AP - <u>65</u>

STAGE 1 & 2 REPORTS

DATE: March 28, 2005

INVESTIGATION AND CHARACTERIZATION PLAN EME M-9 SWD Site T20S, R37E, Section 9, Unit Letter M Lea County, New Mexico

MARCH 28, 2005

Prepared For: RECE Operating Company 122 West Taylor Hobbs, New Mexico 88240

Prepared By:

ENVIRONMENTAL

P O Box 7624 Midland, Texas 79708

CERTIFIED MAIL RETURN RECIEPT NO. 7099 3400 0017 1737 2480

March 28, 2005

Mr. Wayne Price New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RE: INVESTIGATION AND CHARACTERIZATION PLAN EME M-9 SWD SITE T20S-R37E-Section 9, Unit Letter M NMOCD CASE # 1R0331

Mr. Price:

RICE Operating Company (ROC) has retained Trident Environmental to address potential environmental concerns at the above-referenced site. ROC is the service provider (operator) for the EME SWD System and has no ownership of any portion of the pipeline, well, or facility. The System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis. Environmental projects of this magnitude require System Partner AFE approval and work begins as funds are received. In general, project funding is not forthcoming until NMOCD approves the work plan. Therefore, your timely review of this submission is requested. The 2004 Annual Groundwater Monitoring Report for the M-9 SWD Site has been submitted as a separate document.

BACKGROUND

The legal description of the M-9 SWD facility is township 20 south, range 37 east, section 9, unit letter M. The M-9 SWD site is located along Highway 8 approximately 3 miles south of Monument, NM as shown in Figure 1. Land in the site area is primarily utilized for oil and gas production and cattle ranching. Area oil and gas production is operated by Pure Oil Company, Chevron USA Inc., and XTO Energy. The surface landowner is S&W Cattle Company.

PREVIOUS WORK

Initial soil sampling activities for delineation of the M-9 SWD site began on September 17, 2001, prior to the removal of the redwood tanks. Sampling results indicated TPH and chloride impacts approaching the depth to groundwater at about 18 feet below ground surface (bgs). A monitoring well (MW-1) was installed on April 2, 2002.

On June 19, 2002 began excavation operations and removal of the redwood tanks in accordance with the Generic Closure Plan for Existing Pits and Below-Grade Redwood Tanks (February 23, 2000). Five junction boxes were also removed as they were within the area excavated at the facility. Excavation of approximately 8,000 cubic yards of TPH impacted soil was completed to a depth of 20 feet bgs and was land farmed on site. Due to the horizontal extent of the excavation monitoring well MW-1 had to be

removed. Clean backfill was placed in the deep excavation from 20 feet to 16 feet bgs. A 12-inch compacted clay liner was then installed prior to backfilling with the remediated soil in 3-foot lifts. The remaining remediated soil was placed on the surface and contoured to the surrounding terrain. Backfilling was completed on September 9, 2002. Three new fiberglass tanks were installed along the south end of the fenced facility. The Redwood Tank Closure Report detailing all of the above-referenced work was submitted to the NMOCD on November 4, 2002.

On October 10, 2002, a replacement monitoring well (MW-1A) was installed immediately adjacent to the southeast corner of the excavated area. Subsequent sampling of MW-1A confirmed that groundwater was <u>impacted with chloride</u> and TDS levels slightly above WQCC standards, however BTEX concentrations were well below the WQCC standards.

A work plan addressing further actions was submitted by Trident Environmental on June 20, 2003 and was approved by the NMOCD on June 27, 2003. In accordance with the work plan, monitoring wells MW-2 and MW-3 were installed approximately 120 feet down gradient (southeast) and approximately 130 feet upgradient (northwest) of MW-1A, respectively, on August 20, 2003. On February 17, 2004, monitoring well MW-4 was installed approximately 150 feet southeast of MW-2 for further downgradient delineation. Quarterly monitoring of the groundwater has been conducted since the installation of all monitoring wells. The most recent analytical results and groundwater elevations are depicted in Figure 2. A summary of past laboratory analytical results and groundwater elevations are listed in Table 1 and depicted graphically in Figures 2 through 6.

The source of this impact is historical. There is no longer a threat of compounded impact from the vadose zone at this site because of the excavation, lining and backfilling of the former source area below the redwood tanks and junction boxes. Groundwater impairment is only slightly above WQCC standards and is very near background levels for the constituents of concern. However, continued groundwater monitoring and further delineation of the chloride/TDS plume are needed to fully assess the extent of groundwater impact.

RECOMMENDATION FOR FURTHER ACTIONS

As discussed above, existing site data and analysis document impairment of ground water quality. The following tasks are designed to assist ROC in selecting an appropriate groundwater remedy.

Task 1 Collect Regional Hydrogeologic Data

Since May 2004 the groundwater gradient direction has shifted from southeast to southwest. Due to this variation in groundwater gradient direction ROC has determined that an expanded data search for existing water wells in the area must be made to define the regional gradient pattern and whether it is affected by groundwater withdrawal from water supply wells in the area. Also, this data search is necessary to establish background water quality conditions, particularly chloride and TDS concentrations. A site visit and well access is necessary to verify the existence of the area water wells and to acquire current data (depth to groundwater, chloride and TDS concentrations) from them. A more regional groundwater gradient map and chloride/TDS concentration map will be constructed after compiling the necessary data.

