3R - <u>390</u>

REPORTS

DATE: 1990

cm DOE C'B

EPA/600/4-90 DOE/DP

Offsite Environmental Monitoring Report:

Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1990

Contributors:

D.J. Chaloud, B.B. Dicey, D.G. Easterly, C.A. Fontana, R.W. Holloway, A.A. Mullen, V.E. Niemann, W.G. Phillips, D.D. Smith, N.R. Sunderland, D.J. Thomé, and Nuclear Radiation Assessment Division

Prepared for: U.S. Department of Energy under Interagency Agreement Number DE-AI08-86-NV10522

ENVIRONMENTAL MONITORING SYSTEMS LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY LAS VEGAS, NV 89193-3478 United States Environmental Protection Agency

Research and Development

Environmental Monitoring Systems Laboratory P.O. Box 93478 Las Vegas NV 89193-3478 EPA 600/4-91/030 DOE/DP00539-063

Offsite Environmental Monitoring Report:

Radiation Monitoring Around United States Nuclear Test Areas Calendar Year 1990

î

Figure A30. Long-Term Hydrological Monitoring Program sampling locations for Project Gnome.

QUALITY CONTROL				
ANALYSIS ("	FREQ. % BLANK)	FREQ. (%DUP.)	FREQ. (%SPIKE)	FREQ. (% BLIND)
³ H (conventiona	al) 4	3	2	1
³ H (enrichment)	3	3	3	1
⁸⁹ Sr, [∞] Sr	3	3	3	1
Gross Alpina/ Gross Beta	3	3	3	1
Gamma Scan	8	10	3	1

TABLE 11. WATER ANALYSIS

TABLE 12. WATER ANALYSIS CONTROL LIMITS				
ANALYSIS CONTROL LIMIT (±%)				
³ H (conventional)	10%			
³ H (enriched)	20%			
⁸⁹ Sr, ⁹⁰ Sr	20%			
Gross Alpha,				
Gross Beta	20%			
Gamma Scan	20%			
MATRIX	SPIKE CONTROL LIMITS			
³ H (conventional)	10%			
³ H (enriched)	20%			
⁸⁹ Sr, ⁹⁰ Sr	20%			
Gross Alpha,				
Gross Beta	20%			
Gamma Scan	20%			

TABLE 13. SAMPLING LOCATIONS WHERE WATER SAMPLES CONTAINED MANMADE RADIOACTIVITY

	RADIONUCLIDE	CONCENTRATION 10° µCi/mL	
PROJECT GNOME NM			
	314	20 × 107 2 × 102 461	nl
Well DD-1	*H 1370a	2.8 X 10 4 4 4	ilm/
	4012		
	**	7.0 X 10 ⁻	
	~5r	-1.9 X 10 ⁷	1
	~Sr	0.2 X 10 ⁴	
		5.4 X 10 ⁻	
	239+240Pu	1.1 X 10°	
Well LRL-7	3Н	1.4 × 104	
	137Cs	1.8 x 10 ²	
Well USGS 4	3H	1.5 x 10 ³	
Well USGS 8	3H	1.2 x 10 ⁵	
	¹³⁷ Cs	6.4 x 10 ¹	
PROJECT GASBUGGY NM			
Well EPNG-10-36	зн	2.3 x 10 ²	
PROJECT BIO BLANCO CO			
CEB No. 1 BLACK SULFUR	эH	3.5 x 10 ²	
PROJECT DRIBBLE MS			
Well HMH-1	зΗ	4.0 x 10 ³	
Well HMH-2	₃Н	8.2 x 10 ³	
Well HMH-5	эн	1.9 x 10 ³	
Well HMH-16	эн	9.7 x 10 ²	
Well HMH-L	зн	1.1 x 10 ³	
Well HMH-S	эң	9.4 x 10 ³	
Haif Moon Creek	зн	3.0 x 10 ²	
Half Moon Creek Overflow	зн	4.5 x 10 ²	
Lower Little Creek	зН	6.8 x 10 ²	

