2019 Annual Groundwater Monitoring Report Former Dowell Schlumberger Facility Artesia, New Mexico

507 East Richey Avenue Artesia, Eddy County, New Mexico

Prepared for

Schlumberger Technology Corporation and The Dow Chemical Company

March 2020

Contents

Acro	nyms an	d Abbreviations	vii
1	Intro	duction	1-1
2	Site E	Background	2-1
	2.1	Site Description and History	
	2.2	Geology and Hydrogeology	
		2.2.1 Regional Geology and Hydrogeology	
		2.2.2 Site Geology and Hydrogeology	
3	2019	Site Activities	3-1
	3.1	Groundwater Monitoring Activities	3-1
		3.1.1 Semiannual Groundwater Monitoring	3-1
		3.1.2 ISCO Performance Monitoring	3-2
	3.2	Monitoring Well Installation	
		3.2.1 Well Installation Permits	
		3.2.2 Utility Clearances	3-2
		3.2.3 Drilling and Construction	3-2
		3.2.4 Groundwater Sampling	
	3.3	Phase II ISCO Injections	
	3.4	Groundwater Extraction and Treatment Operations	
		3.4.1 GAC Performance Monitoring	
		3.4.2 System Flow Rates	
		3.4.3 System Inspections and Maintenance	
		3.4.4 Extraction Well Rehabilitation	
		3.4.5 Capture Zone Analysis	
	3.5	Waste Management	
4	Resul	ts and Discussion	4-1
	4.1	Groundwater Elevation and Gradient	
	4.2	Groundwater Treatment System Sampling Results	
	4.3	Groundwater Analytical Results	
		4.3.1 MW-36, MW-37, and MW-38 Baseline Results	
		4.3.2 ISCO Phase II Results	
		4.3.3 Downgradient Plume Results	
	4.4	Capture Zone Analysis Results	
		4.4.1 Initial Assessment	
		4.4.2 Late 2019 Update	
5	Sumr	nary and Recommendations	5-1
	5.1	Summary	
	5.2	Recommendations	
		5.2.1 Performance Monitoring at the MW-12 ISCO Injection Area	
		5.2.2 Semiannual Groundwater Monitoring	
		5.2.3 Delineation of the Downgradient Plume	
		5.2.4 CZA Update	
		5.2.5 Operations and Maintenance of the Groundwater Extraction and	
		Treatment System	5-2
		,	

6	References6-1
Append	dixes
A B C D	NMOCD Correspondence Performance Monitoring Data Sheets NMOSE Well Installation Permits Soil Boring Logs and Well Completion Diagrams Laboratory Analytical Reports
Tables	
3-1 3-2 4-1 4-2 4-3	Summary of Persulfate Injections Summary of Groundwater Quality Parameters at Monitoring Wells during DPT Injections Groundwater Elevation Data—2016 through 2019 Groundwater Extraction and Treatment System Performance Monitoring Analytical Results—2019 Summary of Groundwater Analytical Results—2019
Figures	
1-1 1-2 3-1 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9	Site Location Map Site Plan DPT Injection Locations Potentiometric Surface Map—April 2019 Potentiometric Surface Map—October 2019 Isopleth Map for Naphthalene—2019 Isopleth Map for Benzene—2019 Isopleth Map for 1,1-DCE—2019 Isopleth Map for 1,1-DCA—2019 Isopleth Map for PCE—2019 Current Capture Zone — October 2019 Proposed Plume Delineation Locations

iv FES0130202247PNS

Acronyms and Abbreviations

bgs below ground surface

CH2M CH2M HILL Engineers, Inc.

CVOC chlorinated volatile organic compound

CZA capture zone analysis

1,1-DCA 1,1-dichloroethane

1,1-DCE 1,1-dichloroethene

Dowell a defunct joint venture between Schlumberger Technology Corporation and

The Dow Chemical Company

DPT direct-push technology

Fe-EDTA chelated iron

EW extraction well

GAC granular activated carbon

gpm gallon(s) per minute

ISCO in situ chemical oxidation

KP potassium persulfate mg/L milligram(s) per liter

MW monitoring well

NaMnO₄ sodium permanganate

NMED New Mexico Environmental Department

NMOCD New Mexico Oil Conservation Division

NMOSE New Mexico Office of the State Engineer

NMWQCC New Mexico Water Quality Control Commission

PCE tetrachloroethene
PVC polyvinyl chloride

site Former Dowell Schlumberger Facility, Artesia, New Mexico

SP sodium persulfate

SVE soil vapor extraction

USEPA U.S. Environmental Protection Agency

UST underground storage tank

USTB Underground Storage Tank Bureau

VOC volatile organic compound

ZVI zero valent iron

FES0130202247PNS v

SECTION 1

Introduction

CH2M HILL Engineers, Inc. (CH2M) has completed the 2019 groundwater monitoring program and remedial activities at the Former Dowell Schlumberger Facility (site), which is located at 507 East Richey Avenue, Artesia, Eddy County, New Mexico. Dowell Schlumberger Incorporated (Dowell) is a defunct joint venture between Schlumberger Technology Corporation and The Dow Chemical Company. The site was regulated by the New Mexico Oil Conservation Division (NMOCD) under Discharge Permit GW-114 until August 2019 when the Stage I and Stage II Abatement Plans were approved by the NMOCD. Figure 1-1 shows the site location, and Figure 1-2 shows the site plan.

This report documents the annual groundwater sampling and remedial action results and presents recommendations for future activities.

FES0130202247PNS 1-1

Site Background

Section 2 provides an overview of the site background, history of operations, and geology and hydrogeology.

2.1 Site Description and History

The site was used as an oilfield services facility operated by Dowell between 1969 and 1990, and in the early 2000s. In 1988, the New Mexico Environment Department (NMED) Underground Storage Tank Bureau (USTB) directed response actions in connection with fuel-related volatile organic compound (VOC) releases from underground storage tanks (USTs) at the site. During the early 1990s, the NMOCD assumed responsibility for regulatory oversight of the site.

In 1988, fuel-related VOC impacts to site soil and groundwater were discovered during UST removal activities and were regulated by the NMED-USTB. In 1995, a chlorinated VOC (CVOC) groundwater plume was discovered onsite near the former Wash Bay and was determined to be migrating to an adjacent downgradient property. The NMED Groundwater Protection and Remediation Bureau began to oversee the CVOC plume response and continued to regulate the pre-1995 UST impacts. In response to the discovery of the plume, Dowell purchased the downgradient property. Following the purchase of the adjacent land, it was discovered that Eddy County, New Mexico, owns right-of-way property between numerous land parcels and, as of 2015, remains the owner of the right-of-way between the two adjacent properties.

The USTs and acid plant have been decommissioned and removed, but the office, maintenance, and storage buildings remain at the site (Figure 1-2). Concrete blending activities began at the site in October 2018 and are ongoing. No new tanks for storage of liquid materials are currently planned for the site. The remaining property outside the former oilfield services facility fence line is undeveloped, other than for limited environmental-related infrastructure and an electrical transmission line owned by others.

The initial remedial response, excavation and soil vapor extraction (SVE), were implemented to remove petroleum hydrocarbons and CVOCs from site groundwater and soil surrounding the former USTs, Former Wash Bay, and Former Acid Plant (Figure 1-2). During the early to mid-1990s, soil contaminated with fuel-related VOCs and CVOCs was excavated at these locations. Following soil excavation in January 1994, SVE systems began operation at the location of the former USTs and at the former Wash Bay. The SVE system at the location of the former USTs effectively removed fuel-related VOCs within that area and was decommissioned in the early 2000s (Western Water Consultants Inc. 2004). The former Wash Bay SVE system was decommissioned in 2014.

Between 2001 and 2002, zero-valent iron (ZVI) was injected in the downgradient portions of the CVOC groundwater plume. However, the ZVI was difficult to inject, distribution was inconsistent, and there was minimal CVOC concentration reduction. In 2014, sodium permanganate (NaMnO₄) was injected into eight injection wells 20 feet upgradient of MW-25 (CH2M 2015) to use in situ chemical oxidation (ISCO) to accelerate CVOC destruction at the site.

In 2016, a soil and groundwater investigation was completed near the location of the former SVE systems to delineate the residual petroleum hydrocarbon and CVOC plume (CH2M 2017a). In October 2017, a pilot-scale ISCO application using sodium persulfate (SP) was completed in accordance with the MW-12 Investigation Report, Former Dowell Schlumberger Facility, Artesia, New Mexico (CH2M 2017a).

A groundwater extraction and treatment system, which was installed in December 2008 (Duell Environmental LLC 2009) and upgraded in 2015 (CH2M 2016), operates at the downgradient end of the plume as defined by MW-28, MW-29, and MW-30. Groundwater is extracted from EW-01, EW-03, and

FES0130202247PNS 2-1

EW-04; treated using granular activated carbon (GAC); and discharged into the ground by gravity at the subsurface infiltration gallery, which is approximately 230 yards upgradient, adjacent to MW-31.

On July 9, 2019, Schlumberger Technology Corporation, CH2M, and the NMOCD met for a site status update, at which time the Stage I and Stage II Abatement Plan (CH2M 2017b) was revisited and the current Addendum was presented; refer to the meeting notes (CH2M 2019b). NMOCD subsequently approved the Stage I and Stage II Abatement Plan and current Addendum, and the proposed revisions to the monitoring network on August 14, 2019 (Appendix A). In accordance with Title 19, Chapter 15, Part 30, Section 10 of the New Mexico Administrative Code (NMAC 2002), the abatement standards that will be continued to be used will be those presented in the Stage I and II Abatement Plan (CH2M 2017b).

2.2 Geology and Hydrogeology

2.2.1 Regional Geology and Hydrogeology

The underlying geology in the area includes the east-dipping Permian San Andres Limestone. Overlying the Permian San Andres Limestone are the Artesia Group and Quaternary alluvium (Lyford 1973).

Artesia, New Mexico, is in the Roswell groundwater basin. The basin's boundaries are as follows:

- Northern is 20 miles north of Roswell.
- Southern is in the Seven Rivers area between Artesia and Carlsbad
- Eastern is the Pecos River.
- Western is roughly 20 miles west of Artesia.

The Roswell groundwater basin is made up of two aquifers, separated by a leaky confining layer. The upper aquifer is contained in the quartzose unit of the Quaternary alluvium, and the lower aquifer consists of the Permian San Andres Limestone. The upper aquifer is unconfined and is composed of Quaternary alluvial valley fill. Most of the water-producing zones in the aquifer are in the quartzose unit. The zones are typically sand and gravel, separated by adjacent zones of silt and clay. Most zones are around 20 feet thick (Welder 1983).

The leaky confining layer between the two aquifers is formed from the lower three formations of the Artesia Group, which are mudstones. The moderately permeable layers form a leaky confining layer between the lower and upper aquifers (Hendrickson and Jones 1952). The layers vary in thickness across the basin due to erosion and solution collapse. The lower aquifer is within the San Andres Limestone and the lower part of the Artesia Group. There are five different water-bearing zones in the deep aquifer. The thickness of the aquifer ranges from 260 to 460 feet, with water-bearing zones typically 50 feet or less in thickness. In the northern part of the basin, near Roswell, the middle of the San Andres Limestone is the main water-producing zone. Near Artesia, in the middle of the basin, the main zone of production is the top of the San Andres Limestone. In the southern part of the basin, the main zone of production is the lower part of the Artesia Group (Welder 1983).

The transmissivities of the two aquifers vary due to irregular fractures, solution permeability in the deep aquifer, and erratic occurrences of sand and gravel in the shallow aquifer (Hendrickson and Jones 1952). The transmissivities range from 7,500 to 196,000 square feet per day in the deep aquifer, and 4,200 to 186,000 square feet per day in the shallow aquifer (Welder 1983). The aquifer zone yields vary greatly due to groundwater moving principally through cavities and fractures (Hendrickson and Jones 1952) at various depths. As a result, it is difficult to find specific water-bearing depth intervals in the aquifer during monitoring well installation (Welder 1983). Groundwater moves from the lower aquifer to the shallow, although Welder (1983) states that flow may reverse due to heavy pumping in the lower aquifer. The estimated net rate of upward leakage is around 12,400 acre-feet per month (Welder 1983). Several water-bearing units in the leaky confining layer exist, and wells have been advanced and

2-2 FES0130202247PNS

completed in the zones (Welder 1983). In general, in the Roswell basin, groundwater flow is to the east; however, groundwater pumping in the Artesia area has caused a depression in the potentiometric surface of nearly 90 feet.

2.2.2 Site Geology and Hydrogeology

Western Water Consultants, Inc. assessed the geology and hydrogeology beneath the site during a March 1995 investigation. Observations during drilling activities indicated that the predominant lithologies consist of light-brown to reddish-brown silt and silty clay, interbedded with clay layers and stringers of carbonate rubble. The very-fine-grained sediments were deposited in an arid, alluvial overbank environment and can be expected to be more laterally continuous than coarse-grained alluvial channel deposits (Western Water Consultants, Inc. 1995). The carbonate layers are believed to be the result of the evaporation of water containing elevated concentrations of dissolved solids. The 1995 investigation concluded that the stringers of carbonate rubble constitute the primary water-bearing zones. The rubble layers were observed at depths ranging from 20 to 26 feet below ground surface (Western Water Consultants, Inc. 1995).

FES0130202247PNS 2-3

2019 Site Activities

As detailed below, the following activities occurred at the site during 2019:

- Collection of semiannual groundwater samples and depth-to-water measurements. During the
 October event, seven existing monitoring wells were removed from the semiannual sampling
 program but were retained for the collection of potentiometric surface data.
- Installation of three new groundwater monitoring wells (MW-36, MW-37, and MW-38) near MW-12, in the ISCO injection area (Figure 1-2). Baseline groundwater samples were collected in August.
- Completion of the second phase of ISCO application, in accordance with the MW-12 Investigation Report,
 Former Dowell Schlumberger Facility, Artesia, New Mexico (CH2M 2017a) and 2018 Annual Monitoring
 Report, Former Dowell Schlumberger Facility, Artesia, New Mexico (CH2M 2019a). One performance
 monitoring groundwater sampling event was conducted in October to assess ISCO effectiveness.
- Continued operations and maintenance of the groundwater extraction and treatment system, replacement of the GAC, and rehabilitation of EW-03 and EW-04. In July 2019, the system was optimized based on capture zone analysis (CZA) recommendations. The CZA was updated for this report using the October 2019 analytical and system data.

3.1 Groundwater Monitoring Activities

3.1.1 Semiannual Groundwater Monitoring

Depth-to-water was measured at the 19 site monitoring wells in April 2019 and 22 site monitoring wells in October 2019. The April event included groundwater sample collection from 17 of 19 site monitoring wells sampled semiannually (MW-11, MW-12, MW-15, MW-17C, MW-18, MW-21, MW-22, MW-25, MW-26, MW-28, MW-29, MW-30, MW-31, MW-32, MW-34, and MW-35). The October event included groundwater sample collection from 15 of 22 site wells sampled annually (MW-11, MW-12, MW-17C, MW-22, MW-25, MW-28, MW-29, MW-30, MW-31, MW-32, MW-34, MW-35, and the three new wells, MW-36, MW-37, and MW-38).

Except for MW-11, MW-12, and MW-17C (discussed in Section 3.1.2) and MW-36, MW-37, and MW-38 (discussed in Section 3.2.4), groundwater samples were collected using HydraSleeves and submitted for laboratory analysis of the target list of VOCs (1,1-dichloroethene [1,1-DCE], 1,1-dichloroethane [1,1-DCA], naphthalene, benzene, and tetrachloroethene[PCE]) by the U.S. Environmental Protection Agency (USEPA) SW-846 Method 8260B. In April and October, groundwater samples from 11 monitoring wells were also submitted for laboratory analysis of dissolved manganese by USEPA Method 6020. The manganese sampling and analysis is a condition of NMOCD Discharge Permit Amendment Approval to implement ISCO. Appendix A contains correspondence with NMOCD regarding the required geochemical monitoring.

In a modification to the Stage I and Stage II Abatement Plan (CH2M, 2019b), approved by the NMOCD in August 2019 (Bradford Billings/NMOCD 2019) seven monitoring wells (MW-8, MW-15, MW-18, MW-20, MW-21, MW-26, and MW-33) were removed from the semiannual monitoring plan based on historical analytical data indicating no constituents had exceeded New Mexico Water Quality Control Commission (NMWQCC) standards since 2015. Monitoring wells were retained at the site for potentiometric surface measurements. The NMOCD approval of the modification is included in Appendix A.

FES0130202247PNS 3-1

3.1.2 ISCO Performance Monitoring

Performance monitoring groundwater samples were collected in the MW-12 ISCO injection area as part of the April and October semiannual groundwater sampling events. Groundwater samples were collected from MW-11, MW-12, and MW-17C in April and October and submitted for laboratory analysis of the target list of VOCs by USEPA Method 8260B. As a condition of NMOCD Discharge Permit Amendment Approval to inject sodium and potassium persulfate (KP) at the site, groundwater samples from were also collected and submitted for laboratory analysis of sulfate by USEPA Method 300.0.

Before groundwater was sampled, MW-11, MW-12, and MW-17C were purged with a peristaltic pump using low-flow methods. Field parameters (temperature, pH, conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential) were measured and recorded during purging activities. Appendix B contains performance monitoring field data sheets for the sampling events conducted in April and October.

Groundwater extracted during purging activities was contained in 5-gallon buckets and transferred to the groundwater treatment system for treatment and re-infiltration.

3.2 Monitoring Well Installation

Groundwater monitoring well installation in August included the following components:

- Submittal and approval of well installation permits
- Utility clearances
- Drilling and installation of three soil monitoring wells by hollow-stem auger
- Well development and groundwater sampling

3.2.1 Well Installation Permits

Well permit applications for non-consumptive use of water were submitted to the New Mexico Office of the State Engineer (NMOSE). On August 19, 2019, the NMOSE granted well permits, which are included in Appendix C. On August 26, 2019, Talon/LPE, a licensed New Mexico driller, mobilized to the site to install three monitoring wells in the MW-12 ISCO injection area to monitor the performance of the ISCO remedy.

3.2.2 Utility Clearances

Before drilling activities began, monitoring well locations were staked, a New Mexico OneCall ticket was initiated, and a third-party utility-locating service used a ground penetrating radar survey to identify utilities within a 10-foot diameter around each boring location.

3.2.3 Drilling and Construction

MW-36, MW-37, and MW-38 were installed to 25 feet below ground surface (bgs) using hollow-stem auger drilling techniques. The monitoring wells were drilled using 4.25-inch-inside-diameter augers with continuous coring methods, and soil was described lithologically logged in accordance with the Unified Soil Classification System. Soil boring logs are included in Appendix D.

The wells were constructed of flush-threaded, 2-inch diameter schedule 40 polyvinyl chloride (PVC) blank casing, bottom cap, and PVC screen. The wells were screened from 15 to 25 feet bgs using a 0.010-inch mil slot screen with a flush-threaded schedule 40 PVC bottom cap. The soil boring logs and well construction diagrams show filter-pack type and size, bentonite seal depth, and grout mixture (Appendix D). Monitoring well locations are presented on Figure 1-2.

After monitoring wells were installed, they were developed by surging with a surge block, followed by bailing out the fine-grained sediment that entered the well screen during the surging step. Finally, a

3-2 FES0130202247PNS

submersible pump was placed into the well and pumped at a suitable flow rate to prevent the screen interval from dewatering, until the water's turbidity began to decrease. Development was considered complete when the measured turbidity of the groundwater was less than 10 nephelometric turbidity units.

3.2.4 Groundwater Sampling

Immediately after the completion of well development, a groundwater sample was collected from each new monitoring well with the submersible pump. Samples were submitted for laboratory analysis of the target list of VOCs by USEPA Method 8260B and sulfate by Method 300.0 (required as a condition of NMOCD Discharge Permit Amendment Approval to inject SP and KP). Along with MW-11, MW-12, and MW-17C, the three new monitoring wells (MW-36, MW-37, and MW-38) were sampled again in October for the same parameters to assess ISCO effectiveness.

Before groundwater was collected, MW-36, MW-37, and MW-38 were purged with a peristaltic pump using low-flow methods. Field parameters (temperature, pH, conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential) were measured and recorded during purging activities. Appendix B contains performance monitoring field data sheets for the baseline sampling event conducted in August and the semiannual groundwater sampling event conducted in October.

3.3 Phase II ISCO Injections

Based on the April analytical results at MW-12 (described in Section 4.3), the second phase of the ISCO injections was completed in 2019 using a direct push technology (DPT) drilling rig. As discussed in the *Stage I and Stage II Abatement Plan* (CH2M 2017b) and the *2017 Annual Monitoring Report* (CH2M 2018), a combination of SP (Klozur SP) and KP (Klozur KP) was selected for remediating the CVOCs in the MW-12 area. While Klozur SP is fast-acting and starts the oxidation process in the aquifer, Klozur KP has a longer life in the aquifer and is best for addressing the target VOCs as they desorb or diffuse from the clay. Chelated iron (Fe-EDTA) was added to activate the persulfate.

During the pilot-scale study injection event, boreholes were abandoned after injections (CH2M 2018); however, based on current concentrations of 1,1-dichloroethane (1,1-DCA) and sulfate in the injection area, injection wells were installed in the DPT borings for potential follow-on carbon substrate injections. Well permit applications for non-consumptive use of water were submitted to the NMOSE. Well permits were granted by the NMOSE on September 20, 2019 and are included in Appendix C. Because the injection wells are less than 2.375 inches in diameter, a New Mexico-licensed driller was not required to install wells.

On September 30, 2019, FRx, Inc, a specialty injection contractor, and Earth Worx Environmental Services, a DPT contractor, mobilized to the site. The Klozur SP, Klozur KP, and Fe-EDTA were delivered to the site and stored inside a shed with existing secondary containment. Potable water was obtained from a potable water source connected to the Schlumberger facility.

Beginning on September 30, 2019, the injections were implemented as follows:

- DPT drilling rig was used to advance a 2-inch-diameter drill rod to the desired depth of each fracture.
- The drilling rod was extracted to expose a 2-foot-long section of open borehole.
- Potable water was used to inscribe a kerf into the wall of the open borehole to focus injection stresses and propagate the fracture with hydraulic pressure.
- The slurry composed of 55 to 165 pounds of Klozur SP, 385 to 750 pounds of Klozur KP, and 3 pounds of an Fe-EDTA was injected through the kerf.

FES0130202247PNS 3-3

This process was repeated for 48 fractures in 12 boreholes (Figure 3-1). Table 3-1 details the volume of slurry injected into each fracture. After the slurry was injected into each fracture, groundwater parameters were monitored at MW-12, MW-36, MW-37, or MW-38, based on their distance from DPT location. Groundwater quality parameters were collected using a dedicated bailer and string, removing one full bailer of water, and collecting readings from the water quality meter. Excess water from the bailer was contained in 5-gallon buckets and transferred to the treatment system for treatment and reinjection. Table 3-2 shows groundwater quality parameters collected from monitoring wells during DPT injections.

At the completion of the injections 1-inch-inside-diameter injection wells were installed into each 2-inch-diameter borehole. The injection wells were constructed of flush-threaded, 1-inch-diameter schedule 40 PVC blank casing, bottom cap, and PVC screen. The wells were screened from 14 to 24 feet bgs using a 0.010-inch mil slot screen with a flush-threaded schedule 40 PVC bottom cap. The well construction diagrams show filter-pack type and size, bentonite seal depth, and grout mixture (Appendix D). Figure 3-1 shows the injection well locations.

3.4 Groundwater Extraction and Treatment Operations

Groundwater extraction and treatment system operations included the following components:

- Collection of GAC performance monitoring samples
- Documentation of the flowrates from the extraction wells and the combined outflow
- Quarterly system inspections and maintenance in February, April, September, and October, which
 also included the replacement of the cartridge filters in October and replacement and offsite
 reactivation of the spent GAC in October
- Extraction well rehabilitation
- Optimization of the groundwater extraction rates in July, based on recommendations presented in the July 9, 2019 meeting with NMOCD

3.4.1 GAC Performance Monitoring

Samples were collected from the GAC inlet, mid-GAC, and GAC outlet in April and October, and submitted for laboratory analysis of the target list of VOCs by USEPA Method 8260B and dissolved manganese by USEPA Method 6020.

3.4.2 System Flow Rates

Based on the flow totalizer, approximately 11.86 million gallons of groundwater were extracted, treated, and re-infiltrated in 2019. The average extraction rates at the extraction wells in 2019 were 7.8 gallons per minute (gpm) at EW-01, 10.8 gpm at EW-03, and 11.0 gpm at EW-04.

Based on recommendations presented in the spring 2019 CZA described in Section 4.4.1, extraction rates were optimized on June 18, 2019. Extraction optimization included shutting off EW-01, decreasing the flow rate at EW-03 to 8 to 10 gpm, and increasing the flow rate at EW-04 to 13 to 15 gpm.

3.4.3 System Inspections and Maintenance

Daily emails were received from the onboard telemetry that reported flow rates, system pressure, total gallons through the system, and upset conditions. During the maintenance site visits, the activities included the measurement of extraction well flow rates and the combined outflow, physical inspection of the system to observe for leaks and/or upset conditions, and the replacement of cartridge filters.

3-4 FES0130202247PNS

In addition, the GAC vessels were drained, and the GAC was replaced in October. Spent GAC was transported offsite for reactivation.

The groundwater extraction and treatment system was unintentionally shut down three times during the 2019 reporting period. The system shut down in March and June due to power outages in the Artesia area, likely due to thunderstorms. Operations personnel were unable to remotely connect to the system after power was restored and had to mobilize to the site to reset the modem and restart the system. In July, the system restart was not successful by operations personnel and the diagnosis of a local electrician indicated the uninterrupted power supply required replacement. The uninterrupted power supply was replaced, and the system was restarted. The system was shut down in August due to a blockage in the equilibration tank, the blockage was removed, and the system was restarted. The system was not operational for a total of approximately 30 days during the 2019 reporting period.

3.4.4 Extraction Well Rehabilitation

EW-03 and EW-04 were rehabilitated by chemical treatment in April and September to reduce the growth of iron-reducing bacteria. Rehabilitation included brushing/swabbing the well casing and screen to physically remove the bacterial deposits, removing debris using a bailer, and placing NuWell chemical solution into the well screen. After the NuWell chemical solution was placed, the well screen and sand pack were swabbed and surged. The NuWell chemical solution was left in the well screen and sand pack overnight. The following day, the well screen and sand pack were swabbed, surged, and bailed to remove debris that had accumulated overnight. Groundwater and NuWell chemical solutions bailed from EW-03 and EW-04 were temporarily contained in open-top 55-gallon steel drums and transferred to the groundwater extraction and treatment system for treatment and re-infiltration.

3.4.5 Capture Zone Analysis

A CZA was presented to NMOCD in a meeting on July 9, 2019 (CH2M 2019b), using analytical and extraction system data to evaluate the 2018 operational period. The CZA was updated in late 2019 to evaluate the 2019 operational period. The evaluation included an interpretation of multiple lines of evidence per USEPA guidance for evaluating capture zones at pump-and-treat systems (USEPA 2008). The following lines of evidence used to complete the CZA:

- The target capture zone was identified using April and October 2019 concentration isopleths for tetrachloroethene (PCE) and 1,1-dichloroethene (1,1-DCE).
- The 2018 and 2019 capture zones were estimated using the groundwater flow net from potentiometric surface elevation data.
- Site hydrogeological properties were refined using fundamental hydrogeologic calculations using site hydrogeological data and an iterative approach to match the calculation output to the inferred current capture zone.
- Contaminant concentration trends at sentinel monitoring wells (MW-28, MW-29, and MW-35) collected in April and October 2019 were used to identify evidence of plume capture.
- The optimum groundwater extraction rate to produce a capture zone sufficient to achieve the target capture zone was estimated.

3.5 Waste Management

Soil waste from the installation of MW-36, MW-37, and MW-38 was containerized in steel 55-gallon open-top drums. Waste characterization samples were collected, and a soil profile was generated. Six drums were transported from the site for disposal by Safety Kleen in October 2019.

FES0130202247PNS 3-5

Groundwater extracted during purging activities was contained in 5-gallon buckets and transferred to the groundwater treatment system for treatment and re-infiltration. Water removed from wells during development was containerized and transferred to the GAC system for treatment and reinjection.

3-6 FES0130202247PNS

Results and Discussion

4.1 Groundwater Elevation and Gradient

Figures 4-1 and 4-2 show the April and October 2019 potentiometric maps. Table 4-1 presents historical and 2019 groundwater elevation data.

An area of localized groundwater mounding was observed at MW-31, which is near the gravity infiltration trench. Conversely, groundwater elevations in the monitoring wells at northern boundary of the site (MW-28, MW-29, MW-30, and MW-35) are relatively depressed because of the extraction and treatment system.

The overall groundwater gradient was 0.0076 feet per foot for the April event, with the overall direction of groundwater flow to the northeast. The overall groundwater gradient was 0.0072 feet per foot for the October event, with the overall direction of groundwater flow to the northeast. The gradient and groundwater flow direction are consistent with historical results.

4.2 Groundwater Treatment System Sampling Results

Table 4-2 shows the groundwater extraction and treatment system performance monitoring analytical results. Concentrations of 1,1-DCE exceeded the NMWQCC standard of 0.005 milligrams per liter (mg/L) in the inlet and middle GAC sampling location during both April and October. Analytical results indicated breakthrough of the GAC by October and GAC was changed out during the October 2019 sampling event.

4.3 Groundwater Analytical Results

Table 4-3 summarizes the groundwater analytical results for 2019. Appendix E contains the 2019 laboratory analytical reports. In addition to the semiannual data from April and October, Table 4-3 and Appendix E also include the results from August baseline sampling at monitoring wells MW-36, MW-37, and MW-38, as well as the October performance monitoring event of the monitoring wells inside the ISCO footprint. Appendix B includes the baseline sampling and performance monitoring field data sheets for monitoring wells inside the ISCO footprint. Results from before 2019 are included in previous annual reports.

The groundwater analytical results are compared to the NMWQCC standards, which are included in Table 4-2. Figures 4-3, 4-4, 4-5, 4-6, and 4-7 present concentrations in groundwater for the target VOCs that exceeded NMWQCC standards during a given sampling event. The extent of the exceedance of the NMWQCC standard is shown as an isopleth line on each figure.

As Figure 4-3 shows, the naphthalene concentration exceeded its NMWQCC standard of 0.03 mg/L at MW-12 during the April sampling event. Naphthalene concentrations were less than the NMWQCC standards in 2018 (CH2M 2019a) and October 2019. Based on the recommendations presented in the 2018 Annual Monitoring Report (CH2M 2019a), the Phase II ISCO application was completed.

4.3.1 MW-36, MW-37, and MW-38 Baseline Results

The following points summarize the August 2019 baseline results for MW-36, MW-37, and MW-38:

Naphthalene and PCE concentrations did not exceed their respective NMWQCC standards of 0.03 mg/L and 0.02 mg/L at the three new performance monitoring wells (Figures 4-3 and 4-7).

FES0130202247PNS 4-1

- As Figure 4-4 shows, the baseline benzene concentrations at MW-36 exceeded the NMWQCC standard of 0.01 mg/L.
- 1,1-DCE (Figure 4-5) concentrations exceeded the NMWQCC standard of 0.005 mg/L at MW-37 and MW-38.
- 1,1-DCA concentrations exceeded the NMWQCC standard of 0.025 mg/L at MW-36, MW-37, and MW-38 (Figure 4-6).
- Sulfate concentrations exceeded the NMWQCC standard of 600 mg/L at all three performance monitoring wells, indicating sulfate concentrations naturally exceed the NMWQCC standard in site groundwater.

4.3.2 ISCO Phase II Results

Post-injection groundwater samples were collected as part of the October 2019 semiannual sampling event, 1 month after ISCO injections. The following points summarize the results:

- As shown on Figure 4-3, the naphthalene concentration at MW-12 was less than its NMWQCC standard during the 1-month post-injection sampling event, decreasing from 0.0466 in April 2019 to 0.0297 mg/L in October 2019 (Table 4-3); concentrations at MW-11, MW-17C, MW-35, MW-36, and MW-37 remained less than the NMWQCC standard.
- Benzene concentrations exceeded its NMWQCC standard at MW-36, decreasing from 0.0292 J mg/L in August 2019 to 0.0129 mg/L in October 2019. Benzene concentrations at MW-11, MW-12, MW-17C, MW-37, and MW-38 were below its NMWQCC standard during the October sampling event.
- 1,1-DCE concentrations exceeded its NMWQCC standard at MW-37 and MW-38, though
 concentrations decreased by 34 and 30 percent, respectively, after the ISCO injections (Figure 4-5
 and Table 4-3). 1,1-DCE concentrations remained below its NMWQCC standard at MW-11, MW-12,
 MW-17C, and MW-36.
- PCE concentrations were below its NMWQCC standard during the October sampling event at MW-11, MW-12, MW-17C, MW-36, MW-37, and MW-38.
- 1,1-DCA was detected in all six performance monitoring wells during the 1-month post-injection sampling event (October 2019); concentrations at MW-12, MW-36, MW-37, and MW-38 exceeded its NMWQCC standard (Figure 4-6).
- Sulfate concentrations exceeded its NMWQCC standard at MW-11, MW-12, MW-17C, MW-36, MW-37, and MW-38 during the 1-month post-injection sampling event. Sulfate concentrations, which naturally exceed the NMWQCC standard (CH2M 2017), have likely fluctuated since the pilot study application due to the slow release of persulfate from the injection of Klozur KP. The average sulfate concentration during the 1-month post-injection sampling event was 1,501 mg/L.

4.3.3 Downgradient Plume Results

The downgradient plume results are summarized below:

As shown on Figure 4-5, 1,1-DCE concentrations exceeded its NMWQCC standard of 0.005 mg/L at the distal end of the plume at MW-28, MW-29, and MW-35 during the April and October sampling events.
 1,1-DCE concentrations at MW-28, MW-29, and MW-35 generally remained stable in 2019 though concentrations increased slightly between the April and October sampling events (Table 4-3).

4-2 FES0130202247PNS

- The PCE concentrations at MW-29 and MW-35 exceeded its NMWQCC standard of 0.02 mg/L in April and October. As Figure 4-7 shows, the exceedances are limited to the distal end of the plume, with the maximum concentration at MW-29 (0.0365 mg/L in October), where concentrations have continued to increase slightly since April 2016 (CH2M 2017c, 2018, 2019). The PCE concentrations at MW-35 have remained relatively stable since 2017 and are generally consistent with MW-29.
- Dissolved manganese samples were collected at a subset of monitoring wells during the April and October sampling events to demonstrate that the 2014 injection of NaMnO₄ did not increase the concentration of manganese in the aquifer beyond the ISCO target treatment zone. Of the 17 total samples collected during both semiannual groundwater sampling events, manganese was detected in four samples in April 2019 and only exceeded its NMWQCC standard at MW-25; MW-25 is downgradient of the injection area and re-infiltration gallery. In October 2019, manganese concentrations were detected in eight samples, none of which exceeded the NMWQCC standard. As discussed in the 2018 Annual Groundwater Monitoring Report (CH2M 2019), the exceedance of dissolved manganese downgradient of the re-infiltration gallery is likely a byproduct of the routine extraction well rehabilitation rather than the 2014 ISCO application.

4.4 Capture Zone Analysis Results

4.4.1 Initial Assessment

The CZA completed using October 2018 analytical data and April 2019 groundwater elevation data indicated that the current configuration of the groundwater extraction and treatment system was unlikely to capture the full downgradient extent of the 1,1-DCE and PCE plume (CH2M 2019b). A summary of the CZA observations based on 1,1-DCE and PCE concentration trends are as follows:

- PCE and 1,1-DCE concentrations at MW-35 (downgradient of the EW-03 capture zone) has increased since the monitoring well was installed in late 2016 (CH2M 2017c, 2018, and 2019a), suggesting this portion of the plume is advancing, and the core of plume has not passed this location, suggesting this location was outside of the capture zones at the time of the assessment.
- Inside the capture zone, PCE and 1,1-DCE concentrations at MW-28 have been stable since 2014, and PCE and 1,1-DCE concentrations at MW-29 appear to have been increasing slightly since 2016 (CH2M 2017c, 2018, and 2019a). These results suggest a portion of the plume is being captured by EW-03 and EW-04.
- Adjacent to the EW-01 capture zone, MW-26 and MW-32 continue to have no exceedances of NMWQCC standards for PCE and 1,1-DCE since 2016 (CH2M 2017c, 2018, and 2019a), suggesting the current capture zone is preventing the plume from migrating to these locations. Concentrations at MW-30 have stabilized at or less than the NMWQCC standards, indicating the EW-01 capture zone is capturing the groundwater near MW-30; as a comparison, the 1,1-DCE concentration was nearly eight times the standard in 2013. However, the generally increasing concentration trend at MW-29 since 2013 indicates the capture zone does not extend to this monitoring well.

Because the estimated capture zones were smaller than the target capture zone, the CZA recommended optimizing extraction rates to improve plume capture. Recommended optimization included increasing extraction rates at EW-04 to 16 gpm, supplementing with lower extraction rates at EW-03, and turning EW-01 off. The CZA indicated the optimized extraction rates would result in the capture zone spanning the width of the plume, but possibly not capturing the downgradient portion of the plume. Extraction rates were optimized during a site visit on June 18, 2019, following NMOCD approval of the current Addendum to the Stage 1 and II Abatement Plan (Appendix A).

FES0130202247PNS 4-3

4.4.2 Late 2019 Update

The CZA was updated using analytical and groundwater elevation data collected in October 2019 to assess the optimization of extraction rates completed in June. The updated CZA indicated the estimated capture zones for EW-03 and EW-04 intercepted approximately 80 percent of the 1,1-DCE and PCE plumes, but likely do not capture the downgradient-most part of either plume (Figure 4-8), although the downgradient extent of either plume is not defined.

Observations from the updated evaluation based on current 1,1-DCE and PCE concentration trends are summarized as follows:

- PCE and 1,1-DCE concentrations at MW-35 (downgradient of the capture zone) have increased since the monitoring well was installed in late 2016 (CH2M 2017c, 2018, and 2019a), suggesting this portion of the plume appears to be advancing and the core of plume has not passed this location. These findings are consistent with the original CZA assessment. Since this location is within the estimated capture zone, the increase in concentrations suggests that higher concentrations are outside of this location relative to EW-03 and at least some of the higher concentrations outside of this location will be captured by the extraction system.
- Inside the capture zones, PCE and 1,1-DCE concentrations at MW-28 have been stable since 2014, indicating that this monitoring well is located within the dilute upgradient portion of the plume.
- PCE and 1,1-DCE concentrations at MW-29 appear to be increasing (CH2M 2017c, 2018, and 2019), possibly as the center of greatest concentrations are being pulled past MW-29 towards EW-04.
- At MW-30, the increasing concentration from 2000 through 2010 and the subsequent decreasing concentration through 2019 indicate the core of the plume has approached and passed this location. These results suggest a portion of the plume is being captured by EW-03 and EW-04.
- Steadily declining concentrations at MW-32 and MW-34 indicate that the PCE and 1,1-DCE plumes have passed those locations. Because these locations are within the capture zones of EW-03 and EW-04, the system may eventually capture the relatively clean groundwater at these locations.

The optimized extraction rates implemented in June 2019 at EW-04 (15.4 gpm) and EW-03 (10.9 gpm) appears to have created a combined capture zone wider than the groundwater plumes. However, the downgradient edge of the capture zone may not extend to the estimated downgradient edge of the groundwater plume.

4-4 FES0130202247PNS

Summary and Recommendations

5.1 Summary

Groundwater monitoring has been conducted at the site since 1991. The following are the key findings:

- Overall, compared to historical data, target VOCs concentrations are generally stable or decreasing because of groundwater extraction since 2015, the NaMnO₄ injections in 2014, the pilot-scale ISCO application in 2017, and the Phase II ISCO application in 2019.
- One month after the Phase II ISCO application in the MW-12 area, 1,1-DCE, 1,1-DCA, and benzene concentrations continue to exceed their respective NMWQCC standards. Target VOC concentrations decreased the most at MW-37, which is the closest to the newest injection locations and also the location with the greatest sulfate concentration after persulfate injections. While 1-month post-injection sampling results do not show a significant decrease in target VOC concentrations, the new performance monitoring wells are located further from the injection locations than MW-12 was from the 2017 ISCO injection locations. Furthermore, because most of the injected oxidant comprised the slow-release KP, it is expected that the treatment process will extend beyond the first month.
- PCE and/or 1,1-DCE concentrations continue to exceed NMWQCC standards at the distal end of the
 plume (MW-28, MW-29, and MW-35). In general, the concentrations at MW-28, which is close to
 EW-03, are stable, while those at MW-29 and MW-35 are slightly increasing. The other target VOC
 concentrations within the historical downgradient plume footprint are less than their respective
 NMWQCC standards.
- Although the manganese concentration at MW-25 exceeded the NMWQCC standard in April 2019 and
 was detected at concentrations below the NMWQCC standard at all locations where samples were
 collected during the October sampling event, the presence of manganese in the aquifer is likely a byproduct of the routine extraction well rehabilitation rather than the 2014 ISCO application.
- While the CZA indicated the entire width of the 1,1-DCE and PCE plumes were captured by the
 current configuration of the groundwater extraction and treatment system, the full extent of the
 downgradient plumes is not likely being captured. However, the extent of the 1,1-DCE and PCE
 plumes downgradient of MW-35 are unknown.

5.2 Recommendations

5.2.1 Performance Monitoring at the MW-12 ISCO Injection Area

Performance monitoring in the MW-12 injection area will be performed during both the April and October semiannual sampling events as well as in July, which will be approximately 9 months post-injection. Performance monitoring data will be used to assess whether the ISCO injections were successful at remediating the target VOCs in the MW-12 area, whether the sulfate concentrations return to baseline conditions approximately 12-months post-injection, and whether contingent injections using the new injection wells are warranted.

5.2.2 Semiannual Groundwater Monitoring

The groundwater monitoring program, will continue semiannually. Sulfate samples will be also collected from monitoring wells within the ISCO footprint during the semiannual groundwater sampling events.

FES0130202247PNS 5-1

Sampling for dissolved manganese at monitoring wells located in the 2014 ISCO injection area should be discontinued. Concentrations fluctuate semiannually and there is no discernable pattern indicating detected concentrations are the result of potassium permanganate remaining in the aquifer from the 2014 ISCO injections.

5.2.3 Delineation of the Downgradient Plume

Analytical results at MW-28, MW-29, and MW-35 indicate that PCE and 1,1-DCE concentrations continue to exceed their respective NMWQCC standards downgradient of the property line. Furthermore, the CZA indicated the downgradient plumes may not be captured with the existing groundwater extraction and treatment system and groundwater extraction rate optimization. Therefore, up to 10 temporary groundwater sampling points are proposed downgradient of MW-28, MW-29, and MW-35 to define the extent of the plume (Figure 4-9). The sampling points will be sampled for 1,1-DCE and PCE and then will be abandoned per NMOSE regulations.

The proposed temporary groundwater sampling points will be installed using a DPT drilling rig on property north of the site. While Schlumberger Technology Corporation has an existing access agreement with the property owner, an amendment will be required before executing the downgradient delineation..

5.2.4 CZA Update

The CZA will be updated with groundwater elevation and target VOC data collected from the downgradient temporary sampling points. The updated CZA will be used to assess the need for potential additional monitoring or extraction wells and determine well placement(s).

5.2.5 Operations and Maintenance of the Groundwater Extraction and Treatment System

Automated daily system monitoring and notifications by email will continue, and site visits will take place, as necessary, to evaluate and repair upset conditions. Site visits will continue quarterly to maintain the groundwater extraction and treatment system. During quarterly maintenance visits in April and October, water samples will be collected from the influent, between the lead and lag GAC vessels, and effluent to assess treatment system performance. Semiannual performance monitoring will be used to assess when GAC replacement is needed.

5-2 FES0130202247PNS

References

Billings, Bradford/New Mexico Oil Conservation Division (NMOCD), Hydrologist. 2019. Email to Virgilio Cocianni/Schlumberger Technology Corporation. August 14.

CH2M HILL Engineers, Inc. (CH2M). 2015. 2014 Annual Groundwater Monitoring Report, Former Dowell Schlumberger Facility, Artesia, New Mexico. March.

CH2M HILL Engineers, Inc. (CH2M). 2016. 2015 Annual Groundwater Monitoring Report, Former Dowell Schlumberger Facility, Artesia, New Mexico. March.

CH2M HILL Engineers, Inc. (CH2M). 2017a. MW-12 Investigation Report, Former Dowell Schlumberger Facility, Artesia, New Mexico. June.

CH2M HILL Engineers, Inc. (CH2M). 2017b. *Stage I and Stage II Abatement Plan, Former Dowell Schlumberger Facility, Artesia, New Mexico*. October.

CH2M HILL Engineers, Inc. (CH2M). 2017c. 2016 Annual Groundwater Monitoring Report, Former Dowell Schlumberger Facility, Artesia, New Mexico. March.

CH2M HILL Engineers, Inc. (CH2M). 2018. 2017 Annual Groundwater Monitoring Report, Former Dowell Schlumberger Facility, Artesia, New Mexico. April.

CH2M HILL Engineers, Inc. (CH2M). 2019a. 2018 Annual Groundwater Monitoring Report, Former Dowell Schlumberger Facility, Artesia, New Mexico. March.

CH2M HILL Engineers, Inc. (CH2M). 2019b. Meeting Summary. *Dowell Schlumberger Artesia, New Mexico Site Status Update Meeting*. July 9.

Duell Environmental, LLC. 2009. 2008 Annual Report, Schlumberger Oilfield Services, Artesia, New Mexico. January.

Hendrickson, G.E., and R.S. Jones. 1952. *Geology and Groundwater Resources of Eddy County, New Mexico*. New Mexico Bureau of Mines and Mineral Resources, Groundwater Report 3.

Lyford, F.P. 1973. Valley Fill in the Roswell-Artesia Area, New Mexico. USGS Open File Report.

Welder, G.E. 1983. *Geohydrologic Framework of the Roswell Groundwater Basin, Chaves and Eddy Counties, New Mexico*. USGS/New Mexico State Engineer Technical Report No. 42.

Western Water Consultants, Inc. 1995. *Quarterly Report for Additional Investigation and Remediation, Dowell Schlumberger Artesia, New Mexico.* July 13.

Western Water Consultants, Inc. 2004. 2003 Annual Report, Schlumberger Oilfield Services, Artesia, New Mexico. February 11.

U.S. Environmental Protection Agency (USEPA). 2008. *A Systematic Approach for Evaluation of a Capture Zone at Pump and Treat Systems. EPA 600/R-08/003*. January.

FES0130202247PNS 6-1

Tables

Table 3-1. Summary of Persulfate Injections

Former Dowell Schlumberger Facility, Artesia, New Mexico

njection Location	Injection Depth (ft bgs)	Date	Start time	End Time	Elapsed Time (min)	KKP (lbs)	KSP (lbs)	Fe (lbs)	Carrier Fluid (gal)	Chase Water (gal)	Average Flow Rate (gpm)
	15	10/2/2019	16:53	17:03	0:10	550	110	3	40	25	9.8
	18	10/3/2019	8:57	9:03	0:06	440	55	3	30	10	11.2
IJ-9	21	10/3/2019	10:07	10:13	0:06	385	110	3	40	10	12.2
•	24	10/3/2019	11:29	11:33	0:04	130	15	0.75	20	0	7.0
	15	10/4/2019	9:01	9:09	0:08	440	55	3	40	25	11.5
	18	10/4/2019	10:08	10:14	0:06	385	110	3	40	25	14.7
IJ-10 -	20	10/4/2019	11:00	11:07	0:07	440	55	2	40	25	13.1
•	24	10/4/2019	12:05	12:20	0:15	550	110	2	50	25	7.2
	15	10/4/2019	9:15	9:23	0:08	385	110	3	40	25	11.0
=	18	10/4/2019	10:21	10:29	0:08	440	55	2	40	25	11.5
IJ-11 ·	21	10/4/2019	11:22	11:32	0:10	550	165	2	60	25	11.8
•	24	10/4/2019	12:27	12:38	0:11	550	110	2	50	25	9.8
	15	10/2/2019	16:42	16:50	0:08	550	110	3	40	25	12.3
•	18	10/3/2019	9:11	9:22	0:11	385	110	3	40	25	8.0
IJ-12	21	10/3/2019	10:33	10:39	0:06	440	55	3	40	25	15.3
•	24	10/3/2019	15:14	15:30	0:16	750	150	5	70	25	8.8
	15	10/3/2019	16:40	16:48	0:08	550	110	2	50	25	13.5
•	18	10/2/2019	8:37	8:44	0:07	550	110	2	40	25	14.0
IJ-13	21	10/2/2019	9:39	9:46	0:07	550	110	2	40	25	14.0
	24	10/2/2019	11:47	11:58	0:07	550	110	3	40	25	8.9
	15		16:04		0:11	550	110	2	50	25	13.5
		10/1/2019		16:12							
IJ-14 -	18	10/2/2019	8:55	9:01	0:06	550	110	2	40	25	16.3
•	21	10/2/2019	10:10	10:17	0:07	550	110	2	40	25	14.0
	24	10/2/2019	11:27	11:34	0:07	550	110	3	40	25	14.0
-	15.5	10/1/2019	8:44	8:55	0:11	550	110	2	40	25	8.9
IJ-15	18	10/1/2019	10:36	10:46	0:10	550	110	2	50	25	10.8
	21	10/1/2019	11:19	11:29	0:10	550	110	2	50	25	10.8
	24	10/1/2019	12:20	12:34	0:14	550	110	2	50	25	7.7
	15	10/2/2019	16:19	16:27	0:08	550	110	3	40	25	12.3
IJ-16 -	18	10/3/2019	9:37	9:44	0:07	440	55	3	40	25	13.1
	20	10/3/2019	10:49	10:56	0:07	385	110	3	40	25	12.6
	24	No injection cond	ucted. Hard ro	ck refusal at 2	1-ft, substrate inje	ected into 24	-ft interval at I.	I-12 and IJ-1			
	15	10/1/2019	16:22	16:30	0:08	550	110	2	50	25	13.5
IJ-17	18	10/2/2019	9:09	9:15	0:06	550	110	2	40	25	16.3
	20	10/2/2019	10:25	10:35	0:10	550	55	2	40	25	14.0
	24	10/2/2019	11:13	11:21	0:08	550	165	2	40	25	12.3
	15.5	9/30/2019	14:39	14:45	0:06	550	110	2	40	25	16.3
IJ-18	18	9/30/2019	15:38	15:46	0:08	550	110	2	60	25	14.8
	21	10/1/2019	10:19	10:26	0:07	550	110	2	50	25	15.4
	24	10/1/2019	12:00	12:12	0:12	550	110	2	50	25	9.0
	15	10/4/2019	8:43	8:52	0:09	385	110	3	40	25	9.8
IJ-19	18	10/4/2019	9:45	9:54	0:09	440	55	3	40	25	10.2
13-13	21	10/4/2019	10:40	10:53	0:13	385	110	2	40	25	6.8
	23.5	10/4/2019	11:47	11:56	0:09	660	165	2	70	10	13.3
	15.5	9/30/2019	14:01	14:11	0:10	550	110	2	140	25	19.8
	18	9/30/2019	15:15	15:23	0:08	550	110	2	40	25	12.3
IJ-20 ·	20	10/1/2019	10:54	11:03	0:09	550	110	2	50	25	12.0
•	24	10/1/2019	12:45	12:52	0:07	550	110	2	50	25	15.4
				Totals		23815	4840	111.75	2170		

Acronyms:

Fe = Fe-EDTA, chelated iron ft bgs = feet below ground surface gal = gallon(s)

gpm = gallon(s) per minute

ID = identification

KKP = potassium persulfate

KSP = sodium persulfate

min = minute(s)

Table 3-2. Summary of Groundwater Quality Parameters at Monitoring Wells during DPT Injections

Date	Time	Monitoring Well ID	Associated Injection Location (depth in ft bgs)	Depth to Water (ft btoc)	DO (mg/L)	ORP (mV)	Specific Conductivity (mS/cm)	pH (S.U.)	Temp. (°C)	Turbidity (NTU)	Notes
8/28/2019	17:21	MW-38	N/A	NR	NR	227	NR	7.24	NR	9.2	Post-development sampling parameters
8/28/2019	19:37	MW-37	N/A	NR	NR	-57	NR	7.24	NR	6.1	Post-development sampling parameters
8/29/2019	11:35	MW-36	N/A	NR	NR	-34	NR	7.22	NR	4.8	Post-development sampling parameters
9/30/2019	15:30	MW-37	IJ-20 @ 18	15.42	3.11	-2	5.15	7.05	24.32	7.2	
9/30/2019	16:05	MW-37	IJ-18 @ 18	15.38	3.72	5	4.97	7.98	23.42	47.4	
10/1/2019	8:55	MW-37	IJ-15 @ 15	14.40	7.20	19	5.07	7.48	20.95	43.2	
10/1/2019	10:30	MW-37	IJ-18 @ 21	14.82	7.51	26	5.05	8.12	22.24	73.1	
10/1/2019	10:45	MW-37	IJ-15 @ 18	14.81	6.82	26	4.98	7.8	23.5	71	
10/1/2019	11:20	MW-37	IJ-20 @ 21	14.80	2.76	30	4.96	7.05	25.09	182	
10/1/2019	12:15	MW-37	IJ-15 @ 21	14.72	4.32	51	5.02	7.42	23.79	108	
10/1/2019	12:40	MW-37	IJ-15 @ 24	14.74	3.80	71	5.10	7.37	23.82	37.7	
10/1/2019	16:45	MW-37	IJ-17 @ 15	15.13	3.71	104	4.93	6.67	26.96	48.6	
10/1/2019	16:55	MW-38	IJ-13 @ 15	15.31	2.73	26	4.01	6.57	25.02	7.7	
10/2/2019	8:25	MW-36	IJ-13 @ 18	15.60	2.74	17	4.95	7.78	21.28	4.1	
10/2/2019	9:10	MW-37	IJ-14 @ 18	14.99	3.21	49	5.03	8.04	21.69	24.4	
10/2/2019	9:20	MW-38	IJ-17 @ 18	15.20	2.98	36	3.75	7.84	21.95	34.7	
10/2/2019	10:20	MW-36	IJ-14 @ 21	15.20	3.12	42	3.92	7.85	21.97	38.5	
10/2/2019	11:55	MW-36	IJ-13 @ 24	15.11	3.60	18	4.27	8.11	23.26	24.1	
10/2/2019	15:50	MW-36	IJ-14 @ 24	15.17	3.88	8	4.64	6.53	23.45	31.5	
10/2/2019	15:55	MW-38	IJ-16 @ 15	15.02	3.43	50	4.10	6.45	22.75	18.3	
10/2/2019	17:00	MW-38	IJ-9 @ 15	14.99	4.19	7	4.70	6.98	22.35	43.4	
10/3/2019	8:30	MW-36	IJ-9 @ 18	15.50	5.91	389	9.24	6.24	22.31	17.7	
10/3/2019	10:00	MW-36	IJ-16 @ 18	14.95	3.21	515	10.70	6.23	25.41	51.1	
10/3/2019	10:45	MW-36	IJ-12 @ 21	14.48	4.40	495	11.30	6.76	24.45	115	
10/3/2019	11:50	MW-36	IJ-12 @ 24	14.55	2.05	515	10.90	6.29	24.56	48.2	
10/4/2019	9:30	MW-36	IJ-11 @ 15	14.80	2.73	562	10.70	6.57	20.36	391	
10/4/2019	10:30	MW-36	IJ-11 @ 18	14.40	6.30	532	11.50	6.58	20.8	97.6	
10/4/2019	10:45	MW-38	IJ-19 @ 21	14.02	3.29	465	4.50	6.84	20.86	89.0	
10/4/2019	11:40	MW-36	IJ-11 @ 21	14.45	3.52	495	10.3	6.65	22.34	226	
10/4/2019	11:45	MW-38	IJ-11 @ 24	12.95	2.42	475	4.32	7.01	21.98	64.3	
10/4/2019	13:40	MW-36	IJ-19 @ 23	14.40	3.20	487	10.2	6.23	25.64	217	
10/4/2019	13:50	MW-38	IJ-10 @ 24	14.01	3.20	455	4.30	6.54	23.95	99.3	

Table 3-2. Summary of Groundwater Quality Parameters at Monitoring Wells during DPT Injections

Former Dowell Schlumberger Facility, Artesia, New Mexico

		Monitoring	Associated Injection Location	Depth to Water	DO		Specific Conductivity	рН	Temp.	Turbidity	
Date	Time	Well ID	(depth in ft bgs)	(ft btoc)	(mg/L)	ORP (mV)	(mS/cm)	(S.U.)	(°C)	(NTU)	Notes
10/7/2019	10:45	MW-37	N/A	14.21	3.42	274	5.07	6.82	22.82	67.5	Final reading after injections completed
10/7/2019	10:55	MW-38	N/A	14.39	2.41	231	4.24	6.58	21.78	20.6	Final reading after injections completed
10/7/2019	11:00	MW-12	N/A	14.40	2.67	-135	3.83	6.91	21.17	43.6	Final reading after injections completed
10/7/2019	11:10	MW-36	N/A	14.52	2.92	317	9.81	6.35	21.02	85.3	Final reading after injections completed

Notes:

°C = degree(s) Celsius

DO = dissolved oxygen

DPT = direct-push technology

ft bgs = feet below ground surface

ft btoc = feet below top of casing

ID = identification

mg/L = milligram(s) per liter

mS/cm = microSiemen(s) per centimeter

mV = millivolt(s)

N/A = not applicable

NTU = nephelometric turbidity units

NR = not recorded

ORP = oxidation-reduction potential

S.U. = standard units

Table 4-1. Groundwater Elevation Data - 2016 through 2019

		Total Depth	Top of Casing Elevation	Depth to Water	Groundwater Elevatio
Well ID	Date	(ft btoc)	(ft amsl)	(ft btoc)	(ft amsl)
	4/27/2016			13.77	3345.76
	10/12/2016			14.21	3345.32
	1/20/2017			14.45	3345.08
	4/3/2017			14.65	3344.88
MW-8	10/1/2017	35.00	3359.53	14.38	3345.15
	4/11/2018			15.18	3344.35
	10/22/2018			14.76	3344.77
	4/22/2019			14.18	3345.35
	10/28/2019			13.57	3345.96
	4/27/2016			10.81	3345.46
	10/12/2016			10.80	3345.47
	1/20/2017			11.08	3345.19
	4/3/2017			11.20	
NA) A / 11		20.00	2256 27		3345.07
MW-11	10/1/2017	30.00	3356.27	11.85	3344.42
	4/11/2018			11.78	3344.49
	10/22/2018			13.45	3342.82
	4/22/2019			11.78	3344.49
	10/28/2019			14.25	3342.02
	4/27/2016			10.72	3345.79
	10/12/2016			10.61	3345.90
	1/20/2017			10.97	3345.54
	4/3/2017			11.10	3345.41
MW-12	10/1/2017	25.70	3356.51	11.71	3344.80
	4/11/2018			11.67	3344.84
	10/22/2018			13.32	3343.19
	4/22/2019			11.70	3344.81
	10/28/2019			14.29	3342.22
	4/27/2016			10.82	3346.87
	10/12/2016			10.60	3347.09
	1/20/2017			11.19	3346.50
	4/3/2017			11.17	3346.52
MW-15	10/1/2017	34.00	3357.69	11.68	3346.01
10100 13	4/11/2018	34.00	3337.03	11.81	3345.88
	10/22/2018			13.43	3344.26
	4/22/2019			11.99	3345.70
	10/28/2019			14.60	3343.09
	4/27/2016			10.75	3345.80
	10/12/2016			10.64	3345.91
	1/20/2017			11.03	3345.52
	4/3/2017			11.14	3345.41
MW-17C	10/1/2017	62.44	3356.55	11.83	3344.72
	4/11/2018			11.66	3344.89
	10/22/2018			13.32	3343.23
	4/22/2019			11.71	3344.84
	10/28/2019			14.30	3342.25
	4/27/2016			11.53	3345.18
	10/12/2016			11.64	3345.07
	1/20/2017			11.72	3344.99
	4/3/2017			11.90	3344.81
MW-18	10/1/2017	30.09	3356.71	12.45	3344.26
14144.10	4/11/2018	30.03	3330.7I	12.43	3344.28
	10/22/2018			14.25	3342.46
	4/22/2019			12.12	3344.59
	10/28/2019			14.78	3341.93

Table 4-1. Groundwater Elevation Data - 2016 through 2019

		Total Depth	Top of Casing Elevation	Depth to Water	Groundwater Elevatio
Well ID	Date	(ft btoc)	(ft amsl)	(ft btoc)	(ft amsl)
	4/27/2016			15.45	3343.67
	10/12/2016			15.73	3343.39
	1/20/2017			15.63	3343.49
	4/3/2017			15.80	3343.32
MW-20	10/1/2017	28.00	3359.12	15.96	3343.16
	4/11/2018			16.51	3342.61
	10/22/2018			18.40	3340.72
	4/22/2019			16.60	3342.52
	10/28/2019			19.30	3339.82
	4/27/2016			13.65	3343.24
	10/12/2016			13.86	3343.03
	1/20/2017			13.82	3343.07
	4/3/2017			14.04	3342.85
MW-21	10/1/2017	17.41	3356.89	14.12	3342.77
21	4/11/2018	17.11	3330.03	14.68	3342.21
	10/22/2018			15.96	3340.93
	4/22/2019			14.12	3342.77
	10/28/2019			17.25	3339.64
	4/27/2016			12.86	3342.32
	10/12/2016			12.78	3342.40
	1/20/2017			13.15	3342.03
	4/3/2017			13.36	3341.82
MW-22	10/1/2017	15.63	3355.18	13.88	3341.30
	4/11/2018			13.81	3341.37
	10/22/2018			14.93	3340.25
	4/22/2019			14.01	3341.17
	10/28/2019			16.12	3339.06
	4/27/2016			14.63	3341.04
	10/12/2016			14.41	3341.26
	1/20/2017			14.88	3340.79
	4/3/2017			15.07	3340.60
MW-25	10/1/2017	27.30	3355.67	15.84	3339.83
	4/11/2018			15.59	3340.08
	10/22/2018			16.49	3339.18
	4/22/2019			16.06	3339.61
	10/28/2019			16.49	3339.18
	4/27/2016			13.95	3340.25
	10/12/2016			13.58	3340.62
	1/20/2017			14.31	3339.89
NAVA 20	4/3/2017	27.25	2254.2	14.46	3339.74
MW-26	10/1/2017	27.35	3354.2	15.04	3339.16
	4/11/2018			14.75	3339.45
	10/22/2018			15.60	3338.60
	4/22/2019			15.52	3338.68
	10/28/2019			17.12	3337.08
	4/27/2016			17.82	3338.11
	10/12/2016			17.47	3338.46
	1/20/2017			18.26	3337.67
	4/3/2017			18.66	3337.27
MW-28	10/1/2017	27.94	3355.93	21.09	3334.84
	4/11/2018			19.97	3335.96
	10/22/2018			18.00	3337.93
	4/22/2019			21.49	3334.44

Table 4-1. Groundwater Elevation Data - 2016 through 2019

	semamberger rue	Total Depth	Top of Casing Elevation	Depth to Water	Groundwater Elevation
Well ID	Date	(ft btoc)	(ft amsl)	(ft btoc)	(ft amsl)
	4/27/2016			17.30	3337.76
	10/12/2016			17.16	3337.90
	1/20/2017			17.69	3337.37
	4/3/2017			17.80	3337.26
MW-29	10/1/2017	20.25	3355.06	19.84	3335.22
	4/11/2018			18.65	3336.41
	10/22/2018			20.87	3334.19
	4/22/2019			20.82	3334.24
	10/28/2019			22.56	3332.50
	4/27/2016			17.15	3337.46
	10/12/2016			17.54	3337.07
	1/20/2017			18.01	3336.60
	4/3/2017			17.82	3336.79
MW-30	10/1/2017	27.89	3354.61	18.44	
10100-30		27.09	3334.01		3336.17
	4/11/2018			18.13	3336.48
	10/22/2018			19.23	3335.38
	4/22/2019			19.35	3335.26
	10/28/2019			19.54	3335.07
	4/27/2016			10.64	3345.74
	10/12/2016			10.78	3345.60
	1/20/2017			10.59	3345.79
	4/3/2017			10.87	3345.51
MW-31	10/1/2017	30.89	3356.38	10.89	3345.49
	4/11/2018			11.39	3344.99
	10/22/2018			13.71	3342.67
	4/22/2019			10.22	3346.16
	10/28/2019			12.93	3343.45
	4/27/2016			15.61	3338.93
	10/12/2016			15.28	3339.26
	1/20/2017			16.02	3338.52
	4/3/2017			16.11	3338.43
MW-32	10/1/2017	38.85	3354.54	16.69	3337.85
	4/11/2018			16.40	3338.14
	10/22/2018			17.41	3337.13
	4/22/2019			17.51	3337.03
	10/28/2019			18.75	3335.79
	4/27/2016			14.06	3335.61
	10/12/2016			13.46	3336.21
	1/20/2017			14.00	3335.67
	4/3/2017			14.32	3335.35
MW-33	10/1/2017	35.00	3349.67	14.69	3334.98
	4/11/2018	23.00	33 13.07	15.91	3333.76
	10/22/2018			15.56	3334.11
	4/22/2019			16.02	3333.65
	10/28/2019			16.70	3332.97
	4/27/2016			15.49	3340.79
	10/12/2016			15.40	3340.88
	1/20/2017			15.73	3340.55
	4/3/2017	22.02	2255 22	15.95	3340.33
MW-34	10/1/2017	32.00	3356.28	17.48	3338.80
	4/11/2018			16.85	3339.43
	10/22/2018			17.79	3338.49
	4/22/2019			17.49	3338.79
	10/28/2019			19.81	3336.47

Table 4-1. Groundwater Elevation Data - 2016 through 2019

Former Dowell Schlumberger Facility, Artesia, New Mexico

		Total Depth	Top of Casing Elevation	Depth to Water	Groundwater Elevation
Well ID	Date	(ft btoc)	(ft amsl)	(ft btoc)	(ft amsl)
	1/20/2017			15.82	3337.09
	4/3/2017			15.93	3336.98
	10/1/2017			17.96	3334.95
MW-35	4/11/2018	28.5	3352.91	17.95	3334.96
	10/22/2018			18.71	3334.20
	4/22/2019			18.78	3334.13
	10/28/2019			20.81	3332.10
MW-36	10/28/2019	25.38	NS	14.42	NM
MW-37	10/28/2019	25.5	NS	14.28	NM
MW-38	10/28/2019	25.03	NS	14.17	NM

Notes:

ft amsl = feet above mean sea level

ft btoc = feet below top of casing

ID = identification

MW = monitoring well

NM = not measured

NS = not surveyed

Table 4-2. Groundwater Extraction and Treatment System Performance Monitoring Analytical Results - 2019

Former Dowell Schlumberger Facility, Artesia, New Mexico

SAMPLE LOCATION	COMPOUND UNITS NMWQCC STANDARDS SAMPLE DATE	mg/L	1,1-DCA mg/L 0.025	1,1-DCE mg/L 0.005	Benzene mg/L 0.01	Naphthalene mg/L 0.03	PCE mg/L 0.02
GAC INLET	4/22/2019	<0.0116	0.0026	0.00973	<0.000176	<0.000555	0.00953
	10/29/2019	0.00351	0.00321	0.00909	<0.000176	<0.000129	0.0102
MID-GAC	4/22/2019	<0.0116	0.00307	0.00805	<0.000176	<0.000199	0.000548 J
	10/29/2019	0.00325	0.00343	0.0111	<0.000176	<0.000129	0.00201
GAC OUTLET	4/22/2019	<0.0116	0.00186	0.000666 J	<0.000176	<0.000129	<0.000333
	10/29/2019	0.00364	0.00403	0.00567	<0.000176	0.000342 J	<0.000333

Notes:

Analytical methods used USEPA Method 8260 (VOCs) and USEPA Method 6020 (Metals)

Detected results are shown in bold font.

Results exceeding NMWQCC Standards (CH2M 2017b) are shown in bold font and shaded

< = chemical not detected at a concentration above the method detection limit

1,1-DCA = 1,1-dichloroethane

1,1-DCE = 1,1-dichloroethene

GAC = granular activated carbon

J = Result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.

mg/L = milligram(s) per liter

NMWQCC = New Mexico Water Quality Control Commission

PCE = tetrachloroethene

USEPA = U.S. Environmental Protection Agency

VOC = volatile organic compound

Table 4-3. Summary of Groundwater Analytical Results— 2019

Former Dowell Schlumberger Facility, Artesia, New Mexico

	COMPOUND UNITS NMWQCC STANDARDS	Manganese, dissolved mg/L 0.2	Sulfate mg/L 600	1,1-DCA mg/L 0.025	1,1-DCE mg/L 0.005	Benzene mg/L 0.01	Naphthalene mg/L 0.03	PCE mg/L 0.02
WELL NUMBER	SAMPLE DATE							
MW-11	4/22/2019		3150	0.00304	<0.000192	<0.000176	<0.000129	<0.000333
	10/29/2019		1330 J	0.00488	0.000201 J	<0.000176	0.000441 J	0.00039 J
MW-12	4/22/2019		2520	0.026	0.00161	0.00617	0.0466	0.00377
	10/29/2019		2150	0.0502	0.00252	0.00858	0.0297	0.00172
MW-15	4/23/2019			<0.000168	<0.000192	<0.000176	<0.000129	<0.000333
MW-17C	4/22/2019	-	2400	<0.000168	<0.000192	<0.000176	<0.000129	<0.000333
IVIVV-17C	10/29/2019		1290	0.000178 J	0.00035 J	<0.000176	0.00222	<0.000333
MW-18	4/23/2019	<0.0116		0.000706 J	<0.000192	<0.000176	<0.000129	<0.000333
MW-21	4/23/2019	0.0154 J		0.000562 J	<0.000192	<0.000176	<0.000129	<0.000333
	4/23/2019	<0.0116		0.000546 J	<0.000192	<0.000176	<0.000129	<0.000333
MW-22	10/29/2019	0.000683 J		0.000832 J	<0.000192	<0.000176	<0.000129	<0.000333
	4/23/2019	0.244		0.000701 J	0.000777 J	<0.000176	<0.000129	0.00118
MW-25	10/29/2019	0.138		0.000989 J	0.000473 J	<0.000176	<0.000129	0.000895 J
MW-26	4/22/2019	0.0527		0.000332 J	0.00175	<0.000176	<0.000129	0.0017
	4/23/2019	<0.0116		0.00465	0.0127	<0.000176	<0.000129	0.0176
MW-28	10/29/2019	0.00125		0.00553	0.0132	<0.000176	0.000316 J	0.0178
	4/23/2019	<0.0116		0.00861	0.0237	<0.000176	<0.000129	0.0306
MW-29	10/29/2019	0.000793 J		0.0103	0.0267	<0.000176	<0.000129	0.0365
	4/22/2019	<0.0116		0.00096 J	0.00271	<0.000176	<0.000129	0.0035
MW-30	10/29/2019	0.00887		0.00132	0.00315	<0.000176	0.000249 J	0.00498
MW-31	4/23/2019	0.0337 J		0.00181	0.000411 J	<0.000176	<0.000129	<0.000333
	10/29/2019	0.0817		0.00316	0.00215	<0.000176	<0.000129	<0.000333
MW-32	4/22/2019	<0.0116		<0.000168	<0.000192	<0.000176	<0.000129	0.000639 J
	10/29/2019	0.00414		0.000171 J	<0.000192	<0.000176	<0.000129	0.000921 J
MW-33	4/23/2019			<0.000168	<0.000192	<0.000176	<0.00064	<0.000333
MW-34	4/22/2019	<0.0116		0.00068 J	0.000507 J	<0.000176	<0.000129	0.000858 J
	10/29/2019	0.00108		0.00104	0.000784 J-	<0.000176	0.000174 J	0.00126
MW-35	4/23/2019				0.0205			0.0233
	10/29/2019				0.0234			0.0262
MW-36	8/29/2019		1680	0.0412 J	0.00193	0.0292 J	0.00696 J	0.00063 J
	10/29/2019		738	0.0337	0.000593 J	0.0129	0.0236	0.01
MW-37	8/28/2019		1480	0.241	0.0125	0.00569	0.00755	0.0101
	10/29/2019		2570	0.0475	0.00822	0.00701	0.0114	0.00688
MW-38	8/28/2019		2340	0.0699	0.0145	0.0098	0.0127	0.00903
	10/29/2019		927 J+	0.154	0.0101	0.00167	0.0221	0.0108

Notes:

Analytical methods used USEPA Method 8260 (VOCs), USEPA Method 6020 (Metals), and USEPA Method 300.0 (Anions)

Detected results are shown in bold font.

Results exceeding NMWQCC Standards (CH2M 2017b) are shown in bold font and shaded.

- < = chemical not detected at a concentration above the method detection limit
- -- = sample not collected for specific analyte
- 1,1-DCA = 1,1-dichloroethane
- 1,1-DCE = 1,1-dichloroethene
- J = Result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.
- J- = chemical recovery was low in associated MS/MSD, result is estimated low
- J+ = chemical recovery was high in associated MS/MSD, result is estimated high

mg/L = milligram(s) per liter

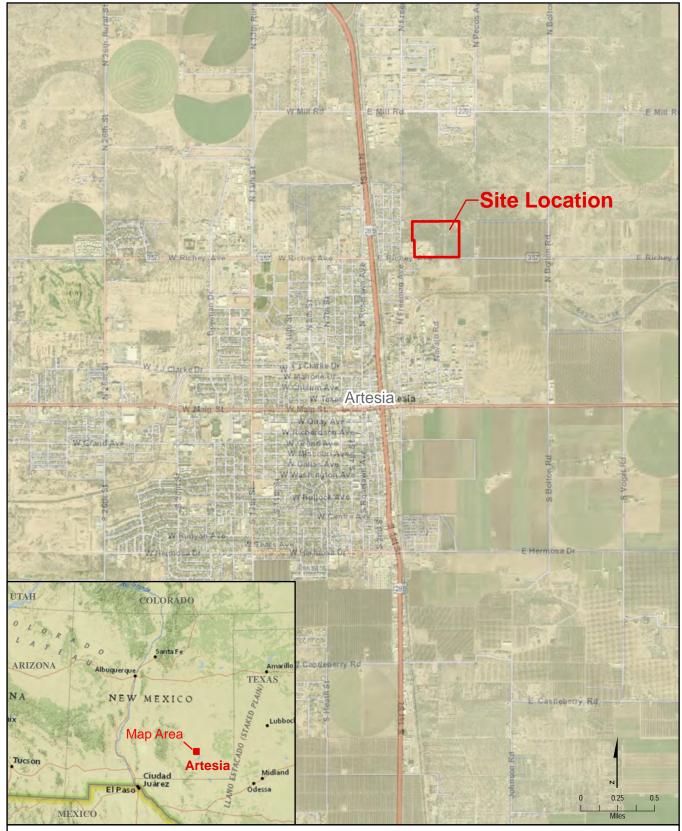
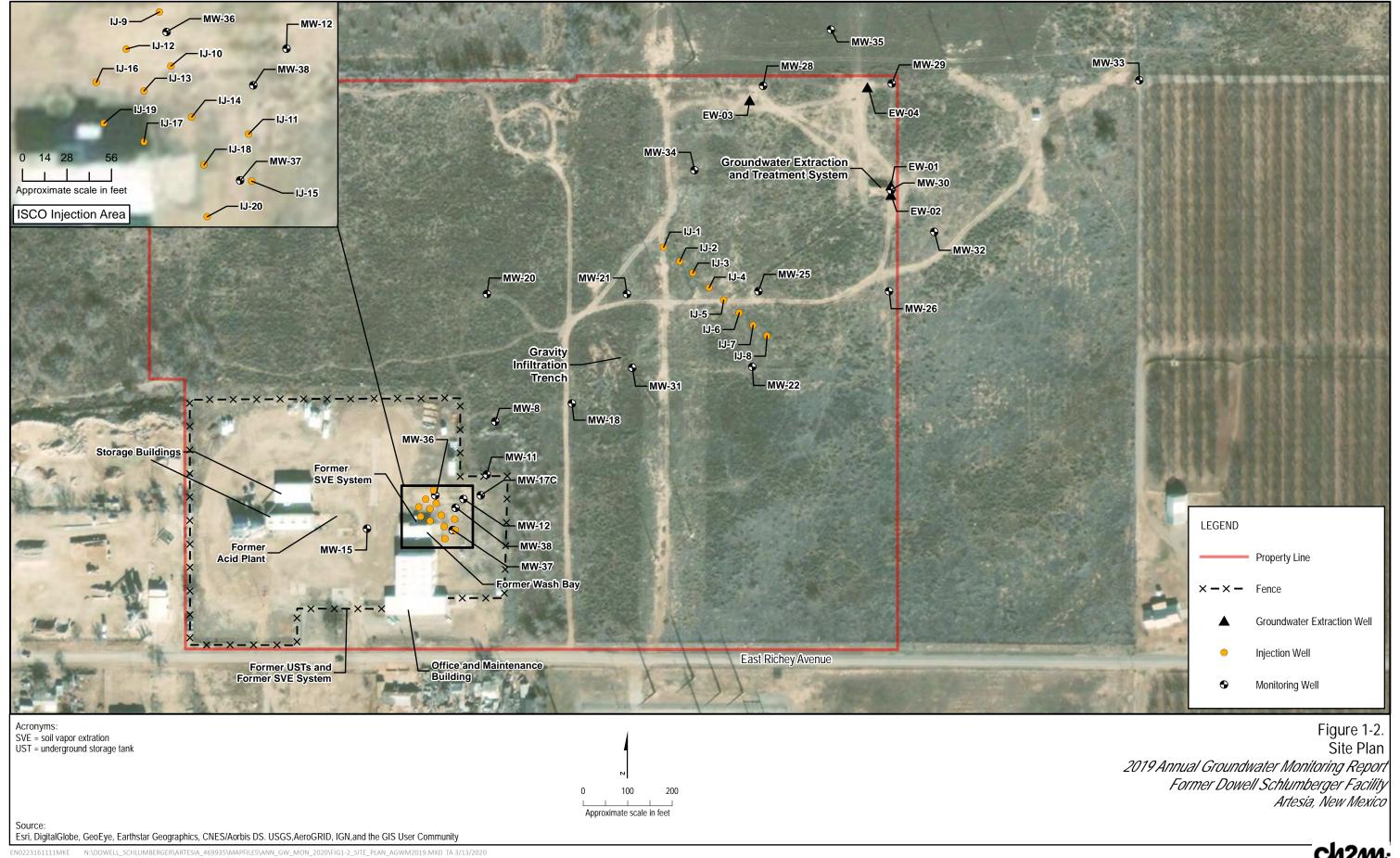
NMWQCC = New Mexico Water Quality Control Commission

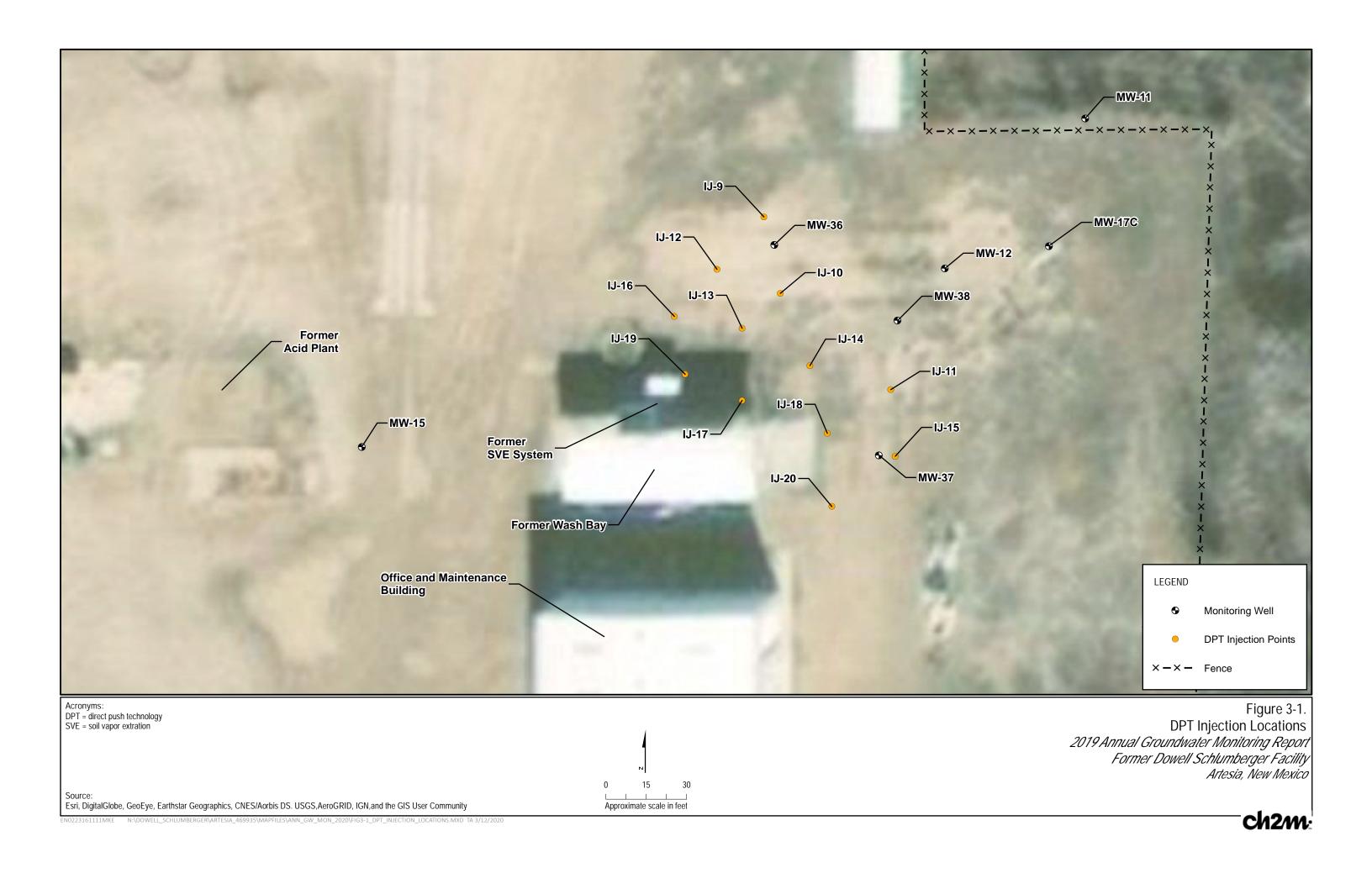
PCE = tetrachloroethene

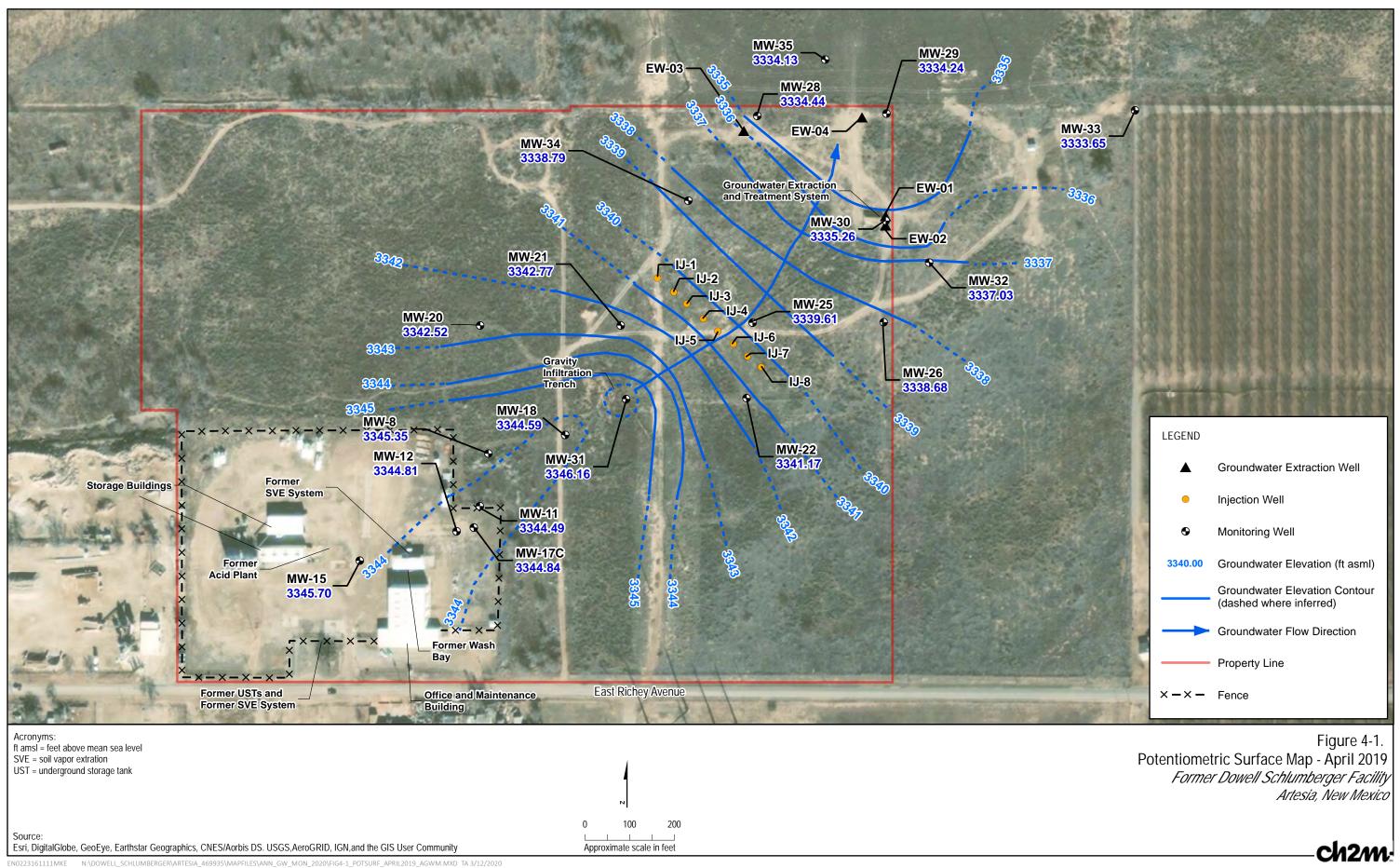
USEPA = U.S. Environmental Protection Agency

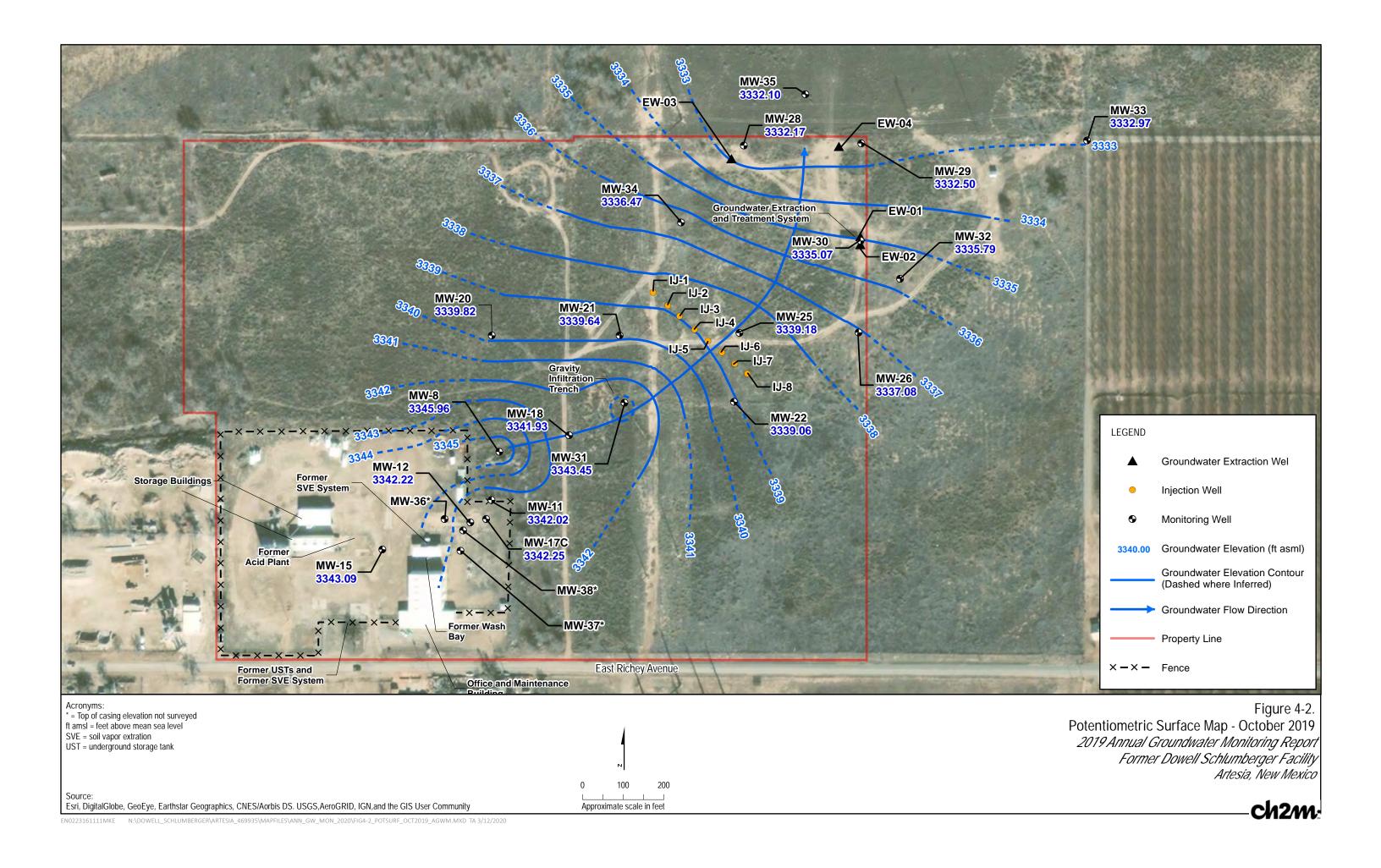
VOC = volatile organic compound

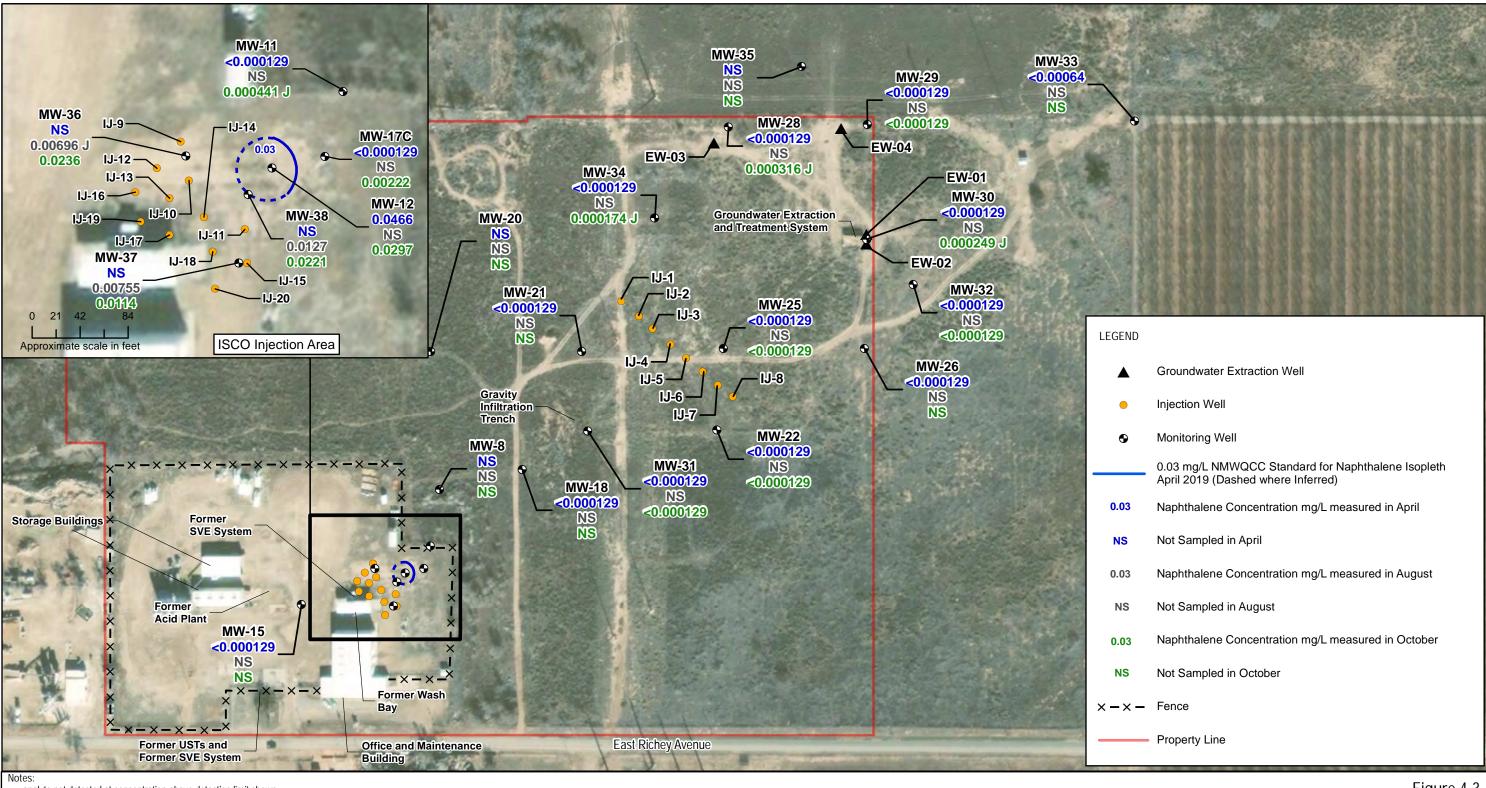
Figures


Figure 1-1. Site Location Map 2019 Annual Groundwater Monitoring Report Former Dowell Schlumberger Facility Artesia, New Mexico


Source:


Esri, Digital Globe, Geo Eye, USGS, Intermap, National Geographic, DeLorme, HERE, NOAA



< = analyte not detected at concentration above detection limit shown

J = Result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.

ISCO = in situ chemical oxidation

mg/L= milligrams per liter

NMWQCC = New Mexico Water Quality Control Commission

SVE = soil vapor extraction

UST = underground storage tank

Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Aorbis DS. USGS, AeroGRID, IGN, and the GIS User Community

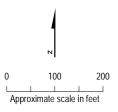
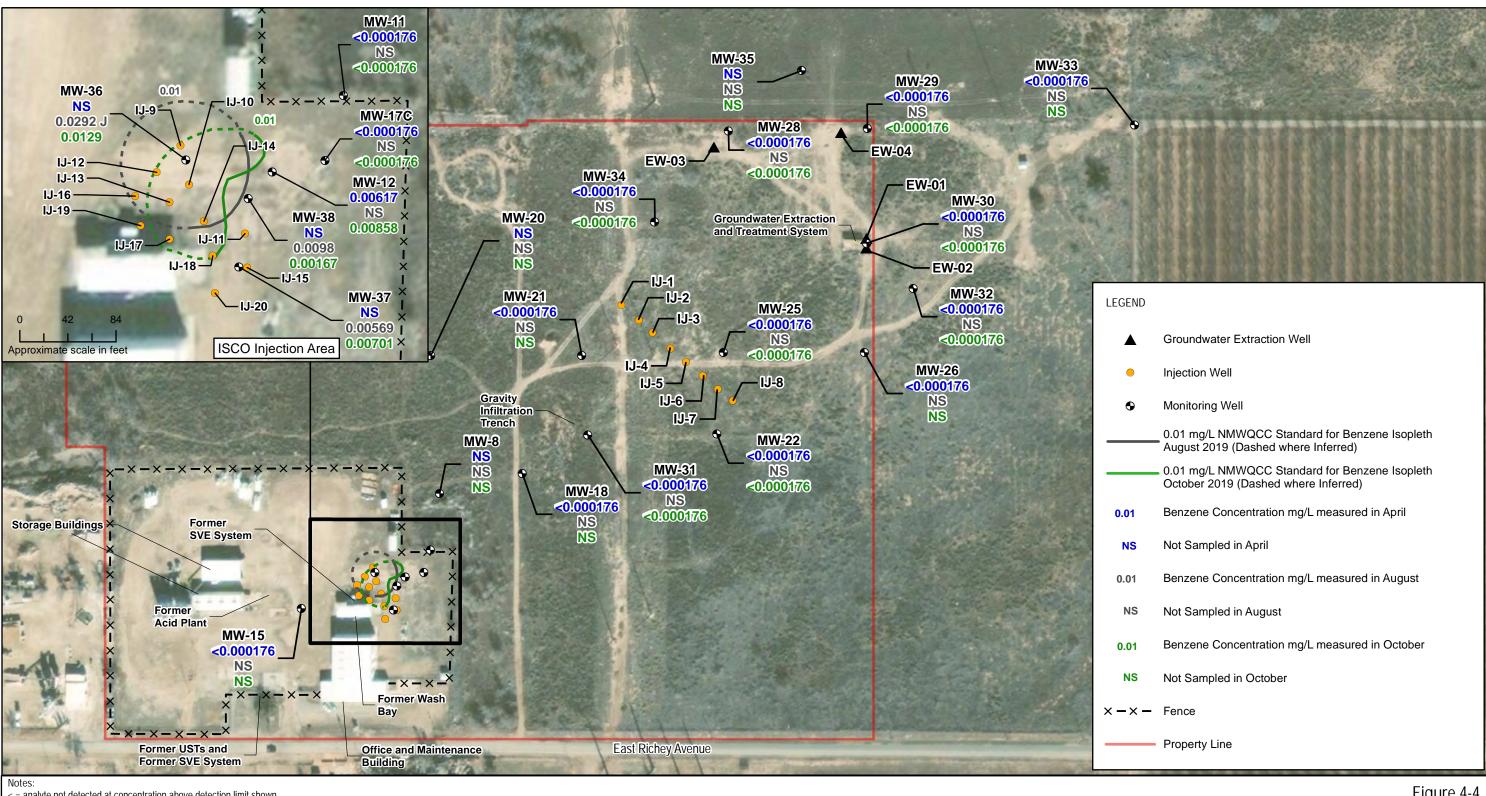



Figure 4-3.

Isopleth Map for Naphthalene - 2019 2019 Annual Groundwater Monitoring Report Former Dowell Schlumberger Facility Artesia, New Mexico

< = analyte not detected at concentration above detection limit shown</p>

J = Result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.

ISCO = in situ chemical oxidation

mg/L= milligrams per liter

NMWQCC = New Mexico Water Quality Control Commission

SVE = soil vapor extraction

UST = underground storage tank

Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Aorbis DS. USGS, AeroGRID, IGN, and the GIS User Community

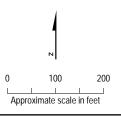
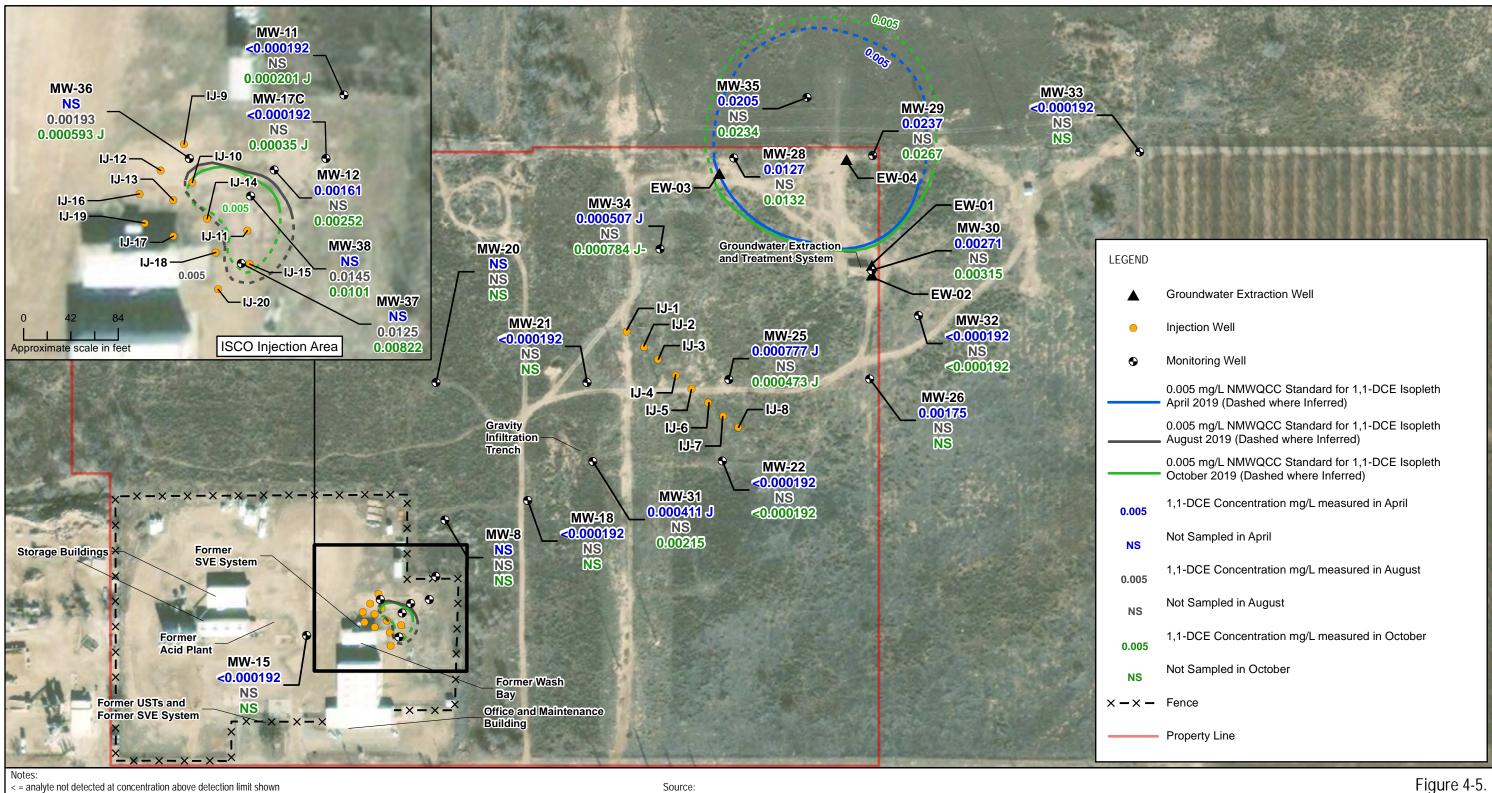
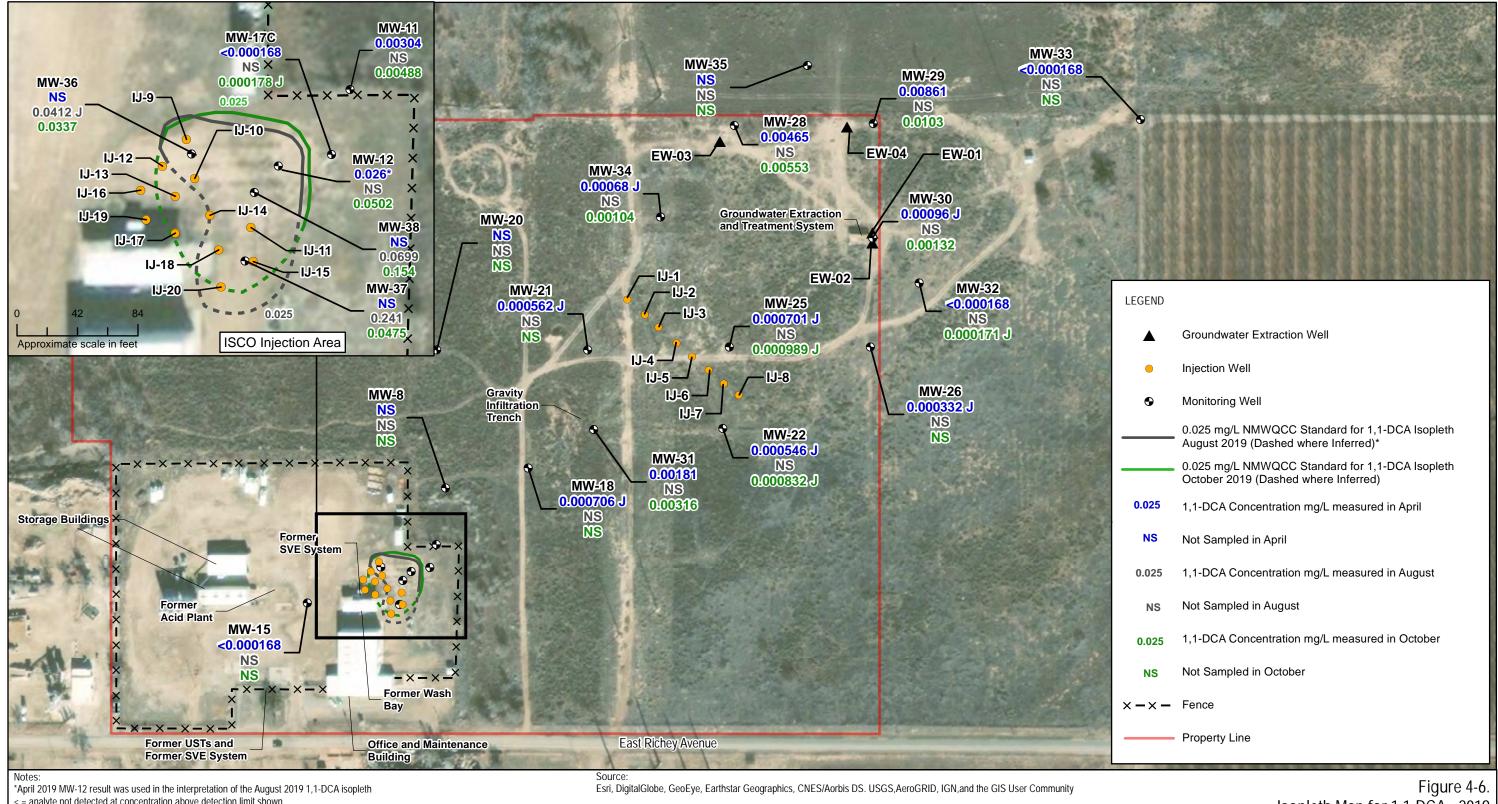



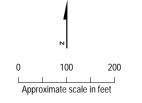
Figure 4-4.


Isopleth Map for Benzene - 2019 2019 Annual Groundwater Monitoring Report Former Dowell Schlumberger Facility Artesia, New Mexico

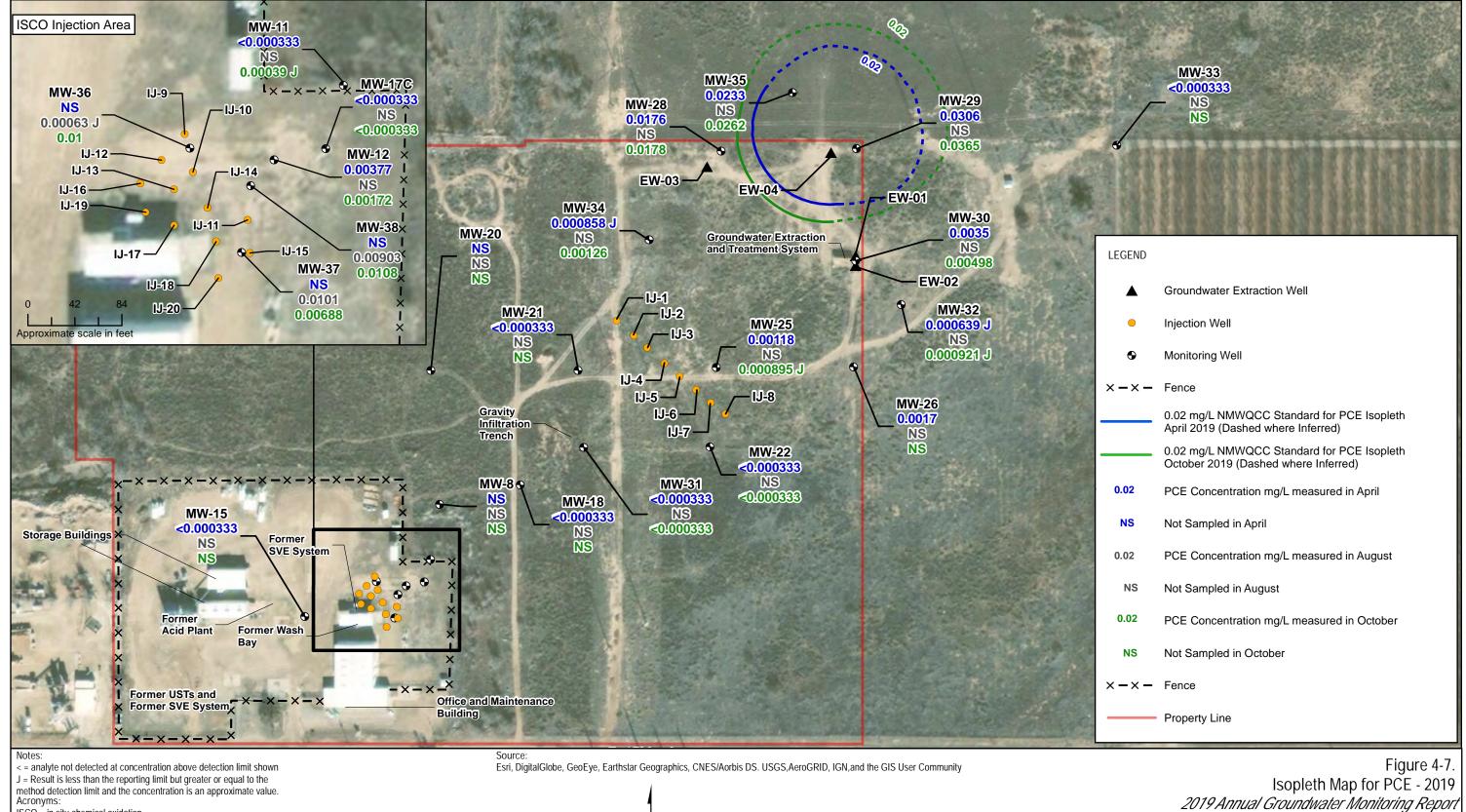
- J = Result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.
- J- = chemical recovery was low in associated MS/MSD, result is estimated low Acronyms
- 1,1-DCE = 1,1-dichloroethene
- ISCO = in situ chemical oxidation
- mg/L= milligrams per liter
- MS/MSD = matrix spike/matrix spike duplicate
- NMWQCC = New Mexico Water Quality Control Commission
- SVE = soil vapor extraction
- UST = underground storage tank

Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Aorbis DS. USGS, AeroGRID, IGN, and the GIS User Community Approximate scale in feet

Isopleth Map for 1,1-DCE - 2019 2019 Annual Groundwater Monitoring Report Former Dowell Schlumberger Facility Artesia, New Mexico


- < = analyte not detected at concentration above detection limit shown
- J = Result is less than the reporting limit but greater or equal to the method detection limit and the concentration is an approximate value.

Acronyms: 1,1-DCA = 1,1-dichloroethane ISCO = in situ chemical oxidation


mg/L= milligrams per liter NMWQCC = New Mexico Water Quality Control Commission

SVE = soil vapor extraction

UST = underground storage tank

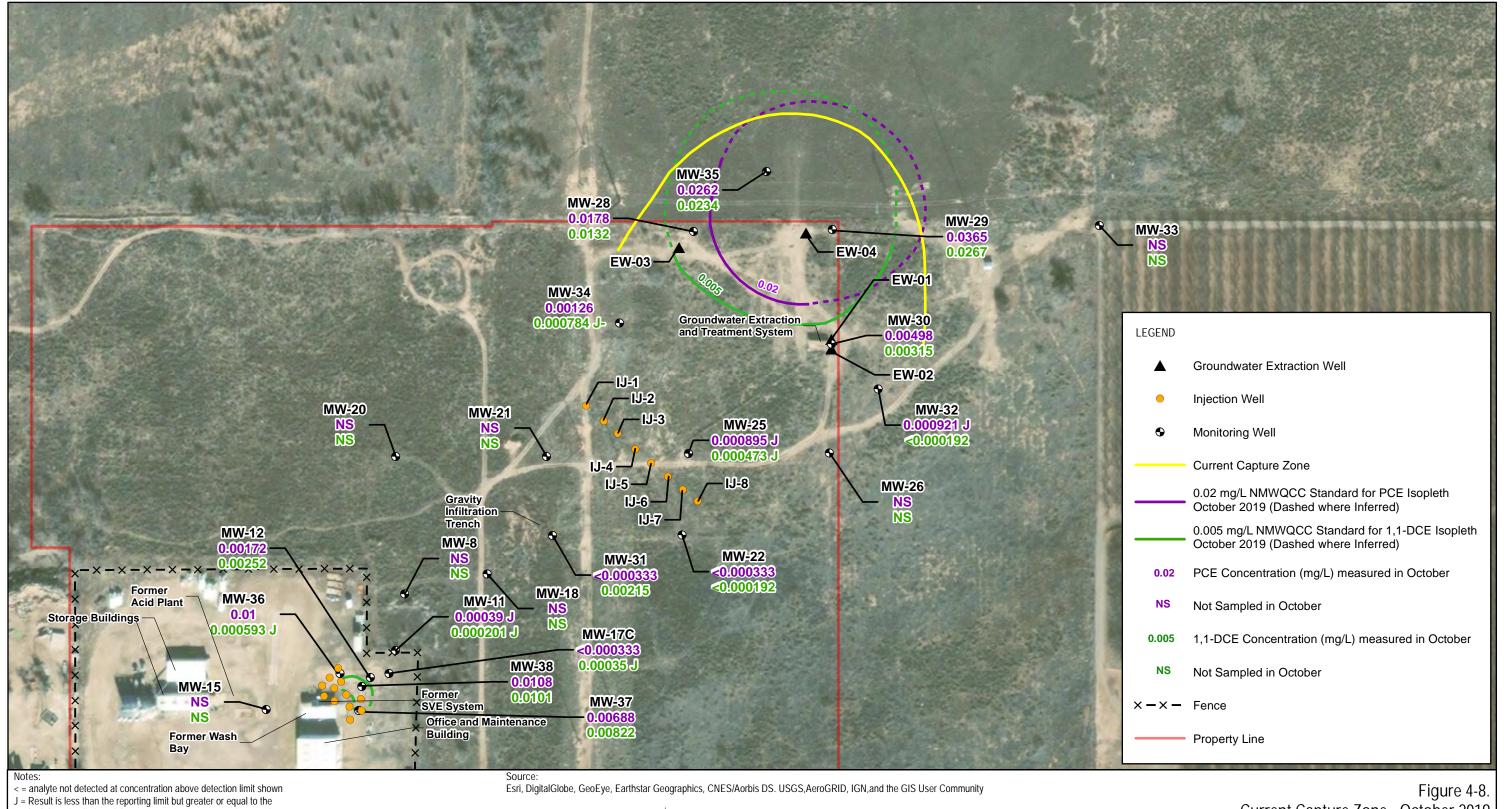
Isopleth Map for 1,1-DCA - 2019 2019 Annual Groundwater Monitoring Report Former Dowell Schlumberger Facility Artesia, New Mexico

Artesia, New Mexico

Former Dowell Schlumberger Facility

ISCO = in situ chemical oxidation

mg/L= milligrams per liter


NMWQCC = New Mexico Water Quality Control Commission

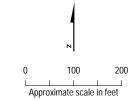
PCE = tetrachloroethene

SVE = soil vapor extraction

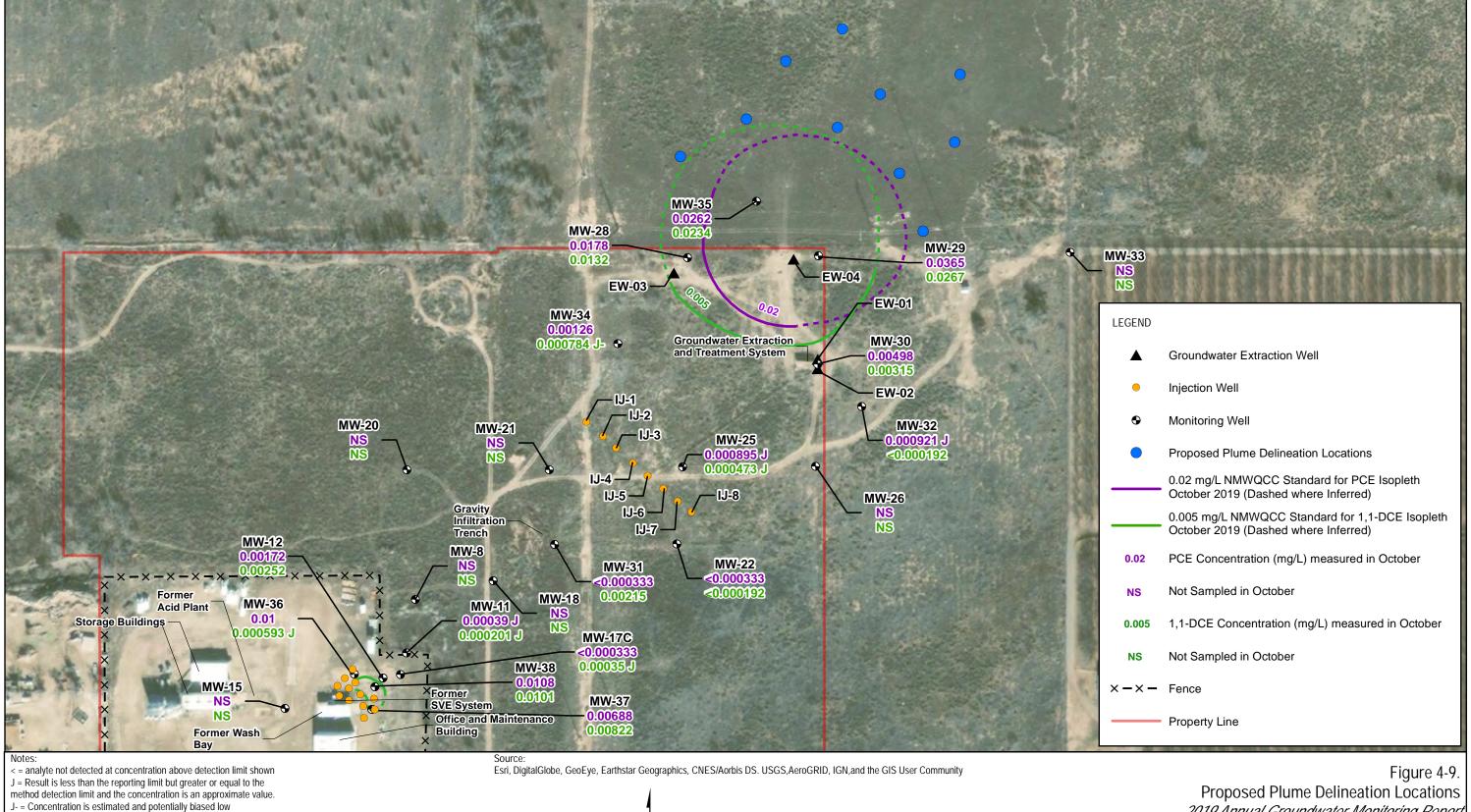
UST = underground storage tank

Approximate scale in feet

- method detection limit and the concentration is an approximate value.
- J- = Concentration is estimated and potentially biased low


1,1-DCE = 1,1-dichloroethene

mg/L= milligrams per liter


NMWQCC = New Mexico Water Quality Control Commission

PCE = tetrachloroethene

SVE = soil vapor extraction

Current Capture Zone - October 2019 2019 Annual Groundwater Monitoring Report Former Dowell Schlumberger Facility Artesia, New Mexico

1,1-DCE = 1,1-dichloroethene

mg/L= milligrams per liter

NMWQCC = New Mexico Water Quality Control Commission

PCE = tetrachloroethene

SVE = soil vapor extraction

Approximate scale in feet

2019 Annual Groundwater Monitoring Report Former Dowell Schlumberger Facility Artesia, New Mexico

Appendix A NMOCD Correspondence

Forsberg, Aleeca/ABQ

From: Hansen, Edward J., EMNRD <edwardj.hansen@state.nm.us>

Sent: Thursday, August 22, 2013 4:44 PM

To: cocianni-v@slb.com

Cc: VonGonten, Glenn, EMNRD; Strunk Jr, Jim (JStrunkJr@dow.com); Barnett, Cathy/STL; Minchak,

Jeff/ABQ

Subject: Discharge Permit (GW-114) Work Plan (GW Remediation Program) Amendment Approval -

Schlumberger Oilfield Services Facility - Artesia

RE: Work Plan Amendment

for the Schlumberger Oilfield Services' Schlumberger Oilfield Services Facility - Artesia 507 E. Richey Ave., Artesia, New Mexico

Discharge Permit (GW-114) Work Plan (GW Remediation Program) Amendment Approval

Dear Mr. Cocianni:

The Oil Conservation Division (OCD) has received the Work Plan Amendment for the Schlumberger Oilfield Services Facility - Artesia, dated August 15, 2013. The proposed amendment, submitted for the above-referenced site, indicates that the Schlumberger Oilfield Services (Schlumberger) is substantially complying with the requirements of 20.6.2 NMAC [Water Quality Control Commission (WQCC) Regulations]. Therefore, the OCD conditionally approves the amendment to the work plan:

Schlumberger shall provide to the OCD for approval a demonstration that the WQCC standards for Manganese (0.2 mg/L) or Sulfate (600.0 mg/L) will not be exceeded in ground water at the site prior to initiation of the ISCO treatment. Also, Schlumberger must monitor for Manganese or Sulfate in ground water depending on the ISCO substrate used for the treatment.

If any other substrate other than permanganate or persulfate is proposed to be used, Schlumberger must obtain OCD approval prior to such use.

Please be advised that OCD approval of this amendment does not relieve the owner/operator of responsibility should operations pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the owner/operator of responsibility for compliance with any OCD, federal, state, or local laws and/or regulations.

Thank you for your cooperation in this matter. If you have any questions regarding this matter, please contact at 505-476-3489.

Edward J. Hansen Hydrologist Environmental Bureau From: <u>Billings, Bradford, EMNRD</u>

To: <u>Virgilio Cocianni</u>

Cc: Strunk Jr, Jim (J); Schneider, Monica/PNS; Urann, David/BOS

Subject: [EXTERNAL] RE: Dowell Schlumberger Facility at 507 East Richey Avenue, Artesia, New Mexico APPROVALS

Date: Wednesday, August 14, 2019 8:31:01 AM

8/14/2019

Vic Cocianni – Schlumberger Jim Strunk Jr. - Dowell

Good Morning,

Re: Dowell Schlumberger Facility in Artesia, NM – Stage I and Stage II Abatement Plan (Previous GW-114) and Addendum

The Oil Conservation Division (OCD), and I personally, thank you for your efforts and concise work on this location. It is much appreciated.

The following is approved:

The 2017 Abatement Plan and current Addendum, as relayed in July 2019 communication.

Monitor wells identified as MW's -8, -15, -18, -20, -21, -26 and -33 may be removed from future scheduled sampling events (including the next scheduled event), however, as mentioned in the Addendum, please leave in place for use as groundwater elevation markers. Please take depth to water elevations at these well locations during sampling events and incorporate data in mapping.

Please proceed with gaining access for additional work to the North from the Artesia Alfalfa Growers Association (AFGA), and as mentioned in the Addendum, I stand ready to assist in this access process if I may be of any assistance.

Once again, thank you for your skills and patience. If there are any questions or need for clarification please email concerns.

Sincerely,

Bradford Billings EMNRD/OCD Santa Fe

From: Virgilio Cocianni <cocianni-v@slb.com>

Sent: Tuesday, August 13, 2019 2:41 PM

To: Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us> **Cc:** Strunk Jr, Jim (J) <JStrunkjr@dow.com>; Schneider, Monica/PNS

<Monica.Schneider@jacobs.com>; Dave Urann (david.urann@jacobs.com)

<david.urann@jacobs.com>

Subject: Dowell Schlumberger Facility at 507 East Richey Avenue, Artesia, New Mexico – July 9, 2019 Meeting Summary

Good afternoon, Brad.

Thank you for your time to meet with us on July 9th. The summary and the presentation slides from our meeting have been uploaded as one combined PDF to the NMOCD ftp site. The pdf file is titled "7.9.19 Artesia NM Meeting Summary" and was uploaded to the BGBs folder on CentreStack. Would you please confirm that the pdf file uploaded correctly?

As discussed during our meeting, we are requesting to remove seven monitoring wells from the semiannual groundwater sampling program. These wells have met the 8 consecutive quarters without an exceedance of NMWQCC standards. These wells will be retained for collection of groundwater elevation data. We are requesting these changes be implemented during the October 2019 semiannual monitoring event. Tables with the historical analytical data for each of the seven wells and the proposed semiannual monitoring program moving forward are attached to the meeting summary (Tables 1 and 2).

Have a wonderful evening. Cheers, Vic.

Vic Cocianni Schlumberger Remediation Manager Phone: +1-281-285-4747

"Courage doesn't always roar. Sometimes courage is the little voice at the end of the day that says I'll try again tomorrow." Mary Ann Radmacher. (Please continue to be patient with me, She is still making me).

Schlumberger-Private

Appendix B Performance Monitoring Data Sheets

				PROJECT NUM D3151100			WELL ID		A 2019
				GR	OUNDW	VATER	RSAMPLIN	G FIEL	D DATA SHEET
ROJECT:				Former Dowell	. 0		CATION: Artesia, NM		
VEATHER (wind/	temp/ppt):			CLOURIN,	mud	0	THER NOTABLE FIELD	CONDITIONS	5:
NITIAL ORGANIC	C VAPOR MET	ER READING	SS:	<u> </u>	<u> </u>				
NITIAL DEPTH T	O WATER:				TOTAL [DEPTH OF V	VELL:	SCRE	ENED INTERVAL:
PURGE VOLUME	CALCULATIO	N:							
METHOD OF PU	RGING (circle):	:		peristaltic pun		/	pump Bailer		
DISPOSITION OF	DISCHARGE	WATER:		into onsite tan	k and run thro	ugh GAC tr	eatment		
MONITORING E	QUIPMENT US	ED:							
				Well	Purging	Infor	mation		
Date	Total	Water							Bassalia
	valume	Level	Temp (°C)	рН	Turbidity	Conductivit		ORP (millivolts)	Remarks (color, odor, sheen, sediment, etc.)
	(gals)	(ft btoc)			(NTU)	(mS/cm)	(mg/L)	+/- 10%	Stabilization parameters
Time	01-7-	<= 0.33 ft	+/- 1	+/- 10%	10% or <10 NTU	+/-3%	10% or <0.5 mg/L	7/- 10/0	
1958	Start	pumpi	m)	1	in i	10.10	0.52	46	
1503	0.33	11.78	19.01	6.95	1016	6.10	0.92	46	
1508	0,66	11.78	19.01	6.96	12.0	6.19	0.41	48	
1513	1.0	11.79	19.02	10.96	14.8	6.19	0.33	49	
1518_	1.33	11.79	19.07	W.99	15.1	10.11	0.15	49	
1523	1,66	11.79	19.12	6.94	16.0	4.98	0.12	49	
									i i
	-								
			1			1			
	1	 	-	-					
	-								
		1,		Sa	ample Ir	forma	ation		
CAMPLE DATE:	12	22/19			SAMPLE TYPE			SAMPLE MA	TRIX: groundwater
SAMPLE DATE:	1,1	Dad A	r KOW DI	00					
SAMPLING PER		DAL FU	W				SAMPLE TEMP/pH/EC	/TURB/DO:	see last entry, above
SAMPLING MET				4222010	7		DUPLICATE/BLANK S		Artesia-MDII-DAZZ
SAMPLE ID(s):		tesia-							
NOTABLE OBS	ERVATIONS (d	color, odor, sai	nd, neadspace	, etc.):					
Samala	Sample		Sample Containe	rs	Preserv	vatives			
Sample ID	Sample Time No.			ıme/Type	(ice, acids, bas		Analytical Method		Laboratory
				OME VOA		4°C	9240 V	Test	Amenca
geabove	L 1			LODIN	Ave		3000 Surve		
*0	1575 3)	<u> </u>	UML VOA	Here	9°C	97100W		
FD	1		1		Sort	1	3200 M		سلے
	12 1			Lpuly	170		7		
	+								

Initials of sampling personnel

ATHER (windrampippi): TIAL ORGANIC (APOR NETER READINGS: TIAL ORGANIC (APOR NETER: THOO OF PURGING (circle): Peristaltic pump (Geo pump) grundfos pump Bailer Into onsite tank and run through GAC treatment Well Purging Information Date Total Water Introduction Time Volume (gals) (to bloc) Temp (**C) pH Turbidity (mScm) (mgL) (mgl) (mgl) (mgl) (right) (PROJECT NUM D3151100)		WELL ID MW-12		Purge Date: 4 22 19
ATHER (wind rempipp): THAL DRANNE VAPOR METER READINGS: THAL DRANNE VAPOR METER READINGS: THAL DEPTH OF WELL: SCREENED INTERVAL: SCREENED INTERVAL: THOSE OF PURGING (circle): Peristalitic pump (See pump) grundlos pump Bailer POSSTINO NO PELSCHARGE WATER: Into onsite tank and run through GAC treatment Well Purging Information Date Total Value Level Temp (C) ph Total (in these) (in these Level (in thes					GR	OUNDV	VATER	SAMPLIN	IG FIEL	D DATA SHEET
ATHER (wind rempipp): THAL DRANNE VAPOR METER READINGS: THAL DRANNE VAPOR METER READINGS: THAL DEPTH OF WELL: SCREENED INTERVAL: SCREENED INTERVAL: THOSE OF PURGING (circle): Peristalitic pump (See pump) grundlos pump Bailer POSSTINO NO PELSCHARGE WATER: Into onsite tank and run through GAC treatment Well Purging Information Date Total Value Level Temp (C) ph Total (in these) (in these Level (in thes	PROJECT:				Former Dowell	Schlumberger Fa	acility LC	CATION: Artesia, N	А	
TIAL DEPTH OF WEIER TALL DEPTH OF WEIL: SCREENED INTERVAL: RACE VOLUME CALCULATION. THOD OF PURGING (circle): POSITION OF DISCHARGE WATER: Into onate tank and run through GAC treatment INTORING EQUIPMENT USED: Well Purging Information Date Total Epith of Water (into onate tank and run through GAC treatment) Time Can 33 it 4-1 4-1 6-10% (inform) (myst.) (million) (circle) (myst.) (temp/ppt):						THER NOTABLE FIEL	D CONDITION	S:
TOTAL DEPTH OF WATER SCREENED INTERVAL:			FR READING		,					
RECEVOLUME CALCULATION: THOO OF PURCING (circle): peristaltic pump (Geo pump) grundlos pump Bailer proportion of DISCHARGE WATER: Into onsite tank and run through GAC treatment Well Purging Information Date: Total Water volume (gale): (thibtic): Time: = co.33 R ++1 ++10 ++10 ++10 ++10 ++10 ++10 ++1			LITTLE IDING	<u> </u>		TOTAL [DEPTH OF V	VELL:	SCRE	ENED INTERVAL:
Purpose Purson Gerden Purson Geo pump Geo pump Geo pump Bailer			ON:							
Month Constitution Conductivity Conductivit					neristaltic nur	nn Geo pump	arundfos	pump Bailer		
Date Total Volume Lavel Temp (**C) pH Turbidity Conductivity DO (mpL) (mpL) (color, odor, sheer, sediment, etc.)										
Date					into onsite tai	iii ana ran ana	-3.1			
Date Total Water Temp (**C) pH Turbidity Conductivity DO ORP Remarks (color, odor, sheen, sediment, etc.)	JONITORING EC	ZOIPMENT OS	SEU.		Well	Purging	Inforr	nation		
Volume	Date	Total	Water		77011					
Time	Date		1 1	Temp (°C)	рН	Turbidity	Conductivity	, I	1	1
10 10 10 10 10 10 10 10			(ft btoc)			(NTU)	(mS/cm)	(mg/L)		
330 0.25	Time		<= 0.33 ft	+/- 1	+/- 10%	10% or <10 NTU	+/-3%	10% or <0.5 mg/L	+/- 10%	Stabilization parameters
330 0.25	1325 €	start	Durac						00-	
33.5 0.5 12.00 19.43 19.52 30.9 5.01 0.93 19.53 19.54 40.1 5.02 1.40 -18.9 1.43 -18.2 1.45 -18.2 1.45	1330	0.25	NH		6.37			-		
340 015 12.0 19.99 12.8 40.1 5.12 1.40 1.89 1.43 1.82 1.40 1.89 1.43 1.82 1.80 1.25 1.20 19.11 12.95 43.1 4.91 1.50 1.82 1.80		0.5	12.00	19,43	6.52	30,9	5,06	0.95	195	
Sample Information Sample Information Sample Information SAMPLE TYPE: grab SAMPLE TYPE: grab SAMPLE TEMP/pH/EC/TURB/DO: see last entry, above DITABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Information SAMPLE TYPE: grab SAMPLE TEMP/pH/EC/TURB/DO: see last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Preservatives Sample Information SAMPLE TYPE: grab SAMPLE TEMP/pH/EC/TURB/DO: see last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Preservatives Sample Information SAMPLE TYPE: grab SAMPLE TEMP/pH/EC/TURB/DO: see last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Preservatives (ice, acids, bases, others) Analytical Method Laboratory L				1959			5,02	1,40	-189	
Sample Information Sample Information SAMPLE DATE: Grab SAMPLE MATRIX: groundwater MAMPLING PERSONNEL: TWA ATYMOOD AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers (ice, acids, bases, others) Preservatives (ice, acids, bases, others) Analytical Method Laboratory Preservatives (ice, acids, bases, others) Analytical Method Laboratory PRESERVATIONS (COLOR) ANALYTICATE OF THE PROPERTY OF	245						4.98	1.43	-182	
Sample Information Sample Information SAMPLE DATE: Grab SAMPLE MATRIX: groundwater MAMPLING PERSONNEL: TWA ATYMOOD AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers (ice, acids, bases, others) Preservatives (ice, acids, bases, others) Analytical Method Laboratory Preservatives (ice, acids, bases, others) Analytical Method Laboratory PRESERVATIONS (COLOR) ANALYTICATE OF THE PROPERTY OF		125				43.1	4.97	150	-182	Darameters Stale
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTY AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GLANK SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): Analytical Method Laboratory Lest-America	1000	11-	12101		10.40	177				
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTY AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GLANK SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): Laboratory Laboratory Laboratory Laboratory			<u> </u>							
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTY AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GLANK SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): Laboratory Laboratory Laboratory Laboratory			-							
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTY AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GLANK SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): Laboratory Laboratory Laboratory Laboratory			ļ			-				
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTY AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GLANK SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): Analytical Method Laboratory Lest-America									 	
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTY AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GLANK SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): Analytical Method Laboratory Lest-America										1
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTY AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GLANK SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): Analytical Method Laboratory Lest-America										
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTY AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GRAVING 1234 ACC 9220 W ISSAMPLE MATRIX: groundwater SAMPLE TYPE: grab SAMPLE MATRIX: groundwater SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): Laboratory Laboratory SEE GRAVING 1234 ACC 9220 W ISSAMPLE MATRIX: groundwater									-	
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTY AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GRAVING 1234 ACC 9220 W ISSAMPLE MATRIX: groundwater SAMPLE TYPE: grab SAMPLE MATRIX: groundwater SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): Laboratory Laboratory SEE GRAVING 1234 ACC 9220 W ISSAMPLE MATRIX: groundwater										
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTY AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GLANK SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): Analytical Method Laboratory Lest-America										
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTY AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GLANK SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): Analytical Method Laboratory Lest-America										
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTY AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GRAVING 1234 ACC 9220 W ISSAMPLE MATRIX: groundwater SAMPLE TYPE: grab SAMPLE MATRIX: groundwater SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): Laboratory Laboratory SEE GRAVING 1234 ACC 9220 W ISSAMPLE MATRIX: groundwater										
SAMPLE TYPE: grab SAMPLE MATRIX: groundwater AMPLING PERSONNEL: TOUR ACCOUNTS AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GLOWN 1255 2 1000 MINIOR HCA ACC 90240 W ISSTAMPLICA					Sa	ample Ir	forma	ation		
AMPLING PERSONNEL: AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: see last entry, above DUPLICATE/BLANK SAMPLE ID(s): DTABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory SEE GLANK SAMPLE ID(s): Analytical Method Laboratory Lest-America		//	172119						SAMPLE MA	TRIX: groundwater
AMPLING METHOD: SAMPLE TEMP/pH/EC/TURB/DO: See last entry, above AMPLE ID(s): DUPLICATE/BLANK SAMPLE ID(s): DIPLICATE/BLANK SAMPLE ID(s): DIPLICATE/BLANK SAMPLE ID(s): Sample Sample Sample Containers Preservatives (ice, acids, bases, others) Analytical Method Laboratory See (NVIN) 1244 2 40 40 40 40 40 40 40 40 40 40 40 40 40			10011	CVD VDD	1	OMMI EE THE	g			
AMPLE ID(s): AMPLE ID(s): DITABLE OBSERVATIONS (color, odor, sand, headspace, etc.): Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory See Glaving 1255 2 40 MM NITX + +CA +CC & 20240 M 1854-200 M			1000 9	NOVIDUE				SAMDLE TEMP/nH/F	C/TURB/DO:	see last entry, above
Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory Preservatives (ice, acids, bases, others) Analytical Method Laboratory Preservatives (ice, acids, bases, others) Analytical Method Laboratory Preservatives (ice, acids, bases, others) Analytical Method Laboratory	SAMPLING MET	HOD:	IMU+1		0422	2010				
Sample Sample Sample Containers Preservatives ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory Preservatives (ice, acids, bases, others) Analytical Method Laboratory Preservatives (ice, acids, bases, others) Analytical Method Laboratory Preservatives (ice, acids, bases, others) Analytical Method Laboratory	SAMPLE ID(s):		145191	-MWIZ	-0422	-1019		DUPLICATE/BLANK	SAMPLE ID(S).	
ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory OF GRANN 1755 3 40 MM NOV +CC 62260 W 1854 America	NOTABLE OBSE	RVATIONS (color, odor, san	nd, headspace,	etc.):					
ID Time No. Volume/Type (ice, acids, bases, others) Analytical Method Laboratory OF GRANN 1755 3 40 MM NOV +CC 62260 W 1854 America	Carrela	Samela	-	ample Containers		Preserv	vatives			
endown 1251 3 40ml NM2 HCL 4°C 8260 W lestAmenco		1 1				1		Analytical Method		
I I I I I I I I I I I I I I I I I I I				4Dn		Ha	A°C	8260 U	Test	America
	ACMVW-	1		Ilor	DJN .			200,0 Sulf	ite.	
		1-11		104	~19					
		+								
						-		<u> </u>		
		+ +-								
Initials of sampling personnel										

				PROJECT NUI			WELL ID MW-170		Purge Date: G 22 P
				GF	ROUNDV	VATER	SAMPLIN	IG FIEL	D DATA SHEET
PROJECT:					Schlumberger F		CATION: Artesia, N		
NEATHER (wind/	temp/ppt):			Cloudy,	mld	OT	HER NOTABLE FIEL	D CONDITION	S:
NITIAL ORGANIC	VAPOR MET	ER READING	S:						
NITIAL DEPTH T	O WATER:				TOTAL	DEPTH OF W	ELL:	SCRE	EENED INTERVAL:
PURGE VOLUME	CALCULATIO	N:							
METHOD OF PUI	RGING (circle)	<u> </u>			mp Geo pump				
DISPOSITION OF				into onsite ta	nk and run thro	ugh GAC tre	eatment		
MONITORING EC	UIPMENT US	ED:		Well	Purging	Inform	nation		
Date	Total	Water					T		
	volume	Level	Temp (°C)	рН	Turbidity	Conductivity	1	ORP	Remarks (color, odor, sheen, sediment, etc.)
	(gals)	(ft btoc)			(NTU)	(mS/cm)	(mg/L) 10% or <0.5 mg/L	(millivolts) +/- 10%	Stabilization parameters
Time		<= 0.33 ft	+/- 1	+/- 10%	10% or <10 NTU	+/-3%	10% or <0.5 mg/L	T/= 1070	Old State of the S
1000	JUIT	mrge	19.96	10.87	32.7	9.47	0.60	-61	puracrol: 0.33
1005	7-00	12.06		7.03	41,6	4.49	0.05	-53	0.66
1910	12-at	12.02	20.13	7.09	50.8	4.12	0,00	-30	1,0
1920	1.33	12.02	20.06	7.01	619	4.00	0.00		
14205	1.66	12.02	10.0D	10 00	62.2	1,98	0,00	-18	
14/100	2.0	12.02	2018	6.90	51.9	3,98	0.00	-13	parameters stable
14775		1000	701.0	W					7.
•									
					ample le	forma	tion		
	Λ (22/10		3	ample Ir		tion	SAMPLE MA	TRIX: groundwater
SAMPLE DATE:	4	22/19	NIN ALLAN	1	SAMPLE TYP	⊨: grab_		SUMIL FF MA	man granitaria
SAMPLING PER			YYUWDO	1			AMPLE TEMP/pH/E	C/TURB/DO:	see last entry, above
SAMPLING MET	HOD:	$\frac{\sqrt{100}}{\sqrt{1000}}$	V	-0422	2019		UPLICATE/BLANK		
SAMPLE ID(s):	#	1465101	PI VVI IC				O LIVATE/DEAIN	<u>(3)</u> .	
NOTABLE OBSE	RVATIONS (c	olor, odor, san	d, headspace,	etc.):					
Sample	Sample	s	ample Containers		Presen		A - alt di - al Adala - d		Laboratory
ID C C C C C C C C C C C C C C C C C C C	Time No.		Volur	ne/Type	(ice, acids, ba	ses, others)	Analytical Method	TOF	America
seeabre	1930 3)	101	W VDA	TO TO	10	300.0 SULE		1
	1		11	Chind	170		יווער טיטערי	VI-	
	-								
	+								
	+								

Initials of sampling personnel

				D315110			WELL ID UW 36	P	8 29 19
			1	GR	ROUNDV	VATER		G FIELD	DATA SHEET
PROJECT:				Former Dowell	Schlumberger F	acility LOC	ATION: Artesia, NM	1	
WEATHER (wind	/temp/ppt):					ОТН	ER NOTABLE FIEL	D CONDITIONS:	
INITIAL ORGANI		TER READING	iS:						
INITIAL DEPTH	O WATER:			NR	TOTAL I	DEPTH OF WE	LL:	SCREE	NED INTERVAL: 15-25
PURGE VOLUM	E CALCULATION	ON:			velopmen	<u>st</u>			
METHOD OF PU	RGING (circle)	:			mp Geo pump		ump Bailer		
DISPOSITION O	F DISCHARGE	WATER:		into onsite tar	nk and run thro	ugh GAC trea	tment		
MONITORING E	QUIPMENT US	SED:							
			-	Well	Purging	Inform	ation		
Date	Total	Water	Temp (°C)	pН	Turbidity	Conductivity	DO	ORP	Remarks
	(gals)	(ft btoc)			(NTU)	(mS/cm)	(mg/L)	(millivolts)	(color, odor, sheen, sediment, e
Time	0.	<= 0.33 ft	+/- 1	+/- 10%	10% or <10 NTU	+/-3% NR	10% or <0.5 mg/L	+/- 10%	Stabilization parameters
0015	20	NR	NR	6.54	96.4	1-12	NR.	36	
0900	49			7.18	52.9		-	-10 -17	
0940	100			7.17	23.6			-15	
1030	100			7.18				-27	
1110	130			7.22	8.8			-24	
1135	16	-		1122	410			7,74	
		-							
		-							
	-								
1	_								
		-							
·									
				Sa	ample In	format	ion		
SAMPLE DATE:	8	29 19			SAMPLE TYPE			SAMPLE MATR	X: groundwater
SAMPLING PER	· ·	W kile							
SAMPLING ME		<u>V- 1</u>				SAI	MPLE TEMP/pH/EC	/TURB/DO:	see last entry, above
SAMPLE ID(s):		TESIA-1	UW210-D	82919		DU	PLICATE/BLANK S	AMPLE ID(s): 🕂	RTESIA-MW36-0829
NOTABLE OBS		-	_						
Sample	Sample		ample Containers		Preserva	- 1	Analytical Mothod		Laboratory
ID NO.	Time No.			u Voa	(ice, acids, bas		260 LL	TectAv	Merica
14-4W36-08	9/1/40/3	2		POLY	AOC.	2	00.0 surate		
<u>+</u>	 			u VDA	HOI A		260 11		
FD	1145 3			7019	A°C,	24	70.0 SU Fale		
	1 1			YUN'	170		The partition.		
	+ +-								

d, i.

				PROJECT NUI D315110 ()		WELL ID MW-37		Purge Date:
				GR	OUNDV	VATER	SAMPLIN	IG FIEL	D DATA SHEET
PROJECT:				Former Dowell	Schlumberger F		ATION: Artesia, NN		
WEATHER (wind/	temp/ppt):					OTH	ER NOTABLE FIEL	D CONDITION	NS:
INITIAL ORGANIC	VAPOR ME	TER READING	S:	11.0					EENED INTERVAL: 5-25
INITIAL DEPTH T	O WATER:			NR		DEPTH OF WE	<u>LL:</u>	SCRI	EENED INTERVAL: 17
PURGE VOLUME	CALCULATION	ON:			elopmen		Deiles		
METHOD OF PUF	RGING (circle):			mp Geo pump				
DISPOSITION OF				into onsite tai	nk and run thro	ugh GAC trea	tment		
MONITORING EC	QUIPMENT US	SED:		Well	Purging	Inform	ation		
Date	Total	Water		11011					
Date	volume (gals)	Level (ft btoc)	Temp (°C)	pН	Turbidity (NTU)	Conductivity (mS/cm)	DO (mg/L)	ORP (millivolts)	Remarks (color, odor, sheen, sediment, etc.)
Time		<= 0.33 ft	+/- 1	+/- 10%	10% or <10 NTU	+/-3%	10% or <0.5 mg/L	+/- 10%	Stabilization parameters
1810	30	NR	NR	7,29	70.8	NR	NR I	27 -48	Strong Petroleum odo
1830	45		-	7.32	54.1			-55	
1850	75			7.27	16.1			-44	
1910	90			7.19	11.4			-48	
1930	95		1	1.21	6.	+	<u> </u>	-57	
							<u> </u>		
			-						
					-				
				-		 		 	
				-				 	
				ļ			+		
				<u> </u>					
				S	ample Ir	format	ion		
		8/28/19			SAMPLE TYPI			SAMPLE MA	ATRIX: groundwater
SAMPLE DATE:		1/2011/ 1/V /Li	te		JOANNE LE ITE	g.ub			
SAMPLING PER			eloonei	na.		SA	MPLE TEMP/pH/E	C/TURB/DO:	see last entry, above
SAMPLE ID(a):	HOD:		MW37-6				IPLICATE/BLANK S		
SAMPLE ID(s): NOTABLE OBSE	T)								
NOTABLE OBSE	ERVATIONS	(COIOI, OGOI, SAI	iu, ricauspace,	cio.j.					
Sample ID	Sample Time No		ample Container	s me/Type	Present (ice, acids, ba	1	Analytical Method		Laboratory
asabove		3	4.0	e VIDA		°C	8260ri		menica
VIO VIVOI		Ī	11 5	PULU	4°C		300.0 SW/a	10	
)					

GWSample-PurgeForms_template.xlsx

Initials of sampling personnel

				PROJECT NU D315110			WELL ID MW - 38	>	Purge Date:
				GF	ROUNDV	VATE	RSAMPLIN	NG FIEL	D DATA SHEET
ROJECT:				Former Dowell	Schlumberger F	acility L	OCATION: Artesia, N	M	
VEATHER (wind/t	temp/ppt):					0	THER NOTABLE FIE	LD CONDITION	S:
NITIAL ORGANIC		ER READING	is:	0.00	2100				
NITIAL DEPTH TO				15.88		DEPTH OF V	NELL:	SCRE	ENED INTERVAL: 19-25
URGE VOLUME		NAI:		Develop					
				_	mp Geo pump	arundfos	numn Bailer		
ETHOD OF PUF					nk and run thro				
ISPOSITION OF				into onsite ta	in and full till	rugii OAO ti	cauncin		
IONITORING EQ	UIPMENT US	ED:		Woll	Purging	Infor	mation		
				AACII	rurging	IIIIOI	Tation		
Date	Total volume (gals)	Water Level (ft btoc)	Temp (°C)	pН	Turbidity (NTU)	Conductivi (mS/cm)	ty DO (mg/L)	ORP (millivolts)	Remarks (color, odor, sheen, sediment, etc.)
Time	(9410)	<= 0.33 ft	+/- 1	+/- 10%	10% or <10 NTU	+/-3%	10% or <0.5 mg/L	+/- 10%	Stabilization parameters
1350	N/8/15	NR	NR	6.62	43.2	NR	2049	264	
1405	25	1	101	6.93	5/6		1 0	231	
	35		-	7.06	407			26	
1420		 		7.21	149			292	
1440	55			7. A					
1500	75		1 1		40	di Da	T	260	
1520 P	ansc-	D GLOW	prient	privero	- water	at Pa		2020	
608 Y	esime	che ve 11	prient	- 3-	- 0 1	0 4 -		2419	
1628	115	1		7.20	24.1	24.		241	
648	130			7,22	54 9.2			189	
1718	150	1	,	7.24	9.2			227	
						ļ			
						_			
	·			Sa	ample In	nforma	ition		
AMDLE DATE:	e.	128 19			SAMPLE TYPE			SAMPLE MAT	RIX: groundwater
AMPLE DATE:	_ 0	WKU	· ·		OAWII CE TTI E	grub			
AMPLING PERS	in	AL-FTE T		elpome	nt		SAMPLE TEMP/pH/E0	C/TURR/DO:	see last entry, above
AMPLING METH	- 14	RIESIA	- MW30	-08281	a		DUPLICATE/BLANK S		
SAMPLE ID(s):							JOI LIOTTILIBLITATE	27 11011 22 10 (4).	
OTABLE OBSE	KVALIONS (C	olor, odor, san	iu, rieauspace, (c.(.).					
Sample	Sample	s	ample Containers		Preserv	atives			
ID	Time No.			ne/Type	(ice, acids, bas	ses, others)	Analytical Method		Laboratory
sabore	17213		AOM	LUM	HCL. 4	o C	8260 LL		nerica
L	1 1		IL	PULM	4°C		300.0 Sulfa	4 1	
				')]			

				PROJECT NUI D315110			WELL ID		DATE 10/29/19
chi		Su		GRO	DUNDW	ATER SA			ATA SHEET
PROJECT: Former WEATHER (wind/ INITIAL ORGANIC INITIAL DEPTH T PURGE VOLUME METHOD OF PUI DISPOSITION OF MONITORING EC	temp/ppt): 24 C VAPOR METER O WATER: C CALCULATION: RGING: Peristal F DISCHARGE W.	Parph/Corrections: 14.36 Hitchic Pump ATER: Into P&T	of Nov			LOCAT OTHER	NOTABLE FIEL	Artesia, New Mexic D CONDITIONS: SCREENE	ED INTERVAL:
MONTO E	ZON MICHT GOLD	, , , , , , , , , , , , , , , , , , , ,		Well Pu	rging In	formatio	n		
Time	Total volume (gals)	(ft btoc)	Temp (°C)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO	ORP	Remarks (color, odor, sheen, sediment, etc.)
1549 1553 1558 1603 1608 1613	0.0	14.36 14.40 14.40 14.41 14.40	20.29 19.99 19.73 19.78 19.58		5.96 6.06 6.05 6.01	0.0 0.0 0.0 0.0	2.41 0.48 0.35 0 70 0.32	85 96 102 105 108	Began punphy well Stable Began Bangley
		<u> </u>		Sam	ple Info	rmation		l	
SAMPLING MET SAMPLE ID(s):	SONNEL: MB HOD: low-flow wi AVICSIA: ERVATIONS (colo	th parameter sta - MW/I-	1029 2019		SAMPLE TYPE	ŞPLIT SAMPI	SAMPLES OBT/ LE TEMP/pH/EC CATE/BLANK S/	/TURB/DO:	See measurements above kSia -M011 - 1529 zor
Sample			Sample Time	1	Containers	Preservatives (ice, acids,)	Analytical Method	Laboratory	

R+FD = Same thou = 1615

HCL, ice

ice

TestAmerica/HOU

TestAmerica/HOU

8260B

1615

3 40 mL VOA

1 L poly

Artesia - muil- 10292019

Initials of sampling personnel

ch2m:

PROJECT NUMBER D3151100

WELL ID MW 12

10 29 19

GROUNDWATER SAMPLING FIELD DATA SHEET

PROJECT: Form	er Dowell Schlumi	berger Facility	Artesia			100	CATION:	4.0.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	
WEATHER (wind INITIAL ORGANI	/temp/ppt): 🃉 🗸	d. SUMM	4.5) 1AW	brew	W	OTH		Artesia, New Me	
INITIAL ORGANI	C VAPOR METER	READINGS:	0,20	2 & dow	nwellc	Ú51)m			
INITIAL DEPTH T	O WATER:	3			ТОТ	AL DEPTH OF WE	IL 25.1	05 screen	NED INTERVAL: 15-25
PURGE VOLUME	CALCULATION	3x Cus	INO VO	= 5.54	nal City	reded		JORGE	INED INTERVAL:
					, , , ,				
	DISCHARGE W								
MONITORING EC	DUIPMENT USED	: Horiba U-52,	MultiRAE, Wa						
	Total			Well P	urging l	nformati	on		
Time	volume (gals)	(ft btoc)	Temp (°C)	Нq	Conductivity (mS/cm)	Turbidity (NTU)	DO	ORP	Remarks
193	Strut p	mp							(color, odor, sheen, sediment, etc.)
1455	0.5	145	19.00	6.23	4.83	578	1.45 0.36 0.31 0.27 0.25	-128	No odor color
1205	0,791	14150	19100	6.14	4.57	176	0.36	- 2B -2 2 -228 -23	Too otto. Icato
1210	1.3	14.52 14.52 14.52	19 4	11.12	4100	34.8	10.31	-228	
1215	1.3	4.52	19.40	6112	4 100	1240	0.27	-231	
1220	2,3	451	19,44	6.12	4.87	13.2	0,45	-233	1
		131 /1	121/21/21	0112	4.86	9.7	0.24	-229	Darameters Stabb
				-	-				parameters Stabb
					-		-		
					ļ — — — — — — — — — — — — — — — — — — —		-		
					ļ				
					ļ				
									A Secretary of the Control of the Co
							-		
									The state of the s
							-		
				Sam	ple Info	rmation			
AMPLE DATE:	0/29/19				SAMPLE TYPE			CAMPI E MATERIA	
AMPLING PERSO	NNEL: A For	Source					SAMPLES OF	SAMPLE MATRIX:	
AMPLING METHO	D: low-flow with p	arameter stabi	lization				E TEMP/pH/E		
AMPLE ID(s): A							CATE/BLANK		See measurements above
DTABLE OBSERV	/ATIONS (color, o	dor, sand, head	ispace, etc.):					- Wil CE 10(3).	
Sample			Sample	Sample (Containers	See and and			are a transfer of the state of
ID			Time		me/Type	Preservatives (ice, acids,)	Analytical Method	Laboratoo	
rtesia-HWI	2-1012914		223	3 40 mL VOA		HCL, ice	8260B	Laboratory TestAmerica/HOU	
	-			1 L poly		ice	300	TestAmerica/HOU	
Initials of samplin	g personnel	X	a	Val. 22					
					10				

PROJECT NUMBER D3151100

WELL ID MW-17C

DATE 10 29 19

GROUNDWATER SAMPLING FIELD DATA SHEET

PROJECT: Form	ner Dowell Schlum	berner Facility	Arteela						
WEATHER (wine	(Mampingt):	7-92					CATION:	Artesia, New Me	
INITIAL ORGANI	IC VAPOR METER	D DEADINGS:	10.7 12:	2 17	J A /	OTF	IER NOTABLE	FIELD CONDITIONS	i: Nove
INITIAL DEPTH	TO WATER:	21	016	2,0120	ADMILL	(sing	1.0		ENED INTERVAL 55-65 (If needed)
PURGE VOLUM	E CALCULATION	0.76	ant - 1	cot each	TOTA	AL DEPTH OF WE	LL: 09	SCREE	ENED INTERVAL 55-65
METHOD OF BU	RGING: Perista	W- 5	ppu = 1	say casiv	10 VOIT	1.16 gas	screen	VOI = 11.52	(It needed)
	F DISCHARGE W								
MONTORING E	QUIPMENT USED	7: Horiba U-52,	MultiRAE, Wa						
				Well Pi	urging l	nformati	on		
Time	Total volume (gals)	(ft btoc)	Temp (*C)	рН	Conductivity (mS/cm)	Turbidity (NTU)	DO	ORP	Remarks
12380	Sturtpi	MD			(maran)	(410)			(color, odor, sheen, sediment, etc.
1239 1244 1249 1254 1259	0.2	14.64	18.52 18.92 18.99 18.97	1.70 1.70 1.43 1.37 6.33	4.2 1 4.31 4.17 4.12 4.11	16.3 9.7 5.8 0.2 4.1	2.54 0.38 0.74 0.27 0.23		No adar Cotor parameters stabilization
				Sami	ole Info	rmation			
SAMPLE DATE:	0 29 19				SAMPLE TYPE	grab		SAMPLE MATRIX	
AMPLING PERSO		irsbor	\				SAMPLES OF	SAMPLE MATRIX: TAINED BY: N	
AMPLE ID(s): A	OD: low-flow with YYCS19 - M VATIONS (color, c	parameter stab	UZ919			SAMPI	LE TEMP/pH/E	C/TURB/DO:	See measurements above
Sample			Sample	Compt. C					
ID	[Time	Sample Co No./Volum		Preservatives	Analytical	1 .	
Artesia-H	WI7C-10291	19	1300	3 40 mL VOA	nor i ype	HCL, ice	Method 8260B	Laboratory	
				1 L poly		ice	300	TestAmerica/HOL	
Initials of sampli	De person-1		716						***
minima di Sarripili	ing her sourcet	-	UF						

ch	2M	A.		PROJECT D3151	NUMBER 100		WELL ID	W36	DATE
				G	ROUND	VATER S	SAMPLI	NG EIEL	D DATA SHEET
PROJECT Form	ner Dowell Schlu	mberger Facility	y Artesia					TO FIEL	D DATA SHEET
NITIAL DEPTH ' PURGE VOLUMI METHOD OF PU	d/temp/ppt): CO IC VAPOR METO TO WATER. E CALCULATION RGING: Perist	4.42 V 3 CUS	ing voi =	m In 0	Yunng u TOTA		CATION HER NOTABLE LL 25.38	Artesia New FIELD CONDITIO	Mexico NS EENED INTERVAL 15-25
DISPOSITION OF	F DISCHARGE V	VATER: Into PA	IT sustan						
IONITORING EC	DUIPMENT USE	D. Horiba U-52	MultiRAE Wate	r Level Indica	or				
-				Well P	uraina li	formation	20		
Time	Total volume (gals)	(ft btoc)	Temp (°C)	pH	Conductivity	Turbidity	DO	ORP	
5 5 10	rt pur	yop			(mS/cm)	(NTU)	-	- ORF	Remarks (color, odor, sheen, sediment, et
107 ax	1.59	15.39	17.46	5.53 5.71 5.72	12,3	323 482	3,78	369 438	char, no oclar
1117	1.75%	19.60	1855	572	109	202	4.32	455	DIW= 15.51
1122	2,250	15.72	1855 1855 1869	5.73	9.83	122	4.03	457 455	turn down from
132	2.50	15.75	10.0	574 574	9,15	125	3,99	450	1
					0,71	127	4,07	446	paramaters mp
									19 10 of air bul
									coming up tribi
PLE DATE: C	170116			Samp	le Inforn	ation			the state of the s
LING PERSON	NEL A TO	rshere			AMPLE TYPE gra	b	S	AMPLE MATRIX	GIA
LING METHOD	low-flow with no	Caracter et-bill	ation			SPLIT SA	MPLES OBTAIN	ED BY NE	GVV
LE ID(s)	CSIG-MV	レストーロフィ	919			SAMPLE .	TEMP/pH/EC/TU		See measurements above

Sample Sample Sample Containers Preservatives Analytical Method No /Volume/Type (ice_acids.) Laboratory 3 40 mL VOA HCL, ice 8260B TestAmerica/HOU 1 L poly ice 300 TestAmerica/HOU Initials of sampling personnel

ch2m:

PROJECT NUMBER D3151100

WELL ID MY37

DATE 10/29/19

	ZAAA	SM		GROUNDWATER SAMPLING FIELD DATA SHEET						
ROJECT: Forme	r Dowell Schlumb	erger Facility A	rtesia	LOCATION: Artesia, New Mexico OTHER NOTABLE FIELD CONDITIONS:						
EATHER (wind/	temp/ppt): Zo	mph/61	2.4/1000			UTHERT	TOTABLETTE			
ITIAL ORGANIC	VAPOR METER	READINGS:	0.1			DEPTH OF WELL:		SCREENEL	INTERVAL:	
ITIAL DEPTH T		14.28			TOTAL	DEPTH OF WELL.				
	CALCULATION									
	RGING: Perista									
ISPOSITION OF	DISCHARGE W	ATER: Into P&T	system	t						
ONITORING EC	OUIPMENT USED): Horiba U-52, I	MultiRAE, VVater	Moll Du	raina In	formation)			
				Welled	iging ii	TOTTI GET				
	Total	(ft btoc)	Temp (*C)	рН	Conductivity	Turbidity	DO	ORP	Remarks	
Time	volume (gais)	(11 0100)	(6.11.)		(mS/cm)	(NTU)			(color, odor, sheen, sediment, etc.)	
1444	0.0	1400							B. 1 A	
1446	0.2	14.28	20 82 2097	6.32	4.83	14.3	1.967	-12	Beyon purp	
1476	0.5	14.28	2097	6.24	4.86	0.0	1.38	-61		
1456	1.0	14.25	21.02	10.22	4.86	0.0	1.29	-64	0 000	
1501	1.5	14.27	21.07	6.21	4.86	0.0	1.23	-64	Stable	
1506	2.0	14.19	21.02	6-21	4.63	0.0	1.62		Parameters Stable Collect Samples	
									00/1900	
		_								
			-							
					ļ					
							,			
					1 1 6					
				San	ipie into	rmation				
10/29/19				SAMPLE TYPE: grab SAMPLE MATRIX: GW						
SAMPLE DATE	BOONNEL 11	129/19				SPLIT	SAMPLES OBT	AINED BY:		
			tabilization			SAMPI	LE TEMP/PH/EC	/TURB/DO:	See measurements above	
SAMPLING METHOD: low-flow with parameter stabilization SAMPLE ID(s): Arksig - MW3 7 -1029201				DUPLICATE/BLANK SAMPLE ID(s):						
SAMPLE ID(s)	SERVATIONS (CO	lor odor sand	headspace, etc.)							
NO IABLE US	SERVATIONS (CE	rui, vuul, suitu,								
Sample Sample		Sample	Sample Containers		Preservatives (ice, acids,)	Analytical	Laboritori			
1D			Time		No /Volume/Type		Method	Laboratory TestAmerica/HO	<u> </u>	
AVICSIO	1-MUJ8-	1024 2019	1500)A	HCL, ice	8260B 300	TestAmerica/HO		
1000	4		1508	1 L poly		ice				
1		1						1		

Initials of sampling personnel

PROJECT NUMBER

MELL ID

DATE 0 29 19

GROUNDWATER SAMPLING FIELD DATA SHEET

PROJECT: Former Dowell Schlumberger F.	acility Arte	sia
WEATHER (wind/temp/ppt): 20~Ch/	Gorf/	None
PROJECT: Former Dowell Schlumberger F. WEATHER (wind/temp/ppt): 20〜cん/ INITIAL ORGANIC VAPOR METER READI	NGS:	182

LOCATION:

Artesia, New Mexico

OTHER NOTABLE FIELD CONDITIONS:

INITIAL DEPTH TO WATER: 4.17

TOTAL DEPTH OF WELL:

SCREENED INTERVAL:

PURGE VOLUME CALCULATION:

METHOD OF PURGING: Peristaltic Pump

DISPOSITION OF DISCHARGE WATER: Into P&T system

MONITORING EQUIPMENT USED: Horiba U-52, MultiRAE, Water Level Indicator

Well Purging Information

		141 141							
Time	Total volume	(ft bloc)	Temp (*C)	рΗ	Conductivity	Turbidity	DO	ORP	Remarks
	(gals)]			(mS/cm)	(NTU)			(color, odor, sheen, sediment, et
1343	d	pureye							
1244	0.2	14.53	20.13	4.24	4.14	125	2.05	-56	
1344	0.5	14.48	20.52	6.25	414	125	2.05	-66	
1354	1.0	14.54	20.68	4.19	4.16	44.7	1.60	-87	
1359	1.5	14.54	20.60	6.20	4.21	28.1	1.79	-95	
1404	2.0	14.54	20.64	6.21	4.20	15.5	2.15	-95	
1409	2.5	145F	LO.83	6.20	4.20	7.0	1.71	-104	
1414	30	14.5B	20.85	6-20	4.19	0.4	1.43	-110	
1419	3.5	14.60	20.88	4-18	4.19	9.7	1.38	-115	Promotive St.
Total .		17:	200			(1		Collect sample
									collect sample
		1				,			
								<i>'</i>	
									· · · · · · · · · · · · · · · · · · ·
		·							
							1		
					- 1- 1-5-	4	<u> </u>	<u> </u>	<u> </u>

Sample Information

SAMPLE DATE: 10/29/17

SAMPLE TYPE: grab

SAMPLE MATRIX: GW

SAMPLING PERSONNEL: MB
SAMPLING METHOD: low-flow with parameter stabilization

SPLIT SAMPLES OBTAINED BY:

DUPLICATE/BLANK SAMPLE ID(s):

SAMPLE TEMP/pH/EC/TURB/DO:

See measurements above

SAMPLE ID(s): AVKS19 - MW3B-10292019

NOTABLE OBSERVATIONS (color, odor, sand, headspace, etc.):

Sample ID		Sample Time	Sample Containers No /Volume/Type	Preservatives (ice, acids,)	Analytical Method	Laboratory	
AVKS19-MW 28-10242	v19 1420		3 40 mL VQA	HCL, ice	8260B	TestAmerica/HOU	J
<u> </u>	1420		1 L poly	ice	300	TestAmerica/HOL	J
			<u> </u>	<u> </u>			

Initials of sampling personnel

MAG

1420

Appendix C NMOSE Well Installation Permits

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 656848 File Nbr: RA 12782

Aug. 19, 2019

SCHLUMBERGER TECHNOLOGY CORP VIRGILIO COCIANNI 121 INDUSTRIAL BLVD SUGAR LAND, TX 77478

Greetings:

Your approved copy of the above numbered permit to drill a well for non-consumptive purposes is enclosed. You must obtain an additional permit if you intend to use the water. It is your responsibility to provide the contracted well driller with a copy of the permit that must be made available during well drilling activities.

Carefully review the attached conditions of approval for all specific permit requirements.

- * If use of this well is temporary in nature and the well will be plugged at the end of the well usage, the OSE must initially approve of the plugging. If plugging approval is not conditioned in this permit, the applicant must submit a Plugging Plan of Operations for approval prior to the well being plugged. The Plugging Record must be properly completed and submitted to the OSE within 30 days of the well plugging.
- * If the final intended purpose and condition requires a well ID tag and meter installation, the applicant must immediately send a completed meter report form to this office.
- * The well record and log must be submitted within 30 days of the completion of the well or if the attempt was a dry hole.
- * This permit expires and will be cancelled if no well is drilled and/or a well log is not received by the date set forth in the conditions of approval.

Appropriate forms can be downloaded from the OSE website www.ose.state.nm.us.

Sincerely,

Andrew Dennis (575)622-6521

Enclosure

explore

File No. RA-12782

NEW MEXICO OFFICE OF THE STATE ENGINEER

WR-07 APPLICATION FOR PERMIT TO DRILL A WELL WITH NO WATER RIGHT

(check applicable box):

D		or fees, see State Engineer we Pollution Control	_				
Purpose:		And/Or Recovery	Ц	Ground Source	Heat Pump		
Exploratory Well (Pump test)		Construction Site/Public Works Dewatering		Other(Describe):		
■ Monitoring Well		Mine Dewatering					
A separate permit will be required	to app	oly water to beneficial use r	egardless if use is co	onsumptive or	лопсопѕитр	tive	
☐ Temporary Request - Request	ed Sta	rt Date:	Rec	quested End D	ate:		
Plugging Plan of Operations Subr	nitted?	☐ Yes ■ No					
		-					
. APPLICANT(S)							
Name: Virgilio Cocianni			Name:				
Contact or Agent:	chec	k here if Agent	Contact or Agent:		check here	if Agent	
Schlumberger Technology Corpora	ation						
Mailing Address: 21 Industrial Blvd			Mailing Address:				
City: Sugar Land			City:				
State:	Zip Co	ode: 77478	State:		Zip Code:		
Phone: (281) 285-4747 Phone (Work):		Home 🗌 Cell	Phone: Phone (Work):		☐ Home	Cell	
E-mail (optional): cocianni-v@slb.com			E-mail (optional):			2019	-J-1 (
							7.00
						=	
						200	-
						9	₩,
	FO	R OSE INTERNAL USE	Application for Perm	it, Form WR-07,	Rev 11/17/16	57	85
		No.: RA-12787) Trn. No.: 4	6848	Receipt No.:	2-4/14	75/
	Trai	ns Description (optional):	0.5	<u>6 0 (0)</u>		× 110	20
	1100	no o o o o nphor (ophorita).					