Task 2 Evaluate Concentrations of Constituents of Concern in Ground Water

To address your request for further delineation of the chloride/TDS plume an additional monitoring well will be placed southwest of the facility in the current downgradient direction. Another monitoring well will be installed southeast of MW-4 for more complete delineation in that area. The exact placement of these wells

will be determined pending the results of task 1 and performed such that non-ROC operated facilities are not targeted. During drilling operations, soil samples will be collected periodically (five feet intervals) and field-tested for chloride content using the titration method. The monitoring well will be completed as described in the attached well construction diagram. Sampling procedures will be conducted in accordance with the procedures explained in QP-02, QP-03, QP-04, QP-05, and QP-07 (attached).

The information gathered from tasks 1 and 2 will be evaluated and utilized to design a groundwater remedy if needed. The ground water remedy that offers the greatest environmental benefit while causing the least environmental impairment will be selected. Such recommendations and findings will be presented to NMOCD in a subsequent Corrective Action Plan (CAP). When evaluating any proposed remedy or investigative work, ROC will confirm that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs.

We appreciate the opportunity to work with you on this project. Please feel free to call me at 432-638-3106 or Kristin Farris Pope at 505-393-9174, if you have any questions.

Sincerely,

Libert O. Van Devi

Gilbert J. Van Deventer, REM, PG, NMCS Project Manager

cc: CDH, KFP, file

enclosures: site location map, site map, tables, graphs, and photodocumentation

MAPS

Figure 1: Site Location Map Figure 2: Site Map

TABLE

Table 1: Summary of Groundwater Sampling Results

GRAPHS

Figure 3: Chloride, TDS, and Groundwater Elevations Versus Time (MW-1A) Figure 4: Chloride, TDS, and Groundwater Elevations Versus Time (MW-2) Figure 5: Chloride, TDS, and Groundwater Elevations Versus Time (MW-3) Figure 6: Chloride, TDS, and Groundwater Elevations Versus Time (MW-4) Figure 7: Chloride, TDS, and Groundwater Elevations Versus Time (WW)

Directions: From the junction of Hwy 322 and Hwy 8 in Monument proceed 3 miles south on Hwy 8. Turn left onto caliche lease road and proceed east to gate.

**

Monitoring Well	Sample Date	Chloride (mg/L)	TDS (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet AMSL)
	04/08/02	348	1512	< 0.002	< 0.002	< 0.002	< 0.006		
MW-1	05/13/02	354	1540	< 0.001	< 0.001	< 0.001	< 0.001	21.02	
	08/20/02	376	1517	< 0.002	< 0.002	< 0.002	< 0.006	22.45	
	10/28/02	372	1470	< 0.001	< 0.001	< 0.001	< 0.001	19.10	3510.70
	02/28/03	372	1500	0.002	0.002	0.002	0.003	18.48	3511.32
	05/16/03	390	1470	0.001	< 0.001	< 0.001	0.001	19.00	3510.80
	08/22/03	372	1470	0.002	< 0.001	< 0.001	< 0.001	19.38	3510.42
MW 1A	10/30/03	346	1530	< 0.001	< 0.001	< 0.001	< 0.001	19.57	3510.23
	02/20/04	337	1390	0.001	< 0.001	< 0.001	< 0.001	19.41	3510.39
	05/05/04	337	1400	0.001	< 0.001	< 0.001	< 0.001	17.76	3512.04
	08/11/04	390	1690	0.003	< 0.001	< 0.001	< 0.001	18.27	3511.53
	11/10/04	390	1740	0.003	< 0.001	< 0.001	< 0.001	17.23	3512.57
	02/08/05	304	1500	0.003	< 0.001	< 0.001	0.001	15.90	3513.90
	08/22/03	603	2060	< 0.001	< 0.001	< 0.001	< 0.001	21.45	3510.05
	10/30/03	709	2300	< 0.001	< 0.001	< 0.001	< 0.001	21.61	3509.89
	02/20/04	478	1800	< 0.001	< 0.001	< 0.001	< 0.001	21.44	3510.06
MW-2	05/05/04	328	1460	< 0.001	< 0.001	< 0.001	< 0.001	19.67	3511.83
	08/11/04	461	1770	< 0.001	< 0.001	< 0.001	< 0.001	20.26	3511.24
	11/10/04	346	1610	< 0.001	< 0.001	< 0.001	< 0.001	19.13	3512.37
	02/08/05	311	1390	< 0.001	< 0.001	< 0.001	< 0.001	17.80	3513.70
	08/22/03	319	1590	< 0.001	< 0.001	< 0.001	< 0.001	21.68	3510.72
	10/30/03	328	1740	< 0.001	< 0.001	< 0.001	< 0.001	21.86	3510.54
	02/20/04	337	1550	< 0.001	< 0.001	< 0.001	< 0.001	21.70	3510.70
MW-3	05/05/04	328	1530	< 0.001	< 0.001	< 0.001	< 0.001	20.10	3512.30
	08/11/04	337	1560	< 0.001	< 0.001	< 0.001	< 0.001	20.62	3511.78
	11/10/04	337	1600	< 0.001	< 0.001	< 0.001	< 0.001	19.61	3512.79
	02/08/05	312	1450	< 0.001	< 0.001	< 0.001	< 0.001	18.26	3514.14
	02/20/04	585	1820	< 0.001	< 0.001	< 0.001	< 0.001	22.61	3509.79
	05/05/04	549	1760	< 0.001	< 0.001	< 0.001	< 0.001	20.77	3511.63
MW-4	08/11/04	567	1770	< 0.001	< 0.001	< 0.001	< 0.001	21.28	3511.12
	11/10/04	514	1790	< 0.001	< 0.001	< 0.001	< 0.001	20.21	3512.19
	02/08/05	520	1670	< 0.001	< 0.001	< 0.001	< 0.001	18.90	3513.50
	08/22/03							21.09	3509.41
	10/30/03	284	1150	< 0.001	< 0.001	< 0.001	0.002	20.25	3510.25
1	02/20/04	292	1100	< 0.001	< 0.001	< 0.001	0.002	20.07	3510.43
WW	05/14/04	266	1040	< 0.001	< 0.001	< 0.001	< 0.001	18.29	3512.21
	08/11/04	266	1810	< 0.001	< 0.001	< 0.001	< 0.001	18.92	3511.58
	11/10/04	284	959	< 0.001	< 0.001	< 0.001	< 0.001	17.82	3512.68
	02/08/05	395	1180	< 0.001	< 0.001	< 0.001	< 0.001	16.41	3514.09
WOCC Stand	lards	250	1000	0.01	0.75	0.75	0.62		