	COLLECTION	CONC. ± 1 S.D.		
SAMPLING LOCATION	1990	(10° µCi/mL)*	% OF CONC. G	UIDE
	PROJECT GNOM	E		
CARLSBAD NM				
WELL 7 CITY	08/01	2.9 ± 3.0°	0.01	
LOVING NM				
WELL 2 CITY	08/01	8.1 ±3.4⁵	0.04	
MALAGA NM				
WELL 1 PECOS PUMPING STATION	08/01	7 ± 3.7°	0.03	
WELL DD-1	08/02	28000000 ± 100000	140000	(3)
WELL LRL-7	08/02	14000 ± 190	71.4	à
WELL PHS 8	08/01	27 ± 4.5	0.13	• •
WELL PHS 9	08/02	13 ± 4.2°	0.07	
WELL PHS 10	08/03	4.6 + 4.0*	0.02	
WELL LISGS 1	08/01	-16 + 27	<0.01	
WELL USGS A	08/02	150000 + 490	767	
WELL USGS 8	08/02	120000 ± 440	603	(2)
	PROJECT DRIB	BLE		
BAXTERVILLE MS				
HALF MOON CREEK	04/21	300 ± 4.5	1.54	
	04/23	19 ± 3.4	0.09	
HALF MOON CREEK OVRFLW	04/21	450 ± 4.3	2.27	
	04/23	390 ± 5.1	1.97	
LITTLE CREEK #1	04/20	7.1 ± 3.7°	0.04	
LOWER LITTLE CREEK	04/18	680 ± 140	3.38	
	04/18	14 ± 3.3	0.07	
POND WEST OF GZ	04/21	23 + 22	0.01	
	04/23	25 ± 3.2	0.13	
REECO PIT DRAINAGE-A	04/23	21 ± 3.0	0.10	
REECO PIT DRAINAGE-R	04/23	130 ± 3.3	0.69	
	04/23	150 ± 47	0.79	
SALT DOME HUNTING CLUB	04/21	69 + 25	0.03	
	04/19	10 ± 37	0.09	
	04/21	54 + 300	0.03	
	04/21		0.06	
ANDERSON, BILLY RAT	04/20	70 + 26	0.00	
	04/20	7.9 ± 3.0°	0.04	
ANDERSON, HOBERT HARVET	04/21	17 ± 2.3	0.06	
ANDERSON, ROBERT LOWELL	04/20	12 I J./	0.00	
BURGE, JOE	04/21	0.3 I 3.1°	0.03	
CHAMBLISS, B.	04/19	3.1 ± 5.0	0.02	
DANIELS, HAY	04/18	20 ± 3.0	0.10	
DANIELS, WEBSTER JR.	04/18	31 ± 2.8	0.15	
DANIELS - WELL #2	04/18	25 ± 2.9	-0.13	
KELLY GERTRUDE	04/19	-1.4 ± 3.8°	<0.01	
KING, RHONDA	04/21	13 ± 22	0.07	
LEE, P. T.	04/19	23 ± 3.6	0.11	
MILLS, A. C.	04/19	0 ± 4.5°	<0.01	
MILLS, ROY	04/19	29 ± 5.0	0.15	
NOBLES POND	04/19	21 ± 3.1	0.10	
NOBLES QUAIL HOUSE	04/21	44 ± 3.4	0.22	
NOBLE, W. H., JR.	04/19	30 ± 2.6	0.15	
READY, R C	04/18	12 ± 2.7	0.06	
SAUCIER, DENNIS	04/18	18 ± 3.2	0.09	

TABLE A8. TRITIUM RESULTS FOR THE LONG-TERM HYDROLOGICAL MONITORING PROGRAM — 1990

(continued)

