3R - 80

# REPORTS

DATE: 9/11/1992

#### TIERRA ENVIRONMENTAL COMPANY, INCORPORATED

September 11, 1992

Mr. Jim Hicks Hicks Oil and Gas P.O. Box Drawer 3307 Farmington, New Mexico 87401

RE: REMEDIATION PROJECT, Federal Unit N.E. Hogback:

Dear Jim:

On September 4, 1992, at about 10:30 P.M., Tierra Environmental Consultant, Ron Castleberry and I met your construction crew at the remediation site. I left Castleberry at the site.

The existing excavation was examined by Castleberry. He conducted headspace testing of the sides and bottom of the excavation with a portable vapor detector using the "headspace method". An envelope of material was removed from the existing excavation until the "headspace" test was below detectable limits. Soils that had been previously excavated and placed on the plastic liner near the excavation were removed to an area on the location pad. A berm was constructed in order to prevent runoff and the material placed therein in six (6) inch lifts. The liner was then removed and disposed of. Because there was obvious staining of soils under the liner showing through the wall of the excavation, the dirt under the liner was also excavated, removed to the bermed area and also spread in six (6) inch lifts.

Following the excavation of both, random soil samples were taken from within the first excavation and from the excavation under the pit liner. No contamination was detectable using the "headspace test".

Non-contaminated soils taken from the over-excavated material was placed back into the excavation and graded in order to prevent the hole from creating a hazard to persons or animal life.

A total of approximately 150 cubic yards were excavated. Of the 150 about 32 cubic yards were spread for remediation. Part of the over-excavation was due to a ramp that was constructed to allow machine access into the excavation.

Three (3) random samples were obtained from the bermed, landfarm area for analysis using the HNU Hanby Field Test Method. The tests indicated that TPH levels exceeded 500 parts per million. The reduction from the laboratory analysis is most probably due to aeration during excavation, removal of the soils to the bermed area and the spreading of the soils in six (6) inch lifts.

#### **RECOMMENDATIONS:**

The spread soils containing contamination should be tilled a minimum of once every two (2) weeks. Moisture should be added each time the soils is turned; however, no standing or pooling of the water should be permitted. It will enhance the possibility of hydraulic drive of the contaminants to beneath the landfarm area. Random "headspace testing should be conducted, taking at least three (3) samples from different location with in the landfarm area.

When the "headspace" tests indicate that TPH is below 100 ppm, we will come back and again take samples for laboratory analysis. If the laboratory analysis collaborates the "headspace" tests, we will recommend closure to the BLM.

As I told you on the phone last week, I strongly recommend the addition of "Bio-Max" in order to enhance and accelerate natural bio-degradation of the contaminated soils. Bio-Max is not a "Superbug" although it does contain microbes. They interact with the natural occurring microbes already in the soil and accelerate their activity, thereby shortening the time frame necessary for successful remediation.

Call me if you have any questions.

Sincerely,

Phillip C. Nobis Vice President

cc:

OCD BLM



# CHAIN OF CUSTODY RECORD

|                                                                                   |                              |                              | γ                            |   | <br> | <del></del> | - | <u> </u> |        |      | <del></del> |        |                 |                |                        | ·                         |                       |   |
|-----------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|---|------|-------------|---|----------|--------|------|-------------|--------|-----------------|----------------|------------------------|---------------------------|-----------------------|---|
| []<br>1633 Terra Avenue<br>Sheridan, Wyoming 82801<br>Telephone (307) 672-8945    | Relinquished by: (Signature) | Relinquished by: (Signature) | Relinquished by: (Signature) |   |      |             |   |          |        | /    |             | Com) 3 |                 | Cono           | Sample No./            | Sampler: (Signature)      | HICKS Fee             | 1 |
| ☐<br>1714 Phillips Circle<br>Gillette, Wyoming 82716<br>Telephone (307) 682-8945  |                              | )                            |                              |   |      |             |   |          |        |      | <u> </u>    |        | 7/2/62 11/05 Am | Thispir diowan | Date Time              | Ţ                         | C HOGNACK             |   |
| Inter-Mountain                                                                    |                              |                              |                              |   |      |             |   |          |        |      |             | 11     | 2               | 9294           | Lab Number             | Chain of Custody Tape No. | me yinc Projec        |   |
| ntain                                                                             | Date                         | Date                         | Date 7/2/                    | : |      |             |   |          |        |      |             |        |                 |                |                        | tody Tape                 | Froject Location      |   |
| in Laboratories,                                                                  | Time                         | Time                         | Time<br>11:45/Jun            |   |      |             |   | 9        |        |      |             | , ,    | 11              | Gord           | Matrix                 | No.                       | Hoghack               |   |
| <sub>ω</sub> ζη                                                                   | Received I                   | Received                     | Received I                   |   |      |             |   |          |        |      | \<br>\<br>\ |        |                 |                |                        |                           | ,                     |   |
| Inc.                                                                              | by laboratory: (Signature)   | by: (Signature)              | by: (Signature)              |   |      |             |   |          |        |      | /           |        | ,               | W              | No. of<br>Contain      | ers                       |                       |   |
| Box 256<br>Station, T)<br>ee (409) 7                                              | lory: (Sig                   | iture)                       | 2/                           |   |      |             |   |          | /      | 1    |             |        |                 | ×              | TPH<br>8015<br>TCLP VI |                           | / /                   |   |
| ( 77845<br>76-8945                                                                | nature)                      |                              | , , , , ,                    |   |      |             |   |          |        |      |             | _      | Κ.              |                | TIFS                   | એ<br>/                    | NALY                  |   |
| ☐<br>3304 L<br>College<br>Teleph                                                  |                              |                              | :                            |   |      |             | , |          |        |      |             | X      |                 |                | i                      | 10.1                      | SES /                 |   |
| ☐<br>3304 Longmire Drive<br>College Station, TX 7<br>Telephone (409) 774          |                              |                              |                              |   |      |             | - |          | -      | 9    |             | _      |                 |                | TELP<br>Me             | iki ls                    | PARA                  |   |
| ☐<br>3304 Longmire Drive<br>College Station, TX 77845<br>Telephone (409) 774-4999 |                              |                              |                              |   |      |             |   |          | 1001 8 | 6111 | ,           | ろと     | (is in          | Sanyles        |                        | /<br>Remarks              | ANALYSES / PARAMETERS |   |
| 050                                                                               | Date                         | Date                         | Date                         |   |      |             |   |          | 111    | 611  |             | hu 511 | X2.11           | \war-3         |                        | rks                       |                       |   |
| 05995                                                                             | Time                         | Time                         | Time                         |   |      |             |   |          | 17.1   |      |             | 1/0    | 0               |                |                        |                           |                       |   |



#### **Tierra Environmental**

#### Case Narrative

On July 20, 1992, a single soil sample was submitted to Inter-Mountain Laboratories, Farmington for analysis. The sample was received intact and was designated "Hicks, Fed. Hogback". Analysis for Total Petroleum Hydrocarbons (TPH) was performed as per the accompanying chain of custody form.