Table 1 Summary of Groundwater Sampling Results EME M-9 SWD Site

 WQCC Standards
 250
 1000
 0.001
 0.001
 0.001

 WQCC Standards
 250
 1000
 0.01
 0.75
 0.62

 Total Dissolved Soilds (TDS), chloride, and BTEX concentrations listed in milligrams per liter (mg/L)
 Analyses performed by Cardinal Labs, Hobbs, NM (1995-1998) and Environmental Lab of Texas, Odessa, TX (1999-2003).

 Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards.

 AMSL - Above Mean Sea Level; BTOC - Below Top of Casing

 Groundwater flow direction is to the southeast with a gradient of approx. 0.003 ft/ft.

Elevations and state plane coordinates surveyed by Basin Surveys, Hobbs, NM.

Figure 4 Chloride, TDS, and Groundwater Elevation Values Versus Time (MW-2)

Figure 5 Chloride, TDS, and Groundwater Elevation Values Versus Time (MW-3)

Figure 6

View facing south showing EME M-9 Saltwater Disposal Facility

View facing northwest showing installation of monitoring well MW-4 southeast of EME M-9 SWD facility.

Analytical Report

Prepared for:

Kristin Farris Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME System M-9 SWD Site Project Number: None Given Location: T2OS, R37E, Sec 9, Unit Letter M

Lab Order Number: 5B09004

Report Date: 02/18/05

Rice Operating Co.	Proj	ect: EME System M-9 SWD Site	Fax: (505) 397-1471
122 W. Taylor	Project Num!	per: None Given	Reported:
Hobbs NM, 88240	Project Manag	ger: Kristin Farris	02/18/05 17:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	5B09004-01	Water	02/08/05 15:12	02/09/05 07:00
MW-2	5B09004-02	Water	02/08/05 14:20	02/09/05 07:00
MW-3	5B09004-03	Water	02/08/05 13:53	02/09/05 07:00
MW-4	5B09004-04	Water	02/08/05 15:53	02/09/05 07:00
WW	5B09004-05	Water	02/08/05 13:15	02/09/05 07:00

1 i

Page 1 of 11

, r

Rice Operating Co.	Project: EME System M-9 SWD Site							Fax: (505)	Fax: (505) 397-1471	
122 W. Taylor Hobbs NM, 88240		Project Nu Project Ma	imber: No	one Given				Repor	ted: 5 17:58	
10003 1111, 00270	<u> </u>									
		Or	ganics b	by GC						
		Environn	nental L	ab of Te	exas					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
MW-1 (5B09004-01) Water										
Benzene	0.00279	0.00100	mg/L	1	EB51807	02/14/05	02/15/05	EPA 8021B		
Toluene	ND	0.00100	"		*	**		"		
Ethylbenzene	ND	0.00100	"	"	н	"	н	н		
Xylene (p/m)	ND	0.00100	"	"	"	"	"	"		
Xylene (0)	0.00115	0.00100	"	11	"	"		н		
Surrogate: a,a,a-Trifluorotoluene		80.5 %	80-	120	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		95.5 %	80-	120	"	"	"	"		
MW-2 (5B09004-02) Water										
Benzene	ND	0.00100	mg/L	1	EB51807	02/14/05	02/15/05	EPA 8021B		
Foluene	ND	0.00100	н	"		"	**			
Ethylbenzene	ND	0.00100		"	"	и	"	"		
Xylene (p/m)	ND	0.00100	"	н	"	"	"	11		
Xylene (0)	ND	0.00100	"	"	н	U.	"	"		
Surrogate: a,a,a-Trifluorotoluene	· · · · · · · · · · · · · · · · · · ·	103 %	80-	120	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		112 %	80-	120	"	n	"	"		
MW-3 (5B09004-03) Water										
Benzene	ND	0.00100	mg/L	1	EB51807	02/14/05	02/15/05	EPA 8021B		
Toluene	ND	0.00100	"	"	"	**	**	ч		
Ethylbenzene	ND	0.00100		"	"	U.		"		
Xylene (p/m)	ND	0.00100	н	"		"	"	*		
Xylene (o)	ND	0.00100	"	"		"		"		
Surrogate: a,a,a-Trifluorotoluene		105 %	80-	120	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		100 %	80-	120	"	n	"	"		
MW-4 (5B09004-04) Water						<u> </u>				
Benzene	ND	0.00100	mg/L	1	EB51807	02/14/05	02/15/05	EPA 8021B		
Toluene	ND	0.00100	"	"	"	**	"	"		
Ethylbenzene	ND	0.00100		"		"	"	"		
Xylene (p/m)	ND	0.00100			н	"	u	11		
Xylene (o)	ND	0.00100	"	"	"	"				
Surrogate: a,a,a-Trifluorotoluene		82.0 %	80-	120	"	"	n	"		
Surrogate: 4-Bromofluorobenzene		88.0 %	80-	120	"	п	"	"		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 11

