94 3R -

REPORTS

DATE: 10/1999

JAQUEZ COM. C #1 AND JAQUEZ COM. E #1

SOIL AND GROUNDWATER REMEDIATION PILOT TEST

October 1999

OCT 1 8 1999

RECEIVED

ENVIRONMENTAL BUREAU OIL CONSERVATION DIVISION

Prepared For

EL PASO FIELD SERVICES FARMINGTON, NEW MEXICO

Project 62800019

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262

TABLE OF CONTENTS

1	EX	XECUTIVE SUMMARY	1
2	IN	NTRODUCTION	2
3	SI	ITE CHRONOLOGY	3
4	Μ	ETHODOLOGY	4
	4.1 4.2 4.3 4.4	PILOT TEST- TEST POINT INSTALLATIONS Soil Gas Permeability Test In-situ Respiration Test Exhaust Gas Testing	5
5	Pl	ILOT TEST RESULTS	7
	5.1 5.2	Soil Gas Permeability Test In-situ Respiration Test	7 8
6	C	ONCLUSIONS	. 9
7	R	ECOMMENDATIONS	10

LIST OF FIGURES

FIGURE 1 - LOCATION OF EXISTING WELLS FIGURE 2 - LOCATION OF PROPOSED REMEDIAL SYSTEM

APPENDICES

 $\begin{array}{l} \mbox{Appendix A - Soil Boring \& Well Completion Logs} \\ \mbox{Appendix B - Exhaust Analytical} \\ \mbox{Appendix C - Field Data Sheets} \\ \mbox{Appendix D - Charts} \\ \mbox{Appendix E - Calculation Sheets} \\ \end{array}$

1 EXECUTIVE SUMMARY

Philip Environmental Services Corporation (Philip) performed a soil venting/sparging Pilot Test at the El Paso Field Services (EPFS) Jaquez Com. C #1 and Jaquez Com. E #1 meter sites. The test was performed in accordance with the June 1999 Work Plan that EPFS submitted to the New Mexico Oil Conservation Division entitled *Jaquez Com. C* #1 and Jaquez Com. E #1 Soil and Groundwater Remediation Work Plan.

The original model for the continuing hydrocarbon constituents observed in ground water, is that light non-aqueous phase liquid (LNAPL) hydrocarbons in the up-gradient portion of the aquifer and the smear zone just above the water table continue to act as a source of dissolved phase hydrocarbons in down-gradient wells.

The proposed model for remediation of the site includes air sparging into the aquifer to volatilize components of the LNAPL into the vadose zone where they can be biodegraded by microbial activity or driven out of the ground in a gaseous phase. The Pilot Test was designed to observe the affect that pressure differentials in the vadose zone have on air circulation, vapor phase hydrocarbon migration and natural bioremediation processes.

The Pilot Test consisted of a total of four tests, conducted to test the effectiveness of the proposed technology at the site. Three tests were conducted to estimate the soil gas permeability of the vadose zone and one in-situ respiration test was conducted to measure the oxygen utilization rate. Of the three soil permeability tests, one test involved utilizing vapor extraction technology (air extraction), and two tests were conducted utilizing air sparging (air injection) into the aquifer.

Results of the soil gas permeability tests which included both soil venting the vadose zone and air sparging into the aquifer indicate that the site is a candidate for the treatment methods proposed.

Results of the in-situ respiration test indicate that the LNAPL phase can be volatilized into a gas phase and subsequently biodegraded. The test also indicated that, although bioremediation is naturally occurring at the site, the proposed technology will enhance the speed of the remediation process.

2 INTRODUCTION

At the request of El Paso Field Services Company (EPFS), Philip Environmental Services Corporation (Philip) has prepared the following report. This report is intended to show the effectiveness of soil and groundwater remediation proposed in the Work Plan that was submitted to the New Mexico Oil Conservation Division (NMOCD) by EPFS entitled *Jaquez Com. C #1 and Jaquez Com. E #1 Soil and Groundwater Remediation Work Plan*, dated June 1999.

The Jaquez Com. C #1 and Jaquez Com. E #1 meter sites are currently operated by EPFS. The meter sites are located in Section 6, Township 29N, Range 9W, in San Juan County, New Mexico, four miles north of the town of Blanco, New Mexico on San Juan County Rd. 4599.

Citizens Ditch separates the gas wells from the meter locations (Figure 1). Hydrocarbons were initially found in soil and groundwater on both sides of Citizens Ditch. The two meter stations are located within 40 feet of one another and for remediation purposes are treated as one site. Past practices include discharge of pipeline liquids into earthen pit(s) at the site.

Extensive excavation has been conducted in the area and hydrocarbon containing soils have been removed to the extent practical. As stated above, the site is transected by Citizens Ditch, which acts as a water supply conduit for the City of Bloomfield. Surface water in Citizens Ditch has not been affected by the site, although soils underlying Citizens Ditch continue to source groundwater with hydrocarbon constituents.

The June 1999 Work Plan proposed air sparging the groundwater to facilitate volatilization of hydrocarbons into the vadose zone. Soil venting technology was proposed to contain vapor flow, if necessary, and to help supply additional oxygen if low oxygen levels become a limiting factor to efficient biodegradation. If the proposed treatment proves to remediate this area effectively, the area below Citizens Ditch will be a candidate for similar technology. This report documents the results of Pilot Tests performed in accordance with the Work Plan in order to demonstrate the effectiveness of the proposed remediation technology.

3 SITE CHRONOLOGY

Listed below is a brief description of past activities at the site. Figure 1 shows the locations of existing monitor wells.

- Late 1992 Landowner expressed concern regarding potential hydrocarbon constituents in a garden area near the meter site location.
- March 1993 Comprehensive soil and groundwater investigation was performed on meter site location and nearby garden area.
- June 1993 EPFS submitted a remedial plan to NMOCD.
- July 1993 NMOCD approved the remedial plan.
- August 1993 Remediation activities initiated. Remediation activities resulted in the excavation of 5,222 yards³ of hydrocarbon-impacted soils. A total of 1,766 yards³ of soil were excavated from the impacted area north of the ditch and 3,456 yards³ of soil were excavated from south of the ditch.
- September 1993 Monitor wells R-1 through R-5 and M-1 through M-5 were installed north and south of Citizens Ditch. Initial sampling for benzene, toluene, ethylbenzene, and total xylene (BTEX) indicated monitor wells R-1, R-2, R-4, M-3, and M-4 were above New Mexico Water Quality Control Commission (NMWQCC) standards. Monitoring wells at the site were initially sampled monthly and are currently sampled quarterly. A passive venting interceptor trench was installed.
- September 1993 Remediation activities were completed.
- October 1993 to October 1996 Free phase hydrocarbons were observed in monitor wells R-1 and R-2 during the months of seasonally low groundwater levels (i.e., January through May). Passive skimmer systems were installed to remove the free phase hydrocarbons during periods of free phase hydrocarbon accumulation.
- November 1996 A pumping test was performed to determine if light non-aqueous phase liquids (LNAPL) could be removed during high seasonal groundwater by depressing the water table in and around R-1 and R-2.
- December 1996 Philip injected approximately 500 gallons of urea nitrate in water into the passive vent system and installed magnesium peroxide socks in monitoring wells M-3 and M-4 to supply oxygen to enhance natural biodegradation of hydrocarbons in groundwater.
- January 1997 Philip installed a belt skimmer in R-2 to remove free phase hydrocarbons.
- February 1997 Philip installed a belt skimmer in R-1 to remove free phase hydrocarbons.

- June 1997 Belt skimmer free phase hydrocarbon recovery system was shut down due to seasonal reduction of free phase hydrocarbon thickness related to local irrigation.
- November 1997 Philip installed two temporary monitor wells inside the formerly excavated area north of R-1 to determine if free phase hydrocarbons could be recovered during the high groundwater season.
- January 1998 Philip restarted the belt skimmer in R-1 and R-2.
- April 1998 Belt skimmer free phase hydrocarbon recovery system was shut down due to seasonal reduction of free phase hydrocarbon thickness related to local irrigation.
- July 1998 Philip injected approximately 500 gallons of urea nitrate in water into the passive vent system and installed magnesium peroxide socks in monitor wells M-3, M-4, R-3 and R-4 to supply oxygen to enhance natural biodegradation of hydrocarbons in groundwater.
- November 1998 EPFS conducted an investigation of possible hydrocarbon seep of groundwater into the surface water of an arroyo to the south of the property. No hydrocarbons are found during this investigation.
- 1998 Quarterly groundwater sampling of the following monitor wells was conducted during the first two quarters of 1998: R-3; R-4; R-5; M-1; M-2; M-3; M-4; and, M-5.
- 1998 Quarterly groundwater samples were collected for four quarters from monitor wells M-3 and M-4.
- May 1999 Recoverable free phase hydrocarbons (free product in excess of 0.2 feet thick) have not been observed in any of the monitor wells this year. No free phase hydrocarbons have been recovered from the site in 1999.
- August 1999 Soil Vapor Extraction and aquifer sparge Pilot Tests were performed at the site on the section above Citizens Ditch.

4 METHODOLOGY

The Pilot Test included extracting air from the vadose zone (vapor extraction) and injecting air into the aquifer (air sparging). Prior to the Pilot Test, two test points and five monitoring points were installed (Figure 1 – Location of Existing Wells). The Pilot Test consisted of the following tests.

One soil gas permeability tests was conducted utilizing vapor extraction technology, and two soil gas permeability tests were performed using air sparging technology. Various monitoring points were utilized to monitor pressure during the soil gas permeability test.

An in-situ respiration test was also performed. Oxygen (O_2) , carbon dioxide (CO_2) and volatile organic compounds (VOC's) in the vadose zone soil gas were measured and the

oxygen utilization rate subsequently calculated from test results. Gas samples were also collected from the vapor extraction system to measure the organic content of vapor extraction system exhaust.

4.1 Pilot Test- Test Point Installations

On August 11 and 12, one sparge well (SP-01), one vent well (VE-01), and three nested monitoring points (MP-01, MP-02 and MP-03) were installed at the locations shown on Figure 1. SP-01 was completed below the water table, VE-01 was completed above the water table and the monitoring points (MP-01, MP-02 and MP-03) were completed above the water table. Monitoring points MP-02 and MP-03 consist of two points nested in one boring apiece at 5-6 foot and 9-10 foot depths below ground surface and 20 and 30 feet away from SP-01 respectively. One monitoring point (MP-01) was set at a single depth of 5-8 feet below ground surface and 10 feet away from sparge well SP-01. A monitoring point was set at only one depth at MP-01 because of the extremely shallow level of groundwater. Boring and completion logs for all wells and monitoring points can be found in Appendix A.

The wells were installed using hollow stem auger technology. An eight-inch outside diameter, hollow stem auger was used to install the sparge well, the soil vapor extraction well and the nested monitor points. The annular space around the screened interval in all of the test wells and monitoring points was filled with 10-20 Colorado Silica Sand. A two foot seal of bentonite pellets was installed on top of the silica sand and a bentonite/cement grout was installed on top of the bentonite seal to the well surface. The nested monitor points include two sand packed screened intervals, a deep and a shallow interval separated by a seal consisting of hydrated bentonite pellets.

