AP - 45

STAGE 1 & 2 WORKPLANS

DATE:
MARCH 16, 2005

Corrective Action Plan for the P-6 Line Leak Site T20S, R36E, Section 6, Unit Letter P Lea County, New Mexico

MARCH 16, 2005

Prepared For:

RICE Operating Company 122 West Taylor Hobbs, New Mexico 88240

Prepared By:

TRIDENT

P O Box 7624 Midland, Texas 79708

CERTIFIED MAIL RETURN RECIEPT NO. 7099 3400 0017 1737 2510

March 16, 2005

Mr. Wayne Price New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RE: CORRECTIVE ACTION PLAN
EME P-6 LINE LEAK
T20S-R37E-Section 6, Unit Letter P
NMOCD CASE # 1R0422

Mr. Price:

RICE Operating Company (ROC) has retained Trident Environmental to address potential environmental concerns at the above-referenced site. ROC is the service provider (operator) for the EME SWD System and has no ownership of any portion of the pipeline, well, or facility. The System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis. Environmental projects of this magnitude require System Partner AFE approval and work begins as funds are received. In general, project funding is not forthcoming until NMOCD approves the work plan. Therefore, your timely review of this submission is requested.

For all environmental projects, ROC will choose a path forward that:

- o protects public health,
- o provides the greatest net environmental benefit,
- o complies with NMOCD Rules, and
- o is supported by good science.

This Corrective Action Plan (CAP) is a proposal for the recommended remedy based on the results of additional site characterization and assessment conducted on January 21, 2005. After implementing the remedy, a <u>closure report</u> with final documentation will be submitted.

INVESTIGATION & CHARACTERIZATION ASSESSMENT

Background

The P-6 line leak site is located on land owned by ChevronTexaco in township 20 south, range 36 east, section 6, unit letter P approximately 4 miles west-southwest of Monument, NM as shown on the attached site location map (Figure 1). Land in the site area is primarily utilized for crude oil and gas production and cattle ranching. Area crude oil and gas production is operated by ChevronTexaco and Dynegy.

Soil Sampling Procedures and Results

On January 21, 2005, a backhoe was mobilized on site to facilitate the collection of soil samples for further delineation of the vertical and horizontal extent of hydrocarbon- and chloride-impacted soil, which resulted from a historic line leak at the site. Soil samples were field-tested for chloride content using the titration method in accordance with procedures explained in QP-01 (attached). Soil samples submitted to the laboratory were analyzed for gas and diesel range organics (GRO and DRO) using EPA Method 8015 to determine TPH concentrations. Samples were also collected for headspace analysis using an organic vapor meter (OVM), which was calibrated to assume a benzene response factor. Samples with headspace readings or GRO levels above 100 ppm were also analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA Method 8260B. The following concentrations of analytes were used to delineate the lateral and vertical extent of impact to the vadose zone:

- o 100 mg/kg TPH
- o 100 ppm OVM, and/or 10 mg/kg benzene and 50 mg/kg BTEX
- o 250 ppm chloride

The results of the soil sampling and analysis are summarized in Table 1 and depicted in Figure 2. Based on all of the sampling results to date the area of impacted soil is no more than 30 feet in diameter near the surface. The impacted soil decreases in magnitude and lateral extent with depth to a maximum depth of approximately 19 feet directly below the line leak. The lab reports, chain of custody, and photographic documentation for the January 21, 2005, soil sampling activities are attached in the appendices.

Groundwater Elevations, Flow Direction and Hydraulic Gradient

The most recent depth to water measurements were obtained on February 7, 2005. The most recent water table elevations and direction of groundwater flow are shown on the site map (Figure 3). Depth to groundwater beneath the site area is approximately 30 feet below ground surface. The hydraulic gradient is approximately 0.001 feet/foot with a gradient direction heading to the southeast. Groundwater elevation data for the current and all previous monitoring events is summarized in Table 2.

Chloride, Sulfate, and TDS Concentrations in Groundwater

Each monitoring well (P6-1, P6-2, and M5-1) has been sampled on a quarterly basis for major ions, TDS, and BTEX. A summary of pertinent analytical results and groundwater elevations is listed in Table 2. Analytical results are also depicted on the site map in Figure 3 and in graphical format in Figures 4, 5, and 6.

- BTEX concentrations in monitoring wells P6-1, P6-2, and M5-1 have been below the laboratory detection limit of 0.001 mg/L for each constituent and for every sampling event taken place.
- O Chloride concentrations in monitoring wells P6-1 (8,210 mg/L), P6-2 7,030 mg/L), and M5-1 (6,710 mg/L) exceed the WQCC standard of 250 mg/L.
- o Monitoring wells P6-1 (1,870 mg/L), P6-2 (1,860 mg/L), M5-1 (1,450 mg/L) exceed the WOCC standard of 600 mg/L for sulfate.
- TDS concentrations in monitoring wells P6-1 (17,800 mg/L), P6-2 (15,300 mg/L), and M5-1 (13,200 mg/L) exceed the WQCC standard of 1,000 mg/L.

Chloride and TDS concentrations in monitoring wells P6-1, P6-2, and M5-1 have remained relatively stable although some minor fluctuations have occurred. No correlations between chloride/TDS concentrations and changes in groundwater levels are evident at this time.

Proposed Remedies

Excavation, lining, backfilling, and reseeding with native vegetation, as described herein, are proposed as engineering controls for site remediation. The excavation contractor will be responsible for contacting the New Mexico One Call for all line location requests. During excavation operations, subsurface soil samples will be collected and field screened with an organic vapor analyzer (OVM). Soil samples will also be field-tested for chloride content using the titration method in accordance with procedures explained in QP-01 (attached).

It is proposed that using conventional backhoe equipment, the excavation shall not exceed an average of 12 to 16 feet below ground surface (bgs). Soil with GRO or DRO levels above 1,000 mg/kg shall be hauled to an NMOCD-approved facility. Upon completion of excavation activities, closure samples will be collected in accordance with the procedures explained in QP-06, QP-07, and QP-08 (attached). Soil samples submitted to the laboratory shall be analyzed for gas and diesel range organics (GRO and DRO) using EPA Method 8015 to determine TPH concentrations. Samples with headspace readings or GRO levels above 100 ppm will also be analyzed for BTEX using EPA Method 8021B.

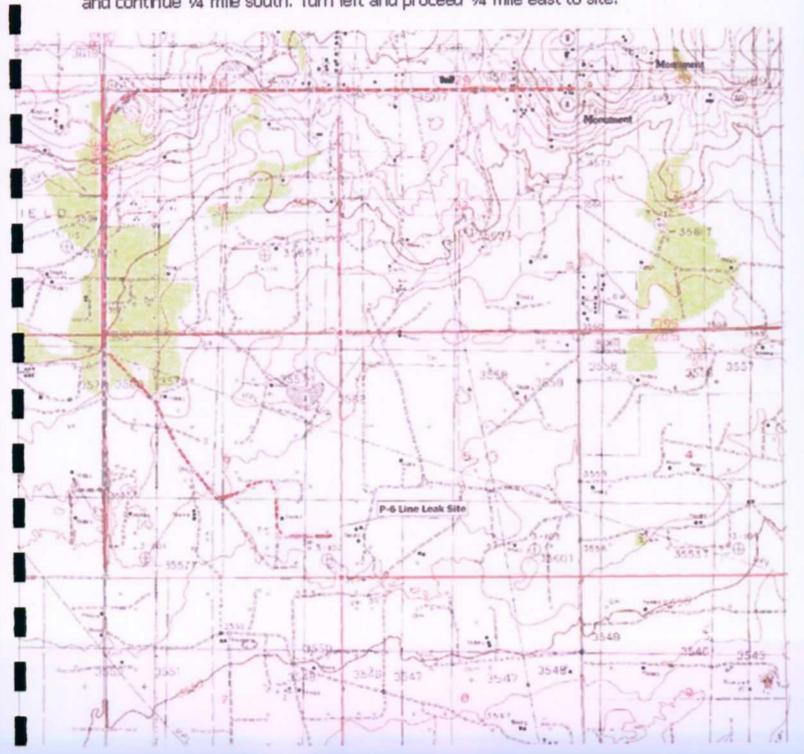
A minimum 10-12 inch thick clay liner, compacted to meet or exceed 95 percent of a Proctor Test (ASTM-D-698) with a permeability less than or equal to 10-7 cm/sec, will be installed three to five feet below ground surface. The clay liner will be sloped to the southeast and shall extend laterally to insure sufficient deflection of any potential infiltrating water originating from the surface. The backfill (above and below the clay liner) will be composed of blended or remediated soil that will support vegetation. The surface will be contoured and shall be reseeded with native vegetation to eliminate any ponding of precipitation and promote evapotranspiration, thereby minimizing natural infiltration. Vegetation will be monitored for growth.

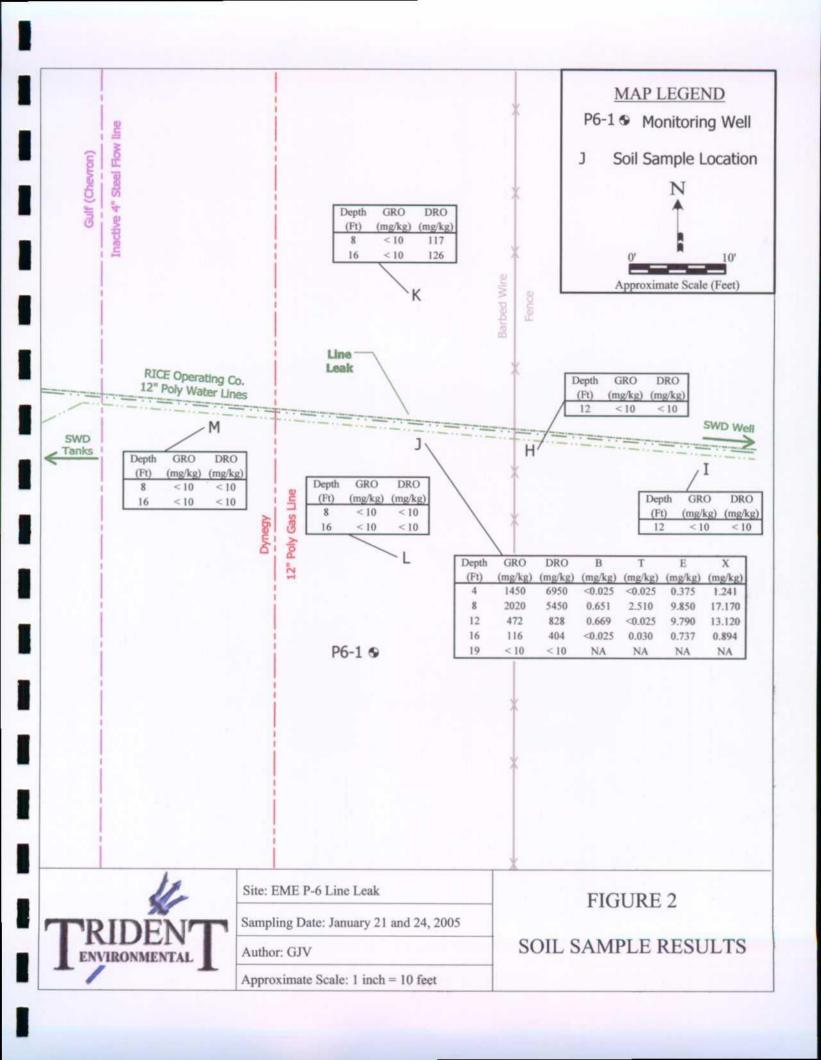
Continued monitoring of groundwater quality (major ions and TDS) is recommended at a reduced frequency (semi-annually). The next two years of groundwater monitoring will be compared to the three-year trend already documented in which the chloride and TDS levels have not increased as a result of a line leak at this site. Analysis for BTEX concentrations should be suspended, as there has been no indication of dissolved hydrocarbons since the groundwater monitoring program began in January 2002 (13 consecutive quarters).

