State of New Mexico Oil Conservation Division

Incident ID	nOY1811336341
District RP	1RP-5024
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following in	tems must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of	tions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete. Title: <u>Remediation Coordinator</u>
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible for regulations.
Closure Approved by: Bradford Billings	Date: 04/01/2020
Printed Name: Bradford Billings	Title: E.SPEC.A

nOY1811336341

REMEDIATION SUMMARY AND RISK-BASED SITE CLOSURE REQUEST

MOORE SWEET HISTORICAL UNIT LETTERS A & H, SECTION 13, TOWNSHIP 11 SOUTH, RANGE 32 EAST, NMPM N 33.369369° W 103.66272° LEA COUNTY, NEW MEXICO 1RP-5024 SRS #: Moore Sweet Historical

Prepared for:

Plains Marketing, L.P. 333 Clay Street, Suite 1600 Houston, Texas 77002

Prepared by:

TRC Environmental Corporation 10 Desta Drive, Suite 150E Midland, Texas 79705

January 2020

Curt D. Stanley Senior Project Manager

TABLE OF CONTENTS

1.0	INTRODUCTION AND BACKGROUND	1
2.0	SUMMARY OF EXCAVATION ACTIVITIES	
3.0	QA/QC PROCEDURES	
	3.1 Soil Sampling	
	3.2 Decontamination of Equipment	
	3.3 Laboratory Protocol	
4.0	SITE REVEGETATION	
5.0	SITE CLOSURE REQUEST	14
6.0	LIMITATIONS	
7.0	DISTRIBUTION	16

FIGURES

Figure 1:	Topographic Map
Figure 2:	Aerial Map
Figure 3:	Karst Potential Map
Figure 4:	Excavation and Sample Location Map
Figure 5:	Excavation and Sample Location Map with photographic aerial underlay

TABLES

 Table 1:
 Concentrations of BTEX, TPH, and Chloride in Soil

APPENDICES

- Appendix A: NMOCD and NMSLO Correspondence
- Appendix B: Photographic Documentation
- Appendix C: Depth to Groundwater Information
- Appendix D: Field Notes
- Appendix E: Laboratory Analytical Reports
- Appendix F: Request for Approval to Accept Solid Waste (NMOCD Form C-138)

1.0 INTRODUCTION AND BACKGROUND

On behalf of Plains Marketing, L.P. (Plains), TRC Environmental Corporation (TRC) has prepared this *Remediation Summary and Risk-Based Closure Request* for the historical crude oil Release Site known as Moore Sweet Historical (SRS: Moore Sweet Historical). The Release Site is located approximately three (3) miles east of Caprock in Lea County, New Mexico in Unit Letters "A & H", Section 13, Township 11 South, Range 32 East, NMPM. The Release Site GPS coordinates are N 33.369369° W 103.66272°. The Release Site is located on property leased by Plains from The State of New Mexico and administered by the New Mexico State Land Office (NMSLO). A copy of New Mexico Oil Conservation Division (NMOCD) Release Notification and Corrective Action (Form C-141) is provided with this *Remediation Summary and Risk-Based Closure Request*. A topographic location map and aerial map are provided as Figure 1 and Figure 2, respectively. Photographic documentation is provided as Appendix B.

On April 11, 2018, evidence of historical hydrocarbon impact was discovered during the decommissioning and reclamation of the former storage and pump station, the date and circumstance of the release are unknown. Following the discovery of the historical impact, an initial Release Notification and Corrective Action (Form C-141) was filed with the NMOCD and NMSLO.

Following the discovery of the historical hydrocarbon impact, numerous test trenches were utilized to delineate the vertical and horizontal extent of the impact. Following the completion of vertical and horizontal delineation activities, an "Initial Investigation Summary and Proposed Remediation Workplan" (Remediation Workplan) was prepared.

On August 20, 2018, the Remediation Workplan was submitted, via email to the New Mexico Oil Conservation Division (NMOCD) and the NMSLO. Please reference the "Initial Investigation Summary and Proposed Remediation Workplan" for details. NMOCD and NMSLO email correspondence is provided as Appendix A.

On September 4, 2018, representatives of the NMOCD, Plains, and TRC met at the NMOCD District 1 Office in Hobbs, New Mexico. Following discussion of the proposed remediation activities, the NMOCD Representative approved the proposed Remediation Workplan.

On September 5, 2018, a representative of the NMSLO concurred, via email with the NMOCD workplan approval.

On September 6, 2018, the NMOCD reconsidered and denied the Plains request for the emplacement of a 20-mil polyurethane liner at four (4) feet below ground surface (bgs) in the areas represented by TT-1 and WTT-1. The NMOCD based the liner decision reversal on the reported depth of fifty (50) feet to groundwater. The NMOCD email indicated "Emplacement of a liner with 4 ft. removal will not be appropriate for this location" and further stated "In other words, at least 12 ft. of soil will need to be removed from the areas represented by TT-1 and WTT-1".

On October 23, 2018, TRC, on behalf of Plains Marketing, requested a "Alternative Sampling Plan" from the NMOCD. The proposed alternative sampling plan proposed the collection of discrete soil samples, utilizing mechanical equipment from the sidewalls of the excavated area in each cardinal direction and the base of the excavated area for depths greater than eight (8) feet bgs. In areas of the excavation less than eight (8) feet composite soil samples would be collected for each six hundred (600) square feet of surface area.

On November 4, 2018, the NMOCD approved the prosed "Alternative Sampling Plan", on the condition discrete soil samples would be collected in "discolored areas."

On September 18, 2019, TRC, on behalf of Plains prepared a "Variance Request". In the Variance Request, Plains requested NMOCD and NMSLO approval to install a twenty (20) millimeter (mil) polyurethane liner at approximately fifteen (15) feet bgs. This request was based on the safety concerns, the depth of impact, and the inherent dangers of excavating in hard limestone with a hammer hoe.

On September 20, 2019, the NMOCD (Santa Fe Office) approved the installation of the polyurethane liner at approximately fifteen (15) feet bgs, the NMOCD approval was conditional and required all horizontal (sidewall) soil samples exhibit BTEX, TPH and chloride concentrations less than the NMOCD regulatory guidelines. On November 14, 2019, the NMSLO concurred with the NMOCD approval.

A groundwater database maintained by The New Mexico Office of the State Engineer (NMOSE) indicated the average depth to groundwater in Section 13, Township 11 South, Range 32 East to be sixty-three (63) feet bgs. There are no surface-water features located within a 1,000-foot radius of the site.

A groundwater database maintained by The New Mexico Office of the State Engineer (NMOSE) suggests one (1) water well (NMOSE Well No. L 06273) was installed in 1968, approximately eight hundred fifty (850) feet northwest of the Release Site; the current status of the water well is unknown. A pedestrian survey of the area did not yield any evidence of the water well.

On January 17, 2018, NMOSE Well No. L-6588, formerly located on-site, was plugged by a licensed driller; information for NMOSE Well No. L-6588 was unavailable on the groundwater database maintained by the NMOSE. The plugging record submitted by the driller to the NMOSE indicated the static water level was fifty (50) feet bgs, but the static water level measurement was not witnessed by Plains personnel. Depth to Groundwater information is provided as Appendix C.

Based on the depth to groundwater at the Moore Sweet Historical Release Site, the *NMOCD Closure Criteria for Soils Impacted by a Release* are the most stringent closure criteria listed. The Bureau of Land Management (BLM) publicly available *Karst Potential Map* indicates the Moore Sweet Historical Release Site is located in a "low karst" area. The BLM Karst Potential Map is provided as Figure 3. Based on the NMOCD Closure Criteria for Soils Impacted by a Release, the Closure Criteria for the Moore Sweet Historical Release Site are as follows:

• Benzene - 10 mg/kg

- Benzene, Toluene, ethylbenzene, and total xylenes (BTEX) 50 mg/kg
- Total Petroleum Hydrocarbons (TPH) 100 mg/kg
- Chloride 600 mg/kg

2.0 SUMMARY OF EXCAVATION ACTIVITIES

In October 2018, utilizing a track hoe and hammer hoe when required, excavation activities commenced at the Historical Moore Sweet Release Site, excavated soil was initially stockpiled on-site pending transportation to an NMOCD approved Landfill. An Excavation and Sample Location Map is provided as Figure 4. An Excavation and Sample Location Map with photographic aerial underlay is provided as Figure 5. A Summary of Concentrations of Benzene, BTEX, TPH and Chloride is provided as Table 1 and field notes are provided in Appendix D. Laboratory Analytical Reports are provided as Appendix E. A copy of the NMOCD *Request for Approval to Accept Solid Waste*) NMOCD Form C-138 is provided as Appendix F.

On October 8, 2018, one (1) soil sample (NTT 1A @ 8') was collected from the north sidewall of the excavation and submitted to the laboratory for total petroleum hydrocarbon (TPH) analysis. The analytical results indicated the soil sample exhibited a total petroleum hydrocarbon concentration of 42.7 mg/kg.

On November 9, 2018, two (2) excavation floor soil samples (TT1 @ 14' and STT @ 12') were collected and submitted to the laboratory for TPH and chloride analysis. The analytical results indicated soil samples TT1 @ 14' and STT @ 12' exhibited TPH concentrations of 2,081.4 mg/kg and 2,791.9 mg/kg, respectively. The analytical results of chloride analysis indicated soil samples TT1 @ 14' and STT @ 12' exhibited chloride concentrations of 128 mg/kg and 80.0 mg/kg, respectively. Based on the analytical results, additional excavation was warranted in the areas represented by soil samples TT1 @ 14' and STT @ 12'.

In addition, twelve (12) sidewall soil samples (ETT Comp 1 @ 5', ETT Comp 2 @ 5', ETT-NW @ 2.5', WTT Comp 2 @ 4', WTT Comp 1 @ 4', WTT-SW @ 2', WTT-WW @ 2', WTT-NW @ 2', STT-EW @ 6', STT-NW @ 6', STT-SW @ 6', and STT-WW @ 6') were collected and submitted to the laboratory for TPH and chloride analysis. The analytical results indicated TPH concentrations ranged from 15.2 mg/kg for soil sample ETT Comp 2 @ 5' to 4,153.8 mg/kg for soil sample STT–WW @ 6'. The analytical results indicated concentrations of chloride were less than the NMOCD regulatory guideline of 600 mg/kg for all soil samples. Based on the analytical results, additional excavation was warranted in the areas represented by soil samples ETT Comp 1 @ 5', ETT-NW @ 2.5', WTT-SW @ 2', WTT-NW @ 2', STT-EW @ 6', STT-SW @ 6', STT-SW @ 6', and STT-WW @ 6'.

On November 9, 2018, one (1) excavation floor soil sample (TT2 @ 2') was collected and submitted to the laboratory for TPH and chloride analysis. The analytical results indicated soil sample TT2 @ 2' exhibited a TPH concentration of 519 mg/kg. The analytical results of chloride analysis indicated soil sample TT2 @ 2' exhibited a chloride concentration of 176 mg/kg. Based on the analytical results, additional excavation was warranted in the area represented by soil sample TT2 @ 2'.

In addition, four (4) sidewall soil samples (TT2-WW @ 1', TT2-NW @ 1', TT2-EW @ 1', and TT2-SW @ 1') were collected and submitted to the laboratory for TPH and chloride analysis. The analytical results indicated TPH concentrations ranged from 89.2 mg/kg for soil sample TT 2–SW @ 1' to 396 mg/kg for soil sample TT2–WW @ 1'. The analytical results indicated concentrations of chloride were less than the NMOCD regulatory guideline of 600 mg/kg for all soil samples. Based on the analytical results, additional excavation was warranted in the areas represented by soil samples TT2–WW @ 1', TT2–NW @ 1', and TT2–EW @ 1'.

On November 9, 2018, one (1) composite excavation floor soil sample (TT3 Comp @ 3') was collected and submitted to the laboratory for TPH and chloride analysis. The analytical results indicated soil sample TT3 Comp @ 3' exhibited a TPH concentration less than the laboratory RL. The analytical results of chloride analysis indicated soil sample TT3 Comp @ 3' exhibited a chloride concentration of 16.0 mg/kg. Based on the analytical results, additional excavation was not warranted in the area represented by soil sample TT3 Comp @ 3'.

In addition, four (4) sidewall soil samples (TT3-NW @ 1.5', TT3-SW @ 1.5', TT3-WW @ 1.5', and TT3-EW @ 1.5') were collected and submitted to the laboratory for TPH and chloride analysis. The analytical results indicated TPH concentrations ranged from less than the laboratory RL for soil samples TT3–SW @ 1.5' and TT3–WW @ 1.5' to 38.0 mg/kg for soil sample TT3–NW @ 1.5'. The analytical results indicated concentrations of chloride were less than the NMOCD regulatory guideline of 600 mg/kg for all soil samples. Based on the analytical results, no additional excavation was warranted the TT 3 area and the excavation was backfilled with non-impacted locally sourced "like" material.

On November 13, 2018, one (1) excavation floor soil sample (ETT Comp 3 @ 6') was collected and submitted to the laboratory for TPH and chloride analysis. The analytical results indicated soil sample ETT Comp 3 @ 6' exhibited a TPH concentration of less than the laboratory RL. The analytical results of chloride analysis indicated soil sample ETT Comp 3 @ 6' exhibited a chloride concentration of 320 mg/kg. Based on the analytical results, no additional excavation was warranted in the area represented by soil sample ETT Comp 3 @ 6'.

In addition, three (3) sidewall soil samples (ETT–SW @ 2.5', ETT–SW-2 @ 6", and ETT-EW @ 2.5') were collected and submitted to the laboratory for TPH and chloride analysis. The analytical results indicated TPH concentrations ranged from less than the laboratory RL for soil sample ETT-EW @ 2.5' to 15.6 mg/kg for soil sample ETT–SW-2 @ 6". The analytical results indicated concentrations of chloride were less than the NMOCD regulatory guideline of 600 mg/kg for all soil samples, with the exception of soil sample ETT-SW-2 @ 6". Based on the analytical results, additional excavation was warranted in the areas represented by soil sample ETT-SW-2 @ 6".

On December 12-13, 2018, using a track hoe, an investigation trench (TT-1) was advanced from the floor of the existing excavation at approximately fourteen (14) feet bgs. During the advancement of the investigation trench sixteen (16) soil samples (TT-1 @ 15', TT-1 @ 16', TT-1 @ 17', TT-1 @ 18', TT-1 @ 19', TT-1 @ 20', TT-1 @ 21', TT-1 @ 22', TT-1 @ 23', TT-1 @ 24', TT-1 @ 25', TT-1 @ 26', TT-1 @ 27', TT-1 @ 28', TT-1 @ 29', and TT-1 @ 30') were collected and submitted to the laboratory for BTEX, TPH and chloride analysis. The

analytical results indicated benzene concentrations ranged from less than the laboratory RL for soil samples TT-1 @ 15', TT-1 @ 16', TT-1 @ 17', TT-1 @ 20', TT-1 @ 21', TT-1 @ 22', TT-1 @ 23', TT-1 @ 24', TT-1 @ 25', TT-1 @ 29', and TT-1 @ 30' to 0.113 mg/kg for TT-1 @ 27'. Based on the analytical results, all soil samples exhibited benzene concentrations less than the NMOCD regulatory guideline of 10 mg/kg. The analytical results indicated BTEX concentrations ranged from less than the laboratory RL for soil samples exhibited benzene concentrations less than the laboratory RL for soil samples exhibited benzene concentrations less than the NMOCD regulatory guideline of 50 mg/kg. The analytical results indicated BTEX concentrations less than the NMOCD regulatory guideline of 50 mg/kg. The analytical results indicated TPH concentrations ranged from 92.2 mg/kg for soil samples TT-1 @ 30' to 3,025 mg/kg for TT-1 @ 17'. Based on the analytical results, all soil samples exhibited TPH concentrations greater than the NMOCD regulatory guideline of 100 mg/kg, with the exception of soil sample TT-1 @ 30' (92.2 mg/kg), which provided vertical delineation of impact at the Site. Chloride analysis was conducted on soil samples TT-1 @ 15' through TT-1 @ 20, and based the analytical results, soil samples TT-1 @ 20 exhibited chloride concentrations less than the NMOCD regulatory guideline.

On April 3, 2019, one (1) excavation sidewall soil sample (ETT-NW-B @ 2.5') was collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated benzene and BTEX concentrations were less than the laboratory RL in the submitted soil sample. Based on the analytical results, the soil sample exhibited benzene and BTEX concentrations less than the NMOCD regulatory guideline. The analytical results indicated the TPH concentration was 31.0 mg/kg and exhibited TPH less than the NMOCD regulatory guideline. Chloride analysis indicated the soil sample exhibited a chloride concentration of 641 mg/kg. The analytical results indicated the chloride concentration was greater than the NMOCD regulatory guideline. Based on the analytical results, additional excavation was warranted in the area represented by soil sample ETT-NW-B @ 2.5'.

On April 3, 2019, four (4) excavation floor soil samples (TT2–Comp 1 @ 3', TT2–Comp 2 @ 3', TT2–Comp 3 @ 3', and TT2–Comp 4 @ 3') were collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated benzene and BTEX concentrations were less than the laboratory RL all submitted soil samples. Based on the analytical results, all soil samples exhibited benzene and BTEX concentrations less than the NMOCD regulatory guideline. The analytical results indicated TPH concentrations ranged from 40.2 mg/kg for soil sample TT2–Comp 1 @ 3' to 184 mg/kg for TT2–Comp 2 @ 3'. Based on the analytical results, soil samples TT2–Comp 2 @ 3' and TT2–Comp 4 @ 3' exhibited TPH concentrations greater than the NMOCD regulatory guideline. Chloride analysis indicated soil samples TT2–Comp 1 @ 3', TT2–Comp 2 @ 3', and TT2–Comp 4 @ 3' exhibited chloride concentrations less than the NMOCD regulatory guideline. Based on the analytical results, additional excavation was warranted in the areas represented by soil samples TT2–Comp 2 @ 3' and TT2–Comp 2 @ 3' and TT2–Comp 2 @ 3'.

On April 3, 2019, three (3) excavation sidewall soil samples (TT2-WW @ 1.5', TT2-NW @ 1.5', and TT2-EW @ 1.5',) were collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated benzene and BTEX concentrations were less than the laboratory RL all submitted soil samples. Based on the analytical results, all soil samples exhibited benzene and BTEX concentrations less than the NMOCD regulatory

guideline. The analytical results indicated TPH concentrations ranged from 38.5 mg/kg for soil sample TT2–WW @ 1.5' to 106 mg/kg for soil sample TT2-EW @ 1.5'. Based on the analytical results, soil samples TT2-NW @ 1.5' and TT2–EW @ 1.5' exhibited TPH concentrations greater than the NMOCD regulatory guideline. Chloride analysis indicated all soil samples exhibited chloride concentrations less than the NMOCD regulatory guideline. Based on the analytical results, additional excavation was warranted in the areas represented by soil samples TT2-NW @ 1.5' and TT2–EW @ 1.5'.

On April 4, 2019, two (2) excavation sidewall soil samples (WTT–NW–B @ 2' and WTT–SW –B @ 2') were collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated benzene and BTEX concentrations were less than the laboratory RL all submitted soil samples. Based on the analytical results, all soil samples exhibited benzene and BTEX concentrations less than the NMOCD regulatory guideline. The analytical results indicated TPH concentrations ranged from 76.3 mg/kg for soil sample WTT–SW–B @ 2' to 86.5 mg/kg for soil sample WTT–NW–B @ 2'. Based on the analytical results, soil samples WTT–NW–B @ 2' and WTT–SW–B @ 2' exhibited TPH concentrations less than the NMOCD regulatory guideline. Chloride analysis indicated all soil samples exhibited chloride concentrations less than the NMOCD regulatory guideline. Based on the analytical results, no additional excavation was warranted in the areas represented by soil samples WTT–NW–B @ 2' and WTT–SW–B @ 2'.

On April 16, 2019, four (4) excavation sidewall soil samples (STT-EW-B @ 6', STT-NW-B @ 6', STT-SW-B @ 6', and STT-WW-B @ 6') were collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated benzene concentrations were less than the laboratory RL all submitted soil samples. Based on the analytical results, all soil samples exhibited benzene concentrations less than the NMOCD regulatory guideline. The analytical results indicated BTEX concentrations ranged from 0.3198 mg/kg for soil sample STT-SW-B @ 6' to 32.13 mg/kg for soil sample STT-EW-B @ 6'. Based on the analytical results, all soil samples exhibited BTEX concentrations less than the NMOCD regulatory guideline. The analytical results indicated TPH concentrations ranged from 79.58 mg/kg for soil sample SST-SW-B @ 6' to 7,137 mg/kg for soil sample STT-WW-B @ 6'. Based on the analytical results, soil samples STT-EW-B @ 6', STT-NW-B @ 6', and STT-WW-B @ 6 exhibited TPH concentrations greater than the NMOCD regulatory guideline. Chloride analysis indicated all soil samples exhibited chloride concentrations less than the NMOCD regulatory guideline, with the exception of soil sample STT-EW-B (a) 6', which exhibited a chloride concentration of 1,770 mg/kg. Based on the analytical results, additional excavation was warranted in the areas represented by soil samples STT-EW-B (a) 6', STT-NW-B (a) 6', and STT-WW-B @ 6'.

On April 17, 2019, two (2) excavation floor soil samples (ETT-Comp 1 @ 6' and ETT-Comp 4 (@ 5')) were collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated benzene, and BTEX concentrations were less than the laboratory RL in the submitted soil samples. Based on the analytical results, the soil samples exhibited benzene and BTEX concentrations less than the NMOCD regulatory guideline. The analytical results indicated the TPH concentrations ranged from 29.3 mg/kg for soil sample ETT-Comp 1 (@ 6') to 291 mg/kg for soil sample ETT-Comp 4 (@ 5'). Based on the analytical results, soil sample ETT-

Comp 4' @ 6' exhibited a TPH concentration greater than the NMOCD regulatory guideline. Chloride analysis indicated soil samples ETT-Comp 1 @ 6' and ETT-Comp 4 @ 5' exhibited chloride concentrations of 615 mg/kg and 724 mg/kg, respectively. Chloride analysis indicated a soil samples exhibited ETT-Comp 1 @ 6' and ETT-Comp 4 @ 5' chloride concentrations greater than the NMOCD regulatory guideline. Based on the analytical results, additional excavation was warranted in the areas represented by soil samples ETT-Comp 1 @ 6' and ETT-Comp 4 @ 5'.

On April 17, 2019, one (1) excavation sidewall soil sample (ETT-NW-C @ 2.5') was collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated the benzene, and BTEX concentration was less than the laboratory RL in the submitted soil sample. Based on the analytical results, the soil sample exhibited benzene and BTEX concentrations less than the NMOCD regulatory guideline. The analytical results indicated the TPH concentration was 359 mg/kg and based on the analytical results the soil sample exhibited a TPH concentration greater than the NMOCD regulatory guideline. Chloride analysis indicated the soil sample exhibited a chloride concentration of 197 mg/kg. Chloride analysis indicated the soil sample exhibited a chloride concentration greater than the NMOCD regulatory guideline. Based on the analytical results, additional excavation was warranted in the areas represented by soil sample ETT-NW-C @ 2.5'.

On April 17, 2019, one (1) excavation sidewall soil sample (WTT-NW-C @ 2.5') was collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated the benzene, BTEX, and TPH concentrations were less than the laboratory RL in the submitted soil sample. Based on the analytical results, the soil sample exhibited benzene, BTEX, and TPH concentrations less than the NMOCD regulatory guideline. Chloride analysis indicated the soil sample exhibited a chloride concentration of 197 mg/kg. Chloride analysis indicated the soil sample exhibited a chloride concentration of 965 mg/kg, which is greater than the NMOCD regulatory guideline. Based on the analytical results, additional excavation was warranted in the area represented by soil sample WTT-NW-C @ 2.5'.

On April 17, 2019, two (2) excavation floor soil samples (TT2 Comp 2 @ 4' and TT2 Comp 4 @ 4') were collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated benzene, and BTEX concentrations were less than the laboratory RL in the submitted soil samples. Based on the analytical results, the soil samples exhibited benzene and BTEX concentrations less than the NMOCD regulatory guideline. The analytical results indicated TPH concentrations ranged from 275 mg/kg for soil sample TT2 Comp 4 @ 4' to 399 mg/kg for soil sample TT2 Comp 2 @ 4'. Based on the analytical results, soil samples TT2 Comp 2 @ 4' and TT2 Comp 4 @ 4' exhibited TPH concentrations greater than the NMOCD regulatory guideline. Chloride analysis indicated soil samples TT2 Comp 2 @ 4' and TT2 Comp 4 @ 4' exhibited concentrations of 35.1 mg/kg and 30.8 mg/kg, respectively. Chloride analysis indicated soil samples TT2 Comp 2 @ 4' and TT2 Comp 4 @ 4' exhibited concentrations less than the NMOCD regulatory guideline. Based on the analytical results, additional excavation was warranted in the areas represented by soil samples TT2 Comp 2 @ 4' and TT2 Comp 2 @ 4'.

On April 17, 2019, two (2) excavation sidewall soil samples (TT2-NW-B @ 1.5' and TT2-EW-B @ 1.5') were collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated benzene, and BTEX concentrations were less than the laboratory RL in the submitted soil samples. Based on the analytical results, the soil samples exhibited benzene and BTEX concentrations less than the NMOCD regulatory guideline. The analytical results indicated TPH concentrations ranged from less than the laboratory RL for soil sample TT2-EW-B @ 1.5' to 41.3 mg/kg for soil sample TT@-NW-B @ 1.5'. Based on the analytical results, soil samples TT2-NW-B @ 1.5' and TT2-EW-B @ 1.5' exhibited TPH concentrations less than the NMOCD regulatory guideline. The analytical results, soil samples TT2-NW-B @ 1.5' and TT2-EW-B @ 1.5' exhibited chloride concentrations of 136 mg/kg and 51.4 mg/kg, respectively. Chloride analysis indicated soil samples TT2-NW-B @ 1.5' and TT2-EW-B @ 1.5'.

On August 14, 2019, one (1) excavation sidewall soil sample (ETT-NW-D @ 2.5') was collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated the benzene, and BTEX concentration was less than the laboratory RL in the submitted soil sample. Based on the analytical results, the soil sample exhibited benzene and BTEX concentrations less than the NMOCD regulatory guideline. The analytical results indicated the TPH concentration greater than the NMOCD regulatory guideline. Chloride analysis indicated the soil sample exhibited a chloride concentration of 861 mg/kg. Chloride analysis indicated the soil sample exhibited a chloride concentration greater than the NMOCD regulatory guideline. Based on the analytical results, additional excavation was warranted in the areas represented by soil sample ETT-NW-D @ 2.5'.

