AP - 24

STAGE 1 & 2 REPORTS

DATE:
June 2003

PRELIMINARY SITE INVESTIGATION REPORT

FORMER INEX PIT LOCATION
SE 1/4, NW ¼, Section 26, Township 18 South, Range 26 East
Eddy County, New Mexico

Prepared For:

Yates Petroleum Corporation 105 South Fourth Street Artesia, New Mexico 88210 RECEIVED

FEB 25 2004

Oil Conservation Division Environmental Bureau

ETGI Project # YP2220

Prepared By: Environmental Technology Group, Inc. 2540 W. Marland Hobbs, New Mexico 88240

June 2003

Robert B. Eidson

Geologist / Senior Project Manager

Chance Johnson

New Mexico Operations Manager

Table of Contents

1.0	INTRO	DDUCTION	1					
2.0	SUMN	MARY OF FIELD ACTIVITIES	1					
3.0	SITE DESCRIPTION							
	3.2 Sit 3.3 Ne 3.4 Dis	gional Geology/Hydrogeology e Geology/Hydrogeology ew Mexico Oil Conservation Division (NMOCD) Soil Classification stribution of Hydrocarbons in the Unsaturated Zone stribution of Hydrocarbons in the Saturated Zone	1 2 3 3 4					
4.0	FOLLOW-UP ACTIVITIES							
5.0	QA/QC PROCEDURES							
	5.2 Gr 5.3 De	il Sampling oundwater Sampling contamination of Equipment boratory Protocol	5 6 6 7					
6.0	LIMIT	ATIONS	7					
7.0	DISTR	RIBUTION	8					
		Tables						
TABLE TABLE	E 2:	Groundwater Elevation Data Concentrations of BTEX, Chlorides and TPH in Soil Concentrations of BTEX, Chlorides and TDS in Groundwater						
		Figures						
FIGUE FIGUE		Site Location Map Site Map/Inferred Groundwater Gradient Map						
		Appendices						
APPE	NDIX A NDIX B NDIX C	Laboratory Reports	r Well					

1.0 INTRODUCTION

Yates Petroleum Corporation (YATES) is submitting this Preliminary Site Investigation Report as a summary of activities completed to date at the former Inex Pit site in Eddy County, New Mexico. The regulatory basis for site characterization actions conducted at this site is the August 1993 New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases. Data collected during this subsurface investigation is suitable for use in any subsequent Stage II Abatement Plan. The site is located in the SE ¼ of the NW ¼ of Section 26, Township 18 South, Range 26 East in Eddy County, New Mexico. The surface expression of the former pit area measures approximately 84 feet by 45 feet. The immediate area and region is dominated by petroleum exploration and production facilities. For reference, a site location and site map are provided as Figures 1 and 2, respectively.

Site characterization action was conducted to assess subsurface soil and groundwater conditions associated with oil and gas exploration and production activities by the former responsible party operating the site. Environmental Technology Group, Inc. (ETGI) had previously conducted subsurface soil and groundwater characterization action at the site on 19 October 2000. Refer to the Preliminary Site Investigation Report, November 2000 for details of the previous site characterization action. Laboratory analysis of soil and groundwater samples collected during this previous investigation indicated that groundwater underlying the former pit area had been impacted with dissolved phase benzene and chloride in excess of NMOCD standards.

2.0 SUMMARY OF FIELD ACTIVITIES

ETGI mobilized a hollow-stem auger drilling rig on 9 September 2000 to conduct a preliminary site investigation and determine the nature and extent of dissolved phase benzene and chloride concentrations present in the groundwater in the former pit area. ETGI advanced a total of four soil borings, subsequently converted to permanent groundwater monitor wells, to a maximum depth of approximately 70 feet, which was the prevailing depth to sufficiently assess the potential for groundwater impact. The monitor wells were developed utilizing a single use disposable Teflon bailer until a minimum of three well volumes had been removed and groundwater temperature, pH and conductivity parameters had stabilized. Approximately 48 hours after well development, the monitor wells were purged of three well volumes, again monitoring temperature, pH and conductivity parameters, allowed to recharge to a minimum of 80 percent of the original well volume and sampled for dissolved phase Benzene, Toluene, Ethyl-benzene and total Xylene (BTEX) constituents, chlorides and Total Dissolved Solids (TDS).

3.0 SITE DESCRIPTION

3.1 Regional Geology/Hydrogeology

In the site vicinity, the surface is composed of Quaternary alluvium associated with Pecos River flood plain deposits originating from the Sacramento Mountains to the west. The alluvium is underlain by the Triassic age Dockum Group formation that consists primarily of

red silts and sands, which are irregularly slightly to moderately indurated. The Dockum Group is approximately 1,000 feet thick in the site area and is divided into the Pierce Canyon redbeds and Santa Rosa sandstone in the site vicinity. These formations unconformably overly the Upper Permian Rustler Formation (gypsum, redbeds and dolomites) which unconformably overly the Middle Permian Chalk Bluff Formation (back reef deposits of dolomite, evaporites, redbeds and sandstone).

The site is located near the eastern margin of the Roswell Basin physiographic province, a north-south trending feature located between the Sacramento Mountains to the west and the Permian Basin to the east. Within this feature, groundwater commonly occurs in the alluvium near the Pecos River and in the Permian formations throughout the feature. These aquifers are typically characterized by relatively high hydraulic conductivity and transmissivity. Aquifers within the Triassic Dockum group are usually thin and discontinuous resulting in poor water quality and low well yields.

In the site vicinity, groundwater generally flows to the southeast toward the west channel of the Pecos River, which joins the main channel at the confluence of Brantly Reservoir. The east-west trending intermittent streams in the area appear to have little influence on the region hydraulic gradient, however local variations may occur in the vicinity of these drainage features during precipitation events.

Data collected by the United States Weather Bureau indicate that the average annual precipitation in the site vicinity is approximately 12.4 inches. This amount occurs primarily as storm events during the period from June to October, inclusive. Infiltration from these events is minimal given the high rate of surface runoff and evaporation. The Quaternary alluvium consists of clay, silt, sand, gravel and conglomerate in the near surface area. The thickness of the alluvium ranges from a thin veneer in the west to greater than 300 feet in places just west of the Pecos River. Groundwater in the alluvium originates from the cumulative effects of five sources: local precipitation, surface water, losses from leaky artesian wells, natural leakage of artesian water from the underlying artesian aquifers and irrigation return. The amount of water from each source is variable and indeterminate but, it has been concluded that the majority of the shallow groundwater supply is derived directly or indirectly from the artesian supply through natural leakage and that contributions from direct precipitation and surface runoff contribute as only a minor part of the total recharge. Movement of the shallow groundwater is primarily to the east toward the Pecos River channel where it discharges. The occurrence of shallow groundwater discharging into tributary streams of the Pecos River takes place where the channel beds are cut below the water table; therefore, groundwater locally moves toward those channels. There are a considerable number of shallow irrigation wells introducing artificial discharge into the area, which has locally altered the movement of shallow groundwater, inducing it to flow to the wells.

3.2 Site Geology/Hydrology

Review of the soil boring/monitor well details from previous site investigations and from the current investigation indicates that backfill materials are present at depths varying from 16 to 20 feet bgs in the former pit area. Native, undisturbed soils consisting of soil types including

clay units, a thin sandy clay unit, a sandy gravel unit, a thin silty sand unit and a clean sand unit were encountered underlying the backfilled former pit area. Unconsolidated sands and variable sandy/silty clay units are present from the surface to the terminus of all borings surrounding the former pit area. The sands are characterized by their variable coloration, very fine to fine grained, moderately to well sorted alluvial deposits. The clay and sandy clay units are characterized by their variable coloration, moderately soft to stiff with minor hematitic staining at depth. Thin discontinuous gravely units are located at irregular intervals varying in depth from 13 feet to 45 feet bgs to the east and west of the former pit area.

Groundwater occurs at depths varying from approximately 53 to 54 feet bgs in the borings surrounding the former pit area. The first incidence of groundwater below the former pit area occurred at a depth of approximately 43 feet bgs. Following monitor well development, gauging measurements indicate that the depth to a stabilized groundwater table is approximately 53 feet bgs. The inferred groundwater gradient on-site as measured between groundwater monitor wells MW-3 and MW-4 slopes to the northwest with a magnitude of 0.016 feet per foot.

3.3 New Mexico Oil Conservation Division (NMOCD) Soil Classification

Groundwater samples were collected and analyzed for BTEX, TPH (GRO/DRO) and TDS to determine if the water meets the NMOCD definition of "beneficial use" (i.e. less than or equal to 10,000 mg/L TDS). Based on the following data: depth to groundwater being approximately 34 feet below the deepest known concentration of regulated contaminant, the nearest surface water body being greater than 1,000 feet away, and the distance of the nearest water well head being greater than 1,000 feet away, according to the NMOCD ranking system (NMOCD, 1993), the site can be assigned a ranking score of greater than 19. Therefore, the preliminary soil action levels are 100 mg/kg for TPH, 50 mg/kg for total BTEX, and 10 mg/kg for benzene.

The preliminary site action levels will be used in conjunction with risk/exposure assessment techniques to demonstrate to NMOCD that human health and the environment are adequately protected at the site. Regulatory closure will be sought based on such a demonstration.

3.4 Distribution of Hydrocarbons in the Unsaturated Zone

To date, three soil borings have been advanced and four groundwater monitor wells have been installed at the site to characterize the potential impact to the site from the former pit area. The presence of hydrocarbon contaminated soil in excess of NMOCD regulatory standards for TPH and total BTEX was detected in the area of monitor well MW-4 at a depth of 10' bgs. The identified extent of TPH concentrations exceeding the preliminary NMOCD criteria exists to a depth of 20 feet bgs in the former pit area. There were no detectable concentrations of TPH or BTEX constituents in the soil samples collected during the installation of monitor wells MW-1, MW-2 or MW-3 in locations surrounding the former pit area. Results of the laboratory analysis of soil sampling conducted during monitor well installation activities are included in Table 2 and laboratory reports generated from monitor well installation activities are included as Appendix B.

Based on field screening and laboratory results, hydrocarbon impacted soil in excess of preliminary NMOCD criteria for BTEX and TPH constituents was determined to exist within the backfill materials in the area of MW-4 to a depth of 20 feet beneath the former pit. The soil sample collected from undisturbed, native soil at a depth of 45 feet bgs did not show evidence of either BTEX or TPH impacts. Chloride concentrations detected in soil samples collected during the installation of monitor wells MW-1 at 35 feet bgs, MW-3 at 50 and 60 feet bgs and MW-4 at ten and 20 feet bgs exceeded agency standards. The chloride concentration recorded from analysis of the 45-foot soil sample collected from monitor well MW-4 indicated decreasing impacts at this depth below the former pit area.

The distribution of hydrocarbons in the unsaturated zone has been estimated by utilizing the following techniques:

- Visual observations of subsurface soil samples;
- Review of field screening data;
- Laboratory analyses of selected soil samples.

3.5 Distribution of Hydrocarbons in the Saturated Zone

ETGI advanced a total of four soil borings that were subsequently converted to permanent groundwater monitor wells, to depths of approximately 60 to 70 feet bgs, which was the prevailing depth to sufficiently assess the potential for groundwater impact. Laboratory analyses of groundwater samples collected following well development and purging actions indicate that groundwater at this location is not impacted with dissolved phase BTEX constituents. Laboratory analysis of the groundwater samples collected for chloride and TDS concentrations indicate elevated concentrations of both chloride and TDS are present below and up gradient of the former pit area. Based on TDS concentrations observed in the upgradient monitor well of less than 10,000 mg/L the aquifer is considered to be of beneficial use and must be remediated to New Mexico Water Quality Control Commission (WQCC) standards for each contaminant to qualify for site for closure.

