3R - <u>390</u>

REPORTS

DATE: Sept. 1970

GROUND WATER SAFETY EVALUATION

Difz: fe 71/2 - 0273

TELEDYNE ISOTOPES PALO ALTO, CALIFORNIA

A GOVERNMENT-INDUSTRY EXPERIMENT

SPONSORED BY

U.S. ATOMIC ENERGY COMMISSION EL PASO NATURAL GAS COMPANY U.S. DEPARTMENT OF INTERIOR

PNE-1009 NUCLEAR EXPLOSIONS — PEACEFUL APPLICATIONS (TID-4500)

GROUND WATER SAFETY EVALUATION - PROJECT GASBUGGY

by

Daniel Sokol

September 1970

Issuance Date: March 12, 1971

Contract AT(29-2)-1229

Prepared for:

U. S. Atomic Energy Commission Nevada Operations Office Las Vegas, Nevada

William C

William E. Nork Deputy Project Manager

Paul R. Fenskø, Ph. D. Project Manager

Hydrogeology Section Teledyne Isotopes Palo Alto Laboratories Palo Alto, California 94303

C O N T E N T S

TABLI ABST	STRATI	IONS	iv iv
ACKN	WIED	TEMENTS	۷ ۲۲۴
I	INTR	ODUCTION	1
II	REGI 2.1 2.2	ONAL ENVIRONMENTAL CONDITIONS Geologic Setting Hydrologic Setting	2 2 6
III	CONT 3.1 3.2	AMINATION FREDICTIONS Hydrologic Contamination On-Site and Near-Site Regional Hydrologic Contamination 3.2.1 Computation of Groundwater Velocity and	10 10 12
		Travel Time	15
		3.2.2 Computation of Concentration of Critical	
		Radionuclides in Time and Space	17
IV	MONI 4.1 4.2 4.3	TORING PROGRAM. Monitoring Network. Pre-Shot Monitoring. Post-Event Monitoring.	21 21 21 22
v	CONC	LUSIONS	23
APPE	NDICE	S	
	A	ANALYSES OF DISTRIBUTION COEFFICIENTS OF SELECTED RADIO- NUCLIDES WITH RESPECT TO CORES FROM HOLE GB-1, PROJECT	
		GASBUGGY	25
	В	RECORD OF SPRINGS NEAR THE SITE OF PROJECT GASBUGGY	26
	С	RECORD OF WELLS NEAR THE SITE OF PROJECT GASBUGGY	2 9
	D	PRE-EVENT RADIOCHEMICAL ANALYSES OF WATERS FROM WELLS AND SPRINGS NEAR THE SITE OF PROJECT GASBUGGY	30
	E	POST-EVENT RADIOCHEMICAL ANALYSES OF WATERS FROM WELLS AND SPRINGS NEAR THE SITE OF PROJECT GASBUGGY	32
REFI	ERENCI	ES	33

ILLUSTRATIONS

	p	age
1	Index Map of San Juan Basin Showing Regional Tectonic Features and Locations of Cross Sections	3
2	East-West Geologic Cross Section of the San Juan Basin	. 4
3	North-South Geologic Cross Section of the San Juan Basin	5
4	Sketch Map of North Central New Mexico Showing Features Pertinent to Hydrologic Contamination From Project Gasbuggy	.11
5	Distribution of Permeability Measurements in Cores From Hole GB-1, Rio Arriba County, New Mexico	.16

TABLES

	page
l	Stratigraphic Sequence at the Gasbuggy Site
2	Stratigraphic Sequence of Rocks of Cretaceous Age at the Gasbuggy Site
3	Chemical and Radiologic Analyses of Water from the Ojo Alamo Sandstone, Rio Arriba County, New Mexico13
4	Maximum Groundwater Velocity and Minimum Time of Travel through the Ojo Alamo Sandstone from the Gasbuggy Site to the San Juan River
5	Concentrations of, and Distances Traveled by, Selected Radio- nuclides Resulting from Project Gasbuggy, as a Function of Time after Detonation

ABSTRACT

The most likely path for hydrologic transport of radionuclides from the Gasbuggy Site to possible water-use points is through the Ojo Alamo Sandstone. Groundwater in the Ojo Alamo Sandstone flows westward. The point at which groundwater in the Ojo Alamo Sandstone could mix with other water is along the San Juan River near the mouth of Los Pinos River, 38 kilometers northwest of the Gasbuggy Site. Based on available data, groundwater flowing from the Gasbuggy Site will take 5900 years to reach the confluence of the San Juan and Los Pinos Rivers. At the Gasbuggy Site, the total dissolved solids, sodium, and sulfate content of the groundwater occur in concentrations higher than acceptable for irrigation or domestic use.

Tritium, strontium-90, and cesium-137 will decay to concentrations below the appropriate concentration guides (CG) for the general public before reaching the San Juan River. Tritium will travel a maximum of 2100 meters in no more than 309 years before decaying to a concentration of 1×10^{-3} \therefore Ci/ml (the CG for tritium). Because of their high K_d values, Sr^{90} and Cs^{137} will migrate no farther from the cavity than 320 meters and 3.5 meters, respectively, in 1,000 years. By this time, both nuclides will have decayed to well below the CG.

۷

ACKNOWLEDGEMENTS

This unclassified report was revised in July 1970, by G. Lewis Meyer, Hydrogeologist, and Mendell M. Bell, Geologist, TELEDYNE ISOTOPES, Las Vegas Office, Las Vegas, Nevada. The manuscript was typed by Karen L. Cathie, Secretary.

I. INTRODUCTION

The Project Gasbuggy nuclear explosive of 26 kilotons design yield was detonated on Sunday, December 10, 1967, at 1230:00 Mountain Standard Time.

The explosive was emplaced at 4240 feet below ground surface, 1770 feet from the West line and 1218 feet from the South line in Section 36 of Township 29 North, Range 4 West, in Rio Arriba County, New Mexico, about 55 air miles east of the city of Farmington, New Mexico. The geodetic coordinates are: Latitude -- 36°40'40.4" North; and Longitude -- 107°12'30.3" West. The elevation of surface ground zero was 7204 feet above Mean Sea Level.

The detonation occurred in the Lewis Shale formation of the San Juan Basin about 40 feet below its contact with the gasbearing Pictured Cliffs sandstone formation.

Palo Alto Laboratories of Teledyne Isotopes is under contract AT(29-2)-1229 to the Nevada Operations Office, U. S. Atomic Energy Commission (NVOO), to evaluate possible hydrologic contamination that may result from underground nuclear detonations. This report is based on data from investigations which were performed to determine the possibility of radiocontamination of natural water supplies by Project Gasbuggy. This report was revised in July 1970 to incorporate revised information and current nomenclature.

II. REGIONAL ENVIRONMENTAL CONDITIONS

2.1 Geologic Setting

The Gasbuggy Site is in the northeastern part of the San Juan Basin, a structural depression in the Colorado Plateau physiographic province. The province is characterized by broad, gentle folds and flexures developed in sedimentary rocks that range in age from Paleozic to Tertiary.³ The rocks of the San Juan Basin are chiefly sandstone and shale.⁴

The San Juan Basin is a semi-circular area, 240 kilometers north-south by 150 kilometers east-west (Figure 1). The basin is a structural depression with as much as 5000 meters of sediments deposited near the center of the basin. Contemporaneous and post-depositional deformation resulted in the accumulation of a relatively thick sequence of younger rocks in the center of the basin with successively older rocks exposed toward the margins. The primary structure of the basin is a gentle downwarp with a relatively small uplift near the western edge. Structural features that may influence groundwater movement include randomly oriented joints throughout the basin⁶ and scattered northward-trending dike swarms in the northern part of the basin.⁵

The thickest section of Tertiary rocks is southwest of the GASBUGGY Site. The thickest section of older rocks is more than 50 kilometers to the northwest (Figures 2 and 3). The sedimentary sequence at the GASBUGGY

- 2 -

•••

.

Figure 1: Index Map of San Juan Basin Showing Regional Tectonic Features and Locations of Cross Sections

-

. . .

•

•

^{- 5 -}

Site is about 4500 meters thick. A generalized lithologic section is shown in Table 1. A more detailed Cretaceous section is displayed in Table 2.