TABLE A8. Continued				
	COLLECTION	CONC. ± 1 S.D. pCI/L		
SAMPLING LOCATION	1990	(10 ^{-•} µCi/mL)•	% OF CONC. GUIDE	
	06/17	0.00 + 2.79	<0.01	
	06/19	22 + 28	0.02	
	00/18	3.3 ± 3.6^{-1}	-0.02	
WELL HB-D-03	06/17		<0.01	
WELL RB-S-03	06/18	$4.1 \pm 4.3^{\circ}$	0.02	
B-1 EQUITY CAMP	06/18	71 ± 5.5	0.36	
	NTS SEMIANNUAL NE	ETWORK		
HIKO NV				
CRYSTAL SPRINGS	07/02	49.1 ± 142 ⁶	0.25	
BLUE JAY NV				
HOT CREEK RANCH SPRING	03/09	6.5 ± 2.5 ^b	0.03	
MAINTENANCE STATION	03/09	· -1.8 ± 3.1°	<0.01	
WELL BIAS	03/09	-4.3 ± 2.9°	<0.01	
WELL HTH-1	03/23	0.88 ± 4.5 [⊾]	<0.01	
WELL HTH-2	03/23	$2.3 \pm 3.0^{\circ}$	0.01	
WELL SIX MILE	03/09	1.2 ± 3.8 ^b	<0.01	
FRENCHMAN STATION NV				
HUNT'S STATION	02/26	· -2.7 ± 2.8°	<0.01	
SMITH/JAMES SPRGS	02/26	70 ± 3.7	0.35	
WELL FLOWING	02/26	$-4.4 \pm 2.6^{\circ}$	<0.01	
WELL H-3	02/26	c		
WELL HS-1	02/26	-1.3 ± 3.4°	<0.01	
AMARGOSA VALLEY NV				
WELL MARY NICKELL'S	02/08	1.4 ± 3.0 ^b	<0.01	
	08/07	-39 ± 140 ^b	<0.01	
SHOSHONE CA				
SHOSHONE SPRING	01/02	1.1 ± 3.2°	<0.01	
	02/06	$-2.0 \pm 3.6^{\circ}$	<0.01	
	08/07	-67 ± 140^{b}	<0.01	
	01/09	43 + 34	0.22	
ADAVEN OF HING	07/02	-40 ± 140 ^b	<0.01	
	•			
	01/11	00±00b	-0.01	
WELL 4 CITY	01/11	$-2.3 \pm 3.2^{\circ}$	<0.01	
	07/02	-110 ± 140	20.01	
ASH MEADOWS NV	05/09	-0.19 ± 2.8°	<0.01	
	11/21	310 ± 140°	1.59	
FAIRBANKS SPRINGS	05/09	-0.96 ± 3.5°	<0.01	
·····	11/21	$160 \pm 140^{\circ}$	0.84	
SPRING 175-505-14CAC	05/09	d		
	19/19	-36 + 140°	<0.01	
WELL 199.515 700	05/00	40 + 200	0.02	
WELL 103-31E-/UB		7.7 I 2.0" 20 1 110b	0.02	
	11/21	J∠ I 140" 97 ± 50	0.10	
	03/09	0/ I J.U	0.40	
	00/4 4	0.00 ± 0.77	-0.01	
LOW LEVEL WASTE SILE	06/14	0.93 I 3.14	<0.01	
	12/05	~20U ± 14"	<0.01	

(continued)