Rice Operating Co.	Project:	EME System M-9 SWD Site	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris	02/18/05 17:58

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting	Units	Dilution	Patab	Dece and	Anshurad	Mathad	Natas
WW (5B09004-05) Water				Dilution	Batch				Noics
Benzene	ND	0.00100	mg/L	1	EB51807	02/14/05	02/15/05	EPA 8021B	,
Toluene	ND	0.00100	U.	"	"	11	"	**	
Ethylbenzene	ND	0.00100	п	11	"	"	"	*	
Xylene (p/m)	ND	0.00100	•	"	"	н	н	11	
Xylene (0)	ND	0.00100	**		**	"	"	и	
Surrogate: a,a,a-Trifluorotoluene		108 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		112 %	80-12	0	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 3 of 11

Rice Operating Co.							
122 W. Taylor							
Hobbs NM, 88240							

Reported: 02/18/05 17:58

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (5B09004-01) Water									
Total Alkalinity	340	2.00	mg/L	I	EB51404	02/15/05	02/15/05	EPA 310.2M	
Chloride	304	10.0		20	EB51713	02/10/05	02/10/05	EPA 300.0	
Total Dissolved Solids	1500	5.00	п	1	EB51004	02/09/05	02/10/05	EPA 160.1	
Sulfate	356	10.0	11	20	EB51713	02/10/05	02/10/05	EPA 300.0	
MW-2 (5B09004-02) Water									
Total Alkalinity	290	2.00	mg/L	1	EB51404	02/15/05	02/15/05	EPA 310.2M	
Chloride	311	10.0	"	20	EB51713	02/10/05	02/10/05	EPA 300.0	
Total Dissolved Solids	1390	5.00		1	EB51004	02/09/05	02/10/05	EPA 160.1	
Sulfate	308	10.0	"	20	EB51713	02/10/05	02/10/05	EPA 300.0	
MW-3 (5B09004-03) Water									
Total Alkalinity	226	2.00	mg/L	1	EB51404	02/15/05	02/15/05	EPA 310.2M	
Chloride	312	10.0	"	20	EB51713	02/10/05	02/10/05	EPA 300.0	
Total Dissolved Solids	1450	5.00	"	1	EB51004	02/09/05	02/10/05	EPA 160.1	
Sulfate	407	10.0	"	20	EB51713	02/10/05	02/10/05	EPA 300.0	
MW-4 (5B09004-04) Water									
Total Alkalinity	250	2.00	mg/L	1	EB51404	02/15/05	02/15/05	EPA 310.2M	
Chloride	520	12.5	п	25	EB51713	02/10/05	02/10/05	EPA 300.0	
Total Dissolved Solids	1670	5.00	"	1	EB51004	02/09/05	02/10/05	EPA 160.1	
Sulfate	311	12.5	"	25	EB51713	02/10/05	02/10/05	EPA 300.0	
WW (5B09004-05) Water								<u>.</u>	
Total Alkalinity	264	2.00	mg/L	1	EB51404	02/15/05	02/15/05	EPA 310.2M	
Chloride	395	10.0	"	20	EB51713	02/10/05	02/10/05	EPA 300.0	
Total Dissolved Solids	1180	5.00	н	t	EB51004	02/09/05	02/10/05	EPA 160.1	
Sulfate	155	10.0	"	20	EB51713	02/10/05	02/10/05	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 11