2. WELL(S) Describe the well(s) applicable to this application.

(Lat/Long - WGS84).			State Plane (NAD 83), UTM (NAD 83), <u>or</u> Latitude/Longitude a PLSS location in addition to above.	
■ NM State Plane (NAD83) □ NM West Zone ■ NM East Zone □ NM Central Zone		JTM (NAD83) (Met]Zone 12N]Zone 13N	ers)	
Well Number (if known):	X or Easting or Longitude:	Y or Northing or Latitude:	Provide if known: -Public Land Survey System (PLSS) (Quarters or Haives , Section, Township, Range) OR - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name	
MW-36	523335.79	675954.90	NW1/4 SW1/4 S4 T17S R26E	
MW-37	523390.97 675903.81 NW1/4 SW1/4 S4 T17S R26E			
MW-38	523377.89	675981.06	NW1/4 SW1/4 S4 T17S R26E	
NOTE: If more well locations Additional well descriptions	s need to be describ are attached:	ed, complete form res No	n WR-08 (Attachment 1 – POD Descriptions) If yes, how many	
Other description relating well Former Dowell Schlumberger F	to common landmark	s, streets, or other		
Well is on land owned by: Schl	lumberger Technolog	y Corporation		
-			cribed, provide attachment. Attached? 🔲 Yes 🔳 No	
Approximate depth of well (fee	 et): 25		Outside diameter of well casing (inches): 2.25	
Driller Name: TalonLPE		[Oriller License Number: WD-1575	
B. ADDITIONAL STATEMENTS			701 RS	
For Item 4 - The monitoring well chlorinated solvents concentrati performed semiannually and are	ions in exceedance of	New Mexico Wate	the remediation of groundwater that contains hydrocarbons and er Quality Control Commission standards. Monitoring events are	
			Air 9: 57	

FOR OSE INTERNAL USE Application for Permit, Form WR-07

File No.: (A-1278) Trn No.: 656848

	QUIREMENTS: The applicant must include the information has been included and/or a		th well type. Please check the appropriate
Exploratory: Include a description of any proposed pump test, if applicable. Monitoring: Include the reason for the monitoring well, and, The duration of the planned monitoring.	Virgilia Canianni	Construction De-Watering:	Mine De-Watering: Include a plan for pollution control/recovery, that includes the following: A description of the need for mine dewatering. The estimated maximum period of time for completion of the operation. The source(s) of the water to be diverted The geohydrologic characteristics of the aquifer(s). The maximum amount of water to be diverted per annum. The maximum amount of water to be diverted for the duration of the operation. The quality of the water. The method of measurement of water diverted. The recharge of water to the aquifer. Description of the estimated area of hydrologic effect of the project. An estimation of the effects on surface water rights and underground water rights from the mine dewatering project. A description of the methods employed to estimate effects on surface water rights and underground water rights. Information on existing wells, rivers, springs, and wetlands within the area of hydrologic effect.
I, We (name of	applican <u>it(s)),</u> Pr	rint Name(s)	
affirm that the fo	pregoing statements are true to the best of ((my, our) knowledge and belief.	
Applicant Signa	ture	Applicant Signature)
	ACTION	OF THE STATE ENGINEER	
provided it is n Mexico nor de	approved to the detriment of any others trimental to the public welfare and further su	having existing rights, and is not o	denied ontrary to the conservation of water in New f approval.
Witness my han	d and seal this 19 day of Augu	st 20 19 .	for the State Engineers
John 7	R. D'Antonio Jr., P.E.	, State Engineer	
By: Signature	110	Juan Hern Print	anuex
•	r Resources Manager I	Tun	The state of the s
Print	111111111111111111111111111111111111111		the state of the s

FOR OSE INTERNAL USE

Application for Permit, Form WR-07

File No.: RA-12782 Trn No.: 656848

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL

- 17-1A Depth of the well shall not exceed the thickness of the valley fill.
- 17-4 No water shall be appropriated and beneficially used under this permit.
- 17-6 The well authorized by this permit shall be plugged completely using the following method per Rules and Regulations Governing Well Driller Licensing, Construction, Repair and Plugging of Wells; Subsection C of 19.27.4.30 NMAC unless an alternative plugging method is proposed by the well owner and approved by the State Engineer upon completion of the permitted use. All pumping appurtenance shall be removed from the well prior to plugging. To plug a well, the entire well shall be filled from the bottom upwards to ground surface using a tremie pipe. The bottom of the tremie shall remain submerged in the sealant throughout the entire sealing process; other placement methods may be acceptable and approved by the state engineer. The well shall be plugged with an office of the state engineer approved sealant for use in the plugging of non-artesian wells. The well driller shall cut the casing off at least four (4) feet below ground surface and fill the open hole with at least two vertical feet of approved sealant. The driller must fill or cover any open annulus with sealant. Once the sealant has cured, the well driller or well owner may cover the seal with soil. A Plugging Report for said well shall be filed with the Office of the State Engineer in a District Office within 30 days of completion of the plugging.
- 17-7 The Permittee shall utilize the highest and best technology available to ensure conservation of water to the maximum extent practical.

Trn Desc: RA 12782 POD1-3 File Number: RA 12782

Trn Number: 656848

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL (Continued)

- 17-B The well shall be drilled by a driller licensed in the State of New Mexico in accordance with 72-12-12 NMSA 1978. A licensed driller shall not be required for the construction of a well driven without the use of a drill rig, provided that the casing shall not exceed two and three-eighths (2 3/8) inches outside diameter.
- The well driller must file the well record with the State Engineer and the applicant within 30 days after the well is drilled or driven. It is the well owner's responsibility to ensure that the well driller files the well record.

 The well driller may obtain the well record form from any District Office or the Office of the State Engineer website.
- 17-P The well shall be constructed, maintained, and operated to prevent inter-aquifer exchange of water and to prevent loss of hydraulic head between hydrogeologic zones.
- 17-Q The State Engineer retains jurisdiction over this permit.
- 17-R Pursuant to section 72-8-1 NMSA 1978, the permittee shall allow the State Engineer and OSE representatives entry upon private property for the performance of their respective duties, including access to the ditch or acequia to measure flow and also to the well for meter reading and water level measurement.
- LOG The Point of Diversion RA 12782 POD1 must be completed and the Well Log filed on or before 08/18/2020.
- LOG The Point of Diversion RA 12782 POD2 must be completed and the Well Log filed on or before 08/18/2020.

Trn Desc: RA 12782 POD1-3 File Number: RA 12782

Trn Number: 656848

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL (Continued)

LOG The Point of Diversion RA 12782 POD3 must be completed and the Well Log filed on or before 08/18/2020.

IT IS THE PERMITTEES RESPONSIBILITY TO OBTAIN ALL AUTHORIZATIONS AND PERMISSIONS TO DRILL ON PROPERTY OF OTHER OWNERSHIP BEFORE COMMENCING ACTIVITIES UNDER THIS PERMIT.

ACTION OF STATE ENGINEER

Notice of Intention Rcvd: Date Rcvd. Corrected:
Formal Application Rcvd: 08/19/2019 Pub. of Notice Ordered:
Date Returned - Correction: Affidavit of Pub. Filed:

This application is approved provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare of the state; and further subject to the specific conditions listed previously.

Witness my hand and seal this 19 day of Aug A.D., 2019

John R. D Antonio, or P.E. State Engineer

By:

JUAN HERNANDEZ

Trn Desc: RA 12782 POD1-3

File Number: RA 12782

Trn Number: 656848

page: 3

Coordinates

UTM - NAD 83 (m) - Zone 13

Easting 556891.852

Northing 3635731.979

State Plane - NAD 83 (f) - Zone E

Easting 523335.790

Northing 675954,900

Degrees Minutes Seconds

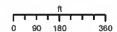
Latitude 32:51:29.572838

Longitude -104:23:31.083271

Location pulled from Coordinate Search

Parcel Information

UPC/DocNum:


Parcel Owner:

Address:

Legal:

NEW MEXICO OFFICE OF THE STATE ENGINEER

1:4,514

A. Dennis

8/19/2019

Spatial Information

County: Eddy

Groundwater Basin: Roswell

Abstract Area: Roswell Artesian

Land Grant:

Not in Land Grant

Restrictions:

NA

PLSS Description

NESESWSW Qtr of Sec 04 of 017S 026E

Derived from CADNSDI- Qtr Sec. locations are calculated and are only approximations

POD Information

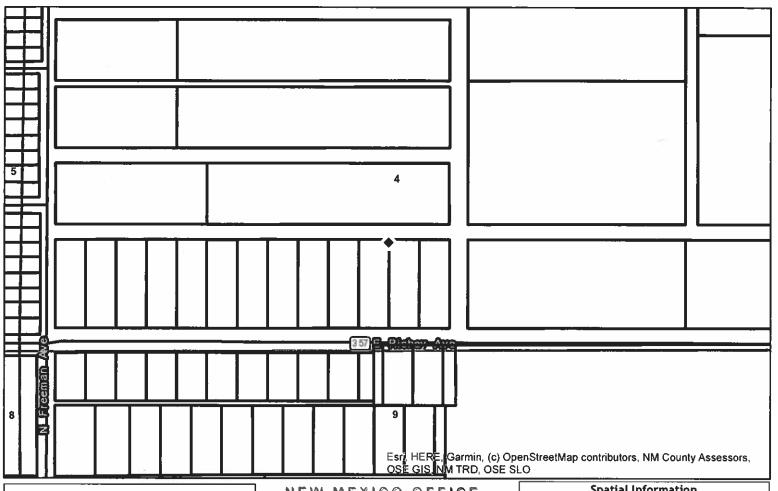
Owner: Virgilio Cocianni

File Number: RA-12782-POD1

POD Status: NoData

Permit Status: NoData

Permit Use: NoData


Purpose: MON

Coord Search Location

> **WRAB Abstract Project Areas**

Eddy County Parcels 2018

Sections

Coordinates

<u>UTM - NAD 83 (m) - Zone 13</u>

Easting 556908.764 Northing 3635716.518

State Plane - NAD 83 (f) - Zone E

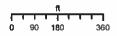
Easting 523390.970 Northing 675903.810

Degrees Minutes Seconds

Latitude 32:51:29.067602 Longitude -104:23:30.436017 Location pulled from Coordinate Search

Parcel Information UPC/DocNum: 4-153-097-107-506

Parcel Owner: DOWELL DIVISION OF DOW


Address: E OF 507 E RICHEY AVENUE

Legal: Subd. ARTESIA INDUSTRIAL ADDITION (AMEND) Block: 2 Tract: 11 MAP# 51A-AIA2-11 CAB# 1-94-2

TR SIZE 100' X 290'

NEW MEXICO OFFICE OF THE STATE ENGINEER

1:4,514

A. Dennis

8/19/2019

Spatial Information

County: Eddy

Groundwater Basin: Roswell Abstract Area: Roswell Artesian

Land Grant: Not in Land Grant Restrictions:

NA

PLSS Description

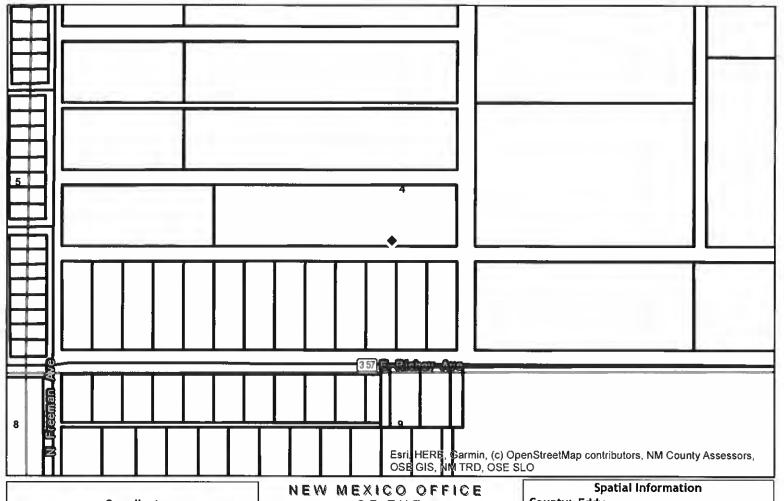
NESESWSW Qtr of Sec 04 of 017S 026E

Derived from CADNSDI- Qtr Sec. locations are calculated and are only approximations

POD Information

Owner: Virgilio Cocianni File Number: RA-12782-POD2

POD Status: NoData Permit Status: NoData Permit Use: NoData


Purpose: MON

Coord Search Location

> **WRAB Abstract Project Areas**

Eddy County Parcels 2018

Sections

Coordinates UTM - NAD 83 (m) - Zone 13

Easting 556904.630

Northing 3635740.032

State Plane - NAD 83 (f) - Zone E

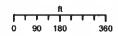
Easting 523377.890

Northing 675981.060

Degrees Minutes Seconds

Latitude 32:51:29.831924 Longitude -104:23:30.589866 Location pulled from Coordinate Search

Parcel Information UPC/DocNum: 4-153-097-092-477 Parcel Owner: SCHLUMBERGER


Parcel Owner: SCHLUMBERGE Address: E FREEMAN AVENUE

Legal: Subd. ARTESIA INDUSTRIES ADDITION Block: 3 Tract: 1 TRACT 1 EAST 800 MAP#51A-AIA3-1E CAB#

1-111-1 LOC E OF 1703 N FREEMAN AVE

NEW MEXICO OFFICE OF THE STATE ENGINEER

1:4,514

N A

A. Dennis

8/19/2019

erum stateten. Nord Miller sick blittligere i de in introdukt virrenty of him hen County: Eddy

Groundwater Basin: Roswell Abstract Area:Roswell Artesian

Land Grant: Not in Land Grant Restrictions:

NA

PLSS Description

NESESWSW Qtr of Sec 04 of 017S 026E

Derived from CADNSDI- Qtr Sec. locations are calculated and are only approximations

POD Information

Owner: Virgilio Cocianni
File Number: RA-12782-POD®

POD Status: NoData

Permit Status: NoData

Permit Use: NoData

Purpose: MON

Coord Search
 Location

WRAB Abstract Project Areas

Eddy County Parcels 2018

Sections

OFFICE OF THE STATE ENGINEER/INTERSTATE STREAM COMMISSION - ROSWELL OFFICE

44400	0.11/10	1 4. 7
OFFICIAL RECEIPT NUMBER: 2 - 41108	DATE: Y 4-1-1	_FILE NO.;
TOTAL:	afteen -	DOLLARS CHECK NO.: 5459 CASH:
PAYOR: I Carry Cotton	ADDRESS: 4835 Sun love	KOLVETY: 100 STATE: 1W
ZIP: RECEIVED BY:	m	
INSTRUCTIONS: Indicate the number of actions to the left of the for Water Rights. If a mistake is made, void the original and all of the original and	ne appropriate type of filing. Complete the receipt information copies and submit to Program Support/ASD as part of your dai	 Original to payor; pink copy to Program Support/ASD; and yellow copy ly deposit.
A. Ground Water Filing Fees	B. Surface Water Filing Fees	C. Well Driller Fees
 Change of Ownership of Water Right \$ 2.00 Application to Appropriate or Supplement 	 Change of Ownership of a Water Right \$ 5 Declaration of Water Right \$ 10 	.00 1. Application for Well Driller's License \$ 50.00
Domestic 72-12-1 Well \$ 125.00 3. Application to Repair or Deepen	3. Amended Declaration \$ 25 4. Application to Change Point of Diversion	5.00 Driller's License \$ 50.00 3. Application to Amend Well Driller's
72-12-1 Well \$ 75.00 4. Application for Replacement	and Place and/or Purpose of Use from Surface Water to Surface Water \$ 20	License \$ 50.00
72-12-1 Well \$ 75.00 5. Application to Change Purpose of Use	 Application to Change Point of Diversion and Place and/or Purpose of Use from 	D. Reproduction of Documents @ 0.25¢ \$
72-12-1 Well \$ 75.00	Ground Water to Surface Water \$ 20	0.00
6. Application for Stock Well/Temp. Use \$ 5.00	6. Application to Change Point of Diversion \$ 10	0.00 Map(s)
7 Ameliantian to Assessment Turington	7. Application to Change Place and/or Purpose of Use \$ 10	0.00
7. Application to Appropriate Irrigation, Municipal, or Commercial Use \$ 25.00		5.00 E. Certification \$
8. Declaration of Water Right \$ 1.00		5.00
9. Application for Supplemental Non	10. Application for Extension of Time \$ 5	0.00 F. Other \$
72-12-1 Well \$ 25.00	11. Supplemental Well to a Surface Right \$ 100	0.00
10. Application to Change Place or	12. Return Flow Credit \$ 100	G. COMMENS.
Purpose of Use Non 72-12-1 Well \$ 25.00	13. Proof of Completion of Works \$ 2	5.00
 Application to Change Point of Diversion 	14. Proof of Application of Water to	M he V
and Place and/or Purpose of Use from	Beneficial Use \$ 2	
Surface Water to Ground Water \$ 50.00	15. Water Development Plan \$ 100	0.00
12. Application to Change Point of Diversion	16. Declaration of Livestock Water	200
and Place and/or Purpose of Use from	Impoundment \$ 10	
Ground Water to Ground Water \$ 50.00		2.00
13. Application to Change Point of	Impoundment \$ 10	J.00
Diversion of Non 72-12-1 Well \$ 25.00		
14. Application to Repair or Deepen		
Non 72-12-1 Well \$ 5.00		
15. Application for Test, Expl. Observ. Well \$ 5.00		
16. Application for Extension of Time \$ 25.00		
17. Proof of Application to Beneficial Use \$ 25.00		
18. Notice of Intent to Appropriate \$ 25.00	All fees are non-refundable.	
	an 1995 are morremonanie.	

John R. D Antonio, Jr., P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 659021

File Nbr: RA 12782POD4-15

Sep. 20, 2019

SCHLUMBERGER TECHNOLOGY CORP VIRGILIO COCIANNI 121 INDUSTRIAL BLVD SUGAR LAND, TX 77478

Greetings:

Your approved copy of the above numbered permit to drill a well for non-consumptive purposes is enclosed. You must obtain an additional permit if you intend to use the water. It is your responsibility to provide the contracted well driller with a copy of the permit that must be made available during well drilling activities.

Carefully review the attached conditions of approval for all specific permit requirements.

- * If use of this well is temporary in nature and the well will be plugged at the end of the well usage, the OSE must initially approve of the plugging. If plugging approval is not conditioned in this permit, the applicant must submit a Plugging Plan of Operations for approval prior to the well being plugged. The Plugging Record must be properly completed and submitted to the OSE within 30 days of the well plugging.
- * If the final intended purpose and condition requires a well ID tag and meter installation, the applicant must immediately send a completed meter report form to this office.
- * The well record and log must be submitted within 30 days of the completion of the well or if the attempt was a dry hole.
- * This permit expires and will be cancelled if no well is drilled and/or a well log is not received by the date set forth in the conditions of approval.

Appropriate forms can be downloaded from the OSE website www.ose.state.nm.us.

Sincerely,

Juan Hernandez (575)622-6521

Enclosure

explore

File No. RA-12782

NEW MEXICO OFFICE OF THE STATE ENGINEER

WR-07 APPLICATION FOR PERMIT TO DRILL A WELL WITH NO WATER RIGHT

(check applicable box):

Purpose.	Pollution Control And/Or Recovery	☐ Ground Source Heat Pump
Exploratory Well (Pump test)	Construction Site/Publ	ic Other(Describe):
☐ Monitoring Well	Mine Dewatering	
A separate permit will be required	to apply water to beneficial use	e regardless if use is consumptive or nonconsumptive.
☐ Temporary Request - Request	ed Start Date:	Requested End Date
Plugging Plan of Operations Subn	nitted? Yes No	
. APPLICANT(S)		
. APPLICANT(S) Name: //rgilio Cocianni		Name;
Name: /irgilio Cocianni	check here if Agent	Name; Contact or Agent: check here if Agent
Name:	_	
Name: /irgilio Cocianni Contact or Agent:	_	
Name: Virgilio Cocianni Contact or Agent: Schlumberger Technology Corpora Mailing Address: 21 Industrial Blvd City:	_	Contact or Agent: check here if Agent
Name: Virgilio Cocianni Contact or Agent: Schlumberger Technology Corpora Mailing Address: 121 Industrial Blvd City: Sugar Land	ation	Contact or Agent: check here if Agent Mailing Address: City:
Name: Virgilio Cocianni Contact or Agent: Schlumberger Technology Corpora Mailing Address: 121 Industrial Blvd City: Sugar Land	_	Contact or Agent: check here if Agent Mailing Address:
Name: Virgilio Cocianni Contact or Agent: Schlumberger Technology Corpora Mailing Address: 121 Industrial Blvd City: Sugar Land State:	Zip Code:	Contact or Agent: check here if Agent Mailing Address: City:

		NAL USE		pplication for Permit, Form WR-07, Rev 11/17/16			
File No.	RA-	12782	Trn. No.:	2021	Receipt No.:	2-41199	
Trans C	Trans Description (optional): POD						
Sub-Basin: RA				PCW/LOG Di	ue Date: 9 -=	30.20	
						D 4 -60	

2. WELL(S) Describe the well(s) applicable to this application.

H	Location Required: Coordinate location must be reported in NM State Plane (NAD 83), UTM (NAD 83), or Latitude/Longitude (Lat/Long - WGS84). District II (Roswell) and District VII (Cimarron) customers, provide a PLSS location in addition to above.							
■ NM State Plane (NAD83) (Feet) UTM (NAD83) (M □ NM West Zone □ Zone 12N □ NM East Zone □ Zone 13N □ NM Central Zone				Zone 12N	ters)			
	Well Number (if known):		X or Easting or Y or Northing Longitude: or Latitude:		Provide if known: -Public Land Survey System (PLSS) (Quarters or Halves , Section, Township, Range) OR - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name			
	ና ል - 1	1278276D4 11-9	523333.194	675964.204	NW1/4 SW1/4 S4 T17S R26E			
		P0D5 IJ-10	523339.293	675935.740	NW1/4 SW1/4 S4 T17S R26E			
		P0D (c IJ-11	523380.362	675899.957	NW1/4 SW1/4 S4 T17S R26E			
	P007		523315.708	675944.686	NW1/4 SW1/4 S4 T17S R26E			
	1J-13		523325.061	675922.728	NW1/4 SW1/4 S4 T17S R26E			
		: If more well locations onal well descriptions			m WR-08 (Attachment 1 – POD Descriptions) If yes, how many7			
		description relating well Dowell Schlumberger F						
_		on land owned by: Sch		•				
1		nformation: NOTE: If m If yes, how many7	nore than one (1) we	II needs to be de	scribed, provide attachment. Attached?			
Z	Аррго	kimate depth of well (fee	et): 25		Outside diameter of well casing (inches): 1.315			
L	Driller	Name: Earth Worx Envi	ronmental Services		Driller License Number:			
	3. ADDITIONAL STATEMENTS OR EXPLANATIONS							
În	Injection wells associated with monitoring wells approved under permit RA-12782							

 FOR OSE INTERNAL USE
 Application for Permit, Form WR-07

 File No.:
 RA-12782

 Trn No.:
 USG 021

 Page 2 of 3

4. SPECIFIC REQUIREMENTS: The applicant must include the following, as applicable to each well type. Please check the appropriate boxes, to indicate the information has been included and/or attached to this application: Mine De-Watering: Construction **Exploratory:** Pollution Control and/or Recovery: ☐ Include a Include a plan for pollution De-Watering: Include a plan for pollution control/recovery, that includes the following: Include a description of the description of control/recovery, that includes the proposed dewatering A description of the need for mine any proposed following: dewatering. A description of the need for the operation, pump test, if ☐ The estimated maximum period of time The estimated duration of pollution control or recovery operation. applicable. for completion of the operation. The estimated maximum period of the operation, ☐ The source(s) of the water to be diverted.
☐ The geohydrologic characteristics of the ☐ The maximum amount of time for completion of the operation. water to be diverted, The annual diversion amount. aquifer(s). A description of the need The annual consumptive use for the dewatering operation, The maximum amount of water to be The maximum amount of water to be diverted per annum. and. ☐The maximum amount of water to be A description of how the diverted and injected for the duration of diverted water will be disposed diverted for the duration of the operation. the operation. ☐The quality of the water. The method and place of discharge. of. The method of measurement of water **Ground Source Heat Pump:** The method of measurement of Monitoring: diverted. ☐ Include the water produced and discharged. ☐ Include a description of the ☐ The recharge of water to the aquifer. ☐ Description of the estimated area of geothermal heat exchange The source of water to be injected. reason for the The method of measurement of project,

The number of boreholes monitoring hydrologic effect of the project. water injected. well, and, The method and place of discharge. The characteristics of the aquifer. ☐ The for the completed project and An estimation of the effects on surface The method of determining the required depths. duration water rights and underground water rights ☐ The time frame for resulting annual consumptive use of of the planned from the mine dewatering project. water and depletion from any related constructing the geothermal monitoring. A description of the methods employed to heat exchange project, and. stream system. estimate effects on surface water rights and ☐ The duration of the project.
☐ Preliminary surveys, design Proof of any permit required from the underground water rights. New Mexico Environment Department. ☐Information on existing wells, rivers, An access agreement if the data, and additional springs, and wetlands within the area of applicant is not the owner of the land on information shall be included to provide all essential facts hydrologic effect. which the pollution plume control or relating to the request. recovery well is to be located. **ACKNOWLEDGEMENT** Virgilio Cocianni I, We (name of applicant(s)) Print Name(s) affirm that the foregoing statements are true to the best of (my, our) knowledge and belief. Applicant Signature Applicant Signature **ACTION OF THE STATE ENGINEER** This application is: partially approved ☐ denied provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare and further subject to the attached conditions of approval. September Witness my hand and seal this -John R. D'Antonià Jr., P.E. State Enginee Signature Print Juan Herpandez, Water Resources Manager 1 Title: Print

FOR OSE INTERNAL USE

Application for Permit, Form WR-07
File No.: PA-12782 Tm No.: 65902 Page 3 of 3

NEW MEXICO OFFICE OF THE STATE ENGINEER

ATTACHMENT 1 POINT OF DIVERSION DESCRIPTIONS

This Attachment is to be completed if more than one (1) point of diversion is described on an Application or Declaration.

a. Is this a:			b. Information on Attachment(s):			
☐ Move-From Point of Div				oints of diversion involved in the application: 7		
☐ Move-To Point of Divers	sion(s)		Total numbe	er of pages attached to the application:		
☐ Surface Point of Diversion	OR	■ Well				
Name of ditch, acequia,	or spring:					
Stream or water course:						
Tributary of:						
c. Location (Required): Required: Move to POD location	coordinate must	be either New Mex	kico State Plan	e (NAD 83), UTM (NAD 83), <u>or</u> Lat/Long (WGS84)		
NM State Plane (NAD83)	UTM (NAD83)			OTHER (allowable only for move-from		
(feet)	(meters)	│ □ Lat/	l ong-	descriptions - see application form for format) PLSS (quarters, section, township, range)		
NM West Zone	Zone 13N 🔲	(WGS8	4)	Hydrographic Survey, Map & Tract		
NM Central Zone NM East Zone	Zone 12N 🔲	1/10 th o	f second	Lot, Block & Subdivision		
POD Number POD 9	V or Londing	Y or Lati	itudo.	Other Location Description:		
RA-12 783 POIS 9	X or Longitude					
IJ-14	523350.272	67590	18.902	33.4.175.26E		
POD Number: POD 16	X or Longitude	Y or Lati	itude	Other Location Description:		
IJ-15	52281.989	67587	75.152	33. 4. 175. 26E		
POD Number: POD //	X or Longitude	Y or Lati	itude	Other Location Description:		
IJ-16	52329.850	67592	7.201	33.4.175.26E		
POD Number: PODI2	X or Longitude	Y or Lati	itude	Other Location Description:		
IJ-17	523325.061	67589	5.890	33.4.175.26E		
POD Number: POD 13	X or Longitude	Y or Lat	itude	Other Location Description:		
IJ-18	523356.778	67588	3.692	33.4.175.26E		
POD Number: POD14	X or Longitude	Y or Lati	itude	Other Location Description:		
IJ-19	523303.916	67590	5.649	33.4.175.26E		
POD Number: POD 15	X or Longitude	Y or Lati	itude	Other Location Description:		
J-20	523358.404	67585	6.447	33.4.175.26E		
POD Number:	X or Longitude	Y or Lati	itude	Other Location Description:		
		<u>.</u>				
POD Number:	X or Longitude	Y or Lati	itude	Other Location Description:		

FOR OSE INTERNAL USE

Form wr-08

POD DESCRIPTIONS - ATTACHMENT 1

File Number: RA - 12782 Trn Number: 65902 Trans Description (optional): POD 4-15

Pollution Control/Recovery Plan Former Dowell Schlumberger Facility 507 East Richey Avenue, Artesia, New Mexico

The following information is provided to capture the applicable items under Section 4. Specific Requirements, of the Application for Permit to Drill a Well with No Consumptive Use of Water.

1. Description of the need for the pollution control or recovery operation.

The remediation system operation is required to remediate chlorinated hydrocarbons present in groundwater as a result of historical site operations as an oil and gas support facility. Chlorinated hydrocarbons are currently present in groundwater at concentrations that exceed New Mexico Water Quality Control Commission standards. The investigation and remediation of the site is being performed under a Stage II Abatement Plan (previous Permit GW-114), under the New Mexico Oil Conservation Division Environmental Bureau.

2. Estimated maximum period of time for completion of the operation.

Injection to be completed in a single operation expected to take 2 - 3 weeks. If necessary, this work will be completed in fall 2021. Injection is expected to be a onetime event.

3. Annual diversion amount.

None. Potable water from a nearby fire hydrant will be used to provide any water required to complete injections.

4. Annual consumptive use amount.

Zero gallons; no consumptive use will occur.

5. Maximum amount of water to be diverted and injected for the duration of the operation.

None.

Method and place of discharge

Vertical Injections – 12 injection wells in a grid roughly 1,000 square feet. If it is necessary to utilize injection wells, the volume of injection solution will be determined based on the concentration of chlorinated hydrocarbons in groundwater.

7. Method of measurement of water produced and discharged.

No water will be produced. Potable water discharged into the aquifer will be measured using a flow meter present on the City of Artesia hydrant meter.

8. Source of water to be injected.

City of Artesia potable water fire hydrant.

9. Method of measurement of water injected.

The combined discharge and the individual discharges to each injection well will be fitted with digital flow meters with totalizers.

10. Characteristics of the aquifer.

Observations made during prior drilling activities described the predominant lithologies to consist of light-brown to reddish-brown silt and silty clay, interbedded with clay layers and stringers of carbonate rubble. The very fine-grained sediments were deposited in an arid, alluvial overbank environment and can be expected to be more laterally continuous than coarse-grained alluvial channel deposits. The carbonate layers are believed to be the result of the evaporation of water containing elevated concentrations of dissolved solids. Prior investigations arrived at the conclusion that the stringers of carbonate rubble constitute the primary water-bearing zones. The rubble layers were observed at depths ranging from 20-26 feet below ground surface.

11. Method of determining the resulting annual consumptive use of water and depletion from any related stream system.

No water will be consumed or removed from the aquifer.

12. Proof of any permit required from the New Mexico Environment Department.

This site is regulated by the New Mexico Oil Conservation Division – Environmental Bureau under a Stage II Abatement Plan (previous Permit GW-114).

13. Access agreement if the applicant is not the owner of the land on which the pollution plume control or recovery well is to be located.

Not applicable since the applicant is the land owner.

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL

- 17-1A Depth of the well shall not exceed the thickness of the valley fill.
- 17-4 No water shall be appropriated and beneficially used under this permit.
- 17-6 The well authorized by this permit shall be plugged completely using the following method per Rules and Regulations Governing Well Driller Licensing, Construction, Repair and Plugging of Wells; Subsection C of 19.27.4.30 NMAC unless an alternative plugging method is proposed by the well owner and approved by the State Engineer upon completion of the permitted use. All pumping appurtenance shall be removed from the well prior to plugging. To plug a well, the entire well shall be filled from the bottom upwards to ground surface using a tremie pipe. The bottom of the tremie shall remain submerged in the sealant throughout the entire sealing process; other placement methods may be acceptable and approved by the state engineer. The well shall be plugged with an office of the state engineer approved sealant for use in the plugging of non-artesian wells. The well driller shall cut the casing off at least four (4) feet below ground surface and fill the open hole with at least two vertical feet of approved sealant. The driller must fill or cover any open annulus with sealant. Once the sealant has cured, the well driller or well owner may cover the seal with soil. A Plugging Report for said well shall be filed with the Office of the State Engineer in a District Office within 30 days of completion of the plugging.
- 17-7 The Permittee shall utilize the highest and best technology available to ensure conservation of water to the maximum extent practical.

Trn Desc: RA 12782 POD4-15 File Number: RA 12782

Trn Number: <u>659021</u>

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL (Continued)

- 17-B The well shall be drilled by a driller licensed in the State of New Mexico in accordance with 72-12-12 NMSA 1978. A licensed driller shall not be required for the construction of a well driven without the use of a drill rig, provided that the casing shall not exceed two and three-eighths (2 3/8) inches outside diameter.
- 17-C The well driller must file the well record with the State Engineer and the applicant within 30 days after the well is drilled or driven. It is the well owner's responsibility to ensure that the well driller files the well record.

 The well driller may obtain the well record form from any District Office or the Office of the State Engineer website.
- 17-P The well shall be constructed, maintained, and operated to prevent inter-aquifer exchange of water and to prevent loss of hydraulic head between hydrogeologic zones.
- 17-Q The State Engineer retains jurisdiction over this permit.
- 17-R Pursuant to section 72-8-1 NMSA 1978, the permittee shall allow the State Engineer and OSE representatives entry upon private property for the performance of their respective duties, including access to the ditch or acequia to measure flow and also to the well for meter reading and water level measurement.
- LOG The Point of Diversion RA 12782 POD10 must be completed and the Well Log filed on or before 09/30/2020.
- LOG The Point of Diversion RA 12782 POD11 must be completed and the Well Log filed on or before 09/30/2020.

Trn Desc: RA 12782 POD4-15 File Number: RA 12782

Trn Number: 659021

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL (Continued)

- LOG The Point of Diversion RA 12782 POD12 must be completed and the Well Log filed on or before 09/30/2020.
- LOG The Point of Diversion RA 12782 POD13 must be completed and the Well Log filed on or before 09/30/2020.
- LOG The Point of Diversion RA 12782 POD14 must be completed and the Well Log filed on or before 09/30/2020.
- LOG The Point of Diversion RA 12782 POD15 must be completed and the Well Log filed on or before 09/30/2020.
- LOG The Point of Diversion RA 12782 POD4 must be completed and the Well Log filed on or before 09/30/2020.
- LOG The Point of Diversion RA 12782 POD5 must be completed and the Well Log filed on or before 09/30/2020.
- LOG The Point of Diversion RA 12782 POD6 must be completed and the Well Log filed on or before 09/30/2020.
- LOG The Point of Diversion RA 12782 POD7 must be completed and the Well Log filed on or before 09/30/2020.
- LOG The Point of Diversion RA 12782 POD8 must be completed and the Well Log filed on or before 09/30/2020.
- LOG The Point of Diversion RA 12782 POD9 must be completed and the Well Log filed on or before 09/30/2020.

IT IS THE PERMITTEES RESPONSIBILITY TO OBTAIN ALL AUTHORIZATIONS AND PERMISSIONS TO DRILL ON PROPERTY OF OTHER OWNERSHIP BEFORE COMMENCING ACTIVITIES UNDER THIS PERMIT.

SHOULD THE PERMITTEE CHANGE THE PURPOSE OF USE TO OTHER THAN MONITORING PURPOSES, AN APPLICATION SHALL BE ACQUIRED FROM THE OFFICE OF THE STATE ENGINEER.

Trn Desc: RA 12782 POD4-15 _____ File Number: RA 12782

Trn Number: 659021

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

ACTION OF STATE ENGINEER

Notice of Intention Rcvd: Date Rcvd. Corrected:
Formal Application Rcvd: 09/10/2019 Pub. of Notice Ordered:
Date Returned - Correction: Affidavit of Pub. Filed:

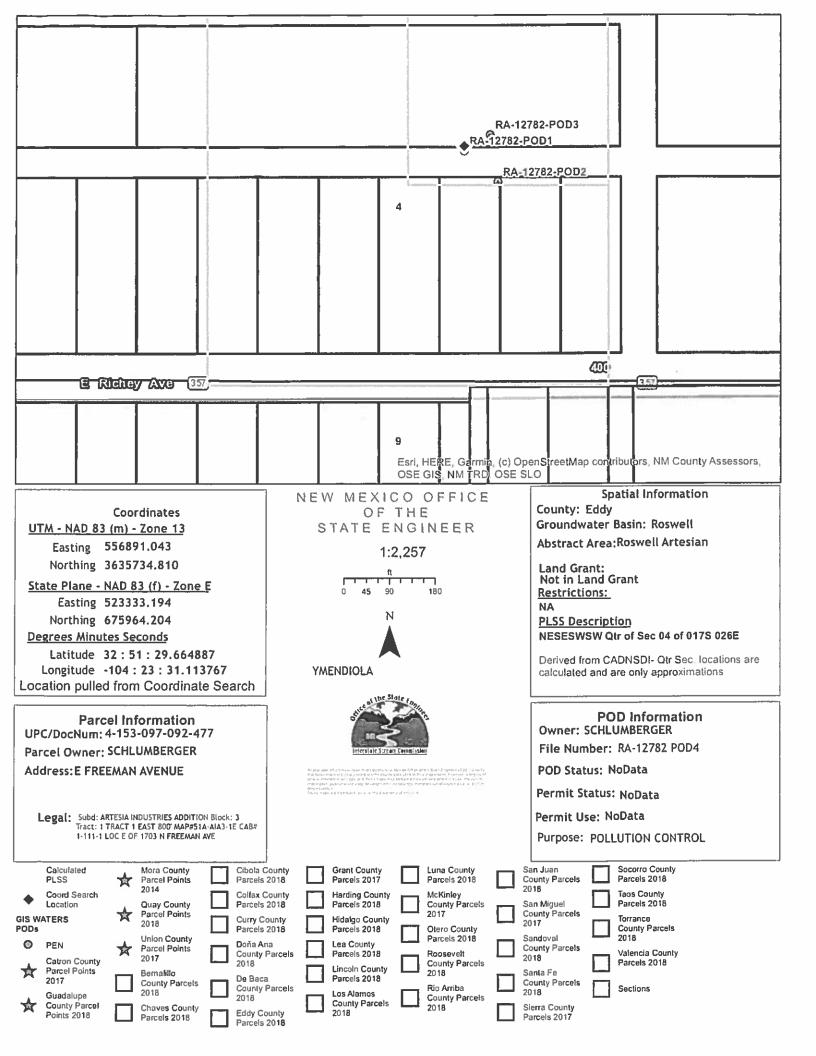
This application is approved provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare of the state; and further subject to the specific conditions listed previously.

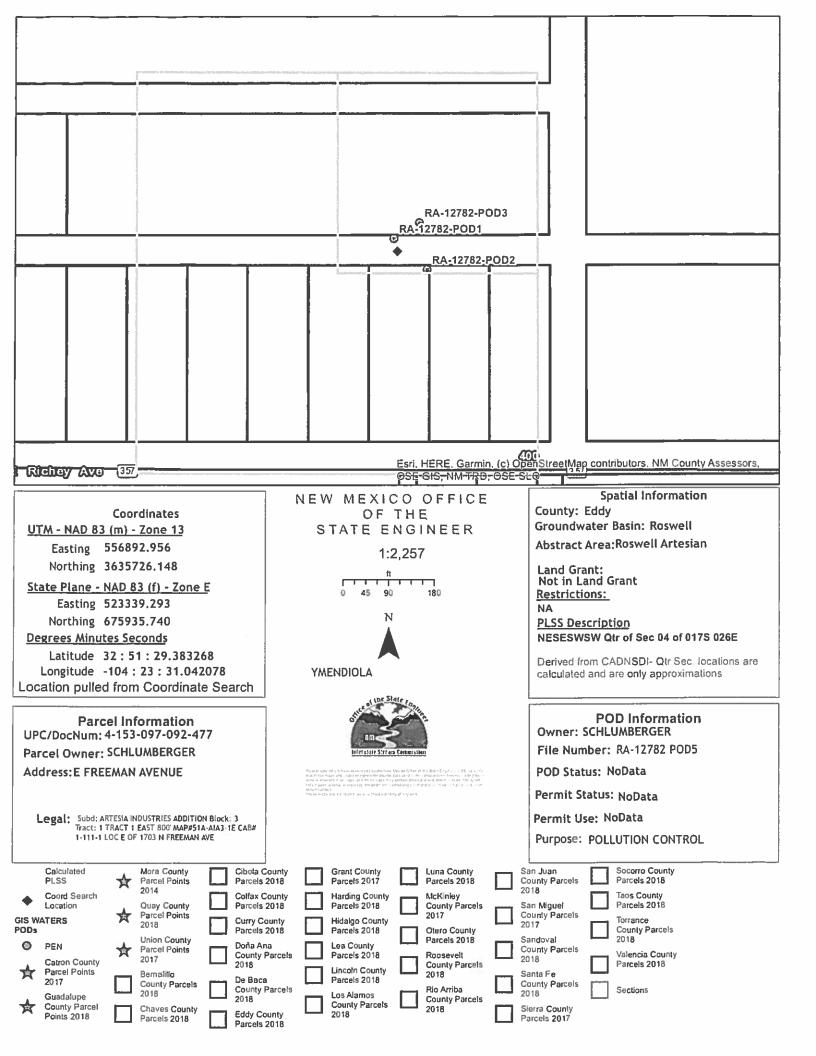
Witness my hand and seal this 20 day of

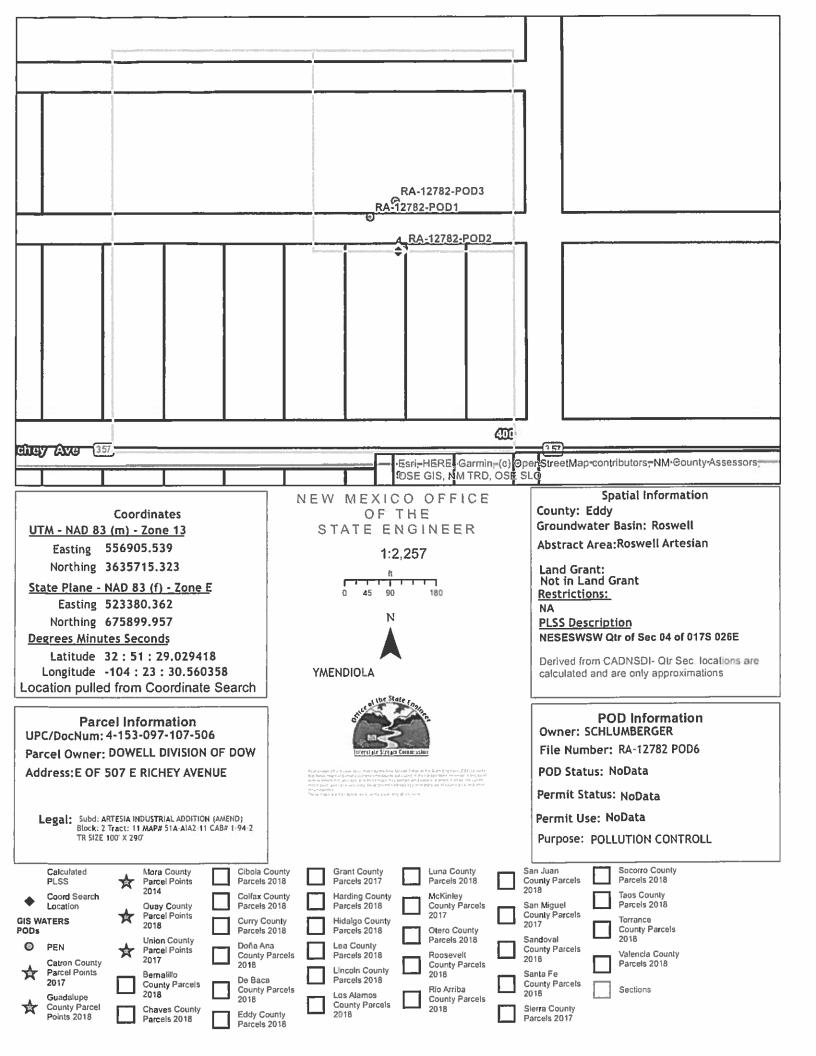
2019

John R. D Antonio,

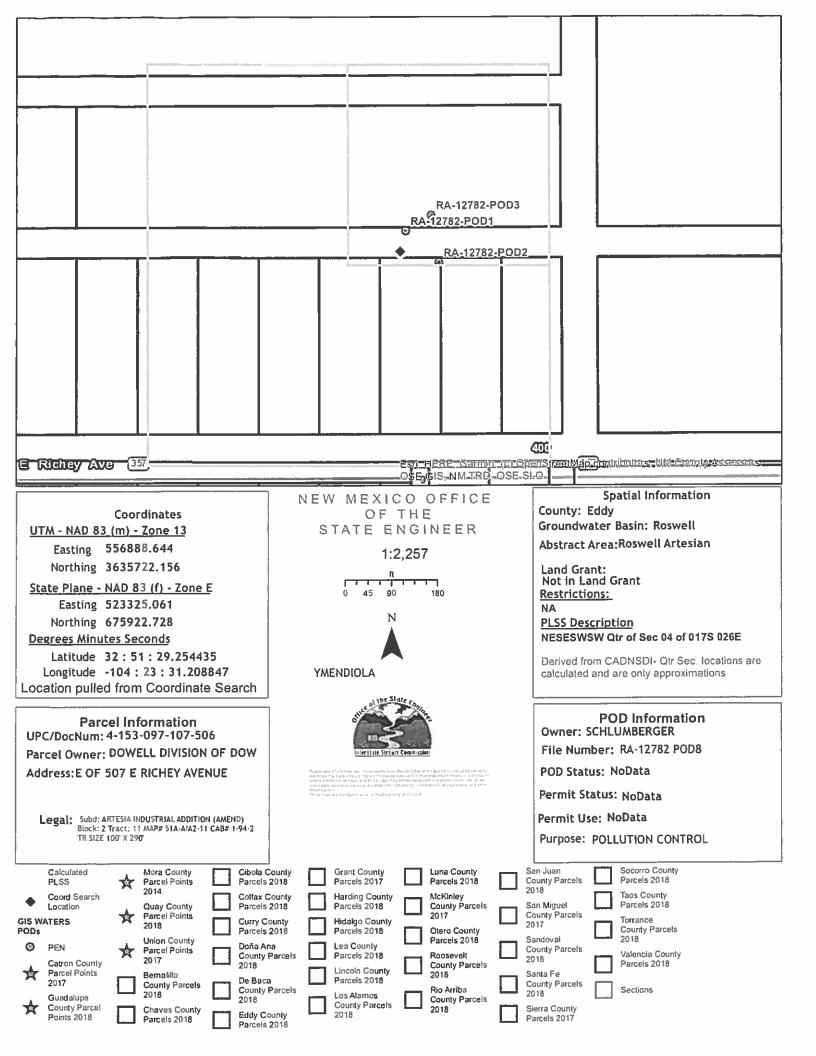
ټr.<u>, P.E.</u>, State Eq

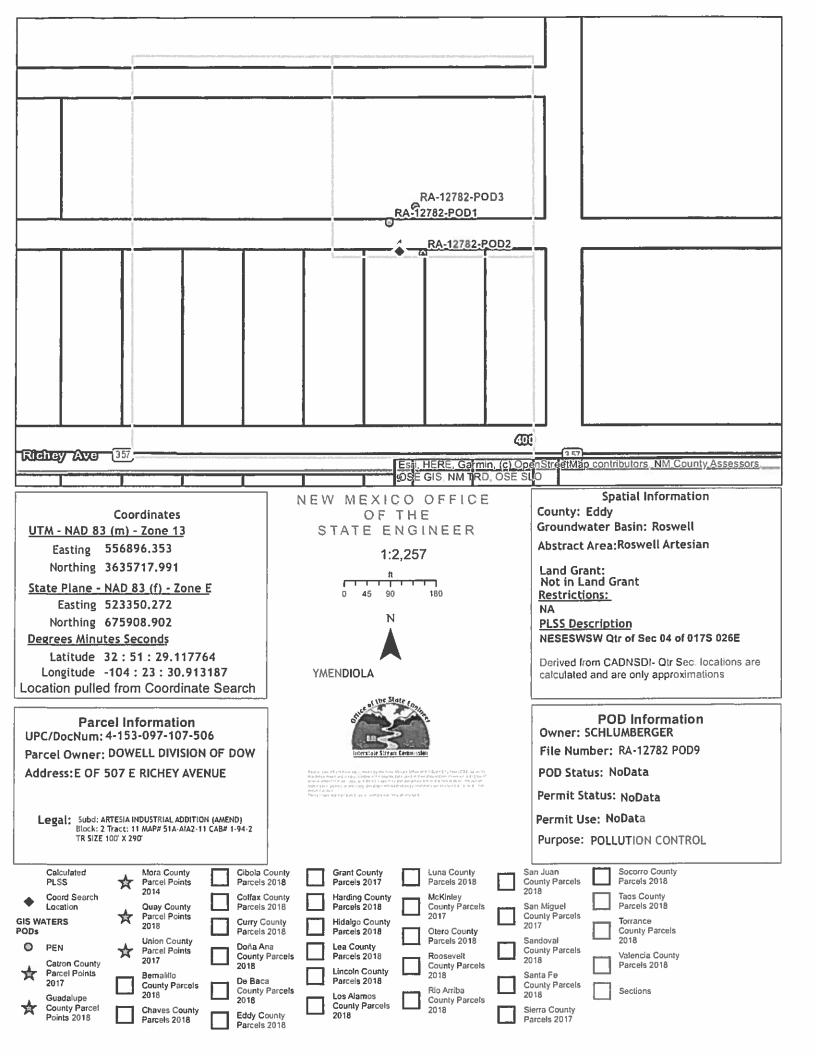

By:

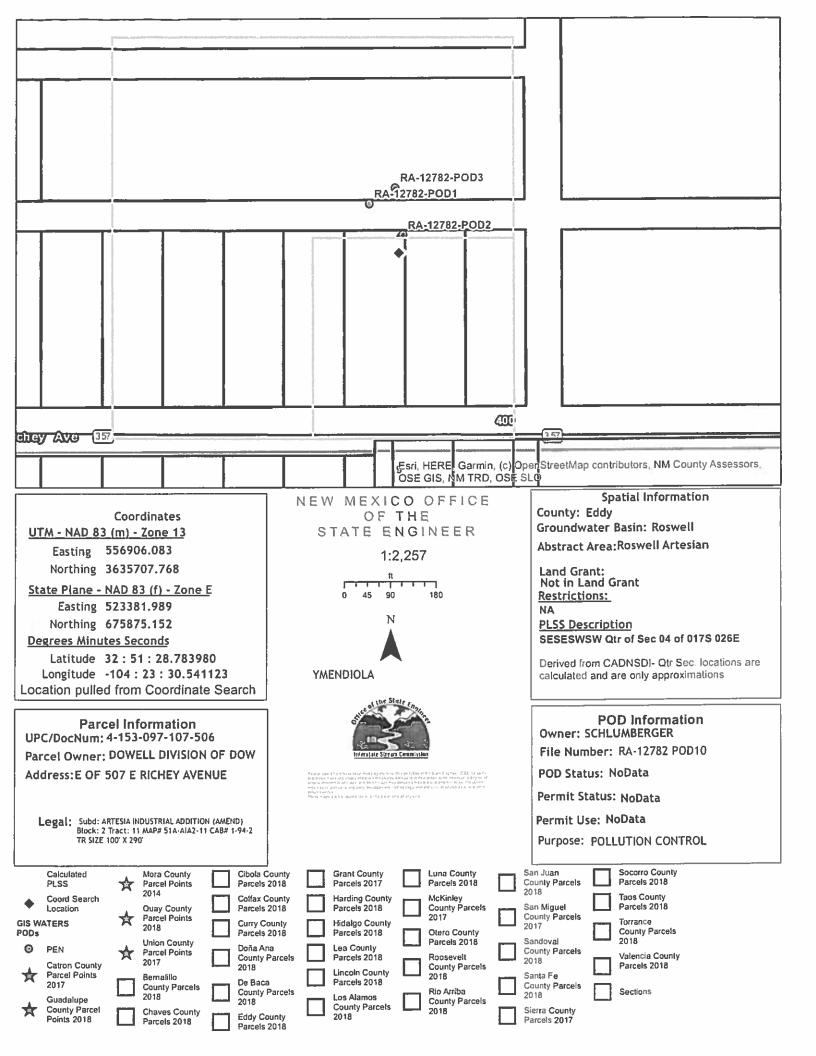

Juan Hernandez

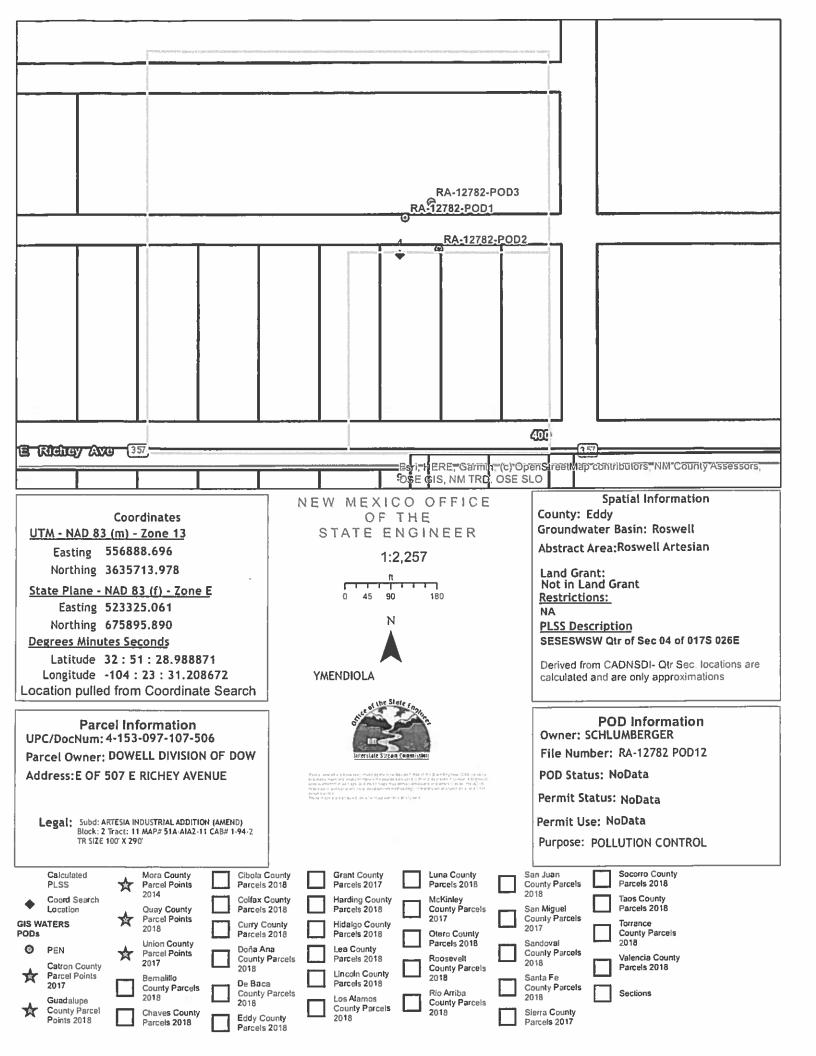

Trn Desc: RA 12782 POD4-15 File Number: RA 12782

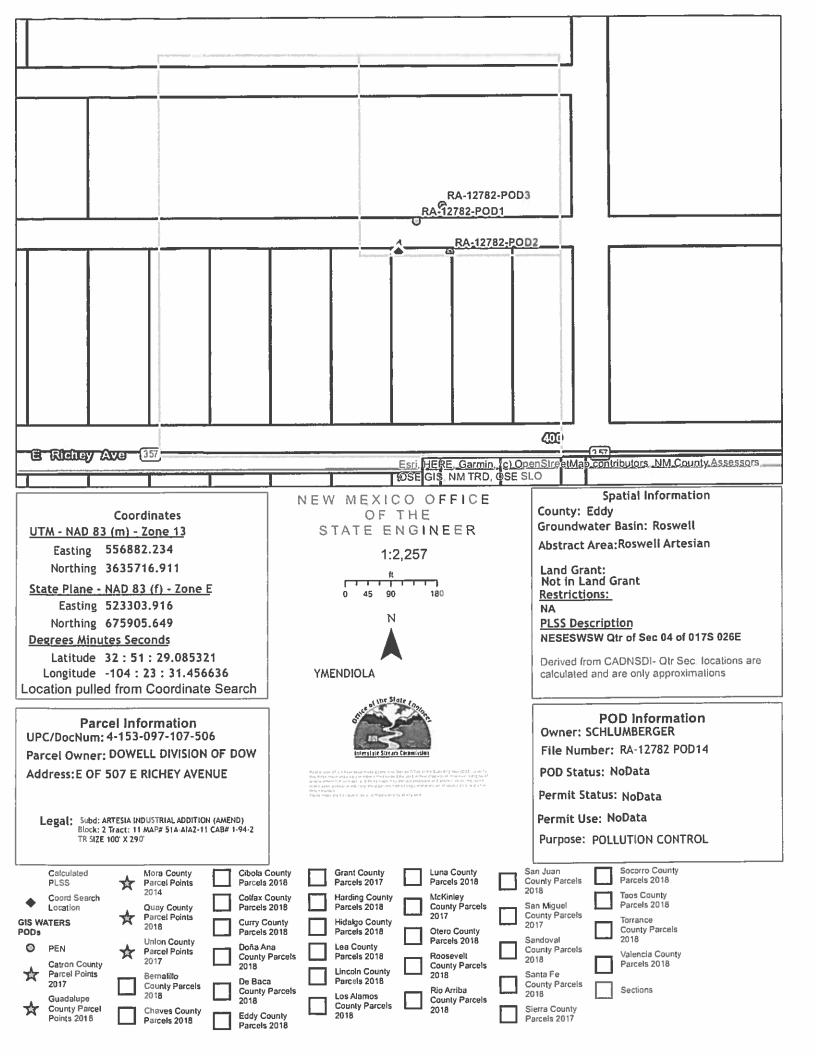
page: 4

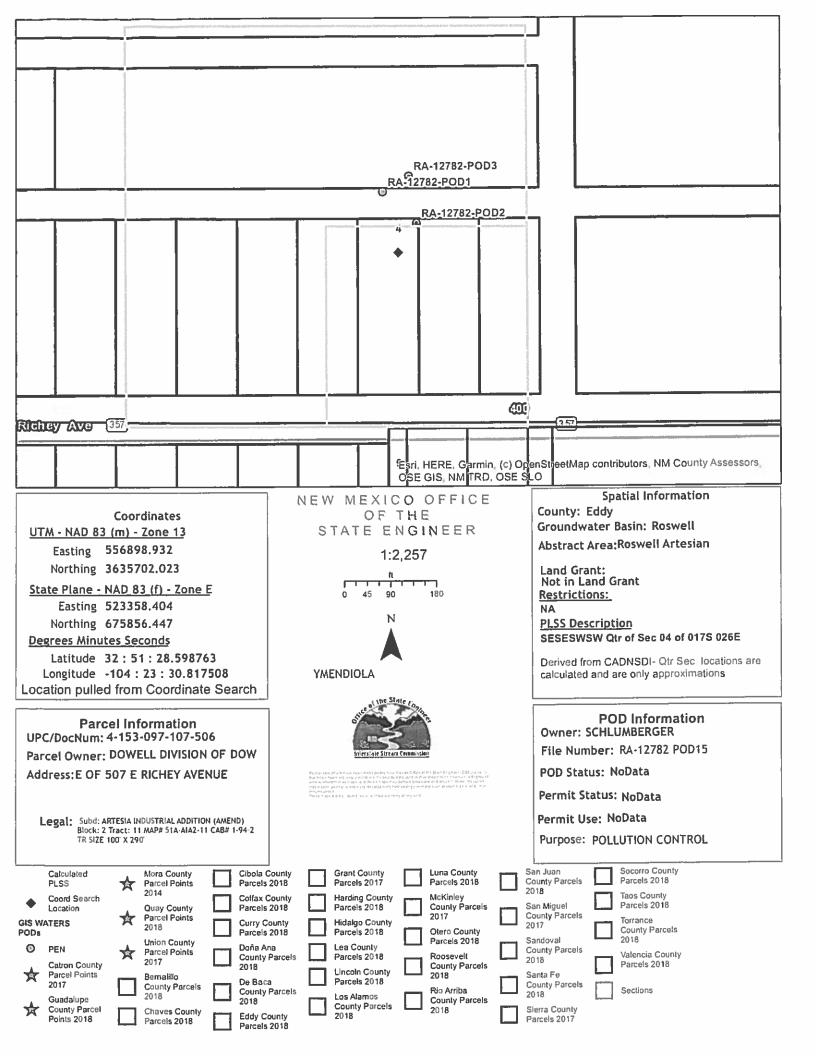

Trn Number: 659021






	RA-12782-POD: RA-12782-POD1	
		penStreetMap contributors, NM County Assessors,
Coordinates UTM - NAD 83 (m) - Zone 13 Easting 556885.752 Northing 3635728.829 State Plane - NAD 83 (f) - Zone E Easting 523315.708 Northing 675944.686 Degrees Minutes Seconds Latitude 32:51:29.471659 Longitude -104:23:31.318643 Location pulled from Coordinate Search Parcel Information UPC/DocNum: 4-153-097-107-506 Parcel Owner: DOWELL DIVISION OF DOW Address:E OF 507 E RICHEY AVENUE Legal: Subd: ARTESIA INDUSTRIAL ADDITION (AMEND) Block: 2 Tract: 11 MAP# 51A-AIAZ-11 CAB# 1-94-2 TR SIZE 100' X 290'	NEW MEXICO OFFICE OF THE STATE ENGINEER 1:2,257 III O 45 90 180 N WHENDIOLA Rada stee of any any any and the same of all any any and any and any	Spatial Information County: Eddy Groundwater Basin: Roswell Abstract Area:Roswell Artesian Land Grant: Not in Land Grant Restrictions: NA PLSS Description NESESWSW Qtr of Sec 04 of 017S 026E Derived from CADNSDI- Qtr Sec locations are calculated and are only approximations POD Information Owner: SCHLUMBERGER File Number: RA-12782POD7 POD Status: NoData Permit Status: NoData Permit Use: NoData Purpose: POLLUTION CONTROLL
Catron County Parcel Points Bernalillo 2017 County Parcels De Bacc	2018	San Juan County Parcels 2018 San Miguel County Parcels 2017 Sandoval County Parcels 2018 Torrance County Parcels 2018 Valencia County Parcels 2018 Santa Fe County Parcels 2018 Sections Sierra County Parcels 2017





	RA-12782-POD3 RA-12782-POD1	
E Richey Axe 357	Esni-HERE-Garmin-(c)-Op	€00 pen&freetMapreentributers—NM-Gounty-Assessors.
E MELLEY AXE (37)	o <mark>se sis, nm trip, ose s</mark>	LO
Coordinates UTM - NAD 83 (m) - Zone 13 Easting 556890.095 Northing 3635723.528 State Plane - NAD 83 (f) - Zone E Easting 523329.850 Northing 675927.201 Degrees Minutes Seconds Latitude 32:51:29.298722 Longitude -104:23:31.152730 Location pulled from Coordinate Search	NEW MEXICO OFFICE OF THE STATE ENGINEER 1:2,257 1:2,257 N VMENDIOLA	Spatial Information County: Eddy Groundwater Basin: Roswell Abstract Area:Roswell Artesian Land Grant: Not in Land Grant Restrictions: NA PLSS Description NESESWSW Qtr of Sec 04 of 017S 026E Derived from CADNSDI- Qtr Sec. locations are calculated and are only approximations
Parcel Information UPC/DocNum: Parcel Owner: Address: Legal:	Brown about 7 are him meet by the five Man of Alpha of the Bland England LDER. Likely a great page 17 are him meet by the five Man of Alpha of the Bland England LDER. Likely a great process whether the procedure of the bland of the Man progress of the bland of the second long of the Man of the second long of the Man of the second long of the Man of the Bland of the second long of the Man of the Bland of t	POD Information Owner: SCHLUMBERGER File Number: RA-12782 POD11 POD Status: NoData Permit Status: NoData Permit Use: NoData Purpose: POLLUTION CONTROL
Coord Search Location County Parcel Points County Parcel County Parcels County Parcel County P	Parcels 2018 Parcels 2018 County Facels 2018 Parcels 2018 Taos County Parcels 2018 Taos County Parcels 2018 Parcels 2018 Taos County Parcels 2018 Taos County Parcels 2018 Taos County Parcels 2018 Taos County Parcels 2018 Taorance 2018 Torrance	Parcels 2018 Sections Dunty 2017 County 2018

	RA-12782-POD3 RA-12782-POD1 RA-12782-POD2	
Richey Ave 357	400)	157
	Eşri, HERE, Garmin, (c) Ope OSE GIS, NM IRD, OSE SL	nStreetMap contributors, NM County Assessors,
Coordinates UTM - NAD 83 (m) - Zone 13 Easting 556898.384 Northing 3635710.322 State Plane - NAD 83 (f) - Zone E Easting 523356.778 Northing 675883.692 Degrees Minutes Seconds Latitude 32:51:28.868345 Longitude -104:23:30.836748 Location pulled from Coordinate Search	NEW MEXICO OFFICE OF THE STATE ENGINEER 1:2,257 ft 0 45 90 180 N YMENDIOLA	Spatial Information County: Eddy Groundwater Basin: Roswell Abstract Area:Roswell Artesian Land Grant: Not in Land Grant Restrictions: NA PLSS Description SESESWSW Qtr of Sec 04 of 017S 026E Derived from CADNSDI- Qtr Sec. locations are calculated and are only approximations
Parcel Information UPC/DocNum: 4-153-097-107-506 Parcel Owner: DOWELL DIVISION OF DOW Address: E OF 507 E RICHEY AVENUE Legal: Subd: ARTESIA INDUSTRIAL ADDITION (AMEND) Block: 2 Tract: 11 MAP# 51A-AIAZ-11 CAB# 1-94-2 TR SIZE 100' X 290'	Interstalle Signan Commission dies and have been deed by the ana Commission dies and have been deed by the analysis of the set of the analysis of the second analysis of the	POD Information Owner: SCHLUMBERGER File Number: RA-12782 POD13 POD Status: NoData Permit Status: NoData Permit Use: NoData Purpose: POLLUTION CONTROL
Catron County Parcel Points Bernalillo 2017 County Parcels De Bac	2018	Socorro County Parcels 2018 Taos County Parcels 2018 Torrance County Parcels 2018 Valencia County Parcels 2018 Valencia County Parcels 2018 Valencia County Parcels 2018 Valencia County Parcels 2018 Sections

JACOBS ch2m

To:	New Mexico Office of the State Engineer Roswell District 2		e State Engineer	From:	Aleeca Forsberg	
Attn:	Andrew D	ennis		Date:	September 9, 2019	
Re:	New Well Permit Applications, Former Do Artesia, NM			ell Schlu	mberger Facility,	
We Are Sending You: Meth			Method of shipmer	nt: FedEx		
Attac	ched		Under separate	cover via	1	
☐ Docu	ıments		Copies			
☐ Draw	vings		Specifications		Other:	
Qua	antity	Description				
3 Application f Wells		or Permit to Drill a W	ell with	No Consumptive Use of Water – 12 Injection		
	3	Attachment 1	. Point of Diversion C	escriptio	on	
	3	Pollution Con	ntrol/Recovery Plan			
	1	Chack # 997 6	for \$60 for 12 wells /12 v \$5 = \$60\			

OFFICE OF THE STATE ENGINEER/INTERSTATE STREAM COMMISSION - ROSWELL OFFICE

PAYOR: alelea A. tors	hero ADI	DRESS: 1612 table	CTIVE	CITY: CLL STA	TE: MM
ZIP: 87//Z RECEIVED BY:	Weg	4			
INSTRUCTIONS: Indicate the number of actions to the for Water Rights. If a mistake is made, void the origin	ne left of the appropriate nal and all copies and su	e type of filing. Complete the receipt inform bmit to Program Support/ASD as part of you	nation. Original to ur daily deposit.		уенож сору
A. Ground Water Filing Fees	B. St	ırface Water Filing Fees		C. Well Driller Fees	
Change of Ownership of Water Right \$	2.00 1	. Change of Ownership of a Water Right	\$ 5.00	1. Application for Well Driller's License	\$ 50.00
2. Application to Appropriate or Supplement		2. Declaration of Water Right	\$ 10.00	Application for Renewal of Well Driller's License	\$ 50.00
		 Amended Declaration Application to Change Point of Diversion 	\$ 25.00	Application to Amend Well Driller's	\$ 50.00
3. Application to Repair or Deepen	75.00	and Place and/or Purpose of Use from	'	License	\$ 50.00
72-12-1 Well \$ 7 4. Application for Replacement	75.00	Surface Water to Surface Water	\$ 200.00		
72-12-1 Well \$ 7	75.00 !	5. Application to Change Point of Diversion	1	D. Reproduction of Documents	
5. Application to Change Purpose of Use		and Place and/or Purpose of Use from		@ 0.25¢	\$
72-12-1 Well \$	75.00	Ground Water to Surface Water	\$ 200.00		
6. Application for Stock Well/Temp. Use \$	5.00	5. Application to Change Point of	\$ 100.00	Map(s)	\$
		Diversion 7. Application to Change Place and/or	\$ 100.00		
	_	Purpose of Use	\$ 100.00	E. Certification	¢
 Application to Appropriate Irrigation, 	25.00	8. Application to Appropriate	\$ 25.00	E. Certification	₹
(torricipal) or merricipal to	23.00	9. Notice of Intent to Appropriate	\$ 25.00		
		10. Application for Extension of Time	\$ 50.00	F. Other	\$
9. Application for Supplemental Non		11. Supplemental Well to a Surface Right	\$ 100.00		
		12. Return Flow Credit	\$ 100.00	G. Comments:	
10. Application to Change Place or Purpose of Use Non 72-12-1 Well \$	25.00 —	13. Proof of Completion of Works	\$ 25.00	(1 0 5 /	
11. Application to Change Point of Diversion	23.00	14. Proof of Application of Water to		ted (V	
and Place and/or Purpose of Use from		Beneficial Use	\$ 25.00		
Surface Water to Ground Water \$		15. Water Development Plan	\$ 100.00		
12. Application to Change Point of Diversion		16. Declaration of Livestock Water	A 10.00		
and Place and/or Purpose of Use from		Impoundment	\$ 10.00		
Ground Water to Ground Water \$	50.00	17. Application for Livestock Water	\$ 10.00		
13. Application to Change Point of		Impoundment	\$ 10.00		
Diversion of Non 72-12-1 Well \$	25.00				
14. Application to Repair or Deepen		NPP1			
Non 72-12-1 Well \$	5.00	80.00			
		U 7 5			_
13		O A A			
2 15. Application for Test, Expl. Observ. Well \$	5.00	70, 2			
	25.00	1 7 x			
	25.00				_
18. Notice of Intent to Appropriate \$	25.00	All food are non-refundal	hle		

Appendix D Soil Boring Logs and Well Completion Diagrams

Ch2m:			PROJECT NUMBER D3151100 A.CS.EV.AR.19-04-02	BORING NUMBER MW-36	SHEET #	1 of 1
	СИ2/	W :	SOIL BO	ORING LOG	LOGGER: Will Kite/DEN	
PROJECT : Former Dowell Schlumberger Facility, Artesia, NM		mberger Facility, Artesia,	Date: 8/27/2019		COORDINATES:	TOTAL DEPTH OF BORING: 25.6'
DEPTH BELOW SURFACE (FT)	RECOVERY (FT)	USCS CODE	SOIL DESCRIPTION COMMENTS/NOTES, PID RESULTS, SAMPLE COL			S, SAMPLE COLLECTION (Date,
1 _		sw	Well graded sand with gravel (SW), lig plastic, dense, stiff, few fine to medium	ght brown, dry, non- gravel	VOCs = 0.0 ppm.	_
2 _					_	_
3 _	0.5				_	_
4 _					_	_
5					_	_
6 _		SM	Silty sand (SM), brown, dry, non-plastic	c, dense, stiff	VOCs = 0.0 ppm.	_
7 _					_	_
8 _	1.0				_	-
9 _					-	_
10		SM	Silty sand (SM), light brown, dry, slightl	v plastic, medium dense.	_	_
11 _			medium stiff Silty sand (SM), dark gray, dry, slightly		VOCs = 0.0 ppm.	-
12 _		SM	medium stiff		VOCs = 6.7 ppm.	-
13 _	1.0				-	_
14 _					-	-
15		ML	Silt with sand (ML), dark brown, moist, sligh medium stiff, fine grained sand	atly plastic, medium dense,	VOCs = 320.5 ppm.	
16 _		SM	Silty sand (SM), light brown with gray/green, grained sand, soft, medium dense	, moist, slightly plastic, fine	– VOCs = 468.8 ppm.	-
17 _	1.5	ML	Silt (ML), light brown, dry, non-plastic, dense	e, stiff	PID = 0.0 ppm.	_
18 _ 19 _					-	_
20					*Water encountered at approximately 19' bgs.	_
20 _		SM	Silty sand (SM), brown, moist, slightly plastic dense, soft,	c, fine grained sand, medium	VOCs = 0.0 ppm.	
22						_
23 _	1.5					_
24 _						_
25 _						
Sampler	· Signature:	W. Kite		Date	: 8/27/2019	_

Ch2m:			PROJECT NUMBER D3151100 A.CS.EV.AR.19-04-02	BORING NUMBER MW-37	SHEET#	1 of 1	
	CN2/	W :	SOIL B	ORING LOG	LOGGER: Will Kite/DEN		
NM			Date: 8/27/2019		COORDINATES:	TOTAL DEPTH OF BORING: 25.6'	
DEPTH BELOW SURFACE (FT)	RECOVERY (FT)	USCS CODE	SOIL	DESCRIPTION	COMMENTS/NOTES, PID RESULT Time, Sample ID)	S, SAMPLE COLLECTION (Date,	
1 _		sw	Well graded sand with sand (SW), ligi with some fine to medium gravel, very licoarse grained sand		VOCs = 0.0 ppm.	_	
2 _					_	_	
3 _	0.5				-	-	
4 _					-	-	
5		ML	Silt with few sand (ML) light brown, dry	,, slightly plastic, medium	VOCs = 0.0 ppm.	_	
6 _		ML	dense, medium stiff, fine grained sand <u>Silt with trace sand</u> (ML), light brownis dense, stiff	h gray, dry, non-plastic,	VOCs = 0.0 ppm.	-	
8 _	1.0					_	
9 _					_	-	
10			_		_	_	
11 _		ML	Silt with sand (ML), light brown, dry, no		VOCs = 0.0 ppm.	-	
12 _	1.0	ML	Silt with sand (ML), brown, dry, non-pla	astic, dense, stiff	VOCs = 0.0 ppm.	-	
13 _					-	-	
14 _ 15 _					-	-	
16 _		ML	Silt with clay (ML), dark gray with brown an medium dense, medium stiff	d black, moist, slightly plastic,	VOCs = 538.8 ppm. Strong petroleum odor	_	
17 _		ML	Silt with clay (ML), dark brown with gray an medium dense, medium stiff	d black, moist, slightly plastic,	VOCs = 253.1 ppm petroleum odor	_	
18 _	1.0				- *Water at approximately 19	-	
19 _					bgs.	-	
20		ML	Silt (ML), brown, moist to wet, slightly plastic	- ;, medium dense, medium stiff	VOCs = 0.0 ppm.	_	
21 _					-	-	
23 _	1.0					_	
24 _					_	_	
25 _					_		
Sampler	· Signature:	W. Kite		Date	e: 8/27/2019		

Ch2m:			PROJECT NUMBER D3151100 A.CS.EV.AR.19-04-02	BORING NUMBER MW-38	SHEET# 1	L of 1
			SOIL BORING LOG		LOGGER: Will Kite/DEN	
PROJECT : Former Dowell Schlumberger Facility, Artesia, NM			Date: 8/26/2019		COORDINATES:	TOTAL DEPTH OF BORING: 25.6'
DEPTH BELOW SURFACE (FT)	RECOVERY (FT)	USCS CODE	SOIL DESCRIPTION		COMMENTS/NOTES, PID RESULTS, SAMPLE COLLECTION (Date, Time, Sample ID)	
1 _	SM		Silty sand with grave! (SM), dry, non-plastic, very loose, very soft, fine to medium gravel		VOCs = 0.0 ppm.	
2				_		_
3	0.5					
4				-		-
5_				-		_
6 _		ML	Silt with sand (ML), light grayish brown, loose, medium stiff	dry, slightly plastic,	VOCs = 0.0 ppm.	
_	1.0		,	-	-	-
7 _				-	-	_
8 _				-	-	_
9 _				-	-	_
10		ML	Silt (ML), brown, moist, slightly plastic, lo	oose, medium stiff	VOCs = 0.0 ppm.	_
11 _				-		-
12 _	1.0			-	-	-
13 _				-	-	-
14 _				-	-	-
15		ML	Silt with clay (ML), light grayish brown, moist	t, slightly plastic, medium	VOCs = 384.1 ppm.	_
16 _		SM	dense, medium stiff Silty sand (SM), very dark gray, moist, plastic	c loose soft	VOCs = 470.4 ppm.	-
17 _	1.5		Sinty Sunta (Sint), very durit gray, most, plastic	-	*Water encountered at	-
18 _	1.5			-	approximately 17' bgs.	-
19 _				-	-	-
20						_
21 _		ML	Silt with clay (ML), brown, moist, slightly plas		VOCs = 0.0 ppm.	-
22 _		SM	Silty sand (SM), light brown, wet, slightly plas	stic, loose, medium stiff		-
23 _	2.0			-		_
24 _				-		-
25 _						
Sampler Signature: W. Kite Date:8/26/2019						

PROJECT NUMBER
D3151100 A.CS.EV.AR.19-04-02

WELL NUMBER
MW-36

SHEET 1 OF 1

ch2m:

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: TalonLPE COORDINATES: DRILLING METHOD AND EQUIPMENT USED: Hollow Stem Auger DRILLER: Ronnie Rodriguez WATER LEVEL: 15.89' BTOC START: 8/27/2019 1020 END: 8/27/2019 1130 LOGGER : Will Kite/DEN 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation 3- Wellhead protection cover type Surface vault a) weep hole? b) concrete pad dimensions 2' x 2' 4- Dia./type of well casing 2" PVC 5- Type/slot size of screen 0.010" mil-slot screen 6- Type screen filter 12/20 Pioneer sands 10.0 a) calculated volume NM b) actual volume installed 7 bags 13.0 c) placement pour 8 -15.0 Type of seal 3/8" Halliburton hole plug a) calculated volume NM 19.0 b) actual volume installed 1 bag c) placement pour 25.0 8- Type of seal Benseal and Quickrete Portland Cement a) calculated volume b) actual volume installed 1 bag c) placement pour 25.6 9- Cement a) cement mix used Quickrete high strength concrete b) calculated volume NM c) actual volume installed 1 bag 5 d) placement pour Development method surge and purge Estimated purge volume 165 gallon Development time 3 hour 20 min Comments: 8" Not to scale

PROJECT NUMBER
D3151100 A.CS.EV.AR.19-04-02

WELL NUMBER
MW-37

SHEET 1 OF 1

ch2m:

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: TalonLPE COORDINATES: DRILLING METHOD AND EQUIPMENT USED: Hollow Stem Auger DRILLER: Ronnie Rodriguez WATER LEVEL: 15.76' BTOC START: 8/27/2019 0816 END: 8/27/2019 0910 LOGGER : Will Kite/DEN 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation 3- Wellhead protection cover type Surface vault a) weep hole? b) concrete pad dimensions 2' x 2' 4- Dia./type of well casing 2" PVC 5- Type/slot size of screen 0.010" mil-slot screen 6- Type screen filter 12/20 Pioneer Sands 10.0 a) calculated volume NM b) actual volume installed 7 bags 13.0 c) placement pour 8 -15.0 Type of seal 3/8" Halliburton hole plug a) calculated volume NM b) actual volume installed 1 bag 19.0 c) placement pour 8- Type of seal Benseal and Quickrete Portland Cement a) calculated volume b) actual volume installed 8 bags c) placement pour 25.6 9- Cement a) cement mix used Quickrete high strength concrete b) calculated volume NM c) actual volume installed 1 bag 5 d) placement pour Development method surge and purge Estimated purge volume 100 gallon Development time 1 hour 40 min Comments: 8" Not to scale

WELL NUMBER
MW-38

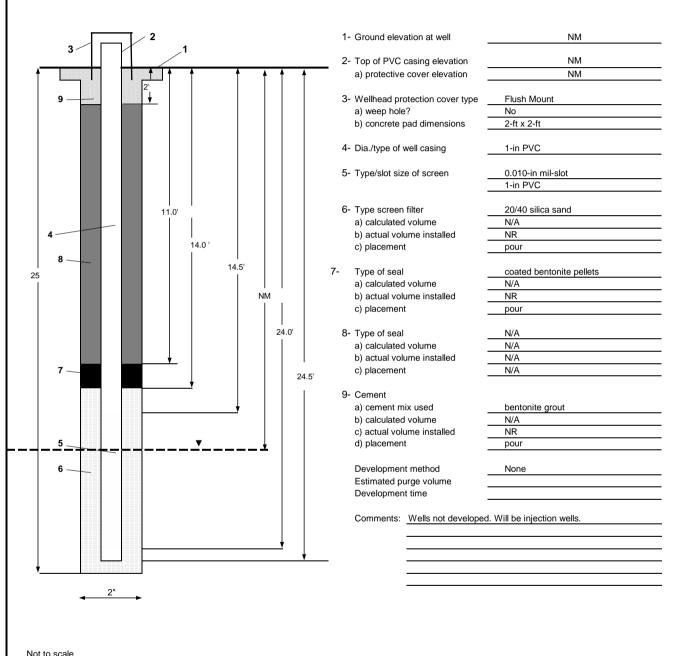
SHEET 1 OF 1

ch2m:

Not to scale

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: TalonLPE COORDINATES: DRILLING METHOD AND EQUIPMENT USED: Hollow Stem Auger DRILLER: Ronnie Rodriguez WATER LEVEL: 15.56' BTOC START: 8/26/2019 1740 END: 8/26/2019 1850 LOGGER : Will Kite/DEN 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation 3- Wellhead protection cover type Surface vault a) weep hole? b) concrete pad dimensions 2' x 2' 4- Dia./type of well casing 2" PVC 5- Type/slot size of screen 0.010" mil-slot screen 6- Type screen filter 12/20 Pioneer Sands 10.0 a) calculated volume NM b) actual volume installed 7 bags 13.0 c) placement pour 8 -15.0 Type of seal 3/8" Halliburton hole plug a) calculated volume NM b) actual volume installed 1 bag c) placement pour 25.0 8- Type of seal Benseal and Quickrete Portland Cement a) calculated volume b) actual volume installed 8 bags c) placement pour 25.6 9- Cement a) cement mix used Quickrete high strength concrete b) calculated volume NM c) actual volume installed 1 bag 5 d) placement Development method surge and purge Estimated purge volume 85 gallon Development time 2 hour 53 min Comments: 8"


WELL NUMBER

SHEET 1 OF 1

ch2m:

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: EarthWorx Environmental COORDINATES: DRILLING METHOD AND EQUIPMENT USED : GeoProbe 6620 DT DPT Drill Rig DRILLER: Louis Trujillo WATER LEVEL: NM START: 10/2/2019 END: 10/5/2019 LOGGER: Tyler Hall 1- Ground elevation at well NM

Not to scale

D

PROJECT NUMBER

D3151100 A.CS.EV.AR.19-04-02

WELL NUMBER

IJ-10

SHEET 1 OF 1

ch2m:

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: EarthWorx Environmental COORDINATES: DRILLING METHOD AND EQUIPMENT USED : GeoProbe 6620 DT DPT Drill Rig DRILLER: Louis Trujillo WATER LEVEL: NM START: 10/4/2019 END: 10/5/2019 LOGGER: Tyler Hall 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation NM 3- Wellhead protection cover type Flush Mount a) weep hole? b) concrete pad dimensions 2-ft x 2-ft 4- Dia./type of well casing 1-in PVC 5- Type/slot size of screen 0.010-in mil-slot 1-in PVC 6- Type screen filter 20/40 silica sand a) calculated volume N/A b) actual volume installed NR 14.0 c) placement pour 14.5' Type of seal coated bentonite pellets 25 a) calculated volume N/A NM b) actual volume installed NR c) placement pour 24.0' 8- Type of seal N/A a) calculated volume b) actual volume installed N/A c) placement N/A 24.5' 9- Cement a) cement mix used bentonite grout b) calculated volume N/A NR c) actual volume installed 5 d) placement pour Development method None Estimated purge volume Development time Comments: Wells not developed. Will be injection wells. Not to scale

WELL NUMBER IJ-11

SHEET 1 OF 1

ch2m:

Not to scale

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: EarthWorx Environmental COORDINATES: DRILLING METHOD AND EQUIPMENT USED : GeoProbe 6620 DT DPT Drill Rig DRILLER: Louis Trujillo WATER LEVEL: NM START: 10/4/2019 END: 10/5/2019 LOGGER: Tyler Hall 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation NM 3- Wellhead protection cover type Flush Mount a) weep hole? b) concrete pad dimensions 2-ft x 2-ft 4- Dia./type of well casing 1-in PVC 5- Type/slot size of screen 0.010-in mil-slot 1-in PVC 6- Type screen filter 20/40 silica sand a) calculated volume N/A b) actual volume installed NR 14.0 c) placement pour 14.5' Type of seal coated bentonite pellets 25 a) calculated volume N/A NM b) actual volume installed NR c) placement pour 24.0' 8- Type of seal N/A a) calculated volume b) actual volume installed N/A c) placement N/A 24.5' 9- Cement a) cement mix used bentonite grout b) calculated volume N/A NR c) actual volume installed 5 d) placement pour Development method None Estimated purge volume Development time Comments: Wells not developed. Will be injection wells.

WELL NUMBER

IJ-12

SHEET 1 OF 1

ch2m:

Not to scale

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: EarthWorx Environmental COORDINATES: DRILLING METHOD AND EQUIPMENT USED : GeoProbe 6620 DT DPT Drill Rig DRILLER: Louis Trujillo WATER LEVEL: NM START: 10/3/2019 END: 10/5/2019 LOGGER: Tyler Hall 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation NM 3- Wellhead protection cover type Flush Mount a) weep hole? b) concrete pad dimensions 2-ft x 2-ft 4- Dia./type of well casing 1-in PVC 5- Type/slot size of screen 0.010-in mil-slot 1-in PVC 6- Type screen filter 20/40 silica sand a) calculated volume N/A b) actual volume installed NR 14.0 c) placement pour 14.5' Type of seal coated bentonite pellets 25 a) calculated volume N/A NM b) actual volume installed NR c) placement pour 24.0' 8- Type of seal N/A a) calculated volume b) actual volume installed N/A c) placement N/A 24.5' 9- Cement a) cement mix used bentonite grout b) calculated volume N/A NR c) actual volume installed 5 d) placement pour Development method None Estimated purge volume Development time Comments: Wells not developed. Will be injection wells.

WELL NUMBER

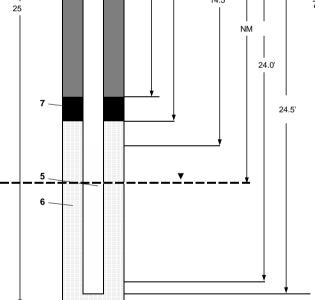
IJ-13

SHEET 1 OF 1

ch2m:

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: EarthWorx Environmental COORDINATES: DRILLING METHOD AND EQUIPMENT USED : GeoProbe 6620 DT DPT Drill Rig DRILLER: Louis Trujillo WATER LEVEL: NM START: 10/2/2019 END: 10/5/2019 LOGGER: Tyler Hall 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation NM 3- Wellhead protection cover type Flush Mount a) weep hole? b) concrete pad dimensions 2-ft x 2-ft 4- Dia./type of well casing 1-in PVC 5- Type/slot size of screen 0.010-in mil-slot 1-in PVC 6- Type screen filter 20/40 silica sand a) calculated volume N/A b) actual volume installed NR 14.0 c) placement pour 14.5' Type of seal coated bentonite pellets 25 a) calculated volume N/A NM b) actual volume installed NR c) placement pour 24.0' 8- Type of seal N/A a) calculated volume b) actual volume installed N/A c) placement N/A 24.5' 9- Cement a) cement mix used bentonite grout b) calculated volume N/A NR c) actual volume installed 5 d) placement pour Development method None Estimated purge volume Development time Comments: Wells not developed. Will be injection wells. Not to scale


WELL NUMBER IJ-14

SHEET 1 OF 1

ch2m:

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: EarthWorx Environmental COORDINATES: DRILLING METHOD AND EQUIPMENT USED : GeoProbe 6620 DT DPT Drill Rig DRILLER: Louis Trujillo WATER LEVEL: NM START: 10/2/2019 END: 10/5/2019 LOGGER: Tyler Hall 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation NM 3- Wellhead protection cover type Flush Mount a) weep hole? b) concrete pad dimensions 2-ft x 2-ft 4- Dia./type of well casing 1-in PVC 5- Type/slot size of screen 0.010-in mil-slot 1-in PVC 6- Type screen filter 20/40 silica sand a) calculated volume N/A b) actual volume installed NR 14.0 c) placement pour 14.5' Type of seal coated bentonite pellets

a) calculated volume N/A b) actual volume installed NR

pour

N/A

N/A

N/A

N/A NR

pour

None

bentonite grout

- c) placement
- 8- Type of seal
- a) calculated volume
- b) actual volume installed
- c) placement
- 9- Cement
 - a) cement mix used b) calculated volume
 - c) actual volume installed
 - d) placement
 - Development method Estimated purge volume Development time

Comments: Wells not developed. Will be injection wells.

Not to scale

D315

PROJECT NUMBER
D3151100 A.CS.EV.AR.19-04-02

WELL NUMBER

IJ-15

SHEET 1 OF 1

ch2m:

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: EarthWorx Environmental COORDINATES: DRILLING METHOD AND EQUIPMENT USED : GeoProbe 6620 DT DPT Drill Rig DRILLER: Louis Trujillo WATER LEVEL: NM START: 10/1/2019 END: 10/5/2019 LOGGER: Tyler Hall 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation NM 3- Wellhead protection cover type Flush Mount a) weep hole? b) concrete pad dimensions 2-ft x 2-ft 4- Dia./type of well casing 1-in PVC 5- Type/slot size of screen 0.010-in mil-slot 1-in PVC 6- Type screen filter 20/40 silica sand a) calculated volume N/A b) actual volume installed NR 14.0 c) placement pour 14.5' Type of seal coated bentonite pellets 25 a) calculated volume N/A NM b) actual volume installed NR c) placement pour 24.0' 8- Type of seal N/A a) calculated volume b) actual volume installed N/A c) placement N/A 24.5' 9- Cement a) cement mix used bentonite grout b) calculated volume N/A NR c) actual volume installed 5 d) placement pour Development method None Estimated purge volume Development time Comments: Wells not developed. Will be injection wells. Not to scale

D31

PROJECT NUMBER
D3151100 A.CS.EV.AR.19-04-02

WELL NUMBER

IJ-16

SHEET 1 OF 1

ch2m:

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: EarthWorx Environmental COORDINATES: DRILLING METHOD AND EQUIPMENT USED : GeoProbe 6620 DT DPT Drill Rig DRILLER: Louis Trujillo WATER LEVEL: NM START: 10/2/2019 END: 10/5/2019 LOGGER: Tyler Hall 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation NM 3- Wellhead protection cover type Flush Mount a) weep hole? b) concrete pad dimensions 2-ft x 2-ft 4- Dia./type of well casing 1-in PVC 5- Type/slot size of screen 0.010-in mil-slot 1-in PVC 6- Type screen filter 20/40 silica sand a) calculated volume N/A b) actual volume installed NR 14.0 c) placement pour 14.5' Type of seal coated bentonite pellets 25 a) calculated volume N/A NM b) actual volume installed NR c) placement pour 24.0' 8- Type of seal N/A a) calculated volume b) actual volume installed N/A c) placement N/A 24.5' 9- Cement a) cement mix used bentonite grout b) calculated volume N/A NR c) actual volume installed 5 d) placement pour Development method None Estimated purge volume Development time Comments: Wells not developed. Will be injection wells. Not to scale

WELL NUMBER

IJ-17

SHEET 1 OF 1

ch2m:

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: EarthWorx Environmental COORDINATES : DRILLING METHOD AND EQUIPMENT USED : GeoProbe 6620 DT DPT Drill Rig DRILLER: Louis Trujillo WATER LEVEL: NM START: 10/2/2019 END: 10/5/2019 LOGGER: Tyler Hall 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation NM 3- Wellhead protection cover type Flush Mount a) weep hole? b) concrete pad dimensions 2-ft x 2-ft 4- Dia./type of well casing 1-in PVC 5- Type/slot size of screen 0.010-in mil-slot 1-in PVC 6- Type screen filter 20/40 silica sand a) calculated volume N/A b) actual volume installed NR 14.0 c) placement pour 14.5' Type of seal coated bentonite pellets 25 a) calculated volume N/A NM b) actual volume installed NR c) placement pour 24.0' 8- Type of seal N/A a) calculated volume b) actual volume installed N/A c) placement N/A 24.5' 9- Cement a) cement mix used bentonite grout b) calculated volume N/A NR c) actual volume installed 5 d) placement pour Development method None Estimated purge volume Development time Comments: Wells not developed. Will be injection wells. Not to scale

PROJECT NUMBER

D3151100 A.CS.EV.AR.19-04-02

WELL NUMBER

IJ-18

SHEET 1 OF 1

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: EarthWorx Environmental COORDINATES: DRILLING METHOD AND EQUIPMENT USED : GeoProbe 6620 DT DPT Drill Rig DRILLER: Louis Trujillo WATER LEVEL: NM START: 9/30/2019 END: 10/5/2019 LOGGER: Tyler Hall 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation NM 3- Wellhead protection cover type Flush Mount a) weep hole? b) concrete pad dimensions 2-ft x 2-ft 4- Dia./type of well casing 1-in PVC 5- Type/slot size of screen 0.010-in mil-slot 1-in PVC 6- Type screen filter 20/40 silica sand a) calculated volume N/A b) actual volume installed NR 14.0 c) placement pour 14.5' Type of seal coated bentonite pellets 25 a) calculated volume N/A NM b) actual volume installed NR c) placement pour 24.0' 8- Type of seal N/A a) calculated volume b) actual volume installed N/A c) placement N/A 24.5' 9- Cement a) cement mix used bentonite grout b) calculated volume N/A NR c) actual volume installed 5 d) placement pour Development method None Estimated purge volume Development time Comments: Wells not developed. Will be injection wells. Not to scale

ch2m:

Not to scale

PROJECT NUMBER

D3151100 A.CS.EV.AR.19-04-02

WELL NUMBER

IJ-19

SHEET 1 OF 1

WELL COMPLETION DIAGRAM

PROJECT: Former Dowell Schlumberger Facility, Artesia, NM LOCATION: Artesia, NM DRILLING CONTRACTOR: EarthWorx Environmental COORDINATES : DRILLING METHOD AND EQUIPMENT USED : GeoProbe 6620 DT DPT Drill Rig DRILLER: Louis Trujillo WATER LEVEL: NM START: 10/3/2019 END: 10/5/2019 LOGGER: Tyler Hall 1- Ground elevation at well NM 2- Top of PVC casing elevation a) protective cover elevation NM 3- Wellhead protection cover type Flush Mount a) weep hole? b) concrete pad dimensions 2-ft x 2-ft 4- Dia./type of well casing 1-in PVC 5- Type/slot size of screen 0.010-in mil-slot 1-in PVC 6- Type screen filter 20/40 silica sand a) calculated volume N/A b) actual volume installed NR 11.5 c) placement pour 12' Type of seal coated bentonite pellets 22.5' a) calculated volume N/A NM b) actual volume installed NR c) placement pour 15.0' 8- Type of seal N/A a) calculated volume b) actual volume installed N/A c) placement N/A 22.0' 9- Cement a) cement mix used bentonite grout b) calculated volume N/A NR c) actual volume installed 5 d) placement pour Development method None Estimated purge volume Development time Comments: Wells not developed. Will be injection wells.

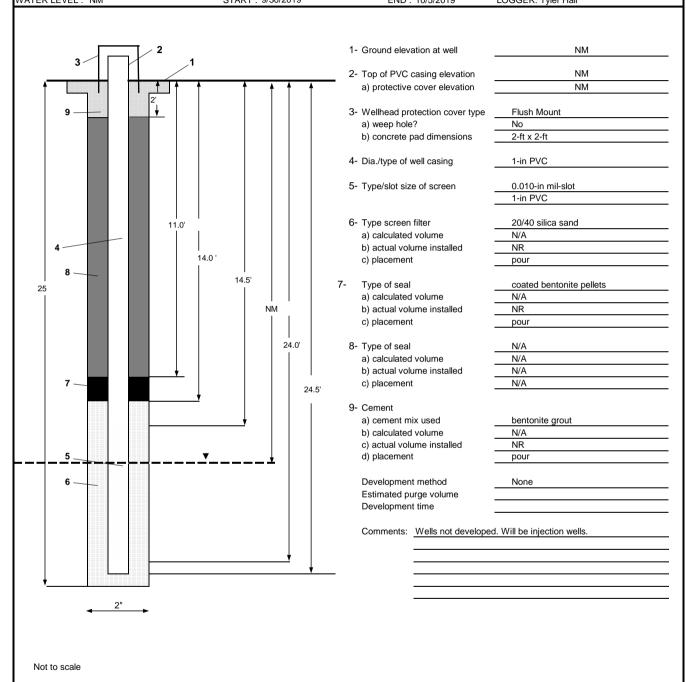
ch2m:

PROJECT NUMBER
D3151100 A.CS.EV.AR.19-04-02

WELL NUMBER

IJ-20

SHEET 1 OF 1


WELL COMPLETION DIAGRAM

PROJECT : Former Dowell Schlumberger Facility, Artesia, NM LOCATION : Artesia, NM

DRILLING CONTRACTOR : EarthWorx Environmental COORDINATES :

DRILLING METHOD AND EQUIPMENT USED : GeoProbe 6620 DT DPT Drill Rig DRILLER: Louis Trujillo

WATER LEVEL : NM START : 9/30/2019 END : 10/5/2019 LOGGER: Tyler Hall

Appendix E Laboratory Analytical Reports

Data Usability Re	view: Data Packag	ge			
Client Name:	Dowell Artesia	Project	Project Number:		D3151100.A.CS.EV.AR.20-05-03
Project / Affected Property:	1H2019 Groundwater	Project	Project Manager:		Jeff Minchak/ABQ
Laboratory:	TestAmerica-Houston	Lab SE)G#/J	ob #:	600-184109-1
Reviewer:	John Ynfante/HOU	Date R	eviewe	d:	
Level of Review / Validation:	Level 3	_		_	
ITEM		YES	NO	N/A	COMMENTS
Laboratory Data Package Sig	nature Page included?	✓			
Date of sample collection incl	uded?	V			
Sample receipt temperature s	≤6° C?	✓			1.2 deg C
Signed COCs included?		V			
Field ID included?		V			
Laboratory ID included?		V			
Date of analysis included?		V			
Date of sample preparation in	ncluded?	V			
Detection levels included?		V			
Method reference included?		V			
Sample matrix included?		V			
Sample results included?		V			
Case narrative included, whe	re required?	V			
MDL - Method Detection Lim		Limit; %	R - Per	cent Re	upled Plasma; IDL - Instrument Detection Limit; ecovery; RF - Response Factor; RPD - Relative tion.
COMMENTS					
VOCs: U (MB)					
Dissolved Manganese: No D	√ flags applied				
Sulfate: No DV flags applied					

	Data Usability Rev	view: VOCs (GC/MS),	SW-	846 8	3260	В		
C	lient Name:	Dowell Artesia	Project	Numbe	r:	D3151100.A.CS.EV.AR.20-05-03		
Pı	roject / Affected Property:	1H2019 Groundwater	Project	Project Manager: Jeff Minchak/ABQ				
Laboratory: TestAmerica-Houston		Lab SD	_ab SDG # / Job #: 600-184109-1					
-	eviewer:	John Ynfante/HOU						
		Level 3						
IT	EM		YES	NO	N/A	COMMENTS		
	Preparatory/analytical holdi	ng time met?	V					
	Surrogate data included in I	ab package? ts listed below or specify lab limits).	\ \ \					
-	Reject %R <10%.	to noted below of specify lab liffile).						
	R5 Method blank data inclu	ded in Lab Package?	V					
	Criteria met?			V				
	QC check samples/LCS dat	ta included in lab package?	✓					
_	%R criteria met? (specified	limits)	✓					
	Matrix spike data included in	n lab package?						
	%R criteria met? (laborator	ry specified limits)	✓					
	RPD criteria met? (< 20% w	· ·	V					
		ation included in lab package?						
	RF criteria met for SPCC? %RSD criteria met for CCC	RRF <0.05 rejected. ? (<30% RSD for CCC, >15% RSD	V					
-	must have fit)		Ŭ					
	Calibration verification data	included in lab package?	\Box					
	RF criteria met for SPCC?	RRF <0.05 rejected.	✓					
	%D criteria met for CCC? (2	20% Max, Qualify >25%D)	✓					
	Instrument Tune documenta	ation included in lab package?	\Box					
	Instrument Tune Criteria me	et?	V					
	Internal standard data inclu	ded in lab package? -50% to +100% of last calibration	\Box					
	check?							
	RRT within limits? (<30 section)	ec. Difference from last calibration	V					
	Surrogates	Control Limits				Lab Limits?		
	1,2-Dichloroethane-d4	water 80-120%, soil 80-120%						
	Dibromofluoromethane Toluene-d8	water 86-118%, soil 80-120% water 88-110%, soil 81-117%						
NI	4-Bromofluorobenzene otes:	water 86-115%, soil 74-121%						
		1,1-dichloroethane (0.1); bromoform	(0.1); c	hlorobe	nzene	(0.3); and 1,1,2,2-tetrachloroethane (0.3).		
		rption; %D - Percent Difference, ICP - Method Quantitation Limit; %R - Pe		•	•	Plasma; IDL - Instrument Detection Limit; MDL - Response Factor: RPD - Relative P		
	OMMENTS							
		es ARTESIA-MW30-04222019 and A nd ARTESIA-MD11-04222019 was wi				2019 and their associated field duplicates a.		
TB: No VOCs were detected in trip blank ARTESIA-TB01-04222019.								
MB: Naphthalene was detected in the method blank for analytical blank concentration were flagged U (MB).				0-26389	90 at 0.	0001830 J mg/L. Associated detections <5x the		

Data Usability Re	view: Dissolved Ma	ngane	se, S	8-W	46 6020
Client Name:	Dowell Artesia		Project Number:		D3151100.A.CS.EV.AR.20-05-03
Project / Affected Property:	1H2019 Groundwater	Project	Manag	ger:	Jeff Minchak/ABQ
Laboratory:	TestAmerica-Houston	Lab SI	Lab SDG # / Job #		600-184109-1
Reviewer: Level of Review / Validation:	John Ynfante/HOU Level 3				
ITEM	Level 3	YES	NO	N/A	COMMENTS
Preparatory/analytical holding	time met?	V			
Method blank data included in	n Lab Package?	V			
Criteria met? (< MDL)		V			
LCS / QC check sample data	included in lab package?	V			
%R criteria met? (90-110%)		V			
Matrix spike data included in	lab package?	V			
%R criteria met? (AA/ICP 75-	125%, Hg 85-115%)	V			
MSD or sample duplicate data	a included in lab package?	V			
RPD criteria met? (water RPD) < 20%; soil RPD < 30%)	V			
Initial calibration documentation	on included in lab package?	V			
Proper number of standards (ICP blank+1 std; AA blank+3		V			
Calibration verification data in	ncluded in lab package?	V			
%R criteria met? (90-110%)		V			
Interference check sample da	ata included? (ICP only)	V			
%R criteria met? (80-120%)		V			
Dilution test (1:5) data include	ed?		V		
Results within 10% original?				V	
Post digestion spike included	?		V		
%R criteria met? (75-125% l	CP), (85-115% Hg/AA)			V	
					Plasma; IDL - Instrument Detection Limit; MDL - Response Factor; RPD - Relative P
COMMENTS	Woulde Qualitation Limit, 7010	1 Groomer	000101	y, 131	Trooponios Fastor, Tri B. Troidille T
	ple ARTESIA-MW11-04222019 a	and its ass	ociated	l field o	duplicate ARTESIA-MD11-04222019 was within

Data Usability Review: Sulfate, EPA 300								
Client Name:	Dowell Artesia	Project	Numbe	er:	D3151100.A.CS.EV.AR.20-05-03			
Project / Affected Property:	1H2019 Groundwater	Project	Manag	jer:	Jeff Minchak/ABQ			
Laboratory:	TestAmerica-Houston	Lab SE	Lab SDG # / Job #:		600-184109-1			
Reviewer:	John Ynfante/HOU							
Level of Review / Validation:	Level 3							
ITEM		YES	NO	N/A	COMMENTS			
Preparatory/analytical holding	ng time met?	V						
Method blank data included	in Lab Package?	V						
Criteria met? (<mql)< td=""><td></td><td>V</td><td></td><td></td><td></td></mql)<>		V						
QC check samples/LCS dat	a included in lab package?	V						
%R criteria met?		V						
Matrix spike data included ir	n lab package?	V						
%R criteria met? (AA/ICP 75	5-125%, Hg 85-115%)	V						
Sample duplicate data inclu	ded in lab package?	V						
RPD criteria met? (RPD < 2	0%)	V						
Initial calibration documenta	ition included in lab package?	V						
Calibration verification data	included in lab package?	V						
%R criteria met? (Initial 90-	110%)	V						
Notes:								
					d Plasma; IDL - Instrument Detection Limit; MDL - Response Factor; RPD - Relative P			
COMMENTS								
No DV flags applied								

Data Usability Review: Data Package									
Client Name:	Dowell Artesia	Project	Project Number:		D3151100.A.CS.EV.AR.20-05-03				
Project / Affected Property:	1H2019 Groundwater	Project	Project Manager:		Jeff Minchak/ABQ				
Laboratory:	TestAmerica-Houston	Lab SE	OG # / J	ob #:	600-184182-1				
Reviewer:	John Ynfante/HOU	Date R	eviewe	d:					
Level of Review / Validation:	Level 3								
ITEM		YES	NO	N/A	COMMENTS				
Laboratory Data Package Sig	nature Page included?	✓							
Date of sample collection incl	uded?	V							
Sample receipt temperature ≤	≤6° C?	✓			1.1 deg C				
Signed COCs included?		V							
Field ID included?		V							
Laboratory ID included?		V							
Date of analysis included?		V							
Date of sample preparation in	ncluded?	V							
Detection levels included?		V							
Method reference included?		V							
Sample matrix included?		V							
Sample results included?		✓							
Case narrative included, whe	re required?	V							
MDL - Method Detection Lim Percent Difference; RRT - Re	Definitions: AA - Atomic Absorption; %D - Percent Difference, ICP - Inductively Coupled Plasma; IDL - Instrument Detection Limit; MDL - Method Detection Limit; MQL - Method Quantitation Limit; %R - Percent Recovery; RF - Response Factor; RPD - Relative Percent Difference; RRT - Relative Retention Time; RSD - Relative Standard Deviation.								
VOCs: U (TB)									
Dissolved Manganese: No D\	√ flags applied								
Jan 11 Ja	3.11								

	Data Usability Rev	view: VOCs (GC/MS),	SW-	846 8	8260	В		
С	lient Name:	Dowell Artesia	Project	Numbe	er:	D3151100.A.CS.EV.AR.20-05-03		
Р	roject / Affected Property:	1H2019 Groundwater	Project	Project Manager: Jeff Minchak/ABQ				
, and the second		Lab SD)G # / Jo	ob #:	600-184182-1			
-	eviewer:	John Ynfante/HOU						
	evel of Review / Validation:	Level 3	YES	NO	N/A	COMMENTS		
•			√			OCHINIER TO		
	Preparatory/analytical holdi	ng time met?						
	Surrogate data included in	·	V					
	%R criteria met? (use limi Reject %R <10%.	ts listed below or specify lab limits).	V					
	R5 Method blank data inclu	ded in Lab Package?	V					
	Criteria met?			V				
	QC check samples/LCS da	ta included in lab package?	✓					
	%R criteria met? (specified	l limits)	V					
	Matrix spike data included i	n lab package?	V					
	%R criteria met? (laborator	· · · ·	V					
	RPD criteria met? (< 20% w		▽					
	·	ation included in lab package?	V					
	RF criteria met for SPCC?		V					
	%RSD criteria met for CCC? (<30% RSD for CCC, >15% RSD must have fit)		V					
	Calibration verification data	included in lab package?	V					
	RF criteria met for SPCC?	RRF <0.05 rejected.	✓					
	%D criteria met for CCC? (2	•	V					
	Instrument Tune document	ation included in lab package?	V					
	Instrument Tune Criteria me	et?	V					
	Internal standard data inclu	ded in lab package?	V					
		-50% to +100% of last calibration	V					
		ec. Difference from last calibration	V					
		•						
	Surrogates	Control Limits				Lab Limits?		
	1,2-Dichloroethane-d4 Dibromofluoromethane	water 80-120%, soil 80-120% water 86-118%, soil 80-120%						
	Toluene-d8	water 88-110%, soil 81-117%						
	4-Bromofluorobenzene	water 86-115%, soil 74-121%						
	otes:		(2.1)					
_		` ,				(0.3); and 1,1,2,2-tetrachloroethane (0.3).		
		- Method Quantitation Limit; %R - Pe		•	•	Plasma; IDL - Instrument Detection Limit; MDL - Response Factor; RPD - Relative P		
С	OMMENTS							
	IA-MD18-04232019 was within acceptance							
criteria. TB: Naphthalene was detected in trip blank ARTESIA-TB02-04232019					E I Ao	essisted detection and trip blank concentation		
	ere flagged U.	u iii iiip biaiik AR 1 ESIA- 1 DUZ-U4Z3Z	UIBALL	,.00072	.J J. AS	sociated detection Sax trip plank concentation		

Data Usability Re	view: Dissolved Ma	ngane	se, S	8-W	46 6020		
Client Name:	Dowell Artesia	<u> </u>	Numbe		D3151100.A.CS.EV.AR.20-05-03		
Project / Affected Property:	1H2019 Groundwater	Project	Manag	jer:	Jeff Minchak/ABQ		
Laboratory:	TestAmerica-Houston	Lab SE	Lab SDG # / Job #:		600-184182-1		
Reviewer:	John Ynfante/HOU						
Level of Review / Validation: ITEM	Level 3	YES	NO	N/A	COMMENTS		
Preparatory/analytical holding	time met?	✓					
Method blank data included in	n Lab Package?	V					
Criteria met? (< MDL)		V					
LCS / QC check sample data	included in lab package?	V					
%R criteria met? (90-110%)		V					
Matrix spike data included in	ab package?		V				
%R criteria met? (AA/ICP 75-	125%, Hg 85-115%)			V			
MSD or sample duplicate data	a included in lab package?		V				
RPD criteria met? (water RPD	0 < 20%; soil RPD < 30%)			V			
Initial calibration documentation		V					
Proper number of standards (ICP blank+1 std; AA blank+3		V					
Calibration verification data in	cluded in lab package?	V					
%R criteria met? (90-110%)		V					
Interference check sample da	ta included? (ICP only)	V					
%R criteria met? (80-120%)		V					
Dilution test (1:5) data include	ed?		V				
Results within 10% original?				V			
Post digestion spike included	?		V				
%R criteria met? (75-125% lo	CP), (85-115% Hg/AA)			V			
					Plasma; IDL - Instrument Detection Limit; MDL - Response Factor; RPD - Relative P		
COMMENTS							
FD: Precision between samp criteria.	ole ARTESIA-MW18-04232019 a	ınd its field	l duplic	ate AR	TESIA-MD18-04232019 was within acceptance		

Client Name:	Dowell Artesia	Project	Numbe	er.	D3151100.A.CS.EV.AR.20-05-03	
Project / Affected Property:	1H2019 Groundwater		Project Manager:		Jeff Minchak/ABQ	
Laboratory:	TestAmerica-Houston		OG # / J		600-191341-1	
Reviewer:	John Ynfante/HOU	_	eviewe			
Level of Review / Validation:	Level 3	•				
ITEM		YES	NO	N/A	COMMENTS	
Laboratory Data Package Si	gnature Page included?	V				
Date of sample collection inc	cluded?	V				
Sample receipt temperature	≤ 6° C?	V			2.3 deg C	
Signed COCs included?		V				
Field ID included?		V				
Laboratory ID included?		V				
Date of analysis included?		V				
Date of sample preparation i	ncluded?	V				
Detection levels included?		V				
Method reference included?		V				
Sample matrix included?		V				
Sample results included?		V				
Case narrative included, who	ere required?	V				
Definitions: AA - Atomic Absorption; %D - Percent Difference, ICP - Inductively CoMDL - Method Detection Limit; MQL - Method Quantitation Limit; %R - Percent R Percent Difference; RRT - Relative Retention Time; RSD - Relative Standard Devia				cent Re	ecovery; RF - Response Factor; RPD - Relative	
COMMENTS						
VOCs: J (FD)						
Sulfate: No DV flags applied						
Culture. No DV mago applied						

Client Name: Dowell Artesia		Project	Numbe	er:	D3151100.A.CS.EV.AR.20-05-03		
roject / Affected Property:	1H2019 Groundwater	Project	Manag	er:	Jeff Minchak/ABQ		
aboratory:	TestAmerica-Houston	Lab SD	G # / J	ob #:	600-191341-1		
eviewer:	John Ynfante/HOU						
	Level 3						
EM		YES	NO	N/A	COMMENTS		
Preparatory/analytical holdi	ng time met?	>					
Surrogate data included in lab package?		<					
	ts listed below or specify lab limits).	V					
Reject %R <10%.							
R5 Method blank data inclu	udod in Lab Backago?	✓					
R5 Welliou blank data incit	ided III Lab Fackage?						
Criteria met?			>				
QC check samples/LCS da	ta included in lab package?	✓					
%R criteria met? (specified	·	V					
, i	,						
Matrix spike data included	· •						
%R criteria met? (laborato	ry specified limits)			V			
RPD criteria met? (< 20% v	vater, <50% soil)	✓			LCS/LCSD		
Initial calibration documents	ation included in lab package?	✓					
RF criteria met for SPCC?		V					
	C? (<30% RSD for CCC, >15% RSD	V					
must have fit)		ĭ]				
Calibration verification data	included in lab package?	✓					
RF criteria met for SPCC?	RRF <0.05 rejected	\					
%D criteria met for CCC? (•	V					
,							
Instrument Tune document	ation included in lab package?						
Instrument Tune Criteria m	et?	V					
Internal standard data inclu	ded in lab package?	✓					
`	-50% to +100% of last calibration	\					
check?	ec. Difference from last calibration						
check?	ec. Difference from last calibration	✓					
Surrogates	Control Limits				Lab Limits?		
1,2-Dichloroethane-d4	water 80-120%, soil 80-120%				Lab Lillits !		
Dibromofluoromethane	water 86-118%, soil 80-120%						
Toluene-d8	water 88-110%, soil 81-117%						
4-Bromofluorobenzene	water 86-115%, soil 74-121%						
otes:							
					(0.3); and 1,1,2,2-tetrachloroethane (0.3).		
	•		•	•	Plasma; IDL - Instrument Detection Limit; M		
ethod Detection Limit; MQL	- Method Quantitation Limit; %R - Pe	rcent R	ecovery	/; RF - F	Response Factor; RPD - Relative P		
OMMENTS							
	rtesia - MW36 - 082819 and field dup						
Dichloroethane, benzene, naphthalene. Associated results in the samples were flagged J (FD). DL: Samples Artesia - MW38 - 082819 (600-191341-1) and Artesia - MW37 - 082819 (600-191341-2) were diluted to bring the							
concentration of target analytes within the calibration range. Elevated reporting limits (RLs) are provided.							
TB: No target analytes detected in trip blank Artesia - TB01 - 082819							
B: No target analytes detect	30 III III0 DIAIIK AUESIA - 1001 - 0070						
B: No target analytes detected	ed in trip blank Artesia - 1601 - 0020	10					

D	Data Usability Review: Sulfate, EPA 300								
Client Name: Dowell Artesia		Dowell Artesia	Project	Numbe	er:	D3151100.A.CS.EV.AR.20-05-03			
Project / Affected Property:		1H2019 Groundwater	Project	Manag	er:	Jeff Minchak/ABQ			
La	aboratory:	TestAmerica-Houston	Lab SE)G#/J	ob #:	600-191341-1			
Re	eviewer:	John Ynfante/HOU							
	evel of Review / Validation:	Level 3							
IT	EM		YES	NO	N/A	COMMENTS			
	Preparatory/analytical holding	ng time met?	V						
	Method blank data included	in Lab Package?	V						
	Criteria met? (<mql)< td=""><td></td><td>V</td><td></td><td></td><td></td></mql)<>		V						
	QC check samples/LCS dat	a included in lab package?	V						
	%R criteria met?		V						
	Matrix spike data included in	n lab package?		V					
	%R criteria met? (AA/ICP 75				V				
	Sample duplicate data inclu	ded in lab package?		V					
	RPD criteria met? (RPD < 2	0%)			V				
	Initial calibration documenta	tion included in lab package?	V						
	Calibration verification data	included in lab package?	V						
	%R criteria met? (Initial 90-1	110%)	✓						
ING	otes:								
		•		•		d Plasma; IDL - Instrument Detection Limit; MDL - Response Factor; RPD - Relative P			
	OMMENTS								
F	D: RPDs between sample Arte	esia - MW36 - 082819 and field d	uplicate /	Artesia	- MW36	6 - 082819 FD were within acceptance criteria.			
					-	· · · · · · · · · · · · · · · · · · ·			

Data Usability Review: Data Package								
Client Name:	Dowell Artesia	Project	Project Number:		D3151100.A.CS.EV.AR.20-05-03			
Project / Affected Property:	1H2019 Groundwater	Project	Project Manager:		Jeff Minchak/ABQ			
Laboratory:	TestAmerica-Houston	Lab SE)G#/J	ob #:	600-194999-1			
Reviewer:	John Ynfante/HOU	Date R	eviewe	d:				
Level of Review / Validation:	Level 3							
ITEM		YES	NO	N/A	COMMENTS			
Laboratory Data Package Sig	nature Page included?	V						
Date of sample collection incl	uded?	V						
Sample receipt temperature ≤	6° C?	V			0.3 and 0.8 deg C			
Signed COCs included?		V						
Field ID included?		V						
Laboratory ID included?		V						
Date of analysis included?		V						
Date of sample preparation in	cluded?	V						
Detection levels included?		V						
Method reference included?		V						
Sample matrix included?		V						
Sample results included?		V						
Case narrative included, whe	re required?	V						
MDL - Method Detection Lim		Limit; %	R - Per	cent Re	upled Plasma; IDL - Instrument Detection Limit; ecovery; RF - Response Factor; RPD - Relative tion.			
COMMENTS								
VOCs: J- (MS)								
Dissolved Manganese: No DV flags applied								
Sulfate: J (FD), J+ (MS)								
OT: Sample ID's on the secon	nd page of the chain of custody	were ch	anged t	to includ	de "102919" to indicate the data of collection.			

Data Usability Rev	view: VOCs (GC/MS),	SW-	846	8260	В		
Client Name:	ient Name: Dowell Artesia Project Number:			D3151100.A.CS.EV.AR.20-05-03			
Project / Affected Property:	1H2019 Groundwater	Project	Manag	er:	Jeff Minchak/ABQ		
Laboratory:	TestAmerica-Houston	Lab SD)G # / Jo	ob #:	600-194999-1		
Reviewer:	John Ynfante/HOU						
	Level 3						
ITEM		YES	NO	N/A	COMMENTS		
Preparatory/analytical holdi	ng time met?	V					
Surrogate data included in	lab package?	✓					
%R criteria met? (use limi Reject %R <10%.	ts listed below or specify lab limits).	V					
R5 Method blank data inclu	ded in Lab Package?	V					
Criteria met?		V					
QC check samples/LCS da	ta included in lab package?	V					
%R criteria met? (specified	l limits)	V					
Matrix spike data included i	n lab package?	V					
%R criteria met? (laborator	ry specified limits)		V				
RPD criteria met? (< 20% v	vater, <50% soil)	✓					
Initial calibration documenta	ation included in lab package?	V					
RF criteria met for SPCC?		V					
%RSD criteria met for CCC must have fit)	C? (<30% RSD for CCC, >15% RSD	V					
Calibration verification data	included in lab package?	V					
RF criteria met for SPCC?	RRF <0.05 rejected.	V					
%D criteria met for CCC? (2	20% Max, Qualify >25%D)	✓					
Instrument Tune document	ation included in lab package?	✓					
Instrument Tune Criteria me	et?	V					
Internal standard data inclu	ded in lab package?	\checkmark					
Area within limits? (within	-50% to +100% of last calibration	V					
check? RRT within limits? (<30 s check?	ec. Difference from last calibration	V					
Surrogates	Control Limits			•	Lab Limits?		
1,2-Dichloroethane-d4	water 80-120%, soil 80-120%				Edd Ellints.		
Dibromofluoromethane	water 86-118%, soil 80-120%						
Toluene-d8	water 88-110%, soil 81-117%						
4-Bromofluorobenzene	water 86-115%, soil 74-121%						
Notes:	1 1-dichloroethane (0.1): hromoform	(0 1)· c	hlorobo	207000	(0.3); and 1,1,2,2-tetrachloroethane (0.3).		
Definitions: AA - Atomic Abso	orption; %D - Percent Difference, ICP	- Induc	tively C	oupled	Plasma; IDL - Instrument Detection Limit; MDL -		
Method Detection Limit; MQL - Method Quantitation Limit; %R - Percent Recovery; RF - Response Factor; RPD - Relative P COMMENTS							
	FD: RPDs between sample Artesia-MW11-102919 and its field duplicate Artesia-MD11-102919 were within acceptance criteria.						
MS: 1,1-Dichloroethene was recovered low in 600-194999-12MSD but passed in the MS, LCS and RPD so no flags were applied. 1,1-							
	dichloroethene was recovered low in 600-194999-15 MS/MSD so the associated result in the parent sample was flagged J All LCS						
		ıstody	hut wer	e collec	ted and intended for analysis. Laboratory		
	PCE, 11DCE, and 11DCA) and dissol						
OT,TB: An extra trip blank was	s inadvertantly submitted to the lab th				e chain of custody - the extra trip blank was		
unnecessary and not analyzed.							

- TB: No VOCs detected in trip blank Artesia-TB01-102919. Trip blank was not initially listed on the chain of custody but was analyzed per client instruction.
- FD: RPDs between sample Artesia-MW30-102919 and its field duplicate Artesia-MD30-102919 were within acceptance criteria.
- DL: Samples Artesia-MW12-102919 (600-194999-6) and Artesia-MW38-102919 (600-194999-17) were diluted to bring the concentration of target analytes within the calibration range. Elevated reporting limits (RLs) are provided.

Project / Affected Property:	D 11 A 4 .	_	•	8-W			
	Client Name: Dowell Artesia			er:	D3151100.A.CS.EV.AR.20-05-03		
Laboratory.				jer: ob #:	Jeff Minchak/ABQ 600-194999-1		
,	John Ynfante/HOU	Lab OL	σο π / σ	ου π.	000-134333-1		
	Level 3	· ·					
ITEM		YES	NO	N/A	COMMENTS		
Preparatory/analytical holding	time met?	V					
Method blank data included in	Lab Package?	V					
Criteria met? (< MDL)		V					
LCS / QC check sample data i	ncluded in lab package?	V					
%R criteria met? (90-110%)		V					
Matrix spike data included in la	ab package?	V					
%R criteria met? (AA/ICP 75-1	25%, Hg 85-115%)	V					
MSD or sample duplicate data	included in lab package?	V					
RPD criteria met? (water RPD	< 20%; soil RPD < 30%)	V					
Initial calibration documentation	n included in lab package?	V					
Proper number of standards used in calibration curve? (ICP blank+1 std; AA blank+3 stds; Hg blank+5 stds)							
Calibration verification data inc	cluded in lab package?	V					
%R criteria met? (90-110%)		V					
Interference check sample dat	a included? (ICP only)	V					
%R criteria met? (80-120%)		V					
Dilution test (1:5) data include	?		V				
Results within 10% original?				V			
Post digestion spike included?			V				
%R criteria met? (75-125% IC	P), (85-115% Hg/AA)			V			
					Plasma; IDL - Instrument Detection Limit; Response Factor; RPD - Relative P		
COMMENTS							
	tesia-MW30-102010 and its field	dunlicate /	∆rtesia-l	\/ID30-1	02919 were within acceptance criteria.		

Data Usability Review: Sulfate, EPA 3 Client Name: Dowell Artesia		Project	Numbe	er:	D3151100.A.CS.EV.AR.20-05-03	
Project / Affected Property: 1H2019 Groundwater		Project			Jeff Minchak/ABQ	
Laboratory: TestAmerica-Houston			Lab SDG # / Job #:		600-194999-1	
	viewer:	John Ynfante/HOU				
	vel of Review / Validation:	Level 3				
ITE	M		YES	NO	N/A	COMMENTS
	Preparatory/analytical holding time met?		V			
	Method blank data included	d in Lab Package?	V			
	Criteria met? (<mql)< td=""><td></td><td>V</td><td></td><td></td><td></td></mql)<>		V			
	QC check samples/LCS da	ta included in lab package?	V			
	%R criteria met?		V			
	Matrix spike data included in lab package?		V			
	%R criteria met? (AA/ICP 75-125%, Hg 85-115%)			V		
Sample duplicate data included in lab package?		V				
	RPD criteria met? (RPD < 20%)		V			
	Initial calibration documentation included in lab package?		V			
	Calibration verification data	a included in lab package?	V			
	%R criteria met? (Initial 90-	-110%)	V			
No	es:					
						d Plasma; IDL - Instrument Detection Limit; MDL - Response Factor; RPD - Relative P
	MMENTS	·				
	RPD between sample Arte	esia-MW11-102919 and its field du	uplicate A	rtesia-N	MD11-1	02919 was > 30% for sulfate. Associated results
MS			le 600-19	94999-1	7 for ar	nalytical batch 600-280102. The associated result
			102 at 0.1	872 mg	g/L whic	ch is > MDL < RL. Detections in normal samples
wei	e >> 5x CCB concentration	n so no flags applied.				

ANALYTICAL REPORT

Job Number: 600-184109-1

Job Description: Dowell - Artesia 04/23/19

For: CH2M Hill, Inc. 3721 Rutledge Rd. NE Suite B-1 Albuquerque, NM 87109

Attention: Aleeca Forsberg

Bethany Mc Daniel

Approved for release. Bethany A McDaniel Senior Project Manager 5/8/2019 12:05 PM

Bethany A McDaniel, Senior Project Manager 6310 Rothway Street, Houston, TX, 77040 (713)358-2005 bethany.mcdaniel@testamericainc.com 05/08/2019

Table of Contents

Cc	over Title Page	1
Da	ata Summaries	5
	Definitions	5
	Case Narrative	6
	Detection Summary	7
	Client Sample Results	9
	Default Detection Limits	15
	Surrogate Summary	16
	QC Sample Results	17
	QC Association	20
	Chronicle	22
	Certification Summary	25
	Method Summary	26
	Sample Summary	27
	Manual Integration Summary	28
	Reagent Traceability	41
Or	ganic Sample Data	51
	GC/MS VOA	51
	Method 8260B Low Level	51
	Method 8260B Low Level QC Summary	52
	Method 8260B Low Level Sample Data	61
	Standards Data	74
	Method 8260B Low Level ICAL Data	74
	Method 8260B Low Level CCAL Data	86
	Raw QC Data	92
	Method 8260B Low Level Blank Data	92

Table of Contents

Method 8260B Low Level LCS/LCSD Data	93
Method 8260B Low Level MS/MSD Data	94
Method 8260B Low Level Run Logs	96
Method 8260B Low Level Prep Data	98
HPLC/IC	102
Method 300.0	102
Method 300.0 QC Summary	103
Method 300.0 Sample Data	105
Standards Data	108
Method 300.0 ICAL Data	108
Method 300.0 CCAL Data	111
Raw QC Data	117
Method 300.0 Blank Data	117
Method 300.0 LCS/LCSD Data	121
Method 300.0 Run Logs	122
Method 300.0 Prep Data	125
Inorganic Sample Data	126
Metals Data	126
Met Cover Page	127
Met Sample Data	128
Met QC Data	136
Met ICV/CCV	136
Met Blanks	138
Met ICSA/ICSAB	141
Met MS/MSD/PDS	143
Met LCS/LCSD	145

Table of Contents

Met Serial Dilution	146
Met MDL	147
Met Linear Ranges	149
Met Preparation Log	150
Met Analysis Run Log	151
Met Internal Standards	154
Met Prep Data	158
Subcontracted Data	160
Shipping and Receiving Documents	161
Client Chain of Custody	162
Sample Receipt Checklist	168

Definitions/Glossary

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Qualifiers

GC/MS VOA

Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Indicates the analyte was analyzed for but not detected.

HPLC/IC

U

U Indicates the analyte was analyzed for but not detected.

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Job Narrative 600-184109-1

Comments

No additional comments.

Receipt

The samples were received on 4/23/2019 8:59 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.2° C.

GC/MS VOA

Method(s) 8260B: The method blank for analytical batch 600-263890 contained Naphthalene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Project/Site: Dowell - Artesia 04	1/23/19								
Client Sample ID: ARTES	SIA-TB01-0	4222019				Lab Sar	nple ID: 6	00-184109-1	
No Detections.									
Client Sample ID: ARTES	SIA-INLET-0	04222019				Lab Sar	nple ID: 6	600-184109-2	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type	
1,1-Dichloroethane	0.00260	·	0.00100	0.000168	mg/L		8260B	Total/NA	
1,1-Dichloroethene	0.00973		0.00100	0.000192	mg/L	1	8260B	Total/NA	
Naphthalene	0.000555	JB	0.00200	0.000129	mg/L	1	8260B	Total/NA	
Tetrachloroethene	0.00953		0.00100	0.000333	mg/L	1	8260B	Total/NA	
Client Sample ID: ARTES	SIA-MID-042	222019				Lab Sar	nple ID: 6	00-184109-3	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type	
1,1-Dichloroethane	0.00307		0.00100	0.000168	mg/L		8260B	Total/NA	
1,1-Dichloroethene	0.00805		0.00100	0.000192	mg/L	1	8260B	Total/NA	
Naphthalene	0.000199	JB	0.00200	0.000129	mg/L	1	8260B	Total/NA	
Tetrachloroethene	0.000548	J	0.00100	0.000333	mg/L	1	8260B	Total/NA	
Client Sample ID: ARTES	SIA-OUTLE	T-042220	19			Lab Sample ID: 600-184109-			
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type	
1,1-Dichloroethane	0.00186		0.00100	0.000168	mg/L		8260B	Total/NA	
1,1-Dichloroethene	0.000666	J	0.00100	0.000192	mg/L	1	8260B	Total/NA	
Client Sample ID: ARTES	SIA-MW12-0	04222019				Lab Sar	nple ID: 6	00-184109-	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type	
1,1-Dichloroethane	0.0260		0.00100	0.000168	mg/L		8260B	Total/NA	
1,1-Dichloroethene	0.00161		0.00100	0.000192	mg/L	1	8260B	Total/NA	
Benzene	0.00617		0.00100	0.000176	mg/L	1	8260B	Total/NA	
Naphthalene	0.0466	В	0.00200	0.000129	mg/L	1	8260B	Total/NA	
Tetrachloroethene	0.00377		0.00100	0.000333	mg/L	1	8260B	Total/NA	
Sulfate	2520		50.0	9.57	mg/L	100	300.0	Total/NA	
Client Sample ID: ARTES	SIA-MW30-0	04222019				Lab Sar	nple ID: 6	600-184109-0	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type	
1,1-Dichloroethane	0.000960	J	0.00100	0.000168	mg/L		8260B	Total/NA	
1,1-Dichloroethene	0.00271		0.00100	0.000192	mg/L	1	8260B	Total/NA	
Tetrachloroethene	0.00350		0.00100	0.000333	mg/L	1	8260B	Total/NA	
Client Sample ID: ARTES	SIA-MD30-0	4222019				Lab Sar	nple ID: 6	00-184109-7	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type	
1,1-Dichloroethane	0.000931	J	0.00100	0.000168	mg/L		8260B	Total/NA	
i, i Biomoroodiano									
1,1-Dichloroethene	0.00273		0.00100	0.000192	mg/L	1	8260B	Total/NA	

This Detection Summary does not include radiochemical test results.

Client Sample ID: ARTESIA-MW32-04222019

Analyte

Tetrachloroethene

Lab Sample ID: 600-184109-8

Prep Type

Total/NA

Dil Fac D Method

1 8260B

RL

0.00100 0.000333 mg/L

MDL Unit

Result Qualifier

0.000639 J

Detection Summary

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Result Qualifier

0.00302

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	2400		50.0		mg/L	100	_	300.0	Total/NA
Client Sample ID: ART	ESIA-MW11-	04222019				Lab Sar	np	le ID: 60	0-184109-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00304		0.00100	0.000168	mg/L		_	8260B	Total/NA
Sulfate	3150		50.0	9.57	mg/L	100		300.0	Total/NA
Client Sample ID: ART	ESIA-MW26-0	04222019				Lab Sar	np	le ID: 60	0-184109-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.000332	J	0.00100	0.000168	mg/L		_	8260B	Total/NA
1,1-Dichloroethene	0.00175		0.00100	0.000192	mg/L	1		8260B	Total/NA
Tetrachloroethene	0.00170		0.00100	0.000333	mg/L	1		8260B	Total/NA
Manganese, Dissolved	0.0527		0.0500	0.0116	mg/L	1		6020	Dissolved
Client Sample ID: ART	ESIA-MW34-0	04222019				Lab Sar	np	le ID: 60	0-184109-1
		Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
- Analyte	Result			0.000400	mg/L		_	8260B	Total/NA
Analyte 1,1-Dichloroethane	0.000680	J	0.00100	0.000168	mg/L			0200D	
			0.00100 0.00100	0.000168	J	1		8260B	Total/NA

RL

0.00100

MDL Unit

0.000168 mg/L

Dil Fac D Method

8260B

Prep Type

Total/NA

Analyte

1,1-Dichloroethane

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-TB01-04222019 Lab Sample ID: 600-184109-1

Date Collected: 04/22/19 13:10 **Matrix: Water**

Date Received: 04/23/19 08:59

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			04/29/19 15:29	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			04/29/19 15:29	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 15:29	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			04/29/19 15:29	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			04/29/19 15:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		50 - 134			-		04/29/19 15:29	1
4-Bromofluorobenzene	91		67 - 139					04/29/19 15:29	1
Dibromofluoromethane	93		62 - 130					04/29/19 15:29	1
Toluene-d8 (Surr)	82		70 - 130					04/29/19 15:29	1

Client Sample ID: ARTESIA-INLET-04222019

Lab Sample ID: 600-184109-2 Date Collected: 04/22/19 13:40 **Matrix: Water**

Date Received: 04/23/19 08:59

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00260		0.00100	0.000168	mg/L			04/29/19 19:41	1
1,1-Dichloroethene	0.00973		0.00100	0.000192	mg/L			04/29/19 19:41	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 19:41	1
Naphthalene	0.000555	JB	0.00200	0.000129	mg/L			04/29/19 19:41	1
Tetrachloroethene	0.00953		0.00100	0.000333	mg/L			04/29/19 19:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		50 - 134					04/29/19 19:41	1
4-Bromofluorobenzene	91		67 - 139					04/29/19 19:41	1
Dibromofluoromethane	89		62 - 130					04/29/19 19:41	1
Toluene-d8 (Surr)	81		70 - 130					04/29/19 19:41	1
Method: 6020 - Metals (ICP	P/MS) - Dissolve	∍d							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	0.0116	П	0.0500	0.0116	ma/l		04/25/19 12:30	04/29/19 17:38	

Lab Sample ID: 600-184109-3 Client Sample ID: ARTESIA-MID-04222019

Date Collected: 04/22/19 13:45 **Matrix: Water**

Date Received: 04/23/19 08:59

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00307		0.00100	0.000168	mg/L			04/29/19 20:08	1
1,1-Dichloroethene	0.00805		0.00100	0.000192	mg/L			04/29/19 20:08	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 20:08	1
Naphthalene	0.000199	JB	0.00200	0.000129	mg/L			04/29/19 20:08	1
Tetrachloroethene	0.000548	J	0.00100	0.000333	mg/L			04/29/19 20:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		50 - 134					04/29/19 20:08	1
4-Bromofluorobenzene	89		67 - 139					04/29/19 20:08	1
Dibromofluoromethane	86		62 - 130					04/29/19 20:08	1
Toluene-d8 (Surr)	80		70 - 130					04/29/19 20:08	1

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-MID-04222019

Lab Sample ID: 600-184109-3

Date Collected: 04/22/19 13:45

Matrix: Water

Date Received: 04/23/19 08:59

Method:	6020 ·	- Metals	(ICP/MS)	- Dissolv	∕ed

Analyte Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac Manganese, Dissolved 0.0116 U 0.0500 0.0116 mg/L 04/25/19 12:30 04/29/19 17:43

Client Sample ID: ARTESIA-OUTLET-04222019

Lab Sample ID: 600-184109-4

Date Collected: 04/22/19 13:53 Date Received: 04/23/19 08:59

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)
--

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00186		0.00100	0.000168	mg/L			04/29/19 20:36	1
1,1-Dichloroethene	0.000666	J	0.00100	0.000192	mg/L			04/29/19 20:36	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 20:36	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			04/29/19 20:36	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			04/29/19 20:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		50 - 134			-		04/29/19 20:36	1
4-Bromofluorobenzene	84		67 - 139					04/29/19 20:36	1
Dibromofluoromethane	83		62 - 130					04/29/19 20:36	1
Toluene-d8 (Surr)	76		70 - 130					04/29/19 20:36	1

Method: 6	6020 - Metals	(ICP/MS)	- Dissolved
∆nalvte			Result Ou

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	0.0116 U	0.0500	0.0116 mg/L		04/25/19 12:30	04/29/19 17:48	1

Client Sample ID: ARTESIA-MW12-04222019

Lab Sample ID: 600-184109-5 Date Collected: 04/22/19 13:50 **Matrix: Water**

Date Received: 04/23/19 08:59

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0260		0.00100	0.000168	mg/L			04/30/19 00:19	1
1,1-Dichloroethene	0.00161		0.00100	0.000192	mg/L			04/30/19 00:19	1
Benzene	0.00617		0.00100	0.000176	mg/L			04/30/19 00:19	1
Naphthalene	0.0466	В	0.00200	0.000129	mg/L			04/30/19 00:19	1
Tetrachloroethene	0.00377		0.00100	0.000333	mg/L			04/30/19 00:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		50 - 134					04/30/19 00:19	1
4-Bromofluorobenzene	101		67 - 139					04/30/19 00:19	1
Dibromofluoromethane	89		62 - 130					04/30/19 00:19	1
Toluene-d8 (Surr)	83		70 - 130					04/30/19 00:19	1
Method: 300.0 - Anions, Io	n Chromatogra	phy							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	2520	-	50.0	9.57	mg/L			05/06/19 23:34	100

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-MW30-04222019

Lab Sample ID: 600-184109-6 Date Collected: 04/22/19 14:05 **Matrix: Water**

Date Received: 04/23/19 08:59

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000960	J	0.00100	0.000168	mg/L			04/29/19 21:04	1
1,1-Dichloroethene	0.00271		0.00100	0.000192	mg/L			04/29/19 21:04	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 21:04	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			04/29/19 21:04	1
Tetrachloroethene	0.00350		0.00100	0.000333	mg/L			04/29/19 21:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		50 - 134					04/29/19 21:04	1
4-Bromofluorobenzene	90		67 - 139					04/29/19 21:04	1
Dibromofluoromethane	90		62 - 130					04/29/19 21:04	1
Toluene-d8 (Surr)	82		70 - 130					04/29/19 21:04	1
Method: 6020 - Metals (ICF	P/MS) - Dissolv	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	0.0116	U	0.0500	0.0116	ma/L		04/25/19 12:30	04/29/19 17:53	1

Client Sample ID: ARTESIA-MD30-04222019 Lab Sample ID: 600-184109-7

Date Collected: 04/22/19 14:10

Date Received: 04/23/19 08:59

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000931	J	0.00100	0.000168	mg/L			04/29/19 21:32	1
1,1-Dichloroethene	0.00273		0.00100	0.000192	mg/L			04/29/19 21:32	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 21:32	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			04/29/19 21:32	1
Tetrachloroethene	0.00363		0.00100	0.000333	mg/L			04/29/19 21:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		50 - 134					04/29/19 21:32	1
4-Bromofluorobenzene	86		67 - 139					04/29/19 21:32	1
Dibromofluoromethane	87		62 - 130					04/29/19 21:32	1
Toluene-d8 (Surr)	78		70 - 130					04/29/19 21:32	1
Method: 6020 - Metals (ICF	P/MS) - Dissolve	ed							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
, . ,							•	•	

Client Sample ID: ARTESIA-MW32-04222019 Lab Sample ID: 600-184109-8

Date Collected: 04/22/19 14:50 Date Received: 04/23/19 08:59

Method: 8260B - Volatile C	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			04/29/19 22:00	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			04/29/19 22:00	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 22:00	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			04/29/19 22:00	1
Tetrachloroethene	0.000639	J	0.00100	0.000333	mg/L			04/29/19 22:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		50 - 134			-		04/29/19 22:00	1

Eurofins TestAmerica, Houston

Matrix: Water

Matrix: Water

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-MW32-04222019

Lab Sample ID: 600-184109-8 Date Collected: 04/22/19 14:50 **Matrix: Water**

Date Received: 04/23/19 08:59

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	91		67 - 139	_		04/29/19 22:00	1
Dibromofluoromethane	91		62 - 130			04/29/19 22:00	1
Toluene-d8 (Surr)	84		70 - 130			04/29/19 22:00	1

Method: 6020 - Metals (ICP/MS	S) - Dissolve	ed								
Analyte	Result	Qualifier	RL	MDL	Unit	I	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	0.0116	U	0.0500	0.0116	mg/L		_	04/25/19 12:30	04/29/19 18:27	1

Client Sample ID: ARTESIA-MW17C-04222019

Lab Sample ID: 600-184109-9 Date Collected: 04/22/19 14:30 **Matrix: Water**

Date Received: 04/23/19 08:59

Method: 8260B -	Volatile (Organic	Com	001	unc	ds ((GC/MS)	
			_		_			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			04/29/19 22:28	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			04/29/19 22:28	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 22:28	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			04/29/19 22:28	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			04/29/19 22:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
						-			

	,	-,			,	
1,2-Dichloroethane-d4 (Surr)	95		50 - 134		04/29/19 22:28	1
4-Bromofluorobenzene	82		67 - 139		04/29/19 22:28	1
Dibromofluoromethane	83		62 - 130		04/29/19 22:28	1
Toluene-d8 (Surr)	77		70 - 130		04/29/19 22:28	1
	1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene Dibromofluoromethane	1,2-Dichloroethane-d4 (Surr)954-Bromofluorobenzene82Dibromofluoromethane83	1,2-Dichloroethane-d4 (Surr) 95 4-Bromofluorobenzene 82 Dibromofluoromethane 83	1,2-Dichloroethane-d4 (Surr) 95 50 - 134 4-Bromofluorobenzene 82 67 - 139 Dibromofluoromethane 83 62 - 130	1,2-Dichloroethane-d4 (Surr) 95 50 - 134 4-Bromofluorobenzene 82 67 - 139 Dibromofluoromethane 83 62 - 130	1,2-Dichloroethane-d4 (Surr) 95 50 - 134 04/29/19 22:28 4-Bromofluorobenzene 82 67 - 139 04/29/19 22:28 Dibromofluoromethane 83 62 - 130 04/29/19 22:28

Method: 300.0	- Anions,	lon Chroma	tography	7
---------------	-----------	------------	----------	---

Result Qualifier Analyte RL MDL Unit Dil Fac Prepared Analyzed 50.0 9.57 mg/L 05/06/19 23:54 Sulfate 2400 100

Client Sample ID: ARTESIA-MW11-04222019

Date Collected: 04/22/19 15:25 **Matrix: Water** Date Received: 04/23/19 08:59

Method: 300.0 - Anions, Ion Chromatography

Analyte

Sulfate

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00304		0.00100	0.000168	mg/L			04/29/19 22:56	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			04/29/19 22:56	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 22:56	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			04/29/19 22:56	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			04/29/19 22:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		50 - 134					04/29/19 22:56	1
4-Bromofluorobenzene	90		67 - 139					04/29/19 22:56	1
Dibromofluoromethane	91		62 - 130					04/29/19 22:56	1
Toluene-d8 (Surr)	81		70 - 130					04/29/19 22:56	1

Eurofins TestAmerica, Houston

Analyzed

05/07/19 00:14

100

Lab Sample ID: 600-184109-10

RL

50.0

MDL Unit

9.57 mg/L

Result Qualifier

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-MW26-04222019

Lab Sample ID: 600-184109-11 Date Collected: 04/22/19 15:05 **Matrix: Water**

Date Received: 04/23/19 08:59

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000332	J	0.00100	0.000168	mg/L			04/29/19 23:24	1
1,1-Dichloroethene	0.00175		0.00100	0.000192	mg/L			04/29/19 23:24	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 23:24	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			04/29/19 23:24	1
Tetrachloroethene	0.00170		0.00100	0.000333	mg/L			04/29/19 23:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		50 - 134					04/29/19 23:24	1
4-Bromofluorobenzene	87		67 - 139					04/29/19 23:24	1
Dibromofluoromethane	88		62 - 130					04/29/19 23:24	1
Toluene-d8 (Surr)	77		70 - 130					04/29/19 23:24	1
Method: 6020 - Metals (ICF	P/MS) - Dissolve	ed							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	0.0527		0.0500	0.0116	ma/L		04/25/19 12:30	04/29/19 18:32	1

Client Sample ID: ARTESIA-MW34-04222019 Lab Sample ID: 600-184109-12

Date Collected: 04/22/19 15:30 Date Received: 04/23/19 08:59

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000680	J	0.00100	0.000168	mg/L			04/29/19 15:57	1
1,1-Dichloroethene	0.000507	J	0.00100	0.000192	mg/L			04/29/19 15:57	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 15:57	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			04/29/19 15:57	1
Tetrachloroethene	0.000858	J	0.00100	0.000333	mg/L			04/29/19 15:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		50 - 134					04/29/19 15:57	1
4-Bromofluorobenzene	78		67 - 139					04/29/19 15:57	1
Dibromofluoromethane	86		62 - 130					04/29/19 15:57	1
Toluene-d8 (Surr)	79		70 - 130					04/29/19 15:57	1

	Method: 6020 - Metals (ICP/MS) - Dissolved									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Manganese, Dissolved	0.0116	U	0.0500	0.0116	mg/L		04/25/19 12:30	04/29/19 17:12	1

Lab Sample ID: 600-184109-13 Client Sample ID: ARTESIA-MD11-04222019 Date Collected: 04/22/19 15:35 **Matrix: Water**

Date Received: 04/23/19 08:59

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00302		0.00100	0.000168	mg/L	 .		04/29/19 23:51	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			04/29/19 23:51	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 23:51	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			04/29/19 23:51	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			04/29/19 23:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		50 - 134					04/29/19 23:51	1

Eurofins TestAmerica, Houston

Matrix: Water

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Date Collected: 04/22/19 15:35 Matrix: Water

Date Received: 04/23/19 08:59

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fa	C
4-Bromofluorobenzene	90		67 - 139	_		04/29/19 23:51		1
Dibromofluoromethane	90		62 - 130			04/29/19 23:51		1
Toluene-d8 (Surr)	81		70 - 130			04/29/19 23:51		1

Default Detection Limits

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

motification of the following the following the first terms of the fir	Method: 8260B	 Volatile Org 	anic Com	pounds	(GC/MS)
--	---------------	----------------------------------	----------	--------	---------

Analyte	RL	MDL	Units
1,1-Dichloroethane	0.00100	0.000168	mg/L
1,1-Dichloroethene	0.00100	0.000192	mg/L
Benzene	0.00100	0.000176	mg/L
Naphthalene	0.00200	0.000129	mg/L
Tetrachloroethene	0.00100	0.000333	mg/L

Method: 300.0 - Anions, Ion Chromatography

Analyte	RL	MDL	Units	
Sulfate	0.500	0.0957	mg/L	

Method: 6020 - Metals (ICP/MS) - Dissolved

Prep: 3010A

Analyte	RL	MDL	Units	
Manganese, Dissolved	0.0500	0.0116	ma/L	

Surrogate Summary

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(50-134)	(67-139)	(62-130)	(70-130)
600-184109-1	ARTESIA-TB01-04222019	110	91	93	82
600-184109-2	ARTESIA-INLET-04222019	99	91	89	81
600-184109-3	ARTESIA-MID-04222019	96	89	86	80
600-184109-4	ARTESIA-OUTLET-04222019	92	84	83	76
600-184109-5	ARTESIA-MW12-04222019	107	101	89	83
600-184109-6	ARTESIA-MW30-04222019	101	90	90	82
600-184109-7	ARTESIA-MD30-04222019	99	86	87	78
600-184109-8	ARTESIA-MW32-04222019	105	91	91	84
600-184109-9	ARTESIA-MW17C-04222019	95	82	83	77
600-184109-10	ARTESIA-MW11-04222019	109	90	91	81
600-184109-11	ARTESIA-MW26-04222019	107	87	88	77
600-184109-12	ARTESIA-MW34-04222019	103	78	86	79
600-184109-12 MS	ARTESIA-MW34-04222019	105	86	88	76
600-184109-12 MSD	ARTESIA-MW34-04222019	107	87	89	78
600-184109-13	ARTESIA-MD11-04222019	108	90	90	81
LCS 600-263890/5	Lab Control Sample	108	87	89	78
MB 600-263890/7	Method Blank	102	83	86	76

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 600-263890/7

Matrix: Water

Analysis Batch: 263890

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			04/29/19 15:01	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			04/29/19 15:01	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			04/29/19 15:01	1
Naphthalene	0.0001830	J	0.00200	0.000129	mg/L			04/29/19 15:01	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			04/29/19 15:01	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	102		50 - 134	_		04/29/19 15:01	1	
4-Bromofluorobenzene	83		67 - 139			04/29/19 15:01	1	
Dibromofluoromethane	86		62 - 130			04/29/19 15:01	1	
Toluene-d8 (Surr)	76		70 - 130			04/29/19 15:01	1	

Lab Sample ID: LCS 600-263890/5

Matrix: Water

Analysis Batch: 263890

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Unit Analyte %Rec Limits 1,1-Dichloroethane 0.0100 0.008688 87 70 - 140 mg/L 1,1-Dichloroethene 0.0100 0.008541 mg/L 85 58 - 148 Benzene 0.0100 0.009315 mg/L 93 70 - 130 0.0100 0.009229 mg/L 92 10 - 150 Naphthalene Tetrachloroethene 0.0100 0.008520 mg/L 85 47 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		50 - 134
4-Bromofluorobenzene	87		67 - 139
Dibromofluoromethane	89		62 - 130
Toluene-d8 (Surr)	78		70 - 130

Lab Sample ID: 600-184109-12 MS

Matrix: Water

Analysis Batch: 263890

Client Sample ID: ARTESIA-MW34-04222019

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.000680	J	0.0100	0.009095		mg/L		84	70 - 140	
1,1-Dichloroethene	0.000507	J	0.0100	0.01066		mg/L		101	58 - 148	
Benzene	0.000176	U	0.0100	0.01084		mg/L		108	70 - 130	
Naphthalene	0.000129	U	0.0100	0.007887		mg/L		79	10 - 150	
Tetrachloroethene	0.000858	J	0.0100	0.009796		mg/L		89	47 - 150	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		50 - 134
4-Bromofluorobenzene	86		67 - 139
Dibromofluoromethane	88		62 - 130
Toluene-d8 (Surr)	76		70 - 130

QC Sample Results

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 600-184109-12 MSD Client Sample ID: ARTESIA-MW34-04222019 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 263890

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.000680	J	0.0100	0.008085		mg/L		74	70 - 140	12	30
1,1-Dichloroethene	0.000507	J	0.0100	0.008820		mg/L		83	58 - 148	19	30
Benzene	0.000176	U	0.0100	0.009949		mg/L		99	70 - 130	9	30
Naphthalene	0.000129	U	0.0100	0.008757		mg/L		88	10 - 150	10	30
Tetrachloroethene	0.000858	J	0.0100	0.008890		mg/L		80	47 - 150	10	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		50 - 134
4-Bromofluorobenzene	87		67 - 139
Dibromofluoromethane	89		62 - 130
Toluene-d8 (Surr)	78		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 600-264422/11 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 264422

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	0.0957	U	0.500	0.0957	mg/L			05/06/19 16:54	1

Lab Sample ID: LCS 600-264422/12 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 264422

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate		20.0	19.37		mg/L		97	90 - 110	

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 560-161862/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 161978

Prep Type: Total/NA Prep Batch: 161862 MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.0116 U 0.0500 04/25/19 12:30 04/29/19 17:08 Manganese, Dissolved 0.0116 mg/L

Lab Sample ID: LCS 560-161862/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 161978 Prep Batch: 161862** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits

Manganese, Dissolved 2 50 2.316 mg/L 93 80 - 120 Lab Sample ID: 600-184109-12 MS Client Sample ID: ARTESIA-MW34-04222019

Matrix: Water Prep Type: Dissolved Analysis Batch: 161978 Prep Batch: 161862 Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits 0.0116 U Manganese, Dissolved 2.50 2.294 mg/L 80 - 120

Eurofins TestAmerica, Houston

QC Sample Results

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Method: 6020 - Metals (ICP/MS)

0.0116 U

Manganese, Dissolved

Lab Sample ID: 600-184109-12 MSD Client Sample ID: ARTESIA-MW34-04222019 **Matrix: Water Prep Type: Dissolved Analysis Batch: 161978 Prep Batch: 161862** Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit

2.224

mg/L

89

80 - 120

3

2.50

QC Association Summary

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

GC/MS VOA

Analysis Batch: 263890

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-184109-1	ARTESIA-TB01-04222019	Total/NA	Water	8260B	_
600-184109-2	ARTESIA-INLET-04222019	Total/NA	Water	8260B	
600-184109-3	ARTESIA-MID-04222019	Total/NA	Water	8260B	
600-184109-4	ARTESIA-OUTLET-04222019	Total/NA	Water	8260B	
600-184109-5	ARTESIA-MW12-04222019	Total/NA	Water	8260B	
600-184109-6	ARTESIA-MW30-04222019	Total/NA	Water	8260B	
600-184109-7	ARTESIA-MD30-04222019	Total/NA	Water	8260B	
600-184109-8	ARTESIA-MW32-04222019	Total/NA	Water	8260B	
600-184109-9	ARTESIA-MW17C-04222019	Total/NA	Water	8260B	
600-184109-10	ARTESIA-MW11-04222019	Total/NA	Water	8260B	
600-184109-11	ARTESIA-MW26-04222019	Total/NA	Water	8260B	
600-184109-12	ARTESIA-MW34-04222019	Total/NA	Water	8260B	
600-184109-13	ARTESIA-MD11-04222019	Total/NA	Water	8260B	
MB 600-263890/7	Method Blank	Total/NA	Water	8260B	
LCS 600-263890/5	Lab Control Sample	Total/NA	Water	8260B	
600-184109-12 MS	ARTESIA-MW34-04222019	Total/NA	Water	8260B	
600-184109-12 MSD	ARTESIA-MW34-04222019	Total/NA	Water	8260B	

HPLC/IC

Analysis Batch: 264422

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-184109-5	ARTESIA-MW12-04222019	Total/NA	Water	300.0	
600-184109-9	ARTESIA-MW17C-04222019	Total/NA	Water	300.0	
600-184109-10	ARTESIA-MW11-04222019	Total/NA	Water	300.0	
MB 600-264422/11	Method Blank	Total/NA	Water	300.0	
LCS 600-264422/12	Lab Control Sample	Total/NA	Water	300.0	

Metals

Prep Batch: 161862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-184109-2	ARTESIA-INLET-04222019	Dissolved	Water	3010A	
600-184109-3	ARTESIA-MID-04222019	Dissolved	Water	3010A	
600-184109-4	ARTESIA-OUTLET-04222019	Dissolved	Water	3010A	
600-184109-6	ARTESIA-MW30-04222019	Dissolved	Water	3010A	
600-184109-7	ARTESIA-MD30-04222019	Dissolved	Water	3010A	
600-184109-8	ARTESIA-MW32-04222019	Dissolved	Water	3010A	
600-184109-11	ARTESIA-MW26-04222019	Dissolved	Water	3010A	
600-184109-12	ARTESIA-MW34-04222019	Dissolved	Water	3010A	
MB 560-161862/1-A	Method Blank	Total/NA	Water	3010A	
LCS 560-161862/2-A	Lab Control Sample	Total/NA	Water	3010A	
600-184109-12 MS	ARTESIA-MW34-04222019	Dissolved	Water	3010A	
600-184109-12 MSD	ARTESIA-MW34-04222019	Dissolved	Water	3010A	

Analysis Batch: 161978

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-184109-2	ARTESIA-INLET-04222019	Dissolved	Water	6020	161862
600-184109-3	ARTESIA-MID-04222019	Dissolved	Water	6020	161862
600-184109-4	ARTESIA-OUTLET-04222019	Dissolved	Water	6020	161862
600-184109-6	ARTESIA-MW30-04222019	Dissolved	Water	6020	161862
600-184109-7	ARTESIA-MD30-04222019	Dissolved	Water	6020	161862

Eurofins TestAmerica, Houston

QC Association Summary

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Metals (Continued)

Analysis Batch: 161978 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-184109-8	ARTESIA-MW32-04222019	Dissolved	Water	6020	161862
600-184109-11	ARTESIA-MW26-04222019	Dissolved	Water	6020	161862
600-184109-12	ARTESIA-MW34-04222019	Dissolved	Water	6020	161862
MB 560-161862/1-A	Method Blank	Total/NA	Water	6020	161862
LCS 560-161862/2-A	Lab Control Sample	Total/NA	Water	6020	161862
600-184109-12 MS	ARTESIA-MW34-04222019	Dissolved	Water	6020	161862
600-184109-12 MSD	ARTESIA-MW34-04222019	Dissolved	Water	6020	161862

Lab Chronicle

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-TB01-04222019

Lab Sample ID: 600-184109-1 Date Collected: 04/22/19 13:10 **Matrix: Water**

Date Received: 04/23/19 08:59

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 263890 04/29/19 15:29 KLV TAL HOU

Client Sample ID: ARTESIA-INLET-04222019

Lab Sample ID: 600-184109-2 Date Collected: 04/22/19 13:40 **Matrix: Water**

Date Received: 04/23/19 08:59

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	263890	04/29/19 19:41	KLV	TAL HOU
Dissolved	Prep	3010A			161862	04/25/19 12:30	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 17:38	JEM	TAL CC

Client Sample ID: ARTESIA-MID-04222019

Lab Sample ID: 600-184109-3 Date Collected: 04/22/19 13:45 **Matrix: Water**

Date Received: 04/23/19 08:59

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	263890	04/29/19 20:08	KLV	TAL HOU
Dissolved	Prep	3010A			161862	04/25/19 12:30	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 17:43	JEM	TAL CC

Client Sample ID: ARTESIA-OUTLET-04222019

Lab Sample ID: 600-184109-4 Date Collected: 04/22/19 13:53 **Matrix: Water**

Date Received: 04/23/19 08:59

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	263890	04/29/19 20:36	KLV	TAL HOU
Dissolved	Prep	3010A			161862	04/25/19 12:30	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 17:48	JEM	TAL CC

Client Sample ID: ARTESIA-MW12-04222019

Lab Sample ID: 600-184109-5 Date Collected: 04/22/19 13:50 **Matrix: Water**

Date Received: 04/23/19 08:59

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			263890	04/30/19 00:19	KLV	TAL HOU
Total/NA	Analysis	300.0		100	264422	05/06/19 23:34	SKR	TAL HOU

Client Sample ID: ARTESIA-MW30-04222019

Date Collected: 04/22/19 14:05 **Matrix: Water**

Date Received: 04/23/19 08:59

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			263890	04/29/19 21:04	KLV	TAL HOU
Dissolved	Prep	3010A			161862	04/25/19 12:30	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 17:53	JEM	TAL CC

Lab Sample ID: 600-184109-6

Lab Chronicle

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-MD30-04222019

Date Collected: 04/22/19 14:10 **Matrix: Water**

Date Received: 04/23/19 08:59

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	263890	04/29/19 21:32	KLV	TAL HOU
Dissolved	Prep	3010A			161862	04/25/19 12:30	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 18:22	JEM	TAL CC

Client Sample ID: ARTESIA-MW32-04222019

Lab Sample ID: 600-184109-8 Date Collected: 04/22/19 14:50 **Matrix: Water**

Date Received: 04/23/19 08:59

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			263890	04/29/19 22:00	KLV	TAL HOU
Dissolved	Prep	3010A			161862	04/25/19 12:30	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 18:27	JEM	TAL CC

Client Sample ID: ARTESIA-MW17C-04222019 Lab Sample ID: 600-184109-9

Date Collected: 04/22/19 14:30 **Matrix: Water**

Date Received: 04/23/19 08:59

<u> </u>	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	263890	04/29/19 22:28	KLV	TAL HOU
Total/NA	Analysis	300.0		100	264422	05/06/19 23:54	SKR	TAL HOU

Client Sample ID: ARTESIA-MW11-04222019

Lab Sample ID: 600-184109-10 Date Collected: 04/22/19 15:25 **Matrix: Water**

Date Received: 04/23/19 08:59

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	263890	04/29/19 22:56	KLV	TAL HOU
Total/NA	Analysis	300.0		100	264422	05/07/19 00:14	SKR	TAL HOU

Client Sample ID: ARTESIA-MW26-04222019

Date Collected: 04/22/19 15:05 Matrix: Water

Date Received: 04/23/19 08:59

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	· ·	1	263890	04/29/19 23:24	KLV	TAL HOU
Dissolved	Prep	3010A			161862	04/25/19 12:30	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 18:32	JEM	TAL CC

Client Sample ID: ARTESIA-MW34-04222019 Lab Sample ID: 600-184109-12

Date Collected: 04/22/19 15:30 Date Received: 04/23/19 08:59

Batch Dilution **Batch** Batch Prepared

Type Method or Analyzed Analyst **Prep Type** Run **Factor** Lab 263890 04/29/19 15:57 KLV TAL HOU Total/NA Analysis 8260B

Matrix: Water

Lab Sample ID: 600-184109-11

Lab Sample ID: 600-184109-7

Lab Chronicle

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-MW34-04222019

Lab Sample ID: 600-184109-12 Date Collected: 04/22/19 15:30

Matrix: Water

Date Received: 04/23/19 08:59

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3010A			161862	04/25/19 12:30	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 17:12	JEM	TAL CC

Client Sample ID: ARTESIA-MD11-04222019

Lab Sample ID: 600-184109-13 Date Collected: 04/22/19 15:35 **Matrix: Water**

Date Received: 04/23/19 08:59

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	263890	04/29/19 23:51	KLV	TAL HOU

Laboratory References:

TAL CC = Eurofins TestAmerica, Corpus Christi, 1733 N. Padre Island Drive, Corpus Christi, TX 78408, TEL (361)289-2673 TAL HOU = Eurofins TestAmerica, Houston, 6310 Rothway Street, Houston, TX 77040, TEL (713)690-4444

Accreditation/Certification Summary

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Laboratory: Eurofins TestAmerica, Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	18-061-0	08-04-19
Louisiana	NELAP	6	01967	06-30-19
Oklahoma	State Program	6	2018-052	08-31-19
Texas	NELAP	6	T104704223-18-23	10-31-19
USDA	Federal		P330-18-00130	04-30-21

Laboratory: Eurofins TestAmerica, Corpus Christi

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Oklahoma	State Program	6	2018-070	08-31-19
Texas	NELAP	6	T104704210-19-23	03-31-20
USDA	Federal		P330-18-00314	10-31-21

Method Summary

Client: CH2M Hill, Inc. Job ID: 600-184109-1

Project/Site: Dowell - Artesia 04/23/19

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL HOU
300.0	Anions, Ion Chromatography	MCAWW	TAL HOU
6020	Metals (ICP/MS)	SW846	TAL CC
3010A	Preparation, Total Metals	SW846	TAL CC
5030B	Purge and Trap	SW846	TAL HOU

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CC = Eurofins TestAmerica, Corpus Christi, 1733 N. Padre Island Drive, Corpus Christi, TX 78408, TEL (361)289-2673 TAL HOU = Eurofins TestAmerica, Houston, 6310 Rothway Street, Houston, TX 77040, TEL (713)690-4444

Sample Summary

Client: CH2M Hill, Inc.

