN #1E

LABORATORY (S) USED : HALL ENVIRONMENTAL

SAMPLER: NJV

UNIT A, SEC. 22, T29N, R11W

Date: December 11, 2000

Filename : 12-11-00.WK4				PROJECT MANAG			:J C B		
WELL	WELL	WATER	DEPTH TO	TOTAL	SAMPLING	ρН	CONDUCT	TEMP.	VOLUME
#	ELEV.	ELEV.	WATER	DEPTH	TIME		(umhos)	(celcius)	PURGED
	(ft)	(ft)	(ft)	(ft)					(gal.)
1M	5484.83	5468.83	16.00	24.00		7.30	1,200	12.22	INITIAL
					-	7.31	1,300	13.44	3.00
					-	7.33	1,200	13.78	3.25
					-	7.36	1,200	13.33	3.50
					-	7.37	1,200	13.28	3.75
					1300	7.37	1,200	13.39	4.00
2M	5484.28	5467.79	16.49	23.50	-	7.29	1,300	12.22	INITIAL
					-	7.34	1,300	11.89	2.75
					-	7.35	1,300	12.11	3.00
					-	7.36	1,300	12.11	3.25
					1400	7.34	1,300	12.00	3.50

NOTES: Volume of water purged from well prior to sampling: V = pi X r2 X h X 7.48 gal./ft3) X 3 (wellbores). (i.e. 2" MW r = (1/12) ft. h = 1 ft.) (i.e. 4" MW r = (2/12) ft. h = 1 ft.)

Ideally a minimum of three (3) wellbore volumes:

2.00 " well diameter = 0.49 gallons per foot of water.

Comments or note well diameter if not standard 2".

Excellent recovery in MW's #1M & #2M. Collected USEPA method 8260, anion,

& ICAP metals from MW # 1M, collected USEPA method 8260 from MW # 2M.

MONITOR WELL DEVELOPMENT DATA

CLIENT : MANANA GAS, INC.

CHAIN-OF-CUSTODY # :

NANCY HARTMAN #1E UNIT A. SEC. 22, T29N, R11W LABORATORY (S) USED :

Date: November 3, 2000

Filename : 11-03-00.WK4

WELL TOTAL SAMPLING CONDUCT VOLUME WELL WATER DEPTH TO рH FREE TIME # ELEV. ELEV. WATER DEPTH (umhos) PURGED PRODUCT (ft) (ft) (ft) (ft) (gal.) (ft) **3M** 5481.20 14.28 23.50 7.80 500 INITIAL 5466.92 -7.21 900 2.00 --7.21 900 2.50 7.07 900 3.00 -7.05 900 3.50 -_ 7.04 900 4.00 _ 7.07 900 4.50 --**4**M 5479.07 5465.36 13.71 25.00 _ 7.03 1,400 4.00 _ 1,500 6.92 4.50 --6.94 1,500 5.00 _ _ 1,400 6.92 5.50 -_ 5M 5481.10 5465.69 15.41 25.00 6.97 1,000 INITIAL -_ 1,100 7.13 -2.00 -7.07 1,100 2.50 _ -7.10 -1,100 3.00 -7.09 1,100 3.50 -_ 7.08 1,100 4.50 --7.09 1,100 5.00 -_ 1 5481.38 5466.53 14.85 22.36 -----2 14.90 22.71 5481.88 5466.98 3 5482.64 5467.10 15.54 23.14 -----

NOTES: Volume of water purged from well prior to sampling; V = pi X r2 X h X 7.48 gal./ft3) X 3 (wellbores).

(i.e. 2" MW r = (1/12) ft. h = 1 ft.) (i.e. 4" MW r = (2/12) ft. h = 1 ft.)

Ideally a minimum of three (3) wellbore volumes:

2.00 " well diameter = 0.49 gallons per foot of water.

Comments or note well diameter if not standard 2 ".

Excellent recovery in all MW's developed.

SAMPLER :_____

PROJECT MANAGER :

JCB

NJV

MONITOR WELL DEVELOPMENT DATA

CLIENT : MANANA GAS, INC.

CHAIN-OF-CUSTODY # :_____

NANCY HARTMAN #1E

UNIT A, SEC. 22, T29N, R11W

LABORATORY (S) USED :

SAMPLER :

NJV J C B

Date :	November	14,	2000

Filename .	<u>11-14-00 :</u>	.WK4			PR	OJECT	MANAGER :	J	С В
WELL	WELL	WATER	DEPTH TO	TOTAL	SAMPLING	pН	CONDUCT	TEMP.	VOLUME
#	ELEV.	ELEV.	WATER	DEPTH	TIME		(umhos)	(celcius)	PURGED
	(ft)	(ft)	(ft)	(ft)				_	(gal.)
6M	5478.38	5464.14	14.24	24.00	-	7.30	1,100	15.17	INITIAL
					-	7.30	1,100	15.00	1.50
					-	7.35	1,100	14.28	3.00
					-	7.56	1,300	13.61	4.50
					-	7.28	1,300	14.44	4.75
					-	7.28	1,300	14.67	5.00
					-	7.28	1,300	14.56	5.25
7M	5478.76	5464.66	14.10	19.00	-	7.37	1,000	15.50	INITIAL
					-	7.41	1,100	15.22	1.00
					-	7.47	1,100	14.83	2.00
					-	7.45	1,100	14.78	2.50
					-	7.38	1,100	14.89	2.75
					-	7.37	1,100	14.94	3.00
8M	5480.16	5465.52	14.64	25.00	-	7.37	1,000	14.89	INITIAL
					-	7.35	1,000	15.00	1.75
					-	7.36	900	14.00	3.50
					-	7.45	900	14.11	5.25
					-	7.55	1,000	13.89	5.50
					-	7.54	900	14.00	5.75

NOTES: Volume of water purged from well prior to sampling; V = pi X r2 X h X 7.48 gal./ft3) X 3 (wellbores). (i.e. 2" MW r = (1/12) ft. h = 1 ft.) (i.e. 4" MW r = (2/12) ft. h = 1 ft.)

Ideally a minimum of three (3) wellbore volumes:

2.00" well diameter = 0.49 gallons per foot of water.

Comments or note well diameter if not standard 2".

Excellent recovery in MW's #7M & #8M. Fair recovery in MW #6M.

MONITOR WELL DEVELOPMENT DATA

CLIENT: MANANA GAS, INC.

CHAIN-OF-CUSTODY # :

NANCY HARTMAN #1E

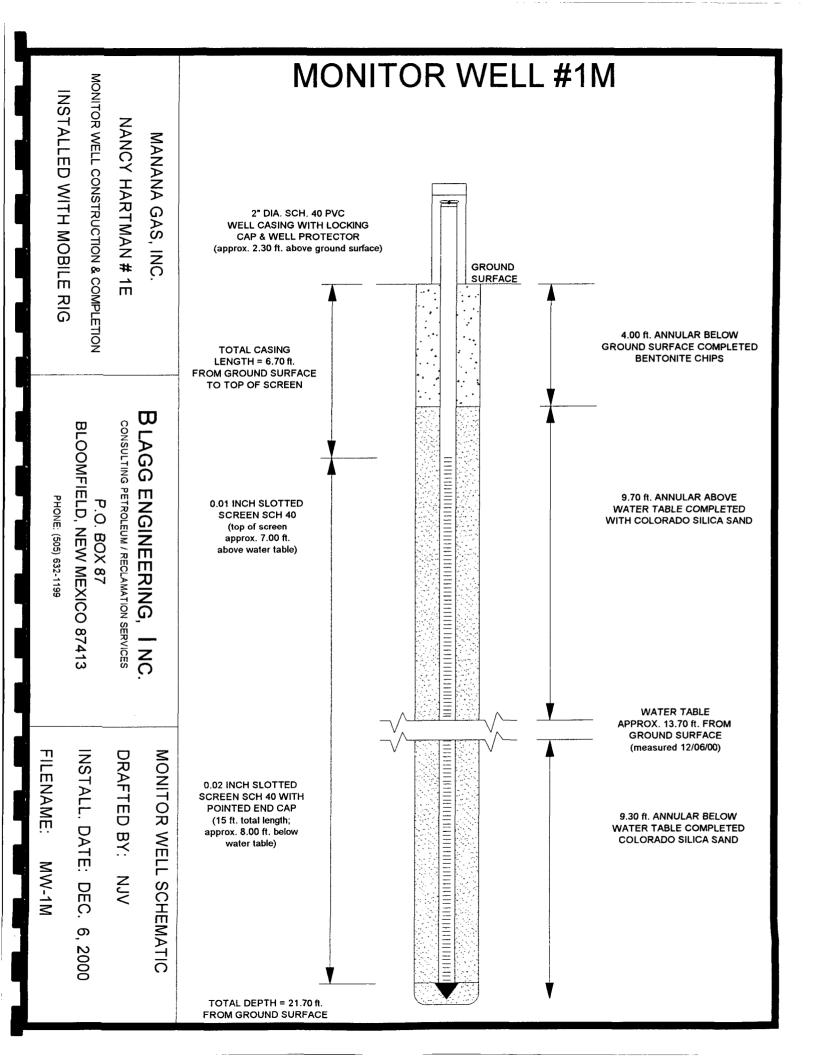
LABORATORY (S) USED :

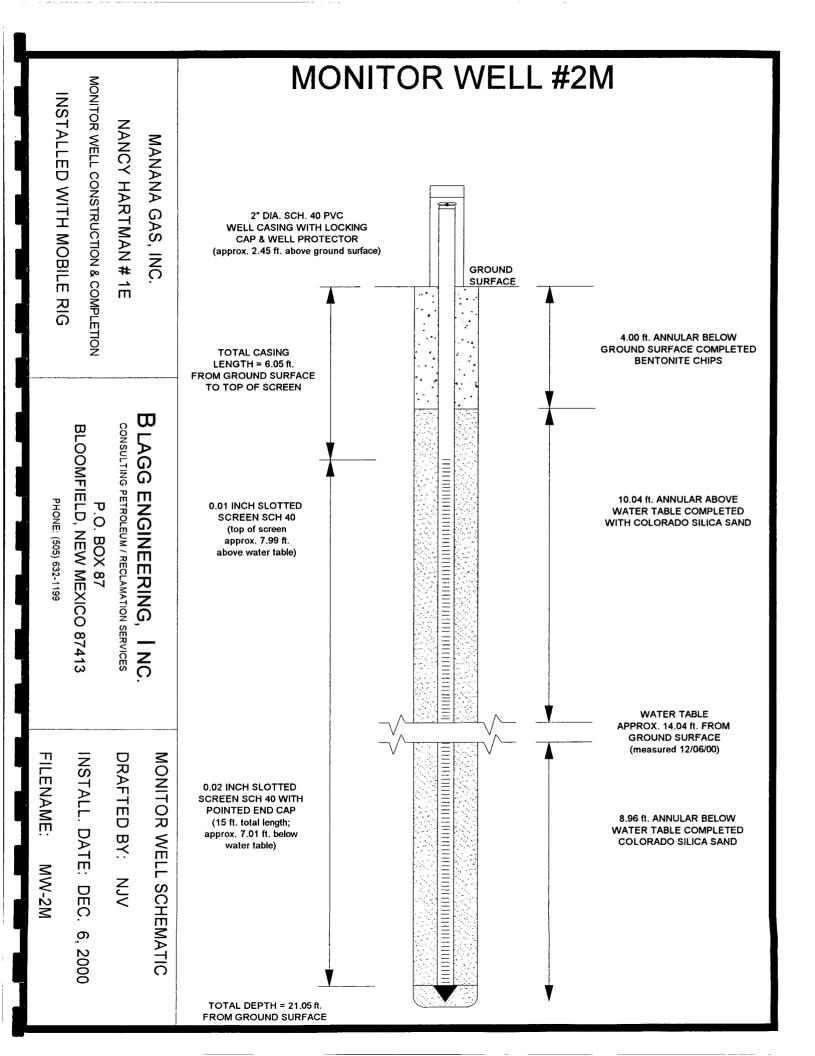
SAMPLER: NJV

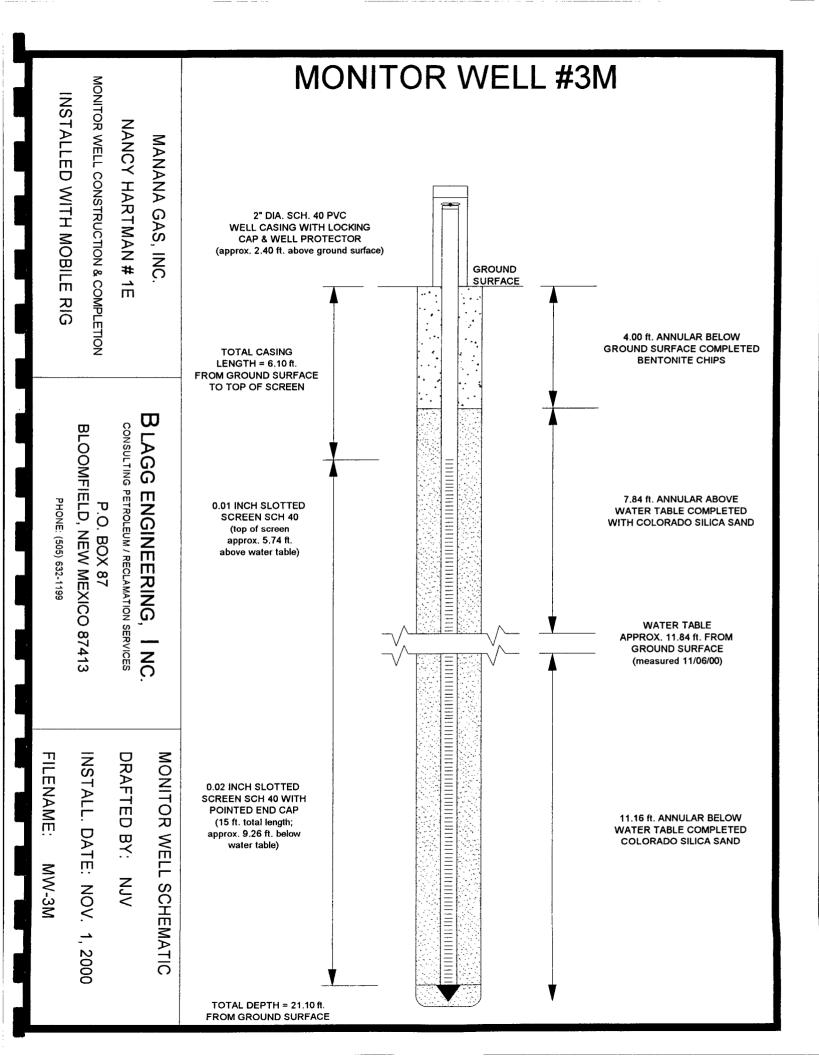
UNIT A, SEC. 22, T29N, R11W

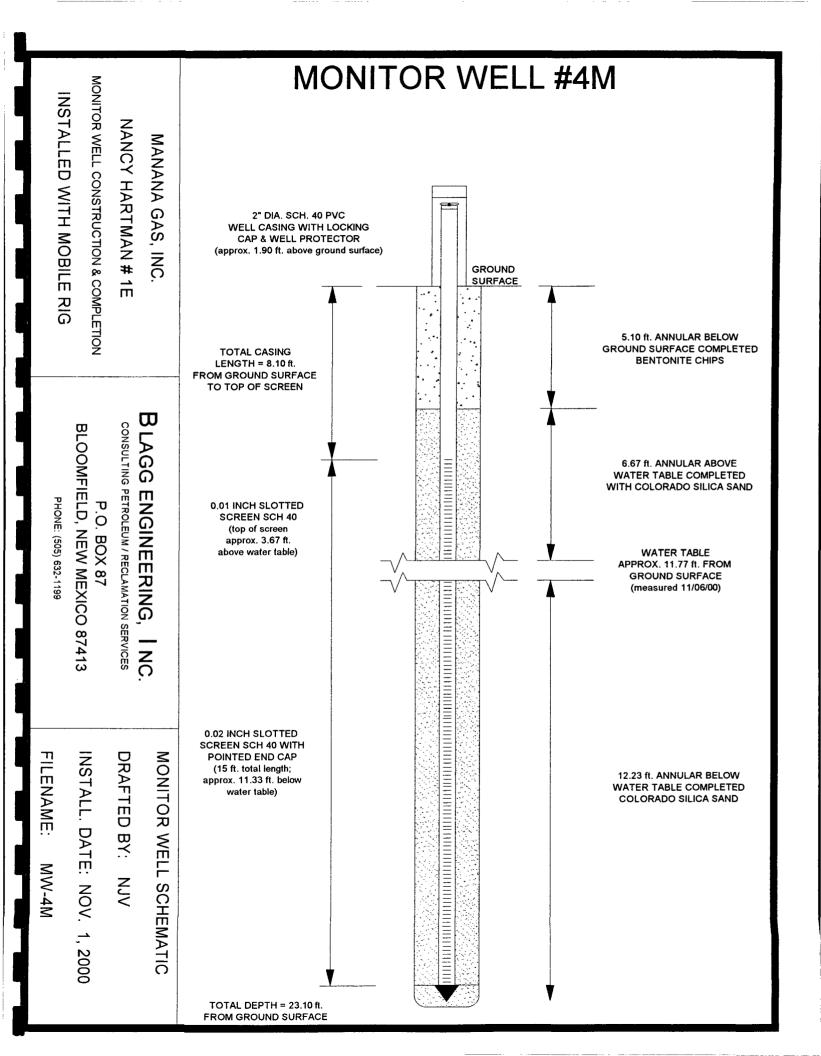
Date: December 7, 2000

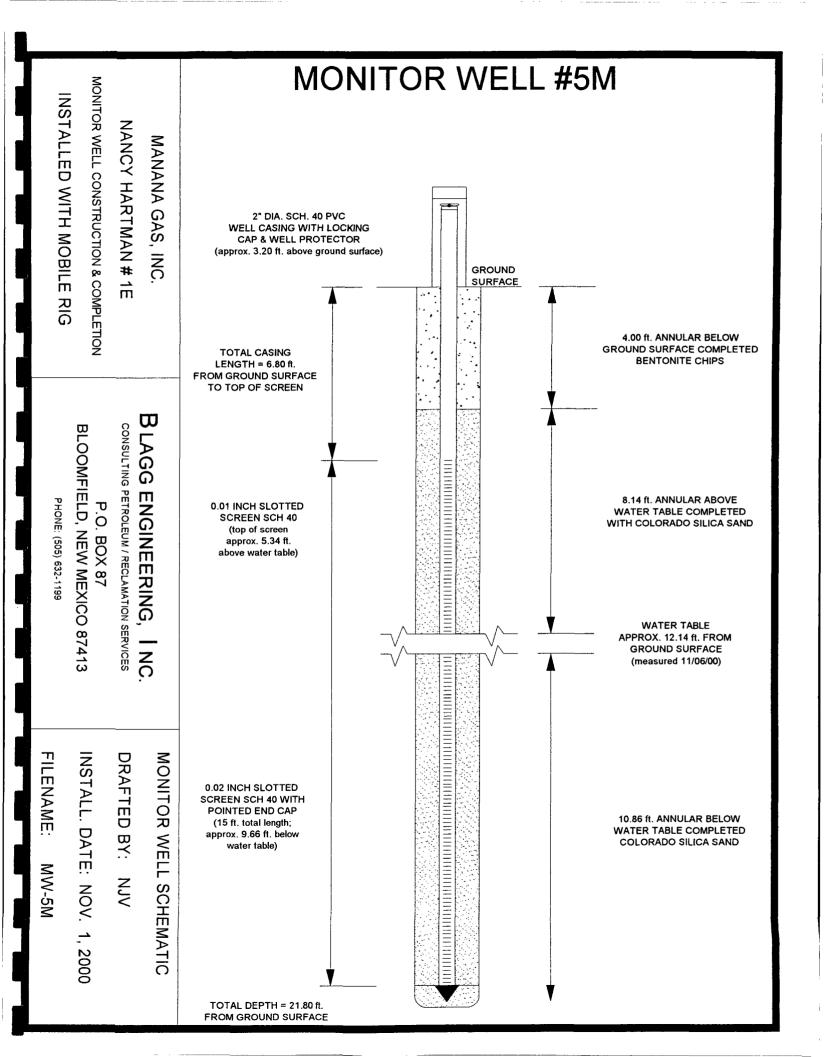
Filename : 12-07-00.WK4			PR	OJECT	MANAGER :	J C B			
WELL	WELL	WATER	DEPTH TO	TOTAL	SAMPLING	pН	CONDUCT	TEMP.	VOLUME
#	ELEV.	ELEV.	WATER	DEPTH	TIME		(umhos)	(celcius)	PURGED
	(ft)	(ft)	(ft)_	(ft)					(gal.)
1	5481.38		-	22.36	-	-	-	-	-
2	5481.88		-	22.71	-	-	-		-
3	5482.64		-	23.14	-	-	-	-	-
1M	_		15.84	24.00	-	7.45	1,300	-	INITIAL
					-	7.40	1,300	-	3.00
					-	7.41	1,200	-	3.25
					-	7.40	1,200	-	3.50
					-	7.44	1,300	-	3.75
					-	7.45	1,300	-	4.00
					-	7.44	1,300	-	4.25
2M			16.39	23.50	-	7.52	1,400	-	INITIAL
					-	7.39	1,600	-	2.75
					-	7.35	1,500	-	3.00
					-	7.33	1,500		3.25
					-	7.38	1,500	-	3.50
·····					-	7.33	1,400	-	3.75

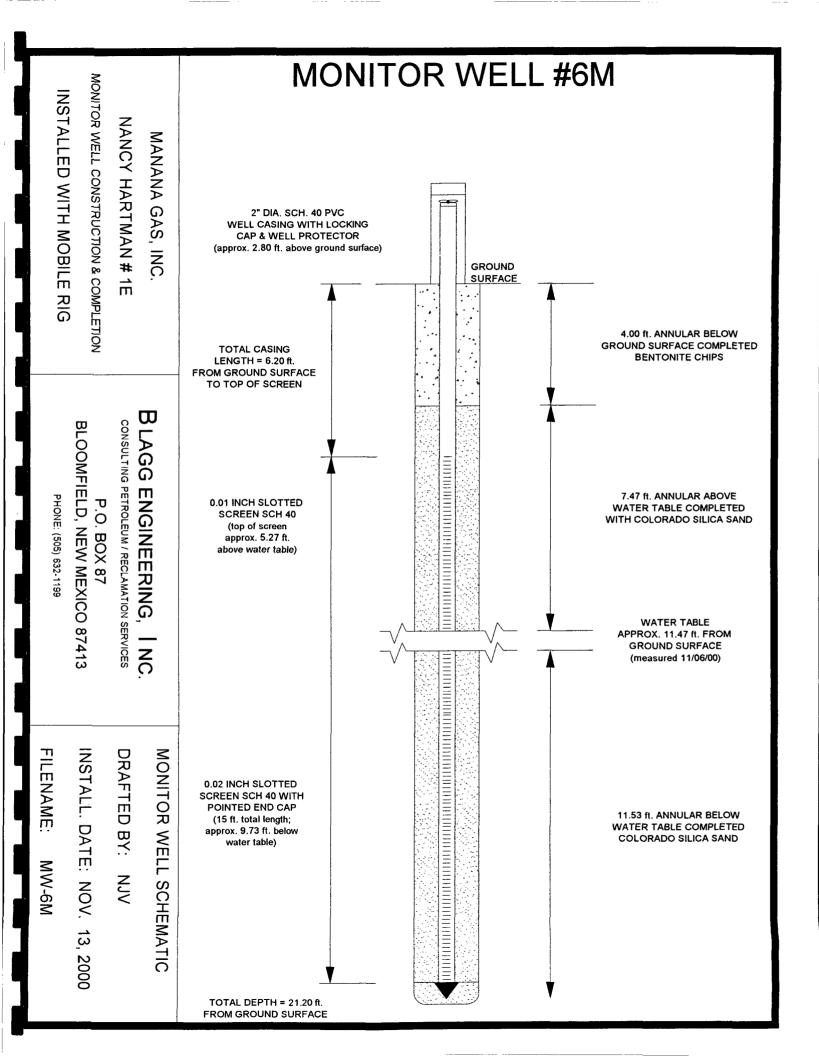

NOTES: Volume of water purged from well prior to sampling; V = pi X r2 X h X 7.48 gal/ft3) X 3 (wellbores). (i.e. 2" MW r = (1/12) ft. h = 1 ft.) (i.e. 4" MW r = (2/12) ft. h = 1 ft.)