4.2 Soil Gas Permeability Test

The soil gas permeability test was performed using air extraction (SVE) of the vadose zone during the first test and air injection (air sparging) of the aquifer during the second and third soil gas permeability tests. Both tests were conducted on August 19, 1999. During the SVE soil gas permeability test, air was extracted from test point SVE-1 and pressure was monitored in monitoring points MP-01, MP-02 and MP-03. On August 23rd, a shortened soil gas permeability test, using air sparging, was performed on well SP-1 using monitor well R-03 as the only monitoring point. The following steps were taken to perform the soil gas permeability tests:

- 1. Dissolved oxygen was measured in monitor wells R-01 through R-05.
- 2. Magnehelic [™] gauges were connected to the top of each monitoring point with the stopcock opened; the gauges were set to zero.
- 3. The blower unit was turned on, recording the starting time to the nearest second. Initial blower flow rates were controlled by the amount of vacuum/pressure measured at the blower.

- 4. At 1-minute intervals, vacuum/pressure was recorded at each monitoring point beginning at t = 60 s.
- 5. After 10 minutes, the vacuum/pressure recording interval was extended to 2 minutes. Pressure readings and the flow rate from the vent well/sparge well were recorded from readings taken at the blower manifold.
- 6. After 20 minutes, pressure was measured at each monitoring point in 3-minute intervals.
- 7. Monitoring point pressure data was recorded at 3-minute intervals for the first hour of the test. After one hour a 30-minute interval was used.
- 8. Once the data collection interval increased to 30 minute increments (or at the end of the test for the shortened soil gas permeability test), soil gas samples were collected from monitoring points, and analyzed for O₂, CO₂, and voc's. Vacuum/pressure data was collected for a total of approximately 2 hours for each of the SVE and Air Sparge portions of the soil gas permeability test.
- 9. Monitor wells R-01 through R-05 were again measured for dissolved oxygen.

4.3 In-situ Respiration Test

The in-situ respiration test was performed over a two day period on August 23rd and 24th. The in-situ respiration test was conducted 48 hours after the soil gas permeability test was completed to allow sub-surface conditions to stabilize. The following procedures were used to perform the sampling for the in-situ respiration test.

- 1. The O_2 and CO_2 meter sampling pump was connected to the stopcock at the top of individual monitoring points. The sample pump was calibrated to pump a known volume of air over time.
- 2. O₂ and CO₂ sampling was performed prior to turning the sparge system on and then again when the sparge unit was turned off. Samples were also collected 2, 4, 11, and 18 hours after the sparge system was turned off. Sample collection times included in the Work Plan were changed due to slow changes observed in the sample results.
- 3. O₂ and CO₂ values (in %) were then recorded using a multi gas meter, which records O₂, CO₂ and CH₄ equivalent volatile organic compounds (VOC) in parts per million, simultaneously.

4.4 Exhaust Gas Testing

After the in-situ respiration test was completed, the air sparging system and the soil vapor extraction system were both turned on for a period of 12 hours in order to best simulate what exhaust gases might be produced. Air samples were collected from the soil vapor extraction system exhaust port into Tedlar bags and analyzed by EPA methods for total petroleum hydrocarbons (TPH) and benzene, toluene, ethyl benzene and total xylenes (BTEX). Air sample results were non-detect for TPH and BTEX constituents. Laboratory analytical data of the air samples can be found in Appendix B.

5 PILOT TEST RESULTS

Field data sheets for all soil gas permeability tests are included in Appendix C. Pressure vs. (ln) time slopes are presented in graphic form in Appendix D (Charts 1 through 3). Calculated Radius of Influence (R_i) using measured pressure data are presented in graphic form in Appendix D (Charts 4 and 5) and VOC in parts per million vs. time and oxygen % vs time are presented in graphic form in Appendix D (Charts 6 and 7).

5.1 Soil Gas Permeability Test

Data for the soil gas permeability test was collected on August 19, 1999. Field data is presented in Appendix C, on Field Data Sheets (FDS) #1, FDS #2, and FDS #3. Monitoring points, MP-01, MP-02 and MP-03 are located 30 feet, 20 feet and 10 feet respectively from the soil vapor extraction well (VE-01). The vacuum differentials between the wells were qualitatively correct since, vacuum measured at MP-03> vacuum measured at MP-02> vacuum measured at MP-01. Soil gas permeability calculations are included as Calculation Sheets 1 through 4 in Appendix E.

The R_i was calculated by plotting the pressure at each monitoring point vs. the log of its radial distance from the vent well and extrapolating the straight line to zero vacuum. Plots of R_i for both the SVE and the Air Sparging test are shown graphically in Appendix D as Charts 4 and 5. Calculated R_i for vapor extraction from test well VE-1 was 35 feet and the calculated R_i of the vadose zone for the air sparging test was 70 feet.

Soil gas permeability in the vadose zone at the site is higher than expected and monitoring points MP-01 and MP-03 quickly reached equilibrium during the venting test. Because static levels of pressure were achieved so quickly in MP-01 and MP-03, data from those monitoring points are used to calculate the soil gas permeability. The static equation for soil gas permeability was used to calculate K. The static test calculation is defined in, *Test Plan and Technical Protocol for a Field Treatability Test for Bioventing,* Air Force Center for Environmental Excellence May 1992. The static equation is included in Appendix E, Calculation Sheet #1. The results of the test indicate a soil gas permeability of 11.6 darcys. This indicates a reasonable permeability for the sandy soil noted on boring logs generated during installation of the monitoring points, sparge well and vapor extraction well.

A slower buildup of vacuum was observed in MP-02 and so the dynamic test method described in the June 1999 Work Plan, was used to calculate the soil gas permeability at MP-02. The dynamic equation is included in Appendix E as Calculation Sheet #2. The results indicated that soil gas permeability around monitor point MP-02 was 765 darcys. This calculation should be ignored for the following reasons: MP-02 audibly "breathed" or released pressure when monitoring devices were unhooked from that point, indicating the monitoring point was probably partially plugged; The results are out of range by an order of magnitude from results calculated from the static test described above; and, The results are out of range for reasonably expected results. It should be noted however, that

the final vacuum attained by MP-02 was in the middle vacuum range between the final vacuums observed at MP-01 and MP-03, which shows that in some qualitative way MP-02 was behaving as expected.

A soil gas permeability test was also performed using air injection (air sparging) of the aquifer. Air pressures built up erratically over time (Chart 2) and so the static method was used to calculate the soil gas permeability (Calculation Sheet #4). The soil gas permeability observed during this test was 19.2 darcys.

A soil gas permeability test was also conducted on August 23, 1999, using monitor well R-03 as a monitoring point. This test was performed during sparging operations, and field results of this test can be found in FDS #4 in Appendix C, and graphic results of the test are included in Appendix D (Chart 3). This test indicated 36.9 darcys for soil gas permeability in the zone just above the water table. Since this is a very permeable clean sand, the results are within the expected range and indicate that soil gas can be forced to flow through the uppermost part of the lithologic unit that contains the aquifer.

5.2 In-situ Respiration Test

The in-situ respiration test was performed over a period of 24 hours. Oxygen, carbon dioxide and VOC readings were collected prior to beginning the respiration test. The sparge system was then allowed to run for 12 hours prior to the beginning of data collection. The sparge system was turned off 12 hours into the test and data was collected at 13, 15, 17, 24 and 36 hours into the test. FDS #6 contains the data for the in-situ respiration test and the results are shown in graphic form in Appendix D as (Charts 5 and 6).

Oxygen utilization rates (K_o) varied from 0.7 % O₂/ hour to 0.25 % O₂/ hour. Again, monitor point MP-02 deep showed signs of being plugged during this test and so the anomalous readings observed from MP-02 during the in-situ respiration test can be ignored. Using the K_o described above, the biodegradation rates of the hydrocarbons can be approximated using K_B in mg of hexane-equivalent per kilogram of soil per day = 0.8 K_o (from *Test Plan and Technical Protocol for a Field Treatability Test for Bioventing*, Air Force Center for Environmental Excellence, May 1992). Therefore the biodegradation rate at the site ranges from 0.56 to 0.20 mg of hexane-equivalent per kilogram of soil per day.

A rise in methane equivalent VOC's was also observed at about 11 hours after the air sparge system was turned off (Chart 6).

6 CONCLUSIONS

The results for the soil gas permeability test indicate that this site is a good candidate for the proposed treatment model. A layer of very permeable sand just above the water table is indicated by the sparge test conducted using MW-03 as a monitoring point. Monitor well MW-03 is completed as a groundwater monitor well with a screen that extends to just above the water table. Therefore, the higher permeability calculated from pressure readings observed from this well would be the result of pressurization of the aquifer sand unit just above the water table. Test results indicate a high soil gas permeability in this zone at 36.9 darcys which correlates well with the lithology. Soil boring logs indicate a clean flowing sand (i.e., a sand that flows when the water bearing portion of the zone is penetrated/excavated).

Soil gas permeability as calculated from pressure/vacuum measurements at the monitoring points indicate soil gas results of 11.6 and 19.2 darcys. These results are very similar considering that the tests were conducted by sparging air into the aquifer in one case and by soil vapor extraction methodology in the other.

Air sparging into the aquifer resulted in slow erratic gains in pressure as measured in the monitoring points. This is probably the result of the differential permeability between the lithologic unit where air was being injected and the lesser permeability of the overlying lithology.

Volatile organics were observed migrating into the upper portion of the vadose zone within 16 hours of initiating air sparging operations. Twenty seven hours after sparging operations were initiated (and 11 hours after the sparge system was turned off), monitoring points showed VOC levels >150 ppm (the instrument limit) and oxygen levels began to increase. These observations can be seen graphically on the overlay Charts 6 and 7.

The increase in oxygen and VOC levels are related, and may be interpreted as the reflection of the time it takes for air to be forced from the more highly permeable lithologic unit that contains the aquifer to the less permeable overlying units. Another explanation might be that VOC concentrations increased to toxic levels for bacteria that are acting as receptors of the volatiles and therefore, the bacteria are no longer consuming oxygen.

More will be known about biodegradation rates and other bioremediation properties after a system is operated for a period of time at the site. If the toxicity scenario proves to be the cause of excess oxygen, then extra vapor extraction points can be installed to reduce the VOC levels and make the atmosphere more hospitable to the microorganisms. In conclusion, volatilizing hydrocarbon constituents off the groundwater and moving them through the vadose zone for release into the atmosphere or their biodegradation in the vadose zone appears to be a valid remedial model.

7 RECOMMENDATIONS

Philip recommends installing an air sparging system for in-situ remediation of soils at the site utilizing air sparging technology to volatilize and mobilize hydrocarbon constituents. The soil vapor extraction system will be available if non-point source vapor emissions become problematic or if oxygen utilization rates in the subsurface require additional oxygen for more efficient bioremediation of hydrocarbon vapors.