Sincerely,

Gilbert J. Van Deventer, REM, PG, NMCS Trident Environmental - Project Manager

, and the second second


cc: CDH, KFP, file


enclosures: maps, tables, graphs, sampling procedures, and laboratory reports

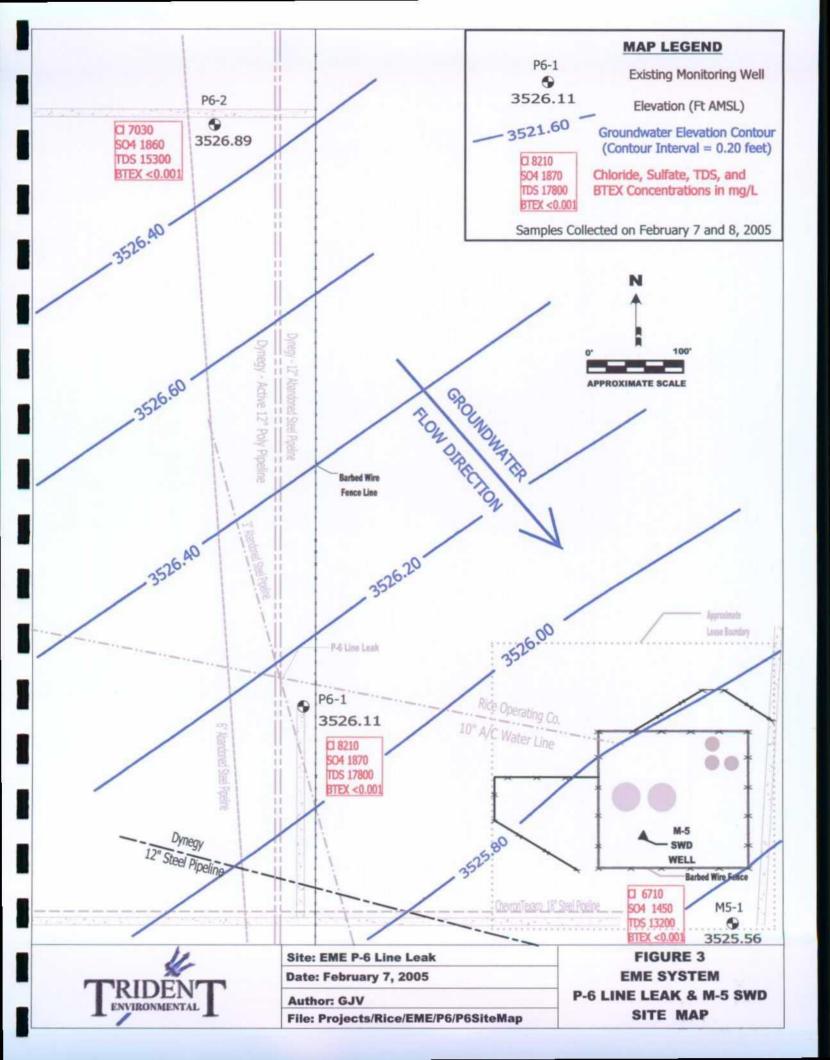

MAPS

Figure 1 Site Location Map P-6 Line Leak Site T20S-R36E-Sec 6P

Directions: From the junction of Hwy 322 and Hwy 8 in Monument proceed 2 miles west on Hwy 322 then 0.5 miles south. Turn left onto CR 41 (Maddox Rd) and continue 1/2 mile south. Turn left onto caliche lease road and proceed southeast 34 mile to gate. Proceed through gate and continue northeast 1/4 mile. Turn right and continue 1/4 mile south. Turn left and proceed 1/4 mile east to site.

TABLES AND GRAPHS

Table 1
SOIL SAMPLE RESULTS

Sampling Date: January 21 & 24, 2005 E Sample Depth Chloride **GRO** DRO T X Sample OVM В Location (Ft bgs) (ppm) (ppm) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 165 0 NA NA NA NA 4 NA NA Η 2.5 8 118 NA NA NA NA NA NA 12 116 2 < 10 < 10 NA NA NA NA 4 144 0 NA NA NA NA NA NA I 8 146 0 NA NA NA NA NA NA 12 144 0 < 10 < 10 NA NA NA NA 4 145 71 0.375 1.241 1450 6950 < 0.025 < 0.025 8 551 309 2020 5450 0.651 2.510 9.850 17.170 J 12 871 425 472 0.669 < 0.025 9.790 828 13.120 16 813 169 116 404 < 0.025 0.030 0.737 0.894 19 453 9 < 10 < 10 NA NA NA NA 2 4 152 NA NA NA NA NA NA 8 289 2 < 10 117 NA NA NA NA K 0 12 306 NA NA NA NA NA NA 16 174 0 < 10 126 NA NA NA NA 7 4 138 NA NA NA NA NA NA 8 153 0 < 10 < 10 NA NA NA NA L 12 594 0 NA NA NA NA NA NA 16 986 0 < 10 < 10 NA NA NA NA 4 115 0 NA NA NA NA NA NA 8 < 10 85 0 < 10 NA NA NA NA M 12 0 262 NA NA NA NA NA NA 259 < 10 16 0 < 10 NA NA NA NA

Chloride analysis performed on site using chloride titration method (QP-03)

Organic Vapor Analyzer (OVM) readings obtained using Thermal Instruments Model 51B calibrated for benzene.

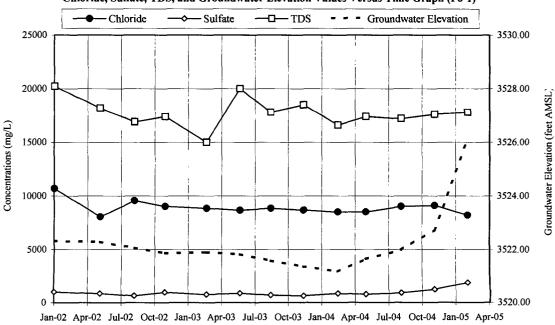
Gas Range Organics (GRO) and Diesel Range Organics (DRO) analyzed using EPA Method 8015M.

Benzene, toluene, ethylbenzene, and xylenes (BTEX) analyzed using EPA Method 8060B.

Table 2
Summary of Groundwater Sampling Results
EME P-6 Line Leak Site

					31112	Line Lear	LOICE			
Monitoring Well	Sample Date	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet AMSL)
	01/10/02	10700	999	20248	< 0.002	< 0.002	< 0.002	< 0.006	36.70	3522.32
	05/14/02	8060	852	18200	< 0.001	< 0.001	< 0.001	< 0.001	36.73	3522.29
	08/15/02	9570	646	16900	< 0.001	< 0.001	< 0.001	< 0.001	36.95	3522.07
	11/06/02	9040	952	17400	< 0.001	< 0.001	< 0.001	< 0.001	37.15	3521.87
	02/27/03	8860	741	15000	< 0.001	< 0.001	< 0.001	< 0.001	37.12	3521.90
	05/29/03	8680	858	20000	< 0.001	< 0.001	< 0.001	< 0.001	37.19	3521.83
P6-1	08/21/03	8860	683	17800	< 0.001	< 0.001	< 0.001	< 0.001	37.43	3521.59
	11/19/03	8690	619	18500	< 0.001	< 0.001	< 0.001	< 0.001	37.64	3521.38
	02/20/04	8510	830	16600	< 0.001	< 0.001	< 0.001	< 0.001	37.84	3521.18
	05/06/04	8510	756	17400	< 0.001	< 0.001	< 0.001	< 0.001	37.36	3521.66
	08/10/04	9040	889	17200	< 0.001	< 0.001	< 0.001	< 0.001	37.03	3521.99
	11/09/04	9130	1220	17600	< 0.001	< 0.001	< 0.001	< 0.001	36.28	3522.74
	02/07/05	8210_	1870	17800	< 0.001	< 0.001	< 0.001	< 0.001	33.54	3526.11
	02/20/04	9040	1260	19700	< 0.001	< 0.001	< 0.001	< 0.001	37.97	3521.68
	05/06/04	8330	1340	16100	< 0.001	< 0.001	< 0.001	< 0.001	37.29	3522.36
P6-2	08/10/04	8240	1220	15400	< 0.001	< 0.001	< 0.001	< 0.001	36.97	3522.68
	11/09/04	7670	1280	15700	< 0.001	< 0.001	< 0.001	< 0.001	35.83	3523.82
	02/07/05	7030	1860	15300	< 0.001	< 0.001	< 0.001	< 0.001	32,76	3526.89
	12/11/03	6198	99.8	10784	< 0.002	< 0.002	< 0.002	< 0.006	33.28	3521.13
	02/20/04	5320	454	14500	< 0.002	< 0.002	< 0.002	< 0.006	33.37	3521.04
M5-1	05/06/04	5940	420	12400	< 0.002	< 0.002	< 0.002	< 0.006	32.79	3521.62
1412-1	08/10/04	6910	470	17300	< 0.001	< 0.001	< 0.001	< 0.001	32.52	3521.89
	11/09/04	7090	614	14000	< 0.001	< 0.001	< 0.001	< 0.001	31.63	3522.78
	02/07/05	6710	1450	13200	< 0.001	< 0.001	< 0.001	< 0.001	28.85_	3525.56
WQCC St		250	600	1000	0.01	0.75	0.75	0.62		

Total Dissolved Soilds (TDS), chloride, sulfate, and BTEX concentrations listed in milligrams per liter (mg/L)


Analyses performed by Environmental Lab of Texas, Odessa, TX.

Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards.

AMSL - Above Mean Sea Level; BTOC - Below Top of Casing

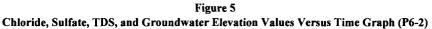

Elevations and state plane coordinates surveyed by Basin Surveys, Hobbs, NM

Figure 4
Chloride, Sulfate, TDS, and Groundwater Elevation Values Versus Time Graph (P6-1)

Sampling Date

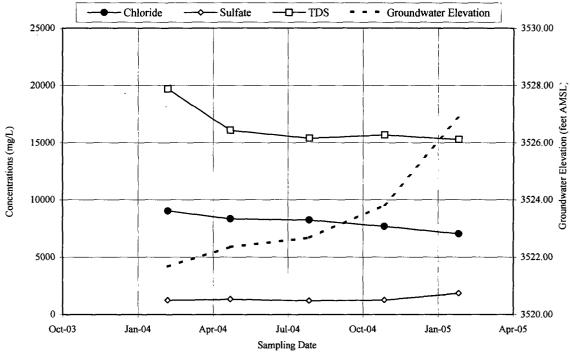
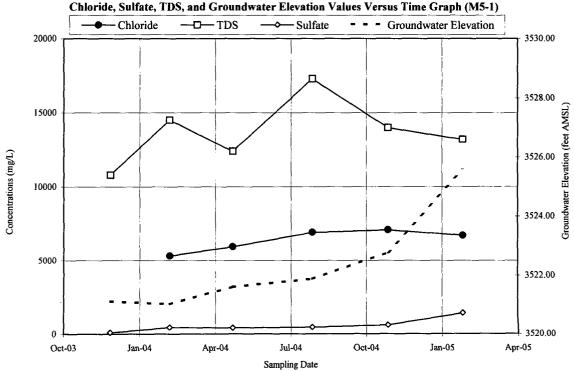



Figure 6
Chloride, Sulfate, TDS, and Groundwater Elevation Values Versus Time Graph (M5-1)

PHOTODOCUMENTATION

Sampling activity at location "H" approximately 12 feet east of former leak point (center of photo).

Sample location "J" at 16 ft depth directly below former leak point.

View of P-6 Line Leak Site facing north after completion of backhoe sampling activities.

LABORATORY REPORTS

AND

CHAIN OF CUSTODY DOCUMENTATION

Analytical Report

Prepared for:

Kristin Farris
Rice Operating Co.
122 W. Taylor
Hobbs, NM 88240

Project: EME System P-6 Line Leak Site

Project Number: None Given

Location: T20S, R37E, Sec 6, Unit Letter P

Lab Order Number: 5A25025

Report Date: 02/07/05

Project: EME System P-6 Line Leak Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
H (12')	5A25025-01	Soil	01/21/05 09:45	01/25/05 16:20
I (12')	5A25025-02	Soil	01/21/05 10:15	01/25/05 16:20
J (4')	5A25025-03	Soil	01/21/05 11:05	01/25/05 16:20
J (8')	5A25025-04	Soil	01/21/05 11:10	01/25/05 16:20
J (12')	5A25025-05	Soil	01/21/05 11:15	01/25/05 16:20
J (16')	5A25025-06	Soil	01/21/05 11:30	01/25/05 16:20
J (19')	5A25025-07	Soil	01/24/05 09:00	01/25/05 16:20
K (8')	5A25025-08	Soil	01/24/05 10:05	01/25/05 16:20
K (16')	5A25025-09	Soil	01/24/05 10:15	01/25/05 16:20
L (8')	5A25025-10	Soil	01/24/05 10:40	01/25/05 16:20
L (16')	5A25025-11	Soil	01/24/05 10:55	01/25/05 16:20
M (8')	5A25025-12	Soil	01/24/05 11:30	01/25/05 16:20
M (16')	5A25025-13	Soil	01/24/05 12:30	01/25/05 16:20

Project: EME System P-6 Line Leak Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