4.0 FOLLOW-UP ACTIVITIES

ETGI proposes to establish site-specific risk based closure criteria and utilize a long term groundwater monitoring plan at this site. Given the rural nature of the project location and lack of receptors (i.e. residential and other populated areas, domestic groundwater use, etc.), site-specific action levels will be used in lieu of the default NMOCD action levels. The risk assessment will be conducted using USEPA protocols, and will quantify potential impacts to human health for receptor populations present in the vicinity of the release site.

Through the utilization of a Human-Health Based Risk Assessment process, a site-specific approach will be employed to assess the probability of likely human exposure pathways with evaluations of the individual constituents of TPH concentrations present in the soil and chloride and TDS concentrations present in the soil and groundwater. Analytical fate-and-transport modeling will provide a means of estimating exposure concentrations and developing risk-based soil and groundwater closure standards. Under ASTME E-1739

"Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites," modeling is recommended as a conservative first step under Tiers 1 and 2 of the site evaluation process, prior to use of more complex numerical modeling methods under Tier 3.

Annual groundwater monitoring will be conducted until chloride and TDS concentration levels begin decreasing through natural attenuation mechanisms. The monitoring frequency will be increased to a semi-annual schedule and finally to a quarterly monitoring schedule to demonstrate constituent concentrations approaching the Risk Based closure criteria.

In order to prevent subsequent unintended or accidental human exposure to TPH constituents remaining on-site following a risk based scenario, the specific site area will be deed restricted preventing future consideration of development or improvements in the county clerk office, Lovington, Lea County, New Mexico.

Documentation of the aforementioned actions will be submitted to the NMOCD in the final subsurface investigation and site remediation report. Upon receipt of NMOCD's approval of the proposed risk assessment in this Preliminary Site Investigation Report, the activities described above will be implemented.

5.0 QA/QC PROCEDURES

5.1 Soil Sampling

Samples of subsurface soils were obtained utilizing a five foot continuous sampling device using clean, disposable gloves and clean sampling tools. One half of each sample was placed into a labeled zip-lock baggie and exposed to sunlight and ambient temperature for a minimum of thirty minutes prior to field screening with a photoionization detector (PID) calibrated to a 100 ppm isobutylene standard. Soil samples selected for laboratory analysis were sealed in an insulated cooler on ice under completed chain-of custody and transported to the Environmental Laboratory of Texas in Odessa, Texas for the requested analysis.

The other portion of the soil sample was placed in a sterile glass container equipped with a Teflon-lined lid furnished by the analytical laboratory. The container was filled to capacity to limit the amount of headspace present. Each container was labeled and placed on ice in an insulated cooler. Upon selection of samples for analysis, the cooler was sealed for shipment to the laboratory. Proper chain-of-custody documentation was maintained throughout the sampling process.

Soil samples were delivered to Environmental Lab of Texas, Inc. in Odessa, Texas for BTEX, TPH and chloride analyses using the methods described below. All soil samples were analyzed within fourteen days following the collection date.

The soil samples were analyzed as follows:

BTEX concentrations in accordance with EPA SW 846 Method 8021B, 5030

- TPH concentrations in accordance with modified EPA SW 846 Method 8015M GRO/DRO
- Chloride concentrations in accordance with EPA SW846 Method 9253

5.2 Groundwater Sampling

Monitor wells were developed and purged with a single use, disposable, bailer. Monitor wells with sufficient recharge were purged by removing a minimum of three well volumes. Monitor wells that did not recharge sufficiently were purged until no additional groundwater could be obtained.

After purging the wells, groundwater samples were collected with a disposable Teflon sampler and polyethylene line by personnel wearing clean, disposable gloves. Groundwater sample containers were filled in the order of decreasing volatilization sensitivity (i.e., BTEX containers filled first and chloride containers second).

Groundwater samples, collected for BTEX analysis, were placed in 40 ml glass VOA vials equipped with Teflon-lined caps. The vials were filled to a positive meniscus, sealed, and visually checked to ensure the absence of air bubbles. The analytical laboratory provided all of the containers.

Groundwater samples, collected for TDS analysis, were filled to capacity in sterile, Amber, 1-liter glass containers equipped with Teflon-lined caps. Groundwater samples, collected for chloride analysis, were filled to capacity in sterile, 500-ml plastic containers equipped with Teflon-lined caps preserved with nitric acid. The analytical laboratory provided all containers and preservatives.

The filled containers were labeled and placed on ice in an insulated cooler. The cooler was sealed for transportation to the analytical laboratory. Proper chain-of-custody documentation was maintained throughout the sampling process.

The groundwater samples were analyzed as follows:

- BTEX concentrations in accordance with EPA SW 846 Methods 8021B, 5030
- TDS concentrations in accordance with EPA SW 846 Method 160.1
- Chloride concentrations in accordance with EPA SW 846 Method 9253

5.3 Decontamination Of Equipment

In general, the cleaning procedures consisted of using high pressure steam to wash the drilling and sampling equipment prior to drilling. Prior to use, the sampling equipment was cleaned with Liqui-Nox® detergent and rinsed with distilled water.

5.4 Laboratory Protocol

The laboratory was responsible for proper QA/QC procedures after signing the chain-of-custody form. These procedures were either transmitted with the laboratory reports or are on file at the laboratory.

6.0 LIMITATIONS

Environmental Technology Group, Inc. has prepared this Preliminary Site Investigation Report to the best of its ability. No other warranty, expressed or implied, is made or intended.

Environmental Technology Group, Inc. has examined and relied upon documents referenced in the report. Environmental Technology Group, Inc. has not conducted an independent examination of the facts contained in referenced materials. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Environmental Technology Group, Inc. has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Environmental Technology Group, Inc. also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Yates Petroleum Corporation. The information contained in this report including all exhibits and attachments, may not be used by any other party without the express consent of Environmental Technology Group, Inc. and/or Yates Petroleum Corporation.

7.0 REFERENCES

Title 19 NMAC 15.A.19;

Guidelines for Remediation of Leaks, Spills and Releases; August 1993 (NMOCD, 1993);

Unlined Surface Impoundment Closure Guidelines; February 1993 (NMOCD, 1993); and

Geology and Ground-Water Resources of Eddy County, New Mexico; G. E. Hendrickson and R. S. Jones; United States Geological Survey, New Mexico State Bureau of Mines and Mineral Resources and the State Engineer of New Mexico, 1952.

8.0 DISTRIBUTION

Copies 1 and 2 to: Ms. Lisa Norton and Mr. Jerry Fanning

Yates Petroleum Corporation 105 South Fourth Street Artesia, New Mexico 88210

Copy 3 to:

Environmental Technology Group, Inc.

4600 West Wall Street Midland, Texas 79703

Copy 4 to:

Environmental Technology Group, Inc. (Hobbs Office)

2540 W. Marland

Hobbs, New Mexico 88240

COPY NO.

Quality Control Reviewer

TABLES

TABLE 1

GROUND WATER ELEVATION DATA

YATES PETROLEUM CORPORATION FORMER INEX PIT SITE EDDY COUNTY, NEW MEXICO ETGI PROJECT # YA 2220

WELL NUMBER	DATE MEASURED	TOP OF CASING ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	GROUND WATER ELEVATION
MW - 1	09/18/02	3,301.73	•	53.23	0.00	3,248.50
	09/19/02	3,301.73	-	53.24	0.00	3,248.49
MW - 2	09/18/02	3,301.67	-	52.82	0.00	3,248.85
	09/19/02	3,301.67	-	54.11	0.00	3,247.56
MW - 3	09/18/02	3,302.19		54.14	0.00	3,248.05
	09/19/02	3,302.19	-	52.95	0.00	3,249.24
MW - 4	09/18/02	3,301.02		53.11	0.00	3,247.91
	09/19/02	3,301.02	-	53.43	0.00	3,247.59