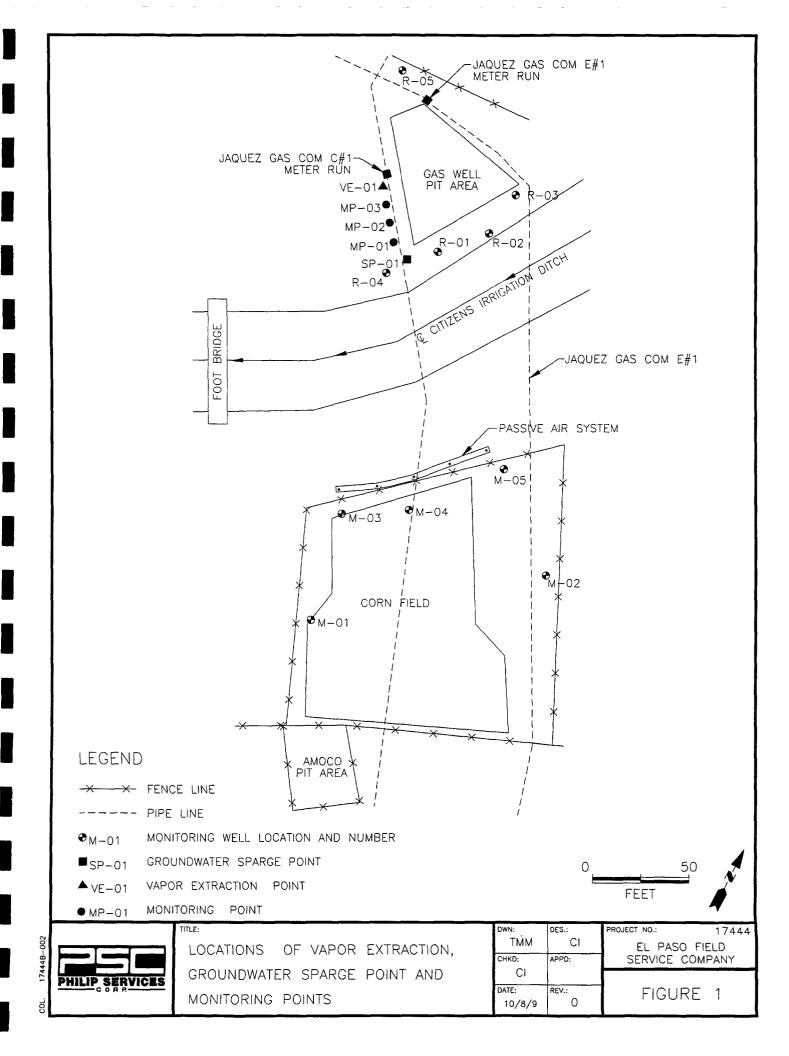
Philip proposes utilizing a total of three sparge points (Figure 2): The sparge point installed for the pilot test (SP-01); a sparge point about 40 feet east of SP-01; and, A sparge point in the area that was previously excavated. The system will be closely monitored the first month of operation. The reaction and processes occurring in the vadose zone with the influx of hydrocarbon constituents will be monitored. If future investigations of the site indicate more widespread hydrocarbon impact, the geometry of the sparge points may be rearranged or more sparge points may be added to the system.

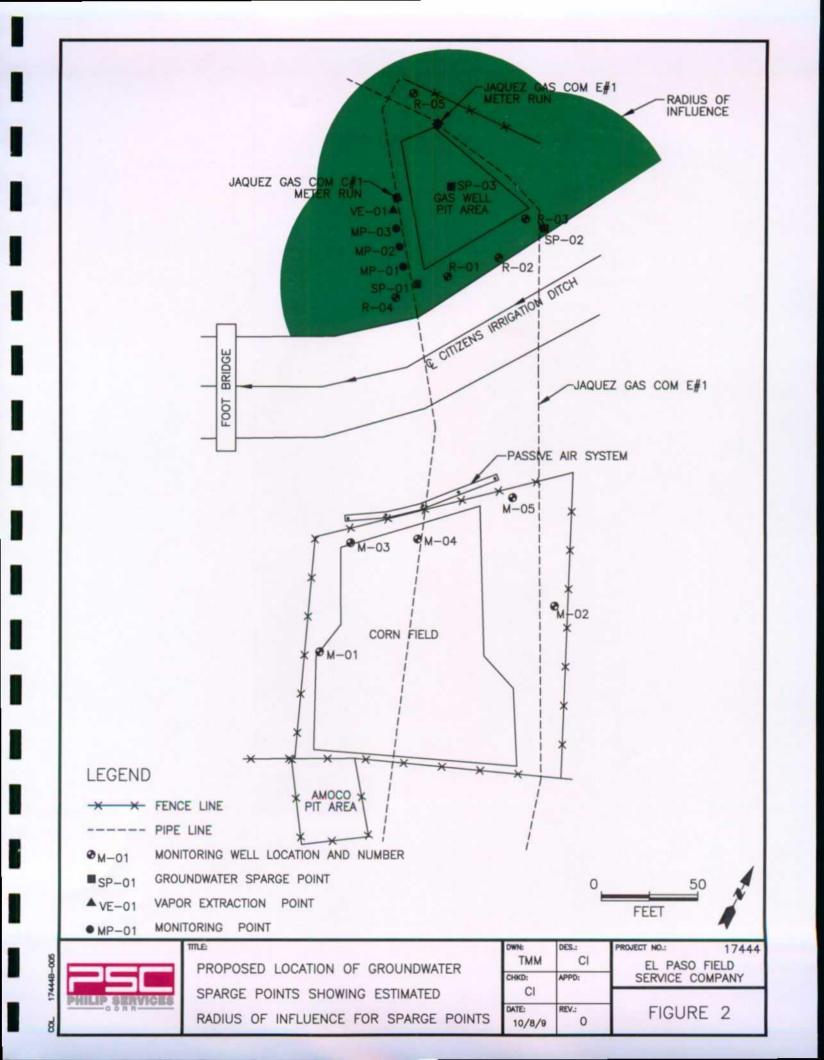
The sparge system will be operated 12 hours per day and then turned off for 12 hours per day. This "pulsing" of the system will allow the formation to heal for 12 hours a day to help prevent short-circuiting of the sparge wells or the formation of preferential pathways in the formation.

The vapor extraction system will only be used if biological activity in the vadose zone depletes oxygen levels to less than 5% on a consistent basis, or if vapor migration becomes problematic and needs to be controlled. The Pilot Test indicates that a Notice of Intent (NOI) is not required for the exhaust system at this time. However, since the waiting time for an NOI is 30 days, the paperwork can be submitted to NMED on a contingency basis in case one is needed in the future.

During the initial system startup period of the air sparging system, O_2 and VOC measurements of soil gases will be recorded every other day to monitor ongoing biodegradation processes and breathing zone conditions. Subsurface pressures will be recorded once a week at the beginning and end of one twelve hour operational period during the startup period. Also, the system will be shut down on the weekends during this initial startup period. After the initial startup period, monitoring will be performed once a week.

A report will be generated bi-annually for the purpose of summarizing the progress of the remedial system. The report will include historical and current groundwater and vadose zone monitoring results, as well as pertinent data of the sparge and/or vent system such as


Ì.


ł

ļ

the total hours the system has been operational, estimates of gross hydrocarbons removed from the groundwater to date, and vadose zone information.

FIGURES

APPENDIX A Soil Boring & Well Completion Logs

RECORD OF SUBSURFACE EXPLORATI

Philip Environmental Services Corp. 4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2282 FAX (505) 326-2388

clevation			
Borehole Location		· · · ·	
GWL Depth			
Logged By	C. CULLI	COTT	
Drilled By	K. PADILL	A & D. PAOIL	LA
Date/Time Starte		8:30am	•
Date/Time Compl	eted 8112199	9:45am	

	Borehoie #	L
	Weil #	mp-7
	Page L	of Z
Project Name EPP	5 JAQUEZ	SVE
Project Number 6280001	9 Phase	1
Project Location JAG	UET. GAS	(0m € #1
Well Logged By	- CULLICO	τT
		. D. PADILLA
Contractors On-Site	Ø	
Client Personnel On-Site	Ø	
Drilling Method	AUGER	
Air Monitoring Method	219	

dest

Sample Depth Depth Sample Type & Sample Description USCS Air Monitoring Drilling Conditions Lithology (Feet) Interval Recovery Classification System: USCS Symbol Change Units: NDU & Blow Counts (inches) (feet) 87 BH 0.0 8 610WS 0 BURFALLE DAMP SAND, POORLY 0-18" ١ SURTED. INCREASING POCLAY 12-312 2 WITH DEPTHHO 1'. LOOSE 0.0 @ 19 BLOWS SAND El', for i'', then fights Hy 312.5 3 CLAY FOR Z", THEN FINE 0.0 \$ 10 GLOWS HET 5 SAND WICLAY to 18" 2 3 POOR RECOVERY. 1" thick 5-71 4 0.0 @ 9 blows Stiff clay @ ~ 2', BEDOW 5 7-81/2 THAT LOOSE DRY POORLY TΓ CONTED SAND 10 & GOOD RECOVERY, MOIST, POORLY SORTED SALD \$3/2-41, then 1" STIFFCLAYEY SAND, THEN LOOSE, 15 POORLY SORTED SAND. 8", then some wimore CLAY TO S! @ AS ABOJE to 7! 20 @7' SEDIMENT IS NGARLY S ATURATED E PODE RECOJERY. BOTTOM 25 OF SPLIT SPOON IS SATURATEDISTIFF SANDY CLAY, GRAY. NO VISIBLE HISTAIN IN THUS HOLE. 30 TD 9' 35 40

Comments:

SUNNY WAFEW CLOUDS. SITE IS ADJACENT TO IRRIGATION DITCH.

Geologist Signature Cathy Cullicott

tillip Environmental Services Corp 000 Morroe Rood		•			Page 2	mp-1 2 of 2
unington, New Mexico 87401				Project Name F	PES JA	QUEZSUE
06) 326-2262 FAX (606) 326-2388				Project Number	8000 19	Phase 1
levation				On-Site Geologist	<u> </u>	LLICOTT
Vell Location				Personnei On-Site	K. PAC	DILLA, D.PAD
GWL Depth nstalled By K. PADILL	A + D . PADILLA	~		Contractors On-Site Client Personnel On		9
	8:30am					
	1. 93 am					
Depths in Reference to Ground S	Gurface			Top of Protect	ive Casing	<u>~+2'</u>
Item	Material	Depth	2000	Ground Surfa	5 9	
Top of Protective Casing						
Bottom of Protective Casing						
Top of Permanent Borehole Casing						
Bottom of Permanent Borehole Casing						
Top of Concrete				BENTON		
Bottom of Concrete				CHIP:	TO GS	, >
Top of Grout						
Bottom of Grout						
Top of Well Riser	1	~+2'				
Bottom of Well Riser	1 11	5'				
Top of Well Screen	1 .4	5'		Top of Seal		2'
Bottom of Well Screen	1"	8'	xx xx	XXX BENTON XXX Pellets	TE	
Top of Peltonite Seal	Pellets	2'	xx XX	xxx	a 1	ы ⁽
Bottom of Peltonite Seal	Pellets	4'	XX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
Top of Gravel Pack	COLORADO	Ч'		Top of Scree	٦	<u> </u>
Bottom of Gravel Pack	SILICASAND	9'				
Top of Natural Cave-In		ļ				
Bottom of Natural Cave-In		<u> </u>				
Top of Groundwater				Bottom of Sc Bottom of Bc		<u>-8'</u>
Total Depth of Borehole		9'	(<u>Maran</u>			
Comments:						

RECORD OF SUBSURFACE EXPLORAT.

