AP - <u>008</u>

STAGE 1 & 2 REPORTS

DATE: Sept. 10, 1999

R I C E Operating Company

122 West Taylor • Hobbs, New Mexico 88240 Phone: (505)393-9174 • Fax: (505) 397-1471

SFP |

CERTIFIED MAIL RETURN RECEIPT NO. Z 577 009 521

September 13, 1999

Mr. Roger C. Anderson State of NM Energy and Minerals Dept. Oil Conservation Division 2040 South Pacheco St. Santa Fe, NM 87505

> Re: Stage I Abatement Plan Report: Junction I-9 Release Site Hobbs Salt Water Disposal System NE/4 SE/4 Section 09-T19S-R38E Lea County, New Mexico

Dear Mr. Anderson:

Upon receipt of NMOCD approval for the Stage I Abatement Plan for the I-9 Release Site, Rice Operating Company (ROC) bid and then contracted with ARCADIS Geraghty & Miller to perform a sampling event and compose the Stage I Abatement Plan Report.

The sampling event of July 7, 1999 did confirm the presence of BTEX in levels higher than the NM WQCC limits in the two down-gradient monitor wells. Because of this result and because the NMOCD subsequently requested (August 10, 1999), ROC contracted through Arcadis Geraghty & Miller to drill an additional down-gradient monitor well in order to more exactly define groundwater impact. The results of the new boring (MW4) and its groundwater analytical results are included in the enclosed Stage I Abatement Report.

The enclosed ARCADIS Geraghty & Miller report compiles information acquired since the discovery of groundwater impact at the I-9 Release Site and incorporates the NMOCD requests described in the May 24, 1999 letter and the August 10, 1999 letter.

ROC I-9 Release Site Stage I Abatement Plan Report September 13, 1999 Page 2

ROC and Arcadis Geraghty & Miller concur that the area of groundwater impact has been adequately delineated with the drilling, completion, and sampling of MW4. The results of water samples from MW4 indicate that BTEX concentrations are non-detectable at this location.

ROC and ARCADIS Geraghty & Miller concur that the vadose zone impact has been adequately delineated with the previous borings. Further evaluation will be conducted and documented as excavation occurs during the Stage II Abatement Work Plan.

ROC will await the NMOCD's response to this Stage I Abatement Report before any further activities will be scheduled for this site. Upon approval of the Stage I Abatement Report, ROC will prepare and submit a Stage II Abatement Work Plan, describing the remedial activities planned for this site.

As always, the Hobbs and Santa Fe offices of the NMOCD will be notified at least 48 hours in advance of any significant event scheduled for this site.

If you have any questions, please contact me at 505-393-9174.

Sincerely,

2

Carolyn Doren Haynes

Carolyn Doran Haynes Operations Engineer

Enclosures Cc: KH, LBG, F. McCallum, file, Mr. Chris Williams, OCD Hobbs Office

Junction 1-9 Release Site

Stage 1 Abatement Report (Site Assessment Investigation)

,, î.

. 🔿

5

10 September 1999

PREPARED FOR

RECEIVED SEP 1 4 1999 Environmental Bureau Oil Conservation Division

Junction 1-9 Release Site

Stage 1 Abatement Report (Site Assessment Investigation)

Prepared for:

Rice Operating Company Hobbs, New Mexico

Prepared by:

ARCADIS Geraghty & Miller Inc 1030 Andrews Hwy. Suite 120 Midland Texas 79701 Tel 915 699 1381 Fax 915 699 1978

Our Ref.: MT000591.0001

Date: 10 September 1999

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. Any dissemination, distribution, or copying of this document is strictly prohibited.

Table of Contents

1.	INTRODUCTION 1						
2.	SITE HISTORY 1						
3.	GEOLOGY AND HYDROGEOLOGY 1						
4.	FIELD ACTIVITIES AND METHODOLOGY						
	4.1	Excavation of Soil	2				
	4.2	Installation and Sampling of Boreholes	3				
	4.3	Installation and Sampling of Monitor Wells	3				
5.	LAB	ORATORY ANALYTICAL RESULTS	4				
	5.1	Soil Sample Analytical Results	4				
	5.2	Groundwater Sample Analytical Results	5				
6.	HEA	ALTH AND SAFETY	6				
7.	col	NCLUSIONS	6				
	7.1	Soil	6				
	7.2	Groundwater	6				
8.	RECOMMENDATIONS						
9.	REFERENCES 8						

i

Table of Contents

Tables

- 1. Groundwater Elevations
- 2. Soil Sample Analytical Results
- 3. Groundwater Analytical Results

Figures

- 1. Site Location Map
- 2. Monitor Well and Boring Locations
- 3. Potentiometric Surface Map
- 4. Excavation and Soil Boring Locations
- 5. Total Petroleum Hydrocarbon Concentrations in Soil
- 6. Highest Benzene Concentrations in Groundwater

Appendices

- A Interim Abatement Communications
- **B** Boring Lithology Logs
- C Monitor Well Construction Diagrams
- D Laboratory Analytical Results
- E Recovery Well Volumes

1. INTRODUCTION

The subject site is a former pipeline connection point on the Rice Operating Company Hobbs Salt Water Disposal System. The pipeline transports produced water from oil and gas leases to a permitted well for disposal by subsurface injection. The site is located in southwest Hobbs, New Mexico approximately 0.6 miles south of the intersection of Grimes Street and Stanolind Road (NE ¼ of the NE ¼ of Section 4, T19S-R38E, Lea County) (Figure 1).

2. SITE HISTORY

A pipeline leak was discovered and repaired at the subject site on June 5, 1998. Notification of an unauthorized release was submitted to the New Mexico Oil Conservation Division (NMOCD) District I Office located in Hobbs, New Mexico. A Stage I Abatement Plan was submitted to NMOCD on January 19, 1999. Interim abatement site activities including assessment of impacts to soil and groundwater and excavation of impacted soil were conducted from August 24, 1998 to September 2, 1999. Recovery of phase-separated hydrocarbons from groundwater has been conducted from January 18 to May 7, 1999. A total of four monitor wells, one recovery well and nine boreholes was installed at the subject site (Figure 2). Correspondence between Rice Operating and the NMOCD is included in Appendix A.

3. GEOLOGY AND HYDROGEOLOGY

The Ogallala Formation is the principal source of groundwater in the subject area. Depth to groundwater in Lea County ranges from approximately 12 feet below ground surface (bgs) to approximately 300 feet bgs. The Ogallala consists of predominantly coarse fluvial conglomerate and sandstone and fine-grained Eolian siltstone and clay. Where present in the subject area, the Ogallala unconformably overlies Triassic redbeds. The regional and site groundwater gradient (Figure 3) is to the south/southeast.

Depth to groundwater at the subject site is approximately 31 feet bgs. Groundwater elevations measured in the three monitor wells at the subject site are shown in Table 1.

Subsurface geology in the subject area consists of approximately one foot of light brown, fine-grained, calcareous sand underlain by white to gray caliche to a depth of approximately 15 feet bgs. The caliche is underlain by predominantly gray limestone and silty caliche to a depth of approximately 32 feet and red-brown and light brown to pink fine-grained sand. Boring lithology logs are included in this report in Appendix B.

Stage 1 Abatement Report (Site Assessment Investigation)

Rice Operating Company Hobbs, New Mexico

1

Stage 1 Abatement Report (Site Assessment Investigation)

Rice Operating Company Hobbs, New Mexico

Rice Operating Company conducted a field search and review of the New Mexico State Engineer water well database. No evidence of impact to surface water bodies was identified. Two stock wells were located near the subject. One well is located approximately 1200 feet northwest of the site, and one well is located approximately 3500 feet southeast of the site.

Table 1
GROUNDWATER ELEVATIONS
Junction I-9 Site
HOBBS, NEW MEXICO

MONITORING WELL	TOP OF CASING	DATE	DEPTH TO GROUNDWATER	WATER ELEVATION
	(feet)*		(feet)*	(feet)*
MW-1	3595.37	01/12/99	31.75	3563.62
MW-1	3595.37	01/16/99	32.04	3563.33
MW-1	3595.37	08/31/99	29.03	3566.34
MW-2	3595.58	01/12/99	31.82	3563.76
MW-2	3595.58	01/16/99	32.04	3563.54
MW-2	3595.58	08/31/99	28.89	3566.69
MW-3	3595.62	01/12/99	30.58	3565.04
MW-3	3595.62	01/16/99	31.85	3563.77
MW-3	3595.62	08/31/99	26.24	3569.38
MW-4	3595.15	09/02/99	28.98	3566.17

*Based on survey data provided by Rice Operating Company. Used surveyed benchmark = top of casing on MW-3.

4. FIELD ACTIVITIES AND METHODOLOGY

Field activities were conducted between August 12, 1998 and September 2, 1999. Field activities included drilling and soil sampling of nine boreholes, drilling and sampling of four monitor wells, drilling of one recovery well and recovery of phaseseparated hydrocarbons from the recovery well. All field activities were performed in accordance with the Stage 1 Abatement Plan (Site Assessment Investigation) as approved by the NMOCD. Photographs of field activities are included in Appendix C.

4.1 Excavation of Soil

Excavation activities were performed at the site between August 24, 1998 and September 21, 1998 to identify the vertical extent of impact. Where excavated, impacted soils were observed to a depth of at least 16 feet bgs. The soil sample

obtained from the deepest point of the excavation exhibited an organic vapor meter (OVM) reading of 264 parts per million (ppm). The area of excavation is shown in Figure 4.

4.2 Installation and Sampling of Boreholes

A total of nine boreholes (B-1 through B-9) was drilled at this location (Figure 2). Boreholes B-1 through B-7 were drilled under the direction of Enercon Services Inc. Borehole lithology descriptions are included in Appendix B. Soil samples were screened in the field for volatile organic compounds (VOCs) using an OVM, and were inspected for the presence of staining or odor. The soil borings encountered groundwater at depths ranging from approximately 31 feet to 33 feet bgs. Borings B-1 and B-2 encountered phase-separated hydrocarbons on top of the groundwater.

A minimum of two soil samples was collected from each of the boreholes and submitted for analysis for benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) using USEPA Method 8021B and 8015B, respectively.

Boreholes B-8 and B-9 were installed under the direction of Rice Operating Company for the purpose of identifying the recovery well location. No soil samples from boreholes B-8 and B-9 were submitted for laboratory analysis.

4.3 Installation and Sampling of Monitor Wells

A total of four monitor wells and one recovery well was installed in the subject area. Monitor well locations are shown in Figure 2.

Monitor wells were constructed using 2-inch inside-diameter Schedule 40 PVC casing. The recovery well was constructed of 4-inch inside-diameter Schedule 40 PVC casing. The wells were constructed with fifteen feet of slotted PVC casing, 10 feet below top of groundwater and five feet above top of groundwater. The wells were sand-packed with a five-foot bentonite plug placed immediately above the sand pack. The wells were grouted above the bentonite plug with cement containing 3-5% bentonite and completed with a flush-mounted cover. Monitor well construction diagrams are included in Appendix D.

Groundwater samples were collected from MW-1, MW-2 and MW-3 on January 16, 1999 and analyzed for volatile organics, semi-volatile organics, general chemistry and

metals using USEPA Methods 8260, 8270 C, 325.3, 4500, 150.1, 120.1, 375.4, 160.1, and 6010B.

MW-1 and MW-2 were resampled on July 7, 1999 to determine if BTEX concentrations were representative of downgradient aquifer conditions. The groundwater samples were submitted for analysis for BTEX using USEPA Method 8021B.

MW-4 was sampled on September 2, 1999 and analyzed for volatile organics, semi-volatile organics, general chemistry and metals using USEPA Methods 8260, 8270 C, 325.3, 4500, 150.1, 120.1, 375.4, 160.1, and 6010B.

5. LABORATORY ANALYTICAL RESULTS

5.1 Soil Sample Analytical Results

Soil sample analytical results are summarized in Table 2. Laboratory analytical results are included in Appendix E.

		OIL SAMI	ULANADI	IICALINE			
Boring	Depth (feet)	OVM Reading	Benzene mg/kg	Toluene mg/kg	Ethylbenzene mg/kg	Xylenes mg/kg	TPH mg/kg
		(ppm)					
B-1	20-20.6	54	0.684	0.759	11.000	21.700	1,070
	28	261	0.285	1.000	9.170	24.600	1,200
	30	195	1.130	1.030	13.800	19.500	1,130
B-2	25-26	274	0.477	0.716	11.300	25.200	520
	30-31	174	<.050	0.070	0.870	2.510	278
B-3	25	214	<0.200	1.520	6.950	15.900	369
	31-33	8	< 0.050	< 0.050	<0.050	< 0.150	<10
B-4	20	177	< 0.050	0.207	0.178	0.764	50
	30	6.2	< 0.050	< 0.050	<0.050	< 0.150	47
B-5	20	174	< 0.050	0.288	0.188	0.759	22
	25	81	<0.050	0.268	0.264	0.566	69
	30	28	< 0.050	< 0.050	<0.050	<0.150	18
B-6	20-21	290	< 0.050	1.390	1.440	4.660	71
	25-26	237	0.460	4.260	12.200	26.400	234
	30-31	255	0.581	0.130	2.900	4.170	25
B-7	25-26	125	< 0.050	0.100	< 0.050	<0.150	106
	_30	145	< 0.050	0.214	0.865	2.190	10

TABLE 2 SOIL SAMPLE ANALYTICAL RESULTS

Stage 1 Abatement Report (Site Assessment Investigation)

Rice Operating Company Hobbs, New Mexico

4

Benzene concentrations range from not detected to 1.130 milligrams per kilogram (mg/kg). Toluene concentrations range from not detected to 4.260 mg/kg. Ethlybenzene concentrations range from not detected to 13.800 mg/kg. Xylene concentrations range from not detected to 26.400 mg/kg. TPH concentrations (diesel range organics) range from not detected to 1,200 mg/kg.

Boreholes B-8 and B-9 were drilled on January 7, 1998 under the direction of a Rice Operating Company representative to identify the location for placement of a recovery well. No soil or groundwater samples were collected for analysis from B-8 and B-9.

All boreholes were plugged to surface with a cement grout containing a minimum of 3-5% bentonite.

5.2 Groundwater Sample Analytical Results

Groundwater analytical results are summarized in Table 3. Laboratory analytical results are included in Appendix E. Groundwater samples were collected from MW-1, MW-2 and MW-3 on January 16, 1999 and analyzed for volatile organics, semi-volatile organics, general chemistry and metals. Groundwater samples were collected from boreholes B-3 and B-4 on October 21, 1998 and analyzed for BTEX, chlorides and TDS. MW-1 and MW-2 were resampled on July 7, 1999 and analyzed for BTEX to identify if BTEX concentrations detected in the January 16, 1999 downgradient samples were representative of aquifer conditions. MW-4 was sampled September 2, 1999 and submitted for analysis of BTEX, polyaromatic hydrocarbons (PAH), general chemistry and metals.

Benzene was detected in the samples collected from MW-1 and MW-2 on January 16, 1999 and July 7, 1999 at a concentration of 0.008 milligrams per liter (mg/L), 0.017 mg/L, 0.262 mg/L and 0.289 mg/L, respectively. Benzene was detected in the samples collected from B-3 and B-4 at a concentration of 14.2 mg/L and 0.618 mg/L, respectively. Toluene was detected in the samples collected from MW-1 on July 7, 1999 and B-4 at a concentration of 0.01 mg/L and 0.331 mg/L, respectively. Ethylbenzene was detected in the samples collected from MW-1 on January 16, 1999 and July 7, 1999 at a concentration of 0.032 mg/L, 0.007 mg/L, 0.286 mg/L and 0.061 mg/L, respectively. Ethylbenzene was detected in the samples collected in the samples collected from B-3 and B-4 at a concentration of 1.31 mg/L and 0.182 mg/L, respectively. Xylenes were detected in the samples collected from MW-2 on January 16, 1999 and July 7, 1999 at a concentration of 0.012 mg/L, 0.012 mg/L, 0.131 mg/L, and 0.008 mg/L, respectively. Xylenes were detected in the samples collected from B-3 and B-4 at a concentration of 0.012 mg/L, 0.012 mg/L, 0.131 mg/L, and 0.008 mg/L, respectively. Xylenes were detected in the samples collected from B-3 and B-4 at a concentration of 0.012 mg/L, 0.121 mg/L, 0.131 mg/L, and 0.008 mg/L, respectively. Xylenes were detected in the samples collected from B-3 and B-4 at a concentration of 0.012 mg/L, 0.012 mg/L, 0.131 mg/L, and 0.008 mg/L, respectively. Xylenes were detected in the samples collected from B-3 and B-4 at a concentration of 0.012 mg/L, 0.012 mg/L, 0.131 mg/L, and 0.008 mg/L, respectively. Xylenes were detected in the samples collected from B-3 and B-4 at a concentration of 0.026 mg/L, respectively. 1,2,4-trimethylbenzene

Stage 1 Abatement Report (Site Assessment Investigation)

was detected in the January 1999 sample collected from MW-1 at a concentration of 0.007 mg/L. No other analyzed organic compounds were detected.

No BTEX or PAH compounds were detected in the water sample collected from MW-4 on September 2, 1999.

Naturally-occurring inorganic analytes (metals, chlorides, pH, sulfate, TDS, calcium, potassium, bicarbonate, manganese and sodium) were detected in the groundwater samples collected from MW-1, MW-2, MW-3 and MW-4.

6. HEALTH AND SAFETY

All site activities were performed in accordance with Occupational Safety and Health Administration (OSHA) standards. All on-site personnel were required to wear a hard hat, safety glasses and steel-toe shoes during work activities.

7. CONCLUSIONS

7.1 Soil

The vertical extent of hydrocarbon-impacted soil ranges from approximately 25 to 31 feet bgs. Based on analytical data and field screening (OVM readings, odor and staining) the horizontal extent of hydrocarbon-impacted soil has been identified north, south and east of the release site. Delineation of the extent of hydrocarbon-impacted soil to the west will be performed in conjunction with Stage II Abatement activities. Figure 5 is a map of TPH concentrations in soil at a depth of 20-25 feet bgs. If more than one sample was analyzed from this interval (for example 20 feet bgs and 25 feet bgs), the analytical results from the deepest sample were used.

7.2 Groundwater

The regional and site groundwater gradient is to the south/southeast. Depth to groundwater at the subject site is approximately 31 feet bgs.

Phase-separated hydrocarbons were measured in Boreholes B-1 and B-2 and are present in recovery well RW-1. To date, approximately 0.796 gallons of phase-separated hydrocarbons have been removed from RW-1. A summary of recovery volumes is included in Appendix F.

Stage 1 Abatement Report (Site Assessment Investigation)

Benzene was detected at a concentration above the New Mexico Water Quality Control Commission (20 NMAC 6.2 3-103) standard of 0.01 mg/L in the sample collected from MW-2 on January 16, the samples collected from MW-1 and MW-2 on July 7, 1999 and the samples collected from B-3 on B-4. Figure 6 is an isopleth map showing benzene concentrations. Because all of the wells/boreholes were not sampled during each sampling event, the highest concentration of benzene detected in each well/borehole was used.

Ethylbenzene and xylenes were detected in the sample collected from B-3 at concentrations above the 20 NMAC 6.2 3-103 standard of 0.75 mg/L and 0.62 mg/L, respectively.

No BTEX or PAH compounds were detected in the sample collected from monitor well MW-4.

No other organic compounds analyzed were detected above 20 NMAC 6.2 3-103 standards.

Naturally-occurring inorganic analytes (metals, chlorides, pH, sulfate, total dissolved solids, calcium, potassium, bicarbonate, manganese and sodium) were detected in the groundwater samples collected from MW-1, MW-2 and MW-3 on January 16, 1999. Aluminum, iron and manganese were detected in MW-1, MW-2 and MW-3 above 20 NMAC 6.2 3-103 standards of 5.0 mg/L, 1.0 mg/L, and 0.2 mg/L, respectively. Barium was detected above the 20 NMAC 6.2 3-103 standard of 1.0 mg/L in the sample collected from MW-3. Total dissolved solids were detected above the 20 NMAC 6.2 3-103 standard of 1000 mg/L in the samples collected from MW-2 and MW-2 and MW-2 and MW-3 and B-3 and B-4. Chlorides were detected in the sample collected from B-4 above the 20 NMAC 6.2 3-103 standard of 250 mg/L.

The same inorganic analytes (metals, chlorides, pH, sulfate, total dissolved solids, calcium, potassium, bicarbonate, manganese and sodium) were detected in the groundwater sample collected from new well MW-4 on September 2, 1999. Iron was detected at a concentration above the 20 NMAC 6.23-103 standard of 1.0 mg/L. Total dissolved solids for MW-4 were reported at 770 parts per million (ppm), which is below the NMAC standard of 1000 ppm.

No other inorganic compounds analyzed were detected above 20 NMAC 6.2 3-103 standards.

Stage 1 Abatement Report (Site Assessment Investigation)

8. **RECOMMENDATIONS**

The drilling of an additional downgradient monitor well, referred to as MW-4, has delineated the horizontal extent of benzene concentrations above 20 NMAC 6.2 3-103 standards. Following review of this data and approval by NMOCD that no further assessment activities be performed at the subject site, Rice Operating Company will submit a Stage II Abatement Plan to NMOCD for remedial activities at the site. Remedial activities will likely include continued recovery of phase-separated hydrocarbons, excavation of hydrocarbon-impacted soil and semi-annual monitoring of groundwater.

9. **REFERENCES**

Groundwater Handbook; United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Research Information; 1992

Hydrology and Hydrochemistry of the Ogallala Aquifer, Southern High Plains, Texas Panhandle and Eastern New Mexico; Report Number 177; Bureau of Economic Geology; 1988

Hydrogeochemistry and Water Resources of the Lower Dockum Group in the Texas Panhandle and Eastern New Mexico; Report Number 161: Bureau of Economic Geology; 1986

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

Stage 1 Abatement Report (Site Assessment Investigation)

TABLE 3GROUNDWATER ANALYTICAL RESULTS

ł

Well Name	MW-1		MW-2		MW-3	MW-4	B-3	B-4
Date Sampled	1/16/99	7/7/99	1/16/99	7/7/99	1/16/99	9/2/99	10/21/98	10/21/98
Compound Name	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
VOCs		<u>``_``_'</u>	<u> </u>	<u>`_``_`</u>	<u>, , , , , , , , , , , , , , , , , , , </u>		<u> </u>	<u>`</u>
Benzene	0.008	0.262	0.017	0.289	ND	ND	14.200	0.618
Bromobenzene	ND	NA	ND	NA	ND	NA	NA	NA
Bromochloromethane	ND	NA	ND	NA	ND	NA	NA	NA
Bromodichloromethane	ND	NA	ND	NA	ND	NA	NA	NA
Bromoform	ND	NA	ND	NA	ND	NA	NA	NA
Bromomethane	ND	NA	ND	NA	ND	NA	NA	NA
n-butylbenzene	ND	NA	ND	NA	ND	NA	NA	NA
sec-butylbenzene	ND	NA	ND	NA	ND	NA	NA	NA
tert-butylbenzene	ND	NA	ND	NA	ND	NA	NA	NA
Carbon tetrachloride	ND	NA	ND	NA	ND	NA	NA	NA
Chlorobenzene	ND	NA	ND	NA	ND	NA	NA	NA
Chlorodibromomethane	ND	NA	ND	NA	ND	NA	NA	NA
Chloroethane	ND	NA	ND	NA	ND	NA	NA	NA
Chloroform	ND	NA	ND	NA	ND	NA	NA	NA
Chloromethane	ND	NA	ND	NA	ND	NA	NA	NA
2-Chlorotoluene	ND	NA	ND	NA	ND	NA	NA	NA
4-Chlorotoluene	ND	NA	ND	NA	ND	NA	NA	NA
1,2-Dibromo-3-chloropropane	ND	NA	ND	NA	ND	NA	NA	NA
1,2-Dibromoethane	ND	NA	ND	NA	ND	NA	NA	NA
Dibromomethane	ND	NA	ND	NA	ND	NA	NA	NA
1,2-Dichlorobenzene	ND	NA	ND	NA	ND	NA	NA	NA
1,3-Dichlorobenzene	ND	NA	ND	NA	ND	NA	NA	NA
1,4-Dichlorobenzene	ND	NA	ND	NA	ND	NA	NA	NA
Dichlorodifluoromethane	ND	NA	ND	NA	ND	NA	NA	NA
1,1-Dichloroethane	ND	NA	ND	NA	ND	NA	NA	NA
1,2-Dichlorethane	ND	NA	ND	NA	ND	NA	NA	NA
1,1-Dichloroethene	ND	NA	ND	NA	ND	NA	NA	NA
cis-1,2-dichloroethene	ND	NA	ND	NA	ND	NA	NA	NA
trans-1,2-dichloroethene	ND	NA	ND	NA	ND	NA	NA	NA
1,2-Dichloropropane	ND	NA	ND	NA	ND	NA	NA	NA
1,3-Dichloropropane	ND	NA	ND	NA	ND	NA	NA	NA
2,2-Dichloropropane	ND	NA	ND	NA	ND	NA	NA	NA
1,1-Dichloropropene	ND	NA	ND	NA	ND	NA	NA	NA
Ethylbenzene	0.032	0.286	0.007	0.061	ND	ND	1.310	0.182
Hexachlorobutadiene	ND	NA	ND	NA	ND	NA	NA	NA
Isopropylbenzene	ND	NA	ND	NA	ND	NA	NA	NA
p-isopropytoluene	ND	NA	ND	NA	ND	NA	NA	NA
Methylene chloride	ND	NA	ND	NA	ND	NA	NA	NA
Naphthalene	ND	NA	ND	NA	ND	NA	NA	NA
n-propylbenzene	ND	NA	ND	NA	ND	NA	NA	NA
Styrene	ND	NA	ND	NA	ND	NA	NA	NA
1,1,1,2-Tetrachloroethane	ND	NA	ND	NA	ND	NA	NA	NA
1,1,2,2-Tetrachloroethane	ND	NA	ND	NA	ND	NA	NA	NA
Tetrachloroethene	ND	NA	ND	NA	ND	NA	NA	NA

2

1

TABLE 3 GROUNDWATER ANALYTICAL RESULTS

i.

Well Name	MW-1		MW-2		MW-3	MW-4	B-3	B-4
Date Sampled	1/16/99	7/7/99	1/16/99	7/7/99	1/16/99	9/2/99	10/21/98	10/21/98
Compound Name	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Toluene	ND	0.01	ND	< 0.005	ND	ND	< 0.050	0.331
1,2,3-Trichlorobenzene	ND	NA	ND	NA	ND	NA	NA	NA
1,2,4-Trichlorobenzene	ND	NA	ND	NA	ND	NA	NA	NA
1,1,1-Trichloroethane	ND	NA	ND	NA	ND	NA	NA	NA
1,1,2-Trichloroethane	ND	NA	ND	NA	ND	NA	NA	NA
Trichloroethene	ND	NA	ND	NA	ND	NA	NA	NA
Trichlorofluoromethane	ND	NA	ND	NA	ND	NA	NA	NA
1,2,3-Trichloropropane	ND	NA	ND	NA	ND	NA	NA	NA
1,2,4-Trimethylbenzene	0.007	NA	ND	NA	ND	NA	NA	NA
1,3,5-Trimethylbenzene	ND	NA	ND	NA	ND	NA	NA	NA
Vinyl chloride	ND	NA	ND	NA	ND	NA	NA	NA
Xylenes, total	0.012	0.131	0.012	0.008	ND	ND	0.78	0.226
Acetone	ND	NA	ND	NA	ND	NA	NA	NA
Carbon disulfide	ND	NA	ND	NA	ND	NA	NA	NA
Vinyl acetate	ND	NA	ND	NA	ND	NA	NA	NA
2-Butanone	ND	NA	· ND	NA	ND	NA	NA	NA
1,2-Dichloroethene	ND	NA	ND	NA	ND	NA	NA	NA
2-Chloethylvinylether	ND	NA	ND	NA	ND	NA	NA	NA
4-Methyl-2-pentanone	ND	NA	ND	NA	ND	NA	NA	NA
cis-1,3-dichloropropene	ND	NA	ND	NA	ND	NA	NA	NA
trans-1,3-dichloropropene	ND	NA	ND	NA	ND	NA	NA	NA
2-Hexanone	ND	NA	ND	NA	ND	NA	NA	NA
Methyl tert butyl ether	ND	NA	ND	NA	ND	NA	NA	NA
							· · · ·	
<u>SVOCs</u>								
Acenaphthene	ND	NA	ND	NA	ND	ND	NA	NA
Acenaphthylene	ND	NA	ND	NA	ND	ND	NA	NA
Aniline	ND	NA	ND	NA	ND	NA	NA	NA
Anthracene	ND	NA	ND	NA	ND	NA	NA	NA
Benzo(a)anthracene	ND	NA	ND	NA	ND	ND	NA	NA
Benzo(b)fluoranthene	ND	NA	ND	NA	ND	ND	NA	NA
Benzo(k)fluoranthene	ND	NA	ND	NA	ND	ND	NA	NA
Benzo(a)pyrene	ND	NA	ND	NA	ND	ND	NA	NA
Benzoic acid	ND	NA	ND	NA	ND	NA	NA	NA
Benzo(g,h,1)perylene	ND	NA	ND	NA	ND	ND	NA	NA
Benzyl alcohol	ND	NA	ND		ND	NA	NA	NA
4-Bromophenylphenyl ether	ND	NA	ND ·	NA NA	ND	NA	NA	NA
Butybenzylphthalate	ND		ND		ND	NA	NA	NA
di-n-butyl phthalate	ND		ND			NA	NA	NA
						NA	NA	
4-Chloroaniline	ND					NA	NA	NA
bis(2-chloroethoxy)methane					ND	NA		NA NA
Dis(2-chloroethyl)ether	ND ND	NA NA						
Dis(2-chloroisopropyl)ether								
4-Unioro-3-methylphenol	ND	NA	ND	NA	ND	NA	NA NA	I NA

TABLE 3GROUNDWATER ANALYTICAL RESULTS

Well Name	MV	V-1	MV	W-2	MW-3	MW-4	B-3	B-4
Date Sampled	1/16/99	7/7/99	1/16/99	7/7/99	1/16/99	9/2/99	10/21/98	10/21/98
Compound Name	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
2-Chloronaphthalene	ND	NA	ND	NA	ND	NA	NA	NA
2-Chlorophenol	ND	NA	ND	NA	ND	NA	NA	NA
4-Chlorophenylphenyl ether	ND	NA	ND	NA	ND	NA	NA	NA
Chrysene	ND	NA	ND	NA	ND	ND	NA	NA
Dibenz(a,h)anthracene	ND	NA	ND	NA	ND	ND	NA	NA
Dibenzofuran	ND	NA	ND	NA	ND	NA	NA	NA
1,2-Dichlorobenzene	ND	NA	ND	NA	ND	NA	NA	NA
1,3-Dichlorobenzene	ND	NA	ND	NA	ND	NA	NA	NA
1,4-Dichlorobenzene	ND	NA	ND	NA	ND	NA	NA	NA
3,3-Dichlorobenzidine	ND	NA	ND	NA	ND	NA	NA	NA
2,4-Dichlorophenol	ND	NA	ND	NA	ND	NA	NA	NA
Diethylphthalate	ND	NA	ND	NA	ND	NA	NA	NA
2,4-Dimethylphenol	ND	NA	ND	NA	ND	NA	NA	NA
Dimethyl phthalate	ND	NA	ND	NA	ND	NA	NA	NA
4,6-Dinitro-2-methylphenol	ND	NA	ND	NA	ND	NA	NA	NA
2,4-Dinitrophenol	ND	NA	ND	NA	ND	NA	NA	NA
2,4-Dinitrotoluene	ND	NA	ND	NA	ND	NA	NA	NA
2,6-Dinitrotoluene	ND	NA	ND	NA	ND	NA	NA	NA
1,2-Diphenylhydrazine	ND	NA	ND	NA	ND	NA	NA	NA
bis(2-ethylhexyl)phthalate	ND	NA	ND	NA	ND	NA	NA	NA
Fluoranthene	ND	NA	ND	NA	ND	ND	NA	NA
Fluorene	ND	NA	ND	NA	ND	ND	NA	NA
Hexachlorobenzene	ND	NA	ND	NA	ND	NA	NA	NA
Hexachlorobutadiene	ND	NA	ND	NA	ND	NA	NA	NA
Hexachloroethane	ND	NA	ND	NA	ND	NA	· NA	NA
Hexachlorocyclopehtadiene	ND	NA	ND	NA	ND	NA	NA	NA
Indeno(1,2,3-cd)pyrene	ND	NA	ND	NA	ND	ND	NA	NA
Isophorone	ND	NA	ND	NA	ND	NA	NA	NA
2-Methylnaphthalene	ND	NA	ND	NA	ND	NA	NA	NA
2-Methylphenol	ND	NA	ND_	NA	ND	NA	NA	NA
4-Methylphenol	ND	NA	ND	NA	ND	NA	NA	NA
Naphthalene	ND	NA	ND	NA	ND	ND	NA	NA
2-Nitroaniline	ND	NA	ND	NA	ND	NA	NA	NA
3-Nitroaniline	ND	NA	ND	NA	ND	NA	NA	NA
4-Nitroaniline	ND	NA	ND	NA	ND	NA	NA	NA
Nitrobenzene	ND	NA	ND	NA	ND	NA	NA	NA
2-Nitrophenol	ND	NA	ND	NA	ND	NA	NA	NA
4-Nitrophenol	ND	NA	ND_	NA	ND	NA	NA	NA
N-nitrosodiphenylamine	ND	NA	ND	NA	ND	NA	NA	NA
N-nitroso-di-n-propylamine	ND	NA	ND	NA	ND	• NA	NA	NA
Di-n-octyl phthalate	ND	NA	ND	NA	ND	NA	NA	NA
Pentachlorophenol	ND	NA	ND	NA	ND	NA	NA	NA
Phenanthrene	ND	NA	ND	NA	ND	ND	NA	NA
Phenol	ND	NA	ND	NA	ND	NA	NA	NA
Pyrene	ND	NA	ND	NA	ND	ND	NA	NA

TABLE 3GROUNDWATER ANALYTICAL RESULTS

Well Name	MW-1		MW-2		MW-3	MW-4	B-3	B-4
Date Sampled	1/16/99	7/7/99	1/16/99	7/7/99	1/16/99	9/2/99	10/21/98	10/21/98
Compound Name	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Pyridine	ND	NA	ND	NA	ND	NA	NA	NA
1,2,4-Trichlorobenzene	ND	NA	ND	NA	ND	NA	NA	NA
2,4,5-Trichlorophenol	ND	NA	ND	NA	ND	NA	NA	NA
2,4,6-Trichlorophenol	ND	NA	ND	NA	ND	NA	NA	NA
· · · · · ·								
<u>General Chemistry</u>								
Resistivity	0.74	NA	0.58	NA	0.53	0.0009	NA	NA
Specific Gravity	0.982	NA	0.985	NA	0.996	NA	NA	NA
Chloride	128	NA	230	NA	195	100	230	2400
Carbonate (CaCO ₃)	ND	NA	ND	NA	ND	ND	NA	NA
Bicarbonate (CaCO ₃)	332	NA	322	NA	370	220	NA	NA
pH	7.29	NA	7.51	NA	7.51	NA	NA	NA
Sulfate	318	NA	372	NA	483	180	NA	NA
Total dissolved solids	890	NA	1190	NA	1340	770	1710	5460
Calcium	727	NA	578	NA	1255	93	NA	NA
Potassium	3	NA	30	NA	8	2.4	NA	NA
Sodium	144	NA	171	NA	310	124	NA	NA
<u>Metals</u>								
Silver	ND	NA	ND	NA	ND	ND	NA	NA
Aluminum	12.3	NA	16.5	NA	32.7	3.1	NA	NA
Arsenic	0.019	NA	0.025	NA	0.028	0.03	NA	NA
Barium	0.87	NA	0.970	NA	3.91	0.11	NA	NA
Cadmium	ND	NA	ND	NA	ND	ND	NA	NA
Cobalt	ND	NA	ND	NA	ND	ND	NA	NA
Chromium	ND	NA	0.02	NA	0.03	ND	NA	NA
Copper	0.02	NA	0.02	NA	0.02	0.03	NA	NA
Iron	9.34	NA	11.6	NA	26.4	2.4	NA	NA
Mercury	ND	NA	ND	NA	ND	ND	NA	NA
Manganese	0.214	NA	0.288	NA	0.535	0.03	NA	NA
Molybdenum	ND	NA	ND	NA	0.03	0.02	NA	NA
Nickel	0.02	NA	ND	NA	0.05	0.1	NA	NA
Lead	0.005	NA	0.007	NA	0.013	0.008	NA	NA
Selenium	ND	NA	ND	NA	ND	0.02	NA	NA
Zinc	0.05	NA	0.04	NA	0.04	0.04	NA	NA

All results are reported in milligrams per liter (mg/L)

NA - Not analyzed

ND - Not detected

APPENDIX A

INTERIM ABATEMENT COMMUNICATIONS

NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

May 24, 1999

CERTIFIED MAIL RETURN RECEIPT NO: Z 357 870 129

RICE OPERATING HOBBS, NM

Carolyn Doran Haynes Operations Engineer Rice Operating Company 122 West Taylor Hobbs, New Mexico 88240

RE: Stage 1 Abatement Plan Junction I-9 Release Site NE 1/4 SE 1/4 Section 09-Ts19s-R38e Hobbs Salt Water Disposal System Lea County, New Mexico

Dear Ms. Haynes:

The New Mexico Oil Conservation Division (NMOCD) is in receipt of Rice Operating Company's (ROC) letter dated April 23, 1999 concerning public notice requirements for the above captioned Stage 1 Abatement Plan. As of this date, NMOCD has not received any response to the public notices issued. The interim investigation and remediation activities conducted to date are satisfactory and the Stage 1 Abatement Plan i.e. (Investigation Plan) submitted on January 19, 1999 is hereby approved with the following conditions:

1. All final soil samples submitted for laboratory analyses shall be sampled for BTEX (8021), TPH (418.1 or 8015 GRO & DRO) and Chlorides.