Organics by GC Environmental Lab of Texas

Analista	Danik	Reporting	Limita	~# ·					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
H (12') (5A25025-01) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/30/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	U	"		n	"	n	
Total Hydrocarbon C6-C35	ND	10.0	"		**	**	"	"	
Surrogate: 1-Chlorooctane		90.6 %	70-13	30	"	n	n	"	
Surrogate: 1-Chlorooctadecane		97.6 %	70-13	30	"	"	n	'n	
I (12') (5A25025-02) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	**	*	**	n	,,	"	
Total Hydrocarbon C6-C35	ND	10.0	"	"	**		11	"	
Surrogate: 1-Chlorooctane		93.0 %	70-13	80	"	"	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70-13	80	"	"	n	"	
J (4') (5A25025-03) Soil									
Gasoline Range Organics C6-C12	1450	50.0	mg/kg dry	5	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	6950	50.0	#	**	"	11	"	"	
Total Hydrocarbon C6-C35	8400	50.0	"	"	"	"	"	**	
Surrogate: 1-Chlorooctane		21.8 %	70-13	80	"	"	"	n	S-0
Surrogate: 1-Chlorooctadecane		23.0 %	70-13	80	"	u	n	"	S-0
J (8') (5A25025-04) Soil									
Gasoline Range Organics C6-C12	2020	50.0	mg/kg dry	5	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	5450	50.0	**	"	"	**	"	"	
Total Hydrocarbon C6-C35	7470	50.0	"	"	"		"	"	
Surrogate: 1-Chlorooctane		24.6 %	70-13	30	n	"	,,	"	S-0
Surrogate: 1-Chlorooctadecane		25.2 %	70-13	30	"	"	,,	"	S-0
J (12') (5A25025-05) Soil									
Gasoline Range Organics C6-C12	472	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	828	10.0	"	"	11	11	"	"	
Total Hydrocarbon C6-C35	1300	10.0		н	#	"	*		
Surrogate: 1-Chlorooctane		97.6 %	70-13	80	n	"	n	"	
Surrogate: 1-Chlorooctadecane		98.4 %	70-13	80	**	"	"	n	

Project: EME System P-6 Line Leak Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

Organics by GC Environmental Lab of Texas

		Reporting			····			· · · · · · · · · · · · · · · · · · ·	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
J (16') (5A25025-06) Soil									
Gasoline Range Organics C6-C12	116	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	· -
Diesel Range Organics >C12-C35	404	10.0	*	"	,,	**	u	"	
Total Hydrocarbon C6-C35	520	10.0	n	"	11	**	**	n	
Surrogate: 1-Chlorooctane		87.6 %	70-13	30	"	"	"	"	· -
Surrogate: 1-Chlorooctadecane		84.6 %	70-13	30	"	"	"	ıı .	
J (19') (5A25025-07) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	11		*	"	"		
Total Hydrocarbon C6-C35	ND	10.0	**	77	•	"	n	n	
Surrogate: 1-Chlorooctane		82.0 %	70-13	80	"	"	"	"	
Surrogate: 1-Chlorooctadecane		84.6 %	70-13	30	"	"	n	n	
K (8') (5A25025-08) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	117	10.0	n	н	u	"	**		
Total Hydrocarbon C6-C35	117	10.0		"		н	11	"	
Surrogate: 1-Chlorooctane		78.2 %	70-13	80	"	"	"	"	
Surrogate: 1-Chlorooctadecane		82.0 %	70-13	30	n	"	n	"	
K (16') (5A25025-09) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	126	10.0	"	"	**	**	#	11	
Total Hydrocarbon C6-C35	126	10.0	II	"	"	"	u	**	
Surrogate: 1-Chlorooctane		84.6 %	70-13	30	"	"	"	<u>"</u>	
Surrogate: 1-Chlorooctadecane		89.0 %	70-13	10	"	"	"	"	
L (8') (5A25025-10) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	II	ıı	#	u	**	u	
Total Hydrocarbon C6-C35	ND	10.0	"	11				"	
Surrogate: 1-Chlorooctane		85.4 %	70-13	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		89.8 %	70-13	80	n	"	"	"	

Project: EME System P-6 Line Leak Site

Project Number: None Given Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

Organics by GC Environmental Lab of Texas

Andrea	Result	Reporting Limit	Units						
Analyte	Result	Limi		Dilution	Batch	Prepared	Analyzed	Method	Notes
L (16') (5A25025-11) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	II	"	n	u	n .	n	
Total Hydrocarbon C6-C35	ND	10.0	"	"	"	"	u	"	
Surrogate: 1-Chlorooctane		84.6 %	70-13	80	"	"	"	"	
Surrogate: 1-Chlorooctadecane		87.8 %	70-13	0	"	"	"	"	
M (8') (5A25025-12) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	•	**	"	•	"	"	
Total Hydrocarbon C6-C35	ND	10.0	•	"	"	н	**	**	
Surrogate: I-Chlorooctane		101 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		107 %	70-13	0	"	"	"	"	
M (16') (5A25025-13) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EA52802	01/28/05	01/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	**	*	"	"	**	**	
Total Hydrocarbon C6-C35	ND	10.0	"	"	n	"	,,	"	
Surrogate: 1-Chlorooctane		78.0 %	70-13	0	"	,,	,,	"	
Surrogate: 1-Chlorooctadecane		80.8 %	70-13	0	"	,,	"	"	

Project: EME System P-6 Line Leak Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
H (12') (5A25025-01) Soil				.".				·····	
% Moisture	15.4		%	1	EA52605	01/26/05	01/27/05	% calculation	_
I (12') (5A25025-02) Soil									
% Moisture	2.5		%	1	EA52605	01/26/05	01/27/05	% calculation	
J (4') (5A25025-03) Soil									
% Moisture	14.4		%	1	EA52605	01/26/05	01/27/05	% calculation	
J (8') (5A25025-04) Soil									
% Moisture	16.2		%	1	EA52605	01/26/05	01/27/05	% calculation	
J (12') (5A25025-05) Soil									
% Moisture	19.3		%	1	EA52605	01/26/05	01/27/05	% calculation	
J (16') (5A25025-06) Soil									
% Moisture	14.7		%	1	EA52605	01/26/05	01/27/05	% calculation	
J (19') (5A25025-07) Soil									
% Moisture	3.2		%	1	EA52605	01/26/05	01/27/05	% calculation	
K (8') (5A25025-08) Soil									
% Moisture	9.9		%	1	EA52605	01/26/05	01/27/05	% calculation	
K (16') (5A25025-09) Soil									
% Moisture	7.0		%	1	EA52605	01/26/05	01/27/05	% calculation	
L (8') (5A25025-10) Soil									
% Moisture	14.9		%	1	EA52605	01/26/05	01/27/05	% calculation	
L (16') (5A25025-11) Soil									
% Moisture	12.7		%	1	EA52605	01/26/05	01/27/05	% calculation	

Project: EME System P-6 Line Leak Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
M (8') (5A25025-12) Soil									
% Moisture	15.4		%	1	EA52605	01/26/05	01/27/05	% calculation	
M (16') (5A25025-13) Soil									
% Moisture	9.5		%	1	EA52605	01/26/05	01/27/05	% calculation	

Project: EME System P-6 Line Leak Site

Project Number: None Given Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

SPLP Volatile Organic Compounds by EPA Method 1312/8260B

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Extracted	Prepared	Analyzed	Method	Notes
H (12') (5A25025-01) Soil			·							
Benzene	ND	1.00	ug/l	1	EB50401	01/31/05 SPLP	02/01/05	02/01/05	EPA 8260B	
Toluene	ND	1.00		"	*	**	"	8	#	
Ethylbenzene	J [0.680]	1.00		"	"	**	11	#	**	J
Xylene (p/m)	1.06	1.00	"	11	"	**	н	#	*	
Xylene (o)	ND	1.00	**	"	"		ıı	"	"	
Naphthalene	1.05	1.00	n	**		11	11	n	"	
Surrogate: Dibromofluoromethane		97.6 %	70)-139	"	"	"	"		
Surrogate: 1,2-Dichloroethane-d4		87.0 %	52	?-149	"	n	"	n	n	
Surrogate: Toluene-d8		97.2 %	76	5-125	"	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		102 %	66	5-145	,,	"	"	"	"	

Project: EME System P-6 Line Leak Site

Project Number: None Given Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

Volatile Organic Compounds by EPA Method 8260B Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
J (4') (5A25025-03) Soil							···		
Benzene	ND	25.0	ug/kg dry	25	EA53105	01/28/05	01/31/05	EPA 8260B	
Foluene	J [14.8]	25.0	u	"	"		**	"	
Ethylbenzene	375	25.0	u	*	"	**	**	**	
Xylene (p/m)	131	25.0	n	"	"	"	· ·	**	
Xylene (o)	1110	25.0	**	**	"	"	"	"	
Naphthalene	42.3	25.0	Ħ	"		**	"	**	
Surrogate: Dibromofluoromethane		90.4 %	70-1	39	"	"	n	"	
Surrogate: 1,2-Dichloroethane-d4		80.4 %	52-1	49	"	"	"	"	
Surrogate: Toluene-d8		92.6 %	76-1	25	"	,,	"	"	
Surrogate: 4-Bromofluorobenzene		112 %	66-1	45	"	"	r	"	
J (8') (5A25025-04) Soil									
Benzene	651	100	ug/kg dry	100	EA53105	01/28/05	01/28/05	EPA 8260B	
Toluene	2510	100	"	**	**	н	**	**	
Ethylbenzene	9850	100	"	"	"	"	**	**	
Kylene (p/m)	12500	100	"	**	**	**	**	н	
Kylene (o)	4670	100	**	**	**	*		**	
Naphthalene	2800	100				**	"		
Surrogate: Dibromofluoromethane		100 %	70-1	39	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		92.8 %	52-1	49	"	"	"	,,	
Surrogate: Toluene-d8		96.6 %	76-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.2 %	66-1	45	"	n	n	"	
J (12') (5A25025-05) Soil									
Benzene	669	100	ug/kg dry	100	EA53105	01/28/05	01/28/05	EPA 8260B	
Coluene	J [73.6]	100	11	"	**	"	"	*	
Ethylbenzene	9790	100	п		"	**	"	"	
Kylene (p/m)	11300	100	**	**	"	n	"	"	
(ylene (o)	1820	100	п	"	"	"	"	"	
Naphthalene	3100	100		"	**		**		
Surrogate: Dibromofluoromethane		100 %	70-1	39	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		95.2 %	52-1	49	n	"	"	"	
Surrogate: Toluene-d8		97.8 %	76-1	25	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		93.8 %	66-1	45	n	n	"	"	

Project: EME System P-6 Line Leak Site

Project Number: None Given Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

Volatile Organic Compounds by EPA Method 8260B Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
J (16') (5A25025-06) Soil									
Benzene	ND	25.0	ug/kg dry	25	EA53105	01/28/05	01/28/05	EPA 8260B	
Toluene	29.7	25.0	**	"	"	"	"	#	
Ethylbenzene	737	25.0	**	**	•	*	*	"	
Xylene (p/m)	807	25.0	"	"	"	"	"	**	
Xylene (o)	87.1	25.0	"	**		n		н	
Naphthalene	246	25.0	"	"	*	u	"	"	
Surrogate: Dibromofluoromethane		98.2 %	70-1	39	"	n	n	"	
Surrogate: 1,2-Dichloroethane-d4		91.2 %	52-1	49	"	"	,,	"	
Surrogate: Toluene-d8		96.0 %	76-1	25	"	n	n	"	
Surrogate: 4-Bromofluorobenzene		99.0 %	66-1	45	"	"	"	,,	

Project: EME System P-6 Line Leak Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source	0/5==	%REC	p.=-	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA52802 - Solvent Extraction (GC)										
Blank (EA52802-BLK1)				Prepared: (01/28/05 Aı	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							*
Diesel Range Organics >C12-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10,0	Ħ							
Surrogate: 1-Chlorooctane	39.2		mg/kg	50.0		78.4	70-130		·	
Surrogate: 1-Chlorooctadecane	36.4		"	50.0		72.8	70-130			
Blank (EA52802-BLK2)				Prepared: (01/28/05 Aı	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	ND	10,0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	#							
Total Hydrocarbon C6-C35	ND	10,0	#							
Surrogate: 1-Chlorooctane	35.8		mg/kg	50.0		71.6	70-130			
Surrogate: 1-Chlorooctadecane	39.7		,,	50.0		79.4	70-130			
LCS (EA52802-BS1)				Prepared: ()1/28/05 Ar	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	433	10.0	mg/kg wet	500		86.6	75-125	•		•
Diesel Range Organics >C12-C35	481	10.0	u	500		96.2	75-125			
Total Hydrocarbon C6-C35	914	10.0	u	1000		91.4	75-125			
Surrogate: 1-Chlorooctane	37.4		mg/kg	50.0		74.8	70-130			
Surrogate: 1-Chlorooctadecane	37.1		"	50.0		74.2	70-130			
LCS (EA52802-BS2)				Prepared: 0)1/28/05 Ar	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	450	10.0	mg/kg wet	500		90.0	75-125			
Diesel Range Organics >C12-C35	458	10.0	II.	500		91.6	75-125			
Total Hydrocarbon C6-C35	908	10.0	u	1000		90.8	75-125			
Surrogate: 1-Chlorooctane	38.2	-··- <u>-</u>	mg/kg	50.0		76.4	70-130			_
Surrogate: 1-Chlorooctadecane	36.4		"	50.0		72.8	70-130			
Calibration Check (EA52802-CCV1)				Prepared: ()1/28/05 Ar	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	445		mg/kg	500		89.0	80-120			
Diesel Range Organics >C12-C35	541		н	500		108	80-120			
Total Hydrocarbon C6-C35	986		"	1000		98.6	80-120			
Surrogate: 1-Chlorooctane	50.9		"	50.0		102	70-130			
Surrogate: 1-Chlorooctadecane	46.5		"	50.0		93.0	70-130			