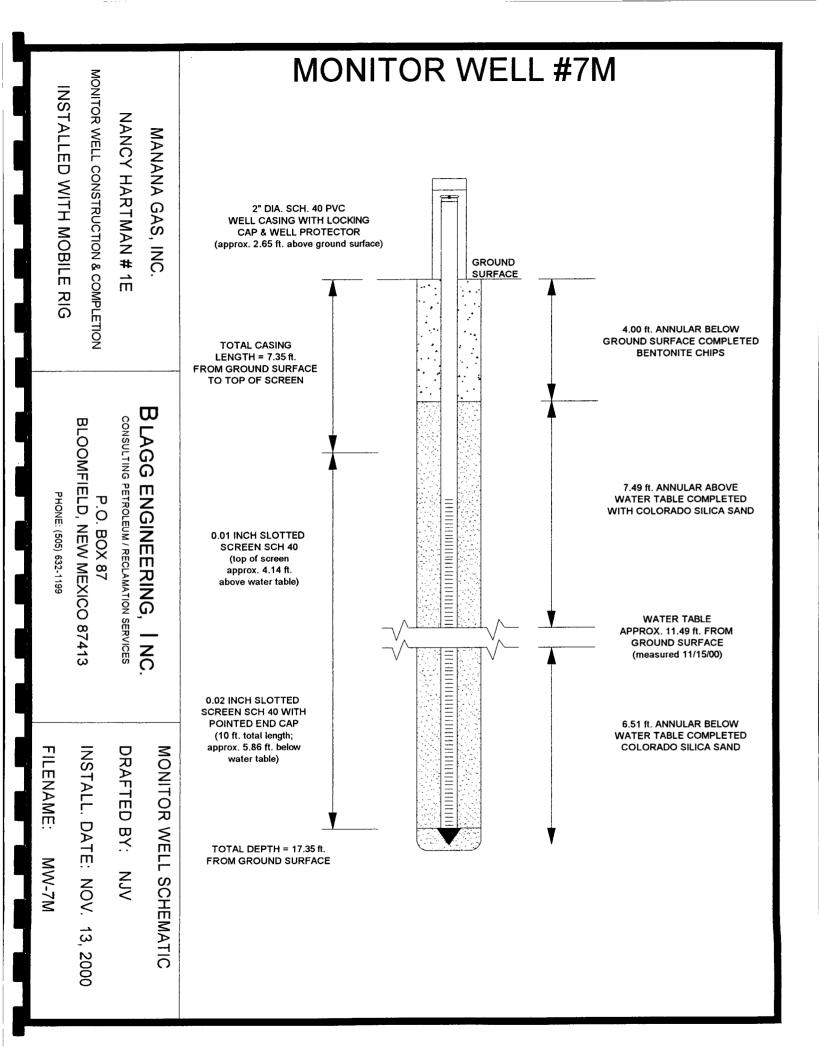

Ideally a minimum of three (3) wellbore volumes:

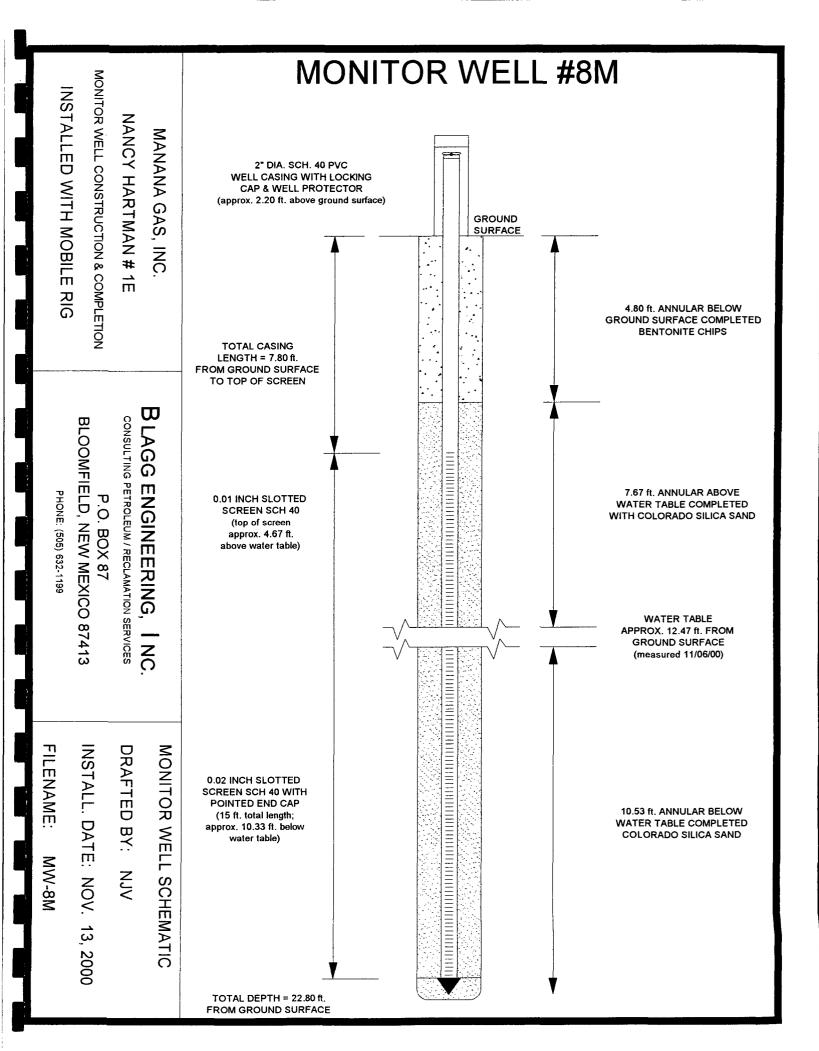

2.00 " well diameter = 0.49 gallons per foot of water.


Comments or note well diameter if not standard 2 ".


Excellent recovery in MW 's #1M & #2M.







TENTATIVELABORATORYDATEANALYSESDATEANALYSESDATEANALYSESJun - 01BTEX onlyJun - 01BTEX, PAH, 3 METALSJun - 01BTEX onlySept - 01BTEX onlySept - 01BTEX onlyJan - 01BTEX & ANIONSMar - 01BTEX & ANIONSMar - 01BTEX & ANIONSMar - 01BTEX, PAH, 1 METALS, ANIONSMar - 01BTEX, PAH, 1 METALSMar - 01BTEX, PAH, 1 METALSMar - 01BTEXMar - 01BTEXMar - 01BTEXMar - 01BTEXMar - 01BTEXMar - 01BTEXMar - 01BTEX		
DATEDATEANALYSES1st-01Feb - 01BTEX only1st-01Mar - 01BTEX, PAH, 3 METALS1st-01Jun - 01BTEX, only3rd-01Sept - 01BTEX only3rd-01Sept - 01BTEX only3rd-01Sept - 01BTEX only3rd-01Jan - 01BTEX only1st-01Jan - 01BTEX only1st-01Jan - 01BTEX & PAH1st-01Jan - 01BTEX & ANIONS1st-01Jan - 01BTEX & ANIONS1st-01Mar - 01BTEX & ANIONS1st-01Mar - 01BTEX, PAH, 1 METAL1st-01Mar - 01BTEX, PAH, 1 METALS, ANIONS1st-01Mar - 01PAH, & METALS1st-01Mar - 01PAH, & METALS <th></th> <th>REMARKS</th>		REMARKS
Ist-01Feb - 01BTEX only Ist-01Ist-01Mar - 01BTEX, PAH, 3 METALS2nd-01Jun - 01BTEX, only3rd-01Sept - 01BTEX only3rd-01Sept - 01BTEX only4th-01Dec - 01BTEX only1st-01Mar - 01BTEX only1st-01Jan - 01BTEX only1st-01Jan - 01BTEX enly1st-01Jan - 01BTEX & PAH1st-01Mar - 01BTEX & ANIONS1st-01Mar - 01BTEX, PAH, 1 METAL1st-01Mar - 01BTEX, PAH, 1 METALS, ANIONS1st-01Mar - 01PAH, METALS, ANIONS1st-01Mar - 01PAH, METALS, ANIONS1st-01Mar - 01PAH, METALS1st-01Mar - 01PAH, METALS1st-01Mar - 01PAH, METALS1st-01Mar - 01PAH, AMETALS1st-01Mar - 01PAH, AMETALS1st-01Mar - 01PAH, AMETALS1st-01Mar - 01PAH, AMETALS1st-01Mar - 01PAH, AMETALS		
Ist-01 Mar - 01 BTEX, PAH, 3 METALS 2nd-01 Jun - 01 BTEX only 3rd-01 Sept - 01 BTEX only 3rd-01 Sept - 01 BTEX only 4th-01 Dec - 01 BTEX only 1st-01 Mar - 01 BTEX only 1st-01 Jan - 01 BTEX & PAH 1st-01 Mar - 01 BTEX & ANIONS 1st-01 Mar - 01 BTEX & ANIONS 1st-01 Mar - 01 BTEX, PAH, 1 METAL 1st-01 Mar - 01 BTEX 1st-01 Mar - 01 BTEX 1st-01 Mar - 01 PAH, & METALS 1st-01 Mar - 01 PAH & METALS	BTEX	BTEX - 1st week after remed. sys. start up (once MW is reinstalled).
2nd-01Jun - 01BTEX only3rd-01Sept - 01BTEX only3rd-01Sept - 01BTEX only4th-01Dec - 01BTEX only1st-01Mar - 01BTEX only1st-01Jan - 01BTEX & PAH1st-01Jan - 01BTEX & PAH1st-01Jan - 01BTEX & ANIONS1st-01Mar - 01BTEX & ANIONS1st-01Mar - 01BTEX & ANIONS1st-01Mar - 01BTEX, PAH, 1 METAL1st-01Mar - 01BTEX, PAH, 1 METAL1st-01Mar - 01BTEX, ANIONS1st-01Mar - 01BTEX, PAH, 1 METAL1st-01Mar - 01BTEX, ANIONS1st-01Mar - 01BTEX1st-01Mar - 01BTEX1st-01Apr - 01PAH, & METALS1st-01Mar - 01BTEX1st-01Mar - 01BTEX1st-01Mar - 01PAH, & METALS1st-01Mar - 01PAH, & METALS	BTEX, PAH,	ALS METALS - barium, iron, & manganese, subsequent sampling for PAH $\&/$ or
3rd-01Sept - 01BTEX only4th-01Dec - 01BTEX only1st-01Mar - 01BTEX only1st-01Jan - 01BTEX & PAH1st-01Jan - 01BTEX & ANIONS1st-01Jan - 01BTEX & ANIONS1st-01Mar - 01BTEX & ANIONS1st-01Mar - 01BTEX & ANIONS1st-01Mar - 01BTEX, PAH, 1 METAL1st-01Mar - 01BTEX, PAH, 1 METAL1st-01Mar - 01BTEX, PAH, 1 METALS, ANIONS1st-01Mar - 01BTEX1st-01Mar - 01BTEX1st-01Mar - 01PAH, & METALS1st-01Mar - 01BTEX1st-01Mar - 01PAH & METALS1st-01Mar - 01PAH & METALS1st-01Mar - 01PAH & METALS1st-01Mar - 01PAH & METALS	BTEX	METALS dependent on findings.
4th-01 Dec - 01 BTEX only 1st-01 Mar - 01 BTEX only 1st-01 Jan - 01 BTEX & PAH 1st-01 Jan - 01 BTEX & ANIONS 1st-01 Jan - 01 BTEX & ANIONS 1st-01 Jan - 01 BTEX & ANIONS 1st-01 Mar - 01 BTEX, PAH, 1 METAL 1st-01 Mar - 01 BTEX, PAH, 1 METALS, ANIONS 1st-01 Mar - 01 BTEX, PAH, 1 METALS, ANIONS 1st-01 Mar - 01 BTEX 1st-01 Mar - 01 BTEX 1st-01 Mar - 01 PAH, & METALS 1st-01 Mar - 01 PAH & METALS 1st-01 Mar - 01 PAH & METALS 1st-01 Mar - 01 PAH & METALS	BTEX	
Ist-01Mar - 01BITEX onlyIst-01Jan - 01BTEX & PAHIst-01Jan - 01BTEX & ANIONSIst-01Mar - 01BTEX & ANIONSIst-01Mar - 01BTEX & ANIONSIst-01Mar - 01BTEX, PAH, 1 METALIst-01Mar - 01BTEX, PAH, 1 METALIst-01Mar - 01BTEX, PAH, 1 METALIst-01Mar - 01BTEX, PAH, 1 METALS, ANIONSIst-01Mar - 01BTEX, PAH, 1 METALS, ANIONSIst-01Mar - 01BTEXIst-01Mar - 01BTEXIst-01Mar - 01BTEXIst-01Mar - 01PAH, & METALSIst-01Mar - 01PAH, & METALS	BTEX	
Ist-01Jan - 01BTEX & PAHIst-01Jan - 01METALS & ANIONSIst-01Mar - 01BTEX & ANIONSIst-01Mar - 01BTEX & ANIONSIst-01Mar - 01BTEX, PAH, 1 METALIst-01Mar - 01PAH, METALS, ANIONSIst-01Mar - 01PAH, METALS, ANIONSIst-01Mar - 01BTEX, PAH, 1 METALIst-01Mar - 01PAH, METALS, ANIONSIst-01Mar - 01BTEXIst-01Mar - 01BTEXBTEX	BTEX	BTEX quarterly thereafter.
Ist-01Jan - 01METALS & ANIONSIst-01Mar - 01BTEX & ANIONSIst-01Mar - 01BTEX & ANIONSIst-01Mar - 01BTEX, PAH, 1 METALIst-01Mar - 01PAH, METALS, ANIONSIst-01Mar - 01PAH, METALS, ANIONSIst-01Mar - 01PAH, METALS, ANIONSIst-01Mar - 01BTEX, PAH, 1 METALIst-01Mar - 01PAH, METALS, ANIONSIst-01Mar - 01BTEXIst-01Mar - 01BTEX		PAH to be sampled prior to remed. sys. start up. BTEX - 1st week after remed.
Ist-01 Jan - 01 METALS & ANIONS 1st-01 Mar - 01 BTEX & ANIONS 1st-01 Mar - 01 BTEX only 1st-01 Mar - 01 BTEX, PAH, 1 METAL 1st-01 Mar - 01 BTEX, PAH, 1 METAL 1st-01 Mar - 01 PAH, METALS, ANIONS 1st-01 Mar - 01 BTEX, PAH, 1 METAL 1st-01 Mar - 01 BTEX, PAH, 1 METALS, ANIONS 1st-01 Mar - 01 BTEX, PAH, 1 METALS, ANIONS 1st-01 Mar - 01 BTEX, PAH, 1 METALS, ANIONS 1st-01 Mar - 01 BTEX 1st-01 Mar - 01 BTEX 1st-01 Mar - 01 PAH & METALS 1st-01 Mar - 01 BTEX 1st-01 Mar - 01 BTEX		sys. start up, then 1 week after operational, thereafter on a quarterly basis.
Ist-01Mar - 01BTEX & ANIONSIst-01Mar - 01BTEX, PAH, 1 METALIst-01Mar - 01BTEX, PAH, 1 METALIst-01Mar - 01PAH, METALS, ANIONSIst-01Mar - 01BTEXIst-01Mar - 01BTEXIst-01Apr - 01PAH & METALSIst-01Mar - 01BTEXIst-01Mar - 01BTEXIst-01Mar - 01PAH & METALSIst-01Mar - 01PAH & METALS	METALS &	IS Dependent upon 12/11/00 sampling event findings.
1st-01Mar - 01BTEX only1st-01Mar - 01BTEX, PAH, 1 METAL1st-01Mar - 01PAH, METALS, ANIONS1st-01Mar - 01BTEX1st-01Mar - 01BTEX2nd-01Apr - 01PAH & METALS1st-01Mar - 01BTEX1st-01Mar - 01BTEX1st-01Mar - 01PAH & METALS1st-01Mar - 01PAH & METALS	BTEX &	BTEX quarterly thereafter, subsequent ANIONS analysis, if any, dependent
Ist-01 Mar - 01 BTEX only Ist-01 Mar - 01 BTEX, PAH, 1 METAL Ist-01 Mar - 01 PAH, METALS, ANIONS Ist-01 Mar - 01 BTEX Ist-01 Mar - 01 PAH & METALS Ist-01 Mar - 01 BTEX		on initial findings.
ist-01 Mar - 01 BTEX, PAH, 1 METAL 1st-01 Mar - 01 PAH, METALS, ANIONS 1st-01 Mar - 01 BTEX 1st-01 Mar - 01 BTEX 1st-01 Mar - 01 BTEX 2nd-01 Apr - 01 PAH, & METALS, ANIONS 1st-01 Mar - 01 BTEX 1st-01 Mar - 01 BTEX	- 01 BTEX	BTEX quarterly thereafter.
1st-01 Mar - 01 PAH, METALS, ANIONS 1st-01 Mar - 01 BTEX 1st-01 Mar - 01 BTEX 2nd-01 Apr - 01 PAH, & METALS, ANIONS 1st-01 Mar - 01 BTEX 1st-01 Apr - 01 PAH & METALS 1st-01 Mar - 01 PAH & METALS	BTEX, PAH,	AL METAL - manganese . BTEX - biannually 1st year, annually thereafter unless
1st-01 Mar - 01 PAH, METALS, ANIONS 1st-01 Mar - 01 BTEX 1st-01 Mar - 01 BTEX 2nd-01 Apr - 01 PAH & METALS 1st-01 Mar - 01 BTEX		results dictate otherwise. MW needs to be reinstalled.
1st-01 Mar - 01 BTEX 1st-01 Mar - 01 BTEX 2nd-01 Apr - 01 PAH & METALS 1st-01 Mar - 01 BTEX		DNS Subsequent sampling, if any, dependent on initial findings. MW needs to be reinstalled.
1st-01 Mar - 01 BTEX 2nd-01 Apr - 01 PAH & METALS 1st-01 Mar - 01 BTEX		BTEX - biannually 1st year, annually thereafter unless results dictate otherwise.
2nd-01 Apr - 01 PAH & METALS 1st-01 Mar - 01 BTEX		BTEX quarterly thereafter.
1st-01 Mar - 01 BTEX		Dependent on MW # 4M findings.
		BTEX quarterly thereafter.
PAH & METALS	Apr - 01 PAH & METALS	Dependent on MW # 5M findings.
# 8M 1st-01 Mar - 01 BTEX only BTEX	BTEX	BTEX quarterly thereafter.