2. ROC shall complete the new monitor well(s) as follows:

- a. At least 15 feet of well screen shall be placed across the water table interface with 5 feet of the well screen above the water table and 10 feet of the well screen below the water table.
- b. An appropriately sized gravel pack shall be set in the annulus around the well screen from the bottom of the hole to 2-3 feet above the top of the well screen.
- c. A 2-3 foot bentonite plug shall be placed above the gravel pack.
- d. The remainder of the hole shall be grouted to the surface with cement containing 3-5% bentonite.
- e. A concrete pad shall be placed at the surface around the well. The well shall be installed with a suitable protective locking device.
- f. The well(s) shall be developed after construction using EPA approved procedures.

Carolyn Doran Haynes May 24, 1999 Page 2

- 3. No less than 48 hours after the well(s) are developed, ground water from all monitor well(s) shall be purged, sampled and analyzed for concentrations of benzene, toluene, ethylbenzene, xylene, polycyclic aromatic hydrocarbons (PAH), total dissolved solids (TDS) and New Mexico Water Quality Control Commission (WQCC) metals and major cations and anions using EPA approved methods and quality assurance/quality control (QA/QC) procedures.
- 4. All wastes generated during the investigation shall be disposed of at an OCD approved facility.
- 5. ROC shall submit the results of the investigation to the OCD Santa Fe Office by July 23, 1999 with a copy provided to the OCD Hobbs District Office and shall include the following investigative information:
 - a. A description of all investigation, remediation and monitoring activities which have occurred including conclusions and recommendations.
 - b. A geologic/lithologic log and well completion diagram for each monitor well.
 - c. A water table potentiometric map showing the location of the leaks and spills, excavated areas, monitor wells, and any other pertinent site features as well as the direction and magnitude of the hydraulic gradient.
 - d. Isopleth maps for contaminants of concern which were observed during the investigations.
 - e. Summary tables of all ground water quality sampling results and copies of all laboratory analytical data sheets and associated QA/QC data taken within the past year.
 - f. The quantity and disposition of all recovered product and/or wastes generated.
- 6. ROC will notify the OCD Santa Fe office and the OCD District office at least 48 hours in advance of all scheduled activities such that the OCD has the opportunity to witness the events and/or split samples during OCD's normal business hours.

Please be advised that NMOCD approval of this plan does not relieve ROC of liability should their investigations and/or operations fail to adequately investigate and/or remediate contamination that poses a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve ROC of responsibility for compliance with any other federal, state, or local laws and/or — regulations.

If you have any questions, please contact Wayne Price of my staff at (505) 827-7155.

Sincerely,

Roger C. Anderson Environmental Bureau Chief

RCA/wp cc: OCD Hobbs Office Bill McNeil-Landowner

RICE Operating Company

122 West Taylor • Hobbs, New Mexico 88240 Phone: (505)393-9174 • Fax: (505) 397-1471

CERTIFIED MAIL RETURN RECEIPT NO: P 622 726 279

January 19, 1999

Mr. Wayne Price New Mexico Energy and Minerals Department Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505

Re: Stage I Abatement Plan Junction I-9 Release Site Unit Letter I, Section 9 of T19S R38E Hobbs Salt Water Disposal System Lea County, New Mexico

Mr. Price:

Enclosed is the Stage I Abatement Plan required by your letter dated December 17, 1998. I have also enclosed a draft Notice of Publication. Within 15 days after the New Mexico Oil Conservation Division (OCD) determines that the Stage I Abatement Plan is administratively complete, Rice Operating Company will issue public notice in a form approved by OCD in a newspaper of general circulation in the county in which the release occurred, and in a newspaper of general circulation in the State. Prior to public notice, Rice shall give written notice, as approved by the OCD, of this Stage I Abatement Plan to the following persons:

- Surface owners of record within 1 mile of the perimeter of the geographic area where the standards and requirements are exceeded.
- The County Commission for the geographic area where the standards and requirements are exceeded is located.
- The appropriate city official(s) for the geographic area where the standards and requirements are exceeded is located.

- Those persons, as identified by the Director, who have requested notification.
- The New Mexico Trustee for Natural Resources, and any other local, state, or federal governmental agency affected, as identified by the Director, which shall be notified by certified mail.
- The appropriate Governor or President of any Indian Tribe, Pueblo or Nation if the geographic area where the standards and requirements are exceeded is located or partially located within tribal boundaries or within 1 mile of the tribal boundaries, who shall be notified by certified mail.

Please contact me at (505) 393-9174 with your comments or suggested changes.

Sincerely,

Cc.

7. Wesley Root

F. Wesley Root Projects Manager

Enclosure: Notice of Publication

Mr. Chris Williams, NMOCD District I Office Mr. Loy Goodheart, Rice Operating Company Mr. Ken Hasten, Rice Operating Company File

NOTICE OF PUBLICATION

State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division

Notice is hereby given that pursuant to New Mexico Oil Conservation Division Regulations, the following Stage I Abatement Plan has been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

Rice Operating Company, F. Wesley Root (505) 393-9174, 122 West Taylor, Hobbs, New Mexico 88240, has submitted a Stage I Abatement Plan Proposal for Pipeline Junction I-9, Hobbs Salt Water Disposal System, 0.6 miles southwest of Hobbs in the NE/4, SE/4 of Section 09, Township 19 South, Range 38 East, Lea County, New Mexico. The site is approximately one acre where Rice Operating Company operates a saltwater disposal pipeline. Light Non-Aqueous Phase Liquid (LNAPL) has been observed on the ground water. The Stage I Abatement Plan presents the following subsurface investigation activities: determine site geology and hydrogeology, and physical properties of the aquifer; conduct a registered water well search within a one mile radius of the site; installation of monitoring wells to delineate impact at the site; collect soil and groundwater samples for laboratory analysis from each monitor well to determine the magnitude of impact to ground water; survey all well locations to establish a relative datum; obtain depth to ground water measurements; calculate the ground water gradient and flow direction; and prepare a report summarizing field activities and laboratory results.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The Stage I Abatement Plan may be viewed at the above address or at the Oil Conservation Division District Office, 1000 West Broadway, Hobbs, New Mexico 88240, Telephone (505) 392-4046, between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed Stage I Abatement Plan, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him.

RICE Operating Company

122 West Taylor • Hobbs, NM 88240 Phone: (505) 393-9174 • Fax: (505) 397-1471

April 23, 1999

Mr. Wayne Price NM Energy, Minerals, and Natural Resources Department Oil Conservation Division, Environmental Bureau 2040 S. Pacheco Santa Fe, NM 87505

Stage I Abatement Plan Junction I-9 Release Site Unit Letter I, Section 9 of T19S, R38E Hobbs Salt Water Disposal System Lea County, New Mexico

Mr. Price:

RE:

Attached please find the proof of notification for Rice Operating Company's Stage I Abatement Plan for the junction I-9 Release Site. Included in this package are the affidavits of publication from the three newspapers that were required: Albuquerque Journal, Hobbs News Sun, Lovington Daily Leader; copies of the certified mail return cards from the notification mailed to owners of record within one mile radius of the site; and copies of the certified mail return cards from the notification mailed to "those persons as identified by the Director, who have requested notification."

The public notice was published in these three newspapers on April 9, 1999. It is understood that there is a 30-day waiting period for public comment, and that after the 30 days, the Stage I Abatement Plan will be reviewed for approval or approval with conditions. Rice Operating Company will expect to hear from you the week of May 10, 1999.

Sincerely,

Carolyn Roman Harpen

Carolyn Doran Haynes Operations Engineer

Attachment Cc: KH, JC, LG, file, Mr. Chris Williams, OCD Hobbs District Office

NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

March 25, 1999

CERTIFIED MAIL RETURN RECEIPT NO: Z 357 870 113

Carolyn Doran Haynes Operations Engineer Rice Operating Company 122 West Taylor Hobbs, New Mexico 88240

RE: Stage I Abatement Plan Junction I-9 Release Site NE 1/4 SE 1/4 Section 09-Ts19s-R38e Hobbs Salt Water Disposal System Lea County, New Mexico

Dear Ms. Haynes:

The New Mexico Oil Conservation Division (OCD) has reviewed Rice Operating Company 's (ROC) January 19, 1999 Stage I Abatement Plan for the above referenced site. This document contains ROC's Stage 1 Abatement Plan Proposal for investigating ground water contamination resulting from a salt water disposal pipeline spill at ROC's Junction I-9 Release site.

The OCD has determined that the Stage 1 Abatement Plan Proposal is administratively complete. Before the OCD can issue approval of the Stage 1 proposal, the OCD requires that:

- 1. ROC issue by April 9, 1999 the attached public notice of the Stage 1 proposal in the Albuquerque Journal, Hobbs News Sun and the Lovington Daily Leader pursuant to OCD Rule 19.G.(2).
- 2. Prior to issuing the public notice, ROC will also issue written notice of the Stage 1 proposal pursuant to OCD Rule 19.G.(1). For written notification of "those persons, as identified by the Director, who have requested notification" pursuant to OCD Rule 19.G.(1).(d), enclosed you will find a 3.5" disk containing a "WordPerfect" listing of those persons.

Please provide the OCD with proof of notice upon completing issuance of the written and public notice. If you have any questions, please contact Wayne Price of my staff at (505) 827-7155.

Sincerely,

- alin la

Roger C. Anderson Environmental Bureau Chief

xc: Chris Williams, OCD Hobbs District Office Bill McNeill- Landowner

NOTICE OF PUBLICATION

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Oil Conservation Division Regulations, the following Stage 1 Abatement Plan Proposal has been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

Rice Operating Company, Carolyn Doran Haynes, Operations Engineer, Telephone (505) 393-9174, 122 West Taylor, Hobbs, New Mexico 88240, has submitted a Stage 1 Abatement Plan Proposal for the Pipeline Junction I-9, Hobbs Salt Water Disposal System, located approximately .6 miles southwest of Hobbs, NM in the NE 1/4, SE 1/4 of Section 09, Township 19 South, Range 38 East, NMPM, Lea County, New Mexico. Rice Operating Company operates a salt water disposal pipeline at the site. Phase-separated hydrocarbon (PSH) has been observed on the ground water. The Stage 1 Abatement Plan Proposal presents the following subsurface investigation activities: determine site geology and hydrogeology; conduct a registered water well search within a 1 mile radius of the site; install a minimum of 3 monitoring wells; if necessary, install additional wells; collect soil samples for field screening and/or laboratory analysis from each boring; collect ground water samples for laboratory analysis from each monitoring well; obtain depth to ground water measurements and calculate the ground water gradient and direction; survey all well locations by a professional land surveyor registered in the State of New Mexico; and prepare a report summarizing field activities and laboratory results.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The Stage 1 Abatement Plan Proposal may be viewed at the above address or at the Oil Conservation Division Hobbs District Office, 1625 N. French Drive, Hobbs, New Mexico 88240, Telephone (505) 393-6161 between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed Stage 1 Abatement Plan Proposal, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which written comments may be submitted. 122 West Taylor, Hobbs NM phone: (505) 393-9174 fax: (505) 397-1471

Rice Operating Company

To:	Mr. Chris Williams	From:	F. Wesley Root		
	NMOCD District I Office	·····			
Fax:	ax: (505) 393-0720 Pages 1				
Phon	e (505) 393-6161	Date:	01/14/99		
Re:	Interim Abatement	CC:	Mr. Roger Anderson / Wayne Price		
	Jct I-9, 09-T19S-R38E		NMOCD Environmental Bureau		
	Lea County, NM		NMOCD Santa Fe Office		

• Comments: 48 hour Ground Water Sampling Notification.

The three monitor wells installed on January 7 and 8, 1999 at the above listed site will be sampled by an independent contractor on January 16, 1999. Sampling will be conducted pursuant to item 4 of the NMOCD abatement approval letter dated December 17, 1998 with the following exception. A separate PAH analysis will not be performed since PAH compounds will be included in the volatile and semi-volatile analysis.

7. Weller Root

l

·· ----

.----

TRANSACTION REPORT		
Transmission Transaction(s) completed		
NO. TX DATE/TIME DESTINATION	DURATION PGS. RESULT MODE	
206 JAN. 6 15:46 15053930720	0°00'38"001 OK Normal	

RICE OPERATING COMPANY
122 WEST TAYLOR
HOBBS, NM 88240
Phone: (505) 393-9174
Fax: (505) 397-1471

TO: NMOLD Hobbs Office DATE: 1-6-99
ATTN: Chais Williams
FROM: Wes Root
SUBJECT: Interim Abatement, Jot I-9 Site, 09-7195-R38E, Len Co. NM
COVER PAGE PLUSPAGE(S) TO FOLLOW
COMMENTS: Ro we discussed on Jonuary 4, 1999, instellation of
the three wells to be used for interim abatement at the
Junction I-9 site will begin thursday Jonnan 7, 1999.
The drilling contractor will begin at 7:00 AM. f
understand from our conversition this afternoon that
Paul Kautz, NMOCO representative, may inspect drilling
operations at the site.

• 1

ł

ł

I.

RICE Operating Company

122 West Taylor • Hobbs, New Mexico 88240 Phone: (505)393-9174 • Fax: (505) 397-1471

December 18, 1998

Mr. Wayne Price New Mexico Energy and Minerals Department Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505

Re: Junction I-9 Release Site Unit Letter I, Section 9 of T19S R38E Hobbs Salt Water Disposal System Lea County, New Mexico

Mr. Price:

Thank you for your prompt review and approval of our request to initiate interim abatement measures at the above referenced site. However, based on the contents of your approval letter, there apparently has been a slight misunderstanding as to our conversations on December 15 and 17, 1998. Specifically, the reason we want to initiate interim abatement, why we would like to include monitoring wells, and the number of wells we want to install need to be clarified.

Rice requested interim abatement because it just makes good sense to begin abatement of the crude oil floating on the ground water; we are concerned that the Stage I Abatement approval process will take several months; and pursuant to New Mexico Oil Conservation Division (NMOCD) Rule 19.D.(g), we are allowed, with NMOCD approval, to begin abating water pollution while abatement plan approval is pending.

Rice Operating Company wishes to install a total of three wells, one recovery well and two down gradient monitoring wells as part of the interim abatement measures. As I stated on December 15th, the direction of ground water flow at the site could be accurately determined if there are three wells present. This information would allow us to develop a more accurate Stage I Abatement Plan.

While a potential for the release to have impacted water wells does exist, visual inspection of the two water wells we have identified within a one mile radius of the site to date showed no evidence of adverse impact. Both water wells are used to supply a stock tank. The well I discussed with you on December 15th is located approximately ¼ of a mile northwest of and in an apparent up gradient position relative to the site. The well I found on December 16th is located ³/₄ of a mile down gradient from the release site.

At this time there is no reason to assume that either water well has been adversely affected by our release and their existence had absolutely no bearing on Rice's decision to request installation of monitoring wells. The location of the two wells is shown on the enclosed topographic map.

Therefore, while we appreciate the decision to allow three monitoring wells to be installed, the combination of one recovery well and two monitor wells should be more than adequate for Rice to develop the Stage I Abatement plan. The three wells will be installed pursuant to the conditions specified in the approval letter. A site map showing the proposed locations for the recovery well (RW-1) and two monitoring wells (MW-1 and MW-2) is enclosed.

The two monitoring wells will be initially sampled for the parameters included in condition 4 of your approval letter. If these results are below regulatory limits, Rice requests that the NMOCD allow parameters, such as metals, be removed from future testing.

If you have any questions please feel free to call.

Sincerely,

7. Welesley Root

F. Wesley Root Projects Manager

Enclosures

CC.

Mr. Chris Williams, NMOCD District I Office KH. File

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

CERTIFIED MAIL RETURN RECEIPT NO: P 288 259 090

December 17, 1998

Mr. F. Wesley Root Projects Manager Rice Operating Company (ROC) 122 West Taylor Hobbs, New Mexico 88240

RE: Abatement Plan (AP-8) Requirement Rice Operating Company Hobbs Salt Water Disposal System UL I-Sec 9-Ts19s-R38e Lea County, New Mexico

Dear Mr. Root:

New Mexico Oil Conservation Division (NMOCD) is in receipt of your letter sent by fax dated December 15, 1998 requesting permission to initiate emergency interim abatement measures at the above referenced facility. NMOCD also acknowledges your verbal request pursuant to our telephone conversation on December 17, 1998 to allow three monitor wells to be installed in addition to the one recovery well. It is NMOCD's understanding this decision was made after you confirmed that there is a domestic water well located down gradient from the spill site.

Therefore due to the potential for impacts on down gradient water wells and pursuant to NMOCD Rule 19.D.(g) your request is hereby approved subject to the following conditions:

- 1. All recovery and monitor wells shall be constructed per your drawing, except monitor wells can have different casing size. The annulus above the bentonite plug shall be grouted to the surface with an approved type cement grout containing 3-5% bentonite. Boring logs shall be recorded with all appropriate information.
- 2. Product recovery records shall be maintained and shall include volumes recovered, the product thickness measured before each recovery event, and the disposition of all waste generated. These Field records shall be maintained and submitted in subsequent reports. ROC shall properly retain a sample of the recovered oil for future possible fingerprinting.

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

- 3. NMOCD will allow one recovery well as proposed, and three monitor wells strategically located to determine the groundwater gradient and located a sufficient distance from the recovery well to make a preliminary determination of the down gradient extent of contamination.
- 4. Initial groundwater sampling analysis for all monitor wells shall include volatile organics (Method 8060), Semi-volatile organics (Method 8270), PAH's (Method 8310), WQCC Metals, and General Chemistry (PH, TDS, Conductivity, Major Cations and Anions).
- 5. ROC shall notify the District office 48 hours in advance before commencing any significate activities.
- 6. The above emergency action shall not interfere with the normal abatement plan process pursuant to NMOCD Rule 19.

Please be advised that NMOCD approval of this emergency plan does not relieve ROC of liability should their operations fail to adequately investigate and remediate contamination that poses a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve ROC of responsibility for compliance with any other federal, state, or local laws and/or regulations.

If you require any further information or assistance please do not hesitate to write or call me at (505-827-7155).

Sincerely Yours,

Wayne Piece

Wayne Price-Environmental Bureau

cc: Chris Williams-NMOCD District I Supervisor Bill McNeill-Hobbs

file: O/wp/riceaba1

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

Certified Mail Return Receipt No. Z 357 870 111

December 16, 1998

Mr. Bill McNeill P.O. Box 1058 Hobbs, NM 88241 505-392-8790

Re: Abatement Plan (AP-8) Requirement Rice Operating Company Hobbs Salt Water Disposal System Lea County, New Mexico

Dear Mr. McNeill:

New Mexico Oil Conservation Division (NMOCD) hereby gives notice that NMOCD has required Rice Operating Company to submit an Abatement Plan for the above referenced facility located in Unit Letter I, Section 9-Ts 19s-R38e, pursuant to NMOCD Rule 19 (Prevention and Abatement of Water Pollution). A copy of Rule 19 has been enclosed for your information.

Pursuant to our telephone conversation on December 15, 1998 NMOCD understands that you are the current land owner and that one of your down gradient water wells approximately 1/4 mile away which is used for watering domestic stock has been impacted from this spill. We understand your technical adviser has sampled this well to verify this fact and has indicted to you that ground water movement could be as high as three feet per day. In order to expedite this matter NMOCD respectfully requests that you send us a map showing the location of your well in reference to the spill, the analytical results of any water quality sampling, and information from your technical adviser as to the ground water flow rate.

NMOCD understands you wish to intervene in this case and will copy you on all correspondence concerning this issue. NMOCD is very concerned about any oilfield groundwater contamination in the state of New Mexico and requires that a responsible person abate pollution in accordance with all applicable rules and regulations.

If you require any further information or assistance please do not hesitate to write or call me at (505-827-7155).

Sincerely Yours,

Wayne Price

Wayne Price-Environmental Bureau

cc:

Roger Anderson-Environmental Bureau Chief, Santa Fe, NM Lori Wrotenbery-NMOCD Director Mr. Wes Root-Rice Operating Co.-Hobbs OCD District I Office-Hobbs

attachments-1

file: O/wp/mcneille

RICE Operating Company

122 West Taylor • Hobbs, New Mexico 88240 Phone: (505)393-9174 • Fax: (505) 397-1471

December 15, 1998

Mr. Wayne Price New Mexico Energy and Minerals Department Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505

Re: Junction I-9 Release Site Unit Letter I, Section 9 of T19S R38E Hobbs Salt Water Disposal System Lea County, New Mexico

Mr. Price:

Rice Operating Company requests that the New Mexico Oil Conservation Division approve the installation of a recovery well at the above listed site as an interim abatement measure.

As we discussed during our telephone conversation this morning, the well would be used to recover crude oil floating on top of the water table at the site until an abatement plan pursuant to 19 NMAC 15.A.19 can be approved and implemented. A site map showing the proposed location for the recovery well (RW-1) and well construction diagram are enclosed.

Crude oil would be recovered by manually bailing the well a minimum of three days per week. The initial bailing schedule will be Monday, Wednesday, and Friday. After measuring the volume of crude oil recovered during each bailing event, the recovered fluids will be placed back into the Hobbs Salt Water Disposal System for disposal. A monthly summary of the crude oil volume recovered, including a cumulative total, will be prepared and kept on file at our Hobbs Office.

Your prompt response to this request will greatly assist our abatement efforts. If you have any questions please feel free to call.

Sincerely,

F. Wesley Root

F. Wesley Root Projects Manager

Enclosure

CC.

Mr. Chris Williams, NMOCD District I Office KH. File

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

CERTIFIED MAIL RETURN RECEIPT NO: P 288 259 088

Mr. F. Wesley Root Projects Manager Rice Operating Company (ROC) 122 West Taylor Hobbs, New Mexico 88240

RE: Abatement Plan (AP-8) Requirement Rice Operating Company Hobbs Salt Water Disposal System Lea County, New Mexico

Dear Mr. Root:

The New Mexico Oil Conservation Division (OCD) has reviewed Rice Operating Company's (ROC) Release Notification letter dated October 22, 1998 concerning the discovery of hydrocarbon-impacted ground water on October 20, 1998 located at ROC's Hobbs Salt Water Disposal System Unit letter I, Section 9, Township 19 south, Range 38 east in Lea County, New Mexico.

Pursuant to 19 NMAC 15.A.19.C.1, the OCD requires an abatement plan for the ROC site to abate ground water pollution. To initiate the abatement plan process, the OCD requires that ROC submit to the OCD by January 20, 1999 a Stage 1 abatement plan investigation proposal pursuant to OCD Rule 19.E.1. and OCD Rule 19.E.3.

If you have any questions, please contact Wayne Price of my staff at (505) 827-7155.

Sincerely,

Roger C. Anderson Environmental Bureau Chief

xc: Chris Williams-NMOCD District I Supervisor

DRILLI	ING LOG	Site Name /Location	Well No. B-9	Date Drille 1-7-99	ed: Driller: C. Harrison	Logged by: FWR
RICE Ope	erating Company	Junction I-9	Well Depth:	Boring De	pth: Well Material:	Construction:
122 V Hobbs Ne	West Taylor w Mexico 88240	09-T19S-R38E	Casing Length:	Boring Dia	meter: Casing Size:	Plugged boring
Phone: ((505) 393-9174	Lea Co. New Mexico	N/A Screen Longth:	8"	N/A	total depth to
Fax: (5	505) 397-1471		N/A	Air Rota	iry N/A	surface with bentonite
DEPTH (Feet)	SUBSUR	RFACE LITHOLOGY	Sample Type	OVM (ppm)	REMARKS	Boring
0	Light brown, fine-	grained calcareous sand				
		<i>a</i>				
4			Į		1	
5		· .	Drill Cuttings	>1		
6			I		ł	
- 7	1176 to a 11. 1.4 -	Caliata				
8	white to light gray	Callene				
9			Drill Cuttings	>1		
12						
- 13						
14						
15			Drill Cuttings	>1		
- 16						
10					3	
20			Drill Cuttings	127	Hydrocarbon stain	
21			L			
<u> </u>	, 1997 - 1997 - 1997 - 1997 - 19 97 - 1997		-			
- 23	Indurated red-brow	n silicious sandstone				
⁻ - 24			Drill Cuttings	173	Hydrocarbon stain	
25	Light gray caliche				-	
27						
28						
29						
30			Drill Cuttings	46		
- 31					Depth to Water	
■ <u> </u>	Indurated and har	m silicious candetono	-		0.00 feet LNAPL	
33		an sincious sandstone			gaugea 1-8-99	
34			Drill Cuttings	4		
	Light brown to pinl	k fine-grained sand	l			
37					Bentonite Seal	
- 38					<u>ا</u>	
39			Drill Cuttings	>1		
40						

i

ì

ARCADIS GERAGHTY& MILLER

APPENDIX B

BORING LITHOLOGY LOGS

ENEI 2775 DA	RCON SERVICES, INC. VILLA CREEK, SUITE 120 ALLAS, TX 75234-7420	RE	CORD C)F SU	BSURFACE EXPLORA	TION
Project #:	EV-958	Well/Borin	g #:		B-1 Date Drilled: 1	0/20/98
Project:	Junction I-9 roject: Hobbs SWD System		West Texa Well Servi	s Water ce	Drilling Air Rot Method:	агу
	Lea County, New Mexico	Driller:	Bernie	·	Logged By: SAL	
DEPTH (FEET)	SOIL DESCRIPTION	SAMPLE NUMBER/ TIME	SAMPLE TYPE	OVA (PPM)	REMARKS/SAMP DESCRIPTION	LE
0 	Brown sandy top soil to 6" Brown silty fine SAND 6" to 2' White to tan caliche-soft crumbly					° —
5 	from 2' to 5' Light tan caliche with tine sand 3' to 10'.	1 / 8:45	SS		Sample 1 collected from 4' to 5' using a sp spoon sampling device. Sample was light tan to white caliche.	5
10 	Light tan caliche with tine tan sand from 10' to 15'.	278:55	SS	85	Sample 2 collected from 10' to 12' using a split spoon. Sample was light tan with some gray staining. Some odor.	
15	Light tan fine caliche and sand stained gray, 15' to 20'.	379:00	SS	297	Sample 3 collected from 15' to 16' using a split spoon. Sample was light tan caliche and fine sand stained gray. Strong odor.	
20	Light blue caliche with blue stained chert, very hard from 20' to approximately 20.6 feet. Then sandy	479:10	SS	54	Sample 4 collected from 20' to 20'.6" using a split spoon. Sample was hard light blue stained caliche and chert. Some odor.	20
25	to 25'. Caliche stained blue-gray, some fine sand tan to gray from 25' to	579:40	Core	254	Sample 5 collected from 25' to 26' using a split spoon. Sample was soft caliche and fine sand stained gray. Strong odor.	25
	approximately 28'. Hard Hard red chert stained blue-gray. Caliche stained gray from 28' to 30'.	679:50 7710:00	Core	261 195	Sample 6 collected at 28' using a core sampling tool. Sample was hard red chert and caliche stained blue-gray. Strong odor. Sample 7 collected at 30' using a core	30
	Caliche and sand stained gray from 30' to approximately 32'.	8710:10	Core	110	sampling tool. Sample was power caliche stained gray. Some odor. Sample 8 collected at 32' using a core	
35 [¹	Light tan caliche with chips of pink- ed chert and no odor from 32' to 34'.				sampling tool. Sample was light tan sand and caliche. No staining and no odor.	35
- - - 40 F	Fotal depth of boring, 34 feet. Depth to groundwater, 31.6 feet meas Phase-separated hydrocarbon (PSH),	ured on 10/21/9 0.8 feet, measu	98. Ired on 10/21/9	98		40

ABBREVIATIONS AND SYMBOLS

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger RC - Rock Core

RC - Rock Core THD - Texas Highway Department Cone CT-5' - Continuous Sampler

. · *

HSA - Hollow Stem Auger CFA - Continuous Flight Augers DC - Driving Casing MD - Mud Drilling

2775 D	RCON SERVICES, INC. VILLA CREEK, SUITE 120 ALLAS, TX 75234-7420	RE	CORD C	OF SU	BSURFACE EXPLORA	ΓION			
Project #	: EV-958	Well/Borin	g #:		B-2 Date Drilled: 10	0/20/98			
Project:	Junction I-9 Hobbs SWD System	Drilling Company:	West Texa Well Servi	s Water ce	Drilling Air Rotary Method:				
	Lea County, New Mexico	Driller:	Bernie		Logged By: SAL				
DEPTH	1	SAMPLE	SAMPLE	OVA	REMARKS/SAMP	LE.			
(FEET)	SOIL DESCRIPTION	NUMBER/	TYPE	(PPM)	DESCRIPTION				
0 	Brown sandy top soil to 6"					0			
-	Brown silty fine sand 6" to 2" White to tan caliche-soft crumbly			•					
- 5	from 2' to 5'	1/10:45	SS	0	Sample 1 collected from 5' to 6' using a spl				
	Light tan to white caliche with fine sand, crumbly, soft, 5' to 10'.				spoon sampling device. Sample was light tan to white, soft, crumbly caliche.				
-		2710:50	SS	0	Sample 2 collected from 10' to 12' using a				
10 	Light tan callche with fine tan sand, crumbly and soft, from 10' to 15'.				split spoon. Sample was light tan caliche. No odor.				
• 1.5		37 10:55	Core	2	Sample 3 collected from 15' to 16' using	- · ·			
15 	Hard white caliche and tan fine sand. Some blue-gray color, 15' to 20'.				a coring tool. Sample was light tan/white caliche and fine sand stained gray. No odor	13			
		4/11:00	Core	266	Sample 4 collected from 20' to 21' using a				
20	Hard caliche stained blue-gray, 20' to 23'. Strong odor. Then hard blue-gray stained caliche and chert, 23' to 25'.				coring tool. Sample was hard blue-gray stained caliche. Strong odor.	20			
		5711:10	Core	274	Sample 5 collected from 25' to 26' using a	25			
- 25	Hard caliche stained blue-gray with blue-gray stained chert mixed in, 25' to 28'.				coring tool. Sample was hard caliche and chert stained blue-gray. Strong odor.				
20	with chips of chert, 28' to 30'.	6711:20	Core	174	Sample 6 collected at 30' to 31' using a core	30			
— 30	Light tan caliche stained gray with thin black lines in the center of the core, from 30' to 33'.				sampling tool. Sample was white caliche stained gray with black lines running through the sample core. Some odor.				
— 35						35 —			
· · · · · · · · · · · · · · · · · · ·	······································				· · · · · · · · · · · · · · · · · · ·	· · · · · ·			
40	Total depth of boring, 33 feet. Depth to groundwater, 31.6 feet meas Phase-separated hydrocarbon (PSH),	ured on 10/21/9 0.7 feet, measu	98. red on 10/21/9	98.		40			

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger RC - Rock Core THD - Texas Highway Department Cone CT-5' - Continuous Sampler HSA - Hollow Stem Auger CFA - Continuous Flight Augers DC - Driving Casing MD - Mud Drilling I.