The depositional environment during Cretaceous time changed from an early dominantly shallow-marine stage to a late dominantly fluviolacustrine stage. The limestones and shales of the marine facies have low permeability. Shale and sandstone predominate in the fluviolacustrine facies. The sandstones are fine-grained and generally discontinuous. Hydraulic conductivity of even the most permeable rocks is low. Hydraulic connection between adjacent units is poor. the survey of the second

2.2 Hydrologic Setting

Rocks of Cretaceous age in the center of the San Juan Basin have not been developed as a water source. Thus, direct evidence of the character of the groundwater and its movement in these rocks is lacking. However, inferences can be drawn from measured hydraulic properties.⁷ The low permeability of Tertiary rocks restrict hydrologic communication between land surface and the underlying Cretaceous rocks. If direct communication exists, the flow is downward from land surface to the Ojo Alamo Sandstone, whose potentiometric surface is about 300 meters below land surface.⁷ Except toward the west, older rocks of extremely low permeability encircle the basin at higher elevations. These rocks appear to be groundwater barriers. The flow of groundwater from the Gasbuggy Site must therefore be westward. The San Juan River Valley includes all points within the

TABLE 1

STRATIGRAPHIC SEQUENCE AT THE GASBUGGY SITE

Depth (meters)	System	Thickness (meters)	Description
1060	Tertiary	1060	Shale and sandstone, variegated; fluviolacustrine origin.
2580	Cretaceous	1420	(see Table 2)
3100	Jurassic	520	Interstratified sandstone, siltstone and shale, with some evaporites; fluviolacustrine origin.
3300	Triassic	200	Shale, siltstone, and sandstone, red; continental origin.
4000	Permian	700	Shale, siltstone, and sandstone, predominantly red, with evaporites; chiefly of continental origin with limestone of marine origin.
4500	Pennsylvanian	500	Limestone and shale of marine origin and red sandstone of continental origin.

TABLE 2

STRATIGRAPHIC SEQUENCE OF ROCKS OF CRETACEOUS AGE

AT THE GASBUGGY SITE

Depth (meters)	Formation	Thickness (meters)	Description
1060		<u></u>	
	Ojo Alamo Sandstone	50	Sandstone and conglomerate, yellow and gray; fluvial origin. May be partly Tertiary in age.
1110		<u> </u>	
	Kirtland Shale	40	Shale and clay, with gray; fluviolacustrine origin.
1150	<u> </u>		
	Fruitland Siltstone	40	Shale and fine-grained sand- stone, gray; contains coal beds; lagoonal and marine origin
1190			
	Pictured Cliffs Sandstone	90	Sandstone, grayish-white, fine- to medium-grained; contains bentonitic shale; marine origin. Gas-bearing.
1280			
1760	Lewis Shale	480	Shale, gray, with sandy streaks; marine origin.
1,00			
1910	Group	150	marine and lagoonal origin.
	Mancos Shale	530	Shale, gray to black shale, marl, limestone, and sandstone; marine origin.
2440			
2580	Dakota Sandstone and Burro Canyon Formation	140	Sandstone, brown, with black shale.
2 700			

San Juan Basin that are lower in elevation than the potentiometric surface for water in the Ojo Alamo Sandstone at the Gasbuggy Site. Therefore, any groundwater discharge from the Ojo Alamo Sandstone or underlying formations will be into the San Juan River or from springs in the San Juan River Valley.

III. CONTAMINATION PREDICTIONS

3.1 Hydrologic Contamination On-Site and Near-Site

The potentiometric surface of the Ojo Alamo Sandstone is 300 meters below the land surface⁷ and is 1000 meters above the Gasbuggy shot-point. The water level in shallow wells penetrating near-surface aquifers within several kilometers of the site is within 100 meters of the land surface. If these near-surface aquifers are hydraulically connected with the Ojo Alamo Sandstone, the vertical component of groundwater flow between the surface to the Ojo Alamo Sandstone will be downward.

The potentiometric surface of groundwater in the Ojo Alamo Sandstone at the Gasbuggy Site is approximately 300 meters below land surface at the Gasbuggy Site, or approximately 1900 meters above sea-level. Therefore, no radionuclides resulting from the Gasbuggy Event can be expected to travel in groundwater to points higher than this elevation. No wells, streams, or springs with static water levels or discharge points higher than 1900 meters above sea-level can produce water containing radionuclides released by the Gasbuggy Event. The closest discharge point to the Gasbuggy Site below the elevation of 1900 meters where surface water contamination becomes possible is along La Jara Creek, 20 kilometers northwest of the site (Figure 4).

4

Development of the Ojo Alamo or the underlying formations as a water source is unlikely, because of low yield and poor water quality. The average permeability of Ojo Alamo Sandstone cores measured in the laboratory is 7.2 millidarcys. Permeability, calculated by Koopmen and

- 10 -

Ballance^{7,8} from field measurements of transmissivity of the Ojo Alamo Sandstone is 0.9 millidarcys.

Water from the Ojo Alamo Sandstone (Table 3) is not suitable for domestic use or for irrigation because of excessive calcium, sodium, sulfate, and total dissolved solids. Sodium and sulfate concentrations are more than 10 times the recommended maximum for drinking and general household use according to the U. S. Public Health Service standards⁹; total solids are about 5 times greater than the acceptable maximum. The total solids and sodium-percentage factor cause the water to be classed by Wilcox¹⁰ as water with a very high sodium hazard for irrigation.

3.2 Regional Hydrologic Contamination

Streams, springs, or shallow wells which might be contaminated by the Gasbuggy Event lie to the west of the Gasbuggy Site and all lie below an altitude of 1900 meters. The path along which transport of radionuclides would be the most rapid is the Ojo Alamo Sandstone. Discharge points to which these radionuclides would migrate first are adjacent to the San Juan River. Three points on the San Juan River appear most critical because maximum slope in the potentiometric surface occurs near them and because of their proximity to the Gasbuggy Site. The maximum groundwater flow velocity through the Ojo Alamo Sandstone and the minimum time of travel from the Gasbuggy Site were calculated (Table 4) for these points. Flow through formations below the Ojo Alamo Sandstone would be slower because

TABLE 3

CHEMICAL AND RADIOLOGIC ANALYSES OF WATER FROM THE OJO ALAMO SANDSTONE, RIO ARRIBA COUNTY, NEW MEXICO

(Water Collected and Analyzed by U.S. Geol. Survey: Letter West/Edwards, 11/2/67)

Constituent or Property	HOLE GB UPPER Z Depth 1 Interval	- 1 ONE 059-1090 Meters	HOLE G LOWER Depth Interval	B - 1 ZONE 1090-1114 Meters	HOLE GI TOTAL FOI Depth 10 Interval 1	3 - 2 RMATION 058-1114 Meters
pH Specific Conductance Temperature (^O C) Gross β (as Sr ⁹⁰ -Y ⁹⁰) Gross α as U-equiv.(µg/l)	7.7 8210. 38. 3.1 3.1	, _ _	6. 7450. 38. 4. 1.	9 0 5	7.2 9350. 21. -	2
	ppm	epm	ppm	epm	ppm	epm
Silica (SiO ₂) ''uminum (Al) on (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Strontium (Sr) Sodium (Na) Potassium (K) Lithium (Li) Selenium (Se) Zinc (Zn) Copper (Cu) Arsenic (As) Total Cations	$\begin{array}{c} 8.0\\ 0.02\\ 0.49\\ 1.5\\ 218.\\ 14.\\ 4.6\\ 2160.\\ 14.\\ 0.28\\ <0.01\\ 0.01\\ 0.01\\ <0.01\\ -\end{array}$	- 0.03 0.11 10.88 1.15 0.10 93.96 0.36 0.04 - - -	16 0.02 0.69 0.08 242. 14. 5.3 1880. 12. 0.28 <0.01 0.01 0.01 <0.01	- 0.04 - 12.08 1.15 0.12 81.78 0.31 0.04 - - - - - - - - - - - - -	10 0.4 1.4 0.33 251. 12. 4.7 2220. 1.6 0.28 0.02 0.03 - -	- - - 12.52 0.99 0.11 96.57 0.04 0.04 - - - -
Bicarbonate (HCO ₃) Carbonate (CO ₃) Sulfate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Phosphate (PO ₄) Boron (B) Total Anions	223. 0. 4060. 272. 1.4 0.0 0.00 0.40 -	3.65 0.00 84.53 7.67 0.07 0.00 - - 95.92	86. 0. 3630. 221. 1.4 0. 0.00 0.25 -	1.41 0.00 75.58 6.23 0.07 0.00 - - 83.29	306. 0. 4440. 282. 2.3 0.0 0.00 0.86 -	5.02 0.00 92.44 7.96 0.12 0.00 - - 105.54
Calculated By evap. at 180°C	6860. 7770.	-	6880. 6060.	-	7370. 7960.	