Project/Site: Dowell - Artesia 04/23/19

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
600-184109-1	ARTESIA-TB01-04222019	Water	04/22/19 13:10 04	4/23/19 08:59
600-184109-2	ARTESIA-INLET-04222019	Water	04/22/19 13:40 04	4/23/19 08:59
600-184109-3	ARTESIA-MID-04222019	Water	04/22/19 13:45 04	4/23/19 08:59
600-184109-4	ARTESIA-OUTLET-04222019	Water	04/22/19 13:53 04	4/23/19 08:59
600-184109-5	ARTESIA-MW12-04222019	Water	04/22/19 13:50 04	4/23/19 08:59
600-184109-6	ARTESIA-MW30-04222019	Water	04/22/19 14:05 04	4/23/19 08:59
600-184109-7	ARTESIA-MD30-04222019	Water	04/22/19 14:10 04	4/23/19 08:59
600-184109-8	ARTESIA-MW32-04222019	Water	04/22/19 14:50 04	4/23/19 08:59
600-184109-9	ARTESIA-MW17C-04222019	Water	04/22/19 14:30 04	4/23/19 08:59
600-184109-10	ARTESIA-MW11-04222019	Water	04/22/19 15:25 04	4/23/19 08:59
600-184109-11	ARTESIA-MW26-04222019	Water	04/22/19 15:05 04	4/23/19 08:59
600-184109-12	ARTESIA-MW34-04222019	Water	04/22/19 15:30 04	4/23/19 08:59
600-184109-13	ARTESIA-MD11-04222019	Water	04/22/19 15:35 04	4/23/19 08:59

Job ID: 600-184109-1

Lab	Name:	Eurofins	TestAmerica,	Housto	Job No.:	600-184109-1
-----	-------	----------	--------------	--------	----------	--------------

SDG No.:

Instrument ID: CHVOAMS06 Analysis Batch Number: 263293

Lab Sample ID: IC 600-263293/3 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Ethyl ether	5.67	Baseline	velak	04/20/19 14:31
Acrylonitrile	5.99	Baseline	velak	04/20/19 14:31
Iodomethane	6.01	Baseline	velak	04/20/19 14:32
Carbon disulfide	6.31	Baseline	velak	04/20/19 14:32
trans-1,2-Dichloroethene	6.62	Baseline	velak	04/20/19 14:32
Methyl tert-butyl ether	6.69	Baseline	velak	04/20/19 14:32
1,1-Dichloroethane	6.82	Baseline	velak	04/20/19 14:32
Vinyl acetate	6.88	Baseline	velak	04/20/19 14:32
Isopropyl ether	7.12	Baseline	velak	04/20/19 14:32
1,2-Dichloroethane-d4 (Surr)	7.86	Baseline	velak	04/20/19 14:32
1,2-Dichloroethane	7.92	Baseline	velak	04/20/19 14:32
1,1-Dichloropropene	8.14	Baseline	velak	04/20/19 14:32
Cyclohexane	8.23	Baseline	velak	04/20/19 14:32
Carbon tetrachloride	8.28	Baseline	velak	04/20/19 14:32
Methyl methacrylate	8.88	Baseline	velak	04/20/19 14:33
2-Chloroethyl vinyl ether	9.11	Baseline	velak	04/20/19 14:33
cis-1,3-Dichloropropene	9.32	Baseline	velak	04/20/19 14:33
4-Methyl-2-pentanone (MIBK)	9.38	Baseline	velak	04/20/19 14:33
1,1,2-Trichloroethane	9.85	Baseline	velak	04/20/19 14:33
1,1-Dichloroethene		Invalid Compound ID	velak	04/20/19 14:31
2-Nitropropane		Invalid Compound ID	velak	04/20/19 14:32
Acrolein		Invalid Compound ID	velak	04/20/19 14:31
Butadiene		Invalid Compound ID	velak	04/20/19 14:31
Dibromochloromethane		Invalid Compound ID	velak	04/20/19 14:33
Trichlorofluoromethane		Invalid Compound ID	velak	04/20/19 14:31
Ethyl methacrylate	10.00	Baseline	velak	04/20/19 14:33
Toluene	10.02	Baseline	velak	04/20/19 15:14
2-Hexanone	10.42	Baseline	velak	04/20/19 14:33
1,2-Dibromoethane	10.61	Baseline	velak	04/20/19 14:33
1-Chlorohexane	11.31	Baseline	velak	04/20/19 14:33

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184109-1

SDG No.:

Instrument ID: CHVOAMS06 Analysis Batch Number: 263293

Lab Sample ID: IC 600-263293/3 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
1,1,1,2-Tetrachloroethane	11.36	Baseline	velak	04/20/19 14:33
Chlorobenzene	11.46	Baseline	velak	04/20/19 14:33
o-Xylene	12.27	Baseline	velak	04/20/19 14:34
1,1,2,2-Tetrachloroethane	12.28	Baseline	velak	04/20/19 14:34
N-Propylbenzene	13.12	Baseline	velak	04/20/19 14:34
tert-Butylbenzene	13.69	Baseline	velak	04/20/19 14:34
1,2,3-Trimethylbenzene	14.21	Baseline	velak	04/20/19 14:34
n-Butylbenzene	14.47	Baseline	velak	04/20/19 14:34
1,2,4-Trichlorobenzene	16.31	Baseline	velak	04/20/19 14:34

Lab	Name:	Eurofins	TestAmerica,	Housto	Job	No.:	600-184109-1

SDG No.:

Instrument ID: CHVOAMS06 Analysis Batch Number: 263293

Lab Sample ID: IC 600-263293/4 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Dichlorodifluoromethane	3.91	Peak assignment corrected	velak	04/20/19 14:35
Chloromethane	4.17	Baseline	velak	04/20/19 14:35
Vinyl chloride	4.35	Baseline	velak	04/20/19 14:35
Butadiene	4.48	Baseline	velak	04/20/19 14:35
Chloroethane	4.96	Baseline	velak	04/20/19 14:35
Dichlorofluoromethane	5.00	Baseline	velak	04/20/19 14:35
Acetonitrile	5.48	Baseline	velak	04/20/19 14:35
Trichlorofluoromethane	5.49	Baseline	velak	04/20/19 14:35
Isopropyl alcohol	5.52	Baseline	velak	04/20/19 14:35
Acetone	5.58	Baseline	velak	04/20/19 14:36
1,1-Dichloroethene	5.97	Baseline	velak	04/20/19 14:36
t-Butanol	5.97	Baseline	velak	04/20/19 14:36
Iodomethane	6.02	Baseline	velak	04/20/19 14:36
Methyl acetate	6.09	Baseline	velak	04/20/19 14:36
1,1,2-Trichloro-1,2,2-trifluoroet	6.10	Baseline	velak	04/20/19 14:36
hane				
3-Chloro-1-propene	6.15	Baseline	velak	04/20/19 14:36
Carbon disulfide	6.32	Baseline	velak	04/20/19 14:36
trans-1,2-Dichloroethene	6.62	Baseline	velak	04/20/19 14:36
Methyl tert-butyl ether	6.69	Baseline	velak	04/20/19 14:36
Propionitrile	6.81	Baseline	velak	04/20/19 14:36
Vinyl acetate	6.88	Baseline	velak	04/20/19 14:36
Ethyl acetate	7.36	Baseline	velak	04/20/19 14:37
Isobutyl alcohol	7.46	Baseline	velak	04/20/19 14:37
2,2-Dichloropropane	7.50	Baseline	velak	04/20/19 14:37
Dibromofluoromethane	7.51	Baseline	velak	04/20/19 14:37
Tetrahydrofuran	7.67	Baseline	velak	04/20/19 14:37
1,2-Dichloroethane	7.92	Baseline	velak	04/20/19 14:37
1,1,1-Trichloroethane	8.00	Baseline	velak	04/20/19 14:37
n-Butanol	8.00	Baseline	velak	04/20/19 14:37

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184109-1

SDG No.:

Instrument ID: CHVOAMS06 Analysis Batch Number: 263293

Lab Sample ID: IC 600-263293/4 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
1,1-Dichloropropene	8.13	Baseline	velak	04/20/19 14:37
Cyclohexane	8.23	Baseline	velak	04/20/19 14:37
Benzene	8.31	Baseline	velak	04/20/19 14:37
Ethyl acrylate	8.64	Baseline	velak	04/20/19 14:38
2-Nitropropane	8.77	Baseline	velak	04/20/19 14:38
Methyl methacrylate	8.87	Baseline	velak	04/20/19 14:38
1,4-Dioxane	8.89	Baseline	velak	04/20/19 14:38
cis-1,3-Dichloropropene	9.32	Baseline	velak	04/20/19 14:38
2-Hexanone	10.43	Baseline	velak	04/20/19 14:38
1-Chlorohexane	11.32	Baseline	velak	04/20/19 14:38
Chlorobenzene-d5	11.42	Baseline	velak	04/20/19 14:38
Chlorobenzene	11.46	Baseline	velak	04/20/19 14:38
1,1,2,2-Tetrachloroethane	12.28	Baseline	velak	04/20/19 14:38
trans-1,4-Dichloro-2-butene	12.42	Baseline	velak	04/20/19 14:39
1,2-Dibromo-3-Chloropropane	14.88	Baseline	velak	04/20/19 14:39
Hexachlorobutadiene	16.65	Baseline	velak	04/20/19 14:39

Ĺab	Name:	Eurofins	TestAmerica,	Housto	Job	No.:	600-184109-1
-----	-------	----------	--------------	--------	-----	------	--------------

SDG No.:

Instrument ID: CHVOAMS06 Analysis Batch Number: 263293

Lab Sample ID: IC 600-263293/5 Client Sample ID:

COMPOUND NAME	RETENTION	ON MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Dichlorodifluoromethane	3.91	Baseline	velak	04/20/19 14:40
Chloromethane	4.17	Baseline	velak	04/20/19 14:40
Vinyl chloride	4.39	Baseline	velak	04/20/19 14:40
Butadiene	4.48	Baseline	velak	04/20/19 14:40
Bromomethane	4.83	Baseline	velak	04/20/19 14:40
Chloroethane	4.96	Baseline	velak	04/20/19 14:40
Dichlorofluoromethane	5.01	Baseline	velak	04/20/19 14:40
Acrolein	5.47	Baseline	velak	04/20/19 14:40
Trichlorofluoromethane	5.49	Baseline	velak	04/20/19 14:40
Isopropyl alcohol	5.50	Baseline	velak	04/20/19 14:40
Acetone	5.58	Baseline	velak	04/20/19 14:41
t-Butanol	5.95	Baseline	velak	04/20/19 14:41
Iodomethane	6.01	Baseline	velak	04/20/19 14:41
Methyl acetate	6.10	Baseline	velak	04/20/19 14:41
1,1,2-Trichloro-1,2,2-trifluoroet	6.11	Baseline	velak	04/20/19 14:41
hane				
Carbon disulfide	6.32	Baseline	velak	04/20/19 14:41
Propionitrile	6.82	Baseline	velak	04/20/19 14:41
2-Butanone (MEK)	7.12	Baseline	velak	04/20/19 14:41
Ethyl acetate	7.35	Baseline	velak	04/20/19 14:41
Isobutyl alcohol	7.44	Baseline	velak	04/20/19 14:42
1,2-Dichloroethane-d4 (Surr)	7.86	Baseline	velak	04/20/19 14:42
1,2-Dichloroethane	7.92	Baseline	velak	04/20/19 14:42
n-Butanol	8.01	Baseline	velak	04/20/19 14:42
Benzene	8.31	Baseline	velak	04/20/19 14:42
2-Nitropropane	8.77	Baseline	velak	04/20/19 14:42
1,4-Dioxane	8.90	Baseline	velak	04/20/19 14:42
2-Chloroethyl vinyl ether	9.12	Baseline	velak	04/20/19 14:42
trans-1,3-Dichloropropene	9.68	Baseline	velak	04/20/19 14:42
1,3-Dichloropropane	10.07	Baseline	velak	04/20/19 14:42

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184109-1

SDG No.:

Instrument ID: CHVOAMS06 Analysis Batch Number: 263293

Lab Sample ID: IC 600-263293/5 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
2-Hexanone	10.42	Baseline	velak	04/20/19 14:43
Bromoform	12.02	Baseline	velak	04/20/19 14:43
1,2,3-Trichloropropane	12.44	Baseline	velak	04/20/19 14:43
1,3,5-Trimethylbenzene	13.39	Baseline	velak	04/20/19 14:43
1,2,4-Trichlorobenzene	16.31	Baseline	velak	04/20/19 14:43
1,2,3-Trichlorobenzene	16.84	Baseline	velak	04/20/19 14:43

Lab Sample ID: IC 600-263293/6 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION			
	TIME	REASON	ANALYST	DATE	
Dichlorodifluoromethane	3.90	Baseline	velak	04/20/19 14:44	
Chloromethane	4.18	Baseline	velak	04/20/19 14:44	
Vinyl chloride	4.37	Baseline	velak	04/20/19 14:44	
Bromomethane	4.83	Baseline	velak	04/20/19 14:44	
Chloroethane	4.96	Baseline	velak	04/20/19 14:44	
Dichlorofluoromethane	5.00	Baseline	velak	04/20/19 14:44	
Acetonitrile	5.47	Baseline	velak	04/20/19 14:45	
Acrolein	5.47	Baseline	velak	04/20/19 14:44	
Trichlorofluoromethane	5.49	Baseline	velak	04/20/19 14:45	
Acetone	5.58	Baseline	velak	04/20/19 14:45	
Iodomethane	6.01	Baseline	velak	04/20/19 14:45	
1,1,2-Trichloro-1,2,2-trifluoroet	6.11	Baseline	velak	04/20/19 14:45	
hane					
3-Chloro-1-propene	6.16	Baseline	velak	04/20/19 14:45	
Isobutyl alcohol	7.44	Baseline	velak	04/20/19 14:46	
Toluene	10.02	Baseline	velak	04/20/19 15:14	
2-Hexanone	10.42	Baseline	velak	04/20/19 14:46	

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184109-1

SDG No.:

Instrument ID: CHVOAMS06 Analysis Batch Number: 263293

Lab Sample ID: ICIS 600-263293/7 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Dichlorodifluoromethane	3.91	Baseline	velak	04/20/19 14:27
Chloromethane	4.18	Baseline	velak	04/20/19 14:27
Butadiene	4.49	Baseline	velak	04/20/19 14:28
Bromomethane	4.82	Baseline	velak	04/20/19 14:28
Chloroethane	4.98	Baseline	velak	04/20/19 14:28
Acrolein	5.47	Baseline	velak	04/20/19 14:28
Trichlorofluoromethane	5.49	Baseline	velak	04/20/19 14:28
Acetone	5.58	Baseline	velak	04/20/19 14:28
1,1,2-Trichloro-1,2,2-trifluoroet	6.11	Baseline	velak	04/20/19 14:28
hane				
Isobutyl alcohol	7.45	Baseline	velak	04/20/19 14:29
1,2-Dichloroethane-d4 (Surr)	7.86	Baseline	velak	04/20/19 14:29
1,4-Dioxane	8.89	Baseline	velak	04/20/19 14:29
trans-1,4-Dichloro-2-butene	12.42	Baseline	velak	04/20/19 14:29
Hexachlorobutadiene	16.65	Baseline	velak	04/20/19 14:29
1,2,3-Trichlorobenzene	16.85	Baseline	velak	04/20/19 14:30

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184109-1

SDG No.:

Instrument ID: CHVOAMS06 Analysis Batch Number: 263293

Lab Sample ID: IC 600-263293/8 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Dichlorodifluoromethane	3.90	Baseline	velak	04/20/19 14:47
Chloromethane	4.18	Baseline	velak	04/20/19 14:47
Butadiene	4.49	Baseline	velak	04/20/19 14:47
Bromomethane	4.82	Baseline	velak	04/20/19 14:47
Chloroethane	4.98	Baseline	velak	04/20/19 14:47
Dichlorofluoromethane	4.99	Baseline	velak	04/20/19 14:47
Trichlorofluoromethane	5.49	Baseline	velak	04/20/19 14:47
Acetone	5.57	Baseline	velak	04/20/19 14:48
Propionitrile	6.81	Baseline	velak	04/20/19 14:48
Isobutyl alcohol	7.45	Baseline	velak	04/20/19 14:48
1,4-Dioxane	8.89	Baseline	velak	04/20/19 14:48
Toluene	10.02	Baseline	velak	04/20/19 15:15
m-Xylene & p-Xylene	11.83	Baseline	velak	04/20/19 14:48
1,2-Dibromo-3-Chloropropane	14.88	Baseline	velak	04/20/19 14:48
1,2,3-Trichlorobenzene	16.85	Baseline	velak	04/20/19 14:49

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184109-1

SDG No.:

Instrument ID: CHVOAMS06 Analysis Batch Number: 263293

Lab Sample ID: IC 600-263293/9 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE	EGRATION	ATION		
	TIME	REASON	ANALYST	DATE		
Vinyl chloride	4.37	Peak assignment corrected	velak	04/20/19 15:04		
Bromomethane	4.83	Peak assignment corrected	velak	04/20/19 15:04		
1,1-Dichloroethene	5.96	Baseline	velak	04/20/19 15:08		
Acrylonitrile	5.99	Baseline	velak	04/20/19 15:09		
Methylene Chloride	6.08	Baseline	velak	04/20/19 15:09		
1,1,2-Trichloro-1,2,2-trifluoroet hane	6.11	Baseline	velak	04/20/19 15:09		
Hexane	7.11	Baseline	velak	04/20/19 15:10		
Isopropyl ether	7.12	Baseline	velak	04/20/19 15:10		
Methacrylonitrile	7.21	Baseline	velak	04/20/19 15:10		
Isobutyl alcohol	7.45	Peak assignment corrected	velak	04/20/19 15:04		
1,2-Dichloropropane	8.76	Baseline	velak	04/20/19 15:12		
1,4-Dioxane	8.90	Baseline	velak	04/20/19 15:04		
Methylcyclohexane	9.21	Baseline	velak	04/20/19 15:13		
Toluene	10.02	Baseline	velak	04/20/19 15:13		
Tetrachloroethene	10.75	Baseline	velak	04/20/19 15:16		
Ethylbenzene	11.63	Baseline	velak	04/20/19 15:16		
o-Xylene	12.27	Baseline	velak	04/20/19 15:16		
1,2,3-Trichloropropane	12.43	Baseline	velak	04/20/19 15:04		

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184109-1

SDG No.:

Instrument ID: CHVOAMS06 Analysis Batch Number: 263293

Lab Sample ID: ICV 600-263293/1012 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Dichlorodifluoromethane	3.90	Baseline	velak	04/22/19 11:17
Chloromethane	4.17	Baseline	velak	04/22/19 11:17
Vinyl chloride	4.37	Baseline	velak	04/22/19 11:18
Bromomethane	4.83	Baseline	velak	04/22/19 11:18
Chloroethane	4.96	Baseline	velak	04/22/19 11:18
Dichlorofluoromethane	4.99	Baseline	velak	04/22/19 11:18
Acrolein	5.47	Baseline	velak	04/22/19 11:18
Acetone	5.58	Baseline	velak	04/22/19 11:18
1,1,2-Trichloro-1,2,2-trifluoroet	6.11	Baseline	velak	04/22/19 11:19
hane				
1,1-Dichloroethane	6.82	Baseline	velak	04/22/19 11:19
Isobutyl alcohol	7.44	Baseline	velak	04/22/19 11:19
1,4-Dioxane	8.89	Baseline	velak	04/22/19 11:19

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184109-1

SDG No.:

Instrument ID: CHVOAMS06 Analysis Batch Number: 263890

Lab Sample ID: CCVIS 600-263890/3 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	FRATION		
	TIME	REASON	ANALYST	DATE		
Dichlorodifluoromethane	3.90	Baseline	velak	04/29/19 13:11		
Chloromethane	4.18	Baseline	velak	04/29/19 13:11		
Vinyl chloride	4.38	Baseline	velak	04/29/19 13:11		
Butadiene	4.47	Baseline	velak	04/29/19 13:12		
Chloroethane	4.95	Baseline	velak	04/29/19 13:12		
Dichlorofluoromethane	4.98	Baseline	velak	04/29/19 13:12		
Acetonitrile	5.49	Baseline	velak	04/29/19 13:12		
Trichlorofluoromethane	5.49	Baseline	velak	04/29/19 13:12		
Acetone	5.58	Baseline	velak	04/29/19 13:13		
Propionitrile	6.80	Baseline	velak	04/29/19 13:13		
Isobutyl alcohol	7.44	Baseline	velak	04/29/19 13:13		
2-Hexanone	10.42	Baseline	velak	04/29/19 13:13		
m-Xylene & p-Xylene	11.82	Baseline	velak	04/29/19 13:13		
Hexachlorobutadiene	16.65	Baseline	velak	04/29/19 13:14		

Lab Sample ID: 600-184109-12 MS Client Sample ID: ARTESIA-MW34-04222019 MS

COMPOUND NAME	RETENTION	MANUAL INTEGRATION				
	TIME	REASON	ANALYST	DATE		
Dibromofluoromethane	7.52	Baseline	velak	04/29/19 16:53		

Lab Sample ID: 600-184109-2 Client Sample ID: ARTESIA-INLET-04222019

COMPOUND NAME	RETENTION MANUAL INTEGRATION				
	TIME	REASON	ANALYST	DATE	
Benzene	8.31	Peak assignment corrected	velak	04/30/19 11:04	

Lab Name: Eurofins TestAmerica, Hou	usto Job No	.: 600-184109-1	_		
SDG No.:					
Instrument ID: CHVOAMS06	Analys	is Batch Number: 263890	_		
Lab Sample ID: 600-184109-3	Client	Sample ID: ARTESIA-MID-0422201	.9		
Date Analyzed: 04/29/19 20:08	Lab Fi	le ID: <u>J11916.D</u>	GC Colur	mn: DB-VRX 60	ID: 0.25 (mm)
COMPOUND NAME	RETENTION	MANUAL INTE	GRATION		
	TIME	REASON	ANALYST	DATE	
Benzene	8.31	Peak assignment corrected	velak	04/30/19 11:05	
Lab Sample ID: 600-184109-4	Client	Sample ID: ARTESIA-OUTLET-0422	22019		
Date Analyzed: 04/29/19 20:36	Lab Fi	le ID: <u>J11917.D</u>	GC Colur	mn: DB-VRX 60	ID: <u>0.25(mm)</u>
COMPOUND NAME	RETENTION	MANUAL INTE	GRATION		
	TIME	REASON	ANALYST	DATE	
1,1-Dichloroethene	5.97	Peak assignment corrected	velak	04/30/19 11:05	
Lab Sample ID: 600-184109-6	Client	Sample ID: ARTESIA-MW30-042220	19		
Date Analyzed: 04/29/19 21:04	Lab Fi	le ID: <u>J11918.D</u>	GC Colur	ID: <u>0.25(mm)</u>	
COMPOUND NAME	RETENTION	MANUAL INTE	GRATION		
	TIME	REASON	ANALYST	DATE	
Benzene	8.31	Peak assignment corrected	velak	04/30/19 11:05	
Lab Sample ID: 600-184109-7	Client	Sample ID: ARTESIA-MD30-042220	19		
Date Analyzed: 04/29/19 21:32	Lab Fi	le ID: <u>J11919.D</u>	GC Colur	mn: DB-VRX 60	ID: 0.25 (mm)
COMPOUND NAME	RETENTION	MANUAL INTE	GRATION		
	TIME	REASON	ANALYST	DATE	
Benzene	8.31	Peak assignment corrected	velak	04/30/19 11:06	
Lab Sample ID: 600-184109-8	Client	Sample ID: ARTESIA-MW32-042220)19		
Date Analyzed: 04/29/19 22:00	Lab Fi	le ID: <u>J11920.D</u>	GC Colur	mn: DB-VRX 60	ID: <u>0.25(mm)</u>
COMPOUND NAME	RETENTION	MANUAL INTE	GRATION		
	TIME	REASON	ANALYST	DATE	
1,1-Dichloroethane	6.82	Peak assignment corrected	velak	04/30/19 11:06	

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184109-1

SDG No.:

Instrument ID: CHVOAMS06 Analysis Batch Number: 263890

Lab Sample ID: 600-184109-11

Client Sample ID: ARTESIA-MW26-04222019

Date Analyzed: 04/29/19 23:24

Lab File ID: J11923.D

GC Column: DB-VRX 60 ID: 0.25 (mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION				
	TIME	REASON	ANALYST	DATE		
1,1-Dichloroethane	6.82	Peak assignment corrected	velak	04/30/19 11:06		
Benzene	8.32	Peak assignment corrected	velak	04/30/19 11:06		
Tetrachloroethene	10.75	Peak assignment corrected	velak	04/30/19 11:06		

REAGENT TRACEABILITY SUMMARY

Lab Name: Eurofi	ns TestAmerica, Houston	Job No.: 600-184109-1	
SDG No.:			

				Reagent	Parent Reage	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
BFB 00280							1,2-Dichloroethene, Total	
_							1,3-Dichloropropene, Total	
							2,3-dichlorobutane	
							Tentatively Identified	
							Compound	
							Trihalomethanes, Total	
							Xylenes, Total	
					VOASBFB 00014	25 uL	BFB	25 ug/mL
.VOASBFB 00014	07/31/21		Restek, Lot A0120567	-	(Purchased Rea	igent)	BFB	2000 ug/mL
BFB 00281							1,2-Dichloroethene, Total	
							1,3-Dichloropropene, Total	_
						ŀ	2,3-dichlorobutane	
							Tentatively Identified	
							Compound	
							Trihalomethanes, Total	
							Xylenes, Total	
					VOASBFB 00014	50 uL		25 ug/mL
.VOASBFB 00014	07/31/21		Restek, Lot A0120567		(Purchased Rea		BFB	2000 ug/mL
CCV 00103	10/05/19	04/26/19	DI WATER, Lot NONE	500 mL	WETSICCSO4 00015	10 mL	Sulfate	20 mg/L
.WETSICCSO4 00015	06/21/20		ANIC-VENTURE, Lot k2-so		(Purchased Rea		Sulfate	1000 mg/L
ICCALSTD1 00042	05/02/19	03/07/19	DI WATER, Lot NONE	100 mL	WETSICCCL 00024	0 mL	Chloride	0 mg/L
.WETSICCL 00024	12/26/19	INORG	ANIC-VENTURE, Lot N2-CL		(Purchased Rea		Chloride	1000 mg/L
ICCALSTD2_00049	05/02/19	03/07/19	DI WATER, Lot NONE	100 mL	WETSICCBRO 00012	20 uL	Bromide	0.2 mg/L
		, . ,	,		WETSICCCL 00024		Chloride	0.4 mg/L
					WETSICCFL 00013		Fluoride	0.2 mg/L
					WETSICCSO4 00016		Sulfate	0.4 mg/L
.WETSICCBRO 00012	05/02/19	TNORGA	ANIC VENTURES, Lot n2-br	665239	(Purchased Rea		Bromide	1000 mg/L
.WETSICCCL 00024	12/26/19	TNORG	ANIC-VENTURE, Lot N2-CL	664868	(Purchased Rea	gent.)	Chloride	1000 mg/L
.WETSICCFL 00013	10/05/19	TNORG	ANIC VENTURES, Lot n2-f	670705	(Purchased Rea		Fluoride	1000 mg/L
.WETSICCSO4 00016	02/26/20		ANIC-VENTURE, Lot N2-SOX		(Purchased Rea		Sulfate	1000 mg/L
ICCALSTD3 00042	05/02/19	03/07/19	DI WATER, Lot NONE	100 mL	WETSICCBRO 00012	50 uL	Bromide	0.5 mg/L
_ · · ·			,		WETSICCCL 00024	100 uL	Chloride	1 mg/L
					WETSICCFL 00013		Fluoride	0.5 mg/L
					WETSICCSO4 00016		Sulfate	1 mg/L
.WETSICCBRO 00012	05/02/19	INORGA	ANIC VENTURES, Lot n2-br	665239	(Purchased Rea		Bromide	1000 mg/L
.WETSICCCL 00024	12/26/19		ANIC-VENTURE, Lot N2-CL		(Purchased Rea		Chloride	1000 mg/L
.WETSICCFL 00013	10/05/19	INORG	ANIC VENTURES, Lot n2-f	670705	(Purchased Rea		Fluoride	1000 mg/L
.WETSICCSO4 00016	02/26/20	INORGA	ANIC-VENTURE, Lot N2-SOX	(671919	(Purchased Rea		Sulfate	1000 mg/L
ICCALSTD4_00041	05/02/19		DI WATER, Lot NONE		WETSICCBRO 00012	100 uL	Bromide	1 mg/L
			•		WETSICCCL 00024		Chloride	2 mg/L
					WETSICCFL 00013	100 uL	Fluoride	1 mg/L
					WETSICCSO4 00016	200 uL	Sulfate	2 mg/L
.WETSICCBRO 00012	05/02/19	INORGA	ANIC VENTURES, Lot n2-br	665239	(Purchased Rea		Bromide	1000 mg/L
.WETSICCCL 00024	12/26/19		ANIC-VENTURE, Lot N2-CL		(Purchased Rea		Chloride	1000 mg/L
.WETSICCFL 00013	10/05/19		ANIC VENTURES, Lot n2-f		(Purchased Rea	,	Fluoride	1000 mg/L
.WETSICCSO4 00016	02/26/20		ANIC-VENTURE, Lot N2-SOX		(Purchased Rea		Sulfate	1000 mg/L

REAGENT TRACEABILITY SUMMARY

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.	.: 600-184109-1

SDG No.:

				Reagent	Parent 1	Reagent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
ICCALSTD5 00042	05/02/19	03/07/19	DI WATER, Lot NONE	100 mL	WETSICCBRO 0001		Bromide	2 mg/L
_					WETSICCCL 00024	500 uL	Chloride	5 mg/L
					WETSICCFL 00013	200 uL	Fluoride	2 mg/L
					WETSICCSO4 0001	6 500 uL	Sulfate	5 mg/L
.WETSICCBRO_00012	05/02/19	INORG	ANIC VENTURES, Lot n2-br	665239	(Purchased		Bromide	1000 mg/L
.WETSICCCL_00024	12/26/19		GANIC-VENTURE, Lot N2-CL		(Purchased		Chloride	1000 mg/L
.WETSICCFL_00013	10/05/19	INORG	GANIC VENTURES, Lot n2-fe	670705	(Purchased	l Reagent)	Fluoride	1000 mg/L
.WETSICCSO4_00016	02/26/20	INORG	ANIC-VENTURE, Lot N2-SOX	671919	(Purchased	l Reagent)	Sulfate	1000 mg/L
ICCALSTD6_00038	05/02/19	03/07/19	DI WATER, Lot NONE	100 mL	WETSICCBRO 0001	2 500 uL	Bromide	5 mg/L
_					WETSICCCL 00024		Chloride	10 mg/L
					WETSICCFL 00013		Fluoride	5 mg/L
					WETSICCSO4 0001		Sulfate	10 mg/L
.WETSICCBRO 00012	05/02/19	INORG	ANIC VENTURES, Lot n2-br	665239	(Purchased	l Reagent)	Bromide	1000 mg/L
.WETSICCCL 00024	12/26/19		GANIC-VENTURE, Lot N2-CL		(Purchased	l Reagent)	Chloride	1000 mg/L
.WETSICCFL 00013	10/05/19	INORG	GANIC VENTURES, Lot n2-fe	670705	(Purchased	l Reagent)	Fluoride	1000 mg/L
.WETSICCSO4_00016	02/26/20	INORG	ANIC-VENTURE, Lot N2-SOX	671919	(Purchased	l Reagent)	Sulfate	1000 mg/L
ICCALSTD7_00040	05/02/19	03/07/19	DI WATER, Lot NONE	100 mT	WETSICCBRO 0001	2 750 uT	Bromide	7.5 mg/L
	***, ***, ***				WETSICCCL 00024		Chloride	20 mg/L
					WETSICCFL 00013	750 uL	Fluoride	7.5 mg/L
					WETSICCSO4 0001		Sulfate	20 mg/L
.WETSICCBRO 00012	05/02/19	INORG	ANIC VENTURES, Lot n2-br	665239	(Purchased		Bromide	1000 mg/L
.WETSICCCL 00024	12/26/19	INORG	GANIC-VENTURE, Lot N2-CL	664868	(Purchased	Reagent)	Chloride	1000 mg/L
.WETSICCFL 00013	10/05/19	INORG	GANIC VENTURES, Lot n2-fe	670705	(Purchased	l Reagent)	Fluoride	1000 mg/L
.WETSICCSO4_00016	02/26/20		ANIC-VENTURE, Lot N2-SOX		(Purchased	l Reagent)	Sulfate	1000 mg/L
ICCALSTD8 00029	05/02/19	03/07/19	DI WATER, Lot NONE	100 mL	WETSICCBRO 0001	2 1 mL	Bromide	10 mg/L
			·		WETSICCCL 00024		Chloride	40 mg/L
					WETSICCFL 00013		Fluoride	10 mg/L
					WETSICCSO4 0001		Sulfate	40 mg/L
.WETSICCBRO 00012	05/02/19	INORG	ANIC VENTURES, Lot n2-br	665239	(Purchased	l Reagent)	Bromide	1000 mg/L
.WETSICCCL 00024	12/26/19	INORG	GANIC-VENTURE, Lot N2-CL	664868	(Purchased	l Reagent)	Chloride	1000 mg/L
.WETSICCFL 00013	10/05/19	INORG	GANIC VENTURES, Lot n2-fe	670705	(Purchased		Fluoride	1000 mg/L
.WETSICCSO4_00016	02/26/20	INORG	ANIC-VENTURE, Lot N2-SOX	671919	(Purchased	l Reagent)	Sulfate	1000 mg/L
ICV/LCS 00103	09/30/19	05/03/19	DI WATER, Lot NONE	500 mL	WETSICISO4 0001	2 10 mL	Sulfate	20 mg/L
.WETSICISO4 00012	09/29/20		CCUSTANDARD, Lot 2180851		(Purchased	l Reagent)	Sulfate	1000 mg/L
VOAIS250PPM 00124	04/24/19	04/10/19	Methanol, Lot V032119A	1 mT.	VOA3IS 00031	100 ut.	1,4-Dichlorobenzene-d4	250 ug/mL
VON1523011M_00124	04/24/13	04/10/13	Meenanoi, Boe vosziism	1 11111	V01131B_00031	100 41	Chlorobenzene-d5	250 ug/mL
							Fluorobenzene	250 ug/mL
.VOA3IS 00031	06/30/23		Restek, Lot A0138856		(Purchased	l Reagent.)	1,4-Dichlorobenzene-d4	2500 ug/mL
	,,				(= 0.2 0.10.0 0.0	,	Chlorobenzene-d5	2500 ug/mL
							Fluorobenzene	2500 ug/mL
VOAIS250PPM_00125	05/08/19	04/24/19	Methanol, Lot V032119A	1 mT.	VOA3IS 00031	100 117.	1,4-Dichlorobenzene-d4	250 ug/mL
	00,00,13	1 2 1, 2 1, 1 3		1 1112		100 41	Chlorobenzene-d5	250 ug/mL
							Fluorobenzene	250 ug/mL
.VOA3IS 00031	06/30/23		Restek, Lot A0138856	1	(Purchased	l Reagent)	1,4-Dichlorobenzene-d4	2500 ug/mL
1 - 1 - 1 - 1 - 1	1 , ,		,		,		Chlorobenzene-d5	2500 ug/mL

REAGENT TRACEABILITY SUMMARY

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-184109-1
9 D.G.	N -					

				Reagent	Parent Reagent			
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
3					3		Fluorobenzene	2500 ug/mL
VOALCSPT2T_00058	04/24/19	04/10/19	Methanol, Lot V032119A	1 mT.	VOALMegMi2017 00003	20 11Tı	1,1-Dichloroethane	50 ug/mL
VOALCOITZI_00030	01/21/19	01/10/13	incending, for vostilish	1 1112	\\ \text{\text{\$\frac{1}{2}}} \\ \te	20 41	1,1-Dichloroethene	50 ug/mL
							Benzene	50 ug/mL
							Naphthalene	50 ug/mL
							Tetrachloroethene	50 ug/mL
.VOALMegMi2017 00003	06/30/19		Restek, Lot A0123775		(Purchased Reage	n +)	1,1-Dichloroethane	2500 ug/mL
	00/30/13	Rester, Est Holzs/15			(Tarenasea Reagene)		1,1-Dichloroethene	2500 ug/mL
							Benzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
VOALCSPT2T_00059	05/08/19	04/24/19	Methanol, Lot V032119A	1 mL	VOALMegMi2017_00003	20 uL	1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
							Benzene	50 ug/mL
							Naphthalene	50 ug/mL
							Tetrachloroethene	50 ug/mL
.VOALMegMi2017_00003	06/30/19		Restek, Lot A0123775		(Purchased Reage	ent)	1,1-Dichloroethane	2500 ug/mL
							1,1-Dichloroethene	2500 ug/mL
							Benzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
VOASS250PPM_00101	04/24/19	04/10/19	Methanol, Lot V032119A	1 mL	VOARSS_00012	100 uL	1,2-Dichloroethane-d4 (Surr)	250 ug/mL
							4-Bromofluorobenzene	250 ug/mL
							Dibromofluoromethane	250 ug/mL
							Toluene-d8 (Surr)	250 ug/mL
.VOARSS_00012	12/31/20	/20 Restek, Lot A0115812		(Purchased Reagent)		1,2-Dichloroethane-d4 (Surr)	2500 ug/mL	
						4-Bromofluorobenzene	2500 ug/mL	
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
VOASS250PPM 00102	05/08/19	04/24/19	Methanol, Lot V032119A	1 mL	VOARSS 00012	100 uL	1,2-Dichloroethane-d4 (Surr)	250 ug/mL
_					_		4-Bromofluorobenzene	250 ug/mL
							Dibromofluoromethane	250 ug/mL
							Toluene-d8 (Surr)	250 ug/mL
.VOARSS 00012	12/31/20		Restek, Lot A0115812		(Purchased Reage	ent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
_							4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
VOASTDGASPT 00322	04/24/19	04/17/19	Methanol, Lot V032119A	1 mL	VOARGAS 00014	20 uL	Bromomethane	50 ug/mL
			,		_		Butadiene	50 ug/mL
							Chloroethane	50 ug/mL
							Chloromethane	50 ug/mL
							Dichlorodifluoromethane	50 ug/mL
							Dichlorofluoromethane	50 ug/mL
							Trichlorofluoromethane	50 ug/mL
							Vinyl chloride	50 ug/mL
.VOARGAS 00014	10/31/20	1	Restek, Lot A0131502	1	(Purchased Reage		Bromomethane	2500 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-184109-1
SDG	No.:					

				Reagent	Parent Reager	it		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Butadiene	2500 ug/mL
							Chloroethane	2500 ug/mL
							Chloromethane	2500 ug/mL
							Dichlorodifluoromethane	2500 ug/mL
							Dichlorofluoromethane	2500 ug/mL
							Trichlorofluoromethane	2500 ug/mL
							Vinyl chloride	2500 ug/mL
VOASTDst_00107	04/24/19	04/10/19	Methanol, Lot V032119A	1 mL	VOAMegMix2017_00005	20 uL	1,1,1,2-Tetrachloroethane	50 ug/mL
							1,1,1-Trichloroethane	50 ug/mL
							1,1,2,2-Tetrachloroethane	50 ug/mL
							1,1,2-Trichloro-1,2,2-trifluor	50 ug/mL
							oethane	
							1,1,2-Trichloroethane	50 ug/mL
							1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
							1,1-Dichloropropene	50 ug/mL
							1,2,3-Trichlorobenzene	50 ug/mL
							1,2,3-Trichloropropane	50 ug/mL
							1,2,4-Trichlorobenzene	50 ug/mL
							1,2,4-Trimethylbenzene	50 ug/mL
							1,2-Dibromo-3-Chloropropane	50 ug/mL
							1,2-Dichlorobenzene	50 ug/mL
							1,2-Dichloroethane	50 ug/mL
							1,2-Dichloropropane	50 ug/mL
							1,3,5-Trimethylbenzene	50 ug/mL
							1,3-Dichlorobenzene	50 ug/mL
							1,3-Dichloropropane	50 ug/mL
							1,4-Dichlorobenzene	50 ug/mL
							1,4-Dioxane	1000 ug/mL
							2,2-Dichloropropane	50 ug/mL
							2-Chlorotoluene	50 ug/mL
							2-Methyl-2-propanol	500 ug/mL
							3-Chloro-1-propene	50 ug/mL
							4-Chlorotoluene	50 ug/mL
							4-Isopropyltoluene	50 ug/mL
							Acrylonitrile	500 ug/mL
							Benzene	50 ug/mL
							Bromobenzene Bromoform	50 ug/mL
							Carbon disulfide	50 ug/mL
							Carbon disulfide Carbon tetrachloride	50 ug/mL
							Chlorobenzene	50 ug/mL 50 ug/mL
							Chlorobenzene Chlorobromomethane	50 ug/mL 50 ug/mL
							Chlorodibromomethane Chlorodibromomethane	50 ug/mL 50 ug/mL
							Chlorodibromomethane Chloroform	50 ug/mL 50 ug/mL
I							cis-1,2-Dichloroethene	50 ug/mL
							cis-1,3-Dichloropropene	50 ug/mL
			I		I		Cyclohexane	50 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston		600-184109	

				Reagent	Parent Reage	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Dibromomethane	50 ug/mI
							Dichlorobromomethane	50 ug/mI
							Ethyl ether	50 ug/mI
							Ethyl methacrylate	50 ug/mI
							Ethylbenzene	50 ug/mI
							Ethylene Dibromide	50 ug/mI
							Hexachlorobutadiene	50 ug/mI
							Hexane	50 ug/mI
							Iodomethane	50 ug/mI
							Isobutyl alcohol	1250 ug/mI
							Isopropylbenzene	50 ug/mI
							m-Xylene & p-Xylene	50 ug/mI
							Methyl acetate	100 ug/mI
							Methyl tert-butyl ether	50 ug/mI
							Methylcyclohexane	50 ug/mI
							Methylene Chloride	50 ug/mI
							n-Butylbenzene	50 ug/mI
							n-Heptane	50 ug/mI
							N-Propylbenzene	50 ug/mI
							Naphthalene	50 ug/mI
							o-Xylene	50 ug/mI
							sec-Butylbenzene	50 ug/mI
							Styrene	50 ug/mI
							tert-Butylbenzene	50 ug/mI
							Tetrachloroethene	50 ug/mI
							Tetrahydrofuran	100 ug/mI
							Toluene	50 ug/mI
							trans-1,2-Dichloroethene	50 ug/mI
							trans-1,3-Dichloropropene	50 ug/mI
							trans-1,4-Dichloro-2-butene	50 ug/mI
							Trichloroethene	50 ug/mI
					VOAR2CEVE 00014	40 uL	2-Chloroethyl vinyl ether	100 ug/mI
					VOARAcroleinS 00004	12.5 uL	Acrolein	250 ug/mI
					VOARADD4COM 00006	20 uL	Ethyl acetate	100 ug/mI
					_		Ethyl acrylate	50 ug/mI
							Methyl methacrylate	100 ug/mI
							n-Butyl acetate	50 ug/mI
					VOARADDCOM 00013	20 uL	1,2,3-Trimethylbenzene	50 ug/mI
					_		1,3,5-Trichlorobenzene	50 ug/mI
							1-Chlorohexane	50 ug/mI
							2-Chloro-1,3-butadiene	50 ug/mI
							2-Nitropropane	100 ug/mI
							Benzyl chloride	50 ug/mI
							Isooctane	50 ug/mI
							Isopropyl alcohol	500 ug/mI
							Methacrylonitrile	500 ug/mI
							n-Butanol	1250 ug/mI
					VOARKETONDup 00002	8 11T.	2-Butanone (MEK)	100 ug/mI

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-184109-1

				Reagent	Parent Reage	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							2-Hexanone	100 ug/mL
							4-Methyl-2-pentanone (MIBK)	100 ug/mL
							Acetone (HIBR)	100 ug/mL
					VOARPOLADD 00013	20 11T.	Acetonitrile	500 ug/mL
					VOINT OHIDD_00013	20 41	Isopropyl ether	50 ug/mL
							Propionitrile	500 ug/mL
							Tert-amyl methyl ether	50 ug/mL
							Tert-butyl ethyl ether	50 ug/mL
					1103 DCC 00012	20	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
					VOARSS_00012	20 UL	4-Bromofluorobenzene	
								50 ug/mL
							Dibromofluoromethane	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
					VOARVASTD_00003		Vinyl acetate	100 ug/mL
.VOAMegMix2017_00005	06/30/19		Restek, Lot A0123711		(Purchased Read	gent)	1,1,1,2-Tetrachloroethane	2500 ug/mL
							1,1,1-Trichloroethane	2500 ug/mL
							1,1,2,2-Tetrachloroethane	2500 ug/mL
							1,1,2-Trichloro-1,2,2-trifluor	2500 ug/mL
							oethane	
							1,1,2-Trichloroethane	2500 ug/mL
							1,1-Dichloroethane	2500 ug/mL
							1,1-Dichloroethene	2500 ug/mL
							1,1-Dichloropropene	2500 ug/mL
							1,2,3-Trichlorobenzene	2500 ug/mL
							1,2,3-Trichloropropane	2500 ug/mL
							1,2,4-Trichlorobenzene	2500 ug/mL
							1,2,4-Trimethylbenzene	2500 ug/mL
							1,2-Dibromo-3-Chloropropane	2500 ug/mL
							1,2-Dichlorobenzene	2500 ug/mL
							1,2-Dichloroethane	2500 ug/mL
							1,2-Dichloropropane	2500 ug/mL
							1,3,5-Trimethylbenzene	2500 ug/mL
							1,3-Dichlorobenzene	2500 ug/mL
							1,3-Dichloropropane	2500 ug/mL
							1,4-Dichlorobenzene	2500 ug/mL
							1,4-Dioxane	50000 ug/mL
							2,2-Dichloropropane	2500 ug/mL
							2-Chlorotoluene	2500 ug/mL
							2-Methyl-2-propanol	25000 ug/mL
							3-Chloro-1-propene	2500 ug/mL
							4-Chlorotoluene	2500 ug/mL
							4-Isopropyltoluene	2500 ug/mL
							Acrylonitrile	25000 ug/mL
							Benzene	2500 ug/mL
							Bromobenzene	2500 ug/mL
							Bromoform	2500 ug/mL
							lCarbon disulfide	2500 110 /mT
							Carbon disulfide Carbon tetrachloride	2500 ug/mL 2500 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.: 600-184109-1	

				Reagent	Parent Reag	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Chlorobromomethane	2500 ug/mL
							Chlorodibromomethane	2500 ug/mL
							Chloroform	2500 ug/mL
							cis-1,2-Dichloroethene	2500 ug/mL
							cis-1,3-Dichloropropene	2500 ug/mL
							Cyclohexane	2500 ug/mL
							Dibromomethane	2500 ug/mL
							Dichlorobromomethane	2500 ug/mL
							Ethyl ether	2500 ug/mL
							Ethyl methacrylate	2500 ug/mL
							Ethylbenzene	2500 ug/mL
							Ethylene Dibromide	2500 ug/mL
							Hexachlorobutadiene	2500 ug/mL
							Hexane	2500 ug/mL
							Iodomethane	2500 ug/mL
							Isobutyl alcohol	62500 ug/mL
							Isopropylbenzene	2500 ug/mL
							m-Xylene & p-Xylene	2500 ug/mL
							Methyl acetate	5000 ug/mL
							Methyl tert-butyl ether	2500 ug/mL
							Methylcyclohexane	2500 ug/mL
							Methylene Chloride	2500 ug/mL
							n-Butylbenzene	2500 ug/mL
							n-Heptane	2500 ug/mL
							N-Propylbenzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							o-Xylene	2500 ug/mL
							sec-Butylbenzene	2500 ug/mL
							Styrene	2500 ug/mL
							tert-Butylbenzene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
							Tetrahydrofuran	5000 ug/mL
							Toluene	2500 ug/mL
							trans-1,2-Dichloroethene	2500 ug/mL
							trans-1,3-Dichloropropene	2500 ug/mL
							trans-1,4-Dichloro-2-butene	2500 ug/mL
							Trichloroethene	2500 ug/mL
.VOAR2CEVE 00014	12/31/20		Restek, Lot A013330	2	(Purchased Rea	agent)	2-Chloroethyl vinyl ether	2500 ug/mL
.VOARAcroleinS 00004	05/31/19		Restek, Lot A014301		(Purchased Rea		Acrolein	20000 ug/mL
.VOARADD4COM 00006	08/31/19		Restek, Lot A013544		(Purchased Rea		Ethyl acetate	5000 ug/mL
-					,	, ,	Ethyl acrylate	2500 ug/mL
							Methyl methacrylate	5000 ug/mL
							n-Butyl acetate	2500 ug/mL
.VOARADDCOM 00013	05/31/19		Restek, Lot A013281	6	(Purchased Rea	agent)	1,2,3-Trimethylbenzene	2500 ug/mL
<u> </u>	, - ,				,	5 - /	1,3,5-Trichlorobenzene	2500 ug/mL
							1-Chlorohexane	2500 ug/mL
							2-Chloro-1,3-butadiene	2500 ug/mL
							2-Nitropropane	5000 ug/mL

Lab Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-184109-1
SDG No.:					

				Reagent	Parent Reage	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Benzyl chloride	2500 ug/mL
							Isooctane	2500 ug/mL
							Isopropyl alcohol	25000 ug/mL
							Methacrylonitrile	25000 ug/mL
							n-Butanol	62500 ug/mL
.VOARKETONDup_00002	01/31/20		RESTEK, Lot A0123890		(Purchased Reag	gent)	2-Butanone (MEK)	12500 ug/mL
							2-Hexanone	12500 ug/mL
							4-Methyl-2-pentanone (MIBK)	12500 ug/mL
							Acetone	12500 ug/mL
.VOARPOLADD 00013	07/31/20		Restek, Lot A0139911		(Purchased Reag	gent)	Acetonitrile	25000 ug/mL
_							Isopropyl ether	2500 ug/mL
							Propionitrile	25000 ug/mL
							Tert-amyl methyl ether	2500 ug/mL
							Tert-butyl ethyl ether	2500 ug/mL
.VOARSS 00012	12/31/20		Restek, Lot A0115812		(Purchased Reag	gent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
_							4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
.VOARVASTD_00003	04/30/19		Restek, Lot A0142609		(Purchased Reag	gent)	Vinyl acetate	5000 ug/mL
VOASTDst_00108	05/08/19	04/24/19	Methanol, Lot V032119A	1 mL	VOAMegMix2017_00005	20 uL	1,1-Dichloroethane	50 ug/mL
-							1,1-Dichloroethene	50 ug/mL
							Benzene	50 ug/mL
							Naphthalene	50 ug/mL
							Tetrachloroethene	50 ug/mL
					VOARSS 00012	20 uL	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
					_		4-Bromofluorobenzene	50 ug/mL
							Dibromofluoromethane	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
.VOAMegMix2017 00005	06/30/19		Restek, Lot A0123711	'	(Purchased Reag	gent)	1,1-Dichloroethane	2500 ug/mL
_							1,1-Dichloroethene	2500 ug/mL
							Benzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
.VOARSS 00012	12/31/20		Restek, Lot A0115812		(Purchased Reag	gent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
-							4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL

Lab Name: Eurofins TestAmerica, Corpus Christ Job No.: 600-184109-1

				Reagent	Parent Reage	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
ESI-spkA_00021	07/09/20	Elemer	ntal Scientific, Lot 1007	75162-1	(Purchased Read	gent)	Al	2500 mg/L
							As	25 mg/L
							В	25 mg/L
							Ва	25 mg/L
							Ве	25 mg/L
							Ca	2500 mg/L
							Cd	25 mg/L
							Co	25 mg/L
							Cr	25 mg/L
							Cu	25 mg/L
							Fe	2500 mg/L
							K	2500 mg/L
							Li	25 mg/L
							Manganese, Dissolved	250 mg/L
							Mg	2500 mg/L
							Мо	25 mg/L
							Na	2500 mg/L
							Ni	25 mg/L
							P	250 mg/L
							Pb	25 mg/L
							Sb	25 mg/L
							Se	25 mg/L
							Sn	25 mg/L
							Sr	25 mg/L
							Ti	25 mg/L
							Tl	10 mg/L
							U	25 mg/L
							V	25 mg/L
							Zn	25 mg/L
ESI-spkB 00019	07/09/20	Elemer	ntal Scientific, Lot 1006	55177-3	(Purchased Read	gent)	Ag	25 mg/L
ICV_ESI_00083			5%/3% HC1/HNO3, Lot		ESI-spkA 00021		Manganese, Dissolved	2.5 mg/L
			icap acid		_			
.ESI-spkA_00021	07/09/20		ntal Scientific, Lot 1007		(Purchased Read		Manganese, Dissolved	250 mg/L
INT-A_00133	05/31/20	04/03/19	DI+HNO3, HCl, Lot icap acid_0105	100 mL	171009INT-A_00002	5 mL	Al	250000 ug/L
			_				Ca	250000 ug/L
							Fe	100000 ug/L
							Mg	250000 ug/L
.171009INT-A 00002	05/31/20		CPI, Lot 171614-3	1	(Purchased Read	gent)	Al	5000 ug/mL
_			•			= '	Ca	5000 ug/mL
							Fe	2000 ug/mL
							Mg	5000 ug/mL
INT-AB_00139	05/31/20	04/03/19	5%/3% HC1/HNO3, Lot	200 mL	171009INT-A_00002	5 mL		125000 ug/L
			icap acid_00104					
							Ca	125000 ug/L
	1		1	1		1	Fe	50000 ug/L

Lab Name: Eurofins TestAmerica, Corpus Christ Job No.: 600-184109-1

				Reagent	Parent Reager	nt			
	Exp	Prep	Dilutant	Final		Volume			
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Ana	lyte	Concentration
							Mg		125000 ug/L
					171009INTB_00002	1 mL	Ag		500 ug/L
							Ва		250 ug/L
							Ве		250 ug/L
							Cd		500 ug/L
							Со		250 ug/L
							Cr		250 ug/L
							Cu		250 ug/L
							Manganese, Diss	solved	250 ug/L
							Ni		500 ug/L
							Pb		500 ug/L
							V		250 ug/L
							Zn		500 ug/L
.171009INT-A_00002	05/31/20		CPI, Lot 171614-3		(Purchased Reag	ent)	Al		5000 ug/mL
							Ca		5000 ug/mL
							Fe		2000 ug/mL
151000	05/04/00				(=)		Mg		5000 ug/mL
.171009INTB_00002	05/31/20		CPI, Lot 10063227-10		(Purchased Reag	ent)	Ag		100 ug/mL
							Ba		50 ug/mL
							Be		50 ug/mL
							Cd		100 ug/mL
							Co		50 ug/mL
							Cr		50 ug/mL
							Cu	1	50 ug/mL
							Manganese, Diss	solvea	50 ug/mL
							Ni		100 ug/mL
							Pb		100 ug/mL
							V		50 ug/mL
							Zn		100 ug/mL
TS_MS250_00051			5%/3% HCl/HNO3, Lot icap acid		TS_MS500_00038	25 mL	Manganese, Diss	solved	2.5 mg/L
.TS_MS500_00038	06/01/19	11/23/18	5%/3% HCl/HNO3, Lot icap acid	200 mL	MT-STD-3_00014	1 mL	Manganese, Diss	solved	5 mg/L
MT-STD-3 00014	05/12/20		IV, Lot N2-MEB673370	•	(Purchased Reag	ent)	Manganese, Diss	solved	1000 mg/L

Method 8260B Low Level

Volatile Organic Compounds (GC/MS) by Method 8260B Low Level

FORM II GC/MS VOA SURROGATE RECOVERY

Lab	Name:	Euroiins	TestAmerica,	Houston	dot	No.:	600-184109-1	
SDG	No.:							

Matrix: Water Level: Low

GC Column (1): DB-VRX 60 ID: 0.25 (mm)

Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
ARTESIA-TB01-04222 019	600-184109-1	93	110	82	91
ARTESIA-INLET-0422 2019	600-184109-2	89	99	81	91
ARTESIA-MID-042220 19	600-184109-3	86	96	80	89
ARTESIA-OUTLET-042 22019	600-184109-4	83	92	76	84
ARTESIA-MW12-04222 019	600-184109-5	89	107	83	101
ARTESIA-MW30-04222 019	600-184109-6	90	101	82	90
ARTESIA-MD30-04222 019	600-184109-7	87	99	78	86
ARTESIA-MW32-04222 019	600-184109-8	91	105	84	91
ARTESIA-MW17C-0422 2019	600-184109-9	83	95	77	82
ARTESIA-MW11-04222 019	600-184109-10	91	109	81	90
ARTESIA-MW26-04222 019	600-184109-11	88	107	77	87
ARTESIA-MW34-04222 019	600-184109-12	86	103	79	78
ARTESIA-MD11-04222 019	600-184109-13	90	108	81	90
	MB 600-263890/7	86	102	76	83
	LCS 600-263890/5	89	108	78	87
ARTESIA-MW34-04222 019 MS	600-184109-12 MS	88	105	76	86
ARTESIA-MW34-04222 019 MSD	600-184109-12 MSD	89	107	78	87

	QC LIMITS
DBFM = Dibromofluoromethane	62-130
DCA = 1,2-Dichloroethane-d4 (Surr)	50-134
TOL = Toluene-d8 (Surr)	70-130
BFB = 4-Bromofluorobenzene	67-139

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name	e: Eurofins TestAme	erica, Houston	Job No.: 600-	-184109-1
SDG No.:				
Matrix:	Water	Level: Low	Lab File ID:	J11903.D
Lab ID:	LCS 600-263890/5		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(mg/L)	$({ m mg/L})$	REC	REC	
1,1-Dichloroethane	0.0100	0.008688	87	70-140	
1,1-Dichloroethene	0.0100	0.008541	85	58-148	
Benzene	0.0100	0.009315	93	70-130	
Naphthalene	0.0100	0.009229	92	10-150	
Tetrachloroethene	0.0100	0.008520	85	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab N	Name:	Eurofins	TestAmerica,	Houston	Job	No.:	600-184109-1	

SDG No.:

Matrix: Water Level: Low Lab File ID: J11908.D

Lab ID: 600-184109-12 MS Client ID: ARTESIA-MW34-04222019 MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(mg/L)	(mg/L)	(mg/L)	REC	REC	
1,1-Dichloroethane	0.0100	0.000680 J	0.009095	84	70-140	
1,1-Dichloroethene	0.0100	0.000507 J	0.01066	101	58-148	
Benzene	0.0100	0.000176 U	0.01084	108	70-130	
Naphthalene	0.0100	0.000129 U	0.007887	79	10-150	
Tetrachloroethene	0.0100	0.000858 J	0.009796	89	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab N	ame:	Eurofins	TestAmerica,	Houston	Job	No.:	600-	184109-1
SDG N	o.: _							
Matri	х: <u>W</u> а	ater	Level	l: Low	Lab	File	ID:	J11909.D

Lab ID: 600-184109-12 MSD Client ID: ARTESIA-MW34-04222019 MSD

	SPIKE ADDED	MSD CONCENTRATION	MSD %	olc .	QC L1	IMITS	#
COMPOUND	(mg/L)	(mg/L)	REC	RPD	RPD	REC	#
1,1-Dichloroethane	0.0100	0.008085	74	12	30	70-140	
1,1-Dichloroethene	0.0100	0.008820	83	19	30	58-148	
Benzene	0.0100	0.009949	99	9	30	70-130	
Naphthalene	0.0100	0.008757	88	10	30	10-150	
Tetrachloroethene	0.0100	0.008890	80	10	30	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184109-1				
SDG No.:					
Lab File ID: J11905.D	Lab Sample ID: MB 600-263890/7				
Matrix: Water	Heated Purge: (Y/N) N				
Instrument ID: CHVOAMS06	Date Analyzed: 04/29/2019 15:01				
GC Column: DB-VRX 60 ID: 0.25 (mm)					

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 600-263890/5	J11903.D	04/29/2019 14:05
ARTESIA-TB01-04222019	600-184109-1	J11906.D	04/29/2019 15:29
ARTESIA-MW34-04222019	600-184109-12	J11907.D	04/29/2019 15:57
ARTESIA-MW34-04222019 MS	600-184109-12 MS	J11908.D	04/29/2019 16:25
ARTESIA-MW34-04222019 MSD	600-184109-12 MSD	J11909.D	04/29/2019 16:53
ARTESIA-INLET-04222019	600-184109-2	J11915.D	04/29/2019 19:41
ARTESIA-MID-04222019	600-184109-3	J11916.D	04/29/2019 20:08
ARTESIA-OUTLET-04222019	600-184109-4	J11917.D	04/29/2019 20:36
ARTESIA-MW30-04222019	600-184109-6	J11918.D	04/29/2019 21:04
ARTESIA-MD30-04222019	600-184109-7	J11919.D	04/29/2019 21:32
ARTESIA-MW32-04222019	600-184109-8	J11920.D	04/29/2019 22:00
ARTESIA-MW17C-04222019	600-184109-9	J11921.D	04/29/2019 22:28
ARTESIA-MW11-04222019	600-184109-10	J11922.D	04/29/2019 22:56
ARTESIA-MW26-04222019	600-184109-11	J11923.D	04/29/2019 23:24
ARTESIA-MD11-04222019	600-184109-13	J11924.D	04/29/2019 23:51
ARTESIA-MW12-04222019	600-184109-5	J11925.D	04/30/2019 00:19

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab File ID: J11000A.D BFB Injection Date: 04/20/2019

Instrument ID: CHVOAMS06 BFB Injection Time: 11:19

Analysis Batch No.: 263293

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	29.4		
75	30.0 - 60.0 % of mass 95	47.0		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	7.4		
173	Less than 2.0 % of mass 174	0.0	(0.0) 1	
174	50.0 - 120.00 % of mass 95	81.8		
175	5.0 - 9.0 % of mass 174	5.5	(6.7) 1	
176	95.0 - 101.0 % of mass 174	80.9	(98.9) 1	
177	5.0 - 9.0 % of mass 176	5.0	(6.2) 2	

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 600-263293/3	J11001.D	04/20/2019	11:53
	IC 600-263293/4	J11002.D	04/20/2019	12:21
	IC 600-263293/5	J11003.D	04/20/2019	12:49
	IC 600-263293/6	J11004.D	04/20/2019	13:17
	ICIS 600-263293/7	J11005.D	04/20/2019	13:45
	IC 600-263293/8	J11006.D	04/20/2019	14:13
	IC 600-263293/9	J11007.D	04/20/2019	14:40
	ICV 600-263293/1012	J11010-ICV.d	04/20/2019	16:04

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab File ID: J11900A.D BFB Injection Date: 04/29/2019

Instrument ID: CHVOAMS06 BFB Injection Time: 12:25

Analysis Batch No.: 263890

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	17.8		
75	30.0 - 60.0 % of mass 95	55.1		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	7.7		
173	Less than 2.0 % of mass 174	0.2	(0.3) 1	
174	50.0 - 120.00 % of mass 95	84.6		
175	5.0 - 9.0 % of mass 174	7.1	(8.4) 1	
176	95.0 - 101.0 % of mass 174	82.5	(97.5) 1	
177	5.0 - 9.0 % of mass 176	5.4	(6.5) 2	

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 600-263890/3	J11901.D	04/29/2019	12:49
	LCS 600-263890/5	J11903.D	04/29/2019	14:05
	MB 600-263890/7	J11905.D	04/29/2019	15:01
ARTESIA-TB01-04222019	600-184109-1	J11906.D	04/29/2019	15:29
ARTESIA-MW34-04222019	600-184109-12	J11907.D	04/29/2019	15:57
ARTESIA-MW34-04222019 MS	600-184109-12 MS	J11908.D	04/29/2019	16:25
ARTESIA-MW34-04222019 MSD	600-184109-12 MSD	J11909.D	04/29/2019	16:53
ARTESIA-INLET-04222019	600-184109-2	J11915.D	04/29/2019	19:41
ARTESIA-MID-04222019	600-184109-3	J11916.D	04/29/2019	20:08
ARTESIA-OUTLET-04222019	600-184109-4	J11917.D	04/29/2019	20:36
ARTESIA-MW30-04222019	600-184109-6	J11918.D	04/29/2019	21:04
ARTESIA-MD30-04222019	600-184109-7	J11919.D	04/29/2019	21:32
ARTESIA-MW32-04222019	600-184109-8	J11920.D	04/29/2019	22:00
ARTESIA-MW17C-04222019	600-184109-9	J11921.D	04/29/2019	22:28
ARTESIA-MW11-04222019	600-184109-10	J11922.D	04/29/2019	22:56
ARTESIA-MW26-04222019	600-184109-11	J11923.D	04/29/2019	23:24
ARTESIA-MD11-04222019	600-184109-13	J11924.D	04/29/2019	23:51
ARTESIA-MW12-04222019	600-184109-5	J11925.D	04/30/2019	00:19

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab 1	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-184109-1
-------	-------	----------	--------------	---------	----------	--------------

SDG No.:

Sample No.: ICIS 600-263293/7 Date Analyzed: 04/20/2019 13:45

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm)

Lab File ID (Standard): J11005.D Heated Purge: (Y/N) N

Calibration ID: 15670

	FB		CBNZd5		DCBd4	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT	170948	8.45	85712	11.42	90860	14.03
UPPER LIMIT	341896	8.95	171424	11.92	181720	14.53
LOWER LIMIT	85474	7.95	42856	10.92	45430	13.53
LAB SAMPLE ID CLIENT SAMPLE ID						
ICV 600-263293/1012	168813	8.45	82599	11.42	90663	14.03
CCVIS 600-263890/3	105783	8.46	62353	11.42	64112	14.03

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\sharp}$ Column used to flag values outside QC limits

FORM VIII 8260B

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Sample No.: CCVIS 600-263890/3 Date Analyzed: 04/29/2019 12:49

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm)

Lab File ID (Standard): J11901.D Heated Purge: (Y/N) N

Calibration ID: 15670

		FB		CBNZd	.5	DCBd.	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		105783	8.46	62353	11.42	64112	14.03
UPPER LIMIT		211566	8.96	124706	11.92	128224	14.53
LOWER LIMIT		52892	7.96	31177	10.92	32056	13.53
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 600-263890/5		99320	8.45	58829	11.42	61528	14.03
MB 600-263890/7		109144	8.45	64585	11.42	66630	14.03
600-184109-1	ARTESIA-TB01-04222019	102556	8.45	59883	11.42	63072	14.03
600-184109-12	ARTESIA-MW34-04222019	102777	8.45	58974	11.42	61119	14.03
600-184109-12 MS	ARTESIA-MW34-04222019 MS	98941	8.45	58665	11.42	60203	14.03
600-184109-12 MSD	ARTESIA-MW34-04222019 MSD	100245	8.45	59825	11.42	61866	14.03
600-184109-2	ARTESIA-INLET-0422201	124572	8.45	73331	11.42	73065	14.03
600-184109-3	ARTESIA-MID-04222019	121487	8.45	69403	11.42	71342	14.03
600-184109-4	ARTESIA-OUTLET-042220 19	124217	8.46	71576	11.42	72087	14.03
600-184109-6	ARTESIA-MW30-04222019	118774	8.46	68902	11.42	70548	14.03
600-184109-7	ARTESIA-MD30-04222019	114686	8.45	66865	11.42	69474	14.03
600-184109-8	ARTESIA-MW32-04222019	109410	8.45	63250	11.42	65199	14.03
600-184109-9	ARTESIA-MW17C-0422201	110662	8.45	63623	11.42	65604	14.03
600-184109-10	ARTESIA-MW11-04222019	99350	8.45	58551	11.42	59254	14.03
600-184109-11	ARTESIA-MW26-04222019	95142	8.45	56485	11.42	57006	14.03
600-184109-13	ARTESIA-MD11-04222019	90070	8.45	52879	11.42	53606	14.03
600-184109-5	ARTESIA-MW12-04222019	88408	8.46	49755	11.42	42408	14.04

FB = Fluorobenzene

CBNZd5 = Chlorobenzene-d5

DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII 8260B

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-TB01-04222019 Lab Sample ID: 600-184109-1 Matrix: Water Lab File ID: J11906.D Date Collected: 04/22/2019 13:10 Analysis Method: 8260B Date Analyzed: 04/29/2019 15:29 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	110		50-134
460-00-4	4-Bromofluorobenzene	91		67-139
1868-53-7	Dibromofluoromethane	93		62-130
2037-26-5	Toluene-d8 (Surr)	82		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-INLET-04222019 Lab Sample ID: 600-184109-2 Matrix: Water Lab File ID: J11915.D Date Collected: 04/22/2019 13:40 Analysis Method: 8260B Date Analyzed: 04/29/2019 19:41 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00260		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00973		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000555	JВ	0.00200	0.000129
127-18-4	Tetrachloroethene	0.00953		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		50-134
460-00-4	4-Bromofluorobenzene	91		67-139
1868-53-7	Dibromofluoromethane	89		62-130
2037-26-5	Toluene-d8 (Surr)	81		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MID-04222019 Lab Sample ID: 600-184109-3 Matrix: Water Lab File ID: J11916.D Date Collected: 04/22/2019 13:45 Analysis Method: 8260B Date Analyzed: 04/29/2019 20:08 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00307		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00805		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000199	JВ	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000548	J	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		50-134
460-00-4	4-Bromofluorobenzene	89		67-139
1868-53-7	Dibromofluoromethane	86		62-130
2037-26-5	Toluene-d8 (Surr)	80		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-OUTLET-04222019 Lab Sample ID: 600-184109-4 Matrix: Water Lab File ID: J11917.D Analysis Method: 8260B Date Collected: 04/22/2019 13:53 Date Analyzed: 04/29/2019 20:36 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00186		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000666	J	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	92		50-134
460-00-4	4-Bromofluorobenzene	84		67-139
1868-53-7	Dibromofluoromethane	83		62-130
2037-26-5	Toluene-d8 (Surr)	76		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MW12-04222019 Lab Sample ID: 600-184109-5 Matrix: Water Lab File ID: J11925.D Date Collected: 04/22/2019 13:50 Analysis Method: 8260B Date Analyzed: 04/30/2019 00:19 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.0260		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00161		0.00100	0.000192
71-43-2	Benzene	0.00617		0.00100	0.000176
91-20-3	Naphthalene	0.0466	В	0.00200	0.000129
127-18-4	Tetrachloroethene	0.00377		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		50-134
460-00-4	4-Bromofluorobenzene	101		67-139
1868-53-7	Dibromofluoromethane	89		62-130
2037-26-5	Toluene-d8 (Surr)	83		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MW30-04222019 Lab Sample ID: 600-184109-6 Matrix: Water Lab File ID: J11918.D Date Collected: 04/22/2019 14:05 Analysis Method: 8260B Date Analyzed: 04/29/2019 21:04 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000960	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00271		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.00350		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		50-134
460-00-4	4-Bromofluorobenzene	90		67-139
1868-53-7	Dibromofluoromethane	90		62-130
2037-26-5	Toluene-d8 (Surr)	82		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MD30-04222019 Lab Sample ID: 600-184109-7 Matrix: Water Lab File ID: J11919.D Date Collected: 04/22/2019 14:10 Analysis Method: 8260B Date Analyzed: 04/29/2019 21:32 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000931	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00273		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.00363		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		50-134
460-00-4	4-Bromofluorobenzene	86		67-139
1868-53-7	Dibromofluoromethane	87		62-130
2037-26-5	Toluene-d8 (Surr)	78		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MW32-04222019 Lab Sample ID: 600-184109-8 Matrix: Water Lab File ID: J11920.D Date Collected: 04/22/2019 14:50 Analysis Method: 8260B Date Analyzed: 04/29/2019 22:00 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000639	J	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		50-134
460-00-4	4-Bromofluorobenzene	91		67-139
1868-53-7	Dibromofluoromethane	91		62-130
2037-26-5	Toluene-d8 (Surr)	84		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MW17C-04222019 Lab Sample ID: 600-184109-9 Matrix: Water Lab File ID: J11921.D Date Collected: 04/22/2019 14:30 Analysis Method: 8260B Date Analyzed: 04/29/2019 22:28 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95		50-134
460-00-4	4-Bromofluorobenzene	82		67-139
1868-53-7	Dibromofluoromethane	83		62-130
2037-26-5	Toluene-d8 (Surr)	77		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MW11-04222019 Lab Sample ID: 600-184109-10 Matrix: Water Lab File ID: J11922.D Date Collected: 04/22/2019 15:25 Analysis Method: 8260B Date Analyzed: 04/29/2019 22:56 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00304		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	109		50-134
460-00-4	4-Bromofluorobenzene	90		67-139
1868-53-7	Dibromofluoromethane	91		62-130
2037-26-5	Toluene-d8 (Surr)	81		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MW26-04222019 Lab Sample ID: 600-184109-11 Matrix: Water Lab File ID: J11923.D Date Collected: 04/22/2019 15:05 Analysis Method: 8260B Date Analyzed: 04/29/2019 23:24 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000332	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00175		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.00170		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		50-134
460-00-4	4-Bromofluorobenzene	87		67-139
1868-53-7	Dibromofluoromethane	88		62-130
2037-26-5	Toluene-d8 (Surr)	77		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MW34-04222019 Lab Sample ID: 600-184109-12 Matrix: Water Lab File ID: J11907.D Date Collected: 04/22/2019 15:30 Analysis Method: 8260B Date Analyzed: 04/29/2019 15:57 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000680	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000507	J	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000858	J	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	103		50-134
460-00-4	4-Bromofluorobenzene	78		67-139
1868-53-7	Dibromofluoromethane	86		62-130
2037-26-5	Toluene-d8 (Surr)	79		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MD11-04222019 Lab Sample ID: 600-184109-13 Matrix: Water Lab File ID: J11924.D Date Collected: 04/22/2019 15:35 Analysis Method: 8260B Date Analyzed: 04/29/2019 23:51 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00302		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	108		50-134
460-00-4	4-Bromofluorobenzene	90		67-139
1868-53-7	Dibromofluoromethane	90		62-130
2037-26-5	Toluene-d8 (Surr)	81		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 263293

SDG No.:

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 600-263293/3	J11001.D
Level 2	IC 600-263293/4	J11002.D
Level 3	IC 600-263293/5	J11003.D
Level 4	IC 600-263293/6	J11004.D
Level 5	ICIS 600-263293/7	J11005.D
Level 6	IC 600-263293/8	J11006.D
Level 7	IC 600-263293/9	J11007.D

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		MAX	R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				ş	RSD	OR COD	OR COD
Dichlorodifluoromethane	++++	0.1538	0.2309	0.3218	0.3103	Lin1	-0.085	0.2878							0.9950	0.9900
	0.2677	0.2826														
Chloromethane	+++++ 0.3020	0.2473	0.2803	0.3049	0.3014	Ave		0.2894			0.1000	7.8		15.0		
Vinyl chloride	++++ 0.2023	0.1692 0.1961	0.1775	0.2240	0.2303	Ave		0.1999				12.2		15.0		
Butadiene	+++++	0.2864	0.3336	0.2612	0.2798	Ave		0.2897				8.3		15.0		
Bromomethane	+++++	0.0653	0.1425	0.1913	0.1835	Lin2	-0.122	0.1949							0.9930	0.9900
Chloroethane	+++++ 0.1420	0.0633	0.0715	0.1381	0.1499	Lin1	-0.089	0.1451							0.9970	0.9900
Dichlorofluoromethane	+++++ 0.5317	0.2823	0.4130	0.4604	0.4295	Lin2	-0.218	0.5053							0.9950	0.9900
Acrolein	+++++	0.0304	0.0262	0.0291	0.0310	Ave		0.0295				5.8		15.0		
Acetonitrile	++++ 0.0221		0.0180	0.0204	0.0209	Lin2	-0.089	0.0215							0.9950	0.9900
Trichlorofluoromethane	++++ 0.6213	0.4564	0.4251	0.6082	0.6625	Lin1	-0.182	0.6190							0.9970	0.9900
Isopropyl alcohol	++++ 0.0137	0.0060	0.0077	0.0108	0.0139	Lin1	-0.102	0.0142							0.9950	0.9900
Acetone	+++++	0.0925	0.1035	0.0816	0.0864	Ave		0.0861				14.2		15.0		
Ethyl ether	0.2856 0.3199		0.4043	0.3390	0.3195	Ave		0.3288				11.9		15.0		
t-Butanol	+++++	0.0246 0.0359	0.0280	0.0287	0.0350	Ave		0.0311				14.9		15.0		

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 263293

SDG No.:

Instrument ID: $\underline{\text{CHVOAMS06}}$ GC Column: $\underline{\text{DB-VRX}}$ 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/20/2019 11:53 Calibration End Date: 04/20/2019 14:40 Calibration ID: 15670

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	#	MAX %RSD	R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2					*KSD	OR COD	OR COD
1,1-Dichloroethene	+++++ 0.3387	0.4118 0.2962	0.3614	0.4189	0.3323	Ave		0.3599				13.3		15.0		
Acrylonitrile	0.0523 0.0811	0.0845 0.0717	0.0853	0.0876	0.0855	Lin1		0.0764							0.9920	0.9900
Iodomethane	0.5668 0.8394		0.9324		0.8163	Lin1	0.0798	0.7785							0.9920	0.9900
Methylene Chloride	0.5142 0.4062	0.5562 0.3602	0.5382		0.4008		0.1624	0.3768							0.9910	0.9900
Methyl acetate	+++++ 0.2424	0.2122	0.2632		0.2303			0.2441				8.4		15.0		
1,1,2-Trichloro-1,2,2-trifluoroethane	++++ 0.2235	0.2435	0.2413		0.2776		0.0916	0.2399							0.9960	0.9900
3-Chloro-1-propene	++++ 0.2054	0.1617	0.2242		0.2129			0.2115				12.9		15.0		
Carbon disulfide	1.1190	1.7080 1.0091	1.4808		1.0990		0.4769	1.0477							0.9910	0.9900
trans-1,2-Dichloroethene	0.4061 0.4321	0.3736	0.4889		0.4291			0.4433				10.3		15.0		
Methyl tert-butyl ether	1.0167 0.9785		1.0965	1.0452	0.9269			1.0000				8.7		15.0		
Propionitrile	0.0361		0.0386		0.0360			0.0335				12.2		15.0		
1,1-Dichloroethane	0.9519 0.7870	0.6780	0.9672		0.7842			0.8679			0.1000			15.0		
Vinyl acetate	0.8032	0.8903 0.7019	0.8805		0.8001			0.8139				8.7		15.0		
2-Chloro-1,3-butadiene	1.0461		1.2084		1.0143			1.1109				11.5		15.0		
Hexane	0.5378				0.5888			0.6044							0.9990	
Isopropyl ether	1.8911 1.6287	2.1435 1.3336	2.0377	2.0086	1.6694	~	0.4371	1.7854	-0.009212						1.0000	0.9900
2-Butanone (MEK)	++++ 0.0268	0.0218	0.0301	0.0289	0.0294			0.0274				11.0		15.0		
Methacrylonitrile	0.0336 0.0259	0.0223	0.0347	0.0318	0.0282	~	0.1062	0.0280	-0.000012						1.0000	0.9900
cis-1,2-Dichloroethene	0.5668 0.4844	0.4003	0.6019		0.4854			0.5269				13.9		15.0		
Ethyl acetate	0.3349 0.3493	0.3848 0.3147	0.3783	0.3687	0.3552	Ave		0.3551				7.0		15.0		

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 263293

SDG No.:

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFIC	IENT	# M	IIN RRF	%RSD		R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
	LVL 6	LVL 7													
Chlorobromomethane	++++	0.2073	0.2491	0.2508	0.2262	Ave		0.2213				11.9	15.0		
	0.2124	0.1822													
Chloroform	0.8910	0.9921	0.9280	0.9141	0.7774	Ave		0.8507				13.2	15.0		
	0.7869	0.6651													
Tert-butyl ethyl ether	1.5066	1.8887	1.7616	1.6820	1.5116	Ave		1.5845				13.5	15.0		
	1.5100	1.2313													
Isobutyl alcohol	++++	0.0284	0.0243	0.0283	0.0270	Ave		0.0259				9.0	15.0		
	0.0247	0.0228													
2,2-Dichloropropane	0.6088	0.5919	0.6364	0.5640	0.4903	Lin1	0.1863	0.4364						0.9900	0.9900
	0.4726	0.4116													
Tetrahydrofuran	++++	0.1163	0.1056	0.0919	0.0932	Ave		0.0959				13.8	15.0		
	0.0899	0.0783													
1,2-Dichloroethane	0.6827	0.7410	0.6703	0.6786	0.6014	Ave		0.6569				8.0	15.0		
	0.6352	0.5892													
n-Butanol	++++	0.0072	0.0086	0.0086	0.0086	Ave		0.0082				10.8	15.0		
	0.0092	0.0071													
1,1,1-Trichloroethane	0.6704	0.8951	0.8413	0.7663	0.7057	Ave		0.7465				12.6	15.0		
	0.7144	0.6322													
1,1-Dichloropropene	0.6434	0.6422	0.6045	0.6333	0.5413	Ave		0.5810				11.7	15.0		
	0.5378	0.4644													
Cyclohexane	0.5568	0.5326	0.5437	0.5327	0.4467	Qua	0.1661	0.4590	-0.002841					0.9990	0.9900
	0.4059	0.3205													
Carbon tetrachloride	0.7600	0.8431	0.8161	0.7794	0.7013	Ave		0.7460				10.2	15.0		
	0.6994	0.6227													
Benzene	++++		1.7380	1.6715	1.4681	Ave		1.6294				10.3	15.0		
	1.4427	++++													
Tert-amyl methyl ether	1.1239	1.2197	1.0968	1.1000	0.9617	Ave		1.0460				12.3	15.0		
	0.9897	0.8303													
Isooctane	++++	1.2720	1.2834	1.2089	0.9664	Qua	0.6596	0.9894	-0.007724					0.9990	0.9900
	0.8618	0.6168													
Ethyl acrylate	0.7679	0.8562	0.6629	0.6679	0.6339	Ave		0.6804				14.7	15.0		
	0.6125	0.5614													
n-Heptane	++++	0.7967	0.8152	0.7329	0.6370	Qua	0.5021	0.5826	-0.001875					0.9990	0.9900
	0.5584	0.4994													
Dibromomethane	++++	0.2606	0.2405	0.2518	0.2245	Ave		0.2348				10.1	15.0		
	0.2380	0.1932													
1,2-Dichloropropane	++++	0.5449	0.5205	0.4717	0.4291	Ave		0.4739				12.6	15.0		
	0.4034	++++													
2-Nitropropane	++++	0.1627	0.1534	0.1495	0.1577	Ave		0.1579				4.1	15.0		
	0.1677	0.1563													

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 263293

SDG No.:

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFIC	IENT	#	MIN RRF	%RSD	#	MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	М2					*RSD		
Trichloroethene	0.5502	0.6550 0.4221	0.6289	0.6028	0.5195	Ave		0.5586				14.1		15.0		
Bromodichloromethane	0.6548 0.6600	0.7514 0.5922		0.7089				0.6772				8.1		15.0		
Methyl methacrylate	0.3891 0.3905	0.3543		0.3990				0.3853				5.3		15.0		
1,4-Dioxane	++++ 0.0014	0.0015		0.0010			-0.022	0.0015							0.9940	0.9900
2-Chloroethyl vinyl ether	0.3887 0.3617	0.2959		0.4059				0.3788				10.6		15.0		
Methylcyclohexane	++++ 0.5358	0.4472		0.7089			0.4230	0.5695	-0.002618						1.0000	0.9900
cis-1,3-Dichloropropene	1.3694 1.2058	1.0287		1.3728				1.2649				9.9		15.0		
4-Methyl-2-pentanone (MIBK)	0.4329 0.4404	0.3886		0.4314				0.4410				7.4		15.0		
trans-1,3-Dichloropropene	1.1123 1.0842	0.9629		1.2214		Ave		1.1194				9.0		15.0		
n-Butyl acetate	+++++ 0.1592			0.1732	0.1536	Ave		0.1649				9.5		15.0		
1,1,2-Trichloroethane	0.7331 0.6163			0.7193				0.6839				14.0		15.0		
Ethyl methacrylate	0.7895 0.6914	0.7610 0.6155	0.6963	0.7739	0.7191	Ave		0.7209				8.3		15.0		
Toluene	+++++ 1.8425	++++			1.9802			2.1769				12.3		15.0		
1,3-Dichloropropane	0.8815 0.8976	0.7842		1.0361				0.9524				12.2		15.0		
Dibromochloromethane	+++++ 0.9566			1.1072				0.9542				9.4		15.0		
2-Hexanone	0.8864 0.7088		0.8460	0.8100	0.7274	Ave		0.7886				11.5		15.0		
1,2-Dibromoethane	0.6817 0.7187		0.7893	0.8337	0.7244	Ave		0.7452				9.4		15.0		
Tetrachloroethene	+++++ 0.7426			0.8739				0.7842				13.4		15.0		
1-Chlorohexane	1.3255 1.1273		1.3250	1.3265	1.1820	Ave		1.2215				13.4		15.0		
1,1,1,2-Tetrachloroethane	0.9439 1.0821		1.2065	1.2895	1.1033	Ave		1.1150				12.0		15.0		

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 263293

SDG No.:

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/20/2019 11:53 Calibration End Date: 04/20/2019 14:40 Calibration ID: 15670

ANALYTE			RRF		CURVE		COEFFICIENT			MIN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD	
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TIPE	В	М1	M2				*KSD	OR COD	OR COD
	LVL 6	LVL 7													
Chlorobenzene	3.1709	3.2438	3.0638	3.1752	2.7963	Ave		2.9111		0	.3000	12.7	15.0		
	2.7214														
Ethylbenzene	1.6471		1.7493	1.6740	1.4790	Ave		1.5488				14.9	15.0		
	1.4135														
m-Xylene & p-Xylene	3.5279			3.7653	3.1836	Ave		3.3182				12.9	15.0		
	3.1096														
Bromoform	++++		0.4600	0.4703	0.5192	Ave		0.4832		0	.1000	11.0	15.0		
	0.4703														
Styrene	2.7345		2.8810	3.0301	2.5813	Ave		2.7046				14.6	15.0		
	2.4754														
o-Xylene	+++++		2.0493	2.1359	1.7627	Ave		1.9430				10.9	15.0		
	1.6702	+++++													
1,1,2,2-Tetrachloroethane	0.6694	0.7023	0.8250	0.6896	0.6570	Ave		0.6766		0	.3000	11.5	15.0		
	0.6037	0.5894													
trans-1,4-Dichloro-2-butene	+++++		0.2608	0.2971	0.3005	Ave		0.3109				11.0	15.0		
	0.3092	0.3567													
1,2,3-Trichloropropane	++++			0.2328	0.2126	Ave		0.2148				8.9	15.0		
	0.1984														
Isopropylbenzene	4.0076			4.3118	3.8329	Ave		3.9866				11.0	15.0		
	3.6197	3.2886		1 1000	4 4055	<u> </u>		4 4 4 5 5					15.0		
Bromobenzene	1.1546		1.2645	1.1293	1.1055	Ave		1.1455				6.3	15.0		
	1.0807	1.0692	4 0045	4 00 60	4 4 6 4 5			4.4056				40.6	1.5		
N-Propylbenzene	1.2393		1.2945	1.2262	1.1817	Ave		1.1976				12.6	15.0		
2-Chlorotoluene	1.0852		1 1760	1 1265	1 0756	7 .		1 1000				10 0	15.0		
2-Chlorotoluene	1.2822		1.1/69	1.1365	1.0/56	Ave		1.1282				12.3	15.0		
4-Chlorotoluene	2.9419		2 1 6 4 4	3.0412	2.8640	7		2.9336				0 E	15.0		
4-Uniorotoluene	2.9419			3.0412	2.8640	Ave		2.9336				9.5	15.0		
1,3,5-Trimethylbenzene	3.5850			3.7065	2 4205	7		3.4134				11.5	15.0		
1,3,5-Trimethyibenzene	3.1144		3.0/33	3.7065	3.4205	Ave		3.4134				11.5	15.0		
tert-Butylbenzene	3.1144		2 2064	3.2365	2.9245	70		2.9696				13.8	15.0		
tert-Butylbenzene	2.6897		3.2904	3.2303	2.9243	Ave		2.9090				13.0	13.0		
1,2,4-Trimethylbenzene		4.1677	3 9733	3.8990	3.5745	7770		3.6028				12.8	15.0		
T, Z, T IIIMECHYIDEHZEHE	3.2600			3.0990	3.3743	Ave		3.0020				14.0	13.0		
sec-Butylbenzene	4.2347	4.4960		4.2599	3.9054	Δττω		3.9520				14.7	15.0		
	3.5302		1.3/9/	4.2000	3.7034	1100		3.7520				17./	13.0		
Benzyl chloride	1.4055		1.3927	1 4047	1.3270	Ave		1.3603				7.0	15.0		+
DONE AT CHIOTIAC	1.2890		1.3721	1.101/	1.02/0	11 V G		1.5005				, . 0	10.0		
1,3-Dichlorobenzene	2.6029		2 4546	2.2506	2 0901	Ave		2.2017				14.2	15.0		-
1,5 Dichitotoponzene	1.9381		2.4040	2.2500	2.0701	1100		2.201/				17.4	13.0		
	1.7301	1./012													

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 263293

SDG No.:

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/20/2019 11:53 Calibration End Date: 04/20/2019 14:40 Calibration ID: 15670

ANALYTE			RRF		CURVE		COEFFIC	IENT	#	MIN RRF	%RSD		R^2	# MIN R^2	
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
1,4-Dichlorobenzene	2.1560 1.8430	2.5271 1.6231	2.3780	2.2806	2.0564	Ave		2.1234				14.7	15.)	
4-Isopropyltoluene	+++++ 3.0271	4.1316	4.2629	3.9747	3.5638	Ave		3.7920				13.2	15.)	
1,2,3-Trimethylbenzene	3.8456 3.3357	4.0310 2.7480	3.9615	3.9568	3.6326	Ave		3.6445				12.7	15.)	
1,2-Dichlorobenzene	2.1670 1.7561	2.0424 1.5662	2.0244	1.9608	1.9500	Ave		1.9238				10.4	15.)	
n-Butylbenzene	+++++ 2.5491	3.0086	3.1294	3.0765	2.8087	Ave		2.9145				8.2	15.)	
1,2-Dibromo-3-Chloropropane	+++++ 0.1246	0.1190	0.1258	0.1275	0.1395	Ave		0.1285				5.7	15.)	
1,3,5-Trichlorobenzene	+++++ 1.0767	1.3225	1.1861	1.2419	1.1885	Ave		1.2032				7.5	15.)	
1,2,4-Trichlorobenzene	+++++ 0.8448	0.8889	0.9170	0.9285	0.9033	Ave		0.8965				3.6	15.)	
Naphthalene	1.3839 1.4635	1.5305 1.0776	1.6210	1.5893	1.5902	Ave		1.4651				13.0	15.)	
Hexachlorobutadiene	+++++ 0.1446	0.1319	0.1750	0.1369	0.1728	Ave		0.1522				13.3	15.)	
1,2,3-Trichlorobenzene	+++++ 0.5393	0.5637	0.6269	0.6168	0.5840	Ave		0.5861				6.2	15.)	
Dibromofluoromethane	0.5295 0.4945	0.6392	0.5074	0.5418	0.4759	Ave		0.5161				12.9	15.)	
1,2-Dichloroethane-d4 (Surr)	0.5588 0.4471	0.5990	0.4725	0.4710	0.4221	Ave		0.4824				14.7	15.)	
Toluene-d8 (Surr)	3.6978 2.8064	3.5079 2.4184	3.3762	3.4232	2.9222	Ave		3.1646				14.5	15.)	
4-Bromofluorobenzene	1.8311 1.1591	1.4580 1.1936		1.2439	1.2028	Lin2	0.3248	1.1704						0.9990	0.9900

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 263293

SDG No.:

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 600-263293/3	J11001.D
Level 2	IC 600-263293/4	J11002.D
Level 3	IC 600-263293/5	J11003.D
Level 4	IC 600-263293/6	J11004.D
Level 5	ICIS 600-263293/7	J11005.D
Level 6	IC 600-263293/8	J11006.D
Level 7	IC 600-263293/9	J11007.D

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (UG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Dichlorodifluoromethane	FB	Lin1	+++++ 69245	1976 192502	5943	20651	42434	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
Chloromethane	FB	Ave	+++++ 78125	3178 204660	7214	19568	41219	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
Vinyl chloride	FB	Ave	+++++ 52327	2174 133559	4569	14376	31501	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
Butadiene	FB	Ave	+++++ 74081	3680 197955	8588	16764	38259	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
Bromomethane	FB	Lin2	+++++ 47046	839 120711	3669	12276	25096	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
Chloroethane	FB	Lin1	+++++ 36740	814 95390	1840	8865	20500	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
Dichlorofluoromethane	FB	Lin2	+++++ 137517	3628 345292	10631	29545	58738	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
Acrolein	FB	Ave	+++++ 38735	1950 102939	3377	9325	21172	+++++ 100	5.00 250	10.0	25.0	50.0
Acetonitrile	FB	Lin2	+++++ 57051	1546 130279	4636	13083	28586	+++++	10.0 500	20.0	50.0	100
Trichlorofluoromethane	FB	Lin1	+++++ 160697	5865 408358	10941	39029	90609	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
Isopropyl alcohol	FB	Lin1	+++++ 35502	772 ++++	1991	6908	19018	+++++ 200	10.0	20.0	50.0	100
Acetone	FB	Ave	+++++ 44592	2377 90558	5328	10472	23625	+++++ 40.0	2.00 100	4.00	10.0	20.0
Ethyl ether	FB	Ave	1873 82743	4362 200325	10407	21752	43689	0.500 20.0	1.00 50.0	2.00	5.00	10.0
t-Butanol	FB	Ave	+++++ 88870	3155 244432	7195	18425	47919	+++++ 200	10.0 500	20.0	50.0	100
1,1-Dichloroethene	FB	Ave	+++++ 87600	5292 201730	9302	26881	45450	+++++ 20.0	1.00 50.0	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 263293

SDG No.:

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/20/2019 11:53 Calibration End Date: 04/20/2019 14:40 Calibration ID: 15670

ANALYTE	IS	CURVE			RESPONSE				CONCE	TRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Acrylonitrile	FB	Lin1	3431 209672	10854 488481	21958	56197	116927	5.00	10.0	20.0	50.0	100
Iodomethane	FB	Lin1	3718 217113	12127 501218	23999	59299	111633	0.500	1.00	2.00	5.00	10.0
Methylene Chloride	FB	Lin1	3373 105055	7147 245338	13854	31441	54810	0.500 20.0	1.00	2.00	5.00	10.0
Methyl acetate	FB	Ave	++++ 125393	6834 289022	13551	32189	62979	+++++ 40.0	2.00	4.00	10.0	20.0
1,1,2-Trichloro-1,2,2-trifluoroetha ne	FB	Lin	++++ 57808	2347 165860	6211	20203	37965	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
3-Chloro-1-propene	FB	Ave	++++ 53139	3100 110133	5771	14354	29116	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
Carbon disulfide	FB	Lin1	9118 289428	21947 687308	38115	88121	150295	0.500 20.0	1.00 50.0	2.00	5.00	10.0
trans-1,2-Dichloroethene	FB	Ave	2664 111757	6247 254450	12585	31249	58689	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Methyl tert-butyl ether	FB	Ave	6669 253098	13902 581784	28223	67070	126764	0.500	1.00	2.00	5.00	10.0
Propionitrile	FB	Ave	+++++ 93353	3739 194968	9945	20747	49273	+++++	10.0	20.0	50.0	100
1,1-Dichloroethane	FB	Ave	6244 203571	12530 461774	24897	59785	107249	0.500	1.00	2.00	5.00	10.0
Vinyl acetate	FB	Ave	9854 415518	22881 956124	45326	111635	218831	1.00	2.00	4.00	10.0	20.0
2-Chloro-1,3-butadiene	FB	Ave	7722 270576	15930 608516	31105	76803	138718	0.500 20.0	1.00	2.00	5.00	10.0
Hexane	FB	Qua	5213 139095	11097 282789	20003	49082	80522	0.500 20.0	1.00	2.00	5.00	10.0
Isopropyl ether	FB	Qua	12404 421276	27543 908264	52451	128894	228305	0.500	1.00	2.00	5.00	10.0
2-Butanone (MEK)	FB	Ave	+++++ 13862	711 29653	1550	3703	8049	+++++ 40.0	2.00	4.00	10.0	20.0
Methacrylonitrile	FB	Qua	2201 66968	4451 151762	8919	20401	38502	5.00	10.0	20.0	50.0	100
cis-1,2-Dichloroethene	FB	Ave	3718 125300	7630 272670	15492	35642	66380	0.500	1.00	2.00	5.00	10.0
Ethyl acetate	FB	Ave	4393 180671	9890 428698	19475	47320	97144	1.00	2.00	4.00	10.0	20.0
Chlorobromomethane	FB	Ave	++++	2664 124100	6413	16093	30934	+++++	1.00	2.00	5.00	10.0
Chloroform	FB	Ave	5844 203538	12748 452994	23888	58659	106312	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 263293

SDG No.:

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Tert-butyl ethyl ether	FB	Ave	9882 390561	24269 838610	45344	107939	206722	0.500 20.0	1.00	2.00	5.00	10.0
Isobutyl alcohol	FB	Ave	+++++ 159540	9138 388397	15666	45457	92365	++++ 500	25.0 1250	50.0	125	250
2,2-Dichloropropane	FB	Lin1	3993 122248	7605 280339	16382	36192	67058	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Tetrahydrofuran	FB	Ave	+++++ 46494	2990 106706	5435	11795	25503	+++++ 40.0	2.00	4.00	10.0	20.0
1,2-Dichloroethane	FB	Ave	4478 164294	9522 401265	17254	43548	82249	0.500	1.00	2.00	5.00	10.0
n-Butanol	FB	Ave	+++++ 59768	2303 120350	5555	13828	29292	+++++	25.0 1250	50.0	125	250
1,1,1-Trichloroethane	FB	Ave	4397 184775	11502 430606	21654	49172	96512	0.500	1.00	2.00	5.00	10.0
1,1-Dichloropropene	FB	Ave	4220 139090	8252 316329	15560	40639	74031	0.500	1.00	2.00	5.00	10.0
Cyclohexane	FB	Qua	3652 104998	6844 218273	13995	34185	61094	0.500	1.00	2.00	5.00	10.0
Carbon tetrachloride	FB	Ave	4985 180892	10834 424080	21006	50013	95906	0.500	1.00	2.00	5.00	10.0
Benzene	FB	Ave	+++++ 373158	23472	44736	107262	200773	++++	1.00	2.00	5.00	10.0
Tert-amyl methyl ether	FB	Ave	7372 255995	15672 565473	28232	70588	131514	0.500	1.00	2.00	5.00	10.0
Isooctane	FB	Qua	+++++ 222909	16344 420065	33034	77575	132169	++++	1.00	2.00	5.00	10.0
Ethyl acrylate	FB	Ave	5037 158428	11002 382370	17062	42857	86686	0.500	1.00	2.00	5.00	10.0
n-Heptane	FB	Qua	+++++	10237 340135	20983	47034	87114	+++++	1.00	2.00	5.00	10.0
Dibromomethane	FB	Ave	++++ 61559	3349 131574	6190	16156	30702	+++++	1.00	2.00	5.00	10.0
1,2-Dichloropropane	FB	Ave	+++++ 104335	7002	13397	30268	58687	+++++	1.00	2.00	5.00	10.0
2-Nitropropane	FB	Ave	+++++ 86737	4182 212959	7897	19185	43122	+++++	2.00	4.00	10.0	20.0
Trichloroethene	FB	Ave	3609 137444	8417 287488	16188	38685	71048	0.500	1.00	2.00	5.00	10.0
Bromodichloromethane	FB	Ave	4295 170712	9655 403352	18755	45488	88171	0.500	1.00	2.00	5.00	10.0
Methyl methacrylate	FB	Ave	5105 202014	9645 482636	21467	51205	101655	1.00	2.00	4.00	10.0	20.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 263293

SDG No.:

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,4-Dioxane	FB	Lin1	++++ 7040	147 20734	488	1308	4257	++++ 400	20.0	40.0	100	200
2-Chloroethyl vinyl ether	CBNZ d5	Ave	2567 97666	5563 208292	10689	25264	52947	1.00	2.00	4.00	10.0	20.0
Methylcyclohexane	FB	Qua	+++++ 138587	10190 304587	19824	45488	78851	+++++	1.00 50.0	2.00	5.00	10.0
cis-1,3-Dichloropropene	CBNZ d5	Ave	4522 162802	8938 362096	17835	42725	83235	0.500 20.0	1.00 50.0	2.00	5.00	10.0
4-Methyl-2-pentanone (MIBK)	FB	Ave	5679 227811	12311 529360	24916	55361	117721	1.00 40.0	2.00 100	4.00	10.0	20.0
trans-1,3-Dichloropropene	CBNZ d5	Ave	3673 146390	8641 338938	14404	38013	75076	0.500 20.0	1.00 50.0	2.00	5.00	10.0
n-Butyl acetate	CBNZ d5	Ave	+++++ 21497	1087 53073	2545	5389	10531	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
1,1,2-Trichloroethane	CBNZ d5	Ave	2421 83210	5701 192270	9402	22385	42730	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Ethyl methacrylate	CBNZ d5	Ave	2607 93347	5178 216643	9199	24085	49311	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Toluene	CBNZ d5	Ave	++++ 248778	15090 ++++	33172	72608	135783	+++++ 20.0	1.00	2.00	5.00	10.0
1,3-Dichloropropane	CBNZ d5	Ave	2911 121200	7677 276021	13518	32245	62826	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Dibromochloromethane	CBNZ d5	Ave	+++++ 129163	5884 306164	13081	34458	64240	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
2-Hexanone	CBNZ d5	Ave	5854 191397	12030 463218	22353	50419	99752	1.00 40.0	2.00 100	4.00	10.0	20.0
1,2-Dibromoethane	CBNZ d5	Ave	2251 97033	5573 228541	10428	25947	49675	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Tetrachloroethene	CBNZ d5	Ave	++++ 100267	5511 217811	12047	27198	51314	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
1-Chlorohexane	CBNZ d5	Ave	4377 152209	9244 318768	17505	41282	81050	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,1,1,2-Tetrachloroethane	CBNZ d5	Ave	3117 146104	8329 336296	15940	40132	75651	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Chlorobenzene	CBNZ d5	Ave	10471 367451	22072 776634	40477	98818	191740	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Ethylbenzene	CBNZ d5	Ave	5439 190846	11987 393115	23111	52098	101414	0.500 20.0	1.00 50.0	2.00	5.00	10.0
m-Xylene & p-Xylene	CBNZ d5	Ave	11650 419862	24777 882033	46160	117181	218299	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Bromoform	DCBd 4	Ave	++++ 68396	3114 172908	6702	16920	37742	+++++ 20.0	1.00 50.0	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 263293

SDG No.:

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Styrene	CBNZ d5	Ave	9030 334237	21845 710820	38063	94302	176996	0.500	1.00	2.00	5.00	10.0
o-Xylene	CBNZ d5	Ave	+++++ 225514	14269	27075	66473	120868	+++++ 20.0	1.00	2.00	5.00	10.0
1,1,2,2-Tetrachloroethane	DCBd 4	Ave	2417 87784	5299 179918	12019	24811	47753	0.500 20.0	1.00	2.00	5.00	10.0
trans-1,4-Dichloro-2-butene	DCBd 4	Ave	+++++ 44962	2572 108891	3799	10690	21845	+++++ 20.0	1.00	2.00	5.00	10.0
1,2,3-Trichloropropane	DCBd 4	Ave	+++++ 28857	1416 67257	3450	8375	15454	+++++ 20.0	1.00	2.00	5.00	10.0
Isopropylbenzene	DCBd 4	Ave	14471 526376	34072 1003919	63085	155135	278609	0.500	1.00	2.00	5.00	10.0
Bromobenzene	DCBd 4	Ave	4169 157158	9167 326401	18422	40632	80359	0.500	1.00	2.00	5.00	10.0
N-Propylbenzene	DCBd 4	Ave	4475 157805	10667 287789	18860	44118	85899	0.500	1.00	2.00	5.00	10.0
2-Chlorotoluene	DCBd 4	Ave	4630 146283	9789 281668	17147	40891	78180	0.500	1.00	2.00	5.00	10.0
4-Chlorotoluene	DCBd 4	Ave	10623 392586	25092 762813	46103	109421	208182	0.500	1.00	2.00	5.00	10.0
1,3,5-Trimethylbenzene	DCBd 4	Ave	12945 452898	28098 815167	53519	133356	248626	0.500	1.00	2.00	5.00	10.0
tert-Butylbenzene	DCBd 4	Ave	10946 391139	25587 676985	48026	116447	212575	0.500	1.00	2.00	5.00	10.0
1,2,4-Trimethylbenzene	DCBd 4	Ave	13223 474070	31447 849687	56430	140282	259820	0.500	1.00	2.00	5.00	10.0
sec-Butylbenzene	DCBd 4	Ave	15291 513359	33924 872644	63808	153269	283876	0.500	1.00	2.00	5.00	10.0
Benzyl chloride	DCBd 4	Ave	5075 187447	11294 368224	20291	50541	96456	0.500	1.00	2.00	5.00	10.0
1,3-Dichlorobenzene	DCBd 4	Ave	9399	17916 519326	35761	80973	151922	0.500	1.00	2.00	5.00	10.0
1,4-Dichlorobenzene	DCBd 4	Ave	7785 268009	19068 495481	34645	82053	149475	0.500	1.00	2.00	5.00	10.0
4-Isopropyltoluene	DCBd 4	Ave	++++ 440204	31175	62107	143008	259043	+++++	1.00	2.00	5.00	10.0
1,2,3-Trimethylbenzene	DCBd 4	Ave	13886 485073	30416 838911	57716	142364	264050	0.500	1.00	2.00	5.00	10.0
1,2-Dichlorobenzene	DCBd 4	Ave	7825 255375	15411 478129	29493	70548	141740	0.500	1.00	2.00	5.00	10.0
n-Butylbenzene	DCBd 4	Ave	++++ 370695	22701	45593	110689	204156	+++++	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 263293

SDG No.:

Instrument ID: CHVOAMS06 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (UG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,2-Dibromo-3-Chloropropane	DCBd 4	Ave	+++++ 18118	898 41022	1833	4586	10141	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
1,3,5-Trichlorobenzene	DCBd 4	Ave	++++ 156577	9979	17280	44683	86393	+++++ 20.0	1.00	2.00	5.00	10.0
1,2,4-Trichlorobenzene	DCBd 4	Ave	++++ 122852	6707 ++++	13360	33407	65662	++++ 20.0	1.00	2.00	5.00	10.0
Naphthalene	DCBd 4	Ave	4997 212819	11548 328971	23616	57180	115588	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Hexachlorobutadiene	DCBd 4	Ave	++++ 21025	995 ++++	2549	4927	12563	+++++ 20.0	1.00	2.00	5.00	10.0
1,2,3-Trichlorobenzene	DCBd 4	Ave	++++ 78424	4253 +++++	9133	22192	42447	+++++ 20.0	1.00	2.00	5.00	10.0
Dibromofluoromethane	FB	Ave	3473 127898	8214 288940	13061	34765	65087	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2-Dichloroethane-d4 (Surr)	FB	Ave	3665 115633	7697 276684	12163	30222	57719	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Toluene-d8 (Surr)	CBNZ d5	Ave	12211 378917	23869 851249	44605	106536	200377	0.500 20.0	1.00 50.0	2.00	5.00	10.0
4-Bromofluorobenzene	DCBd 4	Lin2	6612 168561	11001 364369	19831	44755	87430	0.500 20.0	1.00 50.0	2.00	5.00	10.0

Curve Type Legend:

Ave = Average ISTD

Lin = Linear ISTD

Lin1 = Linear 1/conc ISTD Lin2 = Linear 1/conc^2 ISTD

Qua = Quadratic ISTD

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab Sample ID: <u>ICV 600-263293/1012</u> Calibration Date: <u>04/20/2019 16:04</u>

Instrument ID: CHVOAMS06 Calib Start Date: 04/20/2019 11:53

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 04/20/2019 14:40

Lab File ID: J11010-ICV.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Lin1		0.3147		11.2	10.0	12.3	50.0
Chloromethane	Ave	0.2894	0.2926	0.1000	10.1	10.0	1.1	30.0
Vinyl chloride	Ave	0.1999	0.2243		11.2	10.0	12.2	30.0
Butadiene	Ave	0.2897	0.3089		10.7	10.0	6.6	50.0
Bromomethane	Lin2		0.1890		10.3	10.0	3.2	30.0
Chloroethane	Lin1		0.1448		10.6	10.0	5.9	30.0
Dichlorofluoromethane	Lin2		0.4855		10.0	10.0	0.4	30.0
Acrolein	Ave	0.0295	0.0297		50.4	50.0	0.8	50.0
Acetonitrile	Lin2		0.0269		129	100	29.1	30.0
Trichlorofluoromethane	Lin1		0.5715		9.53	10.0	-4.7	30.0
Isopropyl alcohol	Lin1		0.0136		103	100	3.2	50.0
Acetone	Ave	0.0861	0.0822		19.1	20.0	-4.5	50.0
Ethyl ether	Ave	0.3288	0.3107		9.45	10.0	-5.5	50.0
t-Butanol	Ave	0.0311	0.0346		111	100	11.4	30.0
1,1-Dichloroethene	Ave	0.3599	0.3862		10.7	10.0	7.3	30.0
Acrylonitrile	Lin1		0.0725		94.5	100	-5.5	50.0
Iodomethane	Lin1		0.8393		10.7	10.0	6.8	30.0
Methylene Chloride	Lin1		0.4078		10.4	10.0	3.9	50.0
Methyl acetate	Ave	0.2441	0.2222		18.2	20.0	-9.0	30.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Lin		0.3172		12.8	10.0	28.4	30.0
3-Chloro-1-propene	Ave	0.2115	0.2199		10.4	10.0	3.9	30.0
Carbon disulfide	Lin1		1.236		11.4	10.0	13.5	30.0
trans-1,2-Dichloroethene	Ave	0.4433	0.4594		10.4	10.0	3.6	30.0
Methyl tert-butyl ether	Ave	1.000	0.8727		8.73	10.0	-12.7	30.0
Propionitrile	Ave	0.0335	0.0294		87.9	100	-12.1	30.0
1,1-Dichloroethane	Ave	0.8679	0.8255	0.1000	9.51	10.0	-4.9	30.0
Vinyl acetate	Ave	0.8139	0.8168		20.1	20.0	0.4	50.0
2-Chloro-1,3-butadiene	Ave	1.111	1.142		10.3	10.0	2.8	30.0
Hexane	Qua		0.6964		11.9	10.0	18.5	30.0
Isopropyl ether	Qua		1.688		9.70	10.0	-3.0	30.0
2-Butanone (MEK)	Ave	0.0274	0.0274		20.0	20.0	-0.1	50.0
Methacrylonitrile	Qua		0.0279		99.9	100	-0.0	30.0
cis-1,2-Dichloroethene	Ave	0.5269	0.4866		9.24	10.0	-7.6	30.0
Ethyl acetate	Ave	0.3551	0.3237		18.2	20.0	-8.8	30.0
Chlorobromomethane	Ave	0.2213	0.2191		9.90	10.0	-1.0	30.0
Chloroform	Ave	0.8507	0.8352		9.82	10.0	-1.8	30.0
Tert-butyl ethyl ether	Ave	1.585	1.492		9.42	10.0	-5.8	30.0
Isobutyl alcohol	Ave	0.0259	0.0262		252	250	0.9	50.0
2,2-Dichloropropane	Lin1		0.5482		12.1	10.0	21.4	30.0
Tetrahydrofuran	Ave	0.0959	0.0881		18.4	20.0	-8.2	30.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab Sample ID: <u>ICV 600-263293/1012</u> Calibration Date: <u>04/20/2019 16:04</u>

Instrument ID: CHVOAMS06 Calib Start Date: 04/20/2019 11:53

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 04/20/2019 14:40

Lab File ID: J11010-ICV.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dichloroethane	Ave	0.6569	0.6125		9.32	10.0	-6.8	30.0
1,1,1-Trichloroethane	Ave	0.7465	0.8084		10.8	10.0	8.3	30.0
1,1-Dichloropropene	Ave	0.5810	0.5828		10.0	10.0	0.3	30.0
Cyclohexane	Qua		0.4865		11.0	10.0	9.9	50.0
Carbon tetrachloride	Ave	0.7460	0.7804		10.5	10.0	4.6	30.0
Benzene	Ave	1.629	1.528		9.38	10.0	-6.2	30.0
Tert-amyl methyl ether	Ave	1.046	0.9350		8.94	10.0	-10.6	30.0
Isooctane	Qua		1.022		10.5	10.0	5.3	30.0
Ethyl acrylate	Ave	0.6804	0.6115		8.99	10.0	-10.1	30.0
n-Heptane	Qua		0.7062		11.7	10.0	17.0	30.0
Dibromomethane	Ave	0.2348	0.2400		10.2	10.0	2.2	30.0
1,2-Dichloropropane	Ave	0.4739	0.4069		8.59	10.0	-14.1	30.0
2-Nitropropane	Ave	0.1579	0.1597		20.2	20.0	1.2	30.0
Trichloroethene	Ave	0.5586	0.5486		9.82	10.0	-1.8	30.0
Bromodichloromethane	Ave	0.6772	0.6306		9.31	10.0	-6.9	30.0
Methyl methacrylate	Ave	0.3853	0.3664		19.0	20.0	-4.9	50.0
1,4-Dioxane	Lin1		0.0014		193	200	-3.3	50.0
2-Chloroethyl vinyl ether	Ave	0.3788	0.3619		19.1	20.0	-4.4	30.0
Methylcyclohexane	Qua		0.6631		11.5	10.0	15.1	30.0
cis-1,3-Dichloropropene	Ave	1.265	1.281		10.1	10.0	1.3	30.0
4-Methyl-2-pentanone (MIBK)	Ave	0.4410	0.3840		17.4	20.0	-12.9	50.0
trans-1,3-Dichloropropene	Ave	1.119	1.098		9.81	10.0	-1.9	30.0
n-Butyl acetate	Ave	0.1649	0.1533		9.30	10.0	-7.0	30.0
1,1,2-Trichloroethane	Ave	0.6839	0.6566		9.60	10.0	-4.0	30.0
Ethyl methacrylate	Ave	0.7209	0.7204		9.99	10.0	-0.0	50.0
Toluene	Ave	2.177	2.198		10.1	10.0	1.0	30.0
1,3-Dichloropropane	Ave	0.9524	0.9329		9.79	10.0	-2.1	30.0
Dibromochloromethane	Ave	0.9542	0.9535		9.99	10.0	-0.0	30.0
2-Hexanone	Ave	0.7886	0.7031		17.8	20.0	-10.9	50.0
1,2-Dibromoethane	Ave	0.7452	0.6746		9.05	10.0	-9.5	30.0
Tetrachloroethene	Ave	0.7842	0.8975		11.4	10.0	14.4	30.0
1-Chlorohexane	Ave	1.221	1.331		10.9	10.0	8.9	30.0
1,1,1,2-Tetrachloroethane	Ave	1.115	1.161		10.4	10.0	4.1	30.0
Chlorobenzene	Ave	2.911	2.798	0.3000	9.61	10.0	-3.9	30.0
Ethylbenzene	Ave	1.549	1.541		9.95	10.0	-0.5	30.0
m-Xylene & p-Xylene	Ave	3.318	3.426		10.3	10.0	3.3	30.0
Bromoform	Ave	0.4832	0.4942	0.1000	10.2	10.0	2.3	30.0
Styrene	Ave	2.705	2.954		10.9	10.0	9.2	30.0
o-Xylene	Ave	1.943	1.890		9.73	10.0	-2.7	30.0
1,1,2,2-Tetrachloroethane	Ave	0.6766	0.6272	0.3000	9.27	10.0	-7.3	30.0
trans-1,4-Dichloro-2-butene	Ave	0.3109	0.3013		9.69	10.0	-3.1	50.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Instrument ID: CHVOAMS06 Calib Start Date: 04/20/2019 11:53

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 04/20/2019 14:40

Lab File ID: J11010-ICV.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2,3-Trichloropropane	Ave	0.2148	0.1907		8.88	10.0	-11.2	30.0
Isopropylbenzene	Ave	3.987	4.429		11.1	10.0	11.1	30.0
Bromobenzene	Ave	1.146	1.095		9.56	10.0	-4.4	30.0
N-Propylbenzene	Ave	1.198	1.246		10.4	10.0	4.0	30.0
2-Chlorotoluene	Ave	1.128	1.105		9.80	10.0	-2.0	30.0
4-Chlorotoluene	Ave	2.934	2.989		10.2	10.0	1.9	30.0
1,3,5-Trimethylbenzene	Ave	3.413	3.863		11.3	10.0	13.2	30.0
tert-Butylbenzene	Ave	2.970	3.135		10.6	10.0	5.6	30.0
1,2,4-Trimethylbenzene	Ave	3.603	3.958		11.0	10.0	9.8	30.0
sec-Butylbenzene	Ave	3.952	4.541		11.5	10.0	14.9	30.0
Benzyl chloride	Ave	1.360	1.327		9.76	10.0	-2.4	30.0
1,3-Dichlorobenzene	Ave	2.202	2.159		9.80	10.0	-2.0	30.0
1,4-Dichlorobenzene	Ave	2.123	2.080		9.80	10.0	-2.0	30.0
4-Isopropyltoluene	Ave	3.792	3.756		9.91	10.0	-1.0	30.0
1,2,3-Trimethylbenzene	Ave	3.644	4.019		11.0	10.0	10.3	30.0
1,2-Dichlorobenzene	Ave	1.924	1.938		10.1	10.0	0.7	30.0
n-Butylbenzene	Ave	2.914	3.045		10.5	10.0	4.5	30.0
1,2-Dibromo-3-Chloropropane	Ave	0.1285	0.1147		8.93	10.0	-10.7	30.0
1,3,5-Trichlorobenzene	Ave	1.203	1.265		10.5	10.0	5.1	30.0
1,2,4-Trichlorobenzene	Ave	0.8965	0.8951		9.99	10.0	-0.2	30.0
Naphthalene	Ave	1.465	1.425		9.73	10.0	-2.7	30.0
Hexachlorobutadiene	Ave	0.1522	0.2209		14.5	10.0	45.1*	30.0
1,2,3-Trichlorobenzene	Ave	0.5861	0.5923		10.1	10.0	1.1	30.0
Dibromofluoromethane	Ave	0.5161	0.4004		9.70	12.5	-22.4	30.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.4824	0.3672		9.51	12.5	-23.9	30.0
Toluene-d8 (Surr)	Ave	3.165	2.636		10.4	12.5	-16.7	30.0
4-Bromofluorobenzene	Lin2		1.045		10.9	12.5	-12.9	30.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab Sample ID: CCVIS 600-263890/3 Calibration Date: 04/29/2019 12:49

Instrument ID: CHVOAMS06 Calib Start Date: 04/20/2019 11:53

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 04/20/2019 14:40

Lab File ID: J11901.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Lin1		0.2836		10.2	10.0	1.5	35.0
Chloromethane	Ave	0.2894	0.1426	0.1000	4.93	10.0	-50.7*	35.0
Vinyl chloride	Ave	0.1999	0.1872		9.37	10.0	-6.3	20.0
Butadiene	Ave	0.2897	0.1565		5.40	10.0	-46.0*	35.0
Bromomethane	Lin2		0.1759		9.65	10.0	-3.5	35.0
Chloroethane	Lin1		0.1030		7.71	10.0	-22.9	35.0
Dichlorofluoromethane	Lin2		0.4274		8.89	10.0	-11.1	50.0
Acrolein	Ave	0.0295	0.0079		13.5	50.0	-73.1*	50.0
Acetonitrile	Lin2		0.0091		46.4	100	-53.6*	50.0
Trichlorofluoromethane	Lin1		0.6060		10.1	10.0	0.8	35.0
Isopropyl alcohol	Lin1		0.0053		44.3	100	-55.7*	50.0
Acetone	Ave	0.0861	0.0489		11.4	20.0	-43.2	50.0
Ethyl ether	Ave	0.3288	0.1746		5.31	10.0	-46.9*	35.0
t-Butanol	Ave	0.0311	0.0207		66.6	100	-33.4	35.0
1,1-Dichloroethene	Ave	0.3599	0.3428		9.53	10.0	-4.8	20.0
Acrylonitrile	Lin1		0.0324		42.0	100	-58.0*	50.0
Iodomethane	Lin1		0.6174		7.83	10.0	-21.7	35.0
Methylene Chloride	Lin1		0.4309		11.0	10.0	10.1	50.0
Methyl acetate	Ave	0.2441	0.0939		7.69	20.0	-61.6*	35.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Lin		0.2753		11.1	10.0	10.9	35.0
3-Chloro-1-propene	Ave	0.2115	0.1880		8.89	10.0	-11.1	35.0
Carbon disulfide	Lin1		1.237		11.4	10.0	13.5	35.0
trans-1,2-Dichloroethene	Ave	0.4433	0.4132		9.32	10.0	-6.8	35.0
Methyl tert-butyl ether	Ave	1.000	1.077		10.8	10.0	7.7	35.0
Propionitrile	Ave	0.0335	0.0142		42.3	100	-57.7*	35.0
1,1-Dichloroethane	Ave	0.8679	0.7597	0.1000	8.75	10.0	-12.5	35.0
Vinyl acetate	Ave	0.8139	0.3428		8.42	20.0	-57.9*	50.0
2-Chloro-1,3-butadiene	Ave	1.111	0.6475		5.83	10.0	-41.7*	35.0
Hexane	Qua		0.3756		5.86	10.0	-41.5*	35.0
2-Butanone (MEK)	Ave	0.0274	0.0380		27.7	20.0	38.5	50.0
Isopropyl ether	Qua		0.7284		3.91	10.0	-60.9*	35.0
Methacrylonitrile	Qua		0.0247		87.7	100	-12.3	35.0
cis-1,2-Dichloroethene	Ave	0.5269	0.4577		8.69	10.0	-13.1	35.0
Ethyl acetate	Ave	0.3551	0.1406		7.92	20.0	-60.4*	35.0
Chlorobromomethane	Ave	0.2213	0.1988		8.98	10.0	-10.2	35.0
Chloroform	Ave	0.8507	0.997		11.7	10.0	17.2	20.0
Tert-butyl ethyl ether	Ave	1.585	0.9605		6.06	10.0	-39.4*	35.0
Isobutyl alcohol	Ave	0.0259	0.0113		109	250	-56.5*	50.0
2,2-Dichloropropane	Lin1		0.7386		16.5	10.0	65.0*	35.0
Tetrahydrofuran	Ave	0.0959	0.0333		6.95	20.0	-65.2*	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab Sample ID: CCVIS 600-263890/3 Calibration Date: 04/29/2019 12:49

Instrument ID: CHVOAMS06 Calib Start Date: 04/20/2019 11:53

GC Column: DB-VRX 60 ID: 0.25 (mm) Calib End Date: 04/20/2019 14:40

Lab File ID: J11901.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dichloroethane	Ave	0.6569	0.6288		9.57	10.0	-4.3	35.0
1,1,1-Trichloroethane	Ave	0.7465	0.9847		13.2	10.0	31.9	35.0
1,1-Dichloropropene	Ave	0.5810	0.6769		11.7	10.0	16.5	35.0
Cyclohexane	Qua		0.4447		9.94	10.0	-0.6	35.0
Carbon tetrachloride	Ave	0.7460	0.9133		12.2	10.0	22.4	35.0
Benzene	Ave	1.629	1.609		9.88	10.0	-1.2	35.0
Tert-amyl methyl ether	Ave	1.046	1.038		9.93	10.0	-0.7	35.0
Isooctane	Qua		0.5161		4.72	10.0	-52.8*	35.0
Ethyl acrylate	Ave	0.6804	0.3205		4.71	10.0	-52.9*	35.0
n-Heptane	Qua		0.3051		4.44	10.0	-55.6*	35.0
Dibromomethane	Ave	0.2348	0.2437		10.4	10.0	3.8	35.0
1,2-Dichloropropane	Ave	0.4739	0.4087		8.62	10.0	-13.8	20.0
2-Nitropropane	Ave	0.1579	0.0924		11.7	20.0	-41.5*	35.0
Trichloroethene	Ave	0.5586	0.4996		8.94	10.0	-10.6	35.0
Bromodichloromethane	Ave	0.6772	0.7570		11.2	10.0	11.8	35.0
Methyl methacrylate	Ave	0.3853	0.1744		9.05	20.0	-54.7*	50.0
1,4-Dioxane	Lin1		0.0005		82.7	200	-58.6*	50.0
2-Chloroethyl vinyl ether	Ave	0.3788	0.0837		4.42	20.0	-77.9*	35.0
Methylcyclohexane	Qua		0.5971		10.2	10.0	2.2	35.0
cis-1,3-Dichloropropene	Ave	1.265	1.117		8.83	10.0	-11.7	35.0
4-Methyl-2-pentanone (MIBK)	Ave	0.4410	0.2557		11.6	20.0	-42.0	50.0
trans-1,3-Dichloropropene	Ave	1.119	1.069		9.55	10.0	-4.5	35.0
n-Butyl acetate	Ave	0.1649	0.0509		3.09	10.0	-69.1*	35.0
1,1,2-Trichloroethane	Ave	0.6839	0.4898		7.16	10.0	-28.4	35.0
Ethyl methacrylate	Ave	0.7209	0.6176		8.57	10.0	-14.3	50.0
Toluene	Ave	2.177	2.471		11.4	10.0	13.5	20.0
1,3-Dichloropropane	Ave	0.9524	0.8178		8.59	10.0	-14.1	35.0
Dibromochloromethane	Ave	0.9542	0.8221		8.62	10.0	-13.9	35.0
2-Hexanone	Ave	0.7886	0.2361		5.99	20.0	-70.1*	50.0
1,2-Dibromoethane	Ave	0.7452	0.5186		6.96	10.0	-30.4	35.0
Tetrachloroethene	Ave	0.7842	0.7096		9.05	10.0	-9.5	35.0
1-Chlorohexane	Ave	1.221	0.6128		5.02	10.0	-49.8*	35.0
1,1,1,2-Tetrachloroethane	Ave	1.115	0.8950		8.03	10.0	-19.7	35.0
Chlorobenzene	Ave	2.911	2.106	0.3000	7.24	10.0	-27.6	35.0
Ethylbenzene	Ave	1.549	1.308		8.45	10.0	-15.5	20.0
m-Xylene & p-Xylene	Ave	3.318	3.132		9.44	10.0	-5.6	35.0
Bromoform	Ave	0.4832	0.4638	0.1000	9.60	10.0	-4.0	35.0
Styrene	Ave	2.705	2.218		8.20	10.0	-18.0	35.0
1,1,2,2-Tetrachloroethane	Ave	0.6766	0.5007	0.3000	7.40	10.0	-26.0	35.0
o-Xylene	Ave	1.943	1.376		7.08	10.0	-29.2	35.0
trans-1,4-Dichloro-2-butene	Ave	0.3109	0.0901		2.90	10.0	-71.0*	50.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab Sample ID: CCVIS 600-263890/3 Calibration Date: 04/29/2019 12:49

Instrument ID: CHVOAMS06 Calib Start Date: 04/20/2019 11:53

GC Column: DB-VRX 60 ID: 0.25 (mm) Calib End Date: 04/20/2019 14:40

Lab File ID: J11901.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2,3-Trichloropropane	Ave	0.2148	0.1729		8.05	10.0	-19.5	35.0
Isopropylbenzene	Ave	3.987	3.765		9.44	10.0	-5.6	35.0
Bromobenzene	Ave	1.146	0.9303		8.12	10.0	-18.8	35.0
N-Propylbenzene	Ave	1.198	0.9570		7.99	10.0	-20.1	35.0
2-Chlorotoluene	Ave	1.128	0.8857		7.85	10.0	-21.5	35.0
4-Chlorotoluene	Ave	2.934	2.876		9.80	10.0	-2.0	35.0
1,3,5-Trimethylbenzene	Ave	3.413	3.247		9.51	10.0	-4.9	35.0
tert-Butylbenzene	Ave	2.970	2.702		9.10	10.0	-9.0	35.0
1,2,4-Trimethylbenzene	Ave	3.603	3.334		9.25	10.0	-7.5	35.0
sec-Butylbenzene	Ave	3.952	3.758		9.51	10.0	-4.9	35.0
Benzyl chloride	Ave	1.360	1.320		9.70	10.0	-3.0	35.0
1,3-Dichlorobenzene	Ave	2.202	1.681		7.64	10.0	-23.7	35.0
1,4-Dichlorobenzene	Ave	2.123	1.693		7.97	10.0	-20.3	35.0
4-Isopropyltoluene	Ave	3.792	3.375		8.90	10.0	-11.0	35.0
1,2,3-Trimethylbenzene	Ave	3.644	3.266		8.96	10.0	-10.4	35.0
1,2-Dichlorobenzene	Ave	1.924	1.443		7.50	10.0	-25.0	35.0
n-Butylbenzene	Ave	2.914	2.876		9.87	10.0	-1.3	35.0
1,2-Dibromo-3-Chloropropane	Ave	0.1285	0.1126		8.77	10.0	-12.3	35.0
1,3,5-Trichlorobenzene	Ave	1.203	1.139		9.47	10.0	-5.3	35.0
1,2,4-Trichlorobenzene	Ave	0.8965	0.8165		9.11	10.0	-8.9	35.0
Naphthalene	Ave	1.465	1.086		7.41	10.0	-25.9	35.0
Hexachlorobutadiene	Ave	0.1522	0.2255		14.8	10.0	48.1*	35.0
1,2,3-Trichlorobenzene	Ave	0.5861	0.4917		8.39	10.0	-16.1	35.0
Dibromofluoromethane	Ave	0.5161	0.4803		9.31	10.0	-6.9	35.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.4824	0.5201		10.8	10.0	7.8	35.0
Toluene-d8 (Surr)	Ave	3.165	2.589		8.18	10.0	-18.2	35.0
4-Bromofluorobenzene	Lin2		1.074		8.90	10.0	-11.0	35.0

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston	_ Job No.: 600-184109-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 600-263890/7
Matrix: Water	Lab File ID: J11905.D
Analysis Method: 8260B	Date Collected:
Sample wt/vol: 20(mL)	Date Analyzed: 04/29/2019 15:01
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 263890	Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.0001830	J	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		50-134
460-00-4	4-Bromofluorobenzene	83		67-139
1868-53-7	Dibromofluoromethane	86		62-130
2037-26-5	Toluene-d8 (Surr)	76		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston	_ Job No.: 600-184109-1
SDG No.:	
Client Sample ID:	Lab Sample ID: LCS 600-263890/5
Matrix: Water	Lab File ID: J11903.D
Analysis Method: 8260B	Date Collected:
Sample wt/vol: 20(mL)	Date Analyzed: 04/29/2019 14:05
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 263890	Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.008688		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.008541		0.00100	0.000192
71-43-2	Benzene	0.009315		0.00100	0.000176
91-20-3	Naphthalene	0.009229		0.00200	0.000129
127-18-4	Tetrachloroethene	0.008520		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	108		50-134
460-00-4	4-Bromofluorobenzene	87		67-139
1868-53-7	Dibromofluoromethane	89		62-130
2037-26-5	Toluene-d8 (Surr)	78		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MW34-04222019 MS Lab Sample ID: 600-184109-12 MS Matrix: Water Lab File ID: J11908.D Analysis Method: 8260B Date Collected: 04/22/2019 15:30 Date Analyzed: 04/29/2019 16:25 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 263890 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.009095		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.01066		0.00100	0.000192
71-43-2	Benzene	0.01084		0.00100	0.000176
91-20-3	Naphthalene	0.007887		0.00200	0.000129
127-18-4	Tetrachloroethene	0.009796		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		50-134
460-00-4	4-Bromofluorobenzene	86		67-139
1868-53-7	Dibromofluoromethane	88		62-130
2037-26-5	Toluene-d8 (Surr)	76		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184109-1
SDG No.:	
Client Sample ID: ARTESIA-MW34-04222019 MSD	Lab Sample ID: 600-184109-12 MSD
Matrix: Water	Lab File ID: J11909.D
lysis Method: 8260B Date Collected: 04/22/2019 15:30	
Sample wt/vol: 20(mL)	Date Analyzed: 04/29/2019 16:53
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No · 263890	IInite: ma/I

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.008085		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.008820		0.00100	0.000192
71-43-2	Benzene	0.009949		0.00100	0.000176
91-20-3	Naphthalene	0.008757		0.00200	0.000129
127-18-4	Tetrachloroethene	0.008890		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		50-134
460-00-4	4-Bromofluorobenzene	87		67-139
1868-53-7	Dibromofluoromethane	89		62-130
2037-26-5	Toluene-d8 (Surr)	78		70-130

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184109-1
SDG No.:	
Instrument ID: CHVOAMS06	Start Date: 04/20/2019 11:19
Analysis Batch Number: 263293	End Date: 04/21/2019 00:00

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 600-263293/2		04/20/2019 11:19	1	J11000A.D	DB-VRX 60 0.25(mm)
IC 600-263293/3		04/20/2019 11:53	1	J11001.D	DB-VRX 60 0.25(mm)
IC 600-263293/4		04/20/2019 12:21	1	J11002.D	DB-VRX 60 0.25(mm)
IC 600-263293/5		04/20/2019 12:49	1	J11003.D	DB-VRX 60 0.25(mm)
IC 600-263293/6		04/20/2019 13:17	1	J11004.D	DB-VRX 60 0.25(mm)
ICIS 600-263293/7		04/20/2019 13:45	1	J11005.D	DB-VRX 60 0.25(mm)
IC 600-263293/8		04/20/2019 14:13	1	J11006.D	DB-VRX 60 0.25(mm)
IC 600-263293/9		04/20/2019 14:40	1	J11007.D	DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 16:04	1		DB-VRX 60 0.25(mm)
ICV 600-263293/1012		04/20/2019 16:04	1	J11010-ICV.d	DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 16:32	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 17:29	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 17:56	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 18:25	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 18:53	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 19:21	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 19:49	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 20:17	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 20:45	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 21:13	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 21:41	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 22:08	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 22:36	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 23:04	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/20/2019 23:32	20		DB-VRX 60 0.25(mm)
ZZZZZ		04/21/2019 00:00	20		DB-VRX 60 0.25(mm)

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184109-1
SDG No.:	
Instrument ID: CHVOAMS06	Start Date: 04/29/2019 12:25
Analysis Batch Number: 263890	End Date: 04/30/2019 00:19

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 600-263890/2		04/29/2019 12:25	1	J11900A.D	DB-VRX 60 0.25(mm)
CCVIS 600-263890/3		04/29/2019 12:49	1	J11901.D	DB-VRX 60 0.25(mm)
LCS 600-263890/5		04/29/2019 14:05	1	J11903.D	DB-VRX 60 0.25(mm)
MB 600-263890/7		04/29/2019 15:01	1	J11905.D	DB-VRX 60 0.25(mm)
600-184109-1		04/29/2019 15:29	1	J11906.D	DB-VRX 60 0.25(mm)
600-184109-12		04/29/2019 15:57	1	J11907.D	DB-VRX 60 0.25(mm)
600-184109-12 MS		04/29/2019 16:25	1	J11908.D	DB-VRX 60 0.25(mm)
600-184109-12 MSD		04/29/2019 16:53	1	J11909.D	DB-VRX 60 0.25(mm)
ZZZZZ		04/29/2019 17:21	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/29/2019 17:49	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/29/2019 18:17	1		DB-VRX 60 0.25(mm)
ZZZZZ		04/29/2019 18:44	20		DB-VRX 60 0.25(mm)
ZZZZZ		04/29/2019 19:13	500		DB-VRX 60 0.25(mm)
600-184109-2		04/29/2019 19:41	1	J11915.D	DB-VRX 60 0.25(mm)
600-184109-3		04/29/2019 20:08	1	J11916.D	DB-VRX 60 0.25(mm)
600-184109-4		04/29/2019 20:36	1	J11917.D	DB-VRX 60 0.25(mm)
600-184109-6		04/29/2019 21:04	1	J11918.D	DB-VRX 60 0.25(mm)
600-184109-7		04/29/2019 21:32	1	J11919.D	DB-VRX 60 0.25(mm)
600-184109-8		04/29/2019 22:00	1	J11920.D	DB-VRX 60 0.25 (mm)
600-184109-9		04/29/2019 22:28	1	J11921.D	DB-VRX 60 0.25 (mm)
600-184109-10		04/29/2019 22:56	1	J11922.D	DB-VRX 60 0.25(mm)
600-184109-11		04/29/2019 23:24	1	J11923.D	DB-VRX 60 0.25(mm)
600-184109-13		04/29/2019 23:51	1	J11924.D	DB-VRX 60 0.25 (mm)
600-184109-5		04/30/2019 00:19	1	J11925.D	DB-VRX 60 0.25(mm)

SDG No.:									
Batch Number: 263293			В	atch Start Dat	te: <u>04/20/19</u>	11:19	Batch Analyst	: Vela, Kennet	th L
Batch Method:	8260B		В	atch End Date:	:				
Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	BFB 00280	VOAIS250PPM 00124	VOALCSGASPT 00322	VOALCSPT2T 00058
BFB 600-263293/2		8260B		20 mL	20 mL	2 uL			
IC 600-263293/3		8260B		20 mL	20 mL		1 uL		
IC 600-263293/4		8260B		20 mL	20 mL		1 uL		
IC 600-263293/5		8260B		20 mL	20 mL		1 uL		
IC 600-263293/6		8260B		20 mL	20 mL		1 uL		
ICIS 600-263293/7		8260B		20 mL	20 mL		1 uL		
IC 600-263293/8		8260B		20 mL	20 mL		1 uL		
IC 600-263293/9		8260B		20 mL	20 mL		1 uL		
ICV 600-263293/1012		8260B		20 mL	20 mL		1 uL	4 uL	4 uL
Lab Sample ID	Client Sample ID	Method Chain	Basis	VOASS250PPM 00101	VOASTDGASPT 00322	VOASTDst 00107			
BFB 600-263293/2		8260B							
IC 600-263293/3		8260B			0.2 uL	0.2 uL			
IC 600-263293/4		8260B			0.4 uL	0.4 uL			
IC 600-263293/5		8260B			0.8 uL	0.8 uL			
IC 600-263293/6		8260B			2 uL	2 uL			
ICIS 600-263293/7		8260B			4 uL	4 uL			
IC 600-263293/8		8260B			8 uL	8 uL			
IC 600-263293/9		8260B			20 uL	20 uL			
ICV 600-263293/1012		8260B		1 uL					

Basis	Basis Description

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

HC746949

pH Indicator ID

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Batch Number: 263890 Batch Start Date: 04/29/19 12:25 Batch Analyst: Vela, Kenneth L

Batch Method: 8260B Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	Initial pH	BFB 00281	VOAIS250PPM 00125	VOALCSGASPT 00323
BFB 600-263890/2		8260B		20 mL	20 mL		2 uL		
CCVIS 600-263890/3		8260B		20 mL	20 mL			1 uL	
LCS 600-263890/5		8260B		20 mL	20 mL			1 uL	4 uL
MB 600-263890/7		8260B		20 mL	20 mL			1 uL	
600-184109-B-1	ARTESIA-TB01-042 22019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
600-184109-C-12	ARTESIA-MW34-042 22019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
600-184109-C-12 MS	ARTESIA-MW34-042 22019	8260B	Т	20 mL	20 mL	2 SU		1 uL	4 uL
600-184109-C-12 MSD	ARTESIA-MW34-042 22019	8260B	Т	20 mL	20 mL	2 SU		1 uL	4 uL
600-184109-C-2	ARTESIA-INLET-04 222019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
600-184109-C-3	ARTESIA-MID-0422 2019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
600-184109-C-4	ARTESIA-OUTLET-0 4222019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
600-184109-C-6	ARTESIA-MW30-042 22019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
600-184109-C-7	ARTESIA-MD30-042 22019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
600-184109-C-8	ARTESIA-MW32-042 22019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
600-184109-C-9	ARTESIA-MW17C-04 222019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
600-184109-C-10	ARTESIA-MW11-042 22019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
600-184109-C-11	ARTESIA-MW26-042 22019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
600-184109-B-13	ARTESIA-MD11-042 22019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
600-184109-D-5	ARTESIA-MW12-042 22019	8260B	Т	20 mL	20 mL	2 SU		1 uL	
Lab Sample ID	Client Sample ID	Method Chain	Basis	VOALCSPT2T	VOASS250PPM	VOASTDGASPT	VOASTDst 00108		I
0ampio ib			= = = =	00059	00102	00323	.51.6166 00100		

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Lab Name: Eurofins TestAmerica, Houston	1 Job No.: 600-184109-1	
SDG No.:		
Batch Number: 263890	Batch Start Date: 04/29/19 12:25	Batch Analyst: Vela, Kenneth L
Batch Method: 8260B	Batch End Date:	

Lab Sample ID	Client Sample ID	Mothod Chain	Pagia	VOALCSPT2T	VOASS250PPM	VOASTDGASPT	VOASTDst 00108	
Lab Sample ID	CITEIL Sample ID	Mechod Chain	Dasis	00059	00102	00323	VOASIDSE 00100	
BFB		8260B			1			
600-263890/2		02006						
CCVIS 600-263890/3		8260B				4 uL	4 uL	
LCS 600-263890/5		8260B		4 uL	1 uL			
MB 600-263890/7		8260B			1 uL			
600-184109-B-1	ARTESIA-TB01-042 22019	8260B	Т		1 uL			
600-184109-C-12	ARTESIA-MW34-042 22019	8260B	Т		1 uL			
600-184109-C-12 MS	ARTESIA-MW34-042 22019	8260B	Т	4 uL	1 uL			
600-184109-C-12 MSD	ARTESIA-MW34-042 22019	8260B	Т	4 uL	1 uL			
600-184109-C-2	ARTESIA-INLET-04 222019	8260B	Т		1 uL			
600-184109-C-3	ARTESIA-MID-0422 2019	8260B	Т		1 uL			
600-184109-C-4	ARTESIA-OUTLET-0 4222019	8260B	Т		1 uL			
600-184109-C-6	ARTESIA-MW30-042 22019	8260B	Т		1 uL			
600-184109-C-7	ARTESIA-MD30-042 22019	8260B	Т		1 uL			
600-184109-C-8	ARTESIA-MW32-042 22019	8260B	Т		1 uL			
600-184109-C-9	ARTESIA-MW17C-04 222019	8260B	Т		1 uL			
600-184109-C-10	ARTESIA-MW11-042 22019	8260B	Т		1 uL			
600-184109-C-11	ARTESIA-MW26-042 22019	8260B	Т		1 uL			
600-184109-B-13	ARTESIA-MD11-042 22019	8260B	Т		1 uL			
600-184109-D-5	ARTESIA-MW12-042 22019	8260B	Т		1 uL			

	Batch Notes	
pH Indicator ID	HC746949	

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184109-1	
SDG No.:		
Batch Number: 263890	Batch Start Date: 04/29/19 12:25	Batch Analyst: Vela, Kenneth L
Batch Method: 8260B	Batch End Date:	

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Method 300.0

Anions (IC) by Method 300.0

FORM III HPLC/IC LAB CONTROL SAMPLE RECOVERY

Lab Name:	Eurofins TestAme	rica, H	Houston Job No.: 600-184109-1								
SDG No.:											
Matrix: Water Lev			Low	Lab	Lab File ID: 050619-12.d						
Lab ID: LC	S 600-264422/12			Cli	ent ID:						
			_								
			SPIKE			LCS	LCS	QC			
			ADDED		CONCE	NTRATION	용	LIMITS	#		
COMPOUND			(mg/L)		(mg/L)		REC	REC			
Sulfate			2	20.0		19.37	97	90-110			

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 300.0

FORM IV HPLC/IC METHOD BLANK SUMMARY

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184109-1
SDG No.:	
Lab File ID: 050619-11.d	Lab Sample ID: MB 600-264422/11
Matrix: Water	Date Extracted:
Instrument ID: CHWC11	Date Analyzed: 05/06/2019 16:54
Level: (Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	CCB 600-264422/10	050619-10.d	05/06/2019 16:34
	LCS 600-264422/12	050619-12.d	05/06/2019 17:14
	CCB 600-264422/26	050619-26.d	05/06/2019 21:54
ARTESIA-MW12-04222019	600-184109-5	050619-31.d	05/06/2019 23:34
ARTESIA-MW17C-04222019	600-184109-9	050619-32.d	05/06/2019 23:54
ARTESIA-MW11-04222019	600-184109-10	050619-33.d	05/07/2019 00:14
	CCB 600-264422/37	050619-37.d	05/07/2019 01:34

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MW12-04222019 Lab Sample ID: 600-184109-5 Matrix: Water Lab File ID: 050619-31.d Analysis Method: 300.0 Date Collected: 04/22/2019 13:50 Date Extracted: Extraction Method: Sample wt/vol: 5(mL) Date Analyzed: 05/06/2019 23:34 Con. Extract Vol.: Dilution Factor: 100 GC Column: AS-18 ID: Injection Volume: 1(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 264422 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
14808-79-8	Sulfate	2520		50.0	9.57

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MW17C-04222019 Lab Sample ID: 600-184109-9 Matrix: Water Lab File ID: 050619-32.d Analysis Method: 300.0 Date Collected: 04/22/2019 14:30 Date Extracted: Extraction Method: Sample wt/vol: 5(mL) Date Analyzed: 05/06/2019 23:54 Con. Extract Vol.: Dilution Factor: 100 GC Column: AS-18 ID: Injection Volume: 1(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 264422 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
14808-79-8	Sulfate	2400		50.0	9.57

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 SDG No.: Client Sample ID: ARTESIA-MW11-04222019 Lab Sample ID: 600-184109-10 Matrix: Water Lab File ID: 050619-33.d Analysis Method: 300.0 Date Collected: 04/22/2019 15:25 Date Extracted: Extraction Method: Sample wt/vol: 5(mL) Date Analyzed: 05/07/2019 00:14 Con. Extract Vol.: Dilution Factor: 100 GC Column: AS-18 ID: Injection Volume: 1(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 264422 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
14808-79-8	Sulfate	3150		50.0	9.57

HPLC/IC BY EXTERNAL STANDARD - INITIAL CALIBRATION DATA RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston

SDG No.:

Instrument ID: CHWC11

Calibration Start Date: 05/02/2019 18:32

Calibration End Date: 05/02/2019 20:52

Analy Batch No.: 264203

ID: Heated Purge: (Y/N) N

Calibration ID: 15736

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 600-264203/2	CAL050219-2.d	
Level 2	IC 600-264203/3	CAL050219-3.d	
Level 3	IC 600-264203/4	CAL050219-4.d	
Level 4	IC 600-264203/5	CAL050219-5.d	
Level 5	IC 600-264203/6	CAL050219-6.d	
Level 6	IC 600-264203/7	CAL050219-7.d	
Level 7	IC 600-264203/8	CAL050219-8.d	
Level 8	IC 600-264203/9	CAL050219-9.d	

ANALYTE		LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	LVL 7	LVL 8	RT WINDOW	AVG RT
Fluoride		3.142	3.150	3.150	3.158	3.167	3.167	3.175	2.900 - 3.400	3.158
Chloride	+++++	4.750	4.750	4.758	4.750	4.758	4.750	4.750	4.508 - 5.008	4.752
Bromide		8.300	8.292	8.292	8.292	8.283	8.275	8.258	8.042 - 8.542	8.285
Sulfate		9.083	9.083	9.075	9.067	9.058	9.042	8.992	8.825 - 9.325	9.057

HPLC/IC BY EXTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1 Analy Batch No.: 264203

SDG No.:

Instrument ID: CHWC11 GC Column: AS-18 ID: Heated Purge: (Y/N) N

Calibration Start Date: 05/02/2019 18:32 Calibration End Date: 05/02/2019 20:52 Calibration ID: 15736

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 600-264203/2	CAL050219-2.d
Level 2	IC 600-264203/3	CAL050219-3.d
Level 3	IC 600-264203/4	CAL050219-4.d
Level 4	IC 600-264203/5	CAL050219-5.d
Level 5	IC 600-264203/6	CAL050219-6.d
Level 6	IC 600-264203/7	CAL050219-7.d
Level 7	IC 600-264203/8	CAL050219-8.d
Level 8	IC 600-264203/9	CAL050219-9.d

ANALYTE	CF			CURVE COEFFICIENT			;	# MIN CF	%RSD	#	MAX	R^2	# MIN R^2	
	LVL 1 LVL 5	LVL 2 LVL 6	LVL 3 LVL 7	LVL 4 LVL 8	TYPE	В	M1	M2				%RSD	OR COD	OR COD
Fluoride	17525526	19544125 16015278	17925622 14767818	16397740 16037930		1350157.18	15499376.2						0.9970	0.9900
Chloride	+++++ 8424473	7433953 8991254	7966478 8683906	8996587 8628528		322145.914	8641994.57						1.0000	0.9900
Bromide	3102217	2132165 3235079	2332572 3329842	2496754 3627629		-929346.42	3596367.59						0.9970	0.9900
Sulfate	5851385	4509283 6447367	5118099 6373347	5812601 6398417	Lin	-1243871.1	6433524.49						1.0000	0.9900

Note: The M1 coefficient is the same as Ave CF for an Ave curve type.

HPLC/IC BY EXTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston

SDG No.:

Instrument ID: CHWC11

Calibration Start Date: 05/02/2019 18:32

Calibration End Date: 05/02/2019 20:52

Analy Batch No.: 264203

Below No.: 264203

Analy Batch No.: 264203

Column: AS-18

ID: Heated Purge: (Y/N) N

Calibration ID: 15736

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 600-264203/2	CAL050219-2.d	
Level 2	IC 600-264203/3	CAL050219-3.d	
Level 3	IC 600-264203/4	CAL050219-4.d	
Level 4	IC 600-264203/5	CAL050219-5.d	
Level 5	IC 600-264203/6	CAL050219-6.d	
Level 6	IC 600-264203/7	CAL050219-7.d	
Level 7	IC 600-264203/8	CAL050219-8.d	
Level 8	IC 600-264203/9	CAL050219-9.d	

ANALYTE	CURVE							CONCENTRATION (UG/ML)					
	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5	LVL 6	LVL 2 LVL 7	LVL 3 LVL 8	LVL 4	LVL 5		
Fluoride	Lin		3908825	8962811	16397740	35051052		0.200	0.500	1.00	2.00		
		80076390	110758638	160379300			5.00	7.50	10.0				
Chloride	Lin	+++++	2973581	7966478	17993173	42122365	++++	0.400	1.00	2.00	5.00		
		89912538	173678125	345141136			10.0	20.0	40.0				
Bromide	Lin		426433	1166286	2496754	6204433		0.200	0.500	1.00	2.00		
		16175395	24973816	36276289			5.00	7.50	10.0				
Sulfate	Lin		1803713	5118099	11625201	29256926		0.400	1.00	2.00	5.00		
		64473667	127466945	255936671			10.0	20.0	40.0				

Curve Type Legend:

Lin = Linear

FORM VII HPLC/IC CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab Sample ID: CCV 600-264422/9 Calibration Date: 05/06/2019 16:14

Instrument ID: CHWC11 Calib Start Date: 05/02/2019 18:32

Lab File ID: 050619-9.d Conc. Units: mg/L

ANALYTE	CURVE TYPE	AVE CF	CF	MIN CF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Fluoride	Lin		15481555		7.40	7.50	-1.3	10.0
Chloride	Lin		8413033		19.4	20.0	-2.8	10.0
Bromide	Lin		3293439		7.13	7.50	-5.0	10.0
Sulfate	Lin		6536473		20.5	20.0	2.6	10.0

FORM VII HPLC/IC CONTINUING CALIBRATION RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab Sample ID: CCV 600-264422/9 Calibration Date: 05/06/2019 16:14

Instrument ID: CHWC11 Calib Start Date: 05/02/2019 18:32

Lab File ID: 050619-9.d

Analyte		RT WINDOW		
		FROM	TO	
Fluoride	3.17	2.90	3.40	
Chloride	4.75	4.51	5.01	
Bromide	8.27	8.04	8.54	
Sulfate	9.03	8.83	9.33	

FORM VII HPLC/IC CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab Sample ID: CCV 600-264422/25 Calibration Date: 05/06/2019 21:34

Instrument ID: CHWC11 Calib Start Date: 05/02/2019 18:32

Lab File ID: 050619-25.d Conc. Units: mg/L

ANALYTE	CURVE TYPE	AVE CF	CF	MIN CF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Fluoride	Lin		14964608		7.15	7.50	-4.6	10.0
Chloride	Lin		8332096		19.3	20.0	-3.8	10.0
Bromide	Lin		3229979		6.99	7.50	-6.7	10.0
Sulfate	Lin		6080159		19.1	20.0	-4.5	10.0

FORM VII HPLC/IC CONTINUING CALIBRATION RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab Sample ID: CCV 600-264422/25 Calibration Date: 05/06/2019 21:34

Instrument ID: CHWC11 Calib Start Date: 05/02/2019 18:32

Lab File ID: 050619-25.d

Analuto	RT	RT WINDOW		
Analyte		FROM	TO	
Fluoride	3.17	2.90	3.40	
Chloride	4.75	4.51	5.01	
Bromide	8.27	8.04	8.54	
Sulfate	9.03	8.83	9.33	

FORM VII HPLC/IC CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab Sample ID: CCV 600-264422/36 Calibration Date: 05/07/2019 01:14

Instrument ID: CHWC11 Calib Start Date: 05/02/2019 18:32

Lab File ID: 050619-36.d Conc. Units: mg/L

ANALYTE	CURVE TYPE	AVE CF	CF	MIN CF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Fluoride	Lin		14860530		7.10	7.50	-5.3	10.0
Chloride	Lin		8238023		19.0	20.0	-4.9	10.0
Bromide	Lin		3175730		6.88	7.50	-8.3	10.0
Sulfate	Lin		6090785		19.1	20.0	-4.4	10.0

FORM VII HPLC/IC CONTINUING CALIBRATION RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184109-1

SDG No.:

Lab Sample ID: CCV 600-264422/36 Calibration Date: 05/07/2019 01:14

Instrument ID: CHWC11 Calib Start Date: 05/02/2019 18:32

Lab File ID: 050619-36.d

Analuto	RT	RT WINDOW		
Analyte	KI	FROM	TO	
Fluoride	3.17	2.90	3.40	
Chloride	4.75	4.51	5.01	
Bromide	8.27	8.04	8.54	
Sulfate	9.03	8.83	9.33	

Lab Name: Eu:	rofins TestAmerica, Houston	Job No.: 600-184109-1				
SDG No.:						
Client Sample	e ID:	Lab	Sample ID:	MB 600	-264422/11	
Matrix: Water	r	Lab	File ID: 0	50619-1	1.d	
Analysis Meth	hod: 300.0	Dat	e Collected	l:		
Extraction Me	ethod:	Dat	e Extracted	l:		
Sample wt/vol: 5(mL)			Date Analyzed: 05/06/2019 16:54			
Con. Extract	Vol.:	Dil	ution Facto	or: 1		
Injection Vol	lume: 1(uL)	GC	Column: AS-	18	ID:	
% Moisture:		GPC	Cleanup: (Y	7/N) N		
Analysis Bato	ch No.: 264422	Uni	ts: mg/L			
	_					
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL
14808-79-8	Sulfate		0.0957	U	0.500	0.0957

Lab Name: Eur	rofins TestAmerica, Houston	Job No.: 600-184109-1				
SDG No.:						
Client Sample	e ID:	Lab	Sample ID:	CCB 60	0-264422/10	
Matrix: Water		Lab	File ID: 0	50619-1	0.d	
Analysis Meth	nod: 300.0	_ Dat	e Collected	l:		
Extraction Me	ethod:	_ Dat	e Extracted	l:		
Sample wt/vol	l: 5(mL)	Date Analyzed: 05/06/2019 16:34				
Con. Extract	Vol.:	_ Dil	ution Facto	or: 1		
Injection Vol	lume: 1(uL)	GC	Column: AS-	18	ID:	
% Moisture:		GPC	Cleanup: (Y	7/N) <u>N</u>		
Analysis Bato	ch No.: 264422	Uni	ts: mg/L			
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL
14808-79-8	Sulfate		0.0957	U	0.500	0.0957

Lab Name: Eur	rofins TestAmerica, Houston	Job No.: 600-184109-1				
SDG No.:						
Client Sample	e ID:	Lab	Sample ID:	CCB 60	0-264422/26	
Matrix: Water	-	Lab	File ID: 0	50619-2	6.d	
Analysis Meth	nod: 300.0	Dat	e Collected	d:		
Extraction Me	ethod:	Dat	e Extracted	d:		
Sample wt/vol	L: 5(mL)	Date Analyzed: 05/06/2019 21:54				
Con. Extract	Vol.:	_ Dil	ution Facto	or: 1		
Injection Vol	lume: 1(uL)	GC	Column: AS-	-18	ID: _	
% Moisture: _		GPC	Cleanup: (Y	//N) N		
Analysis Bato	ch No.: 264422	Uni	ts: mg/L			
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL
14808-79-8	Sulfate		0.0957	U	0.500	0.0957

Lab Name: Eur	rofins TestAmerica, Houston	Job No.: 600-184109-1				
SDG No.:						
Client Sample	e ID:	Lab	Sample ID:	CCB 60	0-264422/37	
Matrix: Water	r	Lab	File ID: 0	50619-3	7.d	
Analysis Meth	nod: 300.0	Dat	e Collected	l:		
Extraction Me	ethod:	Dat	e Extracted	l:		
Sample wt/vol	l: 5(mL)	Date Analyzed: 05/07/2019 01:34				
Con. Extract	Vol.:	Dil	ution Facto	or: 1		
Injection Vol	lume: 1(uL)	GC	Column: AS-	18	ID:	
% Moisture:		GPC	Cleanup: (Y	7/N) N		
Analysis Bato	ch No.: 264422	Uni	ts: mg/L			
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL
14808-79-8	Sulfate		0.0957	U	0.500	0.0957

Lab Name: Eu	rofins TestAmerica, Houston	Job No.: 600-184109-1				
SDG No.:						
Client Sample	e ID:	Lab	Sample ID:	LCS 60	0-264422/12	
Matrix: Water	-	Lab	File ID: 0	50619-1	2.d	
Analysis Meth	nod: 300.0	Dat	e Collected	:		
Extraction Me	ethod:	Dat	e Extracted	:		
Sample wt/vol	L: 5 (mL)	Date Analyzed: 05/06/2019 17:14				
Con. Extract	Vol.:	_ Dil	ution Facto	r: <u>1</u>		
Injection Vol	Lume: 1(uL)	GC	Column: AS-	18	ID: _	
% Moisture:		GPC	Cleanup: (Y	/N) <u>N</u>		
Analysis Bato	ch No.: 264422	Uni	ts: mg/L			
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL
14808-79-8	Sulfate		19.37		0.500	0.0957

HPLC/IC ANALYSIS RUN LOG

		Euroiins	TestAmerica,	Houston	JOD NO.:	600-184109-1
SDG 1	No.:					

Instrument ID: CHWC11 Start Date: 05/02/2019 18:32

Analysis Batch Number: 264203 End Date: 05/03/2019 23:39

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
IC 600-264203/2		05/02/2019 18:32	1	CAL050219-2.d	AS-18
IC 600-264203/3		05/02/2019 18:52	1	CAL050219-3.d	AS-18
IC 600-264203/4		05/02/2019 19:12	1	CAL050219-4.d	AS-18
IC 600-264203/5		05/02/2019 19:32	1	CAL050219-5.d	AS-18
IC 600-264203/6		05/02/2019 19:52	1	CAL050219-6.d	AS-18
IC 600-264203/7		05/02/2019 20:12	1	CAL050219-7.d	AS-18
IC 600-264203/8		05/02/2019 20:32	1	CAL050219-8.d	AS-18
IC 600-264203/9		05/02/2019 20:52	1	CAL050219-9.d	AS-18
ICV 600-264203/11		05/02/2019 21:32	1		AS-18
ICB 600-264203/12		05/02/2019 21:52	1		AS-18
ZZZZZ		05/02/2019 22:12	1		AS-18
ZZZZZ		05/02/2019 22:32	1		AS-18
ZZZZZ		05/02/2019 22:52	1		AS-18
ZZZZZ		05/02/2019 23:12	1		AS-18
ZZZZZ		05/02/2019 23:32	1		AS-18
CCV 600-264203/18		05/02/2019 23:52	1		AS-18
CCB 600-264203/19		05/03/2019 00:12	1		AS-18
ZZZZZ		05/03/2019 00:32	1		AS-18
ZZZZZ		05/03/2019 00:52	1		AS-18
ZZZZZ		05/03/2019 01:12	1		AS-18
ZZZZZ		05/03/2019 01:32	1		AS-18
ZZZZZ		05/03/2019 01:52	1		AS-18
ZZZZZ		05/03/2019 02:12	1		AS-18
ZZZZZ		05/03/2019 02:32	1		AS-18
ZZZZZ		05/03/2019 02:52	10		AS-18
ZZZZZ		05/03/2019 03:12	25		AS-18
ZZZZZ		05/03/2019 03:32	25		AS-18
CCV 600-264203/30		05/03/2019 03:52	1		AS-18
CCB 600-264203/31		05/03/2019 04:12	1		AS-18
ZZZZZ		05/03/2019 04:32	10		AS-18
ZZZZZ		05/03/2019 04:52	5		AS-18
ZZZZZ		05/03/2019 05:13	1		AS-18
ZZZZZ		05/03/2019 05:33	5		AS-18
ZZZZZ		05/03/2019 05:53	50		AS-18
ZZZZZ		05/03/2019 06:13	50		AS-18
ZZZZZ		05/03/2019 06:33	50		AS-18
ZZZZZ		05/03/2019 06:53	5		AS-18
ZZZZZ		05/03/2019 07:13	5		AS-18
ZZZZZ		05/03/2019 07:33	2		AS-18
CCV 600-264203/42		05/03/2019 07:53	1		AS-18
CCB 600-264203/43		05/03/2019 08:13	1		AS-18
ZZZZZ		05/03/2019 08:33	5		AS-18
ZZZZZ		05/03/2019 08:53	100		AS-18
		05/00/0010 00 10	T -		30.10
ZZZZZ		05/03/2019 09:13	5		AS-18

HPLC/IC ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184109-1
SDG No.:	
Instrument ID: CHWC11	Start Date: 05/02/2019 18:32
Analysis Batch Number: 264203	End Date: 05/03/2019 23:39

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
ZZZZZ		05/03/2019 09:53	5		AS-18
ZZZZZ		05/03/2019 10:13	5		AS-18
ZZZZZ		05/03/2019 10:53	1		AS-18
ZZZZZ		05/03/2019 11:13	1		AS-18
CCV 600-264203/54		05/03/2019 11:53	1		AS-18
CCB 600-264203/55		05/03/2019 12:13	1		AS-18
ZZZZZ		05/03/2019 12:59	20		AS-18
ZZZZZ		05/03/2019 13:19	20		AS-18
ZZZZZ		05/03/2019 13:39	20		AS-18
ZZZZZ		05/03/2019 15:39	1		AS-18
ZZZZZ		05/03/2019 15:59	1		AS-18
CCV 600-264203/66		05/03/2019 16:19	1		AS-18
CCB 600-264203/67		05/03/2019 16:39	1		AS-18
ZZZZZ		05/03/2019 17:39	100		AS-18
ZZZZZ		05/03/2019 17:59	5		AS-18
ZZZZZ		05/03/2019 18:19	5		AS-18
ZZZZZ		05/03/2019 18:39	1		AS-18
ZZZZZ		05/03/2019 18:59	1		AS-18
ZZZZZ		05/03/2019 19:19	1		AS-18
ZZZZZ		05/03/2019 19:39	1		AS-18
ZZZZZ		05/03/2019 19:59	1		AS-18
CCV 600-264203/78		05/03/2019 20:19	1		AS-18
CCB 600-264203/79		05/03/2019 20:39	1		AS-18
ZZZZZ		05/03/2019 20:59	1		AS-18
ZZZZZ		05/03/2019 21:19	1		AS-18
ZZZZZ		05/03/2019 21:39	1		AS-18
ZZZZZ		05/03/2019 21:59	1		AS-18
ZZZZZ		05/03/2019 22:19	1		AS-18
ZZZZZ		05/03/2019 22:39	1		AS-18
ZZZZZ		05/03/2019 22:59	1		AS-18
CCB 600-264203/88		05/03/2019 23:39	1		AS-18

HPLC/IC ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184109-1
SDG No.:	
Instrument ID: CHWC11	Start Date: 05/06/2019 13:25
Analysis Batch Number: 264422	End Date: 05/07/2019 01:34

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
CCV 600-264422/2		05/06/2019 13:25	1		AS-18
CCB 600-264422/3		05/06/2019 14:14	1		AS-18
ZZZZZ		05/06/2019 14:34	1		AS-18
ZZZZZ		05/06/2019 14:54	1		AS-18
ZZZZZ		05/06/2019 15:14	1		AS-18
ZZZZZ		05/06/2019 15:34	1		AS-18
ZZZZZ		05/06/2019 15:54	1		AS-18
CCV 600-264422/9		05/06/2019 16:14	1	050619-9.d	AS-18
CCB 600-264422/10		05/06/2019 16:34	1	050619-10.d	AS-18
MB 600-264422/11		05/06/2019 16:54	1	050619-11.d	AS-18
LCS 600-264422/12		05/06/2019 17:14	1	050619-12.d	AS-18
ZZZZZ		05/06/2019 17:34	1		AS-18
ZZZZZ		05/06/2019 17:54	1		AS-18
ZZZZZ		05/06/2019 18:14	1		AS-18
ZZZZZ		05/06/2019 18:34	20		AS-18
ZZZZZ		05/06/2019 18:54	20		AS-18
ZZZZZ		05/06/2019 19:34	2		AS-18
ZZZZZ		05/06/2019 19:54	10		AS-18
ZZZZZ		05/06/2019 20:14	10		AS-18
ZZZZZ		05/06/2019 20:34	10		AS-18
ZZZZZ		05/06/2019 20:54	20		AS-18
ZZZZZ		05/06/2019 21:14	20		AS-18
CCV 600-264422/25		05/06/2019 21:34	1	050619-25.d	AS-18
CCB 600-264422/26		05/06/2019 21:54	1	050619-26.d	AS-18
ZZZZZ		05/06/2019 22:14	20		AS-18
ZZZZZ		05/06/2019 22:34	5		AS-18
ZZZZZ		05/06/2019 22:54	20		AS-18
ZZZZZ		05/06/2019 23:14	2		AS-18
600-184109-5		05/06/2019 23:34	100	050619-31.d	AS-18
600-184109-9		05/06/2019 23:54	100	050619-32.d	AS-18
600-184109-10		05/07/2019 00:14	100	050619-33.d	AS-18
ZZZZZ		05/07/2019 00:34	1		AS-18
ZZZZZ		05/07/2019 00:54	100		AS-18
CCV 600-264422/36		05/07/2019 01:14	1	050619-36.d	AS-18
CCB 600-264422/37		05/07/2019 01:34	1	050619-37.d	AS-18

HPLC/IC BATCH WORKSHEET

SDG No.:	Lab Name:	Eurofins TestAmerica, Houston	Job No.: 600-184109-1	
	SDG No.:			

Batch Number: 264422 Batch Start Date: 05/06/19 13:25 Batch Analyst: Reach, Shrey K

Batch Method: 300.0 Batch End Date: _____

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	CCV 00103	ICV/LCS 00103		
CCV 600-264422/9		300.0		5 mL	5 mL			
CCB 600-264422/10		300.0		5 mL				
MB 600-264422/11		300.0		5 mL				
LCS 600-264422/12		300.0		5 mL		5 mL		
CCV 600-264422/25		300.0		5 mL	5 mL			
CCB 600-264422/26		300.0		5 mL				
600-184109-A-5	ARTESIA-MW12-042 22019	300.0	Т	5 mL				
600-184109-A-9	ARTESIA-MW17C-04 222019	300.0	Т	5 mL				
600-184109-A-10	ARTESIA-MW11-042 22019	300.0	Т	5 mL				
CCV 600-264422/36		300.0		5 mL	5 mL			
CCB 600-264422/37		300.0		5 mL				

Batch Notes								
Eluent 1 ID	180982621012							
Filter ID	16848867 / 16934512							

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

METALS

COVER PAGE METALS

Lab Name:	Eurofins TestAmerica, Corpus Chr	Job Number: 600-184109-1
SDG No.:		
Project:	Dowell - Artesia 04/23/19	
	Client Comple ID	Tab Cample ID
	Client Sample ID	Lab Sample ID
	ARTESIA-INLET-04222019	600-184109-2
	ARTESIA-MID-04222019	600-184109-3
	ARTESIA-OUTLET-04222019	600-184109-4
	ARTESIA-MW30-04222019	600-184109-6
	ARTESIA-MD30-04222019	600-184109-7
	ARTESIA-MW32-04222019	600-184109-8
	ARTESIA-MW26-04222019	600-184109-11
	ARTESIA-MW34-04222019	600-184109-12

Comments:

Client Sample ID: ARTESIA-INLET-04222019

Lab Name: Eurofins TestAmerica, Corpus Christi

SDG ID.:

Matrix: Water

Reporting Basis: WET

Date Received: 04/23/2019 08:59

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.0116	0.0500	0.0116	mg/L	U		1	6020

Client Sample ID: ARTESIA-MID-04222019

Lab Sample ID: 600-184109-3

Job No.: 600-184109-1

SDG ID.:

Matrix: Water

Date Sampled: 04/22/2019 13:45

Reporting Basis: WET

Date Received: 04/23/2019 08:59

CAS No. Analyte Result RL MDL Units C Q DIL Method

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.0116	0.0500	0.0116	mg/L	Ū		1	6020

Client Sample ID: ARTESIA-OUTLET-04222019 Lab Sample ID: 600-184109-4 Lab Name: Eurofins TestAmerica, Corpus Christi Job No.: 600-184109-1 SDG ID.: Matrix: Water Date Sampled: 04/22/2019 13:53 Reporting Basis: WET Date Received: 04/23/2019 08:59 CAS No. Analyte Result RL MDL Units С Q DIL Method

0.0500

0.0116

0.0116 | mg/L

U

1 6020

7439-96-5

Manganese, Dissolved

Client Sample	ID: ARTESIA-MW30-04222		Lab Sample ID: 600-184109-6								
Lab Name: Eur	rofins TestAmerica, Cor		Job No.: 600-184109-1								
SDG ID.:											
Matrix: Water			Date Sampl	ed: 04/22	/2019	14:05					
Reporting Basi		Date Recei	ved: 04/2	23/2019	08:59						
CAS No	Analyta	Pogul+	ът	MDT	IIni+a			DTT	Mo+hod		

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.0116	0.0500	0.0116	mg/L	U		1	6020

Client Sample ID: ARTESIA-MD30-04222019 Lab Sample ID: 600-184109-7 Lab Name: Eurofins TestAmerica, Corpus Christi Job No.: 600-184109-1 SDG ID.: Matrix: Water Date Sampled: 04/22/2019 14:10 Reporting Basis: WET Date Received: 04/23/2019 08:59 CAS No. Analyte Result RL MDL Units C Q DIL Method

0.0500

0.0116

0.0116 | mg/L

U

1 6020

7439-96-5

Manganese, Dissolved

Client Sample I	D: ARTESIA-MW32-0422		Lab Sample ID: 600-184109-8										
Lab Name: Euro	ofins TestAmerica, Co		Job No.: 600-184109-1										
SDG ID.:													
Matrix: Water	Matrix: Water					Date Sampled: 04/22/2019 14:50							
Reporting Basis		Date Recei	ved: 04/2	23/2019	08:59								
CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method				

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.0116	0.0500	0.0116	mg/L	Ū		1	6020

Client Sample	ID: ARTESIA-MW26-0422		Lab Sample ID: 600-184109-11							
Lab Name: Eu	rofins TestAmerica, Cor		Job No.: 600-184109-1							
SDG ID.:										
Matrix: Water			Date Sampl	ed: 04/22	/2019	L5:05				
Reporting Basi	Reporting Basis: WET				ved: 04/2	23/2019	08:59			
CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method	

0.0500

0.0116 mg/L

1 6020

0.0527

7439-96-5

Manganese, Dissolved

Client Sample ID: ARTESIA-MW34-04222019	Lab Sample ID: 600-184109-12							
Lab Name: Eurofins TestAmerica, Corpus Christi	Job No.: 600-184109-1							
SDG ID.:								
Matrix: Water	Date Sampled: 04/22/2019 15:30							
Reporting Basis: WET	Date Received: 04/23/2019 08:59							

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.0116	0.0500	0.0116	mg/L	U		1	6020

2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Corpus Chris Job No.: 600-184109-1

SDG No.:

ICV Source: ICV_ESI_00083 Concentration Units: ug/L

CCV Source: TS_MS250_00051

			-161978/10 019 13:52		CCV 560-161978/25 04/29/2019 15:38				CCV 560-161978/38 04/29/2019 16:53				
Analyte	Found	С	True	%R	Found	С	True	%R	Found	С	True	%R	
Manganese, Dissolved	2507		2500	100	2543		2500	102	2514		2500	101	

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Corpus Chris Job No.: 600-184109-1

SDG No.:

ICV Source: ICV_ESI_00083 Concentration Units: ug/L

CCV Source: TS_MS250_00051

			-161978/50 019 18:08		CCV 560-161978/62 04/29/2019 19:23							
Analyte	Found	С	True	%R	Found	С	True	%R	Found	С	True	%R
Manganese, Dissolved	2516		2500	101	2538		2500	102				

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

3-IN INSTRUMENT BLANKS METALS

Lab Name	: Eurofins	TestAmerica,	Corpus	Christi	Job No.:	600-184109-1
SDG No.:						

Concentration Units: ug/L

		ICB 560-161978/14 04/29/2019 14:32		CCB 560-161978/27 04/29/2019 15:48		CCB 560-16197 04/29/2019 1		CCB 560-161978/52 04/29/2019 18:17		
Analyte	RL	Found	С	Found	С	Found	С	Found	С	
Manganese, Dissolved	50.0	11.6	Ū	11.6	Ū	11.6	Ū	11.6	Ū	

Italicized analytes were not requested for this sequence.

FORM III-IN Page 138 of 169

3-IN INSTRUMENT BLANKS METALS

Lab Name	: Eurofins	TestAmerica,	Corpus	Christi	Job No.:	600-184109-1
SDG No.:						

Concentration Units: ug/L

		CCB 560-161978/64 04/29/2019 19:33							
Analyte	RL	Found	С	Found	С	Found	С	Found	С
Manganese, Dissolved	50.0	11.6	Ū						

Italicized analytes were not requested for this sequence.