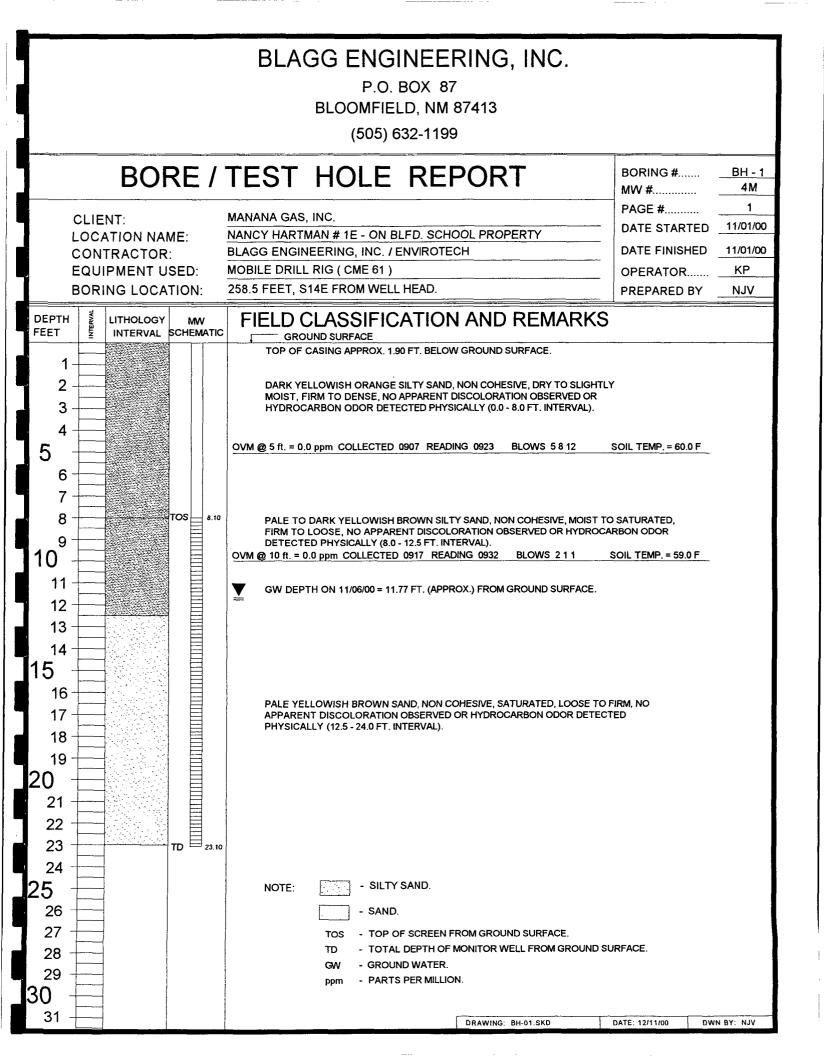
MANANA GAS, INC. TENTATIVE MW SAMPLING SCHEDULE

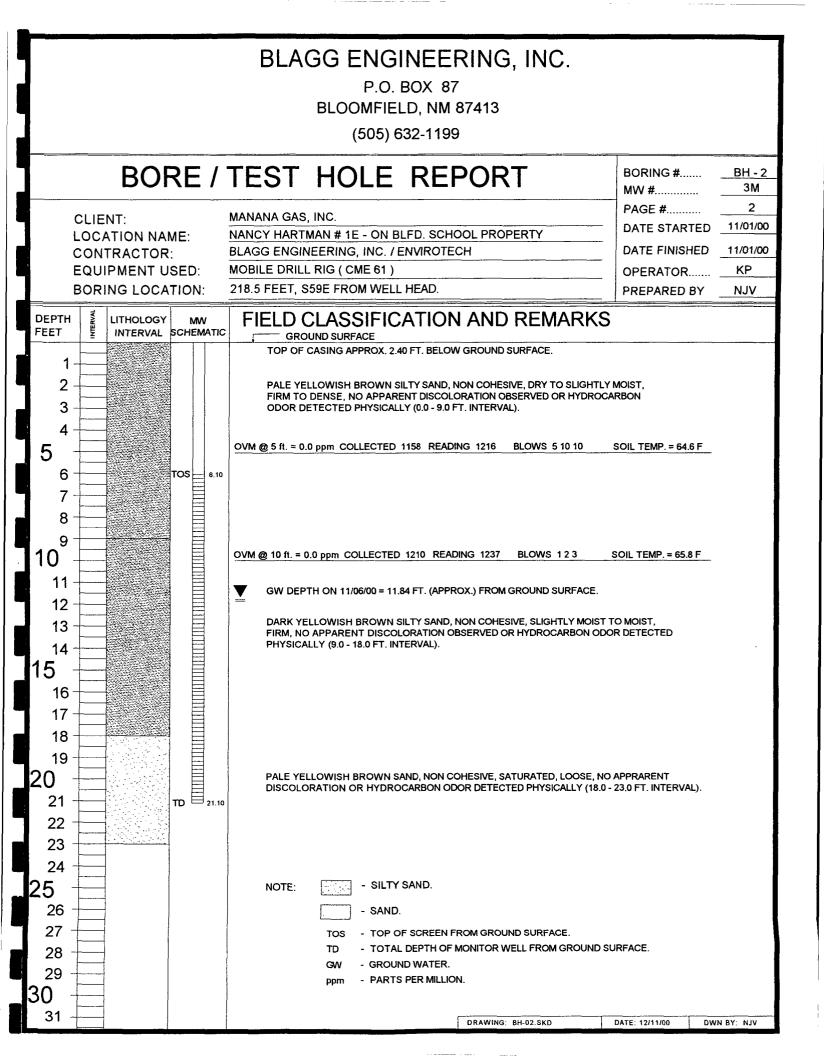
12/21/2000

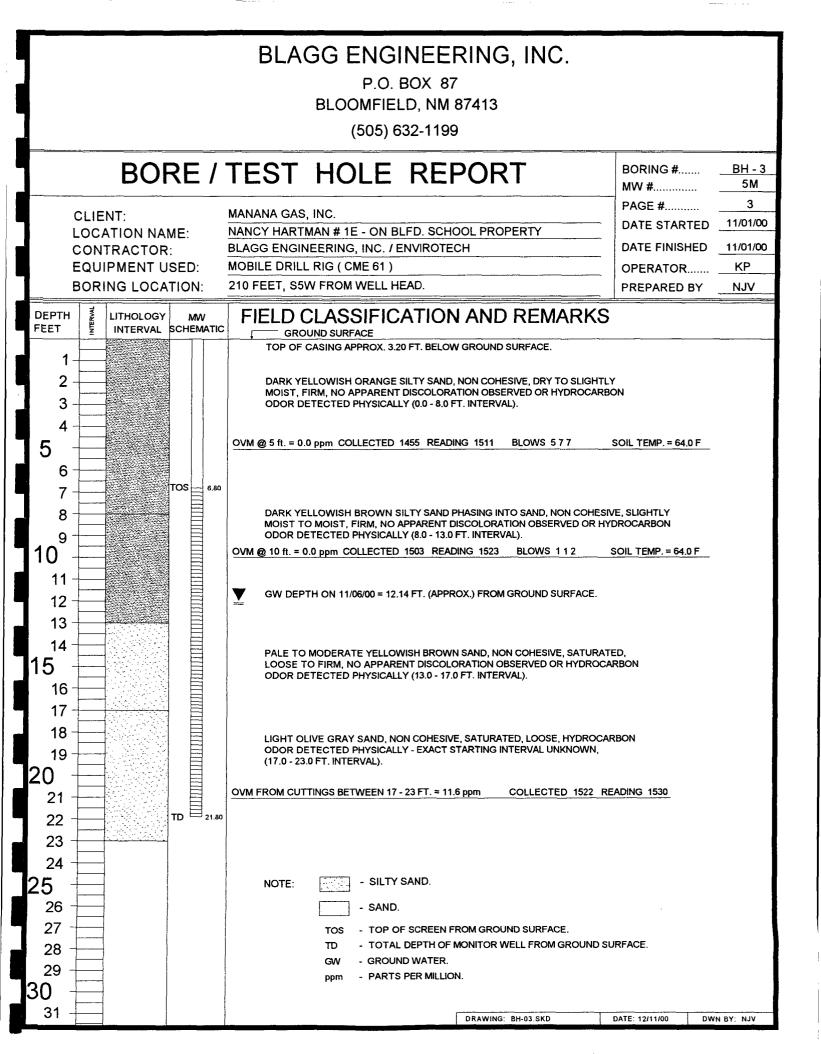
MA-SS-01.WK4

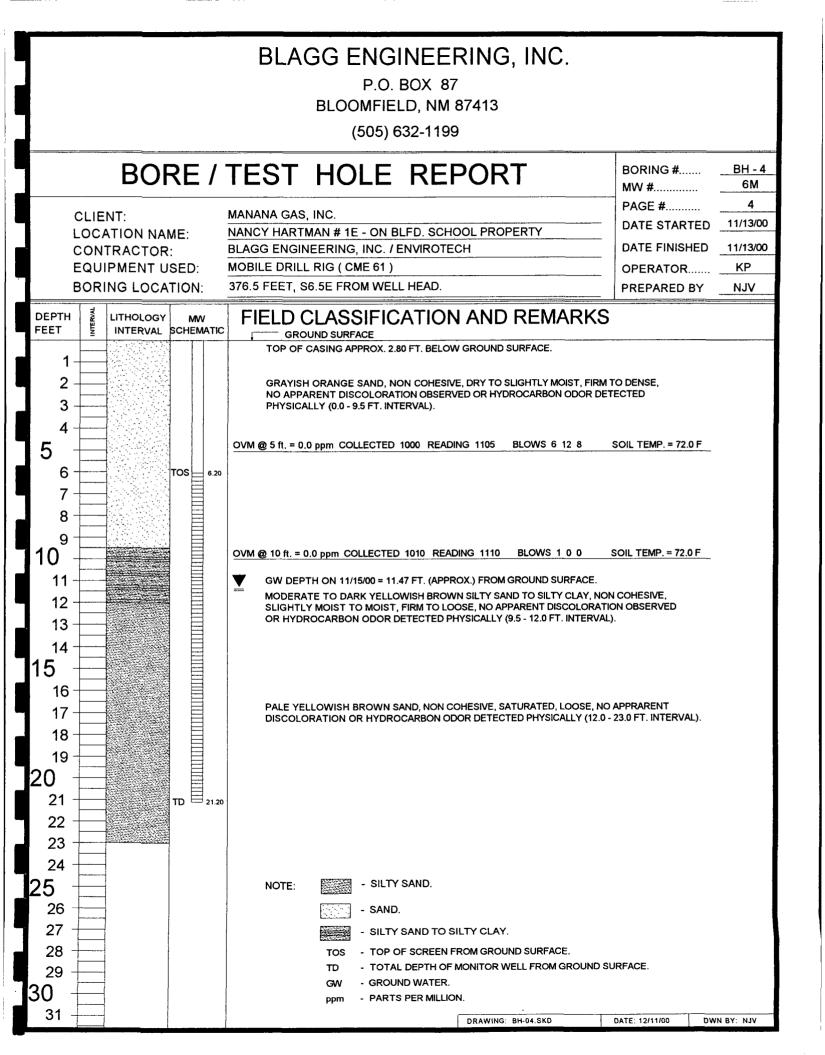
APPENDIX B

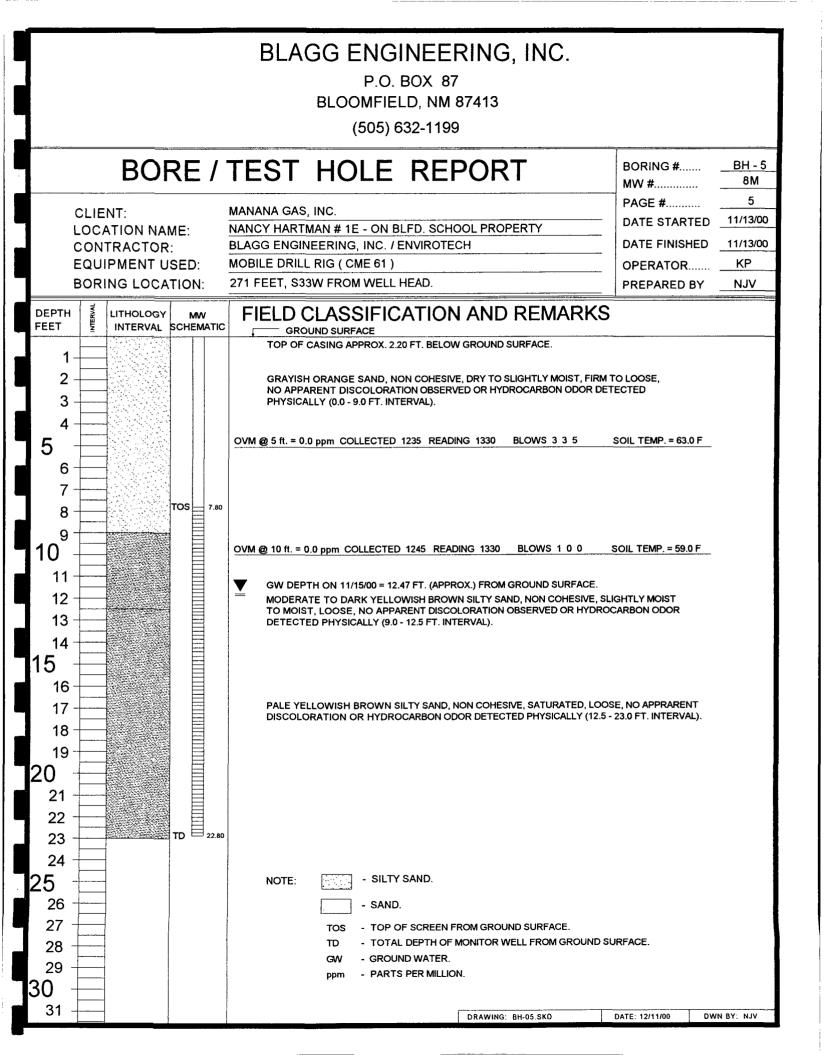
SOIL SAMPLING & FIELD ANALYSIS PROCEDURES 1ST PAGE

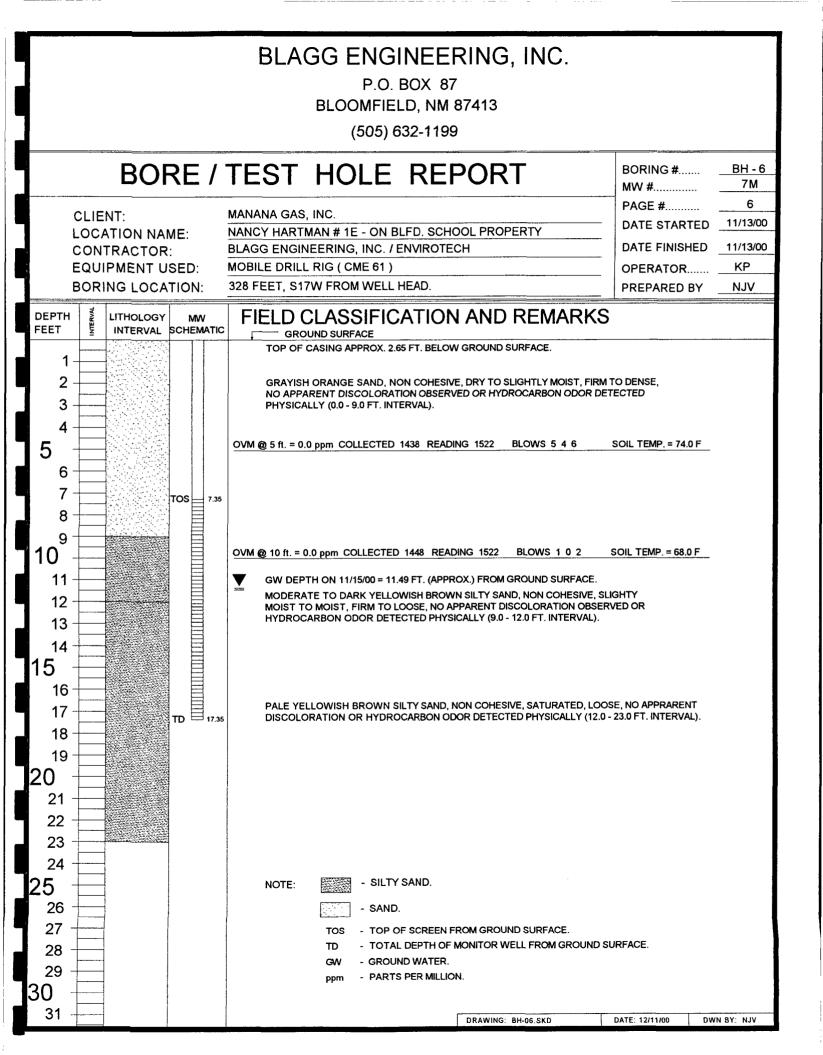

1.	BH-1	FOR	MW # 4M	INSTALLED 11/01/00.
2.	BH-2	FOR	MW # 3M	INSTALLED 11/01/00.
3.	BH-3	FOR	MW # 5M	INSTALLED 11/01/00.
4.	BH-4	FOR	MW # 6M	INSTALLED 11/13/00.
5.	BH-5	FOR	MW # 8M	INSTALLED 11/13/00.
6.	BH-6	FOR	MW # 7M	INSTALLED 11/13/00.
7.	BH-7	FOR	MW # 1M	INSTALLED 12/06/00.
8.	BH-8	FOR	MW # 2M	INSTALLED 12/06/00.

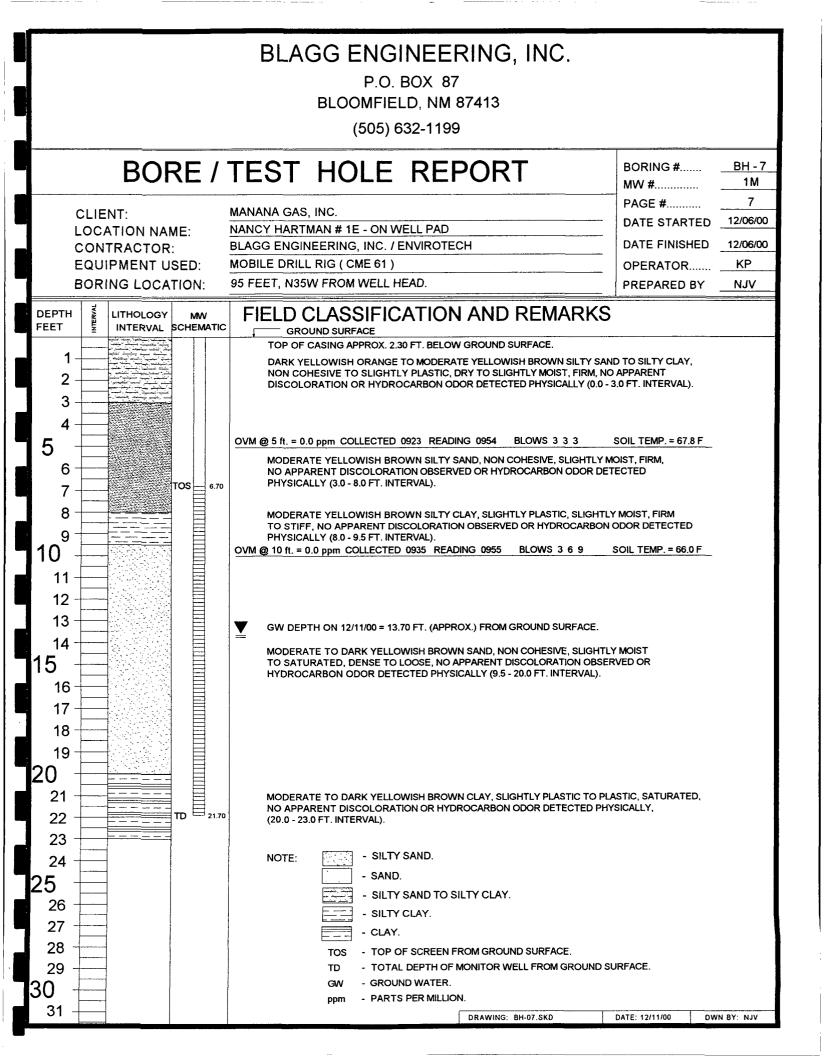

Manana Gas, Inc. Remediation Plan Blagg Engineering, Inc. December 20, 2000

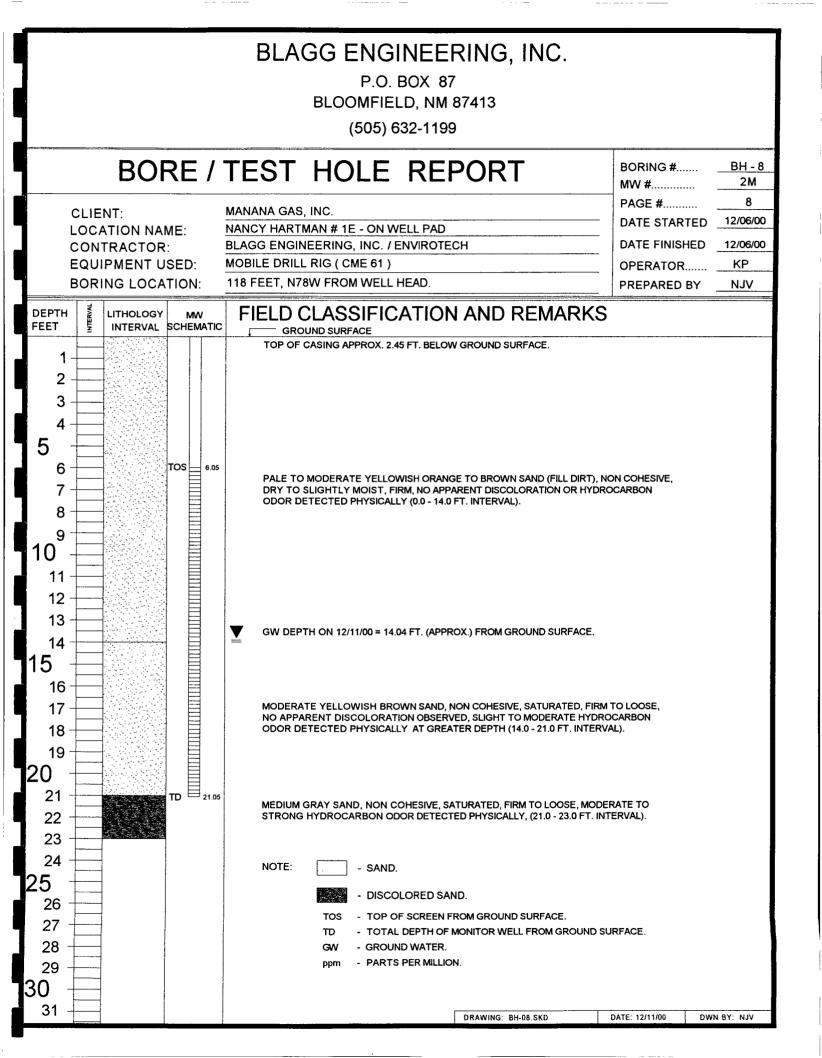

Soil Sampling Procedures:


Grab soil samples were collected from the excavation sidewalls at various intervals from the relative ground surface and at the excavation bottoms directly above the groundwater interface. Recovered soil samples were placed in a 475 ml glass container and air tight sealed for field screening of volatile hydrocarbon vapors with an organic vapor meter (**OVM**) applying the <u>Headspace Field Method</u> (NMOCD Surface Impoundment Closure Guidelines, February, 1993). The grab soil samples were classified in accordance with the Unified Soil Classification System (ASTM: D-2488). Soil samples submitted for laboratory analyses were collected in laboratory supplied four ounce glass jars with teflon seals. A trip blank sample was included with the sample set as a quality control screening procedure during the northern excavation sampling event and was analyzed per USEPA method 8260. All laboratory samples were stored in a cooler with blue ice pack(s) and transported to a qualified laboratory via United Parcel Service (UPS) overnight delivery. The laboratory report, quality assurance/quality control (QA/QC), and Chain-of-Custody Records are presented in Appendix C (bottom of page 11 of 13).


During the boring advancements, soil samples were collected implementing a 140 pound gravity penetration split tube sampler at five foot intervals and field screened with an OVM employing the NMOCD Field Headspace Method. The split-tube sampler will be decontaminated with soap and water then rinsed with distilled water prior to each sampling event. The split-tube soil samples were classified in accordance with the Unified Soil Classification System (ASTM: D-2488). Logs of the borings are included within this appendix and the noted stratification lines recorded to the approximate boundaries between soil types.







CLIENT: Project:	Blagg Engineering Nancy Hartman #1E				Lab Order:	0011039
Lab ID:	0011039-01A			Collection	Date: 11/6/00 2	:40:00 PM
Client Sample I	D: MW#1			Μ	latrix: AQUEO	JS
Analyses		Result	Limit	Qual Units	DF	Date Analyzed
OLATILES BY	8260B	s	W8260B			Analyst: HSE
Benzene		5000	500	µg/L	500	11/10/00
Bromobenzene		ND	50	µg/L	50	11/10/00
Bromodichlorome	ethane	ND	50	μg/L	50	11/10/00
Bromoform		ND	50	µg/L	50	11/10/00
Bromomethane		ND	50	µg/L	50	11/10/00
Carbon Tetrachlo	oride	ND	50	µg/L	50	11/10/00
Chlorobenzene		ND	50	µg/L	50	11/10/00
Chloroethane		ND	100	µg/L	50	11/10/00
Chloroform		ND	50	μg/L	50	11/10/00
Chloromethane		ND	50	µg/L	50	11/10/00
2-Chlorotoluene		ND	50	µg/L	50	11/10/00
4-Chlorotoluene		ND	50	µg/L	50	11/10/00
cis-1,2-DCE		ND	50	µg/L	50	11/10/00
cis-1,3-Dichlorop	ropene	ND	50	µg/L	50	11/10/00
1,2-Dibromo-3-ch		ND	100	µg/L	50	11/10/00
Dibromochlorome	ethane	ND	50	µg/L	50	11/10/00
1,2-Dibromoetha	ne (EDB)	ND	50	μg/L	50	11/10/00
Dibromomethane		ND	100	μg/L	50	11/10/00
1,2-Dichlorobenz	ene	ND	50	μg/L	50	11/10/00
1,3-Dichlorobenz		ND	50	μg/L	50	11/10/00
1,4-Dichlorobenz		ND	50	µg/L	50	11/10/00
Dichlorodifluorom		ND	50	µg/L	50	11/10/00
1,2-Dichloroethar		ND	50	μg/L	50	11/10/00
1,1-Dichloroethar		ND	50	µg/L	50	11/10/00
1,1-Dichloroether		ND	50	μg/L	50	11/10/00
1,2-Dichloropropa		ND	50	μg/L	50	11/10/00
1,3-Dichloropropa		ND	50	μg/L	50	11/10/00
2,2-Dichloroprop		ND	50	μg/L	50	11/10/00
1,1-Dichloroprop		ND	50	μg/L	50	11/10/00
Ethylbenzene		830	50	μg/L	50	11/10/00
Hexachlorobutad	iene	ND	50	μg/L	50	11/10/00
Isopropylbenzene		58	50	μg/L	50	11/10/00
4-Isopropyltoluen		ND	50	μg/L	50	11/10/00
Methyl tert-butyl		ND	50	μg/L	50	11/10/00
Methylene Chlori		ND	150	μg/L	50	11/10/00
n-Butylbenzene		ND	50	μg/L	50	11/10/00
1-Methylnaphthal	ene	ND	100	μg/L	50	11/10/00
2-Methylnaphthal		ND	100	μg/L	50	11/10/00
n-Propylbenzene		76	50	μg/L	50	11/10/00
Naphthalene		130	100	μg/L	50	11/10/00

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

Date: 04-Dec-00

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 1 of 13

Date: 04-Dec-00

CLIENT: Project:	Blagg Engineering Nancy Hartman #1E				Lab Order:	0011039
sec-Butylbenz	ene	ND	50	µg/L	50	11/10/00
Styrene		ND	50	µg/L	50	11/10/00
tert-Butylbenze	ene	ND	50	µg/L	50	11/10/00
Tetrachloroeth	nene	ND	50	µg/L	50	11/10/00
Toluene		10000	500	µg/L	500	11/10/00
1,1,1,2-Tetrac	hloroethane	ND	50	µg/L	50	11/10/00
1,1,2,2-Tetrac	hloroethane	ND	50	µg/L	50	11/10/00
trans-1,2-DCE	E	ND	50	µg/L	50	11/10/00
trans-1,3-Dich	loropropene	ND	50	µg/L	50	11/10/00
Trichloroether	ne	ND	50	µg/L	50	11/10/00
Trichlorofluoro	omethane	ND	50	µg/L	50	11/10/00
1,2,3-Trichlord	obenzene	ND	50	µg/L	50	11/10/00
1,2,4-Trichlord	obenzene	ND	50	µg/L	50	11/10/00
1,1,1-Trichlord	bethane	ND	50	µg/L	50	11/10/00
1,1,2-Trichlord	pethane	ND	50	µg/L	50	11/10/00
Vinyl chloride		ND	100	µg/L	50	11/10/00
1,2,3-Trichlord	opropane	ND	100	µg/L	50	11/10/00
1,2,4-Trimethy	ylbenzene	860	50	µg/L	50	11/10/00
1,3,5-Trimethy	ylbenzene	440	50	µg/L	50	11/10/00
Xylenes, Tota	1	12000	500	µg/L	500	11/10/00
Surr: 1,2-Di	ichloroethane-d4	102	65-114	%REC	50	11/10/00
Surr: 4-Broi	mofluorobenzene	96.5	74-122	%REC	50	11/10/00
Surr: Dibror	mofluoromethane	105	65-113	%REC	50	11/10/00
Surr: Tolue	ne-d8	103	60-123	%REC	50	11/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 2 of 13