TABLE 4

MAXIMUM GROUNDWATER VELOCITY AND MINIMUM TIME OF TRAVEL

THROUGH THE OJO ALAMO SANDSTONE FROM THE GASBUGGY SITE TO THE SAN JUAN RIVER

Possible Points for Discharge of Radionuclide-Bearing Groundwater at the San Juan River $a/$	Distance from Gasbuggy Site	Elevation Difference from Potenticmetric Surface in Ojo Sandstone	Average Slope	Velocity <u>b</u> /	Time of Travel
	(WX)	(M)		CM/DAY	(YEARS)
At Laguna Seca Draw	33.2	1200	0.036	1.36	6,700
2 KM below mouth of Los Pinos R.	38.2	1800	0.047	1.79	5,900
2 KM above mouth of Canyon Largo	55	24,00	0.044	1.67	6,000
		والمحافظ			

a/ locations of points shown of Figure 4.

Calculation based on permeability = 59 millidarcys, porosity = 0.13. ন

•

- 14 -

of lower permeability¹¹ (Figure 5). The higher dissolved solids content of water in formations below the Ojo Alamo Sandstone¹² is also probably indicative of lower flow rates because water in prolonged contact with rock materials is often high in dissolved solids.

3.2.1 Computation of Groundwater Velocity and Travel Time

The velocity of groundwater can be computed from the following equation if the hydraulic conductivity and porosity of the aquifer and gradient of the potentiometric surface are known:

$$v = \frac{k}{\Theta} \times \frac{dh}{dl}$$
(1)

in which

v = velocity of water, k = hydraulic conductivity, 0 = porosity, <u>dh</u> = gradient of potentiometric surface. <u>dl</u>

The hydraulic conductivity used in the computations is 5.7×10^{-5} cm/sec. This value is the hydraulic conductivity for water at 20° C in an aquifer with a permeability of 59 millidarcys, which was the highest permeability measured in cores from the Ojo Alamo Sandstone in Hole GB-1.

This is a near-maximum value for hydraulic conductivity, compared to some of the following values which might have been used:

8.4 x 10 ⁻⁵ cm/sec	aquifer with permeability of 59 milli- darcys, water temperature 38°C (Table 3)
1.5 x 10 ⁻⁵ cm/sec	aquifer with permeability of 7.2 milli- darcys (average value of 53 cores from 1060 - 1115 meters depth in GB-1), water temperature 20°C (Standard temperature)

- 15 -

Figure 5: Distribution of Permeability Measurements in Cores from Hole GB-1, Rio Arriba County, New Mexico

1.0 x 10^{-5} cm/sec 7.9 x 10^{-7} cm/sec aquifer with permeability of 7.2 millidarcys, water temperature 38° C aquifer with transmissivity of 3 gal/day/ft⁷ = 4.3 x 10^{-3} cm²/sec, thickness of 5.5 x 10^{3}

Although the porosity of the core sample with a permeability of 59 millidarcys is 0.17, the value used in the computations was 0.13, the average porosity of 53 measured core samples. Use of the 0.13 yields a higher velocity than would be computed if 0.17 were used.

cm.

Average velocities to three points on the San Juan River were computed using Equation (1). The results are shown on Table 4. Because of higher altitudes and much lower slope of the potentiometric surface, the travel time would be longer to points along the San Juan River or its tributaries. other than those points chosen. Travel times to points lower in altitude would be longer because of the greater distances.

3.2.2 Computation of Concentration of Critical Radionuclides in Time and Space

The concentrations of tritium in time and space (Table 5) was computed from the following expression:

$$\mathbf{v}_{i} = \frac{\mathbf{v}}{K_{f}}$$
(2)

in which

v, = the velocity of an ionic species in an aquifer,

v = the average velocity of water in the aquifer,

 K_{f} = the retardation factor, $\left(\frac{1-\Theta}{\Theta}\right) P K_{d}$ + 1, in which Θ is porosity; p is the grain density; and K_{d} is the distribution coefficient of the ionic species in the aquifer at equilibrium.

TABLE 5

CONCENTRATIONS OF, AND DISTANCES TRAVELED BY, SELECTED RADIONUCLIDES RESULTING FROM PROJECT GASBUGGY, AS A FUNCTION OF TIME AFTER DETONATION

T IME	H	3	5r ⁹⁰	Cs137
	DIST.	CONC.	DIST.	DIST.
(Yr)	М	Ci/ml	М	М
0	0	3.8×10^{4}	0	0
l	6.5	3.6×10^4	0.32	0.004
10	65	2.2×10^4	3.2	0.035
100	650	1.3×10^2	32	0.35
200	1300	4.7×10^{-1}	64	0.71
309 .	2000	1.0 x 10 ^{-3*}	-	-
500	3300	2.0 x 10-8	160	1.7
884	-	-	-	3.1
9 9 2	-	-	32 0	-
1000	65 00	1.1×10^{-20}	32 0**	3.5**

* Value for the CG for tritium isotope. CG's are reference concentrations as given in November 8, 1968, revision of USAEC Manual, Chapter 0524, Standards for Radiation Protection, Annex A, Table II, Column 2, reduced by a factor of three to be consistent with standards applicable to a suitable sample of the exposed population in uncontrolled areas. These guides are applied in accordance with instructions in TN NV 0500-23, dated May 12, 1969. A CG is used in the same context as an MPC has previously been applied.

** Concentration of isotope will be less than the CG.

- 18 -

Computations in Table 5 were based on the following assumptions:

- a. Yield = 26 kilotons (total fission plus fusion)
- b. Production of tritium is:

 H^3 3.8 x 10⁴ Ci

- c. All radioactivity will reach the Ojo Alamo Sandstone instantaneously through the annular space around the well casing and will be concentrated in 1 cubic meter of water.
- d. $K_d = 0$ for H^3 = 1.13 cm³/g, for Sr⁹⁰ = 102 cm³/g, for Cs¹³⁷
- e. = 2.7 g/cm^3
- f. Q = 0.13

- g. v = 1.79 cm/day
- h. No lateral or longitudinal dispersion will occur.

Announced pre-shot estimate.

The total amount of post-shot tritium wherever located expected to be present is about 4 grams.

This is the worst possible case. A more probable case is that contaminated water will migrate to the Ojo Alamo Sandstone through cracks in the Fruitland and Kirtland Formations as suggested by Rawson and Korver.

It is assumed that tritium will move at the velocity of groundwater. Values selected for strontium and cesium are the lowest values of laboratory measurements made on cores of the Ojo Alamo Sandstone (Appendix A).

Average grain density of sedimentforming minerals.

Average of effective porosity (total porspace containing moveable fluids) for entire Ojo Alamo formation which was cored every 2 feet and analyzed by Core Laboratories, Inc., Dallas Texas. This value is less conservative for ratio of v_i to v than the maximum value, but it is consistent with the value used for computing velocity. The value of O.13 is more conservative for the estimate of v_i .

Maximum value for velocity computed (Table 4).

This assumption will result in larger values for concentrations of contaminants than if dispersion were assumed. The times required for tritium to decay to selected concentrations and the distances traveled within these times were computed using Equation 2 and the foregoing assumptions. Concentrations of the radionuclides and the distances traveled during a range of time up to 1000 years following the Gasbuggy Event are shown in Table 5. Among the concentrations selected is the CG (Concentration Guide) as defined by the U. S. Atomic Energy Commission in AECM 0524.¹³

Tritium will travel a maximum of 2100 meters in no more than 309 years before decaying to a concentration of $1 \times 10^{-3} \mu$ Ci/ml (the CG). Because of their high K_d values, Sr⁹⁰ and Cs¹³⁷ will migrate no farther from the cavity than 320 meters and 3.5 meters respectively within 1000 years. By this time, both nuclides will have decayed to well below the appropriate CG.