On August 14, 2019, one (1) excavation sidewall soil sample (WTT-NW-D @ 2.5') was collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated the benzene, and BTEX concentration was less than the laboratory RL in the submitted soil sample. Based on the analytical results, the soil sample exhibited benzene and BTEX concentrations less than the NMOCD regulatory guideline. The analytical results indicated the TPH concentration was 459 mg/kg and based on the analytical results the soil sample exhibited a TPH concentration greater than the NMOCD regulatory guideline. Chloride analysis indicated the soil sample exhibited a chloride concentration of 130 mg/kg. Chloride analysis indicated the soil sample exhibited a chloride concentration greater than the NMOCD regulatory guideline. Based on the analytical results, additional excavation was warranted in the areas represented by soil sample WTT-NW-D @ 2.5'.

On August 14, 2019, two (2) excavation floor soil samples (TT2 Comp 2 @ 5' and TT2 Comp 4 (@ 5')) were collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated benzene, and BTEX concentrations were less than the laboratory RL in the submitted soil samples. Based on the analytical results, the soil samples exhibited benzene and BTEX concentrations less than the NMOCD regulatory guideline. The analytical results indicated TPH concentrations ranged from 1,178 mg/kg for soil sample TT2 Comp 2 (@ 5') to 2,276 mg/kg for soil sample TT2 Comp 4 (@ 5'). Based on the analytical results, soil samples TT2

Comp 2 @ 5' and TT2 Comp 4 @ 5' exhibited TPH concentrations greater than the NMOCD regulatory guideline. Chloride analysis indicated soil samples TT2 Comp 2 @ 5' and TT2 Comp 4 @ 5' exhibited chloride concentrations of 53.3 mg/kg and 24.5 mg/kg, respectively. Chloride analysis indicated soil samples TT2 Comp 2 @ 5' and TT2 Comp 4 @ 5' exhibited concentrations less than the NMOCD regulatory guideline. Based on the analytical results, additional excavation was warranted in the areas represented by soil samples TT2 Comp 2 @ 5' and TT2 Comp 2 @ 5' and TT2 Comp 2 @ 5' and TT2 Comp 2 @ 5'.

On August 26, 2019, excavation activities continued and focused on the stabilization of the existing excavation, which included the benching of the existing excavation sidewalls. Please note, the area associated with trenches TT-1, WTT, ETT, SST, and NTT will be collectively referred to as the "Main Excavation" from this point forward. During the stabilization activities, numerous areas of concern sampled and identified during prior excavation activities were removed. Following the stabilization of the Main Excavation, the Main Excavation was sampled, and the analytical results were evaluated.

In addition, excavation activities continued and focused on the stabilization of the existing excavation associated with the TT-2 Trench area, which will be referred to as the "TT-2 Excavation" from this point forward. During the stabilization activities, numerous areas of concern sampled and identified during the previous excavation activities were removed. Following the stabilization of the TT2 Excavation, the TT2 Excavation was sampled, and the analytical results were evaluated.

On September 24, 2019, twenty-nine (29) excavation floor and sidewall soil samples (MN-S1C #1, MW-S1C, MW-F1C #1 @ 5', MW-F1C #2 @ 5', MSW-S1C, MSW-F1C @ 5', MS-S1C, MS-F1C @ 5', ME-S1C, ME-F1C #1 @ 4', ME-F1C #2 @ 4', MN-S1C #2, MNW-S2, MNW-F2 @ 10', MW-S2, MW-F2 @ 10', MSW-S2, MSW-F2 @ 10', MS-S2, MS-F2 @ 10', ME-S2, MW-F2 @ 10', MN-S2, MN-F2 @ 19', MS3 #1, MS3 #2, and MS# #3) were collected from the Main Excavation and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated benzene and BTEX concentrations were less than the laboratory RL in each of the twenty-nine (29) submitted soil samples. Based on the analytical results, benzene and BTEX concentrations were less than the NMOCD regulatory guideline. The analytical results indicated the TPH concentrations were less than the laboratory RL, with the exception of soil samples MSW-F1C @ 5', ME-S1C, MNW-S2, MNW-F2 @ 10', MW-S2, and MS-F2 @ 10', which exhibited TPH concentrations of 186 mg/kg, 46.6 mg/kg, 87.0 mg/kg, 27.2 mg/kg, 61.1 mg/kg, and 769 mg/kg, respectively. Based on the analytical results, the areas represented by soil samples MSW-F1C @ 5' (186 mg/kg) and MS-F2 @ 10' (769 mg/kg) exhibited TPH concentrations greater than the NMOCD regulatory guideline. Chloride concentrations ranged from 9.26 mg/kg for soil sample MNW-F2 (a) 10' to 4,050 mg/kg for soil sample ME-F1C #2 (a) 4'. Based on the analytical results, the areas represented by soil samples MW-S1C (695 mg/kg), ME-S1C (2,100 mg/kg), ME-F1C #1 @ 4' (603 mg/kg), ME-F1C #2 @ 4' (4,050 mg/kg), ME-S2 (1,030 mg/kg), and MS3 #3 (962 mg/kg) exhibited chloride concentrations greater than the NMOCD regulatory guideline.

Based on the analytical results, additional excavation was warranted in the areas represented by soil samples MW-S1C, MSW-F1C @ 5', ME-S1C, ME-F1C #1 @ 4', ME-F1C #2 @ 4', MS-F2 @ 10', ME-S2, MN-S2, and MS# #3.

On September 24, 2019, nine (9) Main Excavation Ramp floor and sidewall soil samples (M Ramp ES2, M Ramp E FL @ 10', M Ramp ES3, M Ramp WS3, M Ramp WS2, M Ramp W FL (a) 10', M Ramp Floor #1 Comp, M Ramp Floor #2 Comp, M Ramp Floor #3 Comp) were collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated benzene and BTEX concentrations were less than the laboratory RL in each of the nine (9) submitted soil samples. Based on the analytical results, benzene and BTEX concentrations were less than the NMOCD regulatory guideline. The analytical results indicated the TPH concentrations were less than the laboratory RL, with the exception of soil samples M Ramp WS2, M Ramp Floor #1 Comp, M Ramp Floor #2 Comp, and M Ramp Floor #3 Comp which exhibited TPH concentrations of 136 mg/kg, 108 mg/kg, 179 mg/kg, and 117 mg/kg, respectively. Based on the analytical results, the areas represented by soil samples M Ramp WS2 (136 mg/kg), M Ramp Floor #1 Comp (108 mg/kg), M Ramp Floor #2 Comp (179 mg/kg), and M Ramp Floor #3 Comp (117 mg/kg) exhibited TPH concentrations greater than the NMOCD regulatory guideline. Chloride concentrations ranged from 9.69 mg/kg for soil sample M Ramp WS2 to 741 mg/kg for soil sample M Ramp ES3. Based on the analytical results, the areas represented by soil sample M Ramp ES3 (741 mg/kg) exhibited chloride concentrations greater than the NMOCD regulatory guideline.

Based on the analytical results, additional excavation was warranted in the areas represented by soil samples M Ramp ES3, M Ramp Floor #1 Comp, M Ramp Floor #2 Comp, and M Ramp Floor #3 Comp.

On September 24, 2019, five (5) Main Excavation soil samples (Sample #1 @ 17' through Sample #5 @ 17) were collected at the juncture of Main Excavation floor and sidewall and submitted to the laboratory for BTEX, TPH, and chloride analysis. The soil samples were collected to ensure the horizontal delineation of the impacted excavation floor was achieved. The analytical results indicated benzene and BTEX concentrations were less than the laboratory RL in each of the five (5) submitted soil samples. Based on the analytical results, benzene and BTEX concentrations were less than the NMOCD regulatory guideline. The analytical results indicated TPH concentrations were less than the laboratory RL and NMOCD regulatory guideline. Chloride concentrations ranged from 46.4 mg/kg for Sample #2 @ 17' to 801 mg/kg for Sample #5 @ 17'. Based on the analytical results, the areas represented by soil Sample #5 @ 17' exhibited chloride concentrations greater than the NMOCD regulatory guideline.

Based on the analytical results, additional excavation was warranted in the area represented by Sample #5 @ 17'

On September 27, 2019, sixteen (16) TT2 Excavation soil samples (TT-2 NS1C, TT-2 NF1 @ 5', TT-2 WS1C, TT-2 WF1 @ 5', TT-2 SS1-3C, TT-2 NS2, TT-2 NF2 @ 10', TT-2 WS2, TT-2 WF2 @ 10', TT-2 NS3, TT-2 WS3, TT-2 ES1-3C, TT-2 Floor @ 15', TT-2 Ramp WSW, TT-2 ESW, TT-2 Ramp Floor Comp) were collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The analytical results indicated benzene, BTEX, and TPH concentrations

were less than the laboratory RL in each of the sixteen (16) submitted soil samples. Based on the analytical results, benzene, BTEX, and TPH concentrations were less than the NMOCD regulatory guideline. Chloride concentrations ranged from 20.4 mg/kg for soil sample TT-2 WF1 @ 5' to 545 mg/kg for soil sample TT-2 Ramp ESW. Based on the analytical results, all sixteen (16) soil samples exhibited chloride concentrations less than the NMOCD regulatory guideline. Based on the analytical results, the TT-2 Excavation was backfilled with non-impacted, locally sourced "like" material.

On October 17-21, 2019, nine (9) confirmation excavation floor and sidewall soil samples (MW-S1C-A, MSW-F1C @ 7', MS-F2 @ 13', MS-S1C-A, ME-F1C #1 @ 7', MS-F1C #2 @ 7', ME-S2-A, MN-S2-A, and MS #3A) were collected from the Main Excavation and submitted to the laboratory for TPH or chloride analysis. The analytical results indicated TPH concentrations for soil samples MSW-F1C @ 7' and MS-F2 @ 13' were 83.6 mg/kg and 550 mg/kg, respectively. Based on the analytical results, the area represented by soil sample MS-FW @ 13' (550 mg/kg) exhibited a TPH concentration greater than the NMOCD regulatory guideline. The analytical results indicated chloride concentrations for soil samples MW-S1C-A, MS-S1C-A, ME-F1C #1 @ 7', MS-F1C #2 @ 7', ME-S2-A, MN-S2-A, and MS #3A ranged from 72.2 mg/kg for soil sample MW-F1C #1 @ 7' to 439 mg/kg for soil sample ME-S1C-A. Based on the analytical results, the above stated confirmation soil samples exhibited a chloride concentration soil samples ME-S1C-A. Based on the analytical results, the above stated confirmation soil samples exhibited a chloride concentration soil sample ME-S1C-A. Based on the analytical results, the above stated confirmation soil samples exhibited a chloride concentration less than the NMOCD regulatory guideline.

Based on the analytical results, additional excavation was warranted in the area represented by soil sample MS-F2 @ 13'.

On October 21, 2019, one (1) Main Excavation confirmation soil sample (Sample #5A @ 17') was collected at the juncture of Main Excavation floor and sidewall and submitted to the laboratory for chloride analysis. The soil sample was collected to ensure the horizontal delineation of the impacted excavation floor was achieved. The analytical results indicated the chloride concentration for Sample #5A @ 17' was 13.9 mg/kg. Based on the analytical results, the area represented by soil Sample #5A @ 17' exhibited chloride concentrations less than the NMOCD regulatory guideline.

On October 22, 2019, five (5) Main Excavation Ramp floor and sidewall confirmation soil samples (M Ramp ES3-A, M Ramp WS3-A, M Ramp Floor #1A Comp, M Ramp Floor #2A Comp, and M Ramp Floor #3A Comp) were collected and submitted to the laboratory for TPH or chloride analysis. The analytical results indicated TPH concentrations for soil samples M Ramp WS3-A, M Ramp Floor #1A Comp, M Ramp Floor #2A Comp, and M Ramp Floor #1A Comp, M Ramp Floor #2A Comp, and M Ramp Floor #3A Comp ranged from less than the laboratory RL for soil samples M Ramp WS3-A, M Ramp Floor #3A to 115 mg/kg for soil sample M Ramp Floor #2A Comp. Based on the analytical results, the area represented by soil sample M Ramp Floor #2A Comp exhibited a TPH concentration greater than the NMOCD regulatory guideline. The analytical results indicated the chloride concentration for soil sample M Ramp ES3-A was 21.8 mg/kg. Based on the analytical results, the area represented by soil sample M Ramp ES3-A exhibited a chloride concentration for soil sample M Ramp ES3-A exhibited a chloride concentration for soil sample M Ramp ES3-A was 21.8 mg/kg.

Based on the analytical results, additional excavation was warranted in the area represented by soil sample M Ramp Floor #2A Comp.

On October 23, 2019, two (2) composite stockpile soil samples (South Stockpile and North Stockpile) were collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. The stockpile contained approximately six-hundred (600) cubic yards (cy) of overburden removed from the Main Excavation. The analytical results indicated benzene and BTEX concentrations were less than the laboratory RL for each soil sample. The analytical results indicated TPH concentrations for South Stockpile and North Stockpile were 74.6 mg/kg and 50.9 mg/kg, respectively. The analytical results indicated chloride concentrations for South Stockpile and North Stockpile were 209 mg/kg and 164 mg/kg, respectively. Based on the analytical results the stockpiled soil was utilized as backfill material.

On November 7, 2019, one (1) Main Excavation floor confirmation soil sample (MS-F2 @ 14') and one (1) Main Excavation Ramp floor soil sample (M Ramp Floor #2B Comp) were collected and submitted to the laboratory for TPH analysis. The analytical results indicated TPH concentrations for soil samples MS-F2 @ 14' and M Ramp Floor #2B Comp were 38.3 mg/kg and less than the laboratory RL, respectively. Based on the analytical results, the area represented by soil sample MS-F2 @ 14' and M Ramp Floor #2B Comp exhibited a TPH concentration less than the NMOCD regulatory guideline.

On November 19, 2019, based on the analytical results and with NMOCD and NMSLO approved twenty (20) mil polyliner installed on the floor of the Main Excavation at approximately fifteen (15) feet bgs. As approved by the NMOCD and NMSLO, a six (6) inch layer of pad sand was placed above and below the liner to protect the liner during backfilling activities. Approximately six (6) inches of pad sand was placed above and below the liner to protect the liner during backfilling the liner during backfilling activities.

Following the emplacement of the liner and upper layer of pad sand, backfilling activities commenced. Locally purchased non-impacted "like" material was transported to the Site. Backfilled was compacted in eighteen (18) inch lifts to minimize future slumping. The top four (4) feet of backfill material consisted of topsoil which should enhance revegetation efforts at the Site.

Approximately 8,869 cubic yards of impacted soil was transported under manifest to the Gandy Marley disposal facility located west of Caprock, New Mexico. Copies of the Gandy Marley Disposal Manifests will be available upon request.

3.0 QA/QC PROCEDURES

3.1 Soil Sampling

Soil samples were obtained utilizing single-use, disposable, latex gloves and clean sampling tools. The soil sample was placed in a disposable Ziploc sample bag. The bag was labeled. A portion of the soil sample was then placed in a sterile glass container equipped with a Teflon-lined lid furnished by the analytical laboratory. The container was filled to capacity to limit the

amount of headspace present. Each container was labeled and placed on ice in an insulated cooler. Upon selection of samples for analysis, the cooler was sealed for shipment to the laboratory. Proper chain-of-custody documentation was maintained throughout the sampling process.

Soil samples were delivered to Cardinal Laboratories in Hobbs, New Mexico, Xenco Laboratories in Midland, Texas and Permian Basin Environmental Laboratory (Permian Lab) Midland, Texas for BTEX, TPH and chlorides analyses using the method described below.

- TPH concentrations in accordance with modified EPA Method 8015M GRO/DRO
- BTEX concentrations in accordance with EPA Method SW-846 8021b
- Chlorides concentrations in accordance with EPA Method E 300.

3.2 Decontamination of Equipment

Soil sampling tools such as small hand shovels were washed with Liqui-Nox[®] detergent and rinsed with distilled water between the collection of soil samples.

3.3 Laboratory Protocol

The laboratory was responsible for proper QA/QC procedures after signing the chain-of-custody form.

4.0 SITE REVEGETATION

Following backfilling activities, the Moore Sweet Historical Site was contoured reminiscent of the surrounding area.

As required by the NMOCD and NMSLO, the Moore Sweet Historical Release Site will be revegetated as follows:

The Moore Sweet Historical Release Site consists of a Kimbrough-Lea complex soil with 0-3 percent slopes. Vegetation includes short grass and mid-grass communities with less than 5% of woody shrubs and a limited variety of forbs. The dominant grasses are blue grama, sideoats grama, buffalograss, plains bristlegrass and tobosa. Less dominate grasses include black grama, sand dropseed and threeawn. Forbs include gaura, croton, clover, globewillow, ragweed, and wooly plantain.

The preferred time for warm season species is 3-6 weeks after the last killing frost in the spring.

The seeds will be broadcast, and the area raked or dragged to cover the seed. When broadcasting the seed, the pounds per acre will be doubled.

Total pounds of pure live seed per acre are based on seed being weed free. If one species is not available, all other species available will be increased proportionately and at least four (4) species of the recommended grasses will be used, including one (1) forb. No less than eight (8) pounds per acre will be applied. The appropriate application will be reviewed prior to reclamation reseeding.

Common Name and Preferred Variety	Scientific Name	Pounds of Pure Live Seed Per Acre
Annual Quick-cover Grass		
Oats	Avena sativa	0.50
Sterile Triticale	Triticum aestivum X Secale cereale 'Quickguard'	0.50
Cool Season Grass		
Western Wheatgrass	Agropyron smithii	2.50
Warm-Season Grass		
Blue Grama	Boutela gracilis	2.0
Little Bluestem	Schizachyrium scoparium	1.0
Black Grama	Bouteloua eriopoda	0.50
Buffalograss	Bouteloua dactyloides	0.50
Indiangrass	Sorghastrum nutans	0.50
Sideoats Grama	Bouteloua curtipendula var. Vaughn	2.00
Wildflowers/ Forbs		
White prairie clover	Dalea candida	0.10
Scarlet globemallow	Sphaeralcea coccinea	0.10
Chia Sage	Salvia columbariae	0.10
Annual buckwheat	Eriogonum annuum	0.10

The NMSLO recommended seed mixture is as follows:

Noxious weeds growing in the seeded area will be minimized through mechanical or chemical treatment.

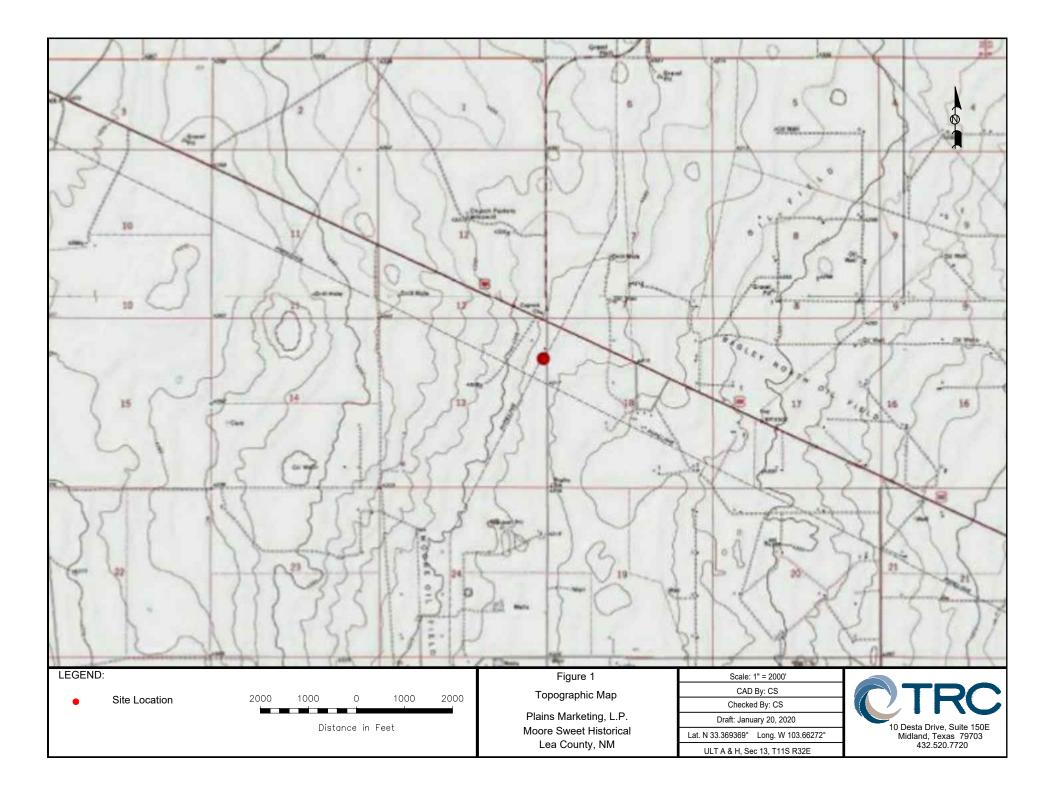
5.0 SITE CLOSURE REQUEST

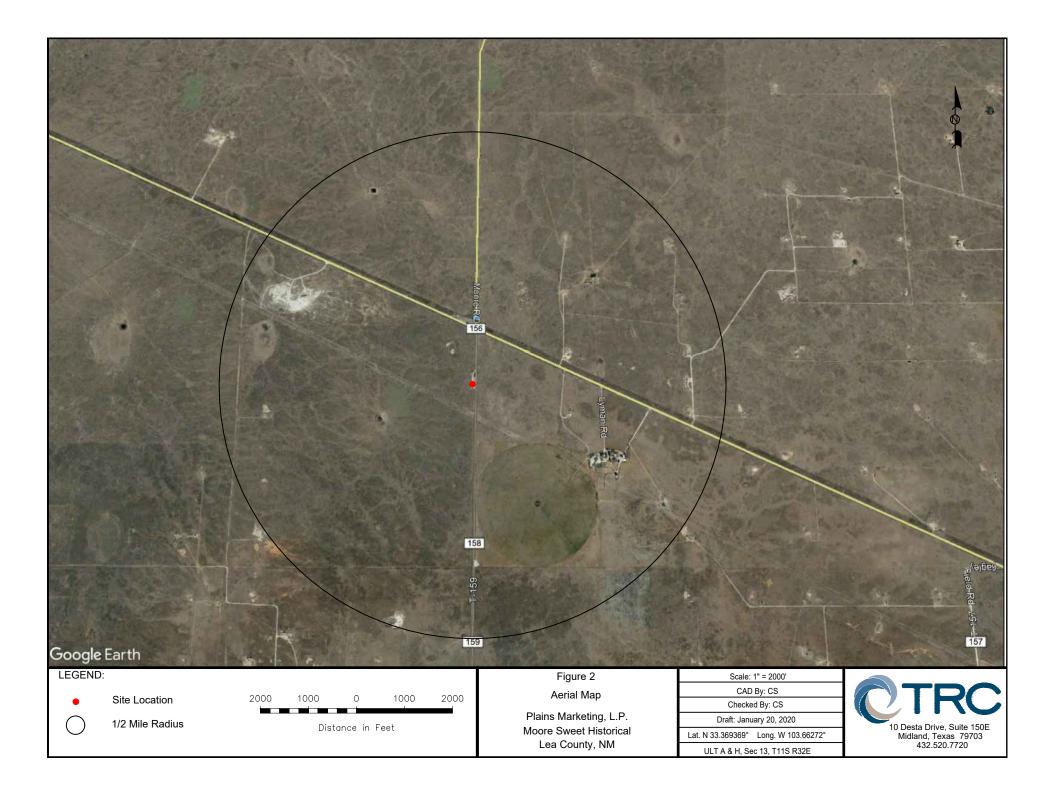
Based on the analytical results of confirmation soil samples obtained from the floor and sidewalls of the excavation, TRC recommends Plains provide the NMOCD and NMSLO a copy of this Site Closure Request and request the NMOCD and NMSLO grant soil closure status to the Moore Sweet Historical Release Site.

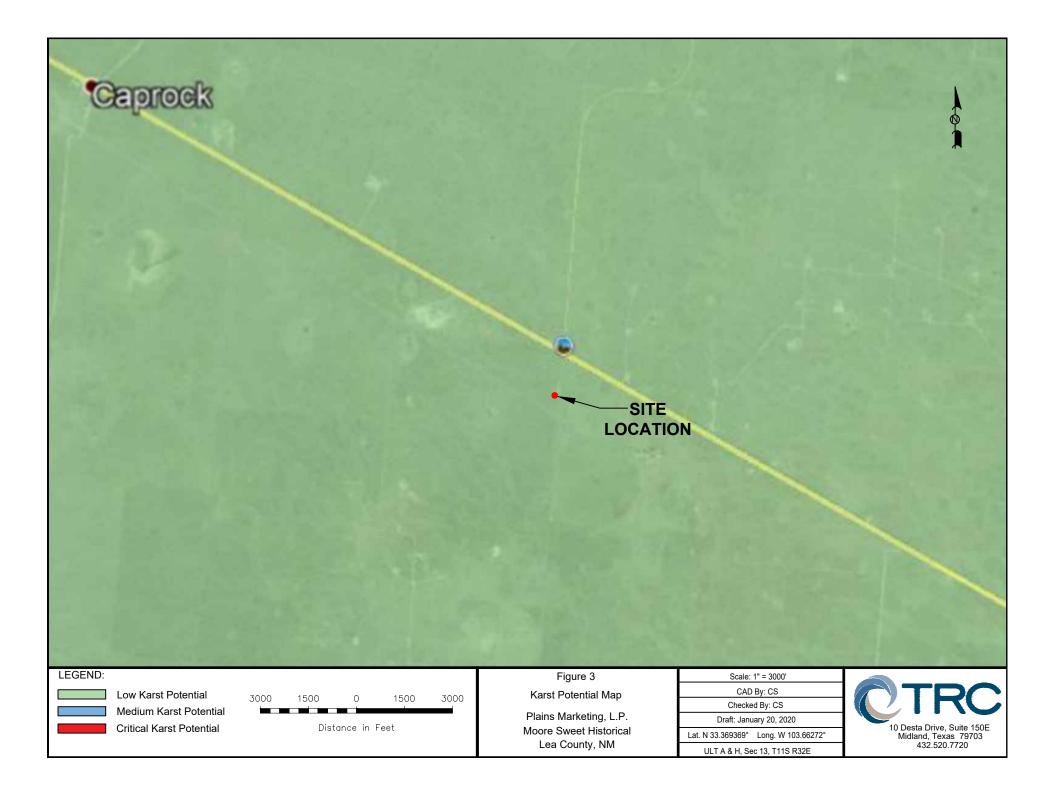
6.0 LIMITATIONS

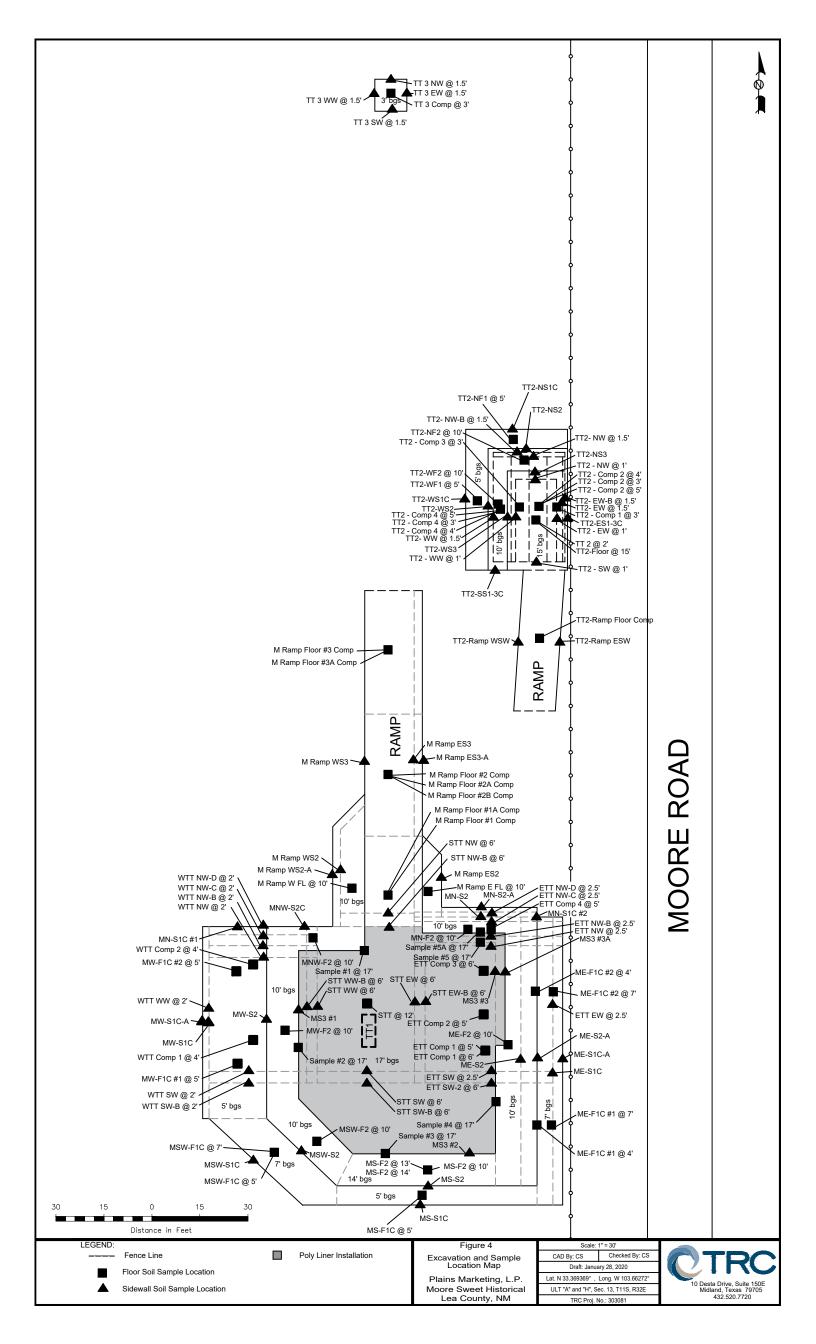
TRC has prepared this Site Closure Request to the best of its ability. No other warranty, expressed or implied, is made or intended.