	Blagg Engineering Nancy Hartman #1E		<u>.</u>		La	b Order:	0011039
Lab ID:	0011039-01B	<u> </u>		С	ollection Date:	11/6/00 2	:40:00 PM
Client Sample ID:	MW#1				Matrix:	AQUEO	JS
Analyses		Result	Limit	Qual	Units	DF	Date Analyzed
		S	SW8310				Analyst: IC
Naphthalene		87	2.5		µg/L	1	11/19/00
1-Methylnaphthalen	e	17	2.5		µg/L	1	11/19/00
2-Methylnaphthalen		42	2.5		μg/L	1	11/19/00
Acenaphthylene		ND	2.5		μg/L	1	11/19/00
Acenaphthene		ND	2.5	ł	μg/L	1	11/19/00
Fluorene		ND	0.80		μg/L	1	11/19/00
Phenanthrene		ND	0.60		μg/L	1	11/19/00
Anthracene		ND	0.60		μg/L	1	11/19/00
Fluoranthene		ND	0.30		μg/L	1	11/19/00
Pyrene		ND	0.30		μg/L	1	11/19/00
Benz(a)anthracene		ND	0.020		µg/L	1	11/19/00
Chrysene		ND	0.20		μg/L	1	11/19/00
Benzo(b)fluoranther	ne	ND	0.050		µg/L	1	11/19/00
Benzo(k)fluoranther	e	ND	0.020	1	µg/L	1	11/19/00
Benzo(a)pyrene		ND	0.020	ł	µg/L	1	11/19/00
Dibenz(a,h)anthrace	ene	ND	0.040	1	µg/L	1	11/19/00
Benzo(g,h,i)perylen		ND	0.030	1	µg/L	1	11/19/00
Indeno(1,2,3-cd)pyr	ene	ND	0.080	i	µg/L	1	11/19/00
Surr: Benzo(e)py	rene	79.5	77-104		%REC	1	11/19/00
Lab ID:	0011039-01C			С	ollection Date:	11/6/00 2	:40:00 PM
Client Sample ID:	MW#1				Matrix:	AQUEOU	JS
Analyses		Result	Limit	Qual	Units	DF	Date Analyzed
ANIONS BY 300.0		E	300				Analyst: SDI
Bromide		0.80	0.10	I	mg/L	1	11/8/00
Chioride		89	1.5	н	mg/L	15	11/10/00
' Fluoride		0.20	0.10	I	mg/L	1	11/8/00
⁷ Nitrogen, Nitrate (As	s N)	ND	0.10	I	mg/L	1	11/8/00
Nitrogen, Nitrite (As	N)	ND	0.10	i	mg/L	1	11/8/00
Phosphorus, Dissol Orthophosphate (As		ND	0.50	I	mg/L	1	11/8/00
✓ Sulfate		3.0	0.50	l	mg/L	1	11/8/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 3 of 13

l

CLIENT: Blagg Engir Project: Nancy Hart	-]	Lab Orde	r: 0011039
Lab ID: 0011039-	02A		Collection Dat	e: 11/6/00) 1:40:00 PM
Client Sample ID: MW#2			Matri	x: AQUE	OUS
Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
					A I I. 100
/OLATILES BY 8260B Benzene	ی 48	W8260B 2.0		2	Analyst: HSE 11/10/00
Bromobenzene	48 ND	2.0	µg/L	2	11/10/00
Bromodichloromethane	ND	2.0	µg/L	2	11/10/00
	ND		μg/L		
Bromoform	ND	2.0	µg/L	2	11/10/00 11/10/00
Bromomethane		2.0	µg/L	2	
Carbon Tetrachloride	ND	2.0	µg/L	2	11/10/00
Chlorobenzene	ND	2.0	µg/L	2	11/10/00
Chloroethane	ND	4.0	μg/L	2	11/10/00
Chloroform	ND	2.0	μg/L	2	11/10/00
Chloromethane	ND	2.0	µg/L	2	11/10/00
2-Chlorotoluene	ND	2.0	µg/L	2	11/10/00
4-Chlorotoluene	ND	2.0	µg/L	2	11/10/00
cis-1,2-DCE	ND	2.0	µg/L	2	11/10/00
cis-1,3-Dichloropropene	ND	2.0	µg/L	2	11/10/00
1,2-Dibromo-3-chloropropane	ND	4.0	µg/L	2	11/10/00
Dibromochloromethane	ND	2.0	µg/L	2	11/10/00
1,2-Dibromoethane (EDB)	ND	2.0	µg/L	2	11/10/00
Dibromomethane	ND	4.0	µg/L	2	11/10/00
1,2-Dichlorobenzene	ND	2.0	µg/L	2	11/10/00
1,3-Dichlorobenzene	ND	2.0	µg/L	2	11/10/00
1,4-Dichlorobenzene	ND	2.0	µg/L	2	11/10/00
Dichlorodifluoromethane	ND	2.0	µg/L	2	11/10/00
1,2-Dichloroethane (EDC)	ND	2.0	µg/L	2	11/10/00
1,1-Dichloroethane	ND	2.0	µg/L	2	11/10/00
1,1-Dichloroethene	ND	2.0	µg/L	2	11/10/00
1,2-Dichloropropane	ND	2.0	µg/L	2	11/10/00
1,3-Dichloropropane	ND	2.0	µg/L	2	11/10/00
2,2-Dichloropropane	ND	2.0	µg/L	2	11/10/00
1,1-Dichloropropene	ND	2.0	µg/L	2	11/10/00
Ethylbenzene	ND	2.0	µg/L	2	11/10/00
Hexachlorobutadiene	ND	2.0	µg/L	2	11/10/00
Isopropylbenzene	5.1	2.0	µg/L	2	11/10/00
4-Isopropyltoluene	ND	2.0	µg/L	2	11/10/00
Methyl tert-butyl ether (MTBE)	ND	2.0	µg/L	2	11/10/00
Methylene Chloride	ND	6.0	µg/L	2	11/10/00
n-Butylbenzene	ND	2.0	µg/L	2	11/10/00
1-Methylnaphthalene	ND	4.0	µg/L	2	11/10/00
2-Methylnaphthalene	ND	4.0	µg/L	2	11/10/00
n-Propylbenzene	ND	2.0	µg/L	2	11/10/00
Naphthalene	ND	4.0	µg/L	2	11/10/00

Qualifiers:

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

Date: 04-Dec-00

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 4 of 13

Date: 04-Dec-00

| |

ŀ

CLIENT:	Blagg Engineering				Lab Order:	0011039
Project:	Nancy Hartman #1E					
sec-Butylbenzo	ene	ND	2.0	µg/L	2	11/10/00
Styrene		ND	2.0	µg/L	2	11/10/00
tert-Butylbenze	ene	ND	2.0	µg/L	2	11/10/00
Tetrachloroeth	ene	ND	2.0	µg/L	2	11/10/00
Toluene		ND	2.0	µg/L	2	11/10/00
1,1,1,2-Tetracl	nloroethane	ND	2.0	µg/L	2	11/10/00
1,1,2,2-Tetracl	nloroethane	ND	2.0	µg/L	2	11/10/00
trans-1,2-DCE		ND	2.0	µg/L	2	11/10/00
trans-1,3-Dichl	oropropene	ND	2.0	µg/L	2	11/10/00
Trichloroethen	e	ND	2.0	µg/L	2	11/10/00
Trichlorofluoro	methane	ND	2.0	μg/L	2	11/10/00
1,2,3-Trichloro	benzene	ND	2.0	μg/L	2	11/10/00
1,2,4-Trichloro		ND	2.0	µg/L	2	11/10/00
1.1.1-Trichloro	ethane	ND	2.0	μg/L	2	11/10/00
1,1,2-Trichloro	ethane	NÐ	2.0	μg/L	2	11/10/00
Vinyl chloride		ND	4.0	µg/L	2	11/10/00
1,2,3-Trichloro	propane	ND	4.0	µg/L	2	11/10/00
1,2,4-Trimethy	•	ND	2.0	µg/L	2	11/10/00
1,3,5-Trimethy		ND	2.0	µg/L	2	11/10/00
Xylenes, Total		ND	2.0	µg/L	2	11/10/00
Surr: 1.2-Die	chloroethane-d4	95.0	65-114	%REC	2	11/10/00
Surr: 4-Bron	nofluorobenzene	97.8	74-122	%REC	2	11/10/00
Surr: Dibron	nofluoromethane	96.3	65-113	%REC	2	11/10/00
Surr: Toluer	ne-d8	96.2	60-123	%REC	2	11/10/00
Lab ID:	0011039-02C			Collection	Date: 11/6/00 1	:40:00 PM
Client Sample	e ID: MW#2			Μ	atrix: AQUEO	US
Analyses		Result	Limit	Qual Units	DF	Date Analyzed
ANIONS BY 3	00.0	E	300			Analyst: SDU
Bromide		0.10	0.10	mg/L	1	11/8/00
Chloride		13	0.10	mg/L	1	11/8/00
Fluoride		0.20	0.10	mg/L	1	11/8/00
Nitrogen, Nitra	te (As N)	1.0	0.10	mg/L	1	11/8/00
Nitrogen, Nitrit	e (As N)	ND	0.10	mg/L	1	11/8/00
Phosphorus, D Orthophosphat		ND	0.50	mg/L	1	11/8/00
Sulfate		140	5.0	H mg/L	10	11/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 5 of 13

CLIENT:Blagg EngineeProject:Nancy Hartma	-			Lab Order:	0011039
Lab ID: 0011039-03	A		Collection 1	Date: 11/6/00 1	2:05:00 PM
Client Sample ID: MW#3M			Ma	trix: AQUEO	US
Analyses	Result	Limit O	ual Units	DF	Date Analyzed
	ICSUI			D F	Date Analyzeu
OLATILES BY 8260B	S	W8260B			Analyst: HSB
Benzene	ND	1.0	µg/L	1	11/10/00
Bromobenzene	ND	1.0	µg/L	1	11/10/00
Bromodichloromethane	ND	1.0	µg/L	1	11/10/00
Bromoform	ND	1.0	μg/L	1	11/10/00
Bromomethane	ND	1.0	µg/L	1	11/10/00
Carbon Tetrachloride	ND	1.0	μg/L	1	11/10/00
Chlorobenzene	ND	1.0	µg/L	1	11/10/00
Chloroethane	ND	2.0	µg/L	1	11/10/00
Chloroform	ND	1.0	µg/L	1	11/10/00
Chloromethane	ND	1.0	µg/L	1	11/10/00
2-Chlorotoluene	ND	1.0	μg/L	1	11/10/00
4-Chlorotoluene	ND	1.0	µg/L	1	11/10/00
cis-1,2-DCE	ND	1.0	μg/L	1	11/10/00
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	11/10/00
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	11/10/00
Dibromochloromethane	ND	1.0	μg/L	1	11/10/00
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	11/10/00
Dibromomethane	ND	2.0	μg/L	1	11/10/00
1,2-Dichlorobenzene	ND	1.0	μg/L	1	11/10/00
1,3-Dichlorobenzene	ND	1.0	μg/L	1	11/10/00
1.4-Dichlorobenzene	ND	1.0	µg/L	1	11/10/00
Dichlorodifluoromethane	ND	1.0	μg/L	1	11/10/00
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	11/10/00
1,1-Dichloroethane	ND	1.0	μg/L	1	11/10/00
1,1-Dichloroethene	ND	1.0	μg/L	1	11/10/00
1,2-Dichloropropane	ND ND	1.0	μg/L	1	11/10/00
1,3-Dichloropropane	ND	1.0		1	11/10/00
	ND	1.0	µg/L	•	11/10/00
2,2-Dichloropropane 1,1-Dichloropropene	ND	1.0	µg/L µg/l	1 1	11/10/00
Ethylbenzene	ND	1.0	µg/L		11/10/00
Hexachlorobutadiene	ND	1.0	µg/L	1 1	11/10/00
isopropylbenzene	ND	1.0	µg/L	1	11/10/00
4-Isopropyltoluene			µg/L µg/l		
• • •	ND ND	1.0	μg/L μg/l	1 1	11/10/00
Methyl tert-butyl ether (MTBE) Methylene Chloride	ND	1.0 3.0	µg/L µg/l	1	11/10/00 11/10/00
-			µg/L µg/l		11/10/00
n-Butylbenzene 1-Methylnaphthalene	ND	1.0	µg/L µg/l	1	
• •	ND	2.0	µg/L µg/l	1	11/10/00
2-Methylnaphthalene	ND	2.0	µg/L	1	11/10/00
n-Propylbenzene	ND	1.0	µg/L	1	11/10/00
Naphthalene	ND	2.0	µg/L	1	11/10/00

Date: 04-Dec-00

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

J - Analyte detected below quantitation limits

Date: 04-Dec-00

CLIENT: Project:	Blagg Engineering Nancy Hartman #1E				Lab Order:	0011039
sec-Butylbenz	ene	ND	1.0	μg/L	1	11/10/00
Styrene		ND	1.0	µg/L	1	11/10/00
tert-Butylbenze	ene	ND	1.0	µg/L	1	11/10/00
Tetrachloroeth	ene	ND	1.0	µg/L	1	11/10/00
Toluene		ND	1.0	µg/L	1	11/10/00
1,1,1,2-Tetrac	hloroethane	ND	1.0	µg/L	1	11/10/00
1,1,2,2-Tetrac	hloroethane	ND	1.0	µg/L	1	11/10/00
trans-1,2-DCE		ND	1.0	µg/L	1	11/10/00
trans-1,3-Dich	loropropene	ND	1.0	µg/L	1	11/10/00
Trichloroethen	e	ND	1.0	µg/L	1	11/10/00
Trichlorofluoro	methane	ND	1.0	µg/L	1	11/10/00
1,2,3-Trichloro	benzene	ND	1.0	µg/L	1	11/10/00
1,2,4-Trichloro	benzene	ND	1.0	µg/L	1	11/10/00
1,1,1-Trichlord	bethane	ND	1.0	µg/L	1	11/10/00
1,1,2-Trichloro	bethane	ND	1.0	μg/L	1	11/10/00
Vinyl chloride		ND	2.0	µg/L	1	11/10/00
1,2,3-Trichlord	propane	ND	2.0	µg/L	1	11/10/00
1,2,4-Trimethy	lbenzene	ND	1.0	µg/L	1	11/10/00
1,3,5-Trimethy	lbenzene	ND	1.0	µg/L	1	11/10/00
Xylenes, Total	ſ	ND	1.0	µg/L	1	11/10/00
Surr: 1,2-Di	chloroethane-d4	89.3	65-114	%REC	1	11/10/00
Surr: 4-Bror	nofluorobenzene	91.6	74-122	%REC	1	11/10/00
Surr: Dibron	nofluoromethane	92.7	65-113	%REC	1	11/10/00
Surr: Toluer	ne-d8	93.4	60-123	%REC	1	11/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 7 of 13

CLIENT: Blagg Eng Project: Nancy Ha	_			Lab Order:	0011039
Lab ID: 001103	9-04A		Collection	Date: 11/6/00 1	1:00:00 AM
Client Sample ID: MW#41	M		M	atrix: AQUEO	US
Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
OLATILES BY 8260B	S	W8260B		، دانون و بر	Analyst: HSE
Benzene	680	50	µg/L	50	11/10/00
Bromobenzene	ND	20	µg/L	20	11/10/00
Bromodichloromethane	ND	20	µg/L	20	11/10/00
Bromoform	ND	20	µg/L	20	11/10/00
Bromomethane	ND	20	µg/L	20	11/10/00
Carbon Tetrachloride	ND	20	µg/L	20	11/10/00
Chlorobenzene	ND	20	µg/L	20	11/10/00
Chloroethane	ND	40	μg/L	20	11/10/00
Chloroform	ND	20	µg/L	20	11/10/00
Chloromethane	ND	20	µg/L	20	11/10/00
2-Chlorotoluene	ND	20	µg/L	20	11/10/00
4-Chlorotoluene	ND	20	µg/L	20	11/10/00
cis-1,2-DCE	ND	20	µg/L	20	11/10/00
cis-1,3-Dichloropropene	ND	20	µg/L	20	11/10/00
1,2-Dibromo-3-chloropropane	ND	40	µg/L	20	11/10/00
Dibromochloromethane	ND	20	μg/L	20	11/10/00
1,2-Dibromoethane (EDB)	ND	20	µg/L	20	11/10/00
Dibromomethane	ND	40	µg/L	20	11/10/00
1,2-Dichlorobenzene	ND	20	µg/L	20	11/10/00
1,3-Dichlorobenzene	ND	20	µg/L	20	11/10/00
1,4-Dichlorobenzene	ND	20	µg/L	20	11/10/00
Dichlorodifluoromethane	ND	20	µg/L	20	11/10/00
1,2-Dichloroethane (EDC)	ND	20	µg/L	20	11/10/00
1,1-Dichloroethane	ND	20	µg/L	20	11/10/00
1,1-Dichloroethene	ND	20	μg/L	20	11/10/00
1,2-Dichloropropane	ND	20	μg/L	20	11/10/00
1,3-Dichloropropane	ND	20	μg/L	20	11/10/00
2,2-Dichloropropane	ND	20	μg/L	20	11/10/00
1,1-Dichloropropene	ND	20	μg/L	20	11/10/00
Ethylbenzene	ND	20	μg/L	20	11/10/00
Hexachlorobutadiene	ND	20	µg/L	20	11/10/00
Isopropylbenzene	ND	20	μg/L	20	11/10/00
4-Isopropyltoluene	ND	20	μg/L	20	11/10/00
Methyl tert-butyl ether (MTBE)	ND	20	μg/L	20	11/10/00
Methylene Chloride	ND	60	μg/L	20	11/10/00
n-Butylbenzene	ND	20	μg/L	20	11/10/00
1-Methylnaphthalene	ND	40	μg/L	20	11/10/00
2-Methylnaphthalene	ND	40	μg/L	20	11/10/00
n-Propylbenzene	ND	20	μg/L	20	11/10/00
Naphthalene	ND	40	μg/L	20	11/10/00

Date: 04-Dec-00

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 8 of 13

Date: 04-Dec-00

CLIENT: Project:	Blagg Engineering Nancy Hartman #1E					Lab Order:	0011039
sec-Butylbenze		ND	20		µg/L	20	11/10/00
Styrene		ND	20		µg/L	20	11/10/00
tert-Butylbenze	ne	ND	20		μg/L	20	11/10/00
Tetrachloroeth		ND	20		μg/L	20	11/10/00
Toluene		ND	20		µg/L	20	11/10/00
1,1,1,2-Tetrach	loroethane	ND	20		µg/L	20	11/10/00
1,1,2,2-Tetrach		ND	20		µg/L	20	11/10/00
trans-1,2-DCE		ND	20		µg/L	20	11/10/00
trans-1,3-Dichl	oropropene	ND	20		µg/L	20	11/10/00
Trichloroethen	e	ND	20		µg/L	20	11/10/00
Trichlorofluoro	methane	ND	20		µg/L	20	11/10/00
1,2,3-Trichlorol	benzene	ND	20		µg/L	20	11/10/00
1,2,4-Trichlorol	benzene	ND	20		µg/L	20	11/10/00
1,1,1-Trichloro	ethane	ND	20		µg/L	20	11/10/00
1,1,2-Trichloro	ethane	ND	20		µg/L	20	11/10/00
Vinyl chloride		ND	40		µg/L	20	11/10/00
1,2,3-Trichloro	propane	ND	40		µg/L	20	11/10/00
1,2,4-Trimethy	lbenzene	ND	20		µg/L	20	11/10/00
1,3,5-Trimethy	lbenzene	ND	20		µg/L	20	11/10/00
Xylenes, Total		ND	20		µg/L	20	11/10/00
Surr: 1,2-Dic	chloroethane-d4	92.0	65-114		%REC	20	11/10/00
Surr: 4-Brom	nofluorobenzene	93.8	74-122		%REC	20	11/10/00
Surr: Dibrom	ofluoromethane	90.4	65-113		%REC	20	11/10/00
Surr: Toluen	e-d8	96.5	60-123		%REC	20	11/10/00
Lab ID:	0011039-04C			(Collection	Date: 11/6/00 1	1:00:00 AM
Client Sample	ID: MW#4M				Μ	atrix: AQUEO	US
Analyses		Result	Limit	Qual	Units	DF	Date Analyzed
ANIONS BY 30	0.0		E300				Analyst: SDL
Bromide		0.30	0.10		mg/L	1	11/8/00
Chloride		27	0.10		mg/L	1	11/8/00
Fluoride		0.20	0.10		mg/L	1	11/8/00
Nitrogen, Nitra	te (As N)	0.90	0.10		mg/L	1	11/8/00
Nitrogen, Nitrite	e (As N)	ND	0.10		mg/L	1	11/8/00
Phosphorus, D Orthophosphat	issolved	ND	0.50		mg/L	1	11/8/00
		120	5.0	н	mg/L	10	11/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

	Blagg Engineering Nancy Hartman #1E				Lab Order:	0011039
Lab ID:	0011039-05A			Collect	ion Date: 11/6/00 1	2:55:00 PM
Client Sample ID:	MW#5M				Matrix: AQUEOU	JS
Analyses		Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES BY 82	60B		SW8260B			Analyst: HSE
Benzene		1800	50	µg/L	50	11/10/00
Bromobenzene		ND	50	µg/L	50	11/10/00
Bromodichlorometh	ane	ND	50	µg/L	50	11/10/00
Bromoform		ND	50	µg/L	50	11/10/00
Bromomethane		ND	50	µg/L	50	11/10/00
Carbon Tetrachlorid	e	ND	50	µg/L	50	11/10/00
Chlorobenzene		ND	50	µg/L	50	11/10/00
Chloroethane		ND	100	µg/L	50	11/10/00
Chloroform		ND	50	µg/L	50	11/10/00
Chloromethane		ND	50	µg/L	50	11/10/00
2-Chlorotoluene		ND	50	µg/L	50	11/10/00
4-Chlorotoluene		ND	50	µg/L	50	11/10/00
cis-1,2-DCE		ND	50	µg/L	50	11/10/00
cis-1,3-Dichloroprop	ene	ND	50	µg/L	50	11/10/00
1,2-Dibromo-3-chlor	opropane	ND	100	µg/L	50	11/10/00
Dibromochlorometh	ane	ND	50	µg/L	50	11/10/00
1,2-Dibromoethane	(EDB)	ND	50	µg/L	50	11/10/00
Dibromomethane		ND	100	µg/L	50	11/10/00
1,2-Dichlorobenzen	9	ND	50	µg/L	50	11/10/00
1,3-Dichlorobenzen	e	ND	50	µg/L	50	11/10/00
1,4-Dichlorobenzen	e	ND	50	µg/L	50	11/10/00
Dichlorodifluoromet	nane	ND	50	µg/L	50	11/10/00
1,2-Dichloroethane	(EDC)	ND	50	µg/L	50	11/10/00
1,1-Dichloroethane		ND	50	µg/L	50	11/10/00
1,1-Dichloroethene		ND	50	µg/L	50	11/10/00
1,2-Dichloropropane	•	ND	50	µg/L	50	11/10/00
1,3-Dichloropropane)	ND	50	μg/L	50	11/10/00
2,2-Dichloropropane	•	ND	50	µg/L	50	11/10/00
1,1-Dichloropropene)	ND	50	µg/L	50	11/10/00
Ethylbenzene		330	50	µg/L	50	11/10/00
Hexachlorobutadien	e	ND	50	µg/L	50	11/10/00
Isopropylbenzene		ND	50	µg/L	50	11/10/00
4-Isopropyltoluene		ND	50	µg/L	50	11/10/00
Methyl tert-butyl eth	er (MTBE)	ND	50	µg/L	50	11/10/00
Methylene Chloride		ND	150	µg/L	50	11/10/00
n-Butylbenzene		ND	50	µg/L	50	11/10/00
1-Methylnaphthalen	e	ND	100	µg/L	50	11/10/00
2-Methylnaphthalen	e	ND	100	µg/L	50	11/10/00
n-Propylbenzene		ND	50	µg/L	50	11/10/00
Naphthalene		ND	100	µg/L	50	11/10/00