- 20 -

IV. MONITORING PROGRAM

4.1 Monitoring Network

A network of wells and springs in the area near the site of Project Gasbuggy was established in 1967 to provide data for pre-event and postevent comparison of radionuclide content of natural waters. The network, which included 20 springs (Appendix B) and 10 wells (Appendix C), was established during the period of June 26 - 30, 1967, by Mr. E. H. Essington of Teledyne Isotopes and Mr. Jerry Mercer of the U. S. Geological Survey. Of these, only 15 springs between 2 and 12 kilometers from ground zero, and seven wells between 7 and 17 kilometers from ground zero, were found to be suitable for radiochemical sampling.

4.2 Pre-Shot Monitoring

Water samples from the 15 springs and seven wells suitable for sampling were collected in June 1967. These were analyzed for radionuclide content in September 1967 by Mr. E. J. Forslow at Palo Alto Laboratories of Teledyne Isotopes. All samples contained less than 1400 TU (tritium units)*. Procedures and equipment used for these analyses had a lower detection limit of 1400 TU at the 99-percent confidence level.

Gross beta-gamma activity of dissolved solids ranged from 1.0 to 10.3 pCi/l (picocuries per liter) and gross alpha activity ranged from 1.4 to 6.2 pCi/l. Gross beta-gamma activity of suspended solids ranged from less than 0.5 to 4.5 pCi/l, and gross alpha activity ranged from less than 0.3 to 1.6 pCi/l.

^{*} One tritium unit (TU) is equivalent to 3.3 pCi of tritium per liter.

No significant difference was noted between well water and spring water. Radiochemical analyses are presented in Appendix D.

4.3 Post-Event Monitoring

Post-event monitoring of the radiochemical network was started in December 1969. Samples were collected to determine whether concentrations of radionuclides at stations near ground zero had increased a month after the event. Samples were collected by Mr. J. E. Leisek and Mr. Daniel Churchfield of Teledyne Isotopes in December 1967 and January 1968. Two springs and one well were sampled, with samples being taken from the springs on two different dates. Laguna Seca, a lake not included in the original network, was also sampled.

Radiochemical analyses of the 6 post-event samples were made by Mr. E. J. Forslow in March 1968. All samples were analyzed for tritium but no tritium was detected. The lower detection limit for tritium by the method used was 500 TU at the 99-percent confidence level.

No increase in concentration of radionuclides in the surface and subsurface waters was detected by comparing post-event samples with pre-event samples. The activities of the dissolved and suspended solids in post-event water samples from springs and wells in the vicinity of the Gasbuggy Site were slightly lower than those measured in pre-event samples. However, these differences can be attributed to normal statistical variations during counting.

- 22 -

V. CONCLUSIONS

- Groundwater flow from the Gasbuggy Site can be reasonably expected to be westward.
- 2. No radionuclides can be transported by groundwater flow to any point higher than the potentiometric surface of the Ojo Sandstone, which is 300 meters below the surface of the Gasbuggy Site, or 1900 meters above sea level.
- 3. The path along which radionuclides may travel most rapidly from the Gasbuggy Site is through the Ojo Alamo Sandstone.
- 4. The San Juan River is the closest place where radionuclides produced by Project Gasbuggy can be expected to discharge at land surface.
- 5. Based on potentiometric surface slope and distance, the most probable point for radionuclide discharge into the San Juan River from the Gasbuggy Site is near the mouth of Los Pinos River 38 kilometers from the site.
- 6. The most rapid, credible velocity for groundwater flow from the Gasbuggy Site to the mouth of Los Pinos River is 1.79 centimeters per day. At this rate, groundwater from the Gasbuggy Site can reach the San Juan River in 5900 years.

- 23 -

Based on conservative assumptions, all explosion-produced radiomuclides migrating from the Gasbuggy Site in groundwater will decay to levels below the appropriate CG before reaching the San Juan River. Tritium will travel a maximum of 2100 meters in 309 years before decaying to a concentration of $1 \times 10^{-3} \mu \text{Ci/ml}$ (the CG). Because of their high K_d values, Sr^{90} and Cs^{137} will migrate no farther from the cavity than 320 meters and 3.5 meters, respectively, within 1000 years. By this time, both nuclides will have decayed to well below the appropriate CG.

のできたのできるようものです。

7.

8. No detectable increase in radioactivity occurred in waters from use points near ground zero one month after the event, based on a comparison between samples collected before and after the event. ArPENDIX A

ANALYSES OF DISTRIBUTION COEFFICIENTS OF SELECTED RADIONUCLIDES WITH RESPECT TO CORES FROM HOLE GB-1, PROJECT GASBUGGY

Analyses performed under direction of E. H. Essington Water from Hole GB-2, Depth 1064-1116 meters, used in analyses Rock weight used = 5.00g Water volume used = 20 ml Suspension time = 72 hrs. Temperature = 25° C Constant

n Coefficient L/g)	_{Cs} ¹³⁷	139 166 389	309 472 541	102 141 298	346 456 630
Distribution (m]	85 Sr ⁸⁵	1.26 1.13 1.88	8.32 9.41 9.56	1.37 1.36 2.08	7.76 8.37 9.79
Size (microns)	· · - · · ·	4000 500 <62	4000 500 <62	4000 500 < 62	4000 500 <62
Rock Description		Sandstone, fine, light gray	Shaley siltstone, carbonaceous, black	Sandstone, fine, light gray	Sandstone, very fine, silty, dark gray
Depth (meters)		1097- 1098	1183- 1184	1267- 1268	1308- 1309
Core No.		4	14	20	318

- 25 -

2
APPENDIX

:

RECORD OF SPRINGS NEAR THE SITE OF PROJECT GASBUGGY

SPRING NO. J	NAME	DATE	TIME	CONDUCTIVITY umhos	TEMP. °C	FLOW GPM	REMARKS
27.4.1.222	Peidra Blanca	6-28-67	1030	1800	13	1	Spring developed and closed off pipe to water tank. Sample taken at
27.4.2.232	Chosa	6-27-67	1540	1400	8	ł	arscnarge pipe. Spring undeveloped but actively dripping from contact zone.
27.4.9.413	Agua Bonita	6-26-67	1700	1506	9.5	8.6	Contact spring. Spring source covered by land slip - pipe opening 15 ft from entrance into hillside.
27.5.1.224	Tecolote	6-30-67	1230	850	6	ł	Undeveloped but fenced.
. 28.4.9.342 <u>v</u>	Cedar	6-28-67	1345	470	13	< 0.03	Spring developed as catch basin used for stock watering.
, 28.4.14.113 ,	Arnold	6-27-67	0830	950	8.5	1	Contact spring. Water taken from spring box. Box positioned 1 - 4 ft from sandstone wall pipe drains box.
28.4.17.311	Cave	6-28-67	1700	370	6	< 0.1	Spring developed - sample taken from seep pond.
28.4.17.31la	Cave #2	1	I	I	6	i	Spring undeveloped.
28.4.21.444	Gettem	6-28-67	1400	1400	6.5	ł	Spring complex - developed one, sampled one,qt. bottle broke; sample trans. to second bottle.
28.4.22.134	Mud	I	1	ì	11	0.1	Seepage but no collected flow.
28.4.22.241	Horse	I	I	1	1	I	Min. seepage could not collect sample. Total spring about 75 ft along contact zone.
·							·

l

i

. J

		RECORD OF SF	PRINGS NEA	R THE SITE OF P	ROJECT	GASBUGGY	
SPRING NO.	NAME	DATE	TIME	CONDUCTIVITY	TEMP.	FLOW GPM	REMARKS
28.4.23.234	Ceasar	6-27-67	1100	1950	13	l	Spring in bottom of Valencia Canyon Wash. Sample taken from discharge pipe 300 ft down the wash. Spring developed (Cement box covered
28.4.26.312	Horn	6-27-67	1420	2300	O,	1	Spring seepage contact zone. Not flowing. Sampled pond below spring seep. Pond 3 inches deep. Shared water with cow. Must hike to spring from top and drop 100 ft off rock bluff.
X 28.4.27.444	Aspen	l	ł	I	I	I	Seepage from creek bed outcrop. Undeveloped.
28.4.29.221	Munoz	6-28-67	1445	2000	Q	• 0.5	Visible water flow at spring contact zone but water could only be Bumpled at pipe discharge. Use - stock water.
28.5.25.142	Russell Arnold Ranch	630-67	1200	3000	6	I	Upper spring collected. Spring in stock yard fenced.
29.4.19.412	Bubbling	6-29-67	1730	1290	٢	4. 3	Spring on NW side of highway covered and inaccessible but discharge under SE side of highway into stock trough.
29.4.19.421		6-29-67	1745	900	٢	æ e	Spring on SE wall of LaJarra Canyon opposite Bubbling Spring. Contact fissure.