ENE 2775 D/	RCON SERVICES, INC. VILLA CREEK, SUITE 120 ALLAS, TX 75234-7420	RE	CORDC)F SU	BSURFACE EXPLORAT	ΓION			
Project #:	EV-958	Well/Borin	g #:		B-3 Date Drilled: 10)/20/98			
	Junction I-9	Drilling	West Texa	s Water	Drilling Air Rota	ury			
Project:	Hobbs SWD System	Company:	Well Servi	ce	Method:	-			
	Lea County, New Mexico	Driller:	Bernie		Logged By: SAL				
עדספת		SAMPLE	SAMPLE	OVA	REMARKS/SAMPI	ਤਾ			
	SOIL DESCRIPTION	NUMBER/ TYPE (DI			DESCRIPTION				
(FEEI)		TIME	TIFE	(PPIVI)	DESCRIPTION				
<u> </u>	Brown sandy top soil to 6"					0			
						-			
_	Brown silty fine sand 6" to 2'.			•					
	Light tap caliche 2' to 15'					-			
5	No evidence of staining and no odor.					5			
_									
						-			
10						10			
						-			
-						-			
15	Light top soft collabe and tipe sand	17 14:05	Core	2.2	Sample 1 collected at 15' using	15			
-	with intermittent hard layers and no				caliche and fine sand no staining. No odor.	-			
	evidence of staining from 15' to					_			
	approximately 25'.	2/14.10	Core	13	Sample 2 collected at 20' using a coring	∤ −			
20	r	27 14.10			tool. Sample was light tan and soft. No	20			
-			· ·		stain. No odor.				
-		ľ			· · ·	-			
- 25		37 14:20	Core	214	Sample 3 collected at 25' using a coring	25			
	Light tan caliche stained blue-gray.				tool. Sample was crumbly caliche stained blue-gray. Strong odor				
- 1	gray from 25' to approximately 30'.				similed blac gray. Buoing buoin	-			
-		4 / 14:30		127	Sample 4 collected from 30' to 31' using a				
— 30 k	Crumbly caliche stained dark gray	47 14:30	Core	137	coring tool. Sample was dark gray stained	30			
<u> </u>	with thin black lines in the center of				caliche with black lines running				
- t	he core, from 30' to 31'.	5/1425			through the sample core. Some odor.				
· _ h	Fan sand from 31' 33'.	57 1455		•	split spoon. Sample was tan sand, no	-			
- 35					stain or odor.				
						. [.]			
-									
- 40 [7	lotal depth of boring, 33 feet.					40			
. ~ [Depth to groundwater, 31 feet measure (PSH)	ed on 10/21/98	red on 10/21/9	8.					
P	nase-separateu nyurocarbon (FSH),	i tor tio, incasu							
BDEVIA		S - Driven Solit	Spoon		HSA - Hollow Stem Auger				

SS - Driven Split Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger RC - Rock Core THD - Texas Highway Department Cone CT-5' - Continuous Sampler

, i

HSA - Hollow Stem Auger CFA - Continuos Flight Augers DC - Driving Casing MD - Mud Drilling

Project #: EV-958 Well/Boring #: B-4 Date Drilled: 10/20/98 Junction I-9 Junction I-9 Drilling West Texas Water Drilling Air Rotary Project: Hobbs SWD System Company: Well Service Method: Lea County, New Mexico Droller: Bernie Logged By: SAL DEPTH (FEET) SOIL DESCRIPTION SAMPLE NUMBER/ TIME SAMPLE NUMBER/ TYPE OVA (PPM) REMARKS/SAMPLE DESCRIPTION 0 0 Brown sixty ine sand 6' to 2' White to an cance-son crumbly rom 2' to 5' T1715/05 SS 3 Sample 1 collected from 5' to 6' using a split spoon sampling device. Sample was light run to white, soft, crumbly caliche. 0 - 10 Light ain cownic calche with time sand, crumbly and soft, from 10' to 12' using a split spoon. Sample 2 collected from 0' to 12' using a split spoon. Sample was light tan, dry ealthche. No odor. 10 115 Hard red chert with white and ught an hard caliche and some sand, 14' to approximately 14'. 3/15:12 Core 10 Sample 2 collected at 15' using a coring tool. Sample was light tan, dry ealthche. No dodr. 12 - 20 Dry powdered caliche stand doithe and some sand, 14' to approximately 20'. 3/15:12 Core 10	ENE 2775 D.	RCON SERVICES, INC. VILLA CREEK, SUITE 120 ALLAS, TX 75234-7420	RE	CORD	OF SU	BSURFA	CE EXPLORA	ATION		
Junction I-9 Drilling West Texas Water Drilling Air Rotary Project: Hobbs SWD System Company: Well Service Method: DEPTH SOIL DESCRIPTION SAMPLE OVA REMARKS/SAMPLE 0 Brown sandy top soil to 6" SAMPLE OVA REMARKS/SAMPLE 0 Brown sandy top soil to 6" SaMPLE OVA REMARKS/SAMPLE 10 Brown sity hine sand 6" to 2" Nime to an calcine-soft rumbly 0 - 5 Hord realizes soft rumbly, soft, 5" to 10" 17/15:05 3S 3 Sample 1 collected from 5" to 6" using a split soft soft rumbly caliche. 5 10 Light tan caliche with the tan sand, erumbly, soft, 5" to 10" 2/15:10 SS 1.7 Sample 2 collected from 10" to 12" using a coring tool. Sample was light tan, dry caliche with end light tan data alche and some sand, 14" to approximately 20". 4/15:15 Core 10 10 - 20 Dry powdered calche stamed 3/15:12 Core 10 Sample 3 collected at 15" using a coring tool. Sample was light tan/white caliche with some caliche with	Project #	EV-958	Well/Borin	g #:		B-4	Date Drilled:	10/20/98		
Lea County, New Mexico Droller: Bernie Logged By: SAL DEPTH (FEET) SOIL DESCRIPTION SAMPLE NUMBER TYPE SAMPLE (PPM) OVA REMARKS/SAMPLE DESCRIPTION 0 0 Brown sandy top soil to o Brown sandy top soil to o Sumplify that stand of to 2' White to an callche-soft crumbly tom 2 to 5' 1715:05 SS 3 Sample 1 collected from 5' to 6' using a split spoon sampling device. Sample was light tan to white, soft, crumbly callche. Dry and no odor. 0 - 10 Light tan to white callche with from 10' to approximately 14'. 2/15:10 SS 1.7 Sample 2 collected from 10' to 12' using a split spoon. Sample was light tan, dry callche. No odor. 10 15 Hard red chert with white and light tan to white, soft, from 10' to approximately 14'. 3 / 15:12 Core 10 Sample 3 collected at 15' using a coning tool. Sample was light tan/white callche with red hard pieces of chert. No odor. 15 - 20 Dry powdered callche staned blue-gray with dor, from 20' to 30'. At approximately 22'' and 22' is thin layer of red chert. 5/7 15:25 Core 91 Sample 4 collected at 20' using a coring tool. Sample was callche with some chert, stained blue-gray. Sight odor. 20 30 Light fan Ganche with hight gray stain and very little odor, from 30' to approximately 33'. 6/7 15:40 SS 6.2	Project:	Junction I-9 Hobbs SWD System	Drilling Company:	West Texa Well Servi	s Water ce	Drilling Air Rotary Method:				
DEPTH (FEET) SOIL DESCRIPTION SAMPLE NUMBER/ TIME SAMPLE NUMBER/ TYPE OVA (PPM) REMARKS/SAMPLE DESCRIPTION 0 Brown samey top soil to 0° 0 0 0 0 10 Brown samey top soil to 0° 0 0 0 0 10 Brown sinty hite sand or to 2' 1/15:05 3S 3 Sample 1 collected from 5' to 6' using a split spon sampling device. Sample was light tan to white soft, crumbly caliche. 5 - 10 Light tan colliche with fine tan sand. crumbly and soft, from 10' to approximately 14'. 2/15:10 SS 1.7 Sample 2 collected from 10' to 12' using a split spon. 10 11 Hard red chert with white and tight tan hard caliche and some sand, 14' to approximately 20'. 3/15:12 Core 10 Sample 3 collected at 15' using a coring tool. Sample was light tan/white caliche with red hard pieces of chert. No odor. 15 - 20 Dry powered caliche staneed bue-gray with doct, rbm 2U' to 30'. At approximately 25' and 28' is thin layer of red chert. 3/15:12 Core 177 Sample 4 collected at 20' using a coring tool. Sample was powdered, blue- gray. Some odor. 25 30 Light tan cauche with hight gray stain and very little odor, from 30' to approximately 33'. 5/15:40 SS 6.	-	Lea County, New Mexico	Droller:	Bernie			Logged By: SAL			
DEF1H (FEET) SOIL DESCRIPTION NUMBER TIME SAUTLE TYPE OVA (PPM) Intervention of the construction of	DEDTH	T	SAMPLE	CANDLE	0174		EMARKS/SAM			
0 Brown sandy top soil to 6" 0 0 8 Brown saily the sand 6" to 2" 17 15:05 SS 3 Sample 1 collected from 5" to 6" using a split spoon sampling device. Sample was light tan to white, soft, crumbly caliche. Dry and no odor. 5 5	(FEET)	SOIL DESCRIPTION	NUMBER/ TIME	TYPE	(PPM)) DESCRIPTION				
7 5 17/15:05 SS 3 Sample 1 collected from 5' to 6' using a split spoon sampling device. Sample was light tan to white callche with the sand, crumbly soft, 5' to 10'. 5 10 10 10 10 10 27/15:10 SS 1.7 Sample 2 collected from 10' to 12' using a split spoon. Sample was light tan, dry callche. No dot. 10 10 10 Light an callche with the tan sand, crumbly and soft, from 10' to approximately 14'. 37/15:12 Core 10 Sample 3 collected at 15' using a coring tool. Sample was light tan, white and light tan hard callche and some sand, 14' to approximately 20'. 15 15 15 15 16 20<	0 	Brown sandy top soil to 6" Brown silty fine sand 6" to 2'						0 —		
5 Light tan to white callche with line sand, crumbly, soft, 5' to 10'. 5 Spoon sampling device. Sample was light tan to white, soft, crumbly caliche. Dry and no odor. 5		from 2' to 5'	1715:05	SS	3	Sample I colle	cted from 5' to 6' using a	split		
10 27 15:10 SS 1.7 Sample 2 collected from 10' to 12' using a split spoon. Sample was light tan, dry caliche. No odor. 10 15 Hard red chert with white and light tan hard caliche and some sand, 14' to approximately 20'. 37 15:12 Core 10 Sample 3 collected at 15' using a coring tool. Sample was light tan/white caliche with red hard pieces of chert. No odor. 15 20 Dry powdered caliche stained blue-gray with odor, from 20' to 30'. At approximately 25' and 28' is thin layer of red chert. 47 15:15 Core 177 Sample 4 collected at 20' using a coring tool. Sample was powdered, blue-gray with odor, from 20' to 30'. At approximately25' and 28' is thin layer of red chert. 20 57 15:25 Core 91 Sample 5 collected at 30' using a split spoor. 25 30 Light tan caliche with light gray stain ed odor, from 30' to approximately 33'. 67 15:40 SS 6.2 Sample 6 collected at 30' using a split spoor. 30 30 31 Light tan caliche with light gray stain and very little odor, from 30' to approximately 33'. 35 35 35 35 35	5 	Light tan to white caliche with fine sand, crumbly, soft, 5' to 10'.				spoon sampling tan to white, so Dry and no odd	ht 5			
10 Light tan caliche with ine tan sand, crumbly and soft, from 10' to approximately 14'. 37 15:12 Core 10 Sample 3 collected at 15' using a coring tool. Sample was light tan, dry caliche. No odor. 15 11 Hard red chert with white and light tan hard caliche and some sand, 14' to approximately 20'. 37 15:12 Core 10 Sample 4 collected at 15' using a coring tool. Sample was light tan/white caliche with red hard pieces of chert. No odor. 15	- 10		2715:10	SS	1.7	Sample 2 collected from 10' to 12'		a 10		
15 Hard red chert with white and light tan hard caliche and some sand, 14' to approximately 20'. 37 15:12 Core 10 Sample 3 collected at 15' using a coring tool. Sample was light tan/white caliche with red hard pieces of chert. No odor. 15	10 	Light tan caliche with fine tan sand, crumbly and soft, from 10' to approximately 14'.				split spoon. Sa caliche. No od	mple was light tan, dry or.			
15 Hard red chert with white and light tan hard caliche and some sand, 14' to approximately 20'. a coring tool. Sample was light tan/white caliche with red hard pieces of chert. No odor. 13 20 20 Dry powdered caliche stained blue-gray with odor, from 20' to 30'. At approximately25' and 28' is thin layer of red chert. 4 / 15:15 Core 177 Sample 4 collected at 20' using a coring tool. Sample was powdered, blue- gray stained caliche. Odor. 20 20 25 5 / 15:25 Core 91 Sample 5 collected at 25' using a coring tool. Sample was caliche with some chert, stained blue-gray. Some odor. 25 30 6 / 15:40 SS 6.2 Sample 6 collected at 30' using a split spoor sampling tool. Sample was white caliche stained light blue-gray. Slight odor. 30 30 Light tan caliche with light gray stain and very little odor, from 30' to approximately 33'. 35 35			3/15:12	Core	10	Sample 3 colled	cted at 15' using			
20 Dry powdered caliche stained blue-gray with odor, from 20' to 30'. At approximately25' and 28' is thin layer of red chert. 20	13 	Hard red chert with white and light tan hard caliche and some sand, 14' to approximately 20'.				a coring tool. Sample was light ta caliche with red hard pieces of che No odor.		e 15		
25 Core 91 Sample 5 collected at 25' using a coring tool. Sample was powdered, blue-gray stained caliche. Odor. 25 25 57 15:25 Core 91 Sample 5 collected at 25' using a coring tool. Sample was caliche with some chert, stained blue-gray. Some odor. 25 30 Light tan caliche with light gray stain and very little odor, from 30' to approximately 33'. 57 15:20 Sample 5 collected at 30' using a split spoor sampling tool. Sample was white caliche stained light blue-gray. Slight odor. 30 35 35 35 35 35 35	20		4715:15	Core	177	Sample 4 collec	Sample 4 collected at 20' using a			
25 5715:25 Core 91 Sample 5 collected at 25' using a coring tool. Sample was caliche with some chert, stained blue-gray. Some odor. 25 30 Light tan caliche with light gray stain and very little odor, from 30' to approximately 33'. 6715:40 SS 6.2 Sample 6 collected at 30' using a split spoor sampling tool. Sample was white caliche stained light blue-gray. Slight odor. 30	-	blue-gray with odor, from 20' to 30'. At approximately25' and 28' is thin layer of red chert.				gray stained cal	iche. Odor.	-		
30 Light tan caliche with light gray stain and very little odor, from 30' to approximately 33'. 67 15:40 SS 6.2 Sample 6 collected at 30' using a split spoor sampling tool. Sample was white caliche stained light blue-gray. Slight odor. 30 35 35 35 35 35	25		5715:25	Core	91	Sample 5 collec	ted at 25' using a	25		
30 130 6715:40 SS 6.2 Sample 6 collected at 30' using a split spoor sampling tool. Sample was white caliche stain and very little odor, from 30' to approximately 33'. 30 30 35 35 35 35 35 35 35	-					chert, stained bl				
Light tan callche with light gray stain and very little odor, from 30' to approximately 33'. 35 35 35 35 35 35 35	- 30 L		6715:40	SS	6.2	Sample 6 collec	ted at 30' using a split spo	^{ооп} 30 —		
35		Light fan caliche with light gray stain and very little odor, from 30' to approximately 33'.				sampling tool. S stained light blu				
	·						:	25		
	- 33	· · · · · · · · · ·	· · _ ·	· · · · ·						
	. F		· · ·		I			٦·]		
Total depth of boring, 33 feet.	· -	lotal depth of boring, 33 feet.						-		
40 — 40 Depth to groundwater, 32.8 feet measured on 10/21/98. 40 — 40 —	40 I	40 Depth to groundwater, 32.8 feet measured on 10/21/98. Phase-separated hydrocarbon (PSH), NONE, measured on 10/21/98.								

i

SS - Driven Spirt Spoon ST - Pressed Shelby Tube CA - Continuous Flight Auger RC - Rock Core THD - Texas Highway Department Cone CT-5' - Continuous Sampler

÷

. .

HSA - Hollow Stem Auger CFA - Continuous Flight Augers DC - Driving Casing MD - Mud Drilling į.

i.

2775 D	RCON SERVICES, INC. VILLA CREEK, SUITE 120 ALLAS, TX 75234-7420	RE	RECORD OF SUBSURFACE EXPLORATION						
Project #	: EV-958	Well/Borin	g #:		B-5 Date Drilled:	10/20/98			
Project:	Junction I-9 Hobbs SWD System Lea County New Mexico	Drilling Company: Driller:	Drilling West Texas Water Drilling Air Company: Well Service Method: Driller: Bernie Logged By: SA			Rotary			
DEPTH (FEET)	SOIL DESCRIPTION	SAMPLE NUMBER/ TIME	SAMPLE TYPE	OVA (PPM)	REMARKS/SA DESCRIPTI	MPLE ON			
0 5 10	Brown sandy top soil to 6" Brown silty tine sand 6" to 2' White to tan caliche-soft crumbly from 2' to 5' Light tan to white caliche with fine sand, crumbly, dry, soft, 5' to 15'.					0 5 10			
15	Dry tan crumbly caliche stained blue-gray from 15' to 30'. Some odor. Red chert encountered at approximately 26'.	1716:15	Core	21	Sample 1 collected at 15' using a coring tool. Sample was light tan/w caliche, dry, crumbly, stained blue-gra Some odor.	hite 15 —			
20		2 / 16:23	Core	174	Sample 2 collected at 20' using a a coring tool. Sample was light tan/wi caliche, dry, crumbly, stained blue-gra Some odor.	hite 20			
25		3 / 16:35	Core	81	Sample 3 collected at 25' using a coring tool. Sample was light tan cali and chert stained blue-gray. Some odd	che 25			
30	Light tan caliche stained gray with thin black lines in the center of the core, from 30' to 33'.	4 / 16:45	Core	28	Sample 4 collected at 30' using a core sampling tool. Sample was white calic stained gray with black lines running through the sample core. Some odor.	the 30			
		· · · · ·				35			
40	Total depth of boring, 33 feet. Depth to groundwater, 32.7 feet meas Phase-separated hydrocarbon (PSH),	sured on 10/21/2 NONE, measu	98. red on 10/21/9	8.		40			

ST - Pressed Shelby Tube CA - Continuous Flight Auger RC - Rock Core THD - Texas Highway Department Cone CT-5' - Continuous Sampler

.

Į.

HSA - Hollow Stem Auger CFA - Continuous Flight Auger DC - Driving Casing MD - Mud Drilling T

į.

DA	ALLAS, TX 75234-7420							
Project #:	EV-958	Well/Boring #:]			B-6	Date Drilled:	10/21/9	
	Junction I-9	Drilling	West Texa	s Water		Drilling Air R	lotary	
Project:	Hobbs SWD System	Company:	Well Servio	ce		Method:		
	Lea County, New Mexico	Driller:	Driller: Bernie			Logged By: SAL		
DEPTH		SAMPLE	SAMPLE	OVA		REMARKS/SAM	IPLE	
(FEET) SOIL DESCRIPTION		TIME	TYPE	(PPM)		DESCRIPTIO	Ň	
o	Brown sandy top soil to 6"						0	
	Light tan to gray caliche and sand	1						
<u> </u>	nom o to s.			·				
5		1 / 8:35	Core	0	Sample I coll	ected from 5' to 7' using a	cori 5	
	5' to 15'.				No odor.	was light gray silty sand.		
							1	
	·	2/8:40	Core	1.4	Sample 2 coll	ected from 10' to 12' using	3 1 10	
10				· · ·	coring tool. S	ample was light gray cali	che 10	
-					land silly sand	. NO 000F.		
_		2/9:45	Core		Sample 7 coll	ated from 15' to 16' using		
I5	Light gray to brown silty sand from	378.45	COIE	5.2	Sample 3 collected from 15' to 16' usi a coring tool. Sample was gray to bro		n 15	
	15' to approximately 25'.				silty sand. No	odor.		
_								
20	· · · · · · · · · · · · · · · · · · ·	4/8:47	Core	290	Sample 4 colle	cted from 20' to 21' using	a 20	
					gray silty sand	. Strong odor.		
-								
25	Lop and gray silly sand from	5/8:50	Core	237	Sample 5 colle	ected from 25' to 26' using	a 25	
- :	25' to approximately 30'.				silty sand. Str	ong odor.		
		1						
- 30		679:05	Core	255	Sample 6 colle	cted at 30' to 31' using a c	ore 30	
- ³⁰ [an sand from 30 to 33".				Some odor.	Sample was tan sand		
_								
-						:		
35							35 •	
<u> </u>								
40	Total depth of boring, 33 feet.	ured on 10/21/9	98.				40 -	
- F	Phase-separated hydrocarbon (PSH),	NONE, measu	red on 10/21/9	8.				

ļ

ST - Pressed Shelby Tube CA - Continuous Flight Auger RC - Rock Core THD - Texas Highway Department Cone CT-5' - Continuous Sampler

.

. •

HSA - Hollow Stem Auger CFA - Continuous Flight Auge DC - Driving Casing MD - Mud Drilling i

L

ENE 2775 D	RCON SERVICES, INC. VILLA CREEK, SUITE 120 ALLAS, TX 75234-7420	RE	RECORD OF SUBSURFACE EXPLORA						
Project #	: EV-958	Well/Borin	g_#:		B-7 Date Drilled: 10	0/21/98			
	Junction I-9	Drilling	West Texa	s Water	Drilling Air Rota	ary			
Project:	Hobbs SWD System	Company: Well Service			Method:	-			
	Lea County, New Mexico	Driller:	Bernie	•	Logged By: SAL				
DIDOTT	1	SAMPLE				. 17			
DEPIH	SOIL DESCRIPTION	NUMBER/	SAMPLE	OVA	KEIVIAKAS/SAIVIEI	_E			
(FEET)		TIME	TYPE	(PPM)	DESCRIPTION				
0									
	Brown sandy top soil to 6"								
	from 6" to 5'.								
						-			
5						5			
	S' to 15'					_			
		[
10						10			
			1						
			1						
	1 1					1 _			
15	Light top dry grimbly callebe from	1/9:30	Core	3.6	Sample I collected from 15' to 16' using	15			
	15' to approximately 25'.				a coring tool. Sample was tan crumbly				
_	•	2/040							
20	· ·	279:40	Core	0.0	Sample 2 collected from 20 to 21 using a coring tool. Sample was tan crumbly	20			
<u> </u>					caliche. No odor.				
— —									
		379:45	Core	125	Sample 3 collected from 25' to 26' using a				
25	Soft light tan callche with				coring tool. Sample was soft tan caliche	25			
_	hard blue-gray stained caliche from				and hard blue-gray caliche. Some odor.				
	zi to approximately 50.	·							
- 20		479:55	Core	145	Sample 4 collected at 30' to 31' using a core	30			
- 30	Light tan silty sand from 30 to 31'.				sampling tool. Sample was light tan silty	,,, <u>,</u> ,			
-	1		1	ľ	sand. No staining. Some odor.				
-		Í			,				
- 25	1				•	35			
	I				1				
-				I		· · · · · 			
-	· · · · · · · · · · · · · · · · · · ·					•			
	Total depth of boring, 31 feet.					40			
-	Depth to groundwater, NONE.		red on 10/31/0	8		· —			
l	ruase-separated nydrocarbon (PSH),	INOINE, measu	rea on 10/21/9	0.		l			
BBREVIA	TIONS AND SYMBOLS s	S - Driven Split T - Pressed She	: Spoon Iby Tube		HSA - Hollow Stem Auger CFA - Continuous Flight Auge	rs			

- CA Continuous Flight Auger RC Rock Core THD Texas Highway Department Cone CT-5' Continuous Sampler

:

DC - Driving Casing MD - Mud Drilling

DRILLI RICE Ope 122 V Hobbs, Ne Phone: (Fax: (5	ING LOGSite Name /Locationperating Company West Taylor New Mexico 88240 (505) 393-9174 (505) 397-1471Site Name /LocationJunction I-9 09-T19S-R38E Hobbs SWD System Lea Co. New Mexico		Well No. B-8 Well Depth: N/A Casing Length: N/A Screen Length: N/A	Date Drille 1-7-99 Boring Dep 40' Boring Dia 8" Drilling Me Air Rota	ed: pth: meter: thod: ry	Driller: C. Harrison Welf Material: N/A Casing Size: N/A Slot Size: N/A	Logged by: FWR Construction: Plugged boring by filling from total depth to surface with bentonite
DEPTH (Feet)	SUBSUR	RFACE LITHOLOGY	Sample Type	OVM (ppm)	R	EMARKS	Boring
	Light brown, fine- White to light gray	grained, calcareous sand Caliche k fine-grained sand	Drill Cuttings	>1 >1 >1 >1 >1 22 19 >1	Hydroca De 0.0 ga	rbon stain rpth to Water D0 feet LNAPL uged 1-8-99 Bentonite Seal	
39 40			Drill Cuttings	>1			

ARCADIS GERAGHTY& MILLER

APPENDIX C

MONITOR WELL CONSTRUCTION DIAGRAMS

DRILL	ING LOG	Site Name /Location	Well No. MW-1	Date Drille 1-7-99	d: Driller: C. Harrison	Logged by: FWR
RICE Ope	erating Company	Junction I-9	Well Depth: 40'	Boring Dep 40'	oth: Well Material: Sch 40 PVC	Construction:
Hobbs, Ne	ew Mexico 88240	Hobbs SWD System	Casing Length: 25'	Boring Dia 6"	meter: Casing Size:	Flush-mount set in 3' by 3'
Phone: (Fax: (5	(505) 393-9174 505) 397-1471	Lea Co. New Mexico	Screen Length:	Drilling Me	thod: Slot Size:	pad w/ locking cap
DEPTH	SUBSUF	RFACE LITHOLOGY	Sample		REMARKS	Well
(Feet)			Туре	(ppm)		Design
0	Light brown, fine-	grained, calcareous sand	-			
2	White to light gray	Caliche			•	
— · 3						
4			Drill Cuttings	>1		
<u> </u>				-		
- 7						
- 8						
9			Drill Cuttings	>1		
10						
12						
— 13						
- 14			Drill Cuttings	>1		8666 86862
15		1				
— 17						
18						
19 20			Drill Cuttings	>1		
20						
<u> </u>						
— 23						
24			Drill Cuttings	>1		
- 26			ļ			
27					· · ·	
- 28						
- 29	Gray limestone		Drill Cuttings	>1		
— 31			L			
— 32					Depth to Water	
33						
- 34	Indurated red-brow	n silicious sandstone	Drill Cuttings	>1	Cement Grout	
- 36			Į		Rentonite Seal	
- 37		<u> </u>			Dentonite Geal	
- 38	Light brown to pin	k fine-grained sand	Drill Cuttings	>1	Sand Pack	
<u> </u>	- •	- 			Factory Slot Screen	

DRILLI	NG LOG	Site Name /Location	Well No. MW-2	Date Drille 1-7-99	d:	^{Driller:} C. Harrison	Logged by: FWR
RICE Ope	erating Company	Junction I-9	Well Depth:	Boring Dep	oth:	Well Material: Sch 40 PVC	Construction:
122 V Hobbs Ne	Vest Taylor Wexico 88240	09-T19S-R38E	Casing Length:	Boring Dia	meter:	Casing Size:	Flush-mount
Phone: ((505) 393-9174	Lea Co. New Mexico	25'	6" Drilling Me	thod:	2" Slot Size:	pad w/ locking
Fax: (5	05) 397-1471		15'	Air Rota	гу	0.02"	cap
DEPTH	SUBSUF	RFACE LITHOLOGY	Sample	OVM	R	EMARKS	Well
(Feet)			Туре	(ppm)			Design
0	Light brown fine	grained calcareous sand					
	Light brown, the-	granicu, carcarcous sand	-				
2	White to light gray	y Caliche					
5			Drill Cuttings	>1			
- 6		• .	ļ				
- 7							
- 8							
- 9			Drill Cuttings	>1			
10			2 min Cunango	-			
14			<u> </u>	L.,			
15			Drill Cuttings	>1			
- 16			h				
- 17							
18		, <u> </u>					
- 19	Light gray limesto	ne	Drill Cuttings	>1			
21			ļ				
22							
- 23							
- 24	Light gray, silty, c	aliche	Drill Cuttings	<u></u>			
25			Drift Cuttings	~1			
26	· · · · · . · · .	<u></u>			·		
29	Case limenter						
30	Gray ilmestone		Drill Cuttings	>1			
- 31			h		• D	epth to Water	
- 32			-				
- 33	Light brown to pin	k fine-grained sand					
34			Drill Cuttings	>1		Compart Crout	
- 35			ļ			Cement Grout	
37						Bentonite Seal	
- 38				_		Sand Pack	
- 39			Drill Cuttings	>1		actory Slot Screen	
40		· · · · · · · · · · · · · · · · · · ·				-	

l

|

	DRII	LING LOG	Site Name /Location	Well No. RW-1	Date Drille 1-7-99	ed:	Driller: C. Harrison	Logged by: FWR
	RICE	Operating Company	Junction I-9	Well Depth: 35'	Boring De 35'	pth:	Well Material: Sch 40 PVC	Construction:
	I. Hobbs	, New Mexico 88240	Hobbs SWD System	Casing Length: 20'	Boring Dia	meter:	Casing Size: 4"	Flush-mount set in 3' by 3'
	Pho Fa	ne: (505) 393-9174 :: (505) 397-1471	Lea Co. New Mexico	Screen Length: 15'	Drilling Me Air Rota	thod: ry	Slot Size: 0.02"	pad w/ locking cap
	DEPT (Feet	H SUBSUF	RFACE LITHOLOGY	Sample Type	OVM (ppm)	R	REMARKS	Well Design
		0 Light brown, fine-	grained, calcareous sand			<u> </u>	<u></u>	
		2 White to light gray	/ Caliche			l		
	·	3						
		4		Drill Cuttings	>1	1		
_		5	· .	Dim Cuttings	- 1			
		7						
		8						
		9		Drill Cuttings	48	Hydroc	arbon stain	
	1	0				J		
	1	2						
	1	3						
	1	4		Drill Cuttings	180			
		5	·			Hydroca	arbon stain	
	1	7 Gray limestone						
	1	8						
_	1	9		Drill Cuttings	114	Hydrocs	arbon stain	
	- 2	1				ilyaioca		
	2	2	1.0.000	-				
	<u> </u>	3						
	2	4 Light gray, silty, ca	aliche	Drill Cuttings	212	Hydroca	arbon stain	
	2	6		ļ				
	2	7	· ····································				· <u>-</u> .	
	2	8 Grav limestone int	erhedded with red-brown silicous	-				
	2	9 sandstone		Drill Cuttings	89			
	3	1		ļ		Hydroca	arbon stain	
	3	2				• D	epth to Water	
	3	3 Indurated red-brow	n silicious sandstone	Drill Cuttings	>1	0. g:	25 IEEI LNAPL auged 1-8-99	
	3 7	4	No		~ 1		Cemont Crout	
_	3 3	6						
	3	7					Bentonite Seal	
	3	8					Sand Pack	
	— 3	9					actory Slot Screen	
	4	ч <u> </u>	(<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u> </u>				

l

		Site Name /Location	Well No.	Date Drilled	1:	Driller:	Logged by:
		Junction I-9	Well Depth:	Boring Dept	th:	Well Material:	Construction:
122 V	West Taylor	09-T19S-R38E	40'	40' Boring Dian	neter:	Sch 40 PVC	Flush-mount
Hobbs, N Phone:	ew Mexico 88240 (505) 393-9174	Hobbs SWD System	25'	6"	neter.	2"	set in 3' by 3' pad w/ locking
Fax: (:	505) 397-1471	Lea Co. New Mexico	Screen Length: 15'	Drilling Meth Air Rotar	hod: Y	Slot Size: 0.02"	cap
DEPTH (Feet)	SUBSUR	RFACE LITHOLOGY	Sample Type	OVM (ppm)	R	EMARKS	Well
0			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40						Cement Grout Bentonite Seal Sand Pack actory Slot Screen	

۰.

i

ARCADIS GERAGHTY& MILLER

APPENDIX D

LABORATORY ANALYTICAL RESULTS

Contes

Environmental Laboraturies

2209 Wisconsin Street, Suite 200 Dallas, Texas 75229 972-620-7966 800-394-2872 972-620-7963 FAX • Email: certes@aol.com

CERTES ENVIRONMENTAL LABORATORIES ANALYTICAL REPORT

Certes File Number: 98-3543

Client Project I.D.:

EV 958

Prepared for: ENERCON SERVICES, INC. - DALLAS 2775 Villa Creek Suite 120 Dallas, TX 75234

> Attention: Scott Lowry

Report Date:

10/30/98

Included are the results of chemical analyses for the samples submitted to Certes Environmental Laboratories, L.L.C., on 10/22/98. All analytical results met Quality Control requirements as set by the industry accepted criteria. Please refer to the Laboratory Quality Control Results section of this report.

Sincerely,

Certes Environmental Laboratories, L.L.C.

小州

Bharat Vandra Laboratory Manager

Research

ATTACHMENT E LABORATORY REPORTS

Results	of	Ana	lyses
---------	----	-----	-------

L

ĺ

1

CEL File No.: 98-3543

Report Date: 10/30/98

	·	Result	Units	Reporting Limit	Date Prepare	Date d Analyzed	Analyzed By	Dilut
Client Sample II	D: B-1/20'-20.6'		<u></u>			Sample Nur	nber: 98-35	543-00
Date Sampled:	10/20/98					Sample Mat	rix: Solid	
Time Sampled:	9:10					- Sampled By	: SL	
EPA 8021B	Benzene	684	μg/Kg	200	10/23/98	10/23/98	DWT	4
	Toluene	759	μg/Kg	200	10/23/98	10/23/98	DWT	4
	Ethyl benzene	11000	μg/Kg	200	10/23/98	10/23/98	· DWT	4
	Xylenes (Total)	21700	μg/Kg	600	10/23/98	10/23/98	DWT	4
	Total BTEX (Calculated)	34143	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surroga	te			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	97%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	158%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	1070	mg/Kg	500	10/26/98	10/27/98	JCA	50
	**Quality Control Surrogat	e			10/26/98	10/27/98	JCA	50
	p-Terphenyl (SS)	*0%	60-140%		10/26/98	10/27/98	JCA	50
* Surrogate rec	overy is out of range		<u></u>					
lient Sample ID:	B-1/28'				Sa	ample Numb	per: 98-3543	3-002
Date Sampled:	10/20/98				S	mple Matri	x: Solid	
ime Sampled:	9:50				Sa	impled By:	SL	
PA 8021B	Benzene	285	µg/Kg	200	10/23/98	10/23/98	DWT	40
	Toluene	1000	µg/Kg	200	10/23/98	10/23/98	DWT	40
	Einyi benzene Yulanan (Tatal)	9170	µg/Kg	200	10/23/98	10/23/98	DWT	40
	Aylenes (10tal) Total DTEY (Calculated)	24000	µg/Kg	000	10/23/98	10/23/98	DWT	40
	**Ouglity Control Surrogets	22022	μg∕⊼g		10/23/98	10/23/90	DWI	1
	Diffuerchenzone (SS)		74 11004		10/22/08	10/22/08		1
	A-Bromofluorobenzene (SS)	9J70 1530/	10-1580/		10/22/08	10/22/08	DWT	1
PA 8015B		1200	47-1J0/0 ma/Ka	500	10/26/08	10/23/30		50
	**Ouglity Control Surrogate	1200	iiig/ Kg		10/26/08	10/2/198		50
	n-Tembenyl (SS)	* 0.0%	60.140%		10/26/08	10/27/09	JCA	50
* Surrogate reco	very is out of range	070	00-14070		10/20/98	10/27/98	JCA	0
ent Sample ID: H	8-1/30'				Sa	mple Numbe	er: 98-3543	-003
ate Sampled: 1	0/20/98				Sa	mple Matrix	: Solid	
me Sampled: 1	0:00				Sa	mpled By:	SL	
 PA 8021B	Benzene	1130	μg/Kg	200	0/23/98	10/23/98	DWT	40
	Toluene	1030	μg/Kg	200	0/23/98	10/23/98	DWT	40
		Page	2 of 9				•	