FORM III-IN Page 139 of 169

3-IN METHOD BLANK METALS

Lab Name: Eurofins TestAmerica, Corpus Chr	Job No.: 600-184109-1
SDG No.:	
Concentration Units: mg/L	Lab Sample ID: MB 560-161862/1-A
Instrument Code: Micpms	Batch No.: 161978

CAS No.	Analyte	Concentration	С	Q	Method	
7439-96-5	Manganese, Dissolved	0.0116	U		6020	

4A-IN INTERFERENCE CHECK STANDARD METALS

Lab	Name:	Eurofins	TestAmerica	Corpus Ch	Job No.:	600-184109-1

SDG No.:

Lab Sample ID: ICSA 560-161978/11 Instrument ID: Micpms

Lab File ID: 013SMPL.D ICS Source: INT-A 00133

Concentration Units: ug/L

	True	Found	
			Percent
Analyte	Solution A	Solution A	Recovery
Manganese, Dissolved		2.60	
Aluminum	250000	217800	87
Antimony		0.599	
Arsenic		2.41	
Barium		1.69	
Beryllium		0.0496	
Boron		-2.74	
Cadmium		0.481	
Calcium	250000	234100	94
Cobalt		0.561	
Copper		0.442	
Iron	100000	95200	95
Lead		0.562	
Lithium		-1.97	
Magnesium	250000	243200	97
Molybdenum		0.334	
Nickel		-0.707	
Phosphorus		-50.9	
Potassium		35.7	
Selenium		0.694	
Silicon		0.0000	
Silver		0.420	
Sodium		150	
Strontium		4.18	
Thallium		-0.0546	
Tin		-38.7	
Titanium		0.407	
Uranium		0.117	
Zinc		3.29	

4A-IN INTERFERENCE CHECK STANDARD METALS

Lab Name: Eurofins TestAmerica, Corpus Ch Job No.: 600-184109-1

SDG No.:

Lab Sample ID: ICSAB 560-161978/12 Instrument ID: Micpms

Lab File ID: 014SMPL.D ICS Source: INT-AB 00139

Concentration Units: ug/L

	True	Found			
Analyte	Solution AB	Solution AB	Percent Recovery		
Manganese, Dissolved	250	267	107		
Aluminum	125000	105100	84		
Antimony		0.431			
Arsenic		2.90			
Barium	250	236	94		
Beryllium	250	226	91		
Boron		-9.46			
Cadmium	500	467	93		
Calcium	125000	111100	89		
Chromium	250	243	97		
Cobalt	250	235	94		
Copper	250	233	93		
Iron	50000	46390	93		
Lead	500	475	95		
Lithium		-3.53			
Magnesium	125000	117300	94		
Molybdenum		-0.798			
Nickel	500	457	91		
Phosphorus		-73.3			
Potassium		7.53			
Selenium		-0.315			
Silicon		0.0000			
Silver	500	477	95		
Sodium		66.8			
Strontium		2.21			
Thallium		-0.241			
Tin		-31.9			
Titanium		0.106			
Uranium		0.0267			
Vanadium	250	249	100		
Zinc	500	457	91		

5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS - DISSOLVED

Client ID: ARTESIA-MW34-04222019 MS	Lab ID: 600-184109-12 MS
Lab Name: Eurofins TestAmerica, Corpus Chri	Job No.: 600-184109-1
SDG No.:	
Matrix: Water	Concentration Units: mg/L
% Solids:	

Analyte	SSR C	Sample Result (SR)	Spike Added (SA)	%R	Control Limit %R	Q	Method
Manganese, Dissolved	2.294	0.0116 U	2.50	92	80-120		6020

SSR = Spiked Sample Result

5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS - DISSOLVED

Client ID: ARTESIA-MW34-04222019 MSD	Lab ID: 600-184109-12 MSD
Lab Name: Eurofins TestAmerica, Corpus Chri	Job No.: 600-184109-1
SDG No.:	
Matrix: Water	Concentration Units: mg/L
% Solids:	

Analyte	(SDR)	Spike Added (SA)	%R	Control Limit %R	RPD	RPD Limit	Q	Method
Manganese, Dissolved	2.224	2.50	89	80-120	3	20		6020

SDR = Sample Duplicate Result

7A-IN LAB CONTROL SAMPLE METALS

Lab ID: LCS 560-161862/2-A

Lab Name: Eurofins TestAmerica, Corpus Chri Job No.: 600-184109-1

Sample Matrix: Water LCS Source: ESI-spkA_00021

	Water(mg/L)							
Analyte	True	Found	С	%R	Lim	its	Q	Method
Manganese, Dissolved	2.50	2.316		93	80	120		6020

Calculations are performed before rounding to avoid round-off errors in calculated results.

FORM VIIA - IN

8-IN ICP-AES AND ICP-MS SERIAL DILUTIONS METALS - DISSOLVED

Lab ID: 600-184109-12

SDG No:

Lab Name: Eurofins TestAmerica, Corpus Chr Job No: 600-184109-1

Matrix: Water Concentration Units: mg/L

Analyte	Initial Sample Result (I) C	Serial Dilution Result (S) C	% Difference	Q	Method
Manganese, Dissolved	0.0116 U	0.07425 J	NC		6020

9-IN DETECTION LIMITS METALS - DISSOLVED

Lab Name: Eurofins TestAmerica, Corpus Ch Job Number: 600-184109-1

SDG Number:

Matrix: Water Instrument ID: Micpms

Method: 6020 MDL Date: 05/02/2011 10:33

Prep Method: 3010A

Analyte	Wavelength/	RL	MDL
	Mass	(ug/L)	(ug/L)
Manganese, Dissolved	55	50	11.6

9-IN CALIBRATION BLANK DETECTION LIMITS METALS - DISSOLVED

Lab Name: Eurofins TestAmerica, Corpus Ch Job Number: 600-184109-1

SDG Number:

Matrix: Water Instrument ID: Micpms

Method: 6020 XMDL Date: 05/02/2011 10:34

Analyte	Wavelength/	XRL	XMDL
	Mass	(ug/L)	(ug/L)
Manganese, Dissolved	55	50	11.6

11-IN LINEAR RANGES METALS

Lab Name: Eurofins TestAmerica, Corpus C Job No: 600-184109-1

SDG No.:

Instrument ID: Micpms Date: 05/12/2011 15:16

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	Method
Manganese, Dissolved	0.15	50000	6020

12-IN PREPARATION LOG METALS

Lab Name: Eurofins TestAmerica, Corpus Chr Job No.: 600-184109-1

SDG No.:

Prep Method: 3010A

Lab Sample ID	Preparation Date	Prep Batch	Initial Weight	Initial Volume	Final Volume
10				(mL)	(mL)
MB 560-161862/1-A	04/25/2019 12:30	161862		50	50
LCS 560-161862/2-A	04/25/2019 12:30	161862		50	50
600-184109-12	04/25/2019 12:30	161862		50	50
600-184109-12 MS	04/25/2019 12:30	161862		50	50
600-184109-12 MSD	04/25/2019 12:30	161862		50	50
600-184109-2	04/25/2019 12:30	161862		50	50
600-184109-3	04/25/2019 12:30	161862		50	50
600-184109-4	04/25/2019 12:30	161862		50	50
600-184109-6	04/25/2019 12:30	161862		50	50
600-184109-7	04/25/2019 12:30	161862		50	50
600-184109-8	04/25/2019 12:30	161862		50	50
600-184109-11	04/25/2019 12:30	161862		50	50

13-IN ANALYSIS RUN LOG METALS

Lab Name: Eurofins TestAmerica, Corpus Christi Job No.: 600-184109-1

SDG No.:

Instrument ID: Micpms Analysis Method: 6020

Start Date: 04/29/2019 13:07 End Date: 04/29/2019 21:41

		_	1	
		T		Analytes
		Ур		M
Lab Sample Id	D/F	e	Time	
CALIBSTD 560-161978/1 IC	1		13:07	
IC 560-161978/2	1		13:12	X
IC 560-161978/3	1		13:17	X
IC 560-161978/4	1		13:22	X
IC 560-161978/5	1		13:26	X
IC 560-161978/6	1		13:32	X
CALIBSTD 560-161978/7 IC	1		13:38	X
ICV 560-161978/8			13:42	
ZZZZZZ			13:47	
ICV 560-161978/10	1		13:52	
ICSA 560-161978/11	1		13:57	
ICSAB 560-161978/12	1		14:02	X
ZZZZZZ			14:27	
ICB 560-161978/14	1		14:32	X
ZZZZZZ			14:37	
ZZZZZZ			14:42	
ZZZZZZ			14:47	
ZZZZZZ			14:52	
ZZZZZZ			14:57	
ZZZZZZ			15:02	
ZZZZZZ			15:08	
ZZZZZZ			15:13	
ZZZZZZ			15:17	
ZZZZZZ			15:23	
CCV 560-161978/25	1		15:38	X
ZZZZZZ			15:43	
CCB 560-161978/27	1		15:48	X
ZZZZZZ			15:53	
ZZZZZZ			15:58	
ZZZZZZ			16:03	
ZZZZZZ			16:08	
ZZZZZZ			16:13	
ZZZZZZ			16:18	
ZZZZZZ			16:23	
ZZZZZZ			16:28	
ZZZZZZ			16:32	
LCS 560-161862/2-A	1	Т	16:37	
CCV 560-161978/38	1		16:53	
ZZZZZZ			16:58	
CCB 560-161978/40	1		17:03	
MB 560-161862/1-A	1	Т	17:08	
600-184109-12	1 1	D	17:12	

13-IN ANALYSIS RUN LOG METALS

Lab Name: Eurofins TestAmerica, Corpus Christi Job No.: 600-184109-1

SDG No.:

Instrument ID: Micpms Analysis Method: 6020

Start Date: 04/29/2019 13:07 End Date: 04/29/2019 21:41

		Т		Analytes			
		У					
Inh Cample Id	D/F	p	m; ma				
Lab Sample Id	D/F	е	Time				
600-184109-12 MS			17:22				
600-184109-12 MSD			17:28				
600-184109-12 SD			17:33				
600-184109-2			17:38				
600-184109-3			17:43				
600-184109-4	1	D	17:48	X			
600-184109-6	1	D	17:53	X			
CCV 560-161978/50	1		18:08	X			
ZZZZZZ			18:12				
CCB 560-161978/52	1		18:17	X			
600-184109-7			18:22				
600-184109-8	1	D	18:27				
600-184109-11	1	D	18:32	X			
ZZZZZZ			18:42				
ZZZZZZ			18:47				
ZZZZZZ			18:52				
ZZZZZZ			18:57				
ZZZZZZ			19:02				
ZZZZZZ			19:07				
CCV 560-161978/62	1		19:23	X			
ZZZZZZ			19:28				
CCB 560-161978/64	1		19:33	X			
ZZZZZZ			19:38				
ZZZZZZ			19:42				
ZZZZZZ			19:47				
ZZZZZZ			19:52				
ZZZZZZ			19:57				
ZZZZZZ			20:02				
ZZZZZZ			20:07				
ZZZZZZ			20:12				
ZZZZZZ		П	20:17				
ZZZZZZ		П	20:22				
CCV 560-161978/75		П	20:37				
ZZZZZZ		П	20:41				
CCB 560-161978/77		П	20:46				
ZZZZZZ		П	20:51				
ZZZZZZ		П	20:56				
ZZZZZZ		Н	21:01				
ZZZZZZ		\Box	21:06				
ZZZZZZ		\vdash	21:11				
CCV 560-161978/83		\vdash	21:31				
ZZZZZZ		\vdash	21:36				

13-IN ANALYSIS RUN LOG METALS

Lab Name: Eurofins TestAmerica, Corpus Christi Job No.: 600-184109-1

SDG No.:

Instrument ID: Micpms Analysis Method: 6020

Start Date: 04/29/2019 13:07 End Date: 04/29/2019 21:41

	T Analytes																		
Lab Sample Id	D/F	У р е	Time	M n															
CCB 560-161978/85			21:41		$\frac{1}{1}$		\pm	$^{+}$	<u> </u>	$\frac{\perp}{\Box}$							$\overline{}$	_	\pm

Prep Types:

D = Dissolved

T = Total/NA

Lab Name: Eurofins TestAmerica, Corpus Chri Job No.: 600-184109-1

SDG No.:

				Inte	rna:	l Standard	ds ⁹	%RI For:			
Lab Sample ID	Time	Element Li-6	Q	Element Sc/1	Q	Element Sc/2	Q	Element Sc/3	Q	Element	Q
CALIBSTD 560-161978/1 IC	13:07	100		100		100		100			
IC 560-161978/2	13:12	100		105		100		100			
IC 560-161978/3	13:17	100		109		100		99			
IC 560-161978/4	13:22	101		108		103		101			
IC 560-161978/5	13:26	94		110		103		99			
IC 560-161978/6	13:32	91		124		102		98			
CALIBSTD 560-161978/7 IC	13:38	100		100		100		100			
ICV 560-161978/10	13:52	95		93		103		94			
ICSA 560-161978/11	13:57	93		89		95		91		119	
ICSAB 560-161978/12	14:02	91		91		100		91			
ICB 560-161978/14	14:32	95		93		106		94			
CCV 560-161978/25	15:38	93		99		97		92			
CCB 560-161978/27	15:48	92		98		103		93			
LCS 560-161862/2-A	16:37	90		98		92		92			
CCV 560-161978/38	16:53	88		98		92		90			
CCB 560-161978/40	17:03	95		98		91		91			
MB 560-161862/1-A	17:08	88		97		94		92			
600-184109-12	17:12	80		95		93		86			
600-184109-12 MS	17:22	79		96		92		85			
600-184109-12 MSD	17:28	75		100		94		85			
600-184109-12 SD	17:33	78		107		97		85			
600-184109-2	17:38	71		93		94		82			
600-184109-3	17:43	67		94		95		82			
600-184109-4	17:48	63		93		92		78			
600-184109-6	17:53	58		92		93		75			
CCV 560-161978/50	18:08	74		93		90		83			
CCB 560-161978/52	18:17	78		96		91		85			
600-184109-7	18:22	66		96		89		81			
600-184109-8	18:27	58		94		93		74			
600-184109-11	18:32	53		93		95		74			
CCV 560-161978/62	19:23	74		93		80		84			
CCB 560-161978/64	19:33	75		94		82		82			

Lab Name: Eurofins TestAmerica, Corpus Chri Job No.: 600-184109-1

SDG No.:

				Inte	rna	l Standard	ds ⁹	RI For:			
Lab Sample ID	Time	Element Ge/1	Q	Element Ge/2	Q	Element Ge/3	Q	Element Y-89/1	Q	Element Y-89/2	Q
CALIBSTD 560-161978/1 IC	13:07	100		100		100		100		100	
IC 560-161978/2	13:12	103		102		100		101		99	
IC 560-161978/3	13:17	108		102		102		102		101	
IC 560-161978/4	13:22	114		108		105		104		104	
IC 560-161978/5	13:26	120		113		108		104		106	
IC 560-161978/6	13:32	140		116		109		109		104	
CALIBSTD 560-161978/7 IC	13:38	100		100		100		100		100	
ICV 560-161978/10	13:52	109		113		106		99		102	
ICSA 560-161978/11	13:57					115		95		95	
ICSAB 560-161978/12	14:02	108		110		109		97		101	
ICB 560-161978/14	14:32	99		107		100		100		107	
CCV 560-161978/25	15:38	115		106		106		102		101	
CCB 560-161978/27	15:48	106		106		100		103		107	
LCS 560-161862/2-A	16:37	106		98		105		97		97	
CCV 560-161978/38	16:53	115		102		110		100		96	
CCB 560-161978/40	17:03	105		96		101		99		97	
MB 560-161862/1-A	17:08	107		101		104		100		99	
600-184109-12	17:12	105		97		102		94		98	
600-184109-12 MS	17:22	108		98		104		93		96	
600-184109-12 MSD	17:28	112		100		105		91		99	
600-184109-12 SD	17:33	124		104		109		97		101	
600-184109-2	17:38	100		96		101		90		96	
600-184109-3	17:43	98		96		95		90		98	
600-184109-4	17:48	101		94		95		89		95	
600-184109-6	17:53	99		95		93		87		96	
CCV 560-161978/50	18:08	108		99		106		91		94	
CCB 560-161978/52	18:17	100		95		96		94		96	
600-184109-7	18:22	103		92		99		91		92	
600-184109-8	18:27	103		94		96		89		96	
600-184109-11	18:32	100		96		94		85		98	
CCV 560-161978/62	19:23	106		89		104		85		87	
CCB 560-161978/64	19:33	101		87		94		88		88	

Lab Name: Eurofins TestAmerica, Corpus Chri Job No.: 600-184109-1

SDG No.:

				Inte	rna:	l Standar	ds ⁹	RI For:			
Lab Sample ID	Time	Element Y-89/3	Q	Element In/1	Q	Element In/2	Q	Element In/3	Q	Element Tb	Q
CALIBSTD 560-161978/1 IC	13:07	100		100		100		100		100	
IC 560-161978/2	13:12	99		95		98		98		99	
IC 560-161978/3	13:17	99		94		99		98		100	
IC 560-161978/4	13:22	101		95		104		101		103	
IC 560-161978/5	13:26	98		96		104		98		101	
IC 560-161978/6	13:32	97		89		104		95		100	
CALIBSTD 560-161978/7 IC	13:38	100		100		100		100		100	
ICV 560-161978/10	13:52	95		109		101		94		95	
ICSA 560-161978/11	13:57	93		102		94		90		94	
ICSAB 560-161978/12	14:02	93		103		98		91		95	
ICB 560-161978/14	14:32	97		109		107		96		97	
CCV 560-161978/25	15:38	92		110		100		92		94	
CCB 560-161978/27	15:48	95		113		107		94		96	
LCS 560-161862/2-A	16:37	93		102		94		92		93	
CCV 560-161978/38	16:53	95		107		96		92		93	
CCB 560-161978/40	17:03	93		106		96		94		93	
MB 560-161862/1-A	17:08	95		105		99		96		97	
600-184109-12	17:12	89		92		92		87		92	
600-184109-12 MS	17:22	90		92		89		88		92	
600-184109-12 MSD	17:28	89		79		92		84		88	
600-184109-12 SD	17:33	91		91		99		90		90	
600-184109-2	17:38	90		87		92		88		91	
600-184109-3	17:43	90		86		92		87		92	
600-184109-4	17:48	89		88		92		86		92	
600-184109-6	17:53	84		84		91		82		85	
CCV 560-161978/50	18:08	89		95		92		89		89	
CCB 560-161978/52	18:17	91		100		95		92		91	
600-184109-7	18:22	87		88		87		86		90	
600-184109-8	18:27	85		86		92		83		87	
600-184109-11	18:32	83		83		94		83		88	
CCV 560-161978/62	19:23	89		88		86		88		89	
CCB 560-161978/64	19:33	88		90		90		88		89	

Lab Name: Eurofins TestAmerica, Corpus Chri Job No.: 600-184109-1

SDG No.:

				Inte	rna.	l Standar	ds	%RI For:			
Lab Sample ID	Time	Element Ho	Q	Element Bi	Q	Element	Q	Element	Q	Element	Q
CALIBSTD	13:07	100		100							
560-161978/1 IC											
IC 560-161978/2	13:12	99		99							
IC 560-161978/3	13:17	99		99							
IC 560-161978/4	13:22	103		102							
IC 560-161978/5	13:26	101		100							
IC 560-161978/6	13:32	100		93							
CALIBSTD	13:38	100		100							
560-161978/7 IC	10.50	0.5									
ICV 560-161978/10	13:52	95		94							
ICSA 560-161978/11	13:57	94		90							
ICSAB 560-161978/12	14:02	95		92							
ICB 560-161978/14	14:32	96		96							
CCV 560-161978/25	15:38	92		92							
CCB 560-161978/27	15:48	96		95							
LCS 560-161862/2-A	16:37	93		90							
CCV 560-161978/38	16:53	95		92							
CCB 560-161978/40	17:03	94		94							
MB 560-161862/1-A	17:08	96		95							
600-184109-12	17:12	93		86							
600-184109-12 MS	17:22	94		87							
600-184109-12 MSD	17:28	90		80							
600-184109-12 SD	17:33	90		85							
600-184109-2	17:38	92		85							
600-184109-3	17:43	94		86							
600-184109-4	17:48	92		87							
600-184109-6	17:53	87		80							
CCV 560-161978/50	18:08	90		85							
CCB 560-161978/52	18:17	92		91							
600-184109-7	18:22	91		82							
600-184109-8	18:27	88		83							1
600-184109-11	18:32	88		82							1
CCV 560-161978/62	19:23	89		87							
CCB 560-161978/64	19:33	89		88							

METALS BATCH WORKSHEET

Lab Name: Eurofins TestAmerica, Corpus C Job No.: 600-184109-1

SDG No.:

Batch Number: 161862 Batch Start Date: 04/25/19 12:30 Batch Analyst: Martinez, Andrea K

Batch Method: 3010A Batch End Date: 04/25/19 15:06

Lab Sample ID	Client Sample ID	Method	Chain	Basis	Initial pH	InitialAmount	FinalAmount	ESI-spkA 00021	ESI-spkB 00019	
MB 560-161862/1		3010A,	6020		<2 SU	50 mL	50 mL			
LCS 560-161862/2		3010A,	6020		<2 SU	50 mL	50 mL	0.5 mL	0.5 mL	
600-184109-A-12	ARTESIA-MW34-042 22019	3010A,	6020	D	<2 SU	50 mL	50 mL			
600-184109-A-12 MS	ARTESIA-MW34-042 22019	3010A,	6020	D	<2 SU	50 mL	50 mL	0.5 mL	0.5 mL	
600-184109-A-12 MSD	ARTESIA-MW34-042 22019	3010A,	6020	D	<2 SU	50 mL	50 mL	0.5 mL	0.5 mL	
600-184109-A-2	ARTESIA-INLET-04 222019	3010A,	6020	D	<2 SU	50 mL	50 mL			
600-184109-A-3	ARTESIA-MID-0422 2019	3010A,	6020	D	<2 SU	50 mL	50 mL			
600-184109-A-4	ARTESIA-OUTLET-0 4222019	3010A,	6020	D	<2 SU	50 mL	50 mL			
600-184109-A-6	ARTESIA-MW30-042 22019	3010A,	6020	D	<2 SU	50 mL	50 mL			
600-184109-A-7	ARTESIA-MD30-042 22019	3010A,	6020	D	<2 SU	50 mL	50 mL			
600-184109-A-8	ARTESIA-MW32-042 22019	3010A,	6020	D	<2 SU	50 mL	50 mL			
600-184109-A-11	ARTESIA-MW26-042 22019	3010A,	6020	D	<2 SU	50 mL	50 mL			

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

METALS BATCH WORKSHEET

Lab Name: Eurofins TestAmerica, Corpus C Job No.: 600-184109-1

SDG No.:

Batch Number: 161862 Batch Start Date: 04/25/19 12:30 Batch Analyst: Martinez, Andrea K

Batch Method: 3010A Batch End Date: 04/25/19 15:06

	Batch Notes							
Balance ID	B-11							
Temperature - Corrected - End	95.6 Degrees C							
Temperature - Corrected - Start	95.6 Degrees C							
Digestion End Time	04/25/2019 15:06							
Digestion Start Time	04/25/2019 12:30							
Digestion Unit ID	2							
Hydrochloric Acid ID	0000201226							
Nitric Acid ID	0000188956							
pH Indicator ID	HC730269							
Pipette/Syringe/Dispenser ID	172							
Thermometer ID	250							
Digestion Tube/Cup ID	18012117							
Temperature - Uncorrected - End	95.0 Degrees C							
Temperature - Uncorrected - Start	95.0 Degrees C							

Basis	Basis Description
D	Dissolved

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Subcontract Data

Shipping and Receiving Documents

Environment Testing seurofins 💸

Chain of Custody Record

Eurofins TestAmerica, Houston

Phone (713) 690-4444 Fax (713) 690-5646

Houston, TX 77040 6310 Rothway Street

F - TSP Dodecahydrale to star Special Instructions/Note: Ver: 01/16/2019 Z - other (specify) 600-184109 Chain of Custody P - Na204S Q - Na2SO3 R - Na2S2O3 S - H2SO4 N - None O - AsNaO2 U - Acetone V - MCAA W - pH 4-5 Mont Sample Disposal (A fee may be assessed if samples are retained longer than 1 month, COC No: 600-67988-18594.5 Preservation Code: D - Nitric Acid E - NaHSO4 F - MeOH G - Amchlor H - Ascorbic Acid Page L of 2 C - Zn Acetate I - Ice J - DI Water K - EDTA L - EDA 0859 Archive For Total Number of containers 1/9 Fed 6x 4931 6201 6640 Sate/Time. Aethod of Shipment rrier Tracking No(s) Sisposal By Lab Analysis Requested Cooler Temperature(s) "C and Other Remarks Special Instructions/QC Requirements: bethany.mcdaniel@testamericainc.com Return To Client 85608_LL - 1,1-DCE and PCE only X 300.0 - Anions, IC (Sulfate) Received by: Lab PM: McDaniel, Bethany A × 6020 - Manganese, Dissolved 0 メュ × 2 X X 82608_LL - NAP, Benzene, 1,1-DCE, 1,1-DCA, and PCE × × 2 2 7 × 2 2 Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) Jacobs (Wewater, Sezol Gewasteloii, Preservation Code Matrix Company 3 3 7 3 3 Radiological (C=comp, G=qrab) Sample Type D3151100 B.CS.TPE.AR.19-05-02 0 S 5 5 5 5 5 5 45 TUCA 181800 STD 1350 1353 1430 Sample 340 285 1400 1505 Time 450 かって (575) 1410 Date: 15/20er Unknown TAT Requested (days): Due Date Requested: 684703.18.05.02 Sample Date A 22 | 9 422/19 Project #: 60004334 Sate/Time: Poison B AKTESIA-OVITLET-042222019 Skin Irritant ARTESIA - MW32-CA222019 ARTESIA-HW12-04222019 leliverable Requested: I, II, III, IV, Other (specify) ARTESIA-MID 04222019 ARTESIA +1W 26-04222019 XXLMS#-1210F-04222010 ARTESA-HWITC-0922201 ARTESIA-MWII-042220M 42TESIA-TBOI-04222019 ARTESIA-ND30-04222019 ARTESIA NIW YO CA222CIC Custody Seal No. Flammable Suite B-1 Possible Hazard Identification aleeca.forsberg@jacobs.com Dowell - Artesia Groundwater Empty Kit Relinquished by Custody Seals Intact: Client Information 3721 Rutledge Rd. NE Sample Identification 505-855-5239(Tel) Non-Hazard Aleeca Forsberg CH2M Hill, Inc. nduished by: inquished by Albuquerque State, Zip: NM, 87109

Page 162 of 169

Environment Testing 💸 eurofins

amer Tracking No(s)

Eurofins TestAmerica, Houston

6310 Rothway Street Houston, TX 77040 Phone (713) 690-4444 Fax (713) 690-5646

Chain of Custody Record

T - TSP Dodecahydr Special Instructions/Note: Ver. 01/16/2019 Z - other (specify) M - Hexane N - None O - AsNaO2 P - Na2O4S O - Na2SO3 R - Na2S2O3 S - H2SO4 U - Acetone V - MCAA W - pH 4-5 Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month COC No: 600-67988-18594.5 Preservation Codes G - Amchlor H - Ascorbic Acid A - HCL B - NaOH C - Zn Acetale D - Nitric Acid E - NaHSO4 F - MeOH Page 2 of 2 285 1 - Ice J - Di Water K-EDTA L-EDA Total Number of containers 4931 8201 6640 Date/Time: Aethod of Shipment Analysis Requested Cooler Temperature(s) "C and Other Remarks Special Instructions/QC Requirements E-Mail: bethany.mcdaniel@testamericainc.com 8260B_LL - 1,1-DCE and PCE only 300.0 - Anions, IC (Sulfate) Received by: Lab PM. McDaniel, Bethany A 0 X Z Z 85608_LL - NAP, Benzene, 1,1-DCE, 1,1-DCA, and PCE Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) JACOPS Company Matrix Preservation Code Company 3 3 Radiological G=grab) (C=comp, Sample Type D3151100 B.CS.TPE.AR.19-05-02 Q S STD Phone: 565/18/800 1530 Sample 1535 Time Unknown Porger (AT Requested (days): Due Date Requested: WO#: 684703.18.05.02 Sample Date 42419 A 22 | 9 50004334 Date/Time: Poison B Skin Irritant eliverable Requested: I, II, III, IV, Other (specify) ARTESIA-HW34-04222019 Custody Seal No. ARTESIA-HDI-0422209 Flammable 3721 Rutledge Rd, NE Suite B-1 Possible Hazard Identification aleeca.forsberg@jacobs.com Dowell - Artesia Groundwater empty Kit Relinquished by: Custody Seals Intact:
A Yes A No Client Information Sample Identification 505-855-5239(Tel) Non-Hazard Aleeca Forsberg CH2M Hill, Inc. inquished by: Albuquerque State, Zip: NM, 87109 roject Name

TestAmerica Houston

Sa Loc: 600 pt Checklist 184109

			Date/Time Received:			19 APR 23	8
OB NUMBER:			CLIENT:	CHE	2m H.	7/	
NPACKED BY:	J.S.		CARRIER/DRIVER:	Fed			
	10		OF WINDLE VOTE OF THE PERSON O				
ustody Seal Present:	YES	NO	Number of Coolers R	eceived:			
Cooler ID	Temp	Trip Blank	Observed Temp (℃)	Therm	Them CF	Corrected Temp (℃)	
BW	Y N	YIN	1.4	IR676	-0.2	1.2	
	Y / N	Y / N					
	Y / N	YIN					
	Y / N	Y / N					
	Y / N	YAN		4-23	19		
	YIN	Y / N Y / N	1	1-6)	1)		
	YN	Y / N					
	YIN	YIN					
CF = correction factor							
paper Lot # A headspace accepta		– Wes d	NO □NA				
			of sample acceptability u	Ipon receipt?)	YES NO	
Dia samples meet the la	boratory 5 stario	ara conditions	or sample acceptability of	porr receipt:			
COMMENTS:							
		~	1				
		2.5	4-23-19				

Chain of Custor

Eurofins TestAmerica, Houston

Phone (713) 690-4444 Fax (713) 690-5646

6310 Rothway Street Houston, TX 77040

Chain of Custody Record

eurofins	
eur 🔆	

Environment Testing

T - TSP Dodecahydrate U - Acetone Vote: Since laboratories, are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not subject to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc. Special Instructions/Note: Z - other (specify) P - Na204S Q - Na2SO3 R - Na2S2O3 S - H2SO4 るが O - AsNaO2 Months W - pH 4-5 Sompany company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Preservation Codes G - Amchlor H - Ascorbic Acid 600-184109-1 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH. 600-39016.1 6 Page 1 of 2 J - DI Water K - EDTA L - EDA Total Number of containers 1 ----Cooler Temperature(s) °C and Other Remarks: PO 4,3 4 SZ -D Method of Shipment arrier Tracking No(s) State of Origin: Oklahoma Analysis Requested Special Instructions/QC Requirements: bethany.mcdaniel@testamericainc.com Accreditations Required (See note) Return To Client Received by: Lab PM: McDaniel, Bethany A 6020/FIELD_FLTRD 6020_FF - Metals, Diss Mn × × × × × × × × × Perform MS/MSD (Yes or No) me: Field Filtered Sample (Yes or No) E-Mail: Preservation Code: Water Water Water Water Water Water Water Water Water Matrix Company (C=comp, G=grab) Sample Type MS Primary Deliverable Rank: 2 Sample Central 13:53 Central 14:05 Central 14:10 Central 14:50 Central 15:05 Central 15:30 Central (days): Due Date Requested: Sample Date 4/22/19 4/22/19 4/22/19 4/22/19 4/22/19 4/22/19 4/22/19 4/22/19 4/22/19 Project #: 60004334 5/3/2019 Date/Time: hone: *OV Deliverable Requested: I, II, III, IV, Other (specify) Client Information (Sub Contract Lab) ARTESIA-MW34-04222019 (600-184109-12MS) ARTESIA-OUTLET-04222019 (600-184109-4) ARTESIA-MW26-04222019 (600-184109-11) ARTESIA-MW34-04222019 (600-184109-12) ARTESIA-MW32-04222019 (600-184109-8) ARTESIA-MW30-04222019 (600-184109-6) Custody Seal No. ARTESIA-INLET-04222019 (600-184109-2) ARTESIA-MD30-04222019 (600-184109-7) Sample Identification - Client ID (Lab ID) ARTESIA-MID-04222019 (600-184109-3) 361-289-2673(Tel) 361-289-2471(Fax) Possible Hazard Identification FestAmerica Laboratories, Inc. 1733 N. Padre Island Drive, Empty Kit Relinquished by: Custody Seals Intact: A Yes A No Shipping/Receiving Dowell - Artesia Corpus Christi Unconfirmed inquished by: TX. 78408 State, Zip:

Chain of Custody Record

Eurofins TestAmerica, Houston

Phone (713) 690-4444 Fax (713) 690-5646

Houston, TX 77040 6310 Rothway Street

Environment Testing eurofins ::

TestAmerica

R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate U - Acetone Note: Since laboratory accreditations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/martix being analyzed, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Special Instructions/Note: Z - other (specify) N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 Months W - pH 4-5 Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Preservation Codes: B - NaOH C - Zn Acetate D - Nitric Acid F - NaHSO4 F - MeOH G - Amchlor H - Ascorbic Acid 600-184109-1 600-39016.2 Page 2 of 2 I - Ice J - DI Water K - EDTA L - EDA EX S 0 Odte/Time: 579 Total Number of containers 150 Date/Time: Method of Shipment: Carrier Tracking No(s): State of Origin: Oklahoma Analysis Requested Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: bethany.mcdaniel@testamericainc.com aboratories, Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc. Accreditations Required (See note): Received by: McDaniel, Bethany A × 6020/FIELD_FLTRD 6020_FF - Metals, Diss Mn Perform MS/MSD (Yes or No) Time: Field Filtered Sample (Yes or No) BT=Tissue, A=Air) (W=water, S=solid, O=waste/oil, Preservation Code: Matrix Water Company G=grab) (C=comb, Sample Type MSD Primary Deliverable Rank: 2 Sample Time Central TAT Requested (days): Due Date Requested Sample Date 4/22/19 Project #: 60004334 5/3/2019 Date/Time: ARTESIA-MW34-04222019 (600-184109-12MSD) Client Information (Sub Contract Lab) Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. Sample Identification - Client ID (Lab ID) 361-289-2471(Fax) Possible Hazard Identification TestAmerica Laboratories, Inc. 1733 N. Padre Island Drive, Custody Seals Intact: 361-289-2673(Tel) Shipping/Receiving Dowell - Artesia Corpus Christi A Yes Unconfirmed elinquished by: State, Zip: TX, 78408

Login Sample Receipt Checklist

Client: CH2M Hill, Inc.

Job Number: 600-184109-1

Login Number: 184109 List Source: Eurofins TestAmerica, Houston

List Number: 1

Creator: Snow, Tiffany B

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

Login Sample Receipt Checklist

Client: CH2M Hill, Inc.

Job Number: 600-184109-1

Login Number: 184109
List Source: Eurofins TestAmerica, Corpus Christi
List Number: 2
List Creation: 04/25/19 11:11 AM

Creator: Viveros, Ashley D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

ANALYTICAL REPORT

Job Number: 600-184182-1

Job Description: Dowell - Artesia 04/23/19

For: CH2M Hill, Inc. 3721 Rutledge Rd. NE Suite B-1 Albuquerque, NM 87109

Attention: Aleeca Forsberg

Bethany Mc Daniel

Approved for release. Bethany A McDaniel Senior Project Manager 5/8/2019 12:06 PM

Bethany A McDaniel, Senior Project Manager 6310 Rothway Street, Houston, TX, 77040 (713)358-2005 bethany.mcdaniel@testamericainc.com 05/08/2019

Table of Contents

Cc	over Title Page	1
Da	ata Summaries	4
	Definitions	4
	Case Narrative	5
	Detection Summary	6
	Client Sample Results	8
	Default Detection Limits	13
	Surrogate Summary	14
	QC Sample Results	15
	QC Association	18
	Chronicle	19
	Certification Summary	22
	Method Summary	23
	Sample Summary	24
	Manual Integration Summary	25
	Reagent Traceability	31
Or	ganic Sample Data	40
	GC/MS VOA	40
	Method 8260B Low Level	40
	Method 8260B Low Level QC Summary	41
	Method 8260B Low Level Sample Data	56
	Standards Data	68
	Method 8260B Low Level ICAL Data	68
	Method 8260B Low Level CCAL Data	80
	Raw QC Data	89
	Method 8260B Low Level Blank Data	89

Table of Contents

Method 8260B Low Level LCS/LCSD Data	91
Method 8260B Low Level MS/MSD Data	95
Method 8260B Low Level Run Logs	97
Method 8260B Low Level Prep Data	100
norganic Sample Data	104
Metals Data	104
Met Cover Page	105
Met Sample Data	106
Met QC Data	114
Met ICV/CCV	114
Met Blanks	115
Met ICSA/ICSAB	117
Met LCS/LCSD	119
Met MDL	120
Met Linear Ranges	122
Met Preparation Log	123
Met Analysis Run Log	124
Met Internal Standards	127
Met Prep Data	131
Subcontracted Data	133
Shipping and Receiving Documents	134
Client Chain of Custody	135
Sample Receipt Checklist	140

Definitions/Glossary

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Qualifiers

GC/MS VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Job Narrative 600-184182-1

Comments

No additional comments.

Receipt

The samples were received on 4/24/2019 10:21 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.1° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ART	ESIA-TB02-0	4232019				Lab Sa	amp	le ID: 6	00-184182-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
Naphthalene	0.000725	J	0.00200	0.000129	mg/L	1	82	:60B	Total/NA
Client Sample ID: ART	ESIA-MW33-0) 423201 9				Lab Sa	amp	le ID: 6	00-184182-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
Naphthalene	0.000640	J	0.00200	0.000129	mg/L	1	82	:60B	Total/NA
Client Sample ID: ART	ESIA-MW29-0)4232019	1			Lab Sa	amp	le ID: 6	00-184182-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D M	ethod	Prep Type
1,1-Dichloroethane	0.00861		0.00100	0.000168	mg/L	1	82	:60B	Total/NA
1,1-Dichloroethene	0.0237		0.00100	0.000192	mg/L	1	82	:60B	Total/NA
Tetrachloroethene	0.0306		0.00100	0.000333	mg/L	1	82	:60B	Total/NA
Client Sample ID: ART	ESIA-MW35-0) 4232019				Lab Sa	amp	le ID: 6	00-184182-4
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D M	ethod	Prep Type
1,1-Dichloroethene	0.0205		0.00100	0.000192	mg/L	1	82	:60B	Total/NA
Tetrachloroethene	0.0233		0.00100	0.000333	mg/L	1	82	60B	Total/NA
Client Sample ID: ART	ESIA-MW28-0		Lab Sa	amp	le ID: 6	00-184182-			
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
1,1-Dichloroethane	0.00465		0.00100	0.000168	mg/L			:60B	Total/NA
1,1-Dichloroethene	0.0127		0.00100	0.000192	mg/L	1	82	:60B	Total/NA
Tetrachloroethene	0.0176		0.00100	0.000333	mg/L	1	82	60B	Total/NA
Client Sample ID: ART	ESIA-MW21-0	04232019				Lab Sample ID: 600-184182-			
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
1,1-Dichloroethane	0.000562	J	0.00100	0.000168	mg/L	1	82	:60B	Total/NA
Manganese, Dissolved	0.0154	J	0.0500	0.0116	mg/L	1	60	20	Dissolved
Client Sample ID: ART	ESIA-MW22-0	04232019				Lab Sample ID: 600-184182-7			
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
1,1-Dichloroethane	0.000546	J	0.00100	0.000168	mg/L	1		60B	Total/NA
Client Sample ID: ART	ESIA-MW31-0	04232019				Lab Sa	amp	le ID: 6	00-184182-8
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
1,1-Dichloroethane	0.00181		0.00100	0.000168		1		:60B	Total/NA
1,1-Dichloroethene	0.000411	J	0.00100	0.000192	-	1	82	:60B	Total/NA
Manganese, Dissolved	0.0337	J	0.0500	0.0116	mg/L	1	60	20	Dissolved
Client Sample ID: ART	ESIA-MW25-0	04232019				Lab Sa	amp	le ID: 6	00-184182-9
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D M	ethod	Prep Type
1,1-Dichloroethane	0.000701	J	0.00100	0.000168	mg/L	1	82	:60B	Total/NA
1,1-Dichloroethene	0.000777	J	0.00100	0.000192	mg/L	1	82	:60B	Total/NA
Tetrachloroethene	0.00118		0.00100	0.000333	mg/L	1	82	:60B	Total/NA
Manganese, Dissolved	0.244		0.0500	0.0116	mg/L	1	60	20	Dissolved

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Client Samp	le ID: ARTESIA-MW18-04232019
-------------	------------------------------

Lab Sample ID: 600-184182-10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
1,1-Dichloroethane	0.000706 J	0.00100	0.000168 mg/L	1 8260B	Total/NA

Client Sample ID: ARTESIA-MD18-04232019

Lab Sample ID: 600-184182-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.000736	J	0.00100	0.000168	mg/L	1		8260B	 Total/NA
Manganese, Dissolved	0.0276	J	0.0500	0.0116	mg/L	1		6020	Dissolved

Client Sample ID: ARTESIA-MW15-04232019

Lab Sample ID: 600-184182-12

No Detections.

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-TB02-04232019

Lab Sample ID: 600-184182-1 Date Collected: 04/23/19 07:45

Matrix: Water Date Received: 04/24/19 10:21

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	Ū	0.00100	0.000168	mg/L			05/01/19 16:41	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			05/01/19 16:41	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/01/19 16:41	1
Naphthalene	0.000725	J	0.00200	0.000129	mg/L			05/01/19 16:41	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			05/01/19 16:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		50 - 134					05/01/19 16:41	1
4-Bromofluorobenzene	117		67 - 139					05/01/19 16:41	1
Dibromofluoromethane	101		62 - 130					05/01/19 16:41	1
Toluene-d8 (Surr)	101		70 - 130					05/01/19 16:41	1

Lab Sample ID: 600-184182-2 Client Sample ID: ARTESIA-MW33-04232019

Date Collected: 04/23/19 08:05 **Matrix: Water**

Date Received: 04/24/19 10:21

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			05/01/19 17:06	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			05/01/19 17:06	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/01/19 17:06	1
Naphthalene	0.000640	J	0.00200	0.000129	mg/L			05/01/19 17:06	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			05/01/19 17:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		50 - 134			-		05/01/19 17:06	1
4-Bromofluorobenzene	117		67 - 139					05/01/19 17:06	1
Dibromofluoromethane	101		62 - 130					05/01/19 17:06	1
Toluene-d8 (Surr)	104		70 - 130					05/01/19 17:06	1

Lab Sample ID: 600-184182-3 Client Sample ID: ARTESIA-MW29-04232019

Date Collected: 04/23/19 08:20 **Matrix: Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00861		0.00100	0.000168	mg/L			05/01/19 17:31	1
1,1-Dichloroethene	0.0237		0.00100	0.000192	mg/L			05/01/19 17:31	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/01/19 17:31	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			05/01/19 17:31	1
Tetrachloroethene	0.0306		0.00100	0.000333	mg/L			05/01/19 17:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		50 - 134					05/01/19 17:31	1
4-Bromofluorobenzene	113		67 - 139					05/01/19 17:31	1
Dibromofluoromethane	102		62 - 130					05/01/19 17:31	1
	104		70 - 130					05/01/19 17:31	1
Toluene-d8 (Surr)									
-		ed							
Toluene-d8 (Surr)	P/MS) - Dissolve	ed Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-MW35-04232019

Date Collected: 04/23/19 08:35 **Matrix: Water**

Date Received: 04/24/19 10:21

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.0205		0.00100	0.000192	mg/L			05/01/19 17:56	1
Tetrachloroethene	0.0233		0.00100	0.000333	mg/L			05/01/19 17:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		50 - 134					05/01/19 17:56	1
Dibromofluoromethane	103		62 - 130					05/01/19 17:56	1
Toluene-d8 (Surr)	103		70 - 130					05/01/19 17:56	1
4-Bromofluorobenzene	122		67 - 139					05/01/19 17:56	

Lab Sample ID: 600-184182-5 Client Sample ID: ARTESIA-MW28-04232019

Date Collected: 04/23/19 08:50 **Matrix: Water** Date Received: 04/24/19 10:21

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00465	-	0.00100	0.000168	mg/L			05/01/19 18:21	1
1,1-Dichloroethene	0.0127		0.00100	0.000192	mg/L			05/01/19 18:21	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/01/19 18:21	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			05/01/19 18:21	1
Tetrachloroethene	0.0176		0.00100	0.000333	mg/L			05/01/19 18:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	-	50 - 134			· -		05/01/19 18:21	1
4-Bromofluorobenzene	116		67 - 139					05/01/19 18:21	1
Dibromofluoromethane	104		62 - 130					05/01/19 18:21	1
Toluene-d8 (Surr)	109		70 - 130					05/01/19 18:21	1

Wethou. 6020 - Wetais (ICF/Wis) - Dissulveu						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	0.0116 U	0.0500	0.0116 mg/L		04/29/19 10:28	04/29/19 15:17	1

Client Sample ID: ARTESIA-MW21-04232019 Lab Sample ID: 600-184182-6

Date Collected: 04/23/19 09:00 **Matrix: Water** Date Received: 04/24/19 10:21

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000562	J	0.00100	0.000168	mg/L			05/01/19 14:35	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			05/01/19 14:35	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/01/19 14:35	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			05/01/19 14:35	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			05/01/19 14:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		50 - 134					05/01/19 14:35	1
4-Bromofluorobenzene	118		67 - 139					05/01/19 14:35	1
Dibromofluoromethane	98		62 - 130					05/01/19 14:35	1
Toluene-d8 (Surr)	105		70 - 130					05/01/19 14:35	1
- Method: 6020 - Metals (ICF	P/MS) - Dissolv	ed							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	0.0154	$\overline{}$	0.0500	0.0116	ma/l		04/29/19 10:28	04/29/19 16:03	

Eurofins TestAmerica, Houston

Lab Sample ID: 600-184182-4

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-MW22-04232019

Lab Sample ID: 600-184182-7 Date Collected: 04/23/19 09:40 **Matrix: Water**

Date Received: 04/24/19 10:21

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000546	J	0.00100	0.000168	mg/L			05/01/19 18:46	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			05/01/19 18:46	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/01/19 18:46	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			05/01/19 18:46	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			05/01/19 18:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		50 - 134					05/01/19 18:46	1
4-Bromofluorobenzene	116		67 - 139					05/01/19 18:46	1
Dibromofluoromethane	102		62 - 130					05/01/19 18:46	1
Toluene-d8 (Surr)	106		70 - 130					05/01/19 18:46	1
- Method: 6020 - Metals (ICF	P/MS) - Dissolve	ed							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	0.0116	U	0.0500	0.0116	mg/L		04/29/19 10:28	04/29/19 16:08	1

Client Sample ID: ARTESIA-MW31-04232019 Lab Sample ID: 600-184182-8

Date Collected: 04/23/19 09:25 Date Received: 04/24/19 10:21

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00181		0.00100	0.000168	mg/L			05/01/19 19:11	1
1,1-Dichloroethene	0.000411	J	0.00100	0.000192	mg/L			05/01/19 19:11	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/01/19 19:11	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			05/01/19 19:11	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			05/01/19 19:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		50 - 134					05/01/19 19:11	1
4-Bromofluorobenzene	113		67 - 139					05/01/19 19:11	1
Dibromofluoromethane	103		62 - 130					05/01/19 19:11	1
Toluene-d8 (Surr)	104		70 - 130					05/01/19 19:11	1
Method: 6020 - Metals (ICF	P/MS) - Dissolv	ed							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
•									

Manganese, Dissolved 0.0337 J 0.0500 0.0116 mg/L 04/29/19 10:28 04/29/19 16:13

Client Sample ID: ARTESIA-MW25-04232019

Date Collected: 04/23/19 09:55 **Matrix: Water** Date Received: 04/24/19 10:21

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000701	J	0.00100	0.000168	mg/L			05/01/19 19:36	1
1,1-Dichloroethene	0.000777	J	0.00100	0.000192	mg/L			05/01/19 19:36	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/01/19 19:36	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			05/01/19 19:36	1
Tetrachloroethene	0.00118		0.00100	0.000333	mg/L			05/01/19 19:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		50 - 134			=		05/01/19 19:36	1

Eurofins TestAmerica, Houston

Lab Sample ID: 600-184182-9

Matrix: Water

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-MW25-04232019

Lab Sample ID: 600-184182-9

Date Collected: 04/23/19 09:55 **Matrix: Water**

Date Received: 04/24/19 10:21

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	114		67 - 139		05/01/19 19:36	1
Dibromofluoromethane	106		62 - 130		05/01/19 19:36	1
Toluene-d8 (Surr)	106		70 - 130		05/01/19 19:36	1

Method: 6020 - Metals (ICP/M	S) - Dissolved							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	0.244	0.0500	0.0116	mg/L		04/29/19 10:28	04/29/19 16:18	1

Client Sample ID: ARTESIA-MW18-04232019

Lab Sample ID: 600-184182-10 Date Collected: 04/23/19 10:10 **Matrix: Water**

Date Received: 04/24/19 10:21

Method: 8260B -	Volatile O	rganic (Comp	Ol	ınd	ls (GC/MS)	•
			_		_			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000706	J	0.00100	0.000168	mg/L			05/01/19 20:01	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			05/01/19 20:01	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/01/19 20:01	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			05/01/19 20:01	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			05/01/19 20:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

9	,, ,		 · · · · · · · · · · · · · · · · · · ·	
1,2-Dichloroethane-d4 (Surr)	107	50 - 134	 05/01/19 20:01	1
4-Bromofluorobenzene	116	67 - 139	05/01/19 20:01	1
Dibromofluoromethane	105	62 - 130	05/01/19 20:01	1
Toluene-d8 (Surr)	105	70 - 130	05/01/19 20:01	1

Method: 602	0 Motale	(ICD/MC)	Discolved
wethod: 602	u - Metais	(ICP/IVIS)	- Dissoivea

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	0.0116 U	0.0500	0.0116 mg/L		04/29/19 10:28	04/29/19 16:23	1

Client Sample ID: ARTESIA-MD18-04232019

Lab Sample ID: 600-184182-11 Date Collected: 04/23/19 10:15 **Matrix: Water**

Date Received: 04/24/19 10:21

Mothod: 9260B	Volatile Organic	Compounds (GC/MS)
Method: Azbub	• volatile Urganic i	Compolings (GC/WS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000736	J	0.00100	0.000168	mg/L			05/01/19 20:26	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			05/01/19 20:26	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/01/19 20:26	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			05/01/19 20:26	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			05/01/19 20:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		50 - 134					05/01/19 20:26	1
4-Bromofluorobenzene	114		67 - 139					05/01/19 20:26	1
Dibromofluoromethane	102		62 - 130					05/01/19 20:26	1
Toluene-d8 (Surr)	104		70 - 130					05/01/19 20:26	1

Method: 6020 - Metals (ICP/MS) - Dissolved Result Qualifier

MDL Unit Analyzed Manganese, Dissolved 0.0276 J 0.0500 0.0116 mg/L 04/29/19 10:28 04/29/19 16:28

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-MW15-04232019

Lab Sample ID: 600-184182-12 Date Collected: 04/23/19 11:05 **Matrix: Water**

Date Received: 04/24/19 10:21

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			05/02/19 13:19	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			05/02/19 13:19	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/02/19 13:19	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			05/02/19 13:19	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			05/02/19 13:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		50 - 134			-		05/02/19 13:19	1
4-Bromofluorobenzene	112		67 - 139					05/02/19 13:19	1
Dibromofluoromethane	106		62 - 130					05/02/19 13:19	1
Toluene-d8 (Surr)	107		70 - 130					05/02/19 13:19	1

Default Detection Limits

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Method: 8260B - Volatile Organic Compounds (GC/MS)

	Analyte	RL	MDL	Units
1	,1-Dichloroethane	0.00100	0.000168	mg/L
1	,1-Dichloroethene	0.00100	0.000192	mg/L
E	Benzene	0.00100	0.000176	mg/L
1	Naphthalene	0.00200	0.000129	mg/L
1	Tetrachloroethene	0.00100	0.000333	mg/L

Method: 6020 - Metals (ICP/MS) - Dissolved

Prep: 3010A

Analyte	RL	MDL	Units	
Manganese, Dissolved	0.0500	0.0116	mg/L	

Surrogate Summary

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(50-134)	(67-139)	(62-130)	(70-130)
600-184182-1	ARTESIA-TB02-04232019	100	117	101	101
600-184182-2	ARTESIA-MW33-04232019	100	117	101	104
600-184182-3	ARTESIA-MW29-04232019	104	113	102	104
600-184182-4	ARTESIA-MW35-04232019	105	122	103	103
600-184182-5	ARTESIA-MW28-04232019	104	116	104	109
600-184182-6	ARTESIA-MW21-04232019	98	118	98	105
600-184182-6 MS	ARTESIA-MW21-04232019	105	120	108	111
600-184182-6 MSD	ARTESIA-MW21-04232019	106	124	109	108
600-184182-7	ARTESIA-MW22-04232019	102	116	102	106
600-184182-8	ARTESIA-MW31-04232019	107	113	103	104
600-184182-9	ARTESIA-MW25-04232019	104	114	106	106
600-184182-10	ARTESIA-MW18-04232019	107	116	105	105
600-184182-11	ARTESIA-MD18-04232019	105	114	102	104
600-184182-12	ARTESIA-MW15-04232019	106	112	106	107
LCS 600-264044/3	Lab Control Sample	99	121	108	114
LCS 600-264156/3	Lab Control Sample	99	121	108	114
LCSD 600-264044/4	Lab Control Sample Dup	99	119	106	110
LCSD 600-264156/4	Lab Control Sample Dup	99	121	109	112
MB 600-264044/6	Method Blank	97	116	101	104
MB 600-264156/6	Method Blank	91	116	98	109

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 600-264044/6

Matrix: Water

Analysis Batch: 264044

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			05/01/19 11:15	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			05/01/19 11:15	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/01/19 11:15	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			05/01/19 11:15	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			05/01/19 11:15	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 50 - 134 1,2-Dichloroethane-d4 (Surr) 05/01/19 11:15 97 67 - 139 05/01/19 11:15 4-Bromofluorobenzene 116 Dibromofluoromethane 101 62 - 130 05/01/19 11:15 104 70 - 130 05/01/19 11:15 Toluene-d8 (Surr)

Lab Sample ID: LCS 600-264044/3

Matrix: Water

Analysis Batch: 264044

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.0100	0.008956		mg/L		90	70 - 140	
1,1-Dichloroethene	0.0100	0.01041		mg/L		104	58 - 148	
Benzene	0.0100	0.009070		mg/L		91	70 - 130	
Naphthalene	0.0100	0.008143		mg/L		81	10 - 150	
Tetrachloroethene	0.0100	0.01141		mg/L		114	47 - 150	

LCS LCS %Recovery Qualifier Surrogate Limits 99 50 - 134 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene 121 67 - 139 Dibromofluoromethane 108 62 - 130 Toluene-d8 (Surr) 114 70 - 130

Lab Sample ID: LCSD 600-264044/4

Matrix: Water

Analysis Batch: 264044

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD LCSD			%Rec.		RPD
Analyte	Added	Result Qualifier	Unit [O %Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0100	0.009138	mg/L	91	70 - 140	2	20
1,1-Dichloroethene	0.0100	0.009998	mg/L	100	58 - 148	4	20
Benzene	0.0100	0.008819	mg/L	88	70 - 130	3	20
Naphthalene	0.0100	0.008532	mg/L	85	10 - 150	5	20
Tetrachloroethene	0.0100	0.01112	mg/L	111	47 - 150	3	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		50 - 134
4-Bromofluorobenzene	119		67 - 139
Dibromofluoromethane	106		62 - 130
Toluene-d8 (Surr)	110		70 - 130

QC Sample Results

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 600-184182-6 MS

Matrix: Water Analysis Batch: 264044 Client Sample ID: ARTESIA-MW21-04232019

Prep Type: Total/NA

Sa	mple Sampl	le Spike	MS	MS				%Rec.	
Analyte F	esult Qualifi	ier Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane 0.0	00562 J	0.0100	0.01053		mg/L		100	70 - 140	
1,1-Dichloroethene 0.0	00192 U	0.0100	0.01081		mg/L		108	58 - 148	
Benzene 0.0	00176 U	0.0100	0.009354		mg/L		94	70 - 130	
Naphthalene 0.0	0129 U	0.0100	0.008083		mg/L		81	10 - 150	
Tetrachloroethene 0.0	00333 U	0.0100	0.01176		mg/L		118	47 - 150	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		50 - 134
4-Bromofluorobenzene	120		67 - 139
Dibromofluoromethane	108		62 - 130
Toluene-d8 (Surr)	111		70 - 130

Lab Sample ID: 600-184182-6 MSD

Matrix: Water

Analysis Batch: 264044

Client Sample ID: ARTESIA-MW21-04232019

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.000562	J	0.0100	0.009922		mg/L		94	70 - 140	6	30
1,1-Dichloroethene	0.000192	U	0.0100	0.009990		mg/L		100	58 - 148	8	30
Benzene	0.000176	U	0.0100	0.008919		mg/L		89	70 - 130	5	30
Naphthalene	0.000129	U	0.0100	0.009583		mg/L		96	10 - 150	17	30
Tetrachloroethene	0.000333	U	0.0100	0.01092		mg/L		109	47 - 150	7	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		50 - 134
4-Bromofluorobenzene	124		67 - 139
Dibromofluoromethane	109		62 - 130
Toluene-d8 (Surr)	108		70 - 130

Lab Sample ID: MB 600-264156/6

Matrix: Water

Analysis Batch: 264156

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			05/02/19 10:51	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			05/02/19 10:51	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			05/02/19 10:51	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			05/02/19 10:51	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			05/02/19 10:51	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		50 - 134		05/02/19 10:51	1
4-Bromofluorobenzene	116		67 - 139		05/02/19 10:51	1
Dibromofluoromethane	98		62 - 130		05/02/19 10:51	1
Toluene-d8 (Surr)	109		70 - 130		05/02/19 10:51	1

QC Sample Results

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 600-264156/3

Matrix: Water

Analysis Batch: 264156

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits
1,1-Dichloroethane	0.0100	0.008733	mg/L	87	70 - 140
1,1-Dichloroethene	0.0100	0.009985	mg/L	100	58 - 148
Benzene	0.0100	0.008602	mg/L	86	70 - 130
Naphthalene	0.0100	0.007376	mg/L	74	10 - 150
Tetrachloroethene	0.0100	0.01155	mg/L	116	47 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		50 - 134
4-Bromofluorobenzene	121		67 - 139
Dibromofluoromethane	108		62 - 130
Toluene-d8 (Surr)	114		70 - 130

Lab Sample ID: LCSD 600-264156/4

Matrix: Water

Analysis Batch: 264156

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

-	Spike	LCSD LCS	SD		%Rec.		RPD
Analyte	Added	Result Qua	alifier Unit	D %Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0100	0.008833	mg/L		70 - 140	1	20
1,1-Dichloroethene	0.0100	0.009958	mg/L	100	58 - 148	0	20
Benzene	0.0100	0.008709	mg/L	87	70 - 130	1	20
Naphthalene	0.0100	0.007757	mg/L	78	10 - 150	5	20
Tetrachloroethene	0.0100	0.01158	mg/L	116	47 - 150	0	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		50 - 134
4-Bromofluorobenzene	121		67 - 139
Dibromofluoromethane	109		62 - 130
Toluene-d8 (Surr)	112		70 - 130

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 560-161936/1-A

Matrix: Water

Analysis Batch: 161978

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 161936

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Manganese, Dissolved
 0.0116
 U
 0.0500
 0.0116
 mg/L
 0/4/29/19 10:28
 0/4/29/19 10:28
 0/4/29/19 14:47
 1

Lab Sample ID: LCS 560-161936/2-A

Matrix: Water

Analysis Batch: 161978

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 161936

QC Association Summary

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

GC/MS VOA

Analysis Batch: 264044

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-184182-1	ARTESIA-TB02-04232019	Total/NA	Water	8260B	
600-184182-2	ARTESIA-MW33-04232019	Total/NA	Water	8260B	
600-184182-3	ARTESIA-MW29-04232019	Total/NA	Water	8260B	
600-184182-4	ARTESIA-MW35-04232019	Total/NA	Water	8260B	
600-184182-5	ARTESIA-MW28-04232019	Total/NA	Water	8260B	
600-184182-6	ARTESIA-MW21-04232019	Total/NA	Water	8260B	
600-184182-7	ARTESIA-MW22-04232019	Total/NA	Water	8260B	
600-184182-8	ARTESIA-MW31-04232019	Total/NA	Water	8260B	
600-184182-9	ARTESIA-MW25-04232019	Total/NA	Water	8260B	
600-184182-10	ARTESIA-MW18-04232019	Total/NA	Water	8260B	
600-184182-11	ARTESIA-MD18-04232019	Total/NA	Water	8260B	
MB 600-264044/6	Method Blank	Total/NA	Water	8260B	
LCS 600-264044/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 600-264044/4	Lab Control Sample Dup	Total/NA	Water	8260B	
600-184182-6 MS	ARTESIA-MW21-04232019	Total/NA	Water	8260B	
600-184182-6 MSD	ARTESIA-MW21-04232019	Total/NA	Water	8260B	

Analysis Batch: 264156

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-184182-12	ARTESIA-MW15-04232019	Total/NA	Water	8260B	
MB 600-264156/6	Method Blank	Total/NA	Water	8260B	
LCS 600-264156/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 600-264156/4	Lab Control Sample Dup	Total/NA	Water	8260B	

Metals

Prep Batch: 161936

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-184182-3	ARTESIA-MW29-04232019	Dissolved	Water	3010A	-
600-184182-5	ARTESIA-MW28-04232019	Dissolved	Water	3010A	
600-184182-6	ARTESIA-MW21-04232019	Dissolved	Water	3010A	
600-184182-7	ARTESIA-MW22-04232019	Dissolved	Water	3010A	
600-184182-8	ARTESIA-MW31-04232019	Dissolved	Water	3010A	
600-184182-9	ARTESIA-MW25-04232019	Dissolved	Water	3010A	
600-184182-10	ARTESIA-MW18-04232019	Dissolved	Water	3010A	
600-184182-11	ARTESIA-MD18-04232019	Dissolved	Water	3010A	
MB 560-161936/1-A	Method Blank	Total/NA	Water	3010A	
LCS 560-161936/2-A	Lab Control Sample	Total/NA	Water	3010A	

Analysis Batch: 161978

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-184182-3	ARTESIA-MW29-04232019	Dissolved	Water	6020	161936
600-184182-5	ARTESIA-MW28-04232019	Dissolved	Water	6020	161936
600-184182-6	ARTESIA-MW21-04232019	Dissolved	Water	6020	161936
600-184182-7	ARTESIA-MW22-04232019	Dissolved	Water	6020	161936
600-184182-8	ARTESIA-MW31-04232019	Dissolved	Water	6020	161936
600-184182-9	ARTESIA-MW25-04232019	Dissolved	Water	6020	161936
600-184182-10	ARTESIA-MW18-04232019	Dissolved	Water	6020	161936
600-184182-11	ARTESIA-MD18-04232019	Dissolved	Water	6020	161936
MB 560-161936/1-A	Method Blank	Total/NA	Water	6020	161936
LCS 560-161936/2-A	Lab Control Sample	Total/NA	Water	6020	161936

Eurofins TestAmerica, Houston

Lab Chronicle

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-TB02-04232019

Lab Sample ID: 600-184182-1 Date Collected: 04/23/19 07:45

Matrix: Water

Date Received: 04/24/19 10:21

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	264044	05/01/19 16:41	WS1	TAL HOU

Client Sample ID: ARTESIA-MW33-04232019

Lab Sample ID: 600-184182-2 Date Collected: 04/23/19 08:05 **Matrix: Water**

Date Received: 04/24/19 10:21

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			264044	05/01/19 17:06	WS1	TAL HOU

Client Sample ID: ARTESIA-MW29-04232019

Lab Sample ID: 600-184182-3 Date Collected: 04/23/19 08:20 **Matrix: Water**

Date Received: 04/24/19 10:21

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	264044	05/01/19 17:31	WS1	TAL HOU
Dissolved	Prep	3010A			161936	04/29/19 10:28	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 15:13	JEM	TAL CC

Client Sample ID: ARTESIA-MW35-04232019

Lab Sample ID: 600-184182-4 Date Collected: 04/23/19 08:35 **Matrix: Water**

Date Received: 04/24/19 10:21

-	_								
		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260B		1	264044	05/01/19 17:56	WS1	TAL HOU

Client Sample ID: ARTESIA-MW28-04232019

Lab Sample ID: 600-184182-5 Date Collected: 04/23/19 08:50 **Matrix: Water**

Date Received: 04/24/19 10:21

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type Total/NA	Type Analysis	Method 8260B	Run	Factor 1	Number 264044	or Analyzed 05/01/19 18:21	Analyst WS1	Lab TAL HOU
Dissolved	Prep	3010A			161936	04/29/19 10:28	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 15:17	JEM	TAL CC

Client Sample ID: ARTESIA-MW21-04232019

Lab Sample ID: 600-184182-6 Date Collected: 04/23/19 09:00 **Matrix: Water**

Date Received: 04/24/19 10:21

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	264044	05/01/19 14:35	WS1	TAL HOU
Dissolved	Prep	3010A			161936	04/29/19 10:28	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 16:03	JEM	TAL CC

Lab Chronicle

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Client Sample ID: ARTESIA-MW22-04232019

Date Collected: 04/23/19 09:40 **Matrix: Water**

Date Received: 04/24/19 10:21

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			264044	05/01/19 18:46	WS1	TAL HOU
Dissolved	Prep	3010A			161936	04/29/19 10:28	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 16:08	JEM	TAL CC

Client Sample ID: ARTESIA-MW31-04232019

Lab Sample ID: 600-184182-8 Date Collected: 04/23/19 09:25 **Matrix: Water**

Date Received: 04/24/19 10:21

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	264044	05/01/19 19:11	WS1	TAL HOU
Dissolved	Prep	3010A			161936	04/29/19 10:28	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 16:13	JEM	TAL CC

Client Sample ID: ARTESIA-MW25-04232019

Lab Sample ID: 600-184182-9 Date Collected: 04/23/19 09:55 **Matrix: Water**

Date Received: 04/24/19 10:21

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	264044	05/01/19 19:36	WS1	TAL HOU
Dissolved	Prep	3010A			161936	04/29/19 10:28	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 16:18	JEM	TAL CC

Client Sample ID: ARTESIA-MW18-04232019

Date Collected: 04/23/19 10:10 **Matrix: Water**

Date Received: 04/24/19 10:21

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	е Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	264044	05/01/19 20:01	WS1	TAL HOU
Dissolved	Prep	3010A			161936	04/29/19 10:28	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 16:23	JEM	TAL CC

Client Sample ID: ARTESIA-MD18-04232019

Lab Sample ID: 600-184182-11 Date Collected: 04/23/19 10:15 **Matrix: Water**

Date Received: 04/24/19 10:21

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	264044	05/01/19 20:26	WS1	TAL HOU
Dissolved	Prep	3010A			161936	04/29/19 10:28	AKM	TAL CC
Dissolved	Analysis	6020		1	161978	04/29/19 16:28	JEM	TAL CC

Client Sample ID: ARTESIA-MW15-04232019

Lab Sample ID: 600-184182-12 Date Collected: 04/23/19 11:05 **Matrix: Water**

Date Received: 04/24/19 10:21

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	264156	05/02/19 13:19	WS1	TAL HOU

Lab Sample ID: 600-184182-7

Lab Sample ID: 600-184182-10

Lab Chronicle

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Laboratory References:

TAL CC = Eurofins TestAmerica, Corpus Christi, 1733 N. Padre Island Drive, Corpus Christi, TX 78408, TEL (361)289-2673

TAL HOU = Eurofins TestAmerica, Houston, 6310 Rothway Street, Houston, TX 77040, TEL (713)690-4444

Accreditation/Certification Summary

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Laboratory: Eurofins TestAmerica, Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	18-061-0	08-04-19
Louisiana	NELAP	6	01967	06-30-19
Oklahoma	State Program	6	2018-052	08-31-19
Texas	NELAP	6	T104704223-18-23	10-31-19
USDA	Federal		P330-18-00130	04-30-21

Laboratory: Eurofins TestAmerica, Corpus Christi

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Oklahoma	State Program	6	2018-070	08-31-19
Texas	NELAP	6	T104704210-19-23	03-31-20
USDA	Federal		P330-18-00314	10-31-21

Method Summary

Client: CH2M Hill, Inc. Job ID: 600-184182-1

Project/Site: Dowell - Artesia 04/23/19

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL HOU
6020	Metals (ICP/MS)	SW846	TAL CC
3010A	Preparation, Total Metals	SW846	TAL CC
5030B	Purge and Trap	SW846	TAL HOU

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CC = Eurofins TestAmerica, Corpus Christi, 1733 N. Padre Island Drive, Corpus Christi, TX 78408, TEL (361)289-2673 TAL HOU = Eurofins TestAmerica, Houston, 6310 Rothway Street, Houston, TX 77040, TEL (713)690-4444

Sample Summary

Client: CH2M Hill, Inc.

Project/Site: Dowell - Artesia 04/23/19

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
600-184182-1	ARTESIA-TB02-04232019	Water	04/23/19 07:45	04/24/19 10:21
600-184182-2	ARTESIA-MW33-04232019	Water	04/23/19 08:05 0	04/24/19 10:21
600-184182-3	ARTESIA-MW29-04232019	Water	04/23/19 08:20 0	04/24/19 10:21
600-184182-4	ARTESIA-MW35-04232019	Water	04/23/19 08:35	04/24/19 10:21
600-184182-5	ARTESIA-MW28-04232019	Water	04/23/19 08:50	04/24/19 10:21
600-184182-6	ARTESIA-MW21-04232019	Water	04/23/19 09:00 0	04/24/19 10:21
600-184182-7	ARTESIA-MW22-04232019	Water	04/23/19 09:40 0	04/24/19 10:21
600-184182-8	ARTESIA-MW31-04232019	Water	04/23/19 09:25 0	04/24/19 10:21
600-184182-9	ARTESIA-MW25-04232019	Water	04/23/19 09:55	04/24/19 10:21
600-184182-10	ARTESIA-MW18-04232019	Water	04/23/19 10:10 0	04/24/19 10:21
600-184182-11	ARTESIA-MD18-04232019	Water	04/23/19 10:15 (04/24/19 10:21
600-184182-12	ARTESIA-MW15-04232019	Water	04/23/19 11:05 (04/24/19 10:21

Job ID: 600-184182-1

Lab	Name:	Eurofins	TestAmerica,	Housto	Job No.:	600-184182-1
-----	-------	----------	--------------	--------	----------	--------------

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 259909

Lab Sample ID: IC 600-259909/2 Client Sample ID:

COMPOUND NAME	RETENTION	ION MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Bromomethane	5.00	Baseline	shenw	03/07/19 11:53
Chloroethane	5.15	Baseline	shenw	03/07/19 11:53
Acrolein	5.71	Baseline	shenw	03/07/19 11:53
Acetonitrile	5.73	Baseline	shenw	03/07/19 11:53
Isopropyl alcohol	5.75	Baseline	shenw	03/07/19 11:53
Acetone	5.83	Baseline	shenw	03/07/19 11:53
t-Butanol	6.19	Baseline	shenw	03/07/19 11:53
Iodomethane	6.26	Baseline	shenw	03/07/19 11:54
Methyl acetate	6.34	Baseline	shenw	03/07/19 11:54
Propionitrile	7.10	Baseline	shenw	03/07/19 11:54
Vinyl acetate	7.15	Baseline	shenw	03/07/19 11:54
2-Butanone (MEK)	7.41	Baseline	shenw	03/07/19 11:54
Ethyl acetate	7.63	Baseline	shenw	03/07/19 11:54
Isobutyl alcohol	7.72	Baseline	shenw	03/07/19 11:55
Tetrahydrofuran	7.95	Baseline	shenw	03/07/19 11:55
1,2-Dichloroethane-d4 (Surr)	8.13	Baseline	shenw	03/07/19 11:55
1,2-Dichloroethane	8.20	Baseline	shenw	03/07/19 11:55
n-Butanol	8.32	Baseline	shenw	03/07/19 11:55
Dibromomethane	9.04	Baseline	shenw	03/07/19 11:55
2-Nitropropane	9.05	Baseline	shenw	03/07/19 11:56
1,4-Dioxane	9.20	Baseline	shenw	03/07/19 11:56
2-Chloroethyl vinyl ether	9.41	Baseline	shenw	03/07/19 11:56
cis-1,3-Dichloropropene	9.64	Baseline	shenw	03/07/19 11:56
4-Methyl-2-pentanone (MIBK)	9.69	Baseline	shenw	03/07/19 11:56
trans-1,3-Dichloropropene	10.01	Baseline	shenw	03/07/19 11:56
1,1,2-Trichloroethane	10.18	Baseline	shenw	03/07/19 11:56
Ethyl methacrylate	10.33	Baseline	shenw	03/07/19 11:56
2-Hexanone	10.51	Baseline	shenw	03/07/19 11:57
Bromoform	12.37	Baseline	shenw	03/07/19 11:57
Cyclohexanone	12.59	Baseline	shenw	03/07/19 11:57

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184182-1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 259909

Lab Sample ID: IC 600-259909/2 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
1,1,2,2-Tetrachloroethane	12.61	Baseline	shenw	03/07/19 11:57
1,2,3-Trichloropropane	12.77	Baseline	shenw	03/07/19 11:57
trans-1,4-Dichloro-2-butene	12.77	Baseline	shenw	03/07/19 11:57
1,2-Dibromo-3-Chloropropane	15.21	Baseline	shenw	03/07/19 11:58
1,2,4-Trichlorobenzene	16.70	Baseline	shenw	03/07/19 11:58
Hexachlorobutadiene	17.04	Baseline	shenw	03/07/19 11:58
1,2,3-Trichlorobenzene	17.26	Baseline	shenw	03/07/19 11:58

Lab Sample ID: IC 600-259909/3 Client Sample ID:

COMPOUND NAME	RETENTION	TION MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Acetone	5.83	Peak assignment corrected	shenw	03/07/19 11:50
t-Butanol	6.20	Peak assignment corrected	shenw	03/07/19 11:50
Methyl acetate	6.34	Peak assignment corrected	shenw	03/07/19 11:50
Propionitrile	7.09	Peak assignment corrected	shenw	03/07/19 11:50
2-Butanone (MEK)	7.41	Baseline	shenw	03/07/19 11:51
Ethyl acetate	7.63	Baseline	shenw	03/07/19 11:51
Isobutyl alcohol	7.71	Baseline	shenw	03/07/19 11:51
Tetrahydrofuran	7.95	Baseline	shenw	03/07/19 11:51
n-Butanol	8.30	Baseline	shenw	03/07/19 11:52
1,4-Dioxane	9.18	Baseline	shenw	03/07/19 11:52
2-Chloroethyl vinyl ether	9.42	Baseline	shenw	03/07/19 11:52
trans-1,3-Dichloropropene	10.01	Baseline	shenw	03/07/19 11:52
2-Hexanone	10.50	Baseline	shenw	03/07/19 11:52
1,2,3-Trichloropropane	12.78	Baseline	shenw	03/07/19 11:52
trans-1,4-Dichloro-2-butene	12.78	Baseline	shenw	03/07/19 11:52
1,2-Dibromo-3-Chloropropane	15.21	Baseline	shenw	03/07/19 11:52

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184182-1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 259909

Lab Sample ID: IC 600-259909/4 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Acetone	5.82	Baseline	shenw	03/07/19 12:26
t-Butanol	6.20	Baseline	shenw	03/07/19 12:26
Tetrahydrofuran	7.95	Baseline	shenw	03/07/19 12:26
1,4-Dioxane	9.18	Baseline	shenw	03/07/19 12:26
2-Chloroethyl vinyl ether	9.41	Baseline	shenw	03/07/19 12:25
trans-1,4-Dichloro-2-butene	12.77	Baseline	shenw	03/07/19 12:25
1,2-Dibromo-3-Chloropropane	15.22	Baseline	shenw	03/07/19 12:25

Lab Sample ID: IC 600-259909/5 Client Sample ID:

Date Analyzed: 03/07/19 12:10 Lab File ID: A06604.d GC Column: DB-VRX 60 ID: 0.25(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
1,2-Dibromo-3-Chloropropane	15.22	Baseline	shenw	03/08/19 09:43

Lab Sample ID: ICIS 600-259909/6 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
1,4-Dichlorobenzene-d4	14.34	Baseline	shenw	03/08/19 09:47
1,2-Dibromo-3-Chloropropane	15.22	Baseline	shenw	03/08/19 09:51

Lab Sample ID: IC 600-259909/7 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
1,2-Dibromo-3-Chloropropane	15.22	Baseline	shenw	03/08/19 09:46

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184182-1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 259909

Lab Sample ID: IC 600-259909/8 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION					
	TIME	REASON	ANALYST	DATE			
1,2-Dibromo-3-Chloropropane	15.22	Baseline	shenw	03/08/19 09:45			

Lab Sample ID: ICV 600-259909/10 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION				
	TIME	REASON	ANALYST	DATE		
Bromomethane	5.00	Baseline	shenw	03/07/19 15:28		
Chloroethane	5.16	Baseline	shenw	03/07/19 15:28		
Dichlorofluoromethane	5.20	Baseline	shenw	03/07/19 15:28		
Trichlorofluoromethane	5.72	Baseline	shenw	03/07/19 15:28		
Fluorobenzene	8.73	Baseline	shenw	03/07/19 15:27		

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184182-1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 264044

Lab Sample ID: MB 600-264044/6 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION				
	TIME	REASON	ANALYST	DATE		
Naphthalene		Invalid Compound ID	shenw	05/01/19 12:08		

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-184182-1

SDG No.:

Analysis Batch Number: 264156 Instrument ID: CHVOAMS07

Lab Sample ID: MB 600-264156/6 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION					
	TIME	REASON	ANALYST	DATE			
Naphthalene		Invalid Compound ID	shenw	05/02/19 11:21			

Lab Name: Eurofins	TestAmerica,	Houston	Job No.: 600-184182-1
SDG No.:			

				Reagent	Parent Reagen	t		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
BFB_00277							1,2-Dichloroethene, Total	
_							1,3-Dichloropropene, Total	
							2,3-dichlorobutane	
							Tentatively Identified	
							Compound	
							Trihalomethanes, Total	
							Xylenes, Total	
					VOASBFB 00014	25 uL	BFB	25 ug/mL
.VOASBFB_00014	07/31/21		Restek, Lot A0120567		(Purchased Reage	ent)	BFB	2000 ug/mL
BFB 00281							1,2-Dichloroethene, Total	
							1,3-Dichloropropene, Total	
							2,3-dichlorobutane	
							Tentatively Identified	
							Compound	
							Trihalomethanes, Total	
							Xylenes, Total	
					VOASBFB 00014	50 uL	BFB	25 ug/mL
.VOASBFB 00014	07/31/21		Restek, Lot A0120567		(Purchased Reage	ent)	BFB	2000 ug/mL
EOxideStd 00146	03/13/19	02/27/19	Methanol, Lot V013019A	1 mT,	MVETYLOIDE 00010	10 m.	Ethylene oxide	500 ug/mL
.MVETYLOIDE 00010	09/30/19		igma-Aldrich, Lot LRAB68		(Purchased Reage		Ethylene oxide	50000 ug/mL
VOAIS50PPM_00246	03/13/19		Methanol, Lot V013019A		VOA3IS_00031	20 11T.	1,4-Dichlorobenzene-d4	50 ug/mL
V01112301111_00210	03/13/13	02/2//19	incending, for voiceisin	1 1112	1011318_00031	20 41	Chlorobenzene-d5	50 ug/mL
							Fluorobenzene	50 ug/mL
.VOA3IS 00031	06/30/23		Restek, Lot A0138856		(Purchased Reage	n+)	1,4-Dichlorobenzene-d4	2500 ug/mL
	00/30/23		Redeem, Lot Holdoos		(raremasea neag	5110)	Chlorobenzene-d5	2500 ug/mL
							Fluorobenzene	2500 ug/mL
VOAIS50PPM_00250	05/08/19	04/24/19	Methanol, Lot V032119A	1 mT.	VOA3IS_00031	20 11T.	1,4-Dichlorobenzene-d4	50 ug/mL
	00,00,13	01/21/10	neemaner, zee veeziisn		1011010_0001	20 02	Chlorobenzene-d5	50 ug/mL
							Fluorobenzene	50 ug/mL
.VOA3IS 00031	06/30/23		Restek, Lot A0138856		(Purchased Reage	n+)	1,4-Dichlorobenzene-d4	2500 ug/mL
	00/30/23		Redeem, Lot Holdoos		(raremasea neag	5110)	Chlorobenzene-d5	2500 ug/mL
							Fluorobenzene	2500 ug/mL
	00/10/10		T			00 -		
VOALCSPT2_00134	03/13/19	02/27/19	Methanol, Lot V013019A	1 mL	VOALMegMi2017_00003	20 uL	1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
							Benzene	50 ug/mL
							Naphthalene	50 ug/mL
1707 TM: -M' 001 F 00000	06/20/12		Decl. 1 7 20100555		(5)	1)	Tetrachloroethene	50 ug/mL
.VOALMegMi2017_00003	06/30/19		Restek, Lot A0123775		(Purchased Reage	ent)	1,1-Dichloroethane	2500 ug/mL
							1,1-Dichloroethene	2500 ug/mL
							Benzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
VOALCSPT2_00138	05/08/19	04/24/19	Methanol, Lot V032119A	1 mL	VOALMegMi2017_00003	20 uL	1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
							Benzene	50 ug/mL
1							Naphthalene	50 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-184182-1
SDG	No.:					

				Reagent	Parent Reage	nt		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Tetrachloroethene	50 ug/mL
.VOALMegMi2017 00003	06/30/19		Restek, Lot A0123775		(Purchased Read	gent)	1,1-Dichloroethane	2500 ug/mL
_							1,1-Dichloroethene	2500 ug/mL
							Benzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
VOASS50PPM_00284	03/13/19	02/27/19	Methanol, Lot V013019A	1 mL	VOARSS 00012	20 uL	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
_							4-Bromofluorobenzene	50 ug/mL
							Dibromofluoromethane	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
.VOARSS 00012	12/31/20		Restek, Lot A0115812		(Purchased Read	gent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
=							4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
VOASS50PPM 00288	05/08/19	04/24/19	Methanol, Lot V032119A	1 mT ₁	VOARSS 00012	2.0 uTı	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
							4-Bromofluorobenzene	50 ug/mL
							Dibromofluoromethane	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
.VOARSS 00012	12/31/20		Restek, Lot A0115812		(Purchased Read	rent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
	12/31/20		Rester, Lot Hollsoll		(Turenasea neag	jene,	4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
VOASTDGASPT_00316	03/13/10	03/06/19	Methanol, Lot V013019A	1 mT	VOARGAS 00014	20 11	Bromomethane	50 ug/mL
VONDIDGNDII_00310	03/13/13	03/00/13	Hechanor, Loc voisoish	1 1111	V0711(0715_00014	20 41	Butadiene	50 ug/mL
							Chloroethane	50 ug/mL
							Chloromethane	50 ug/mL
							Dichlorodifluoromethane	50 ug/mL
							Dichlorofluoromethane	50 ug/mL
							Trichlorofluoromethane	50 ug/mL
							Vinyl chloride	50 ug/mL
.VOARGAS 00014	10/31/20		Restek, Lot A0131502		(Purchased Read	ron+)	Bromomethane	2500 ug/mL
.VOANGAS_00014	10/31/20		Rester, Lot A0131302		(Fulchased Keag	Jenc)	Butadiene	2500 ug/mL
							Chloroethane	2500 ug/mL
							Chloromethane	2500 ug/mL
							Dichlorodifluoromethane	2500 ug/mL 2500 ug/mL
							Dichlorofluoromethane	
								2500 ug/mL
							Trichlorofluoromethane	2500 ug/mL 2500 ug/mL
							Vinyl chloride	
VOASTDPT2_00134	03/13/19	02/27/19	Methanol, Lot V013019A	1 mL	VOAMegMix2017_00005	20 uL	1,1,1,2-Tetrachloroethane	50 ug/mL
							1,1,1-Trichloroethane	50 ug/mL
							1,1,2,2-Tetrachloroethane	50 ug/mL
							1,1,2-Trichloro-1,2,2-trifluor	50 ug/mL
							oethane	
							1,1,2-Trichloroethane	50 ug/mL
							1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
							1,1-Dichloropropene	50 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston		600-18418		

				Reagent	Parent Reage	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							1,2,3-Trichlorobenzene	50 ug/mL
							1,2,3-Trichloropropane	50 ug/mL
							1,2,4-Trichlorobenzene	50 ug/mL
							1,2,4-Trimethylbenzene	50 ug/mL
							1,2-Dibromo-3-Chloropropane	50 ug/mL
							1,2-Dichlorobenzene	50 ug/mL
							1,2-Dichloroethane	50 ug/mL
							1,2-Dichloropropane	50 ug/mL
							1,3,5-Trimethylbenzene	50 ug/mL
							1,3-Dichlorobenzene	50 ug/mL
							1,3-Dichloropropane	50 ug/mL
							1,4-Dichlorobenzene	50 ug/mL
							1,4-Dioxane	1000 ug/mL
							2,2-Dichloropropane	50 ug/mL
							2-Chlorotoluene	50 ug/mL
							2-Methyl-2-propanol	500 ug/mL
							3-Chloro-1-propene	50 ug/mL
							4-Chlorotoluene	50 ug/mL
							4-Isopropyltoluene	50 ug/mL
							Acrylonitrile	500 ug/mL
							Benzene	50 ug/mL
							Bromobenzene	50 ug/mL
							Bromoform	50 ug/mL
							Carbon disulfide	50 ug/mL
							Carbon tetrachloride	50 ug/mL
							Chlorobenzene	50 ug/mL
							Chlorobromomethane	50 ug/mL
							Chlorodibromomethane	50 ug/mL
							Chloroform	50 ug/mL
							cis-1,2-Dichloroethene	50 ug/mL
							cis-1,3-Dichloropropene	50 ug/mL
							Cyclohexane	50 ug/mL
							Dibromomethane	50 ug/mL
							Dichlorobromomethane	50 ug/mL
							Ethyl ether	50 ug/mL
							Ethyl methacrylate	50 ug/mL
							Ethylbenzene	50 ug/mL
							Ethylene Dibromide	50 ug/mL
							Hexachlorobutadiene	50 ug/mL
							Hexane	50 ug/mL
							Iodomethane	50 ug/mL
							Isobutyl alcohol	1250 ug/mL
							Isopropylbenzene	50 ug/mL
							m-Xylene & p-Xylene	50 ug/mL
							Methyl acetate	100 ug/mL
							Methyl tert-butyl ether	50 ug/mL
							Methylcyclohexane	50 ug/mL
							Methylene Chloride	50 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.: 600-184182-1	

				Reagent	Parent Reager	nt		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							n-Butylbenzene	50 ug/mL
							n-Heptane	50 ug/mL
							N-Propylbenzene	50 ug/mL
							Naphthalene	50 ug/mL
							o-Xylene	50 ug/mL
							sec-Butylbenzene	50 ug/mL
							Styrene	50 ug/mL
							tert-Butylbenzene	50 ug/mL
							Tetrachloroethene	50 ug/mL
							Tetrahydrofuran	100 ug/mL
							Toluene	50 ug/mL
							trans-1,2-Dichloroethene	50 ug/mL
							trans-1,3-Dichloropropene	50 ug/mL
							trans-1,4-Dichloro-2-butene	50 ug/mL
							Trichloroethene	50 ug/mL
					VOAR2CEVE_00014		2-Chloroethyl vinyl ether	100 ug/mL
					VOARAcroleinS_00004		Acrolein	250 ug/mL
					VOARADD4COM_00006	20 uL	Ethyl acetate	100 ug/mL
							Ethyl acrylate	50 ug/mL
							Methyl methacrylate	100 ug/mL
							n-Butyl acetate	50 ug/mL
					VOARADDCOM_00013	20 uL	1,2,3-Trimethylbenzene	50 ug/mL
							1,3,5-Trichlorobenzene	50 ug/mL
							1-Chlorohexane	50 ug/mL
							2-Chloro-1,3-butadiene	50 ug/mL
							2-Nitropropane	100 ug/mL
							Benzyl chloride	50 ug/mL
							Isooctane	50 ug/mL
							Isopropyl alcohol	500 ug/mL
							Methacrylonitrile	500 ug/mL
						100 -	n-Butanol	1250 ug/mL
					VOARCYCHONE_00027		Cyclohexanone	2500 ug/mL
					VOARKETONDup_00002	8 uL	2-Butanone (MEK)	100 ug/mL
							2-Hexanone	100 ug/mL 100 ug/mL
							4-Methyl-2-pentanone (MIBK) Acetone	100 ug/mL 100 ug/mL
					VOARPOLADD 00013	20 117	Acetonie	500 ug/mL
					VOVICEOTIVDD 00013	20 uL	Isopropyl ether	50 ug/mL
							Propionitrile	500 ug/mL
							Tert-amyl methyl ether	50 ug/mL
							Tert-butyl ethyl ether	50 ug/mL
					VOARSS 00012	20 11T.	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
					10111100_00012	20 41	4-Bromofluorobenzene	50 ug/mL
							Dibromofluoromethane	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
					VOARVALCS 00019	20 117.	Vinyl acetate	100 ug/mL
.VOAMegMix2017 00005	06/30/19		Restek, Lot A0123711	1	(Purchased Reag		1,1,1,2-Tetrachloroethane	2500 ug/mL
					, , , , , , , , , , , , , , , , , , , ,	- /	1,1,1-Trichloroethane	2500 ug/mL
ı	1 1				1			

Lab	Name:	Eurofins	TestAmerica,	Houston		600-18418		

				Reagent	Parent Reagent			
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
						<u>'</u>	1,1,2,2-Tetrachloroethane	2500 ug/mL
							1,1,2-Trichloro-1,2,2-trifluor	2500 ug/mL
							oethane	
							1,1,2-Trichloroethane	2500 ug/mL
							1,1-Dichloroethane	2500 ug/mL
							1,1-Dichloroethene	2500 ug/mL
							1,1-Dichloropropene	2500 ug/mL
							1,2,3-Trichlorobenzene	2500 ug/mL
							1,2,3-Trichloropropane	2500 ug/mL
							1,2,4-Trichlorobenzene	2500 ug/mL
							1,2,4-Trimethylbenzene	2500 ug/mL
							1,2-Dibromo-3-Chloropropane	2500 ug/mL
							1,2-Dichlorobenzene	2500 ug/mL
							1,2-Dichloroethane	2500 ug/mL
							1,2-Dichloropropane	2500 ug/mL
							1,3,5-Trimethylbenzene	2500 ug/mL
							1,3-Dichlorobenzene	2500 ug/mL
							1,3-Dichloropropane	2500 ug/mL
							1,4-Dichlorobenzene	2500 ug/mL
							1,4-Dioxane	50000 ug/mL
							2,2-Dichloropropane	2500 ug/mL
							2-Chlorotoluene	2500 ug/mL
							2-Methyl-2-propanol	25000 ug/mL
							3-Chloro-1-propene	2500 ug/mL
							4-Chlorotoluene	2500 ug/mL
							4-Isopropyltoluene	2500 ug/mL
							Acrylonitrile	25000 ug/mL
							Benzene	2500 ug/mL
							Bromobenzene	2500 ug/mL
							Bromoform	2500 ug/mL
							Carbon disulfide	2500 ug/mL
							Carbon tetrachloride	2500 ug/mL
							Chlorobenzene	2500 ug/mL
							Chlorobromomethane	2500 ug/mL
							Chlorodibromomethane	2500 ug/mL
							Chloroform	2500 ug/mL
							cis-1,2-Dichloroethene	2500 ug/mL
							cis-1,3-Dichloropropene	2500 ug/mL
							Cyclohexane	2500 ug/mL
							Dibromomethane	2500 ug/mL
							Dichlorobromomethane	2500 ug/mL
							Ethyl ether	2500 ug/mL
							Ethyl methacrylate	2500 ug/mL
							Ethylbenzene	2500 ug/mL
							Ethylene Dibromide	2500 ug/mL
							Hexachlorobutadiene	2500 ug/mL
							Hexane	2500 ug/mL
							Iodomethane	2500 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.: 600-184182-1	

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	- Analyte	Concentration
-					-		Isobutyl alcohol	62500 ug/mL
							Isopropylbenzene	2500 ug/mL
							m-Xylene & p-Xylene	2500 ug/mL
							Methyl acetate	5000 ug/mL
							Methyl tert-butyl ether	2500 ug/mL
							Methylcyclohexane	2500 ug/mL
							Methylene Chloride	2500 ug/mL
							n-Butylbenzene	2500 ug/mL
							n-Heptane	2500 ug/mL
								2500 ug/mL
							N-Propylbenzene	
							Naphthalene	2500 ug/mL
							o-Xylene	2500 ug/mL
							sec-Butylbenzene	2500 ug/mL
							Styrene	2500 ug/mL
							tert-Butylbenzene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
							Tetrahydrofuran	5000 ug/mL
							Toluene	2500 ug/mL
							trans-1,2-Dichloroethene	2500 ug/mL
							trans-1,3-Dichloropropene	2500 ug/mL
							trans-1,4-Dichloro-2-butene	2500 ug/mL
							Trichloroethene	2500 ug/mL
.VOAR2CEVE_00014	12/31/20		Restek, Lot A0133302		(Purchased Rea	, ,	2-Chloroethyl vinyl ether	2500 ug/mL
.VOARAcroleinS_00004	05/31/19		Restek, Lot A0143013		(Purchased Rea		Acrolein	20000 ug/mL
.VOARADD4COM_00006	08/31/19		Restek, Lot A0135442		(Purchased Rea	igent)	Ethyl acetate	5000 ug/mL
							Ethyl acrylate	2500 ug/mL
							Methyl methacrylate	5000 ug/mL
							n-Butyl acetate	2500 ug/mL
.VOARADDCOM_00013	05/31/19		Restek, Lot A0132816		(Purchased Rea	igent)	1,2,3-Trimethylbenzene	2500 ug/mL
							1,3,5-Trichlorobenzene	2500 ug/mL
							1-Chlorohexane	2500 ug/mL
							2-Chloro-1,3-butadiene	2500 ug/mL
							2-Nitropropane	5000 ug/mL
							Benzyl chloride	2500 ug/mL
							Isooctane	2500 ug/mL
							Isopropyl alcohol	25000 ug/mL
							Methacrylonitrile	25000 ug/mL
							n-Butanol	62500 ug/mL
.VOARCYCHONE_00027	12/31/20		Restek, Lot A0133136		(Purchased Rea	igent)	Cyclohexanone	25000 ug/mL
.VOARKETONDup_00002	01/31/20		RESTEK, Lot A0123890		(Purchased Rea	igent)	2-Butanone (MEK)	12500 ug/mL
							2-Hexanone	12500 ug/mL
							4-Methyl-2-pentanone (MIBK)	12500 ug/mL
							Acetone	12500 ug/mL
	07/31/20		Restek, Lot A0139911		(Purchased Rea	igent)	Acetonitrile	25000 ug/mL
.VOARPOLADD 00013	0//31/201							
.VOARPOLADD_00013	07/31/20						Isopropyl ether	2500 ua/mL
.VOARPOLADD_00013	07/31/20						Isopropyl ether Propionitrile	2500 ug/mL 25000 ug/mL
.VOARPOLADD_00013	07/31/20							2500 ug/mL 25000 ug/mL 2500 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.: 60	00-184182-1	
SDG	No.:						

				Reagent	Parent Reagen	t		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
.VOARSS 00012	12/31/20		Restek, Lot A0115812	'	(Purchased Reage	ent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
_							4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
.VOARVALCS_00019	02/28/19		Restek, Lot A0140470		(Purchased Reage	ent)	Vinyl acetate	5000 ug/mL
VOASTDPT2 00138	05/08/19	04/24/19	Methanol, Lot V032119A	1 mL	VOAMegMix2017 00005	20 uL	1,1-Dichloroethane	50 ug/mL
_					_		1,1-Dichloroethene	50 ug/mL
							Benzene	50 ug/mL
							Naphthalene	50 ug/mL
							Tetrachloroethene	50 ug/mL
					VOARSS 00012	20 uL	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
					_		4-Bromofluorobenzene	50 ug/mL
							Dibromofluoromethane	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
.VOAMegMix2017_00005	06/30/19		Restek, Lot A0123711		(Purchased Reage	ent)	1,1-Dichloroethane	2500 ug/mL
							1,1-Dichloroethene	2500 ug/mL
							Benzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
.VOARSS_00012	12/31/20		Restek, Lot A0115812		(Purchased Reage	ent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
							4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL

Lab Name: Eurofins TestAmerica, Corpus Christ Job No.: 600-184182-1

			Reagent	Parent Reager	.1 L		
Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
07/09/20	Elemer	ntal Scientific, Lot	10075162-1	(Purchased Reag	ent)	Al	2500 mg/L
						As	25 mg/L
						В	25 mg/L
						Ва	25 mg/L
						Ве	25 mg/L
						Ca	2500 mg/L
						Cd	25 mg/L
						Со	25 mg/L
						Cr	25 mg/L
						Cu	25 mg/L
						Fe	2500 mg/L
						K	2500 mg/L
						Li	25 mg/L
						Manganese, Dissolved	250 mg/L
						Mg	2500 mg/L
						Мо	25 mg/L
						Na	2500 mg/L
						Ni	25 mg/L
						P	250 mg/L
						Pb	25 mg/L
						Sb	25 mg/L
						Se	25 mg/L
						Sn	25 mg/L
						Sr	25 mg/L
						Ti	25 mg/L
						Tl	10 mg/L
						Ū	25 mg/L
						V	25 mg/L
						Zn	25 mg/L
07/09/20	Elemer	ntal Scientific, Lot	10065177-3	(Purchased Reag	ent)	Ag	25 mg/L
07/09/20		5%/3% HCl/HNO3, Lot				Manganese, Dissolved	2.5 mg/L
07/09/20	Elemer	ntal Scientific, Lot	10075162-1	(Purchased Reag	ent)	Manganese, Dissolved	250 mg/L
		DI+HNO3,HCl, Lot ica		171009INT-A_00002	5 mL		250000 ug/L
		_				Ca	250000 ug/L
						Fe	100000 ug/L
							250000 ug/L
05/31/20		CPI, Lot 171614-	3	(Purchased Reag	ent)	Al	5000 ug/mL
					•	Ca	5000 ug/mL
							2000 ug/mL
							5000 ug/mL
05/31/20	04/03/10	5%/3% UC1/UNO3 T ~+	200	1 1 7 1 0 0 0 1 N m - 7 0 0 0 0 0	5 mT		125000 ug/L
03/31/20	04/03/19	lican acid 00104	ZUU ML	1,10031N1-W_00005	2 IUT	WT.	123000 ug/L
		tcap actu_00104				Ca	125000 ug/L
						Fe	50000 ug/L
	07/09/20 07/09/20 07/09/20 07/09/20 07/09/20 05/31/20	Date Date 07/09/20 Element 07/09/20 Element 07/09/20 01/24/19 07/09/20 01/24/19 07/09/20 Element 05/31/20 04/03/19	Date Date Used	Exp	Date Date Date Used Volume Reagent ID	Date Date Date Dilutant Final Reagent ID Added	Exp Prep Date Used Volume Reagent ID Added Analyte

Lab Name: Eurofins TestAmerica, Corpus Christ Job No.: 600-184182-1

				Reagent	Parent Reage	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Mg	125000 ug/L
					171009INTB 00002	1 mL	Ag	500 ug/L
					_		Ва	250 ug/L
							Ве	250 ug/L
							Cd	500 ug/L
							Со	250 ug/L
							Cr	250 ug/L
							Cu	250 ug/L
							Manganese, Dissolved	250 ug/L
							Ni	500 ug/L
							Pb	500 ug/L
							V	250 ug/L
							Zn	500 ug/L
.171009INT-A_00002	05/31/20		CPI, Lot 171614-3		(Purchased Read	gent)	Al	5000 ug/mL
							Ca	5000 ug/mL
							Fe	2000 ug/mL
							Mg	5000 ug/mL
.171009INTB_00002	05/31/20		CPI, Lot 10063227-10		(Purchased Read	gent)	Ag	100 ug/mL
							Ва	50 ug/mL
							Ве	50 ug/mL
							Cd	100 ug/mL
							Co	50 ug/mL
							Cr	50 ug/mL
							Cu	50 ug/mL
							Manganese, Dissolved	50 ug/mL
							Ni	100 ug/mL
							Pb	100 ug/mL
							V	50 ug/mL
							Zn	100 ug/mL
TS_MS250_00051			5%/3% HCl/HNO3, Lot icap acid		TS_MS500_00038	25 mL	Manganese, Dissolved	2.5 mg/L
.TS_MS500_00038	06/01/19	11/23/18	5%/3% HCl/HNO3, Lot icap acid	200 mL	MT-STD-3_00014	1 mL	Manganese, Dissolved	5 mg/L
MT-STD-3 00014	05/12/20		IV, Lot N2-MEB673370	1	(Purchased Read	gent)	Manganese, Dissolved	1000 mg/L

Method 8260B Low Level

Volatile Organic Compounds (GC/MS) by Method 8260B Low Level

FORM II GC/MS VOA SURROGATE RECOVERY

Lab N	ame:	Euroiins	TestAmerica,	Houston	dot	No.:	600-184182-1	
SDG N	o.:							

Matrix: Water Level: Low

GC Column (1): DB-VRX 60 ID: 0.25(mm)

Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
ARTESIA-TB02-04232 019	600-184182-1	101	100	101	117
ARTESIA-MW33-04232 019	600-184182-2	101	100	104	117
ARTESIA-MW29-04232 019	600-184182-3	102	104	104	113
ARTESIA-MW35-04232 019	600-184182-4	103	105	103	122
ARTESIA-MW28-04232 019	600-184182-5	104	104	109	116
ARTESIA-MW21-04232 019	600-184182-6	98	98	105	118
ARTESIA-MW22-04232 019	600-184182-7	102	102	106	116
ARTESIA-MW31-04232 019	600-184182-8	103	107	104	113
ARTESIA-MW25-04232 019	600-184182-9	106	104	106	114
ARTESIA-MW18-04232 019	600-184182-10	105	107	105	116
ARTESIA-MD18-04232 019	600-184182-11	102	105	104	114
ARTESIA-MW15-04232 019	600-184182-12	106	106	107	112
	MB 600-264044/6	101	97	104	116
	MB 600-264156/6	98	91	109	116
	LCS 600-264044/3	108	99	114	121
	LCS 600-264156/3	108	99	114	121
	LCSD 600-264044/4	106	99	110	119
	LCSD 600-264156/4	109	99	112	121
ARTESIA-MW21-04232 019 MS	600-184182-6 MS	108	105	111	120
ARTESIA-MW21-04232 019 MSD	600-184182-6 MSD	109	106	108	124

	QC LIMITS
DBFM = Dibromofluoromethane	62-130
DCA = 1,2-Dichloroethane-d4 (Surr)	50-134
TOL = Toluene-d8 (Surr)	70-130
BFB = 4-Bromofluorobenzene	67-139

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name	e: Eurofins TestAme	erica, Houston	Job No.: 600-1	184182-1
SDG No.:	:	·		
Matrix:	Water	Level: Low	Lab File ID: A	A12102.d
Lab ID:	LCS 600-264044/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(mg/L)	$({ m mg/L})$	REC	REC	
1,1-Dichloroethane	0.0100	0.008956	90	70-140	
1,1-Dichloroethene	0.0100	0.01041	104	58-148	
Benzene	0.0100	0.009070	91	70-130	
Naphthalene	0.0100	0.008143	81	10-150	
Tetrachloroethene	0.0100	0.01141	114	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name	e: Eurofins TestAme	erica, Houston	Job No.: 600-1	184182-1
SDG No.:				
Matrix:	Water	Level: Low	Lab File ID: P	A12202.d
Lab ID:	LCS 600-264156/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(mg/L)	(mg/L)	REC	REC	
1,1-Dichloroethane	0.0100	0.008733	87	70-140	
1,1-Dichloroethene	0.0100	0.009985	100	58-148	
Benzene	0.0100	0.008602	86	70-130	
Naphthalene	0.0100	0.007376	74	10-150	
Tetrachloroethene	0.0100	0.01155	116	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name	e: Eurofins TestAme	rica, Houston	Job No.: 600-184182-1
SDG No.	:		
Matrix:	Water	Level: Low	Lab File ID: A12103.d
Lab ID:	LCSD 600-264044/4		Client ID:

	SPIKE ADDED	LCSD CONCENTRATION	LCSD	o _l c	QC L1	IMITS	#
COMPOUND					555	250	#
COMPOUND	(mg/L)	(mg/L)	REC	RPD	RPD	REC	
1,1-Dichloroethane	0.0100	0.009138	91	2	20	70-140	
1,1-Dichloroethene	0.0100	0.009998	100	4	20	58-148	
Benzene	0.0100	0.008819	88	3	20	70-130	
Naphthalene	0.0100	0.008532	85	5	20	10-150	
Tetrachloroethene	0.0100	0.01112	111	3	20	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name	e: Eurofins TestAme	erica, Houston	Job No.: 600-184182-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: A12203.d	
Lab ID:	LCSD 600-264156/4		Client ID:	

	SPIKE ADDED	LCSD CONCENTRATION	LCSD	olc .	QC L1	IMITS	#
COMPOUND				, , ,	222	DEG	#
COMPOUND	(mg/L)	(mg/L)	REC	RPD	RPD	REC	
1,1-Dichloroethane	0.0100	0.008833	88	1	20	70-140	
1,1-Dichloroethene	0.0100	0.009958	100	0	20	58-148	
Benzene	0.0100	0.008709	87	1	20	70-130	
Naphthalene	0.0100	0.007757	78	5	20	10-150	
Tetrachloroethene	0.0100	0.01158	116	0	20	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-184182-1	
SDG	No.:						

Matrix: Water Level: Low Lab File ID: A12115.d

Lab ID: 600-184182-6 MS Client ID: ARTESIA-MW21-04232019 MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS	#
COMPOUND	(mg/L)	(mg/L)	(mg/L)	REC	REC	
1,1-Dichloroethane	0.0100	0.000562 J	0.01053	100	70-140	
1,1-Dichloroethene	0.0100	0.000192 U	0.01081	108	58-148	
Benzene	0.0100	0.000176 U	0.009354	94	70-130	
Naphthalene	0.0100	0.000129 U	0.008083	81	10-150	
Tetrachloroethene	0.0100	0.000333 U	0.01176	118	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-184182-1	
SDG	No.:						

Matrix: Water Level: Low Lab File ID: A12116.d

Lab ID: 600-184182-6 MSD Client ID: ARTESIA-MW21-04232019 MSD

	SPIKE ADDED	MSD CONCENTRATION	MSD %	olc .	QC L1	IMITS	#
COMPOUND	(mg/L)	(mg/L)	REC	RPD	RPD	REC	"
1,1-Dichloroethane	0.0100	0.009922	94	6	30	70-140	
1,1-Dichloroethene	0.0100	0.009990	100	8	30	58-148	
Benzene	0.0100	0.008919	89	5	30	70-130	
Naphthalene	0.0100	0.009583	96	17	30	10-150	
Tetrachloroethene	0.0100	0.01092	109	7	30	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184182-1
SDG No.:	
Lab File ID: A12105.d	Lab Sample ID: MB 600-264044/6
Matrix: Water	Heated Purge: (Y/N) N
Instrument ID: CHVOAMS07	Date Analyzed: 05/01/2019 11:15
GC Column: DB-VRX 60 ID: 0.25 (mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 600-264044/3	A12102.d	05/01/2019 10:01
	LCSD 600-264044/4	A12103.d	05/01/2019 10:26
ARTESIA-MW21-04232019	600-184182-6	A12113.d	05/01/2019 14:35
ARTESIA-MW21-04232019 MS	600-184182-6 MS	A12115.d	05/01/2019 15:25
ARTESIA-MW21-04232019 MSD	600-184182-6 MSD	A12116.d	05/01/2019 15:50
ARTESIA-TB02-04232019	600-184182-1	A12118.d	05/01/2019 16:41
ARTESIA-MW33-04232019	600-184182-2	A12119.d	05/01/2019 17:06
ARTESIA-MW29-04232019	600-184182-3	A12120.d	05/01/2019 17:31
ARTESIA-MW35-04232019	600-184182-4	A12121.d	05/01/2019 17:56
ARTESIA-MW28-04232019	600-184182-5	A12122.d	05/01/2019 18:21
ARTESIA-MW22-04232019	600-184182-7	A12123.d	05/01/2019 18:46
ARTESIA-MW31-04232019	600-184182-8	A12124.d	05/01/2019 19:11
ARTESIA-MW25-04232019	600-184182-9	A12125.d	05/01/2019 19:36
ARTESIA-MW18-04232019	600-184182-10	A12126.d	05/01/2019 20:01
ARTESIA-MD18-04232019	600-184182-11	A12127.d	05/01/2019 20:26

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184182-1
SDG No.:	
Lab File ID: A12205.d	Lab Sample ID: MB 600-264156/6
Matrix: Water	Heated Purge: (Y/N) N
Instrument ID: CHVOAMS07	Date Analyzed: 05/02/2019 10:51
GC Column: DB-VRX 60 ID: 0.25(mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 600-264156/3	A12202.d	05/02/2019 09:38
	LCSD 600-264156/4	A12203.d	05/02/2019 10:02
ARTESIA-MW15-04232019	600-184182-12	A12211.d	05/02/2019 13:19

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Lab File ID: A06600.d BFB Injection Date: 03/07/2019

Instrument ID: CHVOAMS07 BFB Injection Time: 10:21

Analysis Batch No.: 259909

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	17.7	
75	30.0 - 60.0 % of mass 95	44.6	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.5	
173	Less than 2.0 % of mass 174	0.3	(0.3) 1
174	50.0 - 120.00 % of mass 95	100.7	
175	5.0 - 9.0 % of mass 174	7.7	(7.7) 1
176	95.0 - 101.0 % of mass 174	98.4	(97.7) 1
177	5.0 - 9.0 % of mass 176	6.4	(6.5) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 600-259909/2	A06601.d	03/07/2019	10:55
	IC 600-259909/3	A06602.d	03/07/2019	11:20
	IC 600-259909/4	A06603.d	03/07/2019	11:45
	IC 600-259909/5	A06604.d	03/07/2019	12:10
	ICIS 600-259909/6	A06605.d	03/07/2019	12:35
	IC 600-259909/7	A06606.d	03/07/2019	13:00
	IC 600-259909/8	A06607.d	03/07/2019	13:25
	ICV 600-259909/10	A06609.d	03/07/2019	14:28

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Lab File ID: A12100.d BFB Injection Date: 05/01/2019

Instrument ID: CHVOAMS07 BFB Injection Time: 08:29

Analysis Batch No.: 264044

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	17.1	
75	30.0 - 60.0 % of mass 95	46.2	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.5	
173	Less than 2.0 % of mass 174	0.0	(0.0) 1
174	50.0 - 120.00 % of mass 95	101.7	
175	5.0 - 9.0 % of mass 174	7.4	(7.3) 1
176	95.0 - 101.0 % of mass 174	99.5	(97.8) 1
177	5.0 - 9.0 % of mass 176	6.5	(6.6) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	CLIENT SAMPLE ID LAB SAMPLE ID		DATE ANALYZED	TIME ANALYZED
	CCVIS 600-264044/2	A12101.d	05/01/2019	09:00
	LCS 600-264044/3	A12102.d	05/01/2019	10:01
	LCSD 600-264044/4	A12103.d	05/01/2019	10:26
	MB 600-264044/6	A12105.d	05/01/2019	11:15
ARTESIA-MW21-04232019	600-184182-6	A12113.d	05/01/2019	14:35
ARTESIA-MW21-04232019 MS	600-184182-6 MS	A12115.d	05/01/2019	15:25
ARTESIA-MW21-04232019 MSD	600-184182-6 MSD	A12116.d	05/01/2019	15:50
ARTESIA-TB02-04232019	600-184182-1	A12118.d	05/01/2019	16:41
ARTESIA-MW33-04232019	600-184182-2	A12119.d	05/01/2019	17:06
ARTESIA-MW29-04232019	600-184182-3	A12120.d	05/01/2019	17:31
ARTESIA-MW35-04232019	600-184182-4	A12121.d	05/01/2019	17:56
ARTESIA-MW28-04232019	600-184182-5	A12122.d	05/01/2019	18:21
ARTESIA-MW22-04232019	600-184182-7	A12123.d	05/01/2019	18:46
ARTESIA-MW31-04232019	600-184182-8	A12124.d	05/01/2019	19:11
ARTESIA-MW25-04232019	600-184182-9	A12125.d	05/01/2019	19:36
ARTESIA-MW18-04232019	600-184182-10	A12126.d	05/01/2019	20:01
ARTESIA-MD18-04232019	600-184182-11	A12127.d	05/01/2019	20:26

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Lab File ID: A12200.d BFB Injection Date: 05/02/2019

Instrument ID: CHVOAMS07 BFB Injection Time: 08:04

Analysis Batch No.: 264156

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	17.8	
75	30.0 - 60.0 % of mass 95	46.9	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.5	
173	Less than 2.0 % of mass 174	0.0	(0.0) 1
174	50.0 - 120.00 % of mass 95	104.8	
175	5.0 - 9.0 % of mass 174	7.8	(7.5) 1
176	95.0 - 101.0 % of mass 174	103.4	(98.6) 1
177	5.0 - 9.0 % of mass 176	6.6	(6.3) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 600-264156/2	A12201.d	05/02/2019	08:51
	LCS 600-264156/3	A12202.d	05/02/2019	09:38
	LCSD 600-264156/4	A12203.d	05/02/2019	10:02
	MB 600-264156/6	A12205.d	05/02/2019	10:51
ARTESIA-MW15-04232019	600-184182-12	A12211.d	05/02/2019	13:19

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica,	Houston	Job	No.:	600-184182-1
---------------------------------	---------	-----	------	--------------

SDG No.:

Sample No.: ICIS 600-259909/6 Date Analyzed: 03/07/2019 12:35

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm)

Lab File ID (Standard): A06605.d Heated Purge: (Y/N) N

Calibration ID: 15456

		FB CBN		CBNZd	15	DCBd	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT		118578	8.73	44015	11.77	38135	14.34
UPPER LIMIT		237156	9.23	88030	12.27	76270	14.84
LOWER LIMIT		59289	8.23	22008	11.27	19068	13.84
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 600-259909/10		125548	8.73	45583	11.77	53438	14.34
CCVIS 600-264044/2		127895	8.73	44237	11.76	48566	14.34
CCVIS 600-264156/2		108104	8.73	36680	11.76	42110	14.34

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII 8260B

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Sample No.: CCVIS 600-264044/2 Date Analyzed: 05/01/2019 09:00

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm)

Lab File ID (Standard): A12101.d Heated Purge: (Y/N) N

Calibration ID: 15608

		FB		CBNZc	15	DCBd	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		127895	8.73	44237	11.76	48566	14.34
UPPER LIMIT		255790	9.23	88474	12.26	97132	14.84
LOWER LIMIT		63948	8.23	22119	11.26	24283	13.84
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 600-264044/3		125396	8.73	41770	11.76	46133	14.34
LCSD 600-264044/4		127019	8.73	43158	11.76	48227	14.34
MB 600-264044/6		118576	8.73	40514	11.77	43913	14.34
600-184182-6	ARTESIA-MW21-04232019	130700	8.73	44253	11.77	47820	14.34
600-184182-6 MS	ARTESIA-MW21-04232019 MS	121835	8.73	42061	11.77	47827	14.34
600-184182-6 MSD	ARTESIA-MW21-04232019 MSD	126204	8.73	44662	11.77	50386	14.34
600-184182-1	ARTESIA-TB02-04232019	121138	8.73	44126	11.77	47701	14.34
600-184182-2	ARTESIA-MW33-04232019	119203	8.73	41608	11.77	45059	14.34
600-184182-3	ARTESIA-MW29-04232019	119031	8.73	41778	11.77	46223	14.34
600-184182-4	ARTESIA-MW35-04232019	114901	8.73	40851	11.77	44991	14.34
600-184182-5	ARTESIA-MW28-04232019	114742	8.73	38556	11.77	43735	14.34
600-184182-7	ARTESIA-MW22-04232019	112015	8.73	38459	11.77	43328	14.34
600-184182-8	ARTESIA-MW31-04232019	108276	8.73	38447	11.77	43411	14.34
600-184182-9	ARTESIA-MW25-04232019	103034	8.73	35793	11.77	39931	14.34
600-184182-10	ARTESIA-MW18-04232019	101657	8.73	35297	11.77	40277	14.34
600-184182-11	ARTESIA-MD18-04232019	101721	8.73	35384	11.77	39347	14.34

FB = Fluorobenzene

CBNZd5 = Chlorobenzene-d5

DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII 8260B

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Sample No.: CCVIS 600-264156/2 Date Analyzed: 05/02/2019 08:51

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm)

Lab File ID (Standard): A12201.d Heated Purge: (Y/N) N

Calibration ID: 15608

		FB CBNZd5		DCBd.	4		
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		108104	8.73	36680	11.76	42110	14.34
UPPER LIMIT		216208	9.23	73360	12.26	84220	14.84
LOWER LIMIT		54052	8.23	18340	11.26	21055	13.84
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 600-264156/3		107106	8.73	35813	11.76	40114	14.34
LCSD 600-264156/4		109235	8.73	36365	11.76	40914	14.34
MB 600-264156/6		102912	8.73	33828	11.76	37190	14.34
600-184182-12	ARTESIA-MW15-04232019	99421	8.73	34277	11.77	39844	14.34

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII 8260B

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-TB02-04232019 Lab Sample ID: 600-184182-1 Matrix: Water Lab File ID: A12118.d Date Collected: 04/23/2019 07:45 Analysis Method: 8260B Date Analyzed: 05/01/2019 16:41 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 264044 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000725	J	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		50-134
460-00-4	4-Bromofluorobenzene	117		67-139
1868-53-7	Dibromofluoromethane	101		62-130
2037-26-5	Toluene-d8 (Surr)	101		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-MW33-04232019 Lab Sample ID: 600-184182-2 Matrix: Water Lab File ID: A12119.d Date Collected: 04/23/2019 08:05 Analysis Method: 8260B Date Analyzed: 05/01/2019 17:06 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 264044 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000640	J	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		50-134
460-00-4	4-Bromofluorobenzene	117		67-139
1868-53-7	Dibromofluoromethane	101		62-130
2037-26-5	Toluene-d8 (Surr)	104		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-MW29-04232019 Lab Sample ID: 600-184182-3 Matrix: Water Lab File ID: A12120.d Date Collected: 04/23/2019 08:20 Analysis Method: 8260B Date Analyzed: 05/01/2019 17:31 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 264044 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00861		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.0237		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.0306		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	104		50-134
460-00-4	4-Bromofluorobenzene	113		67-139
1868-53-7	Dibromofluoromethane	102		62-130
2037-26-5	Toluene-d8 (Surr)	104		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-MW35-04232019 Lab Sample ID: 600-184182-4 Matrix: Water Lab File ID: A12121.d Date Collected: 04/23/2019 08:35 Analysis Method: 8260B Date Analyzed: 05/01/2019 17:56 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 264044 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-35-4	1,1-Dichloroethene	0.0205		0.00100	0.000192
127-18-4	Tetrachloroethene	0.0233		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		50-134
1868-53-7	Dibromofluoromethane	103		62-130
2037-26-5	Toluene-d8 (Surr)	103		70-130
460-00-4	4-Bromofluorobenzene	122		67-139

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-MW28-04232019 Lab Sample ID: 600-184182-5 Matrix: Water Lab File ID: A12122.d Date Collected: 04/23/2019 08:50 Analysis Method: 8260B Date Analyzed: 05/01/2019 18:21 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 264044 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00465		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.0127		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.0176		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	104		50-134
460-00-4	4-Bromofluorobenzene	116		67-139
1868-53-7	Dibromofluoromethane	104		62-130
2037-26-5	Toluene-d8 (Surr)	109		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-MW21-04232019 Lab Sample ID: 600-184182-6 Matrix: Water Lab File ID: A12113.d Date Collected: 04/23/2019 09:00 Analysis Method: 8260B Date Analyzed: 05/01/2019 14:35 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 264044 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000562	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		50-134
460-00-4	4-Bromofluorobenzene	118		67-139
1868-53-7	Dibromofluoromethane	98		62-130
2037-26-5	Toluene-d8 (Surr)	105		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-MW22-04232019 Lab Sample ID: 600-184182-7 Matrix: Water Lab File ID: A12123.d Date Collected: 04/23/2019 09:40 Analysis Method: 8260B Date Analyzed: 05/01/2019 18:46 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 264044 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000546	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		50-134
460-00-4	4-Bromofluorobenzene	116		67-139
1868-53-7	Dibromofluoromethane	102		62-130
2037-26-5	Toluene-d8 (Surr)	106		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-MW31-04232019 Lab Sample ID: 600-184182-8 Matrix: Water Lab File ID: A12124.d Date Collected: 04/23/2019 09:25 Analysis Method: 8260B Date Analyzed: 05/01/2019 19:11 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 264044 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00181		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000411	J	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		50-134
460-00-4	4-Bromofluorobenzene	113		67-139
1868-53-7	Dibromofluoromethane	103		62-130
2037-26-5	Toluene-d8 (Surr)	104		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-MW25-04232019 Lab Sample ID: 600-184182-9 Matrix: Water Lab File ID: A12125.d Date Collected: 04/23/2019 09:55 Analysis Method: 8260B Date Analyzed: 05/01/2019 19:36 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 264044 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000701	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000777	J	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.00118		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	104		50-134
460-00-4	4-Bromofluorobenzene	114		67-139
1868-53-7	Dibromofluoromethane	106		62-130
2037-26-5	Toluene-d8 (Surr)	106		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-MW18-04232019 Lab Sample ID: 600-184182-10 Matrix: Water Lab File ID: A12126.d Date Collected: 04/23/2019 10:10 Analysis Method: 8260B Date Analyzed: 05/01/2019 20:01 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 264044 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000706	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		50-134
460-00-4	4-Bromofluorobenzene	116		67-139
1868-53-7	Dibromofluoromethane	105		62-130
2037-26-5	Toluene-d8 (Surr)	105		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-MD18-04232019 Lab Sample ID: 600-184182-11 Matrix: Water Lab File ID: A12127.d Date Collected: 04/23/2019 10:15 Analysis Method: 8260B Date Analyzed: 05/01/2019 20:26 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 264044 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000736	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		50-134
460-00-4	4-Bromofluorobenzene	114		67-139
1868-53-7	Dibromofluoromethane	102		62-130
2037-26-5	Toluene-d8 (Surr)	104		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-MW15-04232019 Lab Sample ID: 600-184182-12 Matrix: Water Lab File ID: A12211.d Date Collected: 04/23/2019 11:05 Analysis Method: 8260B Date Analyzed: 05/02/2019 13:19 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 264156 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	106		50-134
460-00-4	4-Bromofluorobenzene	112		67-139
1868-53-7	Dibromofluoromethane	106		62-130
2037-26-5	Toluene-d8 (Surr)	107		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 Analy Batch No.: 259909

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 03/07/2019 10:55 Calibration End Date: 03/07/2019 13:25 Calibration ID: 15456

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 600-259909/2	A06601.d
Level 2	IC 600-259909/3	A06602.d
Level 3	IC 600-259909/4	A06603.d
Level 4	IC 600-259909/5	A06604.d
Level 5	ICIS 600-259909/6	A06605.d
Level 6	IC 600-259909/7	A06606.d
Level 7	IC 600-259909/8	A06607.d

ANALYTE			RRF			CURVE		COEFFICE	IENT	# MIN	RRF	%RSD		XAN	R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				000	RSD	OR COD	OR COD
Dichlorodifluoromethane	0.3869	0.5874	0.5362	0.5181	0.3602	Lin	-0.339	0.4808							0.9900	0.9900
Chloromethane	0.3859 0.3777 0.3940		0.4148	0.4218	0.4044	Ave		0.4145		0.	1000	6.0		15.0		
Vinyl chloride	0.3646 0.3697	0.4191	0.4189	0.4201	0.3698	Ave		0.4033				9.0		15.0		
Butadiene	0.5546 0.3796	0.4687 0.5069	0.4877	0.4612	0.3575	Qua	0.3365	0.2830	0.0043357						0.9990	0.9900
Ethylene oxide	0.0127 0.0154	0.0155 0.0167	0.0151	0.0160	0.0154	Ave		0.0153				8.1		15.0		
Bromomethane	0.0806 0.1242	0.1004 0.1568	0.0865	0.1386	0.1143	Lin	-0.198	0.1566							0.9920	0.9900
Chloroethane	0.1445 0.1622	0.1927 0.1809	0.1900	0.2562	0.1722	Lin	0.0258	0.1781							0.9950	0.9900
Dichlorofluoromethane	0.4394 0.4030	0.4509 0.4520	0.4694	0.6003	0.4206	Ave		0.4622				14.0		15.0		
Acrolein	0.0177 0.0237	0.0287 0.0321	0.0308	0.0277	0.0301	Qua	0.0998	0.0201	0.0000459						0.9970	0.9900
Trichlorofluoromethane	0.3907 0.3987	0.6251 0.5824	0.6163	0.6106	0.4533	Qua	0.6154	0.2853	0.0056675						0.9970	0.9900
Acetonitrile	0.0076 0.0143	0.0163 0.0189	0.0149	0.0162	0.0166	Lin	-0.185	0.0187							0.9910	0.9900
Isopropyl alcohol	0.0057 0.0077	0.0092 0.0084	0.0085	0.0078	0.0077	Ave		0.0078				14.0		15.0		
Acetone	0.0564 0.0329	0.0375 0.0347	0.0344	0.0311	0.0323	Lin1	0.0130	0.0334							0.9970	0.9900
Ethyl ether	0.1390 0.2085		0.2165	0.2190	0.2100	Ave		0.2033				14.1		15.0		

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 Analy Batch No.: 259909

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 03/07/2019 10:55 Calibration End Date: 03/07/2019 13:25 Calibration ID: 15456

ANALYTE			RRF			CURVE		COEFFICI	ENT #	MIN RRF	%RSD		MAX	R^2		MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	. '	OR COD
	LVL 6	LVL 7														
t-Butanol	0.0100	0.0132	0.0141	0.0140	0.0139	Ave		0.0135			12.3	П	15.0			
	0.0145	0.0151														
1,1-Dichloroethene	0.3533		0.3516	0.3570	0.3690	Ave		0.3561			7.8		15.0			
	0.3007															
Acrylonitrile	0.0349			0.0387	0.0392	Ave		0.0389			11.6		15.0			
	0.0417															
Iodomethane	0.1586		0.1952	0.2499	0.3231	Lin	-0.915	0.4868						0.9910		0.9900
	0.3713															
Methylene Chloride	0.9729		0.5515	0.4203	0.3895	Lin1	0.3382	0.3743						0.9940		0.9900
	0.3584															
Methyl acetate	0.0831		0.1075	0.1039	0.1148	Ave		0.1098			14.9		15.0			
	0.1169															
1,1,2-Trichloro-1,2,2-trifluoroethane	0.3127	0.3732	0.3395	0.3847	0.3729	Qua	0.4307	0.1838	0.0047267					0.9940		0.9900
	0.2612															
3-Chloro-1-propene	0.2236		0.2207	0.2202	0.2250	Ave		0.2191			3.3		15.0			
	0.2061	0.2128														
Carbon disulfide	1.3099		1.1122	1.1191	1.1283	Ave		1.1432			9.6		15.0			
	0.9551															
trans-1,2-Dichloroethene	0.4190		0.3922	0.4022	0.4058	Ave		0.4043			5.1		15.0			
	0.3657															
Methyl tert-butyl ether	0.5756		0.6818	0.6475	0.6807	Ave		0.6536			6.7		15.0			
	0.6641	0.7059														
1,1-Dichloroethane	0.6258		0.6738	0.6652	0.6884	Ave		0.6703		0.1000	5.0		15.0			
	0.6279															
Propionitrile	0.0116		0.0160	0.0164	0.0170	Ave		0.0161			14.2		15.0			
	0.0174															
Vinyl acetate	0.3180			0.3990	0.4092	Ave		0.3834			7.8		15.0			
	0.3943															
2-Chloro-1,3-butadiene	0.4938		0.5581	0.6074	0.6554	Qua	0.3139	0.4589	0.0065738					0.9990		0.9900
	0.5704	0.7953														
Hexane	0.4906		0.5573	0.5936	0.6122	Qua	0.6455	0.2980	0.0090688					0.9960		0.9900
	0.4513														\dashv	
Isopropyl ether	1.1415		1.3325	1.3739	1.4794	Ave		1.4188			14.0		15.0		.	
	1.4639					L										
2-Butanone (MEK)	0.0090		0.0162	0.0192	0.0174	Lin2	-0.011	0.0194						0.9930		0.9900
	0.0186		0.6111	0.611		1		0.0111					45.		\perp	
Methacrylonitrile	0.0150		0.0182	0.0194	0.0206	Ave		0.0195			14.8		15.0			
	0.0215	0.0241		0.116		<u> </u>		0 1055					45.0		\perp	
cis-1,2-Dichloroethene	0.4300		0.4099	0.4181	0.4323	Ave		0.4252			5.0		15.0			
	0.4138	0.4673								1					.	

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 Analy Batch No.: 259909

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 03/07/2019 10:55 Calibration End Date: 03/07/2019 13:25 Calibration ID: 15456

ANALYTE			RRF			CURVE		COEFFICIEN	TI	# MIN RRF	%RSD	#	MAX %RSD	R^2 OR COD	# MIN R^ OR COI
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TIPE	В	M1	M2				*KSD	OR COD	OR COL
	LVL 6	LVL 7													
Ethyl acetate	0.0678	0.1060	0.1159	0.1294	0.1354	Lin2	-0.072	0.1397						0.9990	0.990
_	0.1372	0.1461													
Chlorobromomethane	0.1552	0.1844	0.1675	0.1644	0.1685	Ave		0.1687			5.7		15.0		
	0.1631	0.1778													
Tert-butyl ethyl ether			0.9596	0.9957	1.0365	Ave		0.9943			14.5		15.0		
	1.0525														
Chloroform	0.6046	0.6582	0.6404	0.6326	0.6787	Ave		0.6623			7.8		15.0		
	0.6547	0.7669													
Isobutyl alcohol	0.0049		0.0054	0.0061	0.0069	Lin1	-0.079	0.0085						0.9900	0.990
	0.0080	0.0089													
2,2-Dichloropropane	0.5801		0.5823	0.5959	0.6039	Ave		0.5917			6.2		15.0		
	0.5224														
Tetrahydrofuran	0.0375	0.0378		0.0379	0.0379	Ave		0.0386			2.9		15.0		
	0.0392	0.0406													
1,2-Dichloroethane	0.2880	0.3011	0.3085	0.2928	0.3039	Ave		0.2985			2.6		15.0		
	0.2913	0.3039													
1,1,1-Trichloroethane	0.5812	0.6626	0.5886	0.6045	0.6251	Ave		0.6083			7.5		15.0		
	0.5359														
n-Butanol	0.0017		0.0031	0.0029	0.0030	Lin1	-0.035	0.0036						0.9960	0.990
	0.0035	0.0036													
1,1-Dichloropropene	0.4387	0.4959	0.4718	0.4890	0.4916	Ave		0.4775			8.2		15.0		
	0.4182	0.5371													
Cyclohexane	0.4821	0.5619	0.5268	0.5688	0.5770	Ave		0.5349			13.2		15.0		
	0.4081	0.6200													
Carbon tetrachloride	0.5350	0.5729	0.5228	0.5653	0.5603	Ave		0.5452			8.8		15.0		
	0.4549	0.6054													
Benzene	1.4351	1.5850	1.5069	1.5090	1.5886	Ave		1.5487			6.6		15.0		
	1.4721	1.7446													
Tert-amyl methyl ether	0.6001	0.6752	0.7055	0.6982	0.7199	Ave		0.6993			8.0		15.0		
	0.7079	0.7881													
Isooctane	0.9347	1.1663	1.0650	1.1459	1.1250	Ave		1.0734			12.8		15.0		
	0.8459	1.2308													
Ethyl acrylate	0.1868			0.2444	0.2615	Ave		0.2364			14.0		15.0		
	0.2555	0.2800		1											
n-Heptane	0.4179	0.4997	0.4866	0.5399	0.5388	Ave		0.4927			12.4		15.0		
	0.4046	0.5613													
Dibromomethane	0.1233	0.1320	0.1241	0.1170	0.1358	Ave		0.1277			5.2		15.0		
	0.1331	0.1285													
1,2-Dichloropropane	0.3142	0.3384	0.3587	0.2972	0.3412	Ave		0.3301			6.0		15.0		
	0.3306	0.3304													

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 Analy Batch No.: 259909

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 03/07/2019 10:55 Calibration End Date: 03/07/2019 13:25 Calibration ID: 15456

ANALYTE			RRF			CURVE		COEFFICI	ENT #	MIN RRF	%RSD	MAX		# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COD
	LVL 6	LVL 7												
2-Nitropropane	0.0348	0.0296	0.0369	0.0331	0.0398	Lin1	-0.026	0.0450					0.9940	0.9900
	0.0441	0.0465												
Trichloroethene	0.4220	0.4941	0.4582	0.4386	0.4850	Ave		0.4652			6.1	15.0		
	0.4630	0.4955												
Bromodichloromethane	0.3369	0.3747	0.3781	0.3915	0.4195	Ave		0.3912			8.0	15.0		
	0.4098	0.4278												
Methyl methacrylate	0.0992	0.1213	0.1316	0.1420	0.1562	Lin2	-0.060	0.1551					0.9980	0.9900
	0.1576	0.1612												
1,4-Dioxane	0.0013	0.0010	0.0009	0.0007	0.0008	Lin2	0.0050	0.0008					0.9930	0.9900
	0.0008	0.0008												
2-Chloroethyl vinyl ether	0.0415		0.0895	0.1469	0.1220	Lin1	-0.173	0.1599					0.9900	0.9900
	0.1450	0.1684												
Methylcyclohexane	0.4696	0.6426	0.5844	0.6314	0.6224	Qua	0.6183	0.3477	0.0069470				0.9960	0.9900
	0.4619	0.7097												
cis-1,3-Dichloropropene	0.9248	1.0712	1.1231	1.4934	1.1883	Ave		1.1567			14.9	15.0		
	1.1336	1.1625												
4-Methyl-2-pentanone (MIBK)	0.0970	0.1029	0.1259	0.1292	0.1402	Lin2	-0.051	0.1405					0.9960	0.9900
	0.1426	0.1480												
trans-1,3-Dichloropropene	0.7053	0.7376	0.7969	1.1222	0.8602	Lin1	-0.047	0.8741					0.9940	0.9900
	0.8508	0.8623												
1,1,2-Trichloroethane	0.4029	0.5189	0.5241	0.7082	0.5211	Qua	0.1635	0.5198	-0.000578				0.9980	0.9900
	0.5070	0.4947												
Ethyl methacrylate	0.3431	0.4433	0.5232	0.7231	0.5933	Lin1	-0.085	0.5886					0.9940	0.9900
	0.6001	0.5658												
Toluene	2.2588	2.4129	2.3547	3.1884	2.5089	Ave		2.4707			13.4	15.0		
	2.3677	2.2037												
1,3-Dichloropropane	0.6386	0.7829	0.8992	1.1132	0.9025	Lin1	0.0280	0.8429					0.9900	0.9900
	0.8770	0.7952												
2-Hexanone	0.1266	0.1860	0.2402	0.2846	0.2284	Qua	-0.101	0.2671	-0.000744				0.9990	0.9900
	0.2379	0.1915												
Dibromochloromethane	0.6095	0.7583	0.6915	0.8378	0.7340	Ave		0.7023			13.1	15.0		
	0.7203	0.5646												
n-Butyl acetate	0.3361	0.4502	0.5548	0.6968	0.6092	Qua	-0.332	0.7482	-0.004306				0.9990	0.9900
-	0.6628	0.5256				-								
1,2-Dibromoethane	0.4365	0.5291	0.4977	0.5600	0.4442	Ave		0.4808			10.6	15.0		
•	0.4742	0.4241												
Tetrachloroethene	0.8812	1.0388	0.9065	1.0659	0.9139	Ave		0.9266			9.9	15.0		
	0.8169	0.8633												
1-Chlorohexane	0.7576		0.8161	0.9871	0.8769	Ave		0.8564			11.2	15.0		
	0.7337										1			

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 Analy Batch No.: 259909

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 03/07/2019 10:55 Calibration End Date: 03/07/2019 13:25 Calibration ID: 15456

ANALYTE			RRF			CURVE		COEFFICI	ENT #	MIN RRF	%RSD	 MAX %RSD	R^2 OR COD	 MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			*KSD	OR COD	OR COD
	LVL 6	LVL 7												
1,1,1,2-Tetrachloroethane	0.9335		0.9963	1.1224	1.0165	Ave		1.0113			5.9	15.0		
	0.9677													
Chlorobenzene	2.7354			2.8324	2.8690	Ave		2.8619		0.3000	4.5	15.0		
	2.6868													
Ethylbenzene	1.3642		1.5495	1.6416	1.5662	Ave		1.5290			7.7	15.0		
	1.3589													
m-Xylene & p-Xylene	3.1551		2.8103	4.0450	3.5444	Ave		3.4445			11.7	15.0		
	3.3284													
Bromoform	0.3959			0.4475	0.4807	Lin	0.1378	0.3829		0.1000			0.9960	0.9900
	0.3677													
Styrene	2.3023		2.3827	3.5651	2.8441	Lin1	0.0847	2.6792					0.9910	0.9900
	2.7053	2.5741												
Cyclohexanone	0.0063		0.0079	0.0126	0.0094	Qua	0.0352	0.0099	-0.000001				0.9980	0.9900
	0.0092													
o-Xylene	1.7299	1.8463	1.5439	2.4003	1.6852	Lin	0.7055	1.6455					0.9980	0.9900
	1.6398													
1,1,2,2-Tetrachloroethane	0.6521	0.5417	0.4194	0.6519	0.6174	Lin	-0.272	0.6058		0.3000			0.9930	0.9900
	0.4955													
trans-1,4-Dichloro-2-butene	0.0899	0.0927	0.0900	0.1365	0.1223	Lin	0.0320	0.1038					0.9960	0.9900
	0.0968	0.1050												
1,2,3-Trichloropropane	0.1458	0.1541	0.1101	0.1858	0.1636	Lin	0.0858	0.1288					0.9940	0.9900
	0.1219	0.1310												
Isopropylbenzene	5.0403	4.3730	3.4903	5.4836	4.6682	Lin	-0.517	4.3604					0.9920	0.9900
	3.6187	4.4385												
Bromobenzene	1.2299	1.1026	1.0617	1.4164	1.2259	Ave		1.1649			12.9	15.0		
	0.9425	1.1753												
N-Propylbenzene	1.5154	1.2133	1.1665	1.6144	1.4909	Ave		1.3507			14.9	15.0		
	1.0784	1.3762												
2-Chlorotoluene	1.4459	1.0272	1.0792	1.4973	1.2951	Lin	-0.355	1.2513					0.9920	0.9900
	1.0130	1.2730												
4-Chlorotoluene	3.4193	2.6352	2.8341	3.8013	3.2906	Qua	3.1392	2.0512	0.0224647				0.9940	0.9900
	2.3580	3.2498												
1,3,5-Trimethylbenzene	4.4564	3.2475	3.3986	4.6541	4.0661	Lin	-1.384	3.9367					0.9900	0.9900
-	3.0993	4.0104												
tert-Butylbenzene	3.8138	2.8908	2.9577	4.0859	3.5138	Qua	4.0819	1.8904	0.0317468				0.9920	0.9900
_	2.3515	3.5752												
1,2,4-Trimethylbenzene	3.8063		3.4693	4.4958	4.2203	Ave		3.8616			14.2	15.0		
-	3.1440	4.4885												
sec-Butylbenzene	4.4148		4.1444	4.4266	5.2474	Ave		4.3724			12.8	15.0		
-	3.4655													

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 Analy Batch No.: 259909

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 03/07/2019 10:55 Calibration End Date: 03/07/2019 13:25 Calibration ID: 15456

ANALYTE			RRF			CURVE		COEFFIC	IENT	# 1	MIN RRF	%RSD				MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2	1			%RS	D OR CO	DD	OR COD
	LVL 6	LVL 7														
Benzyl chloride	0.8361	0.7726	0.8068	0.8788	0.9254	Ave		0.8700				9.9	15	.0		
	0.8402	1.0300														
1,3-Dichlorobenzene	2.3195		2.0483	2.0421	2.1559	Ave		2.1294				7.0	15	.0		
	1.8809	2.2597														
4-Isopropyltoluene	4.1729		3.8402	4.1589	4.4256	Ave		4.2699				10.8	15	.0		
	3.8488															
1,4-Dichlorobenzene	2.1546		2.0929	2.0984	2.2056	Ave		2.1929				7.6	15	.0		
	2.0694															
1,2,3-Trimethylbenzene	3.6121	3.6411	3.4109	3.6270	4.0596	Ave		3.6711				9.1	15	.0		
	3.2037	4.1432														
1,2-Dichlorobenzene	2.0415		1.6617	1.7518	1.9790	Ave		1.7830				9.5	15	.0		
	1.5707	1.7052														
n-Butylbenzene	3.5787	3.2604	2.8812	3.5399	3.8138	Ave		3.3382				12.5	15	.0		
	2.6834	3.6096														
1,2-Dibromo-3-Chloropropane	0.1152		0.0680	0.1002	0.1092	Qua	0.0764	0.0675	0.0005366					0.99	20	0.9900
	0.0720	0.0962														
1,3,5-Trichlorobenzene	1.5359		1.1281	1.7982	1.8599	Qua	0.9390	1.2554	0.0114599					0.99	50	0.9900
	1.3865															
1,2,4-Trichlorobenzene	0.7516		0.5987	1.1156	1.1719	Lin	-0.657	1.0997						0.99	20	0.9900
	0.8772															
Naphthalene	1.1448	1.0134	0.7552	1.4140	1.4572	Lin	-0.678	1.3707						0.99	40	0.9900
	1.1385	1.3812														
Hexachlorobutadiene	0.2692		0.1704	0.3069	0.2970	Qua	0.2102	0.1866	0.0016394					0.99	20	0.9900
	0.2020	0.2739				L										
1,2,3-Trichlorobenzene	0.3353			0.5849	0.6287	Linl	-0.106	0.5420						0.99	00	0.9900
	0.4678	0.5456														
Dibromofluoromethane	0.3433		0.3288	0.3307	0.3457	Ave		0.3392				4.3	15	.0		
	0.3240															
1,2-Dichloroethane-d4 (Surr)	0.2442		0.2366	0.2265	0.2220	Ave		0.2299				4.7	15	.0		
m 1 10 (0)	0.2129		2 2762	4 4050	2 4425	-		0 5010				11 -		0		
Toluene-d8 (Surr)	3.5116			4.4253	3.4497	Ave		3.5318				11.5	15	.0		
4.5. 61. 1	3.2448	3.2866		1 0 1 6 0	1 0710		0 4450	0 0000						0.00	-	0.0000
4-Bromofluorobenzene	1.7778	1.0584	0.8338	1.2462	1.0719	Lin	0.4479	0.9020						0.99	50	0.9900
	0.8169	0.9212														

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 Analy Batch No.: 259909

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 03/07/2019 10:55 Calibration End Date: 03/07/2019 13:25 Calibration ID: 15456

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 600-259909/2	A06601.d
Level 2	IC 600-259909/3	A06602.d
Level 3	IC 600-259909/4	A06603.d
Level 4	IC 600-259909/5	A06604.d
Level 5	ICIS 600-259909/6	A06605.d
Level 6	IC 600-259909/7	A06606.d
Level 7	IC 600-259909/8	A06607.d

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (UG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Dichlorodifluoromethane	FB	Lin	1820 76058	5243 252297	9656	23928	34171	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Chloromethane	FB	Ave	1777 77643	3998 227606	7470	19484	38365	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Vinyl chloride	FB	Ave	1715 72853	3741 238222	7543	19403	35076	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Butadiene	FB	Qua	2609 74813	4183 261884	8783	21300	33913	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Ethylene oxide	FB	Ave	598 30389	1386 86062	2721	7413	14591	5.00 200	10.0 500	20.0	50.0	100
Bromomethane	FB	Lin	379 24470	896 80997	1557	6400	10843	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Chloroethane	FB	Lin	680 31960	1720 93490	3421	11835	16340	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Dichlorofluoromethane	FB	Ave	2067 79419	4024 233508	8453	27727	39903	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Acrolein	FB	Qua	416 23346	1282 82929	2776	6390	14291	2.50 100	5.00 250	10.0	25.0	50.0
Trichlorofluoromethane	FB	Qua	1838 78571	5579 300904	11098	28202	43002	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Acetonitrile	FB	Lin	357 28197	1459 97624	2685	7488	15720	5.00 200	10.0 500	20.0	50.0	100
Isopropyl alcohol	FB	Ave	268 15107	823 43411	1524	3588	7297	5.00 200	10.0 500	20.0	50.0	100
Acetone	FB	Lin1	531 12967	669 35846	1239	2870	6129	1.00 40.0	2.00 100	4.00	10.0	20.0
Ethyl ether	FB	Ave	654 41094	1878 113433	3899	10117	19921	0.500 20.0	1.00 50.0	2.00	5.00	10.0
t-Butanol	FB	Ave	471 28600	1179 78059	2533	6475	13157	5.00 200	10.0 500	20.0	50.0	100

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 Analy Batch No.: 259909

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,1-Dichloroethene	FB	Ave	1662 59269	3486 191338	6332	16488	35006	0.500 20.0	1.00	2.00	5.00	10.0
Acrylonitrile	FB	Ave	1643 82247	2971 242231	6694	17888	37220	5.00 200	10.0 500	20.0	50.0	100
Iodomethane	FB	Lin	746 73176	1627 249287	3515	11543	30647	0.500 20.0	1.00	2.00	5.00	10.0
Methylene Chloride	FB	Lin1	4577 70639	7480 205593	9931	19411	36952	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Methyl acetate	FB	Ave	782 46083	1871 141950	3873	9594	21772	1.00 40.0	2.00	4.00	10.0	20.0
1,1,2-Trichloro-1,2,2-trifluoroetha	FB	Qua	1471 51480	3331 222323	6113	17769	35375	0.500 20.0	1.00 50.0	2.00	5.00	10.0
3-Chloro-1-propene	FB	Ave	1052 40625	2012 109933	3974	10170	21340	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Carbon disulfide	FB	Ave	6162 188237	10966 593851	20028	51689	107036	0.500 20.0	1.00 50.0	2.00	5.00	10.0
trans-1,2-Dichloroethene	FB	Ave	1971 72070	3793 217307	7062	18578	38494	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Methyl tert-butyl ether	FB	Ave	2708 130875	5531 364730	12278	29906	64569	0.500	1.00	2.00	5.00	10.0
1,1-Dichloroethane	FB	Ave	2944 123741	6381 359532	12134	30724	65308	0.500 20.0	1.00	2.00	5.00	10.0
Propionitrile	FB	Ave	546 34243	1383 98237	2874	7557	16158	5.00 200	10.0 500	20.0	50.0	100
Vinyl acetate	FB	Ave	2992 155431	6882 406426	13842	36856	77627	1.00 40.0	2.00	4.00	10.0	20.0
2-Chloro-1,3-butadiene	FB	Qua	2323 112416	5363 410882	10051	28052	62176	0.500 20.0	1.00	2.00	5.00	10.0
Hexane	FB	Qua	2308 88950	4936 396174	10036	27417	58075	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Isopropyl ether	FB	Ave	5370 288516	12018 926902	23996	63455	140335	0.500 20.0	1.00 50.0	2.00	5.00	10.0
2-Butanone (MEK)	FB	Lin2	85 7314	223 22175	582	1773	3295	1.00 40.0	2.00	4.00	10.0	20.0
Methacrylonitrile	FB	Ave	708 42370	1599 124262	3285	8955	19575	5.00 200	10.0	20.0	50.0	100
cis-1,2-Dichloroethene	FB	Ave	2023 81551	3614 241458	7382	19310	41013	0.500	1.00	2.00	5.00	10.0
Ethyl acetate	FB	Lin2	638 54099	1892 150972	4173	11952	25696	1.00	2.00	4.00	10.0	20.0
Chlorobromomethane	FB	Ave	730 32142	1646 91859	3017	7592	15986	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 Analy Batch No.: 259909

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE -	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Tert-butyl ethyl ether	FB	Ave	3491 207435	8484 632065	17280	45987	98326	0.500	1.00	2.00	5.00	10.0
Chloroform	FB	Ave	2844 129028	5875 396210	11532	29219	64384	0.500	1.00	2.00	5.00	10.0
Isobutyl alcohol	FB	Lin1	581 39644	1469 114990	2442	7077	16459	12.5 500	25.0 1250	50.0	125	250
2,2-Dichloropropane	FB	Ave	2729 102962	5662 321854	10486	27521	57292	0.500	1.00	2.00	5.00	10.0
Tetrahydrofuran	FB	Ave	353 15449	674 41933	1408	3497	7192	1.00	2.00	4.00	10.0	20.0
1,2-Dichloroethane	FB	Ave	1355 57412	2687 157012	5556	13524	28833	0.500	1.00	2.00	5.00	10.0
1,1,1-Trichloroethane	FB	Ave	2734 105617	5914 341188	10599	27920	59300	0.500	1.00	2.00	5.00	10.0
n-Butanol	FB	Lin1	195 17419	364 46830	1381	3358	7190	12.5	25.0 1250	50.0	125	250
1,1-Dichloropropene	FB	Ave	2064 82427	4426 277514	8497	22587	46630	0.500	1.00	2.00	5.00	10.0
Cyclohexane	FB	Ave	2268 80430	5015 320326	9486	26269	54739	0.500	1.00	2.00	5.00	10.0
Carbon tetrachloride	FB	Ave	2517 89661	5113 312780	9414	26109	53156	0.500	1.00	2.00	5.00	10.0
Benzene	FB	Ave	6751 290120	14147 901366	27136	69698	150695	0.500	1.00	2.00	5.00	10.0
Tert-amyl methyl ether	FB	Ave	2823 139507	6026 407175	12705	32247	68293	0.500	1.00	2.00	5.00	10.0
Isooctane	FB	Ave	4397 166716	10410 635934	19179	52927	106720	0.500	1.00	2.00	5.00	10.0
Ethyl acrylate	FB	Ave	879 50349	1861 144677	3927	11287	24804	0.500	1.00	2.00	5.00	10.0
n-Heptane	FB	Ave	1966 79745	4460 290020	8762	24936	51108	0.500	1.00	2.00	5.00	10.0
Dibromomethane	FB	Ave	580 26229	1178 66408	2235	5403	12886	0.500	1.00	2.00	5.00	10.0
1,2-Dichloropropane	FB	Ave	1478 65163	3020 170686	6460	13726	32368	0.500	1.00	2.00	5.00	10.0
2-Nitropropane	FB	Lin1	327 17396	528 48029	1328	3054	7556	1.00	2.00	4.00	10.0	20.0
Trichloroethene	FB	Ave	1985 91255	4410 256012	8252	20258	46007	0.500	1.00	2.00	5.00	10.0
Bromodichloromethane	FB	Ave	1585 80771	3344 221012	6809	18082	39797	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 Analy Batch No.: 259909

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Methyl methacrylate	FB	Lin2	933 62140	2165 166595	4740	13115	29641	1.00 40.0	2.00	4.00	10.0	20.0
1,4-Dioxane	FB	Lin2	119 3342	183 7765	316	660	1581	10.0	20.0	40.0	100	200
2-Chloroethyl vinyl ether	CBNZ d5	Lin1	143 21502	479 68996	1194	3801	8594	1.00	2.00	4.00	10.0	20.0
Methylcyclohexane	FB	Qua	2209 91036	5735 366698	10524	29162	59047	0.500 20.0	1.00	2.00	5.00	10.0
cis-1,3-Dichloropropene	CBNZ d5	Ave	1593 84059	3571 238100	7492	19322	41843	0.500 20.0	1.00	2.00	5.00	10.0
4-Methyl-2-pentanone (MIBK)	FB	Lin2	913 56211	1836 152958	4533	11939	26603	1.00	2.00	4.00	10.0	20.0
trans-1,3-Dichloropropene	CBNZ d5	Lin1	1215 63086	2459 176613	5316	14519	30289	0.500 20.0	1.00	2.00	5.00	10.0
1,1,2-Trichloroethane	CBNZ d5	Qua	694 37592	1730 101319	3496	9163	18350	0.500 20.0	1.00	2.00	5.00	10.0
Ethyl methacrylate	CBNZ d5	Lin1	591 44500	1478 115881	3490	9355	20891	0.500 20.0	1.00	2.00	5.00	10.0
Toluene	CBNZ d5	Ave	3891 175572	8044 451355	15707	41252	88345	0.500	1.00	2.00	5.00	10.0
1,3-Dichloropropane	CBNZ d5	Lin1	1100 65031	2610 162878	5998	14403	31778	0.500 20.0	1.00	2.00	5.00	10.0
2-Hexanone	CBNZ d5	Qua	436 35277	1240 78462	3204	7364	16082	1.00	2.00	4.00	10.0	20.0
Dibromochloromethane	CBNZ d5	Ave	1050 53413	2528 115644	4613	10839	25846	0.500	1.00	2.00	5.00	10.0
n-Butyl acetate	CBNZ d5	Qua	579 49146	1501 107649	3701	9015	21452	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2-Dibromoethane	CBNZ d5	Ave	752 35163	1764 86867	3320	7245	15642	0.500 20.0	1.00	2.00	5.00	10.0
Tetrachloroethene	CBNZ d5	Ave	1518 60576	3463 176813	6047	13791	32179	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1-Chlorohexane	CBNZ d5	Ave	1305 54403	2872 196989	5444	12771	30877	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,1,1,2-Tetrachloroethane	CBNZ d5	Ave	1608 71754	3353 212351	6646	14522	35793	0.500	1.00	2.00	5.00	10.0
Chlorobenzene	CBNZ d5	Ave	4712 199232	10228 602775	19338	36646	101022	0.500	1.00	2.00	5.00	10.0
Ethylbenzene	CBNZ d5	Ave	2350 100765	5382 329405	10336	21239	55148	0.500	1.00	2.00	5.00	10.0
m-Xylene & p-Xylene	CBNZ d5	Ave	5435 246805	11556 770472	18746	52334	124806	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 Analy Batch No.: 259909

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Bromoform	DCBd 4	Lin	581 30912	1407 74033	2266	6528	14665	0.500	1.00	2.00	5.00	10.0
Styrene	CBNZ d5	Lin1	3966 200605	9030 527214	15894	46125	100147	0.500	1.00	2.00	5.00	10.0
Cyclohexanone	CBNZ d5	Qua	546 33949	1500 83821	2623	8156	16501	25.0 1000	50.0 2500	100	250	500
o-Xylene	CBNZ d5	Lin	2980 121594	6155 340466	10299	31055	59340	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,1,2,2-Tetrachloroethane	DCBd 4	Lin	957 41655	2011 117669	3237	9509	18836	0.500	1.00	2.00	5.00	10.0
trans-1,4-Dichloro-2-butene	DCBd 4	Lin	132 8142	344 20145	695	1991	3730	0.500	1.00	2.00	5.00	10.0
1,2,3-Trichloropropane	DCBd 4	Lin	214 10246	572 25140	850	2710	4992	0.500 20.0	1.00	2.00	5.00	10.0
Isopropylbenzene	DCBd 4	Lin	7397 304228	16233 851622	26940	79990	142417	0.500	1.00	2.00	5.00	10.0
Bromobenzene	DCBd 4	Ave	1805 79235	4093 225514	8195	20661	37399	0.500	1.00	2.00	5.00	10.0
N-Propylbenzene	DCBd 4	Ave	2224 90660	4504 264047	9004	23549	45483	0.500	1.00	2.00	5.00	10.0
2-Chlorotoluene	DCBd 4	Lin	2122 85162	3813 244262	8330	21842	39511	0.500	1.00	2.00	5.00	10.0
4-Chlorotoluene	DCBd 4	Qua	5018 198240	9782 623548	21875	55450	100390	0.500 20.0	1.00	2.00	5.00	10.0
1,3,5-Trimethylbenzene	DCBd 4	Lin	6540 260560	12055 769491	26232	67890	124049	0.500 20.0	1.00	2.00	5.00	10.0
tert-Butylbenzene	DCBd 4	Qua	5597 197692	10731 685989	22829	59602	107199	0.500	1.00	2.00	5.00	10.0
1,2,4-Trimethylbenzene	DCBd 4	Ave	5586 264317	12648 861215	26778	65581	128753	0.500	1.00	2.00	5.00	10.0
sec-Butylbenzene	DCBd 4	Ave	6479 291343	15281 919370	31989	64572	160089	0.500	1.00	2.00	5.00	10.0
Benzyl chloride	DCBd 4	Ave	1227 70638	2868 197619	6227	12819	28233	0.500	1.00	2.00	5.00	10.0
1,3-Dichlorobenzene	DCBd 4	Ave	3404 158127	8165 433566	15810	29788	65771	0.500	1.00	2.00	5.00	10.0
4-Isopropyltoluene	DCBd 4	Ave	6124 323566	15728 998824	29641	60666	135016	0.500	1.00	2.00	5.00	10.0
1,4-Dichlorobenzene	DCBd 4	Ave	3162 173977	8083 489628	16154	30610	67288	0.500	1.00	2.00	5.00	10.0
1,2,3-Trimethylbenzene	DCBd 4	Ave	5301 269335	13516 794963	26327	52908	123849	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 Analy Batch No.: 259909

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 03/07/2019 10:55 Calibration End Date: 03/07/2019 13:25 Calibration ID: 15456

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (UG/L)	
	REF	TYPE -	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,2-Dichlorobenzene	DCBd 4	Ave	2996 132046	6574 327186	12826	25554	60374	0.500 20.0	1.00 50.0	2.00	5.00	10.0
n-Butylbenzene	DCBd 4	Ave	5252 225594	12103 692581	22239	51637	116351	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2-Dibromo-3-Chloropropane	DCBd 4	Qua	169 6052	348 18461	525	1462	3330	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,3,5-Trichlorobenzene	DCBd 4	Qua	2254 116561	5222 355545	8707	26230	56741	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2,4-Trichlorobenzene	DCBd 4	Lin	1103 73749	3007 212961	4621	16273	35752	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Naphthalene	DCBd 4	Lin	1680 95711	3762 265009	5829	20626	44456	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Hexachlorobutadiene	DCBd 4	Qua	395 16985	883 52563	1315	4477	9062	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2,3-Trichlorobenzene	DCBd 4	Lin1	492 39325	1599 104684	3013	8532	19180	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Dibromofluoromethane	FB	Ave	1615 63862	2983 189946	5921	15275	32795	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2-Dichloroethane-d4 (Surr)	FB	Ave	1149 41953	2133 117971	4261	10462	21060	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Toluene-d8 (Surr)	CBNZ d5	Ave	6049 240610	11449 673142	22481	57254	121470	0.500 20.0	1.00 50.0	2.00	5.00	10.0
4-Bromofluorobenzene	DCBd 4	Lin	2609 68677	3929 176755	6436	18178	32703	0.500 20.0	1.00 50.0	2.00	5.00	10.0

Curve Type Legend:

Ave = Average ISTD Lin = Linear ISTD

Lin1 = Linear 1/conc ISTD

Lin2 = Linear 1/conc^2 ISTD

Qua = Quadratic ISTD

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Lab Sample ID: <u>ICV 600-259909/10</u> Calibration Date: <u>03/07/2019 14:28</u>

Instrument ID: CHVOAMS07 Calib Start Date: 03/07/2019 10:55

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 03/07/2019 13:25

Lab File ID: A06609.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Lin		0.4485		10.0	10.0	0.3	50.0
Chloromethane	Ave	0.4145	0.4583	0.1000	11.1	10.0	10.6	30.0
Vinyl chloride	Ave	0.4033	0.4405		10.9	10.0	9.2	30.0
Butadiene	Qua		0.4476		12.3	10.0	23.1	50.0
Ethylene oxide	Ave	0.0153	0.0184		120	100	20.2	50.0
Bromomethane	Lin		0.1792		12.7	10.0	27.1	30.0
Chloroethane	Lin		0.2254		12.5	10.0	25.1	30.0
Dichlorofluoromethane	Ave	0.4622	0.5985		13.0	10.0	29.5	30.0
Acrolein	Qua		0.0263		53.8	50.0	7.6	50.0
Acetonitrile	Lin		0.0159		95.0	100	-5.0	30.0
Trichlorofluoromethane	Qua		0.5100		12.6	10.0	25.8	30.0
Isopropyl alcohol	Ave	0.0078	0.0073		93.3	100	-6.7	50.0
Acetone	Lin1		0.0338		19.8	20.0	-1.0	50.0
Ethyl ether	Ave	0.2033	0.2073		10.2	10.0	2.0	50.0
t-Butanol	Ave	0.0135	0.0133		98.4	100	-1.6	30.0
1,1-Dichloroethene	Ave	0.3561	0.3411		9.58	10.0	-4.2	30.0
Acrylonitrile	Ave	0.0389	0.0406		105	100	4.5	50.0
Iodomethane	Lin		0.3460		8.99	10.0	-10.1	30.0
Methylene Chloride	Lin1		0.3733		9.07	10.0	-9.3	50.0
Methyl acetate	Ave	0.1098	0.1140		20.8	20.0	3.8	30.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Qua		0.3415		12.3	10.0	23.3	30.0
3-Chloro-1-propene	Ave	0.2191	0.2202		10.1	10.0	0.5	30.0
Carbon disulfide	Ave	1.143	1.077		9.42	10.0	-5.8	30.0
trans-1,2-Dichloroethene	Ave	0.4043	0.3909		9.67	10.0	-3.3	30.0
Methyl tert-butyl ether	Ave	0.6536	0.6743		10.3	10.0	3.2	30.0
Propionitrile	Ave	0.0161	0.0168		104	100	3.9	30.0
1,1-Dichloroethane	Ave	0.6703	0.6685	0.1000	9.97	10.0	-0.3	30.0
Vinyl acetate	Ave	0.3834	0.3078		16.1	20.0	-19.7	50.0
2-Chloro-1,3-butadiene	Qua		0.6083		10.9	10.0	8.8	30.0
Hexane	Qua		0.5509		12.0	10.0	19.6	30.0
Isopropyl ether	Ave	1.419	1.416		9.98	10.0	-0.2	30.0
2-Butanone (MEK)	Lin2		0.0180		19.2	20.0	-4.1	50.0
Methacrylonitrile	Ave	0.0195	0.0210		108	100	7.5	30.0
cis-1,2-Dichloroethene	Ave	0.4252	0.4199		9.88	10.0	-1.3	30.0
Ethyl acetate	Lin2		0.1335		19.6	20.0	-1.9	30.0
Chlorobromomethane	Ave	0.1687	0.1712		10.2	10.0	1.5	30.0
Chloroform	Ave	0.6623	0.6598		9.96	10.0	-0.4	30.0
Tert-butyl ethyl ether	Ave	0.9943	1.024		10.3	10.0	3.0	30.0
Isobutyl alcohol	Lin1		0.0061		189	250	-24.3	50.0
2,2-Dichloropropane	Ave	0.5917	0.5395		9.12	10.0	-8.8	30.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Lab Sample ID: ICV 600-259909/10 Calibration Date: 03/07/2019 14:28

Instrument ID: CHVOAMS07 Calib Start Date: 03/07/2019 10:55

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 03/07/2019 13:25

Lab File ID: A06609.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Tetrahydrofuran	Ave	0.0386	0.0392		20.3	20.0	1.6	30.0
1,2-Dichloroethane	Ave	0.2985	0.3006		10.1	10.0	0.7	30.0
1,1,1-Trichloroethane	Ave	0.6083	0.5967		9.81	10.0	-1.9	30.0
1,1-Dichloropropene	Ave	0.4775	0.4664		9.77	10.0	-2.3	30.0
Cyclohexane	Ave	0.5349	0.5196		9.71	10.0	-2.9	50.0
Carbon tetrachloride	Ave	0.5452	0.5313		9.75	10.0	-2.5	30.0
Benzene	Ave	1.549	1.536		9.92	10.0	-0.8	30.0
Tert-amyl methyl ether	Ave	0.6993	0.7038		10.1	10.0	0.6	30.0
Isooctane	Ave	1.073	1.029		9.58	10.0	-4.2	30.0
Ethyl acrylate	Ave	0.2364	0.2581		10.9	10.0	9.2	30.0
n-Heptane	Ave	0.4927	0.4786		9.72	10.0	-2.9	30.0
Dibromomethane	Ave	0.1277	0.1304		10.2	10.0	2.1	30.0
1,2-Dichloropropane	Ave	0.3301	0.3412		10.3	10.0	3.4	30.0
2-Nitropropane	Lin1		0.0396		18.2	20.0	-9.2	30.0
Trichloroethene	Ave	0.4652	0.5025		10.8	10.0	8.0	30.0
Bromodichloromethane	Ave	0.3912	0.3942		10.1	10.0	0.8	30.0
Methyl methacrylate	Lin2		0.1508		19.8	20.0	-0.8	50.0
1,4-Dioxane	Lin2		0.0008		199	200	-0.5	50.0
2-Chloroethyl vinyl ether	Lin1		0.1421		18.9	20.0	-5.8	30.0
Methylcyclohexane	Qua		0.5721		11.9	10.0	18.6	30.0
cis-1,3-Dichloropropene	Ave	1.157	1.167		10.1	10.0	0.9	30.0
4-Methyl-2-pentanone (MIBK)	Lin2		0.1359		19.7	20.0	-1.5	50.0
trans-1,3-Dichloropropene	Lin1		0.8752		10.1	10.0	0.7	30.0
1,1,2-Trichloroethane	Qua		0.5191		9.78	10.0	-2.2	30.0
Ethyl methacrylate	Lin1		0.5966		10.3	10.0	2.8	50.0
Toluene	Ave	2.471	2.546		10.3	10.0	3.1	30.0
1,3-Dichloropropane	Lin1		0.9130		10.8	10.0	8.0	30.0
2-Hexanone	Qua		0.2318		18.7	20.0	-6.4	50.0
Dibromochloromethane	Ave	0.7023	0.7393		10.5	10.0	5.3	30.0
n-Butyl acetate	Qua		0.6512		9.69	10.0	-3.1	30.0
1,2-Dibromoethane	Ave	0.4808	0.5022		10.4	10.0	4.4	30.0
Tetrachloroethene	Ave	0.9266	0.9416		10.2	10.0	1.6	30.0
1-Chlorohexane	Ave	0.8564	0.8374		9.78	10.0	-2.2	30.0
1,1,1,2-Tetrachloroethane	Ave	1.011	1.010		9.99	10.0	-0.1	30.0
Chlorobenzene	Ave	2.862	2.852	0.3000	9.97	10.0	-0.3	30.0
Ethylbenzene	Ave	1.529	1.526		9.98	10.0	-0.2	30.0
m-Xylene & p-Xylene	Ave	3.444	3.493		10.1	10.0	1.4	30.0
Bromoform	Lin		0.3629	0.1000	9.12	10.0	-8.8	30.0
Styrene	Lin1		2.802		10.4	10.0	4.3	30.0
Cyclohexanone	Qua		0.0087		447	500	-10.5	30.0
o-Xylene	Lin		1.667		9.70	10.0	-3.0	30.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Lab Sample ID: <u>ICV 600-259909/10</u> Calibration Date: 03/07/2019 14:28

Instrument ID: CHVOAMS07 Calib Start Date: 03/07/2019 10:55

GC Column: DB-VRX 60 ID: 0.25 (mm) Calib End Date: 03/07/2019 13:25

Lab File ID: A06609.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,1,2,2-Tetrachloroethane	Lin		0.4468	0.3000	7.82	10.0	-21.8	30.0
trans-1,4-Dichloro-2-butene	Lin		0.0941		8.76	10.0	-12.4	50.0
1,2,3-Trichloropropane	Lin		0.1251		9.04	10.0	-9.6	30.0
Isopropylbenzene	Lin		4.077		9.47	10.0	-5.3	30.0
Bromobenzene	Ave	1.165	1.062		9.12	10.0	-8.8	30.0
N-Propylbenzene	Ave	1.351	1.232		9.12	10.0	-8.8	30.0
2-Chlorotoluene	Lin		1.125		9.28	10.0	-7.2	30.0
4-Chlorotoluene	Qua		2.907		11.3	10.0	12.5	30.0
1,3,5-Trimethylbenzene	Lin		3.576		9.43	10.0	-5.7	30.0
tert-Butylbenzene	Qua		3.082		11.8	10.0	18.0	30.0
1,2,4-Trimethylbenzene	Ave	3.862	3.690		9.56	10.0	-4.4	30.0
sec-Butylbenzene	Ave	4.372	4.383		10.0	10.0	0.2	30.0
Benzyl chloride	Ave	0.8700	0.8359		9.61	10.0	-3.9	30.0
1,3-Dichlorobenzene	Ave	2.129	2.156		10.1	10.0	1.3	30.0
4-Isopropyltoluene	Ave	4.270	4.302		10.1	10.0	0.7	30.0
1,4-Dichlorobenzene	Ave	2.193	2.240		10.2	10.0	2.2	30.0
1,2,3-Trimethylbenzene	Ave	3.671	3.366		9.17	10.0	-8.3	30.0
1,2-Dichlorobenzene	Ave	1.783	1.438		8.07	10.0	-19.3	30.0
n-Butylbenzene	Ave	3.338	2.712		8.12	10.0	-18.8	30.0
1,2-Dibromo-3-Chloropropane	Qua		0.0733		9.08	10.0	-9.2	30.0
1,3,5-Trichlorobenzene	Qua		1.340		9.16	10.0	-8.4	30.0
1,2,4-Trichlorobenzene	Lin		0.8498		8.33	10.0	-16.7	30.0
Naphthalene	Lin		1.081		8.38	10.0	-16.2	30.0
Hexachlorobutadiene	Qua		0.2295		10.3	10.0	2.5	30.0
1,2,3-Trichlorobenzene	Lin1		0.4594		8.67	10.0	-13.3	30.0
Dibromofluoromethane	Ave	0.3392	0.3535		13.0	12.5	4.2	30.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2299	0.2071		11.3	12.5	-9.9	30.0
Toluene-d8 (Surr)	Ave	3.532	3.775		13.4	12.5	6.9	30.0
4-Bromofluorobenzene	Lin		1.075		14.4	12.5	15.2	30.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Lab Sample ID: CCVIS 600-264044/2 Calibration Date: 05/01/2019 09:00