APPENDIX **B** (Continued)

.

\sim
Continued
\sim
B
\sim
С.
Ē
7
Ξ.
2
F.

i

RECORD OF SPRINGS NEAR THE SITE OF PROJECT CASBUGGY

REMARKS	Spring issuing from contact on side of hill over LaJarra Canyon. Undeveloped.	Spring not visible. Spring housing (drain) corrugated metal tank. Sample collected from tank.
FLOW GPM	~ 0.6	0 .3
TEMT.	6.5	10
CONDUCTIVITY	815	740
TIME	1830	1800
DATE	6-29-67	6-29-67
NAME	Amarante	Burro
SPRING NO.	29.5.24.413	29.5.25.114

- 28 -

1/ Numbering system conforms to system used in New Mexico by U. S. Geological Survey.

. ,

> * | | | |

	1								· -	ŭ
REMARKS	Well with gasoline pump - out of gas.	Well pumping on and off.	Sample taken from tank storage, pump not working for lack of wind.	Well periodically pumping. One gal. from storage tank. One quart from discharge pipe.	Well off for water level measurement then started pump. Pump 10 minutes for sample.	Well pumping (windmill) collected discharge from well head.	No sample taken,but with bailer sample can be taken. Well is accessible 100 ft. S. of building. Depth to water 32 ft.	Well not pumping and water in stock trough not representative.	Well stopped pumping upon arrival but sample collected from trough at well head discharge.	Sample taken from faucet in yard of Bixler Ranch farm site. Water from tank storage sinc well not pumping for lack of wind. Futurc samples can be taken from well discharge if wind blows.
TEMP. °C.	I	10.5	1	10	6 . 5	Ó	I	t	8.5	ı
CONDUCTIVITY	3	2100	3000	700	1500	2600	I	I	850	1240
TIME	1	1200	1400	1050	0011	1815	I	1	1840	0060
DATE	I	6-29-67	6-29-67	ó-30-ó7	6-29-67	6-28-67	ł	I	6-28-67	ú-30-67
NAME	1	Upper Burro Can yon	Lower Burro Canyon -	I	Jicarilla	Jicarilla Apache Indian Reservation	Vaqueros	1	Jicarilla Apache Indian Reservation	Bixler Ranch
WELL NO. Y	27.3.33.233	28.2.15.144	28,2,18,331	28.5.22.221	29.2.22.441	⁻ 29.3.20.234 6	29.4.1.223	29.5.28.244	30.3.29.132	30.4.35.221
	WELL NO. ⁻ J' NAME DATE TIME CONDUCTIVITY TEMP. REMARKS Jumhos ^o C.	WELL NO. ³ NAME DATE TIME CONDUCTIVITY TEMP. REMARKS Pumhos ^o C. 27.3.33.233 Well with gasoline pump - out of gas.	WELL NO. Y NAME DATE TIME CONDUCTIVITY TEMP. REMARKS 27.3.33.233 Well with gasoline pump - out of gas. 28.2.15.144 Upper Burro Can yon 6-29-67 1200 2100 10.5 Well pumping on and off.	WELL NO. YNAMEDATETIMECONDUCTIVITYTEMP.REMARKS27.3.33.233Well with gasoline pump - out of gas.28.2.15.144Upper BurroCanyon6-29-671200210010.5Well pumping on and off.28.2.18.331Lower BurroCanyon6-29-6714003000-Sample taken from tank storage, pump	WELL NO. Y NAME DATE TIME CONDUCTIVITY TEMP. REMARKS 27.3.33.233 - - - - Well with gasoline pump - out of gas. 27.3.33.233 - - - - Well with gasoline pump - out of gas. 28.2.15.144 Upper burro Camyon 6-29-67 1200 2100 10.5 Well pumping on and off. 28.2.15.148 Upper burro Camyon 6-29-67 1400 3000 - Sample taken from tank storage, pump on tank storage, pump on tworking for lack of wind. 28.2.18.331 Lower Burro 6-30-67 1400 3000 - Sample taken from tank storage, pump on tworking for lack of wind. 28.5.22.221 - 6-30-67 1050 700 10 Well periodically pumping. One gal. from storage tank. One quart from discharge pipe.	WELL NO. \mathcal{Y} NAMEDATETIMECONDUCTIVITYTEMP.REMARKS \mathcal{Y} 1.3.3.233Well with gasoline pump - out of gas. $27.3.33.233$ Well with gasoline pump - out of gas. $27.3.33.233$ Well with gasoline pump - out of gas. $28.2.15.144$ Upper burroCanyon6-29-671200210010.5Well pumping on and off. $28.2.18.331$ Lower BurroCanyon6-29-6714003000-Nell pumping on and off. $28.5.12.211$ $28.5.22.221$ -6-30-67105070010Well periodically pumping. One gal. from $28.5.22.211$ -6-29-67110015006.5Well off for water level measurement then $29.2.22.441$ Jicarilla6-29-67110015006.5Well off for water level measurement then	WELL NO. Y NAME DATE TIME TIME CONDUCTIVITY TEMP. REMARKS ymhos °C. ymhos °C. ymhos °C. 27.3.33.233 - - - - - vell with gasoline pump - out of gas. 28.2.15.144 Upper burro Ganyon 6-29-67 1200 2100 10.5 Well pumping on and off. 28.2.18.331 Lower Burro Ganyon 6-29-67 1400 3000 - Nell pumping on and off. 28.2.18.331 Lower Burro 6-30-67 1400 3000 - Nell pumping on and off. 28.2.18.331 Lower Burro 6-30-67 1400 3000 - Nell pumping on and off. 28.2.18.331 Lower Burro 6-30-67 1400 3000 - Nell pumping on and off. 28.2.12.21 - 6-30-67 1050 700 10.5 Nell pumping. One gal. from discharge pipe. 29.2.22.21 - 6-29-67 1000 1500 6.5 Nell pumping. One qal. from discharge pipe. 29.2.22.34 Jicarilla Apache 6-29-67	WELL NO. $\frac{J}{J}$ NAMETIMETIMECONDUCTIVITYTEMP.REMARKS27.3.33.23328.2.15.144Upper burroUpper burro6-29-671200210010.5Well with gasoline pump - out of gas.28.2.15.144Upper BurroCanyon6-29-671200210010.5Well pumping on and off.28.2.15.144Upper BurroCanyon6-29-6714003000-Well pumping on and off.28.2.15.331Lower BurroCanyon6-29-6714003000-Nell pumping on and off.28.2.18.331Lower BurroCanyon6-29-6714003000-Nell periodically pumping. One gal. from28.2.12.2210105Nell periodically pumping. One gal. fromNell periodically pumping. One gal. from29.2.2.2441Jicarilla6-29-67110015006.5Nell off for water level measurement then29.2.2.2441Jicarilla Apache6-28-67181526006.5Nell off for water level measurement then29.2.2.2441Jicarilla Apache6-28-67181526006.5Nell pumping (windmill) collected discharge pipe.29.2.2.2441Jicarilla Apache6-28-67181526006.5Nell pumping (windmill) collected discharge pipe.29.2.234Jicarilla Apache6-28-67181526006Nell pumping (windmill) collected discharge pipe.29.4.1.223Vaqueros<	WELL NO. \mathcal{Y} NAMEDATETIMECONDUCTIVITYTEMP.REMARKS27.3.3.233Well with gasoline pump - out of gas.28.2.15.144Upper burro6-29-671200210010.5Well with gasoline pump - out of gas.28.2.15.143Upper burro6-29-671200210010.5Well with gasoline pump - out of gas.28.2.15.144Upper burro6-29-6714003000-Nell pumping on and off.28.2.15.121Nell pumping on and off.28.5.22.221105070010.5Nell pumping on and off.29.2.22.441Jicarilla Apache6-29-67110015006.5Nell pumping on and off.29.2.22.441Jicarilla Apache6-29-67181526006.5Nell pumping (windmill) collected discharge pipe.29.5.28.24429.5.28.244No sample taken, but with bailer sample.29.5.28.244No sample taken, but with bailer sample.29.5.28.244No sample taken, but with bailer sample.29.5.28.244No sample taken, but with bailer sample.29.5.28.244 <t< td=""><td>WELL NO. \mathcal{Y}NAREDATETIMECONDUCTIVITYTEMP.REMARS27.3.32.23Well with gasoline pump - out of gas.28.2.15.144Upper burroCanyon6-29-671200210010.5Well pumping on and off.28.2.15.143Upper burroCanyon6-29-6714003000-Sample taken from tank storage, pump28.2.15.141Jicover BurroCanyon6-29-6714003000-Sample taken from tank storage, pump28.2.12.2416-30-67105070010Well pumping for lack of wind.29.2.22.441JicarillaApache6-29-67110015006.5Well pumping (windmill) collected discharge pipe.29.2.22.441Jicarilla Apache6-29-67181526006.5Well pumping (windmill) collected discharge pipe.29.2.22.41Jicarilla Apache6-29-67181526006.5Well pumping (windmill) collected discharge pipe.29.4.1223VapuerosNell pumping (windmill) collected discharge pipe.29.5.28.244Nell pumping (windmill) collected discharge pipe.29.5.28.244Nell pumping (windmill) collected discharge pipe.29.5.28.244Nell pumping (windmill) collected discharge pipe.29.5.28.244-<td< td=""></td<></td></t<>	WELL NO. \mathcal{Y} NAREDATETIMECONDUCTIVITYTEMP.REMARS27.3.32.23Well with gasoline pump - out of gas.28.2.15.144Upper burroCanyon6-29-671200210010.5Well pumping on and off.28.2.15.143Upper burroCanyon6-29-6714003000-Sample taken from tank storage, pump28.2.15.141Jicover BurroCanyon6-29-6714003000-Sample taken from tank storage, pump28.2.12.2416-30-67105070010Well pumping for lack of wind.29.2.22.441JicarillaApache6-29-67110015006.5Well pumping (windmill) collected discharge pipe.29.2.22.441Jicarilla Apache6-29-67181526006.5Well pumping (windmill) collected discharge pipe.29.2.22.41Jicarilla Apache6-29-67181526006.5Well pumping (windmill) collected discharge pipe.29.4.1223VapuerosNell pumping (windmill) collected discharge pipe.29.5.28.244Nell pumping (windmill) collected discharge pipe.29.5.28.244Nell pumping (windmill) collected discharge pipe.29.5.28.244Nell pumping (windmill) collected discharge pipe.29.5.28.244- <td< td=""></td<>