Rice Operating Co.		Р	roject: EN	ME System 1	M-9 SWD S	ite		Fax: (505) 397-1471		
122 W. Taylor		Project Nu	umber: No	one Given				Repor	rted:	
Hobbs NM, 88240		Project Ma	inager: Ki	istin Farris				02/18/05	5 17:58	
	Tot	al Metals by	EPA /	Standard	d Metho	ds				
		Environn	nental I	Lab of To	exas					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
MW-1 (5B09004-01) Water										
Calcium	135	1.00	mg/L	100	EB51702	02/14/05	02/16/05	EPA 6010B		
Magnesium	80.5	0.0500	"	50		н	н	п		
Potassium	10.8	0.500	"	10				н		
Sodium	239	1.00	"	100	"	"	и	н		
MW-2 (5B09004-02) Water										
Calcium	105	1.00	mg/L	100	EB51702	02/14/05	02/16/05	EPA 6010B		
Magnesium	64.4	0.0500	"	50		u.	п	II.		
Potassium	11.4	0.250	n	5		"	н	**		
Sodium	256	1.00	"	100	"	"	u	U		
MW-3 (5B09004-03) Water										
Calcium	175	1.00	mg/L	100	EB51702	02/14/05	02/16/05	EPA 6010B		
Magnesium	73.2	0.0500	"	50			н	н		
Potassium	8.65	0.250	"	5			"	н		
Sodium	276	1.00	"	100	"	"	и	н		
MW-4 (5B09004-04) Water										
Calcium	131	1.00	mg/L	100	EB51702	02/14/05	02/16/05	EPA 6010B		
Magnesium	76.1	0.0500	"	50	"	11	"	"		
Potassium	11.3	0.250	"	5	"	"	"	"		
Sodium	327	1.00	"	100	"	"	11	"		
WW (5B09004-05) Water										
Calcium	114	0.500	mg/L	50	EB51702	02/14/05	02/16/05	EPA 6010B		
Magnesium	60.6	0.0500	"	•	**		U.	н		
Potassium	9.08	0.250	"	5	**	"	н	н		
Sodium	201	1.00	"	100	11		н			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: EME System M-9 SWD Site								Fax: (505) 397-1471		
122 W. Taylor		Project Nu	mber: No	ne Given					Repo	rted:	
Hobbs NM, 88240		Project Mar	nager: Kri	stin Farris					02/18/05 17:58		
	0	rganics by	GC - Q	uality Co	ontrol						
		Environm	ental L	ab of Tex	as						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch EB51807 - EPA 5030C (GC)											
Blank (EB51807-BLK1)				Prepared &	Analyzed	02/14/05					
Benzene	ND	0.00100	mg/L								
ſoluene	ND	0.00100	"								
Ethylbenzene	ND	0.00100	н								
Xylene (p/m)	ND	0.00100	"								
Xylene (0)	ND	0.00100	п								
Surrogate: a,a,a-Trifluorotoluene	16.5		ug/l	20.0		82.5	80-120				
Surrogate: 4-Bromofluorobenzene	17.4		"	20.0		87.0	80-120				
LCS (EB51807-BS1)				Prepared &	Analyzed:	02/14/05					
Benzene	105		ug/l	100		105	80-120				
Foluene	105		n	100		105	80-120				
Ethylbenzene	95.9		n	100		95.9	80-120				
Kylene (p/m)	196		"	200		98.0	80-120				
Xylene (o)	95.7		"	100		95.7	80-120				
Surrogate: a,a,a-Trifluorotoluene	16.5		"	20.0		82.5	80-120				
Surrogate: 4-Bromofluorobenzene	16.8		"	20.0		84.0	80-120				
LCS Dup (EB51807-BSD1)				Prepared &	Analyzed:	02/14/05					
Benzene	113		ug/l	100		113	80-120	7.34	20		
foluene	112		"	100		112	80-120	6.45	20		
Ethylbenzene	107		"	100		107	80-120	10.9	20		
Xylene (p/m)	224		n	200		112	80-120	13.3	20		
Kylene (0)	111		n	100		111	80-120	14.8	20		
Surrogate: a,a,a-Trifluorotoluene	18.6		"	20.0		93.0	80-120				
Surrogate: 4-Bromofluorobenzene	20.2		"	20.0		101	80-120				
Calibration Check (EB51807-CCV1)				Prepared: 0	2/14/05 A	nalyzed: 02	2/16/05				
Benzene	97.5		ug/l	100		97.5	80-120				
Foluene	104		"	100		104	80-120				
Ethylbenzene	93.1		"	100		93.1	80-120				
Xylene (p/m)	194		51	200		97.0	80-120				
Xylene (0)	97.9		н	100		97.9	80-120				
Surrogate: a,a,a-Trifluorotoluene	16.7		"	20.0		83.5	80-120				
Surrogate: 4-Bromofluorobenzene	17.8		"	20.0		89.0	80-120				

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 6 of 11

r i

Rice Operating Co.	Project: E	ME System M-9 SWD Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: N	lone Given	Reported:
Hobbs NM, 88240	Project Manager: K	ristin Farris	02/18/05 17:58

Organics by GC - Quality Control

Environmental Lab of Texas

					-					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EB51807 - EPA 5030C (GC)

Matrix Spike (EB51807-MS1)	Source: 51	Prepared: ()2/14/05 A	nalyzed: 0	2/18/05	
Benzene	93.3	ug/l	100	ND	93.3	80-120
Toluene	101	"	100	ND	101	80-120
Ethylbenzene	102	n	100	ND	102	80-120
Xylene (p/m)	206	n	200	ND	103	80-120
Xylene (o)	97.3	**	100	ND	97.3	80-120
Surrogate: a,a,a-Trifluorotoluene	23.3	"	20.0		116	80-120
Surrogate: 4-Bromofluorobenzene	20.4	"	20.0		102	80-120

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Pr Project Nu Project Mar	oject: El mber: No nager: Ki	ME System M one Given ristin Farris	l-9 SWD Si	te			Fax: (505) Repo 02/18/0	397-147 rted: 5 17:58
Genera	l Chemistry Paran	neters by Environm	EPA / nental l	Standard Lab of Tex	Methoo	ls - Qua	lity Cont	trol		
Analyte	Result	Reporting	Linite	Spike	Source	%PEC	%REC		RPD Limit	Notes
Batch EB51004 - General Prenarati	on (WetChem)									Trotes
Blank (EB51004-BLK1)				Prepared: ()2/09/05 A	nalvzed: 02	2/10/05			
Fotal Dissolved Solids	ND	5.00	mg/L							
Duplicate (EB51004-DUP1)	Sourc	e: 5B09003-	01	Prenared: ()2/09/05 A	nalvzed: 02	2/10/05			
Fotal Dissolved Solids	16200	5.00	mg/L		14600			10.4	20	
Batch EB51404 - General Preparati Blank (EB51404-BLK1)	on (WetChem)			Prepared &	z Analyzed:	02/15/05		<u> </u>		
Fotal Alkalinity	ND	2.00	mg/L		<u> </u>					
Duplicate (EB51404-DUP1)	Sourc	e: 5B09003-	01	Prepared &	z Analyzed:	02/15/05				
Total Alkalinity	395	2.00	mg/L		396			0.253	20	
Reference (EB51404-SRM1)				Prepared &	Analyzed:	02/15/05				
Carbonate Alkalinity	0.0510		mg/L	0.0500		102	80-120			
Batch EB51713 - General Preparati	on (WetChem)					_				
Blank (EB51713-BLK1)				Prepared &	Analyzed:	02/10/05				
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	"							
LCS (EB51713-BS1)				Prepared &	Analyzed:	02/10/05				
Sulfate	9.66		mg/L	10.0		96.6	80-120			
Chloride	9.56		0	10.0		95.6	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 8 of 11