Instrument ID: CHVOAMS07 Calib Start Date: 03/07/2019 10:55

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 03/07/2019 13:25

Lab File ID: A12101.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Lin		0.2188		5.26	10.0	-47.5*	35.0
Chloromethane	Ave	0.4145	0.2430	0.1000	5.86	10.0	-41.4*	35.0
Vinyl chloride	Ave	0.4033	0.3236		8.02	10.0	-19.8	20.0
Butadiene	Qua		0.3114		8.66	10.0	-13.4	35.0
Ethylene oxide	Ave	0.0153	0.0139		90.7	100	-9.3	35.0
Bromomethane	Lin		0.1367		10.00	10.0	-0.0	35.0
Chloroethane	Lin		0.1744		9.65	10.0	-3.5	35.0
Dichlorofluoromethane	Ave	0.4622	0.5217		11.3	10.0	12.9	35.0
Acrolein	Qua		0.0178		36.3	50.0	-27.5	50.0
Acetonitrile	Lin		0.0108		67.4	100	-32.6	50.0
Trichlorofluoromethane	Qua		0.7008		16.8	10.0	68.0*	35.0
Isopropyl alcohol	Ave	0.0078	0.0058		74.2	100	-25.8	50.0
Acetone	Lin1		0.0259		15.1	20.0	-24.4	50.0
Ethyl ether	Ave	0.2033	0.1590		7.82	10.0	-21.8	35.0
t-Butanol	Ave	0.0135	0.0106		78.3	100	-21.7	35.0
1,1-Dichloroethene	Ave	0.3561	0.3531		9.92	10.0	-0.8	20.0
Acrylonitrile	Ave	0.0389	0.0273		70.4	100	-29.6	50.0
Iodomethane	Lin		0.2882		7.80	10.0	-22.0	35.0
Methylene Chloride	Lin1		0.3158		7.53	10.0	-24.7	50.0
Methyl acetate	Ave	0.1098	0.0822		15.0	20.0	-25.1	35.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Qua		0.4305		15.2	10.0	51.7*	35.0
3-Chloro-1-propene	Ave	0.2191	0.1962		8.96	10.0	-10.4	35.0
Carbon disulfide	Ave	1.143	0.9290		8.13	10.0	-18.7	35.0
trans-1,2-Dichloroethene	Ave	0.4043	0.3754		9.29	10.0	-7.2	35.0
Methyl tert-butyl ether	Ave	0.6536	0.5809		8.89	10.0	-11.1	35.0
Propionitrile	Ave	0.0161	0.0108		66.9	100	-33.1	35.0
1,1-Dichloroethane	Ave	0.6703	0.6090	0.1000	9.09	10.0	-9.1	35.0
Vinyl acetate	Ave	0.3834	0.3150		16.4	20.0	-17.8	50.0
2-Chloro-1,3-butadiene	Qua		0.6496		11.6	10.0	15.6	35.0
Hexane	Qua		0.5489		11.9	10.0	19.3	35.0
Isopropyl ether	Ave	1.419	1.162		8.19	10.0	-18.1	35.0
2-Butanone (MEK)	Lin2		0.0138		14.8	20.0	-26.2	50.0
Methacrylonitrile	Ave	0.0195	0.0148		75.8	100	-24.2	35.0
cis-1,2-Dichloroethene	Ave	0.4252	0.3692		8.68	10.0	-13.2	35.0
Ethyl acetate	Lin2		0.0967		14.4	20.0	-28.2	35.0
Chlorobromomethane	Ave	0.1687	0.1460		8.65	10.0	-13.5	35.0
Tert-butyl ethyl ether	Ave	0.9943	0.8448		8.50	10.0	-15.0	35.0
Chloroform	Ave	0.6623	0.6486		9.79	10.0	-2.1	20.0
Isobutyl alcohol	Lin1		0.0042		135	250	-46.2	50.0
2,2-Dichloropropane	Ave	0.5917	0.6966		11.8	10.0	17.7	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Lab Sample ID: CCVIS 600-264044/2 Calibration Date: 05/01/2019 09:00

Instrument ID: CHVOAMS07 Calib Start Date: 03/07/2019 10:55

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 03/07/2019 13:25

Lab File ID: A12101.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Tetrahydrofuran	Ave	0.0386	0.0313		16.3	20.0	-18.7	35.0
1,2-Dichloroethane	Ave	0.2985	0.2916		9.77	10.0	-2.3	35.0
1,1,1-Trichloroethane	Ave	0.6083	0.7282		12.0	10.0	19.7	35.0
1,1-Dichloropropene	Ave	0.4775	0.4801		10.1	10.0	0.5	35.0
Cyclohexane	Ave	0.5349	0.5573		10.4	10.0	4.2	35.0
Carbon tetrachloride	Ave	0.5452	0.6893		12.6	10.0	26.4	35.0
Benzene	Ave	1.549	1.335		8.62	10.0	-13.8	35.0
Tert-amyl methyl ether	Ave	0.6993	0.5834		8.34	10.0	-16.6	35.0
Isooctane	Ave	1.073	1.039		9.68	10.0	-3.2	35.0
Ethyl acrylate	Ave	0.2364	0.2180		9.22	10.0	-7.8	35.0
n-Heptane	Ave	0.4927	0.5147		10.5	10.0	4.5	35.0
Dibromomethane	Ave	0.1277	0.1100		8.62	10.0	-13.8	35.0
1,2-Dichloropropane	Ave	0.3301	0.2978		9.02	10.0	-9.8	20.0
2-Nitropropane	Lin1		0.0348		16.1	20.0	-19.7	35.0
Trichloroethene	Ave	0.4652	0.4676		10.1	10.0	0.5	35.0
Bromodichloromethane	Ave	0.3912	0.3700		9.46	10.0	-5.4	35.0
Methyl methacrylate	Lin2		0.1064		14.1	20.0	-29.5	50.0
1,4-Dioxane	Lin2		0.0004		106	200	-46.9	50.0
2-Chloroethyl vinyl ether	Lin1		0.1169		15.7	20.0	-21.5	35.0
Methylcyclohexane	Qua		0.6085		12.6	10.0	25.7	35.0
cis-1,3-Dichloropropene	Ave	1.157	0.9767		8.44	10.0	-15.6	35.0
4-Methyl-2-pentanone (MIBK)	Lin2		0.1021		14.9	20.0	-25.5	50.0
trans-1,3-Dichloropropene	Lin1		0.7533		8.67	10.0	-13.3	35.0
1,1,2-Trichloroethane	Qua		0.4445		8.31	10.0	-16.9	35.0
Ethyl methacrylate	Lin1		0.4715		8.15	10.0	-18.5	50.0
Toluene	Ave	2.471	2.364		9.57	10.0	-4.3	20.0
1,3-Dichloropropane	Lin1		0.7310		8.64	10.0	-13.6	35.0
2-Hexanone	Qua		0.1853		14.9	20.0	-25.7	50.0
Dibromochloromethane	Ave	0.7023	0.7310		10.4	10.0	4.1	35.0
n-Butyl acetate	Qua		0.4566		6.81	10.0	-31.9	35.0
1,2-Dibromoethane	Ave	0.4808	0.4313		8.97	10.0	-10.3	35.0
Tetrachloroethene	Ave	0.9266	0.997		10.8	10.0	7.6	35.0
1-Chlorohexane	Ave	0.8564	0.8847		10.3	10.0	3.3	35.0
1,1,1,2-Tetrachloroethane	Ave	1.011	1.031		10.2	10.0	2.0	35.0
Chlorobenzene	Ave	2.862	2.724	0.3000	9.52	10.0	-4.8	35.0
Ethylbenzene	Ave	1.529	1.530		10.0	10.0	0.0	20.0
m-Xylene & p-Xylene	Ave	3.444	3.568		10.4	10.0	3.6	35.0
Bromoform	Lin		0.3664	0.1000	9.21	10.0	-7.9	35.0
Styrene	Lin1		2.731		10.2	10.0	1.6	35.0
Cyclohexanone	Qua		0.0162		867	500	73.4*	35.0
1,1,2,2-Tetrachloroethane	Lin		0.4874	0.3000	8.49	10.0	-15.1	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Lab Sample ID: CCVIS 600-264044/2 Calibration Date: 05/01/2019 09:00

Instrument ID: CHVOAMS07 Calib Start Date: 03/07/2019 10:55

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 03/07/2019 13:25

Lab File ID: A12101.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
o-Xylene	Lin		1.815		10.6	10.0	6.0	35.0
trans-1,4-Dichloro-2-butene	Lin		0.0874		8.11	10.0	-18.9	50.0
1,2,3-Trichloropropane	Lin		0.1360		9.89	10.0	-1.1	35.0
Isopropylbenzene	Lin		4.617		10.7	10.0	7.1	35.0
Bromobenzene	Ave	1.165	1.094		9.39	10.0	-6.1	35.0
N-Propylbenzene	Ave	1.351	1.397		10.4	10.0	3.5	35.0
2-Chlorotoluene	Lin		1.238		10.2	10.0	1.8	35.0
4-Chlorotoluene	Qua		3.137		12.2	10.0	21.5	35.0
1,3,5-Trimethylbenzene	Lin		4.020		10.6	10.0	5.6	35.0
tert-Butylbenzene	Qua		3.633		13.8	10.0	38.4*	35.0
1,2,4-Trimethylbenzene	Ave	3.862	4.155		10.8	10.0	7.6	35.0
sec-Butylbenzene	Ave	4.372	5.004		11.4	10.0	14.4	35.0
Benzyl chloride	Ave	0.8700	0.9415		10.8	10.0	8.2	35.0
1,3-Dichlorobenzene	Ave	2.129	2.270		10.7	10.0	6.6	35.0
4-Isopropyltoluene	Ave	4.270	4.874		11.4	10.0	14.1	35.0
1,4-Dichlorobenzene	Ave	2.193	2.289		10.4	10.0	4.4	35.0
1,2,3-Trimethylbenzene	Ave	3.671	3.905		10.6	10.0	6.4	35.0
1,2-Dichlorobenzene	Ave	1.783	1.765		9.90	10.0	-1.0	35.0
n-Butylbenzene	Ave	3.338	3.583		10.7	10.0	7.3	35.0
1,2-Dibromo-3-Chloropropane	Qua		0.0847		10.5	10.0	5.3	35.0
1,3,5-Trichlorobenzene	Qua		1.377		9.41	10.0	-5.9	35.0
1,2,4-Trichlorobenzene	Lin		0.7408		7.34	10.0	-26.7	35.0
Naphthalene	Lin		1.395		10.7	10.0	6.7	35.0
Hexachlorobutadiene	Qua		0.2735		12.2	10.0	22.2	35.0
1,2,3-Trichlorobenzene	Lin1		0.5670		10.7	10.0	6.6	35.0
Dibromofluoromethane	Ave	0.3392	0.3167		9.34	10.0	-6.6	35.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2299	0.2146		9.33	10.0	-6.7	35.0
Toluene-d8 (Surr)	Ave	3.532	3.190		9.03	10.0	-9.7	35.0
4-Bromofluorobenzene	Lin		0.9882		10.5	10.0	4.6	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Lab Sample ID: CCVIS 600-264156/2 Calibration Date: 05/02/2019 08:51

Instrument ID: CHVOAMS07 Calib Start Date: 03/07/2019 10:55

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 03/07/2019 13:25

Lab File ID: A12201.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Lin		0.2291		5.47	10.0	-45.3*	35.0
Chloromethane	Ave	0.4145	0.2434	0.1000	5.87	10.0	-41.3*	35.0
Vinyl chloride	Ave	0.4033	0.3650		9.05	10.0	-9.5	20.0
Butadiene	Qua		0.3437		9.56	10.0	-4.4	35.0
Ethylene oxide	Ave	0.0153	0.0130		85.4	100	-14.6	35.0
Bromomethane	Lin		0.1552		11.2	10.0	11.7	35.0
Chloroethane	Lin		0.1760		9.74	10.0	-2.6	35.0
Dichlorofluoromethane	Ave	0.4622	0.5305		11.5	10.0	14.8	35.0
Acrolein	Qua		0.0155		31.4	50.0	-37.3	50.0
Acetonitrile	Lin		0.0097		61.5	100	-38.5	50.0
Trichlorofluoromethane	Qua		0.7712		18.3	10.0	82.5*	35.0
Isopropyl alcohol	Ave	0.0078	0.0048		61.5	100	-38.5	50.0
Acetone	Lin1		0.0240		14.0	20.0	-30.2	50.0
Ethyl ether	Ave	0.2033	0.1484		7.30	10.0	-27.0	35.0
t-Butanol	Ave	0.0135	0.0099		73.4	100	-26.6	35.0
1,1-Dichloroethene	Ave	0.3561	0.3766		10.6	10.0	5.8	20.0
Acrylonitrile	Ave	0.0389	0.0252		64.8	100	-35.2	50.0
Iodomethane	Lin		0.2720		7.47	10.0	-25.3	35.0
Methylene Chloride	Lin1		0.3188		7.62	10.0	-23.8	50.0
Methyl acetate	Ave	0.1098	0.0742		13.5	20.0	-32.4	35.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Qua		0.4602		16.1	10.0	60.6*	35.0
3-Chloro-1-propene	Ave	0.2191	0.2047		9.34	10.0	-6.6	35.0
Carbon disulfide	Ave	1.143	0.9495		8.31	10.0	-16.9	35.0
trans-1,2-Dichloroethene	Ave	0.4043	0.3775		9.34	10.0	-6.6	35.0
Methyl tert-butyl ether	Ave	0.6536	0.5575		8.53	10.0	-14.7	35.0
Propionitrile	Ave	0.0161	0.0102		63.3	100	-36.8*	35.0
1,1-Dichloroethane	Ave	0.6703	0.5981	0.1000	8.92	10.0	-10.8	35.0
Vinyl acetate	Ave	0.3834	0.2852		14.9	20.0	-25.6	50.0
2-Chloro-1,3-butadiene	Qua		0.6647		11.8	10.0	18.1	35.0
Hexane	Qua		0.5552		12.1	10.0	20.5	35.0
Isopropyl ether	Ave	1.419	1.095		7.72	10.0	-22.9	35.0
2-Butanone (MEK)	Lin2		0.0132		14.2	20.0	-28.9	50.0
Methacrylonitrile	Ave	0.0195	0.0137		70.0	100	-30.0	35.0
cis-1,2-Dichloroethene	Ave	0.4252	0.3790		8.91	10.0	-10.9	35.0
Ethyl acetate	Lin2		0.0853		12.7	20.0	-36.3*	35.0
Chlorobromomethane	Ave	0.1687	0.1491		8.84	10.0	-11.6	35.0
Isobutyl alcohol	Lin1		0.0070		215	250	-13.9	50.0
Tert-butyl ethyl ether	Ave	0.9943	0.8144		8.19	10.0	-18.1	35.0
Chloroform	Ave	0.6623	0.6728		10.2	10.0	1.6	20.0
2,2-Dichloropropane	Ave	0.5917	0.7314		12.4	10.0	23.6	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Lab Sample ID: CCVIS 600-264156/2 Calibration Date: 05/02/2019 08:51

Instrument ID: CHVOAMS07 Calib Start Date: 03/07/2019 10:55

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 03/07/2019 13:25

Lab File ID: A12201.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Tetrahydrofuran	Ave	0.0386	0.0256		13.3	20.0	-33.7	35.0
1,2-Dichloroethane	Ave	0.2985	0.2892		9.69	10.0	-3.1	35.0
1,1,1-Trichloroethane	Ave	0.6083	0.7810		12.8	10.0	28.4	35.0
1,1-Dichloropropene	Ave	0.4775	0.4911		10.3	10.0	2.9	35.0
Cyclohexane	Ave	0.5349	0.5858		11.0	10.0	9.5	35.0
Carbon tetrachloride	Ave	0.5452	0.7314		13.4	10.0	34.1	35.0
Benzene	Ave	1.549	1.353		8.74	10.0	-12.6	35.0
Tert-amyl methyl ether	Ave	0.6993	0.5467		7.82	10.0	-21.8	35.0
Isooctane	Ave	1.073	1.079		10.1	10.0	0.5	35.0
Ethyl acrylate	Ave	0.2364	0.1965		8.31	10.0	-16.9	35.0
n-Heptane	Ave	0.4927	0.4948		10.0	10.0	0.4	35.0
Dibromomethane	Ave	0.1277	0.1078		8.44	10.0	-15.6	35.0
1,2-Dichloropropane	Ave	0.3301	0.2782		8.43	10.0	-15.7	20.0
2-Nitropropane	Lin1		0.0346		15.9	20.0	-20.3	35.0
Trichloroethene	Ave	0.4652	0.4818		10.4	10.0	3.6	35.0
Bromodichloromethane	Ave	0.3912	0.3722		9.52	10.0	-4.9	35.0
Methyl methacrylate	Lin2		0.0946		12.6	20.0	-37.1	50.0
1,4-Dioxane	Lin2		0.0004		105	200	-47.7	50.0
2-Chloroethyl vinyl ether	Lin1		0.0776		10.8	20.0	-46.1*	35.0
Methylcyclohexane	Qua		0.6342		13.1	10.0	30.6	35.0
cis-1,3-Dichloropropene	Ave	1.157	1.002		8.66	10.0	-13.4	35.0
4-Methyl-2-pentanone (MIBK)	Lin2		0.0914		13.4	20.0	-33.1	50.0
trans-1,3-Dichloropropene	Lin1		0.7522		8.66	10.0	-13.4	35.0
1,1,2-Trichloroethane	Qua		0.4254		7.94	10.0	-20.6	35.0
Ethyl methacrylate	Lin1		0.4355		7.54	10.0	-24.6	50.0
Toluene	Ave	2.471	2.453		9.93	10.0	-0.7	20.0
1,3-Dichloropropane	Lin1		0.6756		7.98	10.0	-20.2	35.0
2-Hexanone	Qua		0.1752		14.1	20.0	-29.8	50.0
Dibromochloromethane	Ave	0.7023	0.7269		10.4	10.0	3.5	35.0
n-Butyl acetate	Qua		0.4224		6.32	10.0	-36.8*	35.0
1,2-Dibromoethane	Ave	0.4808	0.4237		8.81	10.0	-11.9	35.0
Tetrachloroethene	Ave	0.9266	1.018		11.0	10.0	9.8	35.0
1-Chlorohexane	Ave	0.8564	0.9233		10.8	10.0	7.8	35.0
1,1,1,2-Tetrachloroethane	Ave	1.011	1.047		10.4	10.0	3.5	35.0
Chlorobenzene	Ave	2.862	2.826	0.3000	9.87	10.0	-1.3	35.0
Ethylbenzene	Ave	1.529	1.595		10.4	10.0	4.3	20.0
m-Xylene & p-Xylene	Ave	3.444	3.745		10.9	10.0	8.7	35.0
Bromoform	Lin		0.3496	0.1000	8.77	10.0	-12.3	35.0
Styrene	Lin1		2.839		10.6	10.0	5.7	35.0
Cyclohexanone	Qua		0.0139		734	500	46.7*	35.0
o-Xylene	Lin		1.903		11.1	10.0	11.4	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Lab Sample ID: CCVIS 600-264156/2 Calibration Date: 05/02/2019 08:51

Instrument ID: CHVOAMS07 Calib Start Date: 03/07/2019 10:55

GC Column: DB-VRX 60 ID: 0.25 (mm) Calib End Date: 03/07/2019 13:25

Lab File ID: A12201.d Conc. Units: $\underline{ug/L}$ Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,1,2,2-Tetrachloroethane	Lin		0.4214	0.3000	7.40	10.0	-26.0	35.0
trans-1,4-Dichloro-2-butene	Lin		0.0844		7.83	10.0	-21.7	50.0
1,2,3-Trichloropropane	Lin		0.1245		9.00	10.0	-10.0	35.0
Isopropylbenzene	Lin		4.686		10.9	10.0	8.7	35.0
Bromobenzene	Ave	1.165	1.075		9.23	10.0	-7.7	35.0
N-Propylbenzene	Ave	1.351	1.431		10.6	10.0	6.0	35.0
2-Chlorotoluene	Lin		1.240		10.2	10.0	1.9	35.0
4-Chlorotoluene	Qua		3.117		12.1	10.0	20.7	35.0
1,3,5-Trimethylbenzene	Lin		4.060		10.7	10.0	6.6	35.0
tert-Butylbenzene	Qua		3.692		14.1	10.0	40.6*	35.0
1,2,4-Trimethylbenzene	Ave	3.862	4.080		10.6	10.0	5.6	35.0
sec-Butylbenzene	Ave	4.372	5.107		11.7	10.0	16.8	35.0
Benzyl chloride	Ave	0.8700	0.8602		9.89	10.0	-1.1	35.0
1,3-Dichlorobenzene	Ave	2.129	2.234		10.5	10.0	4.9	35.0
4-Isopropyltoluene	Ave	4.270	4.947		11.6	10.0	15.9	35.0
1,4-Dichlorobenzene	Ave	2.193	2.246		10.2	10.0	2.4	35.0
1,2,3-Trimethylbenzene	Ave	3.671	3.825		10.4	10.0	4.2	35.0
1,2-Dichlorobenzene	Ave	1.783	1.688		9.47	10.0	-5.3	35.0
n-Butylbenzene	Ave	3.338	3.548		10.6	10.0	6.3	35.0
1,2-Dibromo-3-Chloropropane	Qua		0.0724		8.96	10.0	-10.4	35.0
1,3,5-Trichlorobenzene	Qua		1.356		9.27	10.0	-7.3	35.0
1,2,4-Trichlorobenzene	Lin		0.6987		6.95	10.0	-30.5	35.0
Naphthalene	Lin		1.102		8.53	10.0	-14.7	35.0
Hexachlorobutadiene	Qua		0.2790		12.5	10.0	24.6	35.0
1,2,3-Trichlorobenzene	Lin1		0.4752		8.96	10.0	-10.4	35.0
Dibromofluoromethane	Ave	0.3392	0.3172		9.35	10.0	-6.5	35.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2299	0.2162		9.40	10.0	-6.0	35.0
Toluene-d8 (Surr)	Ave	3.532	3.285		9.30	10.0	-7.0	35.0
4-Bromofluorobenzene	Lin		0.9493		10.0	10.0	0.3	35.0

Job No.: 600-184182-1			
Lab Sample ID: MB 600-264044/6			
Lab File ID: A12105.d			
Date Collected:			
Date Analyzed: 05/01/2019 11:15			
Dilution Factor: 1			
GC Column: DB-VRX 60 ID: 0.25(mm)			
Level: (low/med) Low			
Units: mg/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		50-134
460-00-4	4-Bromofluorobenzene	116		67-139
1868-53-7	Dibromofluoromethane	101		62-130
2037-26-5	Toluene-d8 (Surr)	104		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1				
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 600-264156/6			
Matrix: Water	Lab File ID: A12205.d			
Analysis Method: 8260B	Date Collected:			
Sample wt/vol: 20(mL)	Date Analyzed: 05/02/2019 10:51			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 264156	Units: mg/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		50-134
460-00-4	4-Bromofluorobenzene	116		67-139
1868-53-7	Dibromofluoromethane	98		62-130
2037-26-5	Toluene-d8 (Surr)	109		70-130

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184182-1		
SDG No.:			
Client Sample ID:	Lab Sample ID: LCS 600-264044/3		
Matrix: Water	Lab File ID: A12102.d		
Analysis Method: 8260B	Date Collected:		
ample wt/vol: 20 (mL) Date Analyzed: 05/01/2019 10:01			
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 264044	Units: mg/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.008956		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.01041		0.00100	0.000192
71-43-2	Benzene	0.009070		0.00100	0.000176
91-20-3	Naphthalene	0.008143		0.00200	0.000129
127-18-4	Tetrachloroethene	0.01141		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		50-134
460-00-4	4-Bromofluorobenzene	121		67-139
1868-53-7	Dibromofluoromethane	108		62-130
2037-26-5	Toluene-d8 (Surr)	114		70-130

Lab Name: Eurofins TestAmerica, Houston	Job_No.: 600-184182-1
SDG No.:	
Client Sample ID:	Lab Sample ID: LCS 600-264156/3
Matrix: Water	Lab File ID: A12202.d
Analysis Method: 8260B	Date Collected:
Sample wt/vol: 20(mL)	Date Analyzed: 05/02/2019 09:38
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 264156	Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.008733		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.009985		0.00100	0.000192
71-43-2	Benzene	0.008602		0.00100	0.000176
91-20-3	Naphthalene	0.007376		0.00200	0.000129
127-18-4	Tetrachloroethene	0.01155		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		50-134
460-00-4	4-Bromofluorobenzene	121		67-139
1868-53-7	Dibromofluoromethane	108		62-130
2037-26-5	Toluene-d8 (Surr)	114		70-130

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184182-1
SDG No.:	
Client Sample ID:	Lab Sample ID: LCSD 600-264044/4
Matrix: Water	Lab File ID: A12103.d
Analysis Method: 8260B	Date Collected:
Sample wt/vol: 20(mL)	Date Analyzed: 05/01/2019 10:26
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 264044	Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.009138		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.009998		0.00100	0.000192
71-43-2	Benzene	0.008819		0.00100	0.000176
91-20-3	Naphthalene	0.008532		0.00200	0.000129
127-18-4	Tetrachloroethene	0.01112		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		50-134
460-00-4	4-Bromofluorobenzene	119		67-139
1868-53-7	Dibromofluoromethane	106		62-130
2037-26-5	Toluene-d8 (Surr)	110		70-130

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184182-1
SDG No.:	
Client Sample ID:	Lab Sample ID: LCSD 600-264156/4
Matrix: Water	Lab File ID: A12203.d
Analysis Method: 8260B	Date Collected:
Sample wt/vol: 20(mL)	Date Analyzed: 05/02/2019 10:02
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 264156	Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.008833		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.009958		0.00100	0.000192
71-43-2	Benzene	0.008709		0.00100	0.000176
91-20-3	Naphthalene	0.007757		0.00200	0.000129
127-18-4	Tetrachloroethene	0.01158		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		50-134
460-00-4	4-Bromofluorobenzene	121		67-139
1868-53-7	Dibromofluoromethane	109		62-130
2037-26-5	Toluene-d8 (Surr)	112		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1 SDG No.: Client Sample ID: ARTESIA-MW21-04232019 MS Lab Sample ID: 600-184182-6 MS Matrix: Water Lab File ID: A12115.d Date Collected: 04/23/2019 09:00 Analysis Method: 8260B Date Analyzed: 05/01/2019 15:25 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 264044 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.01053		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.01081		0.00100	0.000192
71-43-2	Benzene	0.009354		0.00100	0.000176
91-20-3	Naphthalene	0.008083		0.00200	0.000129
127-18-4	Tetrachloroethene	0.01176		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		50-134
460-00-4	4-Bromofluorobenzene	120		67-139
1868-53-7	Dibromofluoromethane	108		62-130
2037-26-5	Toluene-d8 (Surr)	111		70-130

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184182-1				
SDG No.:					
Client Sample ID: ARTESIA-MW21-04232019 MSD	Lab Sample ID: 600-184182-6 MSD				
Matrix: Water	Lab File ID: A12116.d				
Analysis Method: 8260B	Date Collected: 04/23/2019 09:00				
Sample wt/vol: 20(mL)	Date Analyzed: 05/01/2019 15:50				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 264044	Units: ma/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.009922		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.009990		0.00100	0.000192
71-43-2	Benzene	0.008919		0.00100	0.000176
91-20-3	Naphthalene	0.009583		0.00200	0.000129
127-18-4	Tetrachloroethene	0.01092		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	106		50-134
460-00-4	4-Bromofluorobenzene	124		67-139
1868-53-7	Dibromofluoromethane	109		62-130
2037-26-5	Toluene-d8 (Surr)	108		70-130

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184182-1
SDG No.:	
Instrument ID: CHVOAMS07	Start Date: 03/07/2019 10:21
Analysis Batch Number: 259909	End Date: 03/07/2019 17:30

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
			FACTOR		
BFB 600-259909/1		03/07/2019 10:21	1	A06600.d	DB-VRX 60 0.25 (mm)
IC 600-259909/2		03/07/2019 10:55	1	A06601.d	DB-VRX 60 0.25(mm)
IC 600-259909/3		03/07/2019 11:20	1	A06602.d	DB-VRX 60 0.25(mm)
IC 600-259909/4		03/07/2019 11:45	1	A06603.d	DB-VRX 60 0.25(mm)
IC 600-259909/5		03/07/2019 12:10	1	A06604.d	DB-VRX 60 0.25(mm)
ICIS 600-259909/6		03/07/2019 12:35	1	A06605.d	DB-VRX 60 0.25(mm)
IC 600-259909/7		03/07/2019 13:00	1	A06606.d	DB-VRX 60 0.25(mm)
IC 600-259909/8		03/07/2019 13:25	1	A06607.d	DB-VRX 60 0.25(mm)
ICV 600-259909/10		03/07/2019 14:28	1	A06609.d	DB-VRX 60 0.25(mm)
ZZZZZ		03/07/2019 14:28	1		DB-VRX 60 0.25(mm)
ZZZZZ		03/07/2019 14:53	1		DB-VRX 60 0.25(mm)
ZZZZZ		03/07/2019 15:44	1		DB-VRX 60 0.25(mm)
ZZZZZ		03/07/2019 16:35	400		DB-VRX 60 0.25(mm)
ZZZZZ		03/07/2019 17:05	80		DB-VRX 60 0.25(mm)
ZZZZZ		03/07/2019 17:30	32		DB-VRX 60 0.25 (mm)

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184182-1
SDG No.:	
Instrument ID: CHVOAMS07	Start Date: 05/01/2019 08:29
Analysis Batch Number: 264044	End Date: 05/01/2019 20:26

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 600-264044/1		05/01/2019 08:29	1	A12100.d	DB-VRX 60 0.25(mm)
CCVIS 600-264044/2		05/01/2019 09:00	1	A12101.d	DB-VRX 60 0.25(mm)
LCS 600-264044/3		05/01/2019 10:01	1	A12102.d	DB-VRX 60 0.25(mm)
LCSD 600-264044/4		05/01/2019 10:26	1	A12103.d	DB-VRX 60 0.25(mm)
MB 600-264044/6		05/01/2019 11:15	1	A12105.d	DB-VRX 60 0.25(mm)
ZZZZZ		05/01/2019 11:40	500		DB-VRX 60 0.25(mm)
ZZZZZ		05/01/2019 12:05	1		DB-VRX 60 0.25(mm)
ZZZZZ		05/01/2019 12:29	1		DB-VRX 60 0.25(mm)
ZZZZZ		05/01/2019 12:54	1		DB-VRX 60 0.25(mm)
ZZZZZ		05/01/2019 13:19	5		DB-VRX 60 0.25(mm)
ZZZZZ		05/01/2019 13:44	250		DB-VRX 60 0.25(mm)
ZZZZZ		05/01/2019 14:10	5000		DB-VRX 60 0.25(mm)
600-184182-6		05/01/2019 14:35	1	A12113.d	DB-VRX 60 0.25(mm)
ZZZZZ		05/01/2019 15:00	500		DB-VRX 60 0.25(mm)
600-184182-6 MS		05/01/2019 15:25	1	A12115.d	DB-VRX 60 0.25(mm)
600-184182-6 MSD		05/01/2019 15:50	1	A12116.d	DB-VRX 60 0.25(mm)
ZZZZZ		05/01/2019 16:15	20		DB-VRX 60 0.25(mm)
600-184182-1		05/01/2019 16:41	1	A12118.d	DB-VRX 60 0.25(mm)
600-184182-2		05/01/2019 17:06	1	A12119.d	DB-VRX 60 0.25(mm)
600-184182-3		05/01/2019 17:31	1	A12120.d	DB-VRX 60 0.25(mm)
600-184182-4		05/01/2019 17:56	1	A12121.d	DB-VRX 60 0.25(mm)
600-184182-5		05/01/2019 18:21	1	A12122.d	DB-VRX 60 0.25 (mm)
600-184182-7		05/01/2019 18:46	1	A12123.d	DB-VRX 60 0.25(mm)
600-184182-8		05/01/2019 19:11	1	A12124.d	DB-VRX 60 0.25(mm)
600-184182-9		05/01/2019 19:36	1	A12125.d	DB-VRX 60 0.25(mm)
600-184182-10		05/01/2019 20:01	1	A12126.d	DB-VRX 60 0.25(mm)
600-184182-11		05/01/2019 20:26	1	A12127.d	DB-VRX 60 0.25(mm)

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184182-1
SDG No.:	
Instrument ID: CHVOAMS07	Start Date: 05/02/2019 08:04
Analysis Batch Number: 264156	End Date: 05/02/2019 19:56

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 600-264156/1		05/02/2019 08:04	1	A12200.d	DB-VRX 60 0.25 (mm)
CCVIS 600-264156/2		05/02/2019 08:51	1	A12201.d	DB-VRX 60 0.25 (mm)
LCS 600-264156/3		05/02/2019 09:38	1	A12202.d	DB-VRX 60 0.25(mm)
LCSD 600-264156/4		05/02/2019 10:02	1	A12203.d	DB-VRX 60 0.25(mm)
MB 600-264156/6		05/02/2019 10:51	1	A12205.d	DB-VRX 60 0.25 (mm)
ZZZZZ		05/02/2019 11:15	1		DB-VRX 60 0.25 (mm)
ZZZZZ		05/02/2019 11:40	1		DB-VRX 60 0.25 (mm)
ZZZZZ		05/02/2019 12:04	1		DB-VRX 60 0.25 (mm)
ZZZZZ		05/02/2019 12:29	1		DB-VRX 60 0.25 (mm)
ZZZZZ		05/02/2019 12:54	1		DB-VRX 60 0.25 (mm)
600-184182-12		05/02/2019 13:19	1	A12211.d	DB-VRX 60 0.25 (mm)
ZZZZZ		05/02/2019 13:43	1		DB-VRX 60 0.25 (mm)
ZZZZZ		05/02/2019 14:08	1		DB-VRX 60 0.25 (mm)
ZZZZZ		05/02/2019 14:33	1		DB-VRX 60 0.25 (mm)
ZZZZZ		05/02/2019 14:57	1		DB-VRX 60 0.25 (mm)
ZZZZZ		05/02/2019 15:22	1		DB-VRX 60 0.25(mm)
ZZZZZ		05/02/2019 15:47	1		DB-VRX 60 0.25(mm)
ZZZZZ		05/02/2019 16:12	5		DB-VRX 60 0.25(mm)
ZZZZZ		05/02/2019 16:37	1		DB-VRX 60 0.25(mm)
ZZZZZ		05/02/2019 17:02	1		DB-VRX 60 0.25(mm)
ZZZZZ		05/02/2019 17:27	1		DB-VRX 60 0.25(mm)
ZZZZZ		05/02/2019 17:52	1		DB-VRX 60 0.25(mm)
ZZZZZ		05/02/2019 18:17	1		DB-VRX 60 0.25(mm)
ZZZZZ		05/02/2019 18:42	1		DB-VRX 60 0.25(mm)
ZZZZZ		05/02/2019 19:06	10		DB-VRX 60 0.25(mm)
ZZZZZ		05/02/2019 19:31	10		DB-VRX 60 0.25(mm)
ZZZZZ		05/02/2019 19:56	100		DB-VRX 60 0.25(mm)

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1									
SDG No.:									
Batch Number:	259909		В	Batch Start Date: 03/07/19 10:21			Batch Analyst: Shen, Wei		
Batch Method: 8260B		В	Batch End Date:						
Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	BFB 00277	EOxideLcs 00146	EOxideStd 00146	VOAIS50PPM 00246
BFB 600-259909/1		8260B		20 mL	20 mL	2 uL			
IC 600-259909/2		8260B		20 mL	20 mL			0.2 uL	5 uL
IC 600-259909/3		8260B		20 mL	20 mL			0.4 uL	5 uL
IC 600-259909/4		8260B		20 mL	20 mL			0.8 uL	5 uL
IC 600-259909/5		8260B		20 mL	20 mL			2 uL	5 uL
ICIS 600-259909/6		8260B		20 mL	20 mL			4 uL	5 uL
IC 600-259909/7		8260B		20 mL	20 mL			8 uL	5 uL
IC 600-259909/8		8260B		20 mL	20 mL			20 uL	5 uL
ICV 600-259909/10		8260B		20 mL	20 mL		4 uL		5 uL
-	Client Sample ID	Method Chain	Basis	VOALCSGASPT 00316	VOALCSPT2 00134	VOASS50PPM 00284	VOASTDGASPT 00316	VOASTDPT2 00134	
BFB 600-259909/1		8260B							
IC 600-259909/2		8260B					0.2 uL	0.2 uL	
IC 600-259909/3		8260B					0.4 uL	0.4 uL	
IC 600-259909/4		8260B					0.8 uL	0.8 uL	
IC 600-259909/5		8260B					2 uL	2 uL	
ICIS 600-259909/6		8260B					4 uL	4 uL	
IC 600-259909/7		8260B					8 uL	8 uL	
IC 600-259909/8		8260B					20 uL	20 uL	
ICV 600-259909/10		8260B		4 uL	4 uL	5 uL			
		Ва	tch Not	ces					
Basis Ba	asis Description								

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-184182-1

SDG No.:

Batch Number: 264044 Batch Start Date: 05/01/19 08:29 Batch Analyst: Shen, Wei

Batch Method: 8260B Batch End Date: _____

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	Initial pH	BFB 00281	EOxideLcs 00150	EOxideStd 00150
BFB 600-264044/1		8260B		20 mL	20 mL		2 uL		
CCVIS 600-264044/2		8260B		20 mL	20 mL				4 uL
LCS 600-264044/3		8260B		20 mL	20 mL			4 uL	
LCSD 600-264044/4		8260B		20 mL	20 mL			4 uL	
MB 600-264044/6		8260B		20 mL	20 mL				
600-184182-C-6	ARTESIA-MW21-042 32019	8260B	Т	20 mL	20 mL	2 SU			
600-184182-B-1	ARTESIA-TB02-042 32019	8260B	Т	20 mL	20 mL	2 SU			
600-184182-B-6 MS	ARTESIA-MW21-042 32019	8260B	Т	20 mL	20 mL	2 SU			
600-184182-B-6 MSD	ARTESIA-MW21-042 32019	8260B	Т	20 mL	20 mL	2 SU			
600-184182-B-2	ARTESIA-MW33-042 32019	8260B	Т	20 mL	20 mL	2 SU			
600-184182-C-3	ARTESIA-MW29-042 32019	8260B	Т	20 mL	20 mL	2 SU			
600-184182-B-4	ARTESIA-MW35-042 32019	8260B	Т	20 mL	20 mL	2 SU			
600-184182-C-5	ARTESIA-MW28-042 32019	8260B	Т	20 mL	20 mL	2 SU			
600-184182-C-7	ARTESIA-MW22-042 32019	8260B	Т	20 mL	20 mL	2 SU			
600-184182-C-8	ARTESIA-MW31-042 32019		Т	20 mL	20 mL	2 SU			
600-184182-C-9	ARTESIA-MW25-042 32019	8260B	Т	20 mL	20 mL	2 SU			
	ARTESIA-MW18-042 32019		Т	20 mL	20 mL	2 SU			
600-184182-C-11	ARTESIA-MD18-042 32019	8260B	Т	20 mL	20 mL	2 SU			

Lab Sample ID	Client Sample ID	Method Chain	Basis	VOAIS50PPM 00250	VOALCSGASPT 00323	VOALCSPT2 00138	VOASS50PPM 00288	VOASTDGASPT 00323	VOASTDPT2 00138
BFB 600-264044/1		8260B							
CCVIS 600-264044/2		8260B		5 uL				4 uL	4 uL

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-184182-1	
SDG No.:		
Batch Number: 264044	Batch Start Date: 05/01/19 08:29	Batch Analyst: Shen, Wei
Batch Method: 8260B	Batch End Date:	

Lab Sample ID	Client Sample ID	Method Chain	Basis	VOAIS50PPM 00250	VOALCSGASPT 00323	VOALCSPT2 00138	VOASS50PPM 00288	VOASTDGASPT 00323	VOASTDPT2 00138
LCS 600-264044/3		8260B		5 uL	4 uL	4 uL	5 uL		
LCSD 600-264044/4		8260B		5 uL	4 uL	4 uL	5 uL		
MB 600-264044/6		8260B		5 uL			5 uL		
600-184182-C-6	ARTESIA-MW21-042 32019	8260B	Т	5 uL			5 uL		
600-184182-B-1	ARTESIA-TB02-042 32019	8260B	Т	5 uL			5 uL		
600-184182-B-6 MS	ARTESIA-MW21-042 32019	8260B	Т	5 uL	4 uL	4 uL	5 uL		
600-184182-B-6 MSD	ARTESIA-MW21-042 32019		Т	5 uL	4 uL	4 uL	5 uL		
600-184182-B-2	ARTESIA-MW33-042 32019	8260B	Т	5 uL			5 uL		
600-184182-C-3	ARTESIA-MW29-042 32019	8260B	Т	5 uL			5 uL		
600-184182-B-4	ARTESIA-MW35-042 32019		Т	5 uL			5 uL		
600-184182-C-5	ARTESIA-MW28-042 32019	8260B	Т	5 uL			5 uL		
600-184182-C-7	ARTESIA-MW22-042 32019	8260B	Т	5 uL			5 uL		
600-184182-C-8	ARTESIA-MW31-042 32019		Т	5 uL			5 uL		
600-184182-C-9	ARTESIA-MW25-042 32019	8260B	Т	5 uL			5 uL		
600-184182-C-10	ARTESIA-MW18-042 32019	8260B	Т	5 uL			5 uL		
600-184182-C-11	ARTESIA-MD18-042 32019	8260B	Т	5 uL			5 uL		

	Batch Notes
f	

Basis	Basis Description
Т	Total/NA

Lab Name: Eur	rofins TestAmer	rica, Housto	n J	ob No.: 600-18	34182-1				
SDG No.:									
Batch Number:	: 264156		В	atch Start Dat	te: 05/02/19	08:04	Batch Analys	t: Shen, Wei	
Batch Method:	: 8260B		B	atch End Date:	:				
Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	Initial pH	BFB 00281	EOxideLcs 00150	EOxideStd 00150
BFB 600-264156/1		8260B		20 mL	20 mL		2 uL		
CCVIS 600-264156/2		8260B		20 mL	20 mL				4 uL
LCS 600-264156/3		8260B		20 mL	20 mL			4 uL	
LCSD 600-264156/4		8260B		20 mL	20 mL			4 uL	
MB 600-264156/6		8260B		20 mL	20 mL				
600-184182-C-12	ARTESIA-MW15-042	8260B	Т	20 mL	20 mL	2 SU			

Lab Sample ID	Client Sample ID	Method Chain	Basis		VOALCSGASPT	VOALCSPT2 00138	VOASS50PPM	VOASTDGASPT	VOASTDPT2 00138
				00250	00324		00288	00324	
BFB		8260B							
600-264156/1									
CCVIS 600-264156/2		8260B		5 uL				4 uL	4 uL
LCS 600-264156/3		8260B		5 uL	4 uL	4 uL	5 uL		
LCSD 600-264156/4		8260B		5 uL	4 uL	4 uL	5 uL		
MB 600-264156/6		8260B		5 uL			5 uL		
600-184182-C-12	ARTESIA-MW15-042 32019	8260B	Т	5 uL			5 uL		

Batch Notes	

Basis	Basis Description
Т	Total/NA

METALS

COVER PAGE METALS

Lab Name:	Eurofins TestAmerica, Corpus Chr	Job Number: 600-184182-1
SDG No.:		
Project:	Dowell - Artesia 04/23/19	
	Client Sample ID	Lab Sample ID
	ARTESIA-MW29-04232019	600-184182-3
	ARTESIA-MW28-04232019	600-184182-5
	ARTESIA-MW21-04232019	600-184182-6
	ARTESIA-MW22-04232019	600-184182-7
	ARTESIA-MW31-04232019	600-184182-8
	ARTESIA-MW25-04232019	600-184182-9
	ARTESIA-MW18-04232019	600-184182-10
	ARTESIA-MD18-04232019	600-184182-11

Comments:

Client Sample ID: ARTESIA-MW29-04232019

Lab Sample ID: 600-184182-3

Job No.: 600-184182-1

SDG ID.:

Matrix: Water

Date Sampled: 04/23/2019 08:20

Reporting Basis: WET

Date Received: 04/24/2019 10:21

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.0116	0.0500	0.0116	mg/L	U		1	6020

Client Sample ID: ARTESIA-MW28-04232019

Lab Name: Eurofins TestAmerica, Corpus Christi

SDG ID.:

Matrix: Water

Date Sampled: 04/23/2019 08:50

Reporting Basis: WET

Date Received: 04/24/2019 10:21

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.0116	0.0500	0.0116	mg/L	U		1	6020

Client Sample ID: ARTESIA-MW21-04232019

Lab Sample ID: 600-184182-6

Lab Name: Eurofins TestAmerica, Corpus Christi

SDG ID.:

Matrix: Water

Date Sampled: 04/23/2019 09:00

Reporting Basis: WET

Date Received: 04/24/2019 10:21

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.0154	0.0500	0.0116	mg/L	J		1	6020

Client Sample ID: ARTESIA-MW22-04232019

Lab Sample ID: 600-184182-7

Lab Name: Eurofins TestAmerica, Corpus Christi

SDG ID.:

Matrix: Water

Reporting Basis: WET

Date Received: 04/23/2019 10:21

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.0116	0.0500	0.0116	mg/L	U		1	6020

Client Sample ID: ARTESIA-MW31-04232019

Lab Sample ID: 600-184182-8

Lab Name: Eurofins TestAmerica, Corpus Christi

SDG ID.:

Matrix: Water

Date Sampled: 04/23/2019 09:25

Reporting Basis: WET

Date Received: 04/24/2019 10:21

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.0337	0.0500	0.0116	mg/L	J		1	6020

Client Sample ID: ARTESIA-MW25-04232019

Lab Name: Eurofins TestAmerica, Corpus Christi

SDG ID.:

Matrix: Water

Date Sampled: 04/23/2019 09:55

Reporting Basis: WET

Date Received: 04/24/2019 10:21

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.244	0.0500	0.0116	mg/L			1	6020

Client Sample ID: ARTESIA-MW18-04232019

Lab Sample ID: 600-184182-10

Job No.: 600-184182-1

SDG ID.:

Matrix: Water

Date Sampled: 04/23/2019 10:10

Reporting Basis: WET

Date Received: 04/24/2019 10:21

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.0116	0.0500	0.0116	mg/L	U		1	6020

Client Sample ID: ARTESIA-MD18-04232019

Lab Sample ID: 600-184182-11

Job No.: 600-184182-1

SDG ID.:

Matrix: Water

Date Sampled: 04/23/2019 10:15

Reporting Basis: WET

Date Received: 04/24/2019 10:21

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.0276	0.0500	0.0116	mg/L	J		1	6020

2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Corpus Chris Job No.: 600-184182-1

SDG No.:

ICV Source: ICV_ESI_00083 Concentration Units: ug/L

CCV Source: TS_MS250_00051

			-161978/10 019 13:52		CCV 560-161978/25 04/29/2019 15:38			CCV 560-161978/38 04/29/2019 16:53				
Analyte	Found	С	True	%R	Found	С	True	%R	Found	С	True	%R
Manganese, Dissolved	2507		2500	100	2543		2500	102	2514		2500	101

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

3-IN INSTRUMENT BLANKS METALS

Lab 1	Name:	Eurofins	TestAmerica,	Corpus	Christi	Job No.:	600-184182-1
SDG 1	No.:						

Concentration Units: ug/L

		ICB 560-16197 04/29/2019 1		CCB 560-161978/27 04/29/2019 15:48		CCB 560-16197			
Analyte	RL	Found	С	Found	С	Found	С	Found	С
Manganese, Dissolved	50.0	11.6	U	11.6	Ū	11.6	Ū		

Italicized analytes were not requested for this sequence.

FORM III-IN Page 115 of 141

3-IN METHOD BLANK METALS

Lab Name: Eurofins TestAmerica, Corpus Chr	Job No.: 600-184182-1
SDG No.:	
Concentration Units: mg/L	Lab Sample ID: MB 560-161936/1-A
Instrument Code: Micpms	Batch No.: 161978

CAS No.	Analyte	Concentration	С	Q	Method
7439-96-5	Manganese, Dissolved	0.0116	U		6020

4A-IN INTERFERENCE CHECK STANDARD METALS

Lab Name: Eurofins TestAmerica, Corpus Ch Job No.: 600-184182	2-	٠1
--	----	----

SDG No.:

Lab Sample ID: ICSA 560-161978/11 Instrument ID: Micpms

Lab File ID: 013SMPL.D ICS Source: INT-A 00133

Concentration Units: ug/L

	True	Found	
			Percent
Analyte	Solution A	Solution A	Recovery
Manganese, Dissolved		2.60	
Aluminum	250000	217800	87
Antimony		0.599	
Arsenic		2.41	
Barium		1.69	
Beryllium		0.0496	
Boron		-2.74	
Cadmium		0.481	
Calcium	250000	234100	94
Cobalt		0.561	
Copper		0.442	
Iron	100000	95200	95
Lead		0.562	
Lithium		-1.97	
Magnesium	250000	243200	97
Molybdenum		0.334	
Nickel		-0.707	
Phosphorus		-50.9	
Potassium		35.7	
Selenium		0.694	
Silicon		0.0000	
Silver		0.420	
Sodium		150	
Strontium		4.18	
Thallium		-0.0546	
Tin		-38.7	
Titanium		0.407	
Uranium		0.117	
Zinc		3.29	

Calculations are performed before rounding to avoid round-off errors in calculated results.

4A-IN INTERFERENCE CHECK STANDARD METALS

Lab Name: Eurofins TestAmerica, Corpus Ch Job No.: 600-184182-1

SDG No.:

Lab Sample ID: ICSAB 560-161978/12 Instrument ID: Micpms

Lab File ID: 014SMPL.D ICS Source: INT-AB 00139

Concentration Units: ug/L

Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Copper Tron Gead Lithium Magnesium Molybdenum Vickel Phosphorus Potassium Selenium Silicon Silver Sodium Strontium Thallium Thallium Tranium Vanadium	True	Found	
Analyte	Solution AB	Solution AB	Percent Recovery
Manganese, Dissolved	250	267	107
Aluminum	125000	105100	84
Antimony		0.431	
Arsenic		2.90	
Barium	250	236	94
Beryllium	250	226	91
Boron		-9.46	
Cadmium	500	467	93
Calcium	125000	111100	89
Chromium	250	243	97
Cobalt	250	235	94
Copper	250	233	93
Iron	50000	46390	93
Lead	500	475	95
Lithium		-3.53	
Magnesium	125000	117300	94
Molybdenum		-0.798	
Nickel	500	457	91
Phosphorus		-73.3	
Potassium		7.53	
Selenium		-0.315	
Silicon		0.0000	
Silver	500	477	95
Sodium		66.8	
Strontium		2.21	
Thallium		-0.241	
Tin		-31.9	
Titanium		0.106	
Uranium		0.0267	
Vanadium	250	249	100
Zinc	500	457	91

Calculations are performed before rounding to avoid round-off errors in calculated results.

7A-IN LAB CONTROL SAMPLE METALS

Lab ID: LCS 560-161936/2-A

Lab Name: Eurofins TestAmerica, Corpus Chri Job No.: 600-184182-1

Sample Matrix: Water LCS Source: ESI-spkA_00021

				Wate	r(mg/L)			
Analyte	True	Found	С	%R	Lim	its	Q	Method
Manganese, Dissolved	2.50	2.397		96	80	120		6020

Calculations are performed before rounding to avoid round-off errors in calculated results.

FORM VIIA - IN

9-IN DETECTION LIMITS METALS - DISSOLVED

Lab Name: Eurofins TestAmerica, Corpus Ch Job Number: 600-184182-1

SDG Number:

Matrix: Water Instrument ID: Micpms

Method: 6020 MDL Date: 05/02/2011 10:33

Prep Method: 3010A

Analyte	Wavelength/	RL	MDL
	Mass	(ug/L)	(ug/L)
Manganese, Dissolved	55	50	11.6

9-IN CALIBRATION BLANK DETECTION LIMITS METALS - DISSOLVED

Lab Name: Eurofins TestAmerica, Corpus Ch Job Number: 600-184182-1

SDG Number:

Matrix: Water Instrument ID: Micpms

Method: 6020 XMDL Date: 05/02/2011 10:34

Analyte	Wavelength/	XRL	XMDL
	Mass	(ug/L)	(ug/L)
Manganese, Dissolved	55	50	11.6

11-IN LINEAR RANGES METALS

Lab Name: Eurofins TestAmerica, Corpus C Job No: 600-184182-1

SDG No.: ____

Instrument ID: Micpms Date: 05/12/2011 15:16

	Analyte	Integ. Time (Sec.)	Concentration (ug/L)	Method
İ	Manganese, Dissolved	0.15	50000	6020

12-IN PREPARATION LOG METALS

Lab Name: Eurofins TestAmerica, Corpus Chr Job No.: 600-184182-1

SDG No.:

Prep Method: 3010A

Lab Sample ID	Preparation Date	Prep Batch	Initial Weight	Initial Volume (mL)	Final Volume (mL)
				(1111)	(11111)
MB 560-161936/1-A	04/29/2019 10:28	161936		50	50
LCS 560-161936/2-A	04/29/2019 10:28	161936		50	50
600-184182-3	04/29/2019 10:28	161936		50	50
600-184182-5	04/29/2019 10:28	161936		50	50
600-184182-6	04/29/2019 10:28	161936		50	50
600-184182-7	04/29/2019 10:28	161936		50	50
600-184182-8	04/29/2019 10:28	161936		50	50
600-184182-9	04/29/2019 10:28	161936		50	50
600-184182-10	04/29/2019 10:28	161936		50	50
600-184182-11	04/29/2019 10:28	161936		50	50

13-IN ANALYSIS RUN LOG METALS

Lab Name: Eurofins TestAmerica, Corpus Christi Job No.: 600-184182-1

SDG No.:

Instrument ID: Micpms Analysis Method: 6020

Start Date: 04/29/2019 13:07 End Date: 04/29/2019 21:41

		Т		Analytes
		У		
		p		
Lab Sample Id	D/F	е	Time	
CALIBSTD 560-161978/1 IC	1		13:07	
IC 560-161978/2	1		13:12	X
IC 560-161978/3	1		13:17	X
IC 560-161978/4	1		13:22	X
IC 560-161978/5	1		13:26	X
IC 560-161978/6	1		13:32	X
CALIBSTD 560-161978/7 IC	1		13:38	X
ICV 560-161978/8			13:42	
ZZZZZZ			13:47	
ICV 560-161978/10	1		13:52	
ICSA 560-161978/11	1		13:57	
ICSAB 560-161978/12	1		14:02	
ZZZZZZ			14:27	
ICB 560-161978/14	1		14:32	X
ZZZZZZ			14:37	
LCS 560-161936/2-A	1	Т	14:42	X
MB 560-161936/1-A	1	Т	14:47	X
ZZZZZZ			14:52	
ZZZZZZ			14:57	
ZZZZZZ			15:02	
ZZZZZZ			15:08	
600-184182-3	1	D	15:13	X
600-184182-5	1	D	15:17	X
ZZZZZZ			15:23	
CCV 560-161978/25	1		15:38	X
ZZZZZZ			15:43	
CCB 560-161978/27	1		15:48	X
ZZZZZZ			15:53	
ZZZZZZ			15:58	
600-184182-6	1	D	16:03	X
600-184182-7	1	D	16:08	X
600-184182-8	1	D	16:13	X
600-184182-9	1	D	16:18	
600-184182-10	1	D	16:23	
600-184182-11	1	D	16:28	
ZZZZZZ			16:32	
ZZZZZZ			16:37	
CCV 560-161978/38	1		16:53	
ZZZZZZ			16:58	
CCB 560-161978/40	1		17:03	
ZZZZZZ		T	17:08	
ZZZZZZ			17:12	

13-IN ANALYSIS RUN LOG METALS

Lab Name: Eurofins TestAmerica, Corpus Christi Job No.: 600-184182-1

SDG No.:

Instrument ID: Micpms Analysis Method: 6020

Start Date: 04/29/2019 13:07 End Date: 04/29/2019 21:41

		Т											An	al	yt	es										_
		У		М			Τ						Τ							\Box	Т			Т	Т	\top
Lab Sample Id	D/F	p e	Time	n																						
		$^{+}$	17:22		\pm	+	 		$\overline{}$		$\overline{}$		$^{\perp}$					\pm	$\overline{}$	_	\pm	\pm	$\frac{\perp}{1}$	$\frac{\perp}{\parallel}$	÷	÷
ZZZZZ			17:28		+	+			\dashv	\dashv	+							\dashv	\dashv	\dashv	\dashv	+	+	+	+	+
ZZZZZZ			17:33								+									\dashv	1			+	+	+
ZZZZZZ			17:38								\top								\dashv	\dashv	\top				$^{+}$	+
ZZZZZZ			17:43								\top								\exists	\top	\top				t	\top
ZZZZZZ			17:48								\top								\exists	\top	\top				t	\top
ZZZZZZ			17:53																						T	\top
CCV 560-161978/50			18:08								\top									T	T				T	\top
ZZZZZZ			18:12																		T				T	T
CCB 560-161978/52			18:17		\top				\neg		\top							\dashv	\top		\top	\top	\top		T	\top
ZZZZZZ			18:22		\top				\neg		\top							\dashv	\top		\top	\top	\top		T	\top
ZZZZZZ			18:27																							T
ZZZZZZ			18:32																							T
ZZZZZZ			18:42																							T
ZZZZZZ			18:47																							
ZZZZZZ			18:52																							
ZZZZZZ			18:57																							Т
ZZZZZZ			19:02																							
ZZZZZZ			19:07																							
CCV 560-161978/62			19:23																							
ZZZZZZ			19:28																							
CCB 560-161978/64			19:33																							\perp
ZZZZZZ			19:38																						\perp	\perp
ZZZZZZ			19:42																						\perp	\perp
ZZZZZZ			19:47								_								_	_	4		\perp	\perp	\perp	\perp
ZZZZZZ			19:52								_									_	4				1	\perp
ZZZZZZ			19:57								_										4				1	\perp
ZZZZZZ			20:02		_	_	_		_		4		_					_	_	4	\perp	_	_	\perp		\perp
ZZZZZZ			20:07		_	_	_		_		4		_					_	_	4	\perp	_	_	\perp		\perp
ZZZZZZ			20:12																		_				\perp	\perp
ZZZZZZ		-	20:17		_	_	-				_	_	-						_	_	4	_	_	_	\perp	+
ZZZZZZ			20:22		_	_			_		+	_	-					_	_	\dashv	+	_	_	+	+	+
CCV 560-161978/75		-	20:37	\vdash	+	_			_	\dashv	_	-	-			\vdash		\dashv	\dashv	+	+	+	-	_	+	+
CCB 560-161978/77		+	20:41	\vdash	+	+	+		\dashv	-	+	_	+			\vdash		\dashv	\dashv	+	+	+	+	+	+	+
ZZZZZZ		+	20:46	\vdash	+	+	+	\vdash	\dashv	-	+	+	+			\vdash	-	\dashv	\dashv	+	+	+	+	+	+	+
ZZZZZZ ZZZZZZ		+	20:51	\vdash	+	+	+		\dashv	-	+	+	+			\vdash	_	\dashv	\dashv	+	+	+	+	+	+	+
ZZZZZZ		+	20:36	\vdash	+	+	+		\dashv	\dashv	+	+	+			\vdash		\dashv	\dashv	+	+	+	+	+	+	+
ZZZZZZ		+	21:01	\vdash	+	+	+		\dashv	\dashv	+	+	+			\vdash		\dashv	\dashv	+	+	+	+	+	+	+
ZZZZZZ		+	21:06	\vdash	+	+	+		\dashv	\dashv	+	+	+			\vdash		\dashv	\dashv	+	+	+	+	+	+	+
CCV 560-161978/83		+	21:11	\vdash	+	+	+		\dashv	\dashv	+	+	+			\vdash		\dashv	\dashv	+	+	+	+	+	+	+
ZZZZZZ		+	21:31	\vdash	+	+	+	\vdash	\dashv	-	+	+	+			\vdash	-	\dashv	\dashv	+	+	+	+	+	+	+
			Z1:36						1																	

13-IN ANALYSIS RUN LOG METALS

Lab Name: Eurofins TestAmerica, Corpus Christi Job No.: 600-184182-1

SDG No.:

Instrument ID: Micpms Analysis Method: 6020

Start Date: 04/29/2019 13:07 End Date: 04/29/2019 21:41

		Т									An	al	уt	es						
Lab Sample Id	D/F	У р е	Time	M n																
CCB 560-161978/85			21:41		$\frac{1}{1}$		\pm	<u> </u>										$\overline{}$	_	\pm

Prep Types:

D = Dissolved

T = Total/NA

Lab Name: Eurofins TestAmerica, Corpus Chri Job No.: 600-184182-1

SDG No.:

			Internal Standards %RI For:								
Lab Sample ID	Time	Element Li-6	Q	Element Sc/1	Q	Element Sc/2	Q	Element Sc/3	Q	Element	Q
CALIBSTD 560-161978/1 IC	13:07	100		100		100		100			
IC 560-161978/2	13:12	100		105		100		100			
IC 560-161978/3	13:17	100		109		100		99			
IC 560-161978/4	13:22	101		108		103		101			
IC 560-161978/5	13:26	94		110		103		99			
IC 560-161978/6	13:32	91		124		102		98			
CALIBSTD 560-161978/7 IC	13:38	100		100		100		100			
ICV 560-161978/10	13:52	95		93		103		94			
ICSA 560-161978/11	13:57	93		89		95		91		119	
ICSAB 560-161978/12	14:02	91		91		100		91			
ICB 560-161978/14	14:32	95		93		106		94			
LCS 560-161936/2-A	14:42	90		93		103		94			
MB 560-161936/1-A	14:47	94		94		104		92			
600-184182-3	15:13	89		95		100		86			
600-184182-5	15:17	90		95		99		88			
CCV 560-161978/25	15:38	93		99		97		92			
CCB 560-161978/27	15:48	92		98		103		93			
600-184182-6	16:03	92		98		96		91			
600-184182-7	16:08	89		97		96		90			
600-184182-8	16:13	89		97		96		90			
600-184182-9	16:18	89		96		95		89			
600-184182-10	16:23	85		93		93		90			
600-184182-11	16:28	82		94		96		88			
CCV 560-161978/38	16:53	88		98		92		90			
CCB 560-161978/40	17:03	95		98		91		91			

Lab Name: Eurofins TestAmerica, Corpus Chri Job No.: 600-184182-1

SDG No.:

			Internal Standards %RI For:								
Lab Sample ID	Time	Element Ge/1	Q	Element Ge/2	Q	Element Ge/3	Q	Element Y-89/1	Q	Element Y-89/2	Q
CALIBSTD 560-161978/1 IC	13:07	100		100		100		100		100	
IC 560-161978/2	13:12	103		102		100		101		99	
IC 560-161978/3	13:17	108		102		102		102		101	
IC 560-161978/4	13:22	114		108		105		104		104	
IC 560-161978/5	13:26	120		113		108		104		106	
IC 560-161978/6	13:32	140		116		109		109		104	
CALIBSTD 560-161978/7 IC	13:38	100		100		100		100		100	
ICV 560-161978/10	13:52	109		113		106		99		102	
ICSA 560-161978/11	13:57					115		95		95	
ICSAB 560-161978/12	14:02	108		110		109		97		101	
ICB 560-161978/14	14:32	99		107		100		100		107	
LCS 560-161936/2-A	14:42	105		109		102		97		106	
MB 560-161936/1-A	14:47	103		107		100		100		107	
600-184182-3	15:13	103		100		95		96		100	
600-184182-5	15:17	103		98		98		95		98	
CCV 560-161978/25	15:38	115		106		106		102		101	
CCB 560-161978/27	15:48	106		106		100		103		107	
600-184182-6	16:03	107		97		100		97		98	
600-184182-7	16:08	106		98		97		97		97	
600-184182-8	16:13	101		97		99		95		98	
600-184182-9	16:18	102		95		101		94		95	
600-184182-10	16:23	100		93		99		90		96	
600-184182-11	16:28	101		96		100		94		96	
CCV 560-161978/38	16:53	115		102		110		100		96	
CCB 560-161978/40	17:03	105		96		101		99		97	

Lab Name: Eurofins TestAmerica, Corpus Chri Job No.: 600-184182-1

SDG No.:

				Inte	rnai	l Standaro	ds 4	RI For:			
Lab Sample ID	Time	Element Y-89/3	Q	Element In/1	Q	Element In/2	Q	Element In/3	Q	Element Tb	Q
CALIBSTD 560-161978/1 IC	13:07	100		100		100		100		100	
IC 560-161978/2	13:12	99		95		98		98		99	
IC 560-161978/3	13:17	99		94		99		98		100	
IC 560-161978/4	13:22	101		95		104		101		103	
IC 560-161978/5	13:26	98		96		104		98		101	
IC 560-161978/6	13:32	97		89		104		95		100	
CALIBSTD 560-161978/7 IC	13:38	100		100		100		100		100	
ICV 560-161978/10	13:52	95		109		101		94		95	
ICSA 560-161978/11	13:57	93		102		94		90		94	
ICSAB 560-161978/12	14:02	93		103		98		91		95	
ICB 560-161978/14	14:32	97		109		107		96		97	
LCS 560-161936/2-A	14:42	96		106		102		95		97	
MB 560-161936/1-A	14:47	95		113		106		95		97	
600-184182-3	15:13	89		98		95		86		91	
600-184182-5	15:17	91		95		94		88		92	
CCV 560-161978/25	15:38	92		110		100		92		94	
CCB 560-161978/27	15:48	95		113		107		94		96	
600-184182-6	16:03	92		97		94		89		93	
600-184182-7	16:08	90		95		92		88		91	
600-184182-8	16:13	91		95		93		88		92	
600-184182-9	16:18	92		93		90		88		92	
600-184182-10	16:23	92		90		91		88		92	
600-184182-11	16:28	90		91		92		88		92	
CCV 560-161978/38	16:53	95		107		96		92		93	
CCB 560-161978/40	17:03	93		106		96		94		93	

Lab Name: Eurofins TestAmerica, Corpus Chri Job No.: 600-184182-1

SDG No.:

				Inte	rna.	l Standar	ds :	%RI For:			
Lab Sample ID	Time	Element Ho	Q	Element Bi	Q	Element	Q	Element	Q	Element	Q
CALIBSTD	13:07	100		100							
560-161978/1 IC	10.10										<u> </u>
IC 560-161978/2	13:12	99		99							Ь—
IC 560-161978/3	13:17	99		99							
IC 560-161978/4	13:22	103		102							
IC 560-161978/5	13:26	101		100							
IC 560-161978/6	13:32	100		93							
CALIBSTD 560-161978/7 IC	13:38	100		100							
ICV 560-161978/10	13:52	95		94							
ICSA 560-161978/11	13:57	94		90							
ICSAB 560-161978/12	14:02	95		92							
ICB 560-161978/14	14:32	96		96							
LCS 560-161936/2-A	14:42	97		95							
MB 560-161936/1-A	14:47	95		97							
600-184182-3	15:13	90		84							
600-184182-5	15:17	93		86							
CCV 560-161978/25	15:38	92		92							
CCB 560-161978/27	15:48	96		95							
600-184182-6	16:03	94		86							
600-184182-7	16:08	92		84							
600-184182-8	16:13	92		87							
600-184182-9	16:18	93		86							
600-184182-10	16:23	91		84							
600-184182-11	16:28	93		86							t
CCV 560-161978/38	16:53	95		92							t
CCB 560-161978/40	17:03	94		94							

METALS BATCH WORKSHEET

Lab Name: Eurofins TestAmerica, Corpus C Job No.: 600-184182-1

SDG No.:

Batch Number: 161936 Batch Start Date: 04/29/19 08:45 Batch Analyst: Martinez, Andrea K

Batch Method: 3010A Batch End Date: 04/29/19 10:50

Lab Sample ID	Client Sample ID	Method	Chain	Basis	Initial pH	InitialAmount	FinalAmount	ESI-spkA 00021	ESI-spkB 00019	AnalysisComment
MB 560-161936/1		3010A,	6020		<2 SU	50 mL	50 mL			
LCS 560-161936/2		3010A,	6020		<2 SU	50 mL	50 mL	0.5 mL	0.5 mL	
600-184182-A-3	ARTESIA-MW29-042 32019	3010A,	6020	D	<2 SU	50 mL	50 mL			6020
600-184182-A-5	ARTESIA-MW28-042 32019	3010A,	6020	D	<2 SU	50 mL	50 mL			6020
600-184182-A-6	ARTESIA-MW21-042 32019	3010A,	6020	D	<2 SU	50 mL	50 mL			6020
600-184182-A-7	ARTESIA-MW22-042 32019	3010A,	6020	D	<2 SU	50 mL	50 mL			6020
600-184182-A-8	ARTESIA-MW31-042 32019	3010A,	6020	D	<2 SU	50 mL	50 mL			6020
600-184182-A-9	ARTESIA-MW25-042 32019	3010A,	6020	D	<2 SU	50 mL	50 mL			6020
600-184182-A-10	ARTESIA-MW18-042 32019	3010A,	6020	D	<2 SU	50 mL	50 mL			6020
600-184182-A-11	ARTESIA-MD18-042 32019	3010A,	6020	D	<2 SU	50 mL	50 mL			6020

Batch	Notes
Balance ID	B-11
Temperature - Corrected - End	95.6 Degrees C
Temperature - Corrected - Start	95.6 Degrees C
Digestion End Time	04/29/2019 10:50
Digestion Start Time	04/28/2019 08:45
Digestion Unit ID	2
Hydrochloric Acid ID	0000201226
Nitric Acid ID	0000203839
pH Indicator ID	HC730269
Pipette/Syringe/Dispenser ID	172
Thermometer ID	250
Digestion Tube/Cup ID	18012117
Temperature - Uncorrected - End	95.0 Degrees C
Temperature - Uncorrected - Start	95.0 Degrees C

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

METALS BATCH WORKSHEET

Lab Name: Eurofins TestAmerica, Corpus C Job No.: 600-184182-1

SDG No.:

Batch Number: 161936 Batch Start Date: 04/29/19 08:45 Batch Analyst: Martinez, Andrea K

Batch Method: 3010A Batch End Date: 04/29/19 10:50

Basis	Basis Description
D	Dissolved

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Subcontract Data

Shipping and Receiving Documents

Chain of Custody Record

Eurofins TestAmerica, Houston

6310 Rothway Street Houston, TX 77040

Phone (713) 690-4444 Fax (713) 690-5646

Environment Testing

: eurofins

th Houston TSP Dodecahydrate Special Instructions/Note: 2100 Z - other (specify) P - Na204S Q - Na2SO3 R - Na2S2O3 N - None O - AsNaO2 S-H2SO4 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Month MIMINONOA 600-184182 Chain of Custody COC No: 600-67988-18594.5 reservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - NahSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page of Z 0 J - Di Water K-EDTA L-EDA かったいか Total Number of containers Felt 8201 6662 Sate/Time: ethod of Shipment rrier Tracking No(s) Analysis Requested Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements: Lab PM.
McDaniel, Bethany A
E-Malt:
bethany.mcdaniel@testamericainc.com Return To Client 8260B_LL - 1,1-DCE and PCE only 300.0 - Anions, IC (Sulfate) Received by: X X X YNXX アフィイ LL - NAP, Benzene, 1,1-DCE, 1,1-DCA, and PCE 2 2 2 Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) acors Matrix Preservation Code Wawater, San 3 Company 3 3 3 3 3 3 3 3 3 3 Type (C=comp, Radiological G=grab) Sample 1020 D3151100 B, CS, TPE AR, 19-05-02 5 0 3 5 5 5 CUC 418 1800 0925 0745 0400 5560 101 0320 0880 0000 1010 5080 0835 Forspors Poison B Unknown 'AT Requested (days): Due Date Requested: WO#: 684703.18.05.02 Sample Date 4 23 19 Date/Time 4123/19 Project #: 60004334 Date/Time: SOW# Skin Irritant ARTESTA-MD18-04232014 Deliverable Requested: I, II, III, IV, Other (specify) ESTA-MWLS-04232019 ARTEITA-MW31-04232019 ARTEITH -MW18-04232019 ARTEITA- MMZ-04232014 04232019 P1051540 かいっしていわの ARTESTA-MW33-04232019 ARTESTA -MW29-0423201 Custody Seal No. ARTESIA - TBOZ-0823609 Flammable Possible Hazard Identification 3721 Rutledge Rd. NE Suite B-1 aleeca.forsberg@jacobs.com Project Name: Dowell - Artesia Groundwater ARTEITA-MUST ARTESTA-MUSS ARTEIJA- MWZI Empty Kit-Relinquished by: Custody Seals Intact Client Information Sample Identification 505-855-5239(Tel) Non-Hazard Aleeca Forsberg CH2M Hill, Inc. City.
Albuquerque elinquished by: State, Zip: NM, 87109 AMI

eurofins Environment Testing

Carrier Tracking No(s)

Chain of Custody Record

Eurofins TestAmerica, Houston

6310 Rothway Street Houston, TX 77040 Phone (713) 690-4444 Fax (713) 690-5646

N - None
O - AsNaO2
P - Na2O4S
O - Na2O4S
Q - Na2SO3
R - Na2S2O3
S - H2SO4
U - Acetone
U - Acetone
W - pH 4-5
Z - other (specify) Special Instructions/Note: Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) 600-67988-18594.5 Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitre Acid
E - NahSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page Loft 1 - Ice J - DI Water K-EDTA L-EDA Archive For Total Number of containers Folloy 9201 6662 Method of Shipment: Disposal By Lab Analysis Requested Special Instructions/QC Requirements: E-Mail: bethany.mcdaniel@testamericainc.com Return To Client 8260B_LL - 1,1-DCE and PCE only 300.0 - Anions, IC (Sulfate) Lab PM: McDaniel, Bethany A 32608_LL - NAP, Benzene, 1,1-DCE, 1,1-DCA, and PCE Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) Preservation Code: Matrix 3 Radiological (C=comb, G=grab) Sample Fortburg/ Anonial Type D3151100 B.CS.TPE.AR.19-05-02 505 4181800 STD 1105 Sample Time Date: Unknown (AT Requested (days): Due Date Requested: WO#. 684703.18.05.02 Sample Date 111/16 Project #: 60004334 Level 3 Poison B ARTEITH AWIT- 04272019 Skin Irritant eliverable Requested: I, II, III, IV, Other (specify) Non-Hazard Flammable 3721 Rutledge Rd. NE Suite B-1 Possible Hazard Identification aleeca.forsberg@jacobs.com Project Name: Dowell - Artesia Groundwater Empty Kit Relinquished by: Client Information Sample Identification 505-855-5239(Tel) Aleeca Forsberg Company: CH2M Hill, Inc. Albuquerque State, Zip: NM, 87109

Houston

1201

475479

Ver. 01/16/2019

Cooler Temperature(s) "C and Other Remarks

Received by:

Company

Date/Time:

Custody Seal No.

Custody Seals Intact.

Telw's,

3

9

VANIA VANIA

inquished by: nquished by: inquished by.

Page 136 of 141

TestAmerica Houston

Section Sipt Checklist

184182

*19 APR 24 10:21

	104102		Date/Time Received:			13 HCR 2
JOB NUMBER:			CLIENT:	CH	2m Hi	11
UNPACKED BY:	7.8.		CARRIER/DRIVER:		dex	
Custody Seal Present:	YES	□NO	Number of Coolers Re	eceived:		
Cooler ID	Temp Blank Y)/N Y/N Y/N Y/N Y/N Y/N	Trip Blank Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N Y / N	Observed Temp (©) /3	Therm ID I K676	Them CF -0.2	Corrected Temp (℃)
	YIN	YIN				
	YTN	Y / N				
Base samples are>pH 1		NO	Acid preserved are <pl< th=""><th>H 2:</th><th>□YES [</th><th>NO</th></pl<>	H 2:	□YES [NO
VOA headspace accept	able (5-6mm):/					YES NO
Did samples meet the la	aboratory's stand	ard conditions	of sample acceptability up	oon receipt?		\mathcal{N}
COMMENTS:						
	J.	17	24-19			
	``			_		

FedEx TRK# 4931 8201 6662

WED - 24 APR 10:30A PRIORITY OVERNIGHT

AB LKSA

77040 TX-US IAH

#237218 04/23 565J1/D7E5/27

Eurofins TestAmerica, Houston Phone (713) 690-4444 Fax (713) 690-5646 6310 Rothway Street Houston, TX 77040

Chain of Custody Record

eurofins Environment Testing TestAmerica

	Sampler:		Lab PM:	Dothon	<		Carrier Tracking No(s):	g No(s):		COC No:		
Client Information (Sub Contract Lab)			McDaniel, betnany A	petnan	A.					000-38030.1		T
Client Contact:	Phone:		E-Mail:				State of Origin:			Page:		Ī
Shipping/Receiving		11	ethany.r	ncdaniel(bethany.mcdaniel@testamericainc.com	nc.com	Oklahoma			Page 1 of 1		
Company:			Accre	ditations R	Accreditations Required (See note)	:(Job #:		
TestAmerica Laboratories, Inc.			_							600-184182-1		
Address:	Due Date Requested:		_							Preservation Codes:	des:	Г
1733 N. Padre Island Drive, ,	5/6/2019		+		Ana	Analysis Kequested	nested			A - HCL	M - Hexane	
City: Corpus Christi	TAT Requested (days):									B - NaOH C - Zn Acetate	N - None O - AsNaO2	
State, Zip:				u	_					D - Nitric Acid	P - Na204S	
TX, 78408				IM s			_			E - NaHSO4 F - MeOH	Q - Na2SO3	
Phone: 361-289-2673(Tel) 361-289-2471(Fax)	PO #:		(0	siG ,el						G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate	ate
Email:	WO #:						_		S	I - Ice J - DI Water	U - Acetone V - MCAA	
Project Name: Dowell - Artesia 04/23/19	Project #: 60004334		эд) ә	20_FF					ntaine	K - EDIA L - EDA	W - pH 4-5 Z - other (specify)	
Site:	SSOW#:								oo 10	Other:		
		Sample	red	_					1ber			Γ
			Filte						nuN l			
Sample Identification - Client ID (Lab ID)	Sample Date Time	G=grab) BT=Tissue, A=Air	Field						ETOT	Special I	Special Instructions/Note:	
	X	Preservation Code:							X			
ARTESIA-MW29-04232019 (600-184182-3)	4/23/19 08:20 Central	Water		×					1			
ARTESIA-MW28-04232019 (600-184182-5)	4/23/19 08:50 Central	Water	_	×					-			
ARTESIA-MW21-04232019 (600-184182-6)	4/23/19 09:00 Central	Water	_	×					-			
ARTESIA-MW22-04232019 (600-184182-7)	4/23/19 09:40 Central	Water	_	×					-			
ARTESIA-MW31-04232019 (600-184182-8)	4/23/19 09:25 Central	Water	_	×					-			
ARTESIA-MW25-04232019 (600-184182-9)	4/23/19 09:55 Central	Water	_	×					-			
ARTESIA-MW18-04232019 (600-184182-10)	4/23/19 10:10 Central	Water		×					-			
ARTESIA-MD18-04232019 (600-184182-11)	4/23/19 10:15 Central	Water	_	×					-			
			_									
									1			Γ

Note: Since laboratory accreditations are subject to change. TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This samples the change, TestAmerica Laboratories, Inc. analysis/lests/matrix being analyzed, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc.

Possible Hazard Identification

Unconfirmed

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont

Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Special Instructions/QC Requirements:		
Empty Kit Relinquished-by:	Date:	Time:	Shipment:	
Relinquished by: YMW	Marino 2001 6 But Inda	Coching IV.	Patertime 692 Company	Company
Relinquished by:	Date/Time: Company	Received by:	Date/Time:	Company
Relinquished by:	Date/Time: Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No		Cooler Temperature(s) °C and Other Remarks:	(PLIO -0.4/0.3 CP	do
)	Ver: 01/16/2019

Login Sample Receipt Checklist

Client: CH2M Hill, Inc.

Job Number: 600-184182-1

Login Number: 184182 List Source: Eurofins TestAmerica, Houston

List Number: 1

Creator: Snow, Tiffany B

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

Login Sample Receipt Checklist

Client: CH2M Hill, Inc.

Job Number: 600-184182-1

Login Number: 184182
List Source: Eurofins TestAmerica, Corpus Christi
List Number: 2
List Creation: 04/26/19 10:43 AM

Creator: Medellin, Alyssa L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

ANALYTICAL REPORT

Job Number: 600-191341-1

Job Description: Dowell - Artesia Waters 08/28-08/29

For:

Jacobs Engineering Group, Inc. 3721 Rutledge Rd NE Suite B-1 Albuquerque, NM 87109

Attention: Aleeca Forsberg

Bethany McDaniel

Approved for release. Bethany A McDaniel Senior Project Manager 9/11/2019 10:43 AM

Bethany A McDaniel, Senior Project Manager 6310 Rothway Street, Houston, TX, 77040 (713)358-2005 bethany.mcdaniel@testamericainc.com 09/11/2019

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

Cc	over Title Page	1
Da	ata Summaries	4
	Definitions	4
	Case Narrative	5
	Detection Summary	6
	Client Sample Results	7
	Default Detection Limits	10
	Surrogate Summary	11
	QC Sample Results	12
	QC Association	14
	Chronicle	15
	Certification Summary	16
	Method Summary	17
	Sample Summary	18
	Manual Integration Summary	19
	Reagent Traceability	27
Or	ganic Sample Data	35
	GC/MS VOA	35
	Method 8260B Low Level	35
	Method 8260B Low Level QC Summary	36
	Method 8260B Low Level Sample Data	44
	Standards Data	51
	Method 8260B Low Level ICAL Data	51
	Method 8260B Low Level CCAL Data	63
	Raw QC Data	70
	Method 8260B Low Level Blank Data	70

Table of Contents

Method 8260B Low Level LCS/LCSD Data	71
Method 8260B Low Level Run Logs	73
Method 8260B Low Level Prep Data	75
HPLC/IC	78
Method 300.0	78
Method 300.0 QC Summary	79
Method 300.0 Sample Data	81
Standards Data	85
Method 300.0 ICAL Data	85
Method 300.0 CCAL Data	88
Raw QC Data	96
Method 300.0 Blank Data	96
Method 300.0 LCS/LCSD Data	101
Method 300.0 Run Logs	102
Method 300.0 Prep Data	106
Shipping and Receiving Documents	107
Client Chain of Custody	108
Sample Receipt Checklist	110

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Job ID: 600-191341-1 Project/Site: Dowell - Artesia Waters 08/28-08/29

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Ū Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML

Not Calculated NC

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

Quality Control QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Job Narrative 600-191341-1

Comments

No additional comments.

Receipt

The samples were received on 9/4/2019 10:34 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.3° C.

GC/MS VOA

Method(s) 8260B: The following samples were diluted to bring the concentration of target analytes within the calibration range: Artesia - MW38 - 082819 (600-191341-1) and Artesia - MW37 - 082819 (600-191341-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: Dowell - Artesia Waters 08/28-08/29

Client Sample ID: Artesia - MW38 - 082819

Lab Sample ID: 600-191341-1

Job ID: 600-191341-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,1-Dichloroethene	0.0145	0.00100	0.000192	mg/L		8260B	Total/NA
Benzene	0.00980	0.00100	0.000176	mg/L	1	8260B	Total/NA
Naphthalene	0.0127	0.00200	0.000129	mg/L	1	8260B	Total/NA
Tetrachloroethene	0.00903	0.00100	0.000333	mg/L	1	8260B	Total/NA
1,1-Dichloroethane - DL	0.0699	0.00500	0.000840	mg/L	5	8260B	Total/NA
Sulfate	2340	50.0	9.57	mg/L	100	300.0	Total/NA

Client Sample ID: Artesia - MW37 - 082819

Lab Sample ID: 600-191341-2

Analyte	Result Q	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	0.0125		0.00100	0.000192	mg/L		_	8260B	Total/NA
Benzene	0.00569		0.00100	0.000176	mg/L	1		8260B	Total/NA
Naphthalene	0.00755		0.00200	0.000129	mg/L	1		8260B	Total/NA
Tetrachloroethene	0.0101		0.00100	0.000333	mg/L	1		8260B	Total/NA
1,1-Dichloroethane - DL	0.241		0.0200	0.00336	mg/L	20		8260B	Total/NA
Sulfate	1480		50.0	9.57	mg/L	100		300.0	Total/NA

Client Sample ID: Artesia - MW36 - 082819

Lab Sample ID: 600-191341-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.0412		0.00100	0.000168	mg/L	1	_	8260B	Total/NA
1,1-Dichloroethene	0.00193		0.00100	0.000192	mg/L	1		8260B	Total/NA
Benzene	0.0292		0.00100	0.000176	mg/L	1		8260B	Total/NA
Naphthalene	0.00696		0.00200	0.000129	mg/L	1		8260B	Total/NA
Tetrachloroethene	0.000630	J	0.00100	0.000333	mg/L	1		8260B	Total/NA
Sulfate	1680		50.0	9.57	mg/L	100		300.0	Total/NA

Client Sample ID: Artesia - MW36 - 082819 FD

Lab Sample ID: 600-191341-4

Analyte	Result Qualifier	r RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,1-Dichloroethane	0.0278	0.00100	0.000168	mg/L		8260B	Total/NA
1,1-Dichloroethene	0.00215	0.00100	0.000192	mg/L	1	8260B	Total/NA
Benzene	0.0162	0.00100	0.000176	mg/L	1	8260B	Total/NA
Naphthalene	0.00432	0.00200	0.000129	mg/L	1	8260B	Total/NA
Tetrachloroethene	0.000375 J	0.00100	0.000333	mg/L	1	8260B	Total/NA
Sulfate	1850	50.0	9.57	mg/L	100	300.0	Total/NA

Client Sample ID: Artesia - TB01 - 082819

Lab Sample ID: 600-191341-5

No Detections.

Client Sample Results

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia Waters 08/28-08/29

Client Sample ID: Artesia - MW38 - 082819 Lab Sample ID: 600-191341-1

Date Collected: 08/28/19 17:21 **Matrix: Water**

Date Received: 09/04/19 10:34

Method: 8260B - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethene	0.0145		0.00100	0.000192	mg/L			09/10/19 10:53	
Benzene	0.00980		0.00100	0.000176	mg/L			09/10/19 10:53	
Naphthalene	0.0127		0.00200	0.000129	mg/L			09/10/19 10:53	
Tetrachloroethene	0.00903		0.00100	0.000333				09/10/19 10:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	96		50 - 134			-		09/10/19 10:53	
4-Bromofluorobenzene	73		67 - 139					09/10/19 10:53	
Dibromofluoromethane	89		62 - 130					09/10/19 10:53	
Toluene-d8 (Surr)	104		70 - 130					09/10/19 10:53	
Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS) - DL						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethane	0.0699		0.00500	0.000840	mg/L	 _ -		09/10/19 12:34	
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	104		50 - 134					09/10/19 12:34	
4-Bromofluorobenzene	83		67 - 139					09/10/19 12:34	
Dibromofluoromethane	98		62 - 130					09/10/19 12:34	
Toluene-d8 (Surr)	102		70 - 130					09/10/19 12:34	
Method: 300.0 - Anions, lo	D 14	O 1161	D.			D	Prepared	Analyzed	Dil F
Analyte Sulfate Client Sample ID: Artes	2340 sia - MW37 - (Qualifier 082819	RL 50.0	9.57	mg/L		•	09/06/19 22:49 ID: 600-191	341 -
Analyte Sulfate	2340 sia - MW37 - 0						•	09/06/19 22:49	10 341-
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile O	2340 sia - MW37 - 0 37 34 organic Compo	082819 unds (GC/	50.0 MS)	9.57	mg/L	Lal	b Sample	09/06/19 22:49 D: 600-191 Matrix	341- : Wate
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile O Analyte	2340 sia - MW37 - 0 37 34 grganic Compo Result	082819	50.0 MS) RL	9.57 MDL	mg/L Unit		•	09/06/19 22:49 ID: 600-191 Matrix Analyzed	341- : Wat
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile O Analyte 1,1-Dichloroethene	2340 sia - MW37 - 0 37 34 organic Compo Result 0.0125	082819 unds (GC/	50.0 MS) RL 0.00100	9.57 MDL 0.000192	mg/L Unit mg/L	Lal	b Sample	09/06/19 22:49 ID: 600-191 Matrix Analyzed 09/10/19 12:08	341- : Wat
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile O Analyte 1,1-Dichloroethene Benzene	2340 sia - MW37 - 0 37 34 rganic Compo Result 0.0125 0.00569	082819 unds (GC/	MS) RL 0.00100 0.00100	9.57 MDL 0.000192 0.000176	mg/L Unit mg/L mg/L	Lal	b Sample	09/06/19 22:49 ID: 600-191 Matrix Analyzed 09/10/19 12:08 09/10/19 12:08	341- : Wat
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10:	2340 sia - MW37 - 0 37 34 organic Compo Result 0.0125	082819 unds (GC/	50.0 MS) RL 0.00100	9.57 MDL 0.000192	mg/L Unit mg/L mg/L mg/L	Lal	b Sample	09/06/19 22:49 ID: 600-191 Matrix Analyzed 09/10/19 12:08	341- : Wate
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile O Analyte 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene	2340 sia - MW37 - 0 37 34 rganic Compo Result 0.0125 0.00569 0.00755	082819 unds (GC/ Qualifier	MS) RL 0.00100 0.00100 0.00200	9.57 MDL 0.000192 0.000176 0.000129	mg/L Unit mg/L mg/L mg/L	Lal	b Sample	09/06/19 22:49 ID: 600-191 Matrix Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08	10 341- : Wate
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile O Analyte 1,1-Dichloroethene Benzene Naphthalene	2340 sia - MW37 - 0 37 34 rganic Compo Result 0.0125 0.00569 0.00755 0.0101	082819 unds (GC/ Qualifier	MS) RL 0.00100 0.00100 0.00200 0.00100	9.57 MDL 0.000192 0.000176 0.000129	mg/L Unit mg/L mg/L mg/L	Lal	o Sample Prepared	O9/06/19 22:49 ID: 600-191 Matrix Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08	10 341- : Wate
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile O Analyte 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate	2340 sia - MW37 - 0 37 34 rganic Compo Result 0.0125 0.00569 0.00755 0.0101 %Recovery	082819 unds (GC/ Qualifier	MS) RL 0.00100 0.00100 0.00200 0.00100 Limits 50 - 134	9.57 MDL 0.000192 0.000176 0.000129	mg/L Unit mg/L mg/L mg/L	Lal	o Sample Prepared	O9/06/19 22:49 ID: 600-191 Matrix Analyzed O9/10/19 12:08 O9/10/19 12:08 O9/10/19 12:08 Analyzed Analyzed	10 341- : Wate
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile O Analyte 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate 1,2-Dichloroethane-d4 (Surr)	2340 sia - MW37 - 0 37 34 organic Compo Result 0.0125 0.00569 0.00755 0.0101 %Recovery 97	082819 unds (GC/ Qualifier	MS) RL 0.00100 0.00100 0.00200 0.00100 Limits	9.57 MDL 0.000192 0.000176 0.000129	mg/L Unit mg/L mg/L mg/L	Lal	o Sample Prepared	O9/06/19 22:49 ID: 600-191 Matrix Analyzed O9/10/19 12:08 O9/10/19 12:08 O9/10/19 12:08 Analyzed O9/10/19 12:08	10 341- : Wate
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile Of Analyte 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene	2340 sia - MW37 - 0 37 34 erganic Compo Result 0.0125 0.00569 0.00755 0.0101 %Recovery 97 78	082819 unds (GC/ Qualifier	To.0 RL 0.00100 0.00100 0.00200 0.00100 Limits 50 - 134 67 - 139	9.57 MDL 0.000192 0.000176 0.000129	mg/L Unit mg/L mg/L mg/L	Lal	o Sample Prepared	Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08	10 341- : Wate
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile Of Analyte 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 (Surr)	2340 sia - MW37 - 0 37 34 rganic Compo Result 0.0125 0.00569 0.00755 0.0101 %Recovery 97 78 91 100	082819 unds (GC/ Qualifier Qualifier	50.0 RL 0.00100 0.00100 0.00200 0.00100 Limits 50 - 134 67 - 139 62 - 130 70 - 130	9.57 MDL 0.000192 0.000176 0.000129	mg/L Unit mg/L mg/L mg/L	Lal	o Sample Prepared	O9/06/19 22:49 ID: 600-191 Matrix Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08	10 341- : Wate
Analyte Sulfate Client Sample ID: Artes ate Collected: 08/28/19 19: ate Received: 09/04/19 10: Method: 8260B - Volatile O Analyte 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluoromethane Dibromofluoromethane Toluene-d8 (Surr) Method: 8260B - Volatile O	2340 sia - MW37 - 0 37 34 rganic Compo Result 0.0125 0.00569 0.00755 0.0101 %Recovery 97 78 91 100 rganic Compo	082819 unds (GC/ Qualifier Qualifier	50.0 RL 0.00100 0.00100 0.00200 0.00100 Limits 50 - 134 67 - 139 62 - 130 70 - 130	MDL 0.000192 0.000176 0.000129 0.000333	mg/L Unit mg/L mg/L mg/L	Lal	o Sample Prepared	O9/06/19 22:49 ID: 600-191 Matrix Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08	Dil Fa
Analyte Sulfate Client Sample ID: Artes rate Collected: 08/28/19 19: rate Received: 09/04/19 10: Method: 8260B - Volatile O Analyte 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluoromethane Dibromofluoromethane Toluene-d8 (Surr) Method: 8260B - Volatile O Analyte	2340 sia - MW37 - 0 37 34 rganic Compo Result 0.0125 0.00569 0.00755 0.0101 %Recovery 97 78 91 100 rganic Compo	082819 unds (GC/ Qualifier Qualifier	MS) RL 0.00100 0.00100 0.00200 0.00100 Limits 50 - 134 67 - 139 62 - 130 70 - 130 MS) - DL	MDL 0.000192 0.000176 0.000129 0.000333	Unit mg/L mg/L mg/L mg/L	Lal D	Prepared Prepared	O9/06/19 22:49 ID: 600-191 Matrix Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08	Dil Fa
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile Of Analyte 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluoromethane Dibromofluoromethane Toluene-d8 (Surr) Method: 8260B - Volatile Of Analyte 1,1-Dichloroethane	2340 sia - MW37 - 0 37 34 rganic Compo Result 0.0125 0.00569 0.00755 0.0101 **Recovery 97 78 91 100 rganic Compo Result	082819 unds (GC/ Qualifier Qualifier unds (GC/ Qualifier	MS) RL 0.00100 0.00100 0.00200 0.00100 Limits 50-134 67-139 62-130 70-130 MS) - DL RL	MDL 0.000192 0.000129 0.000333	Unit mg/L mg/L mg/L mg/L	Lal D	Prepared Prepared	O9/06/19 22:49 ID: 600-191 Matrix Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 Analyzed Analyzed Analyzed	Dil Fa
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile Of Analyte 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluoromethane Dibromofluoromethane Toluene-d8 (Surr) Method: 8260B - Volatile Of Analyte 1,1-Dichloroethane Surrogate 1,1-Dichloroethane Surrogate	2340 sia - MW37 - 0 37 34 rganic Compo Result 0.0125 0.00569 0.00755 0.0101 %Recovery 97 78 91 100 rganic Compo Result 0.241	082819 unds (GC/ Qualifier Qualifier unds (GC/ Qualifier	MS) RL 0.00100 0.00100 0.00200 0.00100 Limits 50 - 134 67 - 139 62 - 130 70 - 130 MS) - DL RL 0.0200	MDL 0.000192 0.000129 0.000333	Unit mg/L mg/L mg/L mg/L	Lal D	Prepared Prepared	O9/06/19 22:49 ID: 600-191 Matrix Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 Analyzed 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 09/10/19 12:08 O9/10/19 12:08 O9/10/19 12:08	Dil Fa
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile O Analyte 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluoromethane Dibromofluoromethane Toluene-d8 (Surr) Method: 8260B - Volatile O Analyte 1,1-Dichloroethane Surrogate 1,2-Dichloroethane Surrogate 1,2-Dichloroethane	2340 sia - MW37 - 0 37 34 rganic Compo Result 0.0125 0.00569 0.00755 0.0101 **Recovery 97 78 91 100 rganic Compo Result 0.241 **Recovery	082819 unds (GC/ Qualifier Qualifier unds (GC/ Qualifier	50.0 RL 0.00100 0.00100 0.00200 0.00100	MDL 0.000192 0.000129 0.000333	Unit mg/L mg/L mg/L mg/L	Lal D	Prepared Prepared	O9/06/19 22:49 ID: 600-191 Matrix Analyzed O9/10/19 12:08 O9/10/19 12:08 O9/10/19 12:08 Analyzed O9/10/19 12:08 O9/10/19 12:08 O9/10/19 12:08 O9/10/19 12:08 O9/10/19 12:08 Analyzed O9/10/19 12:08 Analyzed O9/10/19 14:39 Analyzed	Dil Fa
Analyte Sulfate Client Sample ID: Artes Pate Collected: 08/28/19 19: Pate Received: 09/04/19 10: Method: 8260B - Volatile Of Analyte 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene Dibromofluoromethane	2340 sia - MW37 - 0 37 34 rganic Compo Result 0.0125 0.00569 0.00755 0.0101 %Recovery 97 78 91 100 rganic Compo Result 0.241 %Recovery 101	082819 unds (GC/ Qualifier Qualifier unds (GC/ Qualifier	MS) RL 0.00100 0.00100 0.00200 0.00100 Limits 50 - 134 67 - 139 62 - 130 70 - 130 MS) - DL RL 0.0200 Limits 50 - 134	MDL 0.000192 0.000129 0.000333	Unit mg/L mg/L mg/L mg/L	Lal D	Prepared Prepared	Analyzed O9/10/19 12:08 O9/10/19 12:08 O9/10/19 12:08 O9/10/19 12:08 Analyzed O9/10/19 12:08 O9/10/19 12:08 O9/10/19 12:08 O9/10/19 12:08 O9/10/19 12:08 Analyzed O9/10/19 12:08 Analyzed O9/10/19 12:08 Analyzed O9/10/19 14:39	10 341 -

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: Dowell - Artesia Waters 08/28-08/29

Client Sample ID: Artesia - MW37 - 082819 Lab Sample ID: 600-191341-2

Date Collected: 08/28/19 19:37

. Matrix: Water

Job ID: 600-191341-1

Date Received: 09/04/19 10:34

Method: 300.0 - Anions, Ion Chromatography										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Sulfate	1480		50.0	9.57	mg/L			09/06/19 23:09	100	

Client Sample ID: Artesia - MW36 - 082819

Lab Sample ID: 600-191341-3

Date Collected: 08/29/19 11:40 Date Received: 09/04/19 10:34 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0412		0.00100	0.000168	mg/L	 -		09/10/19 11:18	1
1,1-Dichloroethene	0.00193		0.00100	0.000192	mg/L			09/10/19 11:18	1
Benzene	0.0292		0.00100	0.000176	mg/L			09/10/19 11:18	1
Naphthalene	0.00696		0.00200	0.000129	mg/L			09/10/19 11:18	1
Tetrachloroethene	0.000630	J	0.00100	0.000333	mg/L			09/10/19 11:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		50 - 134			•		09/10/19 11:18	1
4-Bromofluorobenzene	76		67 - 139					09/10/19 11:18	1
Dibromofluoromethane	93		62 - 130					09/10/19 11:18	1
Toluene-d8 (Surr)	98		70 - 130					09/10/19 11:18	1
Method: 300.0 - Anions, Io	n Chromatogra	phy							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	1680		50.0	9.57	mg/L			09/06/19 23:29	100

Client Sample ID: Artesia - MW36 - 082819 FD

Lab Sample ID: 600-191341-4

Date Collected: 08/29/19 11:45 Date Received: 09/04/19 10:34 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0278		0.00100	0.000168	mg/L			09/10/19 11:43	1
1,1-Dichloroethene	0.00215		0.00100	0.000192	mg/L			09/10/19 11:43	1
Benzene	0.0162		0.00100	0.000176	mg/L			09/10/19 11:43	1
Naphthalene	0.00432		0.00200	0.000129	mg/L			09/10/19 11:43	1
Tetrachloroethene	0.000375	J	0.00100	0.000333	mg/L			09/10/19 11:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		50 - 134					09/10/19 11:43	1
4-Bromofluorobenzene	80		67 - 139					09/10/19 11:43	1
Dibromofluoromethane	93		62 - 130					09/10/19 11:43	1
Toluene-d8 (Surr)	101		70 - 130					09/10/19 11:43	1
Method: 300.0 - Anions, Io	n Chromatogra	phy							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	1850		50.0	9.57	mg/L			09/07/19 00:29	100

Client Sample Results

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia Waters 08/28-08/29 Job ID: 600-191341-1

Client Sample ID: Artesia - TB01 - 082819 Lab Sample ID: 600-191341-5

Date Collected: 08/28/19 08:00 **Matrix: Water**

Date Received: 09/04/19 10:34

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			09/10/19 10:29	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			09/10/19 10:29	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			09/10/19 10:29	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			09/10/19 10:29	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			09/10/19 10:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		50 - 134					09/10/19 10:29	1
4-Bromofluorobenzene	82		67 - 139					09/10/19 10:29	1
Dibromofluoromethane	94		62 - 130					09/10/19 10:29	1
Toluene-d8 (Surr)	96		70 - 130					09/10/19 10:29	1

Default Detection Limits

Client: Jacobs Engineering Group, Inc.

Project/Site: Dowell - Artesia Waters 08/28-08/29

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	RL	MDL	Units
1,1-Dichloroethane	0.00100	0.000168	mg/L
1,1-Dichloroethene	0.00100	0.000192	mg/L
Benzene	0.00100	0.000176	mg/L
Naphthalene	0.00200	0.000129	mg/L
Tetrachloroethene	0.00100	0.000333	mg/L

Method: 300.0 - Anions, Ion Chromatography

Analyte	RL	MDL	Units	
Sulfate	0.500	0.0957	ma/L	

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: Dowell - Artesia Waters 08/28-08/29

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_			Pe	ercent Surro	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(50-134)	(67-139)	(62-130)	(70-130)
600-191341-1 - DL	Artesia - MW38 - 082819	104	83	98	102
600-191341-1	Artesia - MW38 - 082819	96	73	89	104
600-191341-2	Artesia - MW37 - 082819	97	78	91	100
600-191341-2 - DL	Artesia - MW37 - 082819	101	75	96	102
600-191341-3	Artesia - MW36 - 082819	99	76	93	98
600-191341-4	Artesia - MW36 - 082819 FD	99	80	93	101
600-191341-5	Artesia - TB01 - 082819	98	82	94	96
LCS 600-274277/3	Lab Control Sample	76	77	79	103
LCSD 600-274277/4	Lab Control Sample Dup	80	79	76	107
MB 600-274277/6	Method Blank	96	81	86	100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: Dowell - Artesia Waters 08/28-08/29

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 600-274277/6

Matrix: Water

Analysis Batch: 274277

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 600-191341-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			09/10/19 10:04	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			09/10/19 10:04	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			09/10/19 10:04	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			09/10/19 10:04	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			09/10/19 10:04	1

MB MB

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	50 - 134		09/10/19 10:04	1
4-Bromofluorobenzene	81	67 - 139		09/10/19 10:04	1
Dibromofluoromethane	86	62 - 130		09/10/19 10:04	1
Toluene-d8 (Surr)	100	70 - 130		09/10/19 10:04	1

Lab Sample ID: LCS 600-274277/3

Matrix: Water

Analysis Batch: 274277

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.0100	0.01041		mg/L		104	70 - 140	
1,1-Dichloroethene	0.0100	0.01267		mg/L		127	58 - 148	
Benzene	0.0100	0.01083		mg/L		108	70 - 130	
Naphthalene	0.0100	0.01119		mg/L		112	10 - 150	
Tetrachloroethene	0.0100	0.009727		mg/L		97	47 - 150	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	76		50 - 134
4-Bromofluorobenzene	77		67 - 139
Dibromofluoromethane	79		62 - 130
Toluene-d8 (Surr)	103		70 - 130

Lab Sample ID: LCSD 600-274277/4

Matrix: Water

Analysis Batch: 274277

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD LCSD			%Rec.		RPD
Analyte	Added	Result Qualifier	Unit D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0100	0.01093	mg/L	109	70 - 140	5	20
1,1-Dichloroethene	0.0100	0.01324	mg/L	132	58 - 148	4	20
Benzene	0.0100	0.01127	mg/L	113	70 - 130	4	20
Naphthalene	0.0100	0.01301	mg/L	130	10 - 150	15	20
Tetrachloroethene	0.0100	0.009682	mg/L	97	47 - 150	0	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	80		50 - 134
4-Bromofluorobenzene	79		67 - 139
Dibromofluoromethane	76		62 - 130
Toluene-d8 (Surr)	107		70 - 130

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Job ID: 600-191341-1 Project/Site: Dowell - Artesia Waters 08/28-08/29

Method: 300.0 - Anions, Ion Chromatography

0.0957 U

Lab Sample ID: MB 600-274043/4 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 274043

Sulfate

MB MB Analyte Result Qualifier RLMDL Unit Dil Fac D Prepared Analyzed 0.500

Lab Sample ID: LCS 600-274043/5 **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA

0.0957 mg/L

Analysis Batch: 274043

LCS LCS Spike %Rec. **Analyte** Added Result Qualifier Unit %Rec Limits Sulfate 20.0 20.50 mg/L 103 90 - 110

09/06/19 16:29

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia Waters 08/28-08/29 Job ID: 600-191341-1

GC/MS VOA

Analysis Batch: 274277

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-191341-1	Artesia - MW38 - 082819	Total/NA	Water	8260B	
600-191341-1 - DL	Artesia - MW38 - 082819	Total/NA	Water	8260B	
600-191341-2	Artesia - MW37 - 082819	Total/NA	Water	8260B	
600-191341-2 - DL	Artesia - MW37 - 082819	Total/NA	Water	8260B	
600-191341-3	Artesia - MW36 - 082819	Total/NA	Water	8260B	
600-191341-4	Artesia - MW36 - 082819 FD	Total/NA	Water	8260B	
600-191341-5	Artesia - TB01 - 082819	Total/NA	Water	8260B	
MB 600-274277/6	Method Blank	Total/NA	Water	8260B	
LCS 600-274277/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 600-274277/4	Lab Control Sample Dup	Total/NA	Water	8260B	

HPLC/IC

Analysis Batch: 274043

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-191341-1	Artesia - MW38 - 082819	Total/NA	Water	300.0	_
600-191341-2	Artesia - MW37 - 082819	Total/NA	Water	300.0	
600-191341-3	Artesia - MW36 - 082819	Total/NA	Water	300.0	
600-191341-4	Artesia - MW36 - 082819 FD	Total/NA	Water	300.0	
MB 600-274043/4	Method Blank	Total/NA	Water	300.0	
LCS 600-274043/5	Lab Control Sample	Total/NA	Water	300.0	

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: Dowell - Artesia Waters 08/28-08/29

Client Sample ID: Artesia - MW38 - 082819

Lab Sample ID: 600-191341-1 Date Collected: 08/28/19 17:21

Matrix: Water

Job ID: 600-191341-1

Date Received: 09/04/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	274277	09/10/19 10:53	WS1	TAL HOU
Total/NA	Analysis	8260B	DL	5	274277	09/10/19 12:34	WS1	TAL HOU
Total/NA	Analysis	300.0		100	274043	09/06/19 22:49	SKR	TAL HOU

Client Sample ID: Artesia - MW37 - 082819

Lab Sample ID: 600-191341-2

Matrix: Water

Date Collected: 08/28/19 19:37 Date Received: 09/04/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	274277	09/10/19 12:08	WS1	TAL HOU
Total/NA	Analysis	8260B	DL	20	274277	09/10/19 14:39	WS1	TAL HOU
Total/NA	Analysis	300.0		100	274043	09/06/19 23:09	SKR	TAL HOU

Client Sample ID: Artesia - MW36 - 082819

Lab Sample ID: 600-191341-3

Matrix: Water

Date Collected: 08/29/19 11:40 Date Received: 09/04/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	274277	09/10/19 11:18	WS1	TAL HOU
Total/NA	Analysis	300.0		100	274043	09/06/19 23:29	SKR	TAL HOU

Client Sample ID: Artesia - MW36 - 082819 FD

Lab Sample ID: 600-191341-4

Matrix: Water

Date Collected: 08/29/19 11:45 Date Received: 09/04/19 10:34

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			274277	09/10/19 11:43	WS1	TAL HOU
Total/NA	Analysis	300.0		100	274043	09/07/19 00:29	SKR	TAL HOU

Client Sample ID: Artesia - TB01 - 082819

Lab Sample ID: 600-191341-5

Matrix: Water

Date Collected: 08/28/19 08:00 Date Received: 09/04/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	274277	09/10/19 10:29	WS1	TAL HOU

Laboratory References:

TAL HOU = Eurofins TestAmerica, Houston, 6310 Rothway Street, Houston, TX 77040, TEL (713)690-4444

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia Waters 08/28-08/29

Laboratory: Eurofins TestAmerica, Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State Program	19-040-0	08-04-20
Louisiana	NELAP	01967	06-30-20
Oklahoma	State Program	2018-052	08-31-20
Texas	NELAP	T104704223-18-23	10-31-19
USDA	Federal	P330-18-00130	04-30-21
Utah	NELAP	TX000832019-5	07-31-20
Utah	NELAP	TX000832019-5	07-31-20

Method Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: Dowell - Artesia Waters 08/28-08/29

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL HOU
300.0	Anions, Ion Chromatography	MCAWW	TAL HOU
5030B	Purge and Trap	SW846	TAL HOU

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL HOU = Eurofins TestAmerica, Houston, 6310 Rothway Street, Houston, TX 77040, TEL (713)690-4444

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia Waters 08/28-08/29

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
600-191341-1	Artesia - MW38 - 082819	Water	08/28/19 17:21	09/04/19 10:34	
600-191341-2	Artesia - MW37 - 082819	Water	08/28/19 19:37	09/04/19 10:34	
600-191341-3	Artesia - MW36 - 082819	Water	08/29/19 11:40	09/04/19 10:34	
600-191341-4	Artesia - MW36 - 082819 FD	Water	08/29/19 11:45	09/04/19 10:34	
600-191341-5	Artesia - TB01 - 082819	Water	08/28/19 08:00	09/04/19 10:34	

GC/MS VOA MANUAL INTEGRATION SUMMARY

Lab	Name:	Eurofins	TestAmerica,	Housto	Job	No.:	600-191341-1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 269550

Lab Sample ID: IC 600-269550/2 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION					
	TIME	REASON	ANALYST	DATE			
Chloromethane	4.35	Baseline	shenw	07/17/19 10:16			
Vinyl chloride	4.54	Baseline	shenw	07/17/19 10:12			
Ethylene oxide	4.91	Baseline	shenw	07/17/19 10:59			
Bromomethane	4.99	Baseline	shenw	07/17/19 10:12			
Chloroethane	5.15	Baseline	shenw	07/17/19 10:17			
Dichlorofluoromethane	5.19	Baseline	shenw	07/17/19 10:12			
Acetonitrile	5.73	Baseline	shenw	07/17/19 10:17			
Isopropyl alcohol	5.74	Baseline	shenw	07/17/19 10:13			
Acetone	5.81	Baseline	shenw	07/17/19 11:00			
Iodomethane	6.25	Baseline	shenw	07/17/19 10:17			
Methyl acetate	6.32	Baseline	shenw	07/17/19 10:17			
1,1,2-Trichloro-1,2,2-trifluoroet hane	6.34	Baseline	shenw	07/17/19 10:13			
Carbon disulfide	6.56	Baseline	shenw	07/17/19 10:13			
Propionitrile	7.07	Baseline	shenw	07/17/19 10:18			
Vinyl acetate	7.13	Baseline	shenw	07/17/19 10:18			
2-Butanone (MEK)	7.35	Baseline	shenw	07/17/19 10:13			
Ethyl acetate	7.61	Baseline	shenw	07/17/19 10:18			
Tetrahydrofuran	7.93	Baseline	shenw	07/17/19 10:18			
1,2-Dichloroethane	8.19	Baseline	shenw	07/17/19 10:18			
n-Heptane	8.93	Baseline	shenw	07/17/19 10:18			
2-Nitropropane	9.06	Baseline	shenw	07/17/19 10:18			
4-Methyl-2-pentanone (MIBK)	9.69	Baseline	shenw	07/17/19 10:14			
trans-1,3-Dichloropropene	9.99	Baseline	shenw	07/17/19 10:18			
1,2-Dibromo-3-Chloropropane		Invalid Compound ID	shenw	07/17/19 11:21			
1,4-Dioxane		Invalid Compound ID	shenw	07/17/19 11:24			
Hexachlorobutadiene		Invalid Compound ID	shenw	07/17/19 11:22			
Isobutyl alcohol		Invalid Compound ID	shenw	07/17/19 11:23			
n-Butanol		Invalid Compound ID	shenw	07/17/19 11:24			
t-Butanol		Invalid Compound ID	shenw	07/17/19 11:24			

GC/MS VOA MANUAL INTEGRATION SUMMARY

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-191341-1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 269550

Lab Sample ID: IC 600-269550/2 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION				
	TIME	REASON	ANALYST	DATE		
1,1,2-Trichloroethane	10.18	Baseline	shenw	07/17/19 10:18		
Toluene-d8 (Surr)	10.27	Baseline	shenw	07/17/19 10:15		
Ethyl methacrylate	10.32	Baseline	shenw	07/17/19 10:15		
2-Hexanone	10.52	Baseline	shenw	07/17/19 10:15		
n-Butyl acetate	10.75	Baseline	shenw	07/17/19 10:15		
1,2-Dibromoethane	10.96	Baseline	shenw	07/17/19 10:15		
m-Xylene & p-Xylene	12.14	Baseline	shenw	07/17/19 10:19		
Bromoform	12.35	Baseline	shenw	07/17/19 10:19		
Styrene	12.53	Baseline	shenw	07/17/19 10:15		
Cyclohexanone	12.57	Baseline	shenw	07/17/19 10:19		
1,1,2,2-Tetrachloroethane	12.59	Baseline	shenw	07/17/19 10:16		
trans-1,4-Dichloro-2-butene	12.74	Baseline	shenw	07/17/19 11:01		
Naphthalene	16.99	Baseline	shenw	07/17/19 11:21		

GC/MS VOA MANUAL INTEGRATION SUMMARY

Lab	Name:	Eurofins	TestAmerica,	Housto	Joh	No.:	600-191341-1
ших	ivanic.	патоттпо	I CD CIMICI I Ca,	110 45 60	000	110.	000 101011 1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 269550

Lab Sample ID: IC 600-269550/3 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Chloromethane	4.33	Baseline	shenw	07/17/19 10:34
Vinyl chloride	4.54	Baseline	shenw	07/17/19 10:34
Ethylene oxide	4.91	Baseline	shenw	07/17/19 10:35
Bromomethane	5.00	Baseline	shenw	07/17/19 10:34
Acetonitrile	5.70	Baseline	shenw	07/17/19 10:35
Isopropyl alcohol	5.74	Baseline	shenw	07/17/19 10:35
Acetone	5.81	Baseline	shenw	07/17/19 11:05
t-Butanol	6.21	Baseline	shenw	07/17/19 10:33
Iodomethane	6.26	Baseline	shenw	07/17/19 10:33
Methyl acetate	6.33	Baseline	shenw	07/17/19 10:35
Propionitrile	7.08	Baseline	shenw	07/17/19 10:33
2-Butanone (MEK)	7.37	Baseline	shenw	07/17/19 11:04
Ethyl acetate	7.62	Baseline	shenw	07/17/19 10:36
Isobutyl alcohol	7.74	Baseline	shenw	07/17/19 11:04
Tetrahydrofuran	7.94	Baseline	shenw	07/17/19 10:36
n-Butanol	8.27	Baseline	shenw	07/17/19 10:34
Ethyl acrylate	8.91	Baseline	shenw	07/17/19 10:37
1,4-Dioxane	9.17	Baseline	shenw	07/17/19 10:34
Ethyl methacrylate	10.30	Baseline	shenw	07/17/19 10:37
2-Hexanone	10.48	Baseline	shenw	07/17/19 10:34
Cyclohexanone	12.57	Baseline	shenw	07/17/19 10:37
1,1,2,2-Tetrachloroethane	12.61	Baseline	shenw	07/17/19 10:38
1,2,3-Trichloropropane	12.74	Baseline	shenw	07/17/19 10:38
trans-1,4-Dichloro-2-butene	12.75	Baseline	shenw	07/17/19 11:03
1,2-Dibromo-3-Chloropropane	15.20	Baseline	shenw	07/17/19 11:03
1,3,5-Trichlorobenzene	16.05	Baseline	shenw	07/17/19 10:38

GC/MS VOA MANUAL INTEGRATION SUMMARY

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-191341-1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 269550

Lab Sample ID: IC 600-269550/4 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE		
	TIME	REASON	ANALYST	DATE
Chloromethane	4.34	Baseline	shenw	07/17/19 10:50
Vinyl chloride	4.54	Baseline	shenw	07/17/19 10:50
Ethylene oxide	4.91	Baseline	shenw	07/17/19 10:51
Bromomethane	5.00	Baseline	shenw	07/17/19 10:51
Acetone	5.81	Baseline	shenw	07/17/19 11:06
t-Butanol	6.18	Baseline	shenw	07/17/19 11:26
1,1-Dichloroethene	6.20	Baseline	shenw	07/17/19 10:51
Carbon disulfide	6.56	Baseline	shenw	07/17/19 10:52
Propionitrile	7.09	Baseline	shenw	07/17/19 10:52
2-Butanone (MEK)	7.39	Baseline	shenw	07/17/19 11:06
Ethyl acetate	7.61	Baseline	shenw	07/17/19 10:53
Isobutyl alcohol	7.72	Baseline	shenw	07/17/19 11:28
n-Butanol	8.28	Baseline	shenw	07/17/19 11:28
Ethyl acrylate	8.92	Baseline	shenw	07/17/19 10:53
1,4-Dioxane	9.20	Baseline	shenw	07/17/19 11:07
Ethyl methacrylate	10.32	Baseline	shenw	07/17/19 10:54
2-Hexanone	10.47	Baseline	shenw	07/17/19 10:54
n-Butyl acetate	10.77	Baseline	shenw	07/17/19 10:55
trans-1,4-Dichloro-2-butene	12.74	Baseline	shenw	07/17/19 10:55
1,2-Dibromo-3-Chloropropane	15.19	Baseline	shenw	07/17/19 11:30

Lab Sample ID: IC 600-269550/5 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION				
	TIME	REASON	ANALYST	DATE		
1,4-Dioxane	9.20	Baseline	shenw	07/17/19 11:16		
2-Hexanone	10.47	Baseline	shenw	07/17/19 11:16		
1,2,3-Trichloropropane	12.74	Baseline	shenw	07/17/19 11:17		
trans-1,4-Dichloro-2-butene	12.74	Baseline	shenw	07/17/19 11:16		

GC/MS VOA MANUAL INTEGRATION SUMMARY

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-191341-1

SDG No.:

Analysis Batch Number: 269550 Instrument ID: CHVOAMS07

Lab Sample ID: ICIS 600-269550/6 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION			
	TIME	REASON	ANALYST	DATE	
Isobutyl alcohol	7.71	Baseline	shenw	07/17/19 12:28	
Tetrahydrofuran	7.94	Baseline	shenw	07/17/19 11:43	
n-Butanol	8.27	Baseline	shenw	07/17/19 11:43	
1,4-Dioxane	9.19	Baseline	shenw	07/17/19 11:44	

Lab Sample ID: IC 600-269550/7 Client Sample ID:

Date Analyzed: 07/17/19 11:41 Lab File ID: A19806.d

GC Column: DB-VRX 60 ID: 0.25(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION			
	TIME	REASON	ANALYST	DATE	
n-Butanol	8.26	Baseline	shenw	07/17/19 12:26	

Lab Sample ID: ICV 600-269550/10 Client Sample ID:

Date Analyzed: 07/17/19 12:56 Lab File ID: A19809.d GC Column: DB-VRX 60

ID: 0.25 (mm)

COMPOUND NAME	RETENTION	MANUAL INTE	MANUAL INTEGRATION				
	TIME	REASON	ANALYST	DATE			
Bromomethane	5.00	Baseline	shenw	07/17/19 13:27			
Iodomethane	6.25	Baseline	shenw	07/17/19 13:27			
1,4-Dioxane	9.18	Baseline	shenw	07/17/19 13:26			

GC/MS VOA MANUAL INTEGRATION SUMMARY

SDG No.: Analysis Batch Number: 274277 Instrument ID: CHVOAMS07 Lab Sample ID: CCVIS 600-274277/2 Client Sample ID: Date Analyzed: 09/10/19 08:01 Lab File ID: A25301.d GC Column: DB-VRX 60 ID: 0.25 (mm)RETENTION COMPOUND NAME MANUAL INTEGRATION TIME REASON ANALYST DATE 5.64 Baseline 09/10/19 08:29 Acetonitrile shenw Client Sample ID: Lab Sample ID: MB 600-274277/6

Date Analyzed: 09/10/19 10:04	Lab Fi	le ID: A25305.d	GC Column:	DB-VRX 60	ID:	0.25 (mm)
COMPOUND NAME	RETENTION	MANUAL INTE	GRATION]	
	TIME	REASON	ΔΝΔΙ.ΥςΨ	DATE	1	

TIME REASON ANALYST DATE

Naphthalene Invalid Compound ID shenw 09/10/19 10:24

Lab Sample ID: 600-191341-5 Client Sample ID: Artesia - TB01 - 082819

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-191341-1

COMPOUND NAME	RETENTION	MANUAL INTEGRATION			
	TIME	REASON	ANALYST	DATE	
Naphthalene		Invalid Compound ID	shenw	09/10/19 10:53	

HPLC/IC MANUAL INTEGRATION SUMMARY

Lab Name: Euro	ofins TestAmerica, Housto	Job No.: 600-191341-1	_	
SDG No.:			_	
Instrument ID	: CHWC11	Analysis Batch Number: 271285	_	
Lab Sample ID	: <u>IC 600-271285/6</u>	Client Sample ID:		
Date Analyzed	: 08/06/19 13:54	Lab File ID: CAL080619-6.d	GC Column: AS-18	ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION			
	TIME	REASON	ANALYST	DATE	
Chloride	4.69	Incomplete Integration	patelk	08/07/19 12:50	

HPLC/IC MANUAL INTEGRATION SUMMARY

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-191341-1

SDG No.:

Instrument ID: CHWC11 Analysis Batch Number: 274043

Lab Sample ID: CCB 600-274043/15 Client Sample ID:

Date Analyzed: 09/06/19 20:09 Lab File ID: 090619a-15.d GC Column: AS-18 ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION			
	TIME	REASON	ANALYST	DATE	
Sulfate	8.89	Baseline Smoothing	reachs	09/09/19 10:54	

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-191341-1
252						
SDG	No ·					

					Parent Reage	ent		
	Fvn	Prep	Dilutant	Reagent Final		Volume		
Reagent ID	Exp Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
BFB_00286							1,2-Dichloroethene, Total	
_							1,3-Dichloropropene, Total	
							2,3-dichlorobutane	
							Tentatively Identified	
							Compound	
							Total BTEX	
							Trihalomethanes, Total Xylenes, Total	
					VOASBFB 00014	50 uL		25 ug/mL
.VOASBFB 00014	07/31/21		Restek, Lot A012056	7	(Purchased Rea		BFB	2000 ug/mL
	07/31/21	1	Resear, Loc Holzoso	,	(Turenasea nea	I I		2000 ug/mii
BFB_00290							1,2-Dichloroethene, Total 1,3-Dichloropropene, Total	
							2,3-dichlorobutane	
							Tentatively Identified	
							Compound	
							Total BTEX	
							Trihalomethanes, Total	
							Xylenes, Total	
					VOASBFB_00014	50 uL		25 ug/mL
.VOASBFB_00014	07/31/21		Restek, Lot A012056	7	(Purchased Rea	igent)	BFB	2000 ug/mL
CCV 00108	10/05/19	08/09/19	DI WATER, Lot NONE	500 mL	WETSICCSO4 00015	10 mL	Sulfate	20 mg/L
.WETSICCSO4_00015	06/21/20	INOR	GANIC-VENTURE, Lot k2-	sox01111	(Purchased Rea	igent)	Sulfate	1000 mg/L
EOxideStd 00155	07/17/19	07/03/19	Methanol, Lot V032119	A 1 mL	MVETYLOIDE 00010	10 uL	Ethylene oxide	500 ug/mL
.MVETYLOIDE 00010	09/30/19	S	igma-Aldrich, Lot LRAE	36887	(Purchased Rea		Ethylene oxide	50000 ug/mL
ICCALSTD2_00050	09/30/19	07/29/19	DI WATER, Lot NONE	100 mT	WETSICCBRO 00013	2.0 uTu	Bromide	0.2 mg/L
			,		WETSICCCL 00024		Chloride	0.4 mg/L
					WETSICCFL 00013		Fluoride	0.2 mg/L
					WETSICCSO4 00016	40 uL	Sulfate	0.4 mg/L
.WETSICCBRO_00013	04/25/20		ANIC VENTURES, Lot N2-		(Purchased Rea	igent)	Bromide	1000 mg/L
.WETSICCCL_00024	12/26/19		GANIC-VENTURE, Lot N2-		(Purchased Rea		Chloride	1000 mg/L
.WETSICCFL_00013	10/05/19		GANIC VENTURES, Lot n2		(Purchased Rea		Fluoride	1000 mg/L
.WETSICCSO4_00016	02/26/20		ANIC-VENTURE, Lot N2-S	SOX671919	(Purchased Rea		Sulfate	1000 mg/L
ICCALSTD3_00043	09/30/19	07/29/19	DI WATER, Lot NONE	100 mL	WETSICCBRO_00013		Bromide	0.5 mg/L
					WETSICCCL_00024		Chloride	1 mg/L
					WETSICCFL_00013		Fluoride	0.5 mg/L
	0.1/05/00				WETSICCSO4_00016		Sulfate	1 mg/L
.WETSICCBRO_00013 .WETSICCCL 00024	04/25/20		ANIC VENTURES, Lot N2-		(Purchased Rea	igent)	Bromide Chlavida	1000 mg/L
.WETSICCCL_00024 .WETSICCFL 00013	12/26/19 10/05/19		GANIC-VENTURE, Lot N2-GANIC VENTURES, Lot n2		(Purchased Rea (Purchased Rea		Chloride Fluoride	1000 mg/L
.WETSICCSO4 00016	02/26/20		JANIC VENTURES, LOT N2-S		(Purchased Rea		Sulfate	1000 mg/L 1000 mg/L
		-			· · · · · · · · · · · · · · · · · · ·			_
ICCALSTD4_00042	09/30/19	07/29/19	DI WATER, Lot NONE	100 mL	WETSICCBRO_00013		Bromide	1 mg/L
					WETSICCCL_00024		Chloride	2 mg/L
					WETSICCFL_00013		Fluoride Sulfate	1 mg/L
.WETSICCBRO 00013	04/25/20	TMODO	 GANIC VENTURES, Lot N2-	BD665230	(Purchased Rea		Bromide	2 mg/L 1000 mg/L
.WETSICCBRO_00013	12/26/19		GANIC VENTURES, LOT N2-		(Purchased Rea		Chloride	1000 mg/L 1000 mg/L
·METRICCCT_00074	12/20/19	TNOK	JANIC VENIURE, LOU NZ-	CT004000	(Lulchased Kea	iguill)	CIITOTINE	1000 IIIg/L

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.: 600-191341-1

		Exp Prep Date Date	Dilutant Used	Reagent	Parent Reage	ent		
Reagent ID				Final Volume	Reagent ID	Volume Added	Analyte	Concentration
.WETSICCFL 00013	10/05/19	INORG	GANIC VENTURES, Lot n2-f6	670705	(Purchased Rea	gent)	Fluoride	1000 mg/L
.WETSICCSO4_00016	02/26/20	INORG	ANIC-VENTURE, Lot N2-SOX	671919	(Purchased Rea	gent)	Sulfate	1000 mg/L
ICCALSTD5 00043	09/30/19	07/29/19	DI WATER, Lot NONE	100 mL	WETSICCBRO 00013	200 uL	Bromide	2 mg/L
			,		WETSICCCL 00024	500 uL	Chloride	5 mg/L
					WETSICCFL_00013 WETSICCS04_00016	200 uL	Fluoride	2 mg/L
					WETSICCSO4_00016	500 uL		5 mg/L
.WETSICCBRO_00013	04/25/20		ANIC VENTURES, Lot N2-BR		(Purchased Rea		Bromide	1000 mg/L
.WETSICCCL_00024	12/26/19		ANIC-VENTURE, Lot N2-CL		(Purchased Rea		Chloride	1000 mg/L
.WETSICCFL_00013	10/05/19		ANIC VENTURES, Lot n2-f6		(Purchased Rea		Fluoride	1000 mg/L
.WETSICCSO4_00016	02/26/20		ANIC-VENTURE, Lot N2-SOX		(Purchased Rea		Sulfate	1000 mg/L
ICCALSTD6_00039	09/30/19	07/29/19	DI WATER, Lot NONE	100 mL	WETSICCBRO_00013		Bromide	5 mg/L
					WETSICCCL_00024	1 mL	Chloride	10 mg/L
					WETSICCFL 00013		Fluoride	5 mg/L
					WETSICCSO4_00016		Sulfate	10 mg/L
.WETSICCBRO_00013	04/25/20	INORG	ANIC VENTURES, Lot N2-BR	.665239	(Purchased Rea		Bromide	1000 mg/L
.WETSICCCL_00024	12/26/19		ANIC-VENTURE, Lot N2-CL6		(Purchased Rea		Chloride	1000 mg/L
.WETSICCFL_00013	10/05/19		GANIC VENTURES, Lot n2-fe		(Purchased Rea		Fluoride	1000 mg/L
.WETSICCSO4_00016	02/26/20		ANIC-VENTURE, Lot N2-SOX		(Purchased Rea		Sulfate	1000 mg/L
ICCALSTD7_00042	09/30/19	07/29/19	DI WATER, Lot NONE	100 mL	WETSICCBRO_00013		Bromide	7.5 mg/L
					WETSICCCL_00024		Chloride	20 mg/L
					WETSICCFL 00013		Fluoride	7.5 mg/L
	04/05/00	T110D 0		665000	WETSICCSO4 00016		Sulfate	20 mg/L
.WETSICCBRO_00013 .WETSICCCL 00024	04/25/20 12/26/19		ANIC VENTURES, Lot N2-BR ANIC-VENTURE, Lot N2-CL6		(Purchased Rea (Purchased Rea		Bromide Chloride	1000 mg/L 1000 mg/L
.WETSICCEL_00024	10/05/19		ANIC VENTURES, LOT N2-CL		(Purchased Rea		Fluoride	1000 mg/L
.WETSICCSO4 00016	02/26/20		ANIC-VENTURE, Lot N2-SOX		(Purchased Rea		Sulfate	1000 mg/L
_			· · · · · · · · · · · · · · · · · · ·		WETSICCBRO 00013 1 mL Bromide			
ICCALSTD8_00030	09/30/19	07/29/19	19 DI WATER, Lot NONE	100 mL			Bromide Chloride	10 mg/L
					WETSICCCL_00024 WETSICCFL 00013		Fluoride	40 mg/L 10 mg/L
					WETSICCSO4 00016		Sulfate	40 mg/L
.WETSICCBRO 00013	04/25/20	TMODE	 ANIC VENTURES, Lot N2-BR	665239	(Purchased Rea		Bromide	1000 mg/L
.WETSICCEL 00024	12/26/19		ANIC-VENTURES, LOT N2-BR		(Purchased Rea		Chloride	1000 mg/L
.WETSICCFL 00013	10/05/19	INORG	GANIC VENTURES, Lot n2-fe	670705	(Purchased Rea		Fluoride	1000 mg/L
.WETSICCSO4 00016	02/26/20		ANIC-VENTURE, Lot N2-SOX		(Purchased Rea		Sulfate	1000 mg/L
ICV/LCS 00105			DI WATER, Lot NONE		WETSICISO4 00012	<u> </u>	Sulfate	20 mg/L
.WETSICISO4 00012	09/29/20		CCUSTANDARD, Lot 2180851		(Purchased Rea		Sulfate	1000 mg/L
					<u> </u>			
VOAIS50PPM_00255	07/17/19	07/03/19	Methanol, Lot V032119A	1 mL	VOA3IS_00031	20 uL	1,4-Dichlorobenzene-d4	50 ug/mL
							Chlorobenzene-d5	50 ug/mL 50 ug/mL
.VOA3IS 00031	06/30/23		Restek, Lot A0138856		(Purchased Rea	gont)	Fluorobenzene 1,4-Dichlorobenzene-d4	2500 ug/mL
. VOASIS_UUUSI	00/30/23		Mester, LOC AUI30030		(ruichaseu Rea	gent)	Chlorobenzene-d5	2500 ug/mL
							Fluorobenzene	2500 ug/mL
VOAIS50PPM 00259	09/11/19	08/28/19	Methanol, Lot V071019A	1 mL	VOA3IS 00031	20 uL	1,4-Dichlorobenzene-d4	50 ug/mL
			,				Chlorobenzene-d5	50 ug/mL
					Fluorobenzene	50 ug/mL		

Lab Name:	Eurofins TestAmerica,	Houston	Job No.: 600-191341-1
SDG No.:			

				Reagent	Parent Reagen	t		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
.VOA3IS_00031	06/30/23		Restek, Lot A0138856		(Purchased Reage	ent)	1,4-Dichlorobenzene-d4 Chlorobenzene-d5 Fluorobenzene	2500 ug/mL 2500 ug/mL 2500 ug/mL
VOALCSPT2_00143	07/17/19	07/03/19	Methanol, Lot V032119A	1 mL	VOALMegMi2017_00004	20 uL	1,1-Dichloroethane 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene	50 ug/mL 50 ug/mL 50 ug/mL 50 ug/mL 50 ug/mL
.VOALMegMi2017_00004	06/30/21		Restek, Lot A0144202		(Purchased Reage	ent)	1,1-Dichloroethane 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene	2500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL
VOALCSPT2_00147	09/11/19	08/28/19	Methanol, Lot V071019A	1 mL	VOALMegMi2017_00004	20 uL	1,1-Dichloroethane 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene	50 ug/mL 50 ug/mL 50 ug/mL 50 ug/mL 50 ug/mL
.VOALMegMi2017_00004	06/30/21		Restek, Lot A0144202		(Purchased Reage	ent)	1,1-Dichloroethane 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene	2500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL
VOASS50PPM_00293	07/17/19	07/03/19	Methanol, Lot V032119A	1 mL	VOARSS_00012	20 uL	1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 (Surr)	50 ug/mL 50 ug/mL 50 ug/mL 50 ug/mL
.VOARSS_00012	12/31/20		Restek, Lot A0115812		(Purchased Reage	ent)	1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 (Surr)	2500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL
VOASS50PPM_00297		08/28/19	Methanol, Lot V071019A	1 mL	VOARSS_00012		1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 (Surr)	50 ug/mL 50 ug/mL 50 ug/mL 50 ug/mL
.VOARSS_00012	12/31/20		Restek, Lot A0115812		(Purchased Reage	ent)	1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 (Surr)	2500 ug/mL 2500 ug/mL 2500 ug/mL 2500 ug/mL
VOASTDGASPT_00334	07/17/19	07/10/19	Methanol, Lot V032119A	1 mL	VOARGAS_00014	20 uL	Bromomethane Butadiene Chloroethane Chloromethane Dichlorodifluoromethane Dichlorofluoromethane Trichlorofluoromethane	50 ug/mL 50 ug/mL 50 ug/mL 50 ug/mL 50 ug/mL 50 ug/mL 50 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-191341-1
SDG	No.:					

				Reagent	Parent Reager	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Vinyl chloride	50 ug/mL
.VOARGAS 00014	10/31/20		Restek, Lot A0131502		(Purchased Reag	ent.)	Bromomethane	2500 ug/mL
	10,01,20		1000001, 200 110101002		(Taronacea neag	0110)	Butadiene	2500 ug/mL
							Chloroethane	2500 ug/mL
							Chloromethane	2500 ug/mL
							Dichlorodifluoromethane	2500 ug/mL
							Dichlorofluoromethane	2500 ug/mL
							Trichlorofluoromethane	2500 ug/mL
							Vinyl chloride	2500 ug/mL
VOASTDPT2_00143	07/17/19	07/03/19	Methanol, Lot V032119A	1 mT	VOAMegMix2017 00006	20 11	1,1,1,2-Tetrachloroethane	50 ug/mL
VOASIDFIZ_00143	01/11/13	07703713	Mechanor, Loc VOSZITSA	1 11111	VOAMegMIX2017_00000	20 41	1,1,1-Trichloroethane	50 ug/mL
							1,1,2,2-Tetrachloroethane	50 ug/mL
							1,1,2-Trichloro-1,2,2-trifluor	
							oethane	30 dg/1111
							1,1,2-Trichloroethane	50 ug/mL
							1,1-Dichloroethane	50 ug/mL
							1,1-Dichloroethene	50 ug/mL
							1,1-Dichloropropene	50 ug/mL
							1,2,3-Trichlorobenzene	50 ug/mL
							1,2,3-Trichloropropane	50 ug/mL
							1,2,4-Trichlorobenzene	50 ug/mL
							1,2,4-Trimethylbenzene	50 ug/mL
							1,2-Dibromo-3-Chloropropane	50 ug/mL
							1,2-Dichlorobenzene	50 ug/mL
							1,2-Dichloroethane	50 ug/mL
							1,2-Dichloropropane	50 ug/mL
							1,3,5-Trimethylbenzene	50 ug/mL
							1,3-Dichlorobenzene	50 ug/mL
							1,3-Dichloropropane	50 ug/mL
							1,4-Dichlorobenzene	50 ug/mL
							1,4-Dioxane	1000 ug/mL
							2,2-Dichloropropane	50 ug/mL
							2-Chlorotoluene	50 ug/mL
							2-Methyl-2-propanol	500 ug/mL
							3-Chloro-1-propene	50 ug/mL
							4-Chlorotoluene	50 ug/mL
							4-Isopropyltoluene	50 ug/mL
							Acrylonitrile	500 ug/mL
							Benzene	50 ug/mL
							Bromobenzene	50 ug/mL
							Bromoform	50 ug/mL
							Carbon disulfide	50 ug/mL
							Carbon tetrachloride	50 ug/mL
							Chlorobenzene	50 ug/mL
							Chlorobromomethane	50 ug/mL
							Chlorodibromomethane	50 ug/mL
							Chloroform	50 ug/mL
							cis-1,2-Dichloroethene	50 ug/mL

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-191341-1
---	-----------------------

				Reagent	Parent Reagen	nt		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							cis-1,3-Dichloropropene	50 ug/mL
							Cyclohexane	50 ug/mL
							Dibromomethane	50 ug/mL
							Dichlorobromomethane	50 ug/mL
							Ethyl ether	50 ug/mL
							Ethyl methacrylate	50 ug/mL
							Ethylbenzene	50 ug/mL
							Ethylene Dibromide	50 ug/mL
							Hexachlorobutadiene	50 ug/mL
							Hexane	50 ug/mL
							Iodomethane	50 ug/mL
							Isobutyl alcohol	1250 ug/mL
							Isopropylbenzene	50 ug/mL
							m-Xylene & p-Xylene	50 ug/mL
							Methyl acetate	100 ug/mL
							Methyl tert-butyl ether	50 ug/mL
							Methylcyclohexane	50 ug/mL
							Methylene Chloride	50 ug/mL
							n-Butylbenzene	50 ug/mL
							n-Heptane	50 ug/mL
							N-Propylbenzene	50 ug/mL
							Naphthalene	50 ug/mL
							o-Xylene	50 ug/mL
							sec-Butylbenzene	50 ug/mL
							Styrene	50 ug/mL
							tert-Butylbenzene	50 ug/mL
							Tetrachloroethene	50 ug/mL
							Tetrahydrofuran	100 ug/mL
							Toluene	50 ug/mL
							trans-1,2-Dichloroethene	50 ug/mL
							trans-1,3-Dichloropropene	50 ug/mL
							trans-1,4-Dichloro-2-butene	50 ug/mL
							Trichloroethene	50 ug/mL
					VOARAcroleinS_00005		Acrolein	250 ug/mL
					VOARADD4COM_00006	20 uL	Ethyl acetate	100 ug/mL
							Ethyl acrylate	50 ug/mL
							Methyl methacrylate	100 ug/mL
							n-Butyl acetate	50 ug/mL
					VOARADDCOM_00014	20 uL	1,2,3-Trimethylbenzene	50 ug/mL
					_		1,3,5-Trichlorobenzene	50 ug/mL
							1-Chlorohexane	50 ug/mL
							2-Chloro-1,3-butadiene	50 ug/mL
							2-Nitropropane	100 ug/mL
							Benzyl chloride	50 ug/mL
							Isooctane	50 ug/mL
							Isopropyl alcohol	500 ug/mL
							Methacrylonitrile	500 ug/mL
							n-Butanol	1250 ug/mL

Lab	Name: Eurofins	TestAmerica,	Houston	Job No.: 600-191341-1

Reagent ID					Reagent	Parent Reagen	t		
Reagent ID		Evn	Pren	Dilutant			Volume		
VOAMCYCHOME 00027	Reagent ID	-	-			Reagent ID		Analyte	Concentration
WOARKSTONDUP_00002	Reagene 15	Bacc	Date	0564	VOIGHE	=		=	
VOARPOLAND_00013 20 ut Avetorie 1 Avetori									2500 ug/mL
VOARFOLADD_00013 20						VOARKETONDUP_00002	8 uL		100 ug/mL
VOARPOLADD_00013 Zo ul									100 ug/mL
VOARPOIADD_00013 20 uL Acctonitrile 15 160 propy ether									100 ug/mL
Noamegmix2017_00006					1103 D D O O O O O O	20 +		100 ug/mL	
Propionitrile Text-may methyl ether						VOARPOLADD_00013	20 uL		500 ug/mL
VOARSS_00012 20									50 ug/mL
VOARSS_00012 20 LL								-	500 ug/mL
VOARSS_00012									50 ug/mL
A-Bromoflucromethane Dibromoflucromethane Toluene-d8 (Surr)								50 ug/mL	
NOANMegMix2017_00006 NoANMegMix2017_00006						VOARSS_00012	20 uL		50 ug/mL
VOARVASTD 00004 20 uL Vinyl acetate 1									50 ug/mL
VOAMegMix2017_00006									50 ug/mL
.VOAMegMix2017_00006								, ,	50 ug/mL
1,1,1-Trichloroethane									100 ug/mL
1,1,2,2-Tetrachloroethane 25	.VOAMegMix2017_00006	06/30/21		Restek, Lot A0143774		(Purchased Reage	ent)		2500 ug/mL
1,1,2-Trichloro-1,2,2-trifluor 25									2500 ug/mL
oethane 2.7-Trichloroethane 2.5 1,1-Dichloroethane 2.5 1,1-Dichloropthene 2.5 1,1-Dichloropropene 2.5 1,2,3-Trichloropenee 2.5 1,2,3-Trichloropropane 2.5 1,2,4-Trichloropenee 2.5 1,2,4-Trimethylbenzene 2.5 1,2-Dichloropropane 2.5 1,2-Dichloropropane 2.5 1,2-Dichloropropane 2.5 1,2-Dichloropropane 2.5 1,3-Dichloropenee 2.5 1,3-Dichloropenee 2.5 1,3-Dichloropenee 2.5 1,4-Dichloropenee 2.5 1,4-Dichloropenee 2.5 1,4-Dichloropenee 2.5 2,2-Dichloropenee 2.5 2,2-Dichloropenee 2.5 2,2-Dichloropenee 2.5 2,2-Dichloropenee 2.5 2,2-Dichloropenee 2.5 2,2-Dichloropenee 2.5 3-Chlorot-lenee 2.5 4-Chlorotoluee 2.5 4-Chlorotoluee 2.5 4-Tsopropyltoluee 2.5									2500 ug/mL
1,1,2-Trichloroethane									2500 ug/mL
1,1-Dichloroethane 25 1,1-Dichloropropene 25 1,1-Dichloropropene 25 1,2,3-Trichloropropene 25 1,2,3-Trichloropropene 25 1,2,3-Trichloropropene 25 1,2,4-Trichloropropene 25 1,2,4-Trichloropropene 25 1,2-Dichloropropene 25 1,2-Dichloropropene 25 1,2-Dichloropropene 25 1,2-Dichloropropene 25 1,2-Dichloropropene 25 1,3-Dichloropropene 25 1,3-Dichloropropene 25 1,3-Dichloropropene 25 1,4-Dichloropropene 25 1,4-Dichloropropene 25 1,4-Dichloropropene 25 1,4-Dichloropropene 25 1,4-Dichloropropene 25 2-Methyl-2-propenol 25 2-Methyl-2-propenol 25 3-Chlorolenee 25 3-Chlorotolenee 25 3-Chlorotolenee 25 4-Teopropyltolenee 25									
1,1-Dichloroethene									2500 ug/mL
1,1-Dichloropropene 25 1,2,3-Trichlorobenzene 25 1,2,3-Trichloropopane 25 1,2,4-Trichlorobenzene 25 1,2,4-Trichlorobenzene 25 1,2-Dibromo-3-Chloropropane 25 1,2-Dichlorobenzene 25 1,2-Dichlorobenzene 25 1,2-Dichlorobenzene 25 1,2-Dichloropenzene 25 1,2-Dichloropenzene 25 1,3-Dichloropropane 25 1,3-Dichloropropane 25 1,3-Dichloropropane 25 1,3-Dichloropropane 25 1,4-Dichloropropane 25 1,4-Dichloropropane 25 1,4-Dichloropropane 25 2-Chlorotoluene 25 2-Chlorotoluene 25 2-Methyl-2-propanol 25 2-Methyl-2-propanol 25 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Chlorotoluene 25 4-Chlorotoluene 25								•	2500 ug/mL
1,2,3-Trichlorobenzene 25 1,2,4-Trichloropropane 25 1,2,4-Trichlorobenzene 25 1,2,4-Trimethylbenzene 25 1,2-Dibromo-3-Chloropropane 25 1,2-Dichlorobenzene 25 1,2-Dichlorobenzene 25 1,2-Dichloropenane 25 1,2-Dichloropropane 25 1,3-Dichloropropane 25 1,3-Dichlorobenzene 25 1,3-Dichloropropane 25 1,3-Dichloropropane 25 1,4-Dichlorobenzene 25 1,4-Dichlorobenzene 25 1,4-Dichloropropane 25 2,2-Dichloropropane 25 2,2-Dichloropropane 25 2-Chlorotoluene 25 3-Chloroluene 25 3-Chlorol-propene 25 4-Chlorotoluene 25 4-C									2500 ug/mL
1,2,3-Trichloropropane 25 1,2,4-Trichlorobenzene 25 1,2,4-Trimethylbenzene 25 1,2-Dibromo-3-Chloropropane 25 1,2-Dichlorobenzene 25 1,2-Dichlorobenzene 25 1,2-Dichloropropane 25 1,2-Dichloropropane 25 1,2-Dichloropropane 25 1,3-Dichloropropane 25 1,3-Dichlorobenzene 25 1,3-Dichloropropane 25 1,4-Dichlorobenzene 25 1,4-Dichlorobenzene 25 1,4-Dichloropropane 25 2,2-Dichloropropane 25 2,3-Dichloropropane 25 2,4-Dichloropropane 25 3,4-Dichloropropane 25 3,4-Dichloropropane 25 3,4-Dichloropropane 25 3,4-Dichloropropane 25 3,4-Dichloropropane 25 3,4-Dichloropropane 25 3,5-Dichloropropane 25 3,5-Dichloropropane 25 3,6-Dichloropropane 25 3,6-Dichloropropane 25 3,7-Dichloropropane 25 3,									2500 ug/mL
1,2,4-Trichlorobenzene 25 1,2,4-Trimethylbenzene 25 1,2-Dichloro-3-Chloropropane 25 1,2-Dichlorobenzene 25 1,2-Dichlorobenzene 25 1,2-Dichloropenane 25 1,2-Dichloropropane 25 1,3-Dichloropropane 25 1,3-Dichlorobenzene 25 1,3-Dichlorobenzene 25 1,3-Dichloropropane 25 1,4-Dichlorobenzene 25 1,4-Dichloropropane 25 1,4-Dichloropropane 25 2-Dichloropropane 25 2-Dichloropropane 25 2-Methyl-2-propanol 250 3-Chlorotoluene 25 4-Isopropyltoluene 25 4-I									2500 ug/mL
1,2,4-Trimethylbenzene 25 1,2-Dibromo-3-Chloropropane 25 1,2-Dichlorobenzene 25 1,2-Dichlorobenzene 25 1,2-Dichloropropane 25 1,2-Dichloropropane 25 1,3-Trimethylbenzene 25 1,3-Dichloropropane 25 1,3-Dichloropropane 25 1,3-Dichloropropane 25 1,4-Dichloropropane 25 1,4-Dichlorobenzene 25 1,4-Dichloropropane 25 2-Chlorhoropropane 25 2-Chlorotoluene 25 2-Methyl-2-propanol 250 3-Chloro-1-propene 25 4-Chloro-1-propene 25 4-Chloropropyltoluene 25									2500 ug/mL
1,2-Dibromo-3-Chloropropane 25 1,2-Dichlorobenzene 25 1,2-Dichloropthane 25 1,2-Dichloropropane 25 1,3,5-Trimethylbenzene 25 1,3-Dichlorobenzene 25 1,3-Dichloropropane 25 1,4-Dichlorobenzene 25 1,4-Dioxane 500 2,2-Dichloropropane 25 2-Chlorotoluene 25 2-Methyl-2-propanol 250 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Chlorotoluene 25 4-Chlorotoluene 25 4-Chlorotoluene 25									2500 ug/mL
1,2-Dichlorobenzene 25 1,2-Dichloroethane 25 1,2-Dichloroethane 25 1,2-Dichloropopane 25 1,3,5-Trimethylbenzene 25 1,3-Dichlorobenzene 25 1,4-Dichloropropane 25 1,4-Dichlorobenzene 25 2,2-Dichloropropane 25 2-Chlorotoluene 25 2-Methyl-2-propanol 250 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25									2500 ug/mL
1,2-Dichloroethane 25 1,2-Dichloropropane 25 1,3,5-Trimethylbenzene 25 1,3-Dichloropropane 25 1,3-Dichloropropane 25 1,4-Dichlorobenzene 25 1,4-Dioxane 500 2,2-Dichloropropane 25 2-Chlorotoluene 25 2-Methyl-2-propanol 25 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25									2500 ug/mL
1,2-Dichloropropane 25 1,3,5-Trimethylbenzene 25 1,3-Dichlorobenzene 25 1,3-Dichloropropane 25 1,4-Dichlorobenzene 25 1,4-Dioxane 500 2,2-Dichloropropane 25 2-Chlorotoluene 25 2-Methyl-2-propanol 250 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25								1,2-Dichlorobenzene	2500 ug/mL
1,3,5-Trimethylbenzene 25 1,3-Dichlorobenzene 25 1,3-Dichloropropane 25 1,4-Dichlorobenzene 25 1,4-Dichlorobenzene 500 2,2-Dichloropropane 25 2-Chlorotoluene 25 2-Chlorotoluene 25 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25								1,2-Dichloroethane	2500 ug/mL
1,3-Dichlorobenzene 25 1,3-Dichloropropane 25 1,4-Dichlorobenzene 25 1,4-Dioxane 500 2,2-Dichloropane 25 2-Chlorotoluene 25 2-Methyl-2-propanol 250 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25								1,2-Dichloropropane	2500 ug/mL
1,3-Dichloropropane 25 1,4-Dichlorobenzene 25 1,4-Dioxane 500 2,2-Dichloropropane 25 2-Chlorodoluene 25 2-Methyl-2-propanol 250 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25									2500 ug/mL
1,4-Dichlorobenzene 25 1,4-Dioxane 500 2,2-Dichloropropane 25 2-Chlorotoluene 25 2-Methyl-2-propanol 250 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25								1,3-Dichlorobenzene	2500 ug/mL
1,4-Dioxane 500 2,2-Dichloropropane 25 2-Chlorotoluene 25 2-Methyl-2-propanol 250 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25								1,3-Dichloropropane	2500 ug/mL
2,2-Dichloropropane 25 2-Chlorotoluene 25 2-Methyl-2-propanol 250 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25								1,4-Dichlorobenzene	2500 ug/mL
2-Chlorotoluene 25 2-Methyl-2-propanol 250 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25								1,4-Dioxane	50000 ug/mL
2-Chlorotoluene 25 2-Methyl-2-propanol 250 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25								2,2-Dichloropropane	2500 ug/mL
2-Methyl-2-propanol 250 3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25									2500 ug/mL
3-Chloro-1-propene 25 4-Chlorotoluene 25 4-Isopropyltoluene 25									25000 ug/mL
4-Chlorotoluene 25 4-Isopropyltoluene 25									2500 ug/mL
4-Isopropyltoluene 25									2500 ug/mL
									2500 ug/mL
Acrylonitrile 250								Acrylonitrile	25000 ug/mL
									2500 ug/mL
									2500 ug/mL
									2500 ug/mL
									2500 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.: 600-191341-1

				Reagent _	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Carbon tetrachloride	2500 ug/mL
							Chlorobenzene	2500 ug/mL
							Chlorobromomethane	2500 ug/mL
							Chlorodibromomethane	2500 ug/mL
							Chloroform	2500 ug/mL
							cis-1,2-Dichloroethene	2500 ug/mL
							cis-1,3-Dichloropropene	2500 ug/mL
							Cyclohexane	2500 ug/mL
							Dibromomethane	2500 ug/mL
							Dichlorobromomethane	2500 ug/mL
							Ethyl ether	2500 ug/mL
							Ethyl methacrylate	2500 ug/mL
							Ethylbenzene	2500 ug/mL
							Ethylene Dibromide	2500 ug/mL
							Hexachlorobutadiene	2500 ug/mL
							Hexane	2500 ug/mL
							Iodomethane	2500 ug/mL
							Isobutyl alcohol	62500 ug/mL
							Isopropylbenzene	2500 ug/mL
							m-Xylene & p-Xylene	2500 ug/mL
							Methyl acetate	5000 ug/mL
							Methyl tert-butyl ether	2500 ug/mL
							Methylcyclohexane	2500 ug/mL
							Methylene Chloride	2500 ug/mL
							n-Butylbenzene	2500 ug/mL
							n-Heptane	2500 ug/mL
							N-Propylbenzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							o-Xylene	2500 ug/mL
							sec-Butylbenzene	2500 ug/mL
							Styrene	2500 ug/mL
							tert-Butylbenzene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
							Tetrahydrofuran	5000 ug/mL
							Toluene	2500 ug/mL
							trans-1,2-Dichloroethene	2500 ug/mL
							trans-1,3-Dichloropropene	2500 ug/mL
							trans-1,4-Dichloro-2-butene	2500 ug/mL
							Trichloroethene	2500 ug/mL
.VOARAcroleinS 00005	10/31/19		Restek, Lot A014767	6	(Purchased Rea	agent)	Acrolein	20000 ug/mL
.VOARADD4COM 00006	08/31/19		Restek, Lot A013544		(Purchased Rea		Ethyl acetate	5000 ug/mL
	00/31/13		TODGER, HOU MOISSIA	-	(Larchasca Nec	1901101	Ethyl acrylate	2500 ug/mL
							Methyl methacrylate	5000 ug/mL
							n-Butyl acetate	2500 ug/mL
.VOARADDCOM 00014	09/30/19		Restek, Lot A013591	5	(Purchased Rea	agent)	1,2,3-Trimethylbenzene	2500 ug/mL
0.111111111111111111111111111111111	05/50/19		MODELIN, HOL MOISSE	~	(LULCHASEU NEC	4901101	1,3,5-Trichlorobenzene	2500 ug/mL
							1-Chlorohexane	2500 ug/mL
							2-Chloro-1,3-butadiene	2500 ug/mL
	ĺ	l		ļ			z-chioro-i, s-butadiene	ZSUU ug/mL

Lab Name:	Eurofins TestAmerica,	Houston J	Job No.: 600-191341-1
SDG No.:			

				Reagent	Parent Reager	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							2-Nitropropane	5000 ug/mL
							Benzyl chloride	2500 ug/mL
							Isooctane	2500 ug/mL
							Isopropyl alcohol	25000 ug/mL
							Methacrylonitrile	25000 ug/mL
							n-Butanol	62500 ug/mL
.VOARCYCHONE 00027	12/31/20		Restek, Lot A0133136		(Purchased Reag	on+1	Cyclohexanone	25000 ug/mL
.VOARKETONDup 00002	01/31/20		RESTEK, Lot A0123890		(Purchased Reag		2-Butanone (MEK)	12500 ug/mL
.VOARKETONDUP_00002	01/31/20		RESIER, LOC AU123090		(Furchased Reag	enc)	2-Hexanone	12500 ug/mL
							4-Methyl-2-pentanone (MIBK)	12500 ug/mL
	07/04/00						Acetone	12500 ug/mL
.VOARPOLADD_00013	07/31/20		Restek, Lot A0139911		(Purchased Reag	ent)	Acetonitrile	25000 ug/mL
							Isopropyl ether	2500 ug/mL
							Propionitrile	25000 ug/mL
							Tert-amyl methyl ether	2500 ug/mL
							Tert-butyl ethyl ether	2500 ug/mL
.VOARSS_00012	12/31/20		Restek, Lot A0115812		(Purchased Reag	ent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
							4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
.VOARVASTD_00004	08/31/19		Restek, Lot A0145775		(Purchased Reag	ent)	Vinyl acetate	5000 ug/mL
VOASTDPT2_00147	09/11/19	08/28/19	Methanol, Lot V071019A	1 mL	VOAMegMix2017 00006	20 uL	1,1-Dichloroethane	50 ug/mL
_					_		1,1-Dichloroethene	50 ug/mL
							Benzene	50 ug/mL
							Naphthalene	50 ug/mL
							Tetrachloroethene	50 ug/mL
					VOARSS 00012	20 uL	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
							4-Bromofluorobenzene	50 ug/mL
							Dibromofluoromethane	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
.VOAMegMix2017 00006	06/30/21		Restek, Lot A0143774		(Purchased Reag	ent)	1,1-Dichloroethane	2500 ug/mL
	00,00,21		1,00001, 200 110110771		(raremasea neag	0110)	1,1-Dichloroethene	2500 ug/mL
							Benzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
.VOARSS 00012	12/31/20		Restek, Lot A0115812		(Purchased Reag	ent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
· VOAKSS_00012	12/31/20		Mescer, Lot Auil3012		(Fulchased Reag	C11 C)	4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL 2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL

Method 8260B Low Level

Volatile Organic Compounds (GC/MS) by Method 8260B Low Level

FORM II GC/MS VOA SURROGATE RECOVERY

Name:	Eurofins	TestAmerica,	Houston	Job	No.:	600-191341-1
	Name:	Name: Eurofins	Name: Eurofins TestAmerica,	Name: Eurofins TestAmerica, Houston	Name: Eurofins TestAmerica, Houston Job	Name: Eurofins TestAmerica, Houston Job No.:

SDG No.: ____

Matrix: Water Level: Low

GC Column (1): DB-VRX 60 ID: 0.25(mm)

Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
Artesia - MW38 - 082819	600-191341-1	89	96	104	73
Artesia - MW38 - 082819 DL	600-191341-1 DL	98	104	102	83
Artesia - MW37 - 082819	600-191341-2	91	97	100	78
Artesia - MW37 - 082819 DL	600-191341-2 DL	96	101	102	75
Artesia - MW36 - 082819	600-191341-3	93	99	98	76
Artesia - MW36 - 082819 FD	600-191341-4	93	99	101	80
Artesia - TB01 - 082819	600-191341-5	94	98	96	82
	MB 600-274277/6	86	96	100	81
	LCS 600-274277/3	79	76	103	77
	LCSD 600-274277/4	76	80	107	79

	QC LIMITS
DBFM = Dibromofluoromethane	62-130
DCA = 1,2-Dichloroethane-d4 (Surr)	50-134
TOL = Toluene-d8 (Surr)	70-130
BFB = 4-Bromofluorobenzene	67-139

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Nam	e: Eurofins TestAme	erica, Houston	Job No.: 600-191341-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: A25302.d	
Lab ID:	LCS 600-274277/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(mg/L)	$({ m mg/L})$	REC	REC	
1,1-Dichloroethane	0.0100	0.01041	104	70-140	
1,1-Dichloroethene	0.0100	0.01267	127	58-148	
Benzene	0.0100	0.01083	108	70-130	
Naphthalene	0.0100	0.01119	112	10-150	
Tetrachloroethene	0.0100	0.009727	97	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Nam	e: Eurofins T	estAmerica, Houston	Job No.: 600-	-191341-1
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID:	A25303.d
Lab ID:	LCSD 600-274	277/4	Client ID:	

	SPIKE ADDED	LCSD CONCENTRATION	LCSD	olo .	QC L	IMITS	#
COMPOUND	(mg/L)	(mg/L)	REC	RPD	RPD	REC	"
1,1-Dichloroethane	0.0100	0.01093	109	5	20	70-140	
1,1-Dichloroethene	0.0100	0.01324	132	4	20	58-148	
Benzene	0.0100	0.01127	113	4	20	70-130	
Naphthalene	0.0100	0.01301	130	15	20	10-150	
Tetrachloroethene	0.0100	0.009682	97	0	20	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-191341-1
SDG No.:	
Lab File ID: A25305.d	Lab Sample ID: MB 600-274277/6
Matrix: Water	Heated Purge: (Y/N) N
Instrument ID: CHVOAMS07	Date Analyzed: 09/10/2019 10:04

GC Column: DB-VRX 60 ID: 0.25 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 600-274277/3	A25302.d	09/10/2019 08:51
	LCSD 600-274277/4	A25303.d	09/10/2019 09:15
Artesia - TB01 - 082819	600-191341-5	A25306.d	09/10/2019 10:29
Artesia - MW38 - 082819	600-191341-1	A25307.d	09/10/2019 10:53
Artesia - MW36 - 082819	600-191341-3	A25308.d	09/10/2019 11:18
Artesia - MW36 - 082819 FD	600-191341-4	A25309.d	09/10/2019 11:43
Artesia - MW37 - 082819	600-191341-2	A25310.d	09/10/2019 12:08
Artesia - MW38 - 082819 DL	600-191341-1 DL	A25311.d	09/10/2019 12:34
Artesia - MW37 - 082819 DL	600-191341-2 DL	A25316.d	09/10/2019 14:39

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab File ID: A19800a.d BFB Injection Date: 07/17/2019

Instrument ID: CHVOAMS07 BFB Injection Time: 08:09

Analysis Batch No.: 269550

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	20.4		
75	30.0 - 60.0 % of mass 95	52.3		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	7.3		
173	Less than 2.0 % of mass 174	0.0	(0.0) 1	
174	50.0 - 120.00 % of mass 95	106.9		
175	5.0 - 9.0 % of mass 174	7.7	(7.2) 1	
176	95.0 - 101.0 % of mass 174	103.4	(96.7) 1	
177	5.0 - 9.0 % of mass 176	6.7	(6.5) 2	

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 600-269550/2	A19801a.d	07/17/2019	09:37
	IC 600-269550/3	A19802.d	07/17/2019	10:02
	IC 600-269550/4	A19803.d	07/17/2019	10:26
	IC 600-269550/5	A19804.d	07/17/2019	10:51
	ICIS 600-269550/6	A19805.d	07/17/2019	11:16
	IC 600-269550/7	A19806.d	07/17/2019	11:41
	IC 600-269550/8	A19807.d	07/17/2019	12:06
	ICV 600-269550/10	A19809.d	07/17/2019	12:56

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab File ID: A25300.d BFB Injection Date: 09/10/2019

Instrument ID: CHVOAMS07 BFB Injection Time: 07:21

Analysis Batch No.: 274277

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	20.4		
75	30.0 - 60.0 % of mass 95	55.8		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	7.7		
173	Less than 2.0 % of mass 174	0.4	(0.4) 1	
174	50.0 - 120.00 % of mass 95	98.8		
175	5.0 - 9.0 % of mass 174	7.5	(7.6) 1	
176	95.0 - 101.0 % of mass 174	99.5	(100.8) 1	
177	5.0 - 9.0 % of mass 176	7.4	(7.5) 2	

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 600-274277/2	A25301.d	09/10/2019	08:01
	LCS 600-274277/3	A25302.d	09/10/2019	08:51
	LCSD 600-274277/4	A25303.d	09/10/2019	09:15
	MB 600-274277/6	A25305.d	09/10/2019	10:04
Artesia - TB01 - 082819	600-191341-5	A25306.d	09/10/2019	10:29
Artesia - MW38 - 082819	600-191341-1	A25307.d	09/10/2019	10:53
Artesia - MW36 - 082819	600-191341-3	A25308.d	09/10/2019	11:18
Artesia - MW36 - 082819 FD	600-191341-4	A25309.d	09/10/2019	11:43
Artesia - MW37 - 082819	600-191341-2	A25310.d	09/10/2019	12:08
Artesia - MW38 - 082819 DL	600-191341-1 DL	A25311.d	09/10/2019	12:34
Artesia - MW37 - 082819 DL	600-191341-2 DL	A25316.d	09/10/2019	14:39

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-191341-1

SDG No.:

Sample No.: ICIS 600-269550/6 Date Analyzed: 07/17/2019 11:16

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25 (mm)

Lab File ID (Standard): A19805.d Heated Purge: (Y/N) N

Calibration ID: 16122

		FB	FB		15	DCBd4	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT		249850	8.72	78672	11.75	103439	14.32
UPPER LIMIT		499700	9.22	157344	12.25	206878	14.82
LOWER LIMIT	LOWER LIMIT		8.22	39336	11.25	51720	13.82
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 600-269550/10		276517	8.72	86267	11.75	110474	14.32
CCVIS 600-274277/2		186878	8.68	70133	11.74	105532	14.33

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII 8260B

FORM VIII GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Sample No.: CCVIS 600-274277/2 Date Analyzed: 09/10/2019 08:01

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm)

Lab File ID (Standard): A25301.d Heated Purge: (Y/N) N

Calibration ID: 16475

		FB		CBNZc	15	DCBd4	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		186878	8.68	70133	11.74	105532	14.33
UPPER LIMIT		373756	9.18	140266	12.24	211064	14.83
LOWER LIMIT		93439	8.18	35067	11.24	52766	13.83
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 600-274277/3		193578	8.67	72052	11.74	106627	14.34
LCSD 600-274277/4		191342	8.68	70682	11.74	104154	14.34
MB 600-274277/6		132938	8.68	61512	11.75	76805	14.34
600-191341-5	Artesia - TB01 - 082819	122290	8.68	57617	11.75	71213	14.34
600-191341-1	Artesia - MW38 - 082819	122405	8.69	56223	11.75	92910	14.34
600-191341-3	Artesia - MW36 - 082819	158325	8.68	77896	11.75	118492	14.34
600-191341-4	Artesia - MW36 - 082819 FD	194277	8.69	92669	11.75	139638	14.34
600-191341-2	Artesia - MW37 - 082819	213779	8.69	102303	11.75	152436	14.34
600-191341-1 DL	Artesia - MW38 - 082819 DL	218234	8.68	106639	11.75	151940	14.34
600-191341-2 DL	Artesia - MW37 - 082819 DL	176970	8.68	85628	11.75	120415	14.34

FB = Fluorobenzene

CBNZd5 = Chlorobenzene-d5

DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII 8260B

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 SDG No.: Client Sample ID: Artesia - MW38 - 082819 Lab Sample ID: 600-191341-1 Matrix: Water Lab File ID: A25307.d Date Collected: 08/28/2019 17:21 Analysis Method: 8260B Date Analyzed: 09/10/2019 10:53 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 274277 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-35-4	1,1-Dichloroethene	0.0145		0.00100	0.000192
71-43-2	Benzene	0.00980		0.00100	0.000176
91-20-3	Naphthalene	0.0127		0.00200	0.000129
127-18-4	Tetrachloroethene	0.00903		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		50-134
460-00-4	4-Bromofluorobenzene	73		67-139
1868-53-7	Dibromofluoromethane	89		62-130
2037-26-5	Toluene-d8 (Surr)	104		70-130

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-191341-1			
SDG No.:				
Client Sample ID: Artesia - MW38 - 082819 DL	Lab Sample ID: 600-191341-1 DL			
Matrix: Water	Lab File ID: A25311.d			
Analysis Method: 8260B	Date Collected: 08/28/2019 17:21			
Sample wt/vol: 20 (mL) Date Analyzed: 09/10/2019 12:34				
Soil Aliquot Vol:	Dilution Factor: 5			
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 274277	Units: mg/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.0699		0.00500	0.000840

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	104		50-134
460-00-4	4-Bromofluorobenzene	83		67-139
1868-53-7	Dibromofluoromethane	98		62-130
2037-26-5	Toluene-d8 (Surr)	102		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 SDG No.: Client Sample ID: Artesia - MW37 - 082819 Lab Sample ID: 600-191341-2 Matrix: Water Lab File ID: A25310.d Date Collected: 08/28/2019 19:37 Analysis Method: 8260B Date Analyzed: 09/10/2019 12:08 Sample wt/vol: 20(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 274277 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-35-4	1,1-Dichloroethene	0.0125		0.00100	0.000192
71-43-2	Benzene	0.00569		0.00100	0.000176
91-20-3	Naphthalene	0.00755		0.00200	0.000129
127-18-4	Tetrachloroethene	0.0101		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		50-134
460-00-4	4-Bromofluorobenzene	78		67-139
1868-53-7	Dibromofluoromethane	91		62-130
2037-26-5	Toluene-d8 (Surr)	100		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-191341-1				
SDG No.:					
Client Sample ID: Artesia - MW37 - 082819	Lab Sample ID: 600-191341-2 DL				
Matrix: Water	Lab File ID: A25316.d				
Analysis Method: 8260B	Date Collected: 08/28/2019 19:37				
Sample wt/vol: 20(mL)	Date Analyzed: 09/10/2019 14:39				
Soil Aliquot Vol:	Dilution Factor: 20				
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 274277	Units: mg/L				
CAS NO COMPOUND NAME	RESIILT O RI. MDI.				