Extraction of the sample was performed using Method 3550, "Sonication Extraction", with 1,1,2,2-trichlorotrifluoroethane (Freon) as the extraction solvent. Analysis was by Method 418.1, "Total Recoverable Petroleum Hydrocarbons", using a Beckman Acculab 10 Infrared Spectrophotometer. Petroleum hydrocarbons were detected in the sample above the stated detection limits as indicated in the enclosed report.

It is the policy of this laboratory to employ, whenever possible, preparatory and analytical methods which have been approved by regulatory agencies. The methods used in the analysis of the samples reported here are found in <u>Test Methods for Evaluation of Solid Waste</u>, SW-846, USEPA, 1986 and <u>Methods for Chemical Analysis of Water and Wastes</u>, EPA-600/4-79-020, USEPA, 1983.

Quality control reports have been included for your information. These reports appear at the end of the analytical package and may be identified by title. If there are any questions regarding the information presented in this package, please feel free to call at your convenience.

Sincerely.

Dr. Denise A. Bohemier,

Organic Lab Supervisor



#### EPA Method 418.1 Total Recoverable Petroleum Hydrocarbons

Client: Report Date: Tierra Environmental 8/5/92 Project ID: Hicks, Fed. Hogback Date Sampled: 7/20/92 Sample Matrix: Date Received: Soil 7/20/96 Preservation: Date Extracted: Cool 8/5/92 Condition: Intact Date Analyzed: 8/5/92

| Sample ID  | Lab<br>Number | Concentration (ppm) | Detection Limit (ppm) |
|------------|---------------|---------------------|-----------------------|
| NE Hogback | 9286          | 81400               | 8300                  |

ND - Parameter not detected at stated detection limit

Reference:

Method 418.1 - Petroleum Hydrocarbons, Total Recoverable Chemical Analysis of Water and Waste, United States Environmental Protection Agency, 1978.

Extraction by Method 3550 - Sonication Extraction Test Methods for Evaluating Solid Waste, SW-846,

USEPA, November 1986.

Comments:



#### **Quality Control Report** Total Recoverable Petroleum Hydrocarbons

#### **Duplicate Analysis**

| Client:     | Tierra Environmental | Report Date:    | 8/5/92  |
|-------------|----------------------|-----------------|---------|
| Project ID: | Hicks, Fed. Hogback  | Date Sampled:   | 7/20/92 |
| Sample ID:  | NE Hogback           | Date Received:  | 7/20/92 |
| Lab ID:     | 9286                 | Date Extracted: | 8/5/92  |
| Matrix:     | Soil                 | Date Analyzed:  | 8/5/92  |

| Sample     | Duplicate     | Original      | Percent    | Acceptance |
|------------|---------------|---------------|------------|------------|
| ID         | Concentration | Concentration | Difference | Limit      |
| NE Hogback | 69800         | 81400         | 15%        | <30%       |

ND- Analyte Not Detected at stated detection limit NA- Value not calculated.

#### Reference:

Method 418.1 - Petroleum Hydrocarbons, Total Recoverable Chemical Analysis of Water and Waste, United States Environmental Protection Agency, 1978.

Extraction by Method 3550 - Sonication Extraction Test Methods for Evaluating Solid Waste, SW-846, USEPA, November 1986.

Comments:

Mit Bolles Ballah
Review



### Quality Control Report Total Recoverable Petroleum Hydrocarbons

#### Method Blank Analysis

Client:

Tierra Environmental

Report Date:

8/5/92 8/5/92

Project ID:

Hicks, Fed. Hogback

Date Analyzed:

3)

| Lab<br>Number | Concentration (mg/mL) | Detection<br>Limit (mg/kg) |
|---------------|-----------------------|----------------------------|
| MB0720        | ND                    | 2.50                       |

ND- Analyte Not Detected at stated detection limit

#### Reference:

Method 418.1 - Petroleum Hydrocarbons, Total Recoverable Chemical Analysis of Water and Waste, United States Environmental Protection Agency, 1978.

Extraction by Method 3550 - Sonication Extraction Test Methods for Evaluating Solid Waste, SW-846, USEPA, November 1986.

Comments:

Analyst PKen

Review



#### **Quality Control Report** Total Recoverable Petroleum Hydrocarbons

#### Matrix Spike Analysis

| Client:     | Tierra Environmental | Report Date:    | 8/5/92  |
|-------------|----------------------|-----------------|---------|
| Project ID: | Hicks, Fed. Hogback  | Date Sampled:   | 7/20/92 |
| Sample ID:  | Fed. NE Hogback      | Date Received:  | 7/20/92 |
| Lab ID:     | 9286                 | Date Extracted: | 8/5/92  |
| Matrix:     | Soil                 | Date Analyzed:  | 8/5/92  |

| Sample<br>ID | Spiked Sample<br>Concentration<br>(mg/kg) | Unspiked Sample<br>Concentration<br>(mg/kg) | Spike<br>Added<br>(mg/kg) | Percent<br>Recovery |
|--------------|-------------------------------------------|---------------------------------------------|---------------------------|---------------------|
| MBSPK        | 10.5                                      | 0.0                                         | 10.0                      | 105%                |

ND- Analyte Not Detected at stated detection limit

Spike recovery acceptance limit:

42-125%

#### Reference:

Method 418.1 - Petroleum Hydrocarbons, Total Recoverable Chemical Analysis of Water and Waste, United States Environmental Protection Agency, 1978.

Extraction by Method 3550 - Sonication Extraction Test Methods for Evaluating Solid Waste, SW-846, USEPA, November 1986.

Comments:

Cmi Poken

Amider Sancur So Charles Balal
Review



# CHAIN OF CUSTODY RECORD

| Client/Project Name            | 1、1215月1                                                                    | Energy of a Color                                                   | Project Location          |                                                                                         |                                     |                            |                                                                                |                    |                                |                                                                                   |         |       |
|--------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------------------------|--------------------|--------------------------------|-----------------------------------------------------------------------------------|---------|-------|
| 1                              | Caback                                                                      | ,                                                                   | TO NE A                   | Hogha K                                                                                 | Á                                   |                            | $\overline{}$                                                                  | ANAL               | SES / F                        | ANALYSES / PARAME I ERS                                                           | 2       |       |
| ,                              | •                                                                           | Chain of Cus                                                        | Chain of Custody Tape No. | do.                                                                                     | ,                                   | era                        |                                                                                |                    |                                | F. C. Rem                                                                         | Remarks |       |
| Date                           | te Time                                                                     | Lab Number                                                          |                           | Matrix                                                                                  |                                     | No. of<br>Containe         | 311.                                                                           | C 17,21            | 17.31<br>12 112                |                                                                                   |         |       |
| 1/11/61                        | 14. 11 1.64                                                                 |                                                                     |                           | 1000                                                                                    |                                     | ,                          | 1                                                                              |                    |                                | 11 1                                                                              |         |       |
| 7/11/gr                        | Mr. 11.50.3                                                                 |                                                                     |                           | 1,                                                                                      |                                     | ,                          |                                                                                |                    |                                |                                                                                   |         |       |
| While                          | 11,10 Am                                                                    |                                                                     |                           | 11                                                                                      |                                     |                            |                                                                                | -                  |                                |                                                                                   |         | • ''  |
|                                |                                                                             |                                                                     |                           |                                                                                         | ١.                                  | /                          |                                                                                |                    |                                |                                                                                   |         |       |
|                                |                                                                             |                                                                     |                           |                                                                                         |                                     |                            | _                                                                              |                    |                                | 7/17/11                                                                           | , , , , |       |
|                                |                                                                             |                                                                     |                           |                                                                                         |                                     |                            | /                                                                              |                    |                                | (22)                                                                              | /111    | 100   |
|                                |                                                                             |                                                                     |                           |                                                                                         |                                     |                            |                                                                                |                    |                                |                                                                                   | ,       |       |
| /                              |                                                                             |                                                                     |                           |                                                                                         |                                     |                            |                                                                                |                    |                                |                                                                                   |         |       |
|                                | /                                                                           |                                                                     |                           |                                                                                         |                                     |                            |                                                                                |                    |                                |                                                                                   |         |       |
|                                | /                                                                           | ,                                                                   |                           |                                                                                         |                                     |                            | ٠.                                                                             |                    |                                |                                                                                   |         |       |
|                                |                                                                             |                                                                     |                           |                                                                                         |                                     |                            |                                                                                |                    | /                              |                                                                                   |         |       |
|                                |                                                                             |                                                                     |                           |                                                                                         |                                     | 1                          |                                                                                |                    |                                |                                                                                   |         |       |
|                                |                                                                             |                                                                     |                           |                                                                                         |                                     |                            |                                                                                |                    |                                |                                                                                   |         |       |
|                                |                                                                             |                                                                     |                           |                                                                                         |                                     |                            |                                                                                |                    |                                |                                                                                   |         |       |
| Relinquished by: (Signature)   |                                                                             |                                                                     | Date                      | Time                                                                                    | Received by: (Signature)            | y: (Sign                   | ature)                                                                         |                    |                                |                                                                                   | Date    | Till  |
|                                |                                                                             |                                                                     | 1/2/                      | 11.95.20                                                                                | Rimi                                |                            | J.                                                                             | ا<br>ز             | 1                              |                                                                                   | Whalf   | 3/11/ |
| Relinquished by: (Signature)   |                                                                             |                                                                     | Date                      | Time                                                                                    | Received by: (Signature)            | r: (Sign                   | ature)                                                                         | 3                  |                                |                                                                                   | Date    | Time  |
| Relinquished by: (Signature)   |                                                                             |                                                                     | Date                      | Time                                                                                    | Received by laboratory: (Signature) | / labora                   | tory: (Sig                                                                     | jnature)           |                                |                                                                                   | Date    | Time  |
|                                |                                                                             | Inter-Mo                                                            | untain Laboratories, Inc. | aborat                                                                                  | ories, I                            | JC.                        |                                                                                |                    |                                |                                                                                   |         |       |
| 1714 Phi<br>Gillette, Telephor | T714 Phillips Circle<br>Gillette, Wyoming 82716<br>Telephone (307) 682-8945 | 2506 West Main Street Farmington, NM 87401 Telephone (505) 326-4737 |                           | ☐<br>910 Technology Blvd. Suite B<br>Bozeman, Montana 59715<br>Telephone (406) 586-8450 |                                     | ☐<br>Route 3,<br>Sollege 3 | ☐<br>Route 3, Box 256<br>College Station, TX 77845<br>Telephone (409) 776-8945 | X 77845<br>76-8945 | 3304 Los<br>College<br>Telepho | ☐<br>3304 Longmire Drive<br>College Station, TX 77845<br>Telephone (409) 774-4999 |         | 3670  |

#### CASE NARRATIVE

On July 22, 1992, one sample was received for analysis at Inter-Mountain Labs, Bozeman, Montana. The chain of custody form requested analysis for Toxic Characteristic Leaching Procedure Parameters, Volatiles and Semivolatiles. Client name/Project name was listed as Tierra Environmental/Fed NE Hogback.

Benzene was detected in the sample.

The Toxic Characteristic Leaching Procedure methodology used is outlined in the Federal Register, 40 CFR 261, Vol. 55, No. 126, June 29, 1990. Results are reported in mass per unit volume of leachate (mg/L) and calculated from matrix spike recoveries as prescribed by the TC Rule.

Limits of detection for each instrument/analysis are determined by sample matrix effects, instrument performance under standard conditions, and dilution requirements to maintain chromatography output within calibration ranges.

Wynn Sudtelgte
Wynn Sudtelgte

**IML-Bozeman** 

# TOXICITY CHARACTERISTIC LEACHING PROCEDURE TENTATIVELY IDENTIFIED COMPOUNDS

Client:

**TIERRA ENVIRONMENTAL** 

Sample ID:

Comp 1

Laboratory ID: Sample Matrix:

B923229

Soil

Date Reported:

Date Sampled:

07/30/92 07/21/92

Date Analyzed:

07/29/92

| Tentative           | Retention   |               |       |
|---------------------|-------------|---------------|-------|
| Identification      | Time (min)  | Concentration | Units |
| Toluene             | 14.11       | 0.04          | mg/L  |
| Ethylbenzene        | 16.64       | 0.06          | mg/L  |
| Xylene(total)       | 16.85,17.47 | 0.29          | mg/L  |
| Unknown Hydrocarbon | 9.30        | 0.07          | mg/L  |
| Unknown Aromatic    | 19.54       | 0.08          | mg/L  |

#### **QUALITY CONTROL:**

| Surrogate Recovery    | <u></u> % |  |
|-----------------------|-----------|--|
| 1,2-Dichloroethane-d4 | 91        |  |
| Toluene-d8            | 101       |  |
| Bromofluorobenzene    | 98        |  |

#### References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Toxicity Characteristic Leaching Procedure, Final Rule, Federal Register, 40 CFR 261-302, Part V, Environmental Protection Agency, Vol. 55, No. 126, June 29, 1990.

Analyst

Reviewed

# TOXICITY CHARACTERISTIC LEACHING PROCEDURE HSL VOLATILE COMPOUNDS

Client:

TIERRA ENVIRONMENTAL

Sample ID:

Comp 1

Project ID:

Fed NE Hogback

Laboratory ID:

B923229

Sample Matrix:

Soil

Preservation: Condition:

Cool

Intact

 Date Reported:
 07/30/92

 Date Sampled:
 07/21/92

 Date Received:
 07/22/92

 Date Extracted TCLP:
 07/24/92

Date Analyzed: 07/24/32

| Parameter            | Analytical<br>Result<br>(mg/L) | Detection<br>Limit<br>(mg/L) | Regulatory<br>Limit<br>(mg/L) |
|----------------------|--------------------------------|------------------------------|-------------------------------|
| 1,1-Dichloroethene   | ND                             | 0.02                         | 0.7                           |
| 1,2-Dichloroethane   | ND                             | 0.02                         | 0.5                           |
| 2-Butanone           | ND                             | 0.1                          | 200                           |
| Benzene              | 0.057                          | 0.02                         | 0.5                           |
| Carbon Tetrachloride | ND                             | 0.02                         | 0.5                           |
| Chlorobenzene        | ND                             | 0.02                         | 100                           |
| Chloroform           | ND                             | 0.02                         | 6                             |
| Tetrachloroethene    | ND                             | 0.02                         | 0.7                           |
| Trichloroethene      | ND                             | 0.02                         | 0.5                           |
| Vinyl Chloride       | ND                             | 0.02                         | 0.2                           |

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in Method Blank.