Project: EME System P-6 Line Leak Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

Organics by GC - Quality Control Environmental Lab of Texas

	_	Reporting		Spike	Source	e	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch EA52802 - Solvent Extraction (GC)										
Calibration Check (EA52802-CCV2)				Prepared: (01/28/05 A	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	471		mg/kg	500		94.2	80-120			
Diesel Range Organics >C12-C35	520		**	500		104	80-120			
Total Hydrocarbon C6-C35	991		*	1000		99.1	80-120			
Surrogate: 1-Chlorooctane	43.8		"	50.0		87.6	70-130			
Surrogate: 1-Chlorooctadecane	47.7		"	50.0		95.4	70-130			
Matrix Spike (EA52802-MS1)	Sou	rce: 5A25025	5-01	Prepared: (01/28/05 A	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	551	10.0	mg/kg dry	591	ND	93.2	75-125			
Diesel Range Organics >C12-C35	593	10.0	"	591	ND	100	75-125			
Total Hydrocarbon C6-C35	1140	10.0	"	1180	ND	96.6	75-125			
Surrogate: 1-Chlorooctane	46.6		mg/kg	50.0		93.2	70-130			
Surrogate: 1-Chlorooctadecane	49.5		"	50.0		99.0	70-130			
Matrix Spike (EA52802-MS2)	Sou	rce: 5A26005	5-02	Prepared: (01/28/05 A	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	497	10.0	mg/kg dry	544	ND	91.4	75-125			
Diesel Range Organics >C12-C35	575	10.0	**	544	ND	106	75-125			
Total Hydrocarbon C6-C35	1070	10.0	n	1090	ND	98.2	75-125			
Surrogate: 1-Chlorooctane	48.5		mg/kg	50.0		97.0	70-130			
Surrogate: 1-Chlorooctadecane	53.6		n	50.0		107	70-130			
Matrix Spike Dup (EA52802-MSD1)	Sou	rce: 5A25025	5-01	Prepared: (01/28/05 A					
Gasoline Range Organics C6-C12	533	10.0	mg/kg dry	591	ND	90.2	75-125	3.32	20	
Diesel Range Organics >C12-C35	624	10.0		591	ND	106	75-125	5.09	20	
Total Hydrocarbon C6-C35	1160	10.0	"	1180	ND	98.3	75-125	1.74	20	
Surrogate: 1-Chlorooctane	52.6		mg/kg	50.0		105	70-130			
Surrogate: 1-Chlorooctadecane	50.2		"	50.0		100	70-130			
Matrix Spike Dup (EA52802-MSD2)	Sou	rce: 5A26005	5-02	Prepared: (01/28/05 A	nalyzed: 01	/29/05			
Gasoline Range Organics C6-C12	493	10.0	mg/kg dry	544	ND	90.6	75-125	0.808	20	
Diesel Range Organics >C12-C35	570	10.0	"	544	ND	105	75-125	0.873	20	
Total Hydrocarbon C6-C35	1060	10.0	n	1090	ND	97.2	75-125	0.939	20	
Surrogate: 1-Chlorooctane	46.1		mg/kg	50.0		92.2	70-130			
Surrogate: 1-Chlorooctadecane	49.4		"	50.0		98.8	70-130			

Rice Operating Co. 122 W. Taylor Project: EME System P-6 Line Leak Site

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project Number: None Given
Project Manager: Kristin Farris

Reported: 02/07/05 10:12

General Chemistry Parameters by EPA / Standard Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EA52605 - General Preparation (Prep)

 Blank (EA52605-BLK1)
 Prepared: 01/26/05 Analyzed: 01/27/05

 % Moisture
 0.004
 %

 Duplicate (EA52605-DUP1)
 Source: 5A25021-01
 Prepared: 01/26/05
 Analyzed: 01/27/05

 % Moisture
 1.8
 %
 1.6
 11.8
 20

Project: EME System P-6 Line Leak Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

SPLP Volatile Organic Compounds by EPA Method 1312/8260B - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB50401 - EPA 1312/ZHE							****			
Blank (EB50401-BLK1)				Prepared &	Analyzed:	02/01/05				
Benzene	ND	1.00	ug/l							
Toluene	ND	1.00	"							
Ethylbenzene	ND	1.00	"							
Xylene (p/m)	ND	1.00	**							
Xylene (o)	ND	1.00	"							
Naphthalene	0.740	1.00								
Surrogate: Dibromofluoromethane	48.8		"	50.0		97.6	70-139			
Surrogate: 1,2-Dichloroethane-d4	41.3		n	50.0		82.6	52-149			
Surrogate: Toluene-d8	48.6		"	50.0		97.2	76-125			
Surrogate: 4-Bromofluorobenzene	51.8		"	50.0		104	66-145			
LCS (EB50401-BS1)										
Benzene	56.5		ug/l	50.0		113	70-130			
Γoluene	56.4			50.0		113	70-130			
Ethylbenzene	51.9		"	50.0		104	70-130			
Xylene (p/m)	90.4		"	100		90.4	70-130			
Xylene (o)	57.2		**	50.0		114	70-130			
Naphthalene	57.0		"	50.0		114	70-130			
Surrogate: Dibromofluoromethane	48.6		"	50.0		97.2	70-139			-
Surrogate: 1,2-Dichloroethane-d4	48.8		"	50.0		97.6	52-149			
Surrogate: Toluene-d8	49.8		"	50.0		99.6	76-125			
Surrogate: 4-Bromofluorobenzene	51.6		"	50.0		103	66-145			
Calibration Check (EB50401-CCV1)										
Toluene	55.5		ug/l	50.0		111	70-130			
Ethylbenzene	51.3		"	50.0		103	70-130			
Surrogate: Dibromofluoromethane	49.3	.,	"	50.0		98.6	70-139			
Surrogate: 1,2-Dichloroethane-d4	45.5		"	50.0		91.0	52-149			
Surrogate: Toluene-d8	49.7		n	50.0		99.4	76-125			
Surrogate: 4-Bromofluorobenzene	49.2		"	50.0		98.4	66-145			

Project: EME System P-6 Line Leak Site

Spike

Source

Project Number: None Given Project Manager: Kristin Farris

Reporting

Fax: (505) 397-1471

Reported: 02/07/05 10:12

RPD

%REC

SPLP Volatile Organic Compounds by EPA Method 1312/8260B - Quality Control Environmental Lab of Texas

Analyte	Result	Limit Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB50401 - EPA 1312/ZHE									
Matrix Spike (EB50401-MS1)	Source	ce: 5A25025-01	Prepared:	02/01/05 A	2/02/05				
Benzene	56.5	ug/l	50.0	ND	113	70-130			
Toluene	57,6	n	50.0	ND	115	70-130			
Ethylbenzene	54.3	n	50.0	0.680	107	70-130			
Xylene (p/m)	98.5		100	1.06	97.4	70-130			
Xylene (o)	58.0	"	50.0	ND	116	70-130			
Naphthalene	53.8	u	50.0	1.05	106	70-130			
Surrogate: Dibromofluoromethane	49.3	n	50.0		98.6	70-139			
Surrogate: 1,2-Dichloroethane-d4	50.5	n	50.0		101	52-149			
Surrogate: Toluene-d8	49.3	n	50.0		98.6	76-125			
Surrogate: 4-Bromofluorobenzene	50.6	n	50.0		101	66-145			
Matrix Spike Dup (EB50401-MSD1)	Sour	ce: 5A25025-01	Prepared:	02/01/05 A	.nalyzed: 02	2/02/05			
Benzene	55.7	ug/l	50.0	ND	111	70-130	1.79	20	
Toluene	56.3	**	50.0	ND	113	70-130	1.75	20	
Ethylbenzene	54.1	**	50.0	0.680	107	70-130	0.00	20	
Xylene (p/m)	96.8	17	100	1.06	95.7	70-130	1.76	20	
Xylene (o)	57.8	Ħ	50.0	ND	116	70-130	0.00	20	
Naphthalene	56.1	**	50.0	1.05	110	70-130	3.70	20	
Surrogate: Dibromofluoromethane	47.7	, , , , , , , , , , , , , , , , , , , ,	50.0		95.4	70-139			•
Surrogate: 1,2-Dichloroethane-d4	48.6	•	50.0		97.2	52-149			
Surrogate: Toluene-d8	49.7	r ·	50.0		99.4	76-125			
Surrogate: 4-Bromofluorobenzene	51.6	,,	50.0		103	66-145			

Project: EME System P-6 Line Leak Site

Spike

Source

%REC

Project Number: None Given Project Manager: Kristin Farris

Reporting

Fax: (505) 397-1471

Reported: 02/07/05 10:12

RPD

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA53105 - EPA 5030C (GCMS)								_		
Blank (EA53105-BLK1)				Prepared &	Analyzed:	01/28/05				
Benzene	ND	25.0	ug/kg wet							
Toluene	ND	25.0	"							
Ethylbenzene	ND	25.0	**							
Xylene (p/m)	ND	25.0	"							
Xylene (o)	ND	25.0	**							
Naphthalene	ND	25.0	"							
Surrogate: Dibromofluoromethane	45.1		ug/l	50.0		90.2	70-139			_
Surrogate: 1,2-Dichloroethane-d4	41.2		"	50.0		82.4	52-149			
Surrogate: Toluene-d8	48.1		#	50.0		96.2	76-125			
Surrogate: 4-Bromofluorobenzene	47.1		"	50.0		94.2	66-145			
LCS (EA53105-BS1)				Prepared &	: Analyzed:	01/28/05				
Benzene	52.5		ug/l	50.0		105	70-130			
Гоluene	55.2		"	50.0		110	70-130			
Ethylbenzene	54.2			50.0		108	70-130			
Xylene (p/m)	99.2		n	100		99.2	70-130			
Xylene (o)	59.4		"	50.0		119	70-130			
Naphthalene	49.6		"	50.0		99.2	70-130			
Surrogate: Dibromofluoromethane	45.2		"	50.0		90.4	70-139			
Surrogate: 1,2-Dichloroethane-d4	46.2		n	50.0		92.4	52-149			
Surrogate: Toluene-d8	49.5		"	50.0		99.0	76-125			
Surrogate: 4-Bromofluorobenzene	48.7		"	50.0		97.4	66-145			
Calibration Check (EA53105-CCV1)				Prepared &	: Analyzed:	01/28/05				
Benzene	54.4		ug/l	50.0	 -	109	70-130			-
Toluene	55,4		u	50.0		111	70-130			
Ethylbenzene	53.4		"	50.0		107	70-130			
Xylene (p/m)	98.0		n	100		98.0	70-130			
Xylene (o)	57.3		"	50.0		115	70-130			
Naphthalene	49,5		ıı .	50.0		99.0	70-130			
Surrogate: Dibromofluoromethane	46.7		**	50.0		93.4	70-139			
Surrogate: 1,2-Dichloroethane-d4	48.7		"	50.0		97.4	52-149			
Surrogate: Toluene-d8	49.2		"	50.0		98.4	76-125			
Surrogate: 4-Bromofluorobenzene	50.5		"	50.0		101	66-145			

Project: EME System P-6 Line Leak Site

Source

Project Number: None Given Project Manager: Kristin Farris

Reporting

Fax: (505) 397-1471

Reported: 02/07/05 10:12

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control **Environmental Lab of Texas**

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA53105 - EPA 5030C (GCMS)										
Matrix Spike (EA53105-MS1)	Sour	ce: 5A27003-	03	Prepared &	Analyzed:	01/28/05				
Benzene	1390		ug/l	1250	ND	111	70-130			
Toluene	1430		"	1250	ND	114	70-130			
Ethylbenzene	1390		"	1250	ND	111	70-130			
Xylene (p/m)	2470		"	2500	30.7	97.6	70-130			
Xylene (o)	1480		"	1250	15.3	117	70-130			
Naphthalene	1210		"	1250	47.7	93.0	70-130			
Surrogate: Dibromofluoromethane	45.4	***	"	50.0		90.8	70-139			
Surrogate: 1,2-Dichloroethane-d4	46.3		"	50.0		92.6	52-149			
Surrogate: Toluene-d8	49.6		"	50.0		99.2	76-125			
Surrogate: 4-Bromofluorobenzene	49.8		n	50.0		99.6	66-145			
Matrix Spike Dup (EA53105-MSD1)	Sour	ce: 5A27003-	03	Prepared &	Analyzed:	: 01/28/05				
Benzene	1370		ug/l	1250	ND	110	70-130	0.905	20	
Toluene	1410		"	1250	ND	113	70-130	0.881	20	
Ethylbenzene	1360		**	1250	ND	109	70-130	1.82	20	
Xylene (p/m)	2460		"	2500	30.7	97.2	70-130	0.411	20	
Xylene (o)	1460		17	1250	15.3	116	70-130	0.858	20	
Naphthalene	1240		**	1250	47.7	95.4	70-130	2.55	20	
Surrogate: Dibromofluoromethane	47.9		"	50.0		95.8	70-139			
Surrogate: 1,2-Dichloroethane-d4	47.9		"	50.0		95.8	52-149			
Surrogate: Toluene-d8	49.2		"	50.0		98.4	76-125			
Surrogate: 4-Bromofluorobenzene	50.2		"	50.0		100	66-145			