CAS NO.	COMPOUND NAME	RESULT	Q	КL	MDL
75-34-3	1,1-Dichloroethane	0.241		0.0200	0.00336
CAS NO.	SURROGATE		%REC	Q	LIMITS

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	07-0 1,2-Dichloroethane-d4 (Surr)			50-134
460-00-4	4-Bromofluorobenzene	75		67-139
1868-53-7	Dibromofluoromethane			62-130
2037-26-5	Toluene-d8 (Surr)	102		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 SDG No.: Client Sample ID: Artesia - MW36 - 082819 Lab Sample ID: 600-191341-3 Matrix: Water Lab File ID: A25308.d Date Collected: 08/29/2019 11:40 Analysis Method: 8260B Date Analyzed: 09/10/2019 11:18 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 274277 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.0412		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00193		0.00100	0.000192
71-43-2	Benzene	0.0292		0.00100	0.000176
91-20-3	Naphthalene	0.00696		0.00200	0.000129
127-18-4	Tetrachloroethene	0.000630	J	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		50-134
460-00-4	4-Bromofluorobenzene	76		67-139
1868-53-7	Dibromofluoromethane	93		62-130
2037-26-5	Toluene-d8 (Surr)	98		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston	_ Job No.: 600-191341-1		
SDG No.:			
Client Sample ID: Artesia - MW36 - 082819	Lab Sample ID: 600-191341-4		
<u>FD</u> Matrix: Water	— Lab File ID: A25309.d		
Analysis Method: 8260B	Date Collected: 08/29/2019 11:45		
Sample wt/vol: 20(mL)	Date Analyzed: 09/10/2019 11:43		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 274277	Units: mg/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.0278		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00215		0.00100	0.000192
71-43-2	Benzene	0.0162		0.00100	0.000176
91-20-3	Naphthalene	0.00432		0.00200	0.000129
127-18-4	Tetrachloroethene	0.000375	J	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		50-134
460-00-4	4-Bromofluorobenzene	ofluorobenzene 80		67-139
1868-53-7	Dibromofluoromethane	93		62-130
2037-26-5	Toluene-d8 (Surr)	101		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 SDG No.: Client Sample ID: Artesia - TB01 - 082819 Lab Sample ID: 600-191341-5 Matrix: Water Lab File ID: A25306.d Date Collected: 08/28/2019 08:00 Analysis Method: 8260B Date Analyzed: 09/10/2019 10:29 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 274277 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE		Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		50-134
460-00-4	4-Bromofluorobenzene	82		67-139
1868-53-7	Dibromofluoromethane	94		62-130
2037-26-5	Toluene-d8 (Surr)	96		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 269550

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 600-269550/2	A19801a.d
Level 2	IC 600-269550/3	A19802.d
Level 3	IC 600-269550/4	A19803.d
Level 4	IC 600-269550/5	A19804.d
Level 5	ICIS 600-269550/6	A19805.d
Level 6	IC 600-269550/7	A19806.d
Level 7	IC 600-269550/8	A19807.d

ANALYTE			RRF			CURVE		COEFFICIENT #		MIN RRF	%RSD	# MAX	R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	М1	M2			%RSI	OR COD	OR COD
Dichlorodifluoromethane	0.2899 0.3715	0.4571	0.4757	0.4144	0.4140	Lin1	0.0297	0.3839					0.9960	0.9900
Chloromethane	0.3394 0.3167	0.4349	0.3337	0.3453	0.3397	Ave		0.3512		0.1000	10.9	15.	0	
Vinyl chloride	0.3532 0.3880	0.3994	0.3866	0.3415	0.4162	Ave		0.3937			10.9	15.	0	
Butadiene	0.4482 0.4354	0.4897	0.4988	0.4685	0.4889	Ave		0.4746			5.2	15.	0	
Ethylene oxide	0.0286 0.0239	0.0269	0.0227	0.0245	0.0242	Ave		0.0253			8.1	15.	0	
Bromomethane	0.1488 0.1116	0.1205 0.1622	0.0881	0.0957	0.0921	Qua	0.0365	0.0742	0.0017465				1.0000	0.9900
Chloroethane	0.1918 0.1569	0.1737 0.1820	0.2050	0.1653	0.1723	Ave		0.1781			9.2	15.	0	
Dichlorofluoromethane	0.5262 0.4207	0.4375	0.4117	0.3802	0.4094	Ave		0.4366			11.1	15.	0	
Acrolein	0.0191 0.0147	0.0129	0.0164	0.0140	0.0139	Ave		0.0151			13.7	15.	0	
Trichlorofluoromethane	0.5530 0.5379	0.6908	0.6102	0.6134	0.6093	Ave		0.5935			9.2	15.	0	
Acetonitrile	0.0115 0.0115	0.0114	0.0091	0.0102	0.0105	Ave		0.0110			11.4	15.	0	
Isopropyl alcohol	0.0082	0.0071	0.0082	0.0067	0.0057	Ave		0.0069			14.6	15.	0	
Acetone	0.0347 0.0267	0.0381	0.0324	0.0327	0.0242	Lin1	0.0096	0.0286					0.9920	0.9900
Ethyl ether	0.1273 0.1509		0.1726	0.1534	0.1466	Ave		0.1526			9.1	15.	0	

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 269550

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
	LVL 6	LVL 7													
t-Butanol	+++++	0.0109	0.0098	0.0095	0.0097	Ave		0.0102				7.5	15.0		
	0.0103														
1,1-Dichloroethene	0.4198		0.3081	0.3107	0.3010	Lin2	0.0740	0.2915						0.9910	0.9900
	0.2828	0.2898													
Acrylonitrile	0.0282	0.0229	0.0207	0.0245	0.0255	Ave		0.0254				11.7	15.0		
	0.0268	0.0292													
Iodomethane	0.1069		0.0888	0.1086	0.1522	Lin	-0.504	0.2537						0.9920	0.9900
	0.2024	0.2500													
Methylene Chloride	0.5361		0.3678	0.3472	0.3058	Lin2	0.1170	0.3144						0.9960	0.9900
	0.3079														
Methyl acetate	0.0848		0.0897	0.0828	0.0897	Ave		0.0914				10.1	15.0		
	0.0973														
1,1,2-Trichloro-1,2,2-trifluoroethane	0.3563		0.3858	0.3487	0.3312	Ave		0.3539				6.3	15.0		
Chlana 1 manage	0.3318														
3-Chloro-1-propene	0.1822		0.1978	0.1747	0.1751	Ave		0.1812				6.0	15.0		
	0.1764														
Carbon disulfide	0.9618		0.8578	0.7923	0.7282	Ave		0.8204				11.3	15.0		
	0.7299														
trans-1,2-Dichloroethene	0.4078		0.3513	0.3444	0.3325	Ave		0.3529				7.7	15.0		
	0.3375														
Methyl tert-butyl ether	0.5300		0.5664	0.5594	0.5205	Ave		0.5630				6.8	15.0		
	0.5445														
1,1-Dichloroethane	0.6233		0.5486	0.5505	0.5099	Ave		0.5463			0.1000	7.3	15.0		
	0.5137	0.5618													
Propionitrile	0.0095		0.0101	0.0087	0.0100	Ave		0.0106				13.1	15.0		
	0.0112			0.0504	0.0160	- 1 0	0.00	0.0001							
Vinyl acetate	0.1893		0.2083	0.2501	0.2463	Lin2	-0.087	0.2634						0.9900	0.9900
0.017. 1.21. 1.	0.2687	0.3007	0 4000	0.4675	0 4400	_		0 1000				0 0	1.5.0		
2-Chloro-1,3-butadiene	0.4465		0.4808	0.4675	0.4492	Ave		0.4823				9.9	15.0		
	0.4852		0 4000	0 4000	0 0007	_		0 4155				- 1	1.5.0		
Hexane	0.3699		0.4337	0.4220	0.3907	Ave		0.4157				7.1	15.0		
Tanananal athan	0.4010	0.4496	1 0575	1.0452	1.0190	7		1.0865				11 -	15.0		
Isopropyl ether	0.9609		1.05/5	1.0452	1.0190	Ave		1.0865				11.5	15.0		
2-Butanone (MEK)	1.1001		0.0176	0.0189	0.0160	Tin	0.005	0.0189						0.9920	0.9900
Z-Dutanone (MEK)	0.0228		0.01/6	0.0189	0.0160	TT11	-0.025	0.0189						0.9920	0.9900
Methacrylonitrile	0.0153		0.0131	0.0157	0.0157	Tin1	0.005	0.0188						0.9900	0.9900
methacryronitrile	0.0112	0.0143	0.0131	0.013/	0.015/	TILL	-0.005	0.0188						0.9900	0.9900
cis-1,2-Dichloroethene	0.0168		0 3005	0.3909	0.3591	7.770		0.3868				7.1	15.0		
CIS-I,Z-DICHIOTOECHENE	0.4382		0.3905	0.3909	0.3391	Ave		0.3868				/ • ⊥	1 12.0		

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 269550

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD	**	R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
	LVL 6	LVL 7													
Ethyl acetate	0.0810	0.0827	0.0963	0.1116	0.1058	Lin2	-0.041	0.1145						0.9920	0.9900
	0.1194	0.1252													
Chlorobromomethane	0.1780	0.2084	0.1571	0.1699	0.1686	Ave		0.1747				9.3	15.0		
	0.1674	0.1736													
Tert-butyl ethyl ether	0.6408	0.6842	0.7340	0.7554	0.7088	Ave		0.7423				11.4	15.0		
	0.7654	0.9077													
Chloroform	0.6423	0.6303	0.5928	0.6018	0.5709	Ave		0.6186				7.2	15.0		
	0.5888	0.7030													
Isobutyl alcohol	++++	0.0056	0.0049	0.0054	0.0042	Ave		0.0050				10.1	15.0		
	0.0048	0.0051													
2,2-Dichloropropane	0.5637	0.6259	0.5508	0.5359	0.5070	Ave		0.5467				7.5	15.0		
	0.5043	0.5391													
[etrahydrofuran	0.0456	0.0373	0.0389	0.0405	0.0337	Ave		0.0382				10.2	15.0		
	0.0359	0.0359													
l,2-Dichloroethane	0.2797	0.2602	0.2619	0.2458	0.2556	Ave		0.2605				4.5	15.0		
	0.2498	0.2701													
1,1,1-Trichloroethane	0.6506	0.6423	0.6020	0.5984	0.5604	Ave		0.6112				5.6	15.0		
	0.5840	0.6408													
n-Butanol	+++++	0.0018	0.0020	0.0016	0.0021	Lin	-0.113	0.0027						0.9940	0.9900
	0.0022	0.0027													
1,1-Dichloropropene	0.3922	0.4453	0.4624	0.4800	0.4275	Ave		0.4461				6.6	15.0		
	0.4467	0.4685													
Cyclohexane	0.5026	0.5178	0.5254	0.5363	0.4929	Ave		0.5082				3.6	15.0		
-	0.4866	0.4957													
Carbon tetrachloride	0.6140	0.5973	0.5801	0.5901	0.5639	Ave		0.5911				3.8	15.0		
	0.5687	0.6237													
Benzene	1.3432	1.2416	1.2453	1,2422	1.1931	Ave		1.2742				5.7	15.0		
	1,2487	1.4054		-											
Tert-amyl methyl ether	0.4738	0.5622	0.5587	0.5886	0.5707	Ave		0.5687				8.8	15.0		
	0.5848	0.6421													
Isooctane	0.8727	0.9069	0.8978	0.8636	0.8212	Ave		0.8528				5.1	15.0		
	0.8082	0.7996													
Ethyl acrylate	0.1002		0.1679	0.1949	0.1832	Lin2	-0.054	0.2042						0.9940	0.9900
2011/1 401/1400	0.1988	0.2279	0.1073	0.1313	0.1002		0.001	0.2012						0.3310	0.3300
n-Heptane	0.3850	0.3764	0.3696	0.4115	0.3703	Ave		0.3862				4.0	15.0		
	0.3928	0.3976	1.0000	7.1110	3.0700							1.0	10.0		
Dibromomethane	0.0780		0.1537	0.1414	0.1201	Lin1	-0.019	0.1400						0.9950	0.9900
	0.1317	0.1447	1	7.1111	3.1201		0.013								0.3300
1,2-Dichloropropane	0.2639		0.2730	0.2675	0.2606	Ave		0.2755		+		6.5	15.0		
.,2-Dichloropropane		0.2910	1 3.2,30	3.2075	3.2000	12200		0.2,00				0.5	±0.0	1	

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 269550

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
	LVL 6	LVL 7													
2-Nitropropane	0.0369	0.0284	0.0299	0.0252	0.0332	Lin	-0.125	0.0433						0.9910	0.9900
	0.0332	0.0433													
Trichloroethene	0.4968	0.5093	0.4385	0.4595	0.4438	Ave		0.4769				7.0	15.0		
	0.4666	0.5238													
Bromodichloromethane	0.3353	0.3590	0.3409	0.3534	0.3293	Ave		0.3515				5.8	15.0		
	0.3518	0.3906													
Methyl methacrylate	0.0794	0.1081	0.0966	0.1142	0.1153	Lin2	-0.045	0.1236						0.9900	0.9900
	0.1246	0.1398													
1,4-Dioxane	+++++	0.0020	0.0014	0.0009	0.0008	Lin2	0.0283	0.0006						0.9920	0.9900
	0.0006														
Methylcyclohexane	0.5837		0.5624	0.5641	0.5019	Ave		0.5306				7.1	15.0	'	
	0.5036														
cis-1,3-Dichloropropene	1.0094	1.1049	1.1440	1.1550	1.1783	Ave		1.1390				5.9	15.0	'	
4 Mathael O manhar (MTDIZ)	1.1624	1.2191													
4-Methyl-2-pentanone (MIBK)	0.1291	0.1183	0.1044	0.1180	0.1079	Ave		0.1176				7.6	15.0	'	
	0.1187	0.1264													
trans-1,3-Dichloropropene	1.0488		0.8557	0.8853	0.8647	Ave		0.8995				7.6	15.0	'	
	0.8522														
1,1,2-Trichloroethane	0.7425		0.4811	0.5281	0.5141	Lin2	0.1199	0.4890						0.9950	0.9900
	0.5035	0.5072													
Ethyl methacrylate	0.4763		0.4702	0.4790	0.5210	Ave		0.5293				10.7	15.0	'	
	0.5673	0.6033	0 1100	0 1505	0 1006	_		0 1005					1.5		
Toluene	2.6479		2.4486	2.4705	2.4936	Ave		2.4805				3.8	15.0	'	
1.0 5/ 13	2.4001	2.5401	0.0500	0.0700	0 0070	_		0.0044				0 7	15.0		
1,3-Dichloropropane	0.7432		0.9530	0.8798	0.8279	Ave		0.8344				8.7	15.0	'	
2-Hexanone	0.8436	0.8419	0.2024	0.2119	0.2279	T ' . 1	0.006	0.2304						0.9980	0.9900
Z-Hexanone	0.2869	0.1726	0.2024	0.2119	0.2279	Lini	-0.026	0.2304						0.9980	0.9900
Dibromochloromethane	0.2261	0.2344	0.8882	0.0675	0.8432	7		0.8453				3.9	15.0		
DIBromochioromethane	0.8421	0.7898	0.8882	0.8675	0.8432	Ave		0.8453				3.9	15.0	'	
n-Butyl acetate	0.8208	0.4988	0 5200	0.5643	0 6024	70		0.5658				7.8	15.0		
n-butyr acetate	0.5944	0.4900	0.3200	0.3643	0.6024	Ave		0.3636				7.0	13.0	'	
1,2-Dibromoethane	0.5777		0 5520	0.4811	0.4722	7770		0.5035		-		8.9	15.0		
T'S PIDIOMOGCHAME	0.4787	0.5044	0.3320	0.4011	0.4/22	Ave		0.5055				0.9	13.0		
Tetrachloroethene	1.2175	0.9153	0 9471	0.9451	0.9361	Δv		0.9824			1	10.7	15.0		
100140H10100CHICHC	0.9376		0.54/1	0.0401	0.5501	1100		0.5024				10.7	13.0		
1-Chlorohexane	1.0076		0.7133	0.7793	0.7548	Ave		0.7806		+	 	13.4	15.0		
z onizozonenane	0.7576		0.7133	3.,,55	3.7540	1100						10.1	1 -5.0		
1,1,1,2-Tetrachloroethane	1.2942		1.0890	1.1539	1.1150	Ave		1.1613		-		6.2	15.0		
1,1,1,1 10014011101000114110	1.1100		1 00000	1.1000	1.1100	1220						0.2	1 -5.0		

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 269550

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 07/17/2019 09:37 Calibration End Date: 07/17/2019 12:06 Calibration ID: 16122

ANALYTE			RRF			CURVE		COEFFICIE	NT	# MIN RRF	%RSD	1 1	MAX	R^2		MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			!	≹RSD	OR COD		OR COD
	LVL 6	LVL 7													Ш	
Chlorobenzene	3.2109	3.3533	2.9725	3.1217	2.9867	Ave		3.1284		0.3000	4.7		15.0			
	3.0030	3.2505														
Ethylbenzene			1.4908	1.5551	1.6098	Ave		1.6002			5.9		15.0			
	1.5493	1.6269													ш	
m-Xylene & p-Xylene	3.6608	3.4857	3.4723	3.6046	3.3665	Ave		3.5398			3.9		15.0			
	3.4290	3.7594													\perp	
Bromoform	0.4717	0.3469	0.3001	0.3231	0.3192	Lin2	0.0710	0.3056		0.1000				0.9900		0.9900
	0.3193	0.3341													\perp	
Styrene	2.4331	2.8002	2.6219	2.8553	2.9194	Ave		2.8491			9.9		15.0			
	2.9883	3.3252													\perp	
Cyclohexanone	0.0131		0.0081	0.0083	0.0093	Lin1	-0.056	0.0104						0.9930		0.9900
	0.0104	0.0108													\perp	
o-Xylene	2.1860	2.0065	1.8698	2.0199	1.9295	Ave		2.0051			6.1		15.0			
	1.8857	2.1385													\perp	
1,1,2,2-Tetrachloroethane	0.5313		0.4802	0.5086	0.4658	Ave		0.5151		0.3000	8.7		15.0			
	0.4813	0.5463													\perp	
trans-1,4-Dichloro-2-butene	0.1878		0.0967	0.0721	0.0890	Lin1	0.0328	0.0898						0.9930		0.9900
	0.0900	0.0943													\perp	
1,2,3-Trichloropropane	0.2806	0.1830	0.1557	0.1531	0.1494	Lin2	0.0667	0.1354						0.9900		0.9900
	0.1444	0.1396													\vdash	
Isopropylbenzene	4.6780	4.3393	4.3370	4.1652	3.8814	Ave		4.2861			6.6		15.0			
	4.0368	4.5648													\vdash	
Bromobenzene	1.2831	1.1254	1.1450	1.0457	0.9814	Ave		1.1005			9.1		15.0			
	1.0180	1.1049													\vdash	
N-Propylbenzene	1.5964		1.3685	1.3440	1.2186	Ave		1.3251			10.7		15.0			
0.012	1.1993	1.3564	4 0004	4 0004	4 4045			1 0100					4 = 0		\vdash	
2-Chlorotoluene	1.4724		1.3281	1.2231	1.1247	Ave		1.2483			9.7		15.0			
4 01 1 1 1	1.1473	1.2598	0 7550	0 6776	0 1006	_		0 71 47			C 1		1 - 0		\vdash	
4-Chlorotoluene	2.6866		2.7553	2.6776	2.4806	Ave		2.7147			6.1		15.0			
1 2 5 m ' +1 11	2.5700	2.9525	2 5 4 4 0	2 5124	2 2164	_		2 6201					1 - 0		\vdash	
1,3,5-Trimethylbenzene	3.8891	3.5519	3.5448	3.5134	3.3164	Ave		3.6321			7.7		15.0			
taut Dutulhausan	3.4804	4.1287 3.2557	3.3731	3.2341	3.0382	7		3.3074			6.0		15.0		\vdash	
tert-Butylbenzene	3.4824		3.3/31	3.2341	3.0382	ave		3.30/4			6.2		15.0			
1 0 4 Mainsthallesses	3.1344	3.6343	3.6251	3.6224	3.3093	7		3.6414			7 -		15.0		\vdash	
1,2,4-Trimethylbenzene			3.6251	3.6224	3.3093	ave		3.6414			7.5		15.0			
sec-Butylbenzene	3.5372 4.6178	4.2050	4.5845	4.3706	4.1144	7		4.4915			E 7		15.0		\vdash	
sec-Bulylpenzene			4.5845	4.3/06	4.1144	ave		4.4915			5.7		15.0			
Danasal ablassida	4.3959	4.9353	0.5514	0.6548	0 (004	7		0.6860			14 0		15.0		\vdash	
Benzyl chloride	0.7317		0.5514	0.6548	0.6204	Ave		0.6860			14.9		15.0			
	0./134	0.8749														

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 269550

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSI	OR COD	OR COD
	LVL 6	LVL 7													
1,3-Dichlorobenzene	2.2466	2.1836	2.2242	2.2732	2.0809	7770		2.2530		\pm		7.1	15.	n I	
1,5 Dichiolopenzene	2.1751	2.5875	2.2242	2.2/52	2.0000	Ave		2.2550				/ • ±	15.	°	
4-Isopropyltoluene	4.3722	3.9745	4.2414	4.1537	3.9344	Ave		4.3683				12.1	15.	0	
	4.4017	5.5003													
1,4-Dichlorobenzene	2.6426	2.3627	2.1527	2.3060	2.1010	Ave		2.3856				11.0	15.	0	
	2.3057	2.8282													
1,2,3-Trimethylbenzene	3.4285	3.2084		3.4611	3.2922	Ave		3.4803				7.6	15.	0	
	3.4517	4.0366													
1,2-Dichlorobenzene	1.9124			1.8355	1.6836	Ave		1.8666				6.2	15.	0	
	1.7648														
n-Butylbenzene	3.4917	3.0391	3.0907	3.0655	2.8761	Ave		3.1549				7.9	15.	0	
	3.0013	3.5198													
1,2-Dibromo-3-Chloropropane	++++		0.0914	0.0862	0.0764	Ave		0.0850				8.4	15.	0	
	0.0870														
1,3,5-Trichlorobenzene	1.4883		1.3347	1.1917	1.0910	Ave		1.2770				10.5	15.	0	
	1.1700		0.000	0 5005	0 6684	- ! 0	0.4004								2 222
1,2,4-Trichlorobenzene	1.1052		0.7582	0.7285	0.6671	Lin2	0.1884	0.6908						0.9920	0.9900
NT h h - T	0.7035	0.7824	0.0064	0 0550	0 0061	F ' . 1	0 1051	1 0046						0.0040	0 0000
Naphthalene	1.6048		0.8864	0.9553	0.9061	Lini	0.1051	1.0246						0.9940	0.9900
 Hexachlorobutadiene	0.9992	1.0774	0 1677	0.1990	0 1 (0 0	7		0.1856				11.3	15.	0	
Hexachiorobuladiene	0.1739	0.2215	0.16//	0.1990	0.1698	Ave		0.1836				11.3	15.	⁰	
1,2,3-Trichlorobenzene	0.1739		0 4106	0.3823	0 3610	Tin2	0 1751	0.3652						0.9920	0.9900
1,2,3-iiichiolobenzene	0.7041	0.3887	0.4190	0.3623	0.3019	шши	0.1731	0.3032						0.9920	0.9900
Dibromofluoromethane	0.3310		0 3422	0.3473	0 3281	Δττο		0.3414				3.0	15.	n	
DIDIOMOTIUOIOME CHANC	0.3310	0.3586	0.5422	0.5475	0.5201	1100		0.5414				3.0	10.	°	
1,2-Dichloroethane-d4 (Surr)	0.1878		0.2218	0.2184	0.2109	Ave		0.2091				5.8	15.	0	
, , , , , , , , , , , , , , , , , , , ,	0.2083	0.2175													
Toluene-d8 (Surr)	3.9322	3.8217	3.5957	3.4519	3.4444	Ave		3.6547				5.8	15.	0	
, ,	3.4736	3.8637													
4-Bromofluorobenzene	1.2543	1.0178	0.8345	0.9041	0.8235	Lin2	0.2026	0.8249						0.9950	0.9900
	0.8482	0.8760													

FORM VI

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 269550

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
-		
Level 1	IC 600-269550/2	A19801a.d
Level 2	IC 600-269550/3	A19802.d
Level 3	IC 600-269550/4	A19803.d
Level 4	IC 600-269550/5	A19804.d
Level 5	ICIS 600-269550/6	A19805.d
Level 6	IC 600-269550/7	A19806.d
Level 7	IC 600-269550/8	A19807.d

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (UG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Dichlorodifluoromethane	FB	Lin1	2687 157805	7790 439095	16497	38614	82742	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Chloromethane	FB	Ave	3146 134546	7412 403023	11574	32176	67908	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Vinyl chloride	FB	Ave	3274 164811	6806 544467	13406	31816	83195	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Butadiene	FB	Ave	4155 184972	8346 569774	17300	43648	97721	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Ethylene oxide	FB	Ave	2655 101650	4578 301690	7859	22818	48313	5.00 200	10.0 500	20.0	50.0	100
Bromomethane	FB	Qua	1379 47410	2053 187573	3056	8917	18415	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Chloroethane	FB	Ave	1778 66637	2960 210455	7110	15399	34434	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Dichlorofluoromethane	FB	Ave	4878 178723	7455 543875	14278	35426	81831	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Acrolein	FB	Ave	886 31219	1097 85412	2843	6520	13933	2.50 100	5.00 250	10.0	25.0	50.0
Trichlorofluoromethane	FB	Ave	5126 228480	11772 624350	21161	57158	121777	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Acetonitrile	FB	Ave	1063 48979	1950 150971	3144	9542	21029	5.00 200	10.0 500	20.0	50.0	100
Isopropyl alcohol	FB	Ave	762 25424	1204 73958	2840	6279	11307	5.00 200	10.0 500	20.0	50.0	100
Acetone	FB	Lin1	644 22650	1300 69736	2244	6085	9690	1.00 40.0	2.00 100	4.00	10.0	20.0
Ethyl ether	FB	Ave	1180 64095	2740 180872	5985	14293	29299	0.500 20.0	1.00 50.0	2.00	5.00	10.0
t-Butanol	FB	Ave	+++++ 43563	1866 131415	3395	8813	19305	+++++ 200	10.0 500	20.0	50.0	100

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 269550

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 07/17/2019 09:37 Calibration End Date: 07/17/2019 12:06 Calibration ID: 16122

ANALYTE	IS	CURVE			RESPONSE				CONCE	TRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,1-Dichloroethene	FB	Lin2	3891 120128	7063 335023	10684	28945	60167	0.500	1.00	2.00	5.00	10.0
Acrylonitrile	FB	Ave	2618 113687	3904 337574	7194	22803	51063	5.00	10.0	20.0	50.0	100
Iodomethane	FB	Lin	991 85987	1411 288987	3079	10122	30416	0.500	1.00	2.00	5.00	10.0
Methylene Chloride	FB	Lin2	4969 130790	7831 381334	12756	32348	61117	0.500	1.00	2.00	5.00	10.0
Methyl acetate	FB	Ave	1573 82695	2935 252936	6219	15421	35863	1.00	2.00	4.00	10.0	20.0
1,1,2-Trichloro-1,2,2-trifluoroetha ne	FB	Ave	3303 140930	6516 394759	13381	32493	66191	0.500 20.0	1.00 50.0	2.00	5.00	10.0
3-Chloro-1-propene	FB	Ave	1689 74934	3299 194677	6860	16279	34989	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Carbon disulfide	FB	Ave	8915 310043	15606 875649	29748	73826	145556	0.500	1.00 50.0	2.00	5.00	10.0
trans-1,2-Dichloroethene	FB	Ave	3780 143358	5621 424644	12182	32085	66454	0.500	1.00	2.00	5.00	10.0
Methyl tert-butyl ether	FB	Ave	4913 231296	10809 677654	19643	52123	104038	0.500	1.00	2.00	5.00	10.0
1,1-Dichloroethane	FB	Ave	5778 218199	8801 649535	19024	51294	101923	0.500	1.00	2.00	5.00	10.0
Propionitrile	FB	Ave	879 47504	2043 145375	3502	8109	20013	5.00	10.0	20.0	50.0	100
Vinyl acetate	FB	Lin2	3509 228279	7251 695232	14446	46609	98449	1.00	2.00	4.00	10.0	20.0
2-Chloro-1,3-butadiene	FB	Ave	4139 206097	7865 676996	16675	43563	89794	0.500	1.00	2.00	5.00	10.0
Hexane	FB	Ave	3429 170328	7554 519750	15040	39319	78101	0.500	1.00	2.00	5.00	10.0
Isopropyl ether	FB	Ave	8907 467329	18241 1563883	36674	97383	203670	0.500	1.00	2.00	5.00	10.0
2-Butanone (MEK)	FB	Lin	423 12987	756 44333	1224	3529	6383	1.00	2.00	4.00	10.0	20.0
Methacrylonitrile	FB	Lin1	1038 71455	2430 232041	4547	14631	31346	5.00	10.0	20.0	50.0	100
cis-1,2-Dichloroethene	FB	Ave	4062 156745	6161 460632	13544	36418	71782	0.500	1.00	2.00	5.00	10.0
Ethyl acetate	FB	Lin2	1502 101431	2819 289427	6681	20793	42301	1.00	2.00	4.00	10.0	20.0
Chlorobromomethane	FB	Ave	1650 71124	3551 200722	5447	15832	33696	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 269550

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 07/17/2019 09:37 Calibration End Date: 07/17/2019 12:06 Calibration ID: 16122

ANALYTE	IS	CURVE			RESPONSE				CONCE	TRATION (JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Tert-butyl ethyl ether	FB	Ave	5940 325145	11660 1049429	25455	70380	141671	0.500	1.00	2.00	5.00	10.0
Chloroform	FB	Ave	5954 250117	10742 812781	20558	56077	114104	0.500	1.00	2.00	5.00	10.0
Isobutyl alcohol	FB	Ave	+++++ 51023	2388 146023	4289	12584	20800	++++	25.0 1250	50.0	125	250
2,2-Dichloropropane	FB	Ave	5225 214215	10667 623224	19103	49935	101341	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Tetrahydrofuran	FB	Ave	845 30509	1272 82930	2696	7539	13474	1.00	2.00	4.00	10.0	20.0
1,2-Dichloroethane	FB	Ave	2593 106106	4434 312236	9084	22907	51089	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,1,1-Trichloroethane	FB	Ave	6031 248097	10946 740782	20877	55760	112005	0.500 20.0	1.00 50.0	2.00	5.00	10.0
n-Butanol	FB	Lin	+++++ 23238	780 77694	1757	3621	10301	+++++ 500	25.0 1250	50.0	125	250
1,1-Dichloropropene	FB	Ave	3635 189739	7589 541601	16036	44728	85449	0.500	1.00	2.00	5.00	10.0
Cyclohexane	FB	Ave	4659 206721	8824 573079	18220	49971	98522	0.500	1.00	2.00	5.00	10.0
Carbon tetrachloride	FB	Ave	5691 241591	10179 721081	20119	54981	112704	0.500	1.00	2.00	5.00	10.0
Benzene	FB	Ave	12451 530447	21158 1624759	43186	115741	238473	0.500	1.00	2.00	5.00	10.0
Tert-amyl methyl ether	FB	Ave	4392 248430	9580 742349	19377	54841	114078	0.500	1.00	2.00	5.00	10.0
Isooctane	FB	Ave	8089 343311	15454 924469	31136	80468	164132	0.500	1.00	2.00	5.00	10.0
Ethyl acrylate	FB	Lin2	929 84447	2491 263426	5824	18161	36623	0.500	1.00	2.00	5.00	10.0
n-Heptane	FB	Ave	3569 166858	6414 459656	12818	38339	74024	0.500	1.00	2.00	5.00	10.0
Dibromomethane	FB	Lin1	723 55938	2319 167261	5332	13174	23999	0.500	1.00	2.00	5.00	10.0
1,2-Dichloropropane	FB	Ave	2446 111967	5271 336408	9468	24922	52090	0.500	1.00	2.00	5.00	10.0
2-Nitropropane	FB	Lin	684 28167	967 100190	2072	4702	13258	1.00	2.00	4.00	10.0	20.0
Trichloroethene	FB	Ave	4605 198206	8680 605539	15208	42811	88706	0.500	1.00	2.00	5.00	10.0
Bromodichloromethane	FB	Ave	3108 149426	6118 451522	11824	32932	65826	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 269550

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	TRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Methyl methacrylate	FB	Lin2	1472 105890	3683 323270	6701	21281	46080	1.00	2.00	4.00	10.0	20.0
1,4-Dioxane	FB	Lin2	+++++ 5294	688 14880	952	1731	3278	+++++	20.0	40.0	100	200
Methylcyclohexane	FB	Ave	5411 213938	8408 583661	19505	52563	100320	0.500 20.0	1.00	2.00	5.00	10.0
cis-1,3-Dichloropropene	CBNZ d5	Ave	2867 161500	6178 483268	12897	34713	74157	0.500 20.0	1.00 50.0	2.00	5.00	10.0
4-Methyl-2-pentanone (MIBK)	FB	Ave	2393 100848	4032 292268	7243	21998	43145	1.00 40.0	2.00 100	4.00	10.0	20.0
trans-1,3-Dichloropropene	CBNZ d5	Ave	2979 118399	4996 355174	9647	26608	54425	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,1,2-Trichloroethane	CBNZ d5	Lin2	2109 69949	3413 201054	5424	15873	32357	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Ethyl methacrylate	CBNZ d5	Ave	1353 78814	3286 239143	5301	14396	32790	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Toluene	CBNZ d5	Ave	7521 333465	13210 1006943	27605	74249	156941	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,3-Dichloropropane	CBNZ d5	Ave	2111 117208	4203 333762	10744	26441	52105	0.500 20.0	1.00 50.0	2.00	5.00	10.0
2-Hexanone	CBNZ d5	Lin1	1630 62819	1930 185845	4564	12737	28681	1.00 40.0	2.00 100	4.00	10.0	20.0
Dibromochloromethane	CBNZ d5	Ave	2392 114037	4416 343025	10013	26073	53067	0.500 20.0	1.00 50.0	2.00	5.00	10.0
n-Butyl acetate	CBNZ d5	Ave	1595 82589	2789 245525	5862	16959	37916	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2-Dibromoethane	CBNZ d5	Ave	1641 66512	2563 199938	6223	14459	29716	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Tetrachloroethene	CBNZ d5	Ave	3458 130274	5118 387618	10677	28405	58914	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1-Chlorohexane	CBNZ d5	Ave	2862 105262	3875 300702	8042	23420	47506	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,1,1,2-Tetrachloroethane	CBNZ d5	Ave	3676 154217	6413 483786	12277	34679	70174	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Chlorobenzene	CBNZ d5	Ave	9120 417235	18750 1288536	33511	93821	187974	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Ethylbenzene	CBNZ d5	Ave	5083 215258	8834 644947	16807	46738	101320	0.500 20.0	1.00 50.0	2.00	5.00	10.0
m-Xylene & p-Xylene	CBNZ d5	Ave	10398 476427	19490 1490305	39146	108332	211881	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Bromoform	DCBd 4	Lin2	1575 57358	2260 172403	3948	11743	26415	0.500 20.0	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 269550

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	TRATION (JG/L)	
	REF	TYPE -	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Styrene	CBNZ d5	Ave	6911 415192	15657 1318153	29559	85814	183740	0.500	1.00	2.00	5.00	10.0
Cyclohexanone	CBNZ d5	Lin1	1859 72519	2450 214854	4578	12401	29226	25.0 1000	50.0	100	250	500
o-Xylene	CBNZ d5	Ave	6209 262004	11219 847744	21080	60705	121438	0.500	1.00	2.00	5.00	10.0
1,1,2,2-Tetrachloroethane	DCBd 4	Ave	1774 86464	3856 281847	6319	18483	38548	0.500 20.0	1.00	2.00	5.00	10.0
trans-1,4-Dichloro-2-butene	DCBd 4	Lin1	627 16170	819 48654	1272	2621	7361	0.500 20.0	1.00	2.00	5.00	10.0
1,2,3-Trichloropropane	DCBd 4	Lin2	937 25949	1192 72041	2049	5563	12363	0.500	1.00	2.00	5.00	10.0
Isopropylbenzene	DCBd 4	Ave	15619 725262	28271 2355217	57065	151378	321187	0.500	1.00	2.00	5.00	10.0
Bromobenzene	DCBd 4	Ave	4284 182901	7332 570090	15066	38003	81213	0.500 20.0	1.00	2.00	5.00	10.0
N-Propylbenzene	DCBd 4	Ave	5330 215464	7768 699839	18006	48844	100840	0.500	1.00	2.00	5.00	10.0
2-Chlorotoluene	DCBd 4	Ave	4916 206129	7705 650004	17475	44451	93071	0.500	1.00	2.00	5.00	10.0
4-Chlorotoluene	DCBd 4	Ave	8970 461727	18766 1523371	36254	97312	205273	0.500	1.00	2.00	5.00	10.0
1,3,5-Trimethylbenzene	DCBd 4	Ave	12985 625290	23141 2130216	46641	127689	274432	0.500	1.00	2.00	5.00	10.0
tert-Butylbenzene	DCBd 4	Ave	11627 563137	21211 1875117	44382	117536	251411	0.500	1.00	2.00	5.00	10.0
1,2,4-Trimethylbenzene	DCBd 4	Ave	11964 635488	23502 2169606	47698	131651	273846	0.500	1.00	2.00	5.00	10.0
sec-Butylbenzene	DCBd 4	Ave	15418 789770	28808 2546398	60322	158841	340469	0.500	1.00	2.00	5.00	10.0
Benzyl chloride	DCBd 4	Ave	2443 128169	4271 451422	7255	23799	51341	0.500	1.00	2.00	5.00	10.0
1,3-Dichlorobenzene	DCBd 4	Ave	7501 390774	14226 1335059	29266	82614	172198	0.500	1.00	2.00	5.00	10.0
4-Isopropyltoluene	DCBd 4	Ave	14598 790808	25894 2837919	55807	150957	325575	0.500	1.00	2.00	5.00	10.0
1,4-Dichlorobenzene	DCBd 4	Ave	8823 414248	15393 1459242	28325	83809	173860	0.500	1.00	2.00	5.00	10.0
1,2,3-Trimethylbenzene	DCBd 4	Ave	11447 620139	20903	45832	125786	272433	0.500	1.00	2.00	5.00	10.0
1,2-Dichlorobenzene	DCBd 4	Ave	6385 317065	12280 1023855	26324	66709	139323	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 269550

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (UG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
n-Butylbenzene	DCBd 4	Ave	11658 539217	19800 1816061	40667	111410	238002	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2-Dibromo-3-Chloropropane	DCBd 4	Ave	+++++ 15624	604 39381	1202	3133	6323	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
1,3,5-Trichlorobenzene	DCBd 4	Ave	4969 210201	8635 690190	17562	43312	90280	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2,4-Trichlorobenzene	DCBd 4	Lin2	3690 126388	5340 403672	9976	26476	55205	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Naphthalene	DCBd 4	Lin1	5358 179511	7492 555893	11663	34717	74978	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Hexachlorobutadiene	DCBd 4	Ave	+++++ 31240	1443 93835	2206	7231	14050	+++++ 20.0	1.00 50.0	2.00	5.00	10.0
1,2,3-Trichlorobenzene	DCBd 4	Lin2	2351 70754	3802 200533	5521	13895	29947	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Dibromofluoromethane	FB	Ave	3068 143497	5874 414554	11868	32359	65579	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2-Dichloroethane-d4 (Surr)	FB	Ave	1741 88480	3394 251450	7691	20351	42152	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Toluene-d8 (Surr)	CBNZ d5	Ave	11169 482615	21369 1531650	40537	103742	216780	0.500 20.0	1.00 50.0	2.00	5.00	10.0
4-Bromofluorobenzene	DCBd 4	Lin2	4188 152388	6631 451993	10980	32859	68143	0.500 20.0	1.00 50.0	2.00	5.00	10.0

Curve Type Legend:

Ave = Average ISTD

Lin = Linear ISTD

Lin1 = Linear 1/conc ISTD Lin2 = Linear 1/conc^2 ISTD

Qua = Quadratic ISTD

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: <u>ICV 600-269550/10</u> Calibration Date: <u>07/17/2019 12:56</u>

Instrument ID: CHVOAMS07 Calib Start Date: 05/14/2019 08:32

GC Column: DB-VRX 60 ID: 0.25 (mm) Calib End Date: 05/14/2019 11:00

Lab File ID: A19809.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2-Chloroethyl vinyl ether	Ave	0.0390			0.500	20.0		

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: <u>ICV 600-269550/10</u> Calibration Date: <u>07/17/2019 12:56</u>

Instrument ID: CHVOAMS07 Calib Start Date: 07/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 07/17/2019 12:06

Lab File ID: A19809.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Lin1		0.4357		11.3	10.0	12.7	50.0
Chloromethane	Ave	0.3512	0.3676	0.1000	10.5	10.0	4.7	30.0
Vinyl chloride	Ave	0.3937	0.4429		11.3	10.0	12.5	30.0
Butadiene	Ave	0.4746	0.5406		11.4	10.0	13.9	50.0
Ethylene oxide	Ave	0.0253	0.0266		105	100	5.2	50.0
Bromomethane	Qua		0.1271		12.8	10.0	27.8	30.0
Chloroethane	Ave	0.1781	0.1767		9.92	10.0	-0.8	30.0
Dichlorofluoromethane	Ave	0.4366	0.4713		10.8	10.0	7.9	30.0
Acrolein	Ave	0.0151	0.0120		39.7	50.0	-20.7	50.0
Acetonitrile	Ave	0.0110	0.0111		100	100	0.3	30.0
Trichlorofluoromethane	Ave	0.5935	0.6083		10.3	10.0	2.5	30.0
Isopropyl alcohol	Ave	0.0069	0.0057		82.4	100	-17.6	50.0
Acetone	Lin1		0.0304		20.9	20.0	4.6	50.0
Ethyl ether	Ave	0.1526	0.1526		10.0	10.0	0.0	50.0
t-Butanol	Ave	0.0102	0.0101		98.4	100	-1.6	30.0
1,1-Dichloroethene	Lin2		0.3052		10.2	10.0	2.2	30.0
Acrylonitrile	Ave	0.0254	0.0259		102	100	2.0	50.0
Iodomethane	Lin		0.1378		7.42	10.0	-25.8	30.0
Methylene Chloride	Lin2		0.3195		9.79	10.0	-2.1	50.0
Methyl acetate	Ave	0.0914	0.0896		19.6	20.0	-2.0	30.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.3539	0.3292		9.30	10.0	-7.0	30.0
3-Chloro-1-propene	Ave	0.1812	0.1707		9.42	10.0	-5.8	30.0
Carbon disulfide	Ave	0.8204	0.7610		9.28	10.0	-7.2	30.0
trans-1,2-Dichloroethene	Ave	0.3529	0.3435		9.73	10.0	-2.7	30.0
Methyl tert-butyl ether	Ave	0.5630	0.5646		10.0	10.0	0.3	30.0
Propionitrile	Ave	0.0106	0.0109		103	100	3.0	30.0
1,1-Dichloroethane	Ave	0.5463	0.5387	0.1000	9.86	10.0	-1.4	30.0
Vinyl acetate	Lin2		0.2482		19.2	20.0	-4.1	50.0
2-Chloro-1,3-butadiene	Ave	0.4823	0.4909		10.2	10.0	1.8	30.0
Hexane	Ave	0.4157	0.3809		9.16	10.0	-8.4	30.0
Isopropyl ether	Ave	1.087	1.072		9.87	10.0	-1.4	30.0
2-Butanone (MEK)	Lin		0.0168		19.0	20.0	-4.9	50.0
Methacrylonitrile	Lin1		0.0175		96.3	100	-3.7	30.0
cis-1,2-Dichloroethene	Ave	0.3868	0.3671		9.49	10.0	-5.1	30.0
Ethyl acetate	Lin2		0.1155		20.5	20.0	2.7	30.0
Chlorobromomethane	Ave	0.1747	0.1657		9.49	10.0	-5.1	30.0
Tert-butyl ethyl ether	Ave	0.7423	0.7691		10.4	10.0	3.6	30.0
Chloroform	Ave	0.6186	0.6099		9.86	10.0	-1.4	30.0
Isobutyl alcohol	Ave	0.0050	0.0044		221	250	-11.7	50.0
2,2-Dichloropropane	Ave	0.5467	0.5131		9.39	10.0	-6.1	30.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: <u>ICV 600-269550/10</u> Calibration Date: <u>07/17/2019 12:56</u>

Instrument ID: CHVOAMS07 Calib Start Date: 07/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 07/17/2019 12:06

Lab File ID: A19809.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Tetrahydrofuran	Ave	0.0382	0.0375		19.6	20.0	-2.1	30.0
1,2-Dichloroethane	Ave	0.2605	0.2654		10.2	10.0	1.9	30.0
1,1,1-Trichloroethane	Ave	0.6112	0.5980		9.78	10.0	-2.2	30.0
1,1-Dichloropropene	Ave	0.4461	0.4486		10.1	10.0	0.6	30.0
Cyclohexane	Ave	0.5082	0.4851		9.55	10.0	-4.5	50.0
Carbon tetrachloride	Ave	0.5911	0.5860		9.91	10.0	-0.9	30.0
Benzene	Ave	1.274	1.256		9.86	10.0	-1.4	30.0
Tert-amyl methyl ether	Ave	0.5687	0.5895		10.4	10.0	3.7	30.0
Isooctane	Ave	0.8528	0.7909		9.27	10.0	-7.3	30.0
Ethyl acrylate	Lin2		0.1926		9.70	10.0	-3.0	30.0
n-Heptane	Ave	0.3862	0.3750		9.71	10.0	-2.9	30.0
Dibromomethane	Lin1		0.1301		9.43	10.0	-5.7	30.0
1,2-Dichloropropane	Ave	0.2755	0.2626		9.53	10.0	-4.7	30.0
2-Nitropropane	Lin		0.0329		18.1	20.0	-9.6	30.0
Trichloroethene	Ave	0.4769	0.4887		10.3	10.0	2.5	30.0
Bromodichloromethane	Ave	0.3515	0.3452		9.82	10.0	-1.8	30.0
Methyl methacrylate	Lin2		0.1214		20.0	20.0	0.0	50.0
1,4-Dioxane	Lin2		0.0007		170	200	-14.8	50.0
Methylcyclohexane	Ave	0.5306	0.5075		9.57	10.0	-4.4	30.0
cis-1,3-Dichloropropene	Ave	1.139	1.200		10.5	10.0	5.4	30.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1176	0.1080		18.4	20.0	-8.1	50.0
trans-1,3-Dichloropropene	Ave	0.8995	0.9314		10.4	10.0	3.6	30.0
1,1,2-Trichloroethane	Lin2		0.5324		10.6	10.0	6.4	30.0
Ethyl methacrylate	Ave	0.5293	0.5870		11.1	10.0	10.9	50.0
Toluene	Ave	2.480	2.562		10.3	10.0	3.3	30.0
1,3-Dichloropropane	Ave	0.8344	0.8600		10.3	10.0	3.1	30.0
2-Hexanone	Lin1		0.2344		20.5	20.0	2.3	50.0
Dibromochloromethane	Ave	0.8453	0.8986		10.6	10.0	6.3	30.0
n-Butyl acetate	Ave	0.5658	0.6058		10.7	10.0	7.1	30.0
1,2-Dibromoethane	Ave	0.5035	0.5175		10.3	10.0	2.8	30.0
Tetrachloroethene	Ave	0.9824	1.008		10.3	10.0	2.6	30.0
1-Chlorohexane	Ave	0.7806	0.7851		10.1	10.0	0.6	30.0
1,1,1,2-Tetrachloroethane	Ave	1.161	1.171		10.1	10.0	0.8	30.0
Chlorobenzene	Ave	3.128	3.134	0.3000	10.0	10.0	0.2	30.0
Ethylbenzene	Ave	1.600	1.673		10.5	10.0	4.5	30.0
m-Xylene & p-Xylene	Ave	3.540	3.637		10.3	10.0	2.8	30.0
Bromoform	Lin2		0.3299	0.1000	10.6	10.0	5.6	30.0
Styrene	Ave	2.849	3.079		10.8	10.0	8.1	30.0
Cyclohexanone	Lin1		0.0106		512	500	2.3	30.0
o-Xylene	Ave	2.005	2.055		10.3	10.0	2.5	30.0
1,1,2,2-Tetrachloroethane	Ave	0.5151	0.4830	0.3000	9.38	10.0	-6.2	30.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: <u>ICV 600-269550/10</u> Calibration Date: <u>07/17/2019 12:56</u>

Instrument ID: CHVOAMS07 Calib Start Date: 07/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 07/17/2019 12:06

Lab File ID: A19809.d Conc. Units: $\underline{ug/L}$ Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
trans-1,4-Dichloro-2-butene	Lin1		0.0959		10.3	10.0	3.2	50.0
1,2,3-Trichloropropane	Lin2		0.1517		10.7	10.0	7.1	30.0
Isopropylbenzene	Ave	4.286	4.117		9.61	10.0	-3.9	30.0
Bromobenzene	Ave	1.101	1.032		9.38	10.0	-6.2	30.0
N-Propylbenzene	Ave	1.325	1.282		9.68	10.0	-3.2	30.0
2-Chlorotoluene	Ave	1.248	1.195		9.58	10.0	-4.2	30.0
4-Chlorotoluene	Ave	2.715	2.679		9.87	10.0	-1.3	30.0
1,3,5-Trimethylbenzene	Ave	3.632	3.585		9.87	10.0	-1.3	30.0
tert-Butylbenzene	Ave	3.307	3.244		9.81	10.0	-1.9	30.0
1,2,4-Trimethylbenzene	Ave	3.641	3.617		9.93	10.0	-0.7	30.0
sec-Butylbenzene	Ave	4.491	4.417		9.83	10.0	-1.7	30.0
Benzyl chloride	Ave	0.6860	0.6145		8.96	10.0	-10.4	30.0
1,3-Dichlorobenzene	Ave	2.253	2.265		10.1	10.0	0.6	30.0
4-Isopropyltoluene	Ave	4.368	4.350		9.96	10.0	-0.4	30.0
1,4-Dichlorobenzene	Ave	2.386	2.272		9.52	10.0	-4.8	30.0
1,2,3-Trimethylbenzene	Ave	3.480	3.553		10.2	10.0	2.1	30.0
1,2-Dichlorobenzene	Ave	1.867	1.869		10.0	10.0	0.1	30.0
n-Butylbenzene	Ave	3.155	2.999		9.51	10.0	-4.9	30.0
1,2-Dibromo-3-Chloropropane	Ave	0.0850	0.0887		10.4	10.0	4.4	30.0
1,3,5-Trichlorobenzene	Ave	1.277	1.211		9.49	10.0	-5.2	30.0
1,2,4-Trichlorobenzene	Lin2		0.7697		10.9	10.0	8.7	30.0
Naphthalene	Lin1		1.115		10.8	10.0	7.8	30.0
Hexachlorobutadiene	Ave	0.1856	0.1881		10.1	10.0	1.3	30.0
1,2,3-Trichlorobenzene	Lin2		0.4435		11.7	10.0	16.6	30.0
Dibromofluoromethane	Ave	0.3414	0.3867		14.2	12.5	13.3	30.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2091	0.2116		12.7	12.5	1.2	30.0
Toluene-d8 (Surr)	Ave	3.655	4.233		14.5	12.5	15.8	30.0
4-Bromofluorobenzene	Lin2		0.9824		14.6	12.5	17.1	30.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: CCVIS 600-274277/2 Calibration Date: 09/10/2019 08:01

Instrument ID: CHVOAMS07 Calib Start Date: 07/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 07/17/2019 12:06

Lab File ID: $\underline{\text{A25301.d}}$ Conc. Units: $\underline{\text{ug/L}}$ Heated Purge: $(\underline{\text{Y/N}})$ N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Lin1		0.2809		7.24	10.0	-27.6	35.0
Chloromethane	Ave	0.3512	0.3308	0.1000	9.42	10.0	-5.8	35.0
Vinyl chloride	Ave	0.3937	0.3692		9.38	10.0	-6.2	20.0
Butadiene	Ave	0.4746	0.3816		8.04	10.0	-19.6	35.0
Ethylene oxide	Ave	0.0253	0.0280		111	100	10.7	35.0
Bromomethane	Qua		0.0810		8.66	10.0	-13.4	35.0
Chloroethane	Ave	0.1781	0.1848		10.4	10.0	3.7	35.0
Dichlorofluoromethane	Ave	0.4366	0.5229		12.0	10.0	19.8	35.0
Acrolein	Ave	0.0151	0.0147		48.8	50.0	-2.5	50.0
Acetonitrile	Ave	0.0110	0.0165		149	100	49.0	50.0
Trichlorofluoromethane	Ave	0.5935	0.5564		9.38	10.0	-6.2	35.0
Isopropyl alcohol	Ave	0.0069	0.0089		129	100	29.4	50.0
Acetone	Lin1		0.0310		21.3	20.0	6.6	50.0
Ethyl ether	Ave	0.1526	0.1604		10.5	10.0	5.1	35.0
t-Butanol	Ave	0.0102	0.0144		140	100	40.3*	35.0
1,1-Dichloroethene	Lin2		0.2714		9.06	10.0	-9.4	20.0
Acrylonitrile	Ave	0.0254	0.0334		131	100	31.4	50.0
Iodomethane	Lin		0.1397		7.49	10.0	-25.1	35.0
Methylene Chloride	Lin2		0.3478		10.7	10.0	6.9	50.0
Methyl acetate	Ave	0.0914	0.1117		24.5	20.0	22.2	35.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.3539	0.2488		7.03	10.0	-29.7	35.0
3-Chloro-1-propene	Ave	0.1812	0.1629		8.99	10.0	-10.1	35.0
Carbon disulfide	Ave	0.8204	0.5962		7.27	10.0	-27.3	35.0
trans-1,2-Dichloroethene	Ave	0.3529	0.3500		9.92	10.0	-0.8	35.0
Methyl tert-butyl ether	Ave	0.5630	0.6352		11.3	10.0	12.8	35.0
Propionitrile	Ave	0.0106	0.0145		138	100	37.5*	35.0
1,1-Dichloroethane	Ave	0.5463	0.5698	0.1000	10.4	10.0	4.3	35.0
Vinyl acetate	Lin2		0.2805		21.6	20.0	8.1	50.0
2-Chloro-1,3-butadiene	Ave	0.4823	0.4776		9.90	10.0	-1.0	35.0
Hexane	Ave	0.4157	0.3012		7.24	10.0	-27.6	35.0
Isopropyl ether	Ave	1.087	1.159		10.7	10.0	6.7	35.0
2-Butanone (MEK)	Lin		0.0200		22.5	20.0	12.3	50.0
Methacrylonitrile	Lin1		0.0208		114	100	14.0	35.0
cis-1,2-Dichloroethene	Ave	0.3868	0.4324		11.2	10.0	11.8	35.0
Ethyl acetate	Lin2		0.1454		25.8	20.0	28.7	35.0
Chlorobromomethane	Ave	0.1747	0.1774		10.2	10.0	1.5	35.0
Chloroform	Ave	0.6186	0.6969		11.3	10.0	12.7	20.0
Tert-butyl ethyl ether	Ave	0.7423	0.8774		11.8	10.0	18.2	35.0
Isobutyl alcohol	Ave	0.0050	0.0053		266	250	6.3	50.0
2,2-Dichloropropane	Ave	0.5467	0.6071		11.1	10.0	11.1	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: CCVIS 600-274277/2 Calibration Date: 09/10/2019 08:01

Instrument ID: CHVOAMS07 Calib Start Date: 07/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 07/17/2019 12:06

Lab File ID: A25301.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Tetrahydrofuran	Ave	0.0382	0.0558		29.2	20.0	45.8*	35.0
1,2-Dichloroethane	Ave	0.2605	0.3228		12.4	10.0	23.9	35.0
1,1,1-Trichloroethane	Ave	0.6112	0.6503		10.6	10.0	6.4	35.0
1,1-Dichloropropene	Ave	0.4461	0.4793		10.8	10.0	7.5	35.0
Cyclohexane	Ave	0.5082	0.4860		9.56	10.0	-4.4	35.0
Carbon tetrachloride	Ave	0.5911	0.6411		10.9	10.0	8.5	35.0
Benzene	Ave	1.274	1.402		11.0	10.0	10.0	35.0
Tert-amyl methyl ether	Ave	0.5687	0.7385		13.0	10.0	29.9	35.0
Isooctane	Ave	0.8528	0.8398		9.85	10.0	-1.5	35.0
Ethyl acrylate	Lin2		0.2433		12.2	10.0	21.8	35.0
n-Heptane	Ave	0.3862	0.3570		9.25	10.0	-7.5	35.0
Dibromomethane	Lin1		0.1512		10.9	10.0	9.4	35.0
1,2-Dichloropropane	Ave	0.2755	0.3157		11.5	10.0	14.6	20.0
2-Nitropropane	Lin		0.0328		18.1	20.0	-9.8	35.0
Trichloroethene	Ave	0.4769	0.4932		10.3	10.0	3.4	35.0
Bromodichloromethane	Ave	0.3515	0.4603		13.1	10.0	31.0	35.0
Methyl methacrylate	Lin2		0.1485		24.4	20.0	21.9	50.0
1,4-Dioxane	Lin2		0.0008		206	200	3.1	50.0
2-Chloroethyl vinyl ether	None		0.1106			20.0		35.0
Methylcyclohexane	Ave	0.5306	0.5427		10.2	10.0	2.3	35.0
cis-1,3-Dichloropropene	Ave	1.139	1.199		10.5	10.0	5.3	35.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1176	0.1544		26.3	20.0	31.3	50.0
trans-1,3-Dichloropropene	Ave	0.8995	0.9052		10.1	10.0	0.6	35.0
1,1,2-Trichloroethane	Lin2		0.5665		11.3	10.0	13.4	35.0
Ethyl methacrylate	Ave	0.5293	0.5997		11.3	10.0	13.3	50.0
Toluene	Ave	2.480	2.470		9.96	10.0	-0.4	20.0
1,3-Dichloropropane	Ave	0.8344	0.9383		11.2	10.0	12.4	35.0
2-Hexanone	Lin1		0.2442		21.3	20.0	6.6	50.0
Dibromochloromethane	Ave	0.8453	0.9616		11.4	10.0	13.8	35.0
n-Butyl acetate	Ave	0.5658	0.6270		11.1	10.0	10.8	35.0
1,2-Dibromoethane	Ave	0.5035	0.5453		10.8	10.0	8.3	35.0
Tetrachloroethene	Ave	0.9824	0.9213		9.38	10.0	-6.2	35.0
1-Chlorohexane	Ave	0.7806	0.8056		10.3	10.0	3.2	35.0
1,1,1,2-Tetrachloroethane	Ave	1.161	1.130		9.73	10.0	-2.7	35.0
Chlorobenzene	Ave	3.128	3.072	0.3000	9.82	10.0	-1.8	35.0
Ethylbenzene	Ave	1.600	1.661		10.4	10.0	3.8	20.0
m-Xylene & p-Xylene	Ave	3.540	3.553		10.0	10.0	0.4	35.0
Bromoform	Lin2		0.3036	0.1000	9.70	10.0	-3.0	35.0
Styrene	Ave	2.849	2.924		10.3	10.0	2.6	35.0
Cyclohexanone	Lin1		0.0160		770	500	53.9*	35.0
o-Xylene	Ave	2.005	2.041		10.2	10.0	1.8	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: CCVIS 600-274277/2 Calibration Date: 09/10/2019 08:01

Instrument ID: CHVOAMS07 Calib Start Date: 07/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 07/17/2019 12:06

Lab File ID: $\underline{\text{A25301.d}}$ Conc. Units: $\underline{\text{ug/L}}$ Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,1,2,2-Tetrachloroethane	Ave	0.5151	0.4746	0.3000	9.21	10.0	-7.9	35.0
trans-1,4-Dichloro-2-butene	Lin1		0.0971		10.5	10.0	4.5	50.0
1,2,3-Trichloropropane	Lin2		0.1308		9.17	10.0	-8.3	35.0
Isopropylbenzene	Ave	4.286	3.568		8.32	10.0	-16.8	35.0
Bromobenzene	Ave	1.101	0.8952		8.13	10.0	-18.7	35.0
N-Propylbenzene	Ave	1.325	1.098		8.28	10.0	-17.2	35.0
2-Chlorotoluene	Ave	1.248	0.9363		7.50	10.0	-25.0	35.0
4-Chlorotoluene	Ave	2.715	2.212		8.15	10.0	-18.5	35.0
1,3,5-Trimethylbenzene	Ave	3.632	2.933		8.08	10.0	-19.2	35.0
tert-Butylbenzene	Ave	3.307	2.694		8.14	10.0	-18.6	35.0
1,2,4-Trimethylbenzene	Ave	3.641	3.049		8.37	10.0	-16.3	35.0
sec-Butylbenzene	Ave	4.491	3.883		8.65	10.0	-13.5	35.0
Benzyl chloride	Ave	0.6860	0.8559		12.5	10.0	24.8	35.0
1,3-Dichlorobenzene	Ave	2.253	1.943		8.63	10.0	-13.7	35.0
4-Isopropyltoluene	Ave	4.368	3.751		8.59	10.0	-14.1	35.0
1,4-Dichlorobenzene	Ave	2.386	1.985		8.32	10.0	-16.8	35.0
1,2,3-Trimethylbenzene	Ave	3.480	3.108		8.93	10.0	-10.7	35.0
1,2-Dichlorobenzene	Ave	1.867	1.585		8.49	10.0	-15.1	35.0
n-Butylbenzene	Ave	3.155	2.710		8.59	10.0	-14.1	35.0
1,2-Dibromo-3-Chloropropane	Ave	0.0850	0.0784		9.23	10.0	-7.7	35.0
1,3,5-Trichlorobenzene	Ave	1.277	1.107		8.67	10.0	-13.3	35.0
1,2,4-Trichlorobenzene	Lin2		0.7143		10.1	10.0	0.7	35.0
Naphthalene	Lin1		1.040		10.1	10.0	0.5	35.0
Hexachlorobutadiene	Ave	0.1856	0.1848		9.96	10.0	-0.4	35.0
1,2,3-Trichlorobenzene	Lin2		0.4765		12.6	10.0	25.7	35.0
Dibromofluoromethane	Ave	0.3414	0.3705		10.9	10.0	8.5	35.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2091	0.2654		12.7	10.0	26.9	35.0
Toluene-d8 (Surr)	Ave	3.655	3.516		9.62	10.0	-3.8	35.0
4-Bromofluorobenzene	Lin2		0.7318		8.63	10.0	-13.7	35.0

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-191341-1				
SDG No.:					
Client Sample ID:	Lab Sample ID: MB 600-274277/6				
Matrix: Water	Lab File ID: A25305.d				
Analysis Method: 8260B	Date Collected:				
Sample wt/vol: 20(mL)	Date Analyzed: 09/10/2019 10:04				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 274277	Units: mg/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		50-134
460-00-4	4-Bromofluorobenzene	81		67-139
1868-53-7	Dibromofluoromethane	86		62-130
2037-26-5	Toluene-d8 (Surr)	100		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-191341-1
SDG No.:	
Client Sample ID:	Lab Sample ID: LCS 600-274277/3
Matrix: Water	Lab File ID: A25302.d
Analysis Method: 8260B	Date Collected:
Sample wt/vol: 20(mL)	Date Analyzed: 09/10/2019 08:51
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 274277	Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.01041		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.01267		0.00100	0.000192
71-43-2	Benzene	0.01083		0.00100	0.000176
91-20-3	Naphthalene	0.01119		0.00200	0.000129
127-18-4	Tetrachloroethene	0.009727		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	76		50-134
460-00-4	4-Bromofluorobenzene	77		67-139
1868-53-7	Dibromofluoromethane	79		62-130
2037-26-5	Toluene-d8 (Surr)	103		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-191341-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: LCSD 600-274277/4			
Matrix: Water	Lab File ID: A25303.d			
Analysis Method: 8260B	Date Collected:			
Sample wt/vol: 20 (mL)	Date Analyzed: 09/10/2019 09:15			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 274277	Units: mg/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.01093		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.01324		0.00100	0.000192
71-43-2	Benzene	0.01127		0.00100	0.000176
91-20-3	Naphthalene	0.01301		0.00200	0.000129
127-18-4	Tetrachloroethene	0.009682		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	80		50-134
460-00-4	4-Bromofluorobenzene	79		67-139
1868-53-7	Dibromofluoromethane	76		62-130
2037-26-5	Toluene-d8 (Surr)	107		70-130

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-191341-1
SDG No.:	
Instrument ID: CHVOAMS07	Start Date: 07/17/2019 08:09
Analysis Batch Number: 269550	End Date: 07/17/2019 20:07

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 600-269550/1		07/17/2019 08:09	1	A19800a.d	DB-VRX 60 0.25(mm)
IC 600-269550/2		07/17/2019 09:37	1	A19801a.d	DB-VRX 60 0.25(mm)
IC 600-269550/3		07/17/2019 10:02	1	A19802.d	DB-VRX 60 0.25(mm)
IC 600-269550/4		07/17/2019 10:26	1	A19803.d	DB-VRX 60 0.25(mm)
IC 600-269550/5		07/17/2019 10:51	1	A19804.d	DB-VRX 60 0.25(mm)
ICIS 600-269550/6		07/17/2019 11:16	1	A19805.d	DB-VRX 60 0.25(mm)
IC 600-269550/7		07/17/2019 11:41	1	A19806.d	DB-VRX 60 0.25(mm)
IC 600-269550/8		07/17/2019 12:06	1	A19807.d	DB-VRX 60 0.25(mm)
ICV 600-269550/10		07/17/2019 12:56	1	A19809.d	DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 12:56	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 13:21	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 14:12	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 14:38	5		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 15:03	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 15:29	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 15:54	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 16:19	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 16:45	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 17:10	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 17:35	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 18:01	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 18:27	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 18:52	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 19:17	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 19:42	1		DB-VRX 60 0.25(mm)
ZZZZZ		07/17/2019 20:07	1		DB-VRX 60 0.25(mm)

GC/MS VOA ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-191341-1
SDG No.:	
Instrument ID: CHVOAMS07	Start Date: 09/10/2019 07:21
Analysis Batch Number: 274277	End Date: 09/10/2019 19:11

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 600-274277/1		09/10/2019 07:21	1	A25300.d	DB-VRX 60 0.25 (mm)
CCVIS 600-274277/2		09/10/2019 08:01	1	A25301.d	DB-VRX 60 0.25(mm)
LCS 600-274277/3		09/10/2019 08:51	1	A25302.d	DB-VRX 60 0.25(mm)
LCSD 600-274277/4		09/10/2019 09:15	1	A25303.d	DB-VRX 60 0.25(mm)
MB 600-274277/6		09/10/2019 10:04	1	A25305.d	DB-VRX 60 0.25(mm)
600-191341-5		09/10/2019 10:29	1	A25306.d	DB-VRX 60 0.25(mm)
600-191341-1		09/10/2019 10:53	1	A25307.d	DB-VRX 60 0.25(mm)
600-191341-3		09/10/2019 11:18	1	A25308.d	DB-VRX 60 0.25(mm)
600-191341-4		09/10/2019 11:43	1	A25309.d	DB-VRX 60 0.25(mm)
600-191341-2		09/10/2019 12:08	1	A25310.d	DB-VRX 60 0.25(mm)
600-191341-1 DL		09/10/2019 12:34	5	A25311.d	DB-VRX 60 0.25(mm)
ZZZZZ		09/10/2019 12:59	25		DB-VRX 60 0.25(mm)
ZZZZZ		09/10/2019 13:25	500		DB-VRX 60 0.25(mm)
ZZZZZ		09/10/2019 13:50	5		DB-VRX 60 0.25(mm)
ZZZZZ		09/10/2019 14:15	10		DB-VRX 60 0.25(mm)
600-191341-2 DL		09/10/2019 14:39	20	A25316.d	DB-VRX 60 0.25(mm)
ZZZZZ		09/10/2019 15:04	100		DB-VRX 60 0.25(mm)
ZZZZZ		09/10/2019 15:29	2000		DB-VRX 60 0.25(mm)
ZZZZZ		09/10/2019 15:54	50		DB-VRX 60 0.25(mm)
ZZZZZ		09/10/2019 16:18	200		DB-VRX 60 0.25(mm)
ZZZZZ		09/10/2019 16:44	5000		DB-VRX 60 0.25 (mm)
ZZZZZ		09/10/2019 17:08	100		DB-VRX 60 0.25 (mm)
ZZZZZ		09/10/2019 17:33	2000		DB-VRX 60 0.25 (mm)
ZZZZZ		09/10/2019 17:58	100		DB-VRX 60 0.25 (mm)
ZZZZZ		09/10/2019 18:22	50		DB-VRX 60 0.25(mm)
ZZZZZ		09/10/2019 18:46	20		DB-VRX 60 0.25(mm)
ZZZZZ		09/10/2019 19:11	20		DB-VRX 60 0.25 (mm)

GC/MS VOA BATCH WORKSHEET

Lab Name: Eur	ofins TestAmer	ica, Housto	n J	Job No.: 600-191341-1					
SDG No.:									
Batch Number:	269550		В	atch Start Da	te: <u>07/17/19</u> (08:09	Batch Analyst	: Shen, Wei	
Batch Method:	8260B		В	atch End Date	:				
Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	BFB 00286	EOxideLcs 00155	EOxideStd 00155	VOAIS50PPM 00255
BFB 600-269550/1		8260B		20 mL	20 mL	2 uL			
IC 600-269550/2		8260B		20 mL	20 mL			0.2 uL	5 uL
IC 600-269550/3		8260B		20 mL	20 mL			0.4 uL	5 uL
IC 600-269550/4		8260B		20 mL	20 mL			0.8 uL	5 uL
IC 600-269550/5		8260B		20 mL	20 mL			2 uL	5 uL
ICIS 600-269550/6		8260B		20 mL	20 mL			4 uL	5 uL
IC 600-269550/7		8260B		20 mL	20 mL			8 uL	5 uL
IC 600-269550/8		8260B		20 mL	20 mL			20 uL	5 uL
ICV 600-269550/10		8260B		20 mL	20 mL		4 uL		5 uL
-	Client Sample ID	Method Chain	Basis	VOALCSGASPT 00334	VOALCSPT2 00143	VOASS50PPM 00293	VOASTDGASPT 00334	VOASTDPT2 00143	
BFB 600-269550/1		8260B							
IC 600-269550/2		8260B					0.2 uL	0.2 uL	
IC 600-269550/3		8260B					0.4 uL	0.4 uL	
IC 600-269550/4		8260B					0.8 uL	0.8 uL	
IC 600-269550/5		8260B					2 uL	2 uL	
ICIS 600-269550/6		8260B					4 uL	4 uL	
IC 600-269550/7		8260B					8 uL	8 uL	
IC 600-269550/8		8260B					20 uL	20 uL	
ICV 600-269550/10		8260B		4 uL	4 uL	5 uL			
		Ва	tch Not	ces					
Basis Ba	asis Description								

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

GC/MS VOA BATCH WORKSHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Batch Number: 274277 Batch Start Date: 09/10/19 07:21 Batch Analyst: Shen, Wei

Batch Method: 8260B Batch End Date: _____

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	Initial pH	BFB 00290	EOxideLcs 00159	EOxideStd 00159
BFB 600-274277/1		8260B		20 mL	20 mL		2 uL		
CCVIS 600-274277/2		8260B		20 mL	20 mL				4 uL
LCS 600-274277/3		8260B		20 mL	20 mL			4 uL	
LCSD 600-274277/4		8260B		20 mL	20 mL			4 uL	
MB 600-274277/6		8260B		20 mL	20 mL				
600-191341-B-5	Artesia - TB01 - 082819	8260B	Т	20 mL	20 mL	2 SU			
600-191341-C-1	Artesia - MW38 - 082819	8260B	Т	20 mL	20 mL	2 SU			
600-191341-C-3	Artesia - MW36 - 082819	8260B	Т	20 mL	20 mL	2 SU			
600-191341-C-4	Artesia - MW36 - 082819 FD	8260B	Т	20 mL	20 mL	2 SU			
600-191341-C-2	Artesia - MW37 - 082819	8260B	Т	20 mL	20 mL	2 SU			
600-191341-D-1	Artesia - MW38 - 082819	8260B	Т	20 mL	20 mL	2 SU			
600-191341-B-2	Artesia - MW37 - 082819	8260B	Т	20 mL	20 mL	2 SU			

Lab Sample ID	Client Sample ID	Method Chain	Basis	VOAIS50PPM 00259	VOALCSGASPT 00342	VOALCSPT2 00147	VOASS50PPM 00297	VOASTDGASPT 00342	VOASTDPT2 00147
BFB 600-274277/1		8260B							
CCVIS 600-274277/2		8260B		5 uL				4 uL	4 uL
LCS 600-274277/3		8260B		5 uL	4 uL	4 uL	5 uL		
LCSD 600-274277/4		8260B		5 uL	4 uL	4 uL	5 uL		
MB 600-274277/6		8260B		5 uL			5 uL		
600-191341-B-5	Artesia - TB01 - 082819	8260B	Т	5 uL			5 uL		
600-191341-C-1	Artesia - MW38 - 082819	8260B	Т	5 uL			5 uL		
600-191341-C-3	Artesia - MW36 - 082819	8260B	Т	5 uL			5 uL		

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

GC/MS VOA BATCH WORKSHEET

Lab Name: Eurofins Tes	stAmerica, Houston Job No	.: 600-191341-1			
SDG No.:					
Batch Number: 274277	Batch	Start Date: <u>09/10/19</u>	07:21 E	Batch Analyst:	Shen, Wei
Batch Method: 8260B	Batch 1	End Date:			

Lab Sample ID	Client Sample ID	Method Chain	Basis	VOAIS50PPM 00259	VOALCSGASPT 00342	VOALCSPT2 00147	VOASS50PPM 00297	VOASTDGASPT 00342	VOASTDPT2 00147
600-191341-C-4	Artesia - MW36 - 082819 FD	8260B	Т	5 uL			5 uL		
600-191341-C-2	Artesia - MW37 - 082819	8260B	Т	5 uL			5 uL		
600-191341-D-1	Artesia - MW38 - 082819	8260B	Т	5 uL			5 uL		
600-191341-B-2	Artesia - MW37 - 082819	8260B	Т	5 uL			5 uL		

Batch Notes	

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Method 300.0

Anions (IC) by Method 300.0

FORM III HPLC/IC LAB CONTROL SAMPLE RECOVERY

Lab Name: Eurofins TestAme	erica, Houston	Job No.: 600-191341-1						
SDG No.:								
Matrix: Water	Level: Low	Lab	File ID: 090619a-5.	d				
Lab ID: LCS 600-274043/5		Cli	ent ID:					
	SPIKE		LCS	LCS	QC			
	ADDED		CONCENTRATION	용	LIMITS	#		
COMPOUND	(mg/L)		(mg/L)	REC	REC			
Sulfate		20.0	20.50	103	90-110			

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 300.0

FORM IV HPLC/IC METHOD BLANK SUMMARY

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-191341-1
SDG No.:	
Lab File ID: 090619a-4.d	Lab Sample ID: MB 600-274043/4
Matrix: Water	Date Extracted:
Instrument ID: CHWC11	Date Analyzed: 09/06/2019 16:29
Level: (Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	CCB 600-274043/3	090619a-3.d	09/06/2019 12:18
	LCS 600-274043/5	090619a-5.d	09/06/2019 16:49
	CCB 600-274043/15	090619a-15.	09/06/2019 20:09
		d	
Artesia - MW38 - 082819	600-191341-1	090619a-23.	09/06/2019 22:49
		d	
Artesia - MW37 - 082819	600-191341-2	090619a-24.	09/06/2019 23:09
		d	
Artesia - MW36 - 082819	600-191341-3	090619a-25.	09/06/2019 23:29
		d	
	CCB 600-274043/27	090619a-27.	09/07/2019 00:09
		d	
Artesia - MW36 - 082819 FD	600-191341-4	090619a-28.	09/07/2019 00:29
		d	
	CCB 600-274043/39	090619a-39.	09/07/2019 04:09
		d	

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 SDG No.: Client Sample ID: Artesia - MW38 - 082819 Lab Sample ID: 600-191341-1 Matrix: Water Lab File ID: 090619a-23.d Analysis Method: 300.0 Date Collected: 08/28/2019 17:21 Date Extracted: Extraction Method: Sample wt/vol: 5(mL) Date Analyzed: 09/06/2019 22:49 Con. Extract Vol.: Dilution Factor: 100 GC Column: AS-18 ID: Injection Volume: 1(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 274043 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
14808-79-8	Sulfate	2340		50.0	9.57

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 SDG No.: Client Sample ID: Artesia - MW37 - 082819 Lab Sample ID: 600-191341-2 Matrix: Water Lab File ID: 090619a-24.d Analysis Method: 300.0 Date Collected: 08/28/2019 19:37 Date Extracted: Extraction Method: Sample wt/vol: 5(mL) Date Analyzed: 09/06/2019 23:09 Con. Extract Vol.: Dilution Factor: 100 GC Column: AS-18 ID: Injection Volume: 1(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 274043 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
14808-79-8	Sulfate	1480		50.0	9.57

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 SDG No.: Client Sample ID: Artesia - MW36 - 082819 Lab Sample ID: 600-191341-3 Matrix: Water Lab File ID: 090619a-25.d Analysis Method: 300.0 Date Collected: 08/29/2019 11:40 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 09/06/2019 23:29 Con. Extract Vol.: Dilution Factor: 100 GC Column: AS-18 ID: Injection Volume: 1(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 274043 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
14808-79-8	Sulfate	1680		50.0	9.57

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Eur	ofins TestAmerica, Houston	Job	No.: 600-1	91341-1		
SDG No.:						
Client Sample	ID: Artesia - MW36 - 082819 FD	Lab	Sample ID:	600-19	1341-4	
Matrix: Water		- Lab	File ID: 0	90619a-	28.d	
Analysis Meth	od: 300.0	Dat	e Collected	08/29	/2019 11:4	5
Extraction Me	thod:	Dat	e Extracted	ı:		
Sample wt/vol	: 5(mL)	Dat	e Analyzed:	09/07/	2019 00:29	
Con. Extract	Vol.:	Dil	ution Facto	r: 100		
Injection Vol	ume: 1(uL)	GC	Column: AS-	18	ID:	
% Moisture:		GPC	Cleanup: (Y	/N) N		
Analysis Bato	h No.: <u>2</u> 74043	Uni	ts: mg/L			
					I	
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL

1850

50.0

9.57

14808-79-8

Sulfate

HPLC/IC BY EXTERNAL STANDARD - INITIAL CALIBRATION DATA RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston

SDG No.:

Instrument ID: CHWC11

Calibration Start Date: 08/06/2019 12:34

Calibration End Date: 08/06/2019 14:54

Analy Batch No.: 271285

Betch No.: 271285

The start Date: 08/06/2019 14:54

Calibration ID: CHWC11

Calibration ID: 16441

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 600-271285/3	CAL080619-3.d
Level 2	IC 600-271285/4	CAL080619-4.d
Level 3	IC 600-271285/5	CAL080619-5.d
Level 4	IC 600-271285/6	CAL080619-6.d
Level 5	IC 600-271285/7	CAL080619-7.d
Level 6	IC 600-271285/8	CAL080619-8.d
Level 7	IC 600-271285/9	CAL080619-9.d

ANALYTE	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	LVL 7	RT WINDOW	AVG RT
Fluoride	3.117	3.117	3.117	3.125	3.125	3.133	3.133	2.867 - 3.367	3.124
Chloride	4.675	4.683	4.675	4.692	4.692	4.692	4.692	4.425 - 4.925	4.686
Bromide	8.117	8.117	8.125	8.150	8.133	8.133	8.108	7.875 - 8.375	8.126
Sulfate	8.958	8.958	8.975	9.025	9.017	9.000	8.942	8.725 - 9.225	8.982

HPLC/IC BY EXTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lap Name: <u>I</u>	Euroiins TestAmerica, Houston			_ Analy Batch No.: <u>27</u>	1285
SDG No.: _					
Instrument	ID: CHWC11	GC Column: AS-18	ID:	Heated Purge: (Y/N)	N
				=	

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 600-271285/3	CAL080619-3.d	
Level 2	IC 600-271285/4	CAL080619-4.d	
Level 3	IC 600-271285/5	CAL080619-5.d	
Level 4	IC 600-271285/6	CAL080619-6.d	
Level 5	IC 600-271285/7	CAL080619-7.d	
Level 6	IC 600-271285/8	CAL080619-8.d	
Level 7	IC 600-271285/9	CAL080619-9.d	

ANALYTE		CI	F		CURVE		COEFFICIENT			MIN CF	%RSD	#	MAX	R^2		MIN R^2
	LVL 1 LVL 5	LVL 2 LVL 6	LVL 3 LVL 7	LVL 4	TYPE	В	M1	M2					%RSD	OR COD		OR COD
Fluoride	15355420 13961483	13089104 14206918	13774445 14544461	15427881	Lin	-193661.41	14404785.7							0.9990		0.9900
Chloride	6214203 8198923	6250080 8156228	6438896 8282348	7442534	Lin1	-1529094.5	8238999.86							0.9990		0.9900
Bromide	1403710 2794383	1909324 2976003	2196242 3233473	2456616	Lin1	-509006.28	3073838.93							0.9940		0.9900
Sulfate	4294033 5579752	4789087 5793746	4907581 5969194	5095650	Lin1	-1053215.7	5862408.75							0.9990		0.9900

Note: The M1 coefficient is the same as Ave CF for an Ave curve type.

HPLC/IC BY EXTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1 Analy Batch No.: 271285

SDG No.:

Instrument ID: CHWC11 GC Column: AS-18 ID: Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 600-271285/3	CAL080619-3.d	
Level 2	IC 600-271285/4	CAL080619-4.d	
Level 3	IC 600-271285/5	CAL080619-5.d	
Level 4	IC 600-271285/6	CAL080619-6.d	
Level 5	IC 600-271285/7	CAL080619-7.d	
Level 6	IC 600-271285/8	CAL080619-8.d	
Level 7	IC 600-271285/9	CAL080619-9.d	

ANALYTE	CURVE		RESPONSE					CONCENTRATION (UG/ML)						
	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5			
Fluoride	Lin	3071084 106551887	6544552 145444611	13774445	30855762	69807415	0.200 7.50	0.500 10.0	1.00	2.00	5.00			
Chloride	Lin1	2485681	6250080	12877791	37212670	81989228	0.400	1.00	2.00	5.00	10.0			
Bromide	Lin1	163124559 280742	331293919 954662	2196242	4913232	13971913		0.500	1.00	2.00	5.00			
Sulfate	Lin1	22320019 1717613 115874929	32334726 4789087 238767778	9815161	25478248	55797520	7.50 0.400 20.0	10.0 1.00 40.0	2.00	5.00	10.0			

Curve Type Legend:

Lin = Linear

Lin1 = Linear 1/conc

FORM VII HPLC/IC CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: CCV 600-274043/2 Calibration Date: 09/06/2019 11:58

Instrument ID: CHWC11 Calib Start Date: 08/06/2019 12:34

Lab File ID: 090619a-2.d Conc. Units: mg/L

ANALYTE	CURVE TYPE	AVE CF	CF	MIN CF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Fluoride	Lin		13772060		7.18	7.50	-4.2	10.0
Chloride	Lin1		7940965		19.5	20.0	-2.7	10.0
Bromide	Lin1		2900737		7.24	7.50	-3.4	10.0
Sulfate	Lin1		5684509		19.6	20.0	-2.1	10.0

FORM VII HPLC/IC CONTINUING CALIBRATION RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: CCV 600-274043/2 Calibration Date: 09/06/2019 11:58

Instrument ID: CHWC11 Calib Start Date: 08/06/2019 12:34

GC Column: AS-18 ID: _____ Calib End Date: 08/06/2019 14:54

Lab File ID: 090619a-2.d

Analyte	יחים	RT WINDOW			
Analyte	3.13 4.64 7.99	FROM	TO		
Fluoride	3.13	2.88	3.38		
Chloride	4.64	4.39	4.89		
Bromide	7.99	7.74	8.24		
Sulfate	8.82	8.57	9.07		

FORM VII HPLC/IC CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: CCV 600-274043/14 Calibration Date: 09/06/2019 19:49

Instrument ID: CHWC11 Calib Start Date: 08/06/2019 12:34

Lab File ID: 090619a-14.d Conc. Units: mg/L

ANALYTE	CURVE TYPE	AVE CF	CF	MIN CF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Fluoride	Lin		14416104		7.52	7.50	0.3	10.0
Chloride	Lin1		8239693		20.2	20.0	0.9	10.0
Bromide	Lin1		2965366		7.40	7.50	-1.3	10.0
Sulfate	Lin1		5966670		20.5	20.0	2.7	10.0

FORM VII HPLC/IC CONTINUING CALIBRATION RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: CCV 600-274043/14 Calibration Date: 09/06/2019 19:49

Instrument ID: CHWC11 Calib Start Date: 08/06/2019 12:34

GC Column: AS-18 ID: _____ Calib End Date: 08/06/2019 14:54

Lab File ID: 090619a-14.d

Analyte	RT	RT WINDOW		
Anaryce		FROM	TO	
Fluoride	3.13	2.88	3.38	
Chloride	4.65	4.40	4.90	
Bromide	7.99	7.76	8.26	
Sulfate	8.82	8.58	9.08	

FORM VII HPLC/IC CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: CCV 600-274043/26 Calibration Date: 09/06/2019 23:49

Instrument ID: CHWC11 Calib Start Date: 08/06/2019 12:34

Lab File ID: 090619a-26.d Conc. Units: mg/L

ANALYTE	CURVE TYPE	AVE CF	CF	MIN CF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Fluoride	Lin		14203903		7.41	7.50	-1.2	10.0
Chloride	Lin1		8048337		19.7	20.0	-1.4	10.0
Bromide	Lin1		2860734		7.15	7.50	-4.7	10.0
Sulfate	Lin1		5766752		19.9	20.0	-0.7	10.0

FORM VII HPLC/IC CONTINUING CALIBRATION RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: CCV 600-274043/26 Calibration Date: 09/06/2019 23:49

Instrument ID: CHWC11 Calib Start Date: 08/06/2019 12:34

GC Column: AS-18 ID: _____ Calib End Date: 08/06/2019 14:54

Lab File ID: 090619a-26.d

Analyta	RT	RT WINDOW		
Analyte	L L	FROM	TO	
Fluoride	3.13	2.88	3.38	
Chloride	4.65	4.40	4.90	
Bromide	8.01	7.76	8.26	
Sulfate	8.83	8.58	9.08	

FORM VII HPLC/IC CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: CCV 600-274043/38 Calibration Date: 09/07/2019 03:49

Instrument ID: CHWC11 Calib Start Date: 08/06/2019 12:34

Lab File ID: 090619a-38.d Conc. Units: mg/L

ANALYTE	CURVE TYPE	AVE CF	CF	MIN CF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Fluoride	Lin		13965381		7.29	7.50	-2.9	10.0
Chloride	Lin1		7991699		19.6	20.0	-2.1	10.0
Bromide	Lin1		2834131		7.08	7.50	-5.6	10.0
Sulfate	Lin1		5666394		19.5	20.0	-2.4	10.0

FORM VII HPLC/IC CONTINUING CALIBRATION RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-191341-1

SDG No.:

Lab Sample ID: CCV 600-274043/38 Calibration Date: 09/07/2019 03:49

Instrument ID: CHWC11 Calib Start Date: 08/06/2019 12:34

GC Column: AS-18 ID: _____ Calib End Date: 08/06/2019 14:54

Lab File ID: 090619a-38.d

Analyte	RT -	RT WI	INDOW
Analyte	KI	FROM	TO
Fluoride	3.13	2.88	3.38
Chloride	4.65	4.40	4.90
Bromide	7.99	7.76	8.26
Sulfate	8.81	8.58	9.08

Lab Name: Eur	rofins TestAmerica, Houston	Job No.: 600-191341-1				
SDG No.:						
Client Sample	e ID:	Lab	Sample ID:	MB 600	-274043/4	
Matrix: Water		Lab	File ID: 0	90619a-	4.d	
Analysis Meth	nod: 300.0	_ Dat	e Collected	l:		
Extraction Me	ethod:	Date Extracted:				
Sample wt/vol: 5(mL)			Date Analyzed: 09/06/2019 16:29			
Con. Extract	Vol.:	Dilution Factor: 1				
Injection Vol	ume: 1(uL)	GC	Column: AS-	18	ID:	
% Moisture: _		GPC Cleanup: (Y/N) N				
Analysis Bato	ch No.: 274043	Uni	ts: mg/L			
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL
14808-79-8	Sulfate	0.0957 U 0.500 0.0957				

Lab Name: Eu	rofins TestAmerica, Houston	ofins TestAmerica, Houston Job No.: 600-191341-1					
SDG No.:							
Client Sample	e ID:	Lab	Sample ID:	CCB 600	0-274043/3		
Matrix: Wate	r	Lab	File ID: 0	90619a-3	3.d		
Analysis Met	hod: 300.0	Dat	e Collected	l:			
Extraction M	ethod:	Dat	e Extracted	l:			
Sample wt/vo	1: 5(mL)	Date Analyzed: 09/06/2019 12:18					
Con. Extract	Vol.:	 Dil	ution Facto	r: 1			
Injection Vo	lume: 1(uL)	GC	Column: AS-	.18	ID:		
% Moisture:		GPC Cleanup: (Y/N) N					
Analysis Bat	ch No.: 274043	— Uni	ts: mg/L				
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL	
14808-79-8	Sulfate		0.0957	U	0.500	0.0957	

Lab Name: Eu	rofins TestAmerica, Houston	ica, Houston Job No.: 600-191341-1					
SDG No.:							
Client Sample	e ID:	Lab	Sample ID:	CCB 60	0-274043/15		
Matrix: Wate	r	Lab	File ID: 0	90619a-	15.d		
Analysis Met	hod: 300.0	Dat	e Collected	l:			
Extraction M	ethod:	Dat	e Extracted	l:			
Sample wt/vo	1: 5(mL)	Date Analyzed: 09/06/2019 20:09					
Con. Extract	Vol.:	Dilution Factor: 1					
Injection Vo	lume: 1(uL)	GC	Column: AS-	18	ID:		
% Moisture:		GPC Cleanup: (Y/N) N					
Analysis Bat	ch No.: 274043	Uni	ts: mg/L				
	_						
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL	
14808-79-8	Sulfate		0.2202	J	0.500	0.0957	

Lab Name: Eu	rofins TestAmerica, Houston	Job No.: 600-191341-1						
SDG No.:								
Client Sampl	e ID:	Lab Sample ID: CCB 600-274043/27						
Matrix: Wate	r	Lab File ID: 090619a-27.d						
Analysis Met	hod: 300.0	Date Collected:						
Extraction M	ethod:	Date Extracted:						
Sample wt/vo	1: 5(mL)	Date Analyzed: 09/07/2019 00:09						
Con. Extract	Vol.:	Dilution Factor: 1						
Injection Vo	lume: 1(uL)	GC Column: AS-18 ID:						
% Moisture:		GPC Cleanup:(Y/N) N						
Analysis Bat	ch No.: 274043	Units: mg/L						
CAS NO.	COMPOUND NAME	RESULT Q RL MI	DL					
14808-79-8	Sulfate	0.0957 U 0.500 0	0.0957					

Lab Name: Eur	rofins TestAmerica, Houston	Job No.: 600-191341-1				
SDG No.:						
Client Sample	e ID:	Lab	Sample ID:	CCB 60	0-274043/39	
Matrix: Water		Lab	File ID: 0	90619a-	39.d	
Analysis Meth	nod: 300.0	_ Dat	e Collected	l:		
Extraction Me	ethod:	Date Extracted:				
Sample wt/vol: 5(mL)			Date Analyzed: 09/07/2019 04:09			
Con. Extract	Vol.:	Dilution Factor: 1				
Injection Vol	ume: 1(uL)	GC	Column: AS-	18	ID:	
% Moisture: _		GPC Cleanup:(Y/N) N				
Analysis Bato	ch No.: 274043	Uni	ts: mg/L			
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL
14808-79-8	Sulfate	0.0957 U 0.500 0.0957				

Lab Name: Eu	rofins TestAmerica, Houston	Job No.: 600-191341-1				
SDG No.:						
Client Sample	e ID:	Lab	Sample ID:	LCS 60	0-274043/5	
Matrix: Wate	r	Lab	File ID: 0	90619a-	5.d	
Analysis Met	hod: 300.0	Dat	e Collected	:		
Extraction M	ethod:	Dat	e Extracted	:		
Sample wt/vol: 5(mL)			Date Analyzed: 09/06/2019 16:49			
Con. Extract	Vol.:	Dil	ution Facto	r: 1		
Injection Vo	lume: 1(uL)	GC	Column: AS-	18	ID:	
% Moisture:		GPC Cleanup: (Y/N) N				
Analysis Bat	ch No.: 274043	Units: mg/L				
	_					
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL
14808-79-8	Sulfate		20.50		0.500	0.0957

Lab 1	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-191341-1	
SDG 1	No.:						
Insti	rument	: ID: CHWC	C11		Start Dat	te: 08/06/2019	12:34

Analysis Batch Number: 271285 End Date: 08/07/2019 11:34

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
IC 600-271285/2		08/06/2019 12:34	1		AS-18
IC 600-271285/3		08/06/2019 12:54	1	CAL080619-3.d	AS-18
IC 600-271285/4		08/06/2019 13:14	1	CAL080619-4.d	AS-18
IC 600-271285/5		08/06/2019 13:34	1	CAL080619-5.d	AS-18
IC 600-271285/6		08/06/2019 13:54	1	CAL080619-6.d	AS-18
IC 600-271285/7		08/06/2019 14:14	1	CAL080619-7.d	AS-18
IC 600-271285/8		08/06/2019 14:34	1	CAL080619-8.d	AS-18
IC 600-271285/9		08/06/2019 14:54	1	CAL080619-9.d	AS-18
ICV 600-271285/10		08/06/2019 15:14	1		AS-18
ICB 600-271285/11		08/06/2019 15:34	1		AS-18
ZZZZZ		08/06/2019 15:54	1		AS-18
ZZZZZ		08/06/2019 16:14	1		AS-18
ZZZZZ		08/06/2019 16:34	1		AS-18
ZZZZZ		08/06/2019 16:54	1		AS-18
ZZZZZ		08/06/2019 17:14	1		AS-18
ZZZZZ		08/06/2019 17:34	1		AS-18
ZZZZZ		08/06/2019 17:54	1		AS-18
ZZZZZ		08/06/2019 18:14	1		AS-18
ZZZZZ		08/06/2019 18:34	1		AS-18
ZZZZZ		08/06/2019 18:54	1		AS-18
CCV 600-271285/22		08/06/2019 19:14	1		AS-18
CCB 600-271285/23		08/06/2019 19:34	1		AS-18
ZZZZZ		08/06/2019 19:54	1		AS-18
ZZZZZ		08/06/2019 20:14	1		AS-18
ZZZZZ		08/06/2019 20:34	1		AS-18
ZZZZZ		08/06/2019 20:54	1		AS-18
ZZZZZ		08/06/2019 21:14	1		AS-18
ZZZZZ		08/06/2019 21:34	1		AS-18
ZZZZZ		08/06/2019 21:54	1		AS-18
ZZZZZ		08/06/2019 22:14	5		AS-18
ZZZZZ		08/06/2019 22:34	1		AS-18
ZZZZZ		08/06/2019 22:54	1		AS-18
CCV 600-271285/34		08/06/2019 23:14	1		AS-18
CCB 600-271285/35		08/06/2019 23:34	1		AS-18
ZZZZZ		08/06/2019 23:54	1		AS-18
ZZZZZ		08/07/2019 00:14	1		AS-18
ZZZZZ		08/07/2019 00:34	1		AS-18
ZZZZZ		08/07/2019 00:54	1		AS-18
ZZZZZ		08/07/2019 01:14	1		AS-18
ZZZZZ		08/07/2019 01:34	1		AS-18
ZZZZZ		08/07/2019 01:54	1		AS-18
ZZZZZ		08/07/2019 02:14	100		AS-18
ZZZZZ		08/07/2019 02:34	1		AS-18
ZZZZZ		08/07/2019 02:54	1		AS-18
ZZZZZ		08/07/2019 03:14	1		AS-18
ZZZZZ		08/07/2019 03:14	1		A2-18

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-191341-1
SDG No.:	
Instrument ID: CHWC11	Start Date: 08/06/2019 12:34
Analysis Batch Number: 271285	End Date: 08/07/2019 11:34

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
ZZZZZ		08/07/2019 03:34	1		AS-18
CCV 600-271285/48		08/07/2019 03:54	1		AS-18
CCB 600-271285/49		08/07/2019 04:14	1		AS-18
ZZZZZ		08/07/2019 04:34	1		AS-18
ZZZZZ		08/07/2019 04:54	1		AS-18
ZZZZZ		08/07/2019 05:14	1		AS-18
ZZZZZ		08/07/2019 05:34	1		AS-18
ZZZZZ		08/07/2019 05:54	1		AS-18
ZZZZZ		08/07/2019 06:14	1		AS-18
ZZZZZ		08/07/2019 06:34	20		AS-18
ZZZZZ		08/07/2019 06:54	20		AS-18
ZZZZZ		08/07/2019 07:14	1		AS-18
ZZZZZ		08/07/2019 07:34	1		AS-18
CCV 600-271285/60		08/07/2019 07:54	1		AS-18
CCB 600-271285/61		08/07/2019 08:14	1		AS-18
ZZZZZ		08/07/2019 08:34	5		AS-18
ZZZZZ		08/07/2019 08:54	1		AS-18
ZZZZZ		08/07/2019 09:14	1		AS-18
ZZZZZ		08/07/2019 09:34	1		AS-18
ZZZZZ		08/07/2019 09:54	1		AS-18
ZZZZZ		08/07/2019 10:14	1		AS-18
ZZZZZ		08/07/2019 10:34	1		AS-18
ZZZZZ		08/07/2019 10:54	1		AS-18
CCV 600-271285/70		08/07/2019 11:14	1		AS-18
CCB 600-271285/71		08/07/2019 11:34	1		AS-18

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-191341-1
SDG	No.:					

Instrument ID: CHWC11 Start Date: 09/06/2019 11:58

Analysis Batch Number: 274043 End Date: 09/07/2019 07:09

LCS 600-274043/5 09/06/2019 16:49 1 090619a-5.d AS-18	LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
Mac Mac	CCV 600-274043/2		09/06/2019 11:58	1	090619a-2.d	AS-18
LCS 600-274043/5	CCB 600-274043/3		09/06/2019 12:18	1	090619a-3.d	AS-18
	MB 600-274043/4		09/06/2019 16:29	1	090619a-4.d	AS-18
22222	LCS 600-274043/5		09/06/2019 16:49	1	090619a-5.d	AS-18
22222	ZZZZZ		09/06/2019 17:09	5		AS-18
22222	ZZZZZ		09/06/2019 17:29	10		AS-18
Description	ZZZZZ		09/06/2019 17:49	10		AS-18
	ZZZZZ		09/06/2019 18:09	10		AS-18
22222	ZZZZZ		09/06/2019 18:29	10		AS-18
	ZZZZZ		09/06/2019 18:49	1		AS-18
CCV 600-274043/14 09/06/2019 19:49 1 090619a-14.d As-18 CCB 600-274043/15 09/06/2019 20:09 1 090619a-15.d As-18 ZZZZZ 09/06/2019 20:29 500 As-18 ZZZZZ 09/06/2019 21:09 500 As-18 ZZZZZ 09/06/2019 21:19 500 As-18 ZZZZZ 09/06/2019 21:29 500 As-18 ZZZZZ 09/06/2019 21:49 500 As-18 ZZZZZ 09/06/2019 21:49 500 As-18 ZZZZZ 09/06/2019 22:09 500 As-18 ZZZZZ 09/06/2019 22:09 500 As-18 CZZZZ 09/06/2019 22:09 500 As-18 600-191341-1 09/06/2019 22:09 100 09619a-23.d As-18 600-191341-2 09/06/2019 23:09 100 09619a-24.d As-18 600-191341-1 09/06/2019 23:09 10	ZZZZZ		09/06/2019 19:09	10		AS-18
CCB 600-274043/15 09/06/2019 20:09 1 090619a-15.d AS-18	ZZZZZ		09/06/2019 19:29	100		AS-18
2272Z	CCV 600-274043/14		09/06/2019 19:49	1	090619a-14.d	AS-18
22222	CCB 600-274043/15		09/06/2019 20:09	1	090619a-15.d	AS-18
2222Z	ZZZZZ		09/06/2019 20:29	500		AS-18
2272Z	ZZZZZ		09/06/2019 20:49	1000		AS-18
2272	ZZZZZ		09/06/2019 21:09	500		AS-18
2272	ZZZZZ		09/06/2019 21:29	500		AS-18
22222	ZZZZZ		09/06/2019 21:49	500		AS-18
600-191341-1 09/06/2019 22:49 100 090619a-23.d AS-18 600-191341-2 09/06/2019 23:09 100 090619a-24.d AS-18 600-191341-3 09/06/2019 23:29 100 090619a-25.d AS-18 CCV 600-274043/26 09/06/2019 23:49 1 090619a-26.d AS-18 CCB 600-274043/27 09/07/2019 00:09 1 090619a-27.d AS-18 600-191341-4 09/07/2019 00:49 1 090619a-28.d AS-18 22222 09/07/2019 00:49 1 AS-18 22222 09/07/2019 01:49 1 AS-18 22222 09/07/2019 01:29 2 AS-18 22222 09/07/2019 01:49 1 AS-18 22222 09/07/2019 01:49 1 AS-18 22222 09/07/2019 01:49 1 AS-18 22222 09/07/2019 02:29 2 AS-18 22222 09/07/2019 02:29 2 AS-18 22222 09/07/2019 02:29 2 AS-18 22222 09/07/2019 03:29 2 AS-18 22222 09/07/2019 03:29 2 AS-18 22222 09/07/2019 03:29 2 AS-18 <td>ZZZZZ</td> <td></td> <td>09/06/2019 22:09</td> <td>500</td> <td></td> <td>AS-18</td>	ZZZZZ		09/06/2019 22:09	500		AS-18
600-191341-2 09/06/2019 23:09 100 090619a-24.d As-18 600-191341-3 09/06/2019 23:29 100 090619a-25.d As-18 CCV 600-274043/26 09/06/2019 23:49 1 090619a-26.d As-18 CB 600-274043/27 09/07/2019 00:09 1 090619a-27.d As-18 CB 600-191341-4 09/07/2019 00:09 1 090619a-28.d As-18 ZZZZZ 09/07/2019 00:49 1 As-18 ZZZZZ 09/07/2019 01:09 1000 As-18 ZZZZZ 09/07/2019 01:09 1000 As-18 ZZZZZ 09/07/2019 01:49 1 As-18 As-18 ZZZZZ 09/07/2019 01:49 1 As-18 As-18 ZZZZZ 09/07/2019 02:29 2 As-18 As-18 ZZZZZ 09/07/2019 02:29 2 As-18 As-18 ZZZZZ 09/07/2019 02:29 2 As-18 As-18 ZZZZZ 09/07/2019 03:09 1 As-18 As-18 ZZZZZ 09/07/2019 03:09 2 As-18 As-18 ZZZZZ 09/07/2019 03:09 1 O90619a-38.d As-18 </td <td>ZZZZZ</td> <td></td> <td>09/06/2019 22:29</td> <td>500</td> <td></td> <td>AS-18</td>	ZZZZZ		09/06/2019 22:29	500		AS-18
600-191341-3 09/06/2019 23:29 100 090619a-25.d As-18 CCV 600-274043/26 09/06/2019 23:49 1 090619a-26.d As-18 CCB 600-274043/27 09/07/2019 00:09 1 090619a-27.d As-18 600-191341-4 09/07/2019 00:29 100 090619a-28.d As-18 2222Z 09/07/2019 00:49 1 No As-18 222ZZ 09/07/2019 01:09 1000 As-18 222ZZ 09/07/2019 01:29 2 As-18 222ZZ 09/07/2019 01:29 2 As-18 222ZZ 09/07/2019 01:49 1 As-18 222ZZ 09/07/2019 01:49 1 As-18 222ZZ 09/07/2019 02:49 2 As-18 22ZZZ 09/07/2019 02:49 1 As-18 22ZZZ 09/07/2019 02:49 1 As-18 22ZZZ 09/07/2019 02:49 1 As-18 22ZZZ 09/07/2019 03:09 1 As-18 22ZZZ 09/07/2019 03:49 1 O90619a-38.d As-18 22ZZZ 09/07/2019 03:49 1 O90619a-38.d As-18 22ZZZ 09/07/2019 04:49	600-191341-1		09/06/2019 22:49	100	090619a-23.d	AS-18
CCV 600-274043/26 09/06/2019 23:49 1 090619a-26.d AS-18 CCB 600-274043/27 09/07/2019 00:09 1 090619a-27.d AS-18 600-191341-4 09/07/2019 00:29 100 090619a-28.d AS-18 ZZZZZ 09/07/2019 01:09 1 000 AS-18 ZZZZZ 09/07/2019 01:09 1000 AS-18 ZZZZZ 09/07/2019 01:29 2 AS-18 ZZZZZ 09/07/2019 01:29 2 AS-18 ZZZZZ 09/07/2019 01:49 1 AS-18 ZZZZZ 09/07/2019 02:09 2 AS-18 ZZZZZ 09/07/2019 03:09 1 AS-18 ZZZZZ 09/07/2019 03:09 1 AS-18 ZZZZZ 09/07/2019 03:09 1 O90619a-38.d AS-18 CCV 600-274043/39 09/07/2019	600-191341-2		09/06/2019 23:09	100	090619a-24.d	AS-18
CCB 600-274043/27 09/07/2019 00:09 1 090619a-27.d AS-18 600-191341-4 09/07/2019 00:29 100 090619a-28.d AS-18 ZZZZZ 09/07/2019 00:49 1 AS-18 ZZZZZ 09/07/2019 01:09 1000 AS-18 ZZZZZ 09/07/2019 01:29 2 AS-18 ZZZZZ 09/07/2019 01:49 1 AS-18 ZZZZZ 09/07/2019 01:49 1 AS-18 ZZZZZ 09/07/2019 02:09 2 AS-18 ZZZZZ 09/07/2019 02:09 2 AS-18 ZZZZZ 09/07/2019 02:09 2 AS-18 ZZZZZ 09/07/2019 02:49 1 AS-18 ZZZZZ 09/07/2019 03:09 1 O90619a-38.d AS-18 CCV 600-274043/38 09/07/2019 04:09 1 090619a-39.d AS-18 ZZZZZ	600-191341-3		09/06/2019 23:29	100	090619a-25.d	AS-18
600-191341-4 09/07/2019 00:29 00:49 1 AS-18 ZZZZZ 09/07/2019 01:09 1000 AS-18 ZZZZZ 09/07/2019 01:09 1000 AS-18 ZZZZZ 09/07/2019 01:29 Z AS-18 ZZZZZ 09/07/2019 01:49 1 AS-18 ZZZZZ 09/07/2019 02:09 Z AS-18 ZZZZZ 09/07/2019 02:29 Z AS-18 ZZZZZ 09/07/2019 02:29 Z AS-18 ZZZZZ 09/07/2019 02:49 1 AS-18 ZZZZZ 09/07/2019 03:09 1 AS-18 ZZZZZ 09/07/2019 03:09 1 AS-18 ZZZZZ 09/07/2019 03:09 1 AS-18 ZZZZZ 09/07/2019 03:29 2 AS-18 ZZZZZ 09/07/2019 03:09 1 O90619a-38.d AS-18 CCV 600-274043/38 09/07/2019 04:09 1 O90619a-39.d AS-18 ZZZZZ 09/07/2019 04:29 10 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:09 2 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:09 AS-18 ZZZZZ 09/07/2019 05:09 AS-18 ZZZZZ	CCV 600-274043/26		09/06/2019 23:49	1	090619a-26.d	AS-18
ZZZZZ 09/07/2019 00:49 1 AS-18 ZZZZZ 09/07/2019 01:09 1000 1000 AS-18 ZZZZZ 09/07/2019 01:29 2 AS-18 ZZZZZ 09/07/2019 01:49 1 AS-18 ZZZZZ 09/07/2019 02:09 2 AS-18 ZZZZZ 09/07/2019 02:29 2 AS-18 ZZZZZ 09/07/2019 02:49 1 AS-18 ZZZZZ 09/07/2019 03:09 1 AS-18 ZZZZZ 09/07/2019 03:29 2 AS-18 ZZZZZ 09/07/2019 03:29 2 AS-18 ZZZZZ 09/07/2019 03:29 1 OS:49 1 OS:49 AS-18 ZZZZZ 09/07/2019 03:29 2 AS-18 CCV 600-274043/38 0 OS:070/07/2019 03:49 1 OS:49 1 OS:49 AS-18 ZZZZZ 09/07/2019 04:29 10 AS-18 ZZZZZ 09/07/2019 04:29 10 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18	CCB 600-274043/27		09/07/2019 00:09	1	090619a-27.d	AS-18
ZZZZZ 09/07/2019 01:09 01:09 01:09 01:09 1000 AS-18 ZZZZZ 09/07/2019 01:29 2 AS-18 ZZZZZ 09/07/2019 01:49 1 AS-18 ZZZZZ 09/07/2019 02:09 2 AS-18 ZZZZZ 09/07/2019 02:29 2 AS-18 ZZZZZ 09/07/2019 02:49 1 AS-18 ZZZZZ 09/07/2019 03:09 1 AS-18 ZZZZZ 09/07/2019 03:29 2 AS-18 ZZZZZ 09/07/2019 03:29 2 AS-18 CCV 600-274043/38 0 09/07/2019 03:49 1 090619a-38.d AS-18 CCB 600-274043/39 0 09/07/2019 04:09 1 090619a-39.d AS-18 ZZZZZ 0 09/07/2019 04:29 10 AS-18 ZZZZZ 0 09/07/2019 04:49 10 AS-18 ZZZZZ 0 09/07/2019 05:09 10 AS-18 ZZZZZ 0 09/07/2019 05:09 10 AS-18 ZZZZZ 0 09/07/2019 05:49 2 AS-18	600-191341-4		09/07/2019 00:29	100	090619a-28.d	AS-18
ZZZZZ 09/07/2019 01:29 2 AS-18 ZZZZZ 09/07/2019 01:49 1 AS-18 ZZZZZ 09/07/2019 02:09 2 AS-18 ZZZZZ 09/07/2019 02:29 2 AS-18 ZZZZZ 09/07/2019 02:49 1 AS-18 ZZZZZ 09/07/2019 03:09 1 AS-18 ZZZZZ 09/07/2019 03:29 2 AS-18 CCV 600-274043/38 09/07/2019 03:49 1 090619a-38.d AS-18 ZZZZZ 09/07/2019 04:09 1 090619a-39.d AS-18 ZZZZZ 09/07/2019 04:29 10 AS-18 ZZZZZ 09/07/2019 04:49 10 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18	ZZZZZ		09/07/2019 00:49	1		AS-18
Description	ZZZZZ		09/07/2019 01:09	1000		AS-18
Description	ZZZZZ		09/07/2019 01:29	2		AS-18
ZZZZZ 09/07/2019 02:29 2 AS-18 ZZZZZ 09/07/2019 02:49 1 AS-18 ZZZZZ 09/07/2019 03:09 1 AS-18 ZZZZZ 09/07/2019 03:29 2 AS-18 CCV 600-274043/38 09/07/2019 03:49 1 090619a-38.d AS-18 CCB 600-274043/39 09/07/2019 04:09 1 090619a-39.d AS-18 ZZZZZ 09/07/2019 04:29 10 AS-18 ZZZZZ 09/07/2019 04:49 10 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 06:09 1 AS-18	ZZZZZ		09/07/2019 01:49	1		AS-18
Description	ZZZZZ		09/07/2019 02:09	2		AS-18
ZZZZZ 09/07/2019 03:09 1 AS-18 ZZZZZ 09/07/2019 03:29 2 AS-18 CCV 600-274043/38 09/07/2019 03:49 1 090619a-38.d AS-18 CCB 600-274043/39 09/07/2019 04:09 1 090619a-39.d AS-18 ZZZZZ 09/07/2019 04:29 10 AS-18 ZZZZZ 09/07/2019 04:49 10 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 06:09 1 AS-18	ZZZZZ		09/07/2019 02:29	2		AS-18
ZZZZZ 09/07/2019 03:29 2 AS-18 CCV 600-274043/38 09/07/2019 03:49 1 090619a-38.d AS-18 CCB 600-274043/39 09/07/2019 04:09 1 090619a-39.d AS-18 ZZZZZ 09/07/2019 04:29 10 AS-18 ZZZZZ 09/07/2019 04:49 10 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 06:09 1 AS-18	ZZZZZ		09/07/2019 02:49	1		AS-18
CCV 600-274043/38 09/07/2019 03:49 1 090619a-38.d AS-18 CCB 600-274043/39 09/07/2019 04:09 1 090619a-39.d AS-18 ZZZZZ 09/07/2019 04:29 10 AS-18 ZZZZZ 09/07/2019 04:49 10 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 06:09 1 AS-18	ZZZZZ		09/07/2019 03:09	1		AS-18
CCB 600-274043/39 09/07/2019 04:09 1 090619a-39.d AS-18 ZZZZZ 09/07/2019 04:29 10 AS-18 ZZZZZ 09/07/2019 04:49 10 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 06:09 1 AS-18	ZZZZZ		09/07/2019 03:29	2		AS-18
ZZZZZ 09/07/2019 04:29 10 AS-18 ZZZZZ 09/07/2019 04:49 10 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 06:09 1 AS-18	CCV 600-274043/38		09/07/2019 03:49	1	090619a-38.d	AS-18
ZZZZZ 09/07/2019 04:49 10 AS-18 ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 06:09 1 AS-18 ZZZZZ 09/07/2019 06:09 1 AS-18	CCB 600-274043/39		09/07/2019 04:09	1	090619a-39.d	AS-18
ZZZZZ 09/07/2019 05:09 10 AS-18 ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 06:09 1 AS-18	ZZZZZ		09/07/2019 04:29	10		AS-18
ZZZZZ 09/07/2019 05:29 2 AS-18 ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 06:09 1 AS-18 ZZZZZ 09/07/2019 06:09 1 AS-18	ZZZZZ		09/07/2019 04:49	10		AS-18
ZZZZZ 09/07/2019 05:49 2 AS-18 ZZZZZ 09/07/2019 06:09 1 AS-18	ZZZZZ		09/07/2019 05:09	10		AS-18
ZZZZZ 09/07/2019 06:09 1 AS-18	ZZZZZ		09/07/2019 05:29	2		AS-18
	ZZZZZ		09/07/2019 05:49	2		AS-18
ZZZZZ 09/07/2019 06:29 20 AS-18	ZZZZZ		09/07/2019 06:09	1		AS-18
	ZZZZZ		09/07/2019 06:29	20		AS-18

Lab Name: Eurofins	TestAmerica, Houst	.on	Job No.: 600-191341-1				
SDG No.:							
Instrument ID: CHW	C11		Start Date: 09/06/2019 11:58				
Analysis Batch Num	ber: 274043		End Date: 09/07/2019 07:09				
LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANA:	LYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID	
CCV 600-274043/47		09/07/2019	06:49	1		AS-18	
CCB 600-274043/48		09/07/2019	07:09	1		AS-18	

HPLC/IC BATCH WORKSHEET

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-191341-1	

SDG No.:

Batch Number: 274043 Batch Start Date: 09/06/19 11:58 Batch Analyst: Reach, Shrey K

Batch Method: 300.0 Batch End Date:

	T-11	I		- 1:1 :				T
Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	CCV 00108	ICV/LCS 00105		
CCV 600-274043/2		300.0		5 mL	5 mL			
CCB 600-274043/3		300.0		5 mL				
MB 600-274043/4		300.0		5 mL				
LCS 600-274043/5		300.0		5 mL		5 mL		
CCV 600-274043/14		300.0		5 mL	5 mL			
CCB 600-274043/15		300.0		5 mL				
600-191341-A-1	Artesia - MW38 - 082819	300.0	T	5 mL				
600-191341-A-2	Artesia - MW37 - 082819	300.0	Т	5 mL				
600-191341-A-3	Artesia - MW36 - 082819	300.0	T	5 mL				
CCV 600-274043/26		300.0		5 mL	5 mL			
CCB 600-274043/27		300.0		5 mL				
600-191341-A-4	Artesia - MW36 - 082819 FD	300.0	Т	5 mL				
CCV 600-274043/38		300.0		5 mL	5 mL			
CCB 600-274043/39		300.0		5 mL				

	Batch Notes	
Eluent 1 ID	190400143011	
Filter ID	16894409	

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Shipping and Receiving Documents

Environment Testing : eurofins

arrier Tracking No(s)

Chain of Custody Record

Eurofins TestAmerica, Houston

6310 Rothway Street

Phone (713) 690-4444 Fax (713) 690-5646

M - Hexane
N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2SO3
S - H7SG4 V - MCAA W - pH 4-5 Z - other (specify) Special Instructions/Note: Months Сотрапу Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Monti Trip Blank 600-70520-19291.1 Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
C - Zn Acetate
D - Nitre Acid
E - NahSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page: Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA Total Number of containers 7 Le/Time; Date/Time: Method of Shipment 600-191341 Chain of Custody Analysis Requested Cooler Temperature(s) "C and Other Remarks: Special Instructions/QC Requirements: E-Mait: bethany.mcdaniel@testamericainc.com seceived by: Lab PM: McDaniel, Bethany A 3× 3× XX 300_ORGFM_28D - 300.0 - Anions, IC (Sulfate) XXXX 大多 XXX S260B_LL - Volatile Organic Compound Custom List(5) Tacobs S=grab) BT=Tresser, A=Atr)
Preservation Code: (Wewster, Seso Oewastefoll, Water Matrix Water Water Water Water Water Company Radiological 323-6368 (C=comp, G=grab) Sample Type 300 wo#: D3151100-6.CS.TPE.AR.19-04-02 0 D3151100 CS.TPE.AR.19-04-02 0 0 0 万ち 1937 620 140 8130119 Sample 1721 8/29/19 1145 Date: Unknown TAT Requested (days): 11,03 Due Date Requested: 513 8/28/19 8/28/19 8/23/14 8128/19 Sample Date Project #: 60004334 Jate/Time: Jate/Time Poison B Artsia- MW36-032919-FD Skin Irritant Artsia - MW 37 - 082819 Artesia-mw33- 682819 Artsia- MW36-082919 Deliverable Requested: I, II, III, IV, Other (specify) Artsia- TBOI-082819 Custody Seal No. Non-Hazard Flammable Possible Hazard Identification 3721 Rutledge Rd NE Suite B-1 lacobs Engineering Group, Inc. alecca.forsberg@jacobs.com Empty Kit Relinquished by: Custody Seals Intact: A Yes A No Client Information Sample Identification Dowell - Artesia IDW Client Contact: Aleeca Forsberg inquished by: elinquished by: inquished by: Albuquerque State, Zip: NM, 87109

		1				
fol	14/15	Ah.				
<i>e</i> 1)	11/0	MV _				
						COMMENTS:
ON O SEX		13	acceptability upon receip	eldmss to anoitibn	tory's standard co	Did samples meet the labora
ANE O	JAES DN	e (2-eww): [headspace acceptable	- AON		pH paper Lot #
	ου		The & TIME PUT IN FR			TX1005 samples <u>frozen</u>
	ON□	DAES	preserved are <ph>2:</ph>			Base samples are>pH 1
		□YES	ONE GRO	AMPLES REQUI	RVATION OF S	LABORATORY PRESE
				01	is DAES ON	Samples received on ice
		\wedge		N/A	N / A	
11/1	11 16	2		N / A	N / A	
61/17	16011	/		N / A	N / A	
				N / X	N/A	
8.6	1.0+	8L9	7.7	N / A	N / X	Mas
Corrected Temp (O°)	CF	Therm	Observed Temp	Trip Blank	Temp	Cooler ID
	1		nber of Coolers Receive	nuM OI	OLES DI	Custody Seal Present:
	XD	Pot	BRIER/DRIVER:	AAO —	-th	NNPACKED BY:
	SC	Jacol	;TN=	сгіі		лов илмвен:
-		1		Date		
.182Eb d 10:2			ţs	ipt Checklis	mble Recei	PS S
guitzaf tnamnovivn3 salnarnAtzaf	sniforus		198161 Foc: 600		notsuoH s	Eurofins TestAmeric

Rev. 4A: 08/26/2019

E10-IW-A2-2H

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 600-191341-1

Login Number: 191341 List Source: Eurofins TestAmerica, Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.3
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

ANALYTICAL REPORT

Job Number: 600-194999-1

Job Description: Dowell - Artesia 10/29/19

For:

Jacobs Engineering Group, Inc. 3721 Rutledge Rd NE Suite B-1 Albuquerque, NM 87109

Attention: Aleeca Forsberg

Bethany McDaniel

Approved for release. Bethany A McDaniel Senior Project Manager 11/15/2019 10:29 AM

Bethany A McDaniel, Senior Project Manager 6310 Rothway Street, Houston, TX, 77040 (713)358-2005 bethany.mcdaniel@testamericainc.com 11/15/2019

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

Cover Title Page	1
Data Summaries	5
Definitions	5
Case Narrative	6
Detection Summary	7
Client Sample Results	11
Default Detection Limits	20
Surrogate Summary	21
QC Sample Results	22
QC Association	29
Chronicle	32
Certification Summary	36
Method Summary	37
Sample Summary	38
Manual Integration Summary	39
Reagent Traceability	51
Organic Sample Data	61
GC/MS VOA	61
Method 8260B Low Level	61
Method 8260B Low Level QC Summary	62
Method 8260B Low Level Sample Data	85
Standards Data	109
Method 8260B Low Level ICAL Data	109
Method 8260B Low Level CCAL Data	121
Raw QC Data	133
Method 8260B Low Level Blank Data	133

Table of Contents

Method 8260B Low Level LCS/LCSD Data	136
Method 8260B Low Level MS/MSD Data	142
Method 8260B Low Level Run Logs	146
Method 8260B Low Level Prep Data	150
HPLC/IC	158
Method 300.0	158
Method 300.0 QC Summary	159
Method 300.0 Sample Data	163
Standards Data	170
Method 300.0 ICAL Data	170
Method 300.0 CCAL Data	173
Raw QC Data	179
Method 300.0 Blank Data	179
Method 300.0 LCS/LCSD Data	183
Method 300.0 MS/MSD Data	184
Method 300.0 Run Logs	186
Method 300.0 Prep Data	189
Inorganic Sample Data	191
Metals Data	191
Met Cover Page	192
Met Sample Data	193
Met QC Data	205
Met ICV/CCV	205
Met Blanks	207
Met ICSA/ICSAB	212
Met MS/MSD/PDS	214

Table of Contents

Met Dup/Trip	218
Met LCS/LCSD	219
Met Serial Dilution	222
Met MDL	223
Met Linear Ranges	225
Met Preparation Log	226
Met Analysis Run Log	229
Met Internal Standards	232
Met Prep Data	236
Shipping and Receiving Documents	242
Client Chain of Custody	243
Sample Receipt Checklist	246

Definitions/Glossary

Job ID: 600-194999-1 Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

F1 MS and/or MSD Recovery is outside acceptance limits.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. J

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

F1 MS and/or MSD Recovery is outside acceptance limits. Indicates the analyte was analyzed for but not detected.

Metals

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) NC

Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL **Practical Quantitation Limit**

Quality Control QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin) Job Narrative 600-194999-1

Comments

No additional comments.

Receipt

The samples were received on 10/31/2019 10:34 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.3° C and 0.8° C.

Receipt Exceptions

MW-22 not listed on COC however analyzed for 8260 (nap, bz, PCE, 11DCE, and 11DCA) and dissolved Mn per containers received and client instruction.

TB not marked for analyses on coc; analyzed per client instruction. Extra TB also received not listed on COC; not analyzed per client request.

Sample MW32 not marked for analyses on the coc; analyzed for VOA (nap, bz, PCE, 11DCE, and 11DCA) per vials received and client instruction.

MW28 marked for ms/msd however extra vials received for voa only.

Sample ID's on the second page of coc were changed to "102919" in the sample ID's for this report per client request.

GC/MS VOA

Method 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries of sample 600-194999-12 for analytical batch 600-279189 were low outside control limits for 1,1-Dichloroethene. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8260B: The following samples were diluted to bring the concentration of target analytes within the calibration range: Artesia-MW12-102919 (600-194999-6) and Artesia-MW38-102919 (600-194999-17). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method 300.0: The calibration blank(CCB) for analytical batch 600-280102 contained sulfate above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 300.0: The matrix spike / matrix spike duplicate (MS/MSD) of sample 600-194999-17 for analytical batch 600-280102 had recoveries for sulfate high outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Industrial Hygiene

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Arte	sia-Outlet-10	2919				Lab Sa	ımp	le ID: 6	00-194999-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D M	lethod	Prep Type
1,1-Dichloroethane	0.00403		0.00100	0.000168	mg/L	1	_ <u>8</u> 2	260B	Total/NA
1,1-Dichloroethene	0.00567		0.00100	0.000192	mg/L	1	82	260B	Total/NA
Naphthalene	0.000342	J	0.00200	0.000129	mg/L	1	82	260B	Total/NA
Manganese, Dissolved	3.64		1.00	0.250	ug/L	1	60	020A	Dissolved
Client Sample ID: Arte	sia-MW30-10	2919				Lab Sa	mp	le ID: 6	00-194999-
Analyte		Qualifier	RL	MDL		Dil Fac		lethod	Prep Type
1,1-Dichloroethane	0.00132		0.00100	0.000168	-	1	82	260B	Total/NA
1,1-Dichloroethene	0.00315		0.00100	0.000192	mg/L	1	82	260B	Total/NA
Naphthalene	0.000249	J	0.00200	0.000129	mg/L	1	82	260B	Total/NA
Tetrachloroethene	0.00498		0.00100	0.000333	mg/L	1	82	260B	Total/NA
Manganese, Dissolved	8.87		1.00	0.250	ug/L	1	60	020A	Dissolved
lient Sample ID: Arte	sia-MD30-102	2919				Lab Sa	ımp	le ID: 6	00-194999-
Analyte		Qualifier	RL		Unit	Dil Fac		lethod	Prep Type
1,1-Dichloroethane	0.00141		0.00100	0.000168	-	1	82	260B	Total/NA
1,1-Dichloroethene	0.00345		0.00100	0.000192	-	1	82	260B	Total/NA
Naphthalene	0.000184	J	0.00200	0.000129	mg/L	1	82	260B	Total/NA
Tetrachloroethene	0.00476		0.00100	0.000333	mg/L	1	82	260B	Total/NA
Manganese, Dissolved	7.11		1.00	0.250	ug/L	1	60	020A	Dissolved
Client Sample ID: Arte	sia-MW32-10	2919				Lab Sa	mp	le ID: 6	00-194999-
Analyte		Qualifier	RL		Unit	Dil Fac		lethod	Prep Type
1,1-Dichloroethane	0.000171		0.00100	0.000168	-	1		260B	Total/NA
Tetrachloroethene	0.000921	J	0.00100	0.000333	mg/L	1		260B	Total/NA
Manganese, Dissolved	4.14		1.00	0.250	ug/L	1	60	020A	Dissolved
Client Sample ID: Arte	sia-MW36-10	2919				Lab Sa	mp	le ID: 6	00-194999-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D M	lethod	Prep Type
1,1-Dichloroethane	0.0337		0.00100	0.000168	mg/L	1	_ 82	260B	Total/NA
1,1-Dichloroethene	0.000593	J	0.00100	0.000192	mg/L	1	82	260B	Total/NA
Benzene	0.0129		0.00100	0.000176	mg/L	1	82	260B	Total/NA
Naphthalene	0.0236		0.00200	0.000129	mg/L	1	82	260B	Total/NA
Tetrachloroethene	0.0100		0.00100	0.000333	mg/L	1	82	260B	Total/NA
Sulfate	738		125	23.9	mg/L	250	30	0.00	Total/NA
Client Sample ID: Arte	sia-MW12-10	2919				Lab Sa	ımp	le ID: 6	00-194999-
Analyte		Qualifier	RL	MDL		Dil Fac		lethod	Prep Type
1,1-Dichloroethene	0.00252		0.00100	0.000192	-	1		260B	Total/NA
Benzene	0.00858		0.00100	0.000176	Ū	1		260B	Total/NA
Naphthalene	0.0297		0.00200	0.000129	-	1	82	260B	Total/NA
Tetrachloroethene	0.00172		0.00100	0.000333	mg/L	1	82	260B	Total/NA
1,1-Dichloroethane - DL	0.0502		0.00500	0.000840	mg/L	5	82	260B	Total/NA
Sulfate	2150		50.0	9.57	mg/L	100	30	0.00	Total/NA
Client Sample ID: Arte	sia-MW17C-1	02919				Lab Sa	ımp	le ID: 6	00-194999-
Analyte		Qualifier	RL		Unit	Dil Fac			Prep Type
	0.000470		0.00400	0.000400				2000	T-4-1/NIA

This Detection Summary does not include radiochemical test results.

1,1-Dichloroethane

0.000178 J

Total/NA

8260B

Job ID: 600-194999-1

0.00100 0.000168 mg/L

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Arte	sia-MW17C-1	02919 (C	ontinued)		Lab Sai	mple ID: 6	00-194999-7
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethene	0.000350	J	0.00100	0.000192	mg/L	1	8260B	Total/NA
Naphthalene	0.00222		0.00200	0.000129	mg/L	1	8260B	Total/NA
Sulfate	1290		50.0	9.57	mg/L	100	300.0	Total/NA
Client Sample ID: Arte	sia-MW11-10	2919				Lab Sar	nple ID: 6	00-194999-8
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	0.00488		0.00100	0.000168	mg/L		8260B	Total/NA
1,1-Dichloroethene	0.000201	J	0.00100	0.000192	mg/L	1	8260B	Total/NA
Naphthalene	0.000441	J	0.00200	0.000129	mg/L	1	8260B	Total/NA
Tetrachloroethene	0.000390	J	0.00100	0.000333	mg/L	1	8260B	Total/NA
Sulfate	1330		100	19.1	mg/L	200	300.0	Total/NA
Client Sample ID: Arte	sia-MD11-102	2919				Lab Sar	mple ID: 6	00-194999-9
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	0.00457		0.00100	0.000168	mg/L		8260B	Total/NA
1,1-Dichloroethene	0.000205	J	0.00100	0.000192	mg/L	1	8260B	Total/NA
Naphthalene	0.000223	J	0.00200	0.000129	mg/L	1	8260B	Total/NA
Tetrachloroethene	0.000399	J	0.00100	0.000333	mg/L	1	8260B	Total/NA
Sulfate	911		100		mg/L	200	300.0	Total/NA
Client Sample ID: Arte	sia-MW29-10	2919				Lab Sam	ple ID: 60	0-194999-10
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	0.0103		0.00100	0.000168	mg/L		8260B	Total/NA
1,1-Dichloroethene	0.0267		0.00100	0.000192	mg/L	1	8260B	Total/NA
Tetrachloroethene	0.0365		0.00100	0.000333	mg/L	1	8260B	Total/NA
Manganese, Dissolved	0.793	J	1.00	0.250	ug/L	1	6020A	Dissolved
Client Sample ID: Arte	sia-MW35-10	2919				Lab Sam	ple ID: 60	0-194999-11
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethene	0.0234		0.00100	0.000192	mg/L		8260B	Total/NA
Tetrachloroethene	0.0262		0.00100	0.000333	mg/L	1	8260B	Total/NA
Client Sample ID: Arte	sia-MW28-10	2919				Lab Sam	ple ID: 60	0-194999-12
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	0.00553		0.00100	0.000168	mg/L		8260B	Total/NA
1,1-Dichloroethene	0.0132	F1	0.00100	0.000192	mg/L	1	8260B	Total/NA
Naphthalene	0.000316	J	0.00200	0.000129	_	1	8260B	Total/NA
Tetrachloroethene	0.0178		0.00100	0.000333		1	8260B	Total/NA
Manganese, Dissolved	1.25		1.00	0.250	-	1	6020A	Dissolved
Client Sample ID: Arte	sia-MW25-10	2919				Lab Sam	ple ID: 60	0-194999-13
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
=			0.00100	0.000168	ma/l		0260D	
1,1-Dichloroethane	0.000989	J	0.00100	0.000100	mg/L		8260B	Total/NA
1,1-Dichloroethane 1,1-Dichloroethene	0.000989 0.000473		0.00100	0.000108	_	1	8260B	Total/NA

This Detection Summary does not include radiochemical test results.

Tetrachloroethene

Manganese, Dissolved

0.000895 J

138

Total/NA

Dissolved

8260B

6020A

Job ID: 600-194999-1

0.00100

1.00

0.000333 mg/L

0.250 ug/L

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Lab Sample ID: 600-194999-14

Job ID: 600-194999-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	0.00316	0.00100	0.000168 mg/L		8260B	Total/NA
1,1-Dichloroethene	0.00215	0.00100	0.000192 mg/L	1	8260B	Total/NA
Manganese, Dissolved	81.7	1.00	0.250 ug/L	1	6020A	Dissolved

Client Sample ID: Artesia-MW34-102919

Lab Sample ID: 600-194999-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00104		0.00100	0.000168	mg/L	1	_	8260B	Total/NA
1,1-Dichloroethene	0.000784	J F1	0.00100	0.000192	mg/L	1		8260B	Total/NA
Naphthalene	0.000174	J	0.00200	0.000129	mg/L	1		8260B	Total/NA
Tetrachloroethene	0.00126		0.00100	0.000333	mg/L	1		8260B	Total/NA
Manganese, Dissolved	1.08		1.00	0.250	ug/L	1		6020A	Dissolved

Client Sample ID: Artesia-MW37-102919

Lab Sample ID: 600-194999-16

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.0475	0.00100	0.000168	mg/L	1	_	8260B	Total/NA
1,1-Dichloroethene	0.00822	0.00100	0.000192	mg/L	1		8260B	Total/NA
Benzene	0.00701	0.00100	0.000176	mg/L	1		8260B	Total/NA
Naphthalene	0.0114	0.00200	0.000129	mg/L	1		8260B	Total/NA
Tetrachloroethene	0.00688	0.00100	0.000333	mg/L	1		8260B	Total/NA
Sulfate	2570	50.0	9.57	mg/L	100		300.0	Total/NA

Client Sample ID: Artesia-MW38-102919

Lab Sample ID: 600-194999-17

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	0.0101	0.00100	0.000192	mg/L		_	8260B	Total/NA
Benzene	0.00167	0.00100	0.000176	mg/L	1		8260B	Total/NA
Naphthalene	0.0221	0.00200	0.000129	mg/L	1		8260B	Total/NA
Tetrachloroethene	0.0108	0.00100	0.000333	mg/L	1		8260B	Total/NA
1,1-Dichloroethane - DL	0.154	0.0100	0.00168	mg/L	10		8260B	Total/NA
Sulfate	927 F1	50.0	9.57	mg/L	100		300.0	Total/NA

Client Sample ID: Artesia-TB01-102919

Lab Sample ID: 600-194999-18

No Detections.

Client Sample ID: Artesia-Inlet-102919

Lab Sample ID: 600-194999-19

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00321	0.00100	0.000168	mg/L	1	_	8260B	Total/NA
1,1-Dichloroethene	0.00909	0.00100	0.000192	mg/L	1		8260B	Total/NA
Tetrachloroethene	0.0102	0.00100	0.000333	mg/L	1		8260B	Total/NA
Manganese, Dissolved	3.51	1.00	0.250	ug/L	1		6020A	Dissolved

Client Sample ID: Artesia-MID-102919

Lab Sample ID: 600-194999-20

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00343	0.00100	0.000168	mg/L	1	_	8260B	Total/NA
1,1-Dichloroethene	0.0111	0.00100	0.000192	mg/L	1		8260B	Total/NA
Tetrachloroethene	0.00201	0.00100	0.000333	mg/L	1		8260B	Total/NA
Manganese, Dissolved	3.25	1.00	0.250	ug/L	1		6020A	Dissolved

This Detection Summary does not include radiochemical test results.

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-MW-22-102919

Lab Sample ID: 600-194999-21

Job ID: 600-194999-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.000832	J	0.00100	0.000168	mg/L		_	8260B	Total/NA
Manganese, Dissolved	0.683	J	1.00	0.250	ug/L	1		6020A	Dissolved

Client: Jacobs Engineering Group, Inc. Job ID: 600-194999-1

Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-Outlet-102919 Lab Sample ID: 600-194999-1

Date Collected: 10/29/19 08:25 **Matrix: Water**

Date Received: 10/31/19 10:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00403		0.00100	0.000168	mg/L			11/01/19 14:50	1
1,1-Dichloroethene	0.00567		0.00100	0.000192	mg/L			11/01/19 14:50	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/01/19 14:50	1
Naphthalene	0.000342	J	0.00200	0.000129	mg/L			11/01/19 14:50	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			11/01/19 14:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		50 - 134			•		11/01/19 14:50	1
4-Bromofluorobenzene	125		67 - 139					11/01/19 14:50	1
Dibromofluoromethane	96		62 - 130					11/01/19 14:50	1
Toluene-d8 (Surr)	103		70 - 130					11/01/19 14:50	1

Result Qualifier RL MDL Unit

Prepared Analyzed Dil Fac 1.00 0.250 ug/L 11/06/19 09:00 11/12/19 16:25 Manganese, Dissolved 3.64

Lab Sample ID: 600-194999-2 Client Sample ID: Artesia-MW30-102919

Date Collected: 10/29/19 09:05

Matrix: Water Date Received: 10/31/19 10:34 Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00132		0.00100	0.000168	mg/L			11/01/19 15:14	1
1,1-Dichloroethene	0.00315		0.00100	0.000192	mg/L			11/01/19 15:14	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/01/19 15:14	1
Naphthalene	0.000249	J	0.00200	0.000129	mg/L			11/01/19 15:14	1
Tetrachloroethene	0.00498		0.00100	0.000333	mg/L			11/01/19 15:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	701Xecovery	Qualifici	Liiiillo		rrepareu	Allalyzeu	Dii i ac
1,2-Dichloroethane-d4 (Surr)	104		50 - 134	_		11/01/19 15:14	1
4-Bromofluorobenzene	133		67 - 139			11/01/19 15:14	1
Dibromofluoromethane	95		62 - 130			11/01/19 15:14	1
Toluene-d8 (Surr)	106		70 - 130			11/01/19 15:14	1

Method: 6020A - Inductively Coupled Plasma - Mass Spectrometry - Dissolved Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed 1.00 0.250 ug/L 11/06/19 09:00 11/12/19 16:37 Manganese, Dissolved 8.87

Lab Sample ID: 600-194999-3 Client Sample ID: Artesia-MD30-102919

Date Collected: 10/29/19 09:10 **Matrix: Water** Date Received: 10/31/19 10:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00141		0.00100	0.000168	mg/L			11/01/19 15:38	1
1,1-Dichloroethene	0.00345		0.00100	0.000192	mg/L			11/01/19 15:38	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/01/19 15:38	1
Naphthalene	0.000184	J	0.00200	0.000129	mg/L			11/01/19 15:38	1
Tetrachloroethene	0.00476		0.00100	0.000333	mg/L			11/01/19 15:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		50 - 134			=		11/01/19 15:38	1

Eurofins TestAmerica. Houston

Client: Jacobs Engineering Group, Inc. Job ID: 600-194999-1

Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-MD30-102919

Date Collected: 10/29/19 09:10 **Matrix: Water**

Date Received: 10/31/19 10:34

Method: 8260B - Volatile (Organic Compounds	(GC/MS) (Continued)
----------------------------	-------------------	---------------------

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	127		67 - 139	-		11/01/19 15:38	1	
Dibromofluoromethane	100		62 - 130			11/01/19 15:38	1	
Toluene-d8 (Surr)	103		70 - 130			11/01/19 15:38	1	

Method: 6020A - Inductively C	oupled Plasma - N	lass Spectron	netry - Diss	solve	d				
Analyte	Result Qualifie	r RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	7.11	1.00	0.250	ug/L		_	11/06/19 09:00	11/12/19 16:40	1

Client Sample ID: Artesia-MW32-102919

Lab Sample ID: 600-194999-4 Date Collected: 10/29/19 09:25 **Matrix: Water**

Date Received: 10/31/19 10:34

ı	Method: 8260B - Volatile C	organic Compounds ((GC/IVIS)
ı	Amaluda	Desuit Ouslife	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000171	J	0.00100	0.000168	mg/L			11/01/19 16:02	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			11/01/19 16:02	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/01/19 16:02	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			11/01/19 16:02	1
Tetrachloroethene	0.000921	J	0.00100	0.000333	mg/L			11/01/19 16:02	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		50 - 134		11/01/19 16:02	1
4-Bromofluorobenzene	122		67 - 139		11/01/19 16:02	1
Dibromofluoromethane	97		62 - 130		11/01/19 16:02	1
Toluene-d8 (Surr)	101		70 - 130		11/01/19 16:02	1

Method: 6020A - Inductively	Coupled Plasma - Mass	Spectrometry - Dissolved	
	D 11 0 110	D. 140	

Analyte Analyzed Result Qualifier MDL Unit 11/06/19 09:00 11/12/19 16:43 1.00 0.250 ug/L Manganese, Dissolved

Client Sample ID: Artesia-MW36-102919

Lab Sample ID: 600-194999-5 Date Collected: 10/29/19 11:33 **Matrix: Water**

Date Received: 10/31/19 10:34

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dich	loroethane	0.0337		0.00100	0.000168	mg/L			11/01/19 16:26	1
1,1-Dicl	nloroethene	0.000593	J	0.00100	0.000192	mg/L			11/01/19 16:26	1
Benzen	e	0.0129		0.00100	0.000176	mg/L			11/01/19 16:26	1
Naphth	alene	0.0236		0.00200	0.000129	mg/L			11/01/19 16:26	1
Tetrach	loroethene	0.0100		0.00100	0.000333	mg/L			11/01/19 16:26	1
			0 1:5:							57.5

Surrogate	%Recovery C	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	108		50 - 134		11/01/19 16:26	1	
4-Bromofluorobenzene	111		67 ₋ 139		11/01/19 16:26	1	
Dibromofluoromethane	95		62 - 130		11/01/19 16:26	1	
Toluene-d8 (Surr)	102		70 - 130		11/01/19 16:26	1	

Method: 300	Λ-	Anione	lon	Chroma	tography

Method: 300.0 - Anions, Ion Chromatography										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Sulfate	738		125	23.9	mg/L			11/12/19 13:32	250

Lab Sample ID: 600-194999-3

Client: Jacobs Engineering Group, Inc. Job ID: 600-194999-1

Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-MW12-102919 Lab Sample ID: 600-194999-6

Date Collected: 10/29/19 12:23 **Matrix: Water**

		unds (GC/	•			_			5 -
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethene	0.00252		0.00100	0.000192	-			11/01/19 16:51	
Benzene	0.00858		0.00100	0.000176	-			11/01/19 16:51	
Naphthalene	0.0297		0.00200	0.000129				11/01/19 16:51	
Tetrachloroethene	0.00172		0.00100	0.000333	mg/L			11/01/19 16:51	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	106		50 - 134					11/01/19 16:51	
4-Bromofluorobenzene	117		67 - 139					11/01/19 16:51	
Dibromofluoromethane	98		62 - 130					11/01/19 16:51	
Toluene-d8 (Surr)	108		70 - 130					11/01/19 16:51	
Method: 8260B - Volatile Orga	nic Compo	unds (GC/	MS) - DL						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethane	0.0502		0.00500	0.000840	mg/L			11/04/19 18:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	93		50 - 134			=		11/04/19 18:03	-
4-Bromofluorobenzene	124		67 - 139					11/04/19 18:03	
Dibromofluoromethane	90		62 - 130					11/04/19 18:03	
Toluene-d8 (Surr)	105		70 - 130					11/04/19 18:03	
•	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	Result 2150	Qualifier		MDL 9.57	mg/L	D	Prepared	Analyzed 11/12/19 13:43	
Analyte Sulfate	2150						· .	. <u> </u>	10
Method: 300.0 - Anions, Ion C Analyte Sulfate Client Sample ID: Artesia- Date Collected: 10/29/19 13:00 Date Received: 10/31/19 10:34	2150						·	11/12/19 13:43	
Analyte Sulfate Client Sample ID: Artesia- pate Collected: 10/29/19 13:00 pate Received: 10/31/19 10:34	2150 MW17C-1	02919	50.0				·	11/12/19 13:43 ID: 600-194	10 999-
Analyte Sulfate Client Sample ID: Artesia- rate Collected: 10/29/19 13:00 rate Received: 10/31/19 10:34 Method: 8260B - Volatile Orga	2150 -MW17C-1	02919	50.0	9.57			·	11/12/19 13:43 ID: 600-194	10 1999-1 : Wate
Analyte Sulfate Client Sample ID: Artesia- ate Collected: 10/29/19 13:00 ate Received: 10/31/19 10:34 Method: 8260B - Volatile Orga Analyte	2150 -MW17C-1	02919 unds (GC/ Qualifier	50.0 MS)	9.57	mg/L Unit	Lat	o Sample	11/12/19 13:43 ID: 600-194 Matrix	10 999-
Analyte Sulfate Client Sample ID: Artesia- ate Collected: 10/29/19 13:00 ate Received: 10/31/19 10:34 Method: 8260B - Volatile Orga Analyte 1,1-Dichloroethane	2150 -MW17C-1	02919 unds (GC/ Qualifier J	50.0 MS) RL	9.57 MDL	mg/L Unit mg/L	Lat	o Sample	11/12/19 13:43 ID: 600-194 Matrix Analyzed	10 1999- : Wate
Analyte Sulfate Client Sample ID: Artesia- vate Collected: 10/29/19 13:00	2150 -MW17C-1	02919 unds (GC/ Qualifier J J	50.0 MS) RL 0.00100	9.57 MDL 0.000168	mg/L Unit mg/L mg/L	Lat	o Sample	11/12/19 13:43 ID: 600-194 Matrix Analyzed 11/01/19 17:15	10 19 99- : Wate
Analyte Sulfate Client Sample ID: Artesia- late Collected: 10/29/19 13:00 late Received: 10/31/19 10:34 Method: 8260B - Volatile Orga Analyte 1,1-Dichloroethane 1,1-Dichloroethene Benzene	2150 MW17C-1 anic Compo Result 0.000178 0.000350	02919 unds (GC/ Qualifier J J	MS) RL 0.00100 0.00100	9.57 MDL 0.000168 0.000192	mg/L Unit mg/L mg/L mg/L	Lat	o Sample	11/12/19 13:43 ID: 600-194 Matrix Analyzed 11/01/19 17:15 11/01/19 17:15	10 1999-: : Wate
Analyte Sulfate Sulfate Silient Sample ID: Artesia- ate Collected: 10/29/19 13:00 ate Received: 10/31/19 10:34 Method: 8260B - Volatile Orga Analyte 1,1-Dichloroethane 1,1-Dichloroethene Benzene Naphthalene	2150 MW17C-1 anic Components Result 0.000178 0.000350 0.000176	02919 unds (GC/ Qualifier J J	MS) RL 0.00100 0.00100 0.00100	9.57 MDL 0.000168 0.000192 0.000176	mg/L Unit mg/L mg/L mg/L mg/L	Lat	o Sample	11/12/19 13:43 ID: 600-194 Matrix Analyzed 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15	10 1999-: Wate
Analyte Sulfate Client Sample ID: Artesia- Pate Collected: 10/29/19 13:00 Pate Received: 10/31/19 10:34 Method: 8260B - Volatile Orga Analyte 1,1-Dichloroethane 1,1-Dichloroethene	2150 MW17C-1 nic Comporate Comporat	Unds (GC/Qualifier JU	MS) RL 0.00100 0.00100 0.00100 0.00200	9.57 MDL 0.000168 0.000192 0.000176 0.000129	mg/L Unit mg/L mg/L mg/L mg/L	Lat	o Sample	Analyzed 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15	10 1999-: Wate
Analyte Sulfate Sulfate Silient Sample ID: Artesia- ate Collected: 10/29/19 13:00 ate Received: 10/31/19 10:34 Method: 8260B - Volatile Orga Analyte 1,1-Dichloroethane 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate	2150 MW17C-1 nic Comporate Comporat	Unds (GC/Qualifier JU	MS) RL 0.00100 0.00100 0.00100 0.00200 0.00100	9.57 MDL 0.000168 0.000192 0.000176 0.000129	mg/L Unit mg/L mg/L mg/L mg/L	Lat	Prepared	Analyzed 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15	10 1999 - 10 Wates
Analyte Sulfate Client Sample ID: Artesia- rate Collected: 10/29/19 13:00 rate Received: 10/31/19 10:34 Method: 8260B - Volatile Orga Analyte 1,1-Dichloroethane 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate 1,2-Dichloroethane-d4 (Surr)	2150 MW17C-1 anic Components Result 0.000178 0.000350 0.000176 0.00222 0.000333 %Recovery	Unds (GC/Qualifier JU	MS) RL 0.00100 0.00100 0.00200 0.00200 0.00100 Limits	9.57 MDL 0.000168 0.000192 0.000176 0.000129	mg/L Unit mg/L mg/L mg/L mg/L	Lat	Prepared	Analyzed 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 Analyzed	Dil Fa
Analyte Sulfate Surrogate 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane-d4 (Surr) 1,2-Dichloroethane-d4 (Surr) 1,3-Bromofluorobenzene	2150 MW17C-1 anic Components Result 0.000178 0.000350 0.000176 0.00222 0.000333 %Recovery 102	Unds (GC/Qualifier JU	MS) RL 0.00100 0.00100 0.00200 0.00100 Limits 50-134	9.57 MDL 0.000168 0.000192 0.000176 0.000129	mg/L Unit mg/L mg/L mg/L mg/L	Lat	Prepared	Analyzed 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15	10 1999- : Wate
Analyte Sulfate Client Sample ID: Artesia- vate Collected: 10/29/19 13:00 vate Received: 10/31/19 10:34 Method: 8260B - Volatile Orga Analyte 1,1-Dichloroethane 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene	2150 MW17C-1 anic Comporate Result 0.000178 0.000350 0.000176 0.00222 0.000333 %Recovery 102 120	Unds (GC/Qualifier JU	50.0 MS) RL 0.00100 0.00100 0.00200 0.00100 Limits 50 - 134 67 - 139	9.57 MDL 0.000168 0.000192 0.000176 0.000129	mg/L Unit mg/L mg/L mg/L mg/L	Lat	Prepared	Analyzed 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15	10 1999-: Wate
Analyte Sulfate Client Sample ID: Artesia- Pate Collected: 10/29/19 13:00 Pate Received: 10/31/19 10:34 Method: 8260B - Volatile Orga Analyte 1,1-Dichloroethane 1,1-Dichloroethene Benzene Naphthalene Tetrachloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene Dibromofluoromethane	2150 MW17C-1 Inic Components Result 0.000178 0.000350 0.000176 0.00222 0.000333 **Recovery 102 120 96 105 hromatogra	Unds (GC/Qualifier J U Qualifier	MS) RL 0.00100 0.00100 0.00200 0.00100 Limits 50 - 134 67 - 139 62 - 130 70 - 130	MDL 0.000168 0.000192 0.000176 0.000129 0.000333	Unit mg/L mg/L mg/L mg/L mg/L	Lat	Prepared	Analyzed 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15	10 1999-: : Wate
Analyte Sulfate Sulfat	2150 MW17C-1 Inic Components Result 0.000178 0.000350 0.000176 0.00222 0.000333 **Recovery 102 120 96 105 hromatogra	Unds (GC/Qualifier J U Qualifier	MS) RL 0.00100 0.00100 0.00200 0.00100 Limits 50 - 134 67 - 139 62 - 130	MDL 0.000168 0.000176 0.000129 0.000333	mg/L Unit mg/L mg/L mg/L mg/L	Lat	Prepared	Analyzed 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15 11/01/19 17:15	10 1999- : Wate

Client: Jacobs Engineering Group, Inc. Job ID: 600-194999-1

Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-MW11-102919

Lab Sample ID: 600-194999-8 Date Collected: 10/29/19 16:15 **Matrix: Water**

Date Received: 10/31/19 10:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00488		0.00100	0.000168	mg/L			11/01/19 17:39	1
1,1-Dichloroethene	0.000201	J	0.00100	0.000192	mg/L			11/01/19 17:39	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/01/19 17:39	1
Naphthalene	0.000441	J	0.00200	0.000129	mg/L			11/01/19 17:39	1
Tetrachloroethene	0.000390	J	0.00100	0.000333	mg/L			11/01/19 17:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		50 - 134					11/01/19 17:39	1
4-Bromofluorobenzene	120		67 - 139					11/01/19 17:39	1
Dibromofluoromethane	95		62 - 130					11/01/19 17:39	1
Toluene-d8 (Surr)	103		70 - 130					11/01/19 17:39	1
Method: 300.0 - Anions, Io	n Chromatogra	phy							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	1330		100	19.1	mg/L			11/12/19 14:04	200

Client Sample ID: Artesia-MD11-102919 Lab Sample ID: 600-194999-9 **Matrix: Water**

Date Collected: 10/29/19 16:15 Date Received: 10/31/19 10:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00457		0.00100	0.000168	mg/L			11/01/19 18:03	1
1,1-Dichloroethene	0.000205	J	0.00100	0.000192	mg/L			11/01/19 18:03	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/01/19 18:03	1
Naphthalene	0.000223	J	0.00200	0.000129	mg/L			11/01/19 18:03	1
Tetrachloroethene	0.000399	J	0.00100	0.000333	mg/L			11/01/19 18:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		50 - 134			•		11/01/19 18:03	1
4-Bromofluorobenzene	124		67 - 139					11/01/19 18:03	1
Dibromofluoromethane	96		62 - 130					11/01/19 18:03	1
Toluene-d8 (Surr)	100		70 - 130					11/01/19 18:03	1
Method: 300.0 - Anions, Io	n Chromatogra	vha							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
, mary to								•	

19.1 mg/L Sulfate 911 11/12/19 14:36

Client Sample ID: Artesia-MW29-102919

Date Collected: 10/29/19 10:19 Date Received: 10/31/19 10:34

Method: 8260B - Volatile C	Organic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0103	-	0.00100	0.000168	mg/L			11/01/19 18:28	1
1,1-Dichloroethene	0.0267		0.00100	0.000192	mg/L			11/01/19 18:28	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/01/19 18:28	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			11/01/19 18:28	1
Tetrachloroethene	0.0365		0.00100	0.000333	mg/L			11/01/19 18:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		50 - 134			-		11/01/19 18:28	1

Eurofins TestAmerica, Houston

Lab Sample ID: 600-194999-10

Matrix: Water

Client: Jacobs Engineering Group, Inc. Job ID: 600-194999-1

Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-MW29-102919

Lab Sample ID: 600-194999-10

Date Collected: 10/29/19 10:19 **Matrix: Water** Date Received: 10/31/19 10:34

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	125		67 - 139	_		11/01/19 18:28	1	
Dibromofluoromethane	96		62 - 130			11/01/19 18:28	1	
Toluene-d8 (Surr)	103		70 - 130			11/01/19 18:28	1	

Method: 6020A - Inductively C	oupled Plasma - Mass \$	Spectrometr	y - Dissolved				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	0.793 J	1.00	0.250 ug/L		11/06/19 09:00	11/12/19 16:46	1

Client Sample ID: Artesia-MW35-102919

Lab Sample ID: 600-194999-11 Date Collected: 10/29/19 10:38 **Matrix: Water**

Date Received: 10/31/19 10:34

Method: 8260B - Volatile C	rganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.0234		0.00100	0.000192	mg/L			11/01/19 18:53	1
Tetrachloroethene	0.0262		0.00100	0.000333	mg/L			11/01/19 18:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		50 - 134			•		11/01/19 18:53	1
4-Bromofluorobenzene	124		67 - 139					11/01/19 18:53	1
Dibromofluoromethane	97		62 - 130					11/01/19 18:53	1
Toluene-d8 (Surr)	103		70 - 130					11/01/19 18:53	1

Client Sample ID: Artesia-MW28-102919 Lab Sample ID: 600-194999-12

Date Collected: 10/29/19 11:15 **Matrix: Water** Date Received: 10/31/19 10:34

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00553		0.00100	0.000168	mg/L			11/01/19 11:38	1
1,1-Dichloroethene	0.0132	F1	0.00100	0.000192	mg/L			11/01/19 11:38	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/01/19 11:38	1
Naphthalene	0.000316	J	0.00200	0.000129	mg/L			11/01/19 11:38	1
Tetrachloroethene	0.0178		0.00100	0.000333	mg/L			11/01/19 11:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		50 - 134			-		11/01/19 11:38	1
4-Bromofluorobenzene	124		67 - 139					11/01/19 11:38	1
Dibromofluoromethane	90		62 - 130					11/01/19 11:38	1
Toluene-d8 (Surr)	107		70 - 130					11/01/19 11:38	1

Method: 6020A - Inductively Co	oupled Plas	ma - Mas	s Spectrom	netry - Dis	solve	d			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	1.25		1.00	0.250	ug/L		11/06/19 09:00	11/12/19 16:59	1

Client: Jacobs Engineering Group, Inc. Job ID: 600-194999-1

Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-MW25-102919 Lab Sample ID: 600-194999-13

Date Collected: 10/29/19 11:51 **Matrix: Water**

Date Received: 10/31/19 10:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000989	J	0.00100	0.000168	mg/L			11/01/19 19:18	1
1,1-Dichloroethene	0.000473	J	0.00100	0.000192	mg/L			11/01/19 19:18	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/01/19 19:18	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			11/01/19 19:18	1
Tetrachloroethene	0.000895	J	0.00100	0.000333	mg/L			11/01/19 19:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		50 - 134					11/01/19 19:18	1
4-Bromofluorobenzene	126		67 - 139					11/01/19 19:18	1
Dibromofluoromethane	95		62 - 130					11/01/19 19:18	1
Toluene-d8 (Surr)	102		70 - 130					11/01/19 19:18	

Manganese, Dissolved 1.00 0.250 ug/L 11/06/19 11:18 11/12/19 17:09 138

Result Qualifier

Client Sample ID: Artesia-MW31-102919 Lab Sample ID: 600-194999-14 **Matrix: Water**

MDL Unit

Prepared

Date Collected: 10/29/19 12:45 Date Received: 10/31/19 10:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00316		0.00100	0.000168	mg/L			11/01/19 19:43	1
1,1-Dichloroethene	0.00215		0.00100	0.000192	mg/L			11/01/19 19:43	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/01/19 19:43	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			11/01/19 19:43	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			11/01/19 19:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		50 - 134			•		11/01/19 19:43	1
4-Bromofluorobenzene	121		67 - 139					11/01/19 19:43	1
Dibromofluoromethane	92		62 - 130					11/01/19 19:43	1
Toluene-d8 (Surr)	103		70 - 130					11/01/19 19:43	1

Method: 6020A - Inductively Coupled Plasma - Mass Spectrometry - Dissolved											
	Analyte	Result	Qualifier	RL	MDL	Unit	I	D	Prepared	Analyzed	Dil Fac
	Manganese, Dissolved	81.7		1.00	0.250	ug/L			11/06/19 11:18	11/12/19 17:12	1

Client Sample ID: Artesia-MW34-102919 Lab Sample ID: 600-194999-15

Date Collected: 10/29/19 13:17 **Matrix: Water** Date Received: 10/31/19 10:34

Method: 8260B - Volatile C Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00104		0.00100	0.000168	mg/L			11/01/19 12:01	1
1,1-Dichloroethene	0.000784	J F1	0.00100	0.000192	mg/L			11/01/19 12:01	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/01/19 12:01	1
Naphthalene	0.000174	J	0.00200	0.000129	mg/L			11/01/19 12:01	1
Tetrachloroethene	0.00126		0.00100	0.000333	mg/L			11/01/19 12:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		50 - 134			-		11/01/19 12:01	1

Eurofins TestAmerica, Houston

Dil Fac

Analyzed

Client: Jacobs Engineering Group, Inc. Job ID: 600-194999-1

Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-MW34-102919

Lab Sample ID: 600-194999-15

Date Collected: 10/29/19 13:17 **Matrix: Water** Date Received: 10/31/19 10:34

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	128		67 - 139	_		11/01/19 12:01	1	
Dibromofluoromethane	93		62 - 130			11/01/19 12:01	1	
Toluene-d8 (Surr)	108		70 - 130			11/01/19 12:01	1	

Method: 6020A - Inductively Coupled Plasma - Mass Spectrometry - Dissolved										
	Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Manganese, Dissolved	1.08		1.00	0.250	ug/L		11/06/19 11:18	11/12/19 17:15	1

Client Sample ID: Artesia-MW37-102919

Lab Sample ID: 600-194999-16 Date Collected: 10/29/19 15:08 **Matrix: Water**

Date Received: 10/31/19 10:34

ı	Method: 8260B - Volatile (Organic Compounds (GC/MS)
ı	Amaluta	Decult Qualifier

Analyte	Result Qualifier	•	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0475	0.00100	0.000168	mg/L			11/01/19 20:08	1
1,1-Dichloroethene	0.00822	0.00100	0.000192	mg/L			11/01/19 20:08	1
Benzene	0.00701	0.00100	0.000176	mg/L			11/01/19 20:08	1
Naphthalene	0.0114	0.00200	0.000129	mg/L			11/01/19 20:08	1
Tetrachloroethene	0.00688	0.00100	0.000333	mg/L			11/01/19 20:08	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	102	50 - 134			-		11/01/19 20:08	1

1,2-Dichloroethane-d4 (Surr)	102	50 - 134	11/01/19 20:08	1
4-Bromofluorobenzene	122	67 - 139	11/01/19 20:08	1
Dibromofluoromethane	94	62 - 130	11/01/19 20:08	1
Toluene-d8 (Surr)	105	70 - 130	11/01/19 20:08	1

Method: 300.0 - Anions,	Ion C	hromat	tography
-------------------------	-------	--------	----------

Prepared Analyte Result Qualifier RLMDL Unit Analyzed 50.0 9.57 mg/L 11/12/19 14:47 Sulfate 2570

Client Sample ID: Artesia-MW38-102919

Date Collected: 10/29/19 14:20 **Matrix: Water** Date Received: 10/31/19 10:34

Method: 8260B - Volatile	Organic Compounds (GC/	MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.0101	0.00100	0.000192	mg/L			11/04/19 18:27	1
Benzene	0.00167	0.00100	0.000176	mg/L			11/04/19 18:27	1
Naphthalene	0.0221	0.00200	0.000129	mg/L			11/05/19 19:09	1
Tetrachloroethene	0.0108	0.00100	0.000333	mg/L			11/04/19 18:27	1
Surrogata	% Pacayony Qualifiar	Limite				Branarad	Analyzad	Dil Ess

Surroyale	∕₀Recovery	Qualifier Liffics	riepaieu	Allalyzeu	DII Fac
1,2-Dichloroethane-d4 (Surr)	98	50 - 134		11/04/19 18:27	1
1,2-Dichloroethane-d4 (Surr)	99	50 - 134		11/05/19 19:09	1
4-Bromofluorobenzene	119	67 - 139		11/04/19 18:27	1
4-Bromofluorobenzene	119	67 - 139		11/05/19 19:09	1
Dibromofluoromethane	92	62 - 130		11/04/19 18:27	1
Dibromofluoromethane	91	62 - 130		11/05/19 19:09	1
Toluene-d8 (Surr)	106	70 - 130		11/04/19 18:27	1
Toluene-d8 (Surr)	105	70 - 130		11/05/19 19:09	1

Lab Sample ID: 600-194999-17

Client: Jacobs Engineering Group, Inc. Job ID: 600-194999-1 Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-MW38-102919

Lab Sample ID: 600-194999-17 Date Collected: 10/29/19 14:20 **Matrix: Water**

Date Received: 10/31/19 10:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.154		0.0100	0.00168	mg/L			11/04/19 18:51	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		50 - 134					11/04/19 18:51	10
4-Bromofluorobenzene	126		67 - 139					11/04/19 18:51	10
Dibromofluoromethane	93		62 - 130					11/04/19 18:51	10
Toluene-d8 (Surr)	108		70 - 130					11/04/19 18:51	10

Method: 300.0 - Anions, Ion Chromatography										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Sulfate	927	F1	50.0	9.57	mg/L			11/12/19 14:58	100

Client Sample ID: Artesia-TB01-102919

Lab Sample ID: 600-194999-18 Date Collected: 10/29/19 08:05 **Matrix: Water**

Date Received: 10/31/19 10:34

Toluene-d8 (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			11/05/19 18:45	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			11/05/19 18:45	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/05/19 18:45	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			11/05/19 18:45	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			11/05/19 18:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		50 - 134			•		11/05/19 18:45	1
4-Bromofluorobenzene	125		67 - 139					11/05/19 18:45	1
Dibromofluoromethane	90		62 - 130					11/05/19 18:45	1

Client Sample ID: Artesia-Inlet-102919 Lab Sample ID: 600-194999-19

70 - 130

102

102

Date Collected: 10/29/19 08:10 Matrix: Water Date Received: 10/31/19 10:34

Method: 8260B - Volatile Organic Compounds (GC/MS) Dil Fac Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed 1,1-Dichloroethane 0.00321 0.00100 0.000168 mg/L 11/05/19 17:33 1,1-Dichloroethene 0.00909 0.00100 0.000192 mg/L 11/05/19 17:33 1 0.000176 mg/L Benzene 0.000176 U 0.00100 11/05/19 17:33 Naphthalene 0.000129 U 0.00200 0.000129 mg/L 11/05/19 17:33 1 0.000333 mg/L **Tetrachloroethene** 0.00100 11/05/19 17:33 0.0102 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 102 50 - 134 11/05/19 17:33 4-Bromofluorobenzene 126 67 - 139 11/05/19 17:33 Dibromofluoromethane 93 62 - 130 11/05/19 17:33

Method: 6020A - Inductively C	oupled Plasma - Mass						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	3.51	1.00	0.250 ug/L		11/06/19 11:18	11/12/19 17:24	1

70 - 130

11/05/19 17:33

11/05/19 18:45

Client: Jacobs Engineering Group, Inc. Job ID: 600-194999-1 Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-MID-102919

Lab Sample ID: 600-194999-20 Date Collected: 10/29/19 08:20 **Matrix: Water**

Date Received: 10/31/19 10:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00343		0.00100	0.000168	mg/L			11/05/19 17:57	1
1,1-Dichloroethene	0.0111		0.00100	0.000192	mg/L			11/05/19 17:57	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/05/19 17:57	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			11/05/19 17:57	1
Tetrachloroethene	0.00201		0.00100	0.000333	mg/L			11/05/19 17:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		50 - 134			•		11/05/19 17:57	1
4-Bromofluorobenzene	127		67 - 139					11/05/19 17:57	1
Dibromofluoromethane	93		62 - 130					11/05/19 17:57	1
Toluene-d8 (Surr)	103		70 - 130					11/05/19 17:57	1

Manganese, Dissolved 3.25 1.00 0.250 ug/L 11/06/19 11:18 11/12/19 17:27

RL

MDL Unit

Prepared

Analyzed

Result Qualifier

Client Sample ID: Artesia-MW-22-102919 Lab Sample ID: 600-194999-21 **Matrix: Water**

Date Collected: 10/29/19 12:12 Date Received: 10/31/19 10:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000832	J	0.00100	0.000168	mg/L			11/05/19 18:21	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			11/05/19 18:21	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/05/19 18:21	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			11/05/19 18:21	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			11/05/19 18:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89	-	50 - 134					11/05/19 18:21	1
4-Bromofluorobenzene	120		67 - 139					11/05/19 18:21	1
Dibromofluoromethane	89		62 - 130					11/05/19 18:21	1
Toluene-d8 (Surr)	98		70 - 130					11/05/19 18:21	1

Method: 6020A - Inductively Coupled Plasma - Mass Spectrometry - Dissolved									
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Manganese, Dissolved	0.683 J	1.00	0.250 ug/L		11/06/19 11:18	11/12/19 17:40	1	

Default Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 600-194999-1

Project/Site: Dowell - Artesia 10/29/19

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	RL	MDL	Units
1,1-Dichloroethane	0.00100	0.000168	mg/L
1,1-Dichloroethene	0.00100	0.000192	mg/L
Benzene	0.00100	0.000176	mg/L
Naphthalene	0.00200	0.000129	mg/L
Tetrachloroethene	0.00100	0.000333	mg/L

Method: 300.0 - Anions, Ion Chromatography

ſ	Analyte	RL	MDL	Units
	Sulfate	0.500	0.0957	mg/L

Method: 6020A - Inductively Coupled Plasma - Mass Spectrometry - Dissolved

Prep: 3010A

Analyte	RL	MDL	Units	
Manganese, Dissolved	1.00	0.250	ug/L	

Surrogate Summary

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(50-134)	(67-139)	(62-130)	(70-130)
600-194999-1	Artesia-Outlet-102919	108	125	96	103
600-194999-2	Artesia-MW30-102919	104	133	95	106
600-194999-3	Artesia-MD30-102919	108	127	100	103
600-194999-4	Artesia-MW32-102919	107	122	97	101
600-194999-5	Artesia-MW36-102919	108	111	95	102
600-194999-6	Artesia-MW12-102919	106	117	98	108
600-194999-6 - DL	Artesia-MW12-102919	93	124	90	105
600-194999-7	Artesia-MW17C-102919	102	120	96	105
600-194999-8	Artesia-MW11-102919	104	120	95	103
600-194999-9	Artesia-MD11-102919	105	124	96	100
600-194999-10	Artesia-MW29-102919	102	125	96	103
600-194999-11	Artesia-MW35-102919	105	124	97	103
600-194999-12	Artesia-MW28-102919	96	124	90	107
600-194999-12 MS	Artesia-MW28-102919	97	117	94	105
600-194999-12 MSD	Artesia-MW28-102919	99	116	97	101
600-194999-13	Artesia-MW25-102919	105	126	95	102
600-194999-14	Artesia-MW31-102919	106	121	92	103
600-194999-15	Artesia-MW34-102919	98	128	93	108
600-194999-15 MS	Artesia-MW34-102919	99	122	97	104
600-194999-15 MSD	Artesia-MW34-102919	101	122	99	103
600-194999-16	Artesia-MW37-102919	101	122	94	105
600-194999-16 600-194999-17	Artesia-MW38-102919	98	119	94	105
600-194999-17 600-194999-17 - DL	Artesia-MW38-102919	96 97	126	93	108
		•			
600-194999-17	Artesia-MW38-102919	99	119	91	105
600-194999-18	Artesia-TB01-102919	92	125	90	102
600-194999-19	Artesia-Inlet-102919	102	126	93	102
600-194999-20	Artesia-MID-102919	101	127	93	103
600-194999-21	Artesia-MW-22-102919	89	120	89	98
LCS 600-279189/3	Lab Control Sample	78	121	84	109
LCS 600-279297/3	Lab Control Sample	85	118	90	105
LCS 600-279414/3	Lab Control Sample	89	119	96	105
LCSD 600-279189/4	Lab Control Sample Dup	87	117	91	108
LCSD 600-279297/4	Lab Control Sample Dup	90	121	97	108
LCSD 600-279414/4	Lab Control Sample Dup	93	123	97	105
MB 600-279189/6	Method Blank	91	128	88	109
MB 600-279297/6	Method Blank	91	129	91	106
MB 600-279414/6	Method Blank	98	125	94	104

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane

TOL = Toluene-d8 (Surr)

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 600-279189/6

Matrix: Water

Analysis Batch: 279189

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 600-194999-1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			11/01/19 10:27	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			11/01/19 10:27	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/01/19 10:27	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			11/01/19 10:27	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			11/01/19 10:27	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 50 - 134 1,2-Dichloroethane-d4 (Surr) 11/01/19 10:27 91 128 67 - 139 11/01/19 10:27 4-Bromofluorobenzene Dibromofluoromethane 88 62 - 130 11/01/19 10:27 109 70 - 130 11/01/19 10:27 Toluene-d8 (Surr)

Lab Sample ID: LCS 600-279189/3

Matrix: Water

Analysis Batch: 279189

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.0100	0.01012		mg/L		101	70 - 140	
1,1-Dichloroethene	0.0100	0.01041		mg/L		104	58 - 148	
Benzene	0.0100	0.01042		mg/L		104	70 - 130	
Naphthalene	0.0100	0.008346		mg/L		83	10 - 150	
Tetrachloroethene	0.0100	0.01271		mg/L		127	47 - 150	

LCS LCS Surrogate %Recovery Qualifier Limits 50 - 134 1,2-Dichloroethane-d4 (Surr) 78 4-Bromofluorobenzene 121 67 - 139 Dibromofluoromethane 84 62 - 130 Toluene-d8 (Surr) 109 70 - 130

Lab Sample ID: LCSD 600-279189/4

Matrix: Water

Analysis Batch: 279189

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD LCSD			%Rec.		RPD
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0100	0.009687	mg/L	97	70 - 140	4	20
1,1-Dichloroethene	0.0100	0.009293	mg/L	93	58 - 148	11	20
Benzene	0.0100	0.009905	mg/L	99	70 - 130	5	20
Naphthalene	0.0100	0.007494	mg/L	75	10 - 150	11	20
Tetrachloroethene	0.0100	0.01167	mg/L	117	47 - 150	9	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	87		50 - 134
4-Bromofluorobenzene	117		67 - 139
Dibromofluoromethane	91		62 - 130
Toluene-d8 (Surr)	108		70 - 130

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 600-194999-12 MS

Matrix: Water

Analysis Batch: 279189

Client Sample ID: Artesia-MW28-102919

Prep Type: Total/NA

Job ID: 600-194999-1

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.00553		0.0100	0.01454		mg/L		90	70 - 140	
1,1-Dichloroethene	0.0132	F1	0.0100	0.01921		mg/L		60	58 - 148	
Benzene	0.000176	U	0.0100	0.009915		mg/L		99	70 - 130	
Naphthalene	0.000316	J	0.0100	0.01097		mg/L		107	10 - 150	
Tetrachloroethene	0.0178		0.0100	0.03042		mg/L		126	47 - 150	

MS MS %Recovery Qua

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		50 - 134
4-Bromofluorobenzene	117		67 - 139
Dibromofluoromethane	94		62 - 130
Toluene-d8 (Surr)	105		70 - 130

Lab Sample ID: 600-194999-12 MSD

Matrix: Water

Analysis Batch: 279189

Client Sample ID: Artesia-MW28-102919

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.00553		0.0100	0.01380		mg/L		83	70 - 140	5	30
1,1-Dichloroethene	0.0132	F1	0.0100	0.01877	F1	mg/L		55	58 - 148	2	30
Benzene	0.000176	U	0.0100	0.009215		mg/L		92	70 - 130	7	30
Naphthalene	0.000316	J	0.0100	0.01180		mg/L		115	10 - 150	7	30
Tetrachloroethene	0.0178		0.0100	0.02864		mg/L		108	47 - 150	6	30
1,1-Dichloroethene Benzene Naphthalene	0.0132 0.000176 0.000316	U	0.0100 0.0100 0.0100	0.01877 0.009215 0.01180	F1	mg/L mg/L mg/L		55 92 115	58 - 148 70 - 130 10 - 150	5 2 7 7 6	3(3(3(

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		50 - 134
4-Bromofluorobenzene	116		67 - 139
Dibromofluoromethane	97		62 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: 600-194999-15 MS

Matrix: Water

Analysis Batch: 279189

Client Sample ID: Artesia-MW34-102919

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.00104		0.0100	0.009147		mg/L		81	70 - 140	
1,1-Dichloroethene	0.000784	J F1	0.0100	0.006369	F1	mg/L		56	58 - 148	
Benzene	0.000176	U	0.0100	0.009160		mg/L		92	70 - 130	
Naphthalene	0.000174	J	0.0100	0.01287		mg/L		127	10 - 150	
Tetrachloroethene	0.00126		0.0100	0.01215		mg/L		109	47 - 150	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		50 - 134
4-Bromofluorobenzene	122		67 - 139
Dibromofluoromethane	97		62 - 130
Toluene-d8 (Surr)	104		70 - 130

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Job ID: 600-194999-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 600-194999-15 MSD

Matrix: Water

Analysis Batch: 279189

Client Sample ID: Artesia-MW34-102919

Prep Type: Total/NA

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.00104		0.0100	0.009379		mg/L		83	70 - 140	3	30
1,1-Dichloroethene	0.000784	J F1	0.0100	0.006394	F1	mg/L		56	58 - 148	0	30
Benzene	0.000176	U	0.0100	0.009334		mg/L		93	70 - 130	2	30
Naphthalene	0.000174	J	0.0100	0.01322		mg/L		130	10 - 150	3	30
Tetrachloroethene	0.00126		0.0100	0.01183		mg/L		106	47 - 150	3	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		50 - 134
4-Bromofluorobenzene	122		67 - 139
Dibromofluoromethane	99		62 - 130
Toluene-d8 (Surr)	103		70 - 130

Lab Sample ID: MB 600-279297/6

Matrix: Water

Analysis Batch: 279297

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

lyte	Result	Qı

ı	Analyte	Result	Qualifier	KL	MDL	Unit	ט	Prepared	Analyzed	DIIFac	
	1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			11/04/19 10:29	1	
	1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			11/04/19 10:29	1	
	Benzene	0.000176	U	0.00100	0.000176	mg/L			11/04/19 10:29	1	
	Naphthalene	0.000129	U	0.00200	0.000129	mg/L			11/04/19 10:29	1	
	Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			11/04/19 10:29	1	

MB MB

Surrogate	%Recovery Qua	lifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91	50 - 134		11/04/19 10:29	1
4-Bromofluorobenzene	129	67 - 139		11/04/19 10:29	1
Dibromofluoromethane	91	62 - 130		11/04/19 10:29	1
Toluene-d8 (Surr)	106	70 - 130		11/04/19 10:29	1

Lab Sample ID: LCS 600-279297/3

Matrix: Water

Analysis Batch: 279297

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

a. ,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.0100	0.009861		mg/L		99	70 - 140	
1,1-Dichloroethene	0.0100	0.009945		mg/L		99	58 - 148	
Benzene	0.0100	0.01011		mg/L		101	70 - 130	
Tetrachloroethene	0.0100	0.01231		mg/L		123	47 - 150	

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	85		50 - 134
4-Bromofluorobenzene	118		67 - 139
Dibromofluoromethane	90		62 - 130
Toluene-d8 (Surr)	105		70 - 130

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 600-279297/4

Matrix: Water

Analysis Batch: 279297

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 600-194999-1

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0100	0.009516		mg/L		95	70 - 140	4	20
1,1-Dichloroethene	0.0100	0.009406		mg/L		94	58 - 148	6	20
Benzene	0.0100	0.009735		mg/L		97	70 - 130	4	20
Tetrachloroethene	0.0100	0.01168		mg/L		117	47 - 150	5	20

LCSD LCSD Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 90 50 - 134 4-Bromofluorobenzene 121 67 - 139 62 - 130 Dibromofluoromethane 97 Toluene-d8 (Surr) 108 70 - 130

Lab Sample ID: MB 600-279414/6

Matrix: Water

Analysis Batch: 279414

Client Sample ID: Method Blank
Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000168	U	0.00100	0.000168	mg/L			11/05/19 11:07	1
1,1-Dichloroethene	0.000192	U	0.00100	0.000192	mg/L			11/05/19 11:07	1
Benzene	0.000176	U	0.00100	0.000176	mg/L			11/05/19 11:07	1
Naphthalene	0.000129	U	0.00200	0.000129	mg/L			11/05/19 11:07	1
Tetrachloroethene	0.000333	U	0.00100	0.000333	mg/L			11/05/19 11:07	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 50 - 134 1,2-Dichloroethane-d4 (Surr) 98 11/05/19 11:07 125 4-Bromofluorobenzene 67 - 139 11/05/19 11:07 1 Dibromofluoromethane 94 62 - 130 11/05/19 11:07 1 Toluene-d8 (Surr) 104 70 - 130 11/05/19 11:07

Lab Sample ID: LCS 600-279414/3

Matrix: Water

Analysis Batch: 279414

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualif	ier Unit	D %Re	c Limits	
1,1-Dichloroethane	0.0100	0.01038	mg/L	10	4 70 - 140	
1,1-Dichloroethene	0.0100	0.01038	mg/L	10	4 58 - 148	
Benzene	0.0100	0.01057	mg/L	10	6 70 - 130	
Naphthalene	0.0100	0.01226	mg/L	12	3 10 - 150	
Tetrachloroethene	0.0100	0.01231	mg/L	12	3 47 - 150	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		50 - 134
4-Bromofluorobenzene	119		67 - 139
Dibromofluoromethane	96		62 - 130
Toluene-d8 (Surr)	105		70 - 130

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Job ID: 600-194999-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 600-279414/4 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 279414

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0100	0.01025		mg/L		103	70 - 140	1	20
1,1-Dichloroethene	0.0100	0.01046		mg/L		105	58 - 148	1	20
Benzene	0.0100	0.01079		mg/L		108	70 - 130	2	20
Naphthalene	0.0100	0.01400		mg/L		140	10 - 150	13	20
Tetrachloroethene	0.0100	0.01200		mg/L		120	47 - 150	3	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		50 - 134
4-Bromofluorobenzene	123		67 - 139
Dibromofluoromethane	97		62 - 130
Toluene-d8 (Surr)	105		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 600-280102/6 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 280102

MB MB

Analyte Result Qualifier RL **MDL** Unit Dil Fac D **Prepared** Analyzed Sulfate 0.0957 U 0.500 0.0957 mg/L 11/12/19 05:30

Lab Sample ID: LCS 600-280102/7 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 280102

7 manyolo 2 atom 200 to 2	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	20.0	19.73		ma/L		99	90 - 110	

Lab Sample ID: 600-194999-17 MS Client Sample ID: Artesia-MW38-102919

Matrix: Water

Analysis Batch: 280102

Spike MS MS Sample Sample %Rec. Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits Sulfate 1000 2653 F1 927 F1 mg/L 173 80 - 120

Lab Sample ID: 600-194999-17 MSD Client Sample ID: Artesia-MW38-102919

Matrix: Water

Analysis Batch: 280102

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	927	F1	1000	2632	F1	mg/L		170	80 - 120	1	20

Method: 6020A - Inductively Coupled Plasma - Mass Spectrometry

0.250 U

Lab Sample ID: MB 600-279566/1-A

Matrix: Water

Manganese, Dissolved

Analysis Batch: 280165

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 279566**

MB MB Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac

0.250 ug/L

Eurofins TestAmerica, Houston

11/06/19 09:00 11/12/19 16:18

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

1.00

Client: Jacobs Engineering Group, Inc. Job ID: 600-194999-1

Project/Site: Dowell - Artesia 10/29/19

0.250 U

3.64

Lab Sample ID: LCS 600-279566/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 280165 Prep Batch: 279566** Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits 100 98.75 99 80 - 120 Manganese, Dissolved ug/L

Lab Sample ID: MB 600-279592/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Manganese, Dissolved

Analyte

Analysis Batch: 280165

MB MB Result Qualifier RI **MDL** Unit **Prepared** Analyzed Dil Fac 0.250 U 1.00 0.250 ug/L 11/06/19 11:18 11/12/19 17:02

ug/L

ug/L

Lab Sample ID: LCS 600-279592/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 280165 Prep Batch: 279592** Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Manganese, Dissolved 100 80 - 120

Lab Sample ID: MB 600-279977/1-A Client Sample ID: Method Blank Prep Type: Total/NA

95.57

Matrix: Water

Manganese, Dissolved

Manganese, Dissolved

Analyte

Analysis Batch: 280165

MB MB RL Result Qualifier **MDL** Unit Dil Fac D **Prepared** Analyzed

0.250 ug/L

Lab Sample ID: LCS 600-279977/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total/NA Analysis Batch: 280165** Prep Batch: 279977 LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Manganese, Dissolved 100 97.59 98 80 - 120 ug/L

1.00

Lab Sample ID: 600-194999-1 MS Client Sample ID: Artesia-Outlet-102919 **Matrix: Water Prep Type: Dissolved Analysis Batch: 280165 Prep Batch: 279566** Sample Sample Spike MS MS %Rec. Added Analyte **Result Qualifier** Result Qualifier Unit %Rec Limits

Lab Sample ID: 600-194999-1 MSD Client Sample ID: Artesia-Outlet-102919 **Matrix: Water Prep Type: Dissolved**

100.5

100

Analysis Batch: 280165 **Prep Batch: 279566** Spike MSD MSD RPD Sample Sample %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit 3.64 100 99 54 75 - 125 Manganese, Dissolved ug/L 96

Lab Sample ID: 600-194999-1 DU Client Sample ID: Artesia-Outlet-102919 **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 280165 Prep Batch: 279566 DU DU Sample Sample **RPD**

Result Qualifier Result Qualifier Unit **RPD** Limit Manganese, Dissolved 3.64 3.953 ug/L

Prep Batch: 279592

Prep Batch: 279977

11/11/19 09:55 11/12/19 17:46

75 - 125

Client: Jacobs Engineering Group, Inc.