Date: 04-Dec-00

i

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

J - Analyte detected below quantitation limits

E - Value above quantitation range

Page 10 of 13

Date: 04-Dec-00

CLIENT: Project:	Blagg Engineering Nancy Hartman #1E					Lab Order:	0011039
sec-Butylbenze		ND	50			50	11/10/00
Styrene		ND	50		g/∟	50	11/10/00
tert-Butylbenze	200	ND	50		g/L	50	11/10/00
Tetrachloroeth		ND	50		₽ g/L	50	11/10/00
Toluene	GIG	4500	250		g/L	250	11/10/00
1,1,1,2-Tetracl	Joroethane	ND	50		a/∟ g/L	50	11/10/00
1,1,2,2-Tetracl		ND	50		g/L	50	11/10/00
trans-1,2-DCE		ND	50		,,∟ g/L	50	11/10/00
trans-1,3-Dich		ND	50		g/L	50	11/10/00
Trichloroethen		ND	50		g/∟	50	11/10/00
Trichlorofluoro		ND	50		₽/⊑ g/L	50	11/10/00
	-	ND	50		-	50	11/10/00
1,2,3-Trichloro		ND			g/L - /1		11/10/00
1,2,4-Trichloro			50		3/L	50	
1,1,1-Trichloro		ND	50		g/L _ //	50	11/10/00
1,1,2-Trichloro	ethane	ND	50		g/L ″	50	11/10/00
Vinyl chloride		ND	100		g/L	50	11/10/00
1,2,3-Trichloro		ND	100		g/L	50	11/10/00
1,2,4-Trimethy		280	50		g/L	50	11/10/00
1,3,5-Trimethy		160	50		g/L	50	11/10/00
Xylenes, Total		4400	50		g/L	50	11/10/00
	chloroethane-d4	97.3	65-114		REC	50	11/10/00
	nofluorobenzene	101	74-122		REC	50	11/10/00
	nofluoromethane	95.5	65-113		REC	50	11/10/00
Surr: Toluer	1e-d8	102	60-123	%	REC	50	11/10/00
Lab ID:	0011039-06A			Co		Date: 11/3/00 9	:00:00 AM
Client Sample	e ID: 5 @ 13'				Ma	atrix: SOIL	
Analyses	<u></u>	Result	Limit	Qual U	nits	DF	Date Analyzed
DRO BY 8015	В		SW8015				Analyst: JT
T/R Hydrocarb	ons: C10-C28	40	25	m	g/Kg	5	11/10/00
T/R Hydrocarb	ons: C28-C34+	ND	250	m	g/Kg	5	11/10/00
Surr: DNOP		125	74-125	%	REC	5	11/10/00
GASOLINE RA	ANGE ORGANICS		SW8015				Analyst: AFN
T/R Hydrocarb	ons: C5-C15+	6500	100	m	g/Kg	20	11/13/00
Surr: BFB		0	74-118	S %	REC	20	11/13/00
BTEX BY EPA			SW8021				Analyst: AFN
-	yl ether (MTBE)	ND	2.0		g/Kg	20	11/13/00
Benzene		24	1.0		g/Kg	20	11/13/00
** 1		390	1.0	m	g/Kg	20	11/13/00
Toluene		43	1.0	m	g/Kg	20	11/13/00
Ethylbenzene							
		570	1.0	m	g/Kg	20	11/13/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 11 of 13

CLIENT: Project:	Blagg Engineering Nancy Hartman #1E				Lab Order	0011039		
Lab ID:	0011039-07A			Collection	Date:			
lient Sample ID: Trip Blank		Matrix: AQUEOUS						
Analyses		Result	Limit (Qual Units	DF	Date Analyzed		
OLATILES B	Y 8260B	s	W8260B			Analyst: HSB		
Benzene		ND	1.0	µg/L	1	11/10/00		
Bromobenzene		ND	1.0	µg/L	1	11/10/00		
Bromodichloror	nethane	ND	1.0	µg/L	1	11/10/00		
Bromoform		ND	1.0	µg/L	1	11/10/00		
Bromomethane)	ND	1.0	μg/L	1	11/10/00		
Carbon Tetrach	nloride	ND	1.0	µg/L	1	11/10/00		
Chlorobenzene		ND	1.0	μg/L	1	11/10/00		
Chloroethane		ND	2.0	µg/L	1	11/10/00		
Chloroform		ND	1.0	μg/L	1	11/10/00		
Chloromethane	•	ND	1.0	μg/L	1	11/10/00		
2-Chlorotoluen		ND	1.0	µg/L	1	11/10/00		
4-Chlorotoluen	8	ND	1.0	μg/L	1	11/10/00		
cis-1,2-DCE		ND	1.0	µg/L	1	11/10/00		
cis-1,3-Dichloro	propene	ND	1.0	μg/L	1	11/10/00		
1,2-Dibromo-3-		ND	2.0	μg/L	1	11/10/00		
Dibromochloro		ND	1.0	μg/L	1	11/10/00		
1,2-Dibromoeth	ane (EDB)	ND	1.0	μg/L	1	11/10/00		
Dibromometha		ND	2.0	μg/L	1	11/10/00		
1,2-Dichlorober	nzene	ND	1.0	μg/L	1	11/10/00		
1,3-Dichlorober		ND	1.0	μg/L	1	11/10/00		
1,4-Dichlorober		ND	1.0	μg/L	1	11/10/00		
Dichlorodifluoro		ND	1.0	μg/L	1	11/10/00		
1,2-Dichloroeth	ane (EDC)	ND	1.0	µg/L	1	11/10/00		
1,1-Dichloroeth		ND	1.0	µg/L	1	11/10/00		
1,1-Dichloroeth	ene	ND	1.0	μg/L	1	11/10/00		
1,2-Dichloropro		ND	1.0	μg/L	1	11/10/00		
1,3-Dichloropro		ND	1.0	μg/L	1	11/10/00		
2,2-Dichloropro		ND	1.0	µg/L	1	11/10/00		
1,1-Dichloropro		ND	1.0	µg/L	1	11/10/00		
Ethylbenzene		ND	1.0	µg/L	1	11/10/00		
Hexachlorobuta	adiene	ND	1.0	μg/L	1	11/10/00		
Isopropylbenze		ND	1.0	μg/L	1	11/10/00		
4-Isopropyitolue		ND	1.0	μg/L	1	11/10/00		
Methyl tert-buty		ND	1.0	µg/L	1	11/10/00		
Methylene Chic		13	3.0	μg/L	1	11/10/00		
n-Butylbenzene		ND	1.0	μg/L	1	11/10/00		
1-Methylnaphth		ND	2.0	μg/L	1	11/10/00		
2-Methylnaphth		ND	2.0	μg/L	1	11/10/00		
n-Propylbenzer		ND	1.0	μg/L	1	11/10/00		
Naphthalene		ND	2.0	μg/L	1	11/10/00		

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

J - Analyte detected below quantitation limits

Date: 04-Dec-00

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 12 of 13

Date: 04-Dec-00

CLIENT: Project:	Blagg Engineering Nancy Hartman #1E				Lab Order:	0011039
sec-Butylbenze	ene	ND	1.0	µg/L	1	11/10/00
Styrene		ND	1.0	µg/L	1	11/10/00
tert-Butylbenze	ene	ND	1.0	µg/L	1	11/10/00
Tetrachloroeth	ene	ND	1.0	µg/L	1	11/10/00
Toluene		ND	1.0	µg/L	1	11/10/00
1,1,1,2-Tetrack	nloroethane	ND	1.0	µg/L	1	11/10/00
1,1,2,2-Tetracl	nloroethane	ND	1.0	µg/L	1	11/10/00
trans-1,2-DCE		ND	1.0	µg/L	1	11/10/00
trans-1,3-Dichl	oropropene	ND	1.0	µg/L	1	11/10/00
Trichloroethen	e	ND	1.0	µg/L	1	11/10/00
Trichlorofluoro	methane	ND	1.0	µg/L	1	11/10/00
1,2,3-Trichloro	benzene	ND	1.0	µg/L	1	11/10/00
1,2,4-Trichloro	benzene	ND	1.0	µg/L	1	11/10/00
1,1,1-Trichloro	ethane	ND	1.0	µg/L	1	11/10/00
1,1,2-Trichloro	ethane	ND	1.0	µg/L	1	11/10/00
Vinyl chloride		ND	2.0	µg/L	1	11/10/00
1,2,3-Trichloro	propane	ND	2.0	µg/L	1	11/10/00
1,2,4-Trimethy	Ibenzene	ND	1.0	µg/L	1	11/10/00
1,3,5-Trimethy	Ibenzene	ND	1.0	µg/L	1	11/10/00
Xylenes, Total		ND	1.0	µg/L	1	11/10/00
Surr: 1,2-Die	chloroethane-d4	81.8	65-114	%REC	1	11/10/00
Surr: 4-Bron	nofluorobenzene	96.2	74-122	%REC	1	11/10/00
Surr: Dibron	nofluoromethane	85.5	65-113	%REC	1	11/10/00
Surr: Toluer	ne-d8	93.4	60-123	%REC	1	11/10/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 13 of 13

CLIENT:Blagg EngineeringLab Order:0011083Project:Nancy Hartman #1E

Lab ID:

Date: 04-Dec-00

Client Sample ID: MW#6M Collection Date: 11/15/00 11:10:00 AM

0011083-01A

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
OLATILES BY 8260B		SW8260B				Analyst: HSI
Benzene	ND	1.0		µg/L	1	11/20/00
Bromobenzene	ND	1.0		µg/L	1	11/20/00
Bromodichloromethane	ND	1.0		µg/L	1	11/20/00
Bromoform	ND	1.0		µg/L	1	11/20/00
Bromomethane	ND	1.0		µg/L	1	11/20/00
Carbon Tetrachloride	ND	1.0		µg/L	1	11/20/00
Chlorobenzene	ND	1.0		µg/L	1	11/20/00
Chloroethane	ND	2.0		µg/L	1	11/20/00
Chloroform	ND	1.0		µg/L	1	11/20/00
Chloromethane	ND	1.0		µg/L	1	11/20/00
2-Chlorotoluene	ND	1.0		µg/L	1	11/20/00
4-Chlorotoluene	ND	1.0		µg/L	1	11/20/00
cis-1,2-DCE	ND	1.0		µg/L	1	11/20/00
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	11/20/00
1,2-Dibromo-3-chloropropane	ND	2.0		µg/L	1	11/20/00
Dibromochloromethane	ND	1.0		µg/L	1	11/20/00
1,2-Dibromoethane (EDB)	ND	1.0		µg/L	1	11/20/00
Dibromomethane	ND	2.0		µg/L	1	11/20/00
1,2-Dichlorobenzene	ND	1.0		µg/L	1	11/20/00
1,3-Dichlorobenzene	ND	1.0		µg/L	1	11/20/00
1,4-Dichlorobenzene	ND	1.0		µg/L	1	11/20/00
Dichlorodifluoromethane	ND	1.0		µg/L	1	11/20/00
1,2-Dichloroethane (EDC)	ND	1.0		µg/L	1	11/20/00
1,1-Dichloroethane	ND	1.0		µg/L	1	11/20/00
1,1-Dichloroethene	ND	1.0		µg/L	1	11/20/00
1,2-Dichloropropane	ND	1.0		µg/L	1	11/20/00
1,3-Dichloropropane	ND	1.0		µg/L	1	11/20/00
2,2-Dichloropropane	ND	1.0		µg/L	1	11/20/00
1,1-Dichloropropene	ND	1.0		μg/L	1	11/20/00
Ethylbenzene	ND	1.0		μg/L	1	11/20/00
Hexachlorobutadiene	ND	1.0		μg/L	1	11/20/00
Isopropylbenzene	ND	1.0		µg/L	1	11/20/00
4-Isopropyitoluene	ND	1.0		µg/L	1	11/20/00
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	11/20/00
Methylene Chloride	ND	3.0		µg/L	1	11/20/00
n-Butylbenzene	ND	1.0		μg/L	1	11/20/00
1-Methylnaphthalene	ND	2.0		μg/L	1	11/20/00
2-Methylnaphthalene	ND	2.0		μg/L	1	11/20/00
n-Propylbenzene	ND	1.0		µg/L	1	11/20/00
Naphthalene	ND	2.0		μg/L	1	11/20/00
sec-Butylbenzene	ND	1.0		µg/L	1	11/20/00

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT:Blagg EngineeringLab Order:0011083Project:Nancy Hartman #1ELab ID:0011083-01A

Date: 04-Dec-00

Client Sample ID: MW#6M Collection Date: 11/15/00 11:10:00 AM

Matrix: AQUEOUS

nalyses	Result	Limit Q	ual Units	DF	Date Analyzed
Styrene	ND	1.0	μg/L	1	11/20/00
tert-Butylbenzene	ND	1.0	µg/L	1	11/20/00
Tetrachloroethene	ND	1.0	μg/L	1	11/20/00
Toluene	ND	1.0	µg/L	1	11/20/00
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	11/20/00
1,1,2,2-Tetrachloroethane	ND	1.0	µg/L	1	11/20/00
trans-1,2-DCE	ND	1.0	µg/L	1	11/20/00
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	11/20/00
Trichloroethene	ND	1.0	µg/L	1	11/20/00
Trichlorofluoromethane	ND	1.0	µg/L	1	11/20/00
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	11/20/00
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	11/20/00
1,1,1-Trichloroethane	ND	1.0	µg/L	1	11/20/00
1,1,2-Trichloroethane	ND	1.0	µg/L	1	11/20/00
Vinyl chloride	ND	2.0	µg/L	1	11/20/00
1,2,3-Trichloropropane	ND	2.0	µg/L	1	11/20/00
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	11/20/00
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	11/20/00
Xylenes, Total	ND	1.0	µg/L	1	11/20/00
Surr: 1,2-Dichloroethane-d4	84.9	65-114	%REC	1	11/20/00
Surr: 4-Bromofluorobenzene	98.1	74-122	%REC	1	11/20/00
Surr: Dibromofluoromethane	87.6	65-113	%REC	1	11/20/00
Surr: Toluene-d8	92.0	60-123	%REC	1	11/20/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Blagg Engineering CLIENT: 0011083 Lab Order: **Project:** Nancy Hartman #1E

Lab ID:

0011083-02A

Date: 04-Dec-00

Client Sample ID: MW#7M Collection Date: 11/15/00 12:20:00 PM

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
OLATILES BY 8260B		SW8260B				Analyst: HSB
Benzene	ND	1.0	I	µg/L	1	11/20/00
Bromobenzene	ND	1.0	Į	µg/L	1	11/20/00
Bromodichloromethane	ND	1.0	I	µg/L	1	11/20/00
Bromoform	ND	1.0	I	µg/L	1	11/20/00
Bromomethane	ND	1.0	I	µg/L	1	11/20/00
Carbon Tetrachloride	ND	1.0	1	µg/L	1	11/20/00
Chiorobenzene	ND	1.0	1	µg/L	1	11/20/00
Chloroethane	ND	2.0	1	µg/L	1	11/20/00
Chloroform	ND	1.0	1	µg/L	1	11/20/00
Chloromethane	ND	1.0	1	µg/L	1	11/20/00
2-Chlorotoluene	ND	1.0	1	µg/L	1	11/20/00
4-Chlorotoiuene	ND	1.0	1	µg/L	1	11/20/00
cis-1,2-DCE	ND	1.0	1	µg/L	1	11/20/00
cis-1,3-Dichloropropene	ND	1.0	1	µg/L	1	11/20/00
1,2-Dibromo-3-chloropropane	ND	2.0	1	µg/L	1	11/20/00
Dibromochloromethane	ND	1.0	1	µg/L	1	11/20/00
1,2-Dibromoethane (EDB)	ND	1.0	1	µg/L	1	11/20/00
Dibromomethane	ND	2.0		µg/L	1	11/20/00
1,2-Dichlorobenzene	ND	1.0		µg/L	1	11/20/00
1,3-Dichlorobenzene	ND	1.0		µg/L	1	11/20/00
1,4-Dichlorobenzene	ND	1.0	1	µg/L	1	11/20/00
Dichlorodifluoromethane	ND	1.0	1	µg/L	1	11/20/00
1,2-Dichloroethane (EDC)	ND	1.0		µg/L	1	11/20/00
1,1-Dichloroethane	ND	1.0	1	µg/L	1	11/20/00
1,1-Dichloroethene	ND	1.0	1	µg/L	1	11/20/00
1,2-Dichloropropane	ND	1.0		µg/L	1	11/20/00
1,3-Dichloropropane	ND	1.0		µg/L	1	11/20/00
2,2-Dichloropropane	ND	1.0	1	µg/L	1	11/20/00
1,1-Dichloropropene	ND	1.0		µg/L	1	11/20/00
Ethylbenzene	ND	1.0	1	µg/L	1	11/20/00
Hexachlorobutadiene	ND	1.0		µg/L	1	11/20/00
Isopropylbenzene	ND	1.0		µg/L	1	11/20/00
4-lsopropyltoluene	ND	1.0		μg/L	1	11/20/00
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	11/20/00
Methylene Chloride	ND	3.0		μg/L	1	11/20/00
n-Butylbenzene	ND	1.0		µg/L	1	11/20/00
1-Methylnaphthalene	ND	2.0		µg/L	1	11/20/00
2-Methylnaphthalene	ND	2.0		µg/L	1	11/20/00
n-Propylbenzene	ND	1.0		µg/L	1	11/20/00
Naphthalene	ND	2.0		µg/L	1	11/20/00
sec-Butylbenzene	ND	1.0		µg/L	1	11/20/00

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT: Blagg Engineering Lab Order: 0011083 **Project:** Nancy Hartman #1E

Lab ID:

0011083-02A

Date: 04-Dec-00

Client Sample ID: MW#7M Collection Date: 11/15/00 12:20:00 PM

Matrix: AQUEOUS

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
Styrene	ND	1.0	μg/L	1	11/20/00
tert-Butylbenzene	ND	1.0	µg/L	1	11/20/00
Tetrachloroethene	ND	1.0	µg/L	1	11/20/00
Toluene	ND	1.0	µg/L	1	11/20/00
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	11/20/00
1,1,2,2-Tetrachloroethane	ND	1.0	µg/L	1	11/20/00
trans-1,2-DCE	ND	1.0	µg/L	1	11/20/00
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	11/20/00
Trichloroethene	ND	1.0	µg/L	1	11/20/00
Trichlorofluoromethane	ND	1.0	µg/L	1	11/20/00
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	11/20/00
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	11/20/00
1,1,1-Trichloroethane	ND	1.0	µg/L	1	11/20/00
1,1,2-Trichloroethane	ND	1.0	µg/L	1	11/20/00
Vinyl chloride	ND	2.0	µg/L	1	11/20/00
1,2,3-Trichloropropane	ND	2.0	µg/L	1	11/20/00
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	11/20/00
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	11/20/00
Xyienes, Total	ND	1.0	µg/L	1	11/20/00
Surr: 1,2-Dichloroethane-d4	93.2	65-114	%REC	1	11/20/00
Surr: 4-Bromofluorobenzene	101	74-122	%REC	1	11/20/00
Surr: Dibromofluoromethane	108	65-113	%REC	1	11/20/00
Surr: Toluene-d8	106	60-123	%REC	1	11/20/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT:Blagg EngineeringLab Order:0011083Project:Nancy Hartman #1ELab ID:0011083-03A

Date: 04-Dec-00

Client Sample ID: MW#8M Collection Date: 11/15/00 1:35:00 PM

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
OLATILES BY 8260B		SW8260B				Analyst: HSB
Benzene	ND	1.0	I	µg/L	1	11/20/00
Bromobenzene	ND	1.0	1	µg/L	1	11/20/00
Bromodichloromethane	ND	1.0	I	µg/L	1	11/20/00
Bromoform	ND	1.0	1	µg/L	1	11/20/00
Bromomethane	ND	1.0	1	µg/L	1	11/20/00
Carbon Tetrachloride	ND	1.0	1	µg/L	1	11/20/00
Chlorobenzene	ND	1.0	1	µg/L	1	11/20/00
Chloroethane	ND	2.0	1	µg/L	1	11/20/00
Chloroform	ND	1.0	i	µg/L	1	11/20/00
Chloromethane	ND	1.0	[µg/L	1	11/20/00
2-Chlorotoluene	ND	1.0		µg/L	1	11/20/00
4-Chlorotoluene	ND	1.0	1	µg/L	1	11/20/00
cis-1,2-DCE	ND	1.0		µg/L	1	11/20/00
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	11/20/00
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	11/20/00
Dibromochloromethane	ND	1.0		μg/L	1	11/20/00
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	11/20/00
Dibromomethane	ND	2.0		μg/L	1	11/20/00
1,2-Dichlorobenzene	ND	1.0		μg/L	1	11/20/00
1.3-Dichlorobenzene	ND	1.0		μg/L	1	11/20/00
1.4-Dichlorobenzene	ND	1.0		μg/L	1	11/20/00
Dichlorodifluoromethane	ND	1.0		µg/L	1	11/20/00
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	11/20/00
1,1-Dichloroethane	ND	1.0		μg/L	1	11/20/00
1,1-Dichloroethene	ND	1.0		µg/L	1	11/20/00
1,2-Dichloropropane	ND	1.0		µg/L	1	11/20/00
1,3-Dichloropropane	ND	1.0		µg/L	1	11/20/00
2,2-Dichloropropane	ND	1.0		μg/L	1	11/20/00
1,1-Dichloropropene	ND	1.0		μg/L	1	11/20/00
Ethylbenzene	ND	1.0		μg/L	1	11/20/00
Hexachlorobutadiene	ND	1.0		µg/L	1	11/20/00
Isopropylbenzene	ND	1.0		µg/L	1	11/20/00
4-isopropyitoluene	ND	1.0		µg/L	1	11/20/00
Methyl tert-butyl ether (MTBE)	ND	1.0		µg/L	1	11/20/00
Methylene Chloride	ND	3.0		µg/L	1	11/20/00
n-Butylbenzene	ND	5.0 1.0		µg/L µg/L	1	11/20/00
1-Methylnaphthalene	ND	2.0		μg/L	1	11/20/00
2-Methylnaphthalene	ND	2.0		µg/L	1	11/20/00
n-Propylbenzene	ND	2.0 1.0		µg/L µg/L	1	11/20/00
Naphthalene	ND	2.0		µg/L	1	11/20/00
sec-Butylbenzene	ND	2.0		µg/L	1	11/20/00

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Hall Environmental Analysis Laboratory

Blagg Engineering **CLIENT:** 0011083 Lab Order: Nancy Hartman #1E **Project:**

Lab ID:

0011083-03A

Date: 04-Dec-00

Client Sample ID: MW#8M Collection Date: 11/15/00 1:35:00 PM

Matrix: AQUEOUS

nalyses	Result	Limit Q	ual Units	DF	Date Analyzed
Styrene	ND	1.0	µg/L	1	11/20/00
tert-Butylbenzene	ND	1.0	µg/L	1	11/20/00
Tetrachloroethene	ND	1.0	µg/L	1	11/20/00
Toluene	ND	1.0	µg/L	1	11/20/00
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	11/20/00
1,1,2,2-Tetrachloroethane	ND	1.0	µg/L	1	11/20/00
trans-1,2-DCE	ND	1.0	µg/L	1	11/20/00
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	11/20/00
Trichloroethene	ND	1.0	µg/L	1	11/20/00
Trichlorofluoromethane	ND	1.0	μg/L	1	11/20/00
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	11/20/00
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	11/20/00
1,1,1-Trichloroethane	ND	1.0	μg/L	1	11/20/00
1,1,2-Trichloroethane	ND	1.0	µg/L	1	11/20/00
Vinyl chloride	ND	2.0	µg/L	1	11/20/00
1,2,3-Trichloropropane	ND	2.0	µg/L	1	11/20/00
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	11/20/00
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	11/20/00
Xylenes, Total	ND	1.0	µg/L	1	11/20/00
Surr: 1,2-Dichloroethane-d4	86.5	65-114	%REC	1	11/20/00
Surr: 4-Bromofluorobenzene	102	74-122	%REC	1	11/20/00
Surr: Dibromofluoromethane	93.8	65-113	%REC	1	11/20/00
Surr: Toluene-d8	97.0	60-123	%REC	1	11/20/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Page 6 of 8

Hall Environmental Analysis Laboratory

Date: 04-Dec-00

CLIENT:Blagg EngineeringLab Order:0011083Project:Nancy Hartman #1E

0011083-04A

Lab ID:

Client Sample ID: Trip Blank Collection Date: 11/15/00

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES BY 8260B		SW8260B				Analyst: HSB
Benzene	ND	1.0		µg/L	1	11/20/00
Bromobenzene	ND	1.0		µg/L	1	11/20/00
Bromodichloromethane	ND	1.0		µg/L	1	11/20/00
Bromoform	ND	1.0		µg/L	1	11/20/00
Bromomethane	ND	1.0		µg/L	1	11/20/00
Carbon Tetrachloride	ND	1.0		µg/L	1	11/20/00
Chlorobenzene	ND	1.0		µg/L	1	11/20/00
Chloroethane	ND	2.0		µg/L	1	11/20/00
Chloroform	ND	1.0		µg/Ľ	1	11/20/00
Chloromethane	ND	1.0		µg/Ł	1	11/20/00
2-Chlorotoluene	ND	1.0		µg/L	1	11/20/00
4-Chlorotoluene	ND	1.0		µg/L	1	11/20/00
cis-1,2-DCE	ND	1.0		µg/L	1	11/20/00
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	11/20/00
1,2-Dibromo-3-chloropropane	ND	2.0		µg/L	1	11/20/00
Dibromochloromethane	ND	1.0		µg/L	1	11/20/00
1,2-Dibromoethane (EDB)	ND	1.0		µg/L	1	11/20/00
Dibromomethane	ND	2.0		µg/L	1	11/20/00
1,2-Dichlorobenzene	ND	1.0		µg/L	1	11/20/00
1,3-Dichlorobenzene	ND	1.0		µg/L	1	11/20/00
1,4-Dichlorobenzene	ND	1.0		µg/L	1	11/20/00
Dichlorodifluoromethane	ND	1.0		µg/L	1	11/20/00
1,2-Dichloroethane (EDC)	ND	1.0		µg/L	1	11/20/00
1,1-Dichloroethane	ND	1.0		µg/L	1	11/20/00
1,1-Dichloroethene	ND	1.0		µg/L	1	11/20/00
1,2-Dichloropropane	ND	1.0		µg/L	1	11/20/00
1,3-Dichloropropane	ND	1.0		µg/L	1	11/20/00
2,2-Dichloropropane	ND	1.0		µg/L	1	11/20/00
1,1-Dichloropropene	ND	1.0		µg/L	1	11/20/00
Ethylbenzene	ND	1.0		µg/L	1	11/20/00
Hexachlorobutadiene	ND	1.0		µg/L	1	11/20/00
Isopropylbenzene	ND	1.0		μg/L	1	11/20/00
4-Isopropyltoluene	ND	1.0		µg/L	1	11/20/00
Methyl tert-butyl ether (MTBE)	ND	1.0		µg/L	1	11/20/00
Methylene Chloride	ND	3.0		µg/L	1	11/20/00
n-Butylbenzene	ND	1.0		µg/L	1	11/20/00
1-Methylnaphthalene	ND	2.0		µg/L	1	11/20/00
2-Methylnaphthalene	ND	2.0		µg/L	1	11/20/00
n-Propylbenzene	ND	1.0		µg/L	1	11/20/00
Naphthalene	ND	2.0		µg/L	1	11/20/00
sec-Butylbenzene	ND	1.0		µg/L	1	11/20/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Hall Environmental Analysis Laboratory

CLIENT:Blagg EngineeringLab Order:0011083Project:Nancy Hartman #1E

Lab ID:

Nancy Hartma 0011083-04A Date: 04-Dec-00

Client Sample ID: Trip Blank Collection Date: 11/15/00

Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
Styrene	ND	1.0	µg/L	1	11/20/00
tert-Butylbenzene	ND	1.0	µg/L	1	11/20/00
Tetrachioroethene	ND	1.0	µg/L	1	11/20/00
Toluene	ND	1.0	µg/L	1	11/20/00
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	11/20/00
1,1,2,2-Tetrachloroethane	ND	1.0	µg/L	1	11/20/00
trans-1,2-DCE	ND	1.0	µg/L	1	11/20/00
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	11/20/00
Trichloroethene	ND	1.0	µg/L	1	11/20/00
Trichlorofluoromethane	ND	1.0	µg/L	1	11/20/00
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	11/20/00
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	11/20/00
1,1,1-Trichloroethane	ND	1.0	µg/L	1	11/20/00
1,1,2-Trichloroethane	ND	1.0	µg/L	1	11/20/00
Vinyl chloride	ND	2.0	µg/L	1	11/20/00
1,2,3-Trichloropropane	ND	2.0	µg/L	1	11/20/00
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	11/20/00
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	11/20/00
Xylenes, Total	ND	1.0	µg/L	1	11/20/00
Surr: 1,2-Dichloroethane-d4	83.9	65-114	%REC	1	11/20/00
Surr: 4-Bromofluorobenzene	98.3	74-122	%REC	1	11/20/00
Surr: Dibromofluoromethane	90.3	65-113	%REC	1	11/20/00
Surr: Toluene-d8	94.8	60-123	%REC	1	11/20/00

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 8 of 8

Billings • Casper • Gillette Helena • Rapid City

Silver

Zinc

ENERGY LABORATORIES, INC.

SHIPPING: 2393 SALT CREEK HIGHWAY • CASPER, WY 82601 MAILING: P.O. BOX 3258 • CASPER, WY 82602 E-mail: casper@energylab.com • FAX: (307) 234-1639 PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

	LABORATORY ANALYSIS REPORT													
Client:	Hall Environmental	MW #1 nv												
Sample ID:				0011039-01D										
Sample Date/Time:				11-06-00 14:40										
Date Received:				11-10-00										
Sample Matrix:			동안 영상 것은 가장이 같이 있는 것? 이번 것은 이번 것은 것을 통하는 것을 하는 것을	Liquid, Water										
Laboratory ID:		에는 사용 가는 가슴이 가슴이 가슴이. 사용 방송 관계는 것 같은 것 같은 것		00-37515-1										
Report Date:				November 29, 2000										
Major lons	Method	Units	Reporting Limit	Results										
Calcium	EPA 200.7	mg/L	1.0	265										
Magnesium	EPA 200.7	mg/L	1.0	22.4										
Sodium	EPA 200.7	mg/L	1.0	113										
Potassium	EPA 200.7	mg/L	1.0	1.5										
Trace Metals	EDA 200 9		0.10	3.7										
	EPA 200.8	mg/L	0.10											
Arsenic	EPA 200.8	mg/L	0.001	0.086										
Barium	EPA 200.8	mg/L	0.10	2.3										
Boron	EPA 200.8	mg/L	0.10	< 0.10										
Cadmium	EPA 200.8	mg/L	0.005	< 0.005										
Chromium	EPA 200.8	mg/L	0.001	0.003										
Cobalt	EPA 200.8	mg/L	0.01	< 0.01										
Copper	EPA 200.8	mg/L	0.01	0.03										
ron	EPA 200.7	mg/L	0.03	27.4										
Lead	EPA 200.8	mg/L	0.001	0.022										
Manganese	EPA 200.8	mg/L	0.01	9.6										
Mercury	EPA 200.8	mg/L	0.001	< 0.001										
Molybdenum	EPA 200.8	mg/L	0.01	< 0.01										
Nickel	EPA 200.8	mg/L	0.01	0.02										
Selenium	EPA 200.8	mg/L	0.001	0.004										
11		(7	0.001	. 0.001										

dmc: r:\reports\clients2000\hall_environmental_analysis_lab\liquid\37515-1.xls

EPA 200.8

EPA 200.8

TRACKING 110. PAGE NO. 37515R00003

< 0.001

0.03

COMPLETE ANALYTICAL SERVICES

mg/L

mg/L

0.001

0.01

ENERGY LABORATORIES, INC.

Molybdenum

Nickel

Silver

Zinc

Selenium

SHIPPING: 2393 SALT CREEK HIGHWAY • CASPER, WY 82601 MAILING: P.O. BOX 3258 • CASPER, WY 82602 E-mail: casper@energylab.com • FAX: (307) 234-1639 PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

	LABORA	TORY ANALYSI:	S REPORT					
Client:	Hall Environmental			MW # 4M no				
Sample ID:				0011039-04D				
Sample Date/Time:				11-06-00 11:00				
Date Received:				11-10-00				
Sample Matrix:				Liquid, Water				
Laboratory ID:			n is sen av den de la serie de la serie El terretoria de la serie d	00-37515-3				
Report Date:				November 29, 2000				
		<u> Tanan yayiinin anist</u>						
Major Ions	Method	Units	Reporting Limit	Results				
Calcium	EPA 200.7	mg/L	1.0	280				
Magnesium	EPA 200.7	mg/L	1.0	17.0				
Sodium	EPA 200.7	mg/L	1.0	64.4				
Potassium	EPA 200.7	mg/L	1.0	1.6				
Trace Metals								
Aluminum	EPA 200.8	mg/L	0.10	4.0				
Arsenic	EPA 200.8	mg/L	0.001	0.001				
Barium	EPA 200.8	mg/L	0.10	0.23				
Boron	EPA 200.8	mg/L	0.10	< 0.10				
Cadmium	EPA 200.8	mg/L	0.005	< 0.005				
Chromium	EPA 200.8	mg/L	0.001	0.001				
Cobalt	EPA 200.8	mg/L	0.01	< 0.01				
Copper	EPA 200.8	mg/L	0.01	< 0.01				
Iron	EPA 200.7	mg/L	0.03	0.85				
Lead	EPA 200.8	mg/L	0.001	0.008				
Manganese	EPA 200.8	mg/L	0.01	0.58				
Mercury	EPA 200.8	mg/L	0.001	< 0.001				

mg/L

mg/L

mg/L

mg/L

mg/L

dmc: r:\reports\clients2000\hall_environmental_analysis_lab\liquid\37515-3.xls

EPA 200.8

EPA 200.8

EPA 200.8

EPA 200.8

EPA 200.8

TRACKING NO. PAGE NO. 37515R00005

< 0.01

0.01

0.002

< 0.001

0.02

COMPLETE ANALYTICAL SERVICES

0.01

0.01

0.001

0.001

0.01

Billings • Casper • Gillette

Helena • Rapid City

ENERGY LABORATORIES, INC.

SHIPPING: 2393 SALT CREEK HIGHWAY • CASPER, WY 82601 MAILING: P.O. BOX 3258 • CASPER, WY 82602 E-mail: casper@energylab.com • FAX: (307) 234-1639 PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

LABORATORY ANALYSIS REPORT Image: Model of the state of the sta		생활 수 있는 것은 것을 가지 않는 것을 가지?	이 가격에 가지 않는 것 같아.	(
Client: Hall Environmental MW # 2 *// Sample ID: 0011039-02D Sample Date/Time: 11-06-00 13:40 Date Received: 11-10-00 Sample Matrix: Liquid, Water Laboratory ID: 00-37515-2			%	STRACE METRLS
Sample ID:0011039-02DSample Date/Time:11-06-00 13:40Date Received:11-10-00Sample Matrix:Liquid, WaterLaboratory ID:00-37515-2		LABORATORY ANALYSI	S KEPUKI	-ANALYSIS NOT LEQUESTED
Sample ID:0011039-02DSample Date/Time:11-06-00 13:40Date Received:11-10-00Sample Matrix:Liquid, WaterLaboratory ID:00-37515-2		에는 이 가격 위에 있는 것이 있는 것이 있는 것이 가격을 가격했다. 이 가격 것은 이 가격 가격 가격을 받았다. 이 가격 것이 가격을 가격했다.		
Sample ID:0011039-02DSample Date/Time:11-06-00 13:40Date Received:11-10-00Sample Matrix:Liquid, WaterLaboratory ID:00-37515-2		Adol (Alexa), bernare a coloria. David Receiver de l'Alexa de la coloria de la coloria.		사람 수 있는 것을 다 한 것을 수 있는 것을 것을 수 있는 것을 것 같이 않는 것을 것 같이 않는 것을 것 같이 않는 것을 것 같이 않는 것 않는 것 같이 않는 것 같이 않는 것 같이 않는 것 않는 것 않는 것 같이 않는 것 않는
Sample ID:0011039-02DSample Date/Time:11-06-00 13:40Date Received:11-10-00Sample Matrix:Liquid, WaterLaboratory ID:00-37515-2	Client: Hall Envir	onmental	그는 말 잘 수가 가지?	MW # 2 mm
Sample Date/Time:11-06-00 13:40Date Received:11-10-00Sample Matrix:Liquid, WaterLaboratory ID:00-37515-2	Sample ID:			
Date Received:11-10-00Sample Matrix:Liquid, WaterLaboratory ID:00-37515-2	Gampic ID.	지는 소리가 물통했다. 것이 되는 것을 통하는 것이 같이 많이 많이 많이 했다.		
Sample Matrix: Laboratory ID: 00-37515-2	Sample Date/Time:			11-06-00 13:40
Sample Matrix: Laboratory ID: 00-37515-2	Data Pacaivad			11-10-00
Laboratory ID: 00-37515-2	Date Acterica.			
	Sample Matrix:		이상 고객을 생고 물건을 벗고 있다.	Liquid, Water
	Laboratory ID:			00-37515-2
		그는 말 같은 것은 것을 가지 않는 것을 가지?		Name-han 20, 2000
	Report Date:	한 이번에 가슴 가슴 옷에 다니 가 없다.		1404CHIDEI 29, 2000
요구 같이 아니는 것 같은 것 같				

Major Ions	Method	Units	Reporting Limit	Results
Calcium	EPA 200.7	mg/L	1.0	188.9
Magnesium	EPA 200.7	mg/L	1.0	10.0
Sodium	EPA 200.7	mg/L	1.0	63.7
Potassium	EPA 200.7	mg/L	1.0	1.3

Trace Metals				
Aluminum	EPA 200.8	mg/L	0.10	0.82
Arsenic	EPA 200.8	mg/L	0.001	< 0.001
Barium	EPA 200.8	mg/L	0.10	< 0.10
Boron	EPA 200.8	mg/L	0.10	< 0.10
Cadmium	EPA 200.8	mg/L	0.005	< 0.005
Chromium	EPA 200.8	mg/L	0.001	< 0.001
Cobalt	EPA 200.8	mg/L	0.01	< 0.01
Copper	EPA 200.8	mg/L	0.01	< 0.01
Iron	EPA 200.7	mg/L	0.03	0.30
Lead	EPA 200.8	mg/L	0.001	< 0.001
Manganese	EPA 200.8	mg/L	0.01	0.16
Mercury	EPA 200.8	mg/L	0.001	< 0.001
Molybdenum	EPA 200.8	mg/L	0.01	< 0.01
Nickel	EPA 200.8	mg/L	0.01	< 0.01
Selenium	EPA 200.8	mg/L	0.001	0.001
Silver	EPA 200.8	mg/L	0.001	< 0.001
Zinc	EPA 200.8	mg/L	0.01	< 0.01

TRACKING NO. PAGE NO. 37515R0000

COMPLETE ANALYTICAL SERVICES

IMENTAL ANALYSIS LABORATORY IMENTAL ANALYSIS LABORATORY IE, Suite A	rel. 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com		REQUEST	 12/52	ر ۲ کم ۲۰۱۶ ۲۰۱۷ : ۲۰۱۷ : ۲۰۱۷ :	2, PO₄ 5 (808: 5 €€€	1 2 < 5 2 1))) 5 8 2 3 7 8 70 2 0 10		AOV) (M92) (M92) (X37	0in4 808 8260 8280 8270 7 7 7 7			>		/				1 1 1 1 1 Vi= 0 RALI	Ć.
HALL ENVIRONMENTAL	Tel. 505.345.3975 Fax 505.3 www.hallenvironmental.com	8	ANALYSIS			e) OC	58 MC 8.1) (8021 (1,1) (1,1)	r08 bo 3r4 bo tsiJ III 202 bo 202 bo 208 bo 208 bo	HT K + XJTBF PH Method Method Method Method Method Method Method Method							· /			ks: P, EAS/E, PROVINE	
		144NCY HARTINGN # FE	Project #:	(/4		TETE BLAGE (8021				Hydo, Hdi	5 V-200/1/39-1	3 1-2	z 1-8% -3	h- 2528-1 1	Z. V-8260 J	1 -6	L- 2		Beceived By: (Signatule) 0435 Remarks:	Received By: (Signature)
CHAIN-OF-CUSTODY RECORD	Client: BLAGE / MANANA GAS	->	Address: P.C. & o.X & 7	becompleted, NM 87413			Phone # 505 - 632 - 1199	Fart: 505-632-3903	Date Time Matrix Samole I.D. No. 0	-	11/6/00/1440 WATER MW # 1	00 13410	11/6/00 1 205 WATER MW # 3M	11/6/00 1100 WATER MW # 4M	11/6/00/255 WARER MW # SA	1/3/20 0900 Soil (5) & 13'	11/6/00 TH WATER TRIP & ANK		Date: Time: Relinquished By: (Signagure)	Date:

bor
s La
nalysi
l An:
enta
muo.
Invir
allE
H

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Albuquerque, New Mexico 87109-4901 Hawkins NE, Suite A (505) 345-3975

Subcontractor:

Energy Labs

(888) 235-0515 (307) 234-1639 TEL: Fax: 2393 Salt Creek Highway

Casper, WY 82601

Acct #:

00-vov-00

				DY Co.					
				reast -	t,		Requested Tests	1 Tests	
Sample ID	Matrix	Collection Date	Bottle Type			1 (a. M.	i Nh. K		
						```			
0011039-01D	Aqueous	11/6/2000 2:40:00 PM 25	250HDPEHNO3	1	-				
0011039-02D	Aqueous	11/6/2000 1:40:00 PM		•	×				
0011039-04D	Aqueous	1/6/2000 11:00:00 AN 25	250HDPEHNO3	-	-				

Date/Time (X/2) (000) Received by: < **Received by:** comments: Project Name: Nancy Hartman #1E 2151 00/L/11 Please fax results by 11/24/00 Date/Time D Relinquished by: Stephanic Ukhanou 37515R00007

HALL ENVIRONMENTAL ANALYSIS LABORATORY 1901 Hawkins NE, Suite A Vibuquerque, New Mexico 87109					or V )	(	edspe	or He	səlq(	lu8 iiA								-						
2	01						(			) 0728	- <del> </del>		<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u></u>			5	
ALY5	rel. 505.345.3975 Fax 505.345.4107	_				(808)	5804	_		1 1808		7		–		┼──			$\vdash$	┼			5	2
ental Analy Suite A Mexico 87109	rei. 505.345.3975 Fax 505.3		EST	(1		2, PO4						+		┢──						<u> </u>			UERBAUS	Y Y
1411 ENVIRONMENTAL / 1901 Hawkins NE, Suite A Memberane, New Mexico	Ţax		REQUEST				(0M ,e	' K' C	eN) s	noitsJ													<b>j</b> ,	42
ALL ENVIRONME 901 Hawkins NE, Uburuhtruka, New	3975 1							_		Аяря	<u> </u>			ļ	<b>_</b>		ļ	<b>_</b>		ļ			ROULE	k
NVIR Wkin	19		ANALYSIS			<del></del>				8310 ( 8310 (	+						<u> </u>			<u> </u>			, foi	ų
2 H 2			AN	<u>.</u>		<u> </u>				EDB (1		+						┼		+-				CONVENIENCE
343						(				Volatil	1	1			1			†		╞──			REACT.	
							(1.8	314 bo	Vetho	I) H9T	'												REAS	
						89) QQ		_			<u> </u>	<b> </b>	ļ		<u> </u>					<b> </b>				0 3
				(//I		r208) 					<u> </u>												Remarks:	
			1		T (	1008)	3/8WJ	38	TM -	RTEY		5	3			 				L		_	ž	
		年丙					52	°N D		HEAL No.	-2801/UU		ì		1								0440 11/11/11	
						yp.	Y	5	tive						ļ								(e) 2 1	(eu
		ZUNU				BLAGE	2	ALVes	Preservative	₽	>		$\succ$										Signature)	
· · · · · · · · · · · · · · · · · · ·		HAR			1	×	102		ه	Hach													By: (9	
	Project Name:	NANCY	Project #:		Project Manager.	と見て	Sampler, NELSON	Samples Cold?:		Number Molume	1	2- 4041	2-4001		2 - 40mi							<	Beceived By: (	
CHAIN-OF-CUSTODY RECORD	Client: BLAGE ENGINERING/MMANARA 685		87	514C8 M			-1199	- 3903		Sample I.U. No.	W9 # MW	W L # 78	W8 # MW		D TRIP BLANK								Relinquighed By: (Signature)	
-CUSTO	ENGINE (		P.O. 80×	becompted nur			5-632	5-632		Mainx	NHE S	> WATER			CERCIONAL D									
IO-NI	SAG .		`]	'thoc			: SOS	505	•		0111		5133S		24								Time: ISAS	
CHA	Client: 6		Address:	BLI			Phone #:	Fax #:		nale	וו וצלסס	"/[2/00	100/21/11	-	ii [[5]00								Date: 11/15/00	Calo.