TABLE A8. Continued				
	COLLECTION	CONC. ±1 S.D.		
	DATE	pCI/L		
	1990	(10* µCl/mL)*	% OF CONC. GUIDE	
SPECIE SPRINGS	02/07	170 + 14 ^b	0.87	
	07/10	20 + 29	0.10	
TOLICHA PEAK	02/07	81 + 130	0.40	
	08/01	0.12 ± 3.8°	<0.01	
WELL 11S-48-1DD COFFERS	01/04	$2.2 \pm 2.7^{\circ}$	0.01	
	07/11	$4.8 \pm 2.0^{\circ}$	0.02	
WELL 12S-47E-7DBD CITY	02/09	-58 ± 130°	<0.01	
	07/12	$4.2 \pm 2.9^{\circ}$	0.02	
WELL ROAD D SPICERS	01/08	d		
	02/08	210 ⁴ ± 140 ⁶	1.06	
	08/08	-0.89 ± 3.0°	<0.01	
YOUNGHANS RCH (HOUSE WELL)	06/13	0.42 ± 3.2°	<0.01	
	12/05	-0.37 ± 2.5°	<0.01	
DULDER CITY NV				
LAKE MEAD INTAKE	03/13	-150 ± 130°	<0.01	
	09/14	44 ± 3.7	0.22	
LARK STATION NV				
WELL 6 TTR	02/07	-35 ± 130°	<0.01	
	08/09	-2.0 ± 2.6°	<0.01	
	04/24	a		
NAVARES SPRINGS				
	01/11	-0.1 ± 1.600	~0.01	
ORIGINE SPRINGS	07/02	-3.1 ± 140	0.24	
	07/02	49 I 140-	0.24	
IDIAN SPRINGS NV	,			
TROUGH SPRGS-TOIVABE	06/01	28 + 2.9	0.14	
WELL 1 SEWER COMPANY	03/05	81 + 1309	0.40	
	05/01	36 + 1409	0.18	
	09/04	11 + 3.00	~0.01	
	03/04	-1.1 ± 3.0-	0.15	
WELL 2 US AIM FUNCE		31 ± 130"	1 20	
	05/01	260 ± 140°	1.30	
	09/04	-2.2 ± 2.4°	<0.01	
	, .			
WELL 20 WATED DISTRICT		06 ± 100	0.48	
WELL 20 WATER DISTRICT	00/14		√0.01	
	UJ/ 14	" 4. I 4.4"	<v.vi< td=""></v.vi<>	
	64/03	15 + 26	-0.01	
VIII 133-30E-10000	COMO	1.0 I 0.0		
YALA NV				
SHARP'S BANCH	02/06	69 ± 130°	0.35	
	08/08	$-2.3 \pm 4.0^{\circ}$	<0.01	
ASIS VALLEY NV				
GOSS SPRINGS	02/08	-58 ± 130°	0.29	
	08/14	$-4.2 \pm 3.0^{\circ}$	<0.01	
·				
AHRUMP NV				
CALVADA WELL	02/06	-1.2 ± 2.8°	<0.01	
	08/10	-110 ± 140°	<0.01	
	09/04	-120 ± 140°	<0.01	

(continued)