1/ Numbering system conforms to system used in New Mexico by U. S. Geological Survey.

• •---

ļ

I

1

I.

APPENDIX C

-

.

1

I

i

AND SPRINGS NEAR THE SITE OF PROJECT GASBUGGY stcer, June 1967: analyzed by		(
AND SPKINGS NEAR THE SITE OF PROJECT steer, June 1967: analyzed by	GASBUGGY	
AND SPRINGS NEAR THE SITE OF srcer, June 1967: analyzed	PROJECT	Ъу
AND SPRINGS NEAR THE srcer, June 1967: a	SITE OF	ınalyzed
AND SPRINGS NEAL srcer, June 1967	R THE	
AND SPKINGS srcer, June	NEAI	1.967
E-EVENT RADIOCHEMICAL ANALYSES OF WATERS FROM WELLS Samples collected by E. H. Essington and Jerry Me E. J. Forslow, September 1967.	E-EVENT RADIOCHEMICAL ANALYSES OF WATERS FROM WELLS AND SPRINGS	Samples collected by E. H. Essington and Jerry Mercer, June E. J. Forslow, September 1967.

d XIUNAGAA

Well or Spring Number	Total Dissolved Solids	Potassium	As Disgolyed B, Y,	GROSS RADIOAC Solids α	rινιτ γa / As Suspended β, Υ	Solids ^{b/} a ^e /
	milligrams per liter	milligrams per liter	picocuries per liter	picocuries per liter	picocuries per liter	picocuries per liter
Wells:						
28.2.15.144	1341	•	3.1 ± 2.5	< 3.3	0.58 ± 0.57	< 0.3
28.2.18.331	1842	1.8	2.6 ± 3.1	< 4.1	0.5	< 0.3
28.5.22.21	156	• 3	2.7 ± 2.6	< 1.6	2.4 ± 1.9	< 0.9
29.2.22.441	915	• 6	< 1.5	< 4.0	0.77 ± 0.58	< 0.3
29.3.20.234	1524	1.5	3.5 ± 2.7	< 3, 3	0.70 ± 0.53	< 0.3
30.3.29.132	533	•5	2.4 ± 2.8	< 4.2	2.7 ± 2.2	< 1.2
30.4.35.221	635	1.1	4.0 ± 2.2	< 2.4	1.2 ± 0.6	< 0.3
Springs:						
27.4.1.222	1257	1.3	1.8 ± 2.6	< 4.1	< 0.6	< 0.3
27.4.2.232	964	1.0	4.0 ± 2.1	< 3.2	0.98 ± 0.56	< 0.3
27.4.9.413	1054	1.1	2.3 ± 3.0	6.2 ± 6.2	4.2 ± 2.4	< 0.3
27,5.1.224	453	1.5	10.3 <u>+</u> 2.6	2.7 ± 3.4	1.5 <u>+</u> 0.4	< 1.2
28.4.14.113	616	1.1	3.1 ± 2.3	3.7 ± 4.6	0.73 ± 0.55	< 0.3
28.4.17.311	167	• 5	2.6 ± 1.5	< 1.4	0.82 ± 0.53	< 0.3
28.4.21.444	864	6.	1.2 ± 2.1	< 3.9	0.91 ± 0.57	< 0.3
28.4.23.234	1518	.7	6.0 ± 2.9	< 3.3	0.86 ± 0.56	< 0.3

7

l

- 30 -

APP. IX D (Continued)

ζ

PRE-EVENT RADIOCHEMICAL ANALYSES OF WATERS FROM WELLS AND SPRINGS NEAR THE SITE OF PROJECT GASBUGGY

Well or Spring	Total Dissolved	Potassium	As Dissolved	GROSS RADIOACT Solids	IVITY ^{a/} As Suspended	Solids ^{b/}
Number	Solids		β, γ, ^{C, d}	б	β, γ ^{C/ 7}	ore/
	milligrams per liter	milligrams per liter	picocuries per liter	picocuries per liter	picocuries per liter	picocuries per liter
28.4.26.312	1608	1.4	1.8 <u>+</u> 2.9	< 3.9	1.3 + 0.6	< 0.3
28.4.29.221	1230	.7	1.0 ± 2.5	< 3, 3	0.97 ± 0.66	< 0.3
28.5.25.142	1970	1.0	4.3 + 4.5	< 6.3	4.5 ± 1.9	< 0.3
29.4.19.412	766	α •	2.0 ± 1.9	< 3.2	0.83 ± 0.55	1.6 <u>+</u> 1.
29.4.19.421	499	• 4	2.2 ± 1.9	< 3.2	0.86 ± 0.55	< 0.3
29.5.24.413	522	• 5	1.6 <u>+</u> 1.9	< 2.6	0.86 ± 0.55	< 0.3
29.5.25.114	447	• 2	4.2 ± 2.1	< 3.1	0.97 ± 0.56	< 0.3

Detection Limits - Set at three standard deviations above the background count. <u>a</u> Counting Errors - The uncertainty values represent the statistical counting errors only calculated at the 95% confidence level.