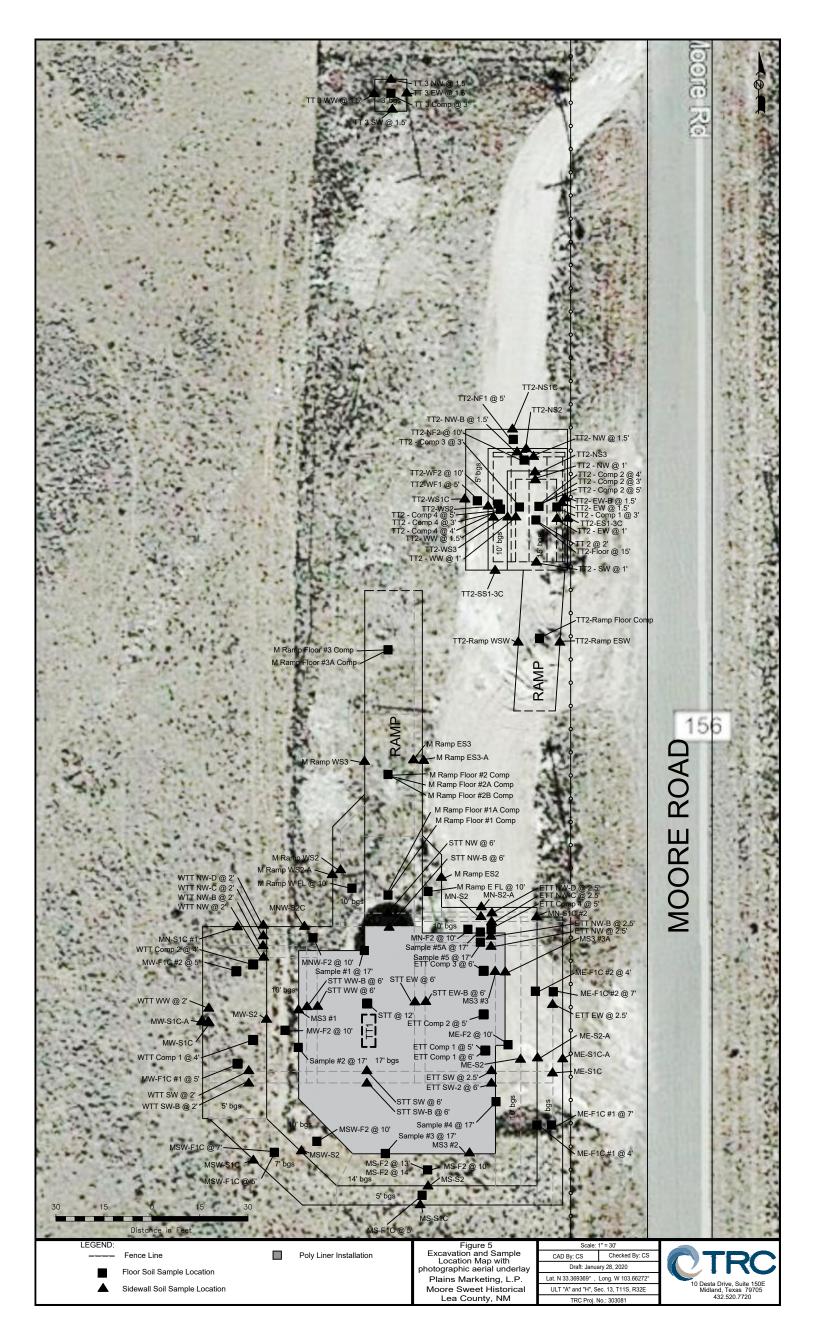
TRC has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. TRC has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. TRC has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. TRC also notes that the facts and conditions referenced in this report may change over time and the conclusions and


recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.


This report has been prepared for the benefit of Plains. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of TRC and/or Plains.


7.0 **DISTRIBUTION**


- Copy 1: New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, District 1 1625 French Drive Hobbs, NM 88240
- Copy 2: Ryan Mann Hobbs Field Office New Mexico State Land Office 914 N. Linam Street Hobbs, NM 88240
- Copy 3: Amber Groves Plains Marketing, LP 10 Desta Drive, Suite 550E Midland, Texas 79705 algroves@paalp.com
- Copy 4: TRC Environmental Corporation 10 Desta Drive, Suite 150E Midland, Texas 79705 cdstanley@trccompanies.com


Figures

Table

					Methods: E	PA SW 846-802	1B, 5030				Methods:			Method:
	SAMPLE	SAMPLE				ETHYL-	XYLENES,	TOTAL		1	EPA SW 846-80	15M		E300
SAMPLE LOCATION	DATE	DEPTH	STATUS	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	BENZENE (mg/Kg)	TOTAL (mg/Kg)	BTEX (mg/Kg)	GRO (mg/Kg)	DRO (mg/Kg)	GRO+DRO (mg/Kg)	ORO (mg/Kg)	TOTAL TPH (mg/Kg)	CHLORIDE (mg/Kg)
NTT 1A @ 8'	10/9/2018	8'	Excavated	-	-	-	-	-	<10.0	42.7	42.7	<10.0	42.7	-
TT 1 @ 14'	11/9/2018	14'	Excavated	-	-	-	-	-	69.4	1,770	1,839	242	2,081.4	128
ETT Comp 1 @ 5'	11/9/2018	5'	Excavated	-	-	-	-	-	<10.0	185	185	32.1	217.1	512
ETT Comp 2 @ 5'	11/9/2018	5'	Excavated	-	-	-	-	-	<10.0	15.2	15.2	<10.0	15.2	464
ETT - NW @ 2.5'	11/9/2018	2.5'	Excavated	-	-	-	-	-	<10.0	118	118	19.8	137.8	496
W TT Comp 2 @ 4'	11/9/2018	4'	Excavated	-	-	-	-	-	<10.0	32.7	33	11.6	44.3	48.0
W TT Comp 1 @ 4'	11/9/2018	4'	Excavated	-	-	-	-	-	<10.0	33.9	34	12.3	46.2	416
W TT - SW @ 2'	11/9/2018	2'	Excavated	-	-	-	-	-	<10.0	149	149	77.0	226.0	48.0
W TT - WW @ 2'	11/9/2018	2'	Excavated	-	-	-	-	-	<10.0	33.0	33	28.7	61.7	560
W TT - NW @ 2'	11/9/2018	2'	Excavated	-	-	-	-	-	<10.0	106	106	70.4	176.4	80.0
S TT @ 12'	11/9/2018	12'	Excavated	-	-	-	-	-	53.9	2,410	2,463.9	328	2,791.9	80.0
S TT - EW @ 6'	11/9/2018	6'	Excavated	-	-	-	-	-	32.0	2,110	2,142.0	323	2,465.0	384
S TT - NW @ 6'	11/9/2018	6'	Excavated	-	-	-	-	-	101	2,950	3,051	373	3,424	320
S TT - SW @ 6'	11/9/2018	6'	Excavated	-	-	-	-	-	31.8	1,050	1,081.8	161	1,242.8	192
S TT - WW @ 6'	11/9/2018	6'	Excavated	-	-	-	-	-	85.8	3,520	3,605.8	548	4,153.8	576
TT 2 @ 2'	11/9/2018	2'	Excavated	-	-	-	-	-	<10.0	348	348	171	519	176
TT 2 - WW @ 1'	11/9/2018	1'	Excavated	-	-	-	-	-	<10.0	249	249	147	396	320
TT 2 - NW @ 1'	11/9/2018	1'	Excavated	-	-	-	-	-	<10.0	70.8	71	34.6	105.4	208
TT 2 - EW @ 1'	11/9/2018	1'	Excavated	-	-	-	-	-	<10.0	249	249	108	357	16.0
TT 2 - SW @ 1'	11/9/2018	1'	Excavated	-	-	-	-	-	<10.0	49.7	50	39.5	89.2	208
0														
TT 3 Comp @ 3'	11/9/2018	3'	In-Situ	-	-	-	-	-	<10.0	<10.0	<10.0	<10.0	<10.0	16.0
TT 3 - NW @ 1.5'	11/9/2018	1.5'	In-Situ	-	-	-	-	-	<10.0	25.9	25.9	12.1	38.0	<16.0
TT 3 - SW @ 1.5'	11/9/2018	1.5'	In-Situ	-	-	-	-	-	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
TT 3 - WW @ 1.5'	11/9/2018	1.5'	In-Situ	-	-	-	-	-	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
TT 3 - EW @ 1.5'	11/9/2018	1.5'	In-Situ	-	-	-	-	-	<10.0	<10.0	<10.0	13.8	13.8	<16.0
ETT Comp 3 @ 6'	11/13/2018	6'	Excavated	-	-	-	-	-	<10.0	<10.0	<10.0	<10.0	<10.0	320
ETT - SW @ 2.5'	11/13/2018	2.5'	Excavated	-	-	-	-	-	<10.0	13.2	13.2	<10.0	13.2	160
ETT - SW-2 @ 6"	11/13/2018	6"	Excavated	-	-	-	-	-	<10.0	15.6	15.6	<10.0	15.6	672
ETT EW @ 2.5'	11/13/2018	2.5'	Excavated	-	-	-	-	-	<10.0	<10.0	<10.0	<10.0	<10.0	304
2112.1. (3 2.0	1.10.2010	2.0	Liteuratou						1010	1010	1010	1010	10.0	20.
TT-1 @ 15'	12/12/2018	15'	Excavated	< 0.0964	0.934	< 0.501	1.69	2.624	490	1,820	2,310	143	2,453	23.0
TT-1 @ 16"	12/12/2018	16'	Excavated	< 0.0962	0.983	< 0.500	1.89	2.873	533	1,660	2,193	118	2,311	180
TT-1 @ 17'	12/12/2018	17'	Excavated	< 0.200	1.27	< 0.200	< 0.399	1.27	725	2,150	2,875	150	3.025	34.6

					Methods: E	PA SW 846-802	1B, 5030				Methods:			Method:
	SAMPLE	SAMPLE				ETHYL-	XYLENES,	TOTAL		1	EPA SW 846-80	15M		E300
SAMPLE LOCATION	DATE	DEPTH	STATUS	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	BENZENE (mg/Kg)	TOTAL (mg/Kg)	BTEX (mg/Kg)	GRO (mg/Kg)	DRO (mg/Kg)	GRO+DRO (mg/Kg)	ORO (mg/Kg)	TOTAL TPH (mg/Kg)	CHLORIDE (mg/Kg)
TT-1 @ 18'	12/12/2018	18'	Risk	0.0849	0.0509	0.412	2.502	3.0498	501	1,270	1,771	114	1,885	460
TT-1 @ 19'	12/12/2018	19'	Risk	0.0379	1.97	0.306	2.386	4.6999	565	1,510	2,075	125	2,200	70.4
TT-1 @ 20'	12/12/2018	20'	Risk	< 0.000385	0.00483	0.0169	0.1044	0.12613	448	1,230	1,678	97.6	1,775.6	57.4
TT-1 @ 21'	12/12/2018	21'	Risk	< 0.0200	0.740	0.213	2.44	3.393	454	1,200	1,654	102	1,756	-
TT-1 @ 22'	12/12/2018	22'	Risk	< 0.00998	0.610	0.164	1.735	2.509	554	1,470	2,024	132	2,156	-
TT-1 @ 23'	12/12/2018	23'	Risk	< 0.00996	< 0.00996	< 0.00996	0.0837	0.0837	52.9	492	544.9	46.8	591.7	-
TT-1 @ 24'	12/12/2018	24'	Risk	< 0.00202	< 0.00202	0.00211	0.0265	0.02861	78.1	561	639.1	50.9	690.0	-
TT-1 @ 25'	12/12/2018	25'	Risk	< 0.00200	< 0.00200	< 0.00200	< 0.00400	< 0.00400	<15.0	117	117	<15.0	117	-
TT-1 @ 26'	2/13/2019	26'	Risk	0.111	0.0855	< 0.0199	0.152	0.3485	35.8	209	245	<15.0	244.8	-
TT-1 @ 27'	2/13/2019	27'	Risk	0.113	0.656	0.134	2.14	3.043	280	879	1,159	58.7	1,217.7	-
TT-1 @ 28'	2/13/2019	28'	Risk	0.106	< 0.00946	0.0269	0.1067	0.2396	31.0	176	207.0	<13.6	207.0	-
TT-1 @ 29'	2/13/2019	29'	Risk	< 0.00202	0.0320	0.00387	0.04936	0.08523	55.1	286	341.1	24.5	365.6	-
TT-1 @ 30'	2/13/2019	30'	Risk	< 0.000383	0.00395	< 0.000563	0.00477	0.00872	<15.0	92.2	92.2	<15.0	92.2	-
ETT - NW - B @ 2.5'	4/3/2019	2.5'	Excavated	<0.0198	< 0.0198	< 0.0198	< 0.0395	< 0.0395	<3.95	31.0	31.0	<25.1	31.0	641
TT2 - Comp 1 @ 3'	4/3/2019	3'	Excavated	< 0.0193	< 0.0193	< 0.0193	< 0.0387	< 0.0387	<3.87	40.2	40.2	<25.2	40.2	85.6
TT2 - Comp 2 @ 3'	4/3/2019	3'	Excavated	< 0.0183	< 0.0183	< 0.0183	< 0.0366	< 0.0366	<3.66	184	184	<24.8	184	30.3
TT2 - Comp 3 @ 3'	4/3/2019	3'	Excavated	< 0.0198	< 0.0198	< 0.0198	< 0.0395	< 0.0395	<3.95	68.3	68.3	<25.0	68.3	42.3
TT2 - Comp 4 @ 3'	4/3/2019	3'	Excavated	< 0.0178	< 0.0178	< 0.0178	< 0.0357	< 0.0357	<3.57	153	153	<25.2	153	14.9
TT2 - WW @ 1.5'	4/3/2019	1.5'	Excavated	< 0.0178	< 0.0178	< 0.0178	< 0.0356	< 0.0356	<3.56	38.5	38.5	<25.0	38.5	176
TT2 - NW @ 1.5'	4/3/2019	1.5'	Excavated	< 0.0185	< 0.0185	< 0.0185	< 0.0370	< 0.0370	<3.70	104	104	<25.1	104	128
TT2 - EW @ 1.5'	4/3/2019	1.5'	Excavated	< 0.0193	< 0.0193	< 0.0193	< 0.0386	< 0.0386	<3.86	106	106	<25.1	106	<9.98
WTT - NW - B @ 2'	4/4/2019	2'	Excavated	< 0.0184	< 0.0184	< 0.0184	< 0.0368	< 0.0368	<3.68	86.5	86.5	<25.0	86.5	100
WTT - SW - B @ 2'	4/4/2019	2'	Excavated	< 0.0196	< 0.0196	< 0.0196	< 0.0392	< 0.0392	<3.92	76.3	76.3	<24.9	76.3	159
STT-EW-B @ 6'	4/16/2019	6'	Excavated	<0.0996	3.07	4.56	24.5	32.13	526	5,470	5,996	145	6,141	1,770
STT-NW-B @ 6'	4/16/2019	6'	Excavated	<0.0990	<0.0400	<0.0400	0.364	0.364	126	1,210	1,336	28.9	1.364.9	48.0
STT-SW-B @ 6'	4/16/2019	6'	Excavated	<0.0400	<0.0400	0.0400	0.236	0.304	14.2	57.2	71.4	<25.2	79.58	99.1
STT-WW-B @ 6'	4/16/2019	6'	Excavated	<0.0200	<0.0200	0.698	4.12	4.818	661	6,280	6,941	196	7,137	63.3
511-11 11-12 (0 0	4/10/2019	0	Encavated	-0.0032	-0.0032	0.090	7.12	T.010	001	0,200	0,741	190	7,137	05.5
ETT-Comp 1 @ 6'	4/17/2019	6'	Excavated	< 0.0179	< 0.0179	< 0.0179	< 0.0357	< 0.0357	<3.57	29.3	29.3	<24.8	29.3	615
ETT-Comp 4 @ 5'	4/17/2019	5'	Excavated	< 0.0171	< 0.0171	< 0.0171	< 0.0342	< 0.0342	<3.42	291	291	<25.2	291	724
ETT-NW-C @ 2.5'	4/17/2019	2.5'	Excavated	< 0.0171	< 0.0171	< 0.0171	< 0.0342	< 0.0342	<3.42	359	359	<250	359	197

					Methods: E	PA SW 846-802	1B, 5030				Methods:			Method:
	SAMPLE	SAMPLE	E am a mart			ETHYL-	XYLENES,	TOTAL		I	EPA SW 846-80	15M		E300
SAMPLE LOCATION	DATE	DEPTH	STATUS	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	BENZENE (mg/Kg)	TOTAL (mg/Kg)	BTEX (mg/Kg)	GRO (mg/Kg)	DRO (mg/Kg)	GRO+DRO (mg/Kg)	ORO (mg/Kg)	TOTAL TPH (mg/Kg)	CHLORIDE (mg/Kg)
WTT-NW-C @ 2'	4/17/2019	2'	Excavated	< 0.0189	< 0.0189	< 0.0189	< 0.0378	< 0.0378	<3.78	<24.8	<24.8	<24.8	<24.8	965
TT2 Comp 2 @ 4'	4/17/2019	4'	Excavated	< 0.0170	< 0.0170	< 0.0170	< 0.0340	< 0.0340	<3.40	399	399	<37.2	399	35.1
TT2 - Comp 4 @ 4'	4/17/2019	4'	Excavated	< 0.0185	< 0.0185	< 0.0185	< 0.0370	< 0.0370	<3.70	275	275	<126	275	30.8
TT2-NW-B @ 1.5'	4/17/2019	1.5'	Excavated	< 0.0192	< 0.0192	< 0.0192	< 0.0383	< 0.0383	<3.83	41.3	41	<25.0	41.3	136
ТТ2-ЕW-В @ 1.5'	4/17/2019	1.5'	Excavated	< 0.0172	< 0.0172	< 0.0172	< 0.0343	< 0.0343	<3.43	<25.2	<25.2	<25.2	<25.2	51.4
ETT-NW-D @ 2.5'	8/14/2019	2.5'	Excavated	<0.0178	<0.0178	<0.0178	< 0.0356	< 0.0356	<49.6	100	100	59.6	160	861
WTT-NW-D @ 2'	8/14/2019	2'	Excavated	<0.0197	<0.0197	< 0.0197	< 0.0394	< 0.0394	<49.9	321	321	138	459	130
TT2 Comp 2 @ 5'	8/14/2019	5'	Excavated	< 0.0192	< 0.0192	< 0.0192	< 0.0384	< 0.0384	<50.0	960	960	218	1178	53.3
TT2 - Comp 4 @ 5'	8/14/2019	5'	Excavated	<0.0192	<0.0192	<0.0172	<0.0353	< 0.0353	<50.0	1900	1,900	376	2276	24.5
112 - Comp 4 (@ 5	0/14/2017	5	Excavated	-0.0177	-0.0177	<0.0177	-0.0555	~0.0555	~50.0	1700	1,500	570	2270	24.5
MN-S1C #1	9/24/2019	0 - 5'	In-Situ	< 0.00105	< 0.00105	< 0.00211	< 0.00211	< 0.00211	<26.3	<26.3	<26.3	<26.3	<26.3	29.0
MW-S1C	9/24/2019	0 - 5'	Excavated	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	<25.5	<25.5	<25.5	<25.5	<25.5	695
MW-F1C #1 @ 5'	9/24/2019	5'	In-Situ	< 0.00106	< 0.00106	< 0.00213	< 0.00106	< 0.00106	<26.6	<26.6	<26.6	<26.6	<26.6	59.2
MW-F1C #2 @ 5'	9/24/2019	5'	In-Situ	< 0.00106	< 0.00106	< 0.00213	< 0.00106	< 0.00106	<26.6	<26.6	<26.6	<26.6	<26.6	42.6
MSW-S1C	9/24/2019	0 - 5'	In-Situ	< 0.00133	< 0.00133	< 0.00267	< 0.00133	< 0.00267	<33.3	<33.3	<33.3	<33.3	<33.3	86.7
MSW-F1C @ 5'	9/24/2019	5'	Excavated	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	<25.5	186	186	<25.5	186	42.4
MS-S1C	9/24/2019	0 - 5'	In-Situ	< 0.00103	< 0.00103	< 0.00206	< 0.00103	< 0.00206	<25.8	<25.8	<25.8	<25.8	<25.8	596
MS-F1C @ 5'	9/24/2019	5'	In-Situ	< 0.00109	< 0.00109	< 0.00217	< 0.00109	< 0.00109	<27.2	<27.2	<27.2	<27.2	<27.2	124
ME-S1C	9/24/2019	0 - 4'	Excavted	< 0.00105	< 0.00105	< 0.00211	< 0.00105	< 0.00105	<26.3	46.6	46.6	<26.3	46.6	2100
ME-F1C #1 @ 4'	9/24/2019	4'	Excavated	< 0.00112	< 0.00112	< 0.00225	< 0.00112	< 0.00225	<28.1	<28.1	<28.1	<28.1	<28.1	603
ME-F1C #2 @ 4'	9/24/2019	4'	Excavated	< 0.00108	< 0.00108	< 0.00215	< 0.00108	< 0.00215	<26.9	<26.9	<26.9	<26.9	<26.9	4050
MN-S1C #2	9/24/2019	0 - 4'	In-Situ	< 0.00105	< 0.00105	< 0.00211	< 0.00105	< 0.00211	<26.3	<26.3	<26.3	<26.3	<26.3	197
MNW-S2	9/24/2019	0 - 10'	In-Situ	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	<25.3	87.0	87.0	<25.3	87.0	214
MNW-F2 @ 10'	9/24/2019	10'	In-Situ	< 0.00109	< 0.00109	< 0.00217	< 0.00109	< 0.00217	<27.2	<27.2	<27.2	<27.2	<27.2	9.26
MW-S2	9/24/2019	5' - 10'	In-Situ	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	<25.5	61.1	61.1	<25.5	61.1	109
MW-F2 @ 10'	9/24/2019	10'	In-Situ	< 0.00109	< 0.00109	< 0.00217	< 0.00109	< 0.00217	<27.2	<27.2	<27.2	<27.2	<27.2	33.7
MSW-S2	9/24/2019	5' - 10'	In-Situ	< 0.00104	< 0.00104	< 0.00208	< 0.00104	< 0.00208	<26.0	<26.0	<26.0	<26.0	<26.0	509
MSW-F2 @ 10'	9/24/2019	10'	In-Situ	< 0.00111	< 0.00111	< 0.00222	< 0.00111	< 0.00222	<27.8	<27.8	<27.8	<27.8	<27.8	353
MS-S2	9/24/2019	5' - 10'	In-Situ	< 0.00108	< 0.00108	< 0.00215	< 0.00108	< 0.00215	<26.9	<26.9	<26.9	<26.9	<26.9	348
MS-F2 @ 10'	9/24/2019	10'	Excavated	< 0.00108	< 0.00108	< 0.00215	< 0.00108	< 0.00215	<26.9	620	620	149	769	61.3
ME-S2	9/24/2019	5' - 10'	Excavated	< 0.00122	< 0.00122	< 0.00244	< 0.00122	< 0.00244	<30.5	<30.5	<30.5	<30.5	<30.5	1030
ME-F2 @ 10'	9/24/2019	10'	In-Situ	< 0.00112	< 0.00112	< 0.00225	< 0.00112	< 0.00225	<28.1	<28.1	<28.1	<28.1	<28.1	372
MN-S2	9/24/2019	5' - 10'	Excavated	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	<25.5	<25.5	<25.5	<25.5	<25.5	1080