l

OC SUMMARY REPOl         Method BI         Method BI         Method BI         Method BI         Sectore: SW0015       Units: mg/Kg       Analysis Date: 11/1000       Prep Date: 11/1000         Prep Date: 11/1000       Prep Date: 11/1000         Prep Date: 11/1000       Prep Date: 11/1000         FIDHP_001110C       SeqNo: 2064       SeqNo: 2064         5.0       100       0       126       74       135       0       Prep Date: 11/1000         FIDHP_001110C       SeqNo: 2064       SeqNo: 2064         6.0       0       126       74       125       0       Prep Date: 11/1000												
Mistory Harman #IE         Method B1           D: Marxels         Batch ID: 6         Februari #IE         Method B1           D: Marxels         Batch ID: 6         Februari #IT000         Peop Date: 111000         Peop Date: 111000           D: MB246         Batch ID: 6         Februari #IT000         Service         Service         Markels Bate: 111000         Peop Date: 111000           D: MB246         Batch ID: 66         C         Stati         D.0         Service         204         %RPD         RPD Late: 111000           D: MB246         Batch ID: 66         C         100         5.0         100         2.6         7.4         135         0           D: MB248         Batch ID: 66         C         100         5.0         100         2.6         7.4         135         0         7.4         135         0         7.1000         111000         111000         111000         111000         111000         111000         111000         111000         111000         111000         1111000         111000         1111000         1111000         1111000         1111000         1111000         1111000         1111000         1111000         1111000         1111000         1111000         1111000         1111000         1		igg Engineering							QC SU	MMARY	REPO	RT
Di MB2-66         Batch ID: 66         Test Code: SW0015         Unis: mg/kq         Analysis Date: 11/1000         Prap Date: 11/1000           Rasut         Rou         Sravte         Seq.         Seq.         Seq.         Seq.         Seq.         Seq.         Seq.         Seq.         Rep Date: 11/1000           Resut         PQL         Srv value         SPK red Val         %REC         LowLimit         High Limit         RPD Limit         RPD Limit           DNOP         12         0         10         N         Seq.         264         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N		1009 ncy Hartman #1E								N	fethod B	lank
Charactering       Cardinal       SeqVe.       SeqV	ample ID: MB2-66	Batch ID: 66		SW8015	Units: mg/Kg		Analysis	Date: 11/1	00/0	Prep Date	: 11/10/00	
Result       POL       SPK value       SPK Kerf Val       MRD       MRD       RPD fart Val       WRD       RPD fart Val       MRD       RP	ient ID:			FIDHP_00111	5		SeqNo:	2064				
Northome         10         50         100         125         0         125         0         125         0           DNOP         126         0         100         0         100         126         74         135         0           D: MB-66         Batch ID: 66         Test Code:         Swe15         Units: mg/kg         Analysis Date: 111000         Prop Date: 111000           D: MB-66         Batch ID: 66         Test Code:         Swe14         PQL         Styck value         SPK Ref Val         %REC         Low/Init         HighLimit         RPD Init           D: MB-06         0         100         0         100         0         109         Fee         Point         Maples Date: 1111000         Prop Date: 1111000           Disembons: C3-C34         ND         Fee         100         0         100         74         125         0         Prop Init           Disembons: C3-C15+         ND         FOL         SYK ref Valu         %REC         Low/Init         HighLimit         RPD Ref Val         %RPD         Prop Init           Disembons: C3-C15+         ND         FOL         SYK ref Val         %REC         Low/Init         HighLimit         RPD Ref Val         %RPD         R	halyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit			RPDLimit	Qual
D: NB-66         Test Code: SW015         Units: mg/Kg         Analysis Date: 111000         Prep Date: 111000           2: NB-67         Run ID:         FoUHP_001110D         SeqNo:         265           2: Name         Rou ID:         FUHP_001110D         SeqNo:         265           1: ND: ND:         Rou ID:         FUHP_001110D         SeqNo:         265           1: ND: ND:         ND         50         100         0         103         74         125         0         Prep Date:           1: ND: ND:         ND:         POL         SPK value         SPK Ref Val         %RPD         RPDLImit           1: ND: ND:         ND:         103         74         125         0         Prep Date:           1: ND: ND:         PRIL         POL         SPK value         SPK Ref Val         %RPD         RPDLImit           1: ND: ND Decreted for the Reporting Limit         POL         101         74         118         0         Prep Date:	R Hydrocarbons: C10-( Surr: DNOP		5.0	100	0	126	74	135	o			
Discription       Run ID:       Run ID:       Run ID:       Run ID:       SeeVic:       SeeVic: <td>ample ID: MB-66</td> <td>Batch ID: 66</td> <td></td> <td>SW8015</td> <td>Units: mg/Kg</td> <td></td> <td>Analysis</td> <td>Date: 11/1</td> <td>00/0</td> <td>Prep Date</td> <td>: 11/10/00</td> <td></td>	ample ID: MB-66	Batch ID: 66		SW8015	Units: mg/Kg		Analysis	Date: 11/1	00/0	Prep Date	: 11/10/00	
Incention:ResultPQLSPK ref valueSPK	ient ID:			FIDHP_00111	00		SeqNo:					
Incarbons: C10-C28         ND         5.0         0         109         5.0         109         5.0           Incarbons: C28-C34+         ND         109         0         109         74         125         0           ID: NBLK         Batch ID: R142         Test Code: SW8015         Unlis: mg/Kg         Analysis Date: 11/13/00         Prop Date: 11/13/00         Prop Date: 11/13/00           ID: NBLK         Batch ID: R142         Test Code: SW8015         Unlis: mg/Kg         Analysis Date: 11/13/00         Prop Date: 11/13/00           ID: NBLK         Batch ID: R142         POL         SPC Louilinit         Result         POL         SPC Louilinit           ID: NBLK         Batch ID: R142         D         100         0         101         74         118         PD Ref Val         RPD Limit           Incarbons: C5-C15+         ND         Tot         0         101         74         118         0         Analysis Date: 11/13/00         Prop Date: 11/13/13/00	alyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit			RPDLimit	Qual
D: NBLK     Batch ID: R142     Test Code:     SW8015     Units:     mg/Kg     Analysis Date:     11/13/00     Prep Date:       D:     Run ID:     PIDFID_00113.A     SeqNo:     2643     2643       D:     Result     PQL     SPK value     SPK Kef Val     %REC     LowLimit     HighLimit     RPD Ref Val     %RPD     RPDLimit       Norabrons: C5-C15+     ND     5.0     100     0     101     74     118     0       BFB     101     0     100     0     101     74     118     0	R Hydrocarbons: C10- R Hydrocarbons: C28-( Surr: DNOP	+	5.0 50 0	100	O	109	74	125	o			
Increations: C5-C15+*       Run ID:       PDIFID_00113A       SeqNo:       2643         Increations: C5-C15+*       ND       5.0       NMP       NPD Initi       RPD Ref Val       %RPD       RPDLinit         Increations: C5-C15+*       ND       5.0       100       0       101       74       118       0         BFB       101       0       100       0       101       74       118       0         erst       ND-Not Detected at the Reporting Linit       5-Spike Recovery outside accepted recovery linits       B-Analyte detected in the associated Method Bit	ample ID: MBLK	Batch ID: R142		SW8015	Units: mg/Kg		Analysis	: Date: 11/1	3/00	Prep Date		
Result     PQL     SPK value     SPK Ref Val     %REC     LowLimit     HighLimit     RPD Ref Val     %RPD     RPDLimit       Incoarbons: C5-C15+     ND     5.0     101     0     101     74     118     0       BFB     101     0     100     0     101     74     118     0	ent ID:			PIDFID_0011	13A		SeqNo:				÷	
ND     5.0       101     5.0       101     74       118       Octocated at the Reporting Limit         Detected at the Reporting Limit	alyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val		RPDLimit	Qual
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	R Hydrocarbons: C5-C Surr: BFB		5.0	<b>100</b>	o	ē	4	118	o			
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits												
		ND - Not Detected at the Reporting Limit 1 - Analyte detected below mantitation limits	ais -	S - Spi	ke Recovery outside	accepted reco	very limits		B - Analyte detecte	d in the associate	d Method B	lank

CLIENT:	Blagg Engineering	gineering							QC SUMMARY REPORT	MMAR	Y REPC	<b>NRT</b>
work Urder: Project:	0011039 Nancy Ha	00111059 Nancy Hartman #1E							,		Method Blank	31ank
Sample ID: MBLK		Batch ID: R142	Test Code:	SW8021	Units: mg/Kg		Analysis	Analysis Date: 11/13/00	3/00	Prep Date:	ate:	
Client ID:			Run ID:		13A		SeqNo:	2639				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ether (MTBE)		0.10									
Toluene		2 2	0.050									
Ethylbenzene		Q	0.050									
Xylenes, Total		QN	0:050									
Surr: 4-Bromofluorobenzene	lluorobenzene	103	0	100	0	103	74	118	0			
	ND - Not Det	octad at the Renortina [ imi		C Cmi	te Decorrent outeide	accented too	van limita					-
Qualifiers:	J - Analyte de	ND - Not Detected at the Keportung Limit J - Analyte detected below quantitation limits	t mits	S - Spi R - RP	<ul> <li>S - Spike Recovery outside accepted recovery limits</li> <li>R - RPD outside accepted recovery limits</li> </ul>	ecovery limits	very limits		B - Analyte detected in the associated Method Blank	d in the associ	iated Method F	3lank J
	•	•										•

CLIENT:	Blagg Engineering				OC SUN	OC SUMMARY REPORT
Work Urder: Project:	0011039 Nancy Hartman #1E				J	Method Blank
Sample ID: rb 5ml 2	1 2 Batch ID: R161	Test Code:	SVV8260B Units: µg/L	ug/L Analysis Date: 11/9/00	11/9/00	Prep Date:
Client ID:		Run ID:	11094		3079	
Analyte	Result	Pal	SPK value SPK Ref Val	i Val %REC LowLimit HighLimit	Limit RPD Ref Val	%RPD RPDLimit Qual
Benzene	QN	1.0				
Bromobenzene	QN	1.0				
Bromodichloromethane	hane ND	1.0				
Bromoform	DN	1.0				
Bromomethane	QN	1.0				
Carbon Tetrachloride	ND	1.0				
Chlorobenzene	QN	1.0				
Chloroethane	QN	2.0				
Chloroform	QN	1.0				
Chloromethane	QN	1.0				
2-Chlorotoluene	QN	1.0				
4-Chlorotoluene	QN	1.0				
cis-1,2-DCE	QN	1.0				
cis-1,3-Dichloropropene	pene ND	1.0				
1,2-Dibromo-3-chloropropane	propropane ND	2.0				
Dibromochloromethane	hane ND	1.0				
1,2-Dibromoethane (EDB)	e (EDB) ND	1.0				
Dibromomethane	QN	2.0				
1,2-Dichlorobenzene	ne ND	1.0				
1,3-Dichlorobenzene		1.0				
1,4-Dichlorobenzene	ND	1.0				
Dichlorodifluoromethane	thane ND	1.0				
1,2-Dichloroethane (EDC)	e (EDC) ND	1.0				
I,1-Dichloroethane	QN	1.0				
1,1-Dichloroethene	QN	1.0				
1,2-Dichloropropane	le ND	1.0				
1,3-Dichloropropane	le ND	1.0				
2,2-Dichloropropane	ND	1.0				
Qualifiers:	ND - Not Detected at the Reporting Limit	ļţ	S - Spike Recover	S - Spike Recovery outside accepted recovery limits	B - Analyte detected	B - Analyte detected in the associated Method Blank
						WINT DOWNTH DOWNTOODD AND IN A

CLIENT: Blagg Engineering								C SIMMARY BEDDE	
Work Order: 0011039									
Project: Nancy Hartman #1E									Method Blank
1,1-Dichloropropene	QN	1.0							
Ethylbenzene	QN	1.0							
Hexachlorobutadiene	QN	1.0							
lsopropylbenzene	QN	1.0							
4-Isopropyltoluene	QN	1.0							
Methyi tert-butyl ether (MTBE)	QN	1.0							
Methylene Chloride	QN	3.0							
n-Butylbenzene	QN	1.0							
1-Methylnaphthalene	QN	2.0							
2-Methylnaphthalene	QN	2.0							
n-Propylbenzene	QN	1.0							
Naphthalene	QN	2.0							
sec-Butylbenzene	QN	1.0							
Styrene	QN	1.0							
tert-Butylbenzene	QN	1.0							
Tetrachloroethene	QN	1.0							
Toluene	QN	1.0							
1,1,1,2-Tetrachloroethane	QN	1.0							
1,1,2,2-Tetrachloroethane	QN	1.0							
trans-1,2-DCE	QN	1.0							
trans-1,3-Dichloropropene	QN	1.0							
Trichloroethene	QN	1.0							
Trichlorofluoromethane	QN	1.0							
1,2,3-Trichlorobenzene	QN	1.0							
1,2,4-Trichlorobenzene	QN	1.0							
1,1,1-Trichloroethane	QN	1.0							
1,1,2-Trichloroethane	Q	1.0							
Vinyl chloride	QN	2.0							
1,2,3-Trichloropropane	QN	2.0							
1,2,4-Trimethylbenzene	QN	1.0							
1,3,5-Trimethylbenzene	QN	1.0							
Xylenes, Total	QN	1.0							
Surr: 1,2-Dichloroethane-d4	9.32	0	10	0	93.2	65	114	0	
Qualifiers:         ND - Not Detected at the Reporting Limit	porting Limit		S - Spike Recovery outside accepted recovery limits	werv outside ;	incented recover	limite	ä	R - Analyte detected in the accordated Method Dlant	aristod Mathod Dloub
			•	interna finit	······	comm d la	ב	AUBIVIC UCITICUTUM TIL UIC ADDI	OCIZICA INICATION DIVITIA

LIENT:     Blagg Engineering       /ork Order:     0011039       /or Sur: 4-Bromofluorobenzene     9.68       /or Sur: 201     0     96.8       /or Sur: 201     0     10     0       /or Sur: 201     0     13     0
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

LIVINUOUD CIECUIU LIVIUUI LIVIU LIVIU LIVIU			•								
CLIENT:	Blagg Engineering								QC SU	QC SUMMARY REPORT	EPOR
work Oruer: Project:	Vull029 Nancy Hartman #1E									Met	Method Blank
Sample ID: MB-55	5 Batch ID: 55		Test Code:	SW8310	Units: µg/L		Analysis	Analysis Date: 11/19/00	00/6	Prep Date: 11/8/00	1/8/00
Client ID:			Run ID:	HPLC_001118A	3A		SeqNo:	3330	-		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit		HighLimit RPD Ref Val	%RPD RPI	RPDLimit Qual
Naphthalene		Q	2.5								
1-Methylnaphthalene	sne	Q	2.5								
2-Methylnaphthalene	ane	Q	2.5								
Acenaphthylene		Q	2.5								
Acenaphthene		Q	2.5								
Fluorene		Q	0.80								
Phenanthrene		Q	0.60								
Anthracene		Q	0.60								
Fluoranthene		Q	0.30								
Pyrene		Q	0.30								
Benz(a)anthracene	Đ	Q	0.020								
Chrysene		Q	0.20								
Benzo(b)fluoranthene	ene	Q	0:050								
Benzo(k)fluoranthene	ene	Q	0.020								
Benzo(a)pyrene		Q	0.020								
Dibenz(a,h)anthracene	Icene	Q	0.040								
Benzo(g,h,i)perylene	ane	2	0.030								
Indeno(1,2,3-cd)pyrene	yrene	Q	0.080								
Surr: Benzo(e)pyrene	pyrene	839.2	0	1000	o	83.9	#	104	0		
Qualifiers:	ND - Not Detected at the Reporting Limit	porting Limit		S - Spi	S - Spike Recovery outside accepted recovery limits	e accepted reco	very limits		B - Analyte detecte	B - Analyte detected in the associated Method Blank	fethod Blank
		; ; ;		•		•	•		•		

CLIENT:	Blagg Engineering	ineering							OC SUI	<b>OC SUMMARY REPORT</b>	Y REPC	)RT
Work Urder: Project:	0011039 Nancy Hartman #1E	tman #1E							Laboratory Control Spike - generic	Control S	spike - ge	neric
Samole ID: LCS		Batch ID: R142	Test Code:	SW8015	Units: ma/Ka		Analvsis	Analvsis Date: 11/13/00	100/	Prep Date:	te:	
Client ID:				PIDFID_001113A	13A		SeqNo:	2644			ì	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Vał	%RPD	RPDLimit	Qual
T/R Hydrocarbons: C5-C15+	C5-C15+	23.5	5.0	25	0	94.0	82	124	o		ne ann an Anna an Anna an	
Sample ID: LCSD		Batch ID: R142	Test Code:	SW8015	Units: mg/Kg		Analysis	Analysis Date: 11/13/00	100	Prep Date:	te:	
Client ID:			Run ID:	PIDFID_001113A	13A		SeqNo:	2645				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
T/R Hydrocarbons: C5-C15+	C5-C15+	25.7	5.0	25	0	103	82	124	23.5	8.94	18	
Sample ID: LCS		Batch ID: R142	Test Code:	SW8021	Units: mg/Kg		Analysis	Analysis Date: 11/13/00	3/00	Prep Date:	te:	
Client ID:			Run ID:	PIDFID_001113A	13A		SeqNo:	2640				
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	her (MTBE)	1.65	0.10	2	0	82.5	65	132	0			
Benzene		1.03	0.050	-	0	103	11	122	0			
Toluene		1.02	0:050	-	0	102	81	115	0			
Ethylbenzene		1.01	0.050	<del>-</del> - 1	0	101	84	117	0			
Xylenes, I otal		3.07	0,000	3	0	102	84	116	0			
Sample ID: LCSD		Batch ID: R142	Test Code:	SW8021	Units: mg/Kg		Analysis	Analysis Date: 11/13/00	3/00	Prep Date:	te:	
Client ID:			Run ID:	PIDFID_001113A	13A		SeqNo:	2641				
Analyte		Result	Par	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	her (MTBE)	1.62	0.10	2	0	81.0	65	132	1.65	1.83	28	
Benzene		1.03	0:050	-	0	103	11	122	1.03	0	27	
Toluene		1.02	0.050	-	0	102	81	115	1.02	0	19	
Ethylbenzene		-	0.050	-	0	100	84	117	1.01	0.995	10	
Xylenes, Total		3.12	0.050	ς	0	104	84	116	3.07	1.62	13	

CLIENT: Work Order: Project: Sample ID: bs 40ng Client ID: Analyte	Blagg Engineering 0011039 Nancy Hartman #1E										
Project: Sample ID: bs 40n Client ID: Analyte	Nancy Hartman #1E							QC SUI	MMAR	QC SUMMARY REPORT	<b>DRT</b>
Sample ID: <b>bs 40n</b> ; Client ID: Analyte								Laboratory Control Spike - generic	/ Control	Spike - ge	meric
Client ID: Vnalyte	g Batch ID: R136	Test Code:	SW8260B	Units: µg/L		Analysis	Analysis Date: 11/10/00	00/0	Prep Date:	ate:	
unalyte		Run ID:	THOR_001110A	IOA		SeqNo:	3138				
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	8.68	1.0	8	0	108	74	119	0			1
Chlorobenzene	8.204	1.0	ω	0	103	. 72	123	0			
1,1-Dichloroethene	8.256	1.0	8	0	103	71	123	0			
Toluene	8.334	1.0	80	0	104	73	123	0			
Trichloroethene	8.02	1.0	89	0	100	69	130	0			
Sample ID: bsd 40ng	ng Batch ID: R136	Test Code:	SW8260B	Units: µg/L		Analysis	Analysis Date: 11/10/00	0/00	Prep Date	ate:	
Client ID:		Run ID:	THOR_001110A	DA D		SeqNo:	3139				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	8.368	1.0	8	0	105	74	119	8.68	3.66	21	
Chlorobenzene	7.962	1.0	8	0	<b>99.5</b>	72	123	8.204	2.99	22	
1,1-Dichloroethene		1.0	8	0	106	71	123	8.256	3.05	20	
Toluene	7.986	1.0	80	0	99.8	73	123	8.334	4.26	23	
Trichloroethene	7.94	1.0	Ø	0	99.2	69	130	8.02	1.00	23	
Qualifiers:	ND - Not Detected at the Reporting Limit		S - Sp	S - Spike Recovery outside accepted recovery limits	e accepted rec	overy limits		B - Analyte detected in the associated Method Blank	d in the assoc	iated Method E	<b>3lank</b>
	J - Analyte detected below quantitation limits	its	R - RI	R - RPD outside accepted recovery limits	recovery limit	S					Ι