Analytical Chemistry

Environmental Sciences

Research

Microbiology

ľ

(

Results of Analyses		EL THE NO			_	•		0/30/98
Sample: 98-	3543-003 continued	Result	Units	Reporting Limit	Date Prepared	Date A Analyzed	Analyzed By	Dilutio
EPA 8021B	Ethyl benzene	13800	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Xylenes (Total)	19500	μg/Kg	600	10/23/98	10/23/98	DWT	40
	Total BTEX (Calculated)	35460	μg/Kg		10/23/98	10/23/98	DWT	I
	**Quality Control Surrogat	te			10/23/98	10/23/98	DWT	. 1
	Difluorobenzene (SS)	84%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	141%	49-158%		10/23/98	10/23/98	DWT	. 1
EPA 8015B	TPH (DRO)	1130	mg/Kg	500	10/26/98	10/27/98	JCA	50
	**Quality Control Surrogat	e			10/26/98	10/27/98	JCA	50
	p-Terphenyl (SS)	*0%	60-140%		10/26/98	10/27/98	JCA	50
* Surrogate re	covery is out of range							
Client Sample ID	: B-2/25'-26'				Sa	mple Number		3-004
Date Sampled:	10/20/98		•		Sa	mple Matrix:	Solid	
Time Sampled:	11:10				Sa	mpled By:	SL	
EPA 8021B	Benzene	477	µg/Kg	200	10/23/98	10/23/98	DWT	40
	Toluene	716	µg/Kg	200	10/23/98	10/23/98	DWT	40
	Ethyl benzene	11300	µg/Kg	200	10/23/98	10/23/98	DWT	40
	Xylenes (Total)	25200	µg/Kg	600	10/23/98	10/23/98	DWT	40
	Total BTEX (Calculated)	37693	µg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate				10/23/98	10/23/98	DWT	1
•	Difluorobenzene (SS)	89%	74-119%		10/23/98	10/23/98	DWT	1
		142%	49-158%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)							76
EPA 8015B	4-Bromonuorobenzene (SS) TPH (DRO)	520	mg/Kg	250	10/26/98	0/27/98	JCA	25
EPA 8015B	4-Bromonuorobenzene (SS) TPH (DRO) **Quality Control Surrogate	520	mg/Kg	250	10/26/98 1 10/26/98 1	10/27/98 10/27/98	JCA JCA	25 25 25
EPA 8015B * Surrogate rec	4-Bromofiliorobenzene (SS) TPH (DRO) **Quality Control Surrogate p-Terphenyl (SS)	520 *0%	mg/Kg 60-140%	250	10/26/98 1 10/26/98 1 10/26/98 1	10/27/98 10/27/98 10/27/98	JCA JCA JCA	25 25 25
EPA 8015B * Surrogate rec	4-Bromofiliorobenzene (SS) TPH (DRO) **Quality Control Surrogate p-Terphenyl (SS)	520 *0%	mg/Kg 60-140%	250	10/26/98 1 10/26/98 1 10/26/98 1	10/27/98 10/27/98 10/27/98	JCA JCA JCA	25 25 25
EPA 8015B * Surrogate rect	4-Bromofiliorobenzene (SS) TPH (DRO) **Quality Control Surrogate p-Terphenyl (SS) povery is out of range B-2/30'-31'	520 *0%	mg/Kg 60-140%	250	10/26/98 1 10/26/98 1 10/26/98 1	10/27/98 10/27/98 10/27/98 nple Number:	JCA JCA JCA 98-3543	25 25 25
EPA 8015B * Surrogate reco	4-Bromofiliorobenzene (SS) TPH (DRO) **Quality Control Surrogate p-Terphenyl (SS) overy is out of range B-2/30'-31' 10/20/98	520 *0%	mg/Kg 60-140%	250	10/26/98 1 10/26/98 1 10/26/98 1 Sar Sar	10/27/98 10/27/98 10/27/98 nple Number: nple Matrix:	JCA JCA JCA 98-3543 Solid	25 25 25
EPA 8015B * Surrogate recu lient Sample ID: Date Sampled: Time Sampled:	4-Bromofiliorobenzene (SS) TPH (DRO) **Quality Control Surrogate p-Terphenyl (SS) tovery is out of range B-2/30'-31' 10/20/98 11:20	520 *0%	mg/Kg 60-140%	250	10/26/98 1 10/26/98 1 10/26/98 1 10/26/98 1 Sar Sar Sar	10/27/98 10/27/98 10/27/98 nple Number: nple Matrix: npled By:	JCA JCA JCA 98-3543 Solid SL	25 25 25 -005
EPA 8015B * Surrogate rec lient Sample ID: Date Sampled: lime Sampled: EPA 8021B	4-Bromofiliorobenzene (SS) TPH (DRO) **Quality Control Surrogate p-Terphenyl (SS) tovery is out of range B-2/30'-31' 10/20/98 11:20 Benzene	520 *0% <50	mg/Kg 60-140% µg/Kg	250 50	10/26/98 10/26/98 10/26/98 10/26/98 Sar Sar 10/23/98 10/23/98	10/27/98 10/27/98 10/27/98 nple Number: nple Matrix: npled By: 0/23/98	JCA JCA JCA 98-3543 Solid SL DWT	25 25 25 -005
EPA 8015B * Surrogate rec lient Sample ID: Date Sampled: Time Sampled: EPA 8021B	4-Bromofiliorobenzene (SS) TPH (DRO) **Quality Control Surrogate p-Terphenyl (SS) overy is out of range B-2/30'-31' 10/20/98 11:20 Benzene Toluene	520 * 0% <50 70	mg/Kg 60-140% µg/Kg µg/Kg	250 50 50	10/26/98 1 10/26/98 1 10/26/98 1 10/26/98 1 Sar Sar 10/23/98 1 10/23/98 1	10/27/98 10/27/98 10/27/98 10/27/98 nple Number: nple Matrix: npled By: 0/23/98 0/23/98	JCA JCA JCA 98-3543 Solid SL DWT DWT	25 25 25 -005 10 10
EPA 8015B * Surrogate rect lient Sample ID: Date Sampled: lime Sampled: EPA 8021B	 4-Bromofiliorobenzene (SS) TPH (DRO) **Quality Control Surrogate p-Terphenyl (SS) <i>tovery is out of range</i> B-2/30'-31' 10/20/98 11:20 Benzene Toluene Ethyl benzene 	520 *0% <50 70 870	mg/Kg 60-140% µg/Kg µg/Kg µg/Kg	250 50 50 50	10/26/98 10/26/98 10/26/98 10/26/98 10/26/98 10/23/98 10/23/98 10/23/98 10/23/98	10/27/98 10/27/98 10/27/98 10/27/98 nple Number: nple Matrix: npled By: 0/23/98 0/23/98 0/23/98	JCA JCA JCA Solid SL DWT DWT DWT	25 25 25 -005
EPA 8015B * Surrogate recu lient Sample ID: Date Sampled: Time Sampled: EPA 8021B	 4-Bromofiliorobenzene (SS) TPH (DRO) **Quality Control Surrogate p-Terphenyl (SS) overy is out of range B-2/30'-31' 10/20/98 11:20 Benzene Toluene Ethyl benzene Xylenes (Total) 	520 * 0% <50 70 870 2510	mg/Kg 60-140% µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg	250 50 50 50 150	10/26/98 10/26/98 10/26/98 10/26/98 10/26/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	10/27/98 10/27/98 10/27/98 10/27/98 10/27/98 10/27/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	JCA JCA JCA 98-3543 Solid SL DWT DWT DWT DWT	25 25 25 -005 10 10 10 10
EPA 8015B * Surrogate rect Client Sample ID: Date Sampled: Cime Sampled: EPA 8021B	 4-Bromofiliorobenzene (SS) TPH (DRO) **Quality Control Surrogate p-Terphenyl (SS) <i>tovery is out of range</i> B-2/30'-31' 10/20/98 11:20 Benzene Toluene Ethyl benzene Xylenes (Total) Total BTEX (Calculated) 	520 *0% <50 70 870 2510 3450	mg/Kg 60-140% µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg	250 50 50 150	10/26/98 1 10/26/98 1 10/26/98 1 10/26/98 1 Sar Sar Sar 10/23/98 1 10/23/98 1 10/23/98 1 10/23/98 1 10/23/98 1	10/27/98 10/27/98 10/27/98 10/27/98 10/27/98 10/27/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	JCA JCA JCA Solid SL DWT DWT DWT DWT DWT	25 25 25 -005 10 10 10 10
EPA 8015B * Surrogate rec. Lient Sample ID: Date Sampled: Time Sampled: EPA 8021B	4-Bromofiliorobenzene (SS) TPH (DRO) **Quality Control Surrogate p-Terphenyl (SS) overy is out of range B-2/30'-31' 10/20/98 11:20 Benzene Toluene Ethyl benzene Xylenes (Total) Total BTEX (Calculated) **Quality Control Surrogate	520 *0% <50 70 870 2510 3450	mg/Kg 60-140% μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg	250 50 50 50 150	10/26/98 10/26/98 10/26/98 10/26/98 10/26/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	10/27/98 10/27/98 10/27/98 10/27/98 10/27/98 10/27/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	JCA JCA JCA 98-3543 Solid SL DWT DWT DWT DWT DWT DWT DWT	25 25 25 -005 10 10 10 10 1 1
EPA 8015B * Surrogate recu lient Sample ID: Date Sampled: Time Sampled: EPA 8021B	4-Bromofiliorobenzene (SS) TPH (DRO) **Quality Control Surrogate p-Terphenyl (SS) overy is out of range B-2/30'-31' 10/20/98 11:20 Benzene Toluene Ethyl benzene Xylenes (Total) Total BTEX (Calculated) **Quality Control Surrogate Difluorobenzene (SS)	520 *0% <50 70 870 2510 3450 111%	mg/Kg 60-140% μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg	250 50 50 150	10/26/98 10/26/98 10/26/98 10/26/98 10/26/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	10/27/98 10/27/98 10/27/98 10/27/98 10/27/98 10/27/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	JCA JCA JCA 98-3543 Solid SL DWT DWT DWT DWT DWT DWT DWT DWT	25 25 25 -005 -10 10 10 10 10 1 1 1 1

Certes Environmental Laboratories 2209 Wisconsin Street, Suite 200 Dallas, Texas, 75229 • 972-620-7966 • 800-394-2872 • FAX 972-620-7963 • Email: certes@aol.com

Analytical Chemistry

Environmental Sciences

Research

Microbiology

Results of An	alyses	CEL File No.:	98-3543			Report Date:		
Sample: 98-	-3543-005 continued	Result	Units	Reporting Limit	Date Prepared	Date Analyzed	Analyzed By	Diluti
EPA 8015B	TPH (DRO)	278	mg/Kg	250	10/26/98	10/27/98	JCA	24
	**Quality Control Surrog	ate			10/26/98	10/27/98	JCA	. 24
	p-Terphenyl (SS)	*0%	60-140%		10/26/98	10/27/98	JCA	2
* Surrogate i	recovery is out of range		-	·				
Client Sample II	D: B-3/25'				S	ample Nuril	ber: 98-354	13-006
Date Sampled:	10/20/98				Sa	- ample Matri	x: Solid	
Time Sampled:	14:20				Sa	impled By:	SL	
EPA 8021B	Benzene	<200	µg/Kg	200	10/23/98	10/23/98	DWT	40
	Toluene	1520	µg/Kg	200	10/23/98	10/23/98	DWT	40
	Ethyl benzene	6950	µg/Kg	200	10/23/98	10/23/98	DWT	40
	Xylenes (Total)	15900	µg/Kg	600	10/23/98	10/23/98	DWT	40
	Total BTEX (Calculated)	24370	µg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogat	te			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	102%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	145%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	369	mg/Kg	250	10/26/98	10/27/98	JCA	25
	**Quality Control Surrogat	e			10/26/98	10/27/98	JCA	25
	p-Terphenyl (SS)	*0%	60-140%		10/26/98	10/27/98	JCA	25
* Surrogate rea	covery is out of range				.:	.*		
Client Sample ID:	B-3/31'-33'				Sar	nple Numbe	er: 98-3543	5-007
Date Sampled:	10/20/98				Sar	nple Matrix	: Solid	
Time Sampled:	14:35	<u></u>	·	<u> </u>	Sar	npled By:	SL	
EPA 8021B	Benzene	<50	µg/Kg	50	10/23/98 1	0/23/98	DWT	10
	Toluene	<50	µg/Kg	50	10/23/98 1	0/23/98	DWT	10
	Ethyl benzene	<50	µg/Kg	50	10/23/98 1	0/23/98	DWT	10
	Xylenes (Total)	<150	µg/Kg	150	10/23/98 1	0/23/98	DWT	10
	Total BTEX (Calculated)	0	µg/Kg]	10/23/98 1	0/23/98	DWT	1
	**Quality Control Surrogate	;		. 1	10/23/98 1	0/23/98	DWT	1
	Difluorobenzene (SS)	108%	74-119%	1	10/23/98	0/23/98	DWT	1
	4-Bromofluorobenzene (SS)	96%	49-158%	1	10/23/98	0/23/98	DWT	1
CPA 8015B	TPH (DRO)	<10	mg/Kg	10 1	10/26/98 1	0/27/98	JCA	1
	**Quality Control Surrogate	:		1	10/26/98	0/27/98	JCA	1
	— 1 1/00					0.000		

Page 4 of 9

Certes Environmental Laboratories 2209 Wisconsin Street, Suite 200 Dallas, Texas, 75229 • 972-620-7966 • 800-394-2872 • FAX 972-620-7963 • Email: certes@aol.com

Analytical Chemistry

Environmental Sciences

Research

Microbiology

l

Results of Analyses

CEL File No.: 98-3543

Report Date: 10/30/98

L

		Result	Units	Limit	Prepare	ed Analyzed	By	Dilu
Client Sample II): B-4/20'					Sample Num	ber: 98-35	43-00
Date Sampled:	10/20/98					Sample Matr	ix: Solid	
Time Sampled:	15:15					Sampled By:	SL	
EPA 8021B	Benzene	<50	µg/Kg	50	10/23/9	8 10/23/98	DWT	j
	Toluene	207	µg/Kg	50	10/23/9	8 10/23/98	DWT]
	Ethyl benzene	178	µg/Kg	50	10/23/9	3 10/23/98 .	DWT	1
	Xylenes (Total)	764	μg/Kg	150	10/23/98	3 10/23/98 [°]	DWT	1
	Total BTEX (Calculated)	1149	µg/Kg		10/23/98	10/23/98	DWT	j
	**Quality Control Surrogat	te			10/23/98	10/23/98	DWT]
	Difluorobenzene (SS)	111%	74-119%		10/23/98	10/23/98	DWT]
	4-Bromofluorobenzene (SS)	134%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	50	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogat	e			10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	64%	60-140%		10/26/98	10/27/98	JCA	1
Tient Sample ID:	B_4/30'	<u></u>		<u></u>		amala Numb		
Date Sampled:	10/20/98				5	ample Numb	•• Solid	5-009
Fime Sampled:	15:40				S	ampled By:	SL	
EPA 8021B	Benzene	<50	µg/Kg	50	10/23/98	10/23/98	DWT	10
	Toluene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Ethyl benzene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Xylenes (Total)	<150	µg/Kg	150	10/23/98	10/23/98	DWT	10
	Total BTEX (Calculated)	0	µg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate				10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	109%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	108%	49-158%		10/23/98	10/23/98	DWT	1
CPA 8015B	TPH (DRO)	47	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogate	·····			10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	70%	60-140%		10/26/98	10/27/98	JCA	1
lient Sample ID: 1	3-5/20'				Si	ample Numbe	r: 98-3543	-010
ate Sampled: 1	0/20/98				Sa	mple Matrix:	Solid	
ime Sampled: 1	6:23	• .			Sa	mpled By:	SL	
PA 8021B	Benzene	<50	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Toluene	288	µg/Kg	50	10/23/98	10/23/98	DWT	10
		Page	5 of 9					

Analytical Chemistry

I.

Environmental Sciences

Research

Microbiology

Results of Analyses C		EL File No.: 98-3543				Repo)/30/98	
Sample: 98-	3543-010 continued	Result	Units	Reporting Limit	Date Prepared	Date Analyzed	Analyzed By	Dilution
EPA 8021B	Ethyl benzene	188	µg/Kg	50	10/23/98	10/23/98	DWT	10
	Xylenes (Total)	759	µg/Kg	150	10/23/98	10/23/98	DWT	· 10
	Total BTEX (Calculated)	1235	µg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogan	te			10/23/98	10/23/98	DWT	. 1
	Difluorobenzene (SS)	112%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	125%	49-158%	•	10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	22	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogat	e			10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	72%	60-140%		10/26/98	10/27/98	JCA	-
Client Sample ID	: B-5/25'				Sa	mple Numb	er: 98-354	3-011
The state of the s	. D. <i>E (201</i>							
Client Sample ID Date Sampled:	: B-5/25' 10/20/98		······································		Sa Sa	mple Numb mple Matrix	er: 98-354. :: Solid	3-011
Client Sample ID Date Sampled: Time Sampled:	: B-5/25' 10/20/98 16:35		· · · · · · · · · · · · · · · · · · ·		Sa Sa Sa	mple Numb mple Matrix mpled By:	er: 98-354 :: Solid SL	3-011
Client Sample ID Date Sampled: Time Sampled: EPA 8021B	: B-5/25' 10/20/98 16:35 Benzene	<50	µg/Kg	50	Sa Sa Sa 10/23/98	mple Numb mple Matrix mpled By: 10/23/98	er: 98-354 :: Solid SL DWT	3-011
Client Sample ID Date Sampled: Time Sampled: EPA 8021B	: B-5/25' 10/20/98 16:35 Benzene Toluene	<50 268	µg/Кg µg/Кg	50 50	Sa Sa 10/23/98 10/23/98	mple Numb mple Matrix mpled By: 10/23/98 10/23/98	er: 98-354 :: Solid SL DWT DWT	3-011 10 10
Client Sample ID Date Sampled: Time Sampled: EPA 8021B	: B-5/25' 10/20/98 16:35 Benzene Toluene Ethyl benzene	<50 268 264	µg/Kg µg/Kg µg/Kg	50 50 50	Sa Sa 10/23/98 10/23/98 10/23/98	mple Numb mple Matrix mpled By: 10/23/98 10/23/98 10/23/98	er: 98-354 Solid SL DWT DWT DWT	3-011 10 10 10
Client Sample ID Date Sampled: Time Sampled: EPA 8021B	: B-5/25' 10/20/98 16:35 Benzene Toluene Ethyl benzene Xylenes (Total)	<50 268 264 566	µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg	50 50 50 150	Sa Sa 10/23/98 10/23/98 10/23/98 10/23/98	mple Numb mple Matrix mpled By: 10/23/98 10/23/98 10/23/98 10/23/98	er: 98-354 Solid SL DWT DWT DWT DWT	3-011 10 10 10 10
Client Sample ID Date Sampled: Time Sampled: EPA 8021B	: B-5/25' 10/20/98 16:35 Benzene Toluene Ethyl benzene Xylenes (Total) Total BTEX (Calculated)	< 50 268 264 566 1098	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg	50 50 50 150	Sa Sa 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	mple Numb mple Matrix mpled By: 10/23/98 10/23/98 10/23/98 10/23/98	er: 98-354 Solid SL DWT DWT DWT DWT DWT	3-011 10 10 10 10 10 10 10 10 10 10 10 10 10
Client Sample ID Date Sampled: Time Sampled: EPA 8021B	: B-5/25' 10/20/98 16:35 Benzene Toluene Ethyl benzene Xylenes (Total) Total BTEX (Calculated) **Quality Control Surrogate	< 50 268 264 566 1098	µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg µg/Kg	50 50 50 150	Sa Sa 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	mple Numb mple Matrix mpled By: 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	er: 98-354 Solid SL DWT DWT DWT DWT DWT DWT	3-011 10 10 10 10 10 1 1 1 1
Client Sample ID Date Sampled: Time Sampled: EPA 8021B	: B-5/25' 10/20/98 16:35 Benzene Toluene Ethyl benzene Xylenes (Total) Total BTEX (Calculated) **Quality Control Surrogate Difluorobenzene (SS)	< 50 268 264 566 1098 104%	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg 74-119%	50 50 50 150	Sa Sa 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	mple Numb mple Matrix mpled By: 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	er: 98-354 Solid SL DWT DWT DWT DWT DWT DWT DWT	3-011 10 10 10 10 1 1 1 1 1 1 1
Client Sample ID Date Sampled: Fime Sampled: EPA 8021B	: B-5/25' 10/20/98 16:35 Benzene Toluene Ethyl benzene Xylenes (Total) Total BTEX (Calculated) **Quality Control Surrogate Difluorobenzene (SS) 4-Bromofluorobenzene (SS)	< 50 268 264 566 1098 104% 135%	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg 74-119% 49-158%	50 50 50 150	Sa Sa 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	mple Numb mple Matrix mpled By: 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	er: 98-354 Solid SL DWT DWT DWT DWT DWT DWT DWT DWT DWT	3-011 10 10 10 10 1 1 1 1 1 1 1
Client Sample ID Date Sampled: Time Sampled: EPA 8021B	: B-5/25' 10/20/98 16:35 Benzene Toluene Ethyl benzene Xylenes (Total) Total BTEX (Calculated) **Quality Control Surrogate Difluorobenzene (SS) 4-Bromofluorobenzene (SS) TPH (DRO)	< 50 268 264 566 1098 104% 135% 69	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg 74-119% 49-158% mg/Kg	50 50 50 150	Sa Sa 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	mple Numb mple Matrix mpled By: 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	er: 98-354 Solid SL DWT DWT DWT DWT DWT DWT DWT DWT JCA	3-011 10 10 10 1 1 1 1 1 1 1 1 1
Client Sample ID Date Sampled: Time Sampled: EPA 8021B	: B-5/25' 10/20/98 16:35 Benzene Toluene Ethyl benzene Xylenes (Total) Total BTEX (Calculated) **Quality Control Surrogate Difluorobenzene (SS) 4-Bromofluorobenzene (SS) TPH (DRO) **Quality Control Surrogate	< 50 268 264 566 1098 104% 135% 69	μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg 74-119% 49-158% mg/Kg	50 50 50 150	Sa Sa 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	mple Numb mple Matrix mpled By: 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98 10/23/98	er: 98-354 Solid SL DWT DWT DWT DWT DWT DWT DWT DWT JCA JCA	3-011 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1

Client Sample ID): B-5/30'				S	ample Number:	98-3543	3-012
Date Sampled:	10/20/98				S	ample Matrix:	Solid	
Time Sampled:	16:45	S	ampled By:	SL				
EPA 8021B	Benzene	<50	µg/Kg	50	10/23/98	10/23/98	DWT	10
	Toluene	<50	µg/Kg	50	10/23/98	10/23/98	DWT	10
	Ethyl benzene	<50	µg/Kg	50	10/23/98	10/23/98	DWT	10
	Xylenes (Total)	<150	µg/Kg	150	10/23/98	10/23/98	DWT	10
	Total BTEX (Calculated)	0.	µg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate	e			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	111%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	99%	49-158%		10/23/98	10/23/98	DWT	1
		Pa	ge 6 of 9					

Certes Environmental Laboratories 2209 Wisconsin Street, Suite 200 Dallas, Texas, 75229 • 972-620-7966 • 800-394-2872 • FAX 972-620-7963 • Email: certes@aol.com

Analytical Chemistry

Environmental Sciences

Research

Microbiology

I.
Results of Ana	alyses	CEL File No.: 98-3543				Report Date: 10/30/98		
Sample: 98-	-3543-012 continued	Result	Units	Reporting Limit	Date Prepared	Date I Analyzed	Analyzed By	Dilutio
EPA 8015B	TPH (DRO)	18	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surroga	ıte			10/26/98	10/27/98	JCA	. 1
	p-Terphenyl (SS)	63%	60-140%		10/26/98	10/27/98	JCA	1
			-					
Client Sample II	D: B-6/20'-21'				5	ample Numb	er: 98-354	43-013
Date Sampled:	10/21/98				S	ample Matrix	:: Solid	
Time Sampled:	8:47				S	ampled By:	SL	
EPA 8021B	Benzene	<50	µg/Kg	50	10/23/98	10/23/98	DWT	10
	Toluene	1390	µg/Kg	50	10/23/98	10/23/98	DWT	10
	Ethyl benzene	1440	µg/Kg	50	10/23/98	10/23/98	DWT	10
	Xylenes (Total)	4660	µg/Kg	150	10/23/98	10/23/98	DWT	10
	Total BTEX (Calculated)	7490	µg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate	e			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	114%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	127%	49-158%		10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	71	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogate	e			10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	61%	60-140%		10/26/98	10/27/98	JCA	1
					•			
lient Sample ID:	B-6/25'-26'		•		Sa	mple Number	:: 98-3543	8-014
Date Sampled: Time Sampled:	10/21/98 8:50				Sa Sa	mple Matrix: mpled By:	Solid SL	
PA 8021B	Benzene	460	μg/Kg	200	10/23/98	10/23/98	DWT	40
	Toluene	4260	µg/Kg	200	10/23/98	10/23/98	DWT	40
	Ethyl benzene	12200	µg/Kg	200	10/23/98	10/23/98	DWT	40
	Xylenes (Total)	26400	µg/Kg	600	10/23/98	10/23/98	DWT	40
	Total PTEX (Calculated)	43320	µg/Kg		10/23/98	10/23/98	DWT	1
	Total BTEA (Calculated)					10/22/00	DWT	1
	**Quality Control Surrogate			1	10/23/98	10/23/98	DWI	
	**Quality Control Surrogate Difluorobenzene (SS)	85%	74-119%	1	10/23/98 10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate Difluorobenzene (SS) 4-Bromofluorobenzene (SS)	85% 143%	74-119% 49-158%	1 1 1	10/23/98 10/23/98 10/23/98	10/23/98 10/23/98 10/23/98	DWT DWT	1 1
PA 8015B	**Quality Control Surrogate Difluorobenzene (SS) 4-Bromofluorobenzene (SS) TPH (DRO)	85% 143% 234	74-119% 49-158% mg/Kg	1 1 50 1	10/23/98 10/23/98 10/23/98 10/26/98	10/23/98 10/23/98 10/23/98 10/27/98	DWT DWT JCA	1 1 5
PA 8015B	**Quality Control Surrogate Difluorobenzene (SS) 4-Bromofluorobenzene (SS) TPH (DRO) **Quality Control Surrogate	85% 143% 234	74-119% 49-158% mg/Kg	50 1	10/23/98 10/23/98 10/23/98 10/26/98	10/23/98 10/23/98 10/23/98 10/27/98	DWT DWT JCA JCA	1 1 5 5

- - - -

Page 7 of 9

Certes Environmental Laboratories 2209 Wisconsin Street, Suite 200 Dallas, Texas, 75229 • 972-620-7966 • 800-394-2872 • FAX 972-620-7963 • Email: certes@aol.com

Analytical Chemistry

Environmental Sciences

Research

Results of Analyses

--- -

CEL File No.: 98-3543

Report Date: 10/30/98

		Result	Units	Limit	Prepar	ed Analyzed	By	Dilu
Client Sample II	D: B-6/30'-31'					Sample Num	ber: 98-35	43-01
Date Sampled:	10/21/98					Sample Matr	ix: Solid	
Time Sampled:	9:05					Sampled By:	SL	
EPA 8021B	Benzene	581	µg/Kg	50	10/23/9	8 10/23/98	DWT	
	Toluene	130	μg/Kg	50	10/23/9	8 10/23/98	DWT	.]
	Ethyl benzene	2900	μg/Kg	50	10/23/9	8 10/23/98 .	DWT	1
	Xylenes (Total)	4170	μg/Kg	150	10/23/9	8 10/23/98	DWT	1
	Total BTEX (Calculated)	7781	μg/Kg		10/23/9	8 10/23/98	DWT	-
	**Quality Control Surrogate	9			10/23/98	3 10/23/98	DWT	
	Difluorobenzene (SS)	116%	74-119%		10/23/98	3 10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	152%	49-158%		10/23/98	3 10/23/98	DWT	1
EPA 8015B	TPH (DRO)	25	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogate				10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	67%	60-140%		10/26/98	10/27/98	JCA	1
Client Sample ID:	B-7/25'-26'		<u></u>			Sample Numbe	er: 98-3543	6-010
Date Sampled:	10/21/98				5	Sample Matrix	: Solid	
Time Sampled:	9:45		<u> </u>			Sampled By:	SL	
EPA 8021B	Benzene	<50	µg/Kg	50	10/23/98	10/23/98	DWT	10
	Toluene	100	µg/Kg	50	10/23/98	10/23/98	DWT	1(
	Ethyl benzene Kadasas (Tatal)	< 150	µg/Kg	50 150	10/23/98	10/23/98	DWT	10
	Aylenes (10tal)	<150	µg/Kg	150	10/23/98	10/23/98	DWI	1
	total BIEA (Calculated)	100	µg/ĸg		10/22/09	10/23/98		1
	Diffueroherene (SS)	1030/	74 1100/		10/22/09	10/22/09	DWI	1
	A Dramofluershammer (SS)	103%	/4-11970		10/23/30	10/22/09		1
DA 9015D		11/70	49-1J070	10	10/22/20	10/23/30	DWI	1
FA 80156		100	mg/Kg		10/20/20	10/27/09		۰ ۱
	- Quality Control Surrogate	+ 500/	60 1408/		10/20/90	10/27/09		1
* Supporte par	p-lerpnenyl (SS)	* 59%	60-140%		10/20/98	10/2//98	JCA	1
Smill guie let	····· w was of lunge		<u></u>					
ient Sample ID: 1	B-7/30'		•		S	ample Numbe	r: 98-3543-	-017
ate Sampled:	10/21/98				S	ample Matrix:	Solid	
ime Sampled:	9:55	·			S	ampled By:	SL	
PA 8021B	Benzene	<50	µg/Kg	50	10/23/98	10/23/98	DWT	10
	Toluene	214	μg/Kg	50	10/23/98	10/23/98	DWT	10
		Page	8 of 9					

Analytical Chemistry

Environmental Sciences

Research

Results of Analyses

CEL File No.: 98-3543

Report Date: 10/30/98

<u>Sample: 98-35</u>	543-017 continued	Result	Units	Reporting Limit	Date Prepared	Date Analyzed	Analyzed By	Dilution
EPA 8021B	Ethyl benzene	865	μg/Kg	50	10/23/98	10/23/98	DWT	10
	Xylenes (Total)	2190	µg/Kg	150	10/23/98	10/23/98	DWT	10
	Total BTEX (Calculated)	3269	μg/Kg		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate				10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	115%	74-119%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	117%	49-158%	•	10/23/98	10/23/98	DWT	1
EPA 8015B	TPH (DRO)	10	mg/Kg	10	10/26/98	10/27/98	JCA	1
	**Quality Control Surrogate				10/26/98	10/27/98	JCA	1
	p-Terphenyl (SS)	89%	60-140%		10/26/98	10/27/98	JCA	1

Page 9 of 9

Certes Environmental Laboratories 2209 Wisconsin Street, Suite 200 Dallas, Texas, 75229 • 972-620-7966 • 800-394-2872 • FAX 972-620-7963 • Email: certes@aol.com

Analytical Chemistry

Environmental Sciences

Research

Results of Analyses - Laboratory Quality Control

	Benzene	Toluene	EUM	A Xy/leness	Diesel
			benzene.		Range
					<u>. Organies</u>
					- · · · · · · · · · · · · · · · · · · ·
Matrix Spike					
Date Marsha	102200771	100200777		100200777	DROG
	10239811	102398H1	102398H1	102398H1	. 0099
Date Prepared	10/23/98	10/23/98	10/23/98	10/23/98	10/26/98
Date Analyzed	10/23/98	10/23/98	10/23/98	10/23/98	10/27/98
Spiked Sample ID	3543-17	3543-17	3543-17	3543-17	N/A
Spike Level					
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	100	100	100	200	83.3
Spike Result					
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	108	104	93	183	30.0*
% Recovery	108	104	93	92	N/A
Spike Duplicate Result				1	
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	111	107	96	191	196*
% Recovery Duplicate	111	107	96	96	N/A
Relative Percent Difference (RPD)	3	3	3	4	N/A
Control Limits (%low-%high)	70-130	70-130	70-130	70-130	53.3-112
Method Blank					
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	<1	<1	<1	<3	<10.0
Laboratory Control Sample		·			
Spike Level					
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	100	100	100	200	83.3
Spike Result					
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	110	110	111	227	63.1
% Recovery	110	110	111	114	75
Spike Duplicate Result					
(mg/L) (µg/L) (mg/Kg) (µg/Kg)	N/A	N/A	N/A	N/A	70.5
% Recovery Duplicate	N/A	N/A	N/A	.N/A	85
Relative Percent Difference (RPD)	N/A	N/A	N/A	N/A	11
Control Limits (%low-%high)	70-130	70-130	70-130	70-130	53.3-112

*See Case Narrative

μg/l = micrograms per liter (ppb) μg/kg = micrograms per kilogram (ppb) < = less than MS = Matrix Spike MSD = Matrix Spike LCS = Laboratory Control Sample BS = Blank Spike μmhos/cm = micromhos/centimeter mg/l = milligrams per liter (ppm) mg/kg = milligrams per kilogram (ppm) % = percent RPD = Relative Percentage Difference RW - Reagent Water LCSD = Laboratory Control Sample Duplicate

BSD = Blank Spike Duplicate

Certes Environmental Laboratories

2209 Wisconsin Street, Suite 200 Dallas, Texas, 75229 • 972-620-7966 • 800-394-2872 • FAX 972-620-7963 • Email: certes@aol.com

Analytical Chemistry

Environmental Sciences

Research

Client Name -12102 GeusaTING Compa Client Address 122 WEST TAYLOG	2209 Wisconsin Dallas, Texas 75 972-620-7966	Lavoratories, L.L.C. Street, Suite 200 229 972-620-7963 Fax		Analysi	s(es) Requested	
Billing Address	W EVERCON-Phome, No.	37		<u>(</u> ସ)		
Purchase Order No.	Hcbbs Rate	M ^{ZID} SE240		4) ج		
Projest Manager A. LowLey	TUNKTICAN For I P	Hebbs SWD Sys	X31	103 H		
Certes Sample ID I	Date Time Matrix	No. & Type of Container	5			
10 15-2/20 10h 11 B-5/25' 10h	20198 1623 Sou	->->	> >			
12 73-5/ 30'	1048 1646 Sal	>->	> >			
13 R-6/20-21' 101	21/28 847 Som	->	>			
14 B-la/25-21a 10h	1/28 850 Sort	->	>			
15 B-6/30-31 10h	1/95 905 Son	->	7 7			
10 R-7/25-210 10/	21/95 945 Soil	->	>			
17 3-7/30' 1012	1/98 905 Sor	->	>			
Sampled By	1 Matrix: A.	Air Bag; C - Charcoal Tube 40ml VOA Vial; G - Amber o	L - Liquid, OL r Glass 1 Liter;	- Oil: S - Soil: SD Solid: 6	al Sludge, WP - Wipe; W	WaterWastewa
TAT	nt Project ID	Special Instructions (includir	- Nitric Acid; H	SQ, - Sulturic Acid; O - Other ion Jimits) /		
Standard: Date Required 15/30	EN 958 alloration G.	Clert will bar RL Spir 422	5108 75	DRO +ler GRO	98-3542	
Relignished by Semiliar S		Date	eu	Received By		P.
Relinquished by .		Date	ne	Received By		
Relinquished by		Date 10/27.94 Tir	ne 1/5 5	Received By Laboratory	\cup \cup \cup \cup	-

Analysis(es) Requested									S - Soil; SD - Solid: SL - Sludge; WP - Wipe, W - Water/Westew Oml Wide-mouth Glass Jar, O - Other	The they GRA Certes Job Number BOIS DAR they GRA POR JOY 3543	aived By	sived By	sived By Laboratory K.C.L. Cose
oratories, L.L.C. eet, Suite 200 2-620-7963 Fax	011) GIG - 00 - 07200 - 07200 - 00 - 00 - 00 - 00 - 00 - 00 - 00 -	Hudtatton number. Holde SWISS No & Type of Container? G J 10 P3	<u> </u>	> >	->-		· · · · · · · · · · · · · · · · · · ·	>->	ag; C - Charcoal Tube; L - Liquid; OL - Oi; I VOA Vial; G - Amber or Glass 1 Liter; J - 2 drochlonc Acid; HNO - Ninc Acid; H SO -	rectal lastructions (including specific detection it	10122192 Time Rec	e Time Rec	$e \left[o \right] 2 c \left[q_{\chi} \right]$ Time $\left[655 \right]$ Reco
Environmental La 2209 Wisconsin St Dallas, Texas 7522 972-620-7966 9;	- ENERCON - LA PHOPE No. City Heldes State	To ensure proper billing, please reference Sile Location Juncture Prov T.9] Date Time Matrix ¹	10/20/98 916 Soil	10/20/78 10 Sont	10/20/46 11 10 Solu	10/20/92 1420 Son	10/20/98 1435 Solu	10/2096 1546 Solu	1 Matrix: A - Air 2 Container Type: V - 40n 3 Preservative: HCI - H	Client Project ID EV 958 Construction Construction	Part Part Part	Da	Da agree to the terms and conditions contain
Certes	Client Address Billing Address	Purchase Order No. Profect Manager A. Cowley Certes Sample ID No.	[B-1/26-20.6 2 R-1/25	3 13-1/ 30'	4 R-7/25-26	b 3-3/25'	7 8-3/31-53' 8 R-4/25'	9 B-4/30'	Sampled By SAL	TAT Standard+Date Required 10 13 O	Relinquished By Samoler	Relinquished by	Relinquished by NOTE: By submitting these samples, you

February 10, 1999

F. Wesley Root RICE OPERATING COMPANY 122 West Taylor Hobbs, NM 88240

The following report contains analytical results for the sample(s) received at Southern Petroleum Laboratories (SPL) on January 19, 1999. The sample(s) was assigned to Certificate of Analysis No. (s) 9901761 and analyzed for all parameters as listed on the chain of custody.

Sample MW-2 (SPL#9901761-01D) was randomly chosen as a quality Control sample for Total metals analysis by SW-846 method 6010. The Matrix Spike (MS) and Matrix Spike Duplicate (MSD) recoveries were outside of advisable limits for Aluminum and Iron. A Laboratory Control Sample (LCS) was analyzed as a Quality Control check for the analytical batch and all recoveries were within acceptable limits.

Any data flags or quality control exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

If you have any questions or comments pertaining to this data report, please do not hesitate to contact me. Please reference the above Certificate of Analysis No. during any inquiries.

Again, SPL is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Southern Petroleum Laboratories

あつ

Electa Brown Project Manager

Southern Petroleum Laboratories, Inc.

Certificate of Analysis Number: 99-01-761

Approved for Release by:

Dat/e

Electa Brown, Project Manager

Greg Grandits Laboratory Director

Cynthia Schreiner Quality Assurance Officer

The attached analytical data package may not be reproduced except in full without the express written approval of this laboratory. The results relate only to the samples tested. Results reported on a Wet Weight Basis unless otherwise noted.