Project: EME System P-6 Line Leak Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/07/05 10:12

Notes and Definitions

S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS · Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Raland Khuts

Date:

2/7/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas 12600 West I-20 East Phone: 432-563-1800 Odessa, Texas 79765 Fax: 432-563-1713

Project Manager: Kristin Farris

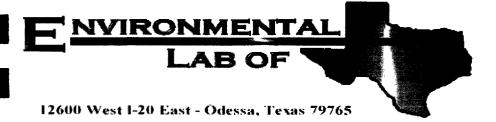
Project Name: EME System P-6 Line Leak Site

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project Location: T20S, R37E, Sec 6, Unit Letter P. Charles of the Charle iniqu. coc #: V117P6-0105-1 Page TCLP: Project #: Fax No: 505-397-1471 City/State/Zip: Hobbs, New Mexico 88240 Company Name Rice Operating Company Company Address: 122 West Taylor Telephone No: 505-393-9174 Sampler Signature:

TAT brabnat2	>	5	<u></u>	5	<u> </u>	5	5	5	_	_	[~ -	
RUSH TAT (Pre-Schedu								<u> </u>	-					-
L			_					 	-		2	J		}
**************************************					<u> </u>						1	_		
XBI'S SIEL 9.198	W	*	<u> </u>		5			 			a i		₩ #	
Total Dissolved Solids	HARRA								 			r :	Ē	}
N,O.R.M.			┢									4	>	
RCI			 	-				 			e #	Č.	, 3	
BTEXN (80216) 050 01 BTEXN			13	5	1	7					Sample Containers Intact? Temperature Upon Receipt. Laboratory Comments:	3	37	
Seitistovimes			_	·	<u> </u>						Sample Containers Intact Temperature Upon Receit Laboratory Comments:	f*) }	- 1
Volatiles	 	\vdash		 							G Co		~	
METRIS: WE WO BO CO CL DO HO	-			┝			-				ont.			1
SAR / ESP / CEC	ļ										ole (
Vuious (Ct, SOA, CO3, HCO3)	-			-		-					and and			
Cabbns (Ca, Mg, Na, K)		-	 	-						-	<u> </u>	~~~~	r	ᅥ
THE TREE TOOL TOOL	1		~		1	\vee	/			-/	1	E E	Time	3
Oque. (sbeqiy):	-			-	-*							=	F	1620
ilos	15	1	—	7		1	-2	5	-	1		-	-	\dashv
Sindge		<u> </u>	-	<u> </u>							-43		_	9
Water		-	-	-	ļ	 						Dafe	Date	1-25-65
Other (Specify)	ļ			-	_						ti di			3
Other (Society)											o .	-		
	-	_									Sa Sa			
*OS*H				-						-	l ä			1
HORN	<u> </u>	_									ě,			
на			-			-					2			
ниО³	_	_		_	_				_		9 (S			
100		,					1	10	^	7	vironmental.com and to enviro@leaco.nel アルタイト			1
No. of Containers	came	-	-	***	-,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-202-	,ran1***			ar			욁
											5			त
bəlqma2 əmiT	$\tilde{\gamma}$	V	M			_	Q	X	V	0	<u> </u>			Ç
belome2 emiT	2	0	٥	2	1	30	Ogoc	2	O	2401	i w			심
	Đ	_			_		0	-		سدمر	E W		<u>;:</u>	R
	35	1	, 1,2	ž	1,7	٠.	1	7	20-	105	ᅙ		by ELOT:	4
Date Sampled	0	300	70.	£ 35	100	0,	10	-05		1	<u> </u>	, p		
polame2 oted	7	01-21	7	3	51	7	67	4	63	e4	a o	elve	Received	3
	01-21	õ	17/10	17-10	01-21	41711-	17.10	72/10	01.24	1-24	rident-en	Received	Rec	
											Please email results to both gil@trident-en			
											h gil@tr Ang	4:2%	ime	
											g	1	·	
											t i	3		
154							. 1				sults to b) 125/05	9	- {
FIELD CODE											25	Date 7.5	Date	
9											ns			
				İ							<u> </u>			
_											E S	A		
		~	*	-	5	1	197	Market S.	()	<u></u>	9	()		
	7.7.	12.0	7	ò	(12)	16/		ò	160-	ेंक	eas	4		
	***************************************		~~	·	J)	^		استا	-	ā	Ì		
		1	+	> ()	1	دسا	-	7		<i>t</i> .		ال ا		1
\$			2				7) ms	S	0	ië 📈	The state of the s		
5#35025 LAB # (lab use only)	19	-02	50-	9	-03	-00	102	80-	-00	1	Special Instructions	$\mathcal{L}_{\mathcal{L}_{i}}$	ļ	
Z N	10 m					4.	*	Ą)	E	E N	p p	1
5/13/62/5										٠,			Relinquished by:	l
2 4											T C	Reling	ling	
চ 3											S S	<u>&</u>	æ	

Environmental Lab of Texas 12600 West 1-20 East Phone: 432-563-1800 Odessa, Texas 79765 Fax: 432-563-1713


CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

		- 1						Ī							epu		7	>		>								Γ					
ł		-			Γ-	-			ľ	pa	426	2-01	d) 1	(A)	HS	กม			 -	4			-	-	-	_	_	١.					
ابه		- {	ļ			-													┼-	+			├	├	├	├	-	Z		. 1			
S		ارد			١	-									T d'			_	┼-	+			├-	┼	├		├	┨		o O			1
ea (ea		ett	Ì	1	-	+						SOIIC			SIQ I			<u> </u>	╁	+			├-	┼	├-	-	┼	E	} (k o n		\$\frac{1}{2}	- }
9		뇯	1	ℓ_{γ}		H		·							.M.A.			-	╁	+	-	_	一	├-	 	 	 	1		•			
i	}	Ō	ĺ	Ų	ı											RCI			十	+			├─	 	 	-	1	1	پړ			ŏ	
9-		S	7	0		Ē	T	28 1	N)	EXI	T8 1	30 0	05/2	IZO	s Nix	ale.		_	1	+				f	\vdash	 	 	ğ	eceip mts:			Ρ. (V	- 1
티		E S	02	3	ŀ	Analyze For	†	丨						SOLO.	Slovin	uəs			T	7							1	il Si	S C			2	
XS	- {	33	coc #; V117P6-0105-2	Page 2 of	- 1	됩	T								591176	Note			Γ									Sample Containers Intact?	Temperature Upon Receipt:			yoz glass on ice	
3	1	S	7	ie.	0			95	5 51	SH :	0d 1	CQ C	ඉපු ඊ	A 26	y : SIE	Met]ຣົ	atur		1	7	
	1		3	60	.	1	TO TA	L					CEC	149	S3 / 1	8 A 2				\downarrow			!	_				튵	nper bors				
ĕ	*	Ç	#			- (٦۴	_	(1	(EO) suc				L	1					<u> </u>		<u> </u>	Sg	<u> </u>	,			_
2	Project #:	ocat	Ŝ		-			_) śuoj			_	K	4			_	-		<u> </u>	 	-		9		e e	0
Project Name: EME System P-6 Line Leak Site	à	Project Location: T20S, R37E, Sec 6, Unit Letter P			L	1		COT	31	S	100	Kis	-		BI6 :			-	1	4				-	-	-	—	ł		Time		Time	1620
å		rofe.							Ļ				:(\d):	000	her (s		-	7	\vdash	4			├	├-	-		┢	1		<u> </u>		-	
		2.						Matrix	<u>-</u>						eğpe (i	05	2	_^	╁	7					├-	-	├-	1					S
ı	1	1	1	ł	1				-) Ster			-	\vdash	+			\vdash	┼─	-	-	├-			Date		Date	1-25-05
- {		1	1	-				H	+	****			(4,10)	əd5) Jay			-	†	+				 	-		 	1 2	Į.				2
- {	- 1		}						t						эu	ON		-	1	7		ļ		1	1			1 8	3				
}	[- 1						ş	!						*os	ŽH.			T	1								6	ני ע				
- (- [- 1		7	ĺ			Preservative							но	en i] (9	3) 5				- {
1	1		}	4	}			Pres							į.	ЭН			L				_	_				1 2	Ξ				4
į			- 1	6	1				L						٤O)			Ļ	L	4			_	_	_			1 0	ָ כ			İ	\$
			-	5-3				Ц	ļ							308	>	_	↓	7			 	-	 		↓	1 3	2				3
-			1	8					L		····-	SUÐI	nietr	Cos	Jo .c	N.			1	#			_	_	_	<u> </u>	_	1 8	Ď				\$
				Fax No. 505-397-1471								p	a)dt	ทธลิ	3 em	ŧΤ	5501	1130	99	1470								o jetuow	in icalical.co			Ë	e memery
												ţ	ıəldı	meć	5 ede	ğ	20-1210	30-42-10		01-27-02								foot, any iron	יבוור בוואוו	Received by:		Received by ELOT:	Ser.
Project Manager, Kristin Farris	Company Name Rice Operating Company	Company Address: 122 West Taylor	city/State/Zip: Hobbs, New Mexico 88240	Telephone No. 505-393-9174	Samoler Signature:		ı								75673	LAB # (fab use only)	(91)7	CA W CA	* * * *									Special Instructions: Ologo compil possible to hoth will theirid	riedse email results to both griedin eminementalicom and to envirole eaching	Relinquished bys	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	

Environmental Lab of Texas

Variance / Corrective Action Report – Sample Log-In

Client: <u>Rice Operating</u> Date/Time: <u>1/25/05</u> 16:58	_			
Date/Time: 1/25/05 18:58				
Order#: <u>5A25025</u>				
Initials: TZH		•		
Sample Receip	t Checki	ist		
Temperature of container/cooler?	Yes	No	2,0° C	
Shipping container/cooler in good condition?	(Yes)	No		
Custody Seals intact on shipping container/cooler?	Yes	No	Not present	
Custody Seals intact on sample bottles?	Yes	No	(Not present >	
Chain of custody present?	Yes	No		
Sample Instructions complete on Chain of Custody?	Yes	No		
Chain of Custody signed when relinquished and received?	Yes	No		
Chain of custody agrees with sample label(s)	(Yes)	No	. 1 .	
Container labels legible and intact?	Yes	(No)	No lande-int	i written en tol
Sample Matrix and properties same as on chain of custody?	(Yes)	No		· · · · · · · · · · · · · · · · · · ·
Samples in proper container/bottle?	Yes	No		
Samples properly preserved?	Ves	No		
Sample bottles intact?	(Yes	No		
Preservations documented on Chain of Custody?	Yes	No		
Containers documented on Chain of Custody?	Yes	No		
Sufficient sample amount for indicated test?	Yes	No		
All samples received within sufficient hold time?	(yes	No		
VOC samples have zero headspace?	(es)	No	Not Applicable	
Other observations:				
Contact Person: - Kristin Date/Time: L- Regarding:	27-05	1435		pt.
8260 BTEX-4 are ox toron Rather	fran	80	CIB PT	
				-
Corrective Action Taken:				
•				
	····			
				······································
		····		······································
	·			

Analytical Report

Prepared for:

Kristin Farris
Rice Operating Co.
122 W. Taylor
Hobbs, NM 88240

Project: EME System P-6 Line Leak Site

Project Number: None Given

Location: T2OS, R36E, Sec 6, Unit Letter P

Lab Order Number: 5B09008

Report Date: 02/20/05

Project: EME System P-6 Line Leak Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
P6-1	5B09008-01	Water	02/07/05 16:45	02/09/05 07:00
P6-2	5B09008-02	Water	02/07/05 15:36	02/09/05 07:00

Rice Operating Co. 122 W. Taylor

Project: EME System P-6 Line Leak Site

Fax: (505) 397-1471

Hobbs NM, 88240

Project Number: None Given Project Manager: Kristin Farris

Reported: 02/20/05 14:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
P6-1	5B09008-01	Water	02/07/05 16:45	02/09/05 07:00
P6-2	5B09008-02	Water	02/07/05 15:36	02/09/05 07:00