Under: 0011039           I: Nancy Hartman #IE           D: LCS-55         Batch ID: 55         Test Code: SW8310         Units: $\mu g/L           D: LCS-55         Batch ID: 55         Test Code: SW8310         Units: \mu g/L           D: LCS-55         Batch ID: 55         Test Code: SW8310         Units: \mu g/L           D: LCS-55         Batch ID: 55         Test Code: SW8310         Units: \mu g/L           PCL         SPK value         SPK Ref Val         One           PCL         SPK value         SPK Ref Val         One           Result         PCL         SPK value         SPK Ref Val           Result         O.30         2.5.67         2.5.5         40.4         0           Ithere         2.31         0.030         0.553         0         0           Intere         2.31         0.030         0.553         0         0           Intere         2.35         40.4         0         0           Intere         2.31         0.307         0.553         0           Intere         2.35         40.4         0         0           Intere         2.35         40.4         0         0           Intere $				QC SUI	QC SUMMARY REPORT	Y REPC	<b>NRT</b>
Test Code:         SW8310         Units: $IghL$ Run ID:         HPLC_001118A         Inits: $IghL$ Result         POL         SPK value         SPK Ref Val           225.67         2.55         40.4         0           256.62         2.55         40.4         0           256.62         2.55         40.4         0           266.62         2.55         40.4         0           266.62         2.55         40.4         0           266.62         2.55         40.4         0           27.31         0.60         3.07         0           3.19         0.030         3.07         0           3.19         0.030         3.365         0           0.49         0.385         0         0           3.19         0.030         3.85         0           0.49         0.385         0         0           16         0.385         0.05         0           16         0.05         0.05         0           21.0F         HPLC_001118A         0         0           23.58         2.55         40.4         0 <td< th=""><th></th><th></th><th></th><th>Laboratory Control Spike - generic</th><th>Control S</th><th>Spike - ge</th><th>meric</th></td<>				Laboratory Control Spike - generic	Control S	Spike - ge	meric
Image: constant of the		Analysis [	Analysis Date: 11/19/00	00/6	Prep Da	Prep Date: 11/8/00	
Result         PCL         SPK value         SPK Ref Value           lene         22.52 $2.5$ $40.4$ 0           utivlene $25.67$ $2.5$ $40.4$ 0           utivlene $25.67$ $2.5$ $40.4$ 0           thene $25.67$ $2.5$ $40.4$ 0           hrene $2.562$ $2.5$ $40.4$ 0           hrene $2.31$ $0.60$ $3.07$ 0           hrene $1.6$ $0.30$ $4.1$ 0           hrene $0.319$ $0.30$ $1.92$ 0           hrene $0.49$ $0.30$ $0.553$ 0           hyperylene $0.49$ $0.020$ $0.553$ 0           liber         Result         PCL         SPK value         0           liber         Annol         SPK value         SPK value         0           liber         SPK value         SPK value         0         0           liber         Result         PCL         SPK value         0           liber <td< th=""><th></th><th>SeqNo:</th><th>3331</th><th></th><th></th><th></th><th></th></td<>		SeqNo:	3331				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
thylene         25.67         2.5         40.4         0           thene         26.62         2.5         40.4         0           thene         2.84         0.80         4.1         0           hrene         1.6         0.30         4.1         0           hrene         1.6         0.30         3.85         0           hrene         1.6         0.30         3.85         0           hrene         0.22         0.020         0.253         0           hyperle         0.20         0.020         0.253         0           hyperle         0.49         0.030         3.85         0         0           hyperylene         0.22         0.020         0.253         0         0           hyperylene         0.40         0.030         0.553         0         0           liberylene         0.40         0.010         0.553         0         0           liberylene         21.07         2.5         40.4         0         0           liberylene         21.07         2.5         40.4         0         0           thene         21.07         2.5         40.4         0 <td>55.8</td> <td>44</td> <td>62</td> <td>0</td> <td></td> <td></td> <td></td>	55.8	44	62	0			
thene         26.62         2.5         40.4         0           hree         2.84         0.80         4.1         0           hree         2.31         0.60         3.07         0           hree         1.6         0.30         1.92         0           hree         1.6         0.30         3.85         0           hree         0.49         0.30         3.85         0           hriberylee         0.22         0.020         0.253         0           hriberylee         0.49         0.3030         0.553         0           hriberylee         0.40         0.553         0         0           hriberylee         0.40         0.553         0         0           ID: LCSD-55         Batch ID: 55         Test Code: SW8310         Init: $\mu g/L$ 0           ID: LCSD-55         Batch ID: 55         Test Code: SW8310         Init: $\mu g/L$ 0           ID: LCSD-55         Batch ID: 55         Test Code: SW8310         Init: $\mu g/L$ 0           ID: LCSD-55         Batch ID: 55         40.4         0         0           there         21.67         SPK value         SPK Ref Val         0	63.5	48	88	0			
284 $0.80$ $4.1$ $0$ Intere $1.6$ $0.30$ $4.1$ $0$ Intere $1.6$ $0.30$ $1.92$ $0$ Intere $1.6$ $0.30$ $1.92$ $0$ Intere $1.92$ $0.30$ $3.85$ $0$ Intere $0.22$ $0.030$ $0.553$ $0$ Intere $2.107$ $2.5$ $40.4$ $0$ Intere $2.56$ $0.80$ $3.07$ $0$ Intere $2.358$ $2.5$ $40.4$ $0$ Intere $2.56$ $0.30$ $3.07$ $0$ Intere $2.358$ $0.30$ $3.07$ $0$ I	62.9	51	88	0			
Intene         2.31         0.60         3.07         0           hene         1.6         0.30         1.92         0           hyrene         3.19         0.30         3.85         0           hyrene         0.22         0.020         0.553         0           h)perylene         0.22         0.020         0.553         0           h)perylene         0.249         0.030         0.553         0           h)perylene         0.251         Batch ID: 55         Test Code:         SW8310         Inits: Ig/L           ID: LCSD-55         Batch ID: 55         Test Code:         SPK value         SPK Ref Value         0           ID: LCSD-55         Batch ID: 55         Test Code:         SPK value         0         0           ID: LCSD-55         Batch ID: 55         Test Code:         SPK value         SPK Ref Value         0           ID: LCSD-55         Result         PQL         SPK value         SPK Ref Value         0           Idene         21:07         2:55         40.4         0         0           Intene         2:51         2:5         40.4         0         0           Intene         2:3:58         2:5	69.3	55	92	0			
hene         1.6         0.30         1.92         0           3.19         0.30         3.85         0           3.19         0.30         3.85         0           3.19         0.30         3.85         0           3.10         0.22         0.020         0.253         0           A.I.Derylene         0.22         0.030         0.553         0           D: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu J I$ D: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu J I$ D: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu J I$ D: LCSD-55         Batch ID: 55         Test Code:         SPK value         SPK Ref Value           D: LCSD-55         Batch ID: 55         40.4         SPK Ref Value         SPK Ref Value           Distributione         23.58         2.55         40.4         SPK Ref Value         SPK Ref Value           Intene         23.58         2.55         40.4         SPK Ref Value         SPK Ref Value         SPK Ref Value         SPK Ref Value           Intene         2.55         0.30	75.2	70	<del>9</del> 6	0			
3.19         0.30         3.85         0           byrene         0.22         0.020         0.253         0           h,i)perylene         0.49         0.030         0.553         0           ID: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu q I$ ID: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu q I$ ::         Result         PQL         SPK value         SPK Ref Val         0           ::         Result         PQL         SPK value         0         0           ::         21.07         2.5         40.4         0         0           thylene         23.58         2.5         40.4         0         0           thylene         23.58         2.55         40.4         0         0           ithylene         23.58         2.55         40.4         0         0           ithylene         23.58         2.55         40.4         0         0           ithylene         2.51         2.55         40.4         0         0           ithylene         3.26         0.300         3.36         0 <td>83.3</td> <td>76</td> <td>101</td> <td>0</td> <td></td> <td></td> <td></td>	83.3	76	101	0			
Dyrene         0.22         0.020         0.253         0           h.j)perylene         0.49         0.030         0.553         0           ID: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu fl<$ ID: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu gl$ ID: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu gl$ ID: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu gl$ ID: LCSD-55         Batch ID: 55         Test Code:         SPK value         SPK Ref Val           It         PCL         SPK value         SPK ref Val         0           It         PCL         255         40.4         0           It         25.5         40.4         0         0           It         25.5         0.80         3.07         0           It         2.32         0.30         1.92         0           Interve         1.63         0.30         3.07         0           Interve         0.30         0.30         0.30         0           <	82.9	11	101	0			
h.j)perylene         0.49         0.030         0.553         0           ID: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu g L$ ID: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu g L$ ID: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu g L$ ID: LCSD-55         Batch ID: 55         Test Code:         SW8310         Units: $\mu g L$ ID: LCSD-55         Batch ID: 55         Test Code:         SPK value         SPK ref Value         0           Idene         21:07         2.55         40.4         0         0           Ithylene         23:58         2.55         40.4         0         0           Interve         25:1         2.55         40.4         0         0           Interve         23:26         0.800         4.1         0         0           Interve         2.32         0.300         3.07         0         0           Interve         0.300         0.300         0.300         0         0           Interve         0.3020         0.253         0         0<	87.0	67	127	0			
ID: LCSD-55Batch ID: 55Test Code:SW8310Units: $\mu g/L$ ::Run ID:HPLC_001118AResultPQLSPK valueSPK Ref ValIlene21.072.540.40Intere23.582.540.40thylene23.582.540.40threne25.12.540.40threne25.12.540.40threne23.580.304.10threne23.580.303.070interne23.580.303.070threne2.650.303.070interne0.300.301.920hore0.230.300.2530hore0.230.0200.5530hore0.510.0300.5530	88.6	80	112	0			
Run ID:     HPLC_00118A       Result     PQL     SPK Ref Val       Idene     21.07     2.5     40.4     0       Idene     21.07     2.5     40.4     0       Idene     21.07     2.5     40.4     0       Idene     23.58     2.5     40.4     0       Idene     23.58     2.5     40.4     0       Idene     25.1     2.5     40.4     0       Idene     25.1     2.5     40.4     0       Idene     2.35     0.80     4.1     0       Intere     2.35     0.30     3.07     0       Intere     1.63     0.30     3.85     0       Intere     0.23     0.30     3.85     0       Intere     0.23     0.30     0.553     0		Analysis [	Analysis Date: 11/19/00	00/6	Prep Da	Prep Date: 11/8/00	
Result         PQL         SPK value         SPK Ref Val           Ilene         21.07         2.5         40.4         0           ithylene         23.58         2.5         40.4         0           ithylene         23.58         2.5         40.4         0           ithylene         23.58         2.5         40.4         0           ithere         25.1         2.5         40.4         0           ithere         23.58         0.80         4.1         0           ithere         2.32         0.30         1.92         0           ithere         1.63         0.30         1.92         0           ithere         0.30         3.85         0         0           ithilperylene         0.51         0.030         0.553         0		SeqNo:	3332				
21.07       2.5       40.4       0         23.58       2.5       40.4       0         25.1       2.5       40.4       0         25.1       2.5       40.4       0         25.1       2.5       40.4       0         2.65       0.80       4.1       0         2.32       0.60       3.07       0         1.63       0.30       1.92       0         3.25       0.30       3.85       0         0.23       0.020       0.253       0         0.51       0.030       0.553       0	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
23.58       2.5       40.4       0         25.1       2.5       40.4       0         25.1       2.5       40.4       0         2.65       0.80       4.1       0         2.65       0.80       4.1       0         2.32       0.60       3.07       0       0         1.63       0.30       1.92       0       0         3.25       0.30       3.85       0       0         0.23       0.020       0.253       0       0         0.51       0.030       0.553       0       0	52.1	44	6/	22.52	6.68	35	
25.1       2.5       40.4       0         2.65       0.80       4.1       0         2.32       0.60       3.07       0         1.63       0.30       1.92       0         3.25       0.30       3.85       0         0.23       0.020       0.253       0         0.51       0.030       0.553       0	58.4	48	88	25.67	8.47	36	
2.65     0.80     4.1     0       2.32     0.60     3.07     0       1.63     0.30     1.92     0       3.25     0.30     3.85     0       0.23     0.020     0.253     0       0.51     0.30     0.553     0	62.1	51	88	26.62	5.88	30	
2.32     0.60     3.07     0       1.63     0.30     1.92     0       3.25     0.30     3.85     0       0.23     0.020     0.253     0       0.51     0.30     0.553     0	64.6	55	92	2.84	6.92	30	
1.63     0.30     1.92     0       3.25     0.30     3.85     0       0.23     0.020     0.253     0       0.51     0.030     0.553     0	75.6	20	96	2.31	0.432	17	
3.25 0.30 3.85 0 0.23 0.020 0.253 0 0.51 0.030 0.553 0	84.9	76	101	1.6	1.86	13	
0.23 0.020 0.253 0 0.51 0.030 0.553 0	84.4	11	101	3.19	1.86	13	
0.51 0.030 0.553 0	90.9	67	127	0.22	4.44	17	
	92.2	80	112	0.49	4.00	17	

	THAT THE TRANSPORT OF THE PRIME PRIM	s rauuiai										
CLIENT: Work Order:	Blagg Engineering								QC SU	QC SUMMARY REPORT	Y REPC	)RT
Project:	Nancy Hartman #1E								Laboratory Control Spike - generic	/ Control	Spike - ge	meric
Sample ID: LCS	Batch ID: R69	R69	Test Code:	E300	Units: mg/Kg		Analysis	Analysis Date: 11/10/00	00/	Prep Da	Prep Date: 11/8/00	
Client ID:			Run ID:	WC_001110A			SeqNo:	1595				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromide		2.755	0.30	е П	o	91.8	85	115	0			
Chloride		5.464	0.30	9	0	91.1	85	115	0			
Fluoride		0.537	0:30	0.6		89.5	85	115	0			
Nitrogen, Nitrate (As N)	As N)	2.893	0.30	3	0	96.4	85	115	0			
Nitrogen, Nitrite (As N)	s N)	1.107	0.30	1.2	0	92.2	85	115	0			
hosphorus, Disso	Phosphorus, Dissolved Orthophosphate	5.33	1.5	9	0	88.8	85	115	0			
Sulfate		11.21	1.5	12	0	93.4	85	115	0			
Sample ID: LCSD	Batch ID: R69	R69	Test Code:	E300	Units: mg/Kg		Analysis	Analysis Date: 11/10/00	/00	Prep Da	Prep Date: 11/8/00	
Client ID:			Run ID:	WC_001110A			SeqNo:	1596				
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromide		2.687	0.30	3	0	89.6	85	115	2.755	2.50	15	
Chloride		5.307	0.30	9	0	88.4	85	115	5.464	2.92	15	
Fluoride		0.523	0.30	0.6	0	87.2	85	115	0.537	2.64	15	
Nitrogen, Nitrate (As N)	As N)	2.808	0.30	e	0	93.6	85	115	2.893	2.98	15	
Nitrogen, Nitrite (As N)	s N)	1.078	0.30	1.2	0	89.8	85	115	1.107	2.65	15	
hosphorus, Disso	Phosphorus, Dissolved Orthophosphate	5.382	1.5	9	0	89.7	85	115	5.33	0.971	15	
Sulfate		10.91	1.5 2	7	ō	6.06	85	115	11.21	2.70	<del>1</del> 2	
Qualifiers:	ND - Not Detected at the Reporting Limit	Reporting Limit		S - Sp	<ul> <li>S - Spike Recovery outside accepted recovery limits</li> </ul>	accepted reco	very limits		B - Analyte detected in the associated Method Blank	d in the secori	a hadiaha hata	-
				•	•	-	•	•	man and ment of		ated Meniou E	lank

l

CLERV1: New Octor:         Bagg Engineering Sample Duplicate           Provise Outer:         Noncy Harbons #1E         CC SUMMARY REPORT           Provise Outer:         Noncy Harbons #1E         Amalysis Date: 11800         Provise Outer           Provise Outer:         Namy Harbons #1E         Controls         Manysis Date: 11800         Provise Outer           Provise Outer:         Namy Harbons         Routi P. Routi M.         Provise Outer         Amalysis Date: 11800         Provise Outer         Outer           Monologination         Routi D. Routi M.         None Outer         Manysis Date: 11800         Provise Outer         Amalysis Date: 11800         Provise Date: 11800         Amalysis Date: 11800         <	Hall Enviro	Hall Environmental Analysis Laboratory	tory							Date: 04	Date: 04-Dec-00	
Matrix       Sample Dupli         Name:       Name:       Sample Dupli       Sample Dupli         Name:       Name:       Sample Dupli       Perp Date:       Sample Dupli         Name:       Rate:       Dim       Dim       Many:       Many:       Perp Date:       Perp Date:         Name:       Rate:       Dim       Score:       Som       Som<	CLIENT:	Blagg Engineering							QC SU	MMAR	Y REPC	<b>JRT</b>
Image: Outside in the image in the image. The image in the image. The image in the image. The image in	wurk Urder: Project:	0011039 Nancy Hartman #1E							I	Sar	nple Dup	licate
WMM1       Ran ID:       W. CONTOR       SerVer       SerVer <td>Sample ID: 00110</td> <td></td> <td>Test Code:</td> <td>E300</td> <td>Units: mg/L</td> <td></td> <td>Analysis</td> <td>; Date: 11/8/</td> <td>00</td> <td>Prep Da</td> <td>ite:</td> <td></td>	Sample ID: 00110		Test Code:	E300	Units: mg/L		Analysis	; Date: 11/8/	00	Prep Da	ite:	
Result         POL         SFK Ref Val         %REC         Low/Limit         High Limit         RPD Ref Val         %RPD         RPD Limit           Minet (xb)         0         0         0         0         0         0         0         0         15           Ninet (xb)         ND         0.10         0         0         0         0         0         0         15           Ninet (xb)         ND         0.10         0         0         0         0         0         0         15           Ninet (xb)         ND         0.50         0         0         0         0         0         0         15           ND statistical (xb)         ND           Statistical (xb)         ND         <			Run ID:	WC_001108A			SeqNo:					
Instance (As. I) Instance (As. I)	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit			%RPD		Qual
Mintae (Ae M)         ND         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.10         0.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11	luoride	0.2	0.10	0	0	0	0	0	0.2	0	15	
Nitite (As N)         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         <	Vitrogen, Nitrate (/		0.10	0	0	0	0	0	0	0	15	
0.00       0.00       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       15         1001039-01C       Batch ID: R69       Test Code. E300       Units: mg/L       Analysis Date: 11/1000       Prep Date: 11/1000	Vitrogen, Nitrite (A		0.10		0	0	0	0	0	0	15	
2.9       0.50       0       0       0       0       3       3.39       15         3:011039-01C       Batch ID: Re9       Test Code: E300       Units: mg/L       Analysis Date: 111000       Prep Date:         MW#1       Run ID:       WC_00110A       SeqNo:       1590       1591         MW#1       Run ID:       WC_00110A       SeqNo:       1501       15         MW#1       Run ID:       MC_00110A       SeqNo:       1501       16         MW#1       Run ID:       MC_00110A       SeqNo:       1501       15         MW#1       Run ID:       MC_00110A       MR       MRD Imit       MRD Imit         10       1.5       0       0       0       0       112       15         11       1.5       0       0       0       0       112       15         11       1.12       1.12       1.12       15       15         11       1.12       1.12       15       15       15         11       1.12       1.12       1.12       15       15         11       1.12       1.12       1.12       15       15         11       1.12       1.12	^o hosphorus, Dissc		0.50		0	0	0	0	0	0	15	
C: 001039-01C         Batch ID: Re50         Units: mg/L         Analysis Date: 1110/00         Prep Date: 1110/00           MW#1         Run ID:         WC_001110A         SeqNo: 150         SeqNo: 150         Polo           MW#1         Rosult         POL         SFK value         SPK Ref Val         %REC         LowLimit         RPD Ref Val         %RPD Innit           MM#1         Rosult         POL         SFK value         SPK Ref Val         %REC         LowLimit         RPD Ref Val         %RPD Innit           M0         1.5         0         0         0         0         39         1.12         15           M1         No         No         0         0         0         0         1.12         15	Sulfate	2.9	0.50		0	0	0	0	e	3.39	15	
NW#1         Run [D:         W.C_00110A         SeqNo:         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150	sample ID: 00110		Test Code:	E300	Units: mg/L		Analysis	5 Date: 11/1(	00/0	Prep Da	ate:	
Result         PQL         SPK value         SPK Ref Val         %REC         LowIlmit         RPD Ref Val         %RPD         RPDLimit           90         1.5         0         0         0         0         0         13         15         15           7         0         0         0         0         0         0         13         15         15           7         0         0         0         0         0         13         15         15           7         0         0         0         0         0         13         15         15           7         0         0         0         0         0         0         13         15		_	Run ID:	WC_001110A			SeqNo:					
90     1.5     0     0     0     0     0       81     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1	unalyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD		Qual
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits												
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits												
	Qualifiers:	ND - Not Detected at the Reporting Limit		S - Spi	ke Recovery outside	accepted rec	overy limits		B - Analyte detecte	ed in the associ	ated Method B	3 lank

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

CLIENT:	Blagg Engineering						QC SUMMARY REPORT	AMARY	/ REPC	RT
work Urger: Project:	0011065 Nancy Hartman #1E								Method Blank	lank
Sample ID: rb 5ml	I Batch ID: R156	Test Code:	SW8260B	Units: µg/L	Analys	Analysis Date: 11/20/00	00/	Prep Date:		
Client ID:		Run ID:	THOR_001120A	PA PA	SeqNo:	0: 2917				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC LowLimit	t HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	N	1.0								
Bromobenzene	QN	1.0								
Bromodichloromethane	hane ND	1.0								
Bromoform	QN	1.0								
Bromomethane		1.0								
Carbon Tetrachloride		1.0								
Chlorobenzene	QN	1.0								
Chloroethane	Q	2.0								
Chloroform	ND	1.0								
Chloromethane	DN	1.0								
2-Chlorotoluene	QN	1.0								
4-Chlorotoluene	Q	1.0								
cis-1,2-DCE	QN	1.0								
cis-1,3-Dichloropropene		1.0								
1,2-Dibromo-3-chloropropane		2.0								
Dibromochloromethane										
1,2-Dibromoethane (EDB)										
Dibromomethane	ND									
1,2-Dichlorobenzene										
1,3-Dichlorobenzene		1.0								
1,4-Dichlorobenzene		1.0								
Dichlorodifluoromethane		•								
1,2-Dichloroethane (EDC)		1.0								
1,1-Dichloroethane	BND 00	1.0								
1,1-Dichloroethene		•								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
Qualifiers:	ND - Not Detected at the Reporting Limit	nit	S - Sp	S - Spike Recovery outside accepted recovery limits	cepted recovery limit		B - Analyte detected in the associated Method Blank	in the associa	ted Method B	llank

I.

			QC SUMMARY REPORT
Work Order: 0011083 Project: Nancy Hartman #1E			Method Blank
2.2-Dichloropropane	ND 1.0		
1.1-Dichloroprobene			
Ethvlbenzene			
Hexachlorobutadiene	•		
Isopropylbenzene			
4-isopropyltoluene			
Methyl tert-butyl ether (MTBE)			
Methylene Chloride	3.0 3.0		
n-Butylbenzene	ND 1.0		
1-Methylnaphthalene	ND 2.0		
2-Methylnaphthalene			
n-Propylbenzene			
Naphthalene			
sec-Butylbenzene			
Styrene			
tert-Butylbenzene			
Tetrachloroethene			
Toluene			
1,1,1,2-Tetrachloroethane			
1,1,2,2-Tetrachloroethane	ND 1.0		
trans-1,2-DCE	ND 1.0		
trans-1, 3-Dichloropropene	ND 1.0		
Trichloroethene	ND 1.0		
Trichlorofluoromethane	ND 1.0		
1,2,3-Trichlorobenzene	ND 1.0		
1,2,4-Trichlorobenzene			
1,1,1-Trichloroethane			
1,1,2-Trichloroethane			
Vinyl chloride			
1,2,3-Trichloropropane	ND 2.0		
1,2,4-Trimethylbenzene	ND 1.0		
1,3,5-Trimethylbenzene	ND 1.0		
Xylenes, Total	ND 1.0		
Qualifiers: ND - Not Detected at the Reporting Limit	ting Limit	S - Spike Recovery outside accepted recovery limits	B - Analyte detected in the associated Method Blank

ľ

		74 65 60	84.6 65 114
--	--	----------------	-------------

CLIENT:	Blagg Engineering							QC SU	QC SUMMARY REPORT	Y REPC	DRT
Project:	0011005 Nancy Hartman #1E							Laborator	Laboratory Control Spike - generic	Spike - ge	meric
Sample ID: bs 40ng	ng Batch ID: R156	Test Code:	SW8260B	Units: µg/L		Analysis	Analysis Date: 11/20/00	00/0	Prep Date:	ate:	
Client ID:		Run ID:	THOR_001120A	PO PO		SeqNo:	2915				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	8.774	1.0	8	0	110	74	119	0			
Chlorobenzene	7.608	1.0	8	0	95.1	72	123	0			
1,1-Dichloroethene		1.0	8	0	104	71	123	0			
Toluene Trichloroethene	7.578	1.0	∞ ∞	0 0	94.7 97.2	73 69	123 130	00			
		2	,	,		3	8				1
Sample ID: bsd 40ng	0ng Batch ID: R156	Test Code:	SW8260B	Units: µg/L		Analysis	Analysis Date: 11/21/00	1/00	Prep Date:	ate:	
Client ID:		Run ID:	THOR_001120A	0A		SeqNo:	2916				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	8.628	1.0	80	0	108	74	119	8.774	1.68	21	
Chlorobenzene	7.848	1.0	80	0	98.1	72	123	7.608	3.11	22	
1,1-Dichloroethene	9.432	1.0	80	0	105	71	123	8.342	1.07	20	
Toluene	7.606	1.0	80	0	95.1	73	123	7.578	0.369	23	
Trichloroethene	8.012	1.0	ω	0	100	69	130	7.778	2.96	23	
Qualifiers:	ND - Not Detected at the Reporting Limit		S - Spi	S - Spike Recovery outside accepted recovery limits	accepted rec	overy limits		B - Analyte detected in the associated Method Blank	ed in the associ	iated Method F	3 ank
	J - Analyte detected below quantitation limits	mits	R-RP	R - RPD outside accented recovery limits	Perovery limit	ų					



#### QUALITY ASSURANCE REPORT Hall Environmental

# Laboratory ID Range: 00-37515-1-3

Report Date: November 29, 2000

Major Ions	Method	RPD ₁	Spike ₂	Analyst	Date Analyzed
Calcium	EPA 200.7	0.0	101	jal	11-13-00
Magnesium	EPA 200.7	0.4	106	jal	11-13-00
Sodium	EPA 200.7	1.0	97	jal	11-13-00
Potassium	EPA 200.7	0.6	100	jal	11-13-00

Trace Metals					
Aluminum	EPA 200.8	7.4	102	ts	11-15-00
Arsenic	EPA 200.8	0.0	111	ts	11-15-00
Barium	EPA 200.8	0.1	98	ts	11-15-00
Boron	EPA 200.8	-	105	ts	11-15-00
Cadmium	EPA 200.8	0.0	97	ts	11-15-00
Chromium	EPA 200.8	0.0	100	ts	11-15-00
Cobalt	EPA 200.8	0.0	108	ts	11-15-00
Copper	EPA 200.8	2.7	108	ts	11-15-00
Iron	EPA 200.7	1.0	100	jal	11-13-00
Lead	EPA 200.8	0.9	107	ts	11-15-00
Manganese	EPA 200.8	6.7	107	ts	11-15-00
Mercury	EPA 200.8	0.0	107	ts	11-15-00
Molybdenum	EPA 200.8	2.8	101	ts	11-15-00
Nickel	EPA 200.8	7.7	107	ts	11-15-00
Selenium	EPA 200.8	0.0	107	ts	11-15-00
Silver	EPA 200.8	0.0	100	ts	11-15-00
Zinc	EPA 200.8	0.6	107	ts	11-15-00

#### NOTES:

- (1) These values are an assessment of analytical precision. The acceptance range is 0-20% for sample results above 10 times the reporting limit. This range is not applicable to samples with results below 10 times the reporting limit.
- (2) These values are an assessment of analytical accuracy. They are a percent recovery of the spike addition. ELI performs a matrix spike on 10 percent of all samples for each analytical method.

 $dmc: r:\lable analysis_lab\liquid\qa\37515-1-3.xls$ 

TRACKING NO. PAGE NO. 37515800000

# Hall EnvironmentalAnalysis Laboratory

December 04, 2000

Jeff Blagg Blagg Engineering 110 North 4th St. Bloomfield, NM 87413 TEL: (505) 632-1199 FAX (505) 632-3903

RE: Nancy Hartman #1E

Order No.: 0011039

Dear Jeff Blagg:

Hall Environmental Analysis Laboratory received 14 samples on 11/7/00 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Detection limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Sendor Project Manager Nancy McDuffie, Assistant Laboratory Manager



December 04, 2000

Jeff Blagg Blagg Engineering 110 North 4th St. Bloomfield, NM 87413 TEL: (505) 632-1199 FAX (505) 632-3903

RE: Nancy Hartman #1E

Order No.: 0011083

Dear Jeff Blagg:

Hall Environmental Analysis Laboratory received 4 samples on 11/16/00 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Detection limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Senior Project Manager Nancy McDuffie, Assistant Laboratory Manager