Certificate of Analysis No. H9-9901761-02

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-1 PROJECT NO: MATRIX: WATER DATE SAMPLED: 01/16/99 12:30:00 DATE RECEIVED: 01/19/99

	ANALYTICA	L DATA		
PARAMETER		RESULTS	DETECTION	UNITS
Liquid-liquid Method 3520C Analyzed by: Date:	extraction SEMIVOLATIL *** KL 01/20/99 13:00:00	ES 01/20/99	BIMI I	
Chloride Method 325.3 Analyzed by: Date:	* CV 01/29/99 11:00:00	128	2	mg/L
Carbonate, as Method SM 45 Analyzed by: Date:	CaCO3 00-CO2D ** TK 01/19/99 16:20:00	ND	2	mg/L
Bicarbonate, a Method SM 450 Analyzed by: Date:	as CaCO3 D0-CO2D ** TK 01/19/99 16:20:00	332	2	mg/L
pH Method 150.1	*	7.29		pH Units
Analyzed by: Date:	TK 01/19/99 17:00:00			
Resistivity Method 120.1 Analyzed by: Date:	* TK 01/19/99 16:50:00	0.74	0.001	Mohms-cm

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-02

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-1 PROJECT NO: MATRIX: WATER DATE SAMPLED: 01/16/99 12:30:00 DATE RECEIVED: 01/19/99

		ANALY	TICAL DATA			
PARAMETER				RESULTS	DETECTIO	ON UNITS
Sulfate Method 375.4 Analyzed by: Date:	* TW . 01/28/99	13:30:00		318	25	mg/L
Specific Grav ASTM D1429	ity			0.982		g/cm3
Analyzed by: Date:	DS 02/02/99	14:00:00				
Total Dissolve Method 160.1 Analyzed by: Date:	ed Solids * DS 02/05/99	10:00:00		890	20	mg/L
Silver, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00		ND	0.01	mg/L
Aluminum, Tota Method 6010B Analyzed by:	al *** JM	···		12.3	0.1	mg/L
Date:	01/20/99	10:00:00				
Arsenic, Total Method 6010B Analyzed by: Date:	L *** EG 01/21/99	15:28:00		0.019	0.005	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-02

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-1

PROJECT NO:		
MATRIX:	WATER	
DATE SAMPLED:	01/16/99	12:30:00
DATE RECEIVED:	01/19/99	

	ANALYTICAL DAT	A		
PARAMETER		RESULTS	DETECTION LIMIT	UNITS
Barium, Total Method 6010B *** Analyzed by: JM Date: 01/20/99	10:00:00	0.870	0.005	mg/L
Calcium, Total Method 6010B *** Analyzed by: JM Date: 01/20/99	10:00:00	727	1	mg/L
Cadmium, Total Method 6010B *** Analyzed by: JM Date: 01/20/99	10:00:00	ND	0.005	mg/L
Cobalt, Total Method 6010B *** Analyzed by: JM Date: 01/20/99	10:00:00	ND	0.01	mg/L
Chromium, Total Method 6010B ***	······································	ND	0.01	mg/L
Analyzed by: JM Date: 01/20/99	10:00:00			
Copper, Total Method 6010B *** Analyzed by: JM Date: 01/20/99	10:00:00	0.02	0.01	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-02

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-1 PROJECT NO: MATRIX: WATER DATE SAMPLED: 01/16/99 12:30:00 DATE RECEIVED: 01/19/99

	ANALYTICAL	DATA		
PARAMETER		RESULTS	DETECTION	UNITS
Iron, Total Method 6010B *** Analyzed by: JM Date: 01/20/99	9 10:00:00	9.34	0.02	mg/L
Mercury, Total Method 7470 A*** Analyzed by: AG Date: 01/20/99	9 14:50:00	ND	0.0002	mg/L
Potassium, Total Method 6010B *** Analyzed by: JM Date: 01/20/99	9 10:00:00	3	2	mg/L
Magnesium, Total Method 6010B *** Analyzed by: JM Date: 01/20/99	0 10:00:00	43.9	0.1	mg/L
Manganese, Total Method 6010B ***	· · · · · · · · · · · · · · · · · · ·	0.214	0.005	mg/L
Analyzed by: JM Date: 01/20/99	10:00:00			
Molybdenum, Total Method 6010B *** Analyzed by: JM Date: 01/20/99	10:00:00	ND	0.02	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-02

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root DATE: 02/09/99 PROJECT NO: **PROJECT:** Jct. I-9 Hobbs SWD System MATRIX: WATER SITE: 09-T195-R38E, Lea County **DATE SAMPLED:** 01/16/99 12:30:00 SAMPLED BY: Rice Operating Company **DATE RECEIVED:** 01/19/99 SAMPLE ID: MW-1 ANALYTICAL DATA PARAMETER RESULTS DETECTION UNITS LIMIT Sodium, Total 144 0.5 mg/L Method 6010B *** Analyzed by: JM Date: 01/20/99 10:00:00 0.02 Nickel, Total 0.02 mg/L Method 6010B *** Analyzed by: JM Date: 01/20/99 10:00:00 Acid Digestion-Aqueous, ICP 01/19/99 Method 3010A *** Analyzed by: EE Date: 01/19/99 13:00:00 Lead, Total 0.005 0.005 mg/L Method 6010B *** Analyzed by: EG Date: 01/21/99 15:28:00 Selenium, Total ND 0.005 mq/L Method 6010B *** Analyzed by: EG Date: 01/21/99 15:28:00 Zinc, Total 0.05 0.02 mg/L Method 6010B *** Analyzed by: JM Date: 01/20/99 10:00:00

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

02/09/99

Certificate of Analysis No. H9-9901761-02

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-1

PROJECT NO:	•	
MATRIX:	WATER	
DATE SAMPLED:	01/16/99	12:30:00
DATE RECEIVED:	01/19/99	

ANALYTICAL DATA					
PARAMETER	RESULTS	PQL*	UNITS		
Benzene	. 8	5	ug/L		
Bromobenzene	ND	5	ug/L		
Bromochloromethane	ND	5	ug/L		
Bromodichloromethane	ND	5	ug/L		
Bromoform	ND	5	ug/L		
Bromomethane	ND	10	ug/L		
n-Butylbenzene	ND	5	ug/L		
sec-Butylbenzene	ND	5	uq/L		
tert-Butylbenzene	ND	5	uq/L		
Carbon tetrachloride	ND	5	ug/L		
Chlorobenzene	ND	5	uq/L		
Chlorodibromomethane	ND	5	′ uq/L		
Chloroethane	ND	10	ug/L		
Chloroform	ND	5	uq/L		
Chloromethane	ND	10	ug/L		
2-Chlorotoluene	ND	5	ug/L		
4-Chlorotoluene	ND	5	ug/L		
1,2-Dibromo-3-chloropropane	ND	5	ug/L		
1,2-Dibromoethane	ND	5	ug/L		
Dibromomethane	ND	5	ug/L		
1,2-Dichlorobenzene	ND	5	ug/L		
1,3-Dichlorobenzene	ND	5	ug/L		
1,4-Dichlorobenzene	ND	5	ug/L		
Dichlorodifluoromethane	ND	10	ug/L		
1,1-Dichloroethane	ND	5	ug/L		
1,2-Dichloroethane	ND	5	ug/L		
1,1-Dichloroethene	ND	5	ug/L		
cis-1,2-Dichloroethene	ND	5	ug/L		
trans-1,2-Dichloroethene	ND	5	ug/L		
1,2-Dichloropropane	ND	5	ug/L		
1,3-Dichloropropane	ND	5	ug/L		
2,2-Dichloropropane	ND	5	ug/L		
1,1-Dichloropropene	ND	5	ug/L		
Ethylbenzene	32	5	ug/L		
Hexachlorobutadiene	ND	5	ug/L		
Isopropylbenzene	ND	5	ug/L		
p-Isopropyltoluene	ND	5	uq/L		
Methylene chloride	ND	5	uq/L		

METHOD: 8260 Water, Volatile Organics (continued on next page)

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUISTON TEXAS 77054

Certificate of Analysis No. H9-9901761-02

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Rice	Operating	Company
------	-----------	---------

SAMPLE ID: MW-1

ANA	LYTICAL DATA	(cont	inued)		
PARAMETER	RESULT	rs	PQL*	τ	JNITS
Naphthalene		ND	5		ug/L
n-Propylbenzene		ND	5		ug/I
Styrene		ND	5		ug/I
1,1,1,2-Tetrachloroethane		ND	5		ug/I
1,1,2,2-Tetrachloroethane		ND	5		ug/I
Tetrachloroethene		ND	5		ug/I
Toluene		ND	5		ug/I
1,2,3-Trichlorobenzene		ND	5		ug/I
1,2,4-Trichlorobenzene		ND	5		ug/L
1,1,1-Trichloroethane		ND	5		ug/I
1,1,2-Trichloroethane		ND	5		ug/L
Trichloroethene		ND	5		ug/L
Trichlorofluoromethane		ND	5		uq/I
1,2,3-Trichloropropane		ND	5		ug/I
1,2,4-Trimethylbenzene		7	5		uq/L
1,3,5-Trimethylbenzene		ND	5		uq/L
Vinyl chloride		ND	10		ug/L
Xvlenes (total)		12	5		uq/L
Acetone		ND	100		ug/L
Carbon Disulfide		ND	5		ug/L
Vinvl Acetate		ND	10		ug/L
2-Butanone		ND	20		ug/L
1,2-Dichloroethene (total)		ND	5		uq/L
2-Chloroethylvinylether		ND	.10		uq/L
4-Methyl-2-Pentanone		ND	10		uq/L
cis-1,3-Dichloropropene		ND	5		ug/L
trans-1,3-Dichloropropene		ND	5		uq/L
2-Hexanone		ND	10		uq/L
Methyl t-Butyl Ether		ND	10		ug/L
SURROGATES	AMOUNT	%		LOWER	UPPER
	SPIKED	REC	OVERY	LIMIT	LIMIT
.,2-Dichloroethane-d4	50 ug/L		86	76	114
Foluene-d8	50 ug/L		102	88	110

ANALYZED BY: GLT DATE/TIME: 01/23/99 20:10:00 METHOD: 8260 Water, Volatile Organics NOTES: * - Practical Quantitation Limit ND - Not Detected NA - Not Analyzed

50 ug/L

86

86

115

COMMENTS:

4-Bromofluorobenzene

Certificate of Analysis No. H9-9901761-02

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

02/09/99

PROJECT: Jct. I-9 Hobbs SWD System	PROJECT NO:	
SITE: 09-T195-R38E, Lea County	MATRIX: WATER	
SAMPLED BY: Rice Operating Company	DATE SAMPLED: 01/16/99 12:30:0	0
SAMPLE ID: MW-1	DATE RECEIVED: 01/19/99	

PARAMETER	RESULTS	PQL*	UNITS
Acenaphthene	ND	5	uq/L
Acenaphthylene	ND	5	uq/L
Aniline	ND	5	ug/L
Anthracene	ND	5	ug/L
Benzo(a)Anthracene	ND	5	ug/L
Benzo(b)Fluoranthene	ND	5	ug/L
Benzo(k)Fluoranthene	ND	5	ug/L
Benzo(a) Pyrene	ND	5	ug/L
Benzoic Acid	ND	25	ug/L
Benzo(g,h,i)Perylene	ND	5	ug/L
Benzyl alcohol	ND	·5	ug/L
4-Bromophenylphenyl ether	ND	5	ug/L
Butylbenzylphthalate	ND	5	ug/L
di-n-Butyl phthalate	ND	5	ug/L
Carbazole	ND	5	ug/L
4-Chloroaniline	ND	5	ug/L
bis(2-Chloroethoxy)Methane	ND	5	ug/L
bis(2-Chloroethyl)Ether	ND	5	ug/L
bis(2-Chloroisopropyl)Ether	ND	5	ug/L
4-Chloro-3-Methylphenol	ND	5	ug/L
2-Chloronaphthalene	ND	· 5	ug/L
2-Chlorophenol	ND	5	ug/L
4-Chlorophenylphenyl ether	ND	5	ug/L
Chrysene	ND	5	ug/L
Dibenz(a,h)Anthracene	ND	5	ug/L
Dibenzofuran	ND	5	ug/L
1,2-Dichlorobenzene	ND	5	ug/L
1,3-Dichlorobenzene	ND	5	ug/L
1,4-Dichlorobenzene	ND	5	ug/L
3,3'-Dichlorobenzidine	ND	10	ug/L
2,4-Dichlorophenol	ND	5	ug/L
Diethylphthalate	ND	5	ug/L
2,4-Dimethylphenol	ND	5	ug/L
Dimethyl Phthalate	ND	5	ug/L
4,6-Dinitro-2-Methylphenol	· ND	25	ug/L
2,4-Dinitrophenol	ND	25	ug/L
2,4-Dinitrotoluene	ND	5	ug/L
2,6-Dinitrotoluene	ND	5	ug/L

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

Certificate of Analysis No. H9-9901761-02

Rice Operating Company

SAMPLE ID: MW-1

ANALYT	ICAL DATA	(cont	inued)	
PARAMETER	RESULTS		PQL*	UNITS
1,2-Diphenylhydrazine		ND .	5	ug/L
bis(2-Ethylhexyl)Phthalate		ND	5	ug/L
Fluoranthene		ND	5	ug/L
Fluorene		ND	5	ug/L
Hexachlorobenzene		ND	5	ug/L
Hexachlorobutadiene		ND	5	ug/L
Hexachloroethane	,	ND	5	ug/L
Hexachlorocyclopentadiene		ND	5	ug/L
Indeno (1,2,3-cd) Pyrene		ND	5	ug/L
Isophorone		ND	5	ug/L
2-Methylnaphthalene		ND	· 5 ·	ug/L
2-Methylphenol		ND	5	ug/L
4-Methylphenol		ND	5	ug/L
Naphthalene		ND	5	ug/L
2-Nitroaniline		ND	25	ug/L
3-Nitroaniline		ND	25	ug/L
4-Nitroaniline		ND	25	ug/L
Nitrobenzene		ND	5	ug/L
2-Nitrophenol		ND	5	ug/L
4-Nitrophenol		ND	25	ug/L
N-Nitrosodiphenylamine		ND	5	ug/L
N-Nitroso-Di-n-Propylamine		ND	5	ug/L
Di-n-Octyl Phthalate		ND	5	ug/L
Pentachlorophenol		ND	25	ug/L
Phenanthrene		ND	5	ug/L
Phenol		ND	5	ug/L
Pyrene		ND	5	ug/L
Pyridine		ND	5	ug/L
1,2,4-Trichlorobenzene		ND	5	ug/L
2,4,5-Trichlorophenol		ND	10	ug/L
2,4,6-Trichlorophenol		ND	5	ug/L

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054

Certificate of Analysis No. H9-9901761-0

No. H9-9901761-02	PHONE (713) 660-0901
-------------------	----------------------

Rice Operating Company	SAMPLE ID:	MW-1
------------------------	------------	------

SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
Nitrobenzene-d5	50 ug/L	74	35	114
2-Fluorobiphenyl	50 ug/L	78	43	116
Terphenyl-d14	50 ug/L	60	33	141
Phenol-d5	75 ug/L	21	10	110
2-Fluorophenol	75 ug/L	37	21	110
2,4,6-Tribromophenol	75 ug/L	65	10	123

ANALYZED BY: YL DATE/TIME: 01/22/99 19:55:00 EXTRACTED BY: KL DATE/TIME: 01/20/99 13:00:00 METHOD: 8270C, Semivolatile Organics - Water NOTES: * - Practical Quantitation Limit ND - Not Detected NA - Not Analyzed

COMMENTS:

Certificate of Analysis No. H9-9901761-01

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System SITE: 09-T195-R38E, Lea County SAMPLED BY: Rice Operating Company SAMPLE ID: MW-2 PROJECT NO: MATRIX: WATER DATE SAMPLED: 01/16/99 11:20:00 DATE RECEIVED: 01/19/99

ANALYTICAL DATA				
PARAMETER		RESULTS	DETECTION	UNITS
Liquid-liquid Method 3520C Analyzed by: Date:	extraction SEMIVOLATILES *** KL 01/20/99 13:00:00	01/20/99	LIMI I	
Chloride Method 325.3 Analyzed by: Date:	* CV 01/29/99 11:00:00	230	5	mg/L
Carbonate, as Method SM 450 Analyzed by: Date:	CaCO3 DO-CO2D ** TK 01/19/99 16:20:00	ND	2	mg/L
Bicarbonate, a Method SM 450 Analyzed by: Date:	as CaCO3 00-CO2D ** TK 01/19/99 16:20:00	322	2	mg/L
pH Method 150.1	*	7.51		pH Units
Analyzed by: Date:	TK 01/19/99 17:00:00			
Resistivity Method 120.1 Analyzed by: Date:	* TK 01/19/99 16:50:00	0.58	0.001	Mohms-cm

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-01

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-2

PROJECT NO:		
MATRIX:	WATER	
DATE SAMPLED:	01/16/99	11:20:00
DATE RECEIVED:	01/19/99	

		ANALYTICAL	DATA		
PARAMETER			RESULTS	DETECTION	UNITS
Sulfate Method 375.4 Analyzed by: Date:	* TW 01/28/99	13:30:00	372	25	mg/L
Specific Grav ASTM D1429 Analyzed by: Date:	ity DS 02/02/99	14:00:00	0.985		g/cm3
Total Dissolve Method 160.1 Analyzed by: Date:	ed Solids * DS 02/05/99	10:00:00	1190	20	mg/L
Silver, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00	ND	0.01	mg/L
Aluminum, Tota Method_6010B	al		16.5	0.1	mg/L
Analyzed by: Date:	JM 01/20/99	10:00:00			
Arsenic, Total Method 6010B Analyzed by: Date:	l *** EG 01/21/99	15:28:00	0.025	0.005	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-01

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-2 PROJECT NO: MATRIX: WATER DATE SAMPLED: 01/16/99 11:20:00 DATE RECEIVED: 01/19/99

		ANALYTICA	L DATA			
PARAMETER	·			RESULTS	DETECTION LIMIT	N UNITS
Barium, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00		0.970	0.005	mg/L
Calcium, Total Method 6010B Analyzed by: Date:	L *** JM 01/20/99	10:00:00		578	. 1	mg/L
Cadmium, Total Method 6010B Analyzed by: Date:	/ *** JM 01/20/99	10:00:00		ND	0.005	mg/L
Cobalt, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00		ND	0.01	mg/L
Chromium, Tota Method 6010B	1			0.02	0.01	mg/L
Analyzed by: Date:	JM 01/20/99	10:00:00				
Copper, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00		0.02	0.01	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-01

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-2 PROJECT NO: MATRIX: WATER DATE SAMPLED: 01/16/99 11:20:00 DATE RECEIVED: 01/19/99

ANALYTICAL DATA					
PARAMETER			RESULTS	DETECTIO LIMIT	N UNITS
Iron, Total Method 6010B ** Analyzed by: JN Date: 01	** M 1/20/99	10:00:00	11.6	0.02	mg/L
Mercury, Total Method 7470 A** Analyzed by: A0 Date: 01	** G 1/20/99	14:50:00	ND	0.0002	mg/L
Potassium, Total Method 6010B ** Analyzed by: JN Date: 01	l ** M 1/20/99	10:00:00	30	2	mg/L
Magnesium, Total Method 6010B ** Analyzed by: JN Date: 01	l ** M 1/20/99	10:00:00	101	0.1	mg/L
Manganese, Total Method 6010B_**	1		0.288	0.005	mg/L
Analyzed by: JM Date: 01	M 1/20/99	10:00:00			· ·
Molybdenum, Tota Method 6010B ** Analyzed by: JM Date: 01	al ** M 1/20/99	10:00:00	ND	0.02	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

. ÷

Certificate of Analysis No. H9-9901761-01

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-2 PROJECT NO: MATRIX: WATER DATE SAMPLED: 01/16/99 11:20:00 DATE RECEIVED: 01/19/99

		ANALY	TICAL DATA		
PARAMETER			RESULT	S DETECI LIMIT	TION UNITS
Sodium, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00	17:	1 0.5	mg/L
Nickel, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00	N	D 0.02	mg/L
Acid Digestio Method 3010A Analyzed by: Date:	n-Aqueous *** EE 01/19/99	, ICP 13:00:00	01/19/99	9	
Lead, Total Method 6010B Analyzed by: Date:	*** EG 01/21/99	15:28:00	0.00'	7 0.005	mg/L
Selenium, Tot Method_6010B	al	··· ·· ····	NI	0.005	mg/L
Analyzed by: Date:	EG 01/21/99	15:28:00			
Zinc, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00	0.04	¥ 0.02	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-01

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-2

PROJECT NO:	•	
MATRIX:	WATER	
DATE SAMPLED:	01/16/99	11:20:00
DATE RECEIVED:	01/19/99	

ANALYTI	CAL DATA		
PARAMETER	RESULTS	PQL*	UNITS
Benzene	17	5	ug/I
Bromobenzene	ND	5	ug/I
Bromochloromethane	ND	5	ug/I
Bromodichloromethane	ND	5	ug/I
Bromoform	ND	5	ug/I
Bromomethane	ND	10	ug/I
n-Butylbenzene	ND	5	ug/I
sec-Butylbenzene	ND	5	ug/I
tert-Butylbenzene	ND	5	ug/I
Carbon tetrachloride	ND	5	ug/I
Chlorobenzene	ND	5	ug/I
Chlorodibromomethane	ND	5	ug/I
Chloroethane	ND	10	ug/I
Chloroform	ND	5	ug/I
Chloromethane	ND	10	ug/I
2-Chlorotoluene	ND	5	ug/I
4-Chlorotoluene	ND	5	ug/I
1,2-Dibromo-3-chloropropane	ND	5	ug/I
1,2-Dibromoethane	ND	5	ug/I
Dibromomethane	ND	5	ug/I
1,2-Dichlorobenzene	ND	5	ug/I
1,3-Dichlorobenzene	ND	5	uq/I
1,4-Dichlorobenzene	ND	5	uq/I
Dichlorodifluoromethane	ND	10	ug/I
1,1-Dichloroethane	ND	5	ug/I
1,2-Dichloroethane	ND	5	ug/I
1,1-Dichloroethene	ND	5	uq/I
cis-1,2-Dichloroethene	ND	5	ug/I
trans-1,2-Dichloroethene	ND	5	ug/I
1,2-Dichloropropane	ND	5	ug/I
1,3-Dichloropropane	ND	5	uq/I
2,2-Dichloropropane	ND	5	uq/I
1,1-Dichloropropene	ND	5	uq/I
Ethylbenzene	7	5	ua/I
Hexachlorobutadiene	ND	5	ua/I
Isopropylbenzene	ND	5	ua/I
p-Isopropyltoluene	ND	5	uq/I
Methylene chloride	ND	5	ua/I

METHOD: 8260 Water, Volatile Organics (continued on next page)

02/09/99

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-01

Rice Operating Company	SA	MPLE ID:	MW-2	
	ANALYTICAL I	ATA (cont	inued)	
PARAMETER	RES	ULTS	PQL*	UNITS
Naphthalene		ND	5	ug/L
n-Propylbenzene		ND	5	. ug/L
Styrene		ND	5	ug/L
1,1,1,2-Tetrachloroetha	ne	ND	5	ug/L
1,1,2,2-Tetrachloroetha:	ne	ND	5	ug/L
Tetrachloroethene		ND	5	ug/L
Toluene		ND	5	ug/L
1,2,3-Trichlorobenzene		ND	5	ug/L
1,2,4-Trichlorobenzene		\mathbf{ND}	5	ug/L
1,1,1-Trichloroethane		ND	5 -	ug/L
1,1,2-Trichloroethane		ND	5	ug/L
Trichloroethene		ND	5	ug/L
Trichlorofluoromethane		ND	5	ug/L
1,2,3-Trichloropropane		ND	5	ug/L
1,2,4-Trimethylbenzene		ND	5	ug/L
1,3,5-Trimethylbenzene		ND	5	ug/L
Vinyl chloride		ND	10	ug/L
Xylenes (total)		12	5	ug/L
Acetone		ND	100	ug/L
Carbon Disulfide		ND	5	ug/L
Vinyl Acetate		ND	10	ug/L
2-Butanone		ND	20	ug/L
1,2-Dichloroethene (tota	al)	ND	5	ug/L
2-Chloroethylvinylether		ND	10	ug/L
4-Methyl-2-Pentanone		ND	10	ug/L
cis-1,3-Dichloropropene		ND	5	ug/L
trans-1,3-Dichloroproper	ne	ND	5	ug/L
2-Hexanone		ND	10	ug/L
Methyl t-Butyl Ether		ND	10	ug/L

SURROGATES	AMOUNT	8	LOWER	UPPER
	SPIKED	RECOVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4	50 ug/L	84	76	114
Toluene-d8	50 ug/L	104	88	110
4-Bromofluorobenzene	50 ug/L	90	86	115

ANALYZED BY: GLT

DATE/TIME: 01/23/99 19:42:00

METHOD: 8260 Water, Volatile Organics

NOTES: * - Practical Quantitation Limit ND - Not Detected NA - Not Analyzed

COMMENTS:

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054

Certificate of Analysis No. H9-9901761-01

PHONE (713) 660-0901

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-2

PROJECT NO:	•	
MATRIX:	WATER	
DATE SAMPLED:	01/16/99	11:20:00
DATE RECEIVED:	01/19/99	

ANALYTICAL	DATA		
PARAMETER	RESULTS	PQL*	UNITS
Acenaphthene	ND	5	ug/L
Acenaphthylene	ND	· 5	ug/L
Aniline	ND	5	ug/L
Anthracene	ND	5	ug/L
Benzo(a)Anthracene	ND	5	ug/L
Benzo(b)Fluoranthene	ND	5	ug/L
Benzo(k)Fluoranthene	ND	5	ug/L
Benzo (a) Pyrene	ND	5	ug/L
Benzoic Acid	ND	25	ug/L
Benzo(g,h,i)Perylene	ND	5	ug/L
Benzyl alcohol	ND	5	ug/L
4-Bromophenylphenyl ether	ND	5	ug/L
Butylbenzylphthalate	ND	5	ug/L
di-n-Butyl phthalate	ND	5	ug/L
Carbazole	ND	5	ug/L
4-Chloroaniline	ND	5	ug/L
bis(2-Chloroethoxy)Methane	ND	5	ug/L
bis(2-Chloroethyl)Ether	ND	5	ug/L
bis(2-Chloroisopropyl)Ether	ND	5	ug/L
4-Chloro-3-Methylphenol	ND	5	ug/L
2-Chloronaphthalene	ND	5	ug/L
2-Chlorophenol	ND	5	ug/L
4-Chlorophenylphenyl_ether	ND	5	ug/L
Chrysene	ND	5	ug/L
Dibenz(a,h)Anthracene	ND	5	ug/L
Dibenzofuran	ND	5	ug/L
1,2-Dichlorobenzene	ND	5	ug/L
1,3-Dichlorobenzene	ND	5	ug/L
1,4-Dichlorobenzene	, ND	5	ug/L
3,3'-Dichlorobenzidine	ND	10	ug/L
2,4-Dichlorophenol	ND	5	ug/L
Diethylphthalate	ND	5	ug/L
2,4-Dimethylphenol	ND	5	ug/L
Dimethyl Phthalate	ND	5	ug/L
4,6-Dinitro-2-Methylphenol	ND	25	ug/L
2,4-Dinitrophenol	ND	25	ug/L
2,4-Dinitrotoluene	ND	5	ug/L
2,6-Dinitrotoluene	ND	5	ug/L

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

HOUSTON LÁBORATORY 8880 INTERCHANGE DRIVE HOUSTON TEXAS 77054

Certificate of Analysis No. H9-9901761-01

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Rice Operating Company	SAMPLE	ID: N	M-2	•
ANA	LYTICAL DATA	(conti	inued)	
PARAMETER	RESULTS		PQL*	UNITS
1,2-Diphenylhydrazine		ND	5	ug/L
bis(2-Ethylhexyl)Phthalate		ND	5	ug/L
Fluoranthene		ND	5	ug/L
Fluorene		ND	5	ug/L
Hexachlorobenzene		ND	5	ug/L
Hexachlorobutadiene		ND	5	ug/L
Hexachloroethane		ND	5	ug/L
Hexachlorocyclopentadiene		ND	5	ug/L
Indeno (1,2,3-cd) Pyrène		ND	5	ug/L
Isophorone		ND	5	ug/L
2-Methylnaphthalene		ND	5	ug/L
2-Methylphenol		ND	5	ug/L
4-Methylphenol		ND	5	ug/L
Naphthalene		ND	5	ug/L
2-Nitroaniline		ND	25	ug/L
3-Nitroaniline		ND	25	ug/L
4-Nitroaniline		ND	25	ug/L
Nitrobenzene		ND	5	ug/L
2-Nitrophenol		ND	5	ug/L
4-Nitrophenol		ND	25	ug/L
N-Nitrosodiphenylamine		ND	5	ug/L
N-Nitroso-Di-n-Propylamine		ND	5	ug/L
Di-n-Octyl Phthalate		ND	5	ug/L
Pentachlorophenol		ND	25	ug/L
Phenanthrene		ND	5	ug/L
Phenol		ND	5	ug/L
Pyrene		ND	5	ug/L
Pyridine		ND	5	ug/L
1,2,4-Trichlorobenzene		ND	5	ug/L
2,4,5-Trichlorophenol		ND	10	ug/L
2,4,6-Trichlorophenol	· <u>-</u> · · · · · · ·	ND	5	ug/L

.

(continued on next page)

METHOD: 8270C, Semivolatile Organics - Water

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-01

Rice Operating Company	SAMPLI	E ID: MW-2			
SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER	UPPER LIMIT	
Nitrobenzene-d5	50 ug/L	. 78	35	114	
2-Fluorobiphenyl	50 ug/L	82	43.	116	
Terphenyl-d14	50 ug/L	56	33	141	
Phenol-d5	75 ug/L	21	10	110	
2-Fluorophenol	75 ug/L	37	21	110	
2,4,6-Tribromophenol	75 ug/L	73	10	123	

ANALYZED BY: YL DATE/TIME: 01/22/99 19:24:00 EXTRACTED BY: KL DATE/TIME: 01/20/99 13:00:00 METHOD: 8270C, Semivolatile Organics - Water NOTES: * - Practical Quantitation Limit ND - Not Detected NA -- Not Analyzed

COMMENTS:

Certificate of Analysis No. H9-9901761-03

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-3 PROJECT NO: MATRIX: WATER DATE SAMPLED: 01/16/99 14:30:00 DATE RECEIVED: 01/19/99

ANALYTICAL DATA				
PARAMETER		RESULTS	DETECTION	UNITS
Liquid-liquid Method 3520C Analyzed by: Date:	extraction SEMIVOLATILES *** KL 01/20/99 13:00:00	01/20/99		
Chloride Method 325.3 Analyzed by: Date:	* CV 01/29/99 11:00:00	195	5	mg/L
Carbonate, as Method SM 450 Analyzed by: Date:	CaCO3 00-CO2D ** TK 01/19/99 16:20:00	ND	2	mg/L
Bicarbonate, a Method SM 450 Analyzed by: Date:	as CaCO3 00-CO2D ** TK 01/19/99 16:20:00	370	2	mg/L
pH Method 150.1 Analyzed by: Date:	* TK 01/19/99 17:00:00	7.51	·	pH Units
Resistivity Method 120.1 Analyzed by: Date:	* TK 01/19/99 16:50:00	0.53	0.001	Mohms-cm

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-03

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System	PROJECT NO:	
SITE: 09-T195-R38E, Lea County	MATRIX: WATER	*
SAMPLED BY: Rice Operating Company	DATE SAMPLED: 01/16/99 1	4:30:00
SAMPLE ID: MW-3	DATE RECEIVED: 01/19/99	

		ANALYTICAI	L DATA		
PARAMETER			RESULTS	DETECTION	UNITS
Sulfate Method 375.4 Analyzed by: Date:	* TW 01/28/99	13:30:00	483	25	mg/L
Specific Gravi ASTM D1429 Analyzed by:	.ty DS	14.00.00	0.996		g/cm3
Date.	02/02/02	14.00.00			
Total Dissolve Method 160.1 Analyzed by: Date:	ed Solids * DS 02/05/99	10:00:00	1340	40	mg/L
Silver, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00	ND	0.01	mg/L
Aluminum, Tota Method 6010B	1 ***		32.7	0.1	mg/L
Date:	01/20/99	10:00:00			
Arsenic, Total Method 6010B Analyzed by: Date:	*** EG 01/21/99	15:28:00	0.028	0.005	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-03

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-3

PROJECT NO:		
MATRIX:	WATER	i.
DATE SAMPLED:	01/16/99	14:30:00
DATE RECEIVED:	01/19/99	

		ANALY	TICAL	DATA			
PARAMETER					RESULTS	DETECTI LIMIT	ON UNITS
Barium, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00	·		3.91	0.005	mg/L
Calcium, Total Method 6010B Analyzed by: Date:	l *** JM 01/20/99	10:00:00			1255	1	mg/L
Cadmium, Tota Method 6010B Analyzed by: Date:	l *** JM 01/20/99	10:00:00			ND	0.005	mg/L
Cobalt, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00			ND	0.01	. mg/L
Chromium, Tota Method 6010B	al ***		<u></u>		0.03	0.01	mg/L
Date:	01/20/99	10:00:00					
Copper, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00			0.02	0.01	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-03

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-3 PROJECT NO: MATRIX: WATER DATE SAMPLED: 01/16/99 14:30:00 DATE RECEIVED: 01/19/99

		ANALYTICAL DA	ATA		
PARAMETER			RESULTS	DETECTION LIMIT	UNITS
Iron, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99	10:00:00	26.4	0.02	mg/L
Mercury, Total Method 7470 A Analyzed by: J Date:	*** AG 01/20/99	14:50:00	ND	0.0002	mg/L
Potassium, Tota Method 6010B Analyzed by: Date: 0	al *** JM 01/20/99	10:00:00	8	2	mg/L
Magnesium, Tota Method 6010B Analyzed by: J Date: (al *** JM 01/20/99	10:00:00	76.5	0.1	mg/L
Manganese, Tota Method 6010B	al ***		0.535	0.005	mg/L
Analyzed by: Date: 0	JM 01/20/99	10:00:00			
Molybdenum, Tot Method 6010B Analyzed by: J Date: (tal *** JM 01/20/99	10:00:00	0.03	0.02	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-03

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

DATE: 02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-3

PROJECT NO:		
MATRIX:	WATER	
DATE SAMPLED:	01/16/99	14:30:00
DATE RECEIVED:	01/19/99	

		ANALYTICAL	DATA		
PARAMETER			RESULTS	DETECTION LIMIT	UNITS
Sodium, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99 1	0:00:00	310	0.5	mg/L
Nickel, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99 1	0:00:00	0.05	0.02	mg/L
Acid Digestion Method 3010A Analyzed by: Date:	1-Aqueous, *** EE 01/19/99 1	ICP 3:00:00	01/19/99	· · · ·	•
Lead, Total Method 6010B Analyzed by: Date:	*** EG 01/21/99 1	5:28:00	0.013	0.005	mg/L
Selenium, Tota Method 6010B	***		ND	0.005	mg/L
Analyzed by: Date:	EG 01/21/99 1	5:28:00	· · ·		
Zinc, Total Method 6010B Analyzed by: Date:	*** JM 01/20/99 1	0:00:00	0.04	0.02	mg/L

ND - Not detected.

Notes: *Ref: Methods for Chemical Analysis of Water and Wastes, 1983, EPA **Ref: Standard Methods for Examination of Water & Wastewater, 18th ed. ***Ref: Test Methods for Evaluating Solid Waste, EPA SW846, 3rd Ed.