Project/Site: Dowell - Artesia 10/29/19

Job ID: 600-194999-1

Method: 6020A - Inductively Coupled Plasma - Mass Spectrometry

		-									
Lab Sample ID: 600-1949 Matrix: Water	99-15 MS					Client	t Sam	ple ID:	Artesia-M Prep Typ	e: Diss	olved
Analysis Batch: 280165	Sample	Sample	Spike	MS	MS				Prep Ba	atcn: 21	19592
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Manganese, Dissolved	1.08		100	96.02		ug/L		95	75 - 125		
Lab Sample ID: 600-1949 Matrix: Water Analysis Batch: 280165		Sample	Spike	MSD	MSD	Client	t Sam	ple ID:	Artesia-M Prep Typ Prep Ba %Rec.	e: Diss	olved
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Manganese, Dissolved	1.08		100	95.85		ug/L		95	75 - 125	0	20

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: Dowell - Artesia 10/29/19

Job ID: 600-194999-1

GC/MS VOA

Analysis Batch: 279189

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-194999-1	Artesia-Outlet-102919	Total/NA	Water	8260B	
600-194999-2	Artesia-MW30-102919	Total/NA	Water	8260B	
600-194999-3	Artesia-MD30-102919	Total/NA	Water	8260B	
600-194999-4	Artesia-MW32-102919	Total/NA	Water	8260B	
600-194999-5	Artesia-MW36-102919	Total/NA	Water	8260B	
600-194999-6	Artesia-MW12-102919	Total/NA	Water	8260B	
600-194999-7	Artesia-MW17C-102919	Total/NA	Water	8260B	
600-194999-8	Artesia-MW11-102919	Total/NA	Water	8260B	
600-194999-9	Artesia-MD11-102919	Total/NA	Water	8260B	
600-194999-10	Artesia-MW29-102919	Total/NA	Water	8260B	
600-194999-11	Artesia-MW35-102919	Total/NA	Water	8260B	
600-194999-12	Artesia-MW28-102919	Total/NA	Water	8260B	
600-194999-13	Artesia-MW25-102919	Total/NA	Water	8260B	
600-194999-14	Artesia-MW31-102919	Total/NA	Water	8260B	
600-194999-15	Artesia-MW34-102919	Total/NA	Water	8260B	
600-194999-16	Artesia-MW37-102919	Total/NA	Water	8260B	
MB 600-279189/6	Method Blank	Total/NA	Water	8260B	
LCS 600-279189/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 600-279189/4	Lab Control Sample Dup	Total/NA	Water	8260B	
600-194999-12 MS	Artesia-MW28-102919	Total/NA	Water	8260B	
600-194999-12 MSD	Artesia-MW28-102919	Total/NA	Water	8260B	
600-194999-15 MS	Artesia-MW34-102919	Total/NA	Water	8260B	
600-194999-15 MSD	Artesia-MW34-102919	Total/NA	Water	8260B	

Analysis Batch: 279297

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-194999-6 - DL	Artesia-MW12-102919	Total/NA	Water	8260B	
600-194999-17	Artesia-MW38-102919	Total/NA	Water	8260B	
600-194999-17 - DL	Artesia-MW38-102919	Total/NA	Water	8260B	
MB 600-279297/6	Method Blank	Total/NA	Water	8260B	
LCS 600-279297/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 600-279297/4	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 279414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-194999-17	Artesia-MW38-102919	Total/NA	Water	8260B	
600-194999-18	Artesia-TB01-102919	Total/NA	Water	8260B	
600-194999-19	Artesia-Inlet-102919	Total/NA	Water	8260B	
600-194999-20	Artesia-MID-102919	Total/NA	Water	8260B	
600-194999-21	Artesia-MW-22-102919	Total/NA	Water	8260B	
MB 600-279414/6	Method Blank	Total/NA	Water	8260B	
LCS 600-279414/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 600-279414/4	Lab Control Sample Dup	Total/NA	Water	8260B	

HPLC/IC

Analysis Batch: 280102

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-194999-5	Artesia-MW36-102919	Total/NA	Water	300.0	
600-194999-6	Artesia-MW12-102919	Total/NA	Water	300.0	
600-194999-7	Artesia-MW17C-102919	Total/NA	Water	300.0	

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

HPLC/IC (Continued)

Analysis Batch: 280102 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-194999-8	Artesia-MW11-102919	Total/NA	Water	300.0	
600-194999-9	Artesia-MD11-102919	Total/NA	Water	300.0	
600-194999-16	Artesia-MW37-102919	Total/NA	Water	300.0	
600-194999-17	Artesia-MW38-102919	Total/NA	Water	300.0	
MB 600-280102/6	Method Blank	Total/NA	Water	300.0	
LCS 600-280102/7	Lab Control Sample	Total/NA	Water	300.0	
600-194999-17 MS	Artesia-MW38-102919	Total/NA	Water	300.0	
600-194999-17 MSD	Artesia-MW38-102919	Total/NA	Water	300.0	

Metals

Prep Batch: 279566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-194999-1	Artesia-Outlet-102919	Dissolved	Water	3010A	-
600-194999-2	Artesia-MW30-102919	Dissolved	Water	3010A	
600-194999-3	Artesia-MD30-102919	Dissolved	Water	3010A	
600-194999-4	Artesia-MW32-102919	Dissolved	Water	3010A	
600-194999-10	Artesia-MW29-102919	Dissolved	Water	3010A	
600-194999-12	Artesia-MW28-102919	Dissolved	Water	3010A	
MB 600-279566/1-A	Method Blank	Total/NA	Water	3010A	
LCS 600-279566/2-A	Lab Control Sample	Total/NA	Water	3010A	
600-194999-1 MS	Artesia-Outlet-102919	Dissolved	Water	3010A	
600-194999-1 MSD	Artesia-Outlet-102919	Dissolved	Water	3010A	
600-194999-1 DU	Artesia-Outlet-102919	Dissolved	Water	3010A	

Prep Batch: 279592

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-194999-13	Artesia-MW25-102919	Dissolved	Water	3010A	
600-194999-14	Artesia-MW31-102919	Dissolved	Water	3010A	
600-194999-15	Artesia-MW34-102919	Dissolved	Water	3010A	
600-194999-19	Artesia-Inlet-102919	Dissolved	Water	3010A	
600-194999-20	Artesia-MID-102919	Dissolved	Water	3010A	
600-194999-21	Artesia-MW-22-102919	Dissolved	Water	3010A	
MB 600-279592/1-A	Method Blank	Total/NA	Water	3010A	
LCS 600-279592/2-A	Lab Control Sample	Total/NA	Water	3010A	
600-194999-15 MS	Artesia-MW34-102919	Dissolved	Water	3010A	
600-194999-15 MSD	Artesia-MW34-102919	Dissolved	Water	3010A	

Prep Batch: 279977

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 600-279977/1-A	Method Blank	Total/NA	Water	3010A	
LCS 600-279977/2-A	Lab Control Sample	Total/NA	Water	3010A	

Analysis Batch: 280165

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-194999-1	Artesia-Outlet-102919	Dissolved	Water	6020A	279566
600-194999-2	Artesia-MW30-102919	Dissolved	Water	6020A	279566
600-194999-3	Artesia-MD30-102919	Dissolved	Water	6020A	279566
600-194999-4	Artesia-MW32-102919	Dissolved	Water	6020A	279566
600-194999-10	Artesia-MW29-102919	Dissolved	Water	6020A	279566
600-194999-12	Artesia-MW28-102919	Dissolved	Water	6020A	279566

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Metals (Continued)

Analysis Batch: 280165 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
600-194999-13	Artesia-MW25-102919	Dissolved	Water	6020A	279592
600-194999-14	Artesia-MW31-102919	Dissolved	Water	6020A	279592
600-194999-15	Artesia-MW34-102919	Dissolved	Water	6020A	279592
600-194999-19	Artesia-Inlet-102919	Dissolved	Water	6020A	279592
600-194999-20	Artesia-MID-102919	Dissolved	Water	6020A	279592
600-194999-21	Artesia-MW-22-102919	Dissolved	Water	6020A	279592
MB 600-279566/1-A	Method Blank	Total/NA	Water	6020A	279566
MB 600-279592/1-A	Method Blank	Total/NA	Water	6020A	279592
MB 600-279977/1-A	Method Blank	Total/NA	Water	6020A	279977
LCS 600-279566/2-A	Lab Control Sample	Total/NA	Water	6020A	279566
LCS 600-279592/2-A	Lab Control Sample	Total/NA	Water	6020A	279592
LCS 600-279977/2-A	Lab Control Sample	Total/NA	Water	6020A	279977
600-194999-1 MS	Artesia-Outlet-102919	Dissolved	Water	6020A	279566
600-194999-1 MSD	Artesia-Outlet-102919	Dissolved	Water	6020A	279566
600-194999-15 MS	Artesia-MW34-102919	Dissolved	Water	6020A	279592
600-194999-15 MSD	Artesia-MW34-102919	Dissolved	Water	6020A	279592
600-194999-1 DU	Artesia-Outlet-102919	Dissolved	Water	6020A	279566

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-Outlet-102919 Lab Sample ID: 600-194999-1

Date Collected: 10/29/19 08:25

Matrix: Water Date Received: 10/31/19 10:34

Dilution **Batch Batch Batch Prepared** Run **Prep Type** Type Method Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 279189 11/01/19 14:50 WS1 TAL HOU Dissolved Prep 3010A 279566 11/06/19 09:00 DCL TAL HOU Dissolved Analysis 6020A 1 280165 11/12/19 16:25 DCL TAL HOU

Client Sample ID: Artesia-MW30-102919

Lab Sample ID: 600-194999-2 Date Collected: 10/29/19 09:05 **Matrix: Water**

Date Received: 10/31/19 10:34

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Number or Analyzed **Factor** Analyst Lab Total/NA 8260B 279189 11/01/19 15:14 WS1 Analysis TAL HOU Dissolved Prep 3010A 279566 11/06/19 09:00 DCL TAL HOU 280165 11/12/19 16:37 DCL 6020A TAL HOU Dissolved Analysis 1

Client Sample ID: Artesia-MD30-102919

Lab Sample ID: 600-194999-3 Date Collected: 10/29/19 09:10 **Matrix: Water**

Date Received: 10/31/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279189	11/01/19 15:38	WS1	TAL HOU
Dissolved	Prep	3010A			279566	11/06/19 09:00	DCL	TAL HOU
Dissolved	Analysis	6020A		1	280165	11/12/19 16:40	DCL	TAL HOU

Client Sample ID: Artesia-MW32-102919

Lab Sample ID: 600-194999-4 Date Collected: 10/29/19 09:25 **Matrix: Water**

Date Received: 10/31/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279189	11/01/19 16:02	WS1	TAL HOU
Dissolved	Prep	3010A			279566	11/06/19 09:00	DCL	TAL HOU
Dissolved	Analysis	6020A		1	280165	11/12/19 16:43	DCL	TAL HOU

Client Sample ID: Artesia-MW36-102919

Lab Sample ID: 600-194999-5 Date Collected: 10/29/19 11:33 **Matrix: Water**

Date Received: 10/31/19 10:34

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279189	11/01/19 16:26	WS1	TAL HOU
Total/NA	Analysis	300.0		250	280102	11/12/19 13:32	SKR	TAL HOU

Client Sample ID: Artesia-MW12-102919

Date Collected: 10/29/19 12:23 **Matrix: Water**

Date Received: 10/31/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279189	11/01/19 16:51	WS1	TAL HOU

Lab Sample ID: 600-194999-6

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-MW12-102919

Date Collected: 10/29/19 12:23

Date Received: 10/31/19 10:34

Lab Sample ID: 600-194999-6

Matrix: Water

Job ID: 600-194999-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	DL	5	279297	11/04/19 18:03	WS1	TAL HOU
Total/NA	Analysis	300.0		100	280102	11/12/19 13:43	SKR	TAL HOU

Client Sample ID: Artesia-MW17C-102919

Date Collected: 10/29/19 13:00

Date Received: 10/31/19 10:34

Lab Sample ID: 600-194999-7

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279189	11/01/19 17:15	WS1	TAL HOU
Total/NA	Analysis	300.0		100	280102	11/12/19 13:53	SKR	TAL HOU

Client Sample ID: Artesia-MW11-102919

Date Collected: 10/29/19 16:15

Date Received: 10/31/19 10:34

Lab Sample ID: 600-194999-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279189	11/01/19 17:39	WS1	TAL HOU
Total/NA	Analysis	300.0		200	280102	11/12/19 14:04	SKR	TAL HOU

Client Sample ID: Artesia-MD11-102919

Date Collected: 10/29/19 16:15

Date Received: 10/31/19 10:34

Lab Sample ID: 600-194999-9 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279189	11/01/19 18:03	WS1	TAL HOU
Total/NA	Analysis	300.0		200	280102	11/12/19 14:36	SKR	TAL HOU

Client Sample ID: Artesia-MW29-102919

Date Collected: 10/29/19 10:19

Date Received: 10/31/19 10:34

Lab Sample	ID:	600-194999-10
		Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279189	11/01/19 18:28	WS1	TAL HOU
Dissolved	Prep	3010A			279566	11/06/19 09:00	DCL	TAL HOU
Dissolved	Analysis	6020A		1	280165	11/12/19 16:46	DCL	TAL HOU

Client Sample ID: Artesia-MW35-102919

Date Collected: 10/29/19 10:38

Date Received: 10/31/19 10:34

Lab Sample ID: 600-194999-11

Matrix: Water

		Batch	Batch		Dilution	Batch	Prepared		
F	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Ī	Γotal/NA	Analysis	8260B		1	279189	11/01/19 18:53	WS1	TAL HOU

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-MW28-102919

Lab Sample ID: 600-194999-12 Date Collected: 10/29/19 11:15 **Matrix: Water**

Date Received: 10/31/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			279189	11/01/19 11:38	WS1	TAL HOU
Dissolved	Prep	3010A			279566	11/06/19 09:00	DCL	TAL HOU
Dissolved	Analysis	6020A		1	280165	11/12/19 16:59	DCL	TAL HOU

Client Sample ID: Artesia-MW25-102919

Lab Sample ID: 600-194999-13 Date Collected: 10/29/19 11:51 **Matrix: Water**

Date Received: 10/31/19 10:34

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			279189	11/01/19 19:18	WS1	TAL HOU
Dissolved	Prep	3010A			279592	11/06/19 11:18	DCL	TAL HOU
Dissolved	Analysis	6020A		1	280165	11/12/19 17:09	DCL	TAL HOU

Client Sample ID: Artesia-MW31-102919

Lab Sample ID: 600-194999-14 Date Collected: 10/29/19 12:45 **Matrix: Water**

Date Received: 10/31/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279189	11/01/19 19:43	WS1	TAL HOU
Dissolved	Prep	3010A			279592	11/06/19 11:18	DCL	TAL HOU
Dissolved	Analysis	6020A		1	280165	11/12/19 17:12	DCL	TAL HOU

Client Sample ID: Artesia-MW34-102919

Lab Sample ID: 600-194999-15 Date Collected: 10/29/19 13:17 **Matrix: Water**

Date Received: 10/31/19 10:34

		Batch	Batch		Dilution	Batch	Prepared		
P	гер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
To	otal/NA	Analysis	8260B		1	279189	11/01/19 12:01	WS1	TAL HOU
D	ssolved	Prep	3010A			279592	11/06/19 11:18	DCL	TAL HOU
D	ssolved	Analysis	6020A		1	280165	11/12/19 17:15	DCL	TAL HOU

Client Sample ID: Artesia-MW37-102919

Lab Sample ID: 600-194999-16 Date Collected: 10/29/19 15:08 **Matrix: Water**

Date Received: 10/31/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			279189	11/01/19 20:08	WS1	TAL HOU
Total/NA	Analysis	300.0		100	280102	11/12/19 14:47	SKR	TAL HOU

Client Sample ID: Artesia-MW38-102919

Date Collected: 10/29/19 14:20 **Matrix: Water**

Date Received: 10/31/19 10:34

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279297	11/04/19 18:27	WS1	TAL HOU

Lab Sample ID: 600-194999-17

Client: Jacobs Engineering Group, Inc. Job ID: 600-194999-1 Project/Site: Dowell - Artesia 10/29/19

Client Sample ID: Artesia-MW38-102919

Lab Sample ID: 600-194999-17 Date Collected: 10/29/19 14:20 **Matrix: Water**

Date Received: 10/31/19 10:34

		Batch	Batch		Dilution	Batch	Prepared		
P	гер Туре	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
T	otal/NA	Analysis	8260B	DL	10	279297	11/04/19 18:51	WS1	TAL HOU
Т	otal/NA	Analysis	8260B		1	279414	11/05/19 19:09	WS1	TAL HOU
Т	otal/NA	Analysis	300.0		100	280102	11/12/19 14:58	SKR	TAL HOU

Client Sample ID: Artesia-TB01-102919

Lab Sample ID: 600-194999-18 Date Collected: 10/29/19 08:05 **Matrix: Water**

Date Received: 10/31/19 10:34

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279414	11/05/19 18:45	WS1	TAL HOU

Client Sample ID: Artesia-Inlet-102919

Lab Sample ID: 600-194999-19 Date Collected: 10/29/19 08:10 **Matrix: Water**

Date Received: 10/31/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279414	11/05/19 17:33	WS1	TAL HOU
Dissolved	Prep	3010A			279592	11/06/19 11:18	DCL	TAL HOU
Dissolved	Analysis	6020A		1	280165	11/12/19 17:24	DCL	TAL HOU

Client Sample ID: Artesia-MID-102919

Lab Sample ID: 600-194999-20 Date Collected: 10/29/19 08:20 **Matrix: Water**

Date Received: 10/31/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279414	11/05/19 17:57	WS1	TAL HOU
Dissolved	Prep	3010A			279592	11/06/19 11:18	DCL	TAL HOU
Dissolved	Analysis	6020A		1	280165	11/12/19 17:27	DCL	TAL HOU

Client Sample ID: Artesia-MW-22-102919

Date Collected: 10/29/19 12:12 **Matrix: Water**

Date Received: 10/31/19 10:34

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	279414	11/05/19 18:21	WS1	TAL HOU
Dissolved	Prep	3010A			279592	11/06/19 11:18	DCL	TAL HOU
Dissolved	Analysis	6020A		1	280165	11/12/19 17:40	DCL	TAL HOU

Laboratory References:

TAL HOU = Eurofins TestAmerica, Houston, 6310 Rothway Street, Houston, TX 77040, TEL (713)690-4444

Lab Sample ID: 600-194999-21

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: Dowell - Artesia 10/29/19

Job ID: 600-194999-1

Laboratory: Eurofins TestAmerica, Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-0759	08-04-20
Louisiana	NELAP	01967	06-30-20
Oklahoma	State	2019-073	09-01-20
Texas	NELAP	T104704223-19-24	10-31-20
USDA	US Federal Programs	P330-18-00130	04-30-21
Utah	NELAP	TX000832019-5	07-31-20

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL HOU
300.0	Anions, Ion Chromatography	MCAWW	TAL HOU
6020A	Inductively Coupled Plasma - Mass Spectrometry	SW846	TAL HOU
3010A	Acid Digestion of Aqueous Samples and Extracts for Total Metals	SW846	TAL HOU
5030B	Purge and Trap	SW846	TAL HOU

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL HOU = Eurofins TestAmerica, Houston, 6310 Rothway Street, Houston, TX 77040, TEL (713)690-4444

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: Dowell - Artesia 10/29/19

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asse
600-194999-1	Artesia-Outlet-102919	Water	10/29/19 08:25	10/31/19 10:34	
600-194999-2	Artesia-MW30-102919	Water	10/29/19 09:05	10/31/19 10:34	
600-194999-3	Artesia-MD30-102919	Water	10/29/19 09:10	10/31/19 10:34	
600-194999-4	Artesia-MW32-102919	Water	10/29/19 09:25	10/31/19 10:34	
600-194999-5	Artesia-MW36-102919	Water	10/29/19 11:33	10/31/19 10:34	
600-194999-6	Artesia-MW12-102919	Water	10/29/19 12:23	10/31/19 10:34	
600-194999-7	Artesia-MW17C-102919	Water	10/29/19 13:00	10/31/19 10:34	
600-194999-8	Artesia-MW11-102919	Water	10/29/19 16:15	10/31/19 10:34	
600-194999-9	Artesia-MD11-102919	Water	10/29/19 16:15	10/31/19 10:34	
600-194999-10	Artesia-MW29-102919	Water	10/29/19 10:19	10/31/19 10:34	
600-194999-11	Artesia-MW35-102919	Water	10/29/19 10:38	10/31/19 10:34	
600-194999-12	Artesia-MW28-102919	Water	10/29/19 11:15	10/31/19 10:34	
600-194999-13	Artesia-MW25-102919	Water	10/29/19 11:51	10/31/19 10:34	
600-194999-14	Artesia-MW31-102919	Water	10/29/19 12:45	10/31/19 10:34	
600-194999-15	Artesia-MW34-102919	Water	10/29/19 13:17	10/31/19 10:34	
600-194999-16	Artesia-MW37-102919	Water	10/29/19 15:08	10/31/19 10:34	
600-194999-17	Artesia-MW38-102919	Water	10/29/19 14:20	10/31/19 10:34	
600-194999-18	Artesia-TB01-102919	Water	10/29/19 08:05	10/31/19 10:34	
600-194999-19	Artesia-Inlet-102919	Water	10/29/19 08:10	10/31/19 10:34	
600-194999-20	Artesia-MID-102919	Water	10/29/19 08:20	10/31/19 10:34	
600-194999-21	Artesia-MW-22-102919	Water	10/29/19 12:12	10/31/19 10:34	

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-194999-1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 277761

Lab Sample ID: IC 600-277761/2 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Acrolein	5.70	Baseline	shenw	10/17/19 12:37
Acetone	5.81	Baseline	shenw	10/17/19 12:39
t-Butanol	6.19	Baseline	shenw	10/17/19 10:37
Propionitrile	7.08	Baseline	shenw	10/17/19 10:36
Vinyl acetate	7.13	Baseline	shenw	10/17/19 10:36
Isobutyl alcohol	7.71	Baseline	shenw	10/18/19 15:40
Tetrahydrofuran	7.94	Baseline	shenw	10/17/19 12:38
n-Butanol	8.28	Baseline	shenw	10/18/19 15:42
Dibromomethane	9.02	Baseline	shenw	10/17/19 10:36
2-Nitropropane	9.06	Baseline	shenw	10/18/19 15:42
1,4-Dioxane	9.18	Baseline	shenw	10/17/19 10:36
2-Chloroethyl vinyl ether	9.38	Baseline	shenw	10/18/19 15:42
4-Methyl-2-pentanone (MIBK)	9.67	Baseline	shenw	10/18/19 15:42
Ethyl methacrylate	10.32	Baseline	shenw	10/17/19 10:36
trans-1,4-Dichloro-2-butene	12.74	Baseline	shenw	10/18/19 15:43
1,2-Dibromo-3-Chloropropane	15.19	Baseline	shenw	10/17/19 10:35
Hexachlorobutadiene	16.99	Baseline	shenw	10/18/19 15:43
1,2,3-Trichlorobenzene	17.24	Baseline	shenw	10/17/19 10:35

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-194999-1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 277761

Lab Sample ID: IC 600-277761/3 Client Sample ID:

Date Analyzed: 10/17/19 10:01 Lab File ID: A29002.d GC Column: DB-VRX 60 ID: 0.25(mm)

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Acetone	5.81	Baseline	shenw	10/17/19 10:40
Methyl acetate	6.34	Baseline	shenw	10/17/19 10:40
Propionitrile	7.07	Baseline	shenw	10/17/19 10:34
n-Heptane	8.91	Baseline	shenw	10/17/19 10:40
Dibromomethane	9.03	Baseline	shenw	10/17/19 10:35
2-Chloroethyl vinyl ether	9.40	Baseline	shenw	10/17/19 10:35
trans-1,4-Dichloro-2-butene	12.75	Baseline	shenw	10/17/19 10:35

Lab Sample ID: IC 600-277761/4 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Ethyl acrylate	8.91	Peak assignment corrected	shenw	10/17/19 10:57
n-Heptane	8.91	Peak assignment corrected	shenw	10/17/19 10:57
1,4-Dioxane	9.20	Baseline	shenw	10/17/19 10:58
2-Chloroethyl vinyl ether	9.41	Baseline	shenw	10/17/19 10:58

Lab Sample ID: IC 600-277761/5 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE		
	TIME	REASON	ANALYST	DATE
n-Heptane	8.91	Peak assignment corrected	shenw	10/17/19 12:19
Dibromomethane	9.02	Peak assignment corrected	shenw	10/17/19 12:20
2-Chloroethyl vinyl ether	9.38	Baseline	shenw	10/17/19 11:30

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-194999-1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 277761

Lab Sample ID: ICIS 600-277761/6 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Isobutyl alcohol	7.70	Baseline	shenw	10/17/19 12:19
Ethyl acrylate	8.90	Peak assignment corrected	shenw	10/17/19 11:39
Dibromomethane	9.03	Peak assignment corrected	shenw	10/17/19 11:38

Lab Sample ID: IC 600-277761/7 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Isobutyl alcohol	7.70	Baseline	shenw	10/17/19 12:16
Chlorobenzene-d5	11.74	Baseline	shenw	10/17/19 12:17

Lab Sample ID: IC 600-277761/8 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Isobutyl alcohol	7.69	Baseline	shenw	10/17/19 12:26
Dibromomethane	9.02	Baseline	shenw	10/17/19 12:26
Chlorobenzene-d5	11.74	Peak assignment corrected	shenw	10/17/19 12:25

Lab Sample ID: ICV 600-277761/10 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Dibromomethane	9.02	Peak assignment corrected	shenw	10/17/19 14:56
Hexachlorobutadiene	17.01	Baseline	shenw	10/17/19 14:57
1,2,3-Trichlorobenzene	17.23	Baseline	shenw	10/17/19 14:57

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-194999-1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 279189

Lab Sample ID: CCVIS 600-279189/2 Client Sample ID:

Date Analyzed: 11/01/19 08:34 Lab File ID: A30501.d GC Column: DB-VRX 60 ID: 0.25(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Dibromomethane	9.02	Peak assignment corrected	shenw	11/01/19 08:56
2-Chloroethyl vinyl ether	9.40	Baseline	shenw	11/01/19 08:56
1,4-Dichlorobenzene-d4	14.32	Baseline	shenw	11/01/19 09:22
Naphthalene	16.98	Baseline	shenw	11/01/19 09:20

Lab Sample ID: MB 600-279189/6 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluorobenzene	8.72	Peak assignment corrected	shenw	11/01/19 10:48
Naphthalene		Invalid Compound ID	shenw	11/01/19 10:49

Lab Sample ID: 600-194999-4 Client Sample ID: Artesia-MW32-102919

Date Analyzed: 11/01/19 16:02 Lab File ID: A30518.d GC Column: DB-VRX 60 ID: 0.25(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Naphthalene		Invalid Compound ID	shenw	11/04/19 08:46

Lab Sample ID: 600-194999-5 Client Sample ID: _____

Date Analyzed: 11/01/19 16:26 Lab File ID: A30519.d GC Column: DB-VRX 60 ID: 0.25(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluorobenzene	8.72	Peak assignment corrected	shenw	11/04/19 08:46

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-194999-1

SDG No.:

Instrument ID: CHVOAMS07 Analysis Batch Number: 279189

Lab Sample ID: 600-194999-6 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluorobenzene	8.72	Peak assignment corrected	shenw	11/04/19 08:47

Lab Sample ID: 600-194999-10 Client Sample ID: ______

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluorobenzene	8.72	Peak assignment corrected	shenw	11/04/19 08:48
Naphthalene		Invalid Compound ID	shenw	11/04/19 08:48

Lab Sample ID: 600-194999-11 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluorobenzene	8.72	Peak assignment corrected	shenw	11/14/19 12:43

Lab Sample ID: 600-194999-14 Client Sample ID: Artesia-MW31-102919

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Naphthalene		Invalid Compound ID	shenw	11/04/19 08:49

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-194999-1

SDG No.:

Analysis Batch Number: 279297 Instrument ID: CHVOAMS07

Lab Sample ID: LCS 600-279297/3

Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluorobenzene	8.72	Peak assignment corrected	shenw	11/04/19 09:47

Lab Sample ID: MB 600-279297/6 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Naphthalene		Invalid Compound ID	shenw	11/04/19 12:10

Lab Sample ID: 600-194999-17 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluorobenzene	8.72	Peak assignment corrected	shenw	11/05/19 08:59

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-194999-1 SDG No.: Instrument ID: CHVOAMS07 Analysis Batch Number: 279414 Lab Sample ID: CCVIS 600-279414/2 Client Sample ID: Date Analyzed: 11/05/19 09:09 Lab File ID: A30901.d GC Column: DB-VRX 60 ID: 0.25 (mm)COMPOUND NAME RETENTION MANUAL INTEGRATION TIME REASON ANALYST DATE 11/05/19 09:34 Dibromomethane 9.03 | Peak assignment corrected shenw Client Sample ID: Lab Sample ID: MB 600-279414/6 GC Column: DB-VRX 60 Date Analyzed: 11/05/19 11:07 Lab File ID: A30905.d ID: $0.25 \, (mm)$ COMPOUND NAME RETENTION MANUAL INTEGRATION REASON TIME ANALYST DATE Invalid Compound ID 11/05/19 12:28 Naphthalene shenw Lab Sample ID: 600-194999-19 Client Sample ID: Artesia-Inlet-102919 Date Analyzed: 11/05/19 17:33 ID: 0.25 (mm)Lab File ID: A30921.d GC Column: DB-VRX 60 COMPOUND NAME RETENTION MANUAL INTEGRATION REASON ANALYST DATE TIME 11/06/19 08:41 Invalid Compound ID shenw Benzene Lab Sample ID: 600-194999-17 Client Sample ID: Date Analyzed: 11/05/19 19:09 Lab File ID: A30925.d GC Column: DB-VRX 60 ID: 0.25 (mm)COMPOUND NAME RETENTION MANUAL INTEGRATION REASON DATE TIME ANALYST Fluorobenzene 8.72 | Peak assignment corrected shenw 11/06/19 08:42

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-194999-1

SDG No.:

Instrument ID: CHWC17(IC) Analysis Batch Number: 278508

Lab Sample ID: IC 600-278508/5 Client Sample ID:

Date Analyzed: 10/24/19 13:38 Lab File ID: CAL102419-600-0031875-005 GC Column: AS22 ID: 2(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluoride	2.22	Baseline Smoothing	buschk	10/25/19 17:11
Bromide	4.43	Baseline Smoothing	buschk	10/25/19 17:11
Sulfate	7.04	Baseline Smoothing	buschk	10/25/19 17:36

Lab Sample ID: IC 600-278508/6 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluoride	2.21	Baseline Smoothing	buschk	10/25/19 17:14
Chloride	3.10	Baseline Smoothing	buschk	10/25/19 17:15
Bromide	4.43	Baseline Smoothing	buschk	10/25/19 17:14
Sulfate	7.04	Baseline Smoothing	buschk	10/25/19 17:15

Lab Sample ID: IC 600-278508/7 Client Sample ID:

Date Analyzed: 10/24/19 14:00 Lab File ID: CAL102419-600-0031875-007 GC Column: AS22 ID: 2(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION			
	TIME	REASON	ANALYST	DATE	
Fluoride	2.21	Baseline Smoothing	buschk	10/25/19 17:16	
Chloride	3.09	Baseline Smoothing	buschk	10/25/19 17:16	
Bromide	4.42	Baseline Smoothing	buschk	10/25/19 17:15	
Sulfate	7.04	Baseline Smoothing	buschk	10/25/19 17:16	

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-194999-1

SDG No.:

Instrument ID: CHWC17(IC) Analysis Batch Number: 278508

Lab Sample ID: IC 600-278508/8 Client Sample ID:

Date Analyzed: 10/24/19 14:11 Lab File ID: CAL102419-600-0031875-008 GC Column: AS22 ID: 2(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluoride	2.22	Baseline Smoothing	buschk	10/25/19 17:19
Chloride	3.10	Baseline Smoothing	buschk	10/25/19 17:18
Bromide	4.41	Baseline Smoothing	buschk	10/25/19 17:18
Sulfate	7.06	Baseline Smoothing	buschk	10/25/19 17:19

Lab Sample ID: IC 600-278508/9 Client Sample ID:

Date Analyzed: 10/24/19 14:21 Lab File ID: CAL102419-600-0031875-009 GC Column: AS22 ID: 2(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluoride	2.22	Baseline Smoothing	buschk	10/25/19 17:20
Chloride	3.11	Baseline Smoothing	buschk	10/25/19 17:21
Bromide	4.42	Baseline Smoothing	buschk	10/25/19 17:21
Sulfate	7.08	Baseline Smoothing	buschk	10/25/19 17:22

Lab Sample ID: IC 600-278508/10 Client Sample ID:

Date Analyzed: 10/24/19 14:32 Lab File ID: CAL102419-600-0031875-010 GC Column: AS22 ID: 2(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluoride	2.23	Baseline Smoothing	buschk	10/25/19 17:25
Chloride	3.12	Baseline Smoothing		10/25/19 17:24
Bromide	4.42	Baseline Smoothing	buschk	10/25/19 17:24
Sulfate	7.11	Baseline Smoothing	buschk	10/25/19 17:25

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-194999-1

SDG No.:

Analysis Batch Number: 278508

Lab Sample ID: IC 600-278508/11 Client Sample ID:

Instrument ID: CHWC17(IC)

Date Analyzed: 10/24/19 14:43 Lab File ID: CAL102419-600-0031875-011 GC Column: AS22 ID: 2 (mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluoride	2.22	Baseline Smoothing	buschk	10/25/19 17:32
Chloride	3.14	Baseline Smoothing	buschk	10/25/19 17:30
Bromide	4.42	Baseline Smoothing	buschk	10/25/19 17:30
Sulfate	7.17	Baseline Smoothing	buschk	10/25/19 17:31

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-194999-1

SDG No.:

Analysis Batch Number: 280102 Instrument ID: CHWC17(IC)

Lab Sample ID: CCV 600-280102/4

Client Sample ID:

Date Analyzed: 11/12/19 05:08

Lab File ID: 111219-600-0032213-004.d GC Column: AS22

ID: 2 (mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Fluoride	2.21	Baseline Smoothing	reachs	11/12/19 13:17
Chloride	3.05	Baseline Smoothing	reachs	11/12/19 13:17
Bromide	4.25	Baseline Smoothing	reachs	11/12/19 13:17
Sulfate	6.75	Baseline Smoothing	reachs	11/12/19 13:17

Lab Sample ID: CCB 600-280102/5 Client Sample ID:

Date Analyzed: 11/12/19 05:19

Lab File ID: 111219-600-0032213-005.d GC Column: AS22

ID: 2 (mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Sulfate	6.69	Baseline Smoothing	reachs	11/12/19 13:18

Lab Sample ID: LCS 600-280102/7 Client Sample ID:

Date Analyzed: 11/12/19 05:41

Lab File ID: 111219-600-0032213-007.d GC Column: AS22

ID: 2 (mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Sulfate	6.75	Baseline Smoothing	reachs	11/12/19 13:20

Lab Sample ID: 600-194999-5 Client Sample ID: Artesia-MW36-102919

Date Analyzed: 11/12/19 13:32

Lab File ID: 111219-600-0032213-012.d GC Column: AS22

ID: 2 (mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON ANALYST DATE		DATE
Sulfate	6.66	Baseline Smoothing	reachs	11/13/19 12:30

Lab Name: Eurofins TestAmerica, Housto Job No.: 600-194999-1

SDG No.:

Analysis Batch Number: 280102 Instrument ID: CHWC17(IC)

Lab Sample ID: CCV 600-280102/16

Client Sample ID:

Date Analyzed: 11/12/19 14:15 Lab File ID: 111219-600-0032213-016.d GC Column: AS22

ID: 2 (mm)

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION		
	TIME	REASON	ANALYST	DATE	
Fluoride	2.20	Baseline Smoothing	reachs	11/13/19 12:30	
Chloride	3.03	Baseline Smoothing	reachs	11/13/19 12:31	
Bromide	4.21	Baseline Smoothing	reachs	11/13/19 12:31	
Sulfate	6.72	Baseline Smoothing	reachs	11/13/19 12:32	

Lab Sample ID: 600-194999-17 MS Client Sample ID: Artesia-MW38-102919 MS

Lab File ID: 111219-600-0032213-021.d GC Column: AS22 Date Analyzed: 11/12/19 15:09

ID: 2 (mm)

COMPOUND NAME	RETENTION	ON MANUAL INTEGRATION		
	TIME	REASON ANALYST DA		DATE
Sulfate	6.73	Baseline Smoothing	reachs	11/13/19 12:34

Lab Sample ID: 600-194999-17 MSD Client Sample ID: Artesia-MW38-102919 MSD

Lab File ID: 111219-600-0032213-022.d GC Column: AS22 Date Analyzed: 11/12/19 15:20

ID: 2 (mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME			DATE
Sulfate	6.73	Baseline Smoothing	reachs	11/13/19 12:35

Lab Sample ID: CCV 600-280102/28 Client Sample ID:

Date Analyzed: 11/12/19 16:24 Lab File ID: 111219-600-0032213-028.d GC Column: AS22

ID: 2 (mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION			
	TIME	REASON	ANALYST	DATE	
Fluoride	2.20	Baseline Smoothing	reachs	11/13/19 12:36	
Chloride	3.03	Baseline Smoothing	reachs	11/13/19 12:36	
Bromide	4.21	Baseline Smoothing	reachs	11/13/19 12:36	
Sulfate	6.71	Baseline Smoothing	reachs	11/13/19 12:37	

Lab Name: Eurofins Te	stAmerica, Houston	Job No.: 600-194999-1
SDG No.:		

				Reagent	Parent Read	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
BFB 00293							1,2-Dichloroethene, Total	
_							1,3-Dichloropropene, Total	
							2,3-dichlorobutane	
							Tentatively Identified	
							Compound	
							Total BTEX	
							Trihalomethanes, Total	
							Xylenes, Total	
					VOASBFB 00014	50 uL	BFB	25 ug/mL
.VOASBFB 00014	07/31/21		Restek, Lot A0120567	7	(Purchased Re	agent)	BFB	2000 ug/mL
BFB 00294							1,2-Dichloroethene, Total	
<u>-</u>							1,3-Dichloropropene, Total	
							2,3-dichlorobutane	
							Tentatively Identified	
							Compound	
							Total BTEX	
							Trihalomethanes, Total	
							Xylenes, Total	
					VOASBFB 00014	50 uL	BFB	25 ug/mL
.VOASBFB_00014	07/31/21		Restek, Lot A0120567	7	(Purchased Re	agent)	BFB	2000 ug/mL
CCV_00114			DI WATER, Lot NONE		WETSICCSO4_00015		Sulfate	20 mg/L
.WETSICCSO4 00015	06/21/20		ANIC-VENTURE, Lot k2-s		(Purchased Re		Sulfate	1000 mg/L
EOxideStd_00162			Methanol, Lot V071019		MVETYLOIDE_00011		Ethylene oxide	500 ug/mL
.MVETYLOIDE_00011	04/30/20	S	igma-Aldrich, Lot LRAB	8535	(Purchased Re	agent)	Ethylene oxide	50000 ug/mL
ICCALSTD1_00045	12/26/19	10/25/19	DI WATER, Lot NONE	100 mL	WETSICCBRO 00013		Bromide	0 mg/L
_					WETSICCCL 00024		Chloride	0 mg/L
					WETSICCFL_00014		Fluoride	0 mg/L
					WETSICCSO4_00016		Sulfate	0 mg/L
.WETSICCBRO_00013	04/25/20		ANIC VENTURES, Lot N2-		(Purchased Re		Bromide	1000 mg/L
.WETSICCCL_00024	12/26/19		ANIC-VENTURE, Lot N2-C		(Purchased Re	agent)	Chloride	1000 mg/L
.WETSICCFL_00014	11/03/20	Ac	ccustandard, Lot 21810	5011	(Purchased Re		Fluoride	1000 mg/L
.WETSICCSO4_00016	02/26/20		ANIC-VENTURE, Lot N2-S		(Purchased Re		Sulfate	1000 mg/L
ICCALSTD2_00052	12/26/19	10/25/19	DI WATER, Lot NONE	100 mL	WETSICCCL_00024		Chloride	0.4 mg/L
_					WETSICCFL_00014		Fluoride	0.2 mg/L
.WETSICCCL_00024	12/26/19		ANIC-VENTURE, Lot N2-C		(Purchased Re		Chloride	1000 mg/L
.WETSICCFL_00014	11/03/20		ccustandard, Lot 21810		(Purchased Re		Fluoride	1000 mg/L
ICCALSTD3_00045	12/26/19	10/25/19	DI WATER, Lot NONE	100 mL	WETSICCCL_00024		Chloride	1 mg/L
_					WETSICCFL_00014	50 uL	Fluoride	0.5 mg/L
					WETSICCSO4_00016	100 uL	Sulfate	1 mg/L
.WETSICCCL_00024	12/26/19		ANIC-VENTURE, Lot N2-C		(Purchased Re		Chloride	1000 mg/L
.WETSICCFL_00014	11/03/20		ccustandard, Lot 21810		(Purchased Re		Fluoride	1000 mg/L
.WETSICCSO4_00016	02/26/20	INORGA	ANIC-VENTURE, Lot N2-S	OX671919	(Purchased Re		Sulfate	1000 mg/L
ICCALSTD4_00044	12/26/19	10/25/19	DI WATER, Lot NONE	100 mL	WETSICCBRO_00013		Bromide	1 mg/L
_					WETSICCCL_00024	200 uL	Chloride	2 mg/L
					WETSICCFL_00014	100 uL	Fluoride	1 mg/L

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.: 600-194999-1

SDG No.:

				Reagent	Parent Reage	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					WETSICCSO4 00016	200 uL	Sulfate	2 mg/L
.WETSICCBRO 00013	04/25/20	INORGA	NIC VENTURES, Lot N2	-BR665239	(Purchased Rea		Bromide	1000 mg/L
.WETSICCCL_00024	12/26/19	INORGA	ANIC-VENTURE, Lot N2-	-CL664868	(Purchased Rea		Chloride	1000 mg/L
.WETSICCFL 00014	11/03/20	Ac	custandard, Lot 2181	05011	(Purchased Rea	igent)	Fluoride	1000 mg/L
.WETSICCSO4_00016	02/26/20	INORGA	NIC-VENTURE, Lot N2-	SOX671919	(Purchased Rea	igent)	Sulfate	1000 mg/L
ICCALSTD5_00045	12/26/19	10/25/19	DI WATER, Lot NONE	100 mL	WETSICCCL 00024	500 uL	Chloride	5 mg/L
_			·		WETSICCFL 00014	200 uL	Fluoride	2 mg/L
.WETSICCCL 00024	12/26/19	INORGA	ANIC-VENTURE, Lot N2-	-CL664868	(Purchased Rea	igent)	Chloride	1000 mg/L
.WETSICCFL 00014	11/03/20		custandard, Lot 2181		(Purchased Rea		Fluoride	1000 mg/L
ICCALSTD8_00032	12/26/19	10/25/19	DI WATER, Lot NONE	100 mT	WETSICCCL 00024	4 mT.	Chloride	40 mg/L
100111111111111111111111111111111111111	12/20/13	10,20,13	DI MITER, EGG RONE	100 1112	WETSICCFL 00014		Fluoride	10 mg/L
.WETSICCCL 00024	12/26/19	TNORGA	ANIC-VENTURE, Lot N2-	-CI,664868	(Purchased Rea		Chloride	1000 mg/L
.WETSICCFL 00014	11/03/20		custandard, Lot 2181		(Purchased Rea	-	Fluoride	1000 mg/L
ICPMSCALMIX1S_00006	10/24/20		CPI, Lot 992738-1		(Purchased Rea	<u> </u>	As	100 mg/L
ICPMSCALMIXIS_00006	10/24/20		CPI, LOC 992/30-1		(Fulchased Rea	igeric)	Ba	100 mg/L
							Be	100 mg/L
							Cd	100 mg/L
							Co	100 mg/L
							Cr	100 mg/L
							Cu	100 mg/L
							Li	100 mg/L
							Manganese, Dissolved	100 mg/L
							Mo	100 mg/L
							Ni	100 mg/L
							Pb	100 mg/L
							Sb	100 mg/L
							Se	100 mg/L
							Si	1000 mg/L
							SiO2	2140 mg/L
							Sn	100 mg/L
							Sr	100 mg/L
							Ti	100 mg/L
							Tl	100 mg/L
							V	100 mg/L
ICPMSCALMIX2S_00003	09/24/20		CPI, Lot 992740-2		(Purchased Rea	igent)	Al	2000 mg/L
_							Ca	2000 mg/L
							Fe	2000 mg/L
							K	2000 mg/L
							Mg	2000 mg/L
							Na	2000 mg/L
ICPMSCALMIX3S_00004	09/24/20		CPI, Lot 987270-1		(Purchased Rea	igent)	P	1000 mg/L
_							Sulfur	1000 mg/L
							U	100 mg/L
							M	100 mg/L
ICPMSCALMIX4S 00004	10/24/20		CPI, Lot 10100318-	2	(Purchased Rea	igent)	Ag	50 mg/L
	1 , , - 0	l	,		,			

Lab Name: Eurofins	TestAmerica,	Houston	Job No.: 600-194999-1
SDG No.:			

				Doogont	Parent Reager	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Reagent Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Sb	100 mg/L
							Zn	100 mg/L
ICSMS_00119			DI WATER, Lot NONE		WETSICISO4_00012		Sulfate	200 mg/L
.WETSICISO4_00012	09/29/20	А	CCUSTANDARD, Lot 21808	5152	(Purchased Reag	ent)	Sulfate	1000 mg/L
ICV/LCS 00108	04/23/20	10/23/19	DI WATER, Lot NONE	500 mL	WETSICISO4 00012	10 mL	Sulfate	20 mg/L
.WETSICISO4_00012	09/29/20		CCUSTANDARD, Lot 21808	5152	(Purchased Reag	ent)	Sulfate	1000 mg/L
METHCL 00283	08/26/24		J.T.Baker, Lot 0000240	180	(Purchased Reag	ent)	Stock Chemical	0 mL
METHCL 00284	08/26/24		J.T.Baker, Lot 0000240		(Purchased Reag	ent.)	Stock Chemical	0 mL
METHNO3 00334	11/01/23	•	Macron, Lot 000021690		(Purchased Reag		Stock Chemical	0 mL
					_		L	
METHNO3_00336	12/20/23		Macron, Lot 000022180		(Purchased Reag		Stock Chemical	0 mL
METICPMSCAL4_00009		11/12/19	DI WATER, Lot n/a	500 mL	ICPMSCALMIX1_00002		Manganese, Dissolved	250 ug/L
.ICPMSCALMIX1_00002	12/26/20		CPI, Lot 1018875-1		(Purchased Reag		Manganese, Dissolved	100 mg/L
METICPMSICSA_00007	12/10/19	09/13/19	DI Water, Lot n/a	500 mL	ICPMSICSAMIX_00002	5 mL		10000 ug/L
							Ca	10000 ug/L
							Fe K	10000 ug/L 10000 ug/L
							Mg	10000 ug/L
							Mo	200 ug/L
							Na	10000 ug/L
							Ti	200 ug/L
.ICPMSICSAMIX 00002	05/19/20		CPI, Lot 982746-1		(Purchased Reag	ent)	Al	1000 mg/L
_							Ca	1000 mg/L
							Fe	1000 mg/L
							K	1000 mg/L
							Mg	1000 mg/L
							Мо	20 mg/L
							Na m.	1000 mg/L
							Ti	20 mg/L
METICPMSICSAB_00007	12/10/19	06/25/19	DI Water, Lot n/a	500 mL	ICPMSICSABMIX_00002	5 mL		100 ug/L
							Ва	100 ug/L
							Be Cd	100 ug/L 100 ug/L
							Co	100 ug/L
							Cr	100 ug/L
							Cu	100 ug/L
							Li	100 ug/L
							Manganese, Dissolved	100 ug/L
							Ni	100 ug/L
							Pb	100 ug/L
							Sb	50 ug/L
							Se	100 ug/L
							Sn	100 ug/L
							Sr	100 ug/L
							T1	50 ug/L
1							V	100 ug/

Lab Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-194999-1
SDG No ·					

				D	Parent Reagent			
	T	D	D:1	Reagent Final		17.0 7		
Doogont ID	Exp Date	Prep Date	Dilutant Used	Volume	Dongert ID	Volume Added	7221	Concentration
Reagent ID	Date	Date	usea	volume	Reagent ID		Analyte	Concentration
					ICPMSICSAMIX_00001	5 mL		10000 ug/L
							Ca	10000 ug/L
							Fe	10000 ug/L
							K	10000 ug/L
							Mg	10000 ug/L
							Мо	200 ug/L
							Na	10000 ug/L
							Ti	200 ug/L
					METAG_00015	0.05 mL		100 ug/L
	/ /				METZN_00015	0.05 mL		100 ug/L
.ICPMSICSABMIX_00002	05/19/20		CPI, Lot 982898-1		(Purchased Reag	ent)	As	10 mg/L
							Ba	10 mg/L
							Ве	10 mg/L
							Cd	10 mg/L
							Co	10 mg/L
							Cr	10 mg/L
							Cu	10 mg/L
							Li	10 mg/L
							Manganese, Dissolved	10 mg/L
							Ni	10 mg/L
							Pb	10 mg/L
							Sb	5 mg/L
							Se	10 mg/L
							Sn	10 mg/L
							Sr	10 mg/L
							T1	5 mg/L
	05/10/00		2DT T + 000746 1		(5) 1 5		V	10 mg/L
.ICPMSICSAMIX_00001	05/19/20		CPI, Lot 982746-1		(Purchased Reag	ent)	Al	1000 mg/L
							Ca	1000 mg/L
							Fe	1000 mg/L
							K	1000 mg/L
							Mg	1000 mg/L
							Mo	20 mg/L
							Na Ti	1000 mg/L
.METAG 00015	12/04/20		CDT 1-4 075475 22		(December and December)			20 mg/L
.METAG_00015	12/04/20	CPI, Lot 975475-22 CPI, Lot 984272-63		(Purchased Reag (Purchased Reag		Ag Zn	1000 ug/mL 1000 ug/mL	
-								
METICPMSICV_00013		07/19/19	DI Water, Lot n/a	500 mL	ICPMSCALMIX1S_00001		Manganese, Dissolved	250 ug/L
.ICPMSCALMIX1S_00001	05/31/20		CPI, Lot 982733-2		(Purchased Reag	ent)	Manganese, Dissolved	100 mg/L
VOAIS50PPM_00262	10/23/19	10/09/19	Methanol, Lot V071019A	1 mL	VOA3IS_00031	20 uL	1,4-Dichlorobenzene-d4	50 ug/mL
					_		Chlorobenzene-d5	50 ug/mL
							Fluorobenzene	50 ug/mL
.VOA3IS_00031	06/30/23		Restek, Lot A0138856	1	(Purchased Reag	ent)	1,4-Dichlorobenzene-d4	2500 ug/mL
	1 1, 1 1, 2	1.00001, 200 11010000				- /	Chlorobenzene-d5	2500 ug/mL
							Fluorobenzene	2500 ug/mL
1707 TCEODDM 00262	11/06/10	10/22/10	Mo+hanal To+ 170710107	1 7	1707 2 T C 000 2 1	20		
VOAIS50PPM_00263	11/06/19	10/23/19	Methanol, Lot V071019A	T MT	VOA3IS_00031	20 uL	1,4-Dichlorobenzene-d4	50 ug/mL 50 ug/mL
		l		1		1	Chlorobenzene-d5	50 ug/mL

Lab Name: Eurofins	TestAmerica,	Houston	Job No.: 600-194999-1
SDG No.:			

Reagent ID	Exp Date	Prep Date	Dilutant Used	Reagent Final Volume	Parent Reagent			
					Reagent ID	Volume Added	Analyte	Concentration
							Fluorobenzene	50 ug/mL
.VOA3IS_00031	06/30/23		Restek, Lot A0138856	1	(Purchased Reag	ent)	1,4-Dichlorobenzene-d4	2500 ug/mL
					_		Chlorobenzene-d5	2500 ug/mL
							Fluorobenzene	2500 ug/mL
VOALCSPT2_00150	10/23/19	10/09/19	Methanol, Lot V071019A	1 mT.	VOALMegMi2017 00004	2.0 uTu	1,1-Dichloroethane	50 ug/mL
		.,,	, , , , , , , , , , , , , , , , , , , ,				1,1-Dichloroethene	50 ug/mL
							Benzene	50 ug/mL
							Naphthalene	50 ug/mL
							Tetrachloroethene	50 ug/mL
.VOALMegMi2017_00004	06/30/21		Restek, Lot A0144202		(Purchased Reag	ent)	1,1-Dichloroethane	2500 ug/mL
			•		,		1,1-Dichloroethene	2500 ug/mL
							Benzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
VOALCSPT2 00151	11/06/19	10/23/19	Methanol, Lot V071019A	1 mT.	VOALMegMi2017 00004	20 11T.	1,1-Dichloroethane	50 ug/mL
VONDEST 12_00151	11/00/19	10/23/13	licenanoi, Ecc vovioism	1 1112	Vonibile griff 2017_00001	20 41	1,1-Dichloroethene	50 ug/mL
							Benzene	50 ug/mL
							Naphthalene	50 ug/mL
							Tetrachloroethene	50 ug/mL
.VOALMegMi2017 00004	06/30/21		Restek, Lot A0144202	1	(Purchased Reag	ent)	1,1-Dichloroethane	2500 ug/mL
· VOILLING GITTZ OT 7_00004	,,		,		, , , , , , , , , , , ,	,	1,1-Dichloroethene	2500 ug/mL
							Benzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
VOASS50PPM 00300	10/23/19	10/09/19	Methanol, Lot V071019A	1 mL	VOARSS 00012	20 uL	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
		, , , , ,					4-Bromofluorobenzene	50 ug/mL
							Dibromofluoromethane	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
.VOARSS_00012	12/31/20		Restek, Lot A0115812	1	(Purchased Reag	ent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
					_		4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
VOASS50PPM 00301	11/06/19	10/23/19	Methanol, Lot V071019A	1 mT.	VOARSS 00012	20 117.	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
VOASSUPPI_00301	11700713	10/23/13	licenanoi, Ecc voiioisii	1 1112	1011105_00012	20 41	4-Bromofluorobenzene	50 ug/mL
							Dibromofluoromethane	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
.VOARSS_00012	12/31/20		Restek, Lot A0115812		(Purchased Reag	ent.)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
	,,		, , , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , , ,	- /	4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
VOASTDGASPT_00348	10/23/19	10/16/19	Methanol, Lot V071019A	1 mT.	VOARGAS 00014	20 117.	Bromomethane	50 ug/mL
	10/23/19	10/10/19	LICENATION, BOC VOTIONS	1 11111	101110110_00014	20 41	Butadiene	50 ug/mL
							Chloroethane	50 ug/mL
							Chloromethane	50 ug/mL
							Dichlorodifluoromethane	50 ug/mL
	1	1	1	1	1	1	, DI DILLOT OUT LI UOI OMO CIIUMIC	ug/IIII

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-194999-1	
SDG	No.:						

				Reagent	Parent Reager	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
	2400	2400	0000		riougono 15	- IIIaaca	Trichlorofluoromethane	50 ug/mI
							Vinvl chloride	50 ug/mI
.VOARGAS 00014	10/31/20		Restek, Lot A0131502		(Purchased Reag	on+)	Bromomethane	2500 ug/mI
.VOARGAS_00014	10/31/20		Rester, Lot A0131302		(Fulchased Reag	enc)	Butadiene	2500 ug/mI
							Chloroethane	2500 ug/mI
							Chloromethane	2500 ug/mI
							Dichlorodifluoromethane	2500 ug/mI
							Dichlorofluoromethane	2500 ug/ml
							Trichlorofluoromethane	2500 ug/m
							Vinyl chloride	2500 ug/m
	10/00/10	10/00/10	Tree 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 -	I	1 00 -		
VOASTDPT2_00150	10/23/19	10/09/19	Methanol, Lot V071019A	I ML	VOAMegMix2017_00006	20 uL	1,1,1,2-Tetrachloroethane	50 ug/m
							1,1,1-Trichloroethane	50 ug/mI
							1,1,2,2-Tetrachloroethane	50 ug/m
							1,1,2-Trichloro-1,2,2-trifluor oethane	50 ug/ml
							1,1,2-Trichloroethane	50 ug/m
							1,1-Dichloroethane	50 ug/m
							1,1-Dichloroethene	50 ug/m
							1,1-Dichloropropene	50 ug/m
							1,2,3-Trichlorobenzene	50 ug/m
							1,2,3-Trichloropropane	50 ug/m
							1,2,4-Trichlorobenzene	50 ug/m
							1,2,4-Trimethylbenzene	50 ug/m
							1,2-Dibromo-3-Chloropropane	50 ug/m
							1,2-Dichlorobenzene	50 ug/mi
							1,2-Dichloroethane	50 ug/m
							1,2-Dichloropropane	50 ug/m
							1,3,5-Trimethylbenzene	50 ug/m
							1,3-Dichlorobenzene	50 ug/m
							1,3-Dichloropropane	50 ug/m
							1,4-Dichlorobenzene	50 ug/m
							1,4-Dioxane	1000 ug/m
							2,2-Dichloropropane	50 ug/m
							2-Chlorotoluene	50 ug/m
							2-Methyl-2-propanol	500 ug/m
							3-Chloro-1-propene	50 ug/m
							4-Chlorotoluene	50 ug/m
							4-Isopropyltoluene	50 ug/m
							Acrylonitrile	500 ug/m
							Benzene	50 ug/m
							Bromobenzene	50 ug/m
							Bromoform	50 ug/m
							Carbon disulfide	50 ug/mI
							Carbon tetrachloride	50 ug/ml
							Chlorobenzene	50 ug/m
							Chlorobromomethane	50 ug/ml
							Chlorodibromomethane	50 ug/ml
							Chloroform	50 ug/ml

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.: 600-194999-1	

				Reagent	Parent Reagen	ıt		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							cis-1,2-Dichloroethene	50 ug/mI
							cis-1,3-Dichloropropene	50 ug/mI
							Cyclohexane	50 ug/mL
							Dibromomethane	50 ug/mL
							Dichlorobromomethane	50 ug/mL
							Ethyl ether	50 ug/mL
							Ethyl methacrylate	50 ug/mI
							Ethylbenzene	50 ug/mL
							Ethylene Dibromide	50 ug/mL
							Hexachlorobutadiene	50 ug/mL
							Hexane	50 ug/mL
							Iodomethane	50 ug/mL
							Isobutyl alcohol	1250 ug/mL
							Isopropylbenzene	50 ug/mL
							m-Xylene & p-Xylene	50 ug/mL
							Methyl acetate	100 ug/mL
							Methyl tert-butyl ether	50 ug/mL
							Methylcyclohexane	50 ug/mL
							Methylene Chloride	50 ug/mL
							n-Butylbenzene	50 ug/mL
							n-Heptane	50 ug/mL
							N-Propylbenzene	50 ug/mL
							Naphthalene	50 ug/mL
							o-Xylene	50 ug/mL
							sec-Butylbenzene	50 ug/mL
							Styrene	50 ug/mL
							tert-Butylbenzene	50 ug/mL
							Tetrachloroethene	50 ug/mL
							Tetrahydrofuran	100 ug/mL
							Toluene	50 ug/mL
							trans-1,2-Dichloroethene	50 ug/mL
							trans-1,3-Dichloropropene	50 ug/mL
							trans-1,4-Dichloro-2-butene	50 ug/mL
							Trichloroethene	50 ug/mL
					VOAR2CEVE_00014		2-Chloroethyl vinyl ether	100 ug/mL
					VOARAcroleinS_00005		Acrolein	250 ug/mL
					VOARADD4COM_00009	20 uL	Ethyl acetate	100 ug/mL
							Ethyl acrylate	50 ug/mL
							Methyl methacrylate	100 ug/mL
							n-Butyl acetate	50 ug/mL
					VOARADDCOM_00015	20 uL	1,2,3-Trimethylbenzene	50 ug/mL
							1,3,5-Trichlorobenzene	50 ug/mL
							1-Chlorohexane	50 ug/mL
							2-Chloro-1,3-butadiene	50 ug/mL
							2-Nitropropane	100 ug/mL
							Benzyl chloride	50 ug/mL
							Isooctane	50 ug/mL
							Isopropyl alcohol	500 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-194999-1

				Deagant	Parent Reagen	t		
	Exp	Prep	Dilutant	Reagent Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Methacrylonitrile	500 ug/mL
							n-Butanol	1250 ug/mL
					VOARCYCHONE 00027	100 uL	Cyclohexanone	2500 ug/mL
					VOARKETONDup 00002	8 uL	2-Butanone (MEK)	100 ug/mL
					_		2-Hexanone	100 ug/mL
							4-Methyl-2-pentanone (MIBK)	100 ug/mL
							Acetone	100 ug/mL
					VOARPOLADD 00013	20 uL	Acetonitrile	500 ug/mL
					_		Isopropyl ether	50 ug/mL
							Propionitrile	500 ug/mL
							Tert-amyl methyl ether	50 ug/mL
							Tert-butyl ethyl ether	50 ug/mL
					VOARSS_00012	20 uL	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
							4-Bromofluorobenzene	50 ug/mL
							Dibromofluoromethane	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
					VOARVASTD_00006		Vinyl acetate	100 ug/mL
.VOAMegMix2017_00006	06/30/21		Restek, Lot A0143774		(Purchased Reage	ent)	1,1,1,2-Tetrachloroethane	2500 ug/mL
							1,1,1-Trichloroethane	2500 ug/mL
							1,1,2,2-Tetrachloroethane	2500 ug/mL
							1,1,2-Trichloro-1,2,2-trifluor oethane	2500 ug/mL
							1,1,2-Trichloroethane	2500 ug/mL
							1,1-Dichloroethane	2500 ug/mL
							1,1-Dichloroethene	2500 ug/mL
							1,1-Dichloropropene	2500 ug/mL
							1,2,3-Trichlorobenzene	2500 ug/mL
							1,2,3-Trichloropropane	2500 ug/mL
							1,2,4-Trichlorobenzene	2500 ug/mL
							1,2,4-Trimethylbenzene	2500 ug/mL
							1,2-Dibromo-3-Chloropropane	2500 ug/mL
							1,2-Dichlorobenzene	2500 ug/mL
							1,2-Dichloroethane	2500 ug/mL
							1,2-Dichloropropane	2500 ug/mL
							1,3,5-Trimethylbenzene	2500 ug/mL
							1,3-Dichlorobenzene	2500 ug/mL
							1,3-Dichloropropane	2500 ug/mL
							1,4-Dichlorobenzene	2500 ug/mL
							1,4-Dioxane	50000 ug/mL
							2,2-Dichloropropane	2500 ug/mL
							2-Chlorotoluene	2500 ug/mL
							2-Methyl-2-propanol	25000 ug/mL
							3-Chloro-1-propene	2500 ug/mL
							4-Chlorotoluene	2500 ug/mL
							4-Isopropyltoluene	2500 ug/mL
							Acrylonitrile	25000 ug/mL
							Benzene	2500 ug/mL
							Bromobenzene	2500 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.: 600-194999-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
						<u>'</u>	Bromoform	2500 ug/mL
							Carbon disulfide	2500 ug/mL
							Carbon tetrachloride	2500 ug/mL
							Chlorobenzene	2500 ug/mL
							Chlorobromomethane	2500 ug/mL
							Chlorodibromomethane	2500 ug/mL
							Chloroform	2500 ug/mL
							cis-1,2-Dichloroethene	2500 ug/mL
							cis-1,3-Dichloropropene	2500 ug/mL
							Cyclohexane	2500 ug/mL
							Dibromomethane	2500 ug/mL
							Dichlorobromomethane	2500 ug/mL
							Ethyl ether	2500 ug/mL
							Ethyl methacrylate	2500 ug/mL
							Ethylbenzene	2500 ug/mL
							Ethylene Dibromide	2500 ug/mL
							Hexachlorobutadiene	2500 ug/mL
							Hexane	2500 ug/mL
							Iodomethane	2500 ug/mL
							Isobutyl alcohol	62500 ug/mL
							Isopropylbenzene	2500 ug/mL
							m-Xylene & p-Xylene	2500 ug/mL
							Methyl acetate	5000 ug/mL
							Methyl tert-butyl ether	2500 ug/mL
							Methylcyclohexane	2500 ug/mL
							Methylene Chloride	2500 ug/mL
							n-Butylbenzene	2500 ug/mL
							n-Heptane	2500 ug/mL
							N-Propylbenzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							o-Xylene	2500 ug/mL
							sec-Butylbenzene	2500 ug/mL
							Styrene	2500 ug/mL
							tert-Butylbenzene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
							Tetrahydrofuran	5000 ug/mL
							Toluene	2500 ug/mL
							trans-1,2-Dichloroethene	2500 ug/mL
							trans-1,3-Dichloropropene	2500 ug/mL
							trans-1,4-Dichloro-2-butene	2500 ug/mL
							Trichloroethene	2500 ug/mL
.VOAR2CEVE_00014	12/31/20		Restek, Lot A013330		(Purchased Rea		2-Chloroethyl vinyl ether	2500 ug/mL
.VOARAcroleinS_00005	10/31/19		Restek, Lot A014767		(Purchased Rea		Acrolein	20000 ug/mL
.VOARADD4COM_00009	05/31/20		Restek, Lot A014319	98	(Purchased Rea	agent)	Ethyl acetate	5000 ug/mL
							Ethyl acrylate	2500 ug/mL
							Methyl methacrylate	5000 ug/mL
	0.7/22/11						n-Butyl acetate	2500 ug/mL
.VOARADDCOM_00015	07/31/20		Restek, Lot A014537	/5	(Purchased Rea	agent)	1,2,3-Trimethylbenzene	2500 ug/mL

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.: 600-194999-1

				Reagent	Parent Reage	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							1,3,5-Trichlorobenzene	2500 ug/mL
							1-Chlorohexane	2500 ug/mL
							2-Chloro-1,3-butadiene	2500 ug/mL
							2-Nitropropane	5000 ug/mL
							Benzyl chloride	2500 ug/mL
							Isooctane	2500 ug/mL
							Isopropyl alcohol	25000 ug/mL
							Methacrylonitrile	25000 ug/mL
							n-Butanol	62500 ug/mL
.VOARCYCHONE 00027	12/31/20		Restek, Lot A0133136		(Purchased Rea	agent)	Cyclohexanone	25000 ug/mL
.VOARKETONDup 00002	01/31/20		RESTEK, Lot A0123890		(Purchased Rea	agent)	2-Butanone (MEK)	12500 ug/mL
_							2-Hexanone	12500 ug/mL
							4-Methyl-2-pentanone (MIBK)	12500 ug/mL
							Acetone	12500 ug/mL
.VOARPOLADD 00013	07/31/20		Restek, Lot A0139911		(Purchased Rea	agent)	Acetonitrile	25000 ug/mL
_							Isopropyl ether	2500 ug/mL
							Propionitrile	25000 ug/mL
							Tert-amyl methyl ether	2500 ug/mL
							Tert-butyl ethyl ether	2500 ug/mL
.VOARSS_00012	12/31/20		Restek, Lot A0115812		(Purchased Rea	igent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
							4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL
.VOARVASTD_00006	01/31/20		Restek, Lot A0150515		(Purchased Rea	agent)	Vinyl acetate	5000 ug/mL
VOASTDPT2_00151	11/06/19	10/23/19	Methanol, Lot V071019A	1 mL	VOAMegMix2017 00006	20 uL	1,1-Dichloroethane	50 ug/mL
_					_		1,1-Dichloroethene	50 ug/mL
							Benzene	50 ug/mL
							Naphthalene	50 ug/mL
							Tetrachloroethene	50 ug/mL
					VOARSS_00012	20 uL	1,2-Dichloroethane-d4 (Surr)	50 ug/mL
							4-Bromofluorobenzene	50 ug/mL
							Dibromofluoromethane	50 ug/mL
							Toluene-d8 (Surr)	50 ug/mL
.VOAMegMix2017_00006	06/30/21		Restek, Lot A0143774		(Purchased Rea	igent)	1,1-Dichloroethane	2500 ug/mL
							1,1-Dichloroethene	2500 ug/mL
							Benzene	2500 ug/mL
							Naphthalene	2500 ug/mL
							Tetrachloroethene	2500 ug/mL
.VOARSS_00012	12/31/20		Restek, Lot A0115812		(Purchased Rea	agent)	1,2-Dichloroethane-d4 (Surr)	2500 ug/mL
							4-Bromofluorobenzene	2500 ug/mL
							Dibromofluoromethane	2500 ug/mL
							Toluene-d8 (Surr)	2500 ug/mL

Method 8260B Low Level

Volatile Organic Compounds (GC/MS) by Method 8260B Low Level

FORM II GC/MS VOA SURROGATE RECOVERY

Lab	Name:	Eurofins	TestAmerica,	Houston	Job	No.:	600-194999-1
SDG	No.:						

Matrix: Water _____ Level: Low

GC Column (1): DB-VRX 60 ID: 0.25(mm)

			I		
Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
Artesia-Outlet-102 919	600-194999-1	96	108	103	125
Artesia-MW30-10291 9	600-194999-2	95	104	106	133
Artesia-MD30-10291 9	600-194999-3	100	108	103	127
Artesia-MW32-10291 9	600-194999-4	97	107	101	122
Artesia-MW36-10291	600-194999-5	95	108	102	111
Artesia-MW12-10291 9	600-194999-6	98	106	108	117
Artesia-MW12-10291 9 DL	600-194999-6 DL	90	93	105	124
Artesia-MW17C-1029 19	600-194999-7	96	102	105	120
Artesia-MW11-10291 9	600-194999-8	95	104	103	120
Artesia-MD11-10291	600-194999-9	96	105	100	124
Artesia-MW29-10291	600-194999-10	96	102	103	125
Artesia-MW35-10291	600-194999-11	97	105	103	124
Artesia-MW28-10291	600-194999-12	90	96	107	124
Artesia-MW25-10291	600-194999-13	95	105	102	126
Artesia-MW31-10291	600-194999-14	92	106	103	121
Artesia-MW34-10291	600-194999-15	93	98	108	128
Artesia-MW37-10291	600-194999-16	94	102	105	122
Artesia-MW38-10291	600-194999-17	92	98	106	119
Artesia-MW38-10291	600-194999-17	91	99	105	119
Artesia-MW38-10291 9 DL	600-194999-17 DL	93	97	108	126
Artesia-TB01-10291	600-194999-18	90	92	102	125
Artesia-Inlet-1029	600-194999-19	93	102	102	126
Artesia-MID-102919	600-194999-20	93	101	103	127
Artesia-MW-22-1029	600-194999-21	89	89	98	120
	MB 600-279189/6	88	91	109	128

	QC LIMITS
DBFM = Dibromofluoromethane	62-130
DCA = 1,2-Dichloroethane-d4 (Surr)	50-134
TOL = Toluene-d8 (Surr)	70-130
BFB = 4-Bromofluorobenzene	67-139

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II GC/MS VOA SURROGATE RECOVERY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-1949	999-1
---	-------

SDG No.:

Matrix: Water Level: Low

GC Column (1): DB-VRX 60 ID: 0.25(mm)

Client Sample ID	Lab Sample ID	DBFM :	# DCA #	FOL #	BFB #
	MB 600-279297/6	91	91	106	129
	MB 600-279414/6	94	98	104	125
	LCS 600-279189/3	84	78	109	121
	LCS 600-279297/3	90	85	105	118
	LCS 600-279414/3	96	89	105	119
	LCSD 600-279189/4	91	87	108	117
	LCSD 600-279297/4	97	90	108	121
	LCSD 600-279414/4	97	93	105	123
Artesia-MW28-10291 9 MS	600-194999-12 MS	94	97	105	117
Artesia-MW34-10291 9 MS	600-194999-15 MS	97	99	104	122
Artesia-MW28-10291 9 MSD	600-194999-12 MSD	97	99	101	116
Artesia-MW34-10291 9 MSD	600-194999-15 MSD	99	101	103	122

	QC LIMITS
DBFM = Dibromofluoromethane	62-130
DCA = 1,2-Dichloroethane-d4 (Surr)	50-134
TOL = Toluene-d8 (Surr)	70-130
BFB = 4-Bromofluorobenzene	67-139

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Nam	e: Eurofins TestAm	erica, Houston	Job No.: 600-	194999-1
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID:	A30502.d
Lab ID:	LCS 600-279189/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(mg/L)	$({ m mg/L})$	REC	REC	
1,1-Dichloroethane	0.0100	0.01012	101	70-140	
1,1-Dichloroethene	0.0100	0.01041	104	58-148	
Benzene	0.0100	0.01042	104	70-130	
Naphthalene	0.0100	0.008346	83	10-150	
Tetrachloroethene	0.0100	0.01271	127	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name	e: Eurofins TestAme	erica, Houston	Job No.: 600-	-194999-1
SDG No.:	:			
Matrix:	Water	Level: Low	Lab File ID:	A30802.d
Lab ID:	LCS 600-279297/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(mg/L)	(mg/L)	REC	REC	
1,1-Dichloroethane	0.0100	0.009861	99	70-140	
1,1-Dichloroethene	0.0100	0.009945	99	58-148	
Benzene	0.0100	0.01011	101	70-130	
Tetrachloroethene	0.0100	0.01231	123	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Nam	e: Eurofins TestAme	erica, Houston	Job No.: 600-194999-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: A30902.d	
Lab ID:	LCS 600-279414/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(mg/L)	$({ m mg/L})$	REC	REC	
1,1-Dichloroethane	0.0100	0.01038	104	70-140	
1,1-Dichloroethene	0.0100	0.01038	104	58-148	
Benzene	0.0100	0.01057	106	70-130	
Naphthalene	0.0100	0.01226	123	10-150	
Tetrachloroethene	0.0100	0.01231	123	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name	e: Eurofins TestAme	rica, Houston	Job No.: 600-194999-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: A30503a.d	
Lab ID:	LCSD 600-279189/4		Client ID:	

	SPIKE ADDED	LCSD CONCENTRATION	LCSD	olo	QC L1	IMITS	#
			1	-			#
COMPOUND	(mg/L)	(mg/L)	REC	RPD	RPD	REC	
1,1-Dichloroethane	0.0100	0.009687	97	4	20	70-140	
1,1-Dichloroethene	0.0100	0.009293	93	11	20	58-148	
Benzene	0.0100	0.009905	99	5	20	70-130	
Naphthalene	0.0100	0.007494	75	11	20	10-150	
Tetrachloroethene	0.0100	0.01167	117	9	20	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name	e: Eurofins TestAme	erica, Houston	Job No.: 600	-194999-1
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID:	A30803.d
Lab ID.	LCSD 600-279297/4		Client ID:	

	SPIKE ADDED	LCSD CONCENTRATION	LCSD	Olc .	QC L	QC LIMITS	
COMPOUND	(mg/L)	(mg/L)	REC	RPD	RPD	REC	#
1,1-Dichloroethane	0.0100	0.009516	95	4	20	70-140	
1,1-Dichloroethene	0.0100	0.009406	94	6	20	58-148	
Benzene	0.0100	0.009735	97	4	20	70-130	
Tetrachloroethene	0.0100	0.01168	117	5	20	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Nam	e: <u>Eurofins</u>	TestAmerica,	Houston	Job No.	: 600	-194999-1
SDG No.	:					
Matrix:	Water	Level	: Low	Lab Fil	e ID:	A30903.d

Lab ID: LCSD 600-279414/4 Client ID:

	SPIKE ADDED	LCSD CONCENTRATION	LCSD	olc .	QC LIMITS		#
COMPOUND	(mg/L)	(mg/L)	REC	RPD	RPD	REC	π
1,1-Dichloroethane	0.0100	0.01025	103	1	20	70-140	
1,1-Dichloroethene	0.0100	0.01046	105	1	20	58-148	
Benzene	0.0100	0.01079	108	2	20	70-130	
Naphthalene	0.0100	0.01400	140	13	20	10-150	
Tetrachloroethene	0.0100	0.01200	120	3	20	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-194999-1
-----	-------	----------	--------------	---------	----------	--------------

SDG No.: ____

Matrix: Water Level: Low Lab File ID: A30510.d

Lab ID: 600-194999-12 MS Client ID: Artesia-MW28-102919 MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS	#
COMPOUND	(mg/L)	(mg/L)	$({\tt mg/L})$	REC	REC	
1,1-Dichloroethane	0.0100	0.00553	0.01454	90	70-140	
1,1-Dichloroethene	0.0100	0.0132	0.01921	60	58-148	
Benzene	0.0100	0.000176 U	0.009915	99	70-130	
Naphthalene	0.0100	0.000316J	0.01097	107	10-150	
Tetrachloroethene	0.0100	0.0178	0.03042	126	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-194999-1
-----	-------	----------	--------------	---------	----------	--------------

SDG No.: ____

Matrix: Water Level: Low Lab File ID: A30512.d

Lab ID: 600-194999-15 MS Client ID: Artesia-MW34-102919 MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(mg/L)	(mg/L)	(mg/L)	REC	REC	
1,1-Dichloroethane	0.0100	0.00104	0.009147	81	70-140	
1,1-Dichloroethene	0.0100	0.000784 J	0.006369	56	58-148	F1
Benzene	0.0100	0.000176 U	0.009160	92	70-130	
Naphthalene	0.0100	0.000174 J	0.01287	127	10-150	
Tetrachloroethene	0.0100	0.00126	0.01215	109	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name	e: Eurofins TestAme	rica, Houston	Job No.: 600-194999-1
SDG No.:	:		
Matrix:	Water	Level: Low	Lab File ID: A30511.d
Lab ID:	600-194999-12 MSD		Client ID: Artesia-MW28-102919 MSD

	SPIKE ADDED	MSD CONCENTRATION	MSD %	olo	QC LIMITS		#
COMPOUND	(mg/L)	(mg/L)	REC	RPD	RPD	REC	"
1,1-Dichloroethane	0.0100	0.01380	83	5	30	70-140	
1,1-Dichloroethene	0.0100	0.01877	55	2	30	58-148	F1
Benzene	0.0100	0.009215	92	7	30	70-130	
Naphthalene	0.0100	0.01180	115	7	30	10-150	
Tetrachloroethene	0.0100	0.02864	108	6	30	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name	e: Eurofins TestAme	rica, Houston	Job No.: 600-194999-1
SDG No.	:		
Matrix:	Water	Level: Low	Lab File ID: A30513.d
Lab ID:	600-194999-15 MSD		Client ID: Artesia-MW34-102919 MSD

	SPIKE ADDED	MSD CONCENTRATION	MSD %	Olc .	QC LIMITS		#
	ADDED	CONCENTRATION	70	0			#
COMPOUND	(mg/L)	(mg/L)	REC	RPD	RPD	REC	
1,1-Dichloroethane	0.0100	0.009379	83	3	30	70-140	
1,1-Dichloroethene	0.0100	0.006394	56	0	30	58-148	F1
Benzene	0.0100	0.009334	93	2	30	70-130	
Naphthalene	0.0100	0.01322	130	3	30	10-150	
Tetrachloroethene	0.0100	0.01183	106	3	30	47-150	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260B}$

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Lab File ID: A30505.d	Lab Sample ID: MB 600-279189/6
Matrix: Water	Heated Purge: (Y/N) N
Instrument ID: CHVOAMS07	Date Analyzed: 11/01/2019 10:27
GC Column: DB-VRX 60 ID: 0.25 (mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB		
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZE	ΞD
	LCS 600-279189/3	A30502.d	11/01/2019 0	9:17
	LCSD 600-279189/4	A30503a.d	11/01/2019 1	0:50
Artesia-MW28-102919	600-194999-12	A30507.d	11/01/2019 1	1:38
Artesia-MW34-102919	600-194999-15	A30508.d	11/01/2019 1	2:01
Artesia-MW28-102919 MS	600-194999-12 MS	A30510.d	11/01/2019 1	2:49
Artesia-MW28-102919 MSD	600-194999-12 MSD	A30511.d	11/01/2019 1	3:13
Artesia-MW34-102919 MS	600-194999-15 MS	A30512.d	11/01/2019 1	3:37
Artesia-MW34-102919 MSD	600-194999-15 MSD	A30513.d	11/01/2019 1	4:01
Artesia-Outlet-102919	600-194999-1	A30515.d	11/01/2019 1	4:50
Artesia-MW30-102919	600-194999-2	A30516.d	11/01/2019 1	5:14
Artesia-MD30-102919	600-194999-3	A30517.d	11/01/2019 1	5:38
Artesia-MW32-102919	600-194999-4	A30518.d	11/01/2019 1	6:02
Artesia-MW36-102919	600-194999-5	A30519.d	11/01/2019 1	6:26
Artesia-MW12-102919	600-194999-6	A30520.d	11/01/2019 1	6:51
Artesia-MW17C-102919	600-194999-7	A30521.d	11/01/2019 1	7:15
Artesia-MW11-102919	600-194999-8	A30522.d	11/01/2019 1	7:39
Artesia-MD11-102919	600-194999-9	A30523.d	11/01/2019 1	8:03
Artesia-MW29-102919	600-194999-10	A30524.d	11/01/2019 1	8:28
Artesia-MW35-102919	600-194999-11	A30525.d	11/01/2019 1	8:53
Artesia-MW25-102919	600-194999-13	A30526.d	11/01/2019 1	9:18
Artesia-MW31-102919	600-194999-14	A30527.d	11/01/2019 1	9:43
Artesia-MW37-102919	600-194999-16	A30528.d	11/01/2019 2	0:08

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Lab File ID: A30805.d	Lab Sample ID: MB 600-279297/6
Matrix: Water	Heated Purge: (Y/N) N
Instrument ID: CHVOAMS07	Date Analyzed: 11/04/2019 10:29
GC Column: DB-VRX 60 ID: 0.25(mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 600-279297/3	A30802.d	11/04/2019 09:17
	LCSD 600-279297/4	A30803.d	11/04/2019 09:41
Artesia-MW12-102919 DL	600-194999-6 DL	A30824.d	11/04/2019 18:03
Artesia-MW38-102919	600-194999-17	A30825.d	11/04/2019 18:27
Artesia-MW38-102919 DL	600-194999-17 DL	A30826.d	11/04/2019 18:51

FORM IV GC/MS VOA METHOD BLANK SUMMARY

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Lab File ID: A30905.d	Lab Sample ID: MB 600-279414/6
Matrix: Water	Heated Purge: (Y/N) N
Instrument ID: CHVOAMS07	Date Analyzed: 11/05/2019 11:07
GC Column: DB-VRX 60 ID: 0.25(mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 600-279414/3	A30902.d	11/05/2019 09:54
	LCSD 600-279414/4	A30903.d	11/05/2019 10:18
Artesia-Inlet-102919	600-194999-19	A30921.d	11/05/2019 17:33
Artesia-MID-102919	600-194999-20	A30922.d	11/05/2019 17:57
Artesia-MW-22-102919	600-194999-21	A30923.d	11/05/2019 18:21
Artesia-TB01-102919	600-194999-18	A30924.d	11/05/2019 18:45
Artesia-MW38-102919	600-194999-17	A30925.d	11/05/2019 19:09

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab File ID: A29000.d BFB Injection Date: 10/17/2019

Instrument ID: CHVOAMS07 BFB Injection Time: 09:07

Analysis Batch No.: 277761

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	20.5	
75	30.0 - 60.0 % of mass 95	46.1	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	5.9	
173	Less than 2.0 % of mass 174	0.0	(0.0) 1
174	50.0 - 120.00 % of mass 95	89.7	
175	5.0 - 9.0 % of mass 174	6.7	(7.4) 1
176	95.0 - 101.0 % of mass 174	85.3	(95.1) 1
177	5.0 - 9.0 % of mass 176	6.2	(7.2) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 600-277761/2	A29001.d	10/17/2019	09:37
	IC 600-277761/3	A29002.d	10/17/2019	10:01
	IC 600-277761/4	A29003.d	10/17/2019	10:27
	IC 600-277761/5	A29004.d	10/17/2019	10:51
	ICIS 600-277761/6	A29005.d	10/17/2019	11:15
	IC 600-277761/7	A29006.d	10/17/2019	11:40
	IC 600-277761/8	A29007.d	10/17/2019	12:04
	ICV 600-277761/10	A29009B.d	10/17/2019	14:31

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab File ID: A30500.d BFB Injection Date: 11/01/2019

Instrument ID: CHVOAMS07 BFB Injection Time: 08:08

Analysis Batch No.: 279189

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	19.7	
75	30.0 - 60.0 % of mass 95	46.3	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.5	
173	Less than 2.0 % of mass 174	0.1	(0.1) 1
174	50.0 - 120.00 % of mass 95	90.1	
175	5.0 - 9.0 % of mass 174	7.3	(8.1) 1
176	95.0 - 101.0 % of mass 174	86.6	(96.1) 1
177	5.0 - 9.0 % of mass 176	5.8	(6.7) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 600-279189/2	A30501.d	11/01/2019	08:34
	LCS 600-279189/3	A30502.d	11/01/2019	09:17
	MB 600-279189/6	A30505.d	11/01/2019	10:27
	LCSD 600-279189/4	A30503a.d	11/01/2019	10:50
Artesia-MW28-102919	600-194999-12	A30507.d	11/01/2019	11:38
Artesia-MW34-102919	600-194999-15	A30508.d	11/01/2019	12:01
Artesia-MW28-102919 MS	600-194999-12 MS	A30510.d	11/01/2019	12:49
Artesia-MW28-102919 MSD	600-194999-12 MSD	A30511.d	11/01/2019	13:13
Artesia-MW34-102919 MS	600-194999-15 MS	A30512.d	11/01/2019	13:37
Artesia-MW34-102919 MSD	600-194999-15 MSD	A30513.d	11/01/2019	14:01
Artesia-Outlet-102919	600-194999-1	A30515.d	11/01/2019	14:50
Artesia-MW30-102919	600-194999-2	A30516.d	11/01/2019	15:14
Artesia-MD30-102919	600-194999-3	A30517.d	11/01/2019	15:38
Artesia-MW32-102919	600-194999-4	A30518.d	11/01/2019	16:02
Artesia-MW36-102919	600-194999-5	A30519.d	11/01/2019	16:26
Artesia-MW12-102919	600-194999-6	A30520.d	11/01/2019	16:51
Artesia-MW17C-102919	600-194999-7	A30521.d	11/01/2019	17:15
Artesia-MW11-102919	600-194999-8	A30522.d	11/01/2019	17:39
Artesia-MD11-102919	600-194999-9	A30523.d	11/01/2019	18:03
Artesia-MW29-102919	600-194999-10	A30524.d	11/01/2019	18:28
Artesia-MW35-102919	600-194999-11	A30525.d	11/01/2019	18:53
Artesia-MW25-102919	600-194999-13	A30526.d	11/01/2019	19:18
Artesia-MW31-102919	600-194999-14	A30527.d	11/01/2019	19:43
Artesia-MW37-102919	600-194999-16	A30528.d	11/01/2019	20:08

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab File ID: A30800.d BFB Injection Date: 11/04/2019

Instrument ID: CHVOAMS07 BFB Injection Time: 07:58

Analysis Batch No.: 279297

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0 % of mass 95	19.6	
75	30.0 - 60.0 % of mass 95	44.9	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.7	
173	Less than 2.0 % of mass 174	0.0	(0.0) 1
174	50.0 - 120.00 % of mass 95	94.9	
175	5.0 - 9.0 % of mass 174	6.7	(7.0) 1
176	95.0 - 101.0 % of mass 174	90.6	(95.5) 1
177	5.0 - 9.0 % of mass 176	5.9	(6.5) 2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 600-279297/2	A30801.d	11/04/2019	08:32
	LCS 600-279297/3	A30802.d	11/04/2019	09:17
	LCSD 600-279297/4	A30803.d	11/04/2019	09:41
	MB 600-279297/6	A30805.d	11/04/2019	10:29
Artesia-MW12-102919 DL	600-194999-6 DL	A30824.d	11/04/2019	18:03
Artesia-MW38-102919	600-194999-17	A30825.d	11/04/2019	18:27
Artesia-MW38-102919 DL	600-194999-17 DL	A30826.d	11/04/2019	18:51

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab File ID: A30900.d BFB Injection Date: 11/05/2019

Instrument ID: CHVOAMS07 BFB Injection Time: 08:10

Analysis Batch No.: 279414

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0 % of mass 95	19.4		
75	30.0 - 60.0 % of mass 95	44.6		
95	Base Peak, 100% relative abundance	100.0		
96	5.0 - 9.0 % of mass 95	6.9		
173	Less than 2.0 % of mass 174	0.8	(0.9) 1	
174	50.0 - 120.00 % of mass 95	89.2		
175	5.0 - 9.0 % of mass 174	7.5	(8.5) 1	
176	95.0 - 101.0 % of mass 174	89.8	(100.7) 1	
177	5.0 - 9.0 % of mass 176	6.1	(6.8) 2	

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 600-279414/2	A30901.d	11/05/2019	09:09
	LCS 600-279414/3	A30902.d	11/05/2019	09:54
	LCSD 600-279414/4	A30903.d	11/05/2019	10:18
	MB 600-279414/6	A30905.d	11/05/2019	11:07
Artesia-Inlet-102919	600-194999-19	A30921.d	11/05/2019	17:33
Artesia-MID-102919	600-194999-20	A30922.d	11/05/2019	17:57
Artesia-MW-22-102919	600-194999-21	A30923.d	11/05/2019	18:21
Artesia-TB01-102919	600-194999-18	A30924.d	11/05/2019	18:45
Artesia-MW38-102919	600-194999-17	A30925.d	11/05/2019	19:09

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Sample No.: ICIS 600-277761/6 Date Analyzed: 10/17/2019 11:15

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm)

Lab File ID (Standard): A29005.d Heated Purge: (Y/N) N

Calibration ID: 16917

	FB		CBNZd	15	DCBd.	4
	AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT	406865	8.72	143485	11.74	156616	14.32
UPPER LIMIT	813730	9.22	286970	12.24	313232	14.82
LOWER LIMIT	203433	8.22	71743	11.24	78308	13.82
LAB SAMPLE ID CLIENT SAMPLE ID						
ICV 600-277761/10	488715	8.72	163455	11.74	173063	14.32
CCVIS 600-279189/2	378444	8.71	128494	11.74	127283	14.32
CCVIS 600-279297/2	461035	8.72	162764	11.75	178970	14.32
CCVIS 600-279414/2	415359	8.72	144542	11.75	153051	14.32

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Sample No.: CCVIS 600-279189/2 Date Analyzed: 11/01/2019 08:34

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm)

Lab File ID (Standard): A30501.d Heated Purge: (Y/N) N

Calibration ID: 16917

		FB		CBNZc	1.5	DCBd.	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		378444	8.71	128494	11.74	127283	14.32
UPPER LIMIT		756888	9.21	256988	12.24	254566	14.82
LOWER LIMIT		189222	8.21	64247	11.24	63642	13.82
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 600-279189/3		363937	8.71	121375	11.74	124330	14.32
MB 600-279189/6		330822	8.72	114411	11.75	114140	14.32
LCSD 600-279189/4		345837	8.72	118629	11.75	134855	14.32
600-194999-12	Artesia-MW28-102919	332051	8.72	117066	11.75	123727	14.32
600-194999-15	Artesia-MW34-102919	328551	8.72	115271	11.74	124498	14.32
600-194999-12 MS	Artesia-MW28-102919 MS	372525	8.72	135900	11.75	155301	14.32
600-194999-12 MSD	Artesia-MW28-102919 MSD	378724	8.72	141155	11.75	162101	14.32
600-194999-15 MS	Artesia-MW34-102919 MS	380761	8.72	137897	11.75	159364	14.32
600-194999-15 MSD	Artesia-MW34-102919 MSD	373671	8.72	138124	11.75	158256	14.32
600-194999-1	Artesia-Outlet-102919	349443	8.72	130589	11.75	140897	14.32
600-194999-2	Artesia-MW30-102919	337893	8.72	122367	11.75	129946	14.32
600-194999-3	Artesia-MD30-102919	323714	8.72	121927	11.75	130282	14.32
600-194999-4	Artesia-MW32-102919	321979	8.72	119521	11.75	130712	14.32
600-194999-5	Artesia-MW36-102919	321351	8.72	118735	11.75	169040	14.32
600-194999-6	Artesia-MW12-102919	391275	8.72	139059	11.75	182673	14.32
600-194999-7	Artesia-MW17C-102919	410764	8.72	152232	11.75	177183	14.32
600-194999-8	Artesia-MW11-102919	415856	8.72	152423	11.75	172088	14.32
600-194999-9	Artesia-MD11-102919	400882	8.72	149353	11.75	165791	14.33
600-194999-10	Artesia-MW29-102919	400037	8.72	146415	11.75	162171	14.32
600-194999-11	Artesia-MW35-102919	387208	8.72	143182	11.75	155342	14.33
600-194999-13	Artesia-MW25-102919	349699	8.72	130574	11.76	136579	14.33
600-194999-14	Artesia-MW31-102919	339839	8.72	122553	11.76	131532	14.33
600-194999-16	Artesia-MW37-102919	334536	8.72	120718	11.76	143718	14.33

FB = Fluorobenzene

CBNZd5 = Chlorobenzene-d5

DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Sample No.: CCVIS 600-279297/2 Date Analyzed: 11/04/2019 08:32

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm)

Lab File ID (Standard): A30801.d Heated Purge: (Y/N) N

Calibration ID: 16917

		FB		CBNZd	15	DCBd.	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		461035	8.72	162764	11.75	178970	14.32
UPPER LIMIT		922070	9.22	325528	12.25	357940	14.82
LOWER LIMIT		230518	8.22	81382	11.25	89485	13.82
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 600-279297/3		423102	8.72	146000	11.75	163491	14.32
LCSD 600-279297/4		421255	8.72	146127	11.75	161356	14.32
MB 600-279297/6		409950	8.72	139010	11.75	142140	14.32
600-194999-6 DL	Artesia-MW12-102919 DL	306933	8.72	108852	11.74	119865	14.32
600-194999-17	Artesia-MW38-102919	315875	8.72	108426	11.75	132851	14.32
600-194999-17 DL	Artesia-MW38-102919 DL	371184	8.72	129115	11.75	141543	14.32

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Sample No.: CCVIS 600-279414/2 Date Analyzed: 11/05/2019 09:09

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm)

Lab File ID (Standard): A30901.d Heated Purge: (Y/N) N

Calibration ID: 16917

		FB		CBNZd	15	DCBd	4
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		415359	8.72	144542	11.75	153051	14.32
UPPER LIMIT		830718	9.22	289084	12.25	306102	14.82
LOWER LIMIT		207680	8.22	72271	11.25	76526	13.82
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 600-279414/3		402696	8.72	139436	11.75	154450	14.32
LCSD 600-279414/4		399737	8.72	142724	11.75	157118	14.32
MB 600-279414/6		362364	8.72	128007	11.75	137131	14.33
600-194999-19	Artesia-Inlet-102919	313535	8.72	114867	11.75	122439	14.32
600-194999-20	Artesia-MID-102919	312556	8.72	113719	11.75	120447	14.32
600-194999-21	Artesia-MW-22-102919	318087	8.72	115990	11.75	123726	14.33
600-194999-18	Artesia-TB01-102919	307304	8.72	111733	11.75	117027	14.32
600-194999-17	Artesia-MW38-102919	302723	8.72	107037	11.75	129841	14.32

FB = Fluorobenzene
CBNZd5 = Chlorobenzene-d5
DCBd4 = 1,4-Dichlorobenzene-d4

Area Limit = 50%-200% of internal standard area RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-Outlet-102919 Lab Sample ID: 600-194999-1 Matrix: Water Lab File ID: A30515.d Analysis Method: 8260B Date Collected: 10/29/2019 08:25 Date Analyzed: 11/01/2019 14:50 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00403		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00567		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000342	J	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	108		50-134
460-00-4	4-Bromofluorobenzene	125		67-139
1868-53-7	Dibromofluoromethane	96		62-130
2037-26-5	Toluene-d8 (Surr)	103		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW30-102919 Lab Sample ID: 600-194999-2 Matrix: Water Lab File ID: A30516.d Date Collected: 10/29/2019 09:05 Analysis Method: 8260B Date Analyzed: 11/01/2019 15:14 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00132		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00315		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000249	J	0.00200	0.000129
127-18-4	Tetrachloroethene	0.00498		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	104		50-134
460-00-4	4-Bromofluorobenzene	133		67-139
1868-53-7	Dibromofluoromethane	95		62-130
2037-26-5	Toluene-d8 (Surr)	106		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MD30-102919 Lab Sample ID: 600-194999-3 Matrix: Water Lab File ID: A30517.d Analysis Method: 8260B Date Collected: 10/29/2019 09:10 Date Analyzed: 11/01/2019 15:38 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00141		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00345		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000184	J	0.00200	0.000129
127-18-4	Tetrachloroethene	0.00476		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	108		50-134
460-00-4	4-Bromofluorobenzene	127		67-139
1868-53-7	Dibromofluoromethane	100		62-130
2037-26-5	Toluene-d8 (Surr)	103		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW32-102919 Lab Sample ID: 600-194999-4 Matrix: Water Lab File ID: A30518.d Analysis Method: 8260B Date Collected: 10/29/2019 09:25 Date Analyzed: 11/01/2019 16:02 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000171	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000921	J	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		50-134
460-00-4	4-Bromofluorobenzene	122		67-139
1868-53-7	Dibromofluoromethane	97		62-130
2037-26-5	Toluene-d8 (Surr)	101		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW36-102919 Lab Sample ID: 600-194999-5 Matrix: Water Lab File ID: A30519.d Analysis Method: 8260B Date Collected: 10/29/2019 11:33 Date Analyzed: 11/01/2019 16:26 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.0337		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000593	J	0.00100	0.000192
71-43-2	Benzene	0.0129		0.00100	0.000176
91-20-3	Naphthalene	0.0236		0.00200	0.000129
127-18-4	Tetrachloroethene	0.0100		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	108		50-134
460-00-4	4-Bromofluorobenzene	111		67-139
1868-53-7	Dibromofluoromethane	95		62-130
2037-26-5	Toluene-d8 (Surr)	102		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW12-102919 Lab Sample ID: 600-194999-6 Matrix: Water Lab File ID: A30520.d Analysis Method: 8260B Date Collected: 10/29/2019 12:23 Date Analyzed: 11/01/2019 16:51 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-35-4	1,1-Dichloroethene	0.00252		0.00100	0.000192
71-43-2	Benzene	0.00858		0.00100	0.000176
91-20-3	Naphthalene	0.0297		0.00200	0.000129
127-18-4	Tetrachloroethene	0.00172		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	106		50-134
460-00-4	4-Bromofluorobenzene	117		67-139
1868-53-7	Dibromofluoromethane	98		62-130
2037-26-5	Toluene-d8 (Surr)	108		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW12-102919 DL Lab Sample ID: 600-194999-6 DL Matrix: Water Lab File ID: A30824.d Date Collected: 10/29/2019 12:23 Analysis Method: 8260B Sample wt/vol: 20(mL) Date Analyzed: 11/04/2019 18:03 Dilution Factor: 5 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279297 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.0502		0.00500	0.000840

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	93		50-134
460-00-4	4-Bromofluorobenzene	124		67-139
1868-53-7	Dibromofluoromethane	90		62-130
2037-26-5	Toluene-d8 (Surr)	105		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW17C-102919 Lab Sample ID: 600-194999-7 Matrix: Water Lab File ID: A30521.d Date Collected: 10/29/2019 13:00 Analysis Method: 8260B Date Analyzed: 11/01/2019 17:15 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000178	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000350	J	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.00222		0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		50-134
460-00-4	4-Bromofluorobenzene	120		67-139
1868-53-7	Dibromofluoromethane	96		62-130
2037-26-5	Toluene-d8 (Surr)	105		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW11-102919 Lab Sample ID: 600-194999-8 Matrix: Water Lab File ID: A30522.d Date Collected: 10/29/2019 16:15 Analysis Method: 8260B Date Analyzed: 11/01/2019 17:39 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00488		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000201	J	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000441	J	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000390	J	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	104		50-134
460-00-4	4-Bromofluorobenzene	120		67-139
1868-53-7	Dibromofluoromethane	95		62-130
2037-26-5	Toluene-d8 (Surr)	103		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MD11-102919 Lab Sample ID: 600-194999-9 Matrix: Water Lab File ID: A30523.d Analysis Method: 8260B Date Collected: 10/29/2019 16:15 Date Analyzed: 11/01/2019 18:03 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00457		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000205	J	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000223	J	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000399	J	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		50-134
460-00-4	4-Bromofluorobenzene	124		67-139
1868-53-7	Dibromofluoromethane	96		62-130
2037-26-5	Toluene-d8 (Surr)	100		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW29-102919 Lab Sample ID: 600-194999-10 Matrix: Water Lab File ID: A30524.d Date Collected: 10/29/2019 10:19 Analysis Method: 8260B Date Analyzed: 11/01/2019 18:28 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.0103		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.0267		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.0365		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		50-134
460-00-4	4-Bromofluorobenzene	125		67-139
1868-53-7	Dibromofluoromethane	96		62-130
2037-26-5	Toluene-d8 (Surr)	103		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW35-102919 Lab Sample ID: 600-194999-11 Matrix: Water Lab File ID: A30525.d Date Collected: 10/29/2019 10:38 Analysis Method: 8260B Date Analyzed: 11/01/2019 18:53 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-35-4	1,1-Dichloroethene	0.0234		0.00100	0.000192
127-18-4	Tetrachloroethene	0.0262		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		50-134
460-00-4	4-Bromofluorobenzene	124		67-139
1868-53-7	Dibromofluoromethane	97		62-130
2037-26-5	Toluene-d8 (Surr)	103		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW28-102919 Lab Sample ID: 600-194999-12 Matrix: Water Lab File ID: A30507.d Analysis Method: 8260B Date Collected: 10/29/2019 11:15 Date Analyzed: 11/01/2019 11:38 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00553		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.0132	F1	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000316	J	0.00200	0.000129
127-18-4	Tetrachloroethene	0.0178		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	96		50-134
460-00-4	4-Bromofluorobenzene	124		67-139
1868-53-7	Dibromofluoromethane	90		62-130
2037-26-5	Toluene-d8 (Surr)	107		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW25-102919 Lab Sample ID: 600-194999-13 Matrix: Water Lab File ID: A30526.d Date Collected: 10/29/2019 11:51 Analysis Method: 8260B Date Analyzed: 11/01/2019 19:18 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000989	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000473	J	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000895	J	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		50-134
460-00-4	4-Bromofluorobenzene	126		67-139
1868-53-7	Dibromofluoromethane	95		62-130
2037-26-5	Toluene-d8 (Surr)	102		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW31-102919 Lab Sample ID: 600-194999-14 Matrix: Water Lab File ID: A30527.d Analysis Method: 8260B Date Collected: 10/29/2019 12:45 Date Analyzed: 11/01/2019 19:43 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00316		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00215		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	106		50-134
460-00-4	4-Bromofluorobenzene	121		67-139
1868-53-7	Dibromofluoromethane	92		62-130
2037-26-5	Toluene-d8 (Surr)	103		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW34-102919 Lab Sample ID: 600-194999-15 Matrix: Water Lab File ID: A30508.d Analysis Method: 8260B Date Collected: 10/29/2019 13:17 Sample wt/vol: 20(mL) Date Analyzed: 11/01/2019 12:01 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00104		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000784	J F1	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000174	J	0.00200	0.000129
127-18-4	Tetrachloroethene	0.00126		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		50-134
460-00-4	4-Bromofluorobenzene	128		67-139
1868-53-7	Dibromofluoromethane	93		62-130
2037-26-5	Toluene-d8 (Surr)	108		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW37-102919 Lab Sample ID: 600-194999-16 Matrix: Water Lab File ID: A30528.d Analysis Method: 8260B Date Collected: 10/29/2019 15:08 Date Analyzed: 11/01/2019 20:08 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.0475		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00822		0.00100	0.000192
71-43-2	Benzene	0.00701		0.00100	0.000176
91-20-3	Naphthalene	0.0114		0.00200	0.000129
127-18-4	Tetrachloroethene	0.00688		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		50-134
460-00-4	4-Bromofluorobenzene	122		67-139
1868-53-7	Dibromofluoromethane	94		62-130
2037-26-5	Toluene-d8 (Surr)	105		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW38-102919 Lab Sample ID: 600-194999-17 Matrix: Water Lab File ID: A30825.d Date Collected: 10/29/2019 14:20 Analysis Method: 8260B Date Analyzed: 11/04/2019 18:27 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 279297 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-35-4	1,1-Dichloroethene	0.0101		0.00100	0.000192
71-43-2	Benzene	0.00167		0.00100	0.000176
127-18-4	Tetrachloroethene	0.0108		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		50-134
460-00-4	4-Bromofluorobenzene	119		67-139
1868-53-7	Dibromofluoromethane	92		62-130
2037-26-5	Toluene-d8 (Surr)	106		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW38-102919 Lab Sample ID: 600-194999-17 Matrix: Water Lab File ID: A30925.d Date Collected: 10/29/2019 14:20 Analysis Method: 8260B Date Analyzed: 11/05/2019 19:09 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 279414 Units: mg/L

	CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
Ī	91-20-3	Naphthalene	0.0221		0.00200	0.000129

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		50-134
460-00-4	4-Bromofluorobenzene	119		67-139
1868-53-7	Dibromofluoromethane	91		62-130
2037-26-5	Toluene-d8 (Surr)	105		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW38-102919 DL Lab Sample ID: 600-194999-17 DL Matrix: Water Lab File ID: A30826.d Analysis Method: 8260B Date Collected: 10/29/2019 14:20 Date Analyzed: 11/04/2019 18:51 Sample wt/vol: 20(mL) Dilution Factor: 10 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 279297 Units: mg/L

CAS NO. COMPOUND NAME		RESULT	Q	RL	MDL	
75-34-3	1,1-Dichloroethane	0.154		0.0100	0.00168	

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		50-134
460-00-4	4-Bromofluorobenzene	126		67-139
1868-53-7	Dibromofluoromethane	93		62-130
2037-26-5	Toluene-d8 (Surr)	108		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-TB01-102919 Lab Sample ID: 600-194999-18 Matrix: Water Lab File ID: A30924.d Analysis Method: 8260B Date Collected: 10/29/2019 08:05 Date Analyzed: 11/05/2019 18:45 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 279414 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	92		50-134
460-00-4	4-Bromofluorobenzene	125		67-139
1868-53-7	Dibromofluoromethane	90		62-130
2037-26-5	Toluene-d8 (Surr)	102		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-Inlet-102919 Lab Sample ID: 600-194999-19 Matrix: Water Lab File ID: A30921.d Date Collected: 10/29/2019 08:10 Analysis Method: 8260B Date Analyzed: 11/05/2019 17:33 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279414 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.00321		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.00909		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.0102		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		50-134
460-00-4	4-Bromofluorobenzene	126		67-139
1868-53-7	Dibromofluoromethane	93		62-130
2037-26-5	Toluene-d8 (Surr)	102		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MID-102919 Lab Sample ID: 600-194999-20 Matrix: Water Lab File ID: A30922.d Date Collected: 10/29/2019 08:20 Analysis Method: 8260B Date Analyzed: 11/05/2019 17:57 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 279414 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	-3 1,1-Dichloroethane			0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.0111		0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.00201		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		50-134
460-00-4	4-Bromofluorobenzene	127		67-139
1868-53-7	Dibromofluoromethane	93		62-130
2037-26-5	Toluene-d8 (Surr)	103		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW-22-102919 Lab Sample ID: 600-194999-21 Matrix: Water Lab File ID: A30923.d Analysis Method: 8260B Date Collected: 10/29/2019 12:12 Sample wt/vol: 20(mL) Date Analyzed: 11/05/2019 18:21 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 279414 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000832	J	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		50-134
460-00-4	4-Bromofluorobenzene	120		67-139
1868-53-7	Dibromofluoromethane	89		62-130
2037-26-5	Toluene-d8 (Surr)	98		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 277761

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 600-277761/2	A29001.d
Level 2	IC 600-277761/3	A29002.d
Level 3	IC 600-277761/4	A29003.d
Level 4	IC 600-277761/5	A29004.d
Level 5	ICIS 600-277761/6	A29005.d
Level 6	IC 600-277761/7	A29006.d
Level 7	IC 600-277761/8	A29007.d

ANALYTE			RRF			CURVE		COEFFICI	ENT :	# MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COD
Dichlorodifluoromethane	0.3319	0.4185	0.4438	0.4051	0.3940	Ave		0.3871			10.2	15.0		
Chloromethane	0.4804 0.3574	0.4445	0.4705	0.4286	0.4228	Ave		0.4296		0.1000	9.7	15.0		
Vinyl chloride	0.3776 0.3346	0.3716	0.4106	0.3955	0.3696	Ave		0.3770			6.3	15.0		
Butadiene	0.6739 0.4509	0.4599	0.5107	0.5032	0.4777	Ave		0.5101			14.8	15.0		
Ethylene oxide	0.0254 0.0198	0.0200	0.0188	0.0186	0.0198	Ave		0.0204			11.2	15.0		
Bromomethane	0.0963 0.1743	0.1676 0.2073	0.1775	0.1718	0.1872	Lin2	-0.044	0.1931					0.9930	0.9900
Chloroethane	0.1804 0.1623	0.1852 0.1769	0.2105	0.1905	0.1786	Ave		0.1835			8.0	15.0		
Dichlorofluoromethane	0.4921 0.3903	0.4411	0.4676	0.4422	0.4581	Ave		0.4478			7.0	15.0		
Acrolein	0.0093 0.0087	0.0085 0.0087	0.0071	0.0084	0.0075	Ave		0.0083			9.1	15.0		
Trichlorofluoromethane	0.4144 0.4856	0.5227 0.5126	0.5806	0.5425	0.5321	Ave		0.5129			10.2	15.0		
Acetonitrile	0.0112 0.0137	0.0157 0.0135	0.0121	0.0105	0.0124	Ave		0.0127			13.7	15.0		
Isopropyl alcohol	0.0063 0.0057	0.0077 0.0058	0.0049	0.0055	0.0050	Lin1	0.0032	0.0057					0.9950	0.9900
Acetone	0.0677 0.0261	0.0418 0.0250	0.0277	0.0285	0.0251	Lin1	0.0363	0.0245					0.9970	0.9900
Ethyl ether	0.1587 0.1526	0.1557 0.1537	0.1478	0.1518	0.1498	Ave		0.1529			2.4	15.0		

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 277761

SDG No.:

Instrument ID: $\underline{\text{CHVOAMS07}}$ GC Column: $\underline{\text{DB-VRX}}$ 60 ID: $\underline{\text{0.25 (mm)}}$ Heated Purge: (Y/N) N

Calibration Start Date: 10/17/2019 09:37 Calibration End Date: 10/17/2019 12:04 Calibration ID: 16917

ANALYTE			RRF			CURVE		COEFFICIE	NT	#	MIN RRF	%RSD	#	MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TIPE	В	M1	M2					*KSD	OR COD	OR COD
	LVL 6	LVL 7														
t-Butanol	0.0149	0.0108	0.0091	0.0083	0.0083	Lin1	0.0082	0.0098					T		0.9920	0.9900
	0.0100	0.0102														
1,1-Dichloroethene		0.3556	0.3115	0.2978	0.2991	Ave		0.3169				6.7		15.0		
	0.3070															
Acrylonitrile	0.0279		0.0282	0.0286	0.0262	Ave		0.0291				6.7		15.0		
	0.0305															
Iodomethane		0.2267	0.2681	0.3362	0.3874	Lin1	-0.207	0.4484							0.9940	0.9900
	0.4263															
Methylene Chloride	1.0973		0.3518	0.3142	0.2899	Lin1	0.3634	0.2692							0.9930	0.9900
	0.2836															
Methyl acetate		0.0844	0.0905	0.0942	0.0844	Ave		0.0954				10.5		15.0		
	0.0984															
1,1,2-Trichloro-1,2,2-trifluoroethane	0.3489		0.2668	0.2822	0.2956	Ave		0.2947				8.9		15.0		
	0.2971	0.2927														
3-Chloro-1-propene		0.1641	0.1679	0.1650	0.1713	Ave		0.1698				5.4		15.0		
	0.1684															
Carbon disulfide		0.8614	0.8621	0.8316	0.8202	Ave		0.8638				11.3	Т	15.0		
	0.8068															
trans-1,2-Dichloroethene	0.3695	0.3209	0.3372	0.3222	0.3355	Ave		0.3389				4.9		15.0		
	0.3383															
Methyl tert-butyl ether	0.5194	0.5051	0.4575	0.4700	0.4417	Ave		0.4755				5.7		15.0		
	0.4711	0.4639														
1,1-Dichloroethane	0.5579	0.5189	0.5058	0.5015	0.5017	Ave		0.5153			0.1000	3.9	Т	15.0		
	0.5027	0.5181														
Propionitrile		0.0114	0.0101	0.0113	0.0106	Ave		0.0118				11.1	Т	15.0		
	0.0130															
Vinyl acetate	0.2626		0.2638	0.2873	0.2805	Ave		0.2838				9.3	Т	15.0		
	0.3118															
2-Chloro-1,3-butadiene		0.4620	0.4833	0.4965	0.5305	Ave		0.5293				12.1	Т	15.0		
	0.5825															
Hexane	0.4222		0.4366	0.4583	0.4616	Ave		0.4577				9.5	Т	15.0		
	0.4999	0.5254														
Isopropyl ether	1.0732	1.0071	1.0020	1.0115	1.0296	Ave		1.0834				10.1		15.0		
	1.1683	1.2923														
2-Butanone (MEK)	0.0032		0.0036	0.0027	0.0088	Lin	-0.043	0.0127					Т		0.9950	0.9900
	0.0119															
Methacrylonitrile	0.0125	0.0114	0.0139	0.0148	0.0130	Ave		0.0138				11.3		15.0		
	0.0148															
cis-1,2-Dichloroethene		0.3224	0.3582	0.3384	0.3406	Ave		0.3411				3.9		15.0		
	0.3455	0.3555														

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 277761

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/17/2019 09:37 Calibration End Date: 10/17/2019 12:04 Calibration ID: 16917

ANALYTE			RRF			CURVE		COEFFICIEN	IT i	MIN RRF	%RSD		IAX	R^2		MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			8	RSD	OR COD		OR COD
	LVL 6	LVL 7														
Ethyl acetate	0.0889	0.0770	0.0801	0.0947	0.0926	Ave		0.0934			14.0		L5.0			
	0.1096	0.1106														
Chlorobromomethane	0.1596	0.1412	0.1341	0.1426	0.1388	Ave		0.1441			5.6		L5.0			
	0.1460	0.1465														
Tert-butyl ethyl ether	0.6626	0.6513	0.6446	0.6462	0.6334	Ave		0.6722			6.8	:	L5.0			
	0.7070	0.7604														
Chloroform	0.5584	0.5287	0.4795	0.5123	0.4977	Ave		0.5244			6.1	:	L5.0			
	0.5239	0.5700														
Isobutyl alcohol	0.0024	0.0075	0.0038	0.0041	0.0040	Lin	-0.128	0.0051						0.9920		0.9900
	0.0040	0.0051														
2,2-Dichloropropane	0.5370	0.4803	0.4754	0.4728	0.4743	Ave		0.4845			4.8		L5.0			
	0.4722	0.4795														
Tetrahydrofuran	0.0354	0.0209	0.0300	0.0283	0.0317	Ave		0.0292			15.0		L5.0			
	0.0297	0.0283														
1,2-Dichloroethane	0.2622	0.2578	0.2250	0.2315	0.2234	Ave		0.2382			6.6		L5.0			
	0.2379	0.2300														
1,1,1-Trichloroethane	0.5416	0.5365	0.5280	0.5103	0.5154	Ave		0.5319			2.7	:	L5.0			
	0.5445	0.5472														
n-Butanol	0.0011	0.0010	0.0017	0.0017	0.0017	Lin	-0.080	0.0025						0.9960		0.9900
a a = 1 1 2	0.0022	0.0024	0.0654	0.0550	0.000	_		0.0600							\rightarrow	
1,1-Dichloropropene	0.3809	0.3348	0.3654	0.3550	0.3671	Ave		0.3678			5.1	-	L5.0			
	0.3873	0.3844	0 4455	0 4000	0 1112			0 4076			4 0	.			\rightarrow	
Cyclohexane	0.4296		0.4455	0.4302	0.4443	Ave		0.4376			4.0	-	L5.0			
Goden Laboratela da	0.4657	0.4393	0.4796	0 4040	0 4040	2 -		0.5070			0 7		I F 0		_	
Carbon tetrachloride	0.6034 0.5047	0.4767	0.4796	0.4842	0.4948	Ave		0.5070			8.7	-	L5.0			
Description	1.3352	1.1002	1.1370	1.1063	1.1547	7		1.1799			7 1		L5.0		+	
Benzene	1.1847	1.2409	1.13/0	1.1063	1.134/	Ave		1.1/99			7.1	-	15.0			
Tert-amyl methyl ether	0.4973	0.5069	0.4438	0.4895	0.4626	7		0.4832			4.6	.	L5.0		+	
rerc-amyr metnyr etner	0.4973	0.4926	0.4430	0.4093	0.4626	Ave		0.4032			4.0	'	13.0			
Isooctane	0.4893	0.8016	0.8372	0.8619	0.8603	7110		0.8663			5.1		L5.0		+	
ISOUCCARE	0.9077	0.8600	0.0372	0.0019	0.0003	Ave		0.8663]].1	-	13.0			
Ethyl acrylate	0.2160		0.1541	0.1888	0.1974	7770		0.1921			12.5		L5.0		+	
Dony I doly I doc	0.2100	0.2113	0.1041	0.1000	0.17/4	1110		0.1721			12.5		0			
n-Heptane	0.3745	0.3846	0.4142	0.4274	0.4400	Ave		0.4241			8.4	 	15.0		+	
ii nepeane	0.4660	0.4616	0.1112	0.72/7	0.1100	1100		0.7271			0.4					
Dibromomethane	0.1492	0.1016	0.1061	0.1095	0.1007	Lin1	0.0126	0.1039			<u> </u>			0.9990	+	0.9900
2 12 1 cmcmc citatic	0.1039	0.1053	3.1001	3.1000	3.1007		0.0120	•••••								
1,2-Dichloropropane	0.2729	0.2547	0.2271	0.2365	0.2330	Ave		0.2486			6.8	 	L5.0		+	

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 277761

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/17/2019 09:37 Calibration End Date: 10/17/2019 12:04 Calibration ID: 16917

ANALYTE			RRF			CURVE		COEFFICI	ENT #	MIN RRF	%RSD		MAX	R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
	LVL 6	LVL 7													
2-Nitropropane	0.0431	0.0294	0.0295	0.0308	0.0310	Lin1	-0.011	0.0374						0.9920	0.9900
	0.0365	0.0392													
Trichloroethene	0.4511		0.3888	0.3810	0.3958	Ave		0.4050			6.3		15.0		
	0.4084	0.4263													
Bromodichloromethane	0.3251	0.3200	0.3149	0.3241	0.3183	Ave		0.3241			2.2		15.0		
	0.3320	0.3344													
Methyl methacrylate	0.0876	0.0738	0.0941	0.1096	0.1143	Lin1	-0.069	0.1230						0.9980	0.9900
	0.1245	0.1232													
1,4-Dioxane	0.0018	0.0011	0.0008	0.0007	0.0006	Lin2	0.0114	0.0006						0.9900	0.9900
	0.0007	0.0006													
2-Chloroethyl vinyl ether	0.0177		0.0117	0.0098	0.0095	Qua	0.0004	0.0105	0.0000366					0.9990	0.9900
	0.0126	0.0141													
Methylcyclohexane	0.4077	0.4203	0.4237	0.4512	0.4581	Ave		0.4451			6.4		15.0		
	0.4866	0.4683													
cis-1,3-Dichloropropene	0.9646		0.9049	0.8822	0.9142	Ave		0.8898			5.2		15.0		
	0.8742	0.8137													
4-Methyl-2-pentanone (MIBK)	0.1014		0.0763	0.0923	0.0927	Ave		0.0933			9.9		15.0		
	0.1012	0.1013													
trans-1,3-Dichloropropene	0.6783	0.6579	0.5782	0.6402	0.6001	Ave		0.6179			7.0		15.0		
	0.6114	0.5595													
1,1,2-Trichloroethane	0.5894	0.4549	0.4002	0.4101	0.3917	Lin2	0.1047	0.3686						0.9960	0.9900
	0.3921	0.3466	0.000		0.000	_		0.0015					4 = 0		
Ethyl methacrylate	0.4134	0.3738	0.3692	0.3882	0.3737	Ave		0.3845			4.3		15.0		
	0.3997	0.3733	4 0054	0.0100	0 0005	_		1 0000					4 = 0		
Toluene	2.1642		1.9751	2.0102	2.0285	Ave		1.9806			5.3		15.0		
1 0 0 1 1 1	1.9553	1.8375	0 6005	0 6060	0 6000	_		0 6016			0 7		1 - 0		
1,3-Dichloropropane	0.6642	0.7241	0.6035	0.6362	0.6330	Ave		0.6316			8.7		15.0		
0.77	0.6152	0.5451	0 1107	0 1050	0 1615	- 1 1	0.000	0 1604						0 0070	0.000
2-Hexanone	0.0875	0.1388	0.1187	0.1350	0.1615	Lini	-0.080	0.1604						0.9970	0.9900
D'hh l	0.1696	0.1562	0.6197	0.6314	0.6307	70 -		0 6201			7 1		1 - 0		
Dibromochloromethane	0.7169	0.6530	0.6197	0.6314	0.6307	Ave		0.6321			7.3		15.0		
- Dutul sestata			0.4800	0.4646	0.4589	7		0.4460			0 2		15.0		
n-Butyl acetate	0.4184	0.3697	0.4800	0.4646	0.4389	Ave		0.4400			9.3		13.0		
1,2-Dibromoethane	0.4912	0.4392	0.4435	0.4331	0.3995	70		0.4203		+	10.4	\vdash	15.0		$\overline{}$
I, Z-DIDIOHOHOHHHH	0.4812	0.4466	0.4433	0.4331	0.3993	Ave		0.4203			10.4		10.0		
Tetrachloroethene	0.3864	0.6940	0.7526	0.7009	0.7047	7.770		0.7023		+	3.7	1	15.0		+
TECT @CHTOTOE CHEHE	0.7045	0.6657	0.7526	0.7009	0.7047	Ave		0.7023			3.7		10.0		
1-Chlorohexane	0.6938		0.7606	0.7393	0 7644	7.770		0.7383		+	4.2	1	15.0		+
1-CIIIOIOIIEXAIIE	0.7360		0.7096	0./393	0./044	Ave		0./303			4.2		10.0		
	0./360	0.0906													

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 277761

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/17/2019 09:37 Calibration End Date: 10/17/2019 12:04 Calibration ID: 16917

ANALYTE			RRF			CURVE		COEFFICIE	NT #	MIN RRF	%RSD	 MAX	R^2	# MIN R	
	LVL 1 LVL 6	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR CC)D
1,1,1,2-Tetrachloroethane	0.9704	0.8031	0.8983	0.8463	0.8451	Δπο		0.8485			7.9	15.0			=
1,1,1,2 lectaeniolocenane	0.8026	0.7734	0.0303	0.0103	0.0451	7100		0.0403			,	13.0			
Chlorobenzene	2.9591	2.6585	2.5851	2.4995	2.4861	Ave		2.5504		0.3000	8.5	15.0			
	2.3621	2.3026													
Ethylbenzene	1.3561	1.4399	1.4066	1.3392	1.3383	Ave		1.3417			5.4	15.0			
	1.2929	1.2187													
m-Xylene & p-Xylene	2.8832		2.8902	2.8843	2.9183	Ave		2.8695			1.3	15.0			
	2.8476	2.8075													
Bromoform	0.4283	0.3125	0.2831	0.2876	0.2751	Lin2	0.0772	0.2598		0.1000			0.9950	0.99	100
	0.2748	0.2557													
Styrene	2.1898	2.1143	2.1622	2.2690	2.3386	Ave		2.2437			4.0	15.0			
- 11	2.3484	2.2834	0 0000	0 0000	0 0000	<u> </u>		0.0000			400	4 = 0			
Cyclohexanone	0.0095	0.0087	0.0072	0.0072	0.0070	Ave		0.0078			12.3	15.0			
	0.0075	0.0071	4 6050	1	4 6500	1		1 6100				45.0			
o-Xylene	1.7929		1.6252	1.6200	1.6539	Ave		1.6400			4.7	15.0			
1 1 0 0 m + 11	1.6023		0 4445	0 4055	0 4107	_		0 4605		0 2000	10.4	15 0			
1,1,2,2-Tetrachloroethane	0.5766 0.4417	0.5403 0.4470	0.4445	0.4257	0.4107	Ave		0.4695		0.3000	13.4	15.0			
trans-1,4-Dichloro-2-butene	0.4417	0.4470	0.0725	0.0888	0.0836	7		0.0912			14.0	15.0			_
trans-1,4-Dichioro-2-Dutene	0.0962	0.1143	0.0725	0.0888	0.0836	Ave		0.0912			14.0	15.0			
1,2,3-Trichloropropane	0.0926		0.1543	0.1291	0.1195	Tin?	0 0647	0.1169					0.9980	0.99	200
1,2,3-111CHIOTOPTOPANE	0.1222	0.1136	0.1343	0.1291	0.1193	111111111111111111111111111111111111111	0.0047	0.1109					0.9900	0.99	100
Isopropylbenzene	4.3010	3.7805	4.0149	3.8659	3.9953	Δ17Θ		4.0042			4.1	15.0			
130p10py1DenZene	4.0057	4.0662	4.0143	3.0055	3.7733	1100		1.0012			7.1	10.0			
Bromobenzene	1.1634	0.9033	0.8974	0.9219	0.8594	Ave		0.9366			10.9	15.0			_
BI OMODELIZETIC	0.9149	0.8955	0.0371	0.3213	0.0001	1100		0.3300			10.5	10.0			
N-Propylbenzene	1.2446		1.1533	1.1645	1.1843	Ave		1.1820			3.5	15.0			-
	1.2114	1.1965													
2-Chlorotoluene	1.2136		1.1414	1.0387	1.0501	Ave		1.0965			5.8	15.0			_
	1.0639	1.0546	-												
4-Chlorotoluene	3.0296	2.4596	2.5894	2.4788	2.5185	Ave		2.6089			7.4	15.0			
	2.5751	2.6109													
1,3,5-Trimethylbenzene	3.3238	3.0723	3.1541	3.1444	3.2485	Ave		3.2753			5.2	15.0			
_	3.4331	3.5510													
tert-Butylbenzene	2.9996	2.8533	3.0033	2.8822	3.0135	Ave		3.0035			3.7	15.0			
	3.0958	3.1770													
1,2,4-Trimethylbenzene	3.3499	2.9582	3.3420	3.2730	3.3182	Ave		3.3492			6.6	15.0			
	3.5317	3.6711				<u></u>									
sec-Butylbenzene	4.1551	3.8921	4.1851	3.9945	4.1365	Ave		4.1360			3.6	15.0			
	4.2533	4.3356													

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 277761

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/17/2019 09:37 Calibration End Date: 10/17/2019 12:04 Calibration ID: 16917

ANALYTE			RRF			CURVE		COEFFIC	IENT	# MIN RR	F %RSD			# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSI	OR COD	OR COD
	LVL 6	LVL 7												
Benzyl chloride	0.7461	0.7079	0.7368	0.7193	0.7206	Ave		0.7548			6.7	15.	0	
	0.8223	0.8305												
1,3-Dichlorobenzene	1.9905		1.7839	1.8387	1.8416	Ave		1.8968			4.8	15.	0	
	1.9621	2.0170												
4-Isopropyltoluene	3.9269	3.7429	3.8652	3.7653	3.9160	Ave		4.0034			7.3	15.	0	
	4.2627	4.5450												
1,4-Dichlorobenzene	2.2527	2.0627	2.0108	1.9189	1.8702	Ave		2.0386			6.4	15.	0	
	2.0070													
1,2,3-Trimethylbenzene	3.3621	3.0297	3.1981	3.1485	3.2603	Ave		3.2750			5.0	15.	0	
	3.4493	3.4772												
1,2-Dichlorobenzene	1.7108	1.6855	1.4743	1.5043	1.4479	Ave		1.5535			6.6	15.	0	
	1.5258	1.5258												
n-Butylbenzene	2.8946	2.6070	2.7160	2.7138	2.8891	Ave		2.8577			6.7	15.	0	
	3.0564	3.1267												
1,2-Dibromo-3-Chloropropane	0.1431		0.0801	0.0666	0.0622	Lin2	0.0421	0.0610					0.9960	0.9900
	0.0660	0.0628												
1,3,5-Trichlorobenzene	1.2358		1.0462	1.0431	1.0047	Ave		1.0718			7.0	15.	0	
	1.0602													
1,2,4-Trichlorobenzene	0.5617		0.5102	0.5042	0.5025	Ave		0.5361			6.3	15.	0	
	0.5538													
Naphthalene	0.6843	0.5948	0.6022	0.5689	0.5555	Ave		0.6106			7.3	15.	0	
	0.6469	0.6215												
Hexachlorobutadiene	0.2295		0.1767	0.1621	0.1607	Lin2	0.0374	0.1555					1.0000	0.9900
	0.1596	0.1515												
1,2,3-Trichlorobenzene	0.3083		0.2358	0.2181	0.1968	Lin1	0.0482	0.1996					0.9970	0.9900
	0.2182	0.1949												
Dibromofluoromethane	0.3417	0.2581	0.2840	0.2629	0.2596	Ave		0.2783			10.5	15.	0	
	0.2690	0.2730												
1,2-Dichloroethane-d4 (Surr)	0.2941	0.2138	0.1824	0.1609	0.1595	Lin2	0.0659	0.1560					0.9960	0.9900
	0.1676													
Toluene-d8 (Surr)	3.1618	2.8471	2.8619	2.7369	2.7741	Ave		2.8380			5.4	15.	0	
	2.7690	2.7149												
4-Bromofluorobenzene	1.2322	0.9121	0.9048	0.8052	0.8021	Lin2	0.2090	0.7802					0.9960	0.9900
	0.8274	0.7860												

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 277761

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/17/2019 09:37 Calibration End Date: 10/17/2019 12:04 Calibration ID: 16917

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 600-277761/2	A29001.d
Level 2	IC 600-277761/3	A29002.d
Level 3	IC 600-277761/4	A29003.d
Level 4	IC 600-277761/5	A29004.d
Level 5	ICIS 600-277761/6	A29005.d
Level 6	IC 600-277761/7	A29006.d
Level 7	IC 600-277761/8	A29007.d

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (UG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Dichlorodifluoromethane	FB	Ave	5370 255846	12771 703791	26527	62919	128251	0.500	1.00 50.0	2.00	5.00	10.0
Chloromethane	FB	Ave	7772 256851	13564 786896	28124	66567	137613	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Vinyl chloride	FB	Ave	6109 240481	11339 741106	24544	61423	120314	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Butadiene	FB	Ave	10904 324121	14034 965103	30525	78162	155499	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Ethylene oxide	FB	Ave	4103 141974	6095 401424	11241	28898	64294	5.00 200	10.0 500	20.0	50.0	100
Bromomethane	FB	Lin2	1558 125308	5113 404532	10611	26689	60923	0.500	1.00 50.0	2.00	5.00	10.0
Chloroethane	FB	Ave	2919 116637	5651 345277	12583	29582	58123	0.500	1.00 50.0	2.00	5.00	10.0
Dichlorofluoromethane	FB	Ave	7962 280508	13458 865209	27953	68685	149102	0.500	1.00 50.0	2.00	5.00	10.0
Acrolein	FB	Ave	756 31167	1292 84998	2126	6513	12231	2.50 100	5.00 250	10.0	25.0	50.0
Trichlorofluoromethane	FB	Ave	6705 349051	15949 1000520	34702	84254	173199	0.500	1.00 50.0	2.00	5.00	10.0
Acetonitrile	FB	Ave	1806 98502	4796 262836	7251	16291	40414	5.00 200	10.0 500	20.0	50.0	100
Isopropyl alcohol	FB	Lin1	1014 40846	2337 113770	2940	8574	16184	5.00 200	10.0 500	20.0	50.0	100
Acetone	FB	Lin1	2191 37523	2551 97571	3307	8857	16343	1.00	2.00	4.00	10.0	20.0
Ethyl ether	FB	Ave	2568 109656	4751 300077	8836	23580	48745	0.500 20.0	1.00 50.0	2.00	5.00	10.0
t-Butanol	FB	Lin1	2405 71980	3290 198751	5440	12920	26879	5.00 200	10.0 500	20.0	50.0	100

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 277761

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,1-Dichloroethene	FB	Ave	5428 220678	10850 608566	18617	46251	97362	0.500 20.0	1.00	2.00	5.00	10.0
Acrylonitrile	FB	Ave	4509 218916	9298 623095	16830	44380	85172	5.00 200	10.0	20.0	50.0	100
Iodomethane	FB	Lin1	3678 306378	6918 908728	16023	52216	126106	0.500	1.00	2.00	5.00	10.0
Methylene Chloride	FB	Lin1	17754 203874	20376 558410	21030	48807	94345	0.500	1.00	2.00	5.00	10.0
Methyl acetate	FB	Ave	3579 141404	5152 409991	10816	29250	54964	1.00	2.00	4.00	10.0	20.0
1,1,2-Trichloro-1,2,2-trifluoroetha ne	FB	Ave	5645 213515	8536 571302	15946	43829	96203	0.500	1.00	2.00	5.00	10.0
3-Chloro-1-propene	FB	Ave	3067 121037	5007 316364	10036	25631	55744	0.500	1.00	2.00	5.00	10.0
Carbon disulfide	FB	Ave	17410 579926	26284 1538393	51532	129167	266975	0.500	1.00	2.00	5.00	10.0
trans-1,2-Dichloroethene	FB	Ave	5979 243120	9792 680610	20157	50047	109210	0.500	1.00	2.00	5.00	10.0
Methyl tert-butyl ether	FB	Ave	8404 338572	15413 905428	27347	73004	143778	0.500	1.00	2.00	5.00	10.0
1,1-Dichloroethane	FB	Ave	9027 361336	15834 1011222	30235	77895	163315	0.500	1.00	2.00	5.00	10.0
Propionitrile	FB	Ave	2166 93568	3464 255108	6040	17488	34511	5.00	10.0	20.0	50.0	100
Vinyl acetate	FB	Ave	8499 448209	15597 1268875	31537	89237	182577	1.00	2.00	4.00	10.0	20.0
2-Chloro-1,3-butadiene	FB	Ave	8160 418657	14097 1260773	28891	77112	172664	0.500	1.00	2.00	5.00	10.0
Hexane	FB	Ave	6831 359300	12210 1025348	26100	71176	150233	0.500	1.00	2.00	5.00	10.0
Isopropyl ether	FB	Ave	17363 839689	30731 2522143	59895	157101	335119	0.500	1.00	2.00	5.00	10.0
2-Butanone (MEK)	FB	Lin	102 17106	393 47965	433	846	5737	1.00	2.00	4.00	10.0	20.0
Methacrylonitrile	FB	Ave	2027 106434	3481 311225	8319	22985	42435	5.00	10.0	20.0	50.0	100
cis-1,2-Dichloroethene	FB	Ave	5288 248294	9838 693898	21411	52566	110854	0.500	1.00	2.00	5.00	10.0
Ethyl acetate	FB	Ave	2878 157611	4700 431781	9581	29423	60286	1.00	2.00	4.00	10.0	20.0
Chlorobromomethane	FB	Ave	2582 104905	4309	8018	22149	45168	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 277761

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/17/2019 09:37 Calibration End Date: 10/17/2019 12:04 Calibration ID: 16917

ANALYTE	IS	CURVE			RESPONSE				CONCE	TRATION (U	JG/L)	
	REF	TYPE -	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Tert-butyl ethyl ether	FB	Ave	10720 508162	19872 1484003	38530	100360	206175	0.500	1.00	2.00	5.00	10.0
Chloroform	FB	Ave	9035 376560	16131 1112577	28660	79568	162013	0.500	1.00	2.00	5.00	10.0
Isobutyl alcohol	FB	Lin	965 72002	5706 248683	5742	15869	32476	12.5 500	25.0 1250	50.0	125	250
2,2-Dichloropropane	FB	Ave	8688 339360	14655 935889	28415	73436	154390	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Tetrahydrofuran	FB	Ave	1144 42646	1275 110475	3589	8790	20627	1.00	2.00	4.00	10.0	20.0
1,2-Dichloroethane	FB	Ave	4243 170962	7865 448826	13451	35950	72719	0.500	1.00	2.00	5.00	10.0
1,1,1-Trichloroethane	FB	Ave	8762 391335	16369 1067963	31561	79260	167760	0.500 20.0	1.00	2.00	5.00	10.0
n-Butanol	FB	Lin	446 39235	796 119399	2597	6621	13614	12.5 500	25.0 1250	50.0	125	250
1,1-Dichloropropene	FB	Ave	6162 278406	10215 750171	21841	55138	119499	0.500	1.00	2.00	5.00	10.0
Cyclohexane	FB	Ave	6950 334708	12466 857457	26632	66819	144600	0.500	1.00	2.00	5.00	10.0
Carbon tetrachloride	FB	Ave	9763 362781	14545 986925	28667	75213	161040	0.500	1.00	2.00	5.00	10.0
Benzene	FB	Ave	21602 851521	33572 2421915	67961	171826	375848	0.500	1.00	2.00	5.00	10.0
Tert-amyl methyl ether	FB	Ave	8046 351857	15466 961505	26529	76034	150575	0.500	1.00	2.00	5.00	10.0
Isooctane	FB	Ave	15134 652397	24461 1678400	50041	133873	280028	0.500	1.00	2.00	5.00	10.0
Ethyl acrylate	FB	Ave	3494 151741	5066 412487	9209	29318	64257	0.500	1.00	2.00	5.00	10.0
n-Heptane	FB	Ave	6060 334928	11735 900944	24759	66388	143217	0.500	1.00	2.00	5.00	10.0
Dibromomethane	FB	Lin1	2414 74703	3101 205532	6341	17002	32789	0.500	1.00	2.00	5.00	10.0
1,2-Dichloropropane	FB	Ave	4415 182022	7771 513235	13577	36730	75836	0.500	1.00	2.00	5.00	10.0
2-Nitropropane	FB	Lin1	1395 52526	1792 153119	3532	9563	20172	1.00	2.00	4.00	10.0	20.0
Trichloroethene	FB	Ave	7298 293525	11712 832014	23241	59177	128831	0.500	1.00	2.00	5.00	10.0
Bromodichloromethane	FB	Ave	5260 238628	9764 652645	18825	50342	103620	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 277761

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

Calibration Start Date: 10/17/2019 09:37 Calibration End Date: 10/17/2019 12:04 Calibration ID: 16917

ANALYTE	IS	CURVE			RESPONSE				CONCE	TRATION (U	JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Methyl methacrylate	FB	Lin1	2835 178915	4504 480817	11249	34050	74437	1.00	2.00	4.00	10.0	20.0
1,4-Dioxane	FB	Lin2	569 10060	693 22924	952	2197	4137	10.0	20.0	40.0	100	200
2-Chloroethyl vinyl ether	CBNZ d5	Qua	201 6842	359 22863	492	1081	2190	1.00	2.00	4.00	10.0	20.0
Methylcyclohexane	FB	Ave	6596 349757	12826 914059	25325	70079	149112	0.500 20.0	1.00	2.00	5.00	10.0
cis-1,3-Dichloropropene	CBNZ d5	Ave	5492 237670	9431 658488	19088	48472	104939	0.500 20.0	1.00 50.0	2.00	5.00	10.0
4-Methyl-2-pentanone (MIBK)	FB	Ave	3280 145421	5363 395357	9124	28686	60360	1.00 40.0	2.00 100	4.00	10.0	20.0
trans-1,3-Dichloropropene	CBNZ d5	Ave	3862 166237	7093 452748	12196	35176	68887	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,1,2-Trichloroethane	CBNZ d5	Lin2	3356 106602	4905 280526	8441	22535	44968	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Ethyl methacrylate	CBNZ d5	Ave	2354 108672	4030 302081	7789	21332	42895	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Toluene	CBNZ d5	Ave	12322 531619	20414 1487020	41664	110454	232843	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,3-Dichloropropane	CBNZ d5	Ave	3782 167272	7807 441164	12730	34955	72658	0.500 20.0	1.00 50.0	2.00	5.00	10.0
2-Hexanone	CBNZ d5	Lin1	996 92199	2994 252827	5006	14834	37071	1.00	2.00	4.00	10.0	20.0
Dibromochloromethane	CBNZ d5	Ave	4082 164587	7041 459468	13073	34692	72392	0.500 20.0	1.00 50.0	2.00	5.00	10.0
n-Butyl acetate	CBNZ d5	Ave	2382 133559	3986 355418	10125	25525	52677	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2-Dibromoethane	CBNZ d5	Ave	2740 105058	4815 284772	9355	23796	45859	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Tetrachloroethene	CBNZ d5	Ave	4011 188629	7483 538766	15876	38510	80893	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1-Chlorohexane	CBNZ d5	Ave	4346 200098	7601 558890	16235	40620	87742	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,1,1,2-Tetrachloroethane	CBNZ d5	Ave	5525 218215	8659 625901	18950	46503	97004	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Chlorobenzene	CBNZ d5	Ave	16848 642213	28663 1863371	54531	137338	285372	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Ethylbenzene	CBNZ d5	Ave	7721 351533	15525 986249	29672	73584	153620	0.500	1.00	2.00	5.00	10.0
m-Xylene & p-Xylene	CBNZ d5	Ave	16416 774215	30783 2272026	60967	158477	334989	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 277761

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (JG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Bromoform	DCBd 4	Lin2	2395 77998	3464 212529	6143	16621	34466	0.500	1.00	2.00	5.00	10.0
Styrene	CBNZ d5	Ave	12468 638489	22796 1847866	45610	124670	268444	0.500	1.00	2.00	5.00	10.0
Cyclohexanone	CBNZ d5	Ave	2692 102498	4708 287761	7545	19876	40461	25.0 1000	50.0 2500	100	250	500
o-Xylene	CBNZ d5	Ave	10208 435636	17745 1246274	34283	89012	189849	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,1,2,2-Tetrachloroethane	DCBd 4	Ave	3224 125357	5989 371473	9645	24603	51453	0.500 20.0	1.00 50.0	2.00	5.00	10.0
trans-1,4-Dichloro-2-butene	DCBd 4	Ave	538 26276	1267 74944	1573	5134	10470	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2,3-Trichloropropane	DCBd 4	Lin2	1354 34696	2084 94407	3349	7462	14970	0.500	1.00 50.0	2.00	5.00	10.0
Isopropylbenzene	DCBd 4	Ave	24049 1136888	41902 3379056	87126	223450	500584	0.500	1.00 50.0	2.00	5.00	10.0
Bromobenzene	DCBd 4	Ave	6505 259674	10012 744141	19475	53288	107675	0.500	1.00	2.00	5.00	10.0
N-Propylbenzene	DCBd 4	Ave	6959 343817	12411 994264	25028	67307	148388	0.500	1.00	2.00	5.00	10.0
2-Chlorotoluene	DCBd 4	Ave	6786 301962	12340 876353	24770	60038	131568	0.500	1.00	2.00	5.00	10.0
4-Chlorotoluene	DCBd 4	Ave	16940 730858	27262 2169682	56192	143277	315545	0.500	1.00	2.00	5.00	10.0
1,3,5-Trimethylbenzene	DCBd 4	Ave	18585 974365	34053 2950891	68445	181746	407009	0.500	1.00	2.00	5.00	10.0
tert-Butylbenzene	DCBd 4	Ave	16772 878640	31625 2640075	65173	166591	377568	0.500	1.00	2.00	5.00	10.0
1,2,4-Trimethylbenzene	DCBd 4	Ave	18731 1002347	32788 3050675	72524	189179	415743	0.500	1.00	2.00	5.00	10.0
sec-Butylbenzene	DCBd 4	Ave	23233 1207151	43139 3602866	90819	230881	518276	0.500	1.00	2.00	5.00	10.0
Benzyl chloride	DCBd 4	Ave	4172 233391	7846 690157	15990	41577	90283	0.500	1.00	2.00	5.00	10.0
1,3-Dichlorobenzene	DCBd 4	Ave	11130 556869	20437 1676170	38711	106277	230740	0.500	1.00	2.00	5.00	10.0
4-Isopropyltoluene	DCBd 4	Ave	21957 1209810	41485 3776876	83877	217638	490648	0.500	1.00	2.00	5.00	10.0
1,4-Dichlorobenzene	DCBd 4	Ave	12596 569602	22863 1784986	43636	110911	234325	0.500	1.00	2.00	5.00	10.0
1,2,3-Trimethylbenzene	DCBd 4	Ave	18799 978969	33580 2889541	69400	181984	408493	0.500	1.00	2.00	5.00	10.0

GC/MS VOA BY INTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 277761

SDG No.:

Instrument ID: CHVOAMS07 GC Column: DB-VRX 60 ID: 0.25(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCE	NTRATION (UG/L)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,2-Dichlorobenzene	DCBd 4	Ave	9566 433030	18682 1267942	31993	86952	181416	0.500 20.0	1.00 50.0	2.00	5.00	10.0
n-Butylbenzene	DCBd 4	Ave	16185 867460	28895 2598260	58940	156857	361988	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2-Dibromo-3-Chloropropane	DCBd 4	Lin2	800 18744	1208 52170	1739	3847	7793	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,3,5-Trichlorobenzene	DCBd 4	Ave	6910 300897	11529 891077	22703	60294	125877	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2,4-Trichlorobenzene	DCBd 4	Ave	3141 157187	6542 440736	11071	29142	62960	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Naphthalene	DCBd 4	Ave	3826 183610	6593 516480	13068	32880	69601	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Hexachlorobutadiene	DCBd 4	Lin2	1283 45288	2146 125926	3834	9367	20134	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2,3-Trichlorobenzene	DCBd 4	Lin1	1724 61916	2347 161935	5117	12607	24663	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Dibromofluoromethane	FB	Ave	5528 193328	7875 532846	16978	40837	84491	0.500 20.0	1.00 50.0	2.00	5.00	10.0
1,2-Dichloroethane-d4 (Surr)	FB	Lin2	4759 120449	6523 329176	10903	24986	51904	0.500 20.0	1.00 50.0	2.00	5.00	10.0
Toluene-d8 (Surr)	CBNZ d5	Ave	18002 752850	30697 2197093	60370	150379	318435	0.500 20.0	1.00 50.0	2.00	5.00	10.0
4-Bromofluorobenzene	DCBd 4	Lin2	6890 234819	10110 653136	19634	46541	100503	0.500 20.0	1.00 50.0	2.00	5.00	10.0

Curve Type Legend:

Ave = Average ISTD Lin = Linear ISTD

Lin1 = Linear 1/conc ISTD

Lin2 = Linear 1/conc^2 ISTD

Qua = Quadratic ISTD

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: ICV 600-277761/10 Calibration Date: 10/17/2019 14:31

Instrument ID: CHVOAMS07 Calib Start Date: 10/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 10/17/2019 12:04

Lab File ID: A29009B.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.3871	0.4217		10.9	10.0	8.9	50.0
Chloromethane	Ave	0.4296	0.4578	0.1000	10.7	10.0	6.6	30.0
Vinyl chloride	Ave	0.3770	0.4191		11.1	10.0	11.2	30.0
Butadiene	Ave	0.5101	0.5356		10.5	10.0	5.0	50.0
Ethylene oxide	Ave	0.0204	0.0198		97.2	100	-2.8	50.0
Bromomethane	Lin2		0.2240		11.8	10.0	18.3	30.0
Chloroethane	Ave	0.1835	0.1931		10.5	10.0	5.2	30.0
Dichlorofluoromethane	Ave	0.4478	0.4767		10.7	10.0	6.5	30.0
Acrolein	Ave	0.0083	0.0085		51.0	50.0	1.9	50.0
Trichlorofluoromethane	Ave	0.5129	0.5754		11.2	10.0	12.2	30.0
Acetonitrile	Ave	0.0127	0.0132		104	100	3.8	30.0
Isopropyl alcohol	Lin1		0.0052		92.0	100	-8.0	50.0
Acetone	Lin1		0.0263		19.9	20.0	-0.3	50.0
Ethyl ether	Ave	0.1529	0.1595		10.4	10.0	4.3	50.0
t-Butanol	Lin1		0.0089		90.0	100	-10.0	30.0
1,1-Dichloroethene	Ave	0.3169	0.3404		10.7	10.0	7.4	30.0
Acrylonitrile	Ave	0.0291	0.0283		97.3	100	-2.7	50.0
Iodomethane	Lin1		0.4272		9.99	10.0	-0.1	30.0
Methylene Chloride	Lin1		0.3182		10.5	10.0	4.7	50.0
Methyl acetate	Ave	0.0954	0.0826		17.3	20.0	-13.4	30.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.2947	0.3212		10.9	10.0	9.0	30.0
3-Chloro-1-propene	Ave	0.1698	0.1843		10.9	10.0	8.5	30.0
Carbon disulfide	Ave	0.8638	0.9013		10.4	10.0	4.3	30.0
trans-1,2-Dichloroethene	Ave	0.3389	0.3724		11.0	10.0	9.9	30.0
Methyl tert-butyl ether	Ave	0.4755	0.4637		9.75	10.0	-2.5	30.0
1,1-Dichloroethane	Ave	0.5153	0.5386	0.1000	10.5	10.0	4.5	30.0
Propionitrile	Ave	0.0118	0.0119		100	100	0.2	30.0
Vinyl acetate	Ave	0.2838	0.3045		21.5	20.0	7.3	50.0
2-Chloro-1,3-butadiene	Ave	0.5293	0.5692		10.8	10.0	7.5	30.0
Hexane	Ave	0.4577	0.5002		10.9	10.0	9.3	30.0
Isopropyl ether	Ave	1.083	1.112		10.3	10.0	2.6	30.0
2-Butanone (MEK)	Lin		0.0121		22.4	20.0	12.2	50.0
Methacrylonitrile	Ave	0.0138	0.0133		96.7	100	-3.3	30.0
cis-1,2-Dichloroethene	Ave	0.3411	0.3654		10.7	10.0	7.1	30.0
Ethyl acetate	Ave	0.0934	0.0901		19.3	20.0	-3.6	30.0
Chlorobromomethane	Ave	0.1441	0.1466		10.2	10.0	1.7	30.0
Tert-butyl ethyl ether	Ave	0.6722	0.6860		10.2	10.0	2.1	30.0
Chloroform	Ave	0.5244	0.5458		10.4	10.0	4.1	30.0
Isobutyl alcohol	Lin		0.0040		222	250	-11.4	50.0
2,2-Dichloropropane	Ave	0.4845	0.5087		10.5	10.0	5.0	30.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: ICV 600-277761/10 Calibration Date: 10/17/2019 14:31

Instrument ID: CHVOAMS07 Calib Start Date: 10/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 10/17/2019 12:04

Lab File ID: A29009B.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Tetrahydrofuran	Ave	0.0292	0.0312		21.4	20.0	7.0	30.0
1,2-Dichloroethane	Ave	0.2382	0.2339		9.82	10.0	-1.8	30.0
1,1,1-Trichloroethane	Ave	0.5319	0.5692		10.7	10.0	7.0	30.0
1,1-Dichloropropene	Ave	0.3678	0.4020		10.9	10.0	9.3	30.0
Cyclohexane	Ave	0.4376	0.4853		11.1	10.0	10.9	50.0
Carbon tetrachloride	Ave	0.5070	0.5308		10.5	10.0	4.7	30.0
Benzene	Ave	1.180	1.239		10.5	10.0	5.0	30.0
Tert-amyl methyl ether	Ave	0.4832	0.4869		10.1	10.0	0.8	30.0
Isooctane	Ave	0.8663	0.9072		10.5	10.0	4.7	30.0
Ethyl acrylate	Ave	0.1921	0.1747		9.10	10.0	-9.0	30.0
n-Heptane	Ave	0.4241	0.4603		10.9	10.0	8.6	30.0
Dibromomethane	Lin1		0.1001		9.51	10.0	-4.9	30.0
1,2-Dichloropropane	Ave	0.2486	0.2578		10.4	10.0	3.7	30.0
2-Nitropropane	Lin1		0.0316		17.2	20.0	-13.9	30.0
Trichloroethene	Ave	0.4050	0.4471		11.0	10.0	10.4	30.0
Bromodichloromethane	Ave	0.3241	0.3231		9.97	10.0	-0.3	30.0
Methyl methacrylate	Lin1		0.1034		17.4	20.0	-13.1	50.0
1,4-Dioxane	Lin2		0.0006		180	200	-9.9	50.0
2-Chloroethyl vinyl ether	Qua		0.0141		24.7	20.0	23.4	30.0
Methylcyclohexane	Ave	0.4451	0.5194		11.7	10.0	16.7	30.0
cis-1,3-Dichloropropene	Ave	0.8898	0.9500		10.7	10.0	6.8	30.0
4-Methyl-2-pentanone (MIBK)	Ave	0.0933	0.0921		19.8	20.0	-1.2	50.0
trans-1,3-Dichloropropene	Ave	0.6179	0.6781		11.0	10.0	9.7	30.0
1,1,2-Trichloroethane	Lin2		0.4425		11.7	10.0	17.2	30.0
Ethyl methacrylate	Ave	0.3845	0.4163		10.8	10.0	8.3	50.0
Toluene	Ave	1.981	2.332		11.8	10.0	17.8	30.0
1,3-Dichloropropane	Ave	0.6316	0.6594		10.4	10.0	4.4	30.0
2-Hexanone	Lin1		0.1757		22.4	20.0	12.0	50.0
Dibromochloromethane	Ave	0.6321	0.6835		10.8	10.0	8.1	30.0
n-Butyl acetate	Ave	0.4460	0.4562		10.2	10.0	2.3	30.0
1,2-Dibromoethane	Ave	0.4203	0.4319		10.3	10.0	2.8	30.0
Tetrachloroethene	Ave	0.7023	0.8663		12.3	10.0	23.4	30.0
1-Chlorohexane	Ave	0.7383	0.8261		11.2	10.0	11.9	30.0
1,1,1,2-Tetrachloroethane	Ave	0.8485	0.9422		11.1	10.0	11.0	30.0
Chlorobenzene	Ave	2.550	2.807	0.3000	11.0	10.0	10.1	30.0
Ethylbenzene	Ave	1.342	1.536		11.5	10.0	14.5	30.0
m-Xylene & p-Xylene	Ave	2.869	3.370		11.7	10.0	17.4	30.0
Bromoform	Lin2		0.2986	0.1000	11.2	10.0	12.0	30.0
Styrene	Ave	2.244	2.642		11.8	10.0	17.8	30.0
Cyclohexanone	Ave	0.0078	0.0079		507	500	1.4	30.0
o-Xylene	Ave	1.640	1.862		11.4	10.0	13.6	30.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: <u>ICV 600-277761/10</u> Calibration Date: <u>10/17/2019 14:31</u>