Stort - Water many

A unite .

Philip Environmental Services Corp. 4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 328-2388

Elevation	٤
Borehole Location 5	AQUEZ
GWL Depth	
Logged By C	CULLICOTT
Drilled By	- PADILLAS D. PADILLA
Date/Time Started	8/11/99 9:10am
Date/Time Completed	8/11/49 10:30 am

	Well# <u>MXPS</u> Page of 7_
Project Name Project Number	EPFS JAQUEZ
Project Location	JAQUEZ GAS CONE#1
Well Logged By Personnel On-Site	C. CULLICOTT K PADILLA, D. PADILLA, C. IKG
Contractors On-Site	
Client Personnel On-	Site
Drilling Method	AUGER
Air Monitoring Meth	bd PIG

Borehoie #

hb

Martin .

Depth (Feet)	Sample Interval	Sample Type & Recovery (inches)	Sample Description Classification System: USCS	USCS Symbol	Depth Lithology Change (feet)	ł	r Monitor Inits: ND BH	•	Drilling Conditions & Blow Counts
4	Frab 11."- 21/2-11/2 11/2-61 6-8' 8-10'	1	SURFALE: SAND O-78" CLEAN SAND, DAMP, TAN, ANGULAR BRE'' a 1" thick clay Seam, Gray, wither roots: Then sand -> loose, medium SAND -> 2'. C2'' 3" OF GRAY SILTYCLAY. then LOOSE, MEDIUMSAND. CLEAN, tO 2'/2' 2'/2-H'/2 CLEAN SAND, MEDIUM, WI MINORSULT(CLAY H'/2-G' INCREASING OD CLAY, GRAY, STILL CLEAN, FINERSAND, MORE COTIERENT. TO G'/2' CLAY, GRAY, STILL CLEAN, FINERSAND, MORE COTIERENT. TO G'/2' CLAY, GRAY, STILL CLEAN, FINERSAND, MORE COTIERENT. TO G'/2' CLAY, GRAY TO 7'. 78' BACK, INTO SANDY CLAY, GRAY TO 7'. 78' BACK, INTO SANDY SAND, COHERENT, DAMP TO 9'/2' THEN INTO HC STAINED SAND. GRAY STAIN INTO BLACKERO'. FINESAND, SMALLER OO ELAY THAN ABOUE, WET, BUT NOT SATURATED- TOP OF "SMEAR ZONE" TD 11'			0 0 3 9 6 6	ł	1,2pp 0.8pp NS 1.0pp 135p	т рл

Comments:

Geologist Signature Cathy Cullurt

١

٦

5/6/99\Drillog.xls

ilip Environmental Services Corp	·.		۱.			Well # Page _2		
00 Monroe Road Mington, New Mexico 87401				Proj	ect Name	EPFS J	AQUEZ SI	<u>l</u> E
6) 326-2262 FAX (506) 326-2388				Proj	ect Number	62800019	Phase{	
				Proj	ect Location	JAQUEZ	GAS CON	
evation <u> </u>	<u> </u>	-			Site Geologis onnel On-Sit	t C, IR	DILLA + D.	1007T
WL Depth		- A-		Con	tractors On-S nt Personnel	Site	Ø	
stalled By K. PADILLA		_			HELERSONDO		Ø	
ate/Time Started 8/11/99 ate/Time Completed 8/11/99	9110an 18:20 90							
Depths in Reference to Ground S	Surface				Top of Pro	tective Casing		
					Top of Ris			
ltem	Material	Depth	4		Ground So	irface		
Top of Protective Casing								1 million
Bottom of Protective Casing								
Top of Permanent Borehole			-					
Casing Bottom of Permanent Borehole								37 <u>327</u> 740996
Casing								
Top of Concrete	1							
Bottom of Concrete								Land and the second
Top of Grout								
Bottom of Grout								
Top of Well Riser	, "	D +2	s 3'					= And M
Bottom of Well Riser	۴ ا	D 9'	55					- Aller
Top of Well Screen	› ^{بر}	D 9'	5 5'		Top of Se	al \mathcal{V}	6	s z
Bottom of Well Screen	1.4	D 10'	56					
Top of Peltonite Seal		D 6'	5 6-5	xxx xxx xxx xxx xxx xxx			_ ,	
		D 8'	5 4'		Top of Gr	avel Pack D		5 - 4
Bottom of Peltonite Seal		D-8	54'		Top of Sc	reen D -	<u> </u>	5.5
Top of Gravel Pack								
Bottom of Gravel Pack		011	5.6'					
Top of Natural Cave-In			-					
Bottom of Natural Cave-In			-				1	
Top of Groundwater			l		Bottom of	Screen D Borehole	<u>10 BGS</u> 11 BES	5-6'
Total Depth of Borehole				1 <u>3888888851</u>		Dorenole	<u> </u>	
omments:								

1

the state of the s RECORD OF SUBSURFACE EXPLORAT . 4

Philip Environmental Services Corp).							
4000 Monroe Road								
Farmington, New Mexico 87401								

	Page of Z_
Project Name	EPFS JAQUEZ SUE
Project Number	67800019 Phase 7
Project Location	JAQUEZ GAS COM E#1
Well Logged By Personnel On-Site Contractors On-Sit Client Personnel O	
Drilling Method Air Monitoring Met	AUGER PLD

Borehoie #

Weil #

5P-1

\$314 M.

(505) 326-2262 FAX (505) 326-2388

Elevation	*
Borehole Location	
GWL Depth	
Logged By (J.CULLICOTT
Drilled By	K. PADILLA + D. PADILLA
Date/Time Started	8/12/99 9:45am
Date/Time Complet	ted 8/12/94 \$ 12:450m

	Depth (Feet)		Sample Interval	Sample Type & Recovery (inches)	Sample Description Classification System: USCS	USCS Symbol	Depth Lithology Change (feet)		r Monitor Inits: ND BH	-	Drilling Conditions & Blow Counts
	15((m) (F) (D)	5-6% 10-12 15-16% 20-22 25-26% 26-27%		O DAMP SAND I CLEAN. TAN. POORLY SORTED WITH OJERALL CORRECTION WITH DEPTH IN SPLITSPOON HYDRO CARBON STAINED CLAY W (VARYING AMOUNTS OF SANDESILT. DARTER STAIN WITH DEPTH- SOLUT BLACK & BOTTOM OF SPLITSPOON. STIFF, MOIST B SATURATED POORLY SORTED SAND WITH STRONG HC ODOR OARSE G SATURATEDASAND W/PERVASIVE BLACK HC STAIN. O NO RECOVERY OCARSE SAND. GRAY HC STAIN & ODOR GOOP OF SPLIT SPOON, CLEAN SAND @ BOTTOM						() 5 8 LOUS
L	Comments:	1	INFL		F SATURATED SAND INTO	AUG	ER. +	< ELI	_ <u> </u>	PEN	T A WHILE
					E PID READING TAKEN						
					ARM. Geologist Sig						

MONITORING WELL INST	ALLATION RECO	RD			Borehole # Z Vell # SP-1
Lillip Environmental Services Corp 000 Morroe Rood		,			Page Z of Z
ermington, New Mexico 87401			Pr		STAQUEZ SUE
061 326-2262 FAX (5061 326-2388			Pr	roject Number 6280	
			Pt	roject Location <u>A</u>	QUEZGASCONE#
levation				n-Site Geologist	CULLICOTT F-PADILLASD.P
Vell Location			C		
D. PADILLA			С	lient Personnel On-Site	Ø
Date/Time Started	9:45am	,			
ate/Time Completed <u>8/12/99</u>	12:45pm				
				To a of Deatesting (
Depths in Reference to Ground S	Surface			Top of Protective (Top of Riser	zasıng
ltem	Material	Depth		Ground Surface	
· · · · · · · · · · · · · · · · · · ·					N
Top of Protective Casing					•,
Bottom of Protective Casing Top of Permanent Borehole	1				
Casing					
Bottom of Permanent Borehole Casing					
Top of Concrete					
Bottom of Concrete				GROUT	
Top of Grout		65		Glacor	
Top of Grout		91/2			
Bottom of Grout	cement				
Top of Well Riser	2	+5			
Bottom of Well Riser	2"	21'			
Top of Well Screen	2"	ZI		Top of Seal	91/2
Bottom of Well Screen	2.''	26	1)XX	
Top of Peltonite Seal	chip+ Pellet	91/21			
	pellets	17'		XX Top of Gravel Pac	sk <u>17</u>
Bottom of Peltonite Seal	1 frances			Top of Screen	21'
Top of Gravel Pack	clean sand	17'			
Bottom of Gravel Pack	natural sed:	26			
Top of Natural Cave-In					
Bottom of Natural Cave-In					
Top of Groundwater				Bottom of Screen	2.6'
Total Depth of Borehole		~26		Bottom of Boreho	
	1	1-6-1			

WAS LIFTED THESE DIMENT SETTLED TO ~ 19! PUT IN 2' OF CLEAN SAND. THEN HOLEPLUG, THERE WAS STANDING WATER IN THE WELL SO THEY POURED IN CEMENT POWDER TO -1'

RECORD OF SUBSURFACE EXPLORAT	
-------------------------------	--

RECORD OF SUBSURFACE EXPLORAT.	Borehole # 3
Philip Environmental Services Corp.	EPFS Page 1 of Z
Farmington, New Mexico 87401 (606) 326-2262 FAX (606) 326-2388	Project Name JAQUEZ SVE Project Number G2800019 Phase 1 Project Location JAQUEZ GAS COME#1
Elevation Borehole Location GWL Depth Logged By Drilled By K. PADILLA & D. PADILLA	Well Logged By C. CULLICOTT Personnel On-Site D. PADILLA Contractors On-Site D. Client Personnel On-Site D.
Date/Time Started <u>8/12/99 1:05 pm</u> Date/Time Completed <u>8/12/99 2:25 pm</u>	Drilling Method <u>AUGER</u> Air Monitoring Method <u>PIO</u>

ţ

え

I.