					Methods: E	PA SW 846-802	1B, 5030				Methods:			Method:
	SAMPLE	SAMPLE				ETHYL-	XYLENES,	TOTAL		I	EPA SW 846-80	15M		E300
SAMPLE LOCATION	DATE	DEPTH	STATUS	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	BENZENE (mg/Kg)	TOTAL (mg/Kg)	BTEX (mg/Kg)	GRO (mg/Kg)	DRO (mg/Kg)	GRO+DRO (mg/Kg)	ORO (mg/Kg)	TOTAL TPH (mg/Kg)	CHLORIDE (mg/Kg)
MN-F2 @ 10'	9/24/2019	10'	In-Situ	< 0.00104	< 0.00104	< 0.00208	< 0.00104	< 0.00208	<26.0	<26.0	<26.0	<26.0	<26.0	138
MS3 #1	9/24/2019	10' - 17'	In-Situ	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	<253	<25.3	<25.3	<25.3	<25.3	48.8
MS3 #2	9/24/2019	10' - 17'	In-Situ	< 0.00106	< 0.00106	< 0.00106	< 0.00213	< 0.00213	<26.6	<26.6	<26.6	<26.6	<26.6	551
MS3 #3	9/24/2019	10' - 17'	Excavated	< 0.00102	< 0.00102	< 0.00102	< 0.00204	< 0.00204	<25.5	<25.5	<25.5	<25.5	<25.5	962
M Ramp ES2	9/24/2019	0 - 10'	In-Situ	< 0.00104	< 0.00104	< 0.00208	< 0.00104	< 0.00208	<26.0	<26.0	<26.0	<26.0	<26.0	31.2
M Ramp E FL @ 10'	9/24/2019	10'	In-Situ	< 0.00106	< 0.00106	< 0.00213	< 0.00106	< 0.00106	<26.6	<26.6	<26.6	<26.6	<26.6	36.3
M Ramp ES3	9/24/2019	0 - 17'	Excavated	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	<25.3	<25.3	<25.3	<25.3	<25.3	741
M Ramp WS3	9/24/2019	0 - 17'	In-Situ	< 0.00101	< 0.00101	< 0.00202	< 0.00101	< 0.00202	<25.3	<25.3	<25.3	<25.3	<25.3	304
M Ramp WS2	9/24/2019	0 - 10'	Excavated	< 0.00106	< 0.00106	< 0.00213	< 0.00106	< 0.00106	<26.6	136	136	<26.6	136	9.69
M Ramp W FL @ 10'	9/24/2019	10'	In-Situ	< 0.00106	< 0.00106	< 0.00213	< 0.00106	< 0.00106	<26.6	<26.6	<26.6	<26.6	<26.6	34.5
M Ramp Floor #1 Comp	9/24/2019	10' - 17'	Excavated	< 0.00111	< 0.00111	< 0.00222	< 0.00111	< 0.00222	<27.8	108	108	<27.8	108	165
M Ramp Floor #2 Comp	9/24/2019	5' - 10'	Excavated	< 0.00105	< 0.00105	< 0.00211	< 0.00105	< 0.00211	<26.3	179	179	<26.3	179	288
M Ramp Floor #3 Comp	9/24/2019	0 - 5'	Excavated	< 0.00102	< 0.00102	< 0.00204	< 0.00102	< 0.00204	<25.5	117	117	<25.5	117	149
Sample #1 @ 17'	9/24/2019	17'	In-Situ	< 0.00111	< 0.00111	< 0.00222	< 0.00111	< 0.00222	<27.8	<27.8	<27.8	<27.8	<27.8	83.5
Sample #2 @ 17'	9/24/2019	17'	In-Situ	< 0.00109	< 0.00109	< 0.00217	< 0.00109	< 0.00217	<27.2	<27.2	<27.2	<27.2	<27.2	46.4
Sample #3 @ 17'	9/24/2019	17'	In-Situ	< 0.00110	< 0.00110	< 0.00220	< 0.00110	< 0.00220	<27.5	<27.5	<27.5	<27.5	<27.5	383
Sample #4 @ 17'	9/24/2019	17'	In-Situ	< 0.00111	< 0.00111	< 0.00222	< 0.00111	< 0.00222	<27.8	<27.8	<27.8	<27.8	<27.8	150
Sample #5 @ 17'	9/24/2019	17'	Excavated	< 0.00109	< 0.00109	< 0.00217	< 0.00109	< 0.00217	<27.2	<27.2	<27.2	<27.2	<27.2	801
TT-2 NS1C	9/27/2019	0 - 5'	In-Situ	< 0.00108	< 0.00108	< 0.00108	< 0.00215	< 0.00215	<26.9	<26.9	<26.9	<26.9	<26.9	158
TT-2 NF1 @ 5'	9/27/2019	5'	In-Situ	< 0.00104	< 0.00104	< 0.00104	< 0.00208	< 0.00208	<26.0	<26.0	<26.0	<26.0	<26.0	47.3
TT-2 WS1C	9/27/2019	0 - 5'	In-Situ	< 0.00103	< 0.00103	< 0.00103	< 0.00206	< 0.00206	<25.8	<25.8	<25.8	<25.8	<25.8	32.0
TT-2 WF1 @ 5'	9/27/2019	5'	In-Situ	< 0.00108	< 0.00108	< 0.00108	< 0.00215	< 0.00215	<26.9	<26.9	<26.9	<26.9	<26.9	20.4
TT-2 SS1-3C	9/27/2019	0 - 15'	In-Situ	< 0.00104	< 0.00104	< 0.00104	< 0.00208	< 0.00208	<26.0	<26.0	<26.0	<26.0	<26.0	79.1
TT-2 NS2	9/27/2019	5' - 10'	In-Situ	< 0.00104	< 0.00104	< 0.00104	< 0.00208	< 0.00208	<26.0	<26.0	<26.0	<26.0	<26.0	175
TT-2 NF2 @ 10'	9/27/2019	10'	In-Situ	< 0.00104	< 0.00104	< 0.00104	< 0.00208	< 0.00208	<26.0	<26.0	<26.0	<26.0	<26.0	31.2
TT-2 WS2	9/27/2019	5' - 10'	In-Situ	< 0.00104	< 0.00104	< 0.00104	< 0.00208	< 0.00208	<26.0	<26.0	<26.0	<26.0	<26.0	87.0
TT-2 WF2@ 10'	9/27/2019	10'	In-Situ	< 0.00111	< 0.00111	< 0.00111	< 0.00222	< 0.00222	<27.8	<27.8	<27.8	<27.8	<27.8	57.5
TT-2 NS3	9/27/2019	10' - 15'	In-Situ	< 0.00105	< 0.00105	< 0.00105	< 0.00211	< 0.00211	<26.3	<26.3	<26.3	<26.3	<26.3	55.6
TT-2 WS3	9/27/2019	10' - 15'	In-Situ	< 0.00106	< 0.00106	< 0.00106	< 0.00213	< 0.00213	<26.6	<26.6	<26.6	<26.6	<26.6	39.8
TT-2 ES1-3C	9/27/2019	0 - 15'	In-Situ	< 0.00103	< 0.00103	< 0.00103	< 0.00206	< 0.00206	<25.8	<25.8	<25.8	<25.8	<25.8	81.1
TT-2 Floor @ 15'	9/27/2019	15'	In-Situ	< 0.00106	< 0.00106	< 0.00106	< 0.00213	< 0.00213	<26.6	<26.6	<26.6	<26.6	<26.6	38.5
TT-2 Ramp WSW	9/27/2019	0 - 15'	In-Situ	< 0.00101	< 0.00101	< 0.00101	< 0.00202	< 0.00202	<25.3	<25.3	<25.3	<25.3	<25.3	42.9
TT-2 Ramp ESW	9/27/2019	0 - 15'	In-Situ	< 0.00102	< 0.00102	< 0.00102	< 0.00204	< 0.00204	<25.5	<25.5	<25.5	<25.5	<25.5	545
TT-2 Ramp Floor Comp	9/27/2019	0 - 15'	In-Situ	< 0.00105	< 0.00105	< 0.00105	< 0.00211	< 0.00211	<26.3	<26.3	<26.3	<26.3	<26.3	69.7
MW-S1C-A	10/17/2019	0 - 5'	In-Situ	-	-	-	-	-	-	-		-	-	114

					Methods: E	PA SW 846-8021	1B, 5030				Methods:			Method:
	SAMPLE	SAMPLE	STATUS			ETHYL- BENZENE (mg/Kg)	XYLENES,	TOTAL BTEX (mg/Kg)	EPA SW 846-8015M					E300
SAMPLE LOCATION	DATE	DEPTH	STATUS	BENZENE (mg/Kg)	TOLUENE (mg/Kg)		TOTAL (mg/Kg)		GRO (mg/Kg)	DRO (mg/Kg)	GRO+DRO (mg/Kg)	ORO (mg/Kg)	TOTAL TPH (mg/Kg)	CHLORIDE (mg/Kg)
MSW-F1C @ 7'	10/17/2019	7'	In-Situ	-	-	-	-	-	-	-		-	83.6	-
MS-F2 @ 13'	10/17/2019	13'	Excavated	-	-	-	-	-	-	-		-	550	-
ME-S1C-A	10/18/2019	0 - 7'	In-Situ	-	-	-	-	-	-	-		-	-	439
ME-F1C #1 @ 7'	10/18/2019	7'	In-Situ	-	-	-	-	-	-	-		-	-	72.2
ME-F1C #2 @ 7'	10/18/2019	7'	In-Situ	-	-	-	-	-	-	-		-	-	158
ME-S2-A	10/18/2019	5' - 10'	In-Situ	-	-	-	-	-	-	-		-	-	285
MN-S2-A	10/21/2019	5' - 10'	In-Situ	-	-	-	-	-	-	-		-	-	78.1
MS3 #3A	10/21/2019	10' - 17'	In-Situ	-	-	-	-	-	-	-		-	-	75.1
Sample #5A @ 17'	10/21/2019	17'	In-Situ	-	-	-	-	-	-	-		-	-	13.9
M Ramp ES3-A	10/22/2019	0 - 17'	In-Situ	-	-	-	-	-	-	-		-	-	21.8
M Ramp WS2-A	10/22/2019	0 - 10'	In-Situ	-	-	-	-	-	-	-		-	<27.8	-
M Ramp Floor #1A Comp	10/22/2019	10' - 17'	In-Situ	-	-	-	-	-	-	-		-	<27.2	-
M Ramp Floor #2A Comp	10/22/2019	5.5' - 10.5'	Excavated	-	-	-	-	-	-	-		-	115	-
M Ramp Floor #3A Comp	10/22/2019	0 - 5'	In-Situ	-	-	-	-	-	-	-		-	<27.5	-
South Stockpile	10/23/2019	-	-	< 0.00106	< 0.00106	< 0.00106	< 0.00213	< 0.00213	<26.6	74.6	74.6	<26.6	74.6	209
North Stockpile	10/23/2019	-	-	< 0.00103	< 0.00103	< 0.00103	< 0.00206	< 0.00206	<25.8	50.9	50.9	<25.8	50.9	164
MS-F2 @ 14'	11/7/2019	14'	In-Situ	-	-	-	-	-	<27.5	38.3	38.3	<27.5	38.3	-
M Ramp Floor #2B Comp	11/7/2019	6' - 11'	In-Situ	-	-	-	-	-	<29.8	<29.8	<29.8	<29.8	<29.8	-
NMOCD	NMOCD Regulatory Guideline			10	-	-	-	50	-	-		-	100	600

Appendix A NMOCD and NMSLO Correspondence

Stanley, Curtis D.

From:	Amber L Groves <algroves@paalp.com></algroves@paalp.com>
Sent:	Friday, January 31, 2020 9:59 AM
То:	Stanley, Curtis D.
Subject:	[EXTERNAL] FW: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation
	Summary and Proposed Remediation Workplan

This is an **EXTERNAL** email. Do not click links or open attachments unless you validate the sender and know the content is safe.

From: Yu, Olivia, EMNRD <Olivia.Yu@state.nm.us>
Sent: Thursday, September 6, 2018 8:54 AM
To: Mann, Ryan <rmann@slo.state.nm.us>; Lowry, Joel <JLowry@trcsolutions.com>; Hernandez, Christina, EMNRD
<Christina.Hernandez@state.nm.us>
Cc: Camille J Bryant <CJBryant@paalp.com>; Amber L Groves <ALGroves@paalp.com>
Subject: RE: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation
Workplan [External]

Good morning Ms. Bryant:

Pardon for the revised decision on proposed remedial activity for 1RP-5024. After a discussion yesterday afternoon with District 2 and using time-series USGS data, the determination is that if the deepest depth of impact from the water table is <= 50 ft., then the impacted soil needs to be removed. In other words, at least 12 ft. of soil will need to be removed from the areas represented by TT-1 and WTT-1. Emplacement of a liner with 4 ft. removal will not be appropriate for this location. Please ensure that there are confirmation chloride data as well.

Thank you for your continued compliance.

Olivia Yu Environmental Specialist NMOCD, District I <u>Olivia.yu@state.nm.us</u> 575-393-6161 x113

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

From: Mann, Ryan <<u>rmann@slo.state.nm.us</u>>

Sent: Wednesday, September 5, 2018 3:54 PM

To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>>; Lowry, Joel <<u>JLowry@trcsolutions.com</u>>; Hernandez, Christina, EMNRD <<u>Christina.Hernandez@state.nm.us</u>>

Cc: Camille J Bryant <<u>CJBryant@paalp.com</u>>; Amber L Groves <<u>ALGroves@paalp.com</u>>

Subject: RE: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation Workplan

NMSLO approves the additional delineation and the remediation plan.

Ryan Mann Remediation Specialist Field Operation Division (575) 392-3697 (505) 699-1989 New Mexico State Land Office 2827 N. Dal Paso Suite 117 Hobbs, NM 88240

From: Yu, Olivia, EMNRD [mailto:Olivia.Yu@state.nm.us]
Sent: Tuesday, September 4, 2018 12:14 PM
To: Lowry, Joel <<u>JLowry@trcsolutions.com</u>>; Hernandez, Christina, EMNRD <<u>Christina.Hernandez@state.nm.us</u>>; Mann,
Ryan <<u>rmann@slo.state.nm.us</u>>
Cc: Camille J Bryant <<u>CJBryant@paalp.com</u>>; Amber L Groves <<u>ALGroves@paalp.com</u>>
Subject: RE: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation
Workplan

Mr. Lowry et al.:

As per our meeting this morning, NMOCD agrees with the proposed additional delineation and remediation plan for 1RP-5024. Please remember to submit field and laboratory chloride data for the location, in conjunction with photo documentation of the remediated area. Please inform if clarification or further information is required.

Like approval from NMSLO required. NMSLO may have additional concerns or stipulations.

Thanks, Olivia

From: Yu, Olivia, EMNRD Sent: Monday, August 27, 2018 8:04 AM To: 'Lowry, Joel' <<u>Lowry@trcsolutions.com</u>>; Hernandez, Christina, EMNRD <<u>Christina.Hernandez@state.nm.us</u>>; Mann, Ryan <<u>rmann@slo.state.nm.us</u>> Cc: Camille J Bryant <<u>CJBryant@paalp.com</u>>; Amber L Groves <<u>ALGroves@paalp.com</u>> Subject: RE: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation Workplan

Good morning Mr. Lowry:

Yes. Confirmed for 8 am MST, September 4, 2018.

Please note that the new C-141 form is online: http://www.emnrd.state.nm.us/OCD/forms.html

Thanks, Olivia From: Lowry, Joel <<u>JLowry@trcsolutions.com</u>>
Sent: Monday, August 27, 2018 7:58 AM
To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>>; Hernandez, Christina, EMNRD <<u>Christina.Hernandez@state.nm.us</u>>;
Mann, Ryan <<u>rmann@slo.state.nm.us</u>>
Cc: Camille J Bryant <<u>CJBryant@paalp.com</u>>; Amber L Groves <<u>ALGroves@paalp.com</u>>
Subject: RE: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation
Workplan

Ms. Yu,

Might you be able to squeeze us in on the 4th. Possibly around 8:00 AM? Thanks.

Respectfully,

Joel Lowry

From: Yu, Olivia, EMNRD [mailto:Olivia.Yu@state.nm.us]
Sent: Friday, August 24, 2018 9:30 AM
To: Lowry, Joel <<u>JLowry@trcsolutions.com</u>>; Hernandez, Christina, EMNRD <<u>Christina.Hernandez@state.nm.us</u>>; Mann, Ryan <<u>rmann@slo.state.nm.us</u>>
Cc: Camille J Bryant <<u>CJBryant@paalp.com</u>>; Amber L Groves <<u>ALGroves@paalp.com</u>>
Subject: RE: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation Workplan

Good morning Joel:

I just spoke with Amber. Pardon for missing the meeting request. Currently, the meeting availability dates are August 28 and September 4-5. Preference for morning meeting, if possible.

Thanks, Olivia

From: Lowry, Joel <<u>ILowry@trcsolutions.com</u>>
Sent: Monday, August 20, 2018 2:52 PM
To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>>; Hernandez, Christina, EMNRD <<u>Christina.Hernandez@state.nm.us</u>>;
Mann, Ryan <<u>rmann@slo.state.nm.us</u>>
Cc: Camille J Bryant <<u>CJBryant@paalp.com</u>>; Amber L Groves <<u>ALGroves@paalp.com</u>>
Subject: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation Workplan

Please find attached the *Initial Investigation Summary and Proposed Remediation Workplan* that has been prepared for Plains' Moore Sweet Historical environmental remediation Site. The Site is located in Unit Letters "A&H", Section 13, Township 11 South, Range 32 East in Lea County, New Mexico on land administered by the New Mexico State Land Office. The Initial C-141 indicated that historical soil impacts were discovered during the reclamation of a facility.

We are hoping that we might be able to schedule a meeting one afternoon this week or sometime early next week to discuss this project in person. Might you take a look at your schedule and check your availability? If you have any questions or need any additional information, please feel free to contact Camille Bryant or myself by phone or email.

Respectfully,

Joel Lowry Senior Project Manager

2771 Highway 214, Denver City, TX 79323 C: 432-466-4450 LinkedIn | Twitter | Blog | www.trcsolutions.com

Attention:

The information contained in this message and/or attachments is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. If you received this in error, please contact the Plains Service Desk at 713-646-4444 and delete the material from any system and destroy any copies.

This footnote also confirms that this email message has been scanned for Viruses and Content and cleared.

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit <u>http://www.symanteccloud.com</u>

Attention:

The information contained in this message and/or attachments is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. If you received this in error, please contact the Plains Service Desk at 713-646-4444 and delete the material from any system and destroy any copies.

This footnote also confirms that this email message has been scanned for Viruses and Content and cleared.

Stanley, Curtis D.

From:	Amber L Groves <algroves@paalp.com></algroves@paalp.com>
Sent:	Tuesday, August 27, 2019 8:51 AM
To:	Stanley, Curtis D.
Subject:	FW: 1RP-5024 - Plains Moore Sweet Historical - Alternative Sampling Plan
Attachments:	ApprovedSamplingPlan1RP-5024.pdf

Here is the approval of the alternative sampling plan

From: Hernandez, Christina, EMNRD <Christina.Hernandez@state.nm.us>
Sent: Friday, November 2, 2018 5:22 PM
To: Conder, Zachary <ZConder@trcsolutions.com>
Cc: Camille J Bryant <CJBryant@paalp.com>; Amber L Groves <ALGroves@paalp.com>; rmann@slo.state.nm.us
Subject: RE: 1RP-5024 - Plains Moore Sweet Historical - Alternative Sampling Plan [External]

1

Dear Mr. Conder:

Please clarify if any field data is available for chlorides as previously discussed (meeting OCD Hobbs, Plains, and TRC on September 4, 2018 at the OCD Hobbs office).

NMOCD approves the alternative remediation sampling plan submitted for 1RP-5024 with the following requirement:

 For the < 8 feet BGS excavation area, if discolored areas are encountered please collect a discrete soil samples for those discolored areas specifically.

Thanks, Christina Hernandez EMNRD-OCD Environmental Specialist 1625 N. French Drive Hobbs, NM 88240 575-393-6161 x111 Christina.Hernandez@state.nm.us

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

From: Conder, Zachary <<u>ZConder@trcsolutions.com</u>>

Sent: Tuesday, October 23, 2018 1:38 PM

To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>>; Hernandez, Christina, EMNRD <<u>Christina.Hernandez@state.nm.us</u>> Cc: <u>cibryant@paalp.com</u>; Amber L Groves (<u>ALGroves@paalp.com</u>) <<u>ALGroves@paalp.com</u>>; <u>rmann@slo.state.nm.us</u> Subject: [EXT] 1RP-5024 - Plains Moore Sweet Historical - Alternative Sampling Plan Ms. Yu and Ms. Hernandez,

On behalf of Plains Marketing, LP, TRC proposes the following alternative sampling plan for the Moore Sweet Historical Release Site. TRC proposes the collection of discrete soil samples utilizing mechanical equipment from the sidewalls of the excavated area in each cardinal direction and base of the excavated areas for depths greater than 8 feet below ground surface (BGS). In areas where the excavated areas representative of every 600 square feet and composite method soil samples from the base of the excavated areas representative of every 600 square feet and composite method sidewall soil samples in each cardinal direction. The collected soil samples will be submitted to the laboratory for analysis of TPH and Chloride concentrations. Please find attached the soil chemistry table and site sample location map for your convenience.

Respectfully,

Zachary Conder Field Operations Manager

2771 State Highway 214, Denver City, TX 79323 | C: 432 234 5084 LinkedIn | Twitter | Blog | www.trcsolutions.com

From: Lowry, Joel Sent: Tuesday, October 23, 2018 2:25 PM To: Conder, Zachary <<u>ZConder@trcsolutions.com</u>> Subject: FW: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation Workplan

From: Yu, Olivia, EMNRD [mailto:Olivia.Yu@state.nm.us]
Sent: Tuesday, September 4, 2018 1:14 PM
To: Lowry, Joel <<u>JLowry@trcsolutions.com</u>>; Hernandez, Christina, EMNRD <<u>Christina.Hernandez@state.nm.us</u>>; Mann, Ryan <<u>rmann@slo.state.nm.us</u>>
Cc: Camille J Bryant <<u>CJBryant@paalp.com</u>>; Amber L Groves <<u>ALGroves@paalp.com</u>>
Subject: RE: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation Workplan

Mr. Lowry et al.:

As per our meeting this morning, NMOCD agrees with the proposed additional delineation and remediation plan for 1RP-5024. Please remember to submit field and laboratory chloride data for the location, in conjunction with photo documentation of the remediated area. Please inform if clarification or further information is required.

Like approval from NMSLO required. NMSLO may have additional concerns or stipulations.

Thanks, Olivia From: Yu, Olivia, EMNRD
Sent: Monday, August 27, 2018 8:04 AM
To: 'Lowry, Joel' <<u>JLowry@trcsolutions.com</u>>; Hernandez, Christina, EMNRD <<u>Christina.Hernandez@state.nm.us</u>>; Mann,
Ryan <<u>rmann@slo.state.nm.us</u>>
Cc: Camille J Bryant <<u>CJBryant@paalp.com</u>>; Amber L Groves <<u>ALGroves@paalp.com</u>>

Subject: RE: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation Workplan

Good morning Mr. Lowry:

Yes. Confirmed for 8 am MST, September 4, 2018.

Please note that the new C-141 form is online: http://www.emnrd.state.nm.us/OCD/forms.html

Thanks, Olivia

From: Lowry, Joel <<u>ILowry@trcsolutions.com</u>> Sent: Monday, August 27, 2018 7:58 AM To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>>; Hernandez, Christina, EMNRD <<u>Christina.Hernandez@state.nm.us</u>>; Mann, Ryan <<u>rmann@slo.state.nm.us</u>> Cc: Camille J Bryant <<u>CJBryant@paalp.com</u>>; Amber L Groves <<u>ALGroves@paalp.com</u>> Subject: RE: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation Workplan

Ms. Yu,

Might you be able to squeeze us in on the 4th. Possibly around 8:00 AM? Thanks.

Respectfully,

Joel Lowry

From: Yu, Olivia, EMNRD [mailto:Olivia.Yu@state.nm.us]
Sent: Friday, August 24, 2018 9:30 AM
To: Lowry, Joel <<u>lLowry@trcsolutions.com</u>>; Hernandez, Christina, EMNRD <<u>Christina.Hernandez@state.nm.us</u>>; Mann, Ryan <<u>rmann@slo.state.nm.us</u>>
Cc: Camille J Bryant <<u>CJBryant@paalp.com</u>>; Amber L Groves <<u>ALGroves@paalp.com</u>>
Subject: RE: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation Workplan

Good morning Joel:

I just spoke with Amber. Pardon for missing the meeting request. Currently, the meeting availability dates are August 28 and September 4-5. Preference for morning meeting, if possible.

Thanks, Olivia

From: Lowry, Joel <<u>JLowry@trcsolutions.com</u>> Sent: Monday, August 20, 2018 2:52 PM To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>>; Hernandez, Christina, EMNRD <<u>Christina.Hernandez@state.nm.us</u>>; Mann, Ryan <<u>rmann@slo.state.nm.us</u>>

Cc: Camille J Bryant <<u>CJBryant@paalp.com</u>>; Amber L Groves <<u>ALGroves@paalp.com</u>> Subject: 1RP-5024 - Plains Moore Sweet Historical - Initial Investigation Summary and Proposed Remediation Workplan

Please find attached the *Initial Investigation Summary and Proposed Remediation Workplan* that has been prepared for Plains' Moore Sweet Historical environmental remediation Site. The Site is located in Unit Letters "A&H", Section 13, Township 11 South, Range 32 East in Lea County, New Mexico on land administered by the New Mexico State Land Office. The Initial C-141 indicated that historical soil impacts were discovered during the reclamation of a facility.

We are hoping that we might be able to schedule a meeting one afternoon this week or sometime early next week to discuss this project in person. Might you take a look at your schedule and check your availability? If you have any questions or need any additional information, please feel free to contact Camille Bryant or myself by phone or email.

Respectfully,

Joel Lowry Senior Project Manager

2771 Highway 214, Denver City, TX 79323 C: 432-466-4450 LinkedIn | Twitter | Blog | www.trcsolutions.com

Attention:

The information contained in this message and/or attachments is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. If you received this in error, please contact the Plains Service Desk at 713-646-4444 and delete the material from any system and destroy any copies.

This footnote also confirms that this email message has been scanned for Viruses and Content and cleared.

Attention:

The information contained in this message and/or attachments is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. If you received this in error, please contact the Plains Service Desk at 713-646-4444 and delete the material from any system and destroy any copies.

This footnote also confirms that this email message has been scanned for Viruses and Content and cleared.

Stanley, Curtis D.

From:	Amber L Groves <algroves@paalp.com></algroves@paalp.com>
Sent:	Monday, January 20, 2020 9:52 AM
То:	Stanley, Curtis D.
Subject:	[EXTERNAL] FW: [EXT] FW: Urgent!! 1RP-5024 Plains Marketing Moore Sweet Variance
	Request

This is an **EXTERNAL** email. Do not click links or open attachments unless you validate the sender and know the content is safe.

From: Mann, Ryan <rmann@slo.state.nm.us>
Sent: Thursday, November 14, 2019 4:02 PM
To: 'Billings, Bradford, EMNRD' <Bradford.Billings@state.nm.us>; Amber L Groves <ALGroves@paalp.com>
Subject: RE: [EXT] FW: Urgent!! 1RP-5024 Plains Marketing Moore Sweet Variance Request [External]

Ms. Groves,

NMSLO agrees with NMOCD regarding the variance. Please inform if this plan changes.