Certificate of Analysis No. H9-9901761-03

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

02/09/99

PROJECT: Jct. I-9 Hobbs SWD System **SITE:** 09-T195-R38E, Lea County **SAMPLED BY:** Rice Operating Company **SAMPLE ID:** MW-3

PROJECT NO:		
MATRIX:	WATER	
DATE SAMPLED:	01/16/99	14:30:00
DATE RECEIVED:	01/19/99	

ANALYTICAL	DATA		
PARAMETER	RESULTS	PQL*	UNITS
Benzene	ND	5	ug/L
Bromobenzene	ND	5	ug/L
Bromochloromethane	ND	5	ug/L
Bromodichloromethane	ND	5	ug/L
Bromoform	ND	5	ug/L
Bromomethane	ND	10	ug/L
n-Butylbenzene	ND	5	ug/L
sec-Butylbenzene	ND	5	ug/L
tert-Butylbenzene	ND	5	ug/L
Carbon tetrachloride	ND	5	ug/L
Chlorobenzene	ND	5	ug/L
Chlorodibromomethane	ND	5	ug/L
Chloroethane	ND	10	ug/L
Chloroform	ND	5	ug/L
Chloromethane	ND	10	ug/L
2-Chlorotoluene	ND	5	ug/L
4-Chlorotoluene	ND	5	ug/L
1,2-Dibromo-3-chloropropane	ND	5	ug/L
1,2-Dibromoethane	ND	5	ug/L
Dibromomethane	ND	5	ug/L
1,2-Dichlorobenzene	ND.	5	ug/L
1,3-Dichlorobenzene	ND	. 5	ug/L
1,4-Dichlorobenzene	ND	5	ug/L
Dichlorodifluoromethane	ND	10	ug/L
1,1-Dichloroethane	ND	5	ug/L
1,2-Dichloroethane	ND	5	ug/L
1,1-Dichloroethene	ND	5	ug/L
cis-1,2-Dichloroethene	ND	5	ug/L
trans-1,2-Dichloroethene	ND	. 5	ug/L
1,2-Dichloropropane	ND	5	ug/L
1,3-Dichloropropane	ND	5	ug/L
2,2-Dichloropropane	ND	5	ug/L
1,1-Dichloropropene	ND	. 5	ug/L
Ethylbenzene	ND	5	ug/L
Hexachlorobutadiene	ND	5	ug/L
Isopropylbenzene	ND	5	ug/L
p-Isopropyltoluene	ND	5	ug/L
Methylene chloride	ND	5	ug/L

METHOD: 8260 Water, Volatile Organics (continued on next page)

Rice Operating Company

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

ertificate of Analysis No. H9-9901761-03

SAMPLE ID: MW-3

ANALY	TICAL DATA	(cont	inued)		
PARAMETER	RESULT	S.	PQL*	1	UNITS
Naphthalene		ND .	5		ug/L
n-Propylbenzene		ND	5	•	ug/L
Styrene		ND	5		ug/L
1,1,1,2-Tetrachloroethane		ND	5		ug/L
1,1,2,2-Tetrachloroethane		ND	5		ug/L
Tetrachloroethene		ND	5		ug/L
Toluene		ND	5		ug/L
1,2,3-Trichlorobenzene		ND	5		ug/L
1,2,4-Trichlorobenzene		ND	5		ug/L
1,1,1-Trichloroethane		ND	5		ug/L
1,1,2-Trichloroethane		ND	· 5		ug/L
Trichloroethene		ND	5		ug/L
Trichlorofluoromethane		ND	5		ug/L
1,2,3-Trichloropropane		ND	5		ug/L
1,2,4-Trimethylbenzene		ND	5		ug/L
1,3,5-Trimethylbenzene		ND	5		ug/L
Vinyl chloride		ND	10		ug/L
Xylenes (total)		ND	5		ug/L
Acetone		ND	100		ug/L
Carbon Disulfide		ND	5		ug/L
Vinyl Acetate		ND	10		ug/L
2-Butanone		ND	20		ug/L
1,2-Dichloroethene (total)		ND	5		ug/L
2-Chloroethylvinylether		ND	10		ug/L
4-Methyl-2-Pentanone		ND	10		ug/L
cis-1,3-Dichloropropene		ND	5		ug/L
trans-1,3-Dichloropropene		ND	5		ug/L
2-Hexanone		ND	10		ug/L
Methyl t-Butyl Ether		ND	10		ug/L
SURROGATES	AMOUNT	8		LOWER	UPPER
	SPIKED	REC	OVERY	LIMIT	LIMIT
1,2-Dichloroethane-d4	50 ug/L		84	76	114
Toluene-d8	50 ug/L		106	88	110
4-Bromofluorobenzene	50 ug/L		86	86	115

ANALYZED BY: GLT DATE/TIME: 01/23/99 20:38:00 METHOD: 8260 Water, Volatile Organics NOTES: * - Practical Quantitation Limit ND - Not Detected NA - Not Analyzed

COMMENTS:

© Certificate of Analysis No. H9-9901761-03

Rice Operating Company 122 West Taylor Hobbs, NM 88240 ATTN: F. Wesley Root

02/09/99

PROJECT: Jct. I-9 Hobbs SWD System	PROJECT NO:		
SITE: 09-T195-R38E, Lea County	MATRIX:	WATER	
SAMPLED BY: Rice Operating Company	DATE SAMPLED:	01/16/99	14:30:00
SAMPLE ID: MW-3	DATE RECEIVED:	01/19/99	

ANALYTICAL DATA						
PARAMETER	RESULTS	PQL*	UNITS			
Acenaphthene	ND	5	ug/L			
Acenaphthylene	ND	5	ug/L			
Aniline	ND	5	ug/L			
Anthracene	ND	5	ug/L			
Benzo(a)Anthracene	ND	5	ug/L			
Benzo(b)Fluoranthene	ND	5	ug/L			
Benzo(k)Fluoranthene	ND	5	ug/L			
Benzo (a) Pyrene	ND	5	ug/L			
Benzoic Acid	ND	25	ug/L			
Benzo(g,h,i)Perylene	ND	5	ug/L			
Benzyl alcohol	ND	5	ug/L			
4-Bromophenylphenyl ether	ND	5	ug/L			
Butylbenzylphthalate	ND	5	ug/L			
di-n-Butyl phthalate	ND	5	ug/L			
Carbazole	ND	5	ug/L			
4-Chloroaniline	ND	5	ug/L			
bis(2-Chloroethoxy)Methane	ND	5	uq/L			
bis(2-Chloroethyl)Ether	ND	5	ug/L			
bis(2-Chloroisopropyl)Ether	ND	5	ug/L			
4-Chloro-3-Methylphenol	ND	5	ug/L			
2-Chloronaphthalene	ND	5	ug/L			
2-Chlorophenol	ND	5	ug/L			
4-Chlorophenylphenyl ether	ND	5	ug/L			
Chrysene	ND	5	ug/L			
Dibenz(a,h)Anthracene	ND	5	ug/L			
Dibenzofuran	ND	5	ug/L			
1,2-Dichlorobenzene	ND	5	ug/L			
1,3-Dichlorobenzene	ND	5	ug/L			
1,4-Dichlorobenzene	ND	5	ug/L			
3,3'-Dichlorobenzidine	ND	10	ug/L			
2,4-Dichlorophenol	ND	5	ug/L			
Diethylphthalate	ND	5	ug/L			
2,4-Dimethylphenol	ND	5	ug/L			
Dimethyl Phthalate	ND	5	ug/L			
4,6-Dinitro-2-Methylphenol	ND	25	ug/L			
2,4-Dinitrophenol	ND	25	uq/L			
2,4-Dinitrotoluene	ND	5	ug/L			
2,6-Dinitrotoluene	ND	5	ug/L			

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

Rice Operating Company

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

® Certificate of Analysis No. H9-9901761-03

SAMPLE ID: MW-3

ANALYTICAL DATA (continued)				
PARAMETER	RESULTS	PQL*	UNITS	
1,2-Diphenylhydrazine	ND	5	ug/L	
bis(2-Ethylhexyl)Phthalate	ND	5	ug/L	
Fluoranthene	ND	5	ug/L	
Fluorene	ND	5	ug/L	
Hexachlorobenzene	ND	5	ug/L	
Hexachlorobutadiene	ND	5	ug/L	
Hexachloroethane	ND	· · 5	ug/L	
Hexachlorocyclopentadiene	ND	5	ug/L	
Indeno(1,2,3-cd)Pyrene	ND	5	ug/L	
Isophorone	ND	5	ug/L	
2-Methylnaphthalene	ND	5	ug/L	
2-Methylphenol	ND	5	ug/L	
4-Methylphenol	ND	5	ug/L	
Naphthalene	ND	5	ug/L	
2-Nitroaniline	ND	25	ug/L	
3-Nitroaniline	ND	25	ug/L	
4-Nitroaniline	ND	25	ug/L	
Nitrobenzene	ND	5	ug/L	
2-Nitrophenol	ND	5	ug/L	
4-Nitrophenol	ND	25	ug/L	
N-Nitrosodiphenylamine	· ND	5	ug/L	
N-Nitroso-Di-n-Propylamine	ND	5	ug/L	
Di-n-Octyl Phthalate	ND	5	ug/L	
Pentachlorophenol	ND	25	ug/L	
Phenanthrene	ND	5	ug/L	
Phenol	ND	5	ug/L	
Pyrene	ND	5	ug/L	
Pyridine	ND	5	ug/L	
1,2,4-Trichlorobenzene	ND	5	ug/L	
2,4,5-Trichlorophenol	ND	10	ug/L	
2,4,6-Trichlorophenol	ND	5	ug/L	

METHOD: 8270C, Semivolatile Organics - Water (continued on next page)

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Certificate of Analysis No. H9-9901761-03

Rice Operating Company	SAMPLI	E ID: MW-3		
SURROGATES	AMOUNT SPIKED	% RECOVERY	LOWER LIMIT	UPPER LIMIT
Nitrobenzene-d5	50 ug/L	86	35	114
2-Fluorobiphenyl	50 ug/L	86	43	116
Terphenyl-d14	50 ug/L	56	33	141
Phenol-d5	75 ug/L	25	10	110
2-Fluorophenol	75 ug/L	45	21	110
2,4,6-Tribromophenol	75 ug/L	87	10	123

ANALYZED BY: YL DATE/TIME: 01/22/99 20:27:00 EXTRACTED BY: KL DATE/TIME: 01/20/99 13:00:00 METHOD: 8270C, Semivolatile Organics - Water NOTES: * - Practical Quantitation Limit ND - Not Detected NA - Not Analyzed

COMMENTS:

QUALITY ASSURANCE: These analyses are performed in accordance with EPA guidelines for quality assurance.

QUALITY CONTROL DOCUMENTATION

ЗA

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: SPL

Contract:

Lab Code: Case No.: 9901750 SAS No.:

SDG No.:

Matrix Spike - EPA Sample No.: 99-006 A/B

	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	8	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
=======================================	========		===============		======
1,1-Dichloroethene	50	0	56	112	61-145
Trichloroethene	50	0	52	104	71-120
Benzene	50	0	52	104	76-127
Toluene	50	0	53	106	76-125
Chlorobenzene	50	0	51	102	75-130

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD % REC #	% RPD #	QC LI RPD	IMITS REC.
	=========	======================================	100	======	1 /	
T, I-Dichioroethene	50	50	106	0	14	51 - 145
Pongono	50	47	100	4	14	76 127
Toluono	50	50	104	0	12	76 125
Chlorobongono	50	40	100	2	10	75-120
CIITOLODEIIZEIIE	50	40	102	0	13	12-120

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 5 outside limits Spike Recovery: 0 out of 10 outside limits due to matrix interferences Data File: /var/chem/n.i/n990123.b/n023tl1.d Report Date: 23-Jan-1999 11:37

SPL Houston Labs

RECOVERY REPORT

Client Name:Client SISample Matrix: LIQUIDFraction:ab Smp Id: METHSPIKE-8260WClient SnDevel: LOWOperator:Data Type: MS DATASampleTyppikeList File: 8260_water.spkQuant Typublist File: 8260_lcs.subMethod File: /var/chem/n.i/n990123.b/n8260w.mMisc Info: N023W1//N023CW1SampleTyp

Client SDG: n990123 Fraction: VOA Client Smp ID: LCS Operator: GLT SampleType: METHSPIKE Quant Type: ISTD

SPIKE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
8 1,1-Dichloroethene	50	53	106.00	61-145
29 Trichloroethene	50	52	104.00	71-120
25 Benzene	50	52	104.00	76-127
37 Toluene	50	53	106.00	76-125
45 Chlorobenzene	50	51	102.00	75-130
· · · · · · · · · · · · · · · · · · ·				

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
<pre>\$ 21 1,2-Dichloroethane</pre>	50	41	82.00	76-114
\$ 36 Toluene-d8	50	51	102.00	88-110
\$ 56 Bromofluorobenzene	50	43	86.00	86-115

SPL Blank QC Report

Matrix: Aqueous Sample ID: VLBLK Batch: N990123122720 Reported on: 01/25/99 17:44 Analyzed on: 01/23/99 10:55 Analyst: GLT

METHOD 8260/8240 N023B01

Compound	Result	Detection Limit	Units
Dichlorodifluoromethane	ND	10	ug/L
Chloromethane	ND	10	ug/L
Vinyl Chloride	ND	10	ug/L
Bromomethane	ND	10	ug/L
Chloroethane	ND	10	ug/L
[Trichlorofluoromethane	ND	5	ug/L
Acetone	ND	100	ug/L
1,1-Dichloroethene	· ND	5	ug/L
Methylene Chloride	ND	5	ug/L
Carbon Disulfide	ND ND	5	ug/L
trans-1,2-Dichloroethene	ND	5	ug/L
1,1-Dichloroethane		5	ug/L
Vinyl Acetate	ND	10	ug/L
2-Butanone	ND	20	ug/L
Cis-1,2-Dichioroethene		5	ug/L
1,2-Dichloroethene (total)		5	ug/L
Deemarklasseshare		5	ug/L
Sromochioromethane		5	ug/L
1 1 1 Trichlereethane		5	ug/L
1 2 Dishlemethane		5	ug/L
1,2-Dichioroechane		5	ug/L
		5	ug/L
Garbon Totrachlorido		5	ug/L
1.2 Dichloropropano			ug/L
Trichloroothono		5	ug/L
Dibromomethane	ND	5	ug/L
Bromodichloromethane		5	
2-Chloroethylyinylethor		10	
4-Methyl-2-Pentapone		10	
cis-1 3-Dichloropropere		. <u>5</u>	
trans-1.3-Dichloropropene		5	
Toluene		5	1107/T.
1.1.2-Trichloroethane		5	
Notes			

ND - Not detected.

SPL Blank QC Report

Matrix: Aqueous Sample ID: VLBLK Batch: N990123122720 Reported on: 01/25/99 17:44 Analyzed on: 01/23/99 10:55 Analyst: GLT

METHOD 8260/8240 N023B01

Compound	Result	Detection Limit	Units
C o m p o u n d 1,3-Dichloropropane 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Tetrachloroethene Chlorobenzene 1,1,1,2-Tetrachloroethane Ethylbenzene Bromoform Styrene Xylene (Total) 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Isopropylbenzene Bromobenzene N-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene sec-Butylbenzene	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Detection Limit 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
1,3-Dichlorobenzene sec-Butylbenzene 1,4-Dichlorobenzene	ND ND ND	5 5 5	ug/L ug/L ug/L
<pre>p-Isopropyltoluene 1,2-Dichlorobenzene n-Butylbenzene 1,2-Dibromo-3-Chloropropan 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 1,2,3-Trichlorobenzene Methyl t-Butyl Ether</pre>	ND ND ND ND ND ND ND ND ND	5 5 5 5 5 5 5 5 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L

<u>Notes</u>

ND - Not detected.

SPL Blank QC Report

Matrix: Aqueous Sample ID: VLBLK Batch: N990123122720 Reported on: 01/25/99 17:44 Analyzed on: 01/23/99 10:55 Analyst: GLT

METHOD 8260/8240 N023B01

.

Surrogate	Result	QC Criteria	Units
1,2-Dichloroethane-d4	86	76-114	<pre>% Recovery % Recovery % Recovery</pre>
Toluene-d8	102	88-110	
Bromofluorobenzene	88	86-115	

Samples in Batch 9901761-01 9901761-02 9901761-03 Notes ND - Not detected.

3C

WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:

Contract:

SAS No:

SDG

No:

Lab Code:

Matrix Spike - EPA

Case No:

SPL

Sample No:

Level (low/med):

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATIO	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	REC
Phenol	75	0	16	21	12-110
2-Chlorophenol	75	0	38	51	27-123
1,4-Dichlorobenzene	50	0	. 29	58	36-97
N-Nitroso-di-n-propylamine	50	0	32	64	41-116
1,2,4-Trichlorobenzene	50	0	34	. 68	39- 110
4-Chloro-3-methylphenol	75	0	47	63	23-110
Acenaphthene	50	0	38	76	46-125
4-Nitrophenol	75	0	19	25	25-150
2,4-Dinitrotoluene	50	0	38	76	50-150
Pentachiorophenol	75	0	51	68	9-125
Pyrene	50	0	58	116	26-127

	SPIKE	MSD	MSD			
the second s	ADDED	CONCENTRATIO	%	%	QC	LIMITS
COMPOUND	(ug/L)	(ug/L)	REC #	RPD #	RP	REC
Phenol	75	18	24	13	42	12-110
2-Chlorophenol	75	47	63	21	40	27-123
1,4-Dichlorobenzene	50	34	68	16	28	36-97
N-Nitroso-di-n-propylamine	50	46	92	36	38	41-116
1,2,4-Trichlorobenzene	50	40	80	16	28	39-110
4-Chioro-3-methylphenol	75	56	75	17	42	23-110
Acenaphthene	50	45	90	17	31	46-125
4-Nitrophenol	75	19	25	0	50	25-150
2,4-Dinitrotoluene	50	44	88	15	50	50-150
Pentachlorophenol	75	56	75.	10	50	9-125
Pyrene	50	62	124	7	31	26-127

Column to be used to flag recovery and RPD values with an asterisk

0

0

RPD: Spike Recovery: out of 11 outside limits out of 22 outside limits

FORM III SV-1

3/90

SPL Blank QC Report

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901 page

1

Matrix: Aqueous Sample ID: BLANK Batch: E990120042258 Reported on: 02/02/99 17:15 Analyzed on: 01/21/99 19:37 Analyst: YL

METHOD 8270 H020B03

Compound	Result	Detection Limit	Units
Pyridine	ND	5	ug/L
Phenol	ND ND	5	ug/L
Aniline		5	ug/L
2-Chlorophenol		5	ug/L
1 3-Dichlorobenzene		5	ug/L
1,4-Dichlorobenzene	ND	5	ug/L
Benzyl alcohol	ND	5	uq/L
1,2-Dichlorobenzene	ND	5	ug/L
2-Methylphenol	ND	5	ug/L
bis(2-chloroisopropyl)ethe	ND	5	ug/L
4-Methylphenol	ND	5	ug/L
N-Nitroso-di-n-propylamine	ND	, 5	ug/L
Hexachloroethane	ND	5	ug/L
Nitrobenzene	ND	5	ug/L
Isophorone	ND	5	ug/L
2-Nitrophenoi		5	ug/L
2,4-Dimethylphenol		5	ug/L
big (2-Chloroethory) methane		45	ug/L
2 4-Dichlorophenol			
1 2 4-Trichlorobenzene		5	
Naphthalene	ND	5	
4-Chloroaniline	ND	5	
Hexachlorobutadiene	ND	5	ug/L
4-Chloro-3-methylphenol	ND	5	ug/L
2-Methylnaphthalene	ND	5	ug/L
Hexachlorocyclopentadiene	ND	5	ug/L
2,4,6-Trichlorophenol	ND	5	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2-Chloronaphthalene	ND	5	ug/L
2-Nitroaniline	ND	25	ug/L
Dimethylphthalate	ND	5	ug/L
2,6-Dinitrotoluene	וטע	5	ug/L

ND - Not detected.

SPL Blank QC Report

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901 page

2

Matrix: Aqueous Sample ID: BLANK Batch: E990120042258 Reported on: 02/02/99 17:15 Analyzed on: 01/21/99 19:37 Analyst: YL

METHOD 8270 H020B03

	Compound	Result	Detection Limit	Units
	Acenaphthylene 3-Nitroaniline Acenaphthene	ND ND	5 25 5	ug/L ug/L ug/L
	2.4-Dinitrophenol		25	
	4-Nitrophenol	ND	25	ug/L
	Dibenzofuran	ND	5	uq/L
-	2,4-Dinitrotoluene	ND	5	ug/L
	Diethylphthalate	ND	5	ug/L
	4-Chlorophenyl-phenylether	ND	5	ug/L
	Fluorene	ND	5	ug/L
	4-Nitroaniline	ND	25	ug/L
	4,6-Dinitro-2-methylphenol	ND	25	ug/L
	n-Nitrosodiphenylamine	ND	5	ug/L
	1,2-Diphenylhydrazine	ND	5	ug/L
	4-Bromophenyl-phenylether	ND	5	ug/L
	Hexachlorobenzene	ND	5	ug/L
	Pentachlorophenol	ND	25	ug/L
	Phenanthrene		5	ug/L
	Anthracene		5	ug/L
	Carbazore		5	ug/L
1	DI-M-Ducyiphinarate		5	ug/L
	Purrone			ug/L
ľ	Putulbongulahthalato		. 5	
	2 31-Dichlorobenzidine	ND	10	ug/I
	Benzo[a]anthracene		5	
	Chrysene	ND	5	
	bis(2-Ethylhexyl)phthalate	ND	5	ug/L
	Di-n-octvlphthalate	ND	5	ug/L
	Benzo[b]fluoranthene	ND	. 5	uq/L
	Benzo[k]fluoranthene	ND	5	ug/L
	Benzo[a] pyrene	ND	5	ug/L
	Indeno[1,2,3-cd]pyrene	ND	5	ug/L
	Dibenz[a,h]anthracene	ND	5	ug/L
Ň	lotes	· ·	· ·	

ND - Not detected.

. . . .

SPL Blank QC Report

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901 page

3

Matrix: Aqueous Sample ID: BLANK Batch: E990120042258 Reported on: 02/02/99 17:15 Analyzed on: 01/21/99 19:37 Analyst: YL

METHOD 8270 H020B03

Compound	Result	Detection Limit	Units
Benzo[g,h,i]perylene	ND	5	ug/L

Surrogate	Result	QC Criteria	Units
Nitrobenzene-d5	74	35-114	<pre>% Recovery</pre>
2-Fluorobiphenyl	84	43-116	% Recovery
Terphenyl-d14	112	33-141	% Recovery
Phenol-d5	19	10-110	% Recovery
2-Fluorophenol	36	21-110	% Recovery
2,4,6-Tribromophenol	73	10-123	% Recovery

.

Samples in Batch 9901761-01 9901761-02 9901761-03 Notes ND - Not detected.

....

		ICP Spe	ctrosco	py Method		anty Contr	orkeh		Analyst: E	•
				Matrix: Wat	er	Units: mg/L			HOUSTON 8880 INTER HOUSTON	LABORATO
			(0)	Date:012199	Time:1528	File Name:	0121PB	6	PHONE (713) 660-0901
	La	boratory C	ontrol San	nple						
Element	Mth. Blank	True Value	Result	% Recovery	Lower Limit	Upper Limit	Wo	rk Orde	rs in Batch	
Sliver							VVork	Order	Fractions	
Araania		4.00	1 1 20	107	2.00	4 00	00.04	704	040 000	
Arsenic		4.00	4.29	107	3.20	4.80	99-01-	.761	010-030	
Banum	· · · ·	<u> </u>								
Coloium									•	
Calcium		<u> </u>								
Cabalt	<u> </u>			<u> </u>						
Cobait	<u> </u>									
Connor	 	<u> </u>	+							
Copper	<u> </u>									
Potoosium	<u> </u>		<u> </u>	<u> </u>						
Mognosium		ļ				[
Vagnesium	[
Vianganese		<u> </u>								
Soaium				<u> </u>						
	ND	2.00	2.07	102	1.00			·		
		2.00	2.07	103	1.60	2.40				
Antimony	ND	4.00	4.20	100		4.80				
• / 1 / 2 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1				1 IIIn						
		4.00	4.20		3.20	4.80				
Thallium		4.00	4.20		3.20	4.80				
Thallium Vanadium		4.00	4.20		3.20	4.80				
Thallium Vanadium Zinc		4.00	4.20		3.20	4.80				
Thallium Vanadium Zinc Matrix Spike	e - Spike Du	uplicate Re	esults		3.20 Work Order	4.80 • Spiked: 99	01761-0	 1D		
Thallium Vanadium Zinc Matrix Spike	e - Spike Du Sample	uplicate Re	esults	rix Spike	3.20 Work Order Matrix Spi	4.80 Spiked: 99 ke Duplicate	01761-0	1D imits	Spike	QC
Thallium Vanadium Zinc Matrix Spike Element	e - Spike Du Sample Result	uplicate Re Spike Added	sults Result	ix Spike Recovery	3.20 Work Order Matrix Spi Result	4.80 r Spiked: 99 ke Duplicate Recovery	01761-0 QC L % Rec	1D imits covery	Spike RPD %	QC Limits %
Thallium Vanadium Zinc Matrix Spike Element Silver	e - Spike Du Sample Result	uplicate Re Spike Added	sults Result	rix Spike Recovery	3.20 Work Order Matrix Spi Result	4.80 Spiked: 99 ke Duplicate Recovery	01761-0 QC L % Rec	1D imits covery	Spike RPD %	QC Limits %
Thallium Vanadium Zinc Matrix Spiko Element Silver	e - Spike Du Sample Result	uplicate Re Spike Added	sults Mati Result	ix Spike Recovery	3.20 Work Order Matrix Spi Result	4.50 Spiked: 99 ke Duplicate Recovery	01761-0 QC L % Rec	1D imits covery	Spike RPD %	QC Limits %
Thallium Vanadium Zinc Matrix Spike Element Silver Aluminum Arsenic	e - Spike Du Sample Result 0.0249	4.00 uplicate Re Spike Added	4.20 esults Mati Result 1.921	ix Spike Recovery 94.8	3.20 Work Order Matrix Spi Result 1.949	4.80 Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits %
Thallium Vanadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium	e - Spike Du Sample Result 0.0249	Jplicate Re Spike Added	A.20	ix Spike Recovery 94.8	3.20 Work Order Matrix Spi Result 1.949	4.80 r Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits %
Fhallium /anadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium Beryllium	e - Spike Du Sample Result 0.0249	Iplicate Re Spike Added	A.20	rix Spike Recovery 94.8	3.20 Work Order Matrix Spi Result 1.949	4.80 Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits overy 120	Spike RPD %	QC Limits %
Selenium Fhallium /anadium /anadium Zinc Matrix Spike Element Silver Numinum Arsenic Barium Beryllium Calcium Calcium	e - Spike Du Sample Result 0.0249	2.0	sults Matu Result	rix Spike Recovery 94.8	3.20 Work Order Matrix Spi Result 1.949	4.80 Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits %
Selenium Fhallium /anadium /anadium Zinc Matrix Spike Element Silver Auminum Arsenic Barium Beryllium Calcium Cadmium	e - Spike Du Sample Result 0.0249	2.0	A.20	ix Spike Recovery 94.8	3.20 Work Order Matrix Spi Result 1.949	4.80 Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits %
Thallium Vanadium Vanadium Vanadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium	e - Spike Du Sample Result 0.0249	2.0	4.20 sults Mati Result 1.921	ix Spike Recovery 94.8	3.20 Work Order Matrix Spi Result 1.949	4.80 r Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits %
Thallium Thallium Vanadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium Beryllium Calcium Calcium Cobalt Chromium Concer	e - Spike Du Sample Result 0.0249	2.0	4.20 sults Mati Result 1.921	94.8	3.20 Work Order Matrix Spi Result 1.949	4.80 r Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits %
Thallium Vanadium Vanadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium Calcium Calcium Cobalt Chromium Copper Ton	e - Spike Du Sample Result 0.0249	4.00 uplicate Re Spike Added	A.20	rix Spike Recovery 94.8	3.20 Work Order Matrix Spi Result 1.949	4.80 Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits %
Thallium Thallium Vanadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Ton Potassium	e - Spike Du Sample Result 0.0249	2.0	4.20 sults Matu Result 1.921	rix Spike Recovery 94.8	3.20 Work Order Matrix Spi Result	4.80 Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits %
Selenium Thallium /anadium Zinc Matrix Spike Element Silver Auminum Arsenic Barium Barium Calcium Cadmium Cobalt Chromium Copper on Potassium	e - Spike Du Sample Result 0.0249	4.00 uplicate Re Spike Added	4.20 esults Mati Result 1.921	ix Spike Recovery 94.8	3.20 Work Order Matrix Spi Result 1.949	4.30 Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits % 20.0
Thallium /anadium /anadium /anadium /anadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Cobalt Chromium Copper Fon Potassium Magnesium	e - Spike Du Sample Result 0.0249	4.00 uplicate Re Spike Added	4.20 sults Mati Result 1.921	ix Spike Recovery 94.8	3.20 Work Order Matrix Spi Result 1.949	4.80 r Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits % 20.0
Selenium Thallium Vanadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium Beryllium Calcium Cobalt Chromium Copper ron Potassium Aagnesium Anganese Codurn	e - Spike Du Sample Result 0.0249	4.00 uplicate Re Spike Added	4.20 Sults Mati Result 1.921	94.8	Work Order Matrix Spi Result 1.949	4.30 r Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits %
Thallium Thallium Vanadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium Beryllium Calcium Cobalt Chromium Cobalt Chromium Copper Ton Potassium Magnesium Magnese Godium licket	e - Spike Du Sample Result 0.0249	4.00 uplicate Re Spike Added 2.0	4.20 Sults Mati Result 1.921	94.8	3.20 Work Order Matrix Spi Result 1.949	4.30 r Spiked: 99 ke Duplicate Recovery 96.2	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits %
Selenium Thallium Vanadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium Cadmium Cadmium Cobalt Chromium Copper Yon Potassium Anganese Codium Lickel ead	e - Spike Du Sample Result 0.0249	4.00 uplicate Re Spike Added 2.0	4.20 sults Mati Result 1.921	rix Spike Recovery 94.8	3.20 Work Orden Matrix Spi Result 1.949	4.30 Spiked: 99 ke Duplicate Recovery 96.2 96.2 87.5	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD %	QC Limits %
Selenium Thallium Vanadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium Barium Cadmium Cadmium Cadmium Cobalt Chromium Copper Yon Potassium Aagnesium Aaganese Godium lickel ead attmony	e - Spike Du Sample Result 0.0249	1.0	4.20 sults Mata Result 1.921	100 rix Spike Recovery 94.8	3.20 Work Order Matrix Spi Result 1.949	4.30 Spiked: 99 ke Duplicate Recovery 96.2 96.2 87.5	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD % 1.5	QC Limits % 20.0
Selenium Thallium Vanadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium Barium Cadmium Cobalt Chromium Copper ron Potassium Magnesium Manganese Sodium lickel ead ntimony	e - Spike Du Sample Result 0.0249 0.0249	1.0	4.20 sults Matu Result 1.921 0.8777 1.869	ix Spike Recovery 94.8	3.20 Work Orden Matrix Spi Result 1.949 1.949 0.8826 0.8826	4.30 Spiked: 99 ke Duplicate Recovery 96.2 96.2 87.5 87.5	01761-0 QC L % Rec 80	1D imits covery 120	Spike RPD % 1.5	QC Limits % 20.0
Thallium Vanadium Vanadium Vanadium Vanadium Zinc Matrix Spike Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Cobalt Chromium Aagnesium Magnesium Magnesium Iickel ead Iickel ead Intimony Elenium ballium	e - Spike Du Sample Result 0.0249 0.0249	4.00 uplicate Re Spike Added 2.0 1.0 2.0	4.20 sults Mati Result 1.921 0.8777 1.869	ix Spike Recovery 94.8	3.20 Work Orden Matrix Spi Result 1.949 1.949 0.8826 0.8826 1.883	4.30 r Spiked: 99 ke Duplicate Recovery 96.2 96.2 87.5 94.2	01761-0 QC L % Rec 80 	1D imits covery 120 	Spike RPD % 1.5	QC Limits % 20.0
Thallium Vanadium Vanadium Vanadium Vanadium Zinc Matrix Spiku Element Silver Aluminum Arsenic Barium Baryllium Calcium Cadmium Cobalt Chromium Cobalt Chromium Cobalt Chromium Aagnesium Magnesium Magnesium Magnese Sodium lickel ead antimony Selenium hallium	e - Spike Du Sample Result 0.0249 0.0249	4.00 uplicate Re Spike Added 2.0 1.0 2.0	4.20 sults Mati Result 1.921 0.8777 1.869	100 ix Spike Recovery 94.8	Vork Order Matrix Spi Result 1.949 0.8826 0.8826 1.883	4.30 r Spiked: 99 ke Duplicate Recovery 96.2 96.2 87.5 94.2	01761-0 QC L % Rec 80 	1D imits covery 120 	Spike RPD % 1.5	QC Limits % 20.0

| | |

Checked: <u>69. 1/22/</u>99

L

L

Matrix: Water

Units: mg/L

Date:012099 Time:1000 File Name: 0120PB2

Analyst: JM

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Laboratory Control Sample

Element	Mth. Blank	True Value	Result	% Recovery	Lower Limit	Upper Limit
Silver	ND	2.00	2.07	103	1.60	2.40
Aluminum	ND	2.00	2.03	101	1.60	2.40
Arsenic						
Barium	ND	2.00	2.01	100	1.60	- 2.40
Beryllium						
Calcium	ND	20.00	21.07	105	16.00	24.00
Cadmium	ND	2.00	2.07	104	1.60	2.40
Cobalt	ND	2.00	2.09	104	1.60	2.40
Chromium	ND	2.00	2.12	106	1.60	2.40
Copper	ND	2.00	2.05	102	1.60	2.40
lron	ND	2.00	2.12	106	1.60	2.40
Potassium	ND	20.00	20.52	103	16.00	24.00
Magnesium	ND	20.00	20.37	102	16.00	24.00
Manganese	ND	2.00	2.04	102	1.60	2.40
Molybdenum	ND	2.00	2.12	106	1.60	2.40
Nickel	ND	2.00	2.09	104	1.60	2.40
Lead						
Antimony						
Selenium						
Thallium						
Vanadium						
Zinc	ND	2.00	2.07	103	1.60	2.40

Work Orders in Batch Work Order Fractions 99-01-761 01D-03D 99-01-705 04B 99-01-734 01A

Matrix Spike - Spike Duplicate Results

Work Order Spiked: 9901761-01D

	Sample	Spike	Matr	ix Spike	-	Matrix Spi	ke Duplicate		QCI	imits	Spike		QC
Element	Result	Added	Result	Recover	y	Result	Recovery		% Red	covery	RPD %		Limits %
Silver	ND	1.0	0.886	88.6	T	0.9046	90.5		80	120	2.1	Γ	20.0
Aluminum	16.53	1.0	20.81	428.0	*	21.15	462.0	*	80	120	7.6		20.0
Arsenic													
Barium	0.9704	1.0	1.857	88.7		1.856	88.6		80	120	0.1		20.0
Beryllium													
Calcium	578.2	100.0	665.8	87.6		677.8	99.6		80	120	.12.8		20.0
Cadmium	ND	1.0	0.8877	88.8		0.9043	90.4		80	120	1.9	Γ	20.0
Cobait	ND	1.0	0.8559	85.6	Π	0.8698	87.0		80	120	1.6		20.0
Chromium	0.015	1.0	0.8921	87.7		0.9073	89.2		80	120	1.7		20.0
Copper	0.0248	1.0	0.9108	88.6		0.9355	91.1		80	120	2.7		20.0
Iron	11.58	1.0	13.38	180.0	*	13.5	192.0	*	80	120	6.5		20.0
Potassium	30.28	10.0	39.69	94.1		41.04	107.6		80	120	13.4		20.0
Magnesium	100.9	10.0	109.5	86.0		112.6	117.0		80	120	30.5	**	20.0
Manganese	0.2882	1.0	1.131	84.3		1.152	86.4		80	120	2.5		20.0
Molybdenum	ND	1.0	0.8831	88.3		0.8925	89.3		80	120	1.1		20.0
Nickel	ND	1.0	0.8679	86.8		0.8882	88.8		80	120	2.3		20.0
Lead													
Antimony				·									
Selenium												1	
Thallium													
Vanadium													
Zinc	0.0435	1.0	0.9025	85.9		0.9227	87.9		80	120	2.3		20.0

* Spike Results Outside Method Limits

** Spike RPD Outside Method Limits

Elements Post Spiked:Ca (10x dilution)

Checked: m1/2/99

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported	on:	01/20/99
Analyzed	on:	01/20/99
Analyst:		AG

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Mercury, Total Method 7470 A***

SPL Sample ID Number	Blank Value ug/L	LCS Concentration ug/L	Measured Concentration ug/L	% Recovery	QC Limits Recovery
LCS	ND	2.0	2.0	100	80 - 120

-9901533

Samples in batch:

9901761-01D 9901761-02D 9901761-03D

COMMENTS: LCS= SPL ID# 94-452-49-12

		ICP Spe	ctrosco	opy Method	d 6010 Qu	ality Contr	ol Report	Analyst: JN	Λ
	T	2/	7	Matrix: Wat	er	Units: mg/L		HOUSTON 8880 INTER	LABORATOR
		aboratory C	®	Date:012099	Time:1000	File Name:	0120PB4	HOUSTON PHONE (, TEXAS 77054 713) 660-0901
Element	Mth. Blank	True Value	Result	% Recovery	Lower Limit	Upper Limit	Work Orde	ers in Batch	
Silver		1	1		<u> </u>		Work Order	Fractions	
Aluminum									
Arsenic							99-01-761	01D-03D	
Barium									
Beryllium								•	
Calcium									
Cadmium									
Cobalt									
Chromium									
Copper									
Iron									
Potassium									
Magnesium									. ,
Manganese									
Sodium	ND	20.00	19.95	100	16.00	24.00			
Nickel									
Lead									
Antimony									
Selenium									
Thallium									
Vanadium									
Zinc									
•••··•									
Matrix Spik	e - Spike Du	uplicate Res	sults		Work Order	Spiked: 990)1761-01D		
Matrix Spik	e - Spike Du Sample	uplicate Res Spike	sults Matr	ix Spike	Work Order Matrix Spil	Spiked: 990 Re Duplicate	01761-01D	Spike	
Matrix Spik	e - Spike Du Sample Result	uplicate Res Spike Added	sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 ke Duplicate Recovery	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver	e - Spike Du Sample Result	uplicate Res Spike Added	sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Construction Recovery	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum	e - Spike Du Sample Result	Iplicate Res Spike Added	sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Recovery	QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic	e - Spike Du Sample Result	Iplicate Re Spike Added	sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Re Duplicate Recovery	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium	e - Spike Du Sample Result	uplicate Res Spike Added	sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Recovery	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium	e - Spike Du Sample Result	uplicate Re Spike Added	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Recovery	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium	e - Spike Du Sample Result	uplicate Res Spike Added	sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Recovery	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium	e - Spike Du Sample Result	Iplicate Res Spike Added	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Recovery	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium	e - Spike Du Sample Result	Iplicate Res	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium	e - Spike Du Sample Result	Iplicate Re Spike Added	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper	e - Spike Du Sample Result	Iplicate Re Spike Added	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990	QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Calcium Cobalt Chromium Copper Iron	e - Spike Du Sample Result	Iplicate Re Spike Added	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Contracts Recovery	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Calcium Cobalt Chromium Copper Iron Potassium	e - Spike Du Sample Result	Iplicate Res	sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Calcium Cobalt Chromium Copper Iron Potassium	e - Spike Du Sample Result	Iplicate Res	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium	e - Spike Du Sample Result	Iplicate Res	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Contracts Recovery	01761-01D QC Limits % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium	e - Spike Du Sample Result	Iplicate Res Spike Added	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Contracts Recovery	QC Limits % Recovery % R	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium	e - Spike Du Sample Result	Jplicate Res Spike Added	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Contracts Recovery	QC Limits % Recovery % Recovery	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead	e - Spike Du Sample Result	Jplicate Res Spike Added	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Contracts Recovery 101.0	QC Limits % Recovery % Recovery <td< td=""><td>Spike RPD %</td><td>QC Limits %</td></td<>	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Calcium Calcium Calcium Cobalt Chromium Copper Iron Potassium Magnesium Manganese Sodium Nickel Lead Antimony	e - Spike Du Sample Result	Jplicate Res Spike Added	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Control Control C	01761-01D QC Limits % Recovery 	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Copper Iron Potassium Magnesium Magnesium Nickel Lead Antimony Selenium	e - Spike Du Sample Result	Iplicate Res	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Control Control C	QC Limits % Recovery %	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Cobalt Chromium Copper Iron Potassium Magnesium Magnese Sodium Nickel Lead Antimony Selenium Thallium	e - Spike Du Sample Result	Iplicate Res	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Control Control C	QC Limits % Recovery %	Spike RPD %	QC Limits %
Matrix Spik Element Silver Aluminum Arsenic Barium Beryllium Calcium Cadmium Cobalt Chromium Cobalt Chromium Magnesium Magnesium Magnesium Nickel Lead Antimony Selenium Thallium Vanadium	e - Spike Du Sample Result	Jplicate Res Spike Added	Sults Matr Result	ix Spike Recovery	Work Order Matrix Spil Result	Spiked: 990 Control Control C	QC Limits % Recovery	Spike RPD %	QC Limits %

* Spike Results Outside Method Limits ** Spike RPD Outside Method Limits

Checked: 2599

i i

** SPL QUALITY CONTROL REPORT **

Matrix:	Aqueous	Reported on:	01/31/99
	-	Analyzed on:	01/29/99
		Analyst:	CV

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Chloride Method 325.3 *

SPL Sample ID Number	Blank Value mg/L	LCS Concentration mg/L	Measured Concentration mg/L	% Recovery	QC Limits Recovery
LCS	ND	105.0	99.3	94.6	94 - 106

-9901837

Samples in batch:

9901409-01D	9901409-02D	9901409-03D	9901409-04D
9901410-01D	9901410-02D	9901410-03D	9901410-04D
9901411-01D	9901411-02D	9901411-03D	9901411-04D
9901761-01C	9901761-02C	9901761-03C	

COMMENTS:

LCS-SPL ID#94453222-14

ļ.