L

Depth (Feet)	Sample Interval	Sample Type & Recovery (inches)	Sample Description Classification System: USCS	USCS Symbol	Depth Lithology Change (feet)	Air Monitoring Units: NDU BZ BH S	Drilling Conditions & Blow Counts
0 		(inches)	POORLY SORTED SAND, DAMP, BROWN, CH'- CObble? 5-7' SAND whigher 90 Fines CT & to graystained Clayey Sand, Cohenent, damp SAME TO 11' HC & DURG STAIN		(feet)	BZ BH S	
15			TDII				
20							
25							
30							
35							
40							

Geologist Signature

rathy

Cullicott

5/6/99\Drillog.xls

allip Environmental Services Corp).					Well # Page <u>2</u>	MP-2	
100 Manroe Rood Imington, New Mexico 87401				Brois	at bloma	CREATA	MALCO SHE	
D61 326-2262 FAX (506) 326-2388					ect Name		QUES SUE	<u> </u>
						62800019	Phase 1 5 COME#	
					2	AQUEZ		<u> </u>
evation					Site Geologis onnel On-Si	t C.CUL	LICOTT LILLASD.P.	40.00
WL Depth				Cont	tractors On-\$	Site@	S	
stalled By K PADILLA	D. PADILL	1		Clier	nt Personnel	On-Site	Ø	
ate/Time Started 8/12/99								
ate/Time Completed 8/12/9	9 2:25pm							
Depths in Reference to Ground S	Surface				Top of Pro	tective Casing		
					Top of Ris			
ltem	Material	Depth	1		Ground St	lrface		
Top of Protective Casing	·/		-					2011
Bottom of Protective Casing								स्तेन्द्र स े य
Top of Permanent Borehole Casing								
Bottom of Permanent Borehole								
Casing			-					a require
Top of Concrete								
Bottom of Concrete		Ì						
			-					
Top of Grout			-					
Bottom of Grout			_					
Top of Well Riser	1 *1	D +2	s +3					
Bottom of Well Riser	111	D 9'	5 5'				9002	Sec. 2
Douott of Well Fise			5 5'					
Top of Well Screen		D 9'	5 5		Top of Se	al D	_6	sz
Bottom of Well Screen	1"	D 10'	56	$\infty \alpha$				
Top of Peltonite Seal		D 6	565				. 1	
			5 4'		Top of Gr	avel Pack D	8	54'
Bottom of Peltonite Seal		<u>b 8'</u>			Top of Sc	reen D	9'	551
Top of Gravel Pack		D 8'	5 4				- <u></u>	~ ~
Bottom of Gravel Pack		DII	56					
Top of Natural Cave-In								
Bottom of Natural Cave-In			4					
Top of Groundwater			_			Screen D	10' BG-S	5 - 61
Total Depth of Borehole					Bottom of	G Borehole	11. BC-S	
received and a point of a point of a		1						

RECORD OF SUBSURFACE EXPLORATION

Philip Environmental	Services Corp.
4000 Monroe Road	
Farmington, New Mexico	87401

(505) 326-2262 FAX (505) 326-2388

Elevation	
Borehole Location	
GWL Depth	
Logged By	C-CULLICOTT
Drilled By	T. Padillas D. PADILLA
Date/Time Starte	d 8/12/99 2:25pm
Date/Time Comp	leted 8/12/99 3:45Pm

	Borehole # Weil # Page }	4 VE-1 of 2
Project Number 62800019	Phase	22 SVE 2 Com E #1
	PADILLA PADILLA	OTT D. PADILLA

Drilling Method Air Monitoring Method PID

Г			1	Sample			Depth				
	Depth		Sample	Type &	Sample Description	uscs	Lithology	نم	r Monitor	ina	Drilling Conditions
	(Feet)		Interval	Recovery	Classification System: USCS	Symbol	Change		Inits: NC	-	& Blow Counts
				(inches)		0,1100	(feet)	вz	BH	s	
Ī	0	1	0-18"		POORLY SORTED SAND WI I'					_	O IIBLOWS
					CIAU'SFAM BNG4 FROM						
		3	18"-312		THERE, LOOSE, LORASER				l		520 BLOWS
			ى ا		THERE, LOOSE, LOARSER POORLY SORTED SAND TOLY						G 20 50 000
2400 A	·	~	3/2.5		BLOOSE SAND TO 24", then						
	5	3			GLOUS SAINT				1		B
		(H)(H)	5-6/2		S" thick clay seaming				[-
		1X	CV al		STIFF, WISANDOSILT.				Ì	ł	95BLOWS
	—	5	61/2.81		BELOW, LOOSE, POORLY						-
		6	812-1	6						1	\$ 8 62345
	10	P			SORTED MEDIUMSAND				1		
TD					TO 312' TAN						
<u> </u>	—				(3) ASABOUE TOS'				1		
			1 .				[
					(AS ABOUE TU 6',				1		
	15				then coarsers betten						
			1		SORTAD 061/2					Ì	
and the second se									1	•	
					B G12-7', STIFF CLAYEY						
			1		SAND, DAMP. 7-8/21					1	
	20	[POURLY SORTED SAND,					1	
	L				DAMP.					1	
									1		
		ł			6) POORLY SORTED SAND,		1				
			1							1	
	25				COARSENS WITH DEPTH.						
'					WETTER WITH DEPTH						
l	F	[· · ·						
1	<u> </u>										1
			· ·		TD II'						
• [30	l					1			l	
	<u> </u>		1		NO CONTAMINATION				Ì		
					DETECTED VISUALLY						
	<u> </u>				- -						
	35										
	├ ──										
	40										
	L #0										
L		L.,,,,	1				1				

Comments:

Geologist Signature Cathy Cullicott

5/6/99\Drillog.xls

Tuilip Environmental Services Corp		RD 小 Apple			Well #	<u>VI=-1</u> f_2
1000 Monroe Road armington, New Mexico 87401			Proie	ect Name FP	FETAR	UEZ SVE
505) 326-2262 FAX (606) 326-2388						
			Proje Proje	ect Number $\frac{629}{54}$	00019 F	hase Z 5 COM E#1
Elevation			On-S	Site Geologist	C.CULL	11075
Well Location			Pers	onnei On-Site		LA, D. PAD
GWL Depth	A. D.PADILL	-4		tractors On-Site nt Personnel On-Si	te Ø	
			0.10			
Date/Time Started <u>\$12199</u> Date/Time Completed <u>\$12199</u>						
Depths in Reference to Ground S	Gurface		[]	Top of Protective	Casing _	
ltem	Material	Depth		Top of Riser Ground Surface	-	
					-	
Top of Protective Casing						J
Pattern of Destautive Ossian						
Bottom of Protective Casing Top of Permanent Borehole	- <u>l</u>					
Casing Bottom of Permanent Borehole		_ <u>_</u>				:
Casing				HOLE	F1-06 ST11/2	
Top of Concrete				LC C	- 10 66	
				t		
Bottom of Concrete	 					
Top of Grout		6-3				
Bottom of Grout		2				
Top of Well Riser	2"	+				
Bottom of Well Riser	2"	6				
Top of Well Screen	2"	6		Top of Seal		3
Bottom of Well Screen	2	11'				
Top of Peltonite Seal	BENTONITE	2				
Bottom of Peltonite Seal	CHIPS	51		Top of Gravel P	ack	
Top of Gravel Pack	COSAND	5'		Top of Screen		6'
Bottom of Gravel Pack	• •	11				
Top of Natural Cave-In						
Bottom of Natural Cave-In						
Top of Groundwater				Bottorn of Scree Bottorn of Bore		<u> </u>
Total Depth of Borehole			<u>a neocentra di sua</u>	Bolloff of Bore		<u>I</u> I
Comments:						

D

APPENDIX B *Exhaust Analytical*

2709-D Pan American Freeway NE Albuquerque, New Mexico 87107 Phone (505) 344-3777 Fax (505) 344-4413

Pinnacle Lab ID number August 26, 1999 908090

PHILIP ENVIRONMENTAL 4000 MONROE ROAD FARMINGTON, NM 87401

Project NameJaquez SVEProject Number62800019

Attention: A WENITO

On 8/25/99 Pinnacle Laboratories, Inc. Inc., (ADHS License No. AZ0592), received a request to analyze **air** samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (505)344-3777.

Kimberly D. McNeill Project Manager

MR: mt

Enclosure

Unterne filt

H. Mitchell Rubenstein, Ph. D. General Manager

2709-D Pan American Freeway NE Albuquerque, New Mexico 87107 Phone (505) 344-3777 Fax (505) 344-4413

: PHILIP ENVIRONMENTAL	PINNACLE ID	: 908090
: 62800019	DATE RECEIVED	: 8/25/99
: Jaquez SVE	REPORT DATE	: 8/26/99
		DATE
CLIENT DESCRIPTION	MATRIX	COLLECTED
62800019-8-24-99	AIR	8/24/99
	: 62800019 : Jaquez SVE CLIENT DESCRIPTION	: 62800019 DATE RECEIVED : Jaquez SVE REPORT DATE CLIENT DESCRIPTION MATRIX

GAS CHROMATOGRAPHY RESULTS

TEST LIENT ROJEC ⁻ PROJEC ⁻		: EPA 8021 MOD : PHILIP ENVIRO : 62800019 : Jaquez SVE		GRO		PINNACLE I.D.:	908090
AMPLE				DATE	DATE	DATE	DIL.
ю. #	CLIENT I.D.		MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
01	62800019-8-24	4-99	AIR	8/24/99	NA	8/25/99	1
ARAME	TER	DET. LIMIT	UNITS		62800019-8-24- 99		·
FUEL HY	DROCARBONS	5.0	MG/M ³		150		
YDROC	ARBON RANGE				C6-C14		
YDROC	ARBONS QUANTI	TATED USING			GASOLINE		
ENZENI TOLUENI ETHYLBE OTAL X	E	0.05 0.05 0.05 0.05	MG/M ³ MG/M ³ MG/M ³ MG/M ³		< 0.05 < 0.05 < 0.05 < 0.05		
	GATE: FLUOROBENZENE GATE LIMITS	(%) (74 - 120)			103		

CHEMIST NOTES:

J/A

2709-D Pan American Freeway NE Albuquerque, New Mexico 87107 Phone (505) 344-3777 Fax (505) 344-4413

	GAS CHROMATOGRA	PHY RESULTS	
	REAGENT BL	_ANK	
TEST	: EPA 8021 MODIFIED / 8015 GRO		
LANK I.D.	: 082599	PINNACLE I.D.	: 908090
LIENT	: PHILIP ENVIRONMENTAL	DATE EXTRACTED	: NA
PROJECT #	: 62800019	DATE ANALYZED	: 8/25/99
ROJECT NAME	: Jaquez SVE	SAMPLE MATRIX	: AIR

PARAMETER	UNITS		
UEL HYDROCARBONS	MG/M ³	<5.0	
HYDROCARBON RANGE	C6-C14	-	
HYDROCARBONS QUANTITATED USING	GASOLINE	-	
BENZENE	MG/M ³	<0.05	
TOLUENE	MG/M ³	<0.05	
ETHYLBENZENE	MG/M ³	<0.05	
TOTAL XYLENES	MG/M ³	<0.05	
SURROGATE:			
BROMOFLUOROBENZENE (%)		103	

BROMOFLUOROBENZENE (%) (80 - 120) **SURROGATE LIMITS**

CHEMIST NOTES: N/A

2709-D Pan American Freeway NE Albuquerque, New Mexico 87107 Phone (505) 344-3777 Fax (505) 344-4413