Rice Operating Co.	Project: EME System M-9 SWD Site	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris	02/18/05 17:58

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analysis	Paquit	Reporting	Imita	Spike	Source	A/ DEC	%REC	2000	RPD	NI-+
Analyte	Result		Units	Level	Result	%REC	Limits	KPD	Limit	Notes
Batch EB51713 - General Preparation (WetChem)						-			
LCS Dup (EB51713-BSD1)				Prepared &	Analyzed:	02/10/05				
Sulfate	9.64		mg/L	10.0		96.4	80-120	0.207	20	
Chloride	9.51		**	10.0		95.1	80-120	0.524	20	
Calibration Check (EB51713-CCV1)				Prepared &	Analyzed:	02/10/05				
Chloride	9.73		mg/L	10.0		97.3	80-120			
Sulfate	9.88		"	10.0		98.8	80-120			
Duplicate (EB51713-DUP1)	Sou	rce: 5B09004-	01	Prepared &	Analyzed:	02/10/05				
Chloride	304	10.0	mg/L		304			0.00	20	
Sulfate	357	10.0	"		356			0,281	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project:	EME System M-9 SWD Site	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris	02/18/05 17:58

Total Metals by EPA / Standard Methods - Quality Control

_ ntal I ab of T

		Environm	iental I	Lab of Te	xas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB51702 - 6010B/No Digestion										
Blank (EB51702-BLK1)				Prepared: ()2/14/05 A	nalyzed: 02	2/16/05			
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100	"							
Potassium	ND	0.0500								
Sodium	ND	0.0100	"							
Calibration Check (EB51702-CCV1)				Prepared: (02/14/05 A	nalyzed: 02	2/16/05			
Calcium	2.22		mg/L	2.00		111	85-115			
Magnesium	2.08		"	2.00		104	85-115			
Potassium	1.75		"	2.00		87.5	85-115			
Sodium	1.94		"	2.00		97.0	85-115			
Duplicate (EB51702-DUP1)	Sou	rce: 5B09003-	01	Prepared: ()2/14/05 A	nalyzed: 02	2/16/05			
Calcium	905	1.00	mg/L		848			6.50	20	
Magnesium	254	0.100	11		239			6.09	20	
Potassium	88.3	2.50	n		90.7			2.68	20	
Sodium	5810	10.0			4840			18.2	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Opera 122 W. Ta Hobbs NM	ating Co. ylor 1, 88240	Project: Project Number: Project Manager:	EME System M-9 SWD Site None Given Kristin Farris	Fax: (505) 397-1471 Reported: 02/18/05 17:58
		Notes and De	finitions	
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the reporting limit			
NR	Not Reported			
dry	Sample results reported on a dry weight basis			
RPD	Relative Percent Difference			
LCS	Laboratory Control Spike			
MS	Matrix Spike			
Dup	Duplicate			

Report Approved By:

Raland K Junes

Date:

2/18/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 11 of 11

Environmental Lab of Texas 12600 West 1-20 East Odessa, Texas 79765 Fax: 432-563-1713

Project Manager: Kristin Farris

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

- -

1

Project Name: EME System M-9 SWD Site	Project #:	Project Location: T205, R37E, Sec 9, Unit Letter M	coc #: V117M9-0205	5-397-1471		Analyze For:		Preservative Matrix 8		5-0-5 5-0-5 5-0-5 5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5 7-0-5-0-5-0-5-0-5 7-0-5-0-5-0-5-0-5-0-5-0-5-0-5-0-5-0-5-0-		1 pJ 1 pJ	Hepule High and the second High and the second									id to enviro@leaco.net Sample Containers Intect? C N	Laboratory Comments:	Date Time L HD P.C	2. HOMLGIKSS W/HCI	Date Time	NL 2-9-5 0700 Seal on Black Box
				Fax No: 50						و ری لو	əlqr	m62 n62	9760 9ml7 9ml7	1 1 2 1 2 2	7-10-0-0-	2-8-5 1420 3	2-8-05 1353 7	2-8-05 1553 3	28-05 1315 3			nt-environmental.com ar		eceived by:		eceived by ELOT:	Non mun
Project Manager: Kristin Farris	company Name Rice Operating Company	company address: 122 West Taylor	cttv/state/ztp: Hobbs, New Mexico 88240	Telephone No: 505-393-9174	Sampler Signature: KI R. K. K.		x			X				LAB # (lab use only) FIELD CODE		100 MW-2	1 10 MV3	2 OK MW-4	H MM			Special Instructions: Please email results to both gil@tride	110	Relinquicipat by: // / Date Time Re	XIM Lan 1465 5:00A	Afelinquished by: Date Time Re	Drep Bey 29-5 0700 X

i T

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: <u>R</u> ;	ce Operation Co.
Date/Time:	1 J 02-09-05 @ 0700
	. On Ghod
Order #:	51304004