TABLE A8. Continued				
	COLLECTION	CONC.±1 S.D. pCI/L		
	1990	(10* µCl/mL)*	% OF CONC. GUIDE	
RACHEL NV	04/11	-73.8 ± 136 [•]	<0.01	
WELLS 7 AND 8	10/01	0.6 ± 3.2°	<0.01	
RENOVER	10/01	0 50 + 9 00	-0.01	
PENUTER	04/11	$0.58 \pm 3.2^{\circ}$	<0.01	
WELT 13 PENOVER	10/01	63 + 34	0.03	
	04/11	$180 \pm 130^{\circ}$	0.91	
WELL PENOYER CULINARY	10/01	-3.6 ± 3.9 ^b	<0.01	
	04/04	310 ± 130°	1.57	
	2/07	EQ + 120b	-0.01	
UNION CARBIDE WELL	2/07	-30 I 130-	<0.01	
	08/08	0.05 ± 3.1*	<0.01	
TONOPAH NV				
CITY WELL	03/07	-19 ± 130 ^b	<0.01	
	09/06	-2.6 ± 2.8°	<0.01	
TWIN SPRINGS RANCH	09/05	-51 ± 140°	0.25	
	04/03	100 ± 130 ^p	0.52	
	11/12	$3.2 \pm 3.0^{\circ}$	0.02	
NEVADA TEST SITE (AREA) NV	01/11	150 + 1400	0.70	
WELL 6A ARMY	01/11	150 ± 140°	0.79	
	07/19	0.72 ± 0.0°		
WELL C-1	11/20	-260 + 140	<0.01	
WELL D TEST	01/03	51 + 33	0.03	
WELL DIEST	07/19	-8.9 ± 140°	<0.01	
WELL HTH-1	06/07	39 ± 3.6	0.19	
WELL UE1C	01/04	0.0 ± 3.2°	0.00	
	07/19	-1.6 ± 1.9°	<0.01	
WELL UE5C	03/05	4.4 ± 3.2°	0.02	
	09/10	-0.55 ± 4.6°	<0.01	
WELL UE-5N	12/07	70 ± 4.6	0.35	
WELL UE6E	03/06	33 ± 2.7	0.17	
WELL UE15D	04/16	8.4 ± 2.5	0.04	
	11/20	270 ± 140^{6}	1.36	
WELL UE16D	05/15	-0.27 ± 2.7°	<0.01	
	11/19	0.0 ± 140°	0.00	
WELL UE-16F	05/14	9.2 ± 3.0°	0.05	
	11/19	250 ± 140°	1.30	
WELL UE-17A	05/14	$2.9 \pm 2.0^{\circ}$	-0.01	
	12/11	-140 エ 140" 15 エ 26		
WELL UE 18M	19/11	-140 + 140°	<0.01	
	06/06	210 + 3.5	1.05	
TTELL UE-101	VV/ VV			

Multiply by 3.7 x 10² to convert to Bq/L.

• Concentration is less than the minimum detectable concentration (MDC).

No sample.

d Gamma spectra negligible.

ì

	TABLE A8. Continued				
	ANALYSIS	RESULT ± 1 S.D. (pCi/L)	(10°µCi/mL) = pCi/L		
(1)	¹³⁷ Cs	180	7.9		
(2)	¹³⁷ Cs	64	6.7		
(3)	³ H(avg.)	28,000,000	100,000		
	4⁰K	7,600	1,500		
	**Sr	790,000	30,000		
	[∞] Sr	-19	48		
	²³⁸ Pu	0.054	0.07		
	239+240PU	1.1	0.17		
(4)	¹³⁷ Cs	13	3.8		

Report: Radiation Monitoring Around Tatum Salt Dome, Lamar County, Mississippi, EPA 600/4-91/ 005, U.S. Environmental Protection Agency, Las Vegas, NV.

ERDA77 U.S. Energy Research and Development Administration, 1977. *Final Environmental Impact Statement, Nye County, Nevada*, Report ERDA-1551. U.S. Department of Commerce, Springfield, VA.

FRE62 Freund, J. E., 1962. *Mathematical Statistics*. Prentice Hall Press, Englewood, NJ.

H075 Houghton, J. G., C.M. Sakamoto, R.O. Gifford, 1975. *Nevada Weather and Climate*, Special Publication 2. Nevada Bureau of Mines and Geology, University of Nevada, Mackay School of Mines, Reno, NV.

ICRP39 International Commission in Radiological Protection, 1983. *Principles for Limiting Exposure of the Public to Natural Sources of Radiation, Annual Limit on Intake (ALI) and Derived Air Concentrations (DAC) for Members of the Public*, ICRP-39. International Commission in Radiological Protection.

ICRP79 International Commission in Radiological Protection, 1982. *Limits for Intake of Radionuclides by Workers*, ICRP-30. International Commission in Radiological Protection.

JA81 Jarvis, A. N., L. Siu, 1981. Environmental Radioactivity Laboratory Intercomparison Studies Program — FY 1981-82, EPA-600/4-81-004. U.S. Environmental Protection Agency, Las Vegas, NV.