GAS CHROMATOGRAPHY QUALITY CONTROL

MSMSD

TEST MSMSD # LIENT PROJECT # PROJECT NAME	: EPA 8021 MC : 082599 : PHILIP ENVII : 62800019 : Jaquez SVE				PINNACLE I DATE EXTR DATE ANAL SAMPLE M/ UNITS	ACTED YZED	:		
<u>, , , , , , , , , , , , , , , , , , , </u>	SAMPLE	CONC	SPIKED	%	DUP	DUP		REC	RPD
PARAMETER	RESULT	SPIKE	SAMPLE	REC	SPIKE	% REC	RPD	LIMITS	LIMITS
ENZENE	<0.05	2.00	2.25	113	2.06	103	9	(80 - 120)	20
OLUENE	<0.05	2.00	2.39	120	2.09	105	13	(80 - 120)	20
ETHYLBENZENE	<0.05	2.00	2.27	114	2.05	103	10	(80 - 120)	20
OTAL XYLENES	<0.05	6.00	6.92	115	6.12	102	12	(80-120)	20

CHEMIST NOTES:

N/A

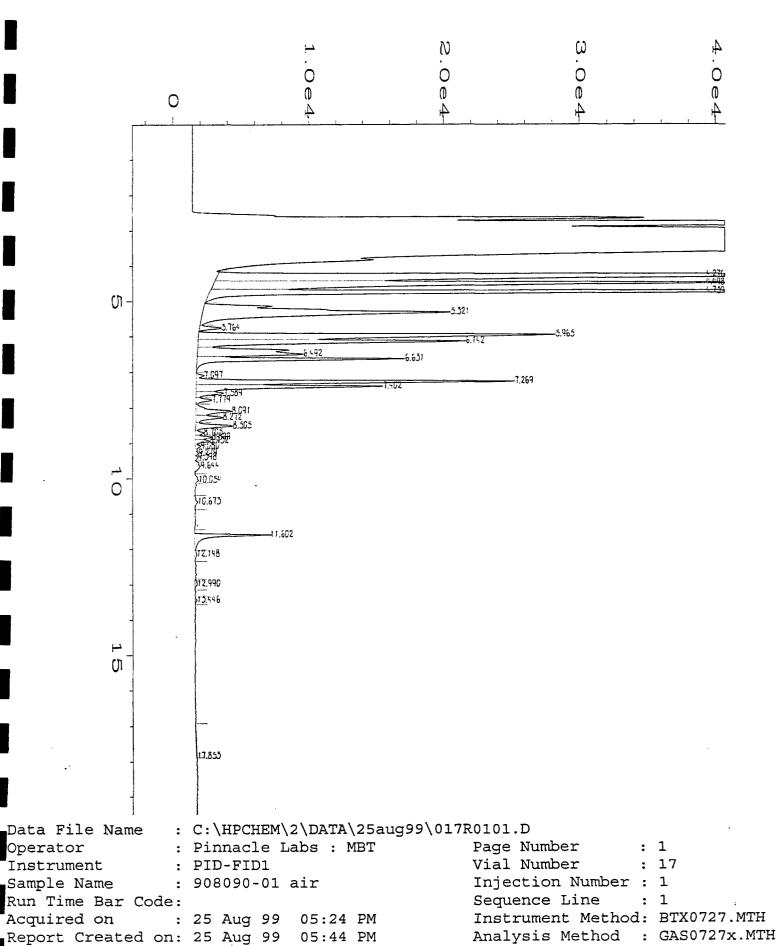
(Spike Sample Result - Sample Result)

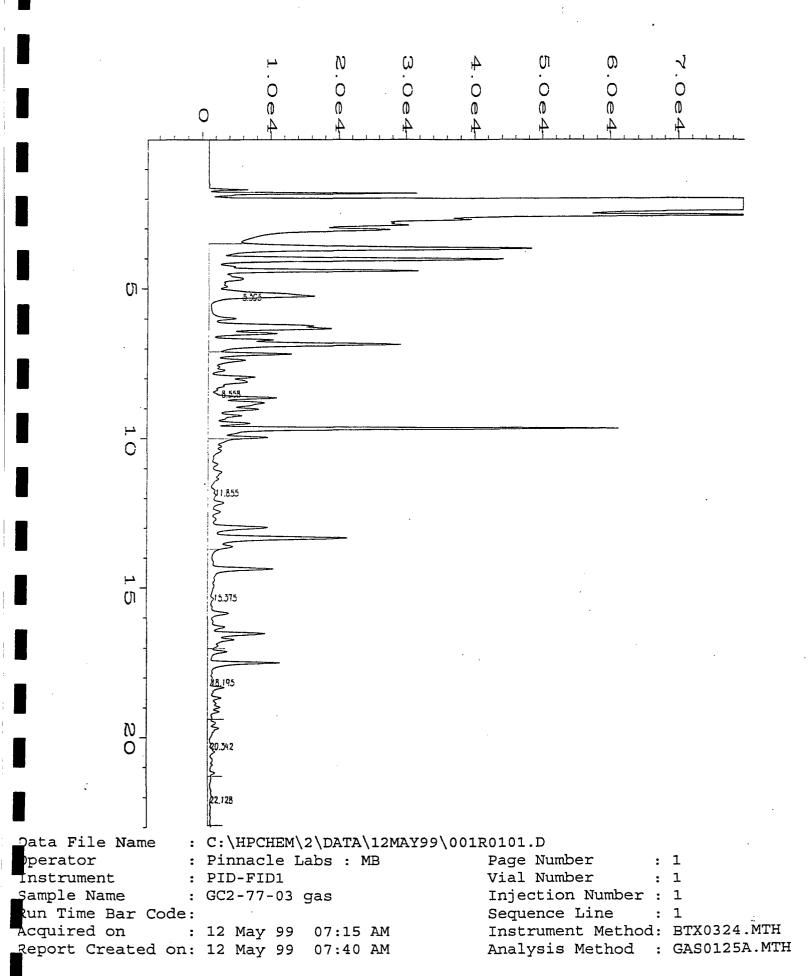
Recovery = --

Spike Concentration

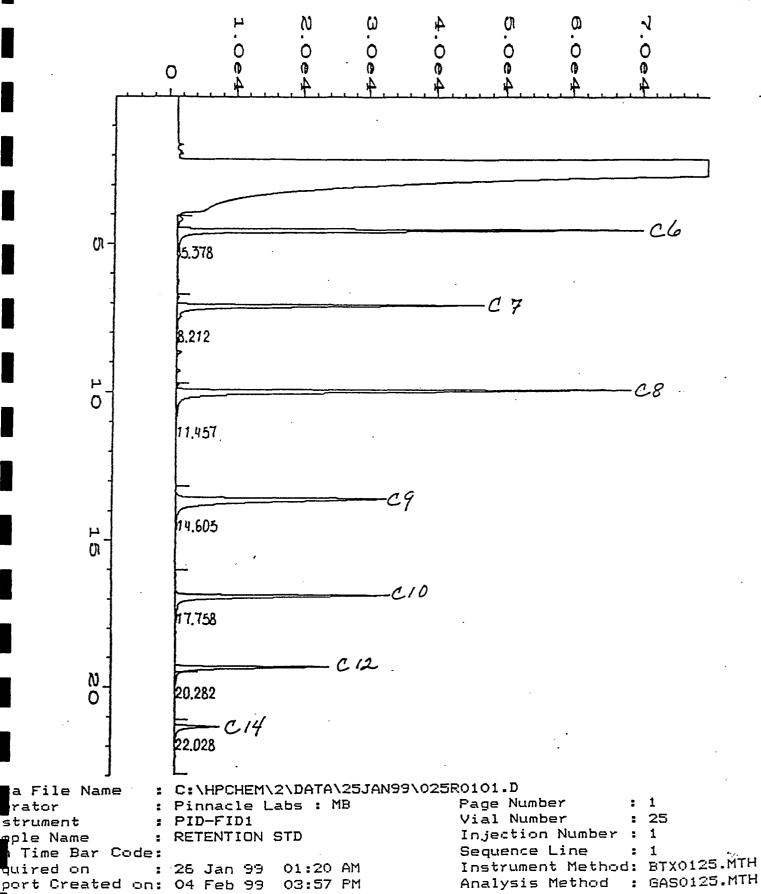
----- X 100

(Sample Result - Duplicate Result)


RPD (Relative Percent Difference) =


Average Result

----- X 100


PHI ENZBONM	ENTAL	4000	Monroe Roa Ington, NM 8	(505) 326-2262 Phone (505) 326-2388 FAX							908090 COC Serial No. C 2434								
Project Name J49Ve.7 Project Number 62800019 Samplers A WertTO Laboratory Name Piym Location Alb	Phase.Ta	isk LAL	M	Te <i>dliq-Estifs</i> Total Number of Bottles	Type Analy and E	of ysis Bottle	431			UND -	P								
Sample Number (and depth) 6 2 8 00019-8-24-99	Date	Time 9:59	Matrix AIX	1	K,		<u> </u>		$\left \right $	<u> </u>			_					Comments	
Relinquished by:		·····					٦	lece	ived							Data			
Signature ////////			Date 8-24 9	79				Яw	ncin		nature MM	V			8	Date 2599	9	Time 1420	,
Samples Iced: Yes Preservatives (ONLY for Water Sa Cyanide Volatile Organic Analysis Metats TPH (418.1) Other (Specify) Other (Specify)	Sodium hyro Hydrochiori Nitric : Sulfuric a	ic acid (HCi) acid (HNO3) cid (H2SO4)	Carrier: Shipping ar	nd Lab I	łotes:							· · · · · · · · · · · · · · · · · · ·			Airbill	No.			