Initials: JMM

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	-1.0° C	
Shipping container/cooler in good condition?	Tes	No		ĺ
Custody Seals intact on shipping container/cooler?	(Yes)	No	Not present	->on Black Boy
Custody Seals intact on sample bottles?	Yes	No	Not present	
Chain of custody present?	Yes	No		to not in dropba
Sample Instructions complete on Chain of Custody?	(es)	No		Client droppedting
Chain of Custody signed when relinquished and received?	Tes	No		later
Chain of custody agrees with sample label(s)	es	> No		Ĵ
Container labels legible and intact?	Yes	No		
Sample Matrix and properties same as on chain of custody?	(Yes)	No		1
Samples in proper container/bottle?	(Yes	No I		1
Samples properly preserved?	(es)	No		
Sample bottles intact?	Tes	No		1
Preservations documented on Chain of Custody?	Yes	No		· ·
Containers documented on Chain of Custody?	(Yes	No		1
Sufficient sample amount for indicated test?	(Yes)	No		Î
All samples received within sufficient hold time?	(Xes)	No		
VOC samples have zero headspace?	Yes'	No	Not Applicable	7 4

Other observations:

Variance Documentation:

Contact Person: - Gil Van Devent Date/Time: 02-09-05 @ 08:00 Contacted by: Jeanne McMang Regarding:

missing COC

Corrective Action Taken:

1

Τŭ

Clientwill bring cox by later this morning

·

RICE Operating Company Quality Procedures

QP-02: Procedure for Obtaining Soil Samples for Transportation to a LabQP-03: Sampling and Testing Protocol for Chloride TitrationQP-04: Development of Cased Water-Monitoring WellsQP-05: Procedure for Obtaining Water Samples (Cased Wells)QP-07: Sampling and Testing Protocol for VOC in Soil

Rice Operating Company

Quality Procedure

	Procedure for Obtaining	
Soi	Samples for Transportation to a Laboratory	

1.0 Purpose

_ ..

This procedure outlines the methods to be employed when obtaining soil samples to be taken to a laboratory for analysis.

2.0 Scope

This procedure is to be used when collecting soil samples intended for ultimate transfer to a testing laboratory.

3.0 Preliminary

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the soil. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 If collecting TPH, BTEX, RCRA 8 metals, cation /anions or O&G, the sample jar may be a clear 4 oz. container with Teflon lid. If collecting PAH's, use an amber 4 oz. container.

4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the number, location and designation of each planned sample and the individual tests to be performed on the sample. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label.) Affix the labels to the jars.

5.0 Sampling Procedure

.

- 5.1.Do not touch the soil with your bare hands. Use new latex gloves with each sample to help minimize any cross-contamination.
- 5.2.Go to the sampling point with the sample container. If not analyzing for ions or metals, use a trowel to obtain the soil.
- 5.3 Pack the soil tightly into the container leaving the top slightly domed. Screw the lid down tightly. Enter the time of collection onto the sample collection jar label.
- 5.4.Place the sample directly on ice for transport to the laboratory if required.
- 5.5.Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

6.0 Documentation

- 6.1 The testing laboratory shall provide the following minimum information:
 - a. Project and sample name.
 - b. Signed copy of the original Chain of Custody Form including the time the sample was received by the lab.
 - c. Results of the requested analyses
 - d. Test Methods employed
 - e. Quality Control methods and results

Rice Operating Company

QUALITY PROCEDURE

Sampling and Testing Protocol Chloride Titration Using .282 Normal Silver Nitrate Solution

1.0 Purpose

- --

This procedure is to be used to determine the concentration of chloride in soil.

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

- 3.1 Collect at least 80 grams of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample for soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
- 3.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag. Care should be taken to insure that no cross-contamination occurs between the soil sample and the collection tools or sample processing equipment.
- 3.3 The sealed sample bag should be massaged to break up any clods.

4.0 Sample Preparation

- 4.1 Tare a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.
- 4.2 Add at least 10 grams of reverse osmosis water to the soil sample and shake for 20 seconds.
- 4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.
- 4.4 Carefully pour the free liquid extract from the sample through a paper filter into a clean plastic cup if necessary.

5.0 Titration Procedure

· |___

--

- 5.1 Using a graduated pipette, remove 10 ml extract and dispense into a clean plastic cup.
- 5.2 Add 2-3 drops potassium chromate (K_2CrO_4) to mixture.
- 5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (H₂O₂) to mixture.
- 5.4 Using a 1 ml pipette, carefully add .282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.
- 5.5 Record the ml of silver nitrate used.

6.0 Calculation

To obtain the chloride concentration, insert measured data into the following formula:

.282 X 35,450 X ml AgNO₃ X ml water extract grams of water in mixture grams of soil in mixture

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on the delineation form.

Rice Operating Company

Quality Procedure Development of Cased Water-Monitoring Wells

1.0 Purpose

This procedure outlines the methods to be employed to develop cased monitoring wells.

2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

3.0 Sample Collection and Preparation

- 3.1 Prior to development, the static water level and height of the water column within the well casing will be measured with the use of an electric D.C. probe or a steel engineer's tape and water sensitive paste.
- 3.2 All measurements will be recorded within a field log notebook.
- 3.3 All equipment used to measure the static water level will be decontaminated after each use by means of Liquinox, a phosphate free laboratory detergent, and water to reduce the possibility of crosscontamination. The volume of water in each well casing will be calculated.