NCRP89 National Council on Radiation Protection and Measurement, 1989. Screening Techniques for Determining Compliance with Environmental Standards: Releases of Radionuclides to the Atmosphere, NCRP Commentary No. 3. National Council on Radiation Protection and Measurement, Washington, D.C. NEL75 Nelson, L., S.J. Qual, 1975. Tech. Z (1), January.

NPS90 National Park Service, 1990. Personal communication from Supervisor Park Ranger, R. Hopkins, Death Valley National Monument, Death Valley, CA.

NRC77 U.S. Nuclear Regulatory Commission, 1977. *Regulatory Guide 4.13.* U.S. Nuclear Regulatory Commission, Office of Standards Development, Washington, D.C. 3 pp.

NRC81 U.S. Nuclear Regulatory Commission, 1981. Glossary of Terms, Nuclear Power and Radiation, NUREG-0770. U.S. Nuclear Regulatory Commission, Washington, D.C.

QU68 Quiring, R. E., 1968. *Climatological Data, Nevada Test Site, Nuclear Rocket Development Station (NRDS)*, ERLTM-ARL-7. ESSA Research Laboratories, Las Vegas, NV.

SCB89 Black, S.C., 1989. Memorandum to C. F. Costa, Subject: DQO's For The Offsite Radiological Monitoring Program, dated September 10. U.S. Environmental Protection Agency, Las Vegas, NV.

SNE67 Snedecor, G.W., W.G. Cochran, 1967. *Statistical Methods*, 6th edition. The Iowa State University Press, Ames, IA.

SRS89 Westinghouse Savanah River Company, 1989. Savannah River Site Environmental Report for 1988. Westinghouse Savannah River Company.

VEL 81 Velleman, P.F., D.C. Hoaglin, 1981. Applications Basics, and Computing of Exploratory Data Analysis. Duxbury Press, Boston, MA.

References

AEC71 U.S. Atomic Energy Commission, 1971. Effluent and Environmental Monitoring and Reporting. In: U.S. Atomic Energy Commission Manual, Chapter 0513. U.S. Atomic Energy Commission, Washington, D.C.

ANSI75 American National Standards Institute, 1975. ANSI Standard N545-1975. American National Standards Institute, New York, NY. 16 pp.

BEIR80 Committee on the Biological Effects of Ionizing Radiation, 1980. *The Effects on Populations of Exposure to Low Levels of Ionizing Radiation*. National Academy Press, Washington, D.C.

CFR88 Code of Federal Regulations, 1988. *Drink-ing Water Regulations*, Title 40, part 141, Washington D.C.

DOC86 Bureau of the Census, 1986. *1986 Population and 1985 Per Capita Income Estimates for Counties and Incorporated Places, Publication Number P-26. U.S. Department of Commerce, Washington, D.C.*

DOC90 Bureau of the Census, 1990. *Population Count Pursuant to Public Law 94-171*. U.S. Department of Commerce, Washington, D.C.

DOE81 Corley, J.P., D.H. Denham, R.E. Jaquish, D.E. Michels, A.R. Olsen, D.A. Waite, 1981. *A Guide for Environmental Radiological Surveillance at U.S. Dept. of Energy Installations*, DOE/EP-0023. Office of Operational Safety Report, U.S. Department of Energy, Washington, D.C.

DOE85 U.S. Department of Energy, 1985. *Environmental Protection, Safety, and Health Protection Information Reporting Requirements*. DOE Order 5484.1. U.S. Department of Energy, Washington, D.C.

DOE88 U.S. Department of Energy, 1988. *General Environmental Protection Program*, DOE Order 5400.1. U.S. Department of Energy, Washington, D.C.