Ryan Mann

Remediation Specialist Surface Resources Office: (575)392-3697 Cell: (505)699-1989 New Mexico State Land Office 914 N. Linam Street Hobbs, NM 88240 rmann@slo.state.nm.us nmstatelands.org

••••••••••••••••••••••••••••••••••••••

CONFIDENTIALITY NOTICE - This e-mail transmission, including all documents, files, or previous e-mail messages attached hereto, may contain confidential and/or legally privileged information. If you are not the intended recipient, or a person responsible for delivering it to the intended recipient, you are hereby notified that you must not read this transmission and that any disclosure, copying, printing, distribution, or use of any of the information contained in and/or attached to this transmission is STRICTLY PROHIBITED. If you have received this transmission in error, please immediately notify the sender and delete the original transmission and its attachments without reading or saving in any manner. Thank you.

From: Billings, Bradford, EMNRD [mailto:Bradford.Billings@state.nm.us]
Sent: Friday, September 20, 2019 9:45 AM
To: Amber L Groves <<u>ALGroves@paalp.com</u>>; Mann, Ryan <<u>rmann@slo.state.nm.us</u>>
Subject: RE: [EXT] FW: Urgent!! 1RP-5024 Plains Marketing Moore Sweet Variance Request

9/20/2019

Amber Groves – PAALP

Re: 1RP-5024

As per your request for Variance on liner usage for placement in excavation, the following:

As outlined in your request and with additional clarification as relayed to OCD, including the possibility of additional horizontal definition and soil removal for/in excavation is hereby approved. Please indicate in Closure report and additional work and data. All other aspects of Rule 29 apply.

Please be mindful of any additional needs the State Land Office may have for this location and your efforts.

Thank you for your time and patience.

Yours

Bradford Billings EMNRD/OCD Santa Fe

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

From: Amber L Groves
Sent: Friday, September 20, 2019 8:34 AM
To: Billings, Bradford, EMNRD ; 'Mann, Ryan'
Subject: [EXT] FW: Urgent!! 1RP-5024 Plains Marketing Moore Sweet Variance Request

Bradford,

Here is the text that I sent this morning and I will forward the e-mail that I was attempting to attach with the alternative sampling plan next.

Thank you,

Amber

From: Amber L Groves
Sent: Friday, September 20, 2019 9:15 AM
To: 'Billings, Bradford, EMNRD' <<u>Bradford.Billings@state.nm.us</u>>; 'Mann, Ryan' <<u>rmann@slo.state.nm.us</u>>
Subject: FW: Urgent!! 1RP-5024 Plains Marketing Moore Sweet Variance Request [External]

Good Morning, Bradford,

Per our conversation yesterday, Plains will ensure that the Moore Sweet location under 1RP-5024 is horizontally sampled utilizing the attached approved alternative sampling plan. The proposed 20 mil polyurethane liner, will encompass the entire area as characterized by TT-1 until horizontal samples indicate that TPH, BTEX and Chloride levels are below current NMOCD standards. Please feel free to give me a call should you have any questions.

Thank you,

Amber L. Groves Remediation Coordinator Plains All American 3112 W. US Hwy 82 Lovington, NM 88260 575-200-5517

From: Billings, Bradford, EMNRD <<u>Bradford.Billings@state.nm.us</u>
 Sent: Wednesday, September 18, 2019 5:34 PM
 To: Amber L Groves <<u>ALGroves@paalp.com</u>
 Subject: RE: 1RP-5024 Plains Marketing Moore Sweet Variance Request [External]

Hi Amber,

I know there are others for Plains, yet to be resolved, but I will talk with you tomorrow about this one. Likely okay, but a few questions. Hope you are doing well!

Bradford

From: Amber L Groves <<u>ALGroves@paalp.com</u>> Sent: Wednesday, September 18, 2019 9:12 AM To: EMNRD-OCD-District1spills <<u>EMNRD-OCD-District1spills@state.nm.us</u>> Cc: Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>> Subject: [EXT] 1RP-5024 Plains Marketing Moore Sweet Variance Request

Good Morning,

Please find attached a variance request for 1RP-5024 Plains Marketing Moore Sweet Site. Please feel free to give me a call at (575)200-5517 should you have any questions.

Thank you,

Amber L. Groves Remediation Coordinator Plains All American 3112 W. US Hwy 82 Lovington, NM 88260 575-200-5517

Attention:

The information contained in this message and/or attachments is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. If you received this in error, please contact the Plains Service Desk at 713-646-4444 and delete the material from any system and destroy any copies.

This footnote also confirms that this email message has been scanned for Viruses and Content and cleared.

Attention:

The information contained in this message and/or attachments is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. If you received this in error, please contact the Plains Service Desk at 713-646-4444 and delete the material from any system and destroy any copies.

This footnote also confirms that this email message has been scanned for Viruses and Content and cleared.

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit <u>http://www.symanteccloud.com</u>

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit <u>http://www.symanteccloud.com</u>

Attention:

The information contained in this message and/or attachments is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. If you received this in error, please contact the Plains Service Desk at 713-646-4444 and delete the material from any system and destroy any copies. This footnote also confirms that this email message has been scanned for Viruses and Content and cleared.

n () N

5

Appendix B Photo Documentation

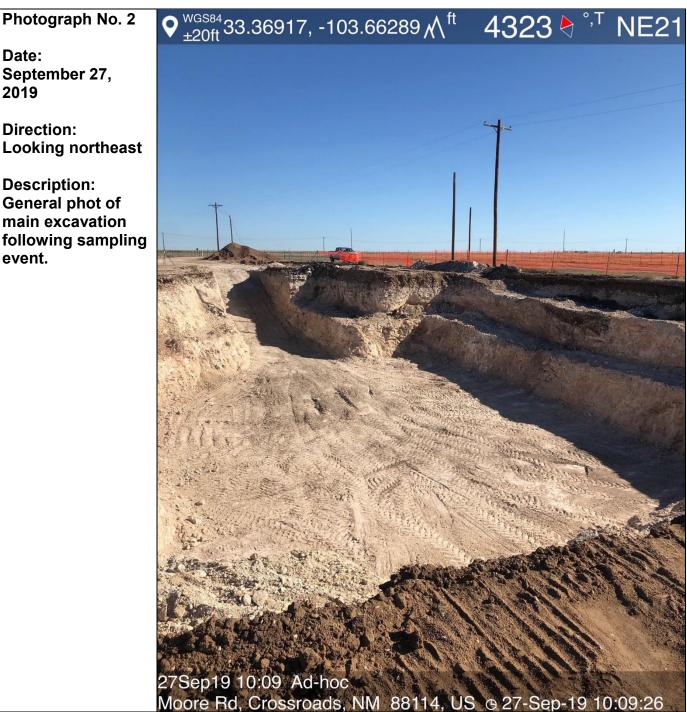
Client: Plains Marketing, L.P. Project Name: Moore Sweet Historical

Photograph No. 1

Date: October 17, 2018

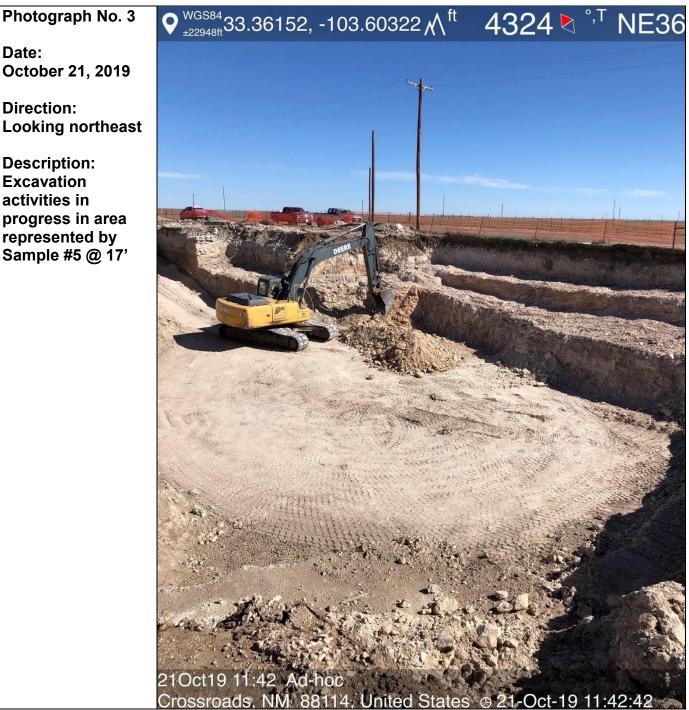
Direction: Looking east

Description: Initial excavation activities at south end of impacted area. Prepared by: TRC Environmental Corporation Location: Lea County, New Mexico


Date:

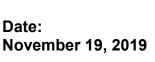
2019

event.


Photographic Documentation

Client: Plains Marketing, L.P. Project Name: Moore Sweet Historical Prepared by: TRC Environmental Corporation Location: Lea County, New Mexico

Client: Plains Marketing, L.P. Project Name: Moore Sweet Historical Prepared by: TRC Environmental Corporation Location: Lea County, New Mexico


Date: October 21, 2019

Direction: Looking northeast

Description: Excavation activities in progress in area represented by Sample #5 @ 17'

Client: Plains Marketing, L.P. Project Name: Moore Sweet Historical Prepared by: TRC Environmental Corporation Location: Lea County, New Mexico

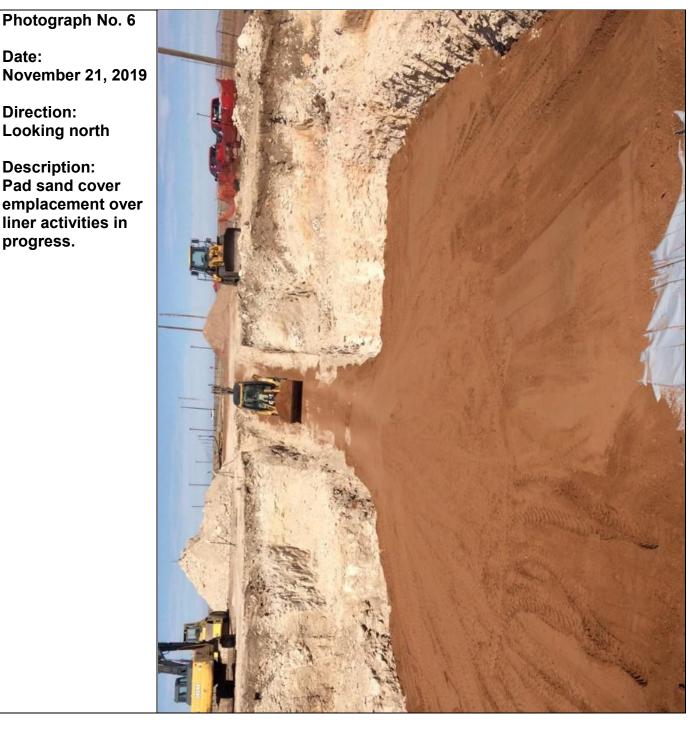
Photograph No. 4

Direction: Looking southwest

Description: Pad sand emplaced on floor of excavation prior to liner installation.

Client: Plains Marketing, L.P. Project Name: Moore Sweet Historical Prepared by: TRC Environmental Corporation Location: Lea County, New Mexico

November 19, 2019 **Direction:** Looking southwest **Description:** 20 mil polyliner installed at approximately fifteen (15) feet


below ground

surface.

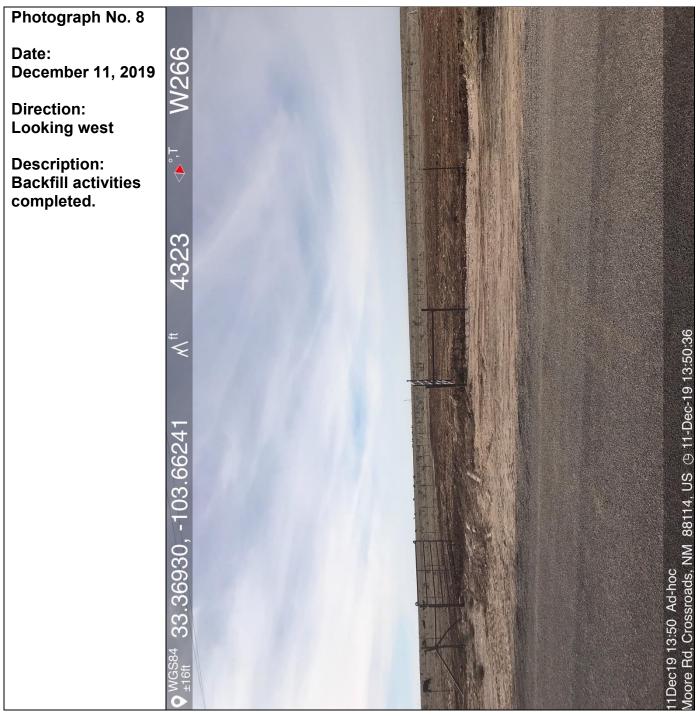
Date:

Client: Plains Marketing, L.P. Project Name: Moore Sweet Historical Prepared by: TRC Environmental Corporation Location: Lea County, New Mexico

Client: Plains Marketing, L.P. Project Name: Moore Sweet Historical Prepared by: TRC Environmental Corporation Location: Lea County, New Mexico

Date: November 21, 2019

Photograph No. 7


Direction: Looking north

Description: Backfill activities in progress.

Client: Plains Marketing, L.P. Project Name: Moore Sweet Historical Prepared by: TRC Environmental Corporation Location: Lea County, New Mexico

Appendix C Depth to Groundwater Information

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW###### in the POD suffix indicates the POD has been replaced & no longer serves a w

(R=POD has been replaced, O=orphaned,

When the second	O=orpha C=the fil closed)				-			V 2=NE est to lar	3=SW 4=S rgest) (N	E) IAD83 UTM in n	neters)	(In t	feet)	
		POD Sub-		0	Q (XV.	
POD Number	Code	basin	County		16	4 Sec		-	X	Y	DistanceDep	-	thWater Col	
<u>L 06273</u>		L	LE		2 2	2 13	11S	32E	624230	3693254* 🌍	256	150	60	90
<u>L_01640 POD1</u>		L	LE			13	11S	32E	623643	3692636* 🌍	873	120		
<u>L 05741</u>		L	LE		4	4 12	11S	32E	624024	3693853* 🌍	874	152		
L 12006 POD2		L	LE	4	1	1 18	11S	33E	625386	3692537 🌍	1115	155	60	95
<u>L 03762</u>	R	L	LE	3	3	3 18	11S	33E	624546	3691950* 🌍	1124	120	58	62
<u>L 03762 POD2</u>		L	LE	3	3	3 18	11S	33E	624546	3691950* 🌍	1124	122	58	64
<u>L 03765 S</u>		L	LE	3	1 4	4 18	11S	33E	625334	3692360* 🌍	1167	120	51	69
<u>L 10817</u>		L	LE		3 4	4 07	11S	33E	625418	3693669* 🌍	1180	125	60	65
<u>L 09506</u>		L	LE		1 4	4 18	11 S	33E	625435	3692461* 🌍	1195	120	50	70
<u>L 10794</u>		L	LE	3	3 2	2 12	11S	32E	623711	3694356* 🌍	1464	60	50	10
<u>L 06588</u>		L	LE	1	1	1 13	11 S	32E	622924	3693339* 🌍	1504	120	65	55
<u>L 03765</u>		L	LE	3	2 4	4 18	11S	33E	625737	3692363 🌍	1507	120	50	70
<u>L 03765</u>	R	L	LE	3	2 4	4 18	11S	33E	625737	3692363 🌍	1507	120	50	70
L 03765 POD3		L	LE	3	2 4	4 18	11S	33E	625737	3692363 🌍	1507	160	83	77
L 01642 POD1		L	LE	3	3	3 12	11S	32E	622918	3693541* 🌍	1559	132		
<u>L 02043</u>		L	LE	1	1 2	2 19	11S	33E	625346	3691755* 🌍	1614	140	60	80
<u>L 02174</u>		L	LE		3	3 13	11S	32E	623040	3692033* 🌍	1710	102	92	10
<u>L 09615</u>		L	LE		2	1 24	11S	32E	623447	3691635* 🌍	1721	125	70	55
<u>L 06362</u>		L	LE		3	l 17	11S	33E	626234	3692870* 🌍	1840	95	60	35
<u>L 03990</u>		L	LE	1	2 2	2 19	11S	33E	625748	3691758* 🌍	1875	136	56	80
<u>L 08642</u>		L	LE	4	1	1 24	11S	32E	623144	3691529* 🌍	1986	110	64	46
<u>L 01934</u>		L	LE	3	3 2	2 24	11S	32E	623753	3691136* 🌍	2036	115	65	50
<u>L 09615 S</u>		L	LE		4	1 24	11S	32E	623452	3691232* 🌍	2065	124	68	56
<u>L 09615 S2</u>		L	LE	2	1 4	4 24	11S	32E	623958	3690933* 🌍	2178	141	65	76
<u>L 00659</u>		L	LE			19	11S	33E	625271	3691044* 🌍	2199	133	61	72
<u>L 09615 S3</u>		L	LE	1	1 4	4 24	11S	32E	623758	3690933* 🦲	2228	150	70	80
L 00215 POD6		L	LE	4	1 4	4 24	11S	32E	623958	3690733* 🦲	2374	128	115	13
<u>L 03989</u>		L	LE	2	1 4	4 19	11S	33E	625558	3690950* 🦲	2410	124	65	59
<u>L 06249</u>		L	LE		2	3 08	11S	33E	626618	3694083* 🦲	2436	105	48	57
L 00215 POD4		L	LE		4	4 24	11S	32E	624065	3690633* 🦲	2456	153	70	83
L 09754		L	LE		4	4 24		32E	624065	3690633* 🦲	2456	122		
<u>L 10790</u>		L	LE		2	2 23	11S		622447	3691419* 🦲	2557	113	52	61
L 10567		L	LE	1			11S		626919	3694188* 🥘	2754	130	58	72

http://nmwrrs.ose.state.nm.us/nmwrrs/ReportProxy?queryData=%7B%22report%22%3A... 4/20/2018

<u>L 04220</u>	L	LE	3	4 19	11S	33E	625465	369044	9* 🌍	2823	100		54	46
<u>L 09080</u>	L	LE	33	4 19	11S	33E	625364	369034	8* 🌍	2882	119		69	50
<u>L 00278</u>	L	LE	2 1 2	2 25	11S	32E	623968	369012	9* 🌍	2968	135			
									Avera	ge Depth to Wate	r:		63 feet	
										Minimum Dept	h:		48 feet	
										Maximum Dept	h:	1	115 feet	
Record Count: 36														
UTMNAD83 Radius Search (in meters):														
Easting (X):	624403.72	Northi	ng (Y):	3693	8065.61			Radius:	3000					

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/20/18 8:19 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER ROSWELL

Tom Blaine, P.E. State Engineer

DISTRICT II 1900 West Second St. Roswell, New Mexico 88201 Phone: (575) 622-6521 Fax: (575) 623-8559

November 29, 2017

Plains Marketing c/o Lee Peterson P.O. Box 30699 Amarllio, Texas 79120

RE: Well Plugging Plan of Operations for L-6588 E, Plains Marketing, Lea County, New Mexico

Greetings:

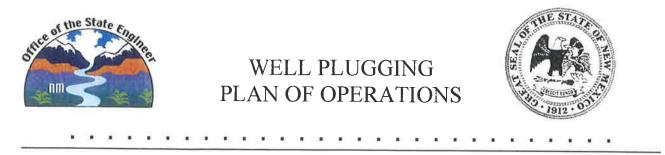
Enclosed is your copy of the Well Plugging Plan of Operations for the above described project.

The proposed method of operations for the subject well has been modified according to our phone conversation on November 29 as described below and is found to be acceptable and in accordance with the Rules and Regulations Governing Well Driller Licensing; Construction, Repair and Plugging of Wells 19.27.4 NMAC adopted August 31, 2005 by the State Engineer subject to the following:

Plugging operations shall also be conducted in accordance with NMED, NMOCD, or other State or Federal agencies having oversight for the above described project.

Clean gravel may be applied from 120 feet to 40 feet below ground surface (bgs). Bentonite pellets may then be applied from 40 feet to 23 feet bgs, followed by a Portland grout seal from 23 feet to ground surface.

Should a surface pad not remain in place and an annular seal is present, a shallow excavation which extends approximately 1 feet beyond the outer diameter (OD) of the casing and approximately 1 foot deep shall be dug. Apply the grout seal from 23 feet to 1 feet bgs, allowing the grout to overflow the casing to create a cap that extends approximately 2 feet beyond the OD of the casing to mitigate potential vertical migration of fluids at well head.


If no subsurface annular seal is noted around the OD of the casing, excavate approximately 3 deep around the casing and cut the casing at that depth. Apply the grout seal from 23 feet to 3 feet bgs, allowing the grout to overflow the casing to create a cap that extends approximately 2 feet beyond the OD of the casing.

The grout water ratio should not exceed 6 gallons of water per 94 lb sack of Portland cement.

Sincerely,

Catherine Goetz, P.G., C.P.G.

Catherine/Goetz, P/G., C.P.G. Engineer Specialist Supervisor District II Office of the State Engineer cc Santa Fe

NOTE: A Well Plugging Plan of Operations shall be filed with and accepted by the Office of the State Engineer prior to plugging.

I. FILING FEE: There is no filing fee for this form.

II. GENERAL / WELL OWNERSHIP:

Existing Office of the	State Engineer POD Number	(Well N	umber) f	or well to be plugged:	L-6588 (E)	
Name of well owner:	Plains Marketing					
Mailing address: 414	ARco Road					
City: Hobbs		State:		New Mexico	Zip code:	88240-879
Phone number: 575-39	93-5611		E-mail:	plainsallamerica.com	1	

III. WELL DRILLER INFORMATION:

Well D	riller contracted to provide	plugging services:	Peterson Dril	ling & Testir	ng, Inc. %Lee Pete	rson	14	1
New M	exico Well Driller License	No.: WD-1222			Expiration Date:	2-28-2018	8	3 - 2
								192
								- <u>5</u> 11
<u>IV. W</u>	ELL INFORMATION:							1.00
Note: A	A copy of the existing Well	l Record for the we	ll to be plugge	d should be	attached to this pla	ın.		
							1	
1)	GPS Well Location:	Latitude:	33deg,	22		sec	a) -	12
		Longitude:	103 deg,	39		sec, NAD 83	× =	

2) Reason(s) for plugging well:

Not in use any longer - property owner wants it removed

3) Was well used for any type of monitoring program? <u>No</u> If yes, please use section VII of this form to detail what hydrogeologic parameters were monitored. If the well was used to monitor contaminated or poor quality water, authorization from the New Mexico Environment Department may be required prior to plugging.

4) Does the well tap brackish, saline, or otherwise poor quality water? <u>No</u> If yes, provide additional detail, including analytical results and/or laboratory report(s):

5) Static water level: _______feet below land surface / feet above land surface (circle one)

6) Depth of the well: <u>120</u> feet

7)	Inside diameter of innermost casing:	7 inches.
----	--------------------------------------	-----------

8) Casing material: Steel

9) The well was constructed with:

an open-hole production interval, state the open interval;

a well screen or perforated pipe, state the screened interval(s): 65' to 120'

10) What annular interval surrounding the artesian casing of this well is cement-grouted? N/A

- 11) Was the well built with surface casing? <u>No</u> If yes, is the annulus surrounding the surface casing grouted or <u>otherwise sealed?</u> If yes, please describe:
- 12) Has all pumping equipment and associated piping been removed from the well? Yes If not, describe remaining equipment and intentions to remove prior to plugging in Section VII of this form.

V. DESCRIPTION OF PLANNED WELL PLUGGING:

Note: If this plan proposes to plug an artesian well in a way other than with cement grout, placed bottom to top with a tremie pipe, a detailed diagram of the well showing proposed final plugged configuration shall be attached, as well as any additional technical information, such as geophysical logs, that are necessary to adequately describe the proposal.

1) Describe the method by which cement grout shall be placed in the well, or describe requested plugging methodology proposed for the well:

2) Will well head be cut-off below land surface after plugging? Yes

VI. PLUGGING AND SEALING MATERIALS:

Note: The plugging of a well that taps poor quality water may require the use of a specialty cement or specialty sealant

1) For plugging intervals that employ cement grout, complete and attach Table A.

2) For plugging intervals that will employ approved non-cement based sealant(s), complete and attach Table B!...

3) Theoretical volume of grout required to plug the well to land surface:

- 4) Type of Cement proposed: _____
- 5) Proposed cement grout mix: ______ gallons of water per 94 pound sack of Portland cement.
- 6) Will the grout be: _____batch-mixed and delivered to the site

mixed on site

7) Grout additives requested, and percent by dry weight relative to cement;

8)

Additional notes and calculations:

VII. ADDITIONAL INFORMATION: List additional information below, or on separate sheet(s):

VIII. SIGNATURE:

Lee Peterson , say that I have carefully read the foregoing Well Plugging Plan of Operations and any attachments, which are a part hereof; that I am familiar with the rules and regulations of the State Engineer pertaining to the plugging of wells and will comply with them, and that each and all of the statements in the Well Plugging Plan of Operations and attachments are true to he best of my knowledge and belief.

Signature of Applicant

11/0/ Date

IX. ACTION OF THE STATE ENGINEER:

This Well Plugging Plan of Operations is:

-----Approved subject to the attached conditions. Not approved to the reasons provided on the attached letter. day of November. Witne 201 this Tom Blaine P.E., New Mexico State Engineer For Andy Mortey District It Manager A C. Guitz

Well Plugging Plan Version: August 11, 2015 Page 3 of 5

TABLE A - For plugging intervals that employ cement grout. Start with deepest interval.

	Interval 1 – deepest	Interval 2	Interval 3 – most shallow
			Note: if the well is non-artesian and breaches only one aquifer, use only this column.
Top of proposed interval of grout placement (ft bgl)			
Bottom of proposed interval of grout placement (ft bgl)			
Theoretical volume of grout required per interval (gallons)			
Proposed cement grout mix gallons of water per 94-lb. sack of Portland cement			
Mixed on-site or batch- mixed and delivered?			
Grout additive 1 requested			
Additive 1 percent by dry weight relative to cement			
Grout additive 2 requested			
Additive 2 percent by dry weight relative to cement			

Well Plugging Plan Version: August 11, 2015 Page 4 of 5

TABLE B - For plugging intervals that will employ approved non-cement based sealant(s). Start with deepest interval.