PE-176 4/95

•

.. :

APPENDIX C *Field Data Sheets*

Date 8-19-99

SVE Pilot Test Soil Gas Permeability by Soil Venting EPFS Jaquez FDS #1

-

I

ł

L

Monitoring Point=MP1			Test Poi		
Time test started=10:10PM			Time test c	ompleted=1	2:10
Elapsed Time (minutes)	Pressure/Vacuum	Readings " H2O	Comr		
0	0.000		02	CO2	CH4
1	0.080		10.2	6.7	0
2	0.135	······································	1		
2	0.150		1		
4	0.155		1		
5	0.155				
6	0.160		1		
7	0.145		7		
8	0.150				
9	0.155		7		
10	0.150				
12	0.140				
14	0.140]		
16	0.130]		
18	0.130]		
20	0.135				
23	0.140				
26	0.130]		
29	0.140				
32	0.140]		
35	0.140]		
38	0.140]		
41	0.135				
44	0.140				
47	0.140]		
50	0.140				
53	0.140				
56	0.140				
59	0.135				
90	0.140				
120	0.145		02	CO2	CH4
] 10.5	6.2	0.2
			1		
			1		
			4		
			1		
			4		
			4		
			1		
			4		
			1		
			<u> </u>		
			Page	1 of 1	

J:\62800019\SVEfrm-MP1

Date 8-19-99

SVE Pilot Test Soil Gas Permeability by Soil Venting EPFS Jaquez FDS #2

i

Monitoring Point=MP2	Shallow	Deep	Test Poin		
Time test started=10:10PM			Time test co		2:10
Elapsed Time (minutes)	Pressure/Vacuum		Comm	ients	
0		0.000		Prior to tes	t
1		0.500	Shallow		
2		0.110	02	CO2	CH4
3		0.145		0.7	4.3
4		0.140			
5		0.125	Deep		
6		0.115		CO2	CH4
7	· · · · · · · · · · · · · · · · · · ·	0.115		0	0
8	·	0.150		-	_
9	0.100	0.100			
10	0.150	0.100			
12		0.020			
14		0.100			
16		0.260			
18	0.180	0.360			
20	0.240	0.435			
23	0.240	NS			
26		0.250			
20		0.230			
32		0.340			
32		0.420			
35	·				
38		0.500			
41		NS 0.250			
44		0.250			
47		NS			
50	ļ	0.355			
53		0.400			
56		0.450			
59		0.455	-		
90		0.450			
120		0.500	Shallow		
			02	CO2	CH4
			7.9	7	0.4
			Deep		
			O2	CO2	CH4
			19.9	0	0.3
	· · · · · · · · · · · · · · · · · · ·				
	L				
 			Page 1	of 1	
	<u>L. </u>	l	Faye I		

J:\62800019\SVEfrm-MP2

Job #62800019

Date 8-19-99

SVE Pilot Test Soil Gas Permeability by Soil Venting EPFS Jaquez FDS #3

j

| | |

i

Shallow	Deep			
				2:10
Pressure/Vacuum	Readings " H2O	Corr	nments	
				t
	0.500	Shallow		
			CO2	CH4
				0.2
			-	
			CO2	CH4
				18.8
		0.0	0.0	10.0
1 000				
1.000				
· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·				
			After Test	
		O2	CO2	CH4
		9.8	6.1	0.2
		Deep		
		02	CO2	CH4
		5.3	6.7	10.3
	<u> </u>			
		L		
	Shallow	Pressure/Vacuum Readings " H2O 0.000 0.000 0.500 0.550 0.500 0.400 0.300 0.300 0.300 0.300 0.250 0.250 1.000 0.250 1.000 1.050 1.000 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100	Shallow Deep Test Por Pressure/Vacuum Readings " H2O Corr 0.000 0.000 0.000 0.000 0.000 0.000 0.500 Shallow 0.500 Shallow 0.500 Shallow 0.500 8.7 0.000 0.300 0.300 Deep 0.300 O2 0.250 0.6 1.000 0.250 1.000 1.050 1.000 1.050 1.050 1.050 1.050 1.050 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 9.8	Shallow Deep Test Point= SVE Time test completed=11 Time test completed=11 Pressure/Vacuum Readings " H2O Comments 0.000 0.000 Prior to test 0.000 0.000 Shallow 0.000 0.000 Barlow 0.000 0.000 Prior to test 0.0500 Shallow O2 0.0300 0.2 CO2 0.0300 O2 CO2 0.0300 0.6 8.5 0.2500 0.6 8.5 1.000 0.2500 0.6 1.000 0.2500 0.6 1.000 0.2500 0.6 1.0500 1.0500 0.6 1.0500 1.0500 0.6 1.0500 1.0500 0.6 1.0500 1.0500 0.6 1.0500 1.0500 0.6 1.0500 1.0500 0.6 1.1000 1.1000 After Test 0.2 CO2 9.8

J:\62800019\SVEfrm-MP3

Job #62800019

SVE Pilot Test Soil Gas Permeability Injecting Air EPFS Jaquez FDS #4

ł

L

I.

Date 8-19-99

		FDS #4		
Monitoring Point=MP1			Test Point	= Sparge
Time test started=2:00PM			Time test c	ompleted=4:30 PM
Elapsed Time	Pressure/Vacuum	Readings " H2O	Comn	
2:05	0.005			15psi @ 3-7 CFM
2:10	0.005		· -···P	
2:15	0.01		{	
2:20	0.015			
2:25	0.015			
2:30	0.02		1	
2:40	0.015		1	
2:50	0.03		1	
3:00	0.03			
3:10	0.03			
3:20	0.035			
3:45	0.038		1	
4:00	0.04			
4:15	0.04		4:40 PM	
4:30	0.04		MP1	
			02	10.6
			CO2	6.4
			CH4	0.6
			1	
			1	
		·····		
	·			
			1	
			1	
		· · · · ·		
	····-		4	
			4	
			ł	
	ļ		4	
	 		l	
]	
]	
			1	
]	
			Page 1	of 1

J:\62800019\SpargFRM-MP1

Job #62800019

Date 8-19-99

- - ----

SVE Pilot Test Soil Gas Permeability Injecting Air EPFS Jaquez FDS #5

1

I.

I.

Monitoring Point=MP3	Shallow	Deep		t= Sparge	
Time test started=2:00PM				completed=	
Elapsed Time	Pressure/Vacuum		Com	ments	
2:05	0.015				
2:10	0.015				
2:15	0.015				
2:20	0.015				
2:25	0.015				
2:30	0.015				
2:40	0.02				
2:50	0.02				
3:00	0.02				
3:15	0.04				
3:30	0.03				
3:45	0.03				
4:00	0.03				
4:15	0.03		4:55 PM		
4:30	0.03	0.03	MP3		eep
			02	7.3	7.
			CO2	8.3	6.
			CH4	0.4	9.
			5:00 PM		
			MP2)eep
			02	19.6	13.
	L		CO2	0.2	5.
	<u> </u>		CH4	1.1	0.
			5:05 PM		
			02	18.8	
			CO2	1.3	
			CH4	0.2	
			Page	1 of 1	

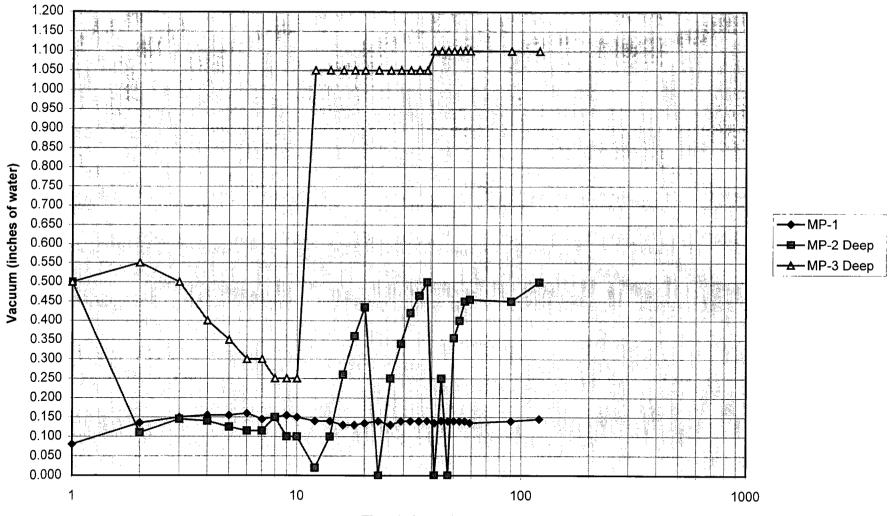
J:\62800019\SpargFRM-MP3

Date: 8-24 25-29

O2 Utilization Test for In Situ Respiration FDS #6

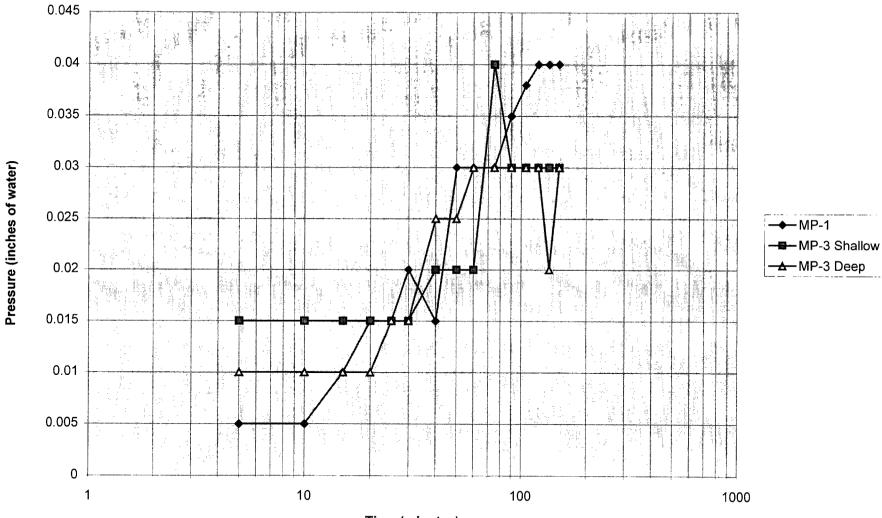
L

İ

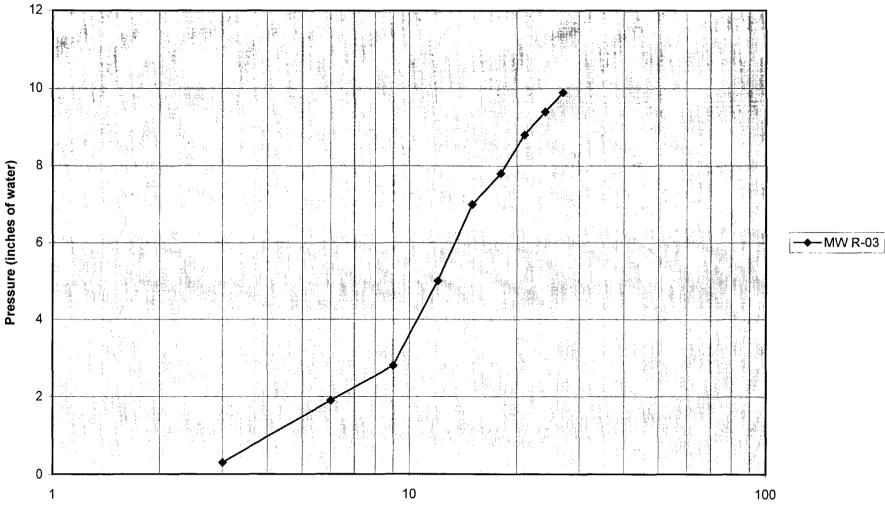

Monitoring Po	vint-			Test Point			
Time test start				Time test completed=			
	eu-0.30 am	Shallow	Deep			CH4	
Elapsed Time	Turn				002		
	Tum		tem off 8-23-				
10 hrs		Begin colle	cting data 8-		2.0		
13 hrs	MP1	Challow		10.7	3.6	0	
13 hrs	MP2	Shallow		3.7	12.5	106.9	
13 hrs	1400		Deep	0.4	6.6	104	
13 hrs	MP3	Shallow		5.7	9.5	1	
13 hrs			Deep	9.7	0.6	0	
13 hrs	SP-01			5.7	9.5	6	
13 hrs	R-04			19.8	0	0.5	
13 hrs	R-01			18.4	0	0	
13 hrs	R-03			15.6	0.5	97.8	
		<u> </u>					
15 hrs	MP1			10	3.8	6	
15 hrs	MP2	Shallow		3.5	13	104.6	
15 hrs			Deep	1	9.2	110	
15 hrs	MP3	Shallow		5.5	9.8	13	
15 hrs			Deep	8.5	3	20	
17 hrs	MP1			9.2	3.6	4	
17 hrs	MP2	Shallow		3.1	8.8	20	
17 hrs			Deep	2.8	3.6	18	
17 hrs	MP3	Shallow		5.3	9	12	
17 hrs			Deep	8.2	3.1	6	
			8/25/99				
24 hrs	MP1			7.7	4.8	>150	
24 hrs	MP2	Shallow		1.3	8.6	>150	
24 hrs			Deep	5.9	6.5	>150	
24 hrs	MP3	Shallow		2.9	10.8	8.1	
24 hrs			Deep	0.1	9.4	>150	
31 hrs	MP1			12.2	2.6	>150	
31 hrs	MP2	Shallow		9.9	4.5	0	
31 hrs	1		Deep	7	5.9	>150	
31 hrs	MP3	Shallow		3.4	10.7	1.4	
31 hrs			Deep	3.7	7.8	>150	
	R-01	DO25	1				
	R-02	DO31					
	R-03	DO27				1	
· · · · · · · · · · · · · · · · · · ·	R-04	DO27					
						1	
	1			<u> </u>			
	1	1					
<u>~</u> ~···	·· · · · · · · · · · · · · · · · · · · ·						
· · · · · · · · · · · · · · · · · · ·		1					
	-	<u> </u>					
		1					
DO=Dissolved		I				L	