TABLE 2

CONCENTRATIONS OF BTEX, CHLORIDES AND TPH IN SOIL

YATES PETROLEUM CORPORATION FORMER INEX PIT SITE EDDY COUNTY, NEW MEXICO ETGI PROJECT #YA 2200

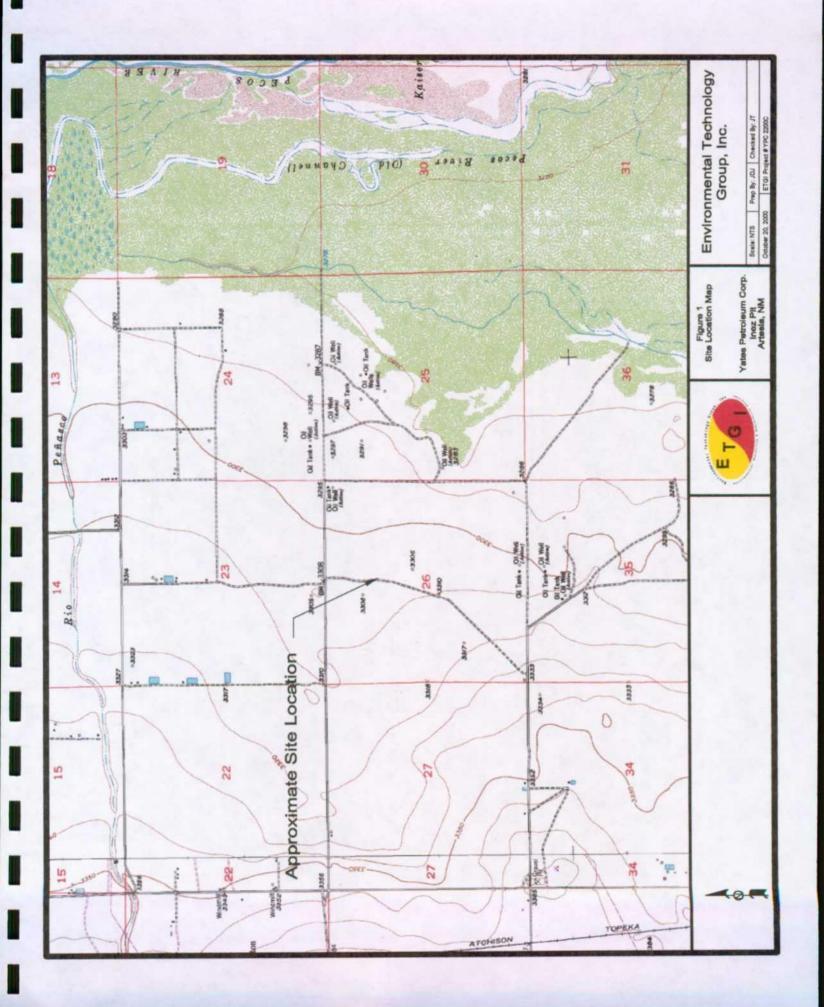
All concentrations are in mg/kg

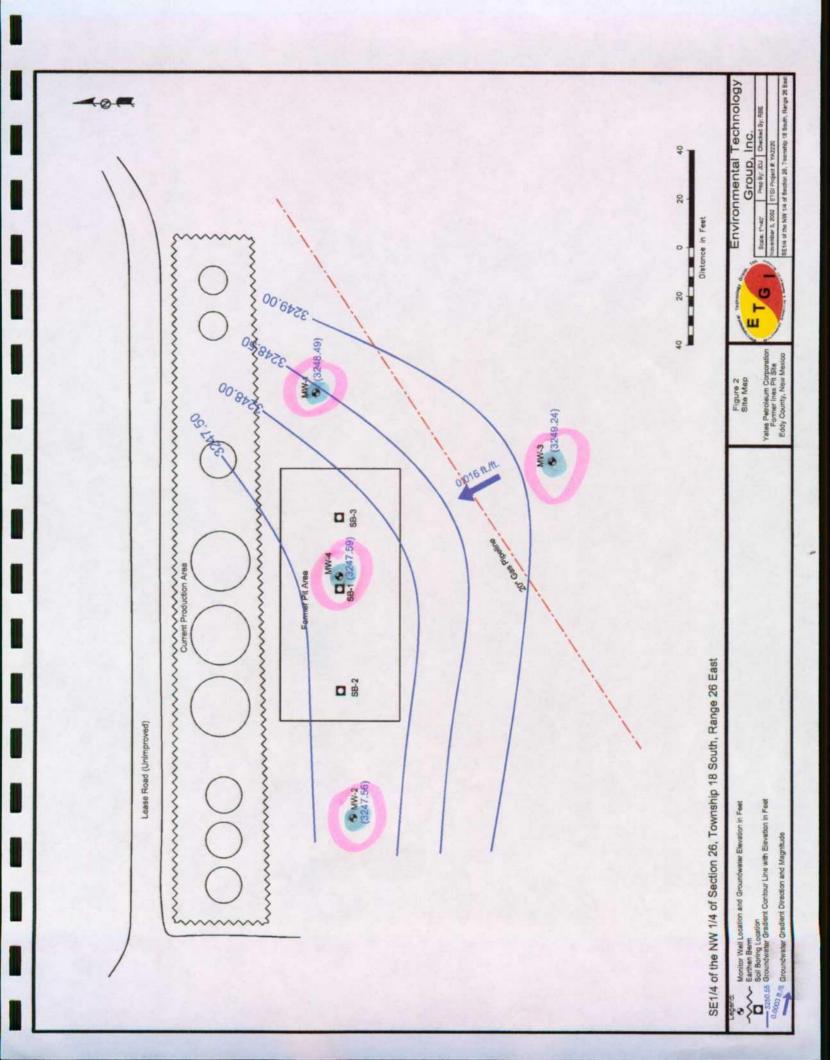
			723440000	SW	846-8021B, 50	30		Method: 9253	Method: 80	15
SAMPLE NAME	SAMPLE DATE	SAMPLE DEPTH	BENŻENE	TOLUENE	ETHYL- BENZENE	M,P- XYLENES	O- XYLENES	CHLORIDES	GRO	DRO
MW-1	09/09/02	35	<0.025	<0.025	<0.025	<0.025	<0.025	10600	<10.0	<10.0
		55	<0.025	<0.025	<0.025	<0.025	<0.025	177	<10.0	<10.0
		70'	<0.025	<0.025	<0.025	<0.025	<0.025	70.9	<10.0	<10.0
MW-2	09/09/02	35	<0.025	<0.025	<0.025	<0.025	<0.025	112	<10.0	<10.0
		55	<0.025	<0.025	<0.025	<0.025	<0.025	<20.0	<10.0	<10.0
		65'	<0.025	<0.025	<0.025	<0.025	<0.025	<20.0	<10.0	<10.0
MW-3	09/09/02	30'	<0.025	<0.025	<0.025	<0.025	<0.025	106	<10.0	<10.0
		50'	<0.025	<0.025	<0.025	<0.025	<0.025	603	<10.0	<10.0
		60'	<0.025	<0.025	<0.025	<0.025	<0.025	7800	<10.0	<10.0
MW-4	09/09/02	10'	6.79	1.56	29.8	31.2	15,9	9040	1570	3170
		20'	5.20	0.565	20.3	8.88	0.233	3540	588	1350
		45	<0.025	<0.025	<0.025	<0.025	<0.025	993	<10.0	<10.0

TABLE 3

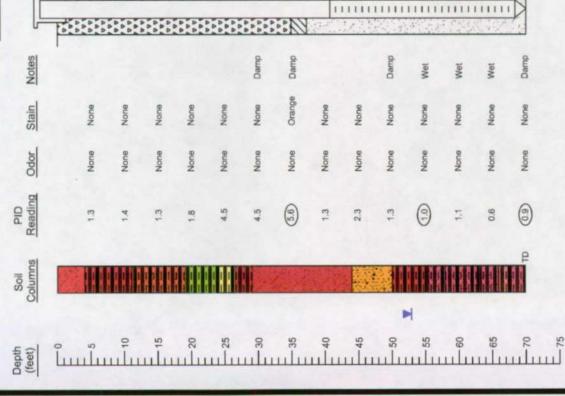
CONCENTRATIONS OF BTEX, CHLORIDES AND TDS IN GROUNDWATER

YATES PETROLEUM CORPORATION FORMER INEX PIT SITE EDDY COUNTY, NEW MEXICO ETGI PROJECT # YA 2220


All concentrations are in mg/L


			SW 846-80	Method:9253	Method:160.1		
SAMPLE LOCATION	SAMPLE DATE	I FTHYL I TOTAL		CHLORIDES	TDS		
MW - 1	09/19/02	<0.001	<0.001	<0.001	<0.001	1110	3880
MW - 2	09/19/02	<0.001	<0.001	<0.001	<0.001	319	2270
MW - 3	09/19/02	<0.001	<0.001	<0.001	<0.001	37200	67400
MW - 4	09/19/02	<0.001	<0.001	<0.001	<0.001	21300	38200

FIGURES


APPENDICES

Appendix A
Soil Boring Logs

Monitoring Well Details

Clay - (CL) - Moderate Change Pink, Medium Soft to Soft, Sightly Sandy, Sightly Fredund, Filed with Sand.

Sandy Clay - (CL) - Light Brown, Soft.

Legend

Sandy Clay - (CL) - Moderate Yellowish Brown, Medium Soft, Clay - (CL) - Yallowish Gray to Graytah Yallow, Medium Soft.

Date Drilled	9-9-02
Thickness of Bentonite Seal	3.11
Length of PVC Well Screen	30 ft
Depth of PVC Well	70 ft
Depth of Exploratory Well	70 ft
Depth to Ground Water	53 ft

Grout Surface Seal

Screen

Sand Pack

Sandy Clay - (CL) - Motilad Pale Greenish Yellow and Light Brown Soft to Modecately Soft, Orange Ferric Staining, Molet.

Sandy Bravel - (GC) - Graylen Orange to Dark Yellowish Orange. Medium: to Course Gravel, Bub Angular, Fine Sand, Loose, Damp.

Sandy Clay - (Ct.) - Light Brown, Soft

(8m) - Light Brown, Very Fine Grained, Well Sorted,

Sity Sand - (SM) - Light Brown, Very Fine Grained, Well Sorted

Sendy Clay - (SC) - Light Brown, Medium Soft to Stiff.

Sandy Clay - (ML) - Motified Pale Greenish Yellow, to Light Brown Soft to Moderate Soft.

Sandy Clay - (CL) - Moderate Greenish Yellow, Soft.

Sandy Clay - (Cl.) - Moderate Greenish Yellow, Soft.

Sandy Gravel - (GC) - Pale Olive, Course Sand to Fine Gravel, Sub-Angular Sand, Sub-Angular to Sub-Rounded Gravel, Loose, Wet

Sandy Clay - (CL) - Mottled Pale Greenish Yellow to Light Brown, Soft, Moist.

Indicates samples selected for laboratory analysis.

Indicates the ground water level measured on date.

Head-space reading in ppm obtained with a photo-ionization detector.

Completion Notes

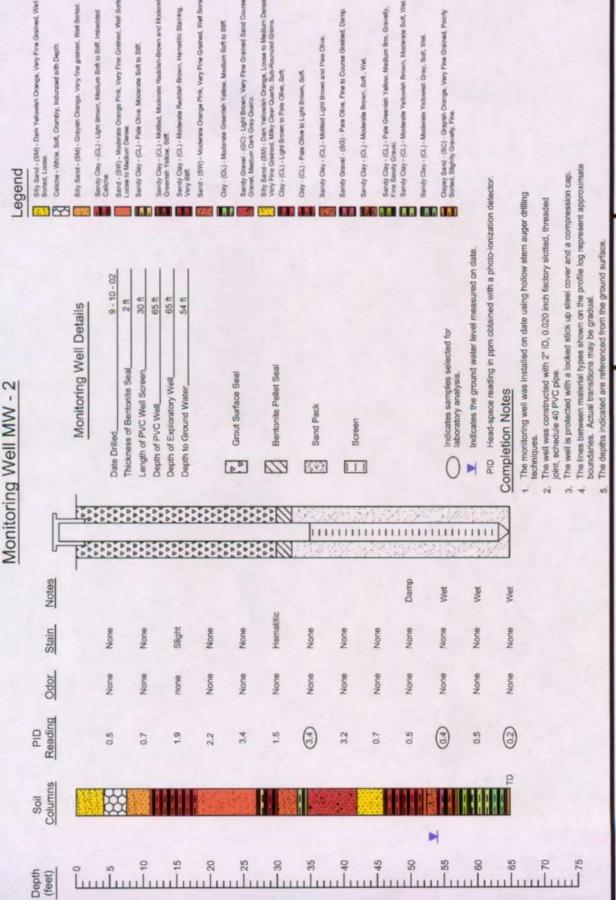
- 1. The monitoring well was installed on date using hollow stem auger drilling
 - The well was constructed with 2" ID, 0.020 inch factory slotted, threaded joint, schedule 40 PVC pipe.
- The well is protected with a locked stick up steel cover and a compression cap.
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
 - The depths indicated are referenced from the ground surface

Environmental Technology Group, Inc.

Checked By: F	1# YA2220
By: LGM	ETGI Projec
Scale: use scale	Oct. 28, 2002

Yates Petroleum.

Former Inex Pit Site


Monitoring Well - MW-1

Boring Log And Monitoring Well Detail

Eddy County, NM

0

SE1/4 of the NW 1/4 of Section 26, Township 18 South, Range 26 East

Sand - (SW) - Moderate Orange Pink, Very Fine Grained, Well Sorted cone to Medium Dense.

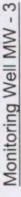
ind - (SW) - Moderate Orange Pink, Very Fine Grained, Well Sorted

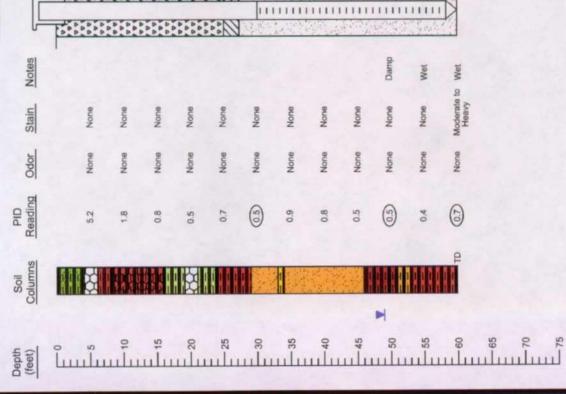
Sandy Gravel - (GC) - Light Brown, Very Fine Grained Sand Course Gravel, Medium Dark Gray Quanz.

Sity Sand - (SM) - Dark Yellowish Crange, Loose to Medium Dens Very Fine Grained, Milky Clear Quartz, Sub-Rounded Grains.

Monitoring Well - MW-2

Boring Log And Monitoring Well Detail


Environmental Technology Group, Inc.


Prep By: LGM Checked By: RE ETGI Project # YA2220 Scalo; uso scalo Oct. 28, 2002

SE1/4 of the NW 1/4 of Section 26, Township 18 South, Range 26 East

Eddy County, NM Former Inex Pit Site

Yates Petroleum.

Monitoring Well Details

Sandy Clay - (CL) - Light Brown, Fractured, Filled with White Quartz Sand, Very Fine Grained, Soft.

Sandy Clay - (CL) - Moderate Yellowish Brown, Soft.

Legend

Caliche - White, Moderately Indurated.

Clay - (CL) - Moderate Brown, Fractured, Fillied with Very Fine Grained Quartz Sand, Imbedded Caliche.

Clay - (ML) - Yellowish Gray, Moderate Soft to Stiff,

Caliche - White, Very Soft to Slightly Indurated.