# TOXICITY CHARACTERISTIC LEACHING PROCEDURE TENTATIVELY IDENTIFIED COMPOUNDS

Client:

TIERRA ENVIRONMENTAL

Sample ID:

Comp 3

Laboratory ID: Sample Matrix:

B923229

Soil

Date Reported:

Date Sampled:

07/29/92 07/21/92

Date Analyzed:

07/27/92

|                     | Retention  |               |       |
|---------------------|------------|---------------|-------|
| Parameter           | Time(min.) | Concentration | Units |
| 2,4-Dimethylphenol  | 13.89      | 0.012         | mg/L  |
| Naphthalene         | 14.26      | 0.043         | mg/L  |
| 2-Methylnaphthalene | 16.21      | 0.040         | mg/L  |
| 1-Methylnaphthalene | 16.48      | 0.03          | mg/L  |
| Unknown hydrocarbon | 20.56      | 0.2           | mg/L  |

Unknown concentrations calculated assuming Relative Response Factor = 1.

#### **QUALITY CONTROL:**

| Surrogate Recoveries | %  |
|----------------------|----|
| 2-Fluorophenol       | 53 |
| Phenol-d6            | 41 |
| Nitrobenzene-d5      | 66 |
| 2-Fluorobiphenyl     | 66 |
| 2,4,6-Tribromophenol | 88 |
| Terphenyl-d14        | 77 |

#### References:

Method 8270, Gas Chromatography/Mass Spectrometry for Semi-Volatile Organics, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, December 1987.

Toxicity Characteristic Leaching Procedure, Final Rule, Federal Register, 40 CFR 261-302, Part V, Environmental Protection Agency, Vol. 55, No. 126, June 29, 1990.

Analyst

Reviewed

## TOXICITY CHARACTERISTIC LEACHING PROCEDURE HSL SEMI-VOLATILE COMPOUNDS

Client: TIERRA ENVIRONMENTAL

Sample ID: Comp 3 Report Date: 07/29/92 Fed NE Hogback Project ID: Date Sampled: 07/21/92 Laboratory ID: B923229 Date Received: 07/22/92 Sample Matrix: Soil Date Extracted-TCLP: 07/24/92 Preservation: Cool Date Analyzed: 07/27/92 07/27/92 Condition: Intact Date Extracted-BNA:

| Parameter                | Analytical<br>Result<br>(mg/L) | Detection<br>Limit<br>(mg/L) | Regulatory<br>Limit<br>(mg/L) |
|--------------------------|--------------------------------|------------------------------|-------------------------------|
| 1,4-Dichlorobenzene      | ND                             | 0.02                         | 7.5                           |
| Hexachloroethane         | ND                             | 0.02                         | 3                             |
| Nitrobenzene             | ND                             | 0.02                         | 2                             |
| Hexachloro-1,3-butadiene | ND                             | 0.02                         | 0.5                           |
| 2,4,6-Trichlorophenol    | ND                             | 0.02                         | 2                             |
| 2,4,5-Trichlorophenol    | ND                             | 0.02                         | 400                           |
| 2,4-Dinitrotoluene       | ND                             | 0.02                         | 0.13                          |
| Hexachlorobenzene        | ND                             | 0.02                         | 0.13                          |
| Pentachlorophenol        | ND                             | 0.02                         | 100                           |
| o-Cresol                 | ND                             | 0.02                         | 200 **                        |
| m & p-Cresol *           | ND                             | 0.02                         | 200 **                        |
| Pyridine                 | ND                             | 0.2                          | 5                             |

ND - Compound not detected at stated Detection Limit

- B Compound detected in Method Blank.
  - \* Compounds coelute by GCMS.
  - \*\* Regulatory Limit of combined Cresols.



910 Technology Boulevard, Suite B Bozeman, Montana 59715

### **QUALITY ASSURANCE / QUALITY CONTROL**

# TOXICITY CHARACTERISTIC LEACHING PROCEDURE HSL VOLATILE COMPOUNDS METHOD BLANK

Client:

TIERRA ENVIRONMENTAL

Sample ID:

Method Blank

Project ID:

Fed NE Hogback

Laboratory ID:

Q210A

Sample Matrix:

Water

Preservation: Condition:

NA

NA

Date Extracted TCLP: Date Analyzed:

Date Reported:

Date Sampled:

Date Received:

07/30/92

NA

NA NA

NA

| Parameter            | Analytical<br>Result<br>(mg/L) | Detection<br>Limit<br>(mg/L) | Regulatory<br>Limit<br>(mg/L) |
|----------------------|--------------------------------|------------------------------|-------------------------------|
| 1,1-Dichloroethene   | ND                             | 0.005                        | 0.7                           |
| 1,2-Dichloroethane   | ND                             | 0.005                        | 0.5                           |
| 2-Butanone           | ND                             | 0.02                         | 200                           |
| Benzene              | ND                             | 0.005                        | 0.5                           |
| Carbon Tetrachloride | ND                             | 0.005                        | 0.5                           |
| Chlorobenzene        | ND                             | 0.005                        | 100                           |
| Chloroform           | ND                             | 0.005                        | 6                             |
| Tetrachloroethene    | ND                             | 0.005                        | 0.7                           |
| Trichloroethene      | ND                             | 0.005                        | 0.5                           |
| Vinyl Chloride       | ND                             | 0.005                        | 0.2                           |

ND - Compound not detected at stated Detection Limit.

J - Meets identification criteria, below Detection Limit.

B - Compound detected in Method Blank.

#### TOXICITY CHARACTERISTIC LEACHING PROCEDURE TENTATIVELY IDENTIFIED COMPOUNDS

Client:

**TIERRA ENVIRONMENTAL** 

Sample ID:

Method Blank

Q210A

Date Reported:

07/30/92

Date Sampled:

NA

Laboratory ID: Sample Matrix:

Water

Date Analyzed:

07/29/92

| Tentative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MMT 4 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| THE RESERVE OF THE RE |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Retention Time (min)

Concentration

Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

#### **QUALITY CONTROL:**

| <u> </u> |           |
|----------|-----------|
| 93       |           |
| 104      |           |
| 94       |           |
|          | 93<br>104 |

#### References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Toxicity Characteristic Leaching Procedure, Final Rule, Federal Register, 40 CFR 261-302, Part V, Environmental Protection Agency, Vol. 55, No. 126, June 29, 1990.