Suspended Solids - Separated by filtration through 0.45 micron filters. Gross beta, gamma activities are reported as Cs^{137} equivalent. <u>م</u>

े।

Corrected for K40. व/

Gross alpha activities are reported as U²³³ equivalent.) |

- 31

5-7
М
<u>a</u>
ជ
4

POST-EVENT RADIOCHEMICAL ANALYSES OF WATERS FROM WELLS AND SPRINGS NEAR THE SITE OF PROJECT GASBUGGY Samples collected by J. E. Leisek and Daniel Churchfield, December 1967 and January 1968 Analyzed by E. J. Forslow, March 1968

			GROSS RADIO	ACTIVITY ^(a)	
Well or Spring	Date Sample Collected	As Dissol (pC	ved Solids i/l)	As Suspende (pC	d Solids ^(D) i/l)
Number		$_{\beta,\gamma^{(c,d)}}$	σ	β, _γ (c)	σ
28.4.14.113	Dec. 16, 1967	2.6±1.6	4.1 ± 5.3	1.3 ± 0.4	0.5 ± 0.3
5	Jan. 7, 1968	1.1 ± 1.5	<3	0.9 ± 0.4	<0.1
29.3.20.234	Jan. 11, 1968	0.0 ± 2.1	<>>	0.8 ± 0.4	0.3 ± 0.2
29.4.19.412	Dec. 16, 1967	1.0 ± 1.5	L >	0.4 ± 0.4	<0.2
-	Jan. 7, 1968	l.l ± l.5	<4	<0.3	<0.1
29.4.35.34(f)	Jan. 7, 1968	8.4±1.4	1.0 ± 1.2	1.1 ± 0.3	0.3 ± 0.2

Detection Limits - Set at three deviations above the background count. (a) - The uncertainty values represent the statistical counting errors only calculated at the 95% confidence level. Counting Errors

- Suspended Solids Separated by filtration through 0.45 micron filters. (q)
- Gross beta, gamma activities are reported as Cs^{137} equivalent. (c)
- (d) Not corrected for K^{40} .
- Gross alpha activities are reported as U²³³ equivalent. (e)
- Laguna Seca was Sample collected from Laguna Seca in Sec. 35, T. 29 N., R. 4 W. not sampled in June 1967 because of cattle in lake. (f)

A State of the second state of the second

- 32 -

REFERENCES

- 1. "Project Gasbuggy: A Feasibility Study concerned with Nuclear Explosive Stimulation of a Natural Gas Reservoir", multiple contributors, edited by H. Gevertz, El Paso Natural Gas Company, El Paso, Texas, 1965, 57 p.
- "Project GASBUGGY Planning and Program Directive", U. S. Atomic Energy Comm., Nevada Operations Office, 1967, 20 p.
- 3. King, P. B., The Evolution of North America, Princeton University Press, Princeton, New Jersey, 1959, 190 p.
- 4. Fenneman, N. M., Physiography of Western United States, McGraw-Hill Book Company, New York, 1961, 534 p.
- 5. Peterson, J. A., et al, "Sedimentary History and Economic Geology of San Juan Basin", Am. Assoc. Petroleum Geologists Bull., 1965, v. 49, p. 2076 - 2119.
- Kelley, V. C., "Tectonics of the San Juan Basin and Surrounding Areas", Four Corners Geol. Soc. 2nd Field Conf., 1957, p. 44 - 52.
- 7. Koopman, F. C., and Ballance, W. C., "Hydrologic Tests in Hole GB-1, Project GASBUGGY, Rio Arriba County, New Mexico", U. S. Geol. Survey, 1967, National Technical Information Service, PNE-G26, 33 p.
- Koopman, F. C., and Ballance, W. C., "Hydrologic Tests in Hole GB-2, Project GASBUGGY, Rio Arriba County, New Mexico", U. S. Geol. Survey, 1967, National Technical Information Service, PNE-G27, 10 p.
- 9. "Public Health Service Drinking Water Standards", U. S. Public Health Service, 1962, Pub. No. 956, 61 p.

- 33 -

- Wilcox, L. V., "Classification And Use of Irrigation Waters",U. S. Department of Agriculture Circ. 1955, 969, 19 p.
- 11. Reneau, W. E., Jr., and Harris, J. D., Jr., "Reservoir Characteristics Of Cretaceous Sands Of The San Juan Basin", Four Corners Geol. Soc. 2nd Field Conf., 1957, p. 40 - 43.

- 12. Balrz, E. H., et al. "Potential Yield Of Deep Water Wells In The Southern Part Of The Jicarilla Apache Indian Reservation And Vicinity, San Juan Basin, New Mexico", U. S. Geol. Survey, 1962, Prof. Paper 450-D, p. 173 - 175.
- 13. Chapter 0524, "Standards for Radiation Protection," U. S. Atomic Energy Commission, AEC Manual, 1968.

- 34

TECHNICAL AND SAFETY PROGRAM REPORTS PROJECT GASBUGGY

A. TECHNICAL REPORTS - (already issued)

	Authoring Organization	Report No.	Report Title
	EPNG/AEC/USBM/LRL	PNE-1000	Project Gasbuggy (Feas. Study Rpt.)
	LRL	PNE-1001	Pre-Shot Summary
	SL	PNE-1002	Gasbuggy Seismic Source and Surface Motion
	LRL	PNE-1003	Preliminary Post-Shot Summary
	EPNG	PNE-G-9	Drilling & Testing Operations
	LRL	PNE-G-10	Gas Quality Investiga- tion Program Status Rpt.
	LRL	PNE-G-11	Post-Shot Geologic Investigation
	USBM/EPNG	PNE-G-13	Status of Reservoir Evaluation
в.	TECHNICAL REPORTS - (to be	prepared)	
	LRL		Prediction & Results of Dynamic Effects
	LRL		Analysis & Interpretation of Gaseous Radioactivities
	LRL		The Gasbuggy Seismic Source
	LRL		Response of the Navajo and El Vado Dams
	EPNG/USBM/LRL		Reservoir Geology
	EPNG/USBM		Post-Shot Flow Tests
	EPNG/USBM		Reservoir Analysis

- 35 -

```
C. SAFETY REPORTS - (already issued)
```

II	PNE-1009	Ground Water Safety Evaluation
ERC	PNE-1010	Analysis of Ground Motions and Close- in Physical Effects
USBM (BuMines)	PNE-1011	Gasfield and Mine Survey
JAB	PNE-1012	Final Report on Struc- tural Responce
USGS	PNE-1013	Hydrology of Project Gas- buggy Site, Rio Arriba County, New Mexico
USC &GS	PNE-1014	Seismic Measurements
NV	PNE- G-12	Op er ational Safety Aspects

D. SAFETY REPORTS - (to be prepared)

EIC	PNE-1006	On-Site Radiological Safety
USPHS	PNE-1007	Off-Site Radiological Surveillance
ESSA/ARFRO	PNE-1008	Weather and Radiation Predictions

E. ABBREVIATIONS OF ORGANIZATIONS

EIC	Eberline Instruments Corp., Santa Fe, N.M.		
EPNG	El Paso Natural Gas Co., El Paso, Texas		
ERC	Environmental Research Corp., Alexandria, Va.		
ESSA/ARFRO	Environmental Science Services Administration/ Air Resources Field Research Office, Las Vegas, Nev.		
II	Isotopes, Inc., Palo Alto, California		
JAB	John A. Blume & Associates, San Francisco, Calif.		
LRL	Lawrence Radiation Laboratory, Livermore, Calif.		
NV	USAÉC Nevada Operations Office, Las Vegas, Nevada		
SL	Sandia Laboratory, Albuquerque, N.M.		
USAEC	U. S. Atomic Energy Commission		
USBM	Bureau of Mines, U. S. Department of the Interior		
USC &GS	U. S. Coast & Geodedic Survey, Las Vegas, Nev.		
USGS	U. S. Geological Survey, Denver, Colo.		
USPHS	U. S. Public Health Service, Las Vegas, Nev.		