Sandy Clay - (CL) - Yellowish Gray, Soft

9-10-02	onite Seal 2.5 ft	all Screen 30 ft	109	ory Well 60 ft	404
Date Drilled	Thickness of Bentonite Seal	Length of PVC Well Screen,	Depth of PVC Well	Depth of Exploratory Well	The state of the s

Grout Surface Seal

Bentonite Pellet Seal

Sand Pack

Screen

Sandy Clay - (CL) - Dark Yellowish Orange, Soft, Very Fine grained Sand - (SW) - Grayish Orange, Very Fine Grained, Well Sorted,

Clay - (ML) - Light Brown, Medium Soft to Soft

Sandy Clay - (CL) - Mottled Moderate Yellowish Brown and Moderate Greenish Yellow, Soft, Moist. Sand - (SW) - Grayish Orange, Very Fine Grained, Locse, Well

Sand - (SP) - Grayish Orange, Fine to Course Grained, Poorly Sorted,

Sandy Clay - (CL) - Moderate Brown, Soft, Wet.

Indicates samples selected for iaboratory analysis.

Indicates the ground water level measured on date.

Head-space reading in ppm obtained with a photo-ionization detector.

Completion Notes

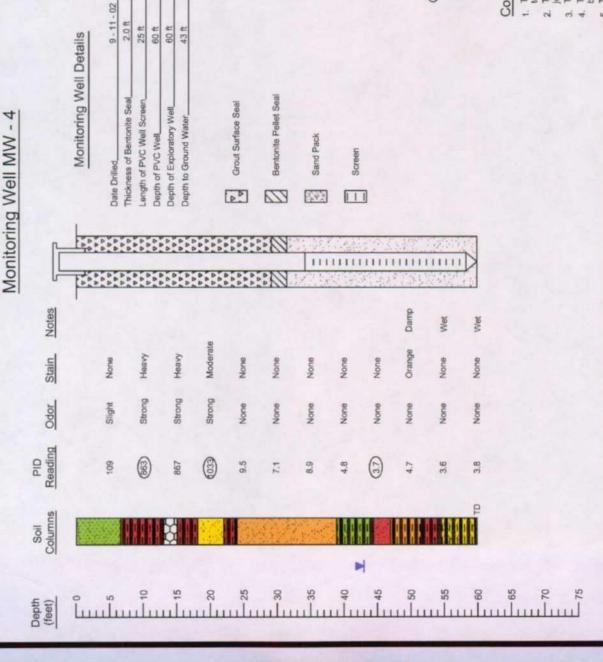
- 1. The monitoring well was installed on date using hollow stem auger drilling techniques.
- The well was constructed with 2" ID, 0.020 inch factory slotted, threaded joint, schedule 40 PVC pipe.
- The well is protected with a locked stick up steel cover and a compression cap.
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
 - The depths indicated are referenced from the ground surface

Boring Log And Monitoring Well Detail

Monitoring Well - MW-3

Former Inex Pit Site

Yates Petroleum.


Eddy County, NM

Environmental Technology Group, Inc.

scale: use scale Prep By: LGM Checked By: RE ETGI Project # YA2220 Oct. 28, 2002

SE1/4 of the NW 1/4 of Section 26, Township 18 South, Range 26 East

Legend

Sity Sand - (SM) - Moderate Yellowish Brown, Very Fine Grained.

Sandy Clay - (CL) - Light Bluish Gray to Dark Greenish Gray, Soft, Heavily Stained, Strong Odor.

Caliche - Grayish Yellow Green, Indurated, Hard, Dark Gray

Sandy Clay - (SC) - Moderate Brown, Soft, Heavy Stain, Dark Blueish

Slity Sand - (SM) - Dark Yellowish Orange, With Light Greenish Blue Staining, Fine to Medium Grained Sub-Angular to Rounded, Loose. Sandy Clay - (CL.) - Moderate Brown, Soft to Medium Soft.

Sand - (SW) - Grayish Orange, Very Fine to Fine Grained, Sub-Rounded, Loose, Damp.

Sandy Clay - (GC) - Moderate Yellowish Brown, Gravelly, Fine Gravel to Fine Sand, poorly Sorted, Loose.

Silty Sand - (SM) - Light Brown, Very Fine to Medium Grained, Pooly

Clay - (CL.) - Dark Yellowish Brown, Soft, Moist.

Silly Sand - (SM) - Grayish Orange, Fine to Medium Grained, Sub-Angular to Sub-Rounded, Moderately Sorted.

Sandy Clay - (CL) - Light Brown, Soft, Damp.

Sandy Clay - (SC) - dark Yallowish Orange, Soft To Medium Soft, Damp.

Indicates samples selected for laboratory analysis.

Indicates the ground water level measured on date.

Head-space reading in ppm obtained with a photo-lonization detector.

Completion Notes

- 1. The monitoring well was installed on date using hollow stem auger drilling
 - The well was constructed with 2" ID, 0.020 inch factory slotted, threaded joint, schedule 40 PVC pipe.
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual. The well is protected with a locked stick up steel cover and a compression cap.
 - The depths indicated are referenced from the ground surface.

Environmental Technology Prep By: LGM Checked By: RE Group, Inc. Scale; use scale

SE144 of the NW 1/4 of Section 26, Township 18 South, Range 26 East ETGI Project # YA2220 Oct. 28, 2002

Yates Petroleum.

Former Inex Pit Site

Monitoring Well - MW-4

Boring Log And Monitoring Well Detail

Eddy County, NM

Appendix B

Laboratory Reports

ILE

ANALYTICAL REPORT

Prepared for:

KEN DUTTON Environmental Technology Group, Inc. 2540 W. MARLAND HOBBS, NM 88240

Project:

INEX

PO#:

Order#:

G0204528

Report Date:

09/24/2002

Certificates

US EPA Laboratory Code TX00158

SAMPLE WORK LIST

Environmental Technology Group, Inc.

ENVIRONMENTAL LAB OF TEXAS I, LTD.

2540 W. MARLAND

HOBBS, NM 88240 505-397-4701

Order#:

G0204528

Project:

YA 2220

Project Name: INEX

Location:

Artesia, NM

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

				Date / Ti		Date / Time		
<u>Lab ID:</u>	Sample:	Matrix:		Collecte	<u>d</u> _	Received	Container	Preservativ
0204528-01	INEX MW-1 (35')	SOIL		9/9/02 10:00		9/16/02 14:10	4 oz glass	Ice
<u>La</u>	b Testing:	Rejected:	No		Temp	: 4 C		
	8015M							
	8021B/5030 BTEX							
	Chloride							
0204528-02	INEX MW-1 (55')	SOIL		9/9/02 11:13		9/16/02 14:10	4 oz glass	Ice
<u>La</u>	<u>b Testing:</u>	Rejected:	No		Temp	: 4 C		
	8015M							
	8021B/5030 BTEX							
	Chloride							
0204528-03	INEX MW-1 (70')	SOIL		9/9/02 12:29		9/16/02 14:10	4 oz glass	Ice
<u>La</u>	b Testing:	Rejected:	No		Temp	: 4 C		
	8015M							
	8021B/5030 BTEX							
	Chloride							
0204528-04	INEX MW-2 (35')	SOIL		9/10/02 8:55		9/16/02 14:10	4 oz glass	Ice
<u>La</u>	b Testing:	Rejected:	No		Temp	: 4 C		
	8015M							
	8021B/5030 BTEX							
	Chloride							
0204528-05	INEX MW-2 (55')	SOIL		9/10/02 9:48		9/16/02 14:10	4 oz glass	Ice
<u>La</u>	b Testing:	Rejected:	No		Temp	: 4 C		
	8015M							
	8021B/5030 BTEX							
	Chloride			_		No. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17		
0204528-06	INEX MW-2 (65')	SOIL		9/10/02 10:51		9/16/02 14:10	4 oz glass	Ice
La	<u>b Testing:</u>	Rejected:	No		Temp	: 4 C		
	8015M							

SAMPLE WORK LIST

Environmental Technology Group, Inc.

Order#:

G0204528

2540 W. MARLAND

Project:

YA 2220

HOBBS, NM 88240

Project Name: INEX

505-397-4701

Location:

Artesia, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

<u>Lab ID:</u>	Sample: 8021B/5030 BTEX Chloride	<u>Matrix:</u>		Date / Tin		Date / Time Received	Container	Preservative
0204528-07	INEX MW-3 (30')	SOIL		9/10/02 14:01		9/16/02 14:10	4 oz glass	Ice
<u>La</u>	ab Testing:	Rejected:	No		Temp:	4 C		
	8015M							
1	8021B/5030 BTEX							
1	Chloride							
0204528-08	INEX MW-3 (50')	SOIL		9/10/02 15:00		9/16/02 14:10	4 oz glass	Ice
<u>La</u>	ab Testing:	Rejected:	No		Temp:	4 C		
	8015M							
	8021B/5030 BTEX							
	Chloride						-	
0204528-09	INEX MW-3 (60')	SOIL		9/10/02 15:41		9/16/02 14:10	4 oz glass	Ice
<u>La</u>	ub Testing:	Rejected:	No		Temp:	4 C		
	8015M							
	8021B/5030 BTEX							
	Chloride							
0204528-10	INEX MW-4 (10')	SOIL		9/11/02 9:03		9/16/02 14:10	4 oz glass	Ice
<u>La</u>	ib Testing:	Rejected:	No		Temp:	4 C		
	8015M							
	8021B/5030 BTEX							
	Chloride			-				
0204528-11	INEX MW-4 (20')	SOIL		9/11/02 9:34		9/16/02 14:10	4 oz glass	Ice
La	ib Testing:	Rejected:	No		Temp:	4 C		
	8015M							
	8021B/5030 BTEX							
	Chloride							

SAMPLE WORK LIST

Environmental Technology Group, Inc.

G0204528

2540 W. MARLAND

Order#: Project:

YA 2220

HOBBS, NM 88240

Project Name: INEX

505-397-4701

Location:

Artesia, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

•			Date / Time	Date / Time		
Lab ID:	Sample:	Matrix:	Collected	Received	Container	Preservative
0204528-12	INEX MW-4 (45')	SOIL	9/11/02	9/16/02	4 oz glass	Ice
020102012			10:50	14:10		
<u>La</u>	b Testing:	Rejected: No	Ten	ip: 4 C		
	8015M					
	8021B/5030 BTEX					
1	Chloride					

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#: Project: G0204528

Project Name:

YA 2220 INEX

Location:

Artesia, NM

Lab ID:

0204528-01

Sample ID:

INEX MW-1 (35')

8015M

Method Blank Date Prepared Date Analyzed

9/17/02

Sample Amount

1

Dilution Factor

1

An

Analyst Method
CK 8015M

 Parameter
 Result mg/kg
 RL

 GRO, C6-C12
 <10.0</td>
 10.0

 DRO, >C12-C35
 <10.0</td>
 10.0

 TOTAL, C6-C35
 <10.0</td>
 10.0

8021B/5030 BTEX

Method <u>Blank</u> 0003187-02 Date <u>Prepared</u> Date <u>Analyzed</u> 9/19/02 20:18 Sample Amount

1

Dilution Factor 25

Analyst CK

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

Surrogates	% Recovered	QC Limits (% 80 120	
aaa-Toluene	90%		
Bromofluorobenzene	96%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#:

G0204528

Project:
Project Name:

YA 2220

Location:

INEX Artesia, NM

Lab ID:

0204528-02

Sample ID:

INEX MW-1 (55')

8015M

Method Blank Date <u>Prepared</u> Date
<u>Analyzed</u>
9/17/02

Sample <u>Amount</u> 1 Dilution <u>Factor</u>

1

Analyst Method
CK 8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	<10.0	10.0
DRO, >C12-C35	<10.0	10.0
TOTAL, C6-C35	<10.0	10.0

8021B/5030 BTEX

Method
<u>Blank</u>
0003187-02

Date Prepared Date <u>Analyzed</u> 9/19/02 20:40 Sample
Amount

Dilution Factor 25

Analyst CK

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	< 0.025	0.025
Toluene	< 0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	83%	80	120
Bromofluorobenzene	92%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#:

G0204528

Project:

YA 2220

Project Name:

INEX

Location:

Artesia, NM

Lab ID:

0204528-03

Sample ID:

INEX MW-1 (70')

8015M

Method Blank Date Prepared Date
<u>Analyzed</u>
9/17/02

Sample Amount Dilution <u>Factor</u>

1

Analyst Method
CK 8015M

 Parameter
 Result mg/kg
 RL

 GRO, C6-C12
 <10.0</td>
 10.0

 DRO, >C12-C35
 <10.0</td>
 10.0

 TOTAL, C6-C35
 <10.0</td>
 10.0

8021B/5030 BTEX

Method <u>Blank</u> 0003187-02 Date <u>Prepared</u> Date
<u>Analyzed</u>
9/19/02
21:02

Sample
<u>Amount</u>
1

Dilution Factor 25

Analyst CK

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	< 0.025	0.025

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	102%	80	120
Bromofluorobenzene	101%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#:

G0204528

Project:

YA 2220

Project Name:

INEX

Location:

Artesia, NM

Lab ID:

0204528-04

Sample ID:

INEX MW-2 (35')

8015M

Method Blank Date Prepared Date <u>Analyzed</u> 9/17/02 Sample Amount

1

Dilution <u>Factor</u>

Analyst

 $\mathbf{C}\mathbf{K}$

Method 8015M

 Parameter
 Result mg/kg
 RL

 GRO, C6-C12
 <10.0</td>
 10.0

 DRO, >C12-C35
 <10.0</td>
 10.0

8021B/5030 BTEX

Method <u>Blank</u> 0003187-02 Date Prepared

TOTAL, C6-C35

Date <u>Analyzed</u> 9/19/02 21:25 Sample
Amount

<10.0

Dilution Factor 25

Analyst CK

10.0

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

Surrogates	% Recovered	QC Limits (%)	
aaa-Toluene	93%	80	120
Bromofluorobenzene	97%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#:

G0204528

Project:

YA 2220

Project Name:

INEX

Location:

Artesia, NM

Lab ID:

0204528-05

Sample ID:

INEX MW-2 (55')

8015M

Method Blank Date Prepared Date Analyzed 9/17/02 Sample Amount

1

Dilution Factor

1

Analyst Method
CK 8015M

 Parameter
 Result mg/kg
 RL

 GRO, C6-C12
 <10.0</td>
 10.0

 DRO, >C12-C35
 <10.0</td>
 10.0

 TOTAL, C6-C35
 <10.0</td>
 10.0

8021B/5030 BTEX

Method <u>Blank</u> 0003197-02 Date <u>Prepared</u> Date <u>Analyzed</u> 9/20/02 10:36 Sample Amount 1

Dilution Factor 25

Analyst CK

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

Surrogates	% Recovered	QC Limits (%	
aaa-Toluene	92%	80	120
Bromofluorobenzene	95%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#:

G0204528

Project: Project Name: YA 2220

Location:

INEX Artesia, NM

Lab ID:

0204528-06

Sample ID:

INEX MW-2 (65')

8015M

Method Blank Date Prepared Date
<u>Analyzed</u>
9/17/02

Sample Amount Dilution <u>Factor</u>

1

Analyst

CK

Method 8015M

 Parameter
 Result mg/kg
 RL

 GRO, C6-C12
 <10.0</td>
 10.0

 DRO, >C12-C35
 <10.0</td>
 10.0

 TOTAL, C6-C35
 <10.0</td>
 10.0

8021B/5030 BTEX

Method Blank 0003197-02 Date Prepared Date <u>Analyzed</u> 9/20/02 10:58 Sample Amount

Dilution Factor 25

Analyst CK Method 8021B

Result RL Parameter mg/kg < 0.025 0.025 Benzene 0.025 Ethylbenzene < 0.025 0.025 Toluene < 0.025 0.025 < 0.025 p/m-Xylene < 0.025 0.025 o-Xylene

Surrogates aaa-Toluene	% Recovered	QC Limits (%	
		80	120
Bromofluorobenzene	99%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#:

G0204528

Project:

YA 2220

Project Name: Location: INEX Artesia, NM

Lab ID:

0204528-07

Sample ID:

INEX MW-3 (30')

8015M

Method Blank Date Prepared Date Analyzed 9/17/02 Sample Amount Dilution Factor

1

<u>Analys</u>t

CK

Method 8015M

 Parameter
 Result mg/kg
 RL

 GRO, C6-C12
 <10.0</td>
 10.0

 DRO, >C12-C35
 <10.0</td>
 10.0

 TOTAL, C6-C35
 <10.0</td>
 10.0

8021B/5030 BTEX

Method
<u>Blank</u>
0003197-02

Date Prepared Date <u>Analyzed</u> 9/20/02 11:20 Sample Amount

Dilution Factor 25

Analyst CK

Method 8021B

Result **Parameter** RLmg/kg 0.025 < 0.025 Benzene <0.025 0.025 Ethylbenzene Toluene < 0.025 0.025 <0.025 0.025 p/m-Xylene o-Xylene <0.025 0.025

Surrogates	% Recovered QC Limits (%)		
aaa-Toluene	94%	80	120
Bromofluorobenzene	97%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND **HOBBS, NM 88240**

Order#:

G0204528

Project: Project Name: YA 2220

Location:

INEX Artesia, NM

Lab ID:

0204528-08

Sample ID:

INEX MW-3 (50')

8015M

Method Blank

Date Prepared

Date **Analyzed** 9/17/02

Sample **Amount**

1

Dilution **Factor**

Analyst CK

Method 8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	<10.0	10.0
DRO, >C12-C35	<10.0	10.0
TOTAL, C6-C35	<10.0	10.0

8021B/5030 BTEX

Method Blank 0003197-02

Date **Prepared**

Date **Analyzed** 9/20/02 11:42

Sample **Amount** 1

Dilution **Factor** 25

Analyst CK

Method

8021B

Parameter	Result mg/kg	RL
Benzene	< 0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	100%	80	120
Bromofluorobenzene	99%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240

Order#:

G0204528

Project: Project Name: YA 2220

Location:

INEX Artesia, NM

Lab ID:

0204528-09

Sample ID:

INEX MW-3 (60')

8015M

1

Method Blank

Date Date Prepared

Sample **Analyzed Amount**

Dilution **Factor**

1

Analyst Method

CK

8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	<10.0	10.0
DRO, >C12-C35	<10.0	10.0
TOTAL, C6-C35	<10.0	10.0

8021B/5030 BTEX

Method Blank 0003197-02

Date **Prepared**

Date **Analyzed** 9/20/02 12:04

9/17/02

Sample **Amount** 1

Dilution <u>Factor</u> 25

<u>Analyst</u> CK

Method 8021B

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	< 0.025	0.025

Surrogates	% Recovered	QC Limits (%	
aaa-Toluene	96%	80	120
Bromofluorobenzene	96%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#:

G0204528

Project: Project Name: YA 2220

Location:

INEX Artesia, NM

Lab ID:

0204528-10

Sample ID:

INEX MW-4 (10')

8015M

Method Blank Date Prepared Date <u>Analyzed</u>

9/17/02

Sample Amount

1

Dilution

Dilution <u>Factor</u>

1

Analyst CK

Method 8015M

 Parameter
 Result mg/kg
 RL

 GRO, C6-C12
 1,570
 10.0

 DRO, >C12-C35
 3,170
 10.0

 TOTAL, C6-C35
 4,740
 10.0

8021B/5030 BTEX

 Date Prepared Date <u>Analyzed</u> 9/20/02 12:26 Sample Amount Dilution Factor 25

Analyst CK

Method 8021B

Parameter	Result mg/kg	RL
Benzene	6.79	0.025
Ethylbenzene	29.8	0.025
Toluene	1.56	0.025
p/m-Xylene	31.2	0.025
o-Xylene	15.9	0.025

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	1250%	80	120
Bromofluorobenzene	144%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#: Project: G0204528

Project Name:

YA 2220

Location:

INEX Artesia, NM

Lab ID:

0204528-11

Sample ID:

INEX MW-4 (20')

8015M

Method Blank

Date Prepared Date
<u>Analyzed</u>
9/17/02

Sample Amount Dilution <u>Factor</u>

1

Analyst

CK

Method 8015M

 Parameter
 Result mg/kg
 RL

 GRO, C6-C12
 588
 10.0

 DRO, >C12-C35
 1,350
 10.0

 TOTAL, C6-C35
 1,938
 10.0

8021B/5030 BTEX

Method
<u>Blank</u>
0003197-02

Date Prepared Date Analyzed 9/20/02 12:49 Sample
Amount

Dilution Factor 25

<u>Analyst</u> CK Method 8021B

Result RL Parameter mg/kg 0.025 5.20 Benzene 0.025 Ethylbenzene 20.3 0.025 Toluene 0.565 0.025 p/m-Xylene 8.88 o-Xylene 0.233 0.025

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	854%	80	120
Bromofluorobenzene	119%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND **HOBBS, NM 88240**

Order#:

G0204528

Project:

YA 2220

Project Name: Location:

INEX Artesia, NM

Lab ID:

0204528-12

Sample ID:

INEX MW-4 (45')

8015M

Method Blank

Date **Prepared**

Date **Analyzed** 9/18/02

Sample <u>Amount</u> 1

Dilution **Factor**

Analyst

CK

Method 8015M

Result RLParameter mg/kg 10.0 GRO, C6-C12 <10.0 DRO, >C12-C35 10.0 <10.0 TOTAL, C6-C35 <10.0 10.0

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	<u>Factor</u>	Analyst	Method
0003197-02		9/20/02	1	25	CK	8021B
		13:10				

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

Surrogates	% Recovered	QC Limits (%)				
aaa-Toluene	97%	80	120			
Bromofluorobenzene	101%	80	120			

Raland K. Tuttle, Lab Director, QA Officer

9-24-02

Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech.

Sara Molina, Lab Tech.

ANALYTICAL REPORT

KEN DUTTON Order#: G0204528 Environmental Technology Group, Inc. Project: YA 2220 2540 W. MARLAND INEX Project Name: HOBBS, NM 88240 Location: Artesia, NM Lab ID: 0204528-01 Sample ID: INEX MW-1 (35') Test Parameters Dilution Date **Factor** Parameter Result Units RL Method Analyzed **Analyst** 10600 Chloride mg/kg 1 20 9253 9/17/02 SB Lab ID: 0204528-02 Sample ID: INEX MW-1 (55') **Test Parameters** Date Dilution Parameter <u>Analyst</u> Result Units Factor RL Method Analyzed 177 mg/kg 20 9253 Chloride 1 9/17/02 SB Lab ID: 0204528-03 Sample ID: INEX MW-1 (70') Test Parameters Date Dilution Parameter Result Units Factor <u>RL</u> Method Analyzed Analyst 70.9 mg/kg 1 20 9253 9/17/02 SB Chloride Lab ID: 0204528-04 Sample ID: INEX MW-2 (35') **Test Parameters** Date Dilution RLMethod Parameter Result Units Factor Analyzed Analyst Chloride 112 mg/kg 1 20 9253 9/17/02 SB Lab ID: 0204528-05 Sample ID: INEX MW-2 (55') Test Parameters Date Dilution Parameter RL Result Units **Factor** Method Analyzed **Analyst** <20.0 20 Chloride mg/kg 1 9253 9/17/02 SB Lab ID: 0204528-06 Sample ID: INEX MW-2 (65') **Test Parameters** Date Dilution Parameter <u>Factor</u> RL Result Units Method Analyzed Analyst