Instrument ID: CHVOAMS07 Calib Start Date: 10/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 10/17/2019 12:04

Lab File ID: A29009B.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,1,2,2-Tetrachloroethane	Ave	0.4695	0.4580	0.3000	9.75	10.0	-2.5	30.0
trans-1,4-Dichloro-2-butene	Ave	0.0912	0.0917		10.1	10.0	0.6	50.0
1,2,3-Trichloropropane	Lin2		0.1337		10.9	10.0	8.8	30.0
Isopropylbenzene	Ave	4.004	4.581		11.4	10.0	14.4	30.0
Bromobenzene	Ave	0.9366	1.030		11.0	10.0	10.0	30.0
N-Propylbenzene	Ave	1.182	1.426		12.1	10.0	20.6	30.0
2-Chlorotoluene	Ave	1.097	1.224		11.2	10.0	11.6	30.0
4-Chlorotoluene	Ave	2.609	2.927		11.2	10.0	12.2	30.0
1,3,5-Trimethylbenzene	Ave	3.275	3.840		11.7	10.0	17.2	30.0
tert-Butylbenzene	Ave	3.004	3.537		11.8	10.0	17.8	30.0
1,2,4-Trimethylbenzene	Ave	3.349	3.894		11.6	10.0	16.3	30.0
sec-Butylbenzene	Ave	4.136	4.810		11.6	10.0	16.3	30.0
Benzyl chloride	Ave	0.7548	0.7768		10.3	10.0	2.9	30.0
1,3-Dichlorobenzene	Ave	1.897	2.088		11.0	10.0	10.1	30.0
4-Isopropyltoluene	Ave	4.003	4.616		11.5	10.0	15.3	30.0
1,4-Dichlorobenzene	Ave	2.039	2.166		10.6	10.0	6.3	30.0
1,2,3-Trimethylbenzene	Ave	3.275	3.634		11.1	10.0	11.0	30.0
1,2-Dichlorobenzene	Ave	1.553	1.623		10.5	10.0	4.5	30.0
n-Butylbenzene	Ave	2.858	3.362		11.8	10.0	17.7	30.0
1,2-Dibromo-3-Chloropropane	Lin2		0.0720		11.1	10.0	11.1	30.0
1,3,5-Trichlorobenzene	Ave	1.072	1.159		10.8	10.0	8.1	30.0
1,2,4-Trichlorobenzene	Ave	0.5361	0.6189		11.5	10.0	15.4	30.0
Naphthalene	Ave	0.6106	0.7490		12.3	10.0	22.7	30.0
Hexachlorobutadiene	Lin2		0.2002		12.6	10.0	26.3	30.0
1,2,3-Trichlorobenzene	Lin1		0.2629		12.9	10.0	29.3	30.0
Dibromofluoromethane	Ave	0.2783	0.2589		11.6	12.5	-7.0	30.0
1,2-Dichloroethane-d4 (Surr)	Lin2		0.1476		11.4	12.5	-8.7	30.0
Toluene-d8 (Surr)	Ave	2.838	3.077		13.6	12.5	8.4	30.0
4-Bromofluorobenzene	Lin2		0.9523		15.0	12.5	19.9	30.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCVIS 600-279189/2 Calibration Date: 11/01/2019 08:34

Instrument ID: CHVOAMS07 Calib Start Date: 10/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 10/17/2019 12:04

Lab File ID: A30501.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.3871	0.3338		8.62	10.0	-13.8	35.0
Chloromethane	Ave	0.4296	0.3462	0.1000	8.06	10.0	-19.4	35.0
Vinyl chloride	Ave	0.3770	0.3730		9.89	10.0	-1.1	20.0
Butadiene	Ave	0.5101	0.4834		9.48	10.0	-5.2	35.0
Ethylene oxide	Ave	0.0204	0.0139		68.0	100	-32.0	35.0
Bromomethane	Lin2		0.1401		7.49	10.0	-25.2	35.0
Chloroethane	Ave	0.1835	0.1765		9.62	10.0	-3.8	35.0
Dichlorofluoromethane	Ave	0.4478	0.4471		9.99	10.0	-0.2	35.0
Acrolein	Ave	0.0083	0.0052		31.0	50.0	-38.0	50.0
Acetonitrile	Ave	0.0127	0.0086		67.6	100	-32.4	50.0
Trichlorofluoromethane	Ave	0.5129	0.5434		10.6	10.0	5.9	35.0
Isopropyl alcohol	Lin1		0.0033		58.4	100	-41.6	50.0
Acetone	Lin1		0.0217		16.2	20.0	-18.8	50.0
Ethyl ether	Ave	0.1529	0.1144		7.49	10.0	-25.2	35.0
t-Butanol	Lin1		0.0058		58.9	100	-41.1*	35.0
1,1-Dichloroethene	Ave	0.3169	0.3526		11.1	10.0	11.3	20.0
Acrylonitrile	Ave	0.0291	0.0204		70.0	100	-30.0	50.0
Iodomethane	Lin1		0.4555		10.6	10.0	6.2	35.0
Methylene Chloride	Lin1		0.2565		8.18	10.0	-18.2	50.0
Methyl acetate	Ave	0.0954	0.0625		13.1	20.0	-34.4	35.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.2947	0.3458		11.7	10.0	17.3	35.0
3-Chloro-1-propene	Ave	0.1698	0.1836		10.8	10.0	8.1	35.0
Carbon disulfide	Ave	0.8638	0.9578		11.1	10.0	10.9	35.0
trans-1,2-Dichloroethene	Ave	0.3389	0.3669		10.8	10.0	8.3	35.0
Methyl tert-butyl ether	Ave	0.4755	0.3101		6.52	10.0	-34.8	35.0
1,1-Dichloroethane	Ave	0.5153	0.5099	0.1000	9.90	10.0	-1.0	35.0
Propionitrile	Ave	0.0118	0.0073		61.4	100	-38.6*	35.0
Vinyl acetate	Ave	0.2838	0.1957		13.8	20.0	-31.0	50.0
2-Chloro-1,3-butadiene	Ave	0.5293	0.5766		10.9	10.0	8.9	35.0
Hexane	Ave	0.4577	0.5449		11.9	10.0	19.0	35.0
Isopropyl ether	Ave	1.083	0.8485		7.83	10.0	-21.7	35.0
2-Butanone (MEK)	Lin		0.0084		16.6	20.0	-17.0	50.0
Methacrylonitrile	Ave	0.0138	0.0097		70.3	100	-29.7	35.0
cis-1,2-Dichloroethene	Ave	0.3411	0.3314		9.72	10.0	-2.8	35.0
Ethyl acetate	Ave	0.0934	0.0573		12.3	20.0	-38.7*	35.0
Chlorobromomethane	Ave	0.1441	0.1146		7.95	10.0	-20.5	35.0
Tert-butyl ethyl ether	Ave	0.6722	0.4727		7.03	10.0	-29.7	35.0
Chloroform	Ave	0.5244	0.4988		9.51	10.0	-4.9	20.0
Isobutyl alcohol	Lin		0.0021		129	250	-48.6	50.0
2,2-Dichloropropane	Ave	0.4845	0.5063		10.5	10.0	4.5	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCVIS 600-279189/2 Calibration Date: 11/01/2019 08:34

Instrument ID: CHVOAMS07 Calib Start Date: 10/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 10/17/2019 12:04

Lab File ID: A30501.d Conc. Units: ug/L Heated Purge: (Y/N) N

TYPE									
1,2-Dichloroethane	ANALYTE		AVE RRF	RRF	MIN RRF			%D	MAX %D
1,1,1-Trichloroethane Ave	Tetrahydrofuran	Ave	0.0292	0.0172		11.8	20.0	-41.0*	35.0
1,1-Dichloropropene	1,2-Dichloroethane	Ave	0.2382	0.1842		7.73	10.0	-22.7	35.0
Cyclohexane Ave 0.4376 0.5175 11.8 10.0 18.3 33 Carbon tetrachloride Ave 0.5070 0.5403 10.7 10.0 6.6 3.8 Benzene Ave 1.180 1.166 9.88 10.0 -1.2 32 Tert-anyl methyl ether Ave 0.4832 0.3273 6.77 10.0 -32.3 33 Ethyl acrylate Ave 0.4832 0.3273 6.77 10.0 -22.7 33 Ethyl acrylate Ave 0.4241 0.5084 12.0 10.0 -23.7 33 Dibromomethane Lini 0.0760 7.19 10.0 -23.1 33 1,2-Dichloropropane Ave 0.2486 0.2234 8.99 10.0 -10.1 20 2-Nitropropane Lini 0.0760 11.4 20.0 -42.8 33 1,2-Dichloropropane Ave 0.4282 10.6 10.0 5.7 33 Eromodichloromet	1,1,1-Trichloroethane	Ave	0.5319	0.5662		10.6	10.0	6.4	35.0
Carbon tetrachloride	1,1-Dichloropropene	Ave	0.3678	0.4032		11.0	10.0	9.6	35.0
Benzene	Cyclohexane	Ave	0.4376	0.5175		11.8	10.0	18.3	35.0
Tert-amyl methyl ether	Carbon tetrachloride	Ave	0.5070	0.5403		10.7	10.0	6.6	35.0
Record Ave 0.8663 1.041 12.0 10.0 20.2 35	Benzene	Ave	1.180	1.166		9.88	10.0	-1.2	35.0
Ethyl acrylate	Tert-amyl methyl ether	Ave	0.4832	0.3273		6.77	10.0	-32.3	35.0
Name	Isooctane	Ave	0.8663	1.041		12.0	10.0	20.2	35.0
Dibromomethane	Ethyl acrylate	Ave	0.1921	0.1466		7.63	10.0	-23.7	35.0
1,2-Dichloropropane	n-Heptane	Ave	0.4241	0.5084		12.0	10.0	19.9	35.0
2-Nitropropame Lin1 0.0208 11.4 20.0 -42.8* 33 Trichloroethene Ave 0.4000 0.4282 10.6 10.0 5.7 35 Bromodichloromethane Ave 0.03241 0.2767 8.54 10.0 -14.6 35 Methyl methacrylate Lin1 0.0731 12.4 20.0 -37.8 50 1,4-Dioxane Lin2 0.0005 147 200 -26.6 50 2-Chloroethyl vinyl ether Qua 0.0063 11.5 20.0 -42.6* 35 Methylcyclohexane Ave 0.4451 0.5343 12.0 10.0 20.0 -32.6 is-1,3-Dichloropropene Ave 0.8989 0.7735 8.69 10.0 -13.1 35 4-Methyl-2-pentanone (MIBK) Ave 0.0933 0.0583 12.5 20.0 -37.5 50 trans-1,3-Dichloropropene Ave 0.6179 0.5011 8.11 10.0 -18.9 35	Dibromomethane	Lin1		0.0760		7.19	10.0	-28.1	35.0
Trichloroethene	1,2-Dichloropropane	Ave	0.2486	0.2234		8.99	10.0	-10.1	20.0
Bromodichloromethane Ave 0.3241 0.2767 8.54 10.0 -14.6 33 Methyl methacrylate Lin1 0.0731 12.4 20.0 -37.8 50 2-Chloroethyl vinyl ether Qua 0.0005 147 200 -26.6 50 2-Chloroethyl vinyl ether Qua 0.0063 11.5 20.0 -42.6* 35 dethylycylohexane Ave 0.4451 0.5343 12.0 10.0 20.0 35 cis-1,3-Dichloropropene Ave 0.8898 0.7735 8.69 10.0 -13.1 35 4-Methyl-2-pentanone (MIBK) Ave 0.0933 0.583 12.5 20.0 -37.5 35 trans-1,3-Dichloropropene Ave 0.6179 0.5011 8.11 10.0 -18.9 35 Ethyl methacrylate Ave 0.3845 0.2861 7.44 10.0 -25.6 50 Toluene Ave 1.981 2.201 11.1 10.0 11.1 20	2-Nitropropane	Lin1		0.0208		11.4	20.0	-42.8*	35.0
Methyl methacrylate Lin1 0.0731 12.4 20.0 -37.8 50 1,4-Dioxane Lin2 0.0005 147 200 -26.6 50 2-Chloroethyl vinyl ether Qua 0.0063 11.5 20.0 -42.6* 35 Methylcyclohexane Ave 0.4451 0.5343 12.0 10.0 20.0 35 cis-1,3-Dichloropropene Ave 0.8898 0.7735 8.69 10.0 -13.1 35 4-Methyl-2-pentanone (MIBK) Ave 0.0933 0.0583 12.5 20.0 -37.5 50 trans-1,3-Dichloropropene Ave 0.6179 0.5011 8.11 10.0 -18.9 35 1,1,2-Trichloroethane Lin2 0.3187 8.36 10.0 -16.4 35 Ethyl methacrylate Ave 0.3845 0.2861 7.44 10.0 -25.6 50 Toluene Ave 0.6316 0.5064 8.02 10.0 -19.8 35	Trichloroethene	Ave	0.4050	0.4282		10.6	10.0	5.7	35.0
1,4-Dioxane	Bromodichloromethane	Ave	0.3241	0.2767		8.54	10.0	-14.6	35.0
2-Chloroethyl vinyl ether Qua 0.0063 11.5 20.0 -42.6* 33 Methylcyclohexane Ave 0.4451 0.5343 12.0 10.0 20.0 35 cis-1,3-Dichloropropene Ave 0.8898 0.7735 8.69 10.0 -13.1 35 4-Methyl-2-pentanone (MIBK) Ave 0.0933 0.0583 12.5 20.0 -37.5 50 trans-1,3-Dichloropropene Ave 0.6179 0.5011 8.11 10.0 -18.9 35 trans-1,3-Dichloropropene Ave 0.3845 0.2861 7.44 10.0 -16.4 35 Ethyl methacrylate Ave 0.3845 0.2861 7.44 10.0 -25.6 50 Toluene Ave 1.981 2.201 11.1 10.0 11.1 20 1,3-Dichloropropane Ave 0.6316 0.5064 8.02 10.0 -19.8 35 2-Hexanone Lin1 0.0934 12.2 20.0 -39.2 <td>Methyl methacrylate</td> <td>Lin1</td> <td></td> <td>0.0731</td> <td></td> <td>12.4</td> <td>20.0</td> <td>-37.8</td> <td>50.0</td>	Methyl methacrylate	Lin1		0.0731		12.4	20.0	-37.8	50.0
Methylcyclohexane Ave 0.4451 0.5343 12.0 10.0 20.0 35 cis-1,3-Dichloropropene Ave 0.8898 0.7735 8.69 10.0 -13.1 35 4-Methyl-2-pentanone (MIBK) Ave 0.0933 0.0583 12.5 20.0 -37.5 50 trans-1,3-Dichloropropene Ave 0.6179 0.5011 8.11 10.0 -18.9 35 1,1,2-Trichloroethane Lin2 0.3187 8.36 10.0 -16.4 35 Ethyl methacrylate Ave 0.3845 0.2861 7.44 10.0 -25.6 50 Toluene Ave 0.9345 0.2861 7.44 10.0 -11.1 20 1,3-Dichloropropane Ave 0.6316 0.5064 8.02 10.0 -19.8 35 2-Hexanone Lin1 0.0934 12.2 20.0 -39.2 36 Dibromochloromethane Ave 0.6321 0.4924 7.79 10.0 -22.1	1,4-Dioxane	Lin2		0.0005		147	200	-26.6	50.0
cis-1,3-Dichloropropene Ave 0.8898 0.7735 8.69 10.0 -13.1 35 4-Methyl-2-pentanone (MIBK) Ave 0.0933 0.0583 12.5 20.0 -37.5 50 trans-1,3-Dichloropropene Ave 0.6179 0.5011 8.11 10.0 -18.9 35 1,1,2-Trichloroethane Lin2 0.3187 8.36 10.0 -16.4 35 Ethyl methacrylate Ave 0.3845 0.2861 7.44 10.0 -25.6 50 Toluene Ave 0.6316 0.5064 8.02 10.0 -19.8 35 2-Hexanone Lin1 0.0934 12.2 20.0 -39.2 35 Dibromochloromethane Ave 0.6321 0.4924 7.79 10.0 -22.1 35 1,2-Dibromoethane Ave 0.4203 0.3222 7.67 10.0 -37.9* 35 1,2-Dibromoethane Ave 0.7023 0.8132 11.6 10.0 15.8	2-Chloroethyl vinyl ether	Qua		0.0063		11.5	20.0	-42.6*	35.0
4-Methyl-2-pentanone (MIBK) Ave 0.0933 0.0583 12.5 20.0 -37.5 50 trans-1,3-Dichloropropene Ave 0.6179 0.5011 8.11 10.0 -18.9 35 1,1,2-Trichloroethane Lin2 0.3187 8.36 10.0 -16.4 35 Ethyl methacrylate Ave 0.3845 0.2861 7.44 10.0 -25.6 50 Toluene Ave 1.981 2.201 11.1 10.0 11.1 20 1,3-Dichloropropane Ave 0.6316 0.5064 8.02 10.0 -19.8 35 2-Hexanone Lin1 0.0934 12.2 20.0 -39.2 50 Dibromochloromethane Ave 0.6321 0.4924 7.79 10.0 -22.1 35 n-Butyl acetate Ave 0.4460 0.2770 6.21 10.0 -37.9* 35 1,2-Dibromoethane Ave 0.4203 0.3222 7.67 10.0 -23.3 3	Methylcyclohexane	Ave	0.4451	0.5343		12.0	10.0	20.0	35.0
trans-1,3-Dichloropropene Ave 0.6179 0.5011 8.11 10.0 -18.9 35 1,1,2-Trichloroethane Lin2 0.3187 8.36 10.0 -16.4 35 Ethyl methacrylate Ave 0.3845 0.2861 7.44 10.0 -25.6 50 Toluene Ave 1.981 2.201 11.1 10.0 11.1 20 1,3-Dichloropropane Ave 0.6316 0.5064 8.02 10.0 -19.8 35 2-Hexanone Lin1 0.0934 12.2 20.0 -39.2 50 Dibromochloromethane Ave 0.6321 0.4924 7.79 10.0 -22.1 35 n-Butyl acetate Ave 0.4460 0.2770 6.21 10.0 -37.9* 35 1,2-Dibromoethane Ave 0.4203 0.3222 7.67 10.0 -23.3 35 Tetrachloroethene Ave 0.7023 0.8132 11.6 10.0 15.8 35 1-Chlorobexane Ave 0.7383 0.8643 11.7 10.0 17.1 35 1-Chloroberzene Ave 0.8485 0.7647 9.01 10.0 -9.9 35 Chloroberzene Ave 2.550 2.502 0.3000 9.81 10.0 -1.9 35 Ethylbenzene Ave 2.869 3.228 11.3 10.0 12.5 35 Bromoform Lin2 0.2310 0.1000 8.60 10.0 -14.1 35 Styrene Ave 2.244 2.259 10.1 10.0 0.7 35 Cyclohexanone Ave 0.0078 0.0055 356 500 -28.8 35	cis-1,3-Dichloropropene	Ave	0.8898	0.7735		8.69	10.0	-13.1	35.0
1,1,2-Trichloroethane	4-Methyl-2-pentanone (MIBK)	Ave	0.0933	0.0583		12.5	20.0	-37.5	50.0
Ethyl methacrylate	trans-1,3-Dichloropropene	Ave	0.6179	0.5011		8.11	10.0	-18.9	35.0
Toluene Ave 1.981 2.201 11.1 10.0 11.1 20 1,3-Dichloropropane Ave 0.6316 0.5064 8.02 10.0 -19.8 35 2-Hexanone Lin1 0.0934 12.2 20.0 -39.2 50 Dibromochloromethane Ave 0.6321 0.4924 7.79 10.0 -22.1 35 n-Butyl acetate Ave 0.4460 0.2770 6.21 10.0 -37.9* 35 1,2-Dibromoethane Ave 0.4203 0.3222 7.67 10.0 -23.3 35 Tetrachloroethane Ave 0.7023 0.8132 11.6 10.0 15.8 35 1-Chlorohexane Ave 0.7383 0.8643 11.7 10.0 17.1 35 1,1,1,2-Tetrachloroethane Ave 0.8485 0.7647 9.01 10.0 -9.9 35 Chlorobenzene Ave 2.550 2.502 0.3000 9.81 10.0 -1.	1,1,2-Trichloroethane	Lin2		0.3187		8.36	10.0	-16.4	35.0
Ave	Ethyl methacrylate	Ave	0.3845	0.2861		7.44	10.0	-25.6	50.0
Z-Hexanone Lin1 0.0934 12.2 20.0 -39.2 50 Dibromochloromethane Ave 0.6321 0.4924 7.79 10.0 -22.1 35 n-Butyl acetate Ave 0.4460 0.2770 6.21 10.0 -37.9* 35 1,2-Dibromoethane Ave 0.4203 0.3222 7.67 10.0 -23.3 35 Tetrachloroethene Ave 0.7023 0.8132 11.6 10.0 15.8 35 1-Chlorohexane Ave 0.7383 0.8643 11.7 10.0 17.1 35 1,1,1,2-Tetrachloroethane Ave 0.8485 0.7647 9.01 10.0 -9.9 35 Chlorobenzene Ave 2.550 2.502 0.3000 9.81 10.0 -1.9 35 Ethylbenzene Ave 1.342 1.516 11.3 10.0 12.5 35 Bromoform Lin2 0.2310 0.1000 8.60 10.0 -14.1 <td>Toluene</td> <td>Ave</td> <td>1.981</td> <td>2.201</td> <td></td> <td>11.1</td> <td>10.0</td> <td>11.1</td> <td>20.0</td>	Toluene	Ave	1.981	2.201		11.1	10.0	11.1	20.0
Dibromochloromethane Ave 0.6321 0.4924 7.79 10.0 -22.1 35 n-Butyl acetate Ave 0.4460 0.2770 6.21 10.0 -37.9* 35 1,2-Dibromoethane Ave 0.4203 0.3222 7.67 10.0 -23.3 35 Tetrachloroethene Ave 0.7023 0.8132 11.6 10.0 15.8 35 1-Chlorohexane Ave 0.7383 0.8643 11.7 10.0 17.1 35 1,1,1,2-Tetrachloroethane Ave 0.8485 0.7647 9.01 10.0 -9.9 35 Chlorobenzene Ave 2.550 2.502 0.3000 9.81 10.0 -1.9 35 Ethylbenzene Ave 1.342 1.516 11.3 10.0 13.0 20 m-Xylene & p-Xylene Ave 2.869 3.228 11.3 10.0 12.5 35 Styrene Ave 2.244 2.259 10.1 10.0 <td>1,3-Dichloropropane</td> <td>Ave</td> <td>0.6316</td> <td>0.5064</td> <td></td> <td>8.02</td> <td>10.0</td> <td>-19.8</td> <td>35.0</td>	1,3-Dichloropropane	Ave	0.6316	0.5064		8.02	10.0	-19.8	35.0
n-Butyl acetate Ave 0.4460 0.2770 6.21 10.0 -37.9* 35 1,2-Dibromoethane Ave 0.4203 0.3222 7.67 10.0 -23.3 35 Tetrachloroethene Ave 0.7023 0.8132 11.6 10.0 15.8 35 1-Chlorohexane Ave 0.7383 0.8643 11.7 10.0 17.1 35 1,1,1,2-Tetrachloroethane Ave 0.8485 0.7647 9.01 10.0 -9.9 35 Chlorobenzene Ave 2.550 2.502 0.3000 9.81 10.0 -1.9 35 Ethylbenzene Ave 1.342 1.516 11.3 10.0 13.0 20 m-Xylene & p-Xylene Ave 2.869 3.228 11.3 10.0 12.5 35 Bromoform Lin2 0.2310 0.1000 8.60 10.0 -14.1 35 Cyclohexanone Ave 0.0078 0.0055 356 500	2-Hexanone	Lin1		0.0934		12.2	20.0	-39.2	50.0
1,2-Dibromoethane Ave 0.4203 0.3222 7.67 10.0 -23.3 35 Tetrachloroethene Ave 0.7023 0.8132 11.6 10.0 15.8 35 1-Chlorohexane Ave 0.7383 0.8643 11.7 10.0 17.1 35 1,1,1,2-Tetrachloroethane Ave 0.8485 0.7647 9.01 10.0 -9.9 35 Chlorobenzene Ave 2.550 2.502 0.3000 9.81 10.0 -1.9 35 Ethylbenzene Ave 1.342 1.516 11.3 10.0 13.0 20 m-Xylene & p-Xylene Ave 2.869 3.228 11.3 10.0 12.5 35 Bromoform Lin2 0.2310 0.1000 8.60 10.0 -14.1 35 Cyclohexanone Ave 0.0078 0.0055 356 500 -28.8 35	Dibromochloromethane	Ave	0.6321	0.4924		7.79	10.0	-22.1	35.0
Tetrachloroethene Ave 0.7023 0.8132 11.6 10.0 15.8 35 1-Chlorohexane Ave 0.7383 0.8643 11.7 10.0 17.1 35 1,1,1,2-Tetrachloroethane Ave 0.8485 0.7647 9.01 10.0 -9.9 35 Chlorobenzene Ave 2.550 2.502 0.3000 9.81 10.0 -1.9 35 Ethylbenzene Ave 1.342 1.516 11.3 10.0 13.0 20 m-Xylene & p-Xylene Ave 2.869 3.228 11.3 10.0 12.5 35 Bromoform Lin2 0.2310 0.1000 8.60 10.0 -14.1 35 Styrene Ave 2.244 2.259 10.1 10.0 0.7 35 Cyclohexanone Ave 0.0078 0.0055 356 500 -28.8 35	n-Butyl acetate	Ave	0.4460	0.2770		6.21	10.0	-37.9*	35.0
1-Chlorohexane Ave 0.7383 0.8643 11.7 10.0 17.1 35 1,1,1,2-Tetrachloroethane Ave 0.8485 0.7647 9.01 10.0 -9.9 35 Chlorobenzene Ave 2.550 2.502 0.3000 9.81 10.0 -1.9 35 Ethylbenzene Ave 1.342 1.516 11.3 10.0 13.0 20 m-Xylene & p-Xylene Ave 2.869 3.228 11.3 10.0 12.5 35 Bromoform Lin2 0.2310 0.1000 8.60 10.0 -14.1 35 Styrene Ave 2.244 2.259 10.1 10.0 0.7 35 Cyclohexanone Ave 0.0078 0.0055 356 500 -28.8 35	1,2-Dibromoethane	Ave	0.4203	0.3222		7.67	10.0	-23.3	35.0
1,1,1,2-Tetrachloroethane Ave 0.8485 0.7647 9.01 10.0 -9.9 35 Chlorobenzene Ave 2.550 2.502 0.3000 9.81 10.0 -1.9 35 Ethylbenzene Ave 1.342 1.516 11.3 10.0 13.0 20 m-Xylene & p-Xylene Ave 2.869 3.228 11.3 10.0 12.5 35 Bromoform Lin2 0.2310 0.1000 8.60 10.0 -14.1 35 Styrene Ave 2.244 2.259 10.1 10.0 0.7 35 Cyclohexanone Ave 0.0078 0.0055 356 500 -28.8 35	Tetrachloroethene	Ave	0.7023	0.8132		11.6	10.0	15.8	35.0
Chlorobenzene Ave 2.550 2.502 0.3000 9.81 10.0 -1.9 35 Ethylbenzene Ave 1.342 1.516 11.3 10.0 13.0 20 m-Xylene & p-Xylene Ave 2.869 3.228 11.3 10.0 12.5 35 Bromoform Lin2 0.2310 0.1000 8.60 10.0 -14.1 35 Styrene Ave 2.244 2.259 10.1 10.0 0.7 35 Cyclohexanone Ave 0.0078 0.0055 356 500 -28.8 35	1-Chlorohexane	Ave	0.7383	0.8643		11.7	10.0	17.1	35.0
Ethylbenzene Ave 1.342 1.516 11.3 10.0 13.0 20 m-Xylene & p-Xylene Ave 2.869 3.228 11.3 10.0 12.5 35 Bromoform Lin2 0.2310 0.1000 8.60 10.0 -14.1 35 Styrene Ave 2.244 2.259 10.1 10.0 0.7 35 Cyclohexanone Ave 0.0078 0.0055 356 500 -28.8 35	1,1,1,2-Tetrachloroethane	Ave	0.8485	0.7647			10.0	-9.9	35.0
m-Xylene & p-Xylene Ave 2.869 3.228 11.3 10.0 12.5 35 Bromoform Lin2 0.2310 0.1000 8.60 10.0 -14.1 35 Styrene Ave 2.244 2.259 10.1 10.0 0.7 35 Cyclohexanone Ave 0.0078 0.0055 356 500 -28.8 35		Ave	2.550	2.502	0.3000	9.81	10.0	-1.9	35.0
Bromoform Lin2 0.2310 0.1000 8.60 10.0 -14.1 35 Styrene Ave 2.244 2.259 10.1 10.0 0.7 35 Cyclohexanone Ave 0.0078 0.0055 356 500 -28.8 35	Ethylbenzene	Ave	1.342	1.516		11.3	10.0	13.0	20.0
Styrene Ave 2.244 2.259 10.1 10.0 0.7 35 Cyclohexanone Ave 0.0078 0.0055 356 500 -28.8 35	m-Xylene & p-Xylene	Ave	2.869	3.228		11.3	10.0	12.5	35.0
Cyclohexanone Ave 0.0078 0.0055 356 500 -28.8 35	Bromoform	Lin2		0.2310	0.1000	8.60	10.0	-14.1	35.0
	Styrene	Ave	2.244	2.259		10.1	10.0	0.7	35.0
0-Yulene	Cyclohexanone	Ave	0.0078	0.0055		356	500	-28.8	35.0
O Aytene 1.040 1.720 10.0 5.3 5.5	o-Xylene	Ave	1.640	1.726		10.5	10.0	5.3	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCVIS 600-279189/2 Calibration Date: 11/01/2019 08:34

Instrument ID: CHVOAMS07 Calib Start Date: 10/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 10/17/2019 12:04

Lab File ID: $\underline{\text{A30501.d}}$ Conc. Units: $\underline{\text{ug/L}}$ Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,1,2,2-Tetrachloroethane	Ave	0.4695	0.3324	0.3000	7.08	10.0	-29.2	35.0
trans-1,4-Dichloro-2-butene	Ave	0.0912	0.0675		7.40	10.0	-26.0	50.0
1,2,3-Trichloropropane	Lin2		0.1032		8.28	10.0	-17.2	35.0
Isopropylbenzene	Ave	4.004	4.874		12.2	10.0	21.7	35.0
Bromobenzene	Ave	0.9366	0.8736		9.33	10.0	-6.7	35.0
N-Propylbenzene	Ave	1.182	1.492		12.6	10.0	26.2	35.0
2-Chlorotoluene	Ave	1.097	1.209		11.0	10.0	10.3	35.0
4-Chlorotoluene	Ave	2.609	2.817		10.8	10.0	8.0	35.0
1,3,5-Trimethylbenzene	Ave	3.275	3.943		12.0	10.0	20.4	35.0
tert-Butylbenzene	Ave	3.004	3.710		12.4	10.0	23.5	35.0
1,2,4-Trimethylbenzene	Ave	3.349	3.815		11.4	10.0	13.9	35.0
sec-Butylbenzene	Ave	4.136	5.123		12.4	10.0	23.9	35.0
Benzyl chloride	Ave	0.7548	0.5268		6.98	10.0	-30.2	35.0
1,3-Dichlorobenzene	Ave	1.897	1.890		9.97	10.0	-0.4	35.0
4-Isopropyltoluene	Ave	4.003	4.835		12.1	10.0	20.8	35.0
1,4-Dichlorobenzene	Ave	2.039	1.836		9.01	10.0	-9.9	35.0
1,2,3-Trimethylbenzene	Ave	3.275	3.261		9.96	10.0	-0.4	35.0
1,2-Dichlorobenzene	Ave	1.553	1.303		8.39	10.0	-16.2	35.0
n-Butylbenzene	Ave	2.858	3.464		12.1	10.0	21.2	35.0
1,2-Dibromo-3-Chloropropane	Lin2		0.0368		5.35	10.0	-46.5*	35.0
1,3,5-Trichlorobenzene	Ave	1.072	0.9166		8.55	10.0	-14.5	35.0
1,2,4-Trichlorobenzene	Ave	0.5361	0.3339		6.23	10.0	-37.7*	35.0
Naphthalene	Ave	0.6106	0.3971		6.50	10.0	-35.0	35.0
Hexachlorobutadiene	Lin2		0.1933		12.2	10.0	21.9	35.0
1,2,3-Trichlorobenzene	Lin1		0.0804		3.79	10.0	-62.1*	35.0
Dibromofluoromethane	Ave	0.2783	0.2462		8.85	10.0	-11.5	35.0
1,2-Dichloroethane-d4 (Surr)	Lin2		0.1230		7.46	10.0	-25.4	35.0
Toluene-d8 (Surr)	Ave	2.838	2.904		10.2	10.0	2.3	35.0
4-Bromofluorobenzene	Lin2		0.8273		10.3	10.0	3.4	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCVIS 600-279297/2 Calibration Date: 11/04/2019 08:32

Instrument ID: CHVOAMS07 Calib Start Date: 10/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 10/17/2019 12:04

Lab File ID: A30801.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.3871	0.2967		7.66	10.0	-23.4	35.0
Chloromethane	Ave	0.4296	0.3459	0.1000	8.05	10.0	-19.5	35.0
Vinyl chloride	Ave	0.3770	0.3887		10.3	10.0	3.1	20.0
Butadiene	Ave	0.5101	0.5111		10.0	10.0	0.2	35.0
Ethylene oxide	Ave	0.0204	0.0186		91.0	100	-9.0	35.0
Bromomethane	Lin2		0.1071		5.77	10.0	-42.3*	35.0
Chloroethane	Ave	0.1835	0.1745		9.51	10.0	-4.9	35.0
Dichlorofluoromethane	Ave	0.4478	0.4368		9.75	10.0	-2.5	35.0
Acrolein	Ave	0.0083	0.0065		39.2	50.0	-21.6	50.0
Trichlorofluoromethane	Ave	0.5129	0.5314		10.4	10.0	3.6	35.0
Acetonitrile	Ave	0.0127	0.0117		92.1	100	-8.0	50.0
Isopropyl alcohol	Lin1		0.0051		90.0	100	-10.0	50.0
Acetone	Lin1		0.0321		24.7	20.0	23.6	50.0
Ethyl ether	Ave	0.1529	0.1500		9.81	10.0	-1.9	35.0
t-Butanol	Lin1		0.0092		93.6	100	-6.4	35.0
1,1-Dichloroethene	Ave	0.3169	0.3332		10.5	10.0	5.1	20.0
Acrylonitrile	Ave	0.0291	0.0272		93.4	100	-6.6	50.0
Iodomethane	Lin1		0.3608		8.51	10.0	-14.9	35.0
Methylene Chloride	Lin1		0.2891		9.39	10.0	-6.1	50.0
Methyl acetate	Ave	0.0954	0.0886		18.6	20.0	-7.1	35.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.2947	0.3397		11.5	10.0	15.3	35.0
3-Chloro-1-propene	Ave	0.1698	0.1695		9.98	10.0	-0.2	35.0
Carbon disulfide	Ave	0.8638	0.8750		10.1	10.0	1.3	35.0
trans-1,2-Dichloroethene	Ave	0.3389	0.3505		10.3	10.0	3.4	35.0
Methyl tert-butyl ether	Ave	0.4755	0.4335		9.12	10.0	-8.8	35.0
1,1-Dichloroethane	Ave	0.5153	0.4961	0.1000	9.63	10.0	-3.7	35.0
Propionitrile	Ave	0.0118	0.0107		90.2	100	-9.8	35.0
Vinyl acetate	Ave	0.2838	0.2638		18.6	20.0	-7.1	50.0
2-Chloro-1,3-butadiene	Ave	0.5293	0.5530		10.5	10.0	4.5	35.0
Hexane	Ave	0.4577	0.5087		11.1	10.0	11.1	35.0
Isopropyl ether	Ave	1.083	1.016		9.38	10.0	-6.2	35.0
2-Butanone (MEK)	Lin		0.0115		21.5	20.0	7.6	50.0
Methacrylonitrile	Ave	0.0138	0.0128		93.1	100	-6.9	35.0
cis-1,2-Dichloroethene	Ave	0.3411	0.3473		10.2	10.0	1.8	35.0
Ethyl acetate	Ave	0.0934	0.0921		19.7	20.0	-1.3	35.0
Chlorobromomethane	Ave	0.1441	0.1411		9.79	10.0	-2.1	35.0
Tert-butyl ethyl ether	Ave	0.6722	0.6239		9.28	10.0	-7.2	35.0
Chloroform	Ave	0.5244	0.5054		9.64	10.0	-3.6	20.0
Isobutyl alcohol	Lin		0.0036		204	250	-18.4	50.0
2,2-Dichloropropane	Ave	0.4845	0.4802		9.91	10.0	-0.9	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCVIS 600-279297/2 Calibration Date: 11/04/2019 08:32

Instrument ID: CHVOAMS07 Calib Start Date: 10/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 10/17/2019 12:04

Lab File ID: A30801.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Tetrahydrofuran	Ave	0.0292	0.0264		18.1	20.0	-9.5	35.0
1,2-Dichloroethane	Ave	0.2382	0.2102		8.82	10.0	-11.8	35.0
1,1,1-Trichloroethane	Ave	0.5319	0.5416		10.2	10.0	1.8	35.0
1,1-Dichloropropene	Ave	0.3678	0.3889		10.6	10.0	5.7	35.0
Cyclohexane	Ave	0.4376	0.4924		11.3	10.0	12.5	35.0
Carbon tetrachloride	Ave	0.5070	0.5213		10.3	10.0	2.8	35.0
Benzene	Ave	1.180	1.155		9.79	10.0	-2.1	35.0
Tert-amyl methyl ether	Ave	0.4832	0.4439		9.19	10.0	-8.1	35.0
Isooctane	Ave	0.8663	0.9381		10.8	10.0	8.3	35.0
Ethyl acrylate	Ave	0.1921	0.1844		9.60	10.0	-4.0	35.0
n-Heptane	Ave	0.4241	0.4810		11.3	10.0	13.4	35.0
Dibromomethane	Lin1		0.0950		9.02	10.0	-9.9	35.0
1,2-Dichloropropane	Ave	0.2486	0.2297		9.24	10.0	-7.6	20.0
2-Nitropropane	Lin1		0.0302		16.5	20.0	-17.7	35.0
Trichloroethene	Ave	0.4050	0.4165		10.3	10.0	2.8	35.0
Bromodichloromethane	Ave	0.3241	0.3048		9.40	10.0	-6.0	35.0
Methyl methacrylate	Lin1		0.1017		17.1	20.0	-14.5	50.0
1,4-Dioxane	Lin2		0.0007		211	200	5.7	50.0
2-Chloroethyl vinyl ether	Qua		0.0138		24.2	20.0	21.1	35.0
Methylcyclohexane	Ave	0.4451	0.5103		11.5	10.0	14.6	35.0
cis-1,3-Dichloropropene	Ave	0.8898	0.8527		9.58	10.0	-4.2	35.0
4-Methyl-2-pentanone (MIBK)	Ave	0.0933	0.0870		18.7	20.0	-6.8	50.0
trans-1,3-Dichloropropene	Ave	0.6179	0.5821		9.42	10.0	-5.8	35.0
1,1,2-Trichloroethane	Lin2		0.3625		9.55	10.0	-4.5	35.0
Ethyl methacrylate	Ave	0.3845	0.3583		9.32	10.0	-6.8	50.0
Toluene	Ave	1.981	2.052		10.4	10.0	3.6	20.0
1,3-Dichloropropane	Ave	0.6316	0.5719		9.05	10.0	-9.5	35.0
2-Hexanone	Lin1		0.1509		19.3	20.0	-3.4	50.0
Dibromochloromethane	Ave	0.6321	0.5983		9.47	10.0	-5.3	35.0
n-Butyl acetate	Ave	0.4460	0.4187		9.39	10.0	-6.1	35.0
1,2-Dibromoethane	Ave	0.4203	0.3818		9.08	10.0	-9.2	35.0
Tetrachloroethene	Ave	0.7023	0.7816		11.1	10.0	11.3	35.0
1-Chlorohexane	Ave	0.7383	0.7614		10.3	10.0	3.1	35.0
1,1,1,2-Tetrachloroethane	Ave	0.8485	0.8414		9.92	10.0	-0.8	35.0
Chlorobenzene	Ave	2.550	2.422	0.3000	9.50	10.0	-5.0	35.0
Ethylbenzene	Ave	1.342	1.366		10.2	10.0	1.8	20.0
m-Xylene & p-Xylene	Ave	2.869	2.844		9.91	10.0	-0.9	35.0
Bromoform	Lin2		0.2547	0.1000	9.51	10.0	-4.9	35.0
Styrene	Ave	2.244	2.273		10.1	10.0	1.3	35.0
Cyclohexanone	Ave	0.0078	0.0083		536	500	7.3	35.0
o-Xylene	Ave	1.640	1.604		9.78	10.0	-2.2	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCVIS 600-279297/2 Calibration Date: 11/04/2019 08:32

Instrument ID: CHVOAMS07 Calib Start Date: 10/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25 (mm) Calib End Date: 10/17/2019 12:04

Lab File ID: A30801.d Conc. Units: $\underline{ug/L}$ Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,1,2,2-Tetrachloroethane	Ave	0.4695	0.3885	0.3000	8.28	10.0	-17.2	35.0
trans-1,4-Dichloro-2-butene	Ave	0.0912	0.0717		7.86	10.0	-21.4	50.0
1,2,3-Trichloropropane	Lin2		0.1154		9.32	10.0	-6.8	35.0
Isopropylbenzene	Ave	4.004	3.818		9.53	10.0	-4.7	35.0
Bromobenzene	Ave	0.9366	0.8527		9.10	10.0	-9.0	35.0
N-Propylbenzene	Ave	1.182	1.210		10.2	10.0	2.3	35.0
2-Chlorotoluene	Ave	1.097	1.041		9.50	10.0	-5.1	35.0
4-Chlorotoluene	Ave	2.609	2.442		9.36	10.0	-6.4	35.0
1,3,5-Trimethylbenzene	Ave	3.275	3.220		9.83	10.0	-1.7	35.0
tert-Butylbenzene	Ave	3.004	2.944		9.80	10.0	-2.0	35.0
1,2,4-Trimethylbenzene	Ave	3.349	3.265		9.75	10.0	-2.5	35.0
sec-Butylbenzene	Ave	4.136	4.049		9.79	10.0	-2.1	35.0
Benzyl chloride	Ave	0.7548	0.6714		8.90	10.0	-11.1	35.0
1,3-Dichlorobenzene	Ave	1.897	1.766		9.31	10.0	-6.9	35.0
4-Isopropyltoluene	Ave	4.003	3.962		9.90	10.0	-1.0	35.0
1,4-Dichlorobenzene	Ave	2.039	1.851		9.08	10.0	-9.2	35.0
1,2,3-Trimethylbenzene	Ave	3.275	3.061		9.35	10.0	-6.5	35.0
1,2-Dichlorobenzene	Ave	1.553	1.367		8.80	10.0	-12.0	35.0
n-Butylbenzene	Ave	2.858	2.837		9.93	10.0	-0.7	35.0
1,2-Dibromo-3-Chloropropane	Lin2		0.0609		9.30	10.0	-7.0	35.0
1,3,5-Trichlorobenzene	Ave	1.072	1.007		9.40	10.0	-6.0	35.0
1,2,4-Trichlorobenzene	Ave	0.5361	0.5441		10.2	10.0	1.5	35.0
Naphthalene	Ave	0.6106	1.155		18.9	10.0	89.2*	35.0
Hexachlorobutadiene	Lin2		0.1654		10.4	10.0	3.9	35.0
1,2,3-Trichlorobenzene	Lin1		0.2356		11.6	10.0	15.6	35.0
Dibromofluoromethane	Ave	0.2783	0.2570		9.23	10.0	-7.7	35.0
1,2-Dichloroethane-d4 (Surr)	Lin2		0.1517		9.30	10.0	-7.0	35.0
Toluene-d8 (Surr)	Ave	2.838	2.732		9.63	10.0	-3.7	35.0
4-Bromofluorobenzene	Lin2		0.7572		9.44	10.0	-5.6	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCVIS 600-279414/2 Calibration Date: 11/05/2019 09:09

Instrument ID: CHVOAMS07 Calib Start Date: 10/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 10/17/2019 12:04

Lab File ID: A30901.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.3871	0.3193		8.25	10.0	-17.5	35.0
Chloromethane	Ave	0.4296	0.3807	0.1000	8.86	10.0	-11.4	35.0
Vinyl chloride	Ave	0.3770	0.4208		11.2	10.0	11.6	20.0
Butadiene	Ave	0.5101	0.6322		12.4	10.0	23.9	35.0
Ethylene oxide	Ave	0.0204	0.0186		91.0	100	-9.0	35.0
Bromomethane	Lin2		0.1178		6.33	10.0	-36.7*	35.0
Chloroethane	Ave	0.1835	0.2009		11.0	10.0	9.5	35.0
Dichlorofluoromethane	Ave	0.4478	0.4927		11.0	10.0	10.0	35.0
Acrolein	Ave	0.0083	0.0069		41.3	50.0	-17.5	50.0
Acetonitrile	Ave	0.0127	0.0113		88.9	100	-11.1	50.0
Trichlorofluoromethane	Ave	0.5129	0.6314		12.3	10.0	23.1	35.0
Isopropyl alcohol	Lin1		0.0052		91.1	100	-8.9	50.0
Acetone	Lin1		0.0267		20.3	20.0	1.6	50.0
Ethyl ether	Ave	0.1529	0.1471		9.62	10.0	-3.8	35.0
t-Butanol	Lin1		0.0096		97.3	100	-2.7	35.0
1,1-Dichloroethene	Ave	0.3169	0.3799		12.0	10.0	19.9	20.0
Acrylonitrile	Ave	0.0291	0.0271		93.2	100	-6.8	50.0
Iodomethane	Lin1		0.3604		8.50	10.0	-15.0	35.0
Methylene Chloride	Lin1		0.3042		9.95	10.0	-0.5	50.0
Methyl acetate	Ave	0.0954	0.0844		17.7	20.0	-11.5	35.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.2947	0.3755		12.7	10.0	27.4	35.0
3-Chloro-1-propene	Ave	0.1698	0.1854		10.9	10.0	9.2	35.0
Carbon disulfide	Ave	0.8638	0.999		11.6	10.0	15.6	35.0
trans-1,2-Dichloroethene	Ave	0.3389	0.3827		11.3	10.0	12.9	35.0
Methyl tert-butyl ether	Ave	0.4755	0.4406		9.27	10.0	-7.3	35.0
Propionitrile	Ave	0.0118	0.0108		91.4	100	-8.6	35.0
1,1-Dichloroethane	Ave	0.5153	0.5629	0.1000	10.9	10.0	9.3	35.0
Vinyl acetate	Ave	0.2838	0.2651		18.7	20.0	-6.6	50.0
2-Chloro-1,3-butadiene	Ave	0.5293	0.6307		11.9	10.0	19.2	35.0
Hexane	Ave	0.4577	0.5649		12.3	10.0	23.4	35.0
Isopropyl ether	Ave	1.083	1.118		10.3	10.0	3.2	35.0
2-Butanone (MEK)	Lin		0.0112		21.1	20.0	5.5	50.0
Methacrylonitrile	Ave	0.0138	0.0122		88.5	100	-11.5	35.0
cis-1,2-Dichloroethene	Ave	0.3411	0.3795		11.1	10.0	11.3	35.0
Ethyl acetate	Ave	0.0934	0.0860		18.4	20.0	-7.9	35.0
Chlorobromomethane	Ave	0.1441	0.1413		9.80	10.0	-2.0	35.0
Tert-butyl ethyl ether	Ave	0.6722	0.6698		9.96	10.0	-0.4	35.0
Chloroform	Ave	0.5244	0.5597		10.7	10.0	6.7	20.0
Isobutyl alcohol	Lin		0.0044		241	250	-3.5	50.0
2,2-Dichloropropane	Ave	0.4845	0.5314		11.0	10.0	9.7	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCVIS 600-279414/2 Calibration Date: 11/05/2019 09:09

Instrument ID: CHVOAMS07 Calib Start Date: 10/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25(mm) Calib End Date: 10/17/2019 12:04

Lab File ID: A30901.d Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	용D	MAX %D
Tetrahydrofuran	Ave	0.0292	0.0262		17.9	20.0	-10.3	35.0
1,2-Dichloroethane	Ave	0.2382	0.2162		9.07	10.0	-9.3	35.0
1,1,1-Trichloroethane	Ave	0.5319	0.6085		11.4	10.0	14.4	35.0
1,1-Dichloropropene	Ave	0.3678	0.4460		12.1	10.0	21.2	35.0
Cyclohexane	Ave	0.4376	0.5379		12.3	10.0	22.9	35.0
Carbon tetrachloride	Ave	0.5070	0.5717		11.3	10.0	12.8	35.0
Benzene	Ave	1.180	1.291		11.0	10.0	9.5	35.0
Tert-amyl methyl ether	Ave	0.4832	0.4665		9.66	10.0	-3.5	35.0
Isooctane	Ave	0.8663	1.072		12.4	10.0	23.8	35.0
Ethyl acrylate	Ave	0.1921	0.1870		9.73	10.0	-2.7	35.0
n-Heptane	Ave	0.4241	0.5049		11.9	10.0	19.1	35.0
Dibromomethane	Lin1		0.0941		8.94	10.0	-10.6	35.0
1,2-Dichloropropane	Ave	0.2486	0.2533		10.2	10.0	1.9	20.0
2-Nitropropane	Lin1		0.0294		16.0	20.0	-19.9	35.0
Trichloroethene	Ave	0.4050	0.4619		11.4	10.0	14.0	35.0
Bromodichloromethane	Ave	0.3241	0.3251		10.0	10.0	0.3	35.0
Methyl methacrylate	Lin1		0.0983		16.6	20.0	-17.2	50.0
1,4-Dioxane	Lin2		0.0005		150	200	-25.1	50.0
2-Chloroethyl vinyl ether	Qua		0.0103		18.4	20.0	-8.3	35.0
Methylcyclohexane	Ave	0.4451	0.5554		12.5	10.0	24.8	35.0
cis-1,3-Dichloropropene	Ave	0.8898	0.9153		10.3	10.0	2.9	35.0
4-Methyl-2-pentanone (MIBK)	Ave	0.0933	0.0876		18.8	20.0	-6.2	50.0
trans-1,3-Dichloropropene	Ave	0.6179	0.6022		9.75	10.0	-2.6	35.0
1,1,2-Trichloroethane	Lin2		0.3879		10.2	10.0	2.4	35.0
Ethyl methacrylate	Ave	0.3845	0.3679		9.57	10.0	-4.3	50.0
Toluene	Ave	1.981	2.326		11.7	10.0	17.4	20.0
1,3-Dichloropropane	Ave	0.6316	0.5991		9.49	10.0	-5.1	35.0
2-Hexanone	Lin1		0.1497		19.2	20.0	-4.2	50.0
Dibromochloromethane	Ave	0.6321	0.6169		9.76	10.0	-2.4	35.0
n-Butyl acetate	Ave	0.4460	0.4334		9.72	10.0	-2.8	35.0
1,2-Dibromoethane	Ave	0.4203	0.3867		9.20	10.0	-8.0	35.0
Tetrachloroethene	Ave	0.7023	0.8697		12.4	10.0	23.8	35.0
1-Chlorohexane	Ave	0.7383	0.8754		11.9	10.0	18.6	35.0
1,1,1,2-Tetrachloroethane	Ave	0.8485	0.8757		10.3	10.0	3.2	35.0
Chlorobenzene	Ave	2.550	2.684	0.3000	10.5	10.0	5.2	35.0
Ethylbenzene	Ave	1.342	1.541		11.5	10.0	14.8	20.0
m-Xylene & p-Xylene	Ave	2.869	3.212		11.2	10.0	11.9	35.0
Bromoform	Lin2		0.2675	0.1000	10.0	10.0	0.0	35.0
Styrene	Ave	2.244	2.448		10.9	10.0	9.1	35.0
Cyclohexanone	Ave	0.0078	0.0079		510	500	2.0	35.0
1,1,2,2-Tetrachloroethane	Ave	0.4695	0.4093	0.3000	8.72	10.0	-12.8	35.0

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCVIS 600-279414/2 Calibration Date: 11/05/2019 09:09

Instrument ID: CHVOAMS07 Calib Start Date: 10/17/2019 09:37

GC Column: DB-VRX 60 ID: 0.25 (mm) Calib End Date: 10/17/2019 12:04

Lab File ID: A30901.d Conc. Units: $\underline{ug/L}$ Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
o-Xylene	Ave	1.640	1.780		10.9	10.0	8.6	35.0
trans-1,4-Dichloro-2-butene	Ave	0.0912	0.0832		9.12	10.0	-8.8	50.0
1,2,3-Trichloropropane	Lin2		0.1113		8.96	10.0	-10.4	35.0
Isopropylbenzene	Ave	4.004	4.478		11.2	10.0	11.8	35.0
Bromobenzene	Ave	0.9366	0.9260		9.89	10.0	-1.1	35.0
N-Propylbenzene	Ave	1.182	1.399		11.8	10.0	18.4	35.0
2-Chlorotoluene	Ave	1.097	1.177		10.7	10.0	7.3	35.0
4-Chlorotoluene	Ave	2.609	2.768		10.6	10.0	6.1	35.0
1,3,5-Trimethylbenzene	Ave	3.275	3.739		11.4	10.0	14.2	35.0
tert-Butylbenzene	Ave	3.004	3.452		11.5	10.0	14.9	35.0
1,2,4-Trimethylbenzene	Ave	3.349	3.733		11.2	10.0	11.5	35.0
sec-Butylbenzene	Ave	4.136	4.760		11.5	10.0	15.1	35.0
Benzyl chloride	Ave	0.7548	0.6773		8.97	10.0	-10.3	35.0
1,3-Dichlorobenzene	Ave	1.897	2.020		10.7	10.0	6.5	35.0
4-Isopropyltoluene	Ave	4.003	4.599		11.5	10.0	14.9	35.0
1,4-Dichlorobenzene	Ave	2.039	2.040		10.0	10.0	0.0	35.0
1,2,3-Trimethylbenzene	Ave	3.275	3.410		10.4	10.0	4.1	35.0
1,2-Dichlorobenzene	Ave	1.553	1.496		9.63	10.0	-3.7	35.0
n-Butylbenzene	Ave	2.858	3.255		11.4	10.0	13.9	35.0
1,2-Dibromo-3-Chloropropane	Lin2		0.0663		10.2	10.0	1.9	35.0
1,3,5-Trichlorobenzene	Ave	1.072	1.085		10.1	10.0	1.3	35.0
1,2,4-Trichlorobenzene	Ave	0.5361	0.5436		10.1	10.0	1.4	35.0
Naphthalene	Ave	0.6106	0.5764		9.44	10.0	-5.6	35.0
Hexachlorobutadiene	Lin2		0.1932		12.2	10.0	21.8	35.0
1,2,3-Trichlorobenzene	Lin1		0.2318		11.4	10.0	13.7	35.0
Dibromofluoromethane	Ave	0.2783	0.2850		10.2	10.0	2.4	35.0
1,2-Dichloroethane-d4 (Surr)	Lin2		0.1548		9.50	10.0	-5.0	35.0
Toluene-d8 (Surr)	Ave	2.838	3.085		10.9	10.0	8.7	35.0
4-Bromofluorobenzene	Lin2		0.8616		10.8	10.0	7.8	35.0

Lab Name: Eurofins TestAmerica, Houston	_ Job No.: 600-194999-1				
SDG No.:					
Client Sample ID:	Lab Sample ID: MB 600-279189/6				
Matrix: Water	Lab File ID: A30505.d				
Analysis Method: 8260B	Date Collected:				
Sample wt/vol: 20(mL)	Date Analyzed: 11/01/2019 10:27				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 279189	Units: mg/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		50-134
460-00-4	4-Bromofluorobenzene	128		67-139
1868-53-7	Dibromofluoromethane	88		62-130
2037-26-5	Toluene-d8 (Surr)	109		70-130

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1				
SDG No.:					
Client Sample ID:	Lab Sample ID: MB 600-279297/6				
Matrix: Water	Lab File ID: A30805.d				
Analysis Method: 8260B	Date Collected:				
Sample wt/vol: 20(mL)	Date Analyzed: 11/04/2019 10:29				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25 (mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 279297	Units: mg/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		50-134
460-00-4	4-Bromofluorobenzene	129		67-139
1868-53-7	Dibromofluoromethane	91		62-130
2037-26-5	Toluene-d8 (Surr)	106		70-130

Lab Name: Eurofins TestAmerica, Houston	_ Job No.: 600-194999-1				
SDG No.:					
Client Sample ID:	Lab Sample ID: MB 600-279414/6				
Matrix: Water	Lab File ID: A30905.d				
Analysis Method: 8260B	Date Collected:				
Sample wt/vol: 20(mL)	Date Analyzed: 11/05/2019 11:07				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 279414	Units: mg/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.000168	U	0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.000192	U	0.00100	0.000192
71-43-2	Benzene	0.000176	U	0.00100	0.000176
91-20-3	Naphthalene	0.000129	U	0.00200	0.000129
127-18-4	Tetrachloroethene	0.000333	U	0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	98		50-134
460-00-4	4-Bromofluorobenzene	125		67-139
1868-53-7	Dibromofluoromethane	94		62-130
2037-26-5	Toluene-d8 (Surr)	104		70-130

Lab Name: Eurofins TestAmerica, Houston				
SDG No.:				
Client Sample ID:	Lab Sample ID: LCS 600-279189/3			
Matrix: Water	Lab File ID: A30502.d			
Analysis Method: 8260B	Date Collected:			
Sample wt/vol: 20(mL)	Date Analyzed: 11/01/2019 09:17			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 279189	Units: mg/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.01012		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.01041		0.00100	0.000192
71-43-2	Benzene	0.01042		0.00100	0.000176
91-20-3	Naphthalene	0.008346		0.00200	0.000129
127-18-4	Tetrachloroethene	0.01271		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	78		50-134
460-00-4	4-Bromofluorobenzene	121		67-139
1868-53-7	Dibromofluoromethane	84		62-130
2037-26-5	Toluene-d8 (Surr)	109		70-130

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: LCS 600-279297/3			
Matrix: Water	Lab File ID: A30802.d			
Analysis Method: 8260B	Date Collected:			
Sample wt/vol: 20(mL)	Date Analyzed: 11/04/2019 09:17			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 279297	Units: mg/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.009861		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.009945		0.00100	0.000192
71-43-2	Benzene	0.01011		0.00100	0.000176
127-18-4	Tetrachloroethene	0.01231		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	85		50-134
460-00-4	4-Bromofluorobenzene	118		67-139
1868-53-7	Dibromofluoromethane	90		62-130
2037-26-5	Toluene-d8 (Surr)	105		70-130

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: LCS 600-279414/3			
Matrix: Water	Lab File ID: A30902.d			
Analysis Method: 8260B	Date Collected:			
Sample wt/vol: 20 (mL)	Date Analyzed: 11/05/2019 09:54			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 279414	Units: mg/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.01038		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.01038		0.00100	0.000192
71-43-2	Benzene	0.01057		0.00100	0.000176
91-20-3	Naphthalene	0.01226		0.00200	0.000129
127-18-4	Tetrachloroethene	0.01231		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		50-134
460-00-4	4-Bromofluorobenzene	119		67-139
1868-53-7	Dibromofluoromethane	96		62-130
2037-26-5	Toluene-d8 (Surr)	105		70-130

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: LCSD 600-279189/4			
Matrix: Water	Lab File ID: A30503a.d			
Analysis Method: 8260B	Date Collected:			
Sample wt/vol: 20(mL)	Date Analyzed: 11/01/2019 10:50			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 279189	Units: mg/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.009687		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.009293		0.00100	0.000192
71-43-2	Benzene	0.009905		0.00100	0.000176
91-20-3	Naphthalene	0.007494		0.00200	0.000129
127-18-4	Tetrachloroethene	0.01167		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		50-134
460-00-4	4-Bromofluorobenzene	117		67-139
1868-53-7	Dibromofluoromethane	91		62-130
2037-26-5	Toluene-d8 (Surr)	108		70-130

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Client Sample ID:	Lab Sample ID: LCSD 600-279297/4
Matrix: Water	Lab File ID: A30803.d
Analysis Method: 8260B	Date Collected:
Sample wt/vol: 20(mL)	Date Analyzed: 11/04/2019 09:41
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 279297	Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.009516		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.009406		0.00100	0.000192
71-43-2	Benzene	0.009735		0.00100	0.000176
127-18-4	Tetrachloroethene	0.01168		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	90		50-134
460-00-4	4-Bromofluorobenzene	121		67-139
1868-53-7	Dibromofluoromethane	97		62-130
2037-26-5	Toluene-d8 (Surr)	108		70-130

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1		
SDG No.:			
Client Sample ID:	Lab Sample ID: LCSD 600-279414/4		
Matrix: Water	Lab File ID: A30903.d		
Analysis Method: 8260B	Date Collected:		
Sample wt/vol: 20(mL)	Date Analyzed: 11/05/2019 10:18		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-VRX 60 ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 279414	Units: mg/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.01025		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.01046		0.00100	0.000192
71-43-2	Benzene	0.01079		0.00100	0.000176
91-20-3	Naphthalene	0.01400		0.00200	0.000129
127-18-4	Tetrachloroethene	0.01200		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	93		50-134
460-00-4	4-Bromofluorobenzene	123		67-139
1868-53-7	Dibromofluoromethane	97		62-130
2037-26-5	Toluene-d8 (Surr)	105		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW28-102919 MS Lab Sample ID: 600-194999-12 MS Matrix: Water Lab File ID: A30510.d Analysis Method: 8260B Date Collected: 10/29/2019 11:15 Sample wt/vol: 20(mL) Date Analyzed: 11/01/2019 12:49 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.01454		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.01921		0.00100	0.000192
71-43-2	Benzene	0.009915		0.00100	0.000176
91-20-3	Naphthalene	0.01097		0.00200	0.000129
127-18-4	Tetrachloroethene	0.03042		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		50-134
460-00-4	4-Bromofluorobenzene	117		67-139
1868-53-7	Dibromofluoromethane	94		62-130
2037-26-5	Toluene-d8 (Surr)	105		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW34-102919 MS Lab Sample ID: 600-194999-15 MS Matrix: Water Lab File ID: A30512.d Analysis Method: 8260B Date Collected: 10/29/2019 13:17 Date Analyzed: 11/01/2019 13:37 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.009147		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.006369		0.00100	0.000192
71-43-2	Benzene	0.009160		0.00100	0.000176
91-20-3	Naphthalene	0.01287		0.00200	0.000129
127-18-4	Tetrachloroethene	0.01215		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		50-134
460-00-4	4-Bromofluorobenzene	122		67-139
1868-53-7	Dibromofluoromethane	97		62-130
2037-26-5	Toluene-d8 (Surr)	104		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW28-102919 MSD Lab Sample ID: 600-194999-12 MSD Matrix: Water Lab File ID: A30511.d Analysis Method: 8260B Date Collected: 10/29/2019 11:15 Date Analyzed: 11/01/2019 13:13 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.01380		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.01877		0.00100	0.000192
71-43-2	Benzene	0.009215		0.00100	0.000176
91-20-3	Naphthalene	0.01180		0.00200	0.000129
127-18-4	Tetrachloroethene	0.02864		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		50-134
460-00-4	4-Bromofluorobenzene	116		67-139
1868-53-7	Dibromofluoromethane	97		62-130
2037-26-5	Toluene-d8 (Surr)	101		70-130

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW34-102919 MSD Lab Sample ID: 600-194999-15 MSD Matrix: Water Lab File ID: A30513.d Analysis Method: 8260B Date Collected: 10/29/2019 13:17 Date Analyzed: 11/01/2019 14:01 Sample wt/vol: 20(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: DB-VRX 60 ID: 0.25(mm) % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 279189 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-34-3	1,1-Dichloroethane	0.009379		0.00100	0.000168
75-35-4	1,1-Dichloroethene	0.006394		0.00100	0.000192
71-43-2	Benzene	0.009334		0.00100	0.000176
91-20-3	Naphthalene	0.01322		0.00200	0.000129
127-18-4	Tetrachloroethene	0.01183		0.00100	0.000333

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		50-134
460-00-4	4-Bromofluorobenzene	122		67-139
1868-53-7	Dibromofluoromethane	99		62-130
2037-26-5	2037-26-5 Toluene-d8 (Surr)			70-130

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Instrument ID: CHVOAMS07	Start Date: 10/17/2019 09:07
Analysis Batch Number: 277761	End Date: 10/17/2019 19:30

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 600-277761/1		10/17/2019 09:07	1	A29000.d	DB-VRX 60 0.25(mm)
IC 600-277761/2		10/17/2019 09:37	1	A29001.d	DB-VRX 60 0.25(mm)
IC 600-277761/3		10/17/2019 10:01	1	A29002.d	DB-VRX 60 0.25(mm)
IC 600-277761/4		10/17/2019 10:27	1	A29003.d	DB-VRX 60 0.25(mm)
IC 600-277761/5		10/17/2019 10:51	1	A29004.d	DB-VRX 60 0.25(mm)
ICIS 600-277761/6		10/17/2019 11:15	1	A29005.d	DB-VRX 60 0.25(mm)
IC 600-277761/7		10/17/2019 11:40	1	A29006.d	DB-VRX 60 0.25(mm)
IC 600-277761/8		10/17/2019 12:04	1	A29007.d	DB-VRX 60 0.25(mm)
ZZZZZ		10/17/2019 14:07	1		DB-VRX 60 0.25(mm)
ICV 600-277761/10		10/17/2019 14:31	1	A29009B.d	DB-VRX 60 0.25(mm)
ZZZZZ		10/17/2019 14:31	1		DB-VRX 60 0.25(mm)
ZZZZZ		10/17/2019 15:50	1		DB-VRX 60 0.25(mm)
ZZZZZ		10/17/2019 16:15	40		DB-VRX 60 0.25(mm)
ZZZZZ		10/17/2019 16:39	200		DB-VRX 60 0.25(mm)
ZZZZZ		10/17/2019 17:03	1000		DB-VRX 60 0.25(mm)
ZZZZZ		10/17/2019 17:27	20		DB-VRX 60 0.25(mm)
ZZZZZ		10/17/2019 17:52	50		DB-VRX 60 0.25(mm)
ZZZZZ		10/17/2019 18:16	100		DB-VRX 60 0.25(mm)
ZZZZZ		10/17/2019 18:41	100		DB-VRX 60 0.25(mm)
ZZZZZ		10/17/2019 19:05	50		DB-VRX 60 0.25(mm)
ZZZZZ		10/17/2019 19:30	2000		DB-VRX 60 0.25(mm)

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Instrument ID: CHVOAMS07	Start Date: 11/01/2019 08:08
Analysis Batch Number: 279189	End Date: 11/01/2019 20:08

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 600-279189/1		11/01/2019 08:08	1	A30500.d	DB-VRX 60 0.25(mm)
CCVIS 600-279189/2		11/01/2019 08:34	1	A30501.d	DB-VRX 60 0.25(mm)
LCS 600-279189/3		11/01/2019 09:17	1	A30502.d	DB-VRX 60 0.25 (mm)
MB 600-279189/6		11/01/2019 10:27	1	A30505.d	DB-VRX 60 0.25 (mm)
LCSD 600-279189/4		11/01/2019 10:50	1	A30503a.d	DB-VRX 60 0.25 (mm)
ZZZZZ		11/01/2019 11:14	5		DB-VRX 60 0.25(mm)
600-194999-12		11/01/2019 11:38	1	A30507.d	DB-VRX 60 0.25(mm)
600-194999-15		11/01/2019 12:01	1	A30508.d	DB-VRX 60 0.25(mm)
ZZZZZ		11/01/2019 12:25	1		DB-VRX 60 0.25(mm)
600-194999-12 MS		11/01/2019 12:49	1	A30510.d	DB-VRX 60 0.25(mm)
600-194999-12 MSD		11/01/2019 13:13	1	A30511.d	DB-VRX 60 0.25(mm)
600-194999-15 MS		11/01/2019 13:37	1	A30512.d	DB-VRX 60 0.25(mm)
600-194999-15 MSD		11/01/2019 14:01	1	A30513.d	DB-VRX 60 0.25(mm)
ZZZZZ		11/01/2019 14:25	25		DB-VRX 60 0.25(mm)
600-194999-1		11/01/2019 14:50	1	A30515.d	DB-VRX 60 0.25(mm)
600-194999-2		11/01/2019 15:14	1	A30516.d	DB-VRX 60 0.25(mm)
600-194999-3		11/01/2019 15:38	1	A30517.d	DB-VRX 60 0.25(mm)
600-194999-4		11/01/2019 16:02	1	A30518.d	DB-VRX 60 0.25(mm)
600-194999-5		11/01/2019 16:26	1	A30519.d	DB-VRX 60 0.25(mm)
600-194999-6		11/01/2019 16:51	1	A30520.d	DB-VRX 60 0.25(mm)
600-194999-7		11/01/2019 17:15	1	A30521.d	DB-VRX 60 0.25(mm)
600-194999-8		11/01/2019 17:39	1	A30522.d	DB-VRX 60 0.25(mm)
600-194999-9		11/01/2019 18:03	1	A30523.d	DB-VRX 60 0.25(mm)
600-194999-10		11/01/2019 18:28	1	A30524.d	DB-VRX 60 0.25(mm)
600-194999-11		11/01/2019 18:53	1	A30525.d	DB-VRX 60 0.25(mm)
600-194999-13		11/01/2019 19:18	1	A30526.d	DB-VRX 60 0.25(mm)
500-194999-14		11/01/2019 19:43	1	A30527.d	DB-VRX 60 0.25(mm)
600-194999-16		11/01/2019 20:08	1	A30528.d	DB-VRX 60 0.25(mm)

Job No.: 600-194999-1
Start Date: 11/04/2019 07:58
End Date: 11/04/2019 18:51

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 600-279297/1		11/04/2019 07:58	1	A30800.d	DB-VRX 60 0.25 (mm)
CCVIS 600-279297/2		11/04/2019 08:32	1	A30801.d	DB-VRX 60 0.25(mm)
LCS 600-279297/3		11/04/2019 09:17	1	A30802.d	DB-VRX 60 0.25(mm)
LCSD 600-279297/4		11/04/2019 09:41	1	A30803.d	DB-VRX 60 0.25(mm)
MB 600-279297/6		11/04/2019 10:29	1	A30805.d	DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 10:53	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 11:17	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 11:40	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 12:04	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 12:28	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 12:52	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 13:16	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 13:40	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 14:04	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 14:28	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 14:52	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 15:16	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 15:40	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 16:04	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 16:27	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 16:51	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 17:15	1		DB-VRX 60 0.25(mm)
ZZZZZ		11/04/2019 17:39	1		DB-VRX 60 0.25 (mm)
600-194999-6 DL		11/04/2019 18:03	5	A30824.d	DB-VRX 60 0.25(mm)
600-194999-17		11/04/2019 18:27	1	A30825.d	DB-VRX 60 0.25(mm)
600-194999-17 DL		11/04/2019 18:51	10	A30826.d	DB-VRX 60 0.25(mm)

Lab Name: Eurofins TestAmeri	ca, Houston	Job No.: 600-194999-1	
SDG No.:			
Instrument ID: CHVOAMS07		Start Date: 11/05/2019 08:10	
Analysis Ratch Number: 27941	Δ	End Date: 11/05/2019 19:09	

	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
BFB 600-279414/1	11/05/2019 08:10	1	A30900.d	DB-VRX 60 0.25 (mm)
CCVIS 600-279414/2	11/05/2019 09:09	1	A30901.d	DB-VRX 60 0.25(mm)
LCS 600-279414/3	11/05/2019 09:54	1	A30902.d	DB-VRX 60 0.25(mm)
LCSD 600-279414/4	11/05/2019 10:18	1	A30903.d	DB-VRX 60 0.25(mm)
MB 600-279414/6	11/05/2019 11:07	1	A30905.d	DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 11:31	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 11:55	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 12:19	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 12:43	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 13:07	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 13:32	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 13:56	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 14:20	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 14:44	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 15:08	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 15:32	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 15:56	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 16:20	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 16:44	1		DB-VRX 60 0.25(mm)
ZZZZZ	11/05/2019 17:09	1		DB-VRX 60 0.25(mm)
600-194999-19	11/05/2019 17:33	1	A30921.d	DB-VRX 60 0.25 (mm)
600-194999-20	11/05/2019 17:57	1	A30922.d	DB-VRX 60 0.25 (mm)
600-194999-21	11/05/2019 18:21	1	A30923.d	DB-VRX 60 0.25(mm)
600-194999-18	11/05/2019 18:45	1	A30924.d	DB-VRX 60 0.25(mm)
600-194999-17	11/05/2019 19:09	1	A30925.d	DB-VRX 60 0.25(mm)

Lab Name: Eurofins TestAmerica, Houston		on J	ob No.: $\frac{600-1}{1}$	94999-1					
SDG No.:									
Batch Number:	277761		В	atch Start Da	te: <u>10/17/19</u> (09:07	Batch Analyst: Shen, Wei		
Batch Method:	8260B		В	atch End Date	:				
Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	BFB 00293	EOxideLcs 00162	EOxideStd 00162	VOAIS50PPM 00262
BFB 600-277761/1		8260B		20 mL	20 mL	2 uL			
IC 600-277761/2		8260B		20 mL	20 mL			0.2 uL	5 uL
IC 600-277761/3		8260B		20 mL	20 mL			0.4 uL	5 uL
IC 600-277761/4		8260B		20 mL	20 mL			0.8 uL	5 uL
IC 600-277761/5		8260B		20 mL	20 mL			2 uL	5 uL
ICIS 600-277761/6		8260B		20 mL	20 mL			4 uL	5 uL
IC 600-277761/7		8260B		20 mL	20 mL			8 uL	5 uL
IC 600-277761/8		8260B		20 mL	20 mL			20 uL	5 uL
ICV 600-277761/10		8260B		20 mL	20 mL		4 uL		5 uL
Lab Sample ID	Client Sample ID	Method Chain	Basis	VOALCSGASPT 00348	VOALCSPT2 00150	VOASS50PPM 00300	VOASTDGASPT 00348	VOASTDPT2 00150	
BFB 600-277761/1		8260B							
IC 600-277761/2		8260B					0.2 uL	0.2 uL	
IC 600-277761/3		8260B					0.4 uL	0.4 uL	
IC 600-277761/4		8260B					0.8 uL	0.8 uL	
IC 600-277761/5		8260B					2 uL	2 uL	
ICIS 600-277761/6		8260B					4 uL	4 uL	
IC 600-277761/7		8260B					8 uL	8 uL	
IC 600-277761/8		8260B					20 uL	20 uL	
ICV 600-277761/10		8260B		4 uL	4 uL	5 uL			
		Ва	tch Not	ces					
Basis Ba	asis Description								

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Batch Number: 279189 Batch Start Date: 11/01/19 08:08 Batch Analyst: Shen, Wei

Batch Method: 8260B Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	Initial pH	BFB 00294	EOxideLcs 00163	EOxideStd 00163
BFB 600-279189/1		8260B		20 mL	20 mL		2 uL		
CCVIS 600-279189/2		8260B		20 mL	20 mL				4 uL
LCS 600-279189/3		8260B		20 mL	20 mL			4 uL	
LCSD 600-279189/4		8260B		20 mL	20 mL			4 uL	
MB 600-279189/6		8260B		20 mL	20 mL				
600-194999-C-12	Artesia-MW28-102 92019	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-15	Artesia-MW34-102 92019	8260B	Т	20 mL	20 mL	2 SU			
600-194999-B-12 MS	Artesia-MW28-102 92019	8260B	Т	20 mL	20 mL	2 SU			
600-194999-B-12 MSD	Artesia-MW28-102 92019	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-15 MS	Artesia-MW34-102 92019	8260B	Т	20 mL	20 mL	2 SU			
600-194999-D-15 MSD	Artesia-MW34-102 92019	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-1	Artesia-Outlet-1 02919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-2	Artesia-MW30-102 919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-3	Artesia-MD30-102 919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-4	Artesia-MW32-102 919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-5	Artesia-MW36-102 919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-6	Artesia-MW12-102 919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-7	Artesia-MW17C-10 2919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-8	Artesia-MW11-102 919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-9	Artesia-MD11-102 919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-10	Artesia-MW29-102 92019	8260B	Т	20 mL	20 mL	2 SU			
600-194999-B-11	Artesia-MW35-102 919	8260B	Т	20 mL	20 mL	2 SU			

FinalAmount

20 mL

Initial pH

2 SU

BFB 00294

EOxideLcs 00163 EOxideStd 00163

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

Lab Sample ID | Client Sample ID | Method Chain | Basis | InitialAmount

Artesia-MW12-102 8260B

600-194999-C-13|Artesia-MW25-102|8260B

SDG No.:

Batch Number: 279189 Batch Start Date: 11/01/19 08:08 Batch Analyst: Shen, Wei

20 mL

Batch Method: 8260B Batch End Date:

	1 22012					1			1
600-194999-C-14	Artesia-MW31-102 92019	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-16	Artesia-MW37-102 92019	8260B	Т	20 mL	20 mL	2 SU			
Lab Sample ID	Client Sample ID	Method Chain	Basis	VOAIS50PPM 00263	VOALCSGASPT 00350	VOALCSPT2 00151	VOASS50PPM 00301	VOASTDGASPT 00350	VOASTDPT2 00151
BFB 600-279189/1		8260B							
CCVIS 600-279189/2		8260B		5 uL				4 uL	4 uL
LCS 600-279189/3		8260B		5 uL	4 uL	4 uL	5 uL		
LCSD 600-279189/4		8260B		5 uL	4 uL	4 uL	5 uL		
MB 600-279189/6		8260B		5 uL			5 uL		
600-194999-C-12	Artesia-MW28-102 92019	8260B	Т	5 uL			5 uL		
600-194999-C-15	Artesia-MW34-102 92019	8260B	Т	5 uL			5 uL		
600-194999-B-12 MS	Artesia-MW28-102 92019	8260B	Т	5 uL	4 uL	4 uL	5 uL		
600-194999-B-12 MSD	Artesia-MW28-102 92019	8260B	Т	5 uL	4 uL	4 uL	5 uL		
MS	Artesia-MW34-102 92019		Т	5 uL	4 uL	4 uL	5 uL		
600-194999-D-15 MSD	Artesia-MW34-102 92019	8260B	Т	5 uL	4 uL	4 uL	5 uL		
600-194999-C-1	Artesia-Outlet-1 02919	8260B	Т	5 uL			5 uL		
600-194999-C-2	Artesia-MW30-102 919		Т	5 uL			5 uL		
600-194999-C-3	Artesia-MD30-102 919	8260B	Т	5 uL			5 uL		
600-194999-C-4	Artesia-MW32-102 919	8260B	Т	5 uL			5 uL		
600-194999-C-5	Artesia-MW36-102	8260B	Т	5 uL			5 uL		

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

600-194999-C-6

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1	
SDG No.:		
Batch Number: 279189	Batch Start Date: 11/01/19 08:08	Batch Analyst: Shen, Wei
Batch Method: 8260B	Batch End Date:	

Lab Sample ID	Client Sample ID	Method Chain	Basis	VOAIS50PPM 00263	VOALCSGASPT 00350	VOALCSPT2 00151	VOASS50PPM 00301	VOASTDGASPT 00350	VOASTDPT2 00151
600-194999-C-7	Artesia-MW17C-10 2919	8260B	Т	5 uL			5 uL		
600-194999-C-8	Artesia-MW11-102 919	8260B	Т	5 uL			5 uL		
600-194999-C-9	Artesia-MD11-102 919	8260B	Т	5 uL			5 uL		
600-194999-C-10	Artesia-MW29-102 92019	8260B	Т	5 uL			5 uL		
600-194999-B-11	Artesia-MW35-102 919	8260B	Т	5 uL			5 uL		
600-194999-C-13	Artesia-MW25-102 92019	8260B	Т	5 uL			5 uL		
600-194999-C-14	Artesia-MW31-102 92019	8260B	Т	5 uL			5 uL		
600-194999-C-16	Artesia-MW37-102 92019	8260B	Т	5 uL			5 uL		

Batch Notes	

Basis	Basis Description	
Т	Total/NA	

Lab Name: Eur	ofins TestAmer	cica, Housto	on J	ob No.: 600-19	94999-1				
SDG No.:									
Batch Number:	279297		В	atch Start Dat	te: <u>11/04/19</u>	07:58	Batch Analys	t: Shen, Wei	
Batch Method:	8260B		В	atch End Date:	:				
Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	Initial pH	BFB 00294	EOxideLcs 00163	EOxideStd 00163
BFB 600-279297/1		8260B		20 mL	20 mL		2 uL		
CCVIS 600-279297/2		8260B		20 mL	20 mL				4 uL
LCS 600-279297/3		8260B		20 mL	20 mL			4 uL	
LCSD 600-279297/4		8260B		20 mL	20 mL			4 uL	
MB 600-279297/6		8260B		20 mL	20 mL				
600-194999-D-6	Artesia-MW12-102 919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-17	Artesia-MW38-102 919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-C-17	Artesia-MW38-102 919	8260B	Т	20 mL	20 mL	2 SU			
Lab Sample ID	Client Sample ID	Method Chain	Basis	VOAIS50PPM 00263	VOALCSGASPT 00350	VOALCSPT2 00151	VOASS50PPM 00301	VOASTDGASPT 00350	VOASTDPT2 00151
BFB 600-279297/1		8260B							
CCVIS 600-279297/2		8260B		5 uL				4 uL	4 uL
LCS 600-279297/3		8260B		5 uL	4 uL	4 uL	5 uL		
LCSD 600-279297/4		8260B		5 uL	4 uL	4 uL	5 uL		
MB 600-279297/6		8260B		5 uL			5 uL		
600-194999-D-6	Artesia-MW12-102 919	8260B	Т	5 uL			5 uL		
600-194999-C-17	Artesia-MW38-102 919	8260B	Т	5 uL			5 uL		
600-194999-C-17	Artesia-MW38-102 919	8260B	Т	5 uL			5 uL		
		Ba	tch Not	ces					

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1	_
SDG No.:		
Batch Number: 279297	Batch Start Date: 11/04/19 07:58	Batch Analyst: Shen, Wei
Batch Method: 8260B	Batch End Date:	

Basis	Basis Description
Т	Total/NA

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Batch Number: 279414 Batch Start Date: 11/05/19 08:10 Batch Analyst: Shen, Wei

Batch Method: 8260B Batch End Date: _____

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	Initial pH	BFB 00294	EOxideLcs 00163	EOxideStd 00163
BFB 600-279414/1		8260B		20 mL	20 mL		2 uL		
CCVIS 600-279414/2		8260B		20 mL	20 mL				4 uL
LCS 600-279414/3		8260B		20 mL	20 mL			4 uL	
LCSD 600-279414/4		8260B		20 mL	20 mL			4 uL	
MB 600-279414/6		8260B		20 mL	20 mL				
600-194999-C-19	Artesia-Inlet-10 2919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-B-20	Artesia-MID-1029 19	8260B	T	20 mL	20 mL	2 SU			
600-194999-C-21	Artesia-MW-22-10 2919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-B-18	Artesia-TB01-102 919	8260B	Т	20 mL	20 mL	2 SU			
600-194999-B-17	Artesia-MW38-102 919	8260B	T	20 mL	20 mL	2 SU			

Lab Sample ID	Client Sample ID	Method Chain	Basis	VOAIS50PPM 00263	VOALCSGASPT 00350	VOALCSPT2 00151	VOASS50PPM 00301	VOASTDGASPT 00350	VOASTDPT2 00151
BFB 600-279414/1		8260B							
CCVIS 600-279414/2		8260B		5 uL				4 uL	4 uL
LCS 600-279414/3		8260B		5 uL	4 uL	4 uL	5 uL		
LCSD 600-279414/4		8260B		5 uL	4 uL	4 uL	5 uL		
MB 600-279414/6		8260B		5 uL			5 uL		
600-194999-C-19	Artesia-Inlet-10 2919	8260B	Т	5 uL			5 uL		
600-194999-B-20	Artesia-MID-1029 19	8260B	Т	5 uL			5 uL		
600-194999-C-21	Artesia-MW-22-10 2919	8260B	Т	5 uL			5 uL		
600-194999-B-18	Artesia-TB01-102 919	8260B	Т	5 uL			5 uL		
600-194999-B-17	Artesia-MW38-102 919	8260B	Т	5 uL			5 uL		

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1	
SDG No.:		
Batch Number: 279414	Batch Start Date: 11/05/19 08:10	Batch Analyst: Shen, Wei
Batch Method: 8260B	Batch End Date:	
Batcl	n Notes	

Basis	Basis	Description
Т	Total/NA	

Method 300.0

Anions (IC) by Method 300.0

FORM III HPLC/IC LAB CONTROL SAMPLE RECOVERY

Lab Nam	e: Eurofins TestAme	erica, Houston	Job	No.: 600	-194999-1			
SDG No.	:							
Matrix:	Water	Level: Low	Lab	File ID:	111219-600	0-0032	213-007.	d
Lab ID:	ab ID: LCS 600-280102/7		Client ID:					
		SPIKE			LCS NTRATION	LCS	QC I.TMITS	#

[|] SPIKE | LCS | LCS | QC |
ADDED	CONCENTRATION	% LIMITS	#	
COMPOUND	(mg/L)	(mg/L)	REC	REC
Sulfate	20.0	19.73	99	90-110

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 300.0

FORM III HPLC/IC MATRIX SPIKE RECOVERY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Matrix: Water Level: Low Lab File ID: 111219-600-0032213-021.d

Lab ID: 600-194999-17 MS Client ID: Artesia-MW38-102919 MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	િ	LIMITS	#
COMPOUND	(mg/L)	(mg/L)	(mg/L)	REC	REC	
Sulfate	1000	927	2653	173	80-120	F1

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 300.0

FORM III HPLC/IC MATRIX SPIKE DUPLICATE RECOVERY

 Lab Name:
 Eurofins TestAmerica, Houston
 Job No.:
 600-194999-1

 SDG No.:
 Matrix:
 Water
 Level:
 Low
 Lab File ID:
 111219-600-0032213-022.d

Lab ID: 600-194999-17 MSD Client ID: Artesia-MW38-102919 MSD

	SPIKE				QC LIMITS		
	ADDED	CONCENTRATION	용	용			#
COMPOUND	(mg/L)	(mg/L)	REC	RPD	RPD	REC	
Sulfate	1000	2632	170	1	20	80-120	F1

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 300.0

FORM IV HPLC/IC METHOD BLANK SUMMARY

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Lab File ID: 111219-600-0032213-006.d	Lab Sample ID: MB 600-280102/6
Matrix: Water	Date Extracted:
Instrument ID: CHWC17(IC)	Date Analyzed: 11/12/2019 05:30
Level: (Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	CCB 600-280102/5	111219-600- 0032213-005 .d	11/12/2019 05:19
	LCS 600-280102/7	111219-600- 0032213-007 .d	11/12/2019 05:41
Artesia-MW36-102919	600-194999-5	111219-600- 0032213-012 .d	11/12/2019 13:32
Artesia-MW12-102919	600-194999-6	111219-600- 0032213-013 .d	11/12/2019 13:43
Artesia-MW17C-102919	600-194999-7	111219-600- 0032213-014 .d	11/12/2019 13:53
Artesia-MW11-102919	600-194999-8	111219-600- 0032213-015 .d	11/12/2019 14:04
	CCB 600-280102/17	111219-600- 0032213-017 .d	11/12/2019 14:26
Artesia-MD11-102919	600-194999-9	111219-600- 0032213-018 .d	11/12/2019 14:36
Artesia-MW37-102919	600-194999-16	111219-600- 0032213-019 .d	11/12/2019 14:47
Artesia-MW38-102919	600-194999-17	111219-600- 0032213-020 .d	11/12/2019 14:58
Artesia-MW38-102919 MS	600-194999-17 MS	111219-600- 0032213-021 .d	11/12/2019 15:09
Artesia-MW38-102919 MSD	600-194999-17 MSD	111219-600- 0032213-022 .d	11/12/2019 15:20
	CCB 600-280102/29	111219-600- 0032213-029 .d	11/12/2019 16:35

FORM I HPLC/IC ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW36-102919 Lab Sample ID: 600-194999-5 Matrix: Water Lab File ID: 111219-600-0032213-012.d Analysis Method: 300.0 Date Collected: 10/29/2019 11:33 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 11/12/2019 13:32 Con. Extract Vol.: Dilution Factor: 250 GC Column: AS22 ID: 2 (mm) Injection Volume: 1(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 280102 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
14808-79-8	Sulfate	738		125	23.9

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW12-102919 Lab Sample ID: 600-194999-6 Matrix: Water Lab File ID: 111219-600-0032213-013.d Analysis Method: 300.0 Date Collected: 10/29/2019 12:23 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 11/12/2019 13:43 Con. Extract Vol.: Dilution Factor: 100 GC Column: AS22 ID: 2 (mm) Injection Volume: 1(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 280102 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
14808-79-8	Sulfate	2150		50.0	9.57

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW17C-102919 Lab Sample ID: 600-194999-7 Matrix: Water Lab File ID: 111219-600-0032213-014.d Analysis Method: 300.0 Date Collected: 10/29/2019 13:00 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 11/12/2019 13:53 Dilution Factor: 100 Con. Extract Vol.: Injection Volume: 1(uL) GC Column: AS22 ID: 2 (mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 280102 Units: mg/L Q CAS NO. COMPOUND NAME RESULT RL MDL

1290

50.0 9.57

14808-79-8 Sulfate

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW11-102919 Lab Sample ID: 600-194999-8 Matrix: Water Lab File ID: 111219-600-0032213-015.d Analysis Method: 300.0 Date Collected: 10/29/2019 16:15 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 11/12/2019 14:04 Dilution Factor: 200 Con. Extract Vol.: Injection Volume: 1(uL) GC Column: AS22 ID: 2 (mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 280102 Units: mg/L Q CAS NO. COMPOUND NAME RESULT RL MDL

1330

100

19.1

14808-79-8 Sulfate

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MD11-102919 Lab Sample ID: 600-194999-9 Matrix: Water Lab File ID: 111219-600-0032213-018.d Analysis Method: 300.0 Date Collected: 10/29/2019 16:15 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 11/12/2019 14:36 Con. Extract Vol.: Dilution Factor: 200 GC Column: AS22 ID: 2 (mm) Injection Volume: 1(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 280102 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
14808-79-8	Sulfate	911		100	19.1

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW37-102919 Lab Sample ID: 600-194999-16 Matrix: Water Lab File ID: 111219-600-0032213-019.d Analysis Method: 300.0 Date Collected: 10/29/2019 15:08 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 11/12/2019 14:47 Con. Extract Vol.: Dilution Factor: 100 GC Column: AS22 ID: 2 (mm) Injection Volume: 1(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 280102 Units: mg/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
14808-79-8	Sulfate	2570		50.0	9.57

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW38-102919 Lab Sample ID: 600-194999-17 Matrix: Water Lab File ID: 111219-600-0032213-020.d Analysis Method: 300.0 Date Collected: 10/29/2019 14:20 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 11/12/2019 14:58 Dilution Factor: 100 Con. Extract Vol.: Injection Volume: 1(uL) GC Column: AS22 ID: 2 (mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 280102 Units: mg/L RESULT Q CAS NO. COMPOUND NAME RL MDL

927 F1

50.0 9.57

14808-79-8 Sulfate

FORM VI

HPLC/IC BY EXTERNAL STANDARD - INITIAL CALIBRATION DATA RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 278508

SDG No.:

Instrument ID: $\underline{\text{CHWC17(IC)}}$ GC Column: $\underline{\text{AS22}}$ ID: $\underline{\text{2 (mm)}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 600-278508/5	CAL102419-600-0031875-005.d
Level 2	IC 600-278508/6	CAL102419-600-0031875-006.d
Level 3	IC 600-278508/7	CAL102419-600-0031875-007.d
Level 4	IC 600-278508/8	CAL102419-600-0031875-008.d
Level 5	IC 600-278508/9	CAL102419-600-0031875-009.d
Level 6	IC 600-278508/10	CAL102419-600-0031875-010.d
Level 7	IC 600-278508/11	CAL102419-600-0031875-011.d

ANALYTE	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	LVL 7		RT WINDOW	AVG RT
Fluoride	2.224	2.214	2.211	2.217	2.221	2.227	2.224		2.074 - 2.374	2.220
Chloride	3.097	3.100	3.094	3.100	3.107	3.121	3.137		2.961 - 3.261	3.108
Bromide	4.431	4.430	4.417	4.414	4.421	4.421	4.417		4.247 - 4.547	4.422
Sulfate	7.037	7.044	7.044	7.064	7.081	7.114	7.174		6.961 - 7.261	7.080

FORM VI

HPLC/IC BY EXTERNAL STANDARD - INITIAL CALIBRATION DATA CURVE EVALUATION

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 Analy Batch No.: 278508

SDG No.:

Instrument ID: CHWC17(IC) GC Column: AS22 ID: 2(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 600-278508/5	CAL102419-600-0031875-005.d
Level 2	IC 600-278508/6	CAL102419-600-0031875-006.d
Level 3	IC 600-278508/7	CAL102419-600-0031875-007.d
Level 4	IC 600-278508/8	CAL102419-600-0031875-008.d
Level 5	IC 600-278508/9	CAL102419-600-0031875-009.d
Level 6	IC 600-278508/10	CAL102419-600-0031875-010.d
Level 7	IC 600-278508/11	CAL102419-600-0031875-011.d

ANALYTE		CI	<u>-</u>		CURVE COEFFICIENT				# MIN CF	%RSD	#	MAX	R^2		N R^2
	LVL 1 LVL 5	LVL 2 LVL 6	LVL 3 LVL 7	LVL 4	TYPE	В	M1	M2				%RSD	OR COD	OR	R COD
Fluoride	14230210 49765186	26634834 51999313	37788096 53281964	47243454	Lin1	-10158391	53098764.1						0.9980	0	.9900
Chloride	35248003 42028772	32975730 45255267	37369404 47674306	42536517	Lin1	-9435144.2	46338107.7						0.9980	0).9900
Bromide	14662775 13886804	13222382 14462901	13386009 13388690	14759792	Lin1	64105.4346	13885239.7						0.9980	0).9900
Sulfate	27315898 28098513	24441819 30458265	26935872 32903835	26971345	Lin1	-5299865.8	31473208.6						0.9960	0	.9900

Note: The M1 coefficient is the same as Ave CF for an Ave curve type.

FORM VI

HPLC/IC BY EXTERNAL STANDARD - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 600-278508/5	CAL102419-600-0031875-005.d
Level 2	IC 600-278508/6	CAL102419-600-0031875-006.d
Level 3	IC 600-278508/7	CAL102419-600-0031875-007.d
Level 4	IC 600-278508/8	CAL102419-600-0031875-008.d
Level 5	IC 600-278508/9	CAL102419-600-0031875-009.d
Level 6	IC 600-278508/10	CAL102419-600-0031875-010.d
Level 7	IC 600-278508/11	CAL102419-600-0031875-011.d

ANALYTE	CURVE	RESPONSE					CONCENTRATION (UG/ML)					
	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	
Fluoride	Lin1	2846042 389994850	13317417 532819640	37788096	94486907	248825932	0.200 7.50	0.500 10.0	1.00	2.00	5.00	
Chloride	Lin1	14099201	32975730 1906972252	74738807	212682586	420287718		1.00	2.00	5.00	10.0	
Bromide	Lin1	2932555 108471759	6611191 133886899	13386009	29519583	69434021	0.200 7.50	0.500 10.0	1.00	2.00	5.00	
Sulfate	Lin1	10926359 609165306	24441819 1316153403	53871743	134856727	280985134	0.400 20.0	1.00 40.0	2.00	5.00	10.0	

Curve Type Legend:

Lin1 = Linear 1/conc

FORM VII HPLC/IC CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCV 600-280102/4 Calibration Date: 11/12/2019 05:08

Instrument ID: CHWC17(IC) Calib Start Date: 10/24/2019 13:38

GC Column: AS22 ID: 2.00(mm) Calib End Date: 10/24/2019 14:43

Lab File ID: 111219-600-0032213-004.d Conc. Units: mg/L

ANALYTE	CURVE TYPE	AVE CF	CF	MIN CF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Fluoride	Lin1		55285633		7.64	7.50	1.8	10.0
Chloride	Lin1		45001489		19.7	20.0	-1.5	10.0
Bromide	Lin1		13142102		7.25	7.50	-3.3	10.0
Sulfate	Lin1		30733954		19.8	20.0	-0.8	10.0

FORM VII HPLC/IC CONTINUING CALIBRATION RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCV 600-280102/4 Calibration Date: 11/12/2019 05:08

Instrument ID: CHWC17(IC) Calib Start Date: 10/24/2019 13:38

GC Column: AS22 ID: 2.00(mm) Calib End Date: 10/24/2019 14:43

Lab File ID: 111219-600-0032213-004.d

Analuto	RT	RT WINDOW			
Analyte	KI	FROM	TO		
Fluoride	2.21	2.05	2.35		
Chloride	3.05	2.89	3.19		
Bromide	4.25	4.11	4.41		
Sulfate	6.75	6.53	6.83		

FORM VII HPLC/IC CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCV 600-280102/16 Calibration Date: 11/12/2019 14:15

Instrument ID: CHWC17(IC) Calib Start Date: 10/24/2019 13:38

GC Column: AS22 ID: 2.00(mm) Calib End Date: 10/24/2019 14:43

Lab File ID: 111219-600-0032213-016.d Conc. Units: mg/L

ANALYTE	CURVE TYPE	AVE CF	CF	MIN CF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Fluoride	Lin1		56425574		7.79	7.50	3.9	10.0
Chloride	Lin1		44859978		19.6	20.0	-1.8	10.0
Bromide	Lin1		13218837		7.29	7.50	-2.8	10.0
Sulfate	Lin1		30595774		19.7	20.0	-1.3	10.0

FORM VII HPLC/IC CONTINUING CALIBRATION RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCV 600-280102/16 Calibration Date: 11/12/2019 14:15

Instrument ID: CHWC17(IC) Calib Start Date: 10/24/2019 13:38

GC Column: AS22 ID: 2.00 (mm) Calib End Date: 10/24/2019 14:43

Lab File ID: 111219-600-0032213-016.d

Analysto	RT	RT WINDOW		
Analyte		FROM	TO	
Fluoride	2.20	2.05	2.35	
Chloride	3.03	2.89	3.19	
Bromide	4.21	4.11	4.41	
Sulfate	6.72	6.53	6.83	

FORM VII HPLC/IC CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCV 600-280102/28 Calibration Date: 11/12/2019 16:24

Instrument ID: CHWC17(IC) Calib Start Date: 10/24/2019 13:38

GC Column: AS22 ID: 2.00(mm) Calib End Date: 10/24/2019 14:43

Lab File ID: 111219-600-0032213-028.d Conc. Units: mg/L

ANALYTE	CURVE TYPE	AVE CF	CF	MIN CF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Fluoride	Lin1		56325438		7.78	7.50	3.7	10.0
Chloride	Lin1		44668839		19.6	20.0	-2.3	10.0
Bromide	Lin1		14231635		7.85	7.50	4.7	10.0
Sulfate	Lin1		30543585		19.7	20.0	-1.5	10.0

FORM VII HPLC/IC CONTINUING CALIBRATION RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: CCV 600-280102/28 Calibration Date: 11/12/2019 16:24

Instrument ID: CHWC17(IC) Calib Start Date: 10/24/2019 13:38

GC Column: AS22 ID: 2.00(mm) Calib End Date: 10/24/2019 14:43

Lab File ID: 111219-600-0032213-028.d

Analyte	RT	RT WINDOW		
Analyte		FROM	TO	
Fluoride	2.20	2.05	2.35	
Chloride	3.03	2.89	3.19	
Bromide	4.21	4.11	4.41	
Sulfate	6.71	6.53	6.83	

Lab Name: Eurofins TestAmerica, Houston Joh			Job No.: 600-194999-1						
SDG No.:									
Client Sample	e ID:	Lab	Sample ID:	MB 600	-280102/6				
Matrix: Water	:	Lab	File ID: 1	11219-6	00-0032213-	006.d			
Analysis Method: 300.0			e Collected	l:					
Extraction Method:			e Extracted	l:					
Sample wt/vol: 5(mL)			Date Analyzed: 11/12/2019 05:30						
Con. Extract	Vol.:	Dilution Factor: 1							
Injection Vol	ume: 1(uL)	GC Column: AS22 ID: 2 (mm)							
% Moisture: _		GPC Cleanup:(Y/N) N							
Analysis Batch No.: 280102			Units: mg/L						
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL			
14808-79-8	Sulfate		0.0957	U	0.500	0.0957			

Lab Name: Eurofins TestAmerica, Houston			Job No.: 600-194999-1					
SDG No.:								
Client Sample	e ID:	Lab	Sample ID:	CCB 60	0-280102/5			
Matrix: Water	•	Lab	File ID: 1	11219-6	00-0032213-	005.d		
Analysis Meth	nod: 300.0	Dat	e Collected	l:				
Extraction Method:			e Extracted	l:				
Sample wt/vol: 5(mL)			Date Analyzed: 11/12/2019 05:19					
Con. Extract	Vol.:	Dilution Factor: 1						
Injection Vol	ume: 1(uL)	GC Column: AS22 ID: 2(mm)						
% Moisture:		GPC Cleanup:(Y/N) N						
Analysis Batch No.: 280102		Units: mg/L						
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL		
14808-79-8	Sulfate		0.1872	J	0.500	0.0957		

Lab Name: Eurofins TestAmerica, Houston			Job No.: 600-194999-1					
SDG No.:								
Client Sample	e ID:	Lab	Sample ID:	CCB 60	0-280102/17			
Matrix: Water	r	Lab	File ID: 1	11219-6	00-0032213-0)17.d		
Analysis Meth	nod: 300.0	Dat	e Collected	d:				
Extraction Method:			e Extracted	d:				
Sample wt/vol: 5(mL)			Date Analyzed: 11/12/2019 14:26					
Con. Extract	Vol.:	Dilution Factor: 1						
Injection Vol	lume: 1(uL)	GC Column: AS22 ID: 2(mm)						
% Moisture:		GPC Cleanup:(Y/N) N						
Analysis Batch No.: 280102		Units: mg/L						
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL		
14808-79-8	Sulfate		0.0957	U	0.500	0.0957		

Lab Name: Eu	rofins TestAmerica, Houston	Job No.: 600-194999-1					
SDG No.:							
Client Sampl	e ID:	Lab Sample ID: CCB 600	-280102/29				
Matrix: Wate	r	Lab File ID: 111219-600	0-0032213-0	29.d			
Analysis Met	hod: 300.0	Date Collected:					
Extraction M	ethod:	Date Extracted:					
Sample wt/vo	1: 5(mL)	Date Analyzed: 11/12/2019 16:35					
Con. Extract	Vol.:	Dilution Factor: 1					
Injection Vo	lume: 1(uL)	GC Column: AS22 ID: 2(mm)					
% Moisture:		GPC Cleanup: (Y/N) N					
Analysis Batch No.: 280102		Units: mg/L					
CAS NO.	COMPOUND NAME	RESULT Q	RL	MDL			
14808-79-8	Sulfate	0.0957 U	0.500	0.0957			

Lab Name: Eurofins TestAmerica, Houston			Job No.: 600-194999-1					
SDG No.:								
Client Sample	e ID:	Lab	Sample ID:	LCS 60	0-280102/7			
Matrix: Water		Lab	File ID: 1	11219-6	00-0032213-0	007.d		
Analysis Method: 300.0			e Collected	:				
Extraction Method:			e Extracted	:				
Sample wt/vol: 5(mL)			Date Analyzed: 11/12/2019 05:41					
Con. Extract	Vol.:	Dilution Factor: 1						
Injection Vol	lume: 1(uL)	GC Column: AS22 ID: 2(mm)						
% Moisture:		GPC Cleanup:(Y/N) N						
Analysis Batch No.: 280102		Units: mg/L						
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL		
14808-79-8	Sulfate		19.73		0.500	0.0957		

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW38-102919 MS Lab Sample ID: 600-194999-17 MS Matrix: Water Lab File ID: 111219-600-0032213-021.d Analysis Method: 300.0 Date Collected: 10/29/2019 14:20 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 11/12/2019 15:09 Con. Extract Vol.: Dilution Factor: 100 GC Column: AS22 ID: 2 (mm) Injection Volume: 1(uL) % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 280102 Units: mg/L

	CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
F	14808-79-8	Sulfate	2653		50.0	9.57

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.: Client Sample ID: Artesia-MW38-102919 MSD Lab Sample ID: 600-194999-17 MSD Matrix: Water Lab File ID: 111219-600-0032213-022.d Analysis Method: 300.0 Date Collected: 10/29/2019 14:20 Extraction Method: Date Extracted: Sample wt/vol: 5(mL) Date Analyzed: 11/12/2019 15:20 Dilution Factor: 100 Con. Extract Vol.: Injection Volume: 1(uL) GC Column: AS22 ID: 2 (mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 280102 Units: mg/L Q CAS NO. COMPOUND NAME RESULT RL MDL

2632

50.0 9.57

14808-79-8 | Sulfate

HPLC/IC ANALYSIS RUN LOG

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Instrument ID: CHWC17(IC)	Start Date: 10/24/2019 13:27
Analysis Batch Number: 278508	End Date: 10/24/2019 15:04

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
			FACTOR		
IC 600-278508/4		10/24/2019 13:27	1		AS22 2 (mm)
IC 600-278508/5		10/24/2019 13:38	1	CAL102419-600-0	AS22 2 (mm)
				031875-005.d	
IC 600-278508/6		10/24/2019 13:49	1	CAL102419-600-0	AS22 2 (mm)
				031875-006.d	
IC 600-278508/7		10/24/2019 14:00	1	CAL102419-600-0	AS22 2 (mm)
				031875-007.d	
IC 600-278508/8		10/24/2019 14:11	1	CAL102419-600-0	AS22 2 (mm)
		, , ,		031875-008.d	, ,
IC 600-278508/9		10/24/2019 14:21	1	CAL102419-600-0	AS22 2 (mm)
		, , ,		031875-009.d	,
IC 600-278508/10		10/24/2019 14:32	1	CAL102419-600-0	AS22 2 (mm)
			_	031875-010.d	
IC 600-278508/11		10/24/2019 14:43	1	CAL102419-600-0	AS22 2 (mm)
10 000 2,0000/11		10,21,2019 11.13		031875-011.d	11022 2 (11111)
ICV 600-278508/12		10/24/2019 14:54	1	031073 011.4	AS22 2 (mm)
		-, ,	_		` '
ICB 600-278508/13		10/24/2019 15:04	1		AS22 2 (mm)

HPLC/IC ANALYSIS RUN LOG

Lab Name	Euroiins	TestAmerica,	Houston	Job No.:	600-194999-1
SDG No.:					

Instrument ID: CHWC17(IC) Start Date: 11/12/2019 05:08

Analysis Batch Number: 280102 End Date: 11/12/2019 19:38

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
CCV 600-280102/4		11/12/2019 05:08	1	111219-600-0032 213-004.d	AS22 2 (mm)
CCB 600-280102/5		11/12/2019 05:19	1	111219-600-0032 213-005.d	AS22 2 (mm)
MB 600-280102/6		11/12/2019 05:30	1	111219-600-0032 213-006.d	AS22 2 (mm)
LCS 600-280102/7		11/12/2019 05:41	1	111219-600-0032 213-007.d	AS22 2 (mm)
ZZZZZ		11/12/2019 12:49	100		AS22 2 (mm)
ZZZZZ		11/12/2019 13:00	100		AS22 2 (mm)
ZZZZZ		11/12/2019 13:10	100		AS22 2 (mm)
ZZZZZ		11/12/2019 13:21	1		AS22 2 (mm)
600-194999-5		11/12/2019 13:32	250	111219-600-0032 213-012.d	AS22 2 (mm)
600-194999-6		11/12/2019 13:43	100	111219-600-0032 213-013.d	AS22 2 (mm)
600-194999-7		11/12/2019 13:53	100	111219-600-0032 213-014.d	AS22 2 (mm)
600-194999-8		11/12/2019 14:04	200	111219-600-0032 213-015.d	AS22 2 (mm)
CCV 600-280102/16		11/12/2019 14:15	1	111219-600-0032 213-016.d	AS22 2 (mm)
CCB 600-280102/17		11/12/2019 14:26	1	111219-600-0032 213-017.d	AS22 2 (mm)
600-194999-9		11/12/2019 14:36	200	111219-600-0032 213-018.d	AS22 2 (mm)
600-194999-16		11/12/2019 14:47	100	111219-600-0032 213-019.d	AS22 2 (mm)
600-194999-17		11/12/2019 14:58	100	111219-600-0032 213-020.d	AS22 2 (mm)
600-194999-17 MS		11/12/2019 15:09	100	111219-600-0032 213-021.d	AS22 2 (mm)
600-194999-17 MSD		11/12/2019 15:20	100	111219-600-0032 213-022.d	AS22 2 (mm)
ZZZZZ		11/12/2019 15:30	1		AS22 2 (mm)
ZZZZZ		11/12/2019 15:41	200		AS22 2 (mm)
ZZZZZ		11/12/2019 15:52	200		AS22 2 (mm)
ZZZZZ		11/12/2019 16:03	20		AS22 2 (mm)
ZZZZZ		11/12/2019 16:14	20		AS22 2 (mm)
CCV 600-280102/28		11/12/2019 16:24	1	111219-600-0032 213-028.d	AS22 2 (mm)
CCB 600-280102/29		11/12/2019 16:35	1	111219-600-0032 213-029.d	AS22 2 (mm)
ZZZZZ		11/12/2019 16:46	1		AS22 2 (mm)
ZZZZZ		11/12/2019 16:57	20		AS22 2 (mm)
ZZZZZ		11/12/2019 17:08	50		AS22 2 (mm)
ZZZZZ		11/12/2019 17:19	500		AS22 2 (mm)
ZZZZZ		11/12/2019 17:29	1		AS22 2 (mm)
ZZZZZ		11/12/2019 17:40	1		AS22 2 (mm)
ZZZZZ		11/12/2019 17:51	1		AS22 2 (mm)
ZZZZZ		11/12/2019 18:02	1		AS22 2 (mm)
ZZZZZ		11/12/2019 18:12	1		AS22 2 (mm)
ZZZZZ		11/12/2019 18:23	1		AS22 2 (mm)
CCV 600-280102/40		11/12/2019 18:34	1		AS22 2 (mm)
CCB 600-280102/41		11/12/2019 18:45	1		AS22 2 (mm)

HPLC/IC ANALYSIS RUN LOG

Lab Name: Eurofins TestA	merica, Houston	Job No.: 600-194999-1	
SDG No.:			
Instrument ID:			

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
ZZZZZ		11/12/2019 18:55	1		AS22 2 (mm)
ZZZZZ		11/12/2019 19:06	100		AS22 2 (mm)
ZZZZZ		11/12/2019 19:17	100		AS22 2 (mm)
CCV 600-280102/45		11/12/2019 19:28	1		AS22 2 (mm)
CCB 600-280102/46		11/12/2019 19:38	1		AS22 2 (mm)

HPLC/IC BATCH WORKSHEET

Lab	Name:	Eurofins	TestAmerica,	Houston	Job No.:	600-194999-1	
-----	-------	----------	--------------	---------	----------	--------------	--

SDG No.:

Batch Number: 280102 Batch Start Date: 11/12/19 05:08 Batch Analyst: Reach, Shrey K

Batch Method: 300.0 Batch End Date: _____

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	CCV 00114	ICSMS 00118	ICSMS 00119	ICV/LCS 00108	
CCV 600-280102/4		300.0		5 mL	5 mL				
CCB 600-280102/5		300.0		5 mL					
MB 600-280102/6		300.0		5 mL					
LCS 600-280102/7		300.0		5 mL				5 mL	
600-194999-A-5	Artesia-MW36-102 919	300.0	Т	5 mL					
600-194999-A-6	Artesia-MW12-102 919	300.0	Т	5 mL					
600-194999-A-7	Artesia-MW17C-10 2919	300.0	Т	5 mL					
600-194999-A-8	Artesia-MW11-102 919	300.0	Т	5 mL					
CCV 600-280102/16		300.0		5 mL	5 mL				
CCB 600-280102/17		300.0		5 mL					
600-194999-A-9	Artesia-MD11-102 919	300.0	Т	5 mL					
600-194999-A-16	Artesia-MW37-102 919	300.0	Т	5 mL					
	Artesia-MW38-102 919		Т	5 mL					
MS	Artesia-MW38-102 919		Т	5 mL		0.25 mL	0.25 mL		
600-194999-A-17 MSD	Artesia-MW38-102 919	300.0	Т	5 mL		0.25 mL	0.25 mL		
CCV 600-280102/28		300.0		5 mL	5 mL				
CCB 600-280102/29		300.0		5 mL					

Batch Notes				
Eluent 1 ID	190808			
Filter ID	16988990			

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

HPLC/IC BATCH WORKSHEET

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1	
SDG No.:		
Batch Number: 280102	Batch Start Date: 11/12/19 05:08	Batch Analyst: Reach, Shrey K
Batch Method: 300.0	Batch End Date:	

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

METALS

COVER PAGE METALS

Lab Name	: Eurofins TestAmerica, Houston	Job Number: 600-194999-1	
SDG No.:			
Project:	Dowell - Artesia 10/29/19		
	Client Sample ID	Lab Sample ID	
	Artesia-Outlet-102919	600-194999-1	
	Artesia-MW30-102919	600-194999-2	
	Artesia-MD30-102919	600-194999-3	
	Artesia-MW32-102919	600-194999-4	
	Artesia-MW29-102919	600-194999-10	
	Artesia-MW28-102919	600-194999-12	
	Artesia-MW25-102919	600-194999-13	
	Artesia-MW31-102919	600-194999-14	
	Artesia-MW34-102919	600-194999-15	
	Artesia-Inlet-102919	600-194999-19	
	Artesia-MID-102919	600-194999-20	
	Artesia-MW-22-102919	600-194999-21	

Comments:

Client Sample ID: Artesia-Outlet-102919

Lab Name: Eurofins TestAmerica, Houston

SDG ID.:

Matrix: Water

Date Sampled: 10/29/2019 08:25

Reporting Basis: WET

Date Received: 10/31/2019 10:34

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	3.64	1.00	0.250	ug/L			1	6020A

Client Sample ID: Artesia-MW30-102919

Lab Name: Eurofins TestAmerica, Houston

SDG ID.:

Matrix: Water

Date Sampled: 10/29/2019 09:05

Reporting Basis: WET

Date Received: 10/31/2019 10:34

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	8.87	1.00	0.250	ug/L			1	6020A

Client Sample ID: Artesia-MD30-102919

Lab Sample ID: 600-194999-3

Lab Name: Eurofins TestAmerica, Houston

SDG ID.:

Matrix: Water

Date Sampled: 10/29/2019 09:10

Peporting Basis: WET

Date Received: 10/31/2019 10:34

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	7.11	1.00	0.250	ug/L			1	6020A

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	4.14	1.00	0.250	ug/L			1	6020A

Client Sample ID: Artesia-MW29-102919

Lab Name: Eurofins TestAmerica, Houston

SDG ID.:

Matrix: Water

Date Sampled: 10/29/2019 10:19

Reporting Basis: WET

Date Received: 10/31/2019 10:34

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	0.793	1.00	0.250	ug/L	J		1	6020A

Client Sample ID: Artesia-MW28-102919

Lab Name: Eurofins TestAmerica, Houston

SDG ID.:

Matrix: Water

Date Sampled: 10/29/2019 11:15

Reporting Basis: WET

Date Received: 10/31/2019 10:34

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	1.25	1.00	0.250	ug/L			1	6020A

Client Sample ID: Artesia-MW25-102919

Lab Name: Eurofins TestAmerica, Houston

SDG ID.:

Matrix: Water

Date Sampled: 10/29/2019 11:51

Reporting Basis: WET

Date Received: 10/31/2019 10:34

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	138	1.00	0.250	ug/L			1	6020A

Client Sample ID: Artesia-MW31-102919

Lab Sample ID: 600-194999-14

Lab Name: Eurofins TestAmerica, Houston

SDG ID.:

Matrix: Water

Date Sampled: 10/29/2019 12:45

Reporting Basis: WET

Date Received: 10/31/2019 10:34

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	81.7	1.00	0.250	ug/L			1	6020A

Client Sample ID: Artesia-MW34-102919

Lab Name: Eurofins TestAmerica, Houston

SDG ID.:

Matrix: Water

Date Sampled: 10/29/2019 13:17

Reporting Basis: WET

Lab Sample ID: 600-194999-15

Job No.: 600-194999-1

Date Sampled: 10/29/2019 13:17

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	1.08	1.00	0.250	ug/L			1	6020A

Client Sample ID: Artesia-Inlet-102919

Lab Name: Eurofins TestAmerica, Houston

SDG ID.:

Matrix: Water

Reporting Basis: WET

Lab Sample ID: 600-194999-19

Job No.: 600-194999-1

Job No.: 600-194999-1

Date Sampled: 10/29/2019 08:10

Date Received: 10/31/2019 10:34

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	3.51	1.00	0.250	ug/L			1	6020A

Client Sample ID: Artesia-MID-102919

Lab Sample ID: 600-194999-20

Job No.: 600-194999-1

SDG ID.:

Matrix: Water

Date Sampled: 10/29/2019 08:20

Reporting Basis: WET

Date Received: 10/31/2019 10:34

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7439-96-5	Manganese, Dissolved	3.25	1.00	0.250	ug/L			1	6020A

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
	-1 -	0.600	4 00	0.050	/_	_			6000-
7439-96-5	Manganese, Dissolved	0.683	1.00	0.250	lua/T	I .T		1 1	6020A

Date Received: 10/31/2019 10:34

Reporting Basis: WET

2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

ICV Source: METICPMSICV_00013 Concentration Units: ug/L

CCV Source: METICPMSCAL4_00009

			-280165/8 019 13:4		CCV 600-280165/53 11/12/2019 16:09				CCV 600-280165/66 11/12/2019 16:50					
Analyte	Found	С	True	%R	Found	С	True	%R	Found	С	True	%R		
Manganese, Dissolved	257.8		250	103	249.2		250	100	246.7		250	99		

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

ICV Source: METICPMSICV_00013 Concentration Units: ug/L

CCV Source: METICPMSCAL4_00009

	CCV 600-280165/79 11/12/2019 17:30					-280165/92 019 18:11		CCV 600-280165/104 11/12/2019 18:49				
Analyte	Found	С	True	%R	Found	С	True	%R	Found	С	True	%R
Manganese, Dissolved	243.3		250	97	246.6		250	99	245.6		250	98

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

3-IN INSTRUMENT BLANKS METALS

Lab Name:	Eurofins TestAmerica,	Houston	Job No.:	600-194999-1
SDG No.:				
Concentra	tion Units: wa/L			

Concentration Units: ug/L

		ICB 600-280165/10 11/12/2019 13:53		CCB 600-28016	-,	CCB 600-28016		CCB 600-280165/81 11/12/2019 17:37		
Analyte	RL	Found	С	Found	С	Found	С	Found	С	
Manganese, Dissolved	1.00	0.250	Ū	0.250	Ū	0.250	Ū	0.250	Ū	

Italicized analytes were not requested for this sequence.

FORM III-IN Page 207 of 246

3-IN INSTRUMENT BLANKS METALS

Lab Name:]	Name: Eurofins TestAmerica, Houston					600-194999-1			
SDG No.: _									
Concentrat	ion Units: ug	ſ/L							
		CCB 600-28016		CCB 600-280165					
Analyte	RL	Found	С	Found	С	Found	С	Found	С

0.250

U

0.250

U

1.00

Manganese,

Dissolved

Italicized analytes were not requested for this sequence.

FORM III-IN Page 208 of 246

3-IN METHOD BLANK METALS

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Concentration Units: ug/L	Lab Sample ID: MB 600-279566/1-A
Instrument Code: ICPMS7800	Batch No.: 280165
	_

CAS No.	Analyte	Concentration	С	Q	Method
7439-96-5	Manganese, Dissolved	0.250	U		6020A

3-IN METHOD BLANK METALS

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Concentration Units: ug/L	Lab Sample ID: MB 600-279592/1-A
Instrument Code: ICPMS7800	Batch No.: 280165

CAS No.	Analyte	Concentration	С	Q	Method
7439-96-5	Manganese, Dissolved	0.250	U		6020A

3-IN METHOD BLANK METALS

Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Concentration Units: ug/L	Lab Sample ID: MB 600-279977/1-A
Instrument Code: ICPMS7800	Batch No.: 280165

CAS No.	Analyte	Concentration	С	Q	Method
7439-96-5	Manganese, Dissolved	0.250	U		6020A

4A-IN INTERFERENCE CHECK STANDARD METALS

Lab	Name:	Eurof	ins 5	TestAmerica,	Houston	Job No.:	600-19	4999-1
SDG	No.: _							
Lab	Sample	e ID:	ICSA	600-280165/1	11	Instrumen	nt ID:	ICPMS7800

Lab File ID: 011ICSA.d ICS Source: METICPMSICSA 00007

Concentration Units: ug/L

	True	Found		
			Percent	
Analyte	Solution A	Solution A	Recovery	
Manganese, Dissolved		0.0570		
Aluminum	10000	9821	98	
Antimony		0.148		
Arsenic		0.0420		
Barium		0.238		
Beryllium		0.0100		
Boron		2.25		
Cadmium		0.0460		
Calcium	10000	9699	97	
Chromium		0.722		
Cobalt		0.0280		
Copper		-0.562		
Iron	10000	10018	100	
Lead		0.0310		
Lithium		1.21		
Magnesium	10000	9859	99	
Molybdenum	200	204	102	
Nickel		0.201		
Potassium	10000	9924	99	
Selenium		0.367		
Silver		0.144		
Sodium	10000	9887	99	
Strontium		0.218		
Thallium		0.0240		
Tin		0.327		
Titanium	200	198	99	
Vanadium		-0.0180		
Zinc		5.35		

4A-IN INTERFERENCE CHECK STANDARD METALS

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID: ICSAB 600-280165/12 Instrument ID: ICPMS7800

Lab File ID: 012ICSB.d ICS Source: METICPMSICSAB 00007

Concentration Units: ug/L

	True	Found	
			Percent
Analyte	Solution AB	Solution AB	Recovery
Manganese, Dissolved	100	101	101
Aluminum	10000	10044	100
Antimony	50.0	51.1	102
Arsenic	100	103	103
Barium	100	103	103
Beryllium	100	96.7	97
Boron		1.89	
Cadmium	100	102	102
Calcium	10000	9933	99
Chromium	100	99.5	100
Cobalt	100	103	103
Copper	100	103	103
Iron	10000	10042	100
Lead	100	102	102
Lithium	100	100	100
Magnesium	10000	10109	101
Molybdenum	200	207	103
Nickel	100	101	101
Potassium	10000	10068	101
Selenium	100	100	100
Silver	100	102	102
Sodium	10000	10149	101
Strontium	100	101	101
Thallium	50.0	50.7	101
Tin	100	102	102
Titanium	200	202	101
Vanadium	100	102	102
Zinc	100	104	104

5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS - DISSOLVED

Client ID: Artesia-Outlet-102919 MS	Lab ID: 600-194999-1 MS
Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Matrix: Water	Concentration Units: ug/L
% Solids:	

Analyte	SSR C	Sample Result (SR)	Spike Added (SA)	%R	Control Limit %R	Q	Method
Manganese, Dissolved	100.5	3.64	100	97	75-125		6020A

SSR = Spiked Sample Result

5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS - DISSOLVED

Client ID: Artesia-MW34-102919 MS	Lab ID: 600-194999-15 MS
Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Matrix: Water	Concentration Units: ug/L
% Solids:	

Analyte	SSR C	Sample Result (SR)	Spike Added (SA)	%R	Control Limit %R	Q	Method
Manganese, Dissolved	96.02	1.08	100	95	75-125		6020A

SSR = Spiked Sample Result

5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS - DISSOLVED

Client ID: Artesia-Outlet-102919 MSD	Lab ID: 600-194999-1 MSD
Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Matrix: Water	Concentration Units: ug/L
% Solids:	

Analyte	(SDR)	Spike Added (SA)	%R	Control Limit %R	RPD	RPD Limit	Q	Method
Manganese, Dissolved	99.54	100	96	75-125	1	20		6020A

SDR = Sample Duplicate Result

5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS - DISSOLVED

Client ID: Artesia-MW34-102919 MSD	Lab ID: 600-194999-15 MSD
Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
Matrix: Water	Concentration Units: ug/L
% Solids:	

Analyte	(SDR)	Spike Added (SA)	%R	Control Limit %R	RPD	RPD Limit	Q	Method
Manganese, Dissolved	95.85	100	95	75-125	0	20		6020A

SDR = Sample Duplicate Result

6-IN DUPLICATES METALS - DISSOLVED

Client ID: Artesia-Outlet-102919 DU	Lab ID: 600-194999-1 DU
Lab Name: Eurofins TestAmerica, Houston	Job No.: 600-194999-1
SDG No.:	
% Solids for Sample:	% Solids for Duplicate:
Matrix: Water	Concentration Units: ug/L

Analyte	Control Limit	Sample (S)	Duplicate (D)	RPD	Q	Method
Manganese, Dissolved	1.00	3.64	3.953	8		6020A

7A-IN LAB CONTROL SAMPLE METALS

Lab ID: LCS 600-279566/2-A

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

Sample Matrix: Water LCS Source: ICPMSCALMIX1S_00006

		Water(ug/L)							
Analyte	True	Found	С	%R	Lim	its	Q	Method	
Manganese, Dissolved	100	98.75		99	80	120		6020A	

Calculations are performed before rounding to avoid round-off errors in calculated results.

FORM VIIA - IN

7A-IN LAB CONTROL SAMPLE METALS

Lab ID: LCS 600-279592/2-A

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

Sample Matrix: Water LCS Source: ICPMSCALMIX1S_00006

	Water(ug/L)							
Analyte	True	Found	С	%R	Lim	its	Q	Method
Manganese, Dissolved	100	95.57		96	80	120		6020A

Calculations are performed before rounding to avoid round-off errors in calculated results.

FORM VIIA - IN

7A-IN LAB CONTROL SAMPLE METALS

Lab ID: LCS 600-279977/2-A

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

Sample Matrix: Water LCS Source: ICPMSCALMIX1S_00006

	Water(ug/L)							
Analyte	True	Found	С	%R	Lim	its	Q	Method
Manganese, Dissolved	100	97.59		98	80	120		6020A

Calculations are performed before rounding to avoid round-off errors in calculated results.

FORM VIIA - IN

8-IN ICP-AES AND ICP-MS SERIAL DILUTIONS METALS - DISSOLVED

Lab ID:	600-194999-15
SDG No:	

Lab Name: Eurofins TestAmerica, Houston Job No: 600-194999-1

Matrix: Water Concentration Units: ug/L

Analyte	Initial Sample Result (I) C	Serial Dilution Result (S)	С	% Difference	Q	Method
Manganese, Dissolved	1.08	1.25	U	NC		6020A
Manganese, Dissolved	1.09	1.25	U	NC		6020A

9-IN DETECTION LIMITS METALS - DISSOLVED

Lab Name: Eurofins TestAmerica, Houston Job Number: 600-194999-1

SDG Number:

Matrix: Water Instrument ID: ICPMS7800

Method: 6020A MDL Date: 06/04/2019 16:28

Analyte	Wavelength/	RL	MDL
	Mass	(ug/L)	(ug/L)
Manganese, Dissolved		1	0.25

9-IN CALIBRATION BLANK DETECTION LIMITS METALS - DISSOLVED

Lab Name: Eurofins TestAmerica, Houston Job Number: 600-194999-1

SDG Number:

Matrix: Water Instrument ID: ICPMS7800

Method: 6020A XMDL Date: 06/04/2019 16:45

Analyte	Wavelength/	XRL	XMDL
	Mass	(ug/L)	(ug/L)
Manganese, Dissolved		1	0.25

11-IN LINEAR RANGES METALS

Lab Name: Eurofins TestAmerica, Houston Job No: 600-194999-1

SDG No.:

Instrument ID: ICPMS7800 Date: 08/06/2019 15:10

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	Method
Manganese, Dissolved		1000	6020A

12-IN PREPARATION LOG METALS

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample	Preparation Date	Prep Batch	Initial Weight	Initial Volume	Final Volume
ID				(mL)	(mL)
MB 600-279566/1-A	11/06/2019 09:00	279566		50	50
LCS 600-279566/2-A	11/06/2019 09:00	279566		50	50
600-194999-1	11/06/2019 09:00	279566		50	50
600-194999-1 DU	11/06/2019 09:00	279566		50	50
600-194999-1 MS	11/06/2019 09:00	279566		50	50
600-194999-1 MSD	11/06/2019 09:00	279566		50	50
600-194999-2	11/06/2019 09:00	279566		50	50
600-194999-3	11/06/2019 09:00	279566		50	50
600-194999-4	11/06/2019 09:00	279566		50	50
600-194999-10	11/06/2019 09:00	279566		50	50
600-194999-12	11/06/2019 09:00	279566		50	50

12-IN PREPARATION LOG METALS

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample	Preparation Date	Prep Batch	Initial Weight	Initial Volume	Final Volume
ID				(mL)	(mL)
MB 600-279592/1-A	11/06/2019 11:18	279592		50	50
LCS 600-279592/2-A	11/06/2019 11:18	279592		50	50
600-194999-13	11/06/2019 11:18	279592		50	50
600-194999-14	11/06/2019 11:18	279592		50	50
600-194999-15	11/06/2019 11:18	279592		50	50
600-194999-15 MS	11/06/2019 11:18	279592		50	50
600-194999-15 MSD	11/06/2019 11:18	279592		50	50
600-194999-19	11/06/2019 11:18	279592		50	50
600-194999-20	11/06/2019 11:18	279592		50	50
600-194999-21	11/06/2019 11:18	279592		50	50

12-IN PREPARATION LOG METALS

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Lab Sample ID	Preparation Date	Prep Batch	Initial Weight	Initial Volume (mL)	Final Volume (mL)
MB 600-279977/1-A	11/11/2019 09:55	279977		50	50
LCS 600-279977/2-A	11/11/2019 09:55	279977		50	50

13-IN ANALYSIS RUN LOG METALS

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Instrument ID: ICPMS7800 Analysis Method: 6020A

Start Date: 11/12/2019 13:24 End Date: 11/12/2019 19:08

		Т								Ana	ly.	tes	3							
		У		1/4	Т	\perp	\top	_	П	Т		Т	Τ	$\overline{}$	$\overline{}$	\top	Т	\top	Т	П
Tab Cample Td	D/F	p	mi mo	M n																
Lab Sample Id	D/ F	е	Time																	
RINSE 600-280165/1			13:24																	
IC 600-280165/2	1		13:27																	
IC 600-280165/3	1		13:30																	
IC 600-280165/4	1		13:34																	
IC 600-280165/5	1		13:37																	
IC 600-280165/6	1		13:40																	
IC 600-280165/7	1		13:44																	
ICV 600-280165/8	1		13:47																	
ICVL 600-280165/9	1		13:50																	
ICB 600-280165/10	1		13:53						Ш											Ш
ICSA 600-280165/11	1		13:56		\perp	\perp	\perp		Ш		\perp					\perp	\perp	\perp	\perp	Ш
ICSAB 600-280165/12	1		13:59	X																Ш
RINSE 600-280165/13			14:03	\perp																
RINSE 600-280165/14			14:06	\perp																
CCV 600-280165/15			14:09	\perp																
CCVL 600-280165/16			14:12																	
CCB 600-280165/17			14:15																	
ZZZZZZ			14:18																	
ZZZZZZ			14:22																	
ZZZZZZ			14:25																	
ZZZZZZ			14:28																	
ZZZZZZ			14:31																	
ZZZZZZ			14:34																	
ZZZZZZ			14:37																	
ZZZZZZ			14:41																	
ZZZZZZ			14:44																	
ZZZZZZ			14:47																	
CCV 600-280165/28			14:50																	
CCVL 600-280165/29			14:53																	
CCB 600-280165/30			14:56																	
ZZZZZZ			14:59																	
ZZZZZZ			15:03																	
ZZZZZZ			15:06																	
ZZZZZZ			15:09																	
ZZZZZZ			15:12																	
ZZZZZZ			15:15																	
ZZZZZZ			15:18																	
ZZZZZZ			15:22																	
ZZZZZZ			15:25																	
ZZZZZZ			15:28																	
CCV 600-280165/41			15:31																	
CCVL 600-280165/42			15:34			T		T		T		Τ			T	T	Т			

13-IN ANALYSIS RUN LOG METALS

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Instrument ID: ICPMS7800 Analysis Method: 6020A

Start Date: 11/12/2019 13:24 End Date: 11/12/2019 19:08

		Т										I	Ana	ıly	te	s										_
		У		М			Т					П	Т		Т		Т	Т					Т	Т	П	Г
Lab Sample Id	D/F	p e	Time	n																						
CCB 600-280165/43			15:37		\exists	十	Ť	Ť	Ť	T	T	T	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	〒	T	亓	F
ZZZZZZ			15:40										1		\top				†				T	T	П	Г
ZZZZZZ			15:44			\top	\top					\top	\top			\top			\top	\top			\top	\top	П	Г
ZZZZZZ			15:47												T		T				T		T	T	П	Г
ZZZZZZ			15:50																				T		П	Γ
ZZZZZZ			15:53																				T	Т		
CCV 600-280165/49			15:56																							Γ
CCVL 600-280165/50			15:59																					T		Γ
CCB 600-280165/51			16:03																				\Box			
ZZZZZZ			16:06				\perp						\perp		\perp				\perp	I	\perp	\perp				Ĺ
CCV 600-280165/53	1		16:09											\perp	I		\perp		I		I					Ĺ
CCVL 600-280165/54	1		16:12									\perp								\perp			\perp	\perp		Ĺ
CCB 600-280165/55	1		16:15																				\perp		\Box	L
MB 600-279566/1-A	1	1	16:18																				\perp	\perp		L
LCS 600-279566/2-A	1	1	16:21																				\perp	\perp		L
600-194999-1	1	1	16:25																				\perp	\perp		L
600-194999-1 DU	1	1	16:28																				\perp	\perp		L
600-194999-1 MS	1	1	16:31																				\perp	\perp		L
600-194999-1 MSD	1	1	16:34																				\perp	\perp		L
600-194999-2	1	1	16:37																				\perp	\perp		L
600-194999-3	1	1	16:40																				\perp	\perp		L
600-194999-4	1	1	16:43																				\perp	\perp		L
600-194999-10	1	D	16:46																				\perp	\perp		L
CCV 600-280165/66	1		16:50																				\perp	\perp		L
CCVL 600-280165/67	1		16:53																				\perp	\perp		L
CCB 600-280165/68	1		16:56												_								\perp	\perp		L
600-194999-12	1		16:59												_								\perp	\perp		L
MB 600-279592/1-A	1		17:02												_								\perp	\perp		L
LCS 600-279592/2-A	1	1	17:05			_	\perp	\perp				_	_		_	\perp			\perp	\perp		\perp	\perp	\perp	Ш	L
600-194999-13	1		17:09			_	\perp	\perp				_	_		_	\perp			\perp	\perp		\perp	\perp	\perp	Ш	L
600-194999-14	1		17:12			_	\perp	\perp				_	_		_	\perp		\perp	\perp	\perp	\perp	\perp	\perp	\perp	Ш	L
600-194999-15	1	_	17:15	$\overline{}$		_	\perp	\perp				_	_		_	\perp			\perp	\perp		\perp	\perp	\perp	Ш	L
600-194999-15 MS			17:18			_	\perp	\perp				_	_		_	\perp			\perp	\perp		\perp	\perp	\perp	Ш	L
600-194999-15 MSD			17:21			_	\perp	\perp				_	_		_	\perp			\perp	\perp		\perp	\perp	\perp	Ш	L
600-194999-19			17:24			\perp	\perp		_			\perp			\perp	\perp		\perp		\perp			\perp	\perp	Ш	L
600-194999-20		D	17:27				\perp	_	_			\perp	\perp	_	\perp	\perp	\perp	\perp	\perp	\perp	_	_	\perp	\perp	Ш	L
CCV 600-280165/79	1		17:30				\perp	_	_			\perp	\perp	_	\perp	\perp	\perp	\perp	\perp	\perp	_	_	\perp	\perp	Ш	L
CCVL 600-280165/80	1		17:34			\perp	\perp		_			\perp			\perp	\perp		\perp		\perp			\perp	\perp	Ш	L
CCB 600-280165/81	1		17:37			\perp	\perp		_			\perp			\perp	\perp		\perp		\perp			\perp	\perp	Ш	L
600-194999-21			17:40			\perp	\perp		_			\perp			\perp	\perp		\perp		\perp			\perp	\perp	Ш	L
600-194999-15 SD			17:43			\perp	\perp		_			\perp			\perp	\perp		\perp		\perp			\perp	\perp	Ш	L
MB 600-279977/1-A	1	T	17:46	X																- [1		1

13-IN ANALYSIS RUN LOG METALS

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Instrument ID: ICPMS7800 Analysis Method: 6020A

Start Date: 11/12/2019 13:24 End Date: 11/12/2019 19:08

		Т								Ar	nal	Lyt	es						
Lab Sample Id	D/F	у р е	Time	M n															
LCS 600-279977/2-A	1	Т	17:49	Х		Ì		Ì		Ì							Ì	Ì	T
ZZZZZZ			17:52																
ZZZZZZ			17:56																
ZZZZZZ			17:59																
ZZZZZZ			18:02																
ZZZZZZ			18:05																
ZZZZZZ			18:08																
CCV 600-280165/92	1		18:11	Х															
CCVL 600-280165/93	1		18:14	Х		T		T									T		\top
CCB 600-280165/94	1		18:17	Х		T		T									T		\top
ZZZZZZ			18:21																
ZZZZZZ			18:24			T		T									T		\top
ZZZZZZ			18:27																
ZZZZZZ			18:30																
ZZZZZZ			18:33																
ZZZZZZ			18:36																
ZZZZZZ			18:39																
ZZZZZZ			18:43																
600-194999-15 SD	5	D	18:46	Х		T		T									T		\top
CCV 600-280165/104	1		18:49	Х															
CCVL 600-280165/105	1		18:52	Х				T									T	T	\top
CCB 600-280165/106	1		18:55	Х													T	\top	
RINSE 600-280165/107			18:58														T	\top	
RINSE 600-280165/108			19:01					T									\neg	\top	\top
RINSE 600-280165/109			19:05														T	\top	
RINSE 600-280165/110			19:08														T	\top	

Prep Types:

D = Dissolved

T = Total/NA

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

ICP-MS Instrument ID: ICPMS7800 Start Date: I1/12/2019 End Date: I1/12/2019

				Inte	rnai	l Standar	ds '	RI For:			
Lab Sample ID	Time	Element Li-6	Q	Element Sc/2	Q	Element Sc/3	Q	Element Ge	Q	Element Ge	Q
IC 600-280165/2	13:27	100		100		100		100		100	Т
IC 600-280165/3	13:30	100		99		100		99		99	
IC 600-280165/4	13:34	101		98		99		98		99	
IC 600-280165/5	13:37	103		99		97		98		99	
IC 600-280165/6	13:40	96		96		96		95		96	
IC 600-280165/7	13:44	95		93		95		93		94	
ICV 600-280165/8	13:47	98		93		96		94		94	
ICVL 600-280165/9	13:50	101		94		97		93		95	
ICB 600-280165/10	13:53	102		94		97		93		94	
ICSA 600-280165/11	13:56	98		95		96		93		95	
ICSAB 600-280165/12	13:59	100		93		96		92		93	
CCV 600-280165/53	16:09	101		93		94		90		91	
CCVL 600-280165/54	16:12	106		92		94		89		91	
CCB 600-280165/55	16:15	106		93		94		90		91	
MB 600-279566/1-A	16:18	107		94		94		90		92	
LCS 600-279566/2-A	16:21	104		93		95		89		92	
600-194999-1	16:25	97		92		93		86		88	
600-194999-1 DU	16:28	93		89		90		86		87	
600-194999-1 MS	16:31	88		89		90		85		87	
600-194999-1 MSD	16:34	86		89		86		84		86	
600-194999-2	16:37	86		88		87		85		85	
600-194999-3	16:40	83		89		87		85		85	
600-194999-4	16:43	82		87		85		84		86	
600-194999-10	16:46	85		87		87		84		86	
CCV 600-280165/66	16:50	94		90		92		91		91	
CCVL 600-280165/67	16:53	100		95		96		94		95	
CCB 600-280165/68	16:56	106		96		100		94		96	
600-194999-12	16:59	96		93		95		88		89	
MB 600-279592/1-A	17:02	105		97		99		95		96	
LCS 600-279592/2-A	17:05	105		97		99		94		97	
600-194999-13	17:09	96		93		94		89		91	
600-194999-14	17:12	89		94		93		90		90	
600-194999-15	17:15	89		90		91		87		89	
600-194999-15 MS	17:18	85		90		89		88		89	
600-194999-15 MSD	17:21	83		89		89		87		86	
600-194999-19	17:24	86		90		89		86		86	
600-194999-20	17:27	85		91		88		86		88	
CCV 600-280165/79	17:30	94		94		94		92		93	
CCVL 600-280165/80	17:34	101		97		102		95		97	
CCB 600-280165/81	17:37	107		98		103		96		98	
600-194999-21	17:40	96		92		95		89		90	
600-194999-15 SD	17:43	100		95		101		94		95	

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.:

ICP-MS Instrument ID: $\underline{\text{ICPMS7800}}$ Start Date: $\underline{11/12/2019}$ End Date: $\underline{11/12/2019}$

				Inte	rnal	l Standaro	ds ⁹	kRI For:			
Lab Sample ID	Time	Element Li-6	Q	Element Sc/2	Q	Element Sc/3	Q	Element Ge	Q	Element Ge	Q
MB 600-279977/1-A	17:46	108		99		101		96		96	T
LCS 600-279977/2-A	17:49	109		95		101		96		95	
600-194999-1	17:52	96		92		99		91		91	
600-194999-2	17:56	91		91		93		89		89	
600-194999-3	17:59	87		88		88		86		88	
600-194999-4	18:02	84		88		87		85		87	
600-194999-10	18:05	82		87		87		84		85	
600-194999-12	18:08	85		88		88		85		86	
CCV 600-280165/92	18:11	95		92		95		90		92	
CCVL 600-280165/93	18:14	105		97		102		96		98	
CCB 600-280165/94	18:17	110		98		107		96		97	
600-194999-13	18:21	94		92		96		89		90	
600-194999-14	18:24	91		92		95		89		90	
600-194999-15	18:27	89		92		94		88		90	
600-194999-15 MS	18:30	85		89		93		87		88	
600-194999-15 MSD	18:33	86		91		91		87		88	
600-194999-19	18:36	85		89		90		86		88	
600-194999-20	18:39	87		90		91		86		88	
600-194999-21	18:43	86		86		90		85		84	
600-194999-15 SD	18:46	96		95		100		93		94	
CCV 600-280165/104	18:49	100		92		99		92		93	
CCVL 600-280165/105	18:52	106		98		106		96		98	
CCB 600-280165/106	18:55	113		98		106		97		97	

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.:

ICP-MS Instrument ID: $\underline{\text{ICPMS7800}}$ Start Date: $\underline{11/12/2019}$ End Date: $\underline{11/12/2019}$

				Inte	rnal	l Standard	ds ⁹	kRI For:			
Lab Sample ID	Time	Element Tb	Q	Element Bi/2	Q	Element Bi/3	Q	Element	Q	Element	Q
IC 600-280165/2	13:27	100		100		100					
IC 600-280165/3	13:30	97		99		99					
IC 600-280165/4	13:34	97		99		98					
IC 600-280165/5	13:37	98		99		98					
IC 600-280165/6	13:40	96		95		96					
IC 600-280165/7	13:44	95		94		96					
ICV 600-280165/8	13:47	94		94		97					
ICVL 600-280165/9	13:50	95		95		98					
ICB 600-280165/10	13:53	93		95		97					
ICSA 600-280165/11	13:56	93		94		96					
ICSAB 600-280165/12	13:59	93		91		97					
CCV 600-280165/53	16:09	89		89		93					
CCVL 600-280165/54	16:12	90		90		95					
CCB 600-280165/55	16:15	92		89		95					
MB 600-279566/1-A	16:18	90		91		95					
LCS 600-279566/2-A	16:21	90		91		94					
600-194999-1	16:25	88		81		88					
600-194999-1 DU	16:28	87		81		89					
600-194999-1 MS	16:31	84		81		88					
600-194999-1 MSD	16:34	85		78		87					
600-194999-2	16:37	83		78		88					
600-194999-3	16:40	84		79		88					
600-194999-4	16:43	83		79		90					
600-194999-10	16:46	84		78		90					
CCV 600-280165/66	16:50	87		89		100					
CCVL 600-280165/67	16:53	90		92		100					
CCB 600-280165/68	16:56	90		91		101					
600-194999-12	16:59	85		82		88					
MB 600-279592/1-A	17:02	91		92		98					
LCS 600-279592/2-A	17:05	91		89		99					
600-194999-13	17:09	86		81		89					
600-194999-14	17:12	86		82		90					
600-194999-15	17:15	84		81		91					
600-194999-15 MS	17:18	84		81		88					
600-194999-15 MSD	17:21	82		79		89					
600-194999-19	17:24	84		79		90					
600-194999-20	17:27	83		79		89					
CCV 600-280165/79	17:30	88		87		97					
CCVL 600-280165/80	17:34	90		91		99					
CCB 600-280165/81	17:37	92		91		99					
600-194999-21	17:40	87		81		88					
600-194999-15 SD	17:43	88		87		96					

Lab Name:	Eurofins TestAmerica, F	Houston Job No.	: 600-194999-1
SDG No.:			

ICP-MS Instrument ID: $\underline{\text{ICPMS7800}}$ Start Date: $\underline{11/12/2019}$ End Date: $\underline{11/12/2019}$

				Inte	rna.	l Standar	ds '	kRI For:			
Lab Sample ID	Time	Element Tb	Q	Element Bi/2	Q	Element Bi/3	Q	Element	Q	Element	Q
MB 600-279977/1-A	17:46	89		90		97					一
LCS 600-279977/2-A	17:49	91		90		98					
600-194999-1	17:52	86		82		90					
600-194999-2	17:56	85		80		87					
600-194999-3	17:59	83		78		88					
600-194999-4	18:02	83		80		89					
600-194999-10	18:05	82		76		87					
600-194999-12	18:08	82		78		88					
CCV 600-280165/92	18:11	85		87		97					
CCVL 600-280165/93	18:14	90		91		99					
CCB 600-280165/94	18:17	91		91		98					
600-194999-13	18:21	86		80		88					
600-194999-14	18:24	85		80		88					
600-194999-15	18:27	85		81		88					
600-194999-15 MS	18:30	83		79		89					
600-194999-15 MSD	18:33	84		80		89					
600-194999-19	18:36	83		79		88					
600-194999-20	18:39	84		78		87					
600-194999-21	18:43	82		77		86					
600-194999-15 SD	18:46	87		86		94					
CCV 600-280165/104	18:49	88		86		94		-			
CCVL 600-280165/105	18:52	91		92		97					
CCB 600-280165/106	18:55	90		89		95					

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Batch Number: 279566 Batch Start Date: 11/06/19 09:00 Batch Analyst: Lige, Derrick C

Batch Method: 3010A Batch End Date:

Lab Sample ID	Client Sample ID	Method Cha	in Bas	is Initial pH	InitialAmount	FinalAmount	ICPMSCALMIX1S 00006	ICPMSCALMIX2S 00003	ICPMSCALMIX3S 00004
MB 600-279566/1		3010A, 602	0A		50 mL	50 mL			
LCS 600-279566/2		3010A, 602	0A		50 mL	50 mL	50 uL	25 uL	25 uL
600-194999-A-1	Artesia-Outlet-1 02919	3010A, 602	OA D	<2	50 mL	50 mL			
600-194999-A-1 DU	Artesia-Outlet-1 02919	3010A, 602	OA D	<2	50 mL	50 mL			
600-194999-A-1 MS	Artesia-Outlet-1 02919	3010A, 602	OA D	<2	50 mL	50 mL	50 uL	25 uL	25 uL
600-194999-A-1 MSD	Artesia-Outlet-1 02919	3010A, 602	OA D	<2	50 mL	50 mL	50 uL	25 uL	25 uL
600-194999-A-2	Artesia-MW30-102 919	3010A, 602	OA D	<2	50 mL	50 mL			
600-194999-A-3	Artesia-MD30-102 919	3010A, 602	OA D	<2	50 mL	50 mL			
600-194999-A-4	Artesia-MW32-102 919	3010A, 602	OA D	<2	50 mL	50 mL			
600-194999-A-10	Artesia-MW29-102 919	3010A, 602	OA D	<2	50 mL	50 mL			
600-194999-A-12	Artesia-MW28-102 919	3010A, 602	OA D	<2	50 mL	50 mL			

Lab Sample ID	Client Sample ID	Method Chair	Basis	ICPMSCALMIX4S 00004	METHCL 00283	METHNO3 00334		
MB 600-279566/1		3010A, 6020A			0.5 mL	2.5 mL		
LCS 600-279566/2		3010A, 6020A		25 uL	0.5 mL	2.5 mL		
600-194999-A-1	Artesia-Outlet-1 02919	3010A, 6020A	D		0.5 mL	2.5 mL		
600-194999-A-1 DU	Artesia-Outlet-1 02919	3010A, 6020A	D		0.5 mL	2.5 mL		
600-194999-A-1 MS	Artesia-Outlet-1 02919	3010A, 6020A	D	25 uL	0.5 mL	2.5 mL		
600-194999-A-1 MSD	Artesia-Outlet-1 02919	3010A, 6020A	D	25 uL	0.5 mL	2.5 mL		
600-194999-A-2	Artesia-MW30-102 919	3010A, 6020A	D		0.5 mL	2.5 mL		
600-194999-A-3	Artesia-MD30-102 919	3010A, 6020A	D		0.5 mL	2.5 mL		
600-194999-A-4	Artesia-MW32-102 919	3010A, 6020A	D		0.5 mL	2.5 mL		

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1 SDG No.:

Batch Start Date: 11/06/19 09:00 Batch Analyst: Lige, Derrick C Batch Number: 279566

Batch Method: 3010A Batch End Date:

Lab Sample ID	Client Sample ID	Method	Chain	Basis	ICPMSCALMIX4S 00004	METHCL 00283	METHNO3 00334		
600-194999-A-10	Artesia-MW29-102 919	3010A,	6020A	D		0.5 mL	2.5 mL		
600-194999-A-12	Artesia-MW28-102 919	3010A,	6020A	D		0.5 mL	2.5 mL		

Batch Notes							
Hot Block ID	#2						
Oven, Bath or Block Temperature 1	94.6 Degrees C						
pH Paper ID	HC991818						
Pipette ID	мза						
Thermometer ID	# 615						
Digestion Tube/Cup ID	# 1904119						
Uncorrected Temperature	94 Celsius						

Basis	Basis	Description
D	Dissolved	

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

FinalAmount

ICPMSCALMIX1S

ICPMSCALMIX2S

ICPMSCALMIX3S

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Batch Number: 279592 Batch Start Date: 11/06/19 11:18 Batch Analyst: Lige, Derrick C

Batch Method: 3010A Batch End Date:

Lab Sample ID | Client Sample ID | Method Chain | Basis | Initial pH | InitialAmount |

								00006	00003	00004
MB 600-279592/1		3010A,	6020A			50 mL	50 mL	·		
LCS 600-279592/2		3010A,	6020A			50 mL	50 mL	50 uL	25 uL	25 uL
600-194999-A-13	Artesia-MW25-102 919	3010A,	6020A	D	<2	50 mL	50 mL			
	Artesia-MW31-102 919			D	<2	50 mL	50 mL			
600-194999-A-15	Artesia-MW34-102 919	3010A,	6020A	D	<2	50 mL	50 mL			
600-194999-A-15 MS	Artesia-MW34-102 919	3010A,	6020A	D	<2	50 mL	50 mL	50 uL	25 uL	25 uL
600-194999-A-15 MSD	Artesia-MW34-102 919	3010A,	6020A	D	<2	50 mL	50 mL	50 uL	25 uL	25 uL
	Artesia-Inlet-10 2919			D	<2	50 mL	50 mL			
600-194999-A-20	Artesia-MID-1029	3010A,	6020A	D	<2	50 mL	50 mL			
600-194999-A-21	Artesia-MW-22-10 2919	3010A,	6020A	D	<2	50 mL	50 mL			
Lab Sample ID	Client Sample ID	Method	Chain	Basis	ICPMSCALMIX4S 00004	METHCL 00283	METHNO3 00334			
		1								
MB 600-279592/1		3010A,	6020A			0.5 mL	2.5 mL			
MB 600-279592/1 LCS 600-279592/2		3010A,			25 uL	0.5 mL 0.5 mL	2.5 mL 2.5 mL			
LCS 600-279592/2	Artesia-MW25-102	3010A,	6020A	D	25 uL					
LCS 600-279592/2 600-194999-A-13	Artesia-MW25-102	3010A,	6020A 6020A	D D	25 uL	0.5 mL	2.5 mL			
LCS 600-279592/2 600-194999-A-13	Artesia-MW25-102 919 Artesia-MW31-102	3010A, 3010A, 3010A,	6020A 6020A 6020A	_	25 uL	0.5 mL 0.5 mL	2.5 mL 2.5 mL			
LCS 600-279592/2 600-194999-A-13 600-194999-A-15	Artesia-MW25-102 919 Artesia-MW31-102 919 Artesia-MW34-102	3010A, 3010A, 3010A,	6020A 6020A 6020A	D	25 uL 25 uL	0.5 mL 0.5 mL	2.5 mL 2.5 mL 2.5 mL			
LCS 600-279592/2 600-194999-A-13 600-194999-A-14 600-194999-A-15 MS	Artesia-MW25-102 919 Artesia-MW31-102 919 Artesia-MW34-102 919 Artesia-MW34-102	3010A, 3010A, 3010A, 3010A,	6020A 6020A 6020A 6020A 6020A	D D		0.5 mL 0.5 mL 0.5 mL	2.5 mL 2.5 mL 2.5 mL 2.5 mL			
LCS 600-279592/2 600-194999-A-13 600-194999-A-14 600-194999-A-15 MS 600-194999-A-15 MSD	Artesia-MW25-102 919 Artesia-MW31-102 919 Artesia-MW34-102 919 Artesia-MW34-102 919 Artesia-MW34-102	3010A, 3010A, 3010A, 3010A, 3010A,	6020A 6020A 6020A 6020A 6020A	D D	25 uL	0.5 mL 0.5 mL 0.5 mL 0.5 mL	2.5 mL 2.5 mL 2.5 mL 2.5 mL 2.5 mL			
LCS 600-279592/2 600-194999-A-13 600-194999-A-15 MSD 600-194999-A-15 MSD 600-194999-A-19	Artesia-MW25-102 919 Artesia-MW31-102 919 Artesia-MW34-102 919 Artesia-MW34-102 919 Artesia-MW34-102 919 Artesia-MW34-102	3010A, 3010A, 3010A, 3010A, 3010A, 3010A,	6020A 6020A 6020A 6020A 6020A 6020A	D D D	25 uL	0.5 mL 0.5 mL 0.5 mL 0.5 mL 0.5 mL	2.5 mL 2.5 mL 2.5 mL 2.5 mL 2.5 mL 2.5 mL			

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Lab Name: Eurofins TestAmerica, Houst	Job No.: 600-194999-1	_
SDG No.:		
Batch Number: 279592	Batch Start Date: 11/06/19 11:18	Batch Analyst: Lige, Derrick C

Batch Method: 3010A Batch End Date:

Batch Notes							
Hot Block ID	#2						
Oven, Bath or Block Temperature 1	94.6 Degrees C						
pH Paper ID	HC991818						
Pipette ID	мза						
Thermometer ID	# 615						
Digestion Tube/Cup ID	# 1904119						
Uncorrected Temperature	94 Celsius						

Basis	Basis Description
D	Dissolved

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

InitialAmount

50 mL

FinalAmount

50 mL

2.5 mL

2.5 mL

ICPMSCALMIX1S

00006

ICPMSCALMIX2S

00003

ICPMSCALMIX3S

00004

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

3010A, 6020A

Lab Sample ID | Client Sample ID | Method Chain | Basis |

Artesia-Outlet-1 3010A, 6020A

Artesia-MW30-102 3010A, 6020A

SDG No.:

MB 600-279977/1

Batch Number: 279977 Batch Start Date: 11/11/19 09:55 Batch Analyst: Lige, Derrick C

Initial pH

Batch Method: 3010A Batch End Date:

							**			
CS 500-279977/2		3010A,	6020A			50 mL	50 mL	50 uL	25 uL	25 uL
500-194999-A-1	Artesia-Outlet-1 02919	3010A,	6020A	D	<2	50 mL	50 mL			
500-194999-A-2	Artesia-MW30-102 919	3010A,	6020A	D	<2	50 mL	50 mL			
500-194999-A-3	Artesia-MD30-102 919	3010A,	6020A	D	<2	50 mL	50 mL			
	Artesia-MW32-102 919	,		D	<2	50 mL	50 mL			
	Artesia-MW29-102 919	,		D	<2	50 mL	50 mL			
	Artesia-MW28-102 919	,		D	<2	50 mL	50 mL			
500-194999-A-13	Artesia-MW25-102 919	3010A,	6020A	D	<2	50 mL	50 mL			
00-194999-A-14	Artesia-MW31-102 919	3010A,	6020A	D	<2	50 mL	50 mL			
500-194999-A-15	Artesia-MW34-102 919	3010A,	6020A	D	<2	50 mL	50 mL			
1S	Artesia-MW34-102 919	,		D	<2	50 mL	50 mL	50 uL	25 uL	25 uL
MSD	Artesia-MW34-102 919	,		D	<2	50 mL	50 mL	50 uL	25 uL	25 uL
500-194999-A-19	Artesia-Inlet-10 2919	3010A,	6020A	D	<2	50 mL	50 mL			
500-194999-A-20	Artesia-MID-1029	3010A,	6020A	D	<2	50 mL	50 mL			
00-194999-A-21	Artesia-MW-22-10 2919	3010A,	6020A	D	<2	50 mL	50 mL			
Lab Sample ID	Client Sample ID	Method	Chain	Basis	ICPMSCALMIX4S 00004	METHCL 00284	METHNO3 00336			
4B 600-279977/1		3010A,	6020A			0.5 mL	2.5 mL			
LCS 600-279977/2		3010A,	6020A		25 uL	0.5 mL	2.5 mL			

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

0.5 mL

0.5 mL

600-194999-A-1

600-194999-A-2

02919

Lab Name: Eurofins TestAmerica, Houston Job No.: 600-194999-1

SDG No.:

Batch Number: 279977 Batch Start Date: 11/11/19 09:55 Batch Analyst: Lige, Derrick C

Batch Method: 3010A Batch End Date:

Lab Sample ID	Client Sample ID	Method	Chain	Basis	ICPMSCALMIX4S 00004	METHCL 00284	METHNO3 00336		
600-194999-A-3	Artesia-MD30-102 919	3010A,	6020A	D		0.5 mL	2.5 mL		
600-194999-A-4	Artesia-MW32-102 919	3010A,	6020A	D		0.5 mL	2.5 mL		
600-194999-A-10	Artesia-MW29-102 919	3010A,	6020A	D		0.5 mL	2.5 mL		
600-194999-A-12	Artesia-MW28-102 919	3010A,	6020A	D		0.5 mL	2.5 mL		
600-194999-A-13	Artesia-MW25-102 919	3010A,	6020A	D		0.5 mL	2.5 mL		
600-194999-A-14	Artesia-MW31-102 919	3010A,	6020A	D		0.5 mL	2.5 mL		
600-194999-A-15	Artesia-MW34-102 919	3010A,	6020A	D		0.5 mL	2.5 mL		
600-194999-A-15 MS	Artesia-MW34-102 919	3010A,	6020A	D	25 uL	0.5 mL	2.5 mL		
600-194999-A-15 MSD	Artesia-MW34-102 919	3010A,	6020A	D	25 uL	0.5 mL	2.5 mL		
600-194999-A-19	Artesia-Inlet-10 2919	3010A,	6020A	D		0.5 mL	2.5 mL		
600-194999-A-20	Artesia-MID-1029 19	3010A,	6020A	D		0.5 mL	2.5 mL		
600-194999-A-21	Artesia-MW-22-10 2919	3010A,	6020A	D		0.5 mL	2.5 mL		

Batch Notes							
Hot Block ID	#2						
Oven, Bath or Block Temperature 1	95.4 Degrees C						
pH Paper ID	HC991818						
Pipette ID	M3A						
Thermometer ID	# 587						
Digestion Tube/Cup ID	# 1904119						
Uncorrected Temperature	95 Celsius						

Basis	Basis Description
D	Dissolved

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

Shipping and Receiving Documents

Environment Testing

seurofins :

Chain of Custody Record

Eurofins TestAmerica, Houston

6310 Rothway Street

Houston, TX 77040 Phone (713) 690-444 Fax (713) 690-5646

S - H2SO4 T - TSP Dodecahydrate U - Acetone Special Instructions/Note: Sompany (Ver: 01/16/2019 W - pH 4-5 Z - other (specify) M - Hexane
N - None
O - AsNaO2
P - Na2O4S
O - Na2SO3
R - Na2S2O3 Months Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Monti COC No: 600-71885-19714.1 Preservation Codes: C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH G - Arrichlor H - Ascorbic Acid of I - Ice J - DI Water 1997 A - HCL B - NaOH K-EDTA L-EDA Page: Total Number of containers B 4 4 4 44 4 4 V Carrier Tracking No(s): Hell Ex 12 11 1071 | A4 T U397 1000 LAG1 LL01 Method of Shipment Analysis Requested Sooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: E-Mail: bethany.mcdaniel@testamericainc.com Return To Client STEOB TF - PCE and 1,1-DCE only 300 ORGEM 28D - 300.0 - Anions, IC (Sulfate) X Received by: sceived by Received by Lab PM: McDaniel, Bethany A X × × × × 7 Z Z 2 Z Perform MS/MSD (Yes or No) Time: Field Filtered Sample (Yes or No) Company Company Www.ater, Seso Orwanteroll, Preservation Code: Matrix Water Company Radiological (С=сошр, G=grab) Sample Type PO#: D3151100 B.CS.TPE.AR.19-05-02 WO#: D3151100 B.CS.TPE.AR.19-05-02 5 5 5 5 5 3 5 S U 1000 016 1800 0875 09105 223 1015 Sample 52,60 01100 1133 Time をよる 00 1200 Ampler Prsberg Date: (AT Requested (days): Unknown Due Date Requested: 10 30 19 Date/Time: Sample Date Phone: 0120 Project #: 60004334 SSOW#: Date/Time: Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. Artes19-4W 12-102910 Artes19-MW 17C-102919 Artesia-MW36-102919 474519-MW32-1029161 Artesia - OUT ICT - Way Artsia-HD20-102919 Arts19-HWII-102919 AX +651a + M DII - 1029119 Artsia- MW30-102919 Flammable 14701 St. Mary's Lane Suite 300 Possible Hazard Identification Jacobs Engineering Group, Inc. Dowell - Artesia Groundwater John. Ynfante@jacobs.com Empty Kit Relinquished by Custody Seals Intact: Client Information Sample Identification Non-Hazard ethquished by: John Ynfante linguished by State, Zp: TX, 77079 Houston

Seurofins Environment Testing TestAmerica

Chain of Custody Record

Eurofins TestAmerica, Houston 6310 Rothway Street Houston, TX 77040 Phone (713) 690-4444 Fax (713) 690-5646

Client Information	Sampler FUSPERO		Lab PM McDani	Lab PM. McDaniel, Bethany A		Carrier Tracking No(s): FALS	COC No. 600-71885-19714.1	£1
Client Contact: John Ynfante	Phone: 516 919	0081	E-Mail bethany	E-Mail: bethany.mcdaniel@testamericainc.com	E E	141 0401	Page 2 of 2	
Company Jacobs Engineering Group, Inc.				4	Regu		Job #:	
Address: 14701 St. Mary's Lane Suite 300	Due Date Requested:						Pos	:50
City: Houston	TAT Requested (days):	Z CA		¥00-1			A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Zip: TX, 77079	24	1/1						P - Na204S Q - Na2SO3
Phone:	1100 B.CS.TPE	AR.19-05-02	(0	DCE,			Acid	S - H2SO4 T - TSP Dodecahydrate
Email: John, Ynfante@jacobs.com	Wo#. D3151100.8°CS.TPE.AR.19-05-02	4R.19-05-02	N 10 S	(oV) 1,1,3 d-Field d-Field			1-fce J-Di Water	U - Acetone V - MCAA
Project Name: Dowell - Artesia Groundwater	Project #: 60004334		9¥) 9∣	94, 90, 94, 90, 94, 90, 94			L-EDA	W - pri 4-5 Z - other (specify)
Site;	SSOW#:		dmeS	150 (Y benze 150 - 30			Other	
	Sample			9rform MS/M 2608_LL -nap, 020 - Mangane 00_ORGFM_21		acquirit late	otal Number	
Sample Identification	1	1	ation Code:	8 A S				opecial instructions/note;
ANASSA-MW 29-10292019	10/29/19 101	9 61	Water	××		7		
Artha - MW35-1029 2019	(0) 29/19 10)	8	Water N	X		(M)	M	
	111 91/25/01	1 6	Water Y	y v 3		2	0	
Artesia - MW-25 - 1029 2019	10/29/19 115	0 1	Water	NNN		7	4	
A+eria-MW31-10292019	10/29/17 125	45 6	Water	9 2		7	4	
Artena - MW34-10292019	10/29/19 13	26	Water	7 2			21	
Arts1a-MW37-10242019	10/29/19 150	9 60	Water N	NN		6		
MW38.	10/29/19 14:	20 6	Water	X		4	+	
AKS10 - 16292019	10/29/19 0805	05 6	Water N	S AGO		M	TRIP BLANK	アド
Artha - In 1ct -10292019	10/29/19 08	810 6	Water	×××		0	4	
AVK514-MID - 10292019	10/29/19 0820	20 6	Water	XX		4	4	
Identification				Sample Disposal (A	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month.	if samples are reta	ined longer than 1	month)
	1	Radiological		Special Instructions/QC Requirements	QC Requirements:		Acrine rol	MORRIS
Empty Kit Relinquished by:	Date:			Time:	Meth	Method of Shipment:		
Relinquished by	Date/Time:	(4000)	Company Des	Received by:	-	Date/Time:		Company
Relinquished by:	Date/Time.		Company	Received by.	Harry	Date Mars 1	1034	Company Th
Reimquished by:	Date/Time:		Company	Received by:	0	Date/Time:		Company 1 1
Custody Seals Intact: Custody Seal No.:				Cooler Temperature	Cooler Temperature(s) °C and Other Remarks:			
								Ver. 01/16/2019

Loc: 600 194999

deurofins

Environment Testing TestAmerica

Eurofins TestAmerica Houston

Sa	ample Rece	ipt Checklis	st			
						11900T31 18:3
	200) Date	e/Time Received:	1		
JOB NUMBER:	9010	CLI	ENT:	70100	165	
UNPACKED BY:	47	CAF	RRIER/DRIVER:	FR	dex	
Custody Seal Present:	NES DI	NO Nun	nber of Coolers Rece			
Cooler ID	Temp	Trip Plank	Observed Temp (°C)	Therm	Therm CF	Corrected Temp
02017	Blank N	Trip Blank	0.10	W78	-0.3	(°C)
0401	(Y)/ N	(Y)/N	0.7	1076	70.1	0.8
	YIN	YIN		0.10	101	
/	Y/N	Y / N				14
	Y / N	Y / N				//
1	Y / N F = correction factor	Y / N				
LABORATORY PRESI Base samples are>pH TX1005 samples frozer pH paper Lot #	ERVATION OF S	NO Acid	IRED: PNO I preserved are <ph &="" 2="" i<="" ie="" in="" put="" th="" time=""><th>FREEZER:</th><th>□NO □WES □N</th><th>O □NA</th></ph>	FREEZER:	□NO □WES □N	O □NA
Did samples meet the labor		anditions of sample	acceptability upon rece	eipt?		PYES NO
COMMENTS:						
. /						1
	4 7 7 7					4
-/-						

HS-SA-WI-013

Rev. 4A; 08/26/2019

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 600-194999-1

Login Number: 194999 List Source: Eurofins TestAmerica, Houston

List Number: 1

Creator: Taylor, Jacquelyn R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.3, 0.8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required