07/29/92

# TOXICITY CHARACTERISTIC LEACHING PROCEDURE HSL VOLATILE COMPOUNDS METHOD BLANK

Client:

**TIERRA ENVIRONMENTAL** 

Sample ID:

Extraction Blank

Date Reported: 07/30/92

Date Analyzed:

Project ID: Laboratory ID: Fed NE Hogback T210A Date Sampled: NA
Date Received: NA

Sample Matrix:

Extraction Fluid

Date Extracted TCLP: 07/24/92

Preservation: Condition:

NA NA

| Parameter            | Analytical<br>Result<br>(mg/L) | Detection<br>Limit<br>(mg/L) | Regulatory<br>Limit<br>(mg/L) |
|----------------------|--------------------------------|------------------------------|-------------------------------|
| 1,1-Dichloroethene   | ND                             | 0.02                         | 0.7                           |
| 1,2-Dichloroethane   | ND                             | 0.02                         | 0.5                           |
| 2-Butanone           | ND                             | 0.1                          | 200                           |
| Benzene              | ND                             | 0.02                         | 0.5                           |
| Carbon Tetrachloride | ND                             | 0.02                         | 0.5                           |
| Chlorobenzene        | ND                             | 0.02                         | 100                           |
| Chloroform           | . ND                           | 0.02                         | 6                             |
| Tetrachloroethene    | ND                             | 0.02                         | 0.7                           |
| Trichloroethene      | ND                             | 0.02                         | 0.5                           |
| Vinyl Chloride       | ND                             | 0.02                         | 0.2                           |

ND - Compound not detected at stated Detection Limit.

- J Meets identification criteria, below Detection Limit.
- B Compound detected in Method Blank.

# TOXICITY CHARACTERISTIC LEACHING PROCEDURE TENTATIVELY IDENTIFIED COMPOUNDS

Client:

TIERRA ENVIRONMENTAL

Sample ID:

**Extraction Blank** 

Laboratory ID: Sample Matrix:

T210A

Extraction Fluid

Date Reported:

Date Sampled: Date Analyzed: 07/30/92

NA

07/29/92

Tentative Identification

Retention Time (min)

Concentration

Units

No additional compounds found at reportable levels.

Unknown concentrations calculated assuming a Relative Response Factor = 1.

#### **QUALITY CONTROL:**

| Surrogate Recovery    | %   |   |
|-----------------------|-----|---|
| 1,2-Dichloroethane-d4 | 93  |   |
| Toluene-d8            | 104 |   |
| Bromofluorobenzene    | 94  | • |

#### References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Toxicity Characteristic Leaching Procedure, Final Rule, Federal Register, 40 CFR 261-302, Part V, Environmental Protection Agency, Vol. 55, No. 126, June 29, 1990.

Analyst

Reviewed

# TOXICITY CHARACTERISTIC LEACHING PROCEDURE HSL SEMI-VOLATILE COMPOUNDS METHOD BLANK ANALYSIS

Client: **TIERRA ENVIRONMENTAL** Sample ID: TCLP Method Blank Report Date: 07/29/92 Project ID: Fed NE Hogback Date Sampled: NA Laboratory ID: Blank 67 Date Received: NA Sample Matrix: **Extraction Fluid** Date Extracted-TCLP: 07/24/92 Preservation: NA Date Analyzed: 07/27/92 Condition: NA Date Extracted-BNA: 07/27/92

| Parameter                | Analytical<br>Result | Detection<br>Limit | Units |
|--------------------------|----------------------|--------------------|-------|
| 1,4-Dichlorobenzene      | ND                   | 0.02               | mg/L  |
| Hexachloroethane         | ND                   | 0.02               | mg/L  |
| Nitrobenzene             | ND                   | 0.02               | mg/L  |
| Hexachloro-1,3-butadiene | ND                   | 0.02               | mg/L  |
| 2,4,6-Trichlorophenol    | ND                   | 0.02               | mg/L  |
| 2,4,5-Trichlorophenol    | ND                   | 0.02               | mg/L  |
| 2,4-Dinitrotoluene       | ND                   | 0.02               | mg/L  |
| Hexachlorobenzene        | ND                   | 0.02               | mg/L  |
| Pentachlorophenol        | ND                   | 0.02               | mg/L  |
| o-Cresol                 | ND                   | 0.02               | mg/L  |
| m & p-Cresol *           | ND                   | 0.02               | mg/L  |
| Pyridine                 | ND                   | 0.2                | mg/L  |

ND - Compound not detected at stated Detection Limit.

<sup>\* -</sup> Compounds coelute by GCMS.

#### TOXICITY CHARACTERISTIC LEACHING PROCEDURE TENTATIVELY IDENTIFIED COMPOUNDS METHOD BLANK ANALYSIS

Client:

TIERRA ENVIRONMENTAL

Sample ID:

**TCLP Method Blank** 

Date Reported:

07/29/92

Laboratory ID:

Blank 67

Date Sampled:

01/19/00

Sample Matrix:

**Extraction Fluid** 

Date Analyzed:

07/27/92

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                     |
| 223444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                     |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                     |
| P0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                     |
| COCCOSCIONARIOS   COCCOSCION  |                                        |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Retention                              |                     |
| P0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                     |
| ■ 0.000 to the contract of th |                                        |                     |
| <b>₹</b> 00.0000 000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                     |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IIIOOCIOIOI                            | Concentration Units |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time(min)                              | Concentration Units |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                     |

No additional compounds found at reportable levels.

Unknown concentration calculated assuming Relative Response Factor = 1.

#### **QUALITY CONTROL:**

| Surrogate Recoveries | %  |
|----------------------|----|
|                      |    |
| 2-Fluorophenol       | 54 |
| Phenol-d6            | 38 |
| Nitrobenzene-d5      | 75 |
| 2-Fluorobiphenyl     | 70 |
| 2,4,6-Tribromophenol | 90 |
| Terphenyl-d14        | 83 |

#### References:

Method 8270, Gas Chromatography/Mass Spectrometry for Semi-Volatile Organics, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, December 1987.

Toxicity Characteristic Leaching Procedure, Final Rule, Federal Register, 40 CFR 261-302, Part V, Environmental Protection Agency, Vol. 55, No. 126, June 29, 1990.