Í

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Analyzed on: 01/ Analyst: CV	29/99
---------------------------------	-------

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Chloride Method 325.3 *

SPL Sample	Method	Sample	Spike	Matrix Spike		Matrix Spike Duplicate		RPD	()	AC LIMITS	;
ID Number	Blank mg/L	Result mg/L	Added mg/L	Result mg/L	Recovery %	Result mg/L	Recovery %	(%)	RPD Max	% REC	:
9901761-01c	ND	46.1	50.0	95.7	99.2	95.7	99.2	0	5	92 -10	19

-9901836

Samples in batch:

9901409-01D	9901409-02D	9901409-03D	9901409-04D
9901410-01D	9901761-01C	9901761-02C	9901761-03C

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 01/19/99 Analyzed on: 01/19/99 Analyst: TK

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Carbonate, as CaCO3 Method SM 4500-CO2D **

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration mg/L	Duplicate Sample mg/L	RPD	RPD Max.
9901705-04A	ND	ND	0	5

-9901480

Samples in batch:

9901705-04A 9901761-01C 9901761-02C 9901761-03C

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 01/19/99 Analyzed on: 01/19/99 Analyst: TK

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Bicarbonate, as CaCO3 Method SM 4500-CO2D **

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration mg/L	Duplicate Sample mg/L	RPD	RPD Max.
9901705-04A	722.2	722.4	0	5

-9901479

Samples in batch:

9901705-04A 99017

9901761-01C

9901761-02C 9901761-03C

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported	on:	01/19/99
Analyzed	on:	01/19/99
Analyst:		TK

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

pH Method 150.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration pH Units	Duplicate Sample pH Units	RPD	RPD Max.
9901705-04A	6.87	6.86	0.1	1.0

-9901483

Samples in batch:

9901705-04A 9901761-01C 9901761-02C 9901761-03C

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported	on:	01/19/99
Analyzed	on:	01/19/99
Analyst:		TK

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Resistivity Method 120.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID Original Sample Concentration Momhs-cm		Duplicate Sample Momhs-cm	RPD	RPD Max.
9901761-02C	0.74	0.74	0	1.0

-9901484

Samples in batch:

9901705-04A 9901761-01C 9901761-02C 9901761-03C

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported	on:	01/29/99
Analyzed	on:	01/28/99
Analyst:		TW

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Sulfate Method 375.4 *

SPL Sample ID Number	Blank Value mg/L	LCS Concentration mg/L	Measured Concentration mg/L	% Recovery	QC Limits Recovery
LCS	ND	26.80	25.64	95.7	82 - 111

-9901785

Samples in batch:

9901408-01D	9901408-02D	9901408-03D	9901408-04D
9901416-01D	9901520-01D	9901761-01C	9901761-02C
9901761-030			

COMMENTS:

SPL LCS#95535252-14

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 01/29/99 Analyzed on: 01/28/99 Analyst: TW

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Sulfate Method 375.4 *

SPL Sample	 Method	 Sample	Spike	Matr:	ix Spike	Matr Dup	ix Spike licate	RPD	(1	QC LIMITS Advisory)
ID Number	Blank mg/L	Result mg/L	Added	Result mg/L	Recovery %	Result mg/L	Recovery	(\$)	RPD Max	* REC
9901408-01D	ND	8.58	10.00	18.17	95.9	18.61	100	4.2	9.5	84 -120

-9901784

Samples in batch:

9901408-01D	9901408-02D	9901408-03D	9901408-04D
9901416-01D	9901520-01D	9901761-01C	9901761-02C
9901761-03C			

COMMENTS :

<u>JPL</u>_o

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

** SPL QUALITY CONTROL REPORT **

Matrix:	Aqueous	Reported on:	02/02/99
	-	Analyzed on:	02/02/99
		Analyst:	DS

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Specific Gravity ASTM D1429

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration g/cm3	Duplicate Sample g/cm3	RPD	RPD Max.
9901761-01C	0.9849	0.9852	0	1.0

-9902059

Samples in batch:

9901761-01C 9901761-02C 9901762-03C

COMMENTS: ----

** SPL QUALITY CONTROL REPORT **

Matrix: Aqu

Aqueous

Reported on: 02/09/99 Analyzed on: 02/05/99 Analyst: DS

This sample was randomly selected for use in the SPL quality control program. Samples chosen are fortified with a known concentration in duplicate. The results are as follows:

Total Dissolved Solids Method 160.1 *

SPL Sample ID Number	Blank Value mg/L	LCS Concentration mg/L	Measured Concentration mg/L	% Recovery	QC Limits Recovery
LCS	nd	430.9	425	98.6	93 - 107

-9902251

Samples in batch:

9901761-01C 9901761-02C 9901761-03C

COMMENTS:

lcs= spl id#95535254-2

** SPL QUALITY CONTROL REPORT **

Matrix: Aqueous

Reported on: 02/09/99 Analyzed on: 02/05/99 Analyst: DS

This sample was randomly selected for use in the SPL quality control program. The results are as follows:

Total Dissolved Solids Method 160.1 *

-- DUPLICATE ANALYSIS --

SPL Sample ID	Original Sample Concentration mg/L	Duplicate Sample mg/L	RPD	RPD Max.
9901761-01C	1182	1186	0.3	5

-9902250

Samples in batch:

9901761-01C 9901761-02C 9901761-03C

COMMENTS:__

			5	PL, I	nc.					Vorkorder ^	Ž		H H)7210	
	V	nalysis Re	guest .	k Chai	n of C	ustody	Recor	p		906	176		page	/ of 2	
Client Name: RICE ODERATI	is Come	シタクイ		matrix	bottle	size	pres.			Z	squest	ed Ana	lysis		
Address/Phone: 122 West TA	y Lor, Ho	6 WN , 294	8240	:	sselg .	[ßiv=		s		**	*				
Client Contact: F. Westery Project Name: T.+ T9	Koot			other	vial amber	zog =07- z	orper: HNO3	ainer:	(N Y Y	. 575	<u> </u>			
Project Number: Hokks 5 W	D Suster	2		=0 s=s	x=V ≈=A	9 I = 9	0=0 7=1	inoD	851	₩₩	iten				
Project Location: 09-7195-R	38E . Leg (aunty, New	REXICO	dge ter	Si.	4 15 1	₽0	10 I 		לי	U T				
Imoice To: RICE Operation	COMPANY			nis= 1ew=	glass	zo8 zo8	H7S HCI	uper	QΛ 	Y SN	360				
SAMPLE ID	DATE	TIME	comp grab	=7S =M	с= Ъ=I	3=8 [=[[=[[=£	in _N	5_	'W	M				_
MW-2	1-16-99	11:20	7	M	7	0#	/ /	3 2							
MW~ 2	1-16-93	11:20	7	X	A	~	1C E		7						
MW-2	66-91-1	11:20	2	3	ط	-	10 8			2					<u> </u>
MW- 2	1-16-39	11:20	2	2	d	-	2	2			7				
MW-1	1-16-99	12:30	7	M	Ņ	40	\	2 m							T .
/MW-/	116-99	/2;30	7	M	A	/	/CE	/							
MW-1	66-91-1	12:30	7	Ŕ	٩	1	ICE	/		7					
/-/mW/	1-16-39	12:30	7	M	م	/	23	2			7				
E-MM	1-16-39	14:30	7	À	۷	0#		м 2		 					
MW- 3	66-91-1	14:30	7	À	4	~	<u>/حد</u>		7						
Client/Consultant Remarks: Sec. A	Hacked	List for A.	valytici	Laborato	ry remark							Int	lad?	JY UN	
			53	-16	(<u>ہ</u> ر					Te	Ю äu	C	
Requested TAT	inday manade	ung nequuenen	Fax	Results]	Raw Data		pectal LUCI		linoqu) si	÷		M ici	view (initial):	
24hr 72hr	Sta Relinedistic	dard QC	Icve	13 QC	┓	Level 4 Q			2				33		
	J	the case	140			all B	199	X.00	2	cerved by:					
48hr	3. Relinquistre	d by:		1		date		ž	. 8	cived by:				/ /	 {
Other	5. Relinquishe	d by:				date		2	- <u>6</u>	AP	Aborator	L.	K	9/6//	à ĉ
X 8880 Interchange Drive,	Houston, []]	X 77054 (71	3) 660-0	901		0	500 Am	bassado	r Caffe	y Parkv	vay, So	At, LA 7	0583 (31	8) 237-477:	7
L 459-Hughes Drive, Trav	erse City, N	11 49684 (61	6) 947-5	777											

									S	L Workon					
		•				_					ì		-1	TTJIN	Т
		unalysis F	leques	C S S	lain of	Custo	dy Rec	ord		5	× 110		page	2 of 2]
INT NAME: RICE OPERATIO	Ng Com	oAvy		mat	rix bot	tle size	pres.			-	Reque	sted An	alysis		
irentPhone: 122 West 7. m Contact: F. Wesley	Aylor, H Root	obbs, NM	97588		Der glass Der glass	lsiv=0f	ıet: 103	JETS	**^*	*					
ect Name: Jet. Z-9				ios=	110=	209 	=0f}	ristr	hsH	\$					
ject Number: Hobbs SWI	D Syster	2		=S	=¥	[=9 ₽₽=₹ 	0= 5=	roD	Aq	7∀}²					
ject Location: 07-T195-R381	E, Len Cou	inty, New	Merico		agb Lic	۲ ور ۲ م	¥0	10 1	1.4	W				<u>-</u>	
oice To: RICE Operation	V- Comp	やいら		EW=	155ic	seig l lite soz	H7S HCI	əqu	494	22					
SAMPLE ID	DATE	TIME	comp 8	= M	I=d =75]=9 [=[]	1=5 I=1	INN	lu	DM					
MW-3	1-16-39	14:30		Σ	d	/	/c	\ \	7						
MW-3	1-16-99	14:30	4	N N	٩	× -	Ъ	2		7					
									╞╌┟						1
															<u> </u>
															1
															<u> </u>
		\mathbb{A}	V	$\left \right $											
						<u>+</u>	+	Ţ	4					· · · · ·	1
acConsultant Remarks: See . 41 Rametars of Mineral F.	ttacica 1 Atten d L	list for A.	nacytus als	cat Labo	ratory ren	uarks:						<u>-1</u>	ntact?		
Requested TAT	Special Repo	rting Requirem	ents F	ax Results	D	Raw D	ata	Special [letection	imits (spo	ify):			view (initial):	
. (Σ.	andard QC		evel 3 QC	σ	Level 4	8						5	e	
	1. Relinquish	ed by Sampler		*		date -	8	Lime 14:00	8	Received 1	JA-				1
8hr 🚺 Standard 💟	3. Relinquish	cd by:				date		lime	4	Received 1	ž				
ther []	5. Relinquish	ed by:				date		time	e	N CAN	y Laborat	P is	R	1001	
8880 Interchange Drive, 459-Huehes Drive, Trav	Houston, erse Citv.	TX 77054 (MI 49684 ((713) 660 616) 947	-0901		σ	500 A	mbassa	dor Cal	fery Par	kway, S	cott, LA	70583 (31	8) 237-4775	7
			re v lata												

|

i I

SPL Houston Environmental Laboratory

Sample Login Checklist

	1-19-99 10	100		
			•	
SPL	, Sample ID:			
	9901761		,	
		· · · · · · · · · · · · · · · · · · ·	Yes	No
1	Chain-of-Custody (COC) form is pre	esent.		
2	COC is properly completed.			
3	If no, Non-Conformance Worksheet	has been completed.		
4	Custody seals are present on the ship	oping container.		
5	If yes, custody seals are intact.			
6	All samples are tagged or labeled.			-
7	If no, Non-Conformance Worksheet	has been completed.		
8	Sample containers arrived intact			-
9	Temperature of samples upon arrival	:		
10	Method of sample delivery to SPL:	SPL Delivery		
-		Client Delivery		
		FedEx Delivery (airbill #)	80819	848332
		Other:		
11	Method of sample disposal:	SPL Disposal		
		HOLD		
		Return to Client		

1-19-99

	·····		~~ ~~ ~ ~ ~ ~			TOPO		
		Result	Units	Reporting Limit	Date Prepare	Date d Analyzed	Analyzed By	Dilution
Client Sample I	D: B-3					Sample Num	ber: 98-35	44-001
Date Sampled:	10/21/98					Sample Matri	ix: Liqui	iđ
Time Sampled:	9:30					Sampled By:	SL	
EPA 8021B	Benzene	14200	µg/L	50	10/23/98	3 10/23/98	DWT	50
	Toluene	<50	µg/L	50	10/23/98	3 10/23/98	DWT	50
	Ethyl benzene	1310	µg/L	50	10/23/98	10/23/98	DWT	50
	Xylenes (Total)	780	µg/L	150	10/23/98	10/23/98	DWT	50
	Total BTEX (Calculated)	16290	μg/L		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogat	te			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	108%	74-116%		10/23/98	10/23/98	DWT	1
	4-Bromofluorobenzene (SS)	102%	80-151%		10/23/98	10/23/98	DWT	1
EPA 160.1	Total Dissolved Solids	1710	mg/L	10	10/28/98	10/28/98	SM	1
SM 4500 CLB	Chloride	230	mg/L	50	10/28/98	10/28/98	AJ	10
lient Sample ID	: B -4				S	ample Numbe	er: 98-354	4-002
Date Sampled:	10/21/98				S	ample Matrix	: Liquid	
Time Sampled:	10:55				S	ampled By:	SL	
CPA 8021B	Benzene	618	µg/L	5	10/23/98	10/23/98	DWT	5
	Toluene	331	μg/L	5	10/23/98	10/23/98	DWT	5
	Ethyl benzene	182	µg/L	5	10/23/98	10/23/98	DWT	5
	Xylenes (Total)	226	μg/L	15	10/23/98 ·	10/23/98	DWT	5
	Total BTEX (Calculated)	1357	µg/L		10/23/98	10/23/98	DWT	1
	**Quality Control Surrogate	!			10/23/98	10/23/98	DWT	1
	Difluorobenzene (SS)	110%	74-116%		10/23/98	10/23/98	DWT	1 .
	4-Bromofluorobenzene (SS)	111%	80-151%		10/23/98	10/23/98	DWT	1
PA 160.1	Total Dissolved Solids	5460	mg/L	10	10/28/98	10/28/98	SM	1
M 4500CLB	Chloride	2400	mg/L	250	10/28/98	10/28/98	AJ	50

Page 2 of 2

· •

Certes	Environmental 2209 Wisconsin Dallas, Texas 75 972-620-7966	Laboratories, L.L.C Street, Suite 200 5229 972-620-7963 Fax			nalysis(es) Requested
Elice Conservented Client Address 12-というをニア 「かくしてん	City City State	1141 252 2 1141 112 2 1141 112 2			
Purchase Order No. Project Manager Cerrtes No	To ensure proper billing, please refere EV 'VE'E' Site Location Terrer of the CVE' H	nce quotation number.	ETEX	ZAT SKUNS	
K-3	10年130日	2 2	>	>	
8-4	10/21/95 16 55 L	1 2	<u> </u>	>	
Sampled By	1 Matrix: A	Air. Bago C.S.Charcoal Tuth			
AL- TAT Standard: Date Benuited الارتان	Client Project ID	40mi VOA Viat: G. Amber 1. Hydrochloric Acid HNO Special Instructions (includ	or Glass 1 Liter, or Glass 1 Liter, <u>a Nitic Acid</u> , H		olid: SL- Sludge; WP Wipe W WaterWastev Blass Jar; O- Other Other Certes Job Number
RUSH: Date Required Relinquished by Sempler	5	Date 10/22 / 15	emi	Received By	
Relinquished by Relinquished by		Date Date	ime	Received By	
NOTE: By submitting these samples, you s	agree to the terms and conditions con	tained in Certes. Schedule o	ime از ج از جزر المحمد المحم 1 Fees: Cartes ca	Received By Laborato	V NIC/ No set
					22.1.1.14339 FAX WIIII60 Chariges to (972) 620-7963

i.

!

Ł

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888 • 588 • 3443 E-Mail: lab@traceanalysis.com

806•794•1296 FAX 806•794•1298 915•585•3443 FAX 915•585•4944

Analytical and Quality Control Report

Tom Larson Geraghty & Miller, Inc. 1030 Andrews Highway, Suite 120 Midland, TX 79701

Report Date:

7/13/99

Project Number:MT000591.0001Project Name:N/AProject Location:Rice (Hobbs)

Order ID Number: 99070811

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to TraceAnalysis, Inc. for analysis:

Sample Number	Sample Description	Matrix	Date Taken	Time Taken	Date Received
127806	MW-2	Water	7/7/99	11:00	7/8/99
127807	MW-1	Water	7/7/99	11:45	7/8/99

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 3 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

r. Blair Leftwich, Director

Analytical Results Report

Sample Number: 127806 Description: MW-2

Sample Number:

127807

Param	Flag	Result	Dilution	Analytical Method	Date Prepared	Date Analyzed	Analyst	Prep Batch #	QC Batch #	RDL
Benzene (mg/L)		0.289	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Toluene (mg/L)		< 0.005	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Ethylbenzene (mg/L)		0.061	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
M,P,O-Xylene (mg/L)		0.008	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Total BTEX (mg/L)		0.358	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Surrogate TFT (mg/L) 4-BFB (mg/L)		Result 0.623 0.619	Dilution 5 5	Spike Amount 0.1 0.1	% Rec. 125 124	% Rec. Limit 72 - 128 72 - 128	Analyst RC RC	Prep Batch # PB01429 PB01429	QC Batch # QC01776 QC01776	

Description: MW-1										
-				Analytical	Date	Date		Prep	QC	
Param	Flag	Result	Dilution	Method	Prepared	Analyzed	Analyst	Batch #	Batch #	RDL
Benzene (mg/L)		0.262	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Toluene (mg/L)		0.01	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Ethylbenzene (mg/L)		0.286	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
M,P,O-Xylene (mg/L)		0.131	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
Total BTEX (mg/L)		0.689	5	S 8021B	7/8/99	7/8/99	RC	PB01429	QC01776	0.001
				Spike	%	% Rec.		Prep	QC	
Surrogate		Result	Dilution	Amount	Rec.	Limit	Analyst	Batch #	Batch #	
TFT (mg/L)		0.642	5	0.1	128	72 - 128	RC	PB01429	QC01776	
4-BFB (mg/L)		0.626	5	0.1	125	72 - 128	RC	PB01429	QC01776	

Quality Control Report Method Blanks

Param	Flag	Blank Result	Reporting Limit	Date Analyzed	Prep Batch #	QC Batch #
Benzene (mg/L)		<0.001	0.001	7/8/99	PB01429	QC01776
Toluene (mg/L)		<0.001	0.001	7/8/99	PB01429	QC01776
Ethylbenzene (mg/L)		<0.001	0.001	7/8/99	PB01429	QC01776
M,P,O-Xylene (mg/L)		<0.001	0.001	7/8/99	PB01429	QC01776
Total BTEX (mg/L)		<0.001	0.001	7/8/99	PB01429	QC01776

Order ID Number: 99070811 N/A Page Number: 3 of 3 Rice (Hobbs)

Quality Control Report Lab Control Spikes and Duplicate Spike

	Param	Blank Result	Dil.	Spike Amount Added	Matrix Spike Result	% Rec.	RPD	% Rec. Limit	RPD Limit	QC Batch #
LCS	MTBE (mg/L)	< 0.001	1	0.1	0.117	117		80 - 120	0 - 20	QC01776
LCS	Benzene (mg/L)	<0.001	1	0.1	0.115	115		80 - 120	0 - 20	QC01776
LCS	Toluene (mg/L)	< 0.001	1	0.1	0.116	116		80 - 120	0 - 20	QC01776
LCS	Ethylbenzene (mg/L)	< 0.001	1	0.1	0.116	116		80 - 120	0 - 20	QC01776
LCS	M,P,O-Xylene (mg/L)	<0.001	1	0.3	0.349	116		80 - 120	0 - 20	QC01776
Standard LCS LCS	l Surrogate TFT (mg/L) 4-BFB (mg/L)		Dil. 1 1	Spike Amount 0.1 0.1	Result 0.100 0.103	% Rec. 100 103		% Rec. Limit 72 - 128 72 - 128		QC Batch # QC01776 QC01776
LCSD	MTBE (mg/L)	<0.001	1	0.1	0.115	115	2	80 - 120	0 - 20	QC01776
LCSD	Benzene (mg/L)	<0.001	1	0.1	0.117	117	2	80 - 120	0 - 20	QC01776
LCSD	Toluene (mg/L)	<0.001	1	0.1	0.117	117	1	80 - 120	0 - 20	QC01776
LCSD	Ethylbenzene (mg/L)	<0.001	1	0.1	0.117	117	1	80 - 120	0 - 20	QC01776
LCSD	M,P,O-Xylene (mg/L)	<0.001	1	0.3	0.353	118	1	80 - 120	0 - 20	QC01776
Standard LCSD LCSD	l Surrogate TFT (mg/L) 4-BFB (mg/L)		Dil. 1 1	Spike Amount 0.1 0.1	Result 0.102 0.104	% Rec. 102 104		% Rec. Limit 72 - 128 72 - 128		QC Batch # QC01776 QC01776

Quality Control Report Continuing Calibration Verification Standard

Standard	Param	Flag	CCVs TRUE Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed	QC Batch #
ICV	Benzene (mg/L)		0.1	0.093	93	80 - 120	7/8/99	QC01776
ICV	Toluene (mg/L)		0.1	0.092	92	80 - 120	7/8/99	QC01776
ICV	Ethylbenzene (mg/L)		0.1	0.091	91	80 - 120	7/8/99	QC01776
ICV	M,P,O-Xylene (mg/L)		0.3	0.262	87	80 - 120	7/8/99	QC01776
CCV (1	Benzene (mg/L)		0.1	0.113	113	80 - 120	7/8/99	QC01776
CCV (1	Toluene (mg/L)		0.1	0.114	114	80 - 120	7/8/99	QC01776
CCV (1	Ethylbenzene (mg/L)		0.1	0.110	110	80 - 120	7/8/99	QC01776
CCV (1	M,P,O-Xylene (mg/L)		0.3	0.330	110	80 - 120	7/8/99	QC01776

$\frac{L_{\text{Lic}}}{L} = \frac{1}{12} $	MT 000591, 0001	SAMPLE BC		Page
On McAuterie McAut Ari Jland Mission Mission Ari Jland Mission Mission V cole Damenter Damenter L 7-7-97 1145 3 L 17-7-17 Mission Containes L 1440 Date 200	Kice (Hobes)			
$v \text{ cole Sampled Links} / \delta$	on Mentesse AGM X &			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Y Code Sampled Lab. A			TOTAL
L 7-7-99 1145 3 I 7-7-99 1145 3 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0	L 7-7-99 [100 3	122806		3
= Lquid: S = Solid: A = Air Organization: Model A = Air Total No. of Bottles! Date 21.21/91 Time 2.20 Seal Intact? Organization: Model A = Air Organization: Model A = Air Date Date 21.07/91 Time 2.00 Model A = Air Date 21.07/91 Time Date 1.1 Time Seal Intact? Date 1.1	L 7-7-99 1145 3	(08cel		<u>~</u>
= Liquid: S = Solit: A = Ait				
= Liquid: S = Solid: A = Air				
= Liquid: S = Solid: A = Air				
- Liquid: S = Solid: A = Air - Diate - Diate - Diate - Organization: - Diate - Diate				
= Liquid; S = Solid; A = Air = Liquid; S = Solid; A = Air = Liquid; S = Solid; A = Air Date 7 / 2/37 Time 7 / 2/37 Time Organization: And And All Date 7 / 2/37 Time All Date 7 / 2/37 Time All Date 7 / 2/37 Time All Date 7 / 0/147 Time	y 			
= Liquid: S = Solid; A = Ait = Liquid: D = Ait Total No. of Bottles/ Containers = Liquid: S = Solid; A = Ait = Liquid: D = Ait Total No. of Bottles/ Containers = Liquid: D = Ait Total Ait = Liquid: D = Ait Containers = Liquid: D = Ait Containers = Liquid: D = Ait D = Ait = D = Ait D = Ait D = Ait = D = Ait D = Ait D = Ait = Organization: D = Ait D = Ait = Organization: D = Ait D = Ait = Seal Intervection: D = Ait Lime = Organization: D = Ait D = Ait = Organization: D = Ait D = Ait = Seal Intervection: D = Ait Lime = Organization: D = Ait Lime </td <td></td> <td></td> <td></td> <td></td>				
- Liquid; S = Solid; A = Air - Induid; S = Solid; A = Air - Induid; S = Solid; A = Air - Liquid; S = Solid; A = Air - Induid; S = Solid; A = Air - Induid; S = Solid; A = Air - Liquid; S = Solid; A = Air - Organization: Array (Array) - Date 71/27 Time 1/20/20/20/20/20/20/20/20/20/20/20/20/20/				
= Liquid; S = Solid; A = Ait Total No. of Bottes/ Containers Total No. of Bottes/ Containers = Liquid; S = Solid; A = Ait Total No. of Bottes/ Containers Total No. of Bottes/ Containers • Containers Date 7/7/97 Time 7:200 PM Seal Intract/ Ves No Nitro • Pellew of U Way Organization: Date 7/07/97 Time 6:30 PM Seal Intract/ Ves No Nitro • Shemarks: • Organization: • Organization: • Organization: • Organization:				
= Liquid; S = Solid; A = Air Total No. of Bottles/ Containers Total No. of Bottles/ Containers • Liquid; S = Solid; A = Air Total No. of Bottles/ Containers Total No. of Bottles/ Containers • Organization: Marker Date 7/7/197 Time ZooPM Seal Intact? • Nee No. Organization: Marker Date 7/07/197 Time Seal Intact? • Nee No. Organization: Marker Date 7/07/197 Time Seal Intact? • Nee No. Organization: Date 7/07/197 Time Ves No.N/P				
= Liquid; S = Solid; A = Air Total No. of Bottles/ Total No. of Bottles/ Total No. of Bottles/ = Liquid; S = Solid; A = Air Organization: MacMUS Date 7/2/37 Time 7:02 PM Seal Intact? Active MacMUS Organization: MacMUS Date 7/07/47 Time 4:30 PM Yes No N/A Active MacMUS Date 7/07/14 Time 4:30 PM Yes No N/A Seal Intact? Organization: MacMUS Date 7/07/14 Time 4:30 PM Yes No N/A Seal Intact? Date 7/07/14 Time 4:30 PM Yes No N/A Yes No N/A Seal Intact? Date 7/07/14 Time 4:30 PM Yes No N/A Yes No N/A			/	7
= Liquid; S = Solid; A = Air Total No. of Bottles/ Total No. of Bottles/ Containers Containers A = Air Organization: Max Organization: Max Date 7/7/17 Time 7:00 Min Yes No No A = U = V = V = V = V = V = V = V = V = V				¢
Active Are Jan Organization: AlcANS Date 7/2/97 Time 7200 Seal Intact? Active Are Jan Organization: Jace Are Are Date 7/07/97 Time 6:30 PM Yes No N/A Constraint: Area Area Area Date 7/07/97 Time 6:30 PM Seal Intact? Date 1 / Time 6:30 PM Yes No N/A Yes No N/A	- = Liquid; S = Solid; A = Air		Total No. of Cor	ottles/
No. Organization: NARQ Overlage Overlage Overlage Overlage Overlage Nate Nat	ACTION ARE TON Organization: ARCAN	25 anilyin	Date 7/07/99 Time / 700	M Yes No N/A
ns/Remarks:	Ciganization: NAN Organization: NAN	analique	Date 7/07/19 Time 10:30	A Seal Intact? Yes No N/A
	ns/Remarks:			
		00. in A		
6/01 Aberdeen Avenue, Surte S Lubhock, Jexas 79424 800-

4725 Hipley Avenue, Suite A

Lubhnck, lexas 79424 800=378=1296 806+794+1296 El Paso, Texas 79922 888+588+3443 915=585=3443 E-Mail, tab@traceanalysis.com

96 FAX 806+794+1298 43 FAX 015+585+4044

Analytical and Quality Control Report

 Sharon Hall
 Geraghty & Miller, Inc.
 Report Date:
 9/8/99

 1030 Andrews Highway, Suite 120
 Midland, TX 79701
 Project Number:
 MT000591.0002

 Project Name:
 N/A
 Order ID Number:
 99090329

 Project Location:
 Rice (Hobbs, NM)
 Order ID Number:
 99090329

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to TraceAnalysis, Inc. for analysis:

Sample Number	Sample Description	Matrix	Date Taken	Time Taken	Date Received
131289	MW-4	Water	9/2/99	•	9/3/99

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 4 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Sheet
Balance
ation-Anion
Ü

			Percantage	Error	20.01185364			177
		Tyt		im reg/L	<u>р</u> =			neers to e 0.55-0
SOL	und l	151cT	Cations	in meq/L	13.92		TDS/Anion	C.68
Fluoride	mda ₽₹		Fluoride	in meq.L	0.215824		TDS/Cat	0.55
Nitrate	ррт 2.8		Nitrate	in meq/L	0.207031		TDS/EC	IO/MO#
Chloride	130		Chloride	in meq/L	2.82			
Sulfate	180 180		Sultate	in meq/L	3.75			0
Alkalinity	220.00		Alkalinity	in meq/L	4.40			2
Polassium	3.6		Potassium	in meq/L	0.09			•
Sodium	ррш 146		Sodium	in meq.	6.35			agusi
Magnesium	udd R		Magnesium	in meq/L	1.89		EC/Anion	1139,1455
9/9/99 Calcium	112		Calcium	n meq.	558		EC/Cation	-392.4558
DATE: Sample #	131289	-			131289	•		131239

6701 Aberdeen Avenue, Guite 9 1725 Riplay Avenue, Suite A

Lubbock, Tcxo3 73424 000 • 370 • 1230 El Pugo, Tunug 70022 888 - 648 - i1111 L-Mali: lab@traceanalysis.com

000+704+1200 FAX 888+794+1798 815-585-8143 FAX 915+505+4944

ANALYTICAL RESULTS FOR GERAGHTY & MILLER Attention: Sharon Miller 1030 Andrews Hwy., Suite 120 Midland, Texas 79261

September 8, 1999 Receiving Date: 09/03/99 Sample Type: Water C/ujaot No. MT300001.6300 Project Loc: Rice Hobbs, NM

Sampling Date: 08/09/99 Sample Condition: I & C Comple Realized by: VW Project Name: N/A

		ĊI	NQ3-N*	SO4	F
TA#	Field Code	(mg/L)	(mg/L)	(mg/L)	(mg/L)
T131289	MW-4	100	2.9	180	4.1
ICV		11.50	4.62	11.60	1.06
CCV		11.53	4.65	11.61	1.08
Reporting Limi	t	0.5	0.2	0.5	0.1
Prep Date:		09/07/99	09/07/99	09/07/99	09/08/99
Analysis Date.		09/07/99	09/07/99	09/07/99	09/08/99
RFD		0	1	t	1
% Extraction A	ccuracy	90	97	93	98
% Instrument /	Accuracy	92	92	93	106

METHUDS' EPA 300.0, 340.2 CHEMIST: JS TOTAL CI SPIKE: 625 mg/L TOTAL NO3-N SPIKE: 250 mg/L TOTAL SO4 SPIKE: 625 mg/L TOTAL F SPIKE: 5.0 mg/L

Disastar, Dr. Blair I afhriab

TOTAL CI CV: 12.5 mg/L TOTAL NO3-NCV: 5.0 mg/L TOTAL SO4 CV: 12.5 mg/L TOTAL F CV: 1.0 mg/L

9-8-99

01/4 9059:428 dol ;MAE2:0 00'qa2 0

sent By: TRACEANALYSIS;

A MULLING TRACEANALYSIS, INC. MULLING MULLING

6701 Aberdeen Avenue, Suite 9 4/25 Ripley Avenue, Suite A Lubbuck, Texas 79424 800=378=1296 El Paso, Texas 79922 888=588=3443 E Mail: lab@traceonalysis.com