4.0 Purging

- 4.1 Wells will be purged by using a 2" decontaminated submersible pump or dedicated one liter Teflon bailer. Wells should be purged until the pH and conductivity are stabilized and the turbidity has been reduced to the greatest extent possible.
- 4.2 If a submersible is used the pump will be decontaminated prior to use by scrubbing the outside surface of tubing and wiring with a Liquinox water mixture, pumping a Liquinox-water mixture through the pump, and a final flush with fresh water.

5.0 Water Disposal

5.1 All purge and decontamination water will be temporarily stored within a portable tank to be later disposed of in an appropriate manner.

6.0 Records

6.1 Rice Operating Company will record the amount of water removed from the well during development procedures. The purge volume will be reported to the appropriate regulatory authority when filing the closure report.

Rice Operating Company

Quality Procedure

Procedure for Obtaining Water Samples (Cased Wells) Using One Liter Bailer

1.0 Purpose

This procedure outlines the methods to be employed in obtaining water samples from cased monitoring wells.

2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

3.0 Preliminary

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the water. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 The following table shall be used to select the appropriate sampling container, preservative method and holding times for the various elements and compounds to be analyzed.

Compound to be Analyzed	Sample Container Size	Sample Container Description	Cap Requirements	Preservative	Maximum Hold Time
BTEX	40 ml	VOA Container	Teflon Lined	HCI	7 days
TPH	1 liter	clear glass	Teflon Lined	HCI	28 days
PAH	1 liter	amber glass	Teflon Lined	Ice	7 days
Cation/Anion	1 liter	clear glass	Teflon Lined	None	48 Hrs
Metals	1 liter	HD polyethylene	Any Plastic	Ice/HNO ₃	28 Days
TDS	300 ml	clear glass	Any Plastic	Ice	7 Days

1

4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the well identification and the individual tests to be performed at that location. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label). Affix the labels to the jars.

5.0 Bailing Procedure

- 5.1 Identify the well from the sites schematics. Place pre-labeled jar(s) next to the well. Remove the plastic cap from the well bore by first lifting the metal lever and then unscrewing the entire assembly.
- 5.2 Using a dedicated one liter Teflon bailer, purge a minimum of three well volumes. Place the water in storage container for transport to a ROC disposal facility.
- 5.3 Take care to insure that the bailing device and string do not become cross-contaminated. A clean pair of rubber gloves should be used when handling either the retrieval string or bailer. The retrieval string should not be allowed to come into contact with the ground.

6.0 Sampling Procedure

- 6.1 Once the well has been bailed in accordance with 5.2 of this procedure, a sample may be decanted into the appropriate sample collection jar directly from the bailer. The collection jar should be filled to the brim. Once the jar is sealed, turn the jar over to detect any bubbles that may be present. Add additional water to remove all bubbles from the sample container.
- 6.2 Note the time of collection on the sample jar with a fine Sharpie.

- 6.3 Place the sample directly on ice for transport to the laboratory. The preceding table shows the maximum hold times between collection and testing for the various analyses.
- 6.4 Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

7.0 Documentation

- 7.1 The testing laboratory shall provide the following minimum information:
 - A. Project and sample name.
 - B. Signed copy of the original Chain of Custody Form including the time the sample was received by the lab.
 - C. Results of the requested analyses
 - D. Test Methods employed
 - E. Quality Control methods and results

Calculation for Determining the Minimum Bailing Volume for Monitor Wells Formula V= (πr²h) 2" well [V/231=gal] X 3 = Purge Volume

V=Volume π=pi r=inside radius of the well bore h=maximum height of well bore in water table

Example:

π	r^2	h(in)	V(cu.in)	V(gal)	X 3 Volumes	Actual
3.1416	1	180	565.488	2.448	7.34 gal	>10 gal

Rice Operating Company

QUALITY PROCEDURE Sampling and Testing Protocol for VOC in Soil

1.0 Purpose

This procedure is to be used to determine the concentrations of Volatile Organic Compounds in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil VOC concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

3.0 Procedure

- 3.1 Sample Collection and Preparation
 - 3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
 - 3.1.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air. Record the sample name and the time that the sample was collected on the Field Analytical Report Form.
 - 3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a temperature of between 10-15 Celsius, (59-77°F). The sample temperatures may be adjusted by cooling the sample in ice, or by heating the sample within a generally controlled environment such as the inside of a vehicle. The samples should not be placed directly on heated surfaces or placed in direct heat sources such as lamps or heater vents.
 - 3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

- 3.2 Sampling Procedure
 - 3.2.1 The instrument to be used in conducting VOC concentration testing shall be an Environmental Instruments 13471 OVM / Datalogger or a similar PID-type instrument. (Device will be identified on VOC Field Test Report Form.) Prior to use, the instrument shall be zeroed-out in accordance with the appropriate maintenance and calibration procedure outlined in the instrument operation manual. The PID device will be calibrated each day it's used.
 - 3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the sidewalls of the bag.
 - 3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Test Report Form.
 - 3.2.4 If the instrument provides a reading exceeding 100 ppm, proceed to conduct BTEX Speciation in accordance with QP-02 and QP-06. If the reading is 100 ppm or less, NMOCD BTEX guideline has been met and no further testing for BTEX is necessary. File the Field Test Report Form in the project file.

4.0 Clean-up

After testing, the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal. IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.