Project: EME System P-6 Line Leak Site

Project Number: None Given Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
P6-1 (5B09008-01) Water									
Benzene	ND	0.00100	mg/L	1	EB51807	02/14/05	02/15/05	EPA 8021B	
Toluene	ND	0.00100	п	n	"	u	a	**	
Ethylbenzene	ND	0.00100	11	"	"	*	11	"	
Xylene (p/m)	ND	0.00100	17	*	"	n		**	
Xylene (o)	ND	0.00100	n .	"	11	ıı	u	n	
Surrogate: a,a,a-Trifluorotoluene		108 %	80-1.	20	"	,,	"	"	
Surrogate: 4-Bromofluorobenzene		116%	80-1.	20	"	"	,,	"	
P6-2 (5B09008-02) Water									
Benzene	ND	0.00100	mg/L	1	EB51807	02/14/05	02/15/05	EPA 8021B	
Toluene	ND	0.00100	**		*	"	"	11	
Ethylbenzene	ND	0.00100	n	•		n	#	rt	
Xylene (p/m)	ND	0.00100	п	,,	"	n		11	
Xylene (o)	ND	0.00100	#	"		**	n	u	
Surrogate: a,a,a-Trifluorotoluene		100 %	80-1.	20	"	,,	"	,,	
Surrogate: 4-Bromofluorobenzene		116%	80-1.	20	"	"	#	"	

Project: EME System P-6 Line Leak Site

Project Number: None Given Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte P6-1 (5B09008-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	218	2.00	mg/L	1	EB51404	02/15/05	02/15/05	EPA 310.2M	
Chloride	8210	500	*	1000	EB51713	02/10/05	02/10/05	EPA 300.0	
Total Dissolved Solids	17800	5.00	**	1	EB51004	02/09/05	02/10/05	EPA 160.1	
Sulfate	1870	500	"	1000	EB51713	02/10/05	02/10/05	EPA 300.0	
P6-2 (5B09008-02) Water									
Total Alkalinity	222	2.00	mg/L	1	EB51404	02/15/05	02/15/05	EPA 310.2M	
Chloride	7030	500	"	1000	EB51713	02/10/05	02/10/05	EPA 300.0	
Total Dissolved Solids	15300	5.00	"	1	EB51004	02/09/05	02/10/05	EPA 160.1	
Sulfate	1860	500	"	1000	EB51713	02/10/05	02/10/05	EPA 300.0	

Project: EME System P-6 Line Leak Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

Total Metals by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
P6-1 (5B09008-01) Water									
Calcium	1790	10.0	mg/L	1000	EB51702	02/14/05	02/16/05	EPA 6010B	
Magnesium	576	0.200	**	200	**	H	n	u	
Potassium	56.3	1.00	**	20	*	"	n	u	
Sodium	3960	10.0	**	1000	**	n	"	u	
P6-2 (5B09008-02) Water									
Calcium	1580	10.0	mg/L	1000	EB51702	02/14/05	02/16/05	EPA 6010B	
Magnesium	515	0.200	"	200	n	"	**	u	
Potassium	47.1	1.00	"	20	и	"	"	51	
Sodium	3550	10.0	**	1000	II.	**	11	11	

Project: EME System P-6 Line Leak Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

Organics by GC - Quality Control Environmental Lab of Texas

ND 0.00100 mg/L Toluene ND 0.00100 mg/L	Result %REC Limits RPD Limit Note 82.5 80-120 87.0 80-120 8 Analyzed: 02/14/05
Prepared Prepared	82.5 80-120 87.0 80-120 & Analyzed: 02/14/05
ND 0.00100 mg/L	82.5 80-120 87.0 80-120 & Analyzed: 02/14/05
Toluene	87.0 80-120 & Analyzed: 02/14/05
Surrogate: 4-Bromofluorobenzene 17.4 17.4 17.4 17.4 17.5 18.5 1	87.0 80-120 & Analyzed: 02/14/05
Xylene (p/m) ND 0.00100 " Xylene (o) ND 0.00100 " Surrogate: a,a,a-Trifluorotoluene 16.5 ug/l 20.0 Surrogate: 4-Bromofluorobenzene 17.4 " 20.0	87.0 80-120 & Analyzed: 02/14/05
Kylene (p)m) ND 0.00100 " Surrogate: a,a,a-Trifluorotoluene 16.5 ug/l 20.0 Surrogate: 4-Bromofluorobenzene 17.4 " 20.0	87.0 80-120 & Analyzed: 02/14/05
Surrogate: a,a,a-Trifluorotoluene 16.5 ug/l 20.0 Surrogate: 4-Bromofluorobenzene 17.4 " 20.0	87.0 80-120 & Analyzed: 02/14/05
Surrogate: 4-Bromofluorobenzene 17.4 " 20.0	87.0 80-120 & Analyzed: 02/14/05
surroguie. 4-promojiuoropenzene 17.4 20.0	& Analyzed: 02/14/05
LCS (EB51807-BS1) Prepared 8	
Benzene 105 ug/l 100	105 80-120
Toluene 105 " 100	105 80-120
Ethylbenzene 95.9 " 100	95.9 80-120
Kylene (p/m) 196 " 200	98.0 80-120
(ylene (o) 95.7 " 100	95.7 80-120
urrogate: a,a,a-Trifluorotoluene 16.5 " 20.0	82.5 80-120
Surrogate: 4-Bromofluorobenzene 16.8 " 20.0	84.0 80-120
LCS Dup (EB51807-BSD1) Prepared &	& Analyzed: 02/14/05
Benzene 113 ug/l 100	113 80-120 7.34 20
Toluene 112 " 100	112 80-120 6.45 20
Ethylbenzene 107 " 100	107 80-120 10.9 20
Kylene (p/m) 224 " 200	112 80-120 13.3 20
Kylene (o) 111 " 100	111 80-120 14.8 20
Surrogate: a,a,a-Trifluorotoluene 18.6 " 20.0	93.0 80-120
Surrogate: 4-Bromofluorobenzene 20.2 " 20.0	101 80-120
Calibration Check (EB51807-CCV1) Prepared:	: 02/14/05 Analyzed: 02/16/05
3enzene 97.5 ug/l 100	97.5 80-120
Toluene 104 " 100	104 80-120
Ethylbenzene 93.1 " 100	93.1 80-120
Kylene (p/m) 194 " 200	97.0 80-120
Kylene (o) 97.9 " 100	97.9 80-120
Surrogate: a,a,a-Trifluorotoluene 16.7 " 20.0	83.5 80-120
Surrogate: 4-Bromofluorobenzene 17.8 " 20.0	89.0 80-120

Project: EME System P-6 Line Leak Site

Fax: (505) 397-1471

Project Number: None Given
Project Manager: Kristin Farris

Reported: 02/20/05 14:23

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (EB51807-MS1)	Source: 51	Source: 5B09008-01			Analyzed: 02/18/05		
Benzene	93.3	ug/l	100	ND	93.3	80-120	
Toluene	101	u	100	ND	101	80-120	
Ethylbenzene	102	u	100	ND	102	80-120	
Xylene (p/m)	206	#	200	ND	103	80-120	
Xylene (o)	97.3	"	100	ND	97.3	80-120	
Surrogate: a,a,a-Trifluorotoluene	23.3	,,	20.0		116	80-120	
Surrogate: 4-Bromofluorobenzene	20.4	n	20.0		102	80-120	

Rice Operating Co. 122 W. Taylor

Project: EME System P-6 Line Leak Site

Fax: (505) 397-1471

Hobbs NM, 88240

Project Number: None Given Project Manager: Kristin Farris

Reported: 02/20/05 14:23

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

		Domestic		6-7			0/050		n.n.n	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB51004 - General Preparation	n (WetChem)									
Blank (EB51004-BLK1)				Prepared: ()2/09/05 A	nalyzed: 02	/10/05			
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EB51004-DUP1)	Sour	ce: 5B09003-	01	Prepared: (02/09/05 A					
Total Dissolved Solids	16200	5.00	mg/L		14600			10.4	20	
Batch EB51404 - General Preparation	on (WetChem)									
Blank (EB51404-BLK1)				Prepared &	: Analyzed:	02/15/05				
Total Alkalinity	ND	2.00	mg/L							
Duplicate (EB51404-DUP1)	Sour	ce: 5B09003-	01	Prepared &	: Analyzed:	02/15/05				
Total Alkalinity	395	2.00	mg/L		396			0.253	20	- · · · ·
Reference (EB51404-SRM1)				Prepared &	Analyzed:	02/15/05				
Carbonate Alkalinity	0.0510		mg/L	0.0500		102	80-120			-
Batch EB51713 - General Preparation	on (WetChem)									
Blank (EB51713-BLK1)	<u> </u>	<u>-</u>		Prepared &	: Analyzed:	02/10/05				
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	"							
LCS (EB51713-BS1)				Prepared &	: Analyzed:	02/10/05				
Sulfate	9.66		mg/L	10.0		96.6	80-120			

10.0

9.56

95.6

80-120

Project: EME System P-6 Line Leak Site

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project Number: None Given
Project Manager: Kristin Farris

Reported: 02/20/05 14:23

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike	Source	%REC	%REC Limits	DDD	RPD	Votes
Analyte	Resuit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB51713 - General Preparation (V	VetChem)									
LCS Dup (EB51713-BSD1)				Prepared &	Analyzed:	02/10/05				
Sulfate	9.64		mg/L	10.0		96.4	80-120	0.207	20	
Chloride	9.51		"	10.0		95.1	80-120	0.524	20	
Calibration Check (EB51713-CCV1)				Prepared &	Analyzed:	02/10/05				
Chloride	9.73		mg/L	10.0	•	97.3	80-120			
Sulfate	9.88		"	10.0		98.8	80-120			
Duplicate (EB51713-DUP1)	Sou	Source: 5B09004-01			Prepared & Analyzed: 02/10/05					
Chloride	304	10.0	mg/L		304			0.00	20	
Sulfate	357	10.0	"		356			0.281	20	

Project: EME System P-6 Line Leak Site

2.00

Fax: (505) 397-1471

122 W. Taylor

Sodium

Project Number: None Given

Reported: 02/20/05 14:23

Hobbs NM, 88240

Project Manager: Kristin Farris

Total Metals by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

97.0

85-115

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
7										

Blank (EB51702-BLK1)				Prepared: 02/14/05 Analyzed: 02/16/05
Calcium	ND	0.0100	mg/L	
Magnesium	ND	0.00100	**	
Potassium	ND	0.0500	"	
Sodium	ND	0.0100	#	

Calibration Check (EB51702-CCV1)			Prepared: 02/14/05 Analyzed: 02/16/0				
Calcium	2.22	mg/L	2.00	111	85-115		
Magnesium	2.08	"	2.00	104	85-115		
Potassium	1.75	•	2.00	87.5	85-115		

1.94

Duplicate (EB51702-DUP1)	Sou	rce: 5B09003-	01	Prepared: 02/14/05 Analyzed: 02/16/05		
Calcium	905	1.00	mg/L	848	6.50	20
Magnesium	254	0.100	**	239	6.09	20
Potassium	88.3	2.50	"	90.7	2.68	20
Sodium	5810	10.0	"	4840	18.2	20

Project: EME System P-6 Line Leak Site

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project Number: None Given
Project Manager: Kristin Farris

Reported: 02/20/05 14:23

Notes and Definitions

DET Ana

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

LCS

Laboratory Control Spike

MS

Matrix Spike

Dup

Duplicate

Report Approved By:

Raland K July

Date:

2/20/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas 12600 West 1-20 East Phone: 432-563-1800 0desse, Texas 79765

Project Manager, Kristin Farris

Company Name Rice Operating Company

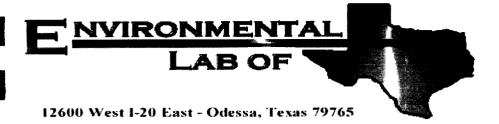
Company Address: 122 West Taylor

City/State/Zip: Hobbs, New Mexico 88240 Telephone No: 505-393-9174

Fax No: 505-397-1471

coc #: V117P6-0205

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST


Project Name: EME System P-6 Line Leak Site Project Location: T20S, R36E, Sec 6, Unit Letter P Project #:

Sampler Stansture:

				_									r			
		TAT brebned2	3	3		_		_		<u> </u>	Ш					ļ
_	إ	iberto2-enq) TAT HZUR					_						١.			ſ
_						_	_						2,011	2		1
													Ó	I-L HOPE		. 1
_							Γ						97	. Š	×	
_		ebilo2 bevlosaid listot	2	2										/ }	- 12	Seal on Plack
		.M.D.R.M.										_		, v	J 3	3
_		אכז					_	1					e #	2	-	3
4	097	STEX BOZZESO30 & BTEX 8:		7	\vdash	\vdash	_	 	 	-		-	tact Sceir		ĝ Ì	č
f		Semivolaties	F	-	-	\vdash	-	 		-	\vdash		S In	1-1 HDFE	نش	٠
t	_	Volatiles	-		-	├	├─	-	-	-		_	5 G 5	7	ع	-
t	-	Metals. As Ap 8a Cd Cr Pb Hg	-			-	├-	├-	-	┝╌	-		re y	1 -	2	3
4				_	<u> </u>	<u> </u>	├-	-	-	 	-		arate of	1	1	İ
		SAR / ESP / CEC		_	<u> </u>	-	<u> </u>		<u> </u>	├-	\vdash		Sample Containers Intact? Temperature Upon Receipt:		0	- 1
1	_	Anions (CI, 504, CD3, HCO3)	()	>	L	_			<u></u>				S = 3	, ——	, .	
1		Cations (Ce, Mg, Ne, K)	>	,	L	L	_	_	L_	L_						ام
ŀ	OT	2001 WST08 T'819 HAL					L							Time	Time	0100
ſ	٦	Other (specify):													ľ	0
-	ž	, nos									П					
١	Matrix	Sindse				1	<u> </u>	 	<u> </u>					l e	e e	5
1	-	NataW	2	1	\vdash	1	1	T	T-	 	\vdash			Date	Date	2-9-5
t	7	Other (Specify)		-	-	_				-	H		et	1		à
ļ	-	Anon	 		-	 	-	-	-	-	\vdash		o.	 	-	
۱	g	'os'H	-			-	-	-		-	\vdash		ac	1		ļ
۱	Preservative		-	-			-			-	\vdash		ĕ]	}	j
۱	ş	HOOK (RICKON)		H	_	-		-		 -	\vdash		ě	}	1	- {
l	Ë		7	7		<u> </u>	<u> </u>	_	L.,	L-	\sqcup		-Š			
I]	'ONH			Ĺ	_				<u> </u>			e e			4
١	_J	901		1		L	L						5	1		3
	1	No. of Containers	3	3									an.			귌
	-		ΡÝ		-		-		-	-	\vdash		٤		1	1
	١	İ	\ <u></u>	ی		1	1		ľ	•			8			2
	Į	Time Sampled	1	3		}	}	1		}			ta	}	}	٦
	ı		1645	1536				l					en en	1		0
					L	_		<u> </u>	L.	<u> </u>	Ш		Ē		Ë	3
	1		2-7-05	N	İ	1							its to both gil@trident-environmental.com and to enviro@leaco.net	1::	Received by ELOT:	care memunical
	1	Dalema2 atacl	۲	2-7-05		1							2	E E	à	ধ
	1		2	6		l	1			[ţ.	eive	etve	枨
	Ì		14	7						L			e e	Received by:	S.	V
	-						1	1					Zi.	1		
	Ì				ļ	ļ	[ē	F 3	Time	ام
							1					1	gi	F 2	F	2000
	Į												o t h			٥
	1						}						ā	2/8/2		
	Į	900 800				1	l					ı	St	a %	Date	5-5-
	1												뚩	7	ľ	2.5
)	FIELD					1			•			ĕ		-	
	١	Ē				1	1						ie ie			- (
	ĺ			,		ĺ	l				[]		E G		1	- 1
	1			46-2									Please email resu	N]
	١		ف	ف			}		\	Ì			ë (1		Ì
	1		0	4					ĺ	1			<u>a</u> ,	177	1	Ì
						_	<u></u>		L	L_			. ~	1	1	
	1	R		∞				100					E S		1	ا. ا
		$\mathcal{B}_{\mathcal{O}_{\mathcal{O}}}$, and the only (a)	ρ	0								1	\$ C	11		ő
	l	Q §											E /	1.2	è	0
	1	80000000000000000000000000000000000000				ŀ	ļ.,						Special Instructions:	Relinquished	Relinquished by:	Drep Box
	١	6PC .			.,.								2	[F	ğ	Ä
	1	\$\S\ \\$							1		ŀ		i de	[5 \	ŧ	1-1

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: Rice Operating Co.				
Date/Time: 02-09-05 @ 0700				
Order#: 5809007				
Initials: JMM				
Sample Receipt	t Checkl	ist		
Temperature of container/cooler?	Yes	No	-1.0	
Shipping container/cooler in good condition?	(Yes)	No		
Custody Seals intact on shipping container/cooler?	(Yes)	No	Not present	I Jon Black Boy
Custody Seals intact on sample bottles?	Yes	No	Not present	~
Chain of custody present?	Yes	QV0		* notin dropbox
Sample Instructions complete on Chain of Custody?	(Yes)	No		Client desawater
Chain of Custody signed when relinguished and received?	Tes			Client droppedton
Chain of custody agrees with sample label(s)	Yes			
Container labels legible and intact?	Ves			
Sample Matrix and properties same as on chain of custody?	(Yes)			
Samples in proper container/bottle?	(Yes)		·	
Samples properly preserved?	(es)		·	-
Sample bottles intact?	Tes	No		-
Preservations documented on Chain of Custody?		No		_
Containers documented on Chain of Custody?	(Yes	No		_
			· · · · · · · · · · · · · · · · · · ·	
Sufficient sample amount for indicated test?	_ (XB)	No		_
All samples received within sufficient hold time? VOC samples have zero headspace?	X93	No I	Not Applicable	-
Other observations: * No Seal on L-HDRE Seals on 40ml glass	w/Hcl	JMM I	03-11-05	
· .				
Variance Docur	nentatio	n.		
Contact Person: - GI Van Deverto Date/Time: 02-0 Regarding:	og-0 <i>≤ € (</i>	<u>08∞</u>	Contacted by:	JeaneManung
missing COC				·
Corrective Action Taken:				
Clientwill bring Coc by late +		<u>ب</u>		
Creation of the contract of th	7 37 3			
			······································	·

Analytical Report

Prepared for:

Kristin Farris
Rice Operating Co.
122 W. Taylor
Hobbs, NM 88240

Project: EME System M-5 SWD Site

Project Number: None Given

Location: T2OS, R36E, Sec 5, Unit Letter M

Lab Order Number: 5B09007

Report Date: 02/20/05

Project: EME System M-5 SWD Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
M5-1	5B09007-01	Water	02/08/05 09:40	02/09/05 07:00

Project: EME System M-5 SWD Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
M5-1 (5B09007-01) Water	···	*	-	· · · · ·	- -				
Benzene	ND	0.00100	mg/L	1	EB51807	02/14/05	02/15/05	EPA 8021B	
Toluene	ND	0.00100	"	"	"	"	"	"	
Ethylbenzene	ND	0.00100	H .	"		n	n	"	
Xylene (p/m)	ND	0.00100	#	"		"	"	u	
Xylene (o)	ND	0.00100	**	"	n		n .	u	
Surrogate: a,a,a-Trifluorotoluene		110 %	80-12	0	"	"	"		
Surrogate: 4-Bromofluorobenzene		95.5 %	80-12	0	,,	,,	"	"	

Project: EME System M-5 SWD Site

Project Number: None Given Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte M5-1 (5B09007-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	238	2.00	mg/L	1	EB51404	02/15/05	02/15/05	EPA 310.2M	
Chloride	6710	500	*	1000	EB51713	02/10/05	02/10/05	EPA 300.0	
Total Dissolved Solids	13200	5.00		1	EB51004	02/09/05	02/10/05	EPA 160.1	
Sulfate	1450	500	u .	1000	EB51713	02/10/05	02/10/05	EPA 300.0	

Project: EME System M-5 SWD Site

Project Number: None Given Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

Total Metals by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
M5-1 (5B09007-01) Water					_				
Calcium	1800	10.0	mg/L	1000	EB51702	02/14/05	02/16/05	EPA 6010B	
Magnesium	431	0.100	**	100	*	"	"	"	
Potassium	40.4	0.500	"	10	•	**		**	
Sodium	2420	10.0	n	1000	. "	*	u	n	

Project: EME System M-5 SWD Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB51807 - EPA 5030C (GC)										
Blank (EB51807-BLK1)				Prepared &	Analyzed:	02/14/05				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	n							
Surrogate: a,a,a-Trifluorotoluene	16.5		ug/l	20.0		82.5	80-120			
Surrogate: 4-Bromofluorobenzene	17.4		"	20.0		87.0	80-120			
LCS (EB51807-BS1)				Prepared &	Analyzed:	02/14/05				
Benzene	105		ug/l	100		105	80-120			
Toluene	105		"	100		105	80-120			
Ethylbenzene	95.9		**	100		95.9	80-120			
Xylene (p/m)	196		"	200		98.0	80-120			
Xylene (o)	95.7		"	100		95.7	80-120			
Surrogate: a,a,a-Trifluorotoluene	16.5		"	20.0		82.5	80-120		- · - - · -	
Surrogate: 4-Bromofluorobenzene	16.8		"	20.0		84.0	80-120			
LCS Dup (EB51807-BSD1)				Prepared &	Analyzed:	02/14/05				
Benzene	113		ug/l	100		113	80-120	7.34	20	
Toluene	112		w	100		112	80-120	6.45	20	
Ethylbenzene	107		"	100		107	80-120	10.9	20	
Xylene (p/m)	224		"	200		112	80-120	13.3	20	
Xylene (o)	111		"	100		111	80-120	14.8	20	
Surrogate: a,a,a-Trifluorotoluene	18.6		"	20.0		93.0	80-120			
Surrogate: 4-Bromofluorobenzene	20.2		n	20.0		101	80-120			
Calibration Check (EB51807-CCV1)				Prepared: 0)2/14/05 Aı	nalyzed: 02	/16/05			
Benzene	97.5		ug/l	100		97.5	80-120			
Toluene	104		17	100		104	80-120			
Ethylbenzene	93.1		"	100		93.1	80-120			
Xylene (p/m)	194		**	200		97.0	80-120			
Xylene (o)	97.9		**	100		97.9	80-120			
Surrogate: a,a,a-Trifluorotoluene	16.7		"	20.0		83.5	80-120			-
Surrogate: 4-Bromofluorobenzene	17.8		"	20.0		89.0	80-120			

Project: EME System M-5 SWD Site

Project Number: None Given
Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EB51807 - EPA 5030C (GC)

Matrix Spike (EB51807-MS1)	Source: 5	Source: 5B09008-01			Analyzed: 02/18/05		
Benzene	93.3	ug/l	100	ND	93.3	80-120	
Toluene	101	n	100	ND	101	80-120	
Ethylbenzene	102	**	100	ND	102	80-120	
Xylene (p/m)	206	**	200	ND	103	80-120	
Xylene (o)	97.3	"	100	ND	97.3	80-120	
Surrogate: a,a,a-Trifluorotoluene	23.3	"	20.0		116	80-120	
Surrogate: 4-Bromofluorobenzene	20.4	"	20.0		102	80-120	

Project: EME System M-5 SWD Site

Fax: (505) 397-1471

122 W. Taylor

Chloride

Project Number: None Given

Reported: 02/20/05 14:23

Hobbs NM, 88240

Project Manager: Kristin Farris

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB51004 - General Preparati	on (WetChem)			,						
Blank (EB51004-BLK1)				Prepared: 0)2/09/05 A	nalyzed: 02	/10/05			
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EB51004-DUP1)	Sour	ce: 5B09003-	-01	Prepared: 0	02/09/05 A	nalyzed: 02	/10/05			
Total Dissolved Solids	16200	5.00	mg/L		14600			10.4	20	
Batch EB51404 - General Preparati	on (WetChem)									
Blank (EB51404-BLK1)				Prepared &	: Analyzed:	02/15/05				
Total Alkalinity	ND	2.00	mg/L							
Duplicate (EB51404-DUP1)	Sour	ce: 5B09003-	-01	Prepared &	: Analyzed:	02/15/05				
Total Alkalinity	395	2.00	mg/L		396			0.253	20	
Reference (EB51404-SRM1)				Prepared &	: Analyzed:	02/15/05				
Carbonate Alkalinity	0.0510		mg/L	0.0500		102	80-120			
Batch EB51713 - General Preparati	on (WetChem)						_			
Blank (EB51713-BLK1)				Prepared &	: Analyzed:	02/10/05				
Sulfate	ND	0.500	mg/L				_		-	
Chloride	ND	0.500	Ħ							
LCS (EB51713-BS1)				Prepared &	: Analyzed:	02/10/05				
Sulfate	9.66		mg/L	10.0		96.6	80-120			

9.56

10.0

95.6

80-120

Project: EME System M-5 SWD Site

Project Number: None Given Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB51713 - General Preparation (V	VetChem)									
LCS Dup (EB51713-BSD1)				Prepared &	Analyzed:	02/10/05				
Sulfate	9.64		mg/L	10.0		96.4	80-120	0.207	20	· v
Chloride	9.51		11	10.0		95.1	80-120	0.524	20	
Calibration Check (EB51713-CCV1)				Prepared &	ż Analyzed:	02/10/05				
Chloride	9.73		mg/L	10.0		97.3	80-120			
Sulfate	9.88		"	10.0		98.8	80-120			
Duplicate (EB51713-DUP1)	Sou	rce: 5B09004-	01	Prepared &	Analyzed:	02/10/05				
Chloride	304	10.0	mg/L		304			0.00	20	
Sulfate	357	10.0	n		356			0.281	20	