Analyst

Reviewed

#### TOXICITY CHARACTERISTIC LEACHING PROCEDURE **HSL VOLATILE COMPOUNDS MATRIX SPIKE SUMMARY**

Client:

**TIERRA ENVIRONMENTAL** 

Sample ID:

Matrix Spike

07/30/92 Date Reported:

Laboratory ID:

W3229

Date Sampled:

Sample Matrix:

NA

Preservation:

**Extraction Fluid** 

Date Received: NA Date Extracted TCLP: 07/24/92

Condition:

NA NA

Date Analyzed:

07/29/92

| Parameter            | Spike<br>Added<br>(ug/L) | Sample<br>Concentration<br>(ug/L) | Matrix Spike<br>Concentration<br>(ug/L) | Matrix Spike<br>Recovery<br>(%) |
|----------------------|--------------------------|-----------------------------------|-----------------------------------------|---------------------------------|
| Vinyl Chloride       | 100                      | 0                                 | 109                                     | 109                             |
| 1,1-Dichloroethene   | 100                      | 0                                 | 99                                      | 99                              |
| 1,2-Dichloroethane   | 100                      | 0                                 | 94                                      | 94                              |
| Chloroform           | 100                      | 0                                 | 99                                      | 99                              |
| Carbon Tetrachloride | 100                      | 0                                 | 98                                      | 98                              |
| Trichloroethene      | 100                      | 1                                 | 105                                     | 104                             |
| Benzene              | 100                      | 14                                | 125                                     | 111                             |
| Tetrachloroethene    | 100                      | 0                                 | 101                                     | 101                             |
| Chlorobenzene        | 100                      | 0                                 | 108                                     | 108                             |
| Methyl Ethyl Ketone  | 100                      | 0                                 | 66                                      | 66                              |

#### References:

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental Protection Agency, Third Edition, November 1986.

Toxicity Characteristic Leaching Procedure, Final Rule, Federal Register, 40 CFR 261-302, Part V, Environmental Protection Agency, Vol. 55, No. 126, June 29, 1990.

# TOXICITY CHARACTERISTIC LEACHING PROCEDURE HSL SEMI-VOLATILE COMPOUNDS MATRIX SPIKE SUMMARY

Client:

**TIERRA ENVIRONMENTAL** 

Sample ID:

Blank Matrix Spike

07/29/92

Project ID:

Fed NE Hogback

07/25/52

Laboratory ID:

TBS-210

NA

Sample Matrix:

Extraction Fluid

NA

Preservation:

NA

Date Extracted: 07/28/92
Date Analyzed: 07/29/92

Date Reported:

Date Sampled:

Date Received:

Condition:

NA

| Parameter                | Matrix<br>Spike<br>Conc. | Sample<br>Conc. | Matrix<br>Spike<br>Recovery | Spike<br>Amount | Percent<br>Recovery |
|--------------------------|--------------------------|-----------------|-----------------------------|-----------------|---------------------|
| 1,4-Dichlorobenzene      | 60                       | 0               | 60                          | 100             | 60                  |
| Hexachloroethane         | 56                       | 0               | 56                          | 100             | 56                  |
| Nitrobenzene             | 68                       | 0               | 68                          | 100             | 68                  |
| Hexachloro-1,3-butadiene | 65                       | 0               | 65                          | 100             | 65                  |
| 2,4,6-Trichlorophenol    | 85                       | 0               | 85                          | 100             | 85                  |
| 2,4,5-Trichlorophenol    | 78                       | 0               | 78                          | 100             | 78                  |
| 2,4-Dinitrotoluene       | 68                       | 0               | 68                          | 100             | 68                  |
| Hexachlorobenzene        | 77                       | 0               | 77                          | 100             | 77                  |
| Pentachlorophenol        | 18                       | 0               | 18                          | 100             | 18                  |
| o-Cresol                 | 68                       | 0               | 68                          | 100             | 68                  |
| m,p-Cresol               | 66                       | 0               | 66                          | 100             | 66                  |
| Pyridine                 | 58                       | 0               | 58                          | 100             | 58                  |

All values are total nanograms.

#### Reference:

Method 8270, Semivolatile Organics - GC/MS, Test Methods for Evaluating Solid Waste, United States Environmental Protection Agency, SW-846, Vol. IB, November 1986.

Toxicity Characteristic Leaching Procedure, Final Rule, Federal Register, 40 CFR 261-302, Part V, Environmental Protection Agency, Vol. 55, No. 126, June 29, 1990.

Analyst

Reviewed

#### TOXICITY CHARACTERISTIC LEACHING PROCEDURE **HSL SEMI-VOLATILE COMPOUNDS**

Client:

**TIERRA ENVIRONMENTAL** 

Sample ID:

Comp 3

Project ID:

Fed NE Hogback

Laboratory ID:

B923229 Duplicate

Sample Matrix: Preservation:

Condition:

Soil Cool

Intact

Report Date: 07/29/92 Date Sampled: 07/21/92 Date Received: 07/22/92

Date Extracted-TCLP: 07/24/92 Date Analyzed: 07/27/92

Date Extracted-BNA: 07/27/92

| Parameter                | Analytical<br>Result<br>(mg/L) | Detection<br>Limit<br>(mg/L) | Regulato∉y<br>Limit<br>(mg/L) |
|--------------------------|--------------------------------|------------------------------|-------------------------------|
| 1,4-Dichlorobenzene      | ND                             | 0.02                         | 7.5                           |
| Hexachloroethane         | ND                             | 0.02                         | 7.5<br>3                      |
| Nitrobenzene             | ND                             | 0.02                         | 2                             |
| Hexachloro-1,3-butadiene | ND                             | 0.02                         | 0.5                           |
| 2,4,6-Trichlorophenol    | ND                             | 0.02                         | 2                             |
| 2,4,5-Trichlorophenol    | ND                             | 0.02                         | 400                           |
| 2,4-Dinitrotoluene       | ND                             | 0.02                         | 0.13                          |
| Hexachlorobenzene        | ND                             | 0.02                         | 0.13                          |
| Pentachlorophenol        | ND                             | 0.02                         | 100                           |
| o-Cresol                 | ND                             | 0.02                         | 200 **                        |
| m & p-Cresol *           | ND                             | 0.02                         | 200 **                        |
| Pyridine                 | ND                             | 0.2                          | 5                             |

ND - Compound not detected at stated Detection Limit

- \* Compounds coelute by GCMS.
- \*\* Regulatory Limit of combined Cresols.

B - Compound detected in Method Blank.

## TOXICITY CHARACTERISTIC LEACHING PROCEDURE TENTATIVELY IDENTIFIED COMPOUNDS

Client:

**TIERRA ENVIRONMENTAL** 

Sample ID:

Comp 3

Laboratory ID: Sample Matrix:

B923229 Duplicate

Soil

Date Reported:

07/29/92

Date Sampled:

07/21/92

Date Analyzed:

07/27/92

|                     | Retention  |               |       |
|---------------------|------------|---------------|-------|
| Parameter           | Time(min.) | Concentration | Units |
| 2,4-Dimethylphenol  | 13.88      | 0.011         | mg/L  |
| Naphthalene         | 14.24      | 0.036         | mg/L  |
| 2-Methylnaphthalene | 16.22      | 0.035         | mg/L  |
| 1-Methylnaphthalene | 16.49      | 0.03          | mg/L  |
| Unknown hydrocarbon | 20.57      | 0.1           | mg/L  |

Unknown concentrations calculated assuming Relative Response Factor = 1.