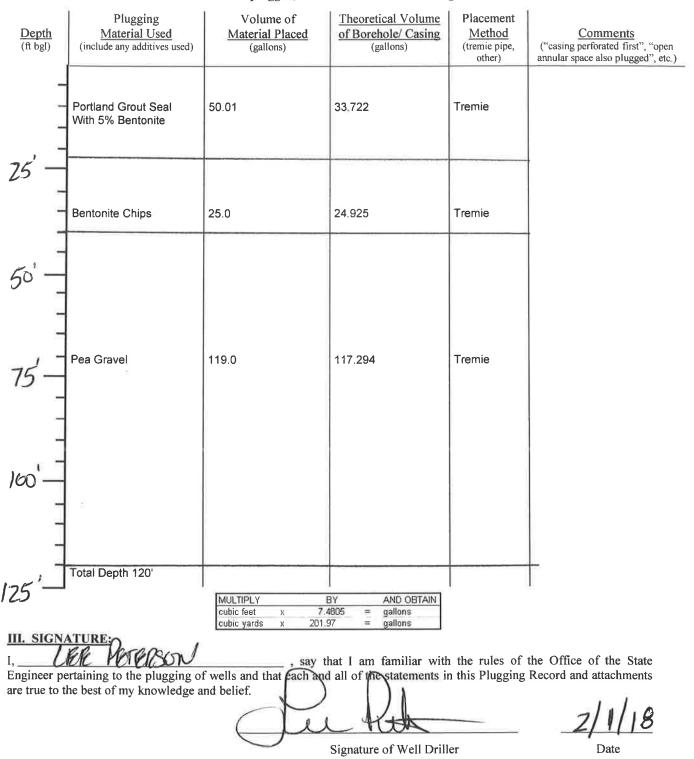
	Interval 1 – deepest	Interval 2	Interval 3 – most shallow
			Note: if the well is non-artesian and breaches only one aquifer, use only this column.
Top of proposed interval of sealant placement (ft bgl)	Plug well with holeplug from 3' to 120'		
Bottom of proposed sealant of grout placement (ft bgl)	1' to 3' cement cut casting off 1' below ground level		
Theoretical volume of sealant required per interval (gallons)	7" I.D. Pipe = 239.7		
Proposed abandonment sealant (manufacturer and trade name)	Baroid: Holeplug graded sodium bentonite		

10

¥

Well Plugging Plan Version: August 11, 2015 Page 5 of 5

.


PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

I. GEI	NERAL / WELL OWNERSHIP:			
State E	ngineer Well Number: L-6588 (E)			
Well ov	wner: Plains Marketing		Phone No.:	
Mailing	g address: 414 Arco Road			
City: ⁺	Hobbs	State:	New Mexico	Zip code: <u>88240-8795</u>
<u>II. WE</u>	ELL PLUGGING INFORMATION:			
1)	Name of well drilling company that pl	ugged well: Peterso	n Drilling & Testing, Inc %	6 Lee Peterson
2)	New Mexico Well Driller License No.			
3)	Well plugging activities were supervise Not in use any loner - proterty owner w		well driller(s)/rig supervi	sor(s):
4)	Date well plugging began: January	17, 2018 D	ate well plugging conclu-	_{ded:} January 17, 2018
5)	GPS Well Location: Latitude: Longitude:	<u>33</u> deg, <u>103</u> deg,	22 min, 12 39 min, 40	2.6sec 3.0sec, WGS 84
6)	Depth of well confirmed at initiation o by the following manner:			
7)	Static water level measured at initiation	n of plugging:5	0ft bgl	
8)	Date well plugging plan of operations	was approved by the	State Engineer:12	0 -
9)	Were all plugging activities consistent differences between the approved plug	with an approved pl ging plan and the we	ugging plan? yes ll as it was plugged (atta	If not, please describe ch additional pages as needed):

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

For each interval plugged, describe within the following columns:

Version: September 8, 2009 Page 2 of 2 Appendix D Field Notes

MOORE SWEET HISTORICAL 10/17-18/2019 Chloride Field TEST SCREENing (HACH LIGATORS) <124 ppn -2124 ppm -<124 ppm -MW-SIC-A-MJW-F1C@71 M5-FZ@13' ME-51C-A 280 ppm <124 ppm <124 ppm ME-F1C+107' ME-F1C #207' ZIZPPM 4128ppm ME-52-A Sample # 50.17' M33#3A 2128 ppm -10/22/2019 MRANA E53-A 2128ppn /

Appendix E Laboratory Analytical Reports

October 11, 2018

JOEL LOWRY PLAINS ALL AMERICAN PIPELINE 505 NORTH BIG SPRINGS ST STE. 600 MIDLAND, TX 79701

RE: MOORE SWEET

Enclosed are the results of analyses for samples received by the laboratory on 10/09/18 15:20.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

PLAINS ALL AMERICAN PIPELINE JOEL LOWRY 505 NORTH BIG SPRINGS ST STE. 600 MIDLAND TX, 79701 Fax To:

Received:	10/09/2018	Sampling Date:	10/09/2018
Reported:	10/11/2018	Sampling Type:	Solid
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	LEA CO NM		

Sample ID: NTT 1A @ 8' (H802875-01)

TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/11/2018	ND	200	100	200	0.492	
DRO >C10-C28*	42.7	10.0	10/11/2018	ND	194	97.0	200	0.0124	
EXT DRO >C28-C36	<10.0	10.0	10/11/2018	ND					
Surrogate: 1-Chlorooctane	92.6 9	% 41-142	?						
Surrogate: 1-Chlorooctadecane	94.0 \$	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose of use, or loss of profits incurred by client, its subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

- ND
 Analyte NOT DETECTED at or above the reporting limit

 RPD
 Relative Percent Difference
- ** Samples not received at proper temperature of 6°C or below.
- *** Insufficient time to reach temperature.
- Chloride by SM4500Cl-B does not require samples be received at or below 6°C Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or tor, shall be limited to the amount paid by the client for the analyses. All daims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be faile for incidental or consequental damages, including whithout limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, Phone #: 432-466-4450 Company Name: Relinquished By: Project Name: MooLE city: Midland Project Manager: Joel Lowry Relinquished By: 4802875 Project Location: Project #: Sampler Name: Address: Sampler - UPS - Bus - Other: filiates or successors arising out of or Delivered By: (Circle One) FOR LAB USE ONLY Lab I.D. Cardinal cannot accept verbal changes. Please fax written changes to (575) 393-2326 10 Desta Drive Suite 150E 7 V 011 VIT A PII 5---(575) 393-2326 FAX (575) 393-2476 101 East Marland, Hobbs, NM 88240 V 7 8-1-1 **TRC Solutions** =1 -| TEEE AW Sample I.D. FRO IR Q 10 AQ P AO 7 G Ø E UNIT 0 00 Ā 9 5 VI Fax #: Project Owner: N Date: Time: 15:20 F 5.30 Date: 9-18 Time: State: 1 777 hereunder by Ca TX Zip: 50 5 50 5 9 Received By: (G)RAB OR (C)OMP. Received By: 164 モレチシレ regardless of whether such daim is based # CONTAINERS 79705 GROUNDWATER Cool Intact Yes Yes No No Sample Condition WASTEWATER MATRIX × × < SOIL OIL SLUDGE Address: Fax #: State: City: Phone #: OTHER Attn: AMBER CADUES Company: TUANS P.O. #: ACID/BASE: PRESERV 10 pon any of the above stated reasons or otherwise CHECKED BY ICE / COOL 0)122210 (Initials) OTHER Zip: 10.9-181000 DATE SAMPLING 10:20 10 ALQZOVES @ PAALP. COM Fax Result: 11:00 10:50 2 Constalle TRC Solutions, Com SLOWZY REMARKS: 10:40 B Coopelle T Cloutions Con Phone Result: 10:50 TIME 20 PH 1 00 □ Yes PTRC SOLUTIONS. COM Yes No Add'I Phone Yes No Add'I Fax #: Sample #2. then 7 ANALYSIS Add'I Phone #: REQUEST

1

Laboratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 4 of 4

November 15, 2018

ZACH CONDER TRC 10 DESTA DR. SUITE 150 E MIDLAND, TX 79705

RE: MOORE SWEET

Enclosed are the results of analyses for samples received by the laboratory on 11/09/18 16:30.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/09/2018	Sampling Date:	11/09/2018
Reported:	11/15/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	PLAINS PL		

Sample ID: E TT COMP 1 @ 5' (H803270-01)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	512	16.0	11/15/2018	ND	416	104	400	3.92	
TPH 8015M	mg/kg		Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/12/2018	ND	194	97.2	200	4.25	
DRO >C10-C28*	185	10.0	11/12/2018	ND	196	98.1	200	3.77	
EXT DRO >C28-C36	32.1	10.0	11/12/2018	ND					
Surrogate: 1-Chlorooctane	91.2	% 41-142	?						
Surrogate: 1-Chlorooctadecane	102	% 37.6-14	7						

Sample ID: E TT COMP 2 @ 5' (H803270-02)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	464	16.0	11/15/2018	ND	416	104	400	3.92	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/12/2018	ND	194	97.2	200	4.25	
DRO >C10-C28*	15.2	10.0	11/12/2018	ND	196	98.1	200	3.77	
EXT DRO >C28-C36	<10.0	10.0	11/12/2018	ND					
Surrogate: 1-Chlorooctane	78.8	% 41-142	,						
Surrogate: 1-Chlorooctadecane	82.7	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/09/2018	Sampling Date:	11/09/2018
Reported:	11/15/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	PLAINS PL		

Sample ID: E TT - NW @ 2.5' (H803270-03)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	496	16.0	11/15/2018	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/12/2018	ND	194	97.2	200	4.25	
DRO >C10-C28*	118	10.0	11/12/2018	ND	196	98.1	200	3.77	
EXT DRO >C28-C36	19.8	10.0	11/12/2018	ND					
Surrogate: 1-Chlorooctane	84.2	% 41-142							
Surrogate: 1-Chlorooctadecane	97.0	% 37.6-14	7						

Sample ID: W TT COMP 2 @ 4' (H803270-04)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	11/15/2018	ND	416	104	400	3.92	
TPH 8015M	015M mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/12/2018	ND	194	97.2	200	4.25	
DRO >C10-C28*	32.7	10.0	11/12/2018	ND	196	98.1	200	3.77	
EXT DRO >C28-C36	11.6	10.0	11/12/2018	ND					
Surrogate: 1-Chlorooctane	75.9	% 41-142							
Surrogate: 1-Chlorooctadecane	80.2	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/09/2018	Sampling Date:	11/09/2018
Reported:	11/15/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	PLAINS PL		

Sample ID: W TT- NW @ 2' (H803270-05)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	11/15/2018	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/12/2018	ND	194	97.2	200	4.25	
DRO >C10-C28*	106	10.0	11/12/2018	ND	196	98.1	200	3.77	
EXT DRO >C28-C36	70.4	10.0	11/12/2018	ND					
Surrogate: 1-Chlorooctane	91.2	% 41-142							
Surrogate: 1-Chlorooctadecane	100	% 37.6-14	7						

Sample ID: W TT COMP 1 @ 4' (H803270-06)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	11/15/2018	ND	416	104	400	3.92	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/12/2018	ND	194	97.2	200	4.25	
DRO >C10-C28*	33.9	10.0	11/12/2018	ND	196	98.1	200	3.77	
EXT DRO >C28-C36	12.3	10.0	11/12/2018	ND					
Surrogate: 1-Chlorooctane	87.3	% 41-142							
Surrogate: 1-Chlorooctadecane	93.7	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/09/2018	Sampling Date:	11/09/2018
Reported:	11/15/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	PLAINS PL		

Sample ID: W TT - SW @ 2' (H803270-07)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/12/2018	ND	194	97.2	200	4.25	
DRO >C10-C28*	149	10.0	11/12/2018	ND	196	98.1	200	3.77	
EXT DRO >C28-C36	77.0	10.0	11/12/2018	ND					
Surrogate: 1-Chlorooctane	83.6	% 41-142							
Surrogate: 1-Chlorooctadecane	95.0	% 37.6-14	7						

Sample ID: TT 3 COMP @ 3' (H803270-08)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	<10.0	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	<10.0	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	76.7	% 41-142							
Surrogate: 1-Chlorooctadecane	81.5	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/09/2018	Sampling Date:	11/09/2018
Reported:	11/15/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	PLAINS PL		

Sample ID: TT 3 - NW @ 1.5' (H803270-09)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	25.9	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	12.1	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	86.3	% 41-142							
Surrogate: 1-Chlorooctadecane	92.7	% 37.6-14	7						

Sample ID: TT 3 - SW @ 1.5' (H803270-10)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	<10.0	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	<10.0	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	77.0	% 41-142							
Surrogate: 1-Chlorooctadecane	82.6	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/09/2018	Sampling Date:	11/09/2018
Reported:	11/15/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	PLAINS PL		

Sample ID: TT 3 - WW @ 1.5' (H803270-11)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	<10.0	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	<10.0	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	88.2	% 41-142							
Surrogate: 1-Chlorooctadecane	95.3	% 37.6-14	7						

Sample ID: TT 3 - EW @ 1.5' (H803270-12)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	<10.0	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	13.8	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	77.8	% 41-142							
Surrogate: 1-Chlorooctadecane	81.8	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/09/2018	Sampling Date:	11/09/2018
Reported:	11/15/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	PLAINS PL		

Sample ID: TT 2 @ 2' (H803270-13)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	348	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	171	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	73.7	% 41-142							
Surrogate: 1-Chlorooctadecane	89.1	% 37.6-14	7						

Sample ID: TT 2- WW @ 1' (H803270-14)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	249	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	147	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	85.9	% 41-142							
Surrogate: 1-Chlorooctadecane	99.0	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/09/2018	Sampling Date:	11/09/2018
Reported:	11/15/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	PLAINS PL		

Sample ID: TT 2- NW @ 1' (H803270-15)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	70.8	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	34.6	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	83.2	% 41-142							
Surrogate: 1-Chlorooctadecane	90.6	% 37.6-14	7						

Sample ID: TT 2- EW @ 1' (H803270-16)

Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	249	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	108	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	91.4	% 41-142							
Surrogate: 1-Chlorooctadecane	105	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/09/2018	Sampling Date:	11/09/2018
Reported:	11/15/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	PLAINS PL		

Sample ID: TT 2- SW @ 1' (H803270-17)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	49.7	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	39.5	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	88.1	% 41-142							
Surrogate: 1-Chlorooctadecane	94.4	% 37.6-14	7						

Sample ID: TT 1 @ 14' (H803270-18)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	69.4	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	1770	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	242	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	103	% 41-142	?						
Surrogate: 1-Chlorooctadecane	143	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/09/2018	Sampling Date:	11/09/2018
Reported:	11/15/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	PLAINS PL		

Sample ID: S TT @ 12' (H803270-19)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	53.9	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	2410	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	328	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	112	% 41-142	,						
Surrogate: 1-Chlorooctadecane	167	% 37.6-14	7						

Sample ID: W TT- WW @ 2' (H803270-20)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	560	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	33.0	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	28.7	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	76.0	% 41-142							
Surrogate: 1-Chlorooctadecane	79.8	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/09/2018	Sampling Date:	11/09/2018
Reported:	11/15/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	PLAINS PL		

Sample ID: S TT- EW @ 6' (H803270-21)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	32.0	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	2110	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	323	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	87.6	% 41-142							
Surrogate: 1-Chlorooctadecane	120	% 37.6-14	7						

Sample ID: S TT- NW @ 6' (H803270-22)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	101	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	2950	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	373	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	105	% 41-142	2						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/09/2018	Sampling Date:	11/09/2018
Reported:	11/15/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	PLAINS PL		

Sample ID: S TT- SW @ 6' (H803270-23)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	31.8	10.0	11/13/2018	ND	196	97.8	200	1.82	
DRO >C10-C28*	1050	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	161	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	97.7	% 41-142							
Surrogate: 1-Chlorooctadecane	121	% 37.6-14	7						

Sample ID: S TT- WW @ 6' (H803270-24)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	576	16.0	11/15/2018	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	85.8	10.0	11/13/2018	ND	196	97.8	200	1.82	
DR0 >C10-C28*	3520	10.0	11/13/2018	ND	205	103	200	0.351	
EXT DRO >C28-C36	548	10.0	11/13/2018	ND					
Surrogate: 1-Chlorooctane	105	% 41-142	,						
Surrogate: 1-Chlorooctadecane	205	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose of use, or loss of profits incurred by client, its subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		15 of 17
Г Д	CD	Page
	J	
ato	Z	
ries	AL	

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

0147-565 (516) VHJ 0767-566 (516)	0		
Company Name: TRC		BILL TO	ANALYSIS REQUEST
Project Manager: Zack Conder		P.O. #:	
Address: 10 pesta Dr Suite	1502	Company: Mains	
City: M. J land State: TX	Zip:	Attn: Amber Crows	2
Phone #: Fax #:		Address:	2
Project #: Project Owner:		City:	
Project Name: Moore Sweet	(0)	State: Zip:	
Project Location:		Phone #:	
Sampler Name: Kyle Sch midt		Fax #:	
FOR LAB USE ONLY	A MATRIX	PRESERV. SAMPLING	NG
	IERS /ATER		/
Lab I.D. Sample I.D.	B)RAB OR CONTAIN ROUNDW (ASTEWAT OIL IL LUDGE	THER : CID/BASE: E / COOL THER :	CI- TPH
1 ETT Comp 20 5'	- x	×	Xq
2 ETT Conp 2 @ 5'	へ - 又	×	× ×
5 FTT-NW@ 2.5'	C - ×	×	8 X
4 WTT Comp 2@4'	C	×.	1
5 UTT - NWO 2'	2 - ×	×	× ×
10 wTT Comp 2 @ 4'	X - J	x	
7 WTT-SW@ 2'	×	8	× ×
8 773 Comp 3'	XX	~~	1
1 113-54 @ 1.5	-	8	R 2 R
PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or tori, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be demode waived unless made in writing and received by Cardinal within 20 days after completion of the applical service. In no event shall Cardinal be liable for inclodental or consequential diamages, including whether intervations business intervations business intervations of the or policial service. In one event shall Cardinal be liable for inclodental or consequential diamages, including whether intervations business intervations of these of the subscitations.	any claim arising whether based in contract o deemed waived unless made in writing and r g without limitation, business interruptions, log	r tor, shall be limited to the amount pair received by Cardinal within 30 days after ss of use, or loss of profits incurred by c	J by the client for the completion of the applicable for the subscription of the applicable for the subscription of the applicable for the subscription of the subscri
affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise Relinquished By: Date: Fax Result:	Received By:	based upon any of the above stated rea	sons or otherwise. Phone Result: Yes No Add'I Phone #: Fax Result: Yes No Add'I Fax #:
Relinquished By: Date:	Received By:	THANNA	r@ tresolution
Time:			ilschnuidt @ tresdutions. con
Sampler - UPS - Bus - Other: 1.10 #0	97 Cool Intact	on CHECKED BY:	
	-		

+ Cardinal cannot accent verhal channes Dlease fav written channes to 15751 202.7278

1013

		16 of 17
		Page 16
DDE	D L	
ora I		
tor	Z	
- P S		

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

2013

ł

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

	(010) 000-2020 FAA (010) 000-241	C		A CONTRACT OF A			
Company Name:	TRC			BILLIO			ANALYSIS REQUEST
Project Manager:	" Zuck Conder			P.O. #:			
Address: 10	Pesta Dr. Swat	He	150E	Company: Plain	S US		
city: M. J lu	ta d State: TX	Zip:		har	broases		
Phone #:	Fax #:			Address:			
Project #:	Project Owner:	•		City:			
Project Name:	Marc Sweet			State: Zip:			
Project Location:	H.			Phone #:			
Sampler Name:	Kyle Schnnicht		4	Fax #:			
FOR LAB USE ONLY		2.	MATRIX	ESERV.	SAMPLING		
	-					H	
Lab I.D. H&03270	Sample I.D.	(G)RAB OR # CONTAIN	groundw Wastewa Soil Oil Sludge	OTHER : ACID/BASE ICE / COOL OTHER : DATE		TP	
11	TT3-WW@ 1.5'	r -	×	×	× 81	~	
12	TT3-EWQ 1.5'	- 1	×	×	2	R	
51	TT2 (2 2	- 1	*	×	R	8	
14	TT2 - WW (2) 1	-	R	8	R	8	
5	172-NWO 1	1		. ×	2	ir	
11	TT2-5WQ1	0	× ²	د×	R	2	
15	TT 2 @ 14'	6-	×	X	×	×	
Ы	5 77 0 12'	6	7	*	X	R	
06	STAR CASA WT. WW 22	6 1	X	X	x	×	
PLEASE NOTE: Liability an analyses. All claims includin service. In no event shall Ca affiliates or successors arisir	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever is halb do mode waived unless made in writing and received by Cardinal within 30 days after completion of the applicat analyses. All claims including those for negligence and any other cause whatsoever is halb do denote what do unless made in writing and received by Cardinal within 30 days after completion of the applicat service. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, artifiates or successors aristing out of or related to the performance of services hearing including inclusions of whether such halm is based income any of the above stated reaseons or otherwise.	ny claim aris leemed walv without limi ardinal reco	sing whether based in contrac ved unless made in writing an itation, business interruptions, ardless of whether such claim	t or tort, shall be limited to the amound d received by Cardinal within 30 day loss of use, or loss of profits incurrent is based upon any of the above states the based upon above states the based the based upon above states the based the base	nt paid by the client for the s after completion of the applic d by client, its subsidiaries, ad reasons or otherwise	cable	4
Relinquished By	1: Date:	Recei	Received By:		Phone Result:		Add'I Phone #:
2 del	June	All	Der M	enden	REMARKS:		AUGTPAX#:
Rélinquished By	/: Time:	Recei	Received By:				
Delivered By:	Delivered By: (Circle One)	LU	Sample Condition	ion CHECKED BY:			
Sampler - UPS	- Bus - Other: -1.1 2 # 4 1	41	Z	A			

 mpler - UPS - Bus - Other:
 I I V
 I I V
 I Ves
 I Ves

 + Cardinal cannot accent verbal channes
 Diasce fax written channes to 15751 206_2226

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

3.23

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

+ Carrinal rannot arrent verhal rhannee Dleace fav written rhannee to 15751 200/2326

November 16, 2018

ZACH CONDER TRC 10 DESTA DR. SUITE 150 E MIDLAND, TX 79705

RE: MOORE SWEET

Enclosed are the results of analyses for samples received by the laboratory on 11/14/18 15:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/14/2018	Sampling Date:	11/13/2018
Reported:	11/16/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	PLAINS PL - LEA COUNTY		

Sample ID: E TT COMP 3 @ 6' (H803320-01)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	11/15/2018	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/15/2018	ND	214	107	200	1.99	
DRO >C10-C28*	<10.0	10.0	11/15/2018	ND	227	113	200	0.673	
EXT DRO >C28-C36	<10.0	10.0	11/15/2018	ND					
Surrogate: 1-Chlorooctane	106	% 41-142							
Surrogate: 1-Chlorooctadecane	101	% 37.6-14	7						

Sample ID: E TT SW @ 2.5' (H803320-02)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	11/15/2018	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/15/2018	ND	214	107	200	1.99	
DRO >C10-C28*	13.2	10.0	11/15/2018	ND	227	113	200	0.673	
EXT DRO >C28-C36	<10.0	10.0	11/15/2018	ND					
Surrogate: 1-Chlorooctane	111 9	% 41-142							
Surrogate: 1-Chlorooctadecane	110	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

TRC ZACH CONDER 10 DESTA DR. SUITE 150 E MIDLAND TX, 79705 Fax To:

Received:	11/14/2018	Sampling Date:	11/13/2018
Reported:	11/16/2018	Sampling Type:	Soil
Project Name:	MOORE SWEET	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Tamara Oldaker
Project Location:	PLAINS PL - LEA COUNTY		

Sample ID: E TT SW-2 @ 6" (H803320-03)

Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	672	16.0	11/15/2018	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/15/2018	ND	214	107	200	1.99	
DRO >C10-C28*	15.6	10.0	11/15/2018	ND	227	113	200	0.673	
EXT DRO >C28-C36	<10.0	10.0	11/15/2018	ND					
Surrogate: 1-Chlorooctane	109	% 41-142							
Surrogate: 1-Chlorooctadecane	105	% 37.6-14	7						

Sample ID: E TT EW @ 2.5' (H803320-04)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	304	16.0	11/15/2018	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/15/2018	ND	214	107	200	1.99	
DRO >C10-C28*	<10.0	10.0	11/15/2018	ND	227	113	200	0.673	
EXT DRO >C28-C36	<10.0	10.0	11/15/2018	ND					
Surrogate: 1-Chlorooctane	106	% 41-142							
Surrogate: 1-Chlorooctadecane	100	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Notes and Definitions

- ND
 Analyte NOT DETECTED at or above the reporting limit

 RPD
 Relative Percent Difference
- ** Samples not received at proper temperature of 6°C or below.
- *** Insufficient time to reach temperature.
- Chloride by SM4500Cl-B does not require samples be received at or below 6°C Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Project Manager: Company Name: Relinquished B city: Midland Sampler Name: RECKY Project Name: Moore Phone #: Relinquished By: service. In no event shall Cardinal be liable for incidential or consequential damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable Project Location: LERCo Project #: Address: Sampler - UPS - Bus - Other: H803320 FOR LAB USE ONLY Delivered By: (Circle One) EASE NOTE: Liability and Lab I.D. ecty sors arising out of or related t ager: Josef 2ACA Contract 10 Desta Drive Suite 150E 101 East Marland, Hobbs, NM 88240 ETTSW22.5' ETTSW-206" (575) 393-2326 FAX (575) 393-2476 Damages. Cardinal's liability and client's exclusive remedy for any (-**TRC Solutions** TT CONP306 432-234-5084 Sample I.D Ewo 2.5' to the pe NETT イン TS Date: 00 Project Owner: PCPUV PL FF Time: Date: 11-14-18 State: TX zip: 79705 54 00 0 0 (G)RAB OR (C)OMP Received By: Received By: # CONTAINERS GROUNDWATER Muan Cool Intact Sample Condition WASTEWATER MATRIX K A 2 SOIL OIL SLUDGE State: OTHER City: Phone #: Attn: A MARY ROVES Company: PLAINS Fax #: P.O. #: Address: ACID/BASE PRESERV HHHH CHECKED BY: ICE / COOL 9 (Initials) BILL TO OTHER to the amount paid by the client for Zip: 11-13-18 11:00 DATE SAMPLING Fax Result: REMARKS: 11:30 CHAIN-OF-CUSTODY AND ANALYSIS REQUEST 11:20 Z CONDER @ TRCSOLUTIONS, COM B COOPER@ TRCSOLUTIONS, COM BRAZIFFIN@ TRCSOLUTIONS, COM Phone Result:
☐ Yes
☐ No |Add'I Phone #:
Fax Result:
☐ Yes
☐ No |Add'I Fax #: ALGROVES@ PAALP. Cor 11:10 TIME K 4 TPH XX 4 CHLORIDE 7 ANALYSIS REQUEST

† Cardinal cannot accept verbal changes. Please fax written changes to (575) 393-2326

Page 5 of 5

Laboratories

Analytical Report 608722

for TRC Solutions, Inc

Project Manager: Zach Conder

Moore Sweet

27-DEC-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-28), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-18) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis (Detailed Report)	6
Explanation of Qualifiers (Flags)	21
SURR_QC_V62	22
LCS / LCSD Recoveries	27
MS / MSD Recoveries	30
Chain of Custody	34
Sample Receipt Conformance Report	37

27-DEC-18

Project Manager: Zach Conder TRC Solutions, Inc 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 608722 Moore Sweet Project Address: Lea County, NM

Zach Conder:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 608722. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 608722 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession KRAMER

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 608722

TRC Solutions, Inc, Midland, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
TT-1 @15'	S	12-12-18 08:00	15 ft	608722-001
TT-1 @ 16'	S	12-12-18 08:10	15 ft	608722-002
TT-1 @ 17'	S	12-12-18 08:20	17 ft	608722-003
TT-1 @ 18'	S	12-12-18 08:30	18 ft	608722-004
TT-1 @ 19'	S	12-12-18 08:40	19 ft	608722-005
TT-1 @ 20'	S	12-12-18 08:50	20 ft	608722-006
TT-1 @ 21'	S	12-12-18 09:00	21 ft	608722-007
TT-1 @ 22'	S	12-12-18 09:10	22 ft	608722-008
TT-1 @ 23'	S	12-12-18 09:20	23 ft	608722-009
TT-1 @ 24'	S	12-12-18 09:30	24 ft	608722-010
TT-1 @25 '	S	12-12-18 09:40	25 ft	608722-011

Client Name: TRC Solutions, Inc Project Name: Moore Sweet

Project ID: Work Order Number(s): 608722 Report Date: 27-DEC-18 Date Received: 12/14/2018

This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory.