DISTRIBUTION LIST

(TID-4500, Category UC-35)

No. Copies

No. Copies

1	AEC ALBUQUERQUE OPERATIONS OFFICE	t	ENVIRONMENTAL SCIENCE SERVICES
1	AEC BETHESDA TECHNICAL LIBRARY		ADMINISTRATION, LAS VEGAS (COMM.)
}	AEC DIVISION OF BIOLOGY AND MEDICINE	١	ENVIRONMENTAL SCIENCE SERVICES ADMINISTRA
23	ACC DIVISION OF TRACETOR ROCLEAR EXPLOSIVES		TION (AEC)
1	ACC DIVISION OF RAW MATCRIALS	1	ENVIRONMENTAL SCIENCE SERVICE
	ACC LIGRART, HASHINGTON		ADMINISTRATION, MARYLAND (COMM.)
1	AEC MISSION TO THE IAEA	1	GENERAL UTNAMICS/FORT WORTH (AF)
10	AEC NEVADA OPERATIONS OFFICE	۱	GENERAL ELECTRIC COMPANY, CINCINNATI (AEC)
t	AEC NEW YORK OPERATIONS OFFICE	1	GENERAL ELECTRIC COMPANY, SAN JOSE (AEC)
١	AEC PATENT OFFICE	1	GEOLOGICAL SURVEY, FLAGSTAFF (INT)
}	AEC SAN FRANCISCO OPERATIONS OFFICE	1	GEOLOGICAL SURVEY, MENLO PARK (INT)
1	AEC SAVANNAH RIVER OPERATIONS OFFICE	2	GEOLOGICAL SURVEY, PECORA (INT)
١	AEC SCIENTIFIC REPRESENTATIVE, ARGENTINA	2	GULF GENERAL ATOMIC INCORPORATED (ASC)
1	AEC SCIENTIFIC REPRESENTATIVE, BELGIUM	2	HOLMES AND NARVER, INC. (AEC)
1	AEC SCIENTIFIC REPRESENTATIVE, BRAZIL	1	HOLMES & NARVER, INC., LOS ANGELES (AEC)
١	AEC SCIENTIFIC REPRESENTATIVE, ENGLAND	1	IDAHO NUCLEAR CORPORATION (AEC)
1	AEC SCIENTIFIC REPRESENTATIVE, FRANCE	1	INSTITUTE FOR DEFENSE ANALYSIS (ARMY)
1	AIR FORCE AERO PROPULSION LABORATORY (APE)	1	JET PROPULSION LABORATORY (NASA)
1	AIR FORCE AIR UNIVERSITY LIBRARY	3	JOHN A. BLUME AND ASSOCIATES (AEC)
1	AIR FORCE INSTITUTE OF TECHNOLOGY	1	LAWRENCE RADIATION LABORATORY, BERKELEY (AEC)
۱	AIR FORCE TECHNICAL APPLICATIONS CENTER (AEC)	1	LAWRENCE RADIATION LABORATORY, LIVERMORE (AEC)
1	AIR FORCE WEAPONS LABORATORY	١	LIBRARY OF CONGRESS
1	ANES LABORATORY (AEC)	1	LOCKHEED-GEORGIA COMPANY (AF)
1	ARGONNE NATIONAL LABORATORY (AEC)	2	LOS ALAMOS SCIENTIFIC LABORATORY (AEC)
9	ARMY ABERDEEN PROVING GROUND	1	LOYELACE FOUNDATION (AEC)
1	ARMY, COMBAT DEVELOPMENTS COMMAND	1	MASON AND HANGER-SILAS NASON CO., INC. AMARILLO (AEC)
1	ARMY CONSTRUCTION ENGINEERING RESEARCH LABORATORY	1	NASA JOHN F. KENNEDY SPACE CENTER
3	ARMY ENGINEER NUCLEAR CRATERING GROUP	1	NATIONAL BUREAU OF STANDARDS (COMM.)
6	ARMY ENGINEER WATERWATS EXPERIMENT STATION	I	NAVY ATOMIC ENERGY DIVISION
3	ARMY LETTERMAN ARMY INSTITUTE OF RESEARCH	2	NAVY ORDNANCE LABORATORY
1	ARMY MEDICAL FIELD SERVICE SCHOOL	1	NAVY POSTGRADUATE SCHOOL
1	ARMY MEDICAL RESEARCH & DEVELOPMENT COMMAND	1	NAVY SHIP SYSTEMS COMMAND HEADQUARTERS
1	ARMY OFFICE, CHIEF OF ENGINEERS		NUCLEAR ENERGY LIABILITY INSURANCE ASSOCIATION (AEC
1	ARMY PICATINNY ARSENAL	1	NUS CURPORATION (AEC)
1	AKMT WALTER REED MEDICAL CENTER	-	PENNSYI VANIA STATE INIVERSITY (AEC)
1	ATOMIC POWER DEVELOPMENT ASSOCIATES, INC. (AEC)	1	PURI IC HEALTH SERVICE LAS VECAS (NEW)
3	ATOMICS INTERNATIONAL (AEC)	1	PUBLIC HEALTH SERVICE HONTGOMERY (HEW)
1	AUSTRAL OIL COMPANY (AEC)	1	PUBLIC HEALTH SERVICE, ROCKYLLIE (HEW)
2	BATTELLE MEMORIAL INSTITUTE (AEC)	,	PUBLIC HEALTH SERVICE WINCHESTER (HEW)
3	BATTELLE-NORTHWEST (AEC)		PILEPTO PICO NUCL EAR CENTER (AEC)
1	BROOKHAVEN NATIONAL LABORATORY (AEC)	1	PUERTO RICO NUCLEAR CENTER (ACC)
1	BUREAU OF MINES, ALBANT (AEC) BUREAU OF MINES, BARTI ESVILLE (AEC)	1	PURDUE UNIVERSITY (AEC)
1	BUREAU OF MINES, BARTLESVILLE (MED)	1	RADIOPTICS, INC. (AEC)
ì	BUREAU OF MINES, DENVER (AEC)	t	REYNOLDS ELECTRICAL AND ENGINEERING CO. INC. (AEC)
1	BUREAU OF MINES, LARAME (INT)	۱	SANDIA CORPORATION, LIVERNORE (AEC)
ł	CER GEONUCLEAR CORPORATION (AEC)	1	SOUTHWEST RESEARCH INSTITUTE (AFC)
ì	COLUMBIA UNIVERSITY, GROSS (AEC)	1	STANFORD UNIVERSITY (AEC)
١	DASA LIVERMORE	1	SYSTEMS, SCIENCE & SOFTWARE (DASA)
١	DASA WASHINGTON	1	TELEDYNE ISOTOPES (AEC)
t	DEPARTMENT OF AGRICULTURE NATIONAL LIBRARY	1	TEXAS NUCLEAR CORPORATION (AEC)
1	DEPT, OF AGRICULTURE RESEARCH SERVICE	1	UNION CARBIDE CORPORATION (ORGDP) (AEC)
1	DU PONT COMPANY, AIKEN (AEC)	t	UNIVERSITY OF CALIFORNIA, DAVIS, TALLEY (AEC)
1	DU PONT COMPANY, WILMINGTON (AEC)	1	UNIVERSITY OF MINNESOTA (AEC)
ł	EBERLINE INSTRUMENT CORPORATION (AEC)	1	UNIVERSITY OF TENNESSEE (AEC)
1	EG&G, INC., AL BUQUERQUE (AEC)	1	UNIVERSITY OF UTAH (AEC)
١	EG&G, INC., LAS VEGAS (AEC)	1	UNIVERSITY OF WASHINGTON (AEC)
5	EL PASO NATURAL GAS COMPANY (AEC)	1	WESTINGHOUSE ELECTRIC CORPORATION. (WAL) (AEC)
8	ENVIRONMENTAL RESEARCH CORPORATION (AEC)	31	ALC DIVISION OF TECHNICAL INFORMATION EXTENSION
1	ENVIRONMENTAL RESEARCH CORPORATION, LAS YEGAS (AEC)	25	AND TECHNICAL INFORMATION