#### QUALITY CONTROL:

| Surrogate Recoveries | %  |
|----------------------|----|
| 2-Fluorophenol       | 50 |
| Phenol-d6            | 44 |
| Nitrobenzene-d5      | 59 |
| 2-Fluorobiphenyl     | 70 |
| 2,4,6-Tribromophenol | 94 |
| Terphenyl-d14        | 82 |

#### References:

Method 8270, Gas Chromatography/Mass Spectrometry for Semi-Volatile Organics, Test Methods for Evaluating Solid Wastes, United States Environmental Protection Agency, December 1987.

Toxicity Characteristic Leaching Procedure, Final Rule, Federal Register, 40 CFR 261-302, Part V, Environmental Protection Agency, Vol. 55, No. 126, June 29, 1990.

Reviewed

#### **CASE NARRATIVE**

On 07/27/92, one TCLP extract was received by Inter-Mountain Laboratories, Inc. at 1633 Terra Ave., Sheridan, Wyoming. The sample custody document indicated request for analysis of parameters from the TC Rule analyte list. The sample arrived cool and intact, custody sheets remained with the extract.

The TCLP preparation and extraction was performed following the steps defined by the EPA using Method 1311, SW-846, November 1990, and found in the Federal Register, 40 CFR 261, Volume 55, No. 126, June 1990. A duplicate analysis was prepared to evaluate the extraction reproducibility. Relative percent differences were reported only if the analyte concentrations exceeded five times the detection levels. A matrix spike was used to determine matrix effect on the recovery of the target analytes. Matrix spike information was used, via the TC Rule, for the final calculation of the analyte concentrations. Method blanks were used to determine any method induced contamination.

Limits of detection for each instrument or analysis were determined with respect to matrix effect, instrument performance under standard operating conditions and sample dilution. TCLP results were reported as mass per unit volume of leachate. Data qualifiers may have been used in accordance with USEPA data validation guidelines.

Reviewed by:

Chris L. Brackeen
Environmental Chemist

IML-Sheridan

Data File ID: \_\_\_\_\_ 00-586

#### TOXICITY CHARACTERISTIC LEACHING PROCEDURE TRACE METAL CONCENTRATIONS

Client:

**Tierra Environmental** 

Sample ID:

Comp. 3

Lab ID: Matrix:

9294B/5601 Water

Preservation:

Cool/Intact

Report Date:

08/04/92

Date Sampled:

07/21/92

Date Received:

07/21/92

TCLP Extract:

07/24/92

Date Analyzed: 07/28/92

| Parameter: | Analytical<br>Result | Regulato<br>Level | ny (Units) |
|------------|----------------------|-------------------|------------|
| Arsenic    | <0.1                 | 5.0               | mg/L       |
| Barium     | 0.8 B                | 100               | mg/L       |
| Cadmium    | <0.005               | 1.0               | mg/L       |
| Chromium   | <0.01                | 5.0               | mg/L       |
| Lead       | <0.2                 | 5.0               | mg/L       |
| Mercury    | <0.001               | 0.20              | mg/L       |
| Selenium   | <0.1                 | 1.0               | mg/L       |
| Silver     | <0.01                | 5.0               | mg/L       |
|            |                      |                   |            |

Toxicity Characteristic Leaching Procedure, Final Rule, Federal Register, 40 CFR 261-302, Part V,

EPA Vol. 55, No. 126 June 29, 1990.

Method 6010A:

Inductively Coupled Plasma-Atomic Emission Spectroscopy, SW-846, Nov. 1990.

Method 7470A:

Mercury in Liquid Waste (Manual Cold Vapor Technique), SW-846, Nov. 1990.

Reviewed by: C.B.

#### TOXICITY CHARACTERISTIC LEACHING PROCEDURE TRACE METAL CONCENTRATIONS

**Quality Control/Duplicate Analysis** 

Client:

Tierra Environmental

Sample ID:

Comp. 3

Lab ID:

9294B/5601

Date:

08/04/92

| Parameter: | Initial<br>Sample<br>Result<br>mg/L | Second<br>Sample<br>Result<br>mg/L | Relative<br>Percent<br>Difference |
|------------|-------------------------------------|------------------------------------|-----------------------------------|
| Arsenic    | <0.1                                | <0.1                               |                                   |
| Barium     | 0.8                                 | 0.8                                | 0.0                               |
| Cadmium    | <0.005                              | <0.005                             |                                   |
| Chromium   | <0.01                               | <0.01                              |                                   |
| Lead       | <0.2                                | <0.2                               |                                   |
| Mercury    | <0.001                              | <0.001                             |                                   |
| Selenium   | <0.1                                | <0.1                               |                                   |
| Silver     | <0.01                               | <0.01                              |                                   |
|            |                                     |                                    |                                   |

Toxicity Characteristic Leaching Procedure, Final Rule, Federal Register, 40 CFR 261-302, Part V, EPA Vol. 55, No. 126 June 29, 1990.

Method 6010A:

Inductively Coupled Plasma-Atomic Emission Spectroscopy, SW-846, Nov. 1990.

Method 7470A: Mercury in Liquid Waste (Manual Cold Vapor Technique), SW-846, Nov. 1990.

Laboratory Data Validation, Functional Guidelines for Evaluating Inorganics Analyses, USEPA, July 1988.

Reviewed by: \_\_\_\_\_C.B.

## TOXICITY CHARACTERISTIC LEACHING PROCEDURE TRACE METAL CONCENTRATIONS

Quality Control/Matrix Spike

Client:

Tierra Environmental

Sample ID:

Comp. 3

Lab ID:

9294B/5601

Date:

08/04/92

| Parameter: | Spiked<br>Sample<br>Result<br>mg/L | Sample<br>Result<br>mg/L | Spike<br>Added<br>mg/L | Percent<br>Spike<br>Recovery |
|------------|------------------------------------|--------------------------|------------------------|------------------------------|
| Arsenic    | 2.2                                | <0.1                     | 2.5                    | 88.0                         |
| Barium     | 2.5                                | 0.7                      | 2.0                    | 90.0                         |
| Cadmium    | 0.457                              | <0.005                   | 0.500                  | 91.4                         |
| Chromium   | 0.86                               | <0.01                    | 1.00                   | 86.0                         |
| Lead       | 1.6                                | <0.2                     | 2.0                    | 80.0                         |
| Mercury    | 0.009                              | <0.001                   | 0.010                  | 90.0                         |
| Selenium   | 2.4                                | <0.1                     | 2.5                    | 96.0                         |
| Silver     | 0.48                               | <0.01                    | 0.50                   | 96.0                         |
|            |                                    |                          |                        |                              |

Toxicity Characteristic Leaching Procedure, Final Rule, Federal Register, 40 CFR 261-302, Part V,

EPA Vol. 55, No. 126 June 29, 1990.

Method 6010A:

Inductively Coupled Plasma-Atomic Emission Spectroscopy, SW-846, Nov. 1990.

Method 7470A:

Mercury in Liquid Waste (Manual Cold Vapor Technique), SW-846, Nov. 1990.