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3073258 BTEX by EPA 8021 Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3074024 BTEX by EPA 8021

Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 608722-005,608722-004.

Batch: LBA-3074046 BTEX by EPA 8021

Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 608722-008,608722-007.

TRC Solutions, Inc, Midland, TX

Sample Id: TT-1 @15'		Matrix:	Soil		Sample	Depth: 15 ft		
Lab Sample Id: 608722-001		Date Collecte	ed: 12.12.18 08	3.00	Date R	eceived: 12.14.1	8 11.5	51
Analytical Method: Inorganic Anions by I	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: CHE		% Moist:			Tech:	CHE		
Seq Number: 3073168		Date Prep: 12	2.17.18 09.00					
		Prep seq: 76	668162					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	23.0	4.95	0.850	mg/kg	12.17.18 11:52		1
Analytical Method: TPH by SW8015 Mo	d				Prep M	ethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3073493		Date Prep: 12	2 19 18 18 00		reen			
Seq Rumber. 5075475		Prep seq: 76						
	CAS	Thep seq. 70	00+05			A 1: -		Dil Fratan
Parameter	Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	490	15.0	7.99	mg/kg	12.20.18 00:44		1
Diesel Range Organics (DRO)	C10C28DRO	1820	15.0	8.11	mg/kg	12.20.18 00:44		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	143	15.0	8.11	mg/kg	12.20.18 00:44		1
Total TPH	PHC635	2453		7.99	mg/kg	12.20.18 00:44		
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Surrogate 1-Chlorooctane		% Recovery 124		Limits 70 - 1		•	Date	Flag
-		-			135 %		Date	Flag
1-Chlorooctane o-Terphenyl		124		70 - 1	135 % 135 %		Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021		124		70 - 1	135 % 135 % Prep M	ethod: 5030B	Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM		124 111 % Moist:	2.17.18 08.45	70 - 1	135 % 135 %		Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021		124 111		70 - 1	135 % 135 % Prep M	ethod: 5030B	Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM	CAS Number	124 111 % Moist: Date Prep: 12		70 - 1	135 % 135 % Prep M	ethod: 5030B	Date	Flag Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258		124 111 % Moist: Date Prep: 12 Prep seq: 76	668232	70 - 1 70 - 1	135 % 135 % Prep M Tech:	ethod: 5030B SCM Analysis		-
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene	Number 71-43-2 108-88-3	124 111 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0964 0.934	568232 MQL 0.501 0.501	70 - 1 70 - 1 SDL 0.0964 0.114	135 % 135 % Prep M Tech: Units	ethod: 5030B SCM Analysis Date 12.17.18 17:36 12.17.18 17:36	Flag U	Dil Factor 251 251
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene Ethylbenzene	Number 71-43-2 108-88-3 100-41-4	124 111 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0964 0.934 0.205	568232 MQL 0.501 0.501 0.501	70 - 1 70 - 1 SDL 0.0964 0.114 0.141	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36	Flag U J	Dil Factor 251 251 251
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes	Number 71-43-2 108-88-3 100-41-4 179601-23-1	124 111 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0964 0.934 0.205 <0.254	568232 MQL 0.501 0.501 0.501 1.00	70 - 1 70 - 1 5 DL 0.0964 0.114 0.254	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36	Flag U	Dil Factor 251 251 251 251
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	124 111 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0964 0.934 0.205 <0.254 1.69	568232 MQL 0.501 0.501 0.501	70 - 1 70 - 1 5 DL 0.0964 0.114 0.254 0.0863	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg	Analysis SCM 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36	Flag U J	Dil Factor 251 251 251
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes	Number 71-43-2 108-88-3 100-41-4 179601-23-1	124 111 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0964 0.934 0.205 <0.254	568232 MQL 0.501 0.501 0.501 1.00	70 - 1 70 - 1 5 DL 0.0964 0.114 0.254	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36	Flag U J	Dil Factor 251 251 251 251
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	124 111 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0964 0.934 0.205 <0.254 1.69 1.69	568232 MQL 0.501 0.501 0.501 1.00	70 - 1 70 - 1 5 DL 0.0964 0.114 0.254 0.0863 0.0863	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Tethod: 5030B SCM Analysis Date 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36	Flag U J	Dil Factor 251 251 251 251
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	124 111 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0964 0.934 0.205 <0.254 1.69 1.69	568232 MQL 0.501 0.501 0.501 1.00	70 - 1 70 - 1 5 DL 0.0964 0.114 0.254 0.0863 0.0863	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Analysis Date 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36	Flag U J U	Dil Factor 251 251 251 251
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total Total BTEX	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	124 111 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0964 0.934 0.205 <0.254 1.69 1.69 2.829	568232 MQL 0.501 0.501 0.501 1.00	70 - 1 70 - 1 70 - 1 5DL 0.0964 0.114 0.141 0.254 0.0863 0.0863 0.0863	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Analysis Date 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36 12.17.18 17:36	Flag U J U	Dil Factor 251 251 251 251 251

TRC Solutions, Inc, Midland, TX

Sample Id:	TT-1 @ 16'		Matrix:	Soil		Sample	Depth: 15 ft		
Lab Sample Id	1: 608722-002		Date Collecte	ed: 12.12.18 08	3.10	Date Re	eceived: 12.14.	18 11.5	51
Analytical Me	thod: Inorganic Anions by E	EPA 300/300.1				Prep M	ethod: E300P		
Analyst:	CHE		% Moist:			Tech:	CHE		
Seq Number:	3073168		Date Prep: 12	2.17.18 09.00					
Seq Pulliser.	5075100		Prep seq: 76						
Parameter	r	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride		16887-00-6	180	4.95	0.850	mg/kg	12.17.18 12:00		1
Analytical Me	thod: TPH by SW8015 Mod	1				Prep M	ethod: 1005		
Analyst:	ARM		% Moist:			Tech:	ARM		
Seq Number:	3073493		Date Prep: 12	2 19 18 18 00					
Seq Number.	507575		Prep seq: 76						
Parameter	r	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline R	ange Hydrocarbons (GRO)	PHC610	533	15.0	8.00	mg/kg	12.20.18 01:05		1
	ge Organics (DRO)	C10C28DRO	1660	15.0	8.13	mg/kg	12.20.18 01:05		1
	ange Hydrocarbons (MRO)	PHCG2835	118	15.0	8.13	mg/kg	12.20.18 01:05		1
Total TPH		PHC635	2311		8	mg/kg	12.20.18 01:05		
Surrogate			% Recovery		Limits	Uni	its Analysis	Date	Flag
Surrogate 1-Chlorooc o-Terpheny			% Recovery 119 113		Limits 70 - 1 70 - 1	135 %		Date	Flag
1-Chlorooc			119		70 - 1	135 %		Date	Flag
1-Chlorooc o-Terpheny			119 113		70 - 1	135 %	ethod: 5030B		Flag
1-Chlorooc o-Terpheny	1		119		70 - 1	135 % 135 %			Flag
1-Chlorooc o-Terpheny Analytical Me	/l thod: BTEX by EPA 8021		119 113	2.17.18 08.45	70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag
1-Chlorooc o-Terpheny Analytical Me Analyst:	thod: BTEX by EPA 8021		119 113 % Moist: Date Prep: 12	2.17.18 08.45	70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag
1-Chlorooc o-Terpheny Analytical Me Analyst:	/l ethod: BTEX by EPA 8021 SCM 3073258	CAS Number	119 113 % Moist: Date Prep: 12		70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag Dil Factor
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene	/l ethod: BTEX by EPA 8021 SCM 3073258	Number 71-43-2	119 113 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0962	568232 MQL 0.500	70 - 1 70 - 1 SDL 0.0962	135 % 135 % Prep M Tech: Units mg/kg	ethod: 5030B SCM Analysis		Dil Factor 250
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene	/l thod: BTEX by EPA 8021 SCM 3073258	Number 71-43-2 108-88-3	119 113 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0962 0.983	568232 MQL 0.500 0.500	70 - 1 70 - 1 SDL 0.0962 0.114	135 % 135 % Prep M Tech: Units mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.17.18 17:55 12.17.18 17:55	Flag U	Dil Factor 250 250
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze	thod: BTEX by EPA 8021 SCM 3073258 r	Number 71-43-2 108-88-3 100-41-4	119 113 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0962 0.983 0.225	568232 MQL 0.500 0.500 0.500	70 - 1 70 - 1 5 DL 0.0962 0.114 0.141	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55	Flag U J	Dil Factor 250 250 250
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m_p-Xylen	thod: BTEX by EPA 8021 SCM 3073258 r	Number 71-43-2 108-88-3 100-41-4 179601-23-1	119 113 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0962 0.983 0.225 0.340	568232 MQL 0.500 0.500 0.500 1.00	70 - 1 70 - 1 5 DL 0.0962 0.114 0.141 0.254	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	Analysis Date 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55	Flag U	Dil Factor 250 250 250 250
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m_p-Xylen o-Xylene	Athod: BTEX by EPA 8021 SCM 3073258 r	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	119 113 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0962 0.983 0.225 0.340 1.89	568232 MQL 0.500 0.500 0.500	70 - 1 70 - 1 5 DL 0.0962 0.114 0.141 0.254 0.0861	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Tethod: 5030B SCM Analysis Date 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55	Flag U J	Dil Factor 250 250 250
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m_p-Xylen	Athod: BTEX by EPA 8021 SCM 3073258 r ene tes	Number 71-43-2 108-88-3 100-41-4 179601-23-1	119 113 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0962 0.983 0.225 0.340	568232 MQL 0.500 0.500 0.500 1.00	70 - 1 70 - 1 5 DL 0.0962 0.114 0.141 0.254	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	Analysis Date 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55	Flag U J	Dil Factor 250 250 250 250
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m_p-Xylen o-Xylene Xylenes, To	Athod: BTEX by EPA 8021 SCM 3073258 r ene tes	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	119 113 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0962 0.983 0.225 0.340 1.89 2.23	568232 MQL 0.500 0.500 0.500 1.00	70 - 1 70 - 1 5 DL 0.0962 0.114 0.141 0.254 0.0861 0.0861	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Tethod: 5030B SCM Analysis Date 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55	Flag U J J	Dil Factor 250 250 250 250
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m_p-Xylene o-Xylene Xylenes, To Total BTE: Surrogate	A thod: BTEX by EPA 8021 SCM 3073258 r ene tes otal X	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	119 113 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0962 0.983 0.225 0.340 1.89 2.23 3.438 % Recovery	568232 MQL 0.500 0.500 0.500 1.00	70 - 1 70 - 1 70 - 1 5DL 0.0962 0.114 0.0961 0.0861 0.0861 0.0861 0.0861	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55	Flag U J J	Dil Factor 250 250 250 250 250
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m_p-Xylene o-Xylene Xylenes, To Total BTE2 Surrogate 1,4-Difluor	A thod: BTEX by EPA 8021 SCM 3073258 r ene tes otal X	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	119 113 % Moist: Date Prep: 12 Prep seq: 76 Result <0.0962 0.983 0.225 0.340 1.89 2.23 3.438	568232 MQL 0.500 0.500 0.500 1.00	70 - 1 70 - 1 5 DL 0.0962 0.114 0.141 0.254 0.0861 0.0861 0.0861	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55 12.17.18 17:55	Flag U J J	Dil Factor 250 250 250 250 250

TRC Solutions, Inc, Midland, TX

Sample Id: TT-1 @ 17 '		Matrix:	Soil		Sample	Depth: 17 ft		
Lab Sample Id: 608722-003		Date Collecte	ed: 12.12.18 08	3.20	Date Re	eceived: 12.14.1	18 11.5	51
Analytical Method: Inorganic Anions by	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: CHE		% Moist:			Tech:	CHE		
Seq Number: 3073168		Date Prep: 12	2.17.18 09.00					
50/5100		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	34.6	4.96	0.852	mg/kg	12.17.18 12:09		1
Analytical Method: TPH by SW8015 Mo	d				Prep M	ethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3073493		Date Prep: 12	9 19 18 18 00					
Seq Number. 5075475		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	725	15.0	7.99	mg/kg	12.20.18 01:27		1
Diesel Range Organics (DRO)	C10C28DRO	2150	15.0	8.12	mg/kg	12.20.18 01:27		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	150	15.0	8.12	mg/kg	12.20.18 01:27		1
Total TPH	PHC635	3025		7.99	mg/kg	12.20.18 01:27		
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Surrogate 1-Chlorooctane o-Terphenyl		% Recovery 116 119		Limits 70 - 1 70 - 1	135 %		Date	Flag
1-Chlorooctane o-Terphenyl		116		70 - 1	135 % 135 %			Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021		116 119		70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM		116 119 % Moist:	2 17 18 08 45	70 - 1	135 % 135 %			Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021		116 119 % Moist: Date Prep: 12	2.17.18 08.45	70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM	CAS Number	116 119 % Moist: Date Prep: 12		70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258		116 119 % Moist: Date Prep: 12 Prep seq: 76	568232	70 - 1 70 - 1	135 % 135 % Prep M Tech:	ethod: 5030B SCM Analysis		
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene	Number 71-43-2 108-88-3	116 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0399 1.27	568232 MQL 0.200 0.200	70 - 1 70 - 1 SDL 0.0384 0.0455	135 % 135 % Prep M Tech: Units mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.17.18 17:17 12.17.18 17:17	Flag	Dil Factor 100 100
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene Ethylbenzene	Number 71-43-2 108-88-3 100-41-4	116 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0399 1.27 0.186	568232 MQL 0.200 0.200 0.200	70 - 1 70 - 1 SDL 0.0384 0.0455 0.0564	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17	Flag J J	Dil Factor 100 100 100
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes	Number 71-43-2 108-88-3 100-41-4 179601-23-1	116 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0399 1.27 0.186 0.347	568232 MQL 0.200 0.200 0.200 0.200 0.399	70 - 1 70 - 1 5 DL 0.0384 0.0455 0.0564 0.101	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17	Flag	Dil Factor 100 100 100 100
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	116 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0399 1.27 0.186 0.347 1.85	568232 MQL 0.200 0.200 0.200	70 - 1 70 - 1 5 DL 0.0384 0.0455 0.0564 0.101 0.0344	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Analysis SCM 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17	Flag J J	Dil Factor 100 100 100
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes	Number 71-43-2 108-88-3 100-41-4 179601-23-1	116 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0399 1.27 0.186 0.347	568232 MQL 0.200 0.200 0.200 0.200 0.399	70 - 1 70 - 1 5 DL 0.0384 0.0455 0.0564 0.101	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17	Flag J J	Dil Factor 100 100 100 100
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total Total BTEX	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	116 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0399 1.27 0.186 0.347 1.85 2.197 3.6929	568232 MQL 0.200 0.200 0.200 0.200 0.399	70 - 1 70 - 1 70 - 1 5DL 0.0384 0.0455 0.0564 0.101 0.0344 0.0344 0.0344	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Analysis Date 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17	Flag J J J	Dil Factor 100 100 100 100 100
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total Total BTEX Surrogate	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	116 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0399 1.27 0.186 0.347 1.85 2.197	568232 MQL 0.200 0.200 0.200 0.200 0.399	70 - 1 70 - 1 5 DL 0.0384 0.0455 0.0564 0.101 0.0344 0.0344	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	iethod: 5030B SCM Analysis Date 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 12.17.18 17.17 12.17.18 17.17 12.17.18 17.17 12.17.18 17.17 12.17.18 17.17 12.17.18 17.17 12.17.18 17.17	Flag J J J	Dil Factor 100 100 100 100
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3073258 Parameter Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total Total BTEX	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	116 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0399 1.27 0.186 0.347 1.85 2.197 3.6929	568232 MQL 0.200 0.200 0.200 0.200 0.399	70 - 1 70 - 1 70 - 1 5DL 0.0384 0.0455 0.0564 0.101 0.0344 0.0344 0.0344	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Analysis Date 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17 12.17.18 17:17	Flag J J J	Dil Factor 100 100 100 100 100

TRC Solutions, Inc, Midland, TX

Sample Id: TT-1 @ 18 '		Matrix:	Soil		Sample	Depth: 18 ft		
Lab Sample Id: 608722-004		Date Collecte	ed: 12.12.18 08	3.30	Date Re	eceived: 12.14.1	8 11.5	51
Analytical Method: Inorganic Anions by I	EPA 300/300.1				Prep Me	ethod: E300P		
Analyst: CHE		% Moist:			Tech:	CHE		
Seq Number: 3073892		Date Prep: 12	2.21.18 15.00					
		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	460	5.00	0.858	mg/kg	12.21.18 17:34		1
Analytical Method: TPH by SW8015 Mo	d				Prep Me	ethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3073906		Date Prep: 12	2.21.18.17.00					
Seq Rumber. 3073900		Prep seq: 76						
		Prep seq: 70	00005					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	501	15.0	7.99	mg/kg	12.22.18 19:45		1
Diesel Range Organics (DRO)	C10C28DRO	1270	15.0	8.11	mg/kg	12.22.18 19:45		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	114	15.0	8.11	mg/kg	12.22.18 19:45		1
Total TPH	PHC635	1885		7.99	mg/kg	12.22.18 19:45		
Surrogate		% Recovery		Limits	Unit	ts Analysis	Date	Flag
Surrogate 1-Chlorooctane		% Recovery 121		Limits 70 - 1			Date	Flag
-					135 %		Date	Flag
1-Chlorooctane o-Terphenyl		121		70 - 1	135 % 135 %		Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021		121		70 - 1	135 % 135 % Prep Me	ethod: 5030B	Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM		121 119 % Moist:	2 26 18 08 15	70 - 1	135 % 135 %		Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM		121 119 % Moist: Date Prep: 12		70 - 1	135 % 135 % Prep Me	ethod: 5030B	Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM	CAS Number	121 119 % Moist:		70 - 1	135 % 135 % Prep Me	ethod: 5030B	Date	Flag Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024		121 119 % Moist: Date Prep: 12 Prep seq: 76	668765	70 - 1 70 - 1	135 % 135 % Prep Ma Tech:	ethod: 5030B SCM Analysis		
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter	Number 71-43-2 108-88-3	121 119 % Moist: Date Prep: 12 Prep seq: 76 Result	568765 MQL 0.0100 0.0100	70 - 1 70 - 1 SDL 0.00192 0.00228	135 % 135 % Prep Ma Tech: Units	ethod: 5030B SCM Analysis Date 12.26.18 15:28 12.26.18 15:28		Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene	Number 71-43-2 108-88-3 100-41-4	121 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0849 0.0509 0.412	568765 MQL 0.0100 0.0100 0.0100	70 - 1 70 - 1 SDL 0.00192 0.00228 0.00282	135 % 135 % Prep Ma Tech: Units mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28		Dil Factor 5 5 5 5
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes	Number 71-43-2 108-88-3 100-41-4 179601-23-1	121 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0849 0.0509 0.412 0.642	568765 MQL 0.0100 0.0100 0.0100 0.0200	70 - 1 70 - 1 5 DL 0.00192 0.00228 0.00282 0.00282 0.00507	135 % 135 % Prep Ma Tech: Units mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28		Dil Factor 5 5 5 5 5 5
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	121 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0849 0.0509 0.412 0.642 1.86	568765 MQL 0.0100 0.0100 0.0100	70 - 1 70 - 1 50L 0.00192 0.00228 0.00282 0.00282 0.00282 0.00507 0.00172	135 % 135 % Prep Ma Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28		Dil Factor 5 5 5 5
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total	Number 71-43-2 108-88-3 100-41-4 179601-23-1	121 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0849 0.0509 0.412 0.642 1.86 2.502	568765 MQL 0.0100 0.0100 0.0100 0.0200	70 - 1 70 - 1 70 - 1 5DL 0.00192 0.00228 0.00282 0.00282 0.00507 0.00172 0.00172	135 % 135 % Prep Ma Tech: Units Mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28		Dil Factor 5 5 5 5 5 5
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	121 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0849 0.0509 0.412 0.642 1.86	568765 MQL 0.0100 0.0100 0.0100 0.0200	70 - 1 70 - 1 50L 0.00192 0.00228 0.00282 0.00282 0.00282 0.00507 0.00172	135 % 135 % Prep Ma Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28		Dil Factor 5 5 5 5 5 5
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	121 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0849 0.0509 0.412 0.642 1.86 2.502	568765 MQL 0.0100 0.0100 0.0100 0.0200	70 - 1 70 - 1 70 - 1 5DL 0.00192 0.00228 0.00282 0.00282 0.00507 0.00172 0.00172	135 % 135 % Prep Ma Tech: Units Mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28	Flag	Dil Factor 5 5 5 5 5 5
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total Total BTEX	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	121 119 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0849 0.0509 0.412 0.642 1.86 2.502 3.0498	568765 MQL 0.0100 0.0100 0.0100 0.0200	70 - 1 70 - 1 70 - 1 5DL 0.00192 0.00228 0.00282 0.00282 0.00507 0.00172 0.00172 0.00172	135 % 135 % Prep Ma Tech: Units Mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28 12.26.18 15:28	Flag	Dil Factor 5 5 5 5 5 5

TRC Solutions, Inc, Midland, TX

Sample Id: TT-1 @ 19 '		Matrix:	Soil		Sample	Depth: 19 ft		
Lab Sample Id: 608722-005		Date Collecte	ed: 12.12.18 08	3.40	Date Re	eceived: 12.14.1	8 11.5	51
Analytical Method: Inorganic Anions by I	EPA 300/300.1				Prep Me	ethod: E300P		
Analyst: CHE		% Moist:			Tech:	CHE		
Seq Number: 3073892		Date Prep: 12	2.21.18 15.00					
		Prep seq: 76	668612					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	70.4	4.95	0.850	mg/kg	12.21.18 17:56		1
Analytical Method: TPH by SW8015 Mod	d				Prep Me	ethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3073906		Date Prep: 12	2.21.18 17.00					
		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	565	15.0	7.99	mg/kg	12.22.18 20:06		1
Diesel Range Organics (DRO)	C10C28DRO	1510	15.0	8.11	mg/kg	12.22.18 20:06		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	125	15.0	8.11	mg/kg	12.22.18 20:06		1
Total TPH	PHC635	2200		7.99	mg/kg	12.22.18 20:06		
Surrogate		% Recovery		Limits	Unit	ts Analysis	Date	Flag
Surrogate 1-Chlorooctane		% Recovery 129		Limits 70 - 1			Date	Flag
		-			35 %		Date	Flag
1-Chlorooctane		129		70 - 1	35 %		Date	Flag
1-Chlorooctane o-Terphenyl		129		70 - 1	35 % 35 %		Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM		129 125 % Moist:	2.26.18 08.15	70 - 1	135 % 135 % Prep Me	ethod: 5030B	Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021		129 125		70 - 1	135 % 135 % Prep Me	ethod: 5030B	Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM	CAS Number	129 125 % Moist: Date Prep: 12		70 - 1	135 % 135 % Prep Me	ethod: 5030B	Date	Flag Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024		129 125 % Moist: Date Prep: 12 Prep seq: 76	668765	70 - 1 70 - 1	35 % 35 % Prep Mo Tech:	ethod: 5030B SCM Analysis		-
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene	Number 71-43-2 108-88-3	129 125 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0379 1.97	568765 MQL 0.0100 0.0100	70 - 1 70 - 1 SDL 0.00192 0.00228	135 % 135 % Prep Ma Tech: Units mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:47 12.26.18 15:47		Dil Factor 5 5
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene	Number 71-43-2 108-88-3 100-41-4	129 125 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0379 1.97 0.306	568765 MQL 0.0100 0.0100 0.0100	70 - 1 70 - 1 SDL 0.00192 0.00228 0.00282	35 % 35 % Prep Ma Tech: Units mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47		Dil Factor 5 5 5 5
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes	Number 71-43-2 108-88-3 100-41-4 179601-23-1	129 125 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0379 1.97 0.306 0.516	568765 MQL 0.0100 0.0100 0.0100 0.0200	70 - 1 70 - 1 5DL 0.00192 0.00228 0.00282 0.00282 0.00507	35 % 35 % Prep Ma Tech: Units mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47		Dil Factor 5 5 5 5 5 5
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	129 125 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0379 1.97 0.306 0.516 1.87	568765 MQL 0.0100 0.0100 0.0100	70 - 1 70 - 1 5 DL 0.00192 0.00228 0.00282 0.00282 0.00507 0.00172	135 % 35 % Prep Ma Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47		Dil Factor 5 5 5 5
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total	Number 71-43-2 108-88-3 100-41-4 179601-23-1	129 125 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0379 1.97 0.306 0.516 1.87 2.386	568765 MQL 0.0100 0.0100 0.0100 0.0200	70 - 1 70 - 1 70 - 1 5DL 0.00192 0.00228 0.00282 0.00282 0.00507 0.00172 0.00172	135 % 35 % Prep Me Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47		Dil Factor 5 5 5 5 5 5
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	129 125 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0379 1.97 0.306 0.516 1.87	568765 MQL 0.0100 0.0100 0.0100 0.0200	70 - 1 70 - 1 5 DL 0.00192 0.00228 0.00282 0.00282 0.00507 0.00172	135 % 35 % Prep Ma Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47		Dil Factor 5 5 5 5 5 5
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	129 125 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0379 1.97 0.306 0.516 1.87 2.386	568765 MQL 0.0100 0.0100 0.0100 0.0200	70 - 1 70 - 1 70 - 1 5DL 0.00192 0.00228 0.00282 0.00282 0.00507 0.00172 0.00172	135 % 35 % Prep Me Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47	Flag	Dil Factor 5 5 5 5 5 5
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total Total BTEX	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	129 125 % Moist: Date Prep: 12 Prep seq: 76 Result 0.0379 1.97 0.306 0.516 1.87 2.386 4.6999	568765 MQL 0.0100 0.0100 0.0100 0.0200	70 - 1 70 - 1 70 - 1 5DL 0.00192 0.00228 0.00282 0.00507 0.00172 0.00172 0.00172	135 % 135 % Prep Ma Tech: Units Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47 12.26.18 15:47	Flag	Dil Factor 5 5 5 5 5 5