Project: EME System M-5 SWD Site

Project Number: None Given Project Manager: Kristin Farris

Fax: (505) 397-1471

Reported: 02/20/05 14:23

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

A -1 -	D. 1.	Reporting	** '.	Spike	Source	4/850	%REC	n.n.n.	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB51702 - 6010B/No Digestion										_
Blank (EB51702-BLK1)				Prepared: 0	02/14/05 A	nalyzed: 02	2/16/05			
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100	**							
Potassium	ND	0.0500	"							
Sodium	ND	0.0100	"							
Calibration Check (EB51702-CCV1)				Prepared: 0)2/14/05 A	nalyzed: 02	2/16/05			
Calcium	2.22		mg/L	2.00		111	85-115			
Magnesium	2.08		n	2.00		104	85-115			
Potassium	1.75		,,	2.00		87.5	85-115			
Sodium	1.94		**	2.00		97.0	85-115			
Duplicate (EB51702-DUP1)	Sou	rce: 5B09003-	01	Prepared: 0	02/14/05 A	nalyzed: 02	2/16/05			
Calcium	905	1.00	mg/L		848			6.50	20	
Magnesium	254	0.100	n		239			6.09	20	
Potassium	88.3	2.50	"		90.7			2.68	20	
Sodium	5810	10.0			4840			18.2	20	

Project: EME System M-5 SWD Site

Project Number: None Given Project Manager: Kristin Farris Fax: (505) 397-1471

Reported: 02/20/05 14:23

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

LCS

Laboratory Control Spike

MS

Matrix Spike

Dup

Duplicate

Report Approved By:

Raland Ktous

Date:

2/20/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director

Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas
12500 West 1-20 Earl
Odesse, 76765

Phone: 432-563-1800
Fax: 432-563-1713 Special Instructions: Drap Box Company Address: 122 West Taylor Project Manager: Kristin Farris city/state/zip: Hobbs, New Mexico 88240 company Name Rice Operating Company Telephone No: 505-393-9174 -5 N Please email results to both gil@trident-environmental.com and to enviro@leaco.net 2.9.5 8:00 px 0700 Time Amount mark Received by ELDT: 2-8-05 Date Sampled 040 Fax No: 505-397-1471 Time Sampled No. of Containers Ha (BTEX on NaOH H₂SO₄ None 2-9-5 Other (Specify) Water Date Date Sludge Soli Project Location: T20S, R36E, Sec 5, Unit Letter M Project Name: EME System M-5 SWD Site 0700 Other (specify): Time Time TPH: 418.1 8015M 1005 100 coc #: V117M5-0205 Sample Containers Intact? Temperature Upon Receipt: Laboratory Commenta: SAR / ESP / CEC Soul on BLACK Box als: As Ag Ba Cd Cr Pb Hg S 2 - Home glass W/HCI I- L HAPE TEX 80218/6030 or BTEX 8260 X RC7 N,O.R.M. Fotal Dissolved Solids 7,0,0 RUSH TAT (Pre-Schedu Standard TAT

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: <u>Rice Operating Co.</u>	•			
Date/Time: 02-09-65 @ 6700				
Order#: <u>5309008</u>				
Initials: JMM				
Sample Receipt	Checkl	ist		
Temperature of container/cooler?	Yes	No	-1.0.	CI
Shipping container/cooler in good condition?	(res)	No		
Custody Seals intact on shipping container/cooler?	(Yes)	No	Not present	Jon Black Bo
Custody Seals intact on sample bottles?	Yes	No	Not present	
Chain of custody present?	Yes	(00)		notin dropbo
Sample Instructions complete on Chain of Custody?	(Yes)	No		Client droppedto
Chain of Custody signed when relinquished and received?	(Yes)	No	····	ater
Chain of custody agrees with sample label(s)	Yes	No		
Container labels legible and intact?	Yes	No		
Sample Matrix and properties same as on chain of custody?	(Yes)	No		
Samples in proper container/bottle?	(Yes)	No		·
Samples properly preserved?	(es)		······································	
Sample bottles intact?	(Yes)	No	······	
Preservations documented on Chain of Custody?	Ves	No		
Containers documented on Chain of Custody?	(Yes	No		
Sufficient sample amount for indicated test?	CYBS	No		
All samples received within sufficient hold time?	Xes	No		
VOC samples have zero headspace?	Yes	No	Not Applicable	3
Other observations: * No Seal on L-HDPE Seals on 40 mL glass w	401 3	MM 03	-11-05	
				•
Variance Docun	nentatio	n:		
Contact Person: - Gil Van Deventre Date/Time: 02-0 Regarding:				
missing COC				
J .	····			
Corrective Action Taken: Clien+will bring Coc by later +	nis mo	<u> </u>		
<u>.</u>				
*				
				
	······································			
	·····	·		

QUALITY PROCEDURES

Rice Operating Company

Quality Procedure

Procedure for Obtaining Soil Samples for Transportation to a Laboratory

1.0 Purpose

This procedure outlines the methods to be employed when obtaining soil samples to be taken to a laboratory for analysis.

2.0 Scope

This procedure is to be used when collecting soil samples intended for ultimate transfer to a testing laboratory.

3.0 Preliminary

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the soil. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 If collecting TPH, BTEX, RCRA 8 metals, cation /anions or O&G, the sample jar may be a clear 4 oz. container with Teflon lid. If collecting PAH's, use an amber 4 oz. container.

4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the number, location and designation of each planned sample and the individual tests to be performed on the sample. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label.) Affix the labels to the jars.

5.0 Sampling Procedure

- 5.1.Do not touch the soil with your bare hands. Use new latex gloves with each sample to help minimize any cross-contamination.
- 5.2.Go to the sampling point with the sample container. If not analyzing for ions or metals, use a trowel to obtain the soil.
- 5.3 Pack the soil tightly into the container leaving the top slightly domed. Screw the lid down tightly. Enter the time of collection onto the sample collection jar label.
- 5.4.Place the sample directly on ice for transport to the laboratory if required.
- 5.5.Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

6.0 Documentation

- 6.1 The testing laboratory shall provide the following minimum information:
 - a. Project and sample name.
 - b. Signed copy of the original Chain of Custody Form including the time the sample was received by the lab.
 - c. Results of the requested analyses
 - d. Test Methods employed
 - e. Quality Control methods and results

Rice Operating Company

QUALITY PROCEDURE

Sampling and Testing Protocol Chloride Titration Using .282 Normal Silver Nitrate Solution

1.0 Purpose

This procedure is to be used to determine the concentration of chloride in soil.

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

- 3.1 Collect at least 80 grams of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample for soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
- 3.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag. Care should be taken to insure that no cross-contamination occurs between the soil sample and the collection tools or sample processing equipment.
- 3.3 The sealed sample bag should be massaged to break up any clods.

4.0 Sample Preparation

- 4.1 Tare a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.
- 4.2 Add at least 10 grams of reverse osmosis water to the soil sample and shake for 20 seconds.
- 4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.
- 4.4 Carefully pour the free liquid extract from the sample through a paper filter into a clean plastic cup if necessary.

5.0 Titration Procedure

- 5.1 Using a graduated pipette, remove 10 ml extract and dispense into a clean plastic cup.
- 5.2 Add 2-3 drops potassium chromate (K₂CrO₄) to mixture.
- 5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (H_2O_2) to mixture.
- 5.4 Using a 1 ml pipette, carefully add .282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.
- 5.5 Record the ml of silver nitrate used.

6.0 Calculation

To obtain the chloride concentration, insert measured data into the following formula:

.282 X 35,450 X ml AgNO₃ ml water extract

X grams of water in mixture grams of soil in mixture

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on the delineation form.

Rice Operating Company

Quality Procedure Development of Cased Water-Monitoring Wells

1.0 Purpose

This procedure outlines the methods to be employed to develop cased monitoring wells.

2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

3.0 Sample Collection and Preparation

- 3.1 Prior to development, the static water level and height of the water column within the well casing will be measured with the use of an electric D.C. probe or a steel engineer's tape and water sensitive paste.
- 3.2 All measurements will be recorded within a field log notebook.
- 3.3 All equipment used to measure the static water level will be decontaminated after each use by means of Liquinox, a phosphate free laboratory detergent, and water to reduce the possibility of crosscontamination. The volume of water in each well casing will be calculated.

4.0 Purging

- 4.1 Wells will be purged by using a 2" decontaminated submersible pump or dedicated one liter Teflon bailer. Wells should be purged until the pH and conductivity are stabilized and the turbidity has been reduced to the greatest extent possible.
- 4.2 If a submersible is used the pump will be decontaminated prior to use by scrubbing the outside surface of tubing and wiring with a Liquinox water mixture, pumping a Liquinox-water mixture through the pump, and a final flush with fresh water.

5.0 Water Disposal

5.1 All purge and decontamination water will be temporarily stored within a portable tank to be later disposed of in an appropriate manner.

6.0 Records

6.1 Rice Operating Company will record the amount of water removed from the well during development procedures. The purge volume will be reported to the appropriate regulatory authority when filing the closure report.

4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the well identification and the individual tests to be performed at that location. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label). Affix the labels to the jars.

5.0 Bailing Procedure

- 5.1 Identify the well from the sites schematics. Place pre-labeled jar(s) next to the well. Remove the plastic cap from the well bore by first lifting the metal lever and then unscrewing the entire assembly.
- 5.2 Using a dedicated one liter Teflon bailer, purge a minimum of three well volumes. Place the water in storage container for transport to a ROC disposal facility.
- 5.3 Take care to insure that the bailing device and string do not become cross-contaminated. A clean pair of rubber gloves should be used when handling either the retrieval string or bailer. The retrieval string should not be allowed to come into contact with the ground.

6.0 Sampling Procedure

- 6.1 Once the well has been bailed in accordance with 5.2 of this procedure, a sample may be decanted into the appropriate sample collection jar directly from the bailer. The collection jar should be filled to the brim. Once the jar is sealed, turn the jar over to detect any bubbles that may be present. Add additional water to remove all bubbles from the sample container.
- 6.2 Note the time of collection on the sample jar with a fine Sharpie.

- 6.3 Place the sample directly on ice for transport to the laboratory. The preceding table shows the maximum hold times between collection and testing for the various analyses.
- 6.4 Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

7.0 Documentation

- 7.1 The testing laboratory shall provide the following minimum information:
 - A. Project and sample name.
 - B. Signed copy of the original Chain of Custody Form including the time the sample was received by the lab.
 - C. Results of the requested analyses
 - D. Test Methods employed
 - E. Quality Control methods and results

Calculation for Determining the Minimum Bailing Volume for Monitor Wells Formula $V=(\pi r^2 h)$ 2" well [V/231=gal] X 3 = Purge Volume

V=Volume π=pi

r=inside radius of the well bore

h=maximum height of well bore in water table

Example:

π	r ²	h(in)	V(cu.in)	V(gal)	X 3 Volumes	Actual
3.1416	1	180	565.488	2.448	7.34 gal	>10 gal

Rice Operating Company

QUALITY PROCEDURE Sampling and Testing Protocol for VOC in Soil

1.0 Purpose

This procedure is to be used to determine the concentrations of Volatile Organic Compounds in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil VOC concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

3.0 Procedure

- 3.1 Sample Collection and Preparation
 - 3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
 - 3.1.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air. Record the sample name and the time that the sample was collected on the Field Analytical Report Form.
 - 3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a temperature of between 10-15 Celsius, (59-77°F). The sample temperatures may be adjusted by cooling the sample in ice, or by heating the sample within a generally controlled environment such as the inside of a vehicle. The samples should not be placed directly on heated surfaces or placed in direct heat sources such as lamps or heater vents.
 - 3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

3.2 Sampling Procedure

- 3.2.1 The instrument to be used in conducting VOC concentration testing shall be an Environmental Instruments 13471 OVM / Datalogger or a similar PID-type instrument. (Device will be identified on VOC Field Test Report Form.) Prior to use, the instrument shall be zeroed-out in accordance with the appropriate maintenance and calibration procedure outlined in the instrument operation manual. The PID device will be calibrated each day it's used.
- 3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the sidewalls of the bag.
- 3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Test Report Form.
- 3.2.4 If the instrument provides a reading exceeding 100 ppm, proceed to conduct BTEX Speciation in accordance with QP-02 and QP-06. If the reading is 100 ppm or less, NMOCD BTEX guideline has been met and no further testing for BTEX is necessary. File the Field Test Report Form in the project file.

4.0 Clean-up

After testing, the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal. IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.