DOE90 Bingham, F.E., 1990 (Unpublished). Radioactive Effluent Reports, Department of Energy, Environmental Protection Division. Personal communication to C. F. Costa, EMSL-LV, March 8, 1990. **DOE91** U.S. Department of Energy, 1991. Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, DOE/ EH-0173T. U.S. Department of Energy, Washington, D.C.

EMSL79 Johns, F., 1979. *Radiochemical and Analytical Procedures for Analysis of Environmental Samples*, EMSL-LV-0539-17-1979. U.S. Environmental Protection Agency, Las Vegas, NV.

EPA87 U.S. Environmental Protection Agency, 1987. *Quality Assurance Program Plan*, EPA/600/X-87/241. U.S. Environmental Protection Agency, Las Vegas, NV.

EPA88A U.S. Environmental Protection Agency, 1988. *Environmental Radiation Data*, Draft Report 55. U.S. Environmental Protection Agency, Office of Radiation Programs, Eastern Environmental Radiation Facility, Montgomery, AL.

EPA88B U.S. Environmental Protection Agency, 1988. *Monitoring Radiation from Nuclear Tests*. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Las Vegas, NV.

EPA89 U.S. Environmental Protection Agency, 1989. *EPA Journal*. United States Environmental Protection Agency, Office of Public Affairs (A-107), Washington, D.C.

EPA90 Costa, C.F., N.R. Sunderland, S.C. Black, M.W. Chilton, B.B. Dicey, W. G. Phillips, C.A. Fontana, R.W. Holloway, C.K. Liu, A.A. Mullen, V.E. Niemann, C.J. Rizzardi, D.D. Smith, D.J. Thome', E.A. Thompson, 1990. Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear TestAreas, Calendar Year 1989, EPA/600/4-90/016. U.S. Environmental Protection Agency, Las Vegas, NV.

EPA91A Costa, C.F., 1991 (Unpublished). Offsite Remedial Action Capability for Underground Nuclear Weapons Test Accidents. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Las Vegas, NV.

EPA91B U.S. Environmental Protection Agency, 1991. Onsite and Offsite Environmental Monitoring

USGS-1

USGS-1 is a test hole drilled to determine the ground-water conditions in the Project Gnome area (Cooper, 1961). The borehole was drilled and completed in August 1960 to a total depth of 220.4 m BGS. A 24-inch hole was drilled from the surface to a depth of 35.3 m BGS and cased with 20-inch casing. An additional 57.4 m were drilled to a diameter of 19 inches and cased with 18-inch casing. From 92.8 to 175.9 m BGS, the borehole was drilled to a 17-1/2-inch diameter. The hole was cased from the surface to 175.9 m BGS with 12-3/4-inch casing. A 12-inch hole was drilled from 175.9 m BGS to a total depth of 220.4 m BGS. The borehole was plugged with cement from total depth to 172.8 m BGS. The 12-3/4-inch casing was perforated from 158.5 to 162.5 m BGS across the Culebra dolomite. The upper 3.0 m of annular space between the 12-3/4-inch, 18-inch, and 20-inch casing were then filled with cement. Currently, a windmill pumps water from this well for use by local ranchers.

The significant-borehole activities affecting interpretation of Culebra equivalentfreshwater heads are:

<u>08/15/60</u>: Casing perforation at the Culebra interval.

<u>08/17/60 - 08/18/60</u>: 24-hour pumping and recovery test. The borehole was pumped at a rate of 6.3 L/s. (No water-quality data.)

<u>03/16/63 - 03/17/63</u>: 24-hour pumping and recovery test. The borehole was pumped at a rate of 3.4 L/s. (No water-quality data.)

- <u>04/12/88</u>: Water-quality sampling. Water samples were collected from a port on the discharge pipe which empties into a storage tank. The specific gravity of the water collected was 1.003 at 20.8 °C ($\rho = 1.001 \text{ g/cm}^3$).
- <u>07/07/88</u>: Water-quality sampling. Water samples were collected from a siphon set near the bottom of the storage tank. The specific gravity of the water collected was 1.006 at 22.8 °C ($\rho = 1.004 \text{ g/cm}^3$).