ANALYTICAL RESULTS FOR GERAGHTY & MILLER, INC. Attention: Sharon Hall 1030 Andrews Highway, Suite 120 Midland, Texas 79701 1806=794=1296 I AX 806=794=1298 915=585=3443 FAX 915=585=4944

> September 8, 1999 Receiving Date: 09/03/99 Sample Type: Water Project No: MT000591.0002 Project Loc: Rice Hobbs, NM Project Name: N/A Sampling Date: 09/02/99 Sample Condition: I & C Sample Received by: VW Extraction Date: 09/07/99 Analysis Date: 09/08/99

PAH	Reporting	T131289		······································	Analysis Date: 0	9/08/99
8270 Compounds (mg/L)	Limit	MW-4	QC	RPD	%EA	%IA
Naphthalene	0.005	ND	57	11	86	96
Acenaphthylene	0.005	ND	58	11	95	96
Acenaphthene	0.005	ND	58	9	91	96
Fluorene	0.005	ND	55	11	92	91
Phenanthrene	0.005	ND	56	6	87	93
Anthracene	0.005	ND	7	4	84	95
Fluoranthene	0.005	ND	58	11	86	93
Pyrene	0.005	ND	50	8	80	84
Bonzo[a]anthracené	0.005	ND	57	3	76	85
Chrysene	0.005	ND	58	4	72	96
Benzo[b]fluoranthene	0.005	ND	60	7	77	100
Benzo[k]fluoranthene	0.005	ND	57	13	75	9 4
Benzolalpyrene	0.005	ND	58	10	79	97
Indenoi1.2.3-cdipyrene	0.005	ND	48	15	87	81
Dibenz(a,h)anthracene	0.005	ND	52	16	72	86
Benzolg,h,ijperviene	0.005	ND	50	12	72	83
ND = Not Detected						
SURROGATES		% RECOVERY				
Nitrobenzana-d5 SURR		98				

Nitrobenzene-d5 SURR 2-Fluorobiphenyl SURR Terphenyl-d14 SURR METHODS: EPA SW 846-8270, 3510. CHEMIST: MA

9-8-99

Director, Dr. Blair Leftwich

87 64

Date

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A

Lubbock, Texas /9424 800+3/8+1296 El Paso, Texas /9977 1008-568+3443 E-Mail: lab@traccanolysis.com

806+794+1295 FAX 806+794+1298 915+585+3443 FAX 915+585+4944

ANALYTICAL RESULTS FOR GERAGHTY & MILLER, INC. Attention: Sharon Hall 1030 Andrews Highway, Suite 120 Midland, Texas 79701

September 8, 1999 Receiving Date: 09/03/99 Sample Type: Water Project No: MT000591.0002 Project Loc: Rice Hobbs, NM

Sampling Date: 09/02/99 Sample Condition: 1 & C Sample Received by: VW Project Name: N/A

A# FIELD CODE		RESISTIVITY
		(meg ohm - cm)
T131289	MW-4	0.0009
ICV		1,360
CCV		1,393
RPD		1
% Extraction Accuracy		
% Instrument Accuracy		96
		00/07/00
		09/07/99
		09/07/99

METHODS: EPA SM 2510B CHEMIST: JS

Director, Dr. Blair Leftwich

7-8-99

Date

ANNAHAMAHAMATRACEANATES INCOMMULANIA

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A Lubbock, Texas 79424 800+378+1290 El Pasu, Texas 79922 888+588+3443 I -Mail: lab@traceanalysis.com 806+794+1290 FAX 806+794+1298 915+585+3443 FAX 915+585+4944

ANALYTICAL RESULTS FOR GERAGHTY & MILLER, INC. Attention: Sharon Hall 1030 Andrews Highway, Suite 120 Midiand, Texas 79701

Séptémbér 8, 1999 Receiving Date: 09/03/99 Cumpic Type: Theici Project No: MT000501.0002 Project Loc: Rice Hobbs, NM

Sampling Date: 09/02/99 Cample Contaition. The O Sample Received by: VW Project Name: N/A

ALKAL INITY

TA#	FIELD CODE		(mg/L as CaCo3)					
		ОН	CO3	HC03	TOTAL			
T131289	MW-4	0	0	220	220			
ICV								
CCV			:	2,220				
			1	2,260				
REPORTING LIMIT				1				
RPD				3				
% Extraction Accuracy				90				
% Instrument Accuracy				94				
			08	9/08/99				
PREP DATE			09	9/08/99				
ANALYSIS DATE								

METHODS: EPA 310.1 CHEMIST: MD

Director, Dr. Blair Leftwich

Date

01/E 9059:428 dol (MAE2:0 00'qa2 0

Report Date: 9/8/99	Order ID Number: 99090329	Page Number: 2 of 4
MT000591.0002	N/A	Rice (Hobbs, NM)

Analytical Results Report

Description: MW-4					_	_				
l'aram	Flag	Result	Dilution	Analytical Method	Date Prepared	Date Analyzed	Analyst	Prep Batch #	QC Batch #	RDL
lienzene (mg/l.)		<0.005	5	S 8021B	9/3/99	9/3/99	RC	PB02234	QC02784	0.001
Taluene (mg/L)		<0.005	5	S 8021B	9/3/99	9/3/99	RC	PB02234	QC02784	0.001
Ethylbenzene (mg/L)		<0.005	5	S 8021B	9/3/99	9/3/99	RC	PB02234	QC02784	0.001
M,P,O-Xylene (mg/L)		<0.005	5	S 8021B	9/3/99	9/3/99	RC	PB02234	QC02784	0.001
Total BTEX (mg/L)		<0.005	5	S 8021B	9/3/99	9/3/99	RC	PB02234	QC02784	0.001
Surrogate		Result	Dilution	Spike Amount	% Kec.	% Rcc. Limit	Analyst	Prep Batch #	QC Batch #	-
TFT (mg/L)		0.444	5	0.1	89	72 - 128	RC	PB02234	QC02784	
4-BFB (mg/L)		0.437	5	0.1	87	72 - 128	RC	PR02234	QC02784	
pH (s.u.)		7.5	1	E 150.1	9/3/99	9/3/99	RS	PB02225	QC02770	1
Specific Gravity (g/mL)		1.0017	1	D854-92	9/7/99	9/7/99	JS	PB02222	QC02769	
Yotal Dissolved Solids (mg/L)		770	ι	E 160.1	9/4/99	9/7/99	MD	PB02229	QC02776	10

Quality Control Report Method Blanks

Param	Flag	Biank Result	Reporting Limit	Date Analyzed	Prep Batch #	QC Batch #
Benzene (mg/L)		<0.001	0.001	9/3/99	PB02234	QC02784
Toluene (mg/L)		<0.001	0.001	9/3/99	PB02234	QC02784
Ethylbenzene (mg/L)		<0.001	0.001	9/3/99	PB02234	QC02784
M,P,O-Xylene (mg/L)		<0.001	0.001	9/3/99	PB02234	QC02784
Total BTEX (mg/L)		<0.001	0.001	9/3/99	PB02234	QC02784
Param	Flag	Blank Result	Reporting Limit	Date Analyzed	Prep Batch #	QC Batch #
Specific Gravity (g/mL)		1.0053	······································	9/7/99	PB02222	QC02769
Param	Flag	Blank Result	Reporting Limit	Date Analyzed	Piep Batch #	QC Batch #
Total Dissolved Solids (mg/L)		<10	10	9/7/99	PB02229	QC02776

fomple Humber

121200

Muluu.		Mulli	TR	ACEAU	NALY	sıs, Li	NCAL					{
	5701 472E 1	Aberdeen Arenu ;, Rioley, Armue , Su	Suite 3 Lut (e.A. El	obje, eva 79. Pas- eva 79. Eval: 1	424 - 300+378 922 - 388+588 et@uraceanelvs	- 1256 803 - 3443 915 - 5.com	794•1296	AX 805+794+1 AX 915+585+4	296 344			
Septembe ⁻ Receiving - <u>5</u> Samnle Tvn	08, 1999 late: 09/03/99 le- 1 lauric			AFALYTIC GER 1G 1TN	AL RESULTS	S FOR			Sampling Sample Co	Late: 09/0 Indition: II Mained Bur	2/95 htact & Cool - \\\\'	
Project Loc	MT000591.0002 ation: Rice Hobbs, NM)			1020 Andi 1020 Andi Mili and, 1	rews High IX 79701	way, suite	120 TOTAL MI	ETALS	Project Na	ine: NA		
TA∦	HELD CODE	الا لله)	As (mg/L)	Ba Cng/L)	Cd (mg/L)	cr (mg/L)	Co (mg/L)	CI (Ing/I)	Fe (mg/L)	qd (1)'Bw)	614 (1/8/11)	
1131289	P-WW	31	0.03	011	< 0.005	<0.01	<0.01	0.03	2.4	0.008	23	
ខ្ម			0.99	0, (1, 1	1.0	1.0	10	0.09	0.98	1.0	61	
			0.1		1.0	0.1	01	0.1	0.99	1.0	- <u>7</u> 0	
REPORTING	LIMIT	070 57	<0.005 0.005	1 20 20 20	<00.0 20000	10.0 10.0	500		<0.02	<pre><0.005</pre>	61.0 0,1	
RPD			~	đ	~	0		0	0	-	 ۱	
% Extractic	In Accuracy	13	66	26	97	56	83	36	100	<u>95</u>	9 6	
	ANE ACOURACY		66 50		103	102	13	10)	86 86	101	66	
PREP DATE	ATE		66//0/60	6(-//=/=0	99/20/60	09/20/60	09/07/99 09/07/99	00/10/60	66/20/60	96/20/91	09/20/60	
	1		Mo		×	Ca Ca		Sectorious Se	Ag		H	
		- 1/ (445)	(1/8m)		(T/Bw)	(T/BW)		(mg/l)	(I) (I) (I) (I) (I) (I) (I) (I) (I) (I)	(J/Bu)	(WB/T)	
F131289	MW-4	50.0	0.02	0140	3.6	112	116	0.02	<0.01	0.04	<0.0002	
₹ 2§		6 4	1.0	0.4	18	88	ត្ត ខ្ម	8 .0	0.202	<u>, ,</u>	0.00094	
			0.1 2 2 2		81			D		0.1	0.00103	
							0.7 ×	20.0520.05	50°	70'0 V		
RPD			1	-	20	<u>;</u> 6	3~	2	13	40.0	2007	
% Extractic	In Accuracy	មា	8 6	6 .	109	32	123	ĸ	6	9	8	
% Instrum	int Accuracy	1=2	Ę	133	9	1 0	ស	ж	102	101	85	
PREP DATE		66 /D/60	66/20/60	05/01/ 1 9	66/20/60	66/ <i>L</i> 0/6C	66/12/60	66/20/60	66/20/60	66:10/6-	66/20/60	
ANALYSIS C.	ATE	66 /D/60	66/20/60	05/22/20	66/20/60	66/L0/6C	66/12/60	66/20/60	66/20/60	66;'20/6-	66/20/60	
METHODS: J	EPA SW 846-3015, 6010B	, 7470a.										
CHEMIST: A	I, As, Ba, Cd, Cr, Co, Cu, I	te, Pb, M⊆ n	an, Mo, Ni 22 Oct	, K ca, Na	, Se, Ag, Zr	- RR H	g: 8P 5 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
I U AF MEL	als shike: 1.0 filgit Al, A 0.50 ma/l. Aq	ני, ba, ∎u, ני ניתו 0.00 10 וייו	, co, cu, r /, Ha	¢'.∋`⊫u'	MO, NI, SE	1 MUL (117	ngyl Ng, K					
TOTAL MET	ALS CV: 1.0 mg/L AI, AS, I	sa, cd, cr, ci	o, Cu, Fe, I	Pb Mn Mc	o, Ni, Se, Zi	1 20 mg/l	Mg, K, Ca,	Na;				
	0.20 mg/L Ag	0:00 mm	/L Hg.				6	55-2				
	Director, Dr. Blai	Leftvicr					DATE					

Sent By: TRACEANALYSIS;

 Report Date:
 9/8/99
 Order ID Number:
 99090329
 Page Number:
 3 of 4

 MT000591.0002
 N/A
 Rice (Hobbs, NM)

Quality Control Report Duplicates

Standard	Param	Flag	Duplicate Result	Sample Result	Dilution	RPD	RPD Limit	QC Batch #
Duplicate	pH (s.u.)		8.7	8.7	I	0	0 - 20	QC02770
Standard	Param	Flag	Duplicate Result	Sample Result	Dilution	RPD	RPD Limit	QC Batch #
	Specific Oravity (Quitt.)		1.0000	1.0017	1	0	0=10	QC01709
Standard	Param	Flag	Duplicate Result	Sample Result	Dilution	RPD	RPD Limit	QC Batch #
Duplicate	Total Dissolved Solids (mg/L)		749	760	1	1	0 - 20	QC02776

Quality Control Report Lab Control Spikes and Duplicate Spike

		Blank		Spike	Matrix	9/		% Pag	חספ	00
	Param	Result	Dil.	Added	Result	Rec.	RPD	Limit	Limit	Batch #
LCD	IriTDD (mgL)	-ស.ស.		811	8.878	ዮያ		99 129	9 29	8292791
LCS	Benzonc (mg/L)	<0.001	1	0.1	0.093	93		80 - 120	0 - 20	QC02784
LCS	Toluene (mg/L)	<0.001	1	0.1	0.091	91		80 - 120	0 - 20	QC02784
LCS	Ethylbenzene (mg/L)	<0.001	L	0.1	0.09	90		80 - 120	0 - 20	QC02784
LCS	M,P,O-Xylene (mg/L)	<0.001	1	0.3	0.267	89		80 - 120	0 - 20	QC02784
Standar	d Surrogate		Dii	Spike Amount	Regult	% 11.00	'ı	% Rec. Limit		QC Butch #
LCS	TFT (mg/L)		1	0,1	0.1	100)	72 - 128		QC02784
LCS	4-BFB (mg/L)		1	0.1	0.098	98		72 - 128		QC02784
LCSD	MTBE (mg/L)	<0.001	1	0.1	0.104	104	6	80 - 120	0 - 20	QC02784
LCSD	Benzene (mg/L)	<0.001	1	0.1	0.098	9 8	5	80 - 120	0 - 20	QC02784
LC3D	Tolucine (ing/E)	70.001	1	Ŭ, 1	0.097	97	- 6	89 129	0 20	QC02781
LCSD	Ethylhenzene (mg/L)	<0.001	1	0.1	0.098	98	9	80 - 120	0 - 20	QC02784
LCSD	M,P,O-Xylene (mg/L)	<0.001	1	0.3	0.291	97	9	80 - 120	0 - 20	QC02784
Standar	d Surrogate TFT (mo/L)		Dil. 1	Spike Amount 0.1	Result 0.1	% Rcc 100)	% Rec. Limit 72 - 128		QC Batch # OC02784
LCSD	4-BFB (mg/L)		1	0.1	0.099	99		72 - 128		QC02784

01/8 9059;428 dol ;MA32:8 88'qa2 8

Sent By: TRACEANALYSIS;

Report Date: 9/8/99	Order ID Number: 99090329	Page Number: 4 of 4
MT000591.0002	N/A	Rice (Hobbs, NM)

Quality Control Report Continuing Calibration Verification Standard

Standard	Param	Flag	COVo TRUE Conc.	GGYa Found Conc.	GGVa Percent Recovery	Percent Recovery Limits	Date Analyzed	QC Batch #
ICV	Benzene (mg/1.)		0.1	0.094	94	80 - 120	9/3/99	QC02784
ICV	Toluenc (mg/L)		0.1	0.092	92	80 - 120	9/3/99	QC02784
ICV.	Ethylbenzene (mg/L)	,	0.1	0.092	92	80 - 120	9/3/99	QC02784
ICV	M,P,O-Xylene (mg/L)		0.3	0.274	91	80 - 120	9/3/99	QC02784
CCV (I	Benzene (mg/1.)		0.1	0.098	98	80 - 120	9/3/99	QC02784
CCV (I	Tuluene (mg/L)		0.1	0.094	96	80 120	9/1/99	QG02784
CCV (I	Ethylbenzene (mg/L)		0.1	0.095	95	80 - 120	9/3/99	QC02784
CCV (1	M,P,O-Xylene (mg/L)		0.3	0.281	94	80 - 120	9/3/99	QC02784
Standard	Parani	Flag	CCVs TRUE Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed	QC Batch #
ICV	pH (s.u.)		7	7.0	100	80 - 120	9/3/99	QC02770
CCV (1	pH (s.u.)		7	7.1	101	80 - 120	9/3/99	QC02770
Stundard	Param	Flag	CCVs TRUE Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed	QC Batch #
ECV	Total Dissolved Solids (mg/L)		1000	970	97	80 - 120	9/7/00	OC02776
IC V	Total Dissolved Source (mg/C)		1000	214	2.	JV - 120		2002/10
CCV (1	Total Dissolved Solids (mg/L)		1000	971	97	80 - 120	9/7/99	QC02776

3	
*	
	2
i	
	Ľ
्र	8
\odot	
	5
Ī	g
	°
S	2
Ţ	ŝ
	Ľ
N.	2
	2
	ň
(A)	ľ.
NAJ	JC /CFU
ANA	C AND -
TANA	JC /CPUE turn
CEANAL	1 Town 3047/ DC
ICEANAL	thork Incor 3047/ 30
LACEANAI	I think Trun 3047/ 30
RACEANAI	1 defects Income Total 20
TRACEANAI	o 1 https://www.com
TRACEANA	Site 3 I theory Town 2017/ 30
LLTRACEANA	is Site 3 I there I and 2017 30
ULL TRACEANAL	manic Stite 3 Atrack Terms 2017/ 30
LULLTRACEANA	Chord and the state of the second sec
LULL TRACEANAL	toor Avenue S its 3 1 thtook Terms 2047/ 30
ULLULT RACEANAL	andaor Arenic Siite 3 Atoch Terrer 2047/ 30
LULULULULULULULULULULULULULULULULULULU	1 Ahambar Avenue S its 3 1 Atach Terms 2017/ 30
	201 Abardaan Avenue S ita 3 Ataak Tean, 2017/ 30
ULL ULLUL TRACEANAL	ETOT Abardaor Avenue S into 3 1 Abach Terms 2017/ 30
UNDER LUNCEANAL	6701 Ahambar Avenue S into 3 1 Attack Terms 2017/ 30
TILIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	6701 Abartaar Avenus S ita 3 Atach Terra 2017/ 30
ILLIUI ILLIULUULUULUULUULUULUU	6.701 Abartaor Avenue S into 3 1 Atrock Terms 2012/ 30
LILLIN I LILLIN TRACEANAL	6.201 Ahandaar Avenue S iite 3 Ataat Terrer 2012/ 30
ILLIUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ETAL Abardian Stervice State 1 Advant Territ 2017/ 30
ULI I. LIUI I. LIUI I. LUUI II. LUUI I. LUUI I	6.701 Abartaar Avenus S ite 3 1 Atast Terres 2017 30
IN TRACEANAL	ETAL Alandaar Average S eine S eine S 2012 - 2012 - 20
ULULULULULULULULULULULULULULULULULULUL	E701 Abandaor Avernes 2 éta 3 - 1 deben 70127 - 30
LINUL I I I I I I I I I I I I I I I I I I I	E701 Abandaar Averue Sieta 3 Advant Terrer 2017/ 30
LINULUL ILI ILI ILI ILI ILI TRACEANAI	ETAL Altamater Avenue S that I that a read
LULUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	E201 Abardaan Avenue S ida 3 1 Adaab Taara 20127 on
ALL HURKULLIN, LUNILI, LUNILI, LUNILI, TRACEANAI	ETAL Abardaar Avenue S iita 3 Akardaar 2017 30
LIAL JURNUL M. LUMILLI JULI LUMILLI TRACEANAI	E101 Abardaar Avenue S site 3 - 1 Abardaar 2017 30
ALLAL MURILI ALLA ALLA ALLA ALLA ALLA ALLA ALLA	ETAL Abardoon Avenue S isto 3 Advant Toury 30

	4725 Rip ey Aven	le, Sule A	EIFa	en, levas 7395 20. Taxas 7957 5.1.1.1.1.1.1	2 386-586 2 386-586	-1230 CL2	535•3443 F	4X 913 585 4	957 176		
September 09, 1999 Receiving Date: (19/03/99 Sample Type: Liquid			404	ERAGHTY Itention:	& MILLER,	FOR INC.			Sampling Sample Co Sample Re	Date: 09/0 Indition: Ir celved by:	2/99 tact & cool WV
Project No: MT000591.0002 Project Location: Rice Hobb	s, NM)		:← 2	030 Andre Ildland, TJ	ews Highv K 79701	vay, sulte	120 Total MI	ETALS	Project Na	me: NA	
	R	A	5	Ba	5	5	8	5	j,	qq	6W
TA# FIELD CODI	GW) =	(T) (MB	2	(1/ Gw)	(mg/L)	(mg/L)	(1/6 m)	(mg/L)	(mg/l)	(J/Bm)	(mg/l)
T131289 MW-4	3.1	0.0	3	0.11	< 0.005	<0.01	<0.01	0.03	2.4	0.008	23
ĪCV	1.0	0.0	Ø	1,0	1.0	1.0	1.0	0.99	0.98	1.0	19
CCV	1.0	1.0	0	1.0	1.0	1.0	1.0	1.0	0.99	1.0	19
METHOD BLANK	,0 V	10 < 0.0	<u> 9</u> 05	< 0.005	<0.005	<0.0	<0.0	<0.0>	< 0.02	<0.005	< 0.50
REPORTING LIMIT	0.1	0.0	35	0.005	0.005	0.01	0.01	0.01	0.02	0.005	0.50
RPD	9	~		4	~	0	~	0	٥	, -	2
% Extraction Accuracy	50	56	•	93	97	66	<u> 38</u>	8 6	100	95	8 6
% Instrument Accuracy	100	<u> </u>	•	<u>1</u> 02	-103	102	101	100	<u> 38</u>	101	66
PREP DATE	20/60	10/60 66/) 66//	66/20/60	66/20/60	66/20/60	66/10/60	66/10/60	66/20/60	66/20/60	66/60/60
ANALYSIS DATE	20/60	20/60 66/) 66/4	66/20/60	66/10/60	66/10/60	66/10/60	66/10/60	66/20/60	66/20/60	66/60/60
	Ē	ž	0	Z	¥	8	N a	Se	Ag	ĽN	ВH
	igm)	(1) (mg	7	(1/6w)		(J/Bw)		(mg /L)	(mg/L)		(1/GW)
T131289 NNV-4	0.0	3 0.0	12	0.10	2.4	93	124	0.02	<0.01	0.04	< 0.0002
ICV .	1.0	1.(0	0,1	20	20	19	0.99	0.202	1.0	0.00094
CCV	1.0		0	1.0	20	20	19	1.0	0.209	1.0	0.00103
METHOD BLANK	0.0>	05 < 0.	8	<0.02	< 0.50	< 0.50	<0.50	< 0.005	<0.01	<0.02	<0.0002
REPORTING LIMIT	0.0	5 0.0	12	0.02	0.50	0.50	0.50	0.005	0.0	0.02	0.0002
RPD	۴-	~		~	N	0	0	7	13	~	м
56 Extraction Accuracy	96	86		66	8	66	95	8	06	1 0	83
% Instrument Accuracy	10,	ğ	-	103	ē	101	86	8	102	5	3 8
PREP DATE	06/60	10/60 66/	66/4	66/20/60	66/60/60	66,'60,'60	66/60/60	66/20/60	66/20/60	66/10/60	09/03/99
ANALYSIS DATE	20/60	10/60 66/	66/4	99'70'99	66/60/60	66/60/60	66/60/60	66/10/60	66/20/60	66/10/60	66/E0/60

METHODS: EPA SW 846-3015, 60108, 7470A.

CHEMIST: AI, AS, Ba, Cd, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Ca, Na, Se, Ag, Zn: RR Hg: BP TOTAL METALS SPIKE: 1.0 mg/L AI, AS, Ba, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, Se, Zn; 100 mg/L Mg, K, Ca, Na; 0.50 mg/L Ag; 0.0010 mg/L Hg. TOTAL METALS CV: 1.0 mg/L Aj, AS, Ba, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, Se, Zn; 20 mg/L Mg, K, Ca, Na; 0.20 mg/L Ag; 0.0010 mg/L Hg.

Director, Dr. Blair Leftwich

ł

DATE

Sent By: TRACEANALYSIS;

9 Sep'99 2:06PM; Job 877;Page 1/2

	Fluoride TDS EC	ppm ppm µMHOs/cm	4.1 770	Total Total	Filuoride Cations Anions Percentage	in med/L in med/L in med/L Error	0.213824 11.99 11.39 5.109507752	TDS/Cat TDS/Anion
	Nitrate	udd	2.9		Nitrate	in meaf	0.207031	TDS/EC
	Chloride	mqq	100		Chloride	in meq/L	2.82	
	Sulfate	mqq	180		Sulfate	in meq/L	3.75	
	Alkalinity	ррлп	220.00		Alkalinity	in meq/L	4.40	
	Polassium	bpm	2.4		Potassium	in meq.L	90 D	
	Sodium	mqq	124		Sodium	in meq/L	5.38	
	Magnesium	mqq	23		Magnesium	in meq/L	1.89	EC/Anion
66/6/6	Calcium	mqq	69		Calcium	in meq/L	4.64	EC/Cation
DATE:	Sample #		131289		Sample #		131289	
							-	

Cation-Anion Balance Sheet

eds to be 0.55-0.77

2

eBuej

El

9 Sep'99 2:06PM; Job 877; Page 2/2

		TOTAL	8				\sim	Seal intact? Yes No N/A	Seal Intact? Yes No N/A		
	Land Land Land	ANT WE WIL					Total No. of Bottles/ Containers	Date クレス 1分 Time バムの Date イ レス 1分 Time 16 00	Date / / Time Date / / Time		X Lab Courier Other
Ture Laboratory Task Order No. CHAIN-OF	E (Habbs M. M.) A BY A BY	Werese Acri + + + 10 00 000 000 000 000 000 000 000	9-2-99 1200 3 1 1 1 1 1 1				iquid; S = Solid; A = Air	A CAR & AL JULA Organization: ACAQ15 A CAR & AL JULA Organization: TPALE AAIALYSIS	Organization:Organization:	garks: A Nord by 9.8-89	In Person B Common Carrier
Environment and Infrastruc a heidernij con	Project Location	ampler(s)/Affiliation	MW + L				ample Code: L = Li	Relinquished by:	Relinquished by: Received by:	pecial Instructions/Rep	Jelivery Method:

ARCADIS GERAGHTY& MILLER

APPENDIX E

RECOVERY WELL VOLUMES

021X																			
/ New Mo	35																		
County	570R611 1261 14 8:30	6:20	R 21 -1	Luck	и и и и	5 0	11.02	15, 20	mawwol Bailw	2 aprenti	m he	* 2	x '2						t
LEA.	5/ 24.11 74299999	9.15	FLUSL FLUSL	Lock .	a	2	ter. It	/01	mawww.l	Ma	2	× 12	× /2		-				
R38E	574811 Janz, 99 8.30	05:7	Kush Kush Moueit	Lock N,	A / / A	: 	p.jt	1203	Manuell Bailing	~/a	N/A	N/0	n la				-		
- 7/95	5708 Cell Tause 89 8: 50	1.1.1	mout	Lock	*	· · · · /	1-1-1-2	12.03	MANNUAL Bailing	4/2	4	2/2	u de						1
SEC 9.	57446111 Janas, 99 7:00	R n) -1	FLUSH MOUNT	Lock .	10 31.7"	- 57	- Zuint	0403	Bailing	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	V/A		NIN						
SEJ.4	57086111 Jan22,99 8:30	R.W1	+ C. UOM	Lock	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	÷_/~	-) - -) -2 -) -2	/ 03	80.1.23	14	a/m	NIE	1/10						
NE/4	5 200 100 1	RW-1	Flush Mouut	Lock N,	31.7"	-[4]	z piut	1000 201.	Berling	=	110	N'I R	aln						
YSTEm	STURGIN Jawso 99 8: 30 9: 30	1-38	Flush Mowt	Lock	31.7"	22.	10:01	201	Builing		1 P	4 / H	ël/n						
Saws	57086,11 Jan 19 99 8:30	RW-1	FLUSH MOUNT	Leck 2,	31'7"	22.	20.07	303	84:1.14		NIA	118	NIA						
Hobbs	571102.11 Jan 18 99 8:30	Rw-1	FLUSL	Lock	31'6"	-170	たらっト	Il allow	BAiling	Sereration Sereration Diltwater	N/A	NIN	N/A				Ki5 02		
	NICE EMPLOYEE DATE IME - START IME - END	WHA, NO.	WEI.L COMSITUCTION	ידוזוגו) אופיאין איפואי אואור טאופאווטיו	TULII TO WATER (T ⁻¹)	ГSH 1111СКИЕSS (1°1) 101 и ле и и нек	RECOVERED VOLUME FSIL	(HECOVENED)	TECHNIOUE SAMELING TIME	SAMITLING TISCHNIDUE	יןי בוועררגאוביזאפיר יוי בוועררגאוביזאפיר	พกายแ _ก ม	SPECIFIC SPECIFIC	אסנוזומאסס אפוווראנש		UMANKS:			-

· ··· · —

· - -----

New Mexico							
County							
F EA	2-26-9	RW-1 Foush Mount	1, 16 1, 16	1	Bailing V/ A Screento	N/a N/a	
R382	57429ill 2-2599	Rw-1 F1001 medut	N/A 31.8"	i e pist	m re would for Builing V/ A Serentation	N/N N/N	. 1
- 7195	57026.11 2-23-99	RW-1 RW-1 Mount Mount	1/1 P	1.5 FLB.	11 12 10 11 11 11 11 11 11 11 11 11 11 11 11	2/10	666
3209	2-22-99	RW-1 FLUSL MAUNT	21,5°	2 rt	mawell Boilis	N/A N/A	Feb 26-1
SE14 3	£ 570 € 7 18 - 79	Rw-) FLUSh mount	21:12	1/1pt 2 1-2 03	Mandell Bailiog N/A Superation	0/10 10/10	999 to
NEJU	J. Sakel	RW-1 FLOSH Moswl	21.6.	1/2 pt	ma when we will a service of a	2/10 N/10	Jan 18,
YSTEM	J. S TWEN	RW-1 FLUST MONAT	N/A 31:4:	12 FL 03	Bailing N/A	N/A N/A	c from
Sams	7. STUREI	Rw-1 FLUSL Mount Locked	N/A 31.6 25	/2 pt	mounel Boilist V/A Soveration	etr etr	2017 a (TIA
Hobbs	7. Storgil	RW-1 FLUSA MOUNT Locked	N/N 31.17 2.	1 pt	MANNel Bailing W/A Seperation	N/A N/A N/A	et 31FL
6-7-19	RICE EMPLOYEE DATE TIME - START	WIELL, NO. WELL CONSTITUCTION WIELL SECULITY	וואור טאוטטונוז טפראט וודט שאראפת רדין רדין ראס עאראפא	RECOVENIE INCOVENIE	FUNGING TI:CINIOUE SAMPLING TIME SAMPLING TI:CUNIOUE	WATER TEMPERATURE TE WATUR ALI STECHTC COMDITICTANCIE COMDITICTANCIE	UBINIKS & Colle

	Hobbes	Saus	VSTEM	NEN	5 E.14	340 9-	7195	R38E	LEA COUNTY New M	7ex 100
					europ Ar					
E EMPLOYEE	5708611	5+ 4 6 4 11	57429.1	574911	ST049:11	57026111	570×611	Sturgill		
ATE	3-4-99	3-5-99	3-10-99	3-11-99	3-15-99	66.71-5	3-17-99	3-22		
E - START	8;30	8 30	0	8:30	845	8:00	9:00	9:00		
E - END	9:00	9:00	9.00	9:10	9:45	8:30	9:30	4.30		
WHILL NO.	80-1	Rw-1	R w-1	1-02	Rw-1	R - 1	1-01-1	R W-1		
WELL WEILL	Jeuzz	FLUSH mount	1-4042	1=405 h	FLUSH	FLUSh Manart	FLUSA Monut	FLUSH		
ELL SECURTY	Lonked	1.00100	1 neted	Locked	Lekel	Locked	Lakel	Löcked		
וואור טאוטאונו	N/4	"/"	5/2	N/4	w/a	"/"	2/4	N/A		
ביוו דס שאזשת (ויד)	31"5	31"4'	31" ()	31.6	31.7	31",	31.6	31.2		
SII THICKHESS (1"1)	2.5'	ъ.	1.51	4	۶.5		7	; 78		
UME WAFR	i et	i pt	24	+1-1-2	-t- zot	+	+ -\'	72+24		
VOLUME FSII	25402	1.5 Flor	1562	1. 5 May	2 Heag	2 FLiz	athes	3 1612		
TURGING	MANU-1 Bailer	Ma iler	Bailer	Stilee	Bailce	manuel Baika	mawdel Briter	Reifer		
ANFLUNG TIME	NN	2/4	2/4	n/u	2/4	N/N	1/1	n/c		
SAMPLING SUUDINICITE	Seperato Dilewater	•								
אנודאש אי נוועראונוזא	2/2	2/2	×/N	N/W	N	2/19	NIA	2/2		
พุศาษา	14	NA	2/4	2/2	NIA	1/14	N/M	alla		
SPECIFIC CONDUCTANCIS	~//a	2/6	2/18	*/*	2/4	2/4	2/2	2/14	•	
ופווונא	NS:					•	~			
SMAILKS:							· .	Ŧ		
						1 ·				
			· .				ı			

.

	w // 6 × 1 6 0												, 													
	TINNOS											•		~			201									. 1
	2	1 5 84.00	5.7	00:01	10:31	Rw-I	1-2054	MOUN	Locke	A/N	31.0	י <u>ז</u>	39015	20 540	RA: 1		410	N#re N	x 12	42	18	 	- -		-	
R381););	J. Sturail	4-56	9:00	10,00	Rw-1	1=2451	Incons	koe/ccd	A N	31.6	5	29,918	1415405	MANNell Roll		w has	~/~	N/.	N/.	41			9		
S611 -		J.57029.11	4 - 23	10:12	10:36	Rw-1	FLU84	10 Meth	NIA	112	9:12	5. //	1001	51763	MANWell Bail is	N/A		NIA	N	- A 	x/x					
3209.		J. Stua: 1	4-19	8.45	9.30	Rwil	hound t		N/	۲ مر ۱ مر		1/1	Wit	4 51-202	MANNEII Bailine	110		4/10		N/N	utu					
SE/4		I. Sturil	+-12	00;6	9:30	R.W-1	rhoust moust	07.1	w	31.5		, , ,	405	4. FLOY	Bailing	N IR	Seperation offer	N/B		N/N						
N # /4		J.STURGI	4-6	9:11-	10:00	Rw-1	FLUS 4	1	N/A	31.6	"1"	1 7	19-51	3.574	Ja: / w	NIP	•	110	611	1/0						
■ YSTEm		I STURGIL	4-5	00.00	8147	R w -1	Ficus +	100400	N/A	31.7	i V	+	10 2	41=202	Bailing	N/A		2/2	210	NA						
S dmS		I. Sturgi	4-1	8.15	1.00	Rw-1	HXUS4 MOUNT	1 sokel	wa	31.7	. 1	+	2	3FLO3 MANNell	80.1.05	N/A		NA	"/"	N1,0						
Hobbs		J. Stury.	02.0	200	2 . 7 . 8	I-9 Rw-1	MOWA	Locked	N/A	31.6	4	-10	112.00	3FLos neuvel	Briling	NA	Soperatio	r/,	NIA	w/a						
-t-		RICE EMPLOYEE	TIME - STORT	TIME - FND		ON TRIM	WELL CONFITUCTION	WELL SECURTY	ับทน อิงแรมกา	טונדנון דס שאזעת (דיו)	rsii Thickness (FT)	VOLUME WATER RECOVEREN	VOLUME FSII	ILICOVENIED	TICUNIOUE	SAMIFI, NG TIME	SAMPLING TIECHNIQUE	ગરામત્રારા કાર્યો છે. ગાંધવા છે. ગાંધવા ગાંધવા	ี้ เม่น มะมาพ	SFILDA'IS SFILDA'IS SFILDARDD	SNOLLIGNOD JIEITLYIM		RUMINKS:		, -	