Page 1 of 3

SB

Chloride

<20.0

mg/kg

20

9253

9/17/02

1

ANALYTICAL REPORT

KEN DUTTON Order#: G0204528 Project: YA 2220 Environmental Technology Group, Inc. 2540 W. MARLAND Project Name: INEX HOBBS, NM 88240 Location: Artesia, NM Lab ID: 0204528-07 Sample ID: INEX MW-3 (30') **Test Parameters** Dilution Date Parameter **Units RL** Result **Factor** Method Analyzed Analyst Chloride 106 1 20 9253 SB mg/kg 9/17/02 Lab ID: 0204528-08 Sample ID: INEX MW-3 (50') **Test Parameters** Dilution Date Parameter Result Units **Factor** <u>RL</u> Method Analyzed Analyst Chloride 603 mg/kg 1 20 9253 9/17/02 SB Lab ID: 0204528-09 Sample ID: INEX MW-3 (60') Test Parameters Date Dilution Parameter Units **Factor** <u>RL</u> Method **Analyzed** Result <u>Analyst</u> Chloride 7800 mg/kg 1 20 9253 9/17/02 SB Lab ID: 0204528-10 Sample ID: INEX MW-4 (10') Test Parameters Dilution Date <u>Analyst</u> Parameter Result Units **Factor** RLMethod Analyzed 9040 20 9253 1 9/17/02 SB Chloride mg/kg Lab ID: 0204528-11 Sample ID: INEX MW-4 (20') Test Parameters Dilution Date **RL** Method Parameter Result Units **Factor** Analyzed <u>Analyst</u> Chloride 3540 mg/kġ 1 20 9253 9/17/02 SB Lab ID: 0204528-12 Sample ID: INEX MW-4 (45') **Test Parameters** Date Dilution

Page 2 of 3

<u>Anaiyst</u>

SB

Parameter

Chloride

Result

993

<u>RL</u>

20

Method

9253

Analyzed

9/17/02

Factor

1

Units

mg/kg

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#:

G0204528

Project:

YA 2220

Project Name:

INEX

Location:

Artesia, NM

Approval

Raland K. Tuttle, Lab Director, QA Officer

Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

QUALITY CONTROL REPORT

8015M

Order#: G0204528

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0003170-02			<10.0		
TOTAL, C6-C35-mg/kg	0003172-02			<10.0		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0003170-03		1000	1070	107.%	
TOTAL, C6-C35-mg/kg	0003172-03		1000	1070	107.%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0003170-04		1000	1080	108.%	0.9%
TOTAL, C6-C35-mg/kg	0003172-04		1000	1080	108.%	0.9%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0003170-05		1000	1060	106.%	
TOTAL, C6-C35-mg/kg	0003172-05		1000	1080	108.%	

QUALITY CONTROL REPORT 8021B/5030 BTEX

Order#: G0204528

		00212,000			Olucia. Goz	0.1020
BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	0003187-02			<0.025		
Benzene-mg/kg	0003197-02			<0.025		
Ethylbenzene-mg/kg	0003187-02			<0.025		
Ethylbenzene-mg/kg	0003197-02			<0.025		
Toluene-mg/kg	0003187-02			<0.025		
Toluene-mg/kg	0003197-02			<0.025		
p/m-Xylene-mg/kg	0003187-02			<0.025		
p/m-Xylene-mg/kg	0003197-02			<0.025		
o-Xylene-mg/kg	0003187-02			<0.025		
o-Xylene-mg/kg	0003197-02			<0.025		
MS SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	0204528-01	0	0.1	0.103	103.%	
Benzene-mg/kg	0204530-09	0	0.1	0.097	97.%	
Ethylbenzene-mg/kg	0204528-01	0	0.1	0.106	106.%	
Ethylbenzene-mg/kg	0204530-09	0	0.1	0.100	100.%	
Toluene-mg/kg	0204528-01	0	0.1	0.105	105.%	
Toluene-mg/kg	0204530-09	0	0.1	0.100	100.%	
p/m-Xylene-mg/kg	0204528-01	0	0.2	0.220	110.%	
p/m-Xylene-mg/kg	0204530-09	0	0.2	0.207	103.5%	
o-Xylene-mg/kg	0204528-01	0	0.1	0.106	106.%	
o-Xylene-mg/kg	0204530-09	0	0.1	0.098	98.%	
MSD SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	0204528-01	0	0.1	0.102	102.%	1.%
Benzene-mg/kg	0204530-09	0	0.1	0.095	95.%	2.1%
Ethylbenzene-mg/kg	0204528-01	0	0.1	0.106	106.%	0.%
Ethylbenzene-mg/kg	0204530-09	0	0.1	0.096	96.%	4.1%
Toluene-mg/kg	0204528-01	0	0.1	0.104	104.%	1.%
Toluene-mg/kg	0204530-09	0	0.1	0.097	97.%	3.%
p/m-Xylene-mg/kg	0204528-01	0	0.2	0.219	109.5%	0.5%
p/m-Xylene-mg/kg	0204530-09	0	0.2	0.201	100.5%	2.9%
o-Xylene-mg/kg	0204528-01	0	0.1	0.105	105.%	0.9%
o-Xylene-mg/kg	0204530-09	0	0.1	0.095	95.%	3.1%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	0003187-05		0.1	0.107	107.%	
Benzene-mg/kg	0003197-05		0.1	0.100	100.%	
Ethylbenzene-mg/kg	0003187-05		0.1	0.107	107.%	
Ethylbenzene-mg/kg	0003197-05		0.1	0.101	101.%	
Toluene-mg/kg	0003187-05		0.1	0.108	108.%	

QUALITY CONTROL REPORT

SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Toluene-mg/kg		0003197-05		0.1	0.102	102.%	
p/m-Xylene-mg/kg		0003187-05		0.2	0.222	111.%	
p/m-Xylene-mg/kg		0003197-05		0.2	0.210	105.%	
o-Xylene-mg/kg		0003187-05		0.1	0.107	107.%	
o-Xylene-mg/kg		0003197-05		0.1	0.101	101.%	

QUALITY CONTROL REPORT

Test Parameters

Order#: G0204528

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0003168-01			<20.00		
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0204527-01	8680	5000	13600	98.4%	
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0204527-01	8680	5000	13600	98.4%	0.%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0003168-04		5000	4960	99.2%	

CASE NARRATIVE

ENVIRONMENTAL LAB OF TEXAS

Prepared for:

Environmental Technology Group, Inc.

2540 W. MARLAND

HOBBS, NM 88240

Order#:

G0204528

Project:

INEX

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
INEX MW-1 (35')	0204528-01	SOIL	09/09/2002	09/16/2002
INEX MW-1 (55')	0204528-02	SOIL	09/09/2002	09/16/2002
INEX MW-1 (70')	0204528-03	SOIL	09/09/2002	09/16/2002
INEX MW-2 (35')	0204528-04	SOIL	09/10/2002	09/16/2002
INEX MW-2 (55')	0204528-05	SOIL	09/10/2002	09/16/2002
INEX MW-2 (65')	0204528-06	SOIL	09/10/2002	09/16/2002
INEX MW-3 (30')	0204528-07	SOIL	09/10/2002	09/16/2002
INEX MW-3 (50')	0204528-08	SOIL	09/10/2002	09/16/2002
INEX MW-3 (60')	0204528-09	SOIL	09/10/2002	09/16/2002
INEX MW-4 (10')	0204528-10	SOIL	09/11/2002	09/16/2002
INEX MW-4 (20')	0204528-11	SOIL	09/11/2002	09/16/2002
INEX MW-4 (45')	0204528-12	SOIL	09/11/2002	09/16/2002

Surrogate recoveries are outside control limits due to interference from coeluting compounds

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

Approved By:

| Caland | Juil |
Environmental Lab of Texas I, Ltd.

Date: C

7-24-02

TAT brebnet2, alubadə2-919) TAT H2UR CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Name: Are Magos **Temperature Upon Receipt** ВCI Sample Containers Inlact? Analyze For Laboratory Comments: BTEX 80218/5030 Metals: As Ag Ba Cd Ct Pb Hg Se TCLP: TOTAL: Project Loc: Project #: C.OC# 140 0: WEX PO #: 01:51/20-9/6 8015M 1005 1006 Officer (specify): Sindge Date Water Other (Specify) Fax No: (505)397-4701 anoM 'OS'H HOBN HCI HNO3 No. of Containers 4480 0903 Time Sampled Received by £101 9/6/02 9/6/02 9/11/02 Received by: Environmental Lab of Texas I, Ltd. Date Sampled 2540 West MARLIND 88242 PROS.#'S WILLIAMS: YA 2217 TWEX: YA 2220 Time Fax: 915-563-1713 Phone: 915-563-1800 35') 16685 INM WILLIAMS MN-3(15 Ken Duran Telephone No: (505) 3.97-422 WRULLIAMS MW-3 FIELD CODE Williams MV-3 WILLIAMS MW-4 Erez JILLIAMS MAY-4 Julyons MIL-5 35 TWEX Project Manager: Company Name Company Address: City/State/Zip: Sampler Signature: dessa, Texas 79763 2600 West I-20 East Special Instructions: 63 なる AB # (lab use only) 10-825h020 S_S ಕ ठू 63 70 Relinquished by Relinquished by

Environmental Lab of Texas I, Ltd.

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project Name: XFFE VIRIOUS

Project #: * 1200

Project Loc: ARTXSM, NM

PO #:

2600 West I-20 East dessa, Texas 79763

Phone: 915-563-1800 Fax: 915-563-1713

Project Manager: // Durrew Company Name ETGI Company Address: 2540 Klesr Meader

City/State/Zip: Hosss/N/m | 88242

Telephone No: (SDS) 392-4882 Sampler Signature:

Fax No: (Sas) 292-4701

Fig. D Cook Park Marie Passage Passa							_										T =					
Time Page Time Time Page Time Page Time Time Page Time								×	X	×	X	×	×	×	·X:	×	×					
Field Code Fie	_		-		eqnje	Hoe-919) TAT He	กช															
The mine Sampled The mine Sa												_			,			z				
The mine Sampled The mine Sa		_		_																		
The mine Sampled The mine Sa											-			-				>				
The mine Sampled The mine Sa										-												
The mine Sampled The mine Sa	ن ا	_					BCI				_							5: 15	Ž			
The mine Sampled The mine Sa	e Fo	_		Γ				×	×	~	·×	-><	\sim	~	` ×	×	X	Intac	ents			
The miles The	alyz	-	\vdash			səlitelovir	Sen					<u> </u>		-			_	ers	EE	<u>\</u>	j	
The miles The	Ą					3/iles	sloV											ntain	Š	-	+	
The miles The					eS gH d	als: As Ag Ba Cd Cr F	19M											Ö	tor	•	•	
The miles The		CLP:	TAL:	L														nple	orper 30ra			
Field Code Fie		Ĭ.	2	L	(EO3)	na (Cl. SO4, CO3, HC	oinA	×	×	×	\succeq	×	\simeq	×	\simeq	<u>\</u>	と	Sar	Lat C			,
Field Code Fie				L																a a		0,
The Sampled Preservative Prese	L	_		L	9001 90			×	×	×	\simeq	×	\times	×	×	ヘ	7			ΙË		E-;-
FIELD CODE Truex MIV-2 (55°) Truex MIV-3 (50°) Truex MIV-3 (50°) Truex MIV-4 (10°) Truex MIV-1 (10°) T				١.				_	_				_			_				<u> </u>		<u> </u>
Field Code Field Code True MV-2 (55) True MV-3 (55) True MV-3 (55) True MV-3 (55) True MV-3 (55) True MV-4 (55) True M				15				×	>	×	×	×	×	×	·×	~	X					3
FIELD CODE True MW-2(55) True MW-2	ì																			Date		Date 6
FIELD CODE FIELD CODE Twice MW-2(55) Twice	}			H	-				_				-									70-
The Sampled Preservative Preservative Preservative The Sampled Preservative Preservative The Sampled Preservative The Sampled Preservative Preservative The Sampled Preservative Preservat					-															-		
FIELD CODE FIELD CODE Truck MN-2(55') Truck MN-2(55') Truck MN-2(55') Truck MN-2(55') Truck MN-2(55') Truck MN-2(55') Truck MN-2(15') Truck MN-4(15') Truck MN-4(15') Truck MN-4(15') Truck MN-4(15') Truck MN-4(15') Truck MN-4(15') Truck MN-1(15')				9	<u>∤</u> —						-											
FIELD CODE FIELD CODE Truck MN-2(55') Truck MN-2(55') Truck MN-2(55') Truck MN-2(55') Truck MN-2(55') Truck MN-2(55') Truck MN-2(15') Truck MN-4(15') Truck MN-4(15') Truck MN-4(15') Truck MN-4(15') Truck MN-4(15') Truck MN-4(15') Truck MN-1(15')	Ì			10,00																		
FIELD CODE FIELD CODE Truck MN-2(55') Truck MN-2(55') Truck MN-2(55') Truck MN-2(55') Truck MN-2(55') Truck MN-2(55') Truck MN-2(15') Truck MN-4(15') Truck MN-4(15') Truck MN-4(15') Truck MN-4(15') Truck MN-4(15') Truck MN-4(15') Truck MN-1(15')				900			ЭН	_	_	_	<u> </u>		_									
The mine Sampled The mine mine Sampled The mine mine sampled The mine mine sampled The mine mine mine sampled The mine mine sampled The mine sampled				۵	-	€OI	NH									-				ļ		
FIELD CODE TALK MV-2(55) TALK MV-4(10) TALK MV-4(10) TALK MV-4(10) TALK MV-4(10) TALK MV-1(10) TALK MV-1							lce	×	·×	×	×	×	×	×	×	×	X					-2
FIELD CODE Tuex MV-2(55') Tuex MV-2(55') Tuex MV-4(10') Tuex MV-4(10') Tuex MV-4(10') Tuex MV-4(10') Tuex MV-1(10') Tu				_		of Containers	ÞΝ			/				7	1	1	7					\Re
FIELD CODE Tuex MV-2(55') Tuex MV-2(55') Tuex MV-4(10') Tuex MV-4(10') Tuex MV-4(10') Tuex MV-4(10') Tuex MV-1(10') Tu					-						_											2
FIELD CODE TAUX MN-2(55) TAUX MN-2(55) TAUX MN-2(55) TAUX MN-3(50) TAUX MN-4(50) TAUX MN-4(15) TAUX MN-4(15) TAUX MN-4(15) TAUX MN-4(15) TAUX MN-4(15) TAUX MN-1(10) TAUX MN-1											1	>		>	0	10	4					\mathcal{A}
The miles Sampled The miles						bəlqms2 əm	ijΤ	8	Ø	Ó	6	\ \frac{1}{2}	8	93	2	315	?					5
The miles Sampled The miles								0	1	1	1	1	0	0	7	30	08					<u>1</u>
The MV-2 (55) The MV-2 (55) The MV-2 (55) The MV-2 (55) The MV-2 (10) The MV-2 (10) The MV-4 (10) Scales MV-1 (20) Scales MV-2 (415)								N	~	~	a	~		~ ~	4		7				•	
The MV-2 (55) The MV-2 (55) The MV-2 (55) The MV-2 (55) The MV-2 (10) The MV-2 (10) The MV-4 (10) Scales MV-1 (20) Scales MV-2 (415)						are esmpiea	20	10	10	20	0	ò	10	Š	9	2	0			od be		q pa
The MV-2 (55) The MV-2 (55) The MV-2 (55) The MV-2 (55) The MV-2 (10) The MV-2 (10) The MV-4 (10) Scales MV-1 (20) Scales MV-2 (415)						P 4 1 2 - 1 - 1	- 0		3	1	[3	100	"		``	17.	13			Celv		Çe iç
TWEN MV-2 (TWEN MV-2 (TWEN MV-2 (TWEN MV-3 (TWEN M								2	02	.6	0	0/	0	. 8	, 6	,00	.02		61	Re		Re
TWEN MV-2 (TWEN MV-2 (TWEN MV-2 (TWEN MV-3 (TWEN M																		0	7	a.	2	o o
TWEN MV-2 (TWEN MV-2 (TWEN MV-2 (TWEN MV-3 (TWEN M																		22	4-	Ē	3	Tig.
TWEN MV-2 (TWEN MV-2 (TWEN MV-2 (TWEN MV-3 (TWEN M																		7	×		<u> </u>	
TWEN MV-2 (TWEN MV-2 (TWEN MV-2 (TWEN MV-3 (TWEN M												5	1		N. C.			>	Ŋ		B	
TWEN MV-2 (TWEN MV-2 (TWEN MV-2 (TWEN MV-3 (TWEN M							DE		(8	ß	0	Ġ	20	1	2	18	X	3	Date	7	Date
TWEN MV-2 (TWEN MV-2 (TWEN MV-2 (TWEN MV-3 (TWEN M							200	þ	N	~		く	义 人	"	//)	\sim	3	Š		3/2	
NAHAHAHAM.	1						ĒL	5	1	, 27		, w	3	4-	5-2	3	3	7	VI			
NAHAHAHAM.							Ľ.	3	3	3	3	3	3	3	3	Z	E	, in				
NAHAHAHAM.								3	1	- F	1	•	1	1	"	500	8	4.5				
NAHAHAHAM.								×	X	3	3	Ž	Š	Ž	Ş	Š	3	Ž	1			
3. 3 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -								Į	3	3	I	13	13	3	13	S	S	8	•			
AB # (lab use only) AB # (lab use only) OS OL OI OI II II II II II Relinquished by:								M								_				1	Al.	
AB # (lab use o							nly)	ហ	دِ	5	8	8	٥	=	71			ions			1/1	
AB # (lab u Special Inst						જ્	se o	0	0	_	_			-				truci	•	Ğ,	K	by:
AB # (I						, ST	ab u											Inst		shed	1/2	shed
S S Pell						9	# *											cial		ngui	•	ngrii
					1	03	AB.											Spe		Reli		Reli

FILE

ANALYTICAL REPORT

Prepared for:

KEN DUTTON Environmental Technology Group, Inc. 2540 W. MARLAND **HOBBS, NM 88240**

Project:

INEX

PO#:

Order#:

G0204574

Report Date:

09/30/2002

Certificates

US EPA Laboratory Code TX00158

SAMPLE WORK LIST

Environmental Technology Group, Inc.

G0204574

2540 W. MARLAND

Order#: Project:

YA 2220

HOBBS, NM 88240

Project Name: INEX

505-397-4701

Location:

Artesia, NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

				Date / Time	Date / Time		
Lab ID:	Sample:	Matrix:		Collected	Received	Container	Preservative
0204574-01	MW 1	WATER		9/19/02	9/20/02	See COC	See COC
				13:20	14:05		
<u>La</u>	ib Testing:	Rejected:	No	Ten	ip: 3.0 C		
' I	8021B/5030 BTEX						
	Chloride						
	Total Dissolved Solids	(TDS)	,	=			
0204574-02	MW 2	WATER		9/19/02	9/20/02	See COC	See COC
0201071 02				14:02	14:05		
<u>La</u>	ib Testing:	Rejected:	No	Tem	p: 3.0 C		
	8021B/5030 BTEX						
	Chloride						
	Total Dissolved Solids	(TDS)					
0204574-03	MW 3	WATER		9/19/02	9/20/02	See COC	See COC
				12:50	14:05		
<u>La</u>	b Testing:	Rejected:	No	Tem	p: 3.0 C		
	8021B/5030 BTEX						
	Chloride						
	Total Dissolved Solids	(TDS)	_				
0204574-04	MW 4	WATER		9/19/02	9/20/02	See COC	See COC
020101101				13:45	14:05		
<u>La</u>	b Testing:	Rejected:	No	Tem	p: 3.0 C		
	8021B/5030 BTEX						
	Chloride						
	Total Dissolved Solids	(TDS)					

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240

Order#:

G0204574

Project:

YA 2220 **INEX**

Project Name: Location:

Artesia, NM

Lab ID:

0204574-01

Sample ID:

MW 1

Test Parameters			Dilution			Date	
Parameter	Result	<u>Units</u>	<u>Factor</u>	<u>RL</u>	Method	Analyzed	<u>Analyst</u>
Chloride	1110	mg/L	1	5.00	9253	9/24/02	SB
Total Dissolved Solids (TDS)	3880	mg/L	1	5.0	160.1	9/25/02	TAL

Lab ID:

0204574-02

Sample ID:

MW 2

Test Parameters			Dilution		Date				
Parameter	Result	<u>Units</u>	Factor	RL	Method	Analyzed	<u>Analyst</u>		
Chloride	319	mg/L	1	5.00	9253	9/24/02	SB		
Total Dissolved Solids (TDS)	2270	mg/L	1	5.0	160.1	9/25/02	TAL		

Lab ID:

0204574-03

Sample ID:

MW 3

Test Parameters			Dilution			Date			
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	Analyst		
Chloride	37200	mg/L	1	5.00	9253	9/24/02	SB		
Total Dissolved Solids (TDS)	67400	mg/L	1	5.0	160.1	9/25/02	TAL		

Lab ID:

0204574-04

Sample ID:

MW 4

Test Parameters			Dilution			Date	
Parameter	Result	<u>Units</u>	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	<u>Analyst</u>
Chloride	21300	mg/L	1	5.00	9253	9/24/02	SB
Total Dissolved Solids (TDS)	38200	mg/L	1	5.0	160.1	9/25/02	TAL

Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech.

Sara Molina, Lab Tech.

QUALITY CONTROL REPORT

8021B/5030 BTEX

Order#: G0204574

BLANK	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L		0003245-02			<0.001		
Ethylbenzene-mg/L		0003245-02			<0.001		
Toluene-mg/L		0003245-02			<0.001		
p/m-Xylene-mg/L		0003245-02			<0.001		
o-Xylene-mg/L		0003245-02			<0.001		
MS	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L		0204610-04	0	0.1	0.096	96.%	
Ethylbenzene-mg/L		0204610-04	0	0.1	0.098	98.%	
Toluene-mg/L		0204610-04	0	0.1	0.100	100.%	
p/m-Xylene-mg/L		0204610-04	0	0.2	0.208	104.%	
o-Xylene-mg/L		0204610-04	0	0.1	0.098	98.%	• •
MSD	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L	······································	0204610-04	0	0.1	0.102	102.%	6.1%
Ethylbenzene-mg/L		0204610-04	0	0.1	0.104	104.%	5.9%
Toluene-mg/L		0204610-04	0	0.1	0.105	105.%	4.9%
p/m-Xylene-mg/L		0204610-04	0	0.2	0.221	110.5%	6.1%
o-Xylene-mg/L		0204610-04	0	0.1	0.105	105.%	6.9%
SRM	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L		0003245-05	**************************************	0.1	0.095	95.%	
Ethylbenzene-mg/L		0003245-05		0.1	0.097	97.%	
Foluene-mg/L		0003245-05		0.1	0.098	98.%	
p/m-Xylene-mg/L		0003245-05		0.2	0.207	103.5%	
o-Xylene-mg/L		0003245-05		0.1	0.098	98.%	,

QUALITY CONTROL REPORT

Test Parameters

Order#: G0204574

BLANK WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L	0003215-01			<5.00		
Total Dissolved Solids (TDS)-mg/L	0003239-01			<5.0		
DUPLICATE WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Total Dissolved Solids (TDS)-mg/L	0204572-01	6140		6160		0.3%
MS WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L	0204560-01	425	500	922	99.4%	
MSD WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L	0204560-01	425	500	913	97.6%	1.%
SRM WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L	0003215-04		5000	4960	99.2%	

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#:

G0204574

Project:

YA 2220

Project Name: Location:

INEX Artesia, NM

Lab ID:

0204574-01

Sample ID:

MW 1

8021B/5030 BTEX

Method Blank

Date **Prepared**

Date **Analyzed**

Sample <u>Amount</u> 1

Dilution **Factor**

1

Analyst CK

Method 8021B

0003245-02

9/27/02 15:52

Result RLParameter mg/L 0.001 Benzene < 0.001 0.001 < 0.001 Ethylbenzene 0.001 Toluene < 0.001 p/m-Xylene < 0.001 0.001 0.001 <0.001 o-Xylene

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	84%	80	120
Bromofluorobenzene	85%	80	120

Lab ID:

0204574-02

Sample ID:

MW 2

8021B/5030 BTEX

Method Blank 0003245-02

Date Prepared

Date **Analyzed** 9/27/02

9:07

Sample **Amount** 1

Dilution <u>Factor</u> 1

Analyst CK

Method 8021B

Result RL**Parameter** mg/L 0.001 Benzene < 0.001 0.001 < 0.001 Ethylbenzene 0.001 Toluene < 0.001 <0.001 0.001 p/m-Xylene 0.001 o-Xylene <0.001

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	84%	80	120
Bromofluorobenzene	87%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#: Project: G0204574

Project Name:

YA 2220 **INEX**

Location:

Artesia, NM

Lab ID:

0204574-03

Sample ID:

MW 3

8021B/5030 BTEX

Method Blank 0003245-02

Date **Prepared**

Date Analyzed 9/27/02

17:43

Sample **Amount** 1

Dilution **Factor**

Analyst CK

Method 8021B

Result RL **Parameter** mg/L 0.001 Benzene < 0.001 < 0.001 0.001 Ethylbenzene <0.001 0.001 Toluene 0.001 p/m-Xylene <0.001 < 0.001 0.001 o-Xylene

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	80%	80	120
Bromofluorobenzene	82%	80	120

Lab ID:

0204574-04

Sample ID:

MW 4

8021B/5030 BTEX

Method Blank 0003245-02

Date Prepared

Date Analyzed 9/27/02 18:05

Sample **Amount** 1

Dilution **Factor** 1

Analyst CK

Method 8021B

Result RL**Parameter** mg/L 0.001 < 0.001 Benzene 0.001 Ethylbenzene < 0.001 0.001 Toluene < 0.001 0.001 <0.001 p/m-Xylene 0.001 <0.001 o-Xylene

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	97%	80	120
Bromofluorobenzene	94%	80	120

ANALYTICAL REPORT

KEN DUTTON

Environmental Technology Group, Inc.

2540 W. MARLAND HOBBS, NM 88240 Order#:

G0204574

Project:

YA 2220

Project Name:

INEX

Location:

Artesia, NM

Approval: Kolom

Data

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech.

Sara Molina, Lab Tech.

TAT preprieta Jalubado2-919) TAT HZUR ARTESIM, NM CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST (ac: : 1/9) Project Name: ZNEX Temperature Upon Receipt Sample Containers Infact? Analyze For aboratory Comments: BTEX 8021BM santelozi Netals As Ag Ba Cd Cr Pb Hg Se TOTAL ORONORA METOR HOT Project #: Project Loc: PO #: 1812 Hd1 708 CL SAR / EC Офег (specify) HOS Sınqde 1916W Office (Specify) C'7 auoN Preservative HOBN HCI iONH Fax No: 505 901 No. of Containers 1250 704 32 Delqms2 emiT 88248 MAKLAND 101 Received by Date Sampled Environmental Lab of Texas, Inc. S Fax: 915-563-1713 Phone: 915-563-1800 Jutton FIELD CODE 40885 Company Address: 2540 Sampler Signature: Telephone Nq S OS Company Name 6 City/State/Zip: Project Manager: Odessa, Texas 79763 12600 West I-20 East Special Instructions: LAB # (lab use only) UMB Relinquis of by: 67 \mathcal{S} ह Relinquished by 6

Appendix C
Water Well Search

New Mexico Office of the State Engineer Well Reports and Downloads

Township: 188	Range: 26E Sections:	22,23,24,25,26,27,34,35	5,36
NAD27 X:	Y: Zone:	Search Radius	manage water say it make up to 1
County:	Basin:	Number:	Suffix:
Owner Name: (First)	(Last)	C Non-Domestic	c C Domestic C All
Well / Su	rface Data Report	Avg Depth to Water R	eport
1	Water Column		
	Clear Form WATE	RS Menu Help	

AVERAGE DEPTH OF WATER REPORT 06/04/2003

								(Depth	Water	in	Feet)
Bsn	Tws	Rng	Sec	Zone	x	Y	Wells	Min	Max		Avg
RA.	18S	26E	22				3	55	70		62
RA	18S	26E	23				2	70	80		75
RA.	18S	26E	24				4	18	90		40
RA	18s	26E	26				6	50	55		52
RA	18S	26E	27				2	60	85		73
RA	18S	26E	34				2	70	100		85
RA	18S	26E	35				9	40	50		46

Record Count: 28

New Mexico Office of the State Engineer

New Mexico Office of the State Engineer Well Reports and Downloads

Township: 18S Range: 26E Sections: 22,23,24,25,26,27,34,35,36	NAD27 X: Zone: Zone: Search Radius:	County: Suffix:	Owner Name: (First) (Last) (Cast)	Weil / Surface Data Report Avg Depth to Water Report Clear Form WATERS Menu Help
---	-------------------------------------	-----------------	-----------------------------------	--

WELL / SURFACE DATA REPORT 06/04/2003

		Nort	362;	362:	362;	362;	362;	362!	3621	361	3621	361	361!	362.	362:	362;	362;	362:	362:	362;	361	3611	361	3611
	Meters)	Easting	559997	559998	560197	560899	560899	556755	561603	559504	556755	559200	559200	560098	560199	561199	559997	559998	560197	559997	558395	558395	558496	558395
	UTM are in Meters	UTM Zone	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
		×																						
	are in Feet	×																						
	X Y are	Zone																						
(4=SE)	llest	מ מ	ო	3 1 1	132	2 1	2 1	2 1	111	2	2 1	433	433	13	3 3 2	2 2 1	133	3 1 1	132	131	3 1 3	3 1 3	3 1 0	3 1 3
1=NW 2=NE 3=SW 4=SE	biggest to smallest	Rng Sec	26E 23	26E 23	26E 23	26E 23	26E 23	26E 23	26E 25	26E 34	26E 23	26E 27	26E 27	26E 23	26E 23	26E 23	26E 23	26E 23	6E 23	6E 23	6E 34	6E 34	6E 34	6E 34
=NW 2=1	iggest	Tws R	185 26	185 26	185 26	18S 26	18S 20	185 26	185 26	. •	185 26	185 26	185 26		185 26		185 26	185 26	185 26	185 26	185 26	18S 26	18S 26	185 26
(quarters are 1	ers are	Source	Shallow	Shallow	Shallow				Shallow			Artesian	Artesian	Artesian	Shallow	Shallow	Shallow	Shallow	Shallow		Artesian	Artesian	Artesian	Artesian
enb)	(quart	Well Number	RA 01296	RA 01296 S	RA 01296 S2	RA 00773	RA 00774	RA 00775	RA 01524 S7	RA 00815	RA 00775	RA 00888 A	RA 00888 A	RA 01144 -S	RA 01210	RA 01210 S	RA 01296		RA 01296 S2	RA 01446 A	RA 01703	RA 01703 CLW	RA 01703 REPAR	RA 01703 REPAR 2
	(mnuun	on Owner	25 CHARLES MARTIN, INC.			3 R.C. HORNER	3 TOM LATTION	0 BOARD OF REGENTS	.2 DONALD FANNING AND SONS, INC.	0 FORREST LEE	25 NEW MEXICO STATE UNIVERSITY	ĮΣĮ	.5 GREGORY ROCKHOUSE, LLC	0 CHARIES R. MARTIN	75 ROGERS, INC.		15 CHARLES MARTIN INC.				.2 STANLEY WALDRIP			
	per a	Diversion	1188.25						2832.2		344.225	143.5	24.5		673.75		1067.15				319.2			
	e ft	Ωį																						
	(acre ft per annum)	Use Dir	IRR			MOO	DOM	DOM	IRR	IRR	IRR	IRR	IRR	DOM	IRR		IRR			nul	IRR			

NEW CORPORATION N. RA 01658	558395 3610 560105 3610	59200 3	60798 3	62000	61600 3	61600 3	61600 3	61215 3	58395 3	58796 3	61704 3	58495 3	62804 3	63004	58495 3	59196 3	58594 3	62508 3	61600 3	62801 3	59200 3	60807 3	60511 3	58496	60798 3	59701 3	61704 3	61109 3	80609	20000	60.908 60.908	60908	58395 3	60625 3	60625 3	60625 3	60625 3	60625 3	60625 3	60625 3	m	61803 3	200	58394 36	
NEW ET AL	13 13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	er (E .	13	2. T.	13	13	13	13	13	13	13	13	13	13	13			
NETURES & E. B. MINTON JR. RA 01868	9 9 9	4 3	2 1	1 2	1 3	1 1	1 3	2 2	3 1	1 2	7	-	2 4	2 4	H	2 3	1 1	4	1 3	2 2	4 3	43	, 	ო	2 1	7	Н.	₽ '	4	* <	1 4	4	ж ж	3.4	3.4	3.4	3.4	3 4	3.4	3 4	3 4	1 1	4 3	1 3	٢
NEY ET AL RA 01858 NEY ET AL RA 01883 LI RA 02132 BS RA 03109 RA 03207 RA 03409 RA 03409 RA 03409 RA 03409 RA 03590 RA 04022 RA 04018 RA 04022 RA 04018 RA 04021 RA 04021 RA 04021 RA 07242 -EXPL RA 07243 EXPL LDRIP RA 07243 EXPL RA 09201 RA 092	8S 26E 3 8S 26E 2	8S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 3	S 26E 3	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 3	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	S 26E 2	2020	2 CE 2	S 26E 2	S 26E 3	5 26E 3	S 26E 3	S 26E 3	S 26E 3	5 26E 3	S 26E 3	5 26E 3	8S 26E 3	8S 26E 2	8S 26E 2	S 26E 2	מ מי
NEY ET AL RA 01858 NEY ET AL RA 01883 LA 02132 RA 03204 RA 03209 RA 03209 RA 04003 RA 07243 N RA 07243 N RA 07243 N RA 09209 RA 09211	Artesian	Artesian		Shallow		E S	Shallow	Shallow	Shallow	ä		Shallow	Shallow	Shallow				Shallow	Artesian				Artesian	Shallow				Shallow	Shallow	Shallow Challon	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	~	~~	
FRANKRI BARE IN KO	1.			02132	02132	02132	02132							03409					-									07219	07242	01242	07243	07243													
	E E.		×	BOB MORGAN				& RESSE OIL	CLEMENT HENDRICKS	MARK FANNING	DONALD E. FANNING	JOE LEE			WESTERN VENTURES	WESTERN VENTURES	JONES AND MACARTHUR	& JOHNNIE	& JOHNNIE			о; •	o,	J.H. WILLIS	QUENTIN ROGERS	TODD TIDWELL			ບໍ່ ເ	; ;	ن ز	່ວ່	N									H&S OIL LLC	VICKIE BOYCE	B.R. WILSON	THE CASE OF THE PARTY AND THE
	01858 IRR 01881 PRO	01883 IRR	02132 nul	02132 B IRR				02627 PRO	02804 DOM	03055 DOM	03217 nul	03340 DOM	03409 DOM	03409 REPAR DOM	03580 OIL	03298 OIL	03599 nul	03750 STK	03900 DOM	03968 DOM	04003 DOM	04018 OBS	04022 OBS		05237 DOM				07242 -EXPL DOM	TOVE	EXP	EXPL	07394 DOM	09207 NOT	09208 NOT	09209 NOT	09210 NOT	09211 NOT	09212 NOT	09213 DOM	09214 NOT	09374 PRO	09437 DOM	09466 DOM	MOG 474

ecord Count: 69

New Mexico Office of the State Engineer