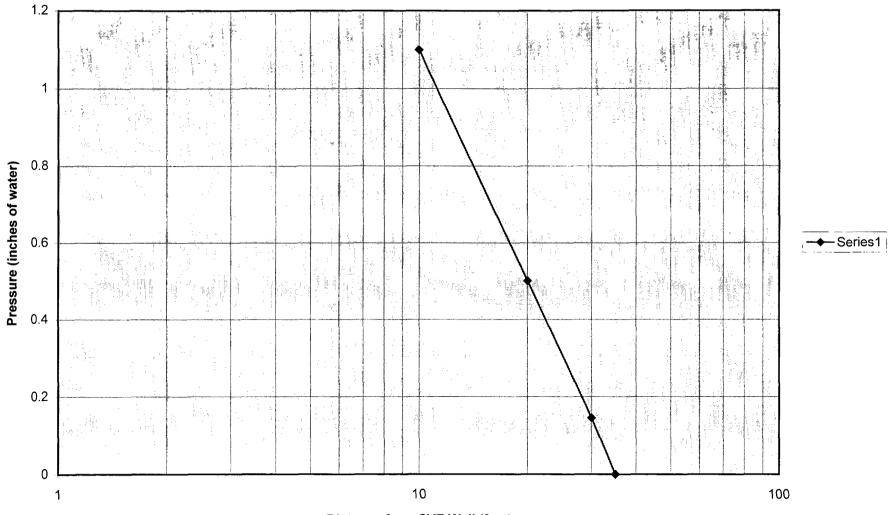
DO=Dissolved Oxygen

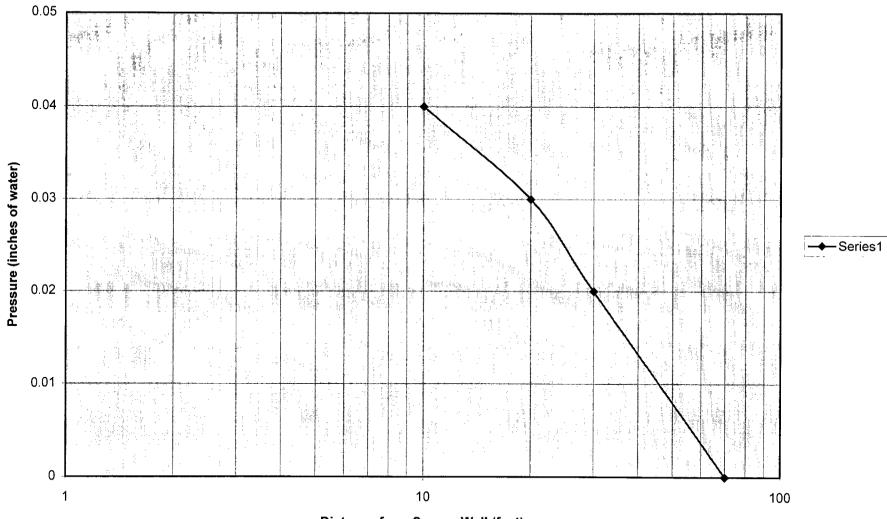
J:\62800019\O2FRM1

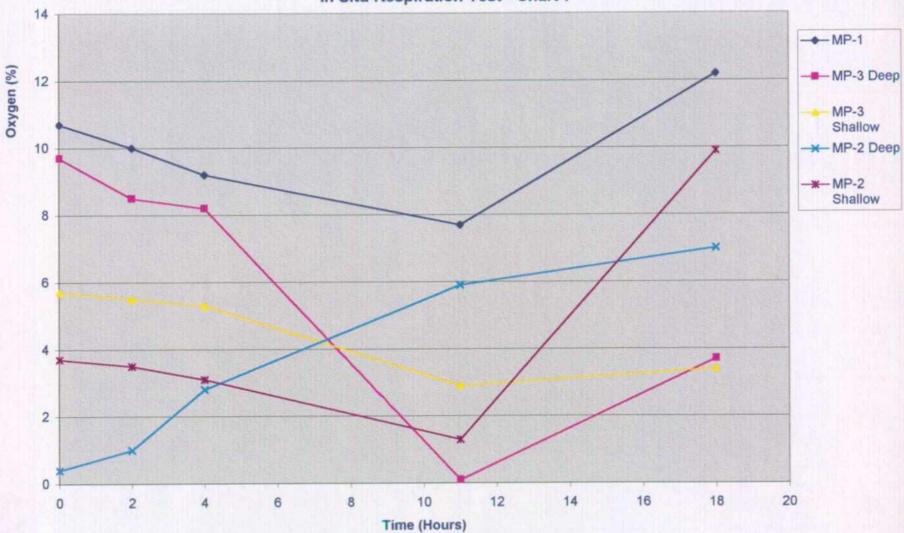

APPENDIX D Charts

Soil Gas Permeability (SVE) - Chart 1


Time (minutes)


Time (minutes)


Time (minutes)



Distance from Sparge Well (feet)

In Situ Respiration Test - Chart 7

APPENDIX E *Calculation Sheets*

Calculation Sheet #1 Static Test - Soil Vapor Extraction Data for monitoring points MP-1 and MP-3

L

K=	Q*u* Ln(Rw/Ri)
	$H^*Pi^*P_w(1-(P_{atm}/P_w)^2)$

where

_

$Q=$ $u=$ $R_{w}=$ $R_{i}=$ $H=$ $P_{i}=$ $P_{w}=$ $P_{atm}=$	volumetric flow rate for the vent well (cm ³ /s) viscocity of air (1.8 * 10 ⁻⁴ g/cm-s @18° C) radius of venting well (cm) radius of venting influence at steady state (cm) depth of screen (cm) 3.14 absolute pressure at the venting well (g/cm-s2) ambient pressure (g/cm-s ²)					
		Conversion S	Steps			
Q=	30 cfm=	.5cfs=	.001416m ³ /s=	1416 cm3/s		
u=	1.8 * 10-4	g/cm-s				
R _w =	1"≕	2.54	cm			
R _i =	35'=	10.668 mete	rs=	1066.8 cm		
H=	5'=	1.524 meters	s=	152.4 cm		
Pi=				3.14		
P _w ≓	50" water=	.1265 Kg/cm	1 ² =	126.5g/cm ²		
to figure a	absolute (no	t measured)	=820-126.5=	= 693.5 g/cm2		
P _{atm} =	P _{surf} *e ^{-h/H} ≕	1bar*e ^{-1.52/7}	=.8bars =	.82 Kg/cm ²		
				= 820 g/cm2		
-1.53954 -132082	-	1.166E-05	cm ² =	11.6darcy		

Calculation Sheet #2 Dynamic Test - Soil Vapor Extraction Data for monitoring points MP-2

T

L

K=		Q*u		
		4*A*Pi*ı	n	
where				
Q=	volumetric	: flow rate for	the vent well (cm ³	³ /s)
u=			0 ⁻⁴ g/cm-s @18° C	·
m=		screen (cm)		, 182.88 cm
Pi=	3.14	-	<i></i>	
A= u=	slope of P	ressure vs Li	. ,	0.145 unitless .8 * 10-4 g/cm-s
u				.o 10-4 g/cm-s
		Conversion	•	
Q=	30 cfm=	.5cfs=	.001416m ³ /s=	1416 cm3/s
0.25488	8 =	0.000765	3 cm ² =	765 darcy
333.061	-	0,000,00		

Results are meaningless and make no sense, monitoring point MP-2 was partially plugged.

Calculation Sheet #3 Dynamic Test - Aquifer Sparging Data Slope (A) is from P vs Ln(T) from Monitor Well R-03

K=		Q*u 4*A*Pi*r	n	
where				
Q= u= m= Pi= A=	viscoci length of s 3.14	ty of air (1.8 * screen (cm)	the vent well (cm 10-4 g/cm-s) n (time)	³ /s) 0.00018 g/cm-s 182.88 cm 3 unitless
Q=	30 cfm=	Conversion : .5cfs=	Steps .001416m ³ /s=	1416 cm3/s
0.25488	-	3.699E-0	5 cm²=	36.9 darcy

This test is restricted to the flowing sand aquifer within which the monitor wll and the sparge well are completed.

Calculation Sheet #4 Static Test - Air Sparging Data for monitoring points MP-1. MP-2 and MP-3

K=	Q*u* Ln(Rw/Ri)
	$H^*Pi^*P_w(1-(P_{atm}/P_w)^2)$

where

$Q=$ $u=$ $R_{w}=$ $R_{i}=$ $H=$ $P_{i}=$ $P_{w}=$ $P_{atm}=$	volumetric flow rate for the vent well (cm ³ /s) viscocity of air (1.8 * 10^{-4} g/cm-s @ 18° C) radius of venting well (cm) radius of venting influence at steady state (cm) depth of screen (cm) 3.14 absolute pressure at the venting well (g/cm-s2) ambient pressure (g/cm-s ²)				
		Conversion S	steps		
Q=	30 cfm=	.5cfs=	.001416m ³ /s=	1416 cm3/s	
u=	1.8 * 10-4	g/cm-s			
R _w =	1''=	2.54	cm		
R _i =	70'=	21.336 mete	rs=	2133.6 cm	
H=	5'=	1.524 meters	s=	152.4 cm	
Pi=				3.14	
P _w =	14 psi =	.098434Kg/c	;m²=	98.434g/cm ²	
to figure a	absolute (no	t measured)	=820+98.43=	918.4 g/cm2	
P _{atm} =	P _{surf} *e ^{-h/H} =	1bar*e ^{-1.52/7}	=.8bars =	.82 Kg/cm ² 820 g/cm2	
-1.716209 89130.75	-	-1.925E-05	cm ² =	19.2 darcy	