Laboratory Data Validation, Functional Guidelines for Evaluating Inorganics Analyses, USEPA, July 1988.

| Reviewed by:  | CB. |
|---------------|-----|
| Troviction by |     |

## TOXICITY CHARACTERISTIC LEACHING PROCEDURE TRACE METAL CONCENTRATIONS

**Quality Control/Blank Analysis** 

Client:

Tierra Environmental

Sample ID:

IML Blank

Lab ID:

5602

Matrix:

Fluid

Report Date:

08/04/92

TCLP Extract:

07/24/92

Date Analyzed:

07/28/92

| Parameter: | Analytica<br>Result | l Regulato<br>Level | ry (Units) |
|------------|---------------------|---------------------|------------|
| Arsenic    | <0.1                | 5.0                 | mg/L       |
| Barium     | 1.0                 | 100                 | mg/L       |
| Cadmium    | <0.005              | 1.0                 | mg/L       |
| Chromium   | <0.01               | 5.0                 | mg/L       |
| Lead       | <0.2                | 5.0                 | mg/L       |
| Mercury    | <0.001              | 0.20                | mg/L       |
| Selenium   | <0.1                | 1.0                 | mg/L       |
| Silver     | <0.01               | 5.0                 | mg/L       |
|            |                     |                     |            |

Toxicity Characteristic Leaching Procedure, Final Rule, Federal Register, 40 CFR 261-302, Part V,

EPA Vol. 55, No. 126 June 29, 1990.

Method 6010A:

Inductively Coupled Plasma-Atomic Emission Spectroscopy, SW-846, Nov. 1990.

Method 7470A:

Mercury in Liquid Waste (Manual Cold Vapor Technique), SW-846, Nov. 1990.

Reviewed by: CB

#### TCLP REFERENCE LIST:

| 1.0 | Date of Sampling: | 7-21-92     |
|-----|-------------------|-------------|
|     | , ,               | <del></del> |

Date of Laboratory Receipt: 7-2/-92

Date of TCLP Extraction: 7-24-92

2.0 Quality Control Parameters:

Holding Times Maintained:

Yes

No

Method Blank Data:

Yes

No

Matrix Spike Data:

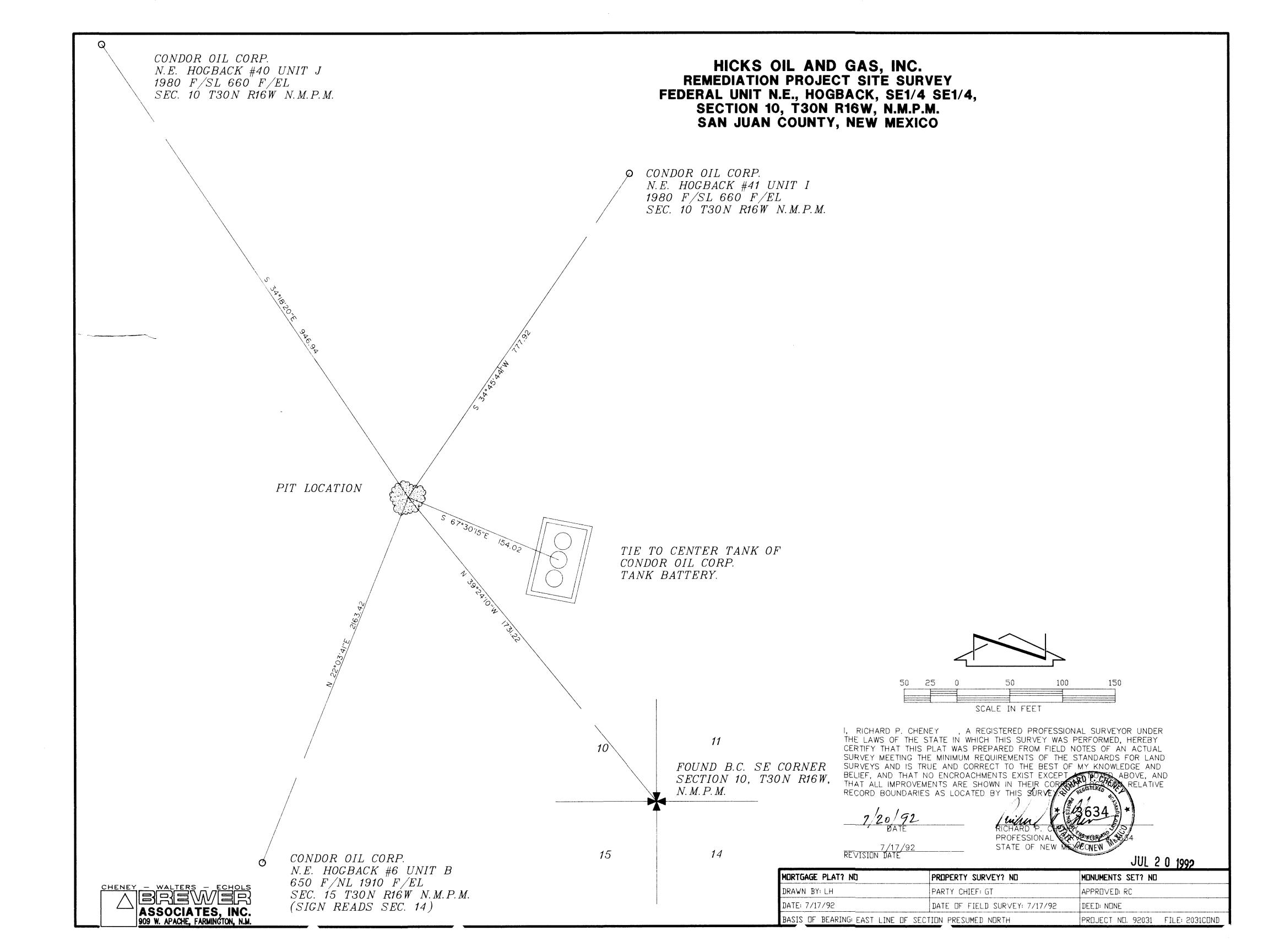
Yes

No

Data Qualifiers:

Yes

No


J = Estimated Quantity; B = Present in Blank; R = Data Unusable;

UJ = Analyzed but Not Detected, Sample Detection Value.

3.0 Analyte Information:

| Parameter: | CAS#:     | Regulatory<br>Level (mg/L) | Detection<br>Level (mg/L) | Method |
|------------|-----------|----------------------------|---------------------------|--------|
| Arsenic    | 7440-38-2 | 5.0                        | 0.1                       | 6010A  |
| Barium     | 7440-39-3 | 100                        | 0.5                       | 6010A  |
| Cadmium    | 7440-43-9 | 1.0                        | 0.005                     | 6010A  |
| Chromium   | 7440-47-3 | 5.0                        | 0.01                      | 6010A  |
| Lead       | 7439-92-1 | 5.0                        | 0.2                       | 6010A  |
| Mercury    | 7439-97-6 | 0.2                        | 0.001                     | 7470A  |
| Selenium   | 7782-22-4 | 1.0                        | 0.1                       | 6010A  |
| Silver     | 7440-22-4 | 5.0                        | 0.01                      | 6010A  |
|            | 0         | /                          | ,                         |        |

4.0 Comments: Barium detected in the