For the purpose of equivalent-freshwater-head calculations, the borehole-fluid density in USGS-1 is estimated to be 1.000 g/cm^3 from the time the Culebra interval was perforated to 06/16/89. This density value was determined based on total dissolved

<u>USGS-4</u>

USGS-4 was drilled in November and December 1961 downgradient from the detonation point of the Gnome Project experiment (Cooper and Glanzman, 1971). The well was drilled to observe water levels and other hydrologic conditions in the Culebra dolomite before, during, and after the explosion. The borehole was drilled to a total depth of 157.9 m BGS and cased with 8-5/8-inch casing from the surface to the top of the Culebra dolomite (145.7 m BGS). From 145.7 to 157.9 m BGS, the borehole was left open hole with a diameter of 8 inches. In January 1963, the borehole was cleaned and developed in preparation for a tracer test conducted to study physical and chemical adsorption reactions of radionuclides introduced into the Culebra dolomite in relationship to the ground-water velocities in the Culebra. During the tracer test, which was conducted from February 9, 1963 to March 9, 1963, USGS-4 was used as the discharge well in a discharge-recharge system (USGS-8 was the recharge well). The tracer test consisted of injecting a mixture of tritiated water, iodine-131, strontium-90, and cesium-137 into the Culebra dolomite. This tracer study resulted in the contamination of USGS-4.

For the purpose of equivalent-freshwater-head calculations, the borehole-fluid density in USGS-4 is estimated to be 1.000 g/cm^3 for the time period of 03/09/63 to 06/16/89. This density value was determined based on total dissolved solid and specific conductance measurements made on fluid collected from the borehole as part of the Long-Term Hydrologic Monitoring Program for the Gnome site which was initiated on February 3, 1972.

> Summary of Estimated Borehole-Fluid Densities and Related Density and Head Uncertainties for USGS-4

Time Period	Borehole-Fluid Density (g/cm ³)	Density Uncertainty (g/cm ³)	Related Head Uncertainty (m)
03/09/63 - 06/16/89	1.000	unknown	N/A

An estimate of the borehole-fluid density uncertainty was not made.

USGS-8

USGS-8 was drilled from October 1962 to January 1963 downgradient from the detonation point of the Gnome Project experiment (Cooper and Glanzman, 1971). The well was drilled to obtain undisturbed core at the Gnome site and to act as the recharge well for a tracer study. The borehole was drilled to a total depth of 220.0 m BGS and cased with 8-5/8-inch casing from the surface to 141.1 m BGS. From 141.1 to 220.0 m BGS, the borehole was left open hole with a diameter of 7-7/8 inches. The borehole was plugged with cement from total depth to 151.0 m BGS and left uncased over the Culebra dolomite located 140.2 to 150.6 m BGS. After drilling, USGS-8 was cleaned and developed in preparation for a tracer test conducted to study physical and chemical adsorption reactions of radionuclides introduced into the Culebra dolomite in relationship to the ground-water velocities in the Culebra. During the tracer test, which was conducted from February 9, 1963 to March 9, 1963, USGS-8 was used as the recharge well in a discharge-recharge system (USGS-4 was the discharge well). The tracer test consisted of injecting a mixture of tritiated water, iodine-131, strontium-90, and cesium-137 into the Culebra dolomite. This tracer study resulted in the contamination of USGS-8.

For the purpose of equivalent-freshwater-head calculations, the borehole-fluid density in USGS-8 is estimated to be 1.000 g/cm^3 for the time period of 03/09/63 to 06/16/89. This density value was determined based on total dissolved solid and specific conductance measurements made on fluid collected from the borehole as part of the Long-Term Hydrologic Monitoring Program for the Gnome site which was initiated on February 3, 1972.

An estimate of the borehole-fluid density uncertainty was not made.