TRC Solutions, Inc, Midland, TX

Sample Id: TT-1 @ 20 '		Matrix:	Soil		Sample	Depth: 20 ft		
Lab Sample Id: 608722-006		Date Collecte	ed: 12.12.18 0	8.50	Date R	eceived: 12.14.1	8 11.5	51
Analytical Method: Inorganic Anions by I	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: CHE		% Moist:			Tech:	CHE		
Seq Number: 3073892		Date Prep: 12	2.21.18 15.00					
		Prep seq: 76	668612					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	57.4	4.96	0.852	mg/kg	12.21.18 18:02		1
Analytical Method: TPH by SW8015 Mo	d				Prep M	ethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3073906		Date Prep: 12	2.21.18 17.00					
		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	448	15.0	7.99	mg/kg	12.22.18 20:27		1
Diesel Range Organics (DRO)	C10C28DRO	1230	15.0	8.11	mg/kg	12.22.18 20:27		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	97.6	15.0	8.11	mg/kg	12.22.18 20:27		1
Total TPH	PHC635	1775.6		7.99	mg/kg	12.22.18 20:27		
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
1-Chlorooctane		125		70 - 1	135 %		Date	Flag
-					135 %		Date	Flag
1-Chlorooctane o-Terphenyl		125		70 - 1	135 %		Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021		125		70 - 1	135 % 135 %		Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM		125 120	2.26.18 08.15	70 - 1	135 % 135 % Prep M	ethod: 5030B	Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM		125 120 % Moist:		70 - 1	135 % 135 % Prep M	ethod: 5030B	Date	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM	CAS Number	125 120 % Moist: Date Prep: 12		70 - 1	135 % 135 % Prep M	ethod: 5030B	Flag	Flag Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene	Number 71-43-2	125 120 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000385	568765 MQL 0.00200	70 - 3 70 - 3 SDL 0.000385	135 % 135 % Prep M Tech: Units mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:09		
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene	Number 71-43-2 108-88-3	125 120 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000385 0.00483	568765 MQL 0.00200 0.00200	70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 -	135 % 135 % Prep M Tech: Units mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:09 12.26.18 15:09	Flag	Dil Factor
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene	Number 71-43-2 108-88-3 100-41-4	125 120 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000385 0.00483 0.0169	568765 MQL 0.00200 0.00200 0.00200	70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 -	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09	Flag	Dil Factor
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes	Number 71-43-2 108-88-3 100-41-4 179601-23-1	125 120 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000385 0.00483 0.0169 0.0512	568765 MQL 0.00200 0.00200 0.00200 0.00200 0.00400	70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 -	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	Analysis Date 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09	Flag	Dil Factor 1 1 1 1 1 1
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	125 120 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000385 0.00483 0.0169 0.0512 0.0532	568765 MQL 0.00200 0.00200 0.00200	70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 -	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09	Flag	Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes	Number 71-43-2 108-88-3 100-41-4 179601-23-1	125 120 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000385 0.00483 0.0169 0.0512	568765 MQL 0.00200 0.00200 0.00200 0.00200 0.00400	70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 -	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	Analysis Date 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09	Flag	Dil Factor 1 1 1 1 1 1
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	125 120 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000385 0.00483 0.0169 0.0512 0.0532 0.1044	568765 MQL 0.00200 0.00200 0.00200 0.00200 0.00400	70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 -	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Analysis Date 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09	Flag U	Dil Factor 1 1 1 1 1 1
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total Total BTEX	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	125 120 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000385 0.00483 0.0169 0.0512 0.0532 0.1044 0.12613	568765 MQL 0.00200 0.00200 0.00200 0.00200 0.00400	70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 -	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	iethod: 5030B SCM Analysis Date 12.26.18 12.26.18 12.26.18 12.26.18 12.26.18 12.26.18 12.26.18 12.26.18 12.26.18 12.26.18 12.26.18 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09	Flag U	Dil Factor 1 1 1 1 1 1
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074024 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total Total BTEX	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	125 120 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000385 0.00483 0.0169 0.0512 0.0532 0.1044 0.12613	568765 MQL 0.00200 0.00200 0.00200 0.00200 0.00400	70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 -	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B SCM Analysis Date 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09 12.26.18 15:09	Flag U	Dil Factor 1 1 1 1 1 1

608722

TRC Solutions, Inc, Midland, TX

Moore Sweet

Sample Id: TT-1 @ 21' Lab Sample Id: 608722-007 Analytical Method: TPH by SW8015 Mod		Matrix: Date Collecte	Soil d: 12.12.18 09	9.00	-	e Depth: 21 ft eceived: 12.14. lethod: 1005	18 11.5	1
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3073906		Date Prep: 12	.21.18 17.00					
		Prep seq: 76	68683					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	454	14.9	7.97	mg/kg	12.22.18 20:48		1
Diesel Range Organics (DRO)	C10C28DRO	1200	14.9	8.10	mg/kg	12.22.18 20:48		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	102	14.9	8.10	mg/kg	12.22.18 20:48		1
Total TPH	PHC635	1756		7.97	mg/kg	12.22.18 20:48		
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
1-Chlorooctane		122		70 - 3	135 %	,)		
o-Terphenyl		114		70 - 1	135 %	,)		
Analytical Method: BTEX by EPA 8021					Prep M	lethod: 5030B		
Analyst: SCM		% Moist:			Tech:	SCM		
Seq Number: 3074046		Date Prep: 12	.26.18 12.00					

Prep seq: 7668772

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	0.0101	0.0200	0.00386	mg/kg	12.27.18 01:14	JK	10
Toluene	108-88-3	0.740	0.0200	0.00457	mg/kg	12.27.18 01:14	Κ	10
Ethylbenzene	100-41-4	0.213	0.0200	0.00566	mg/kg	12.27.18 01:14	Κ	10
m_p-Xylenes	179601-23-1	0.410	0.0401	0.0102	mg/kg	12.27.18 01:14	Κ	10
o-Xylene	95-47-6	2.03	0.0200	0.00345	mg/kg	12.27.18 01:14	Κ	10
Xylenes, Total	1330-20-7	2.44		0.00345	mg/kg	12.27.18 01:14	Κ	
Total BTEX		3.4031		0.00345	mg/kg	12.27.18 01:14	Κ	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1,4-Difluorobenzene		127		70 - 1	30 %	,		
4-Bromofluorobenzene		198		70 - 1	30 %	,)		**

TRC Solutions, Inc, Midland, TX

Moore Sweet

Sample Id: TT-1 @ 22' Lab Sample Id: 608722-008 Analytical Method: TPH by SW8015 Mod Analyst: ARM Seq Number: 3073906	l	Matrix: Date Collecte % Moist: Date Prep: 12	Soil d: 12.12.18 09	9.10	-	e Depth: 22 ft eceived: 12.14. Iethod: 1005 ARM	18 11.5	51
Parameter	CAS Number	Prep seq: 76 Result		SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Total TPH	PHC610 C10C28DRO PHCG2835 PHC635	554 1470 132 2156	15.0 15.0 15.0	7.99 8.12 8.12 7.99	mg/kg mg/kg mg/kg mg/kg	12.22.18 21:09 12.22.18 21:09 12.22.18 21:09 12.22.18 21:09 12.22.18 21:09		1 1 1
Surrogate 1-Chlorooctane o-Terphenyl		% Recovery 124 123		Limits 70 - 70 -	/-	, b	Date	Flag
Analytical Method: BTEX by EPA 8021 Analyst: SCM Seq Number: 3074046		% Moist: Date Prep: 12	.26.18 12.00		Prep M Tech:	lethod: 5030B SCM		

Prep seq: 7668772

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	0.00569	0.00998	0.00192	mg/kg	12.27.18 01:33	JK	5
Toluene	108-88-3	0.610	0.00998	0.00227	mg/kg	12.27.18 01:33	Κ	5
Ethylbenzene	100-41-4	0.164	0.00998	0.00282	mg/kg	12.27.18 01:33	Κ	5
m_p-Xylenes	179601-23-1	0.305	0.0200	0.00506	mg/kg	12.27.18 01:33	Κ	5
o-Xylene	95-47-6	1.43	0.00998	0.00172	mg/kg	12.27.18 01:33	Κ	5
Xylenes, Total	1330-20-7	1.735		0.00172	mg/kg	12.27.18 01:33	Κ	
Total BTEX		2.51469		0.00172	mg/kg	12.27.18 01:33	K	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1,4-Difluorobenzene		116		70 - 1	130 %			
4-Bromofluorobenzene		216		70 - 1	130 %)		**

Total BTEX

Certificate of Analytical Results

608722

TRC Solutions, Inc, Midland, TX

Moore Sweet

Sample Id: TT-1 @ 23'		Matrix:	Soil		Sample	e Depth: 23 ft		
Lab Sample Id: 608722-009		Date Collecte	ed: 12.12.18 0	9.20	Date R	eceived: 12.14.1	18 11.5	51
Analytical Method: TPH by SW8015 Mod	1				Prep M	lethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3073906		Date Prep: 12	2.21.18 17.00					
		Prep seq: 76	568683					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	52.9	15.0	7.99	mg/kg	12.22.18 21:30		1
Diesel Range Organics (DRO)	C10C28DRO	492	15.0	8.11	mg/kg	12.22.18 21:30		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	46.8	15.0	8.11	mg/kg	12.22.18 21:30		1
Total TPH	PHC635	591.7		7.99	mg/kg	12.22.18 21:30		
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
1-Chlorooctane		100		70 -	135 %			
o-Terphenyl		105		70 -	135 %	,)		
Analytical Method: BTEX by EPA 8021					Prep M	lethod: 5030B		
Analyst: SCM		% Moist:			Tech:	SCM		
Seq Number: 3074046		Date Prep: 12	2.26.18 12.00					
		Prep seq: 76	568772					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	0.00354	0.00996	0.00192	mg/kg	12.27.18 01:53	JK	5
Toluene	108-88-3	0.00513	0.00996	0.00227	mg/kg	12.27.18 01:53	JK	5
Ethylbenzene	100-41-4	0.00503	0.00996	0.00281	mg/kg	12.27.18 01:53	JK	5
m_p-Xylenes	179601-23-1	0.00951	0.0199	0.00505	mg/kg	12.27.18 01:53	JK	5
o-Xylene	95-47-6	0.0837	0.00996	0.00171	mg/kg	12.27.18 01:53	Κ	5
Xylenes, Total	1330-20-7	0.09321		0.00171	mg/kg	12.27.18 01:53	Κ	
				0.00171				

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
1,4-Difluorobenzene	112	70 - 130	%		
4-Bromofluorobenzene	71	70 - 130	%		

0.00171

0.10691

12.27.18 01:53

mg/kg

Κ

TRC Solutions, Inc, Midland, TX

Sample Id: TT-1 @ 24'		Matrix:	Soil		Sample	Depth: 24 ft		
Lab Sample Id: 608722-010		Date Collected	d: 12.12.18 0	9.30	Date R	eceived: 12.14.1	18 11.5	51
Analytical Method: TPH by SW8015 Mod					Prep M	ethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3073906		Date Prep: 12.	.21.18 17.00					
		Prep seq: 76	68683					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	78.1	15.0	7.99	mg/kg	12.22.18 21:51		1
Diesel Range Organics (DRO)	C10C28DRO	561	15.0	8.12	mg/kg	12.22.18 21:51		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	50.9	15.0	8.12	mg/kg	12.22.18 21:51		1
Total TPH	PHC635	690		7.99	mg/kg	12.22.18 21:51		
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
1-Chlorooctane		112		70 - 1	35 %	1		
o-Terphenyl		113		70 - 1	35 %	,		
Analytical Method: BTEX by EPA 8021					Prep M	ethod: 5030B		

7 mary a		ulod. DTEA by EIA 0021		r rep method.	3030D
Analys	t:	SCM	% Moist:	Tech:	SCM
Seq Nu	mber:	3074046	Date Prep: 12.26.18 12.00		
			Prep seq: 7668772		

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.000388	0.00202	0.000388	mg/kg	12.27.18 02:12	UK	1
Toluene	108-88-3	0.000585	0.00202	0.000459	mg/kg	12.27.18 02:12	JK	1
Ethylbenzene	100-41-4	0.00211	0.00202	0.000569	mg/kg	12.27.18 02:12	Κ	1
m_p-Xylenes	179601-23-1	0.00321	0.00403	0.00102	mg/kg	12.27.18 02:12	JK	1
o-Xylene	95-47-6	0.0265	0.00202	0.000347	mg/kg	12.27.18 02:12	Κ	1
Xylenes, Total	1330-20-7	0.02971		0.000347	mg/kg	12.27.18 02:12	Κ	
Total BTEX		0.032405		0.000347	mg/kg	12.27.18 02:12	Κ	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1,4-Difluorobenzene		103		70 - 1	130 %	,)		
4-Bromofluorobenzene		120		70 - 1	130 %	,)		

TRC Solutions, Inc, Midland, TX

Moore Sweet

Sample Id: TT-1 @25 '		Matrix:	Soil			e Depth: 25 ft		
Lab Sample Id: 608722-011		Date Collecte	d: 12.12.18 ()9.40	Date R	eceived: 12.14.	18 11.5	51
Analytical Method: TPH by SW8015 Mod	l				Prep M	lethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3073906		Date Prep: 12	.21.18 17.00					
		Prep seq: 76	68683					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	9.88	15.0	7.98	mg/kg	12.22.18 22:13	J	1
Diesel Range Organics (DRO)	C10C28DRO	117	15.0	8.10	mg/kg	12.22.18 22:13		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	13.3	15.0	8.10	mg/kg	12.22.18 22:13	J	1
Total TPH	PHC635	140.18		7.98	mg/kg	12.22.18 22:13		
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
1-Chlorooctane		95		70 -	135 %	,)		
o-Terphenyl		97		70 -	135 %	b		
Analytical Method: BTEX by EPA 8021					Prep M	lethod: 5030B		
Analyst: SCM		% Moist:			Tech:	SCM		

Seq Number: 3074046

Prep seq: 7668772

Date Prep: 12.26.18 12.00

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.000385	0.00200	0.000385	mg/kg	12.27.18 02:31	UK	1
Toluene	108-88-3	< 0.000456	0.00200	0.000456	mg/kg	12.27.18 02:31	UK	1
Ethylbenzene	100-41-4	< 0.000565	0.00200	0.000565	mg/kg	12.27.18 02:31	UK	1
m_p-Xylenes	179601-23-1	< 0.00101	0.00400	0.00101	mg/kg	12.27.18 02:31	UK	1
o-Xylene	95-47-6	0.00371	0.00200	0.000344	mg/kg	12.27.18 02:31	Κ	1
Xylenes, Total	1330-20-7	0.00371		0.000344	mg/kg	12.27.18 02:31	Κ	
Total BTEX		0.00371		0.000344	mg/kg	12.27.18 02:31	K	
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
1,4-Difluorobenzene		110		70 - 1	30 %			
4-Bromofluorobenzene		110		70 - 1	30 %)		

TRC Solutions, Inc, Midland, TX

Sample Id:	7668162-1-BLK		Matrix:	Solid		Sample	e Depth:		
Lab Sample Id	: 7668162-1-BLK		Date Collecte	d:		Date R	eceived:		
Analytical Me	thod: Inorganic Anions by I	EPA 300/300.1				Prep M	ethod: E300P		
Analyst:	CHE		% Moist:			Tech:	CHE		
Seq Number:	3073168		Date Prep: 12	2.17.18 09.00	1				
			Prep seq: 76	68162					
Parameter	r	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride		16887-00-6	<0.858	5.00	0.858	mg/kg	12.17.18 09:59	U	1
Sample Id:	7668232-1-BLK		Matrix:	Solid		Sample	Depth:		
Lab Sample Id	: 7668232-1-BLK		Date Collecte	d:		Date R	eceived:		
Analytical Me	thod: BTEX by EPA 8021					Prep M	lethod: 5030B		
Analyst:	SCM		% Moist:			Tech:	SCM		
Seq Number:	3073258		Date Prep: 12	2.17.18 08.45					
			Prep seq: 76	68232					
Parameter	r	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene		71-43-2	< 0.000387	0.00201	0.000387	mg/kg	12.17.18 10:40	U	1
Toluene		108-88-3	< 0.000458	0.00201	0.000458	mg/kg	12.17.18 10:40	U	1
Ethylbenzer	ne	100-41-4	< 0.000568	0.00201	0.000568	mg/kg	12.17.18 10:40	U	1
m_p-Xylend	es	179601-23-1	< 0.00102	0.00402	0.00102	mg/kg	12.17.18 10:40	U	1
o-Xylene		95-47-6	<0.000346	0.00201	0.000346	mg/kg	12.17.18 10:40	U	1
Surrogate			% Recovery		Limits	Uni	its Analysis	Date	Flag
1,4-Difluor	obenzene		99		70 - 1	30 %			
4-Bromoflu	orobenzene		88		70 - 1	.30 %			

TRC Solutions, Inc, Midland, TX

Sample Id: 7668405-1-BLK		Matrix:	Solid		Sample	e Depth:		
Lab Sample Id: 7668405-1-BLK		Date Collecte	d:		Date R	eceived:		
Analytical Method: TPH by SW8015 M	lod				Prep M	lethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3073493		Date Prep: 12	2.19.18 18.00					
		Prep seq: 76	668405					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	<8.00	15.0	8.00	mg/kg	12.19.18 20:57	U	1
Diesel Range Organics (DRO)	C10C28DRO	<8.13	15.0	8.13	mg/kg	12.19.18 20:57	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<8.13	15.0	8.13	mg/kg	12.19.18 20:57	U	1
Total TPH	PHC635	<8		8	mg/kg	12.19.18 20:57	U	
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Surrogate		% Recovery 107		Limits 70 - 1		v	Date	Flag
0					135 %	,)	Date	Flag
1-Chlorooctane		107	Solid	70 - 1	135 % 135 %	,)	Date	Flag
1-Chlorooctane o-Terphenyl		107 109		70 - 1	135 % 135 % Sample		Date	Flag
1-Chlorooctane o-Terphenyl Sample Id: 7668612-1-BLK	y EPA 300/300.1	107 109 Matrix:		70 - 1	135 % 135 % Sample	Depth: eceived:		Flag
1-Chlorooctane o-Terphenyl Sample Id: 7668612-1-BLK Lab Sample Id: 7668612-1-BLK	y EPA 300/300.1	107 109 Matrix:		70 - 1	135 % 135 % Sample Date R	Depth: eceived:		Flag
1-Chlorooctane o-Terphenyl Sample Id: 7668612-1-BLK Lab Sample Id: 7668612-1-BLK Analytical Method: Inorganic Anions by	y EPA 300/300.1	107 109 Matrix: Date Collecte	d:	70 - 1	135 % 135 % Sample Date R Prep M	Depth: ecceived: fethod: E300P		Flag
1-Chlorooctane o-Terphenyl Sample Id: 7668612-1-BLK Lab Sample Id: 7668612-1-BLK Analytical Method: Inorganic Anions by Analyst: CHE	y EPA 300/300.1	107 109 Matrix: Date Collecte % Moist:	d: 2.21.18 15.00	70 - 1	135 % 135 % Sample Date R Prep M	Depth: ecceived: fethod: E300P		Flag
1-Chlorooctane o-Terphenyl Sample Id: 7668612-1-BLK Lab Sample Id: 7668612-1-BLK Analytical Method: Inorganic Anions by Analyst: CHE	y EPA 300/300.1 CAS Number	107 109 Matrix: Date Collecte % Moist: Date Prep: 12	d: 2.21.18 15.00	70 - 1	135 % 135 % Sample Date R Prep M	Depth: ecceived: fethod: E300P		Flag Dil Factor

TRC Solutions, Inc, Midland, TX

Moore Sweet

Sample Id: 7668683-1-BLK		Matrix:	Solid		Sample D	Depth:		
Lab Sample Id: 7668683-1-BLK		Date Collected	d:		Date Rec	eived:		
Analytical Method: TPH by SW8015 Mod					Prep Met	hod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3073906		Date Prep: 12	.21.18 17.00					
		Prep seq: 76	68683					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Di Flag	il Factor

Gasoline Range Hydrocarbons (GRO)	PHC610	<8.00	15.0	8.00	mg/kg	12.22.18 12:58	U	1
Diesel Range Organics (DRO)	C10C28DRO	9.78	15.0	8.13	mg/kg	12.22.18 12:58	J	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<8.13	15.0	8.13	mg/kg	12.22.18 12:58	U	1
Total TPH	PHC635	9.78		8	mg/kg	12.22.18 12:58	J	

Surrogate	% Recovery		Limits	Units	Analysis Date	Flag
1-Chlorooctane	125		70 - 135	%		
o-Terphenyl	94		70 - 135	%		
Sample Id: 7668765-1-BLK	Matrix:	Solid	Sa	ample Dept	th:	
Lab Sample Id: 7668765-1-BLK	Date Collect	ed:	D	ate Receive	ed:	
Analytical Method: BTEX by EPA 8021			Pi	rep Method	l: 5030B	
Analyst: SCM	% Moist:		T	ech:	SCM	
Seq Number: 3074024	Date Prep: 1	2.26.18 08.15				

Prep seq: 7668765

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.000385	0.00200	0.000385	mg/kg	12.26.18 14:50	U	1
Toluene	108-88-3	< 0.000456	0.00200	0.000456	mg/kg	12.26.18 14:50	U	1
Ethylbenzene	100-41-4	< 0.000565	0.00200	0.000565	mg/kg	12.26.18 14:50	U	1
m_p-Xylenes	179601-23-1	< 0.00101	0.00400	0.00101	mg/kg	12.26.18 14:50	U	1
o-Xylene	95-47-6	<0.000344	0.00200	0.000344	mg/kg	12.26.18 14:50	U	1
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1,4-Difluorobenzene		99		70 -	130 %	ó		
4-Bromofluorobenzene		85		70 -	130 %	ó		

TRC Solutions, Inc, Midland, TX

Sample Id: 7668772-1-BLK	Matrix: Solid	Sample Depth:
Lab Sample Id: 7668772-1-BLK	Date Collected:	Date Received:
Analytical Method: BTEX by EPA 8021		Prep Method: 5030B
Analyst: SCM	% Moist:	Tech: SCM
Seq Number: 3074046	Date Prep: 12.26.18 12.00	
	Prep seq: 7668772	
CA	8	Analysis Dil Factor

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.000385	0.00200	0.000385	mg/kg	12.27.18 00:55	U	1
Toluene	108-88-3	< 0.000456	0.00200	0.000456	mg/kg	12.27.18 00:55	U	1
Ethylbenzene	100-41-4	< 0.000565	0.00200	0.000565	mg/kg	12.27.18 00:55	U	1
m_p-Xylenes	179601-23-1	< 0.00101	0.00400	0.00101	mg/kg	12.27.18 00:55	U	1
o-Xylene	95-47-6	< 0.000344	0.00200	0.000344	mg/kg	12.27.18 00:55	U	1
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

1,4-Difluorobenzene	107	70 - 130	%
4-Bromofluorobenzene	81	70 - 130	%

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: Moore Sweet

Ork Orders : 608722, Lab Batch #: 3073258	, Sample: 7668232-1-BKS / H	3KS Bate	Project I h: 1 Matrix			
Units: mg/kg	Date Analyzed: 12/17/18 09:06	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0309	0.0300	103	70-130	
4-Bromofluorobenzene		0.0266	0.0300	89	70-130	
Lab Batch #: 3073258	Sample: 7668232-1-BSD / H			x: Solid		
Units: mg/kg	Date Analyzed: 12/17/18 09:25	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	Anarytes	0.0202	0.0200		70.120	
4-Bromofluorobenzene		0.0302	0.0300	101	70-130 70-130	
					70-130	
Lab Batch #: 3073258	Sample: 608429-001 S / MS					
Units: mg/kg	Date Analyzed: 12/17/18 09:44	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0305	0.0300	102	70-130	
4-Bromofluorobenzene		0.0267	0.0300	89	70-130	
Lab Batch #: 3073258	Sample: 608429-001 SD / N	ISD Bate	h: 1 Matrix	r• Soil		
Units: mg/kg	Date Analyzed: 12/17/18 10:03		RROGATE R		STUDY	
	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0307	0.0300	102	70-130	
4-Bromofluorobenzene		0.0274	0.0300	91	70-130	
Lab Batch #: 3073258	Sample: 7668232-1-BLK / H	BLK Bate	h: 1 Matrix	s:Solid		
Units: mg/kg	Date Analyzed: 12/17/18 10:40	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	-	0.0298	0.0300	99	70-130	
4-Bromofluorobenzene		0.0265	0.0300	88	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Moore Sweet

ork Orders : 608722, Lab Batch #: 3074024	, Sample: 7668765-1-BKS / 1	3KS Batcl	Project I h: 1 Matrix					
Units: mg/kg	Date Analyzed: 12/26/18 12:25		RROGATE R		STUDY			
	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
	Analytes			[D]				
1,4-Difluorobenzene		0.0303	0.0300	101	70-130			
4-Bromofluorobenzene		0.0269	0.0300	90	70-130			
Lab Batch #: 3074024	Sample: 7668765-1-BSD / I	BSD Batcl	h: ¹ Matrix	:Solid				
Units: mg/kg	Date Analyzed: 12/26/18 12:44	SU	RROGATE R	ECOVERY S	STUDY			
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene	Analytes	0.0200	0.0200		70.120			
4-Bromofluorobenzene		0.0300	0.0300	100	70-130			
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				70-150			
Lab Batch #: 3074024	Sample: 609206-014 S / MS	MS Batch: 1 Matrix: Soil SURROGATE RECOVERY STUDY						
Units: mg/kg	Date Analyzed: 12/26/18 13:54	S U.	RROGATE R	ECOVERYS	STUDY			
BTEX by EPA 8021		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1.4-Difluorobenzene	Analytes	0.0286	0.0300	95	70-130			
4-Bromofluorobenzene		0.0280	0.0300	99	70-130			
					70 150			
Lab Batch #: 3074024	Sample: 609206-014 SD / N		h: 1 Matrix	-				
Units: mg/kg	Date Analyzed: 12/26/18 14:13	50.	KKUGAIE K					
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene		0.0300	0.0300	100	70-130			
4-Bromofluorobenzene		0.0272	0.0300	91	70-130			
Lab Batch #: 3074024	Sample: 7668765-1-BLK / 1	BLK Batcl	h: 1 Matrix	:Solid				
Units: mg/kg	Date Analyzed: 12/26/18 14:50	SU	RROGATE R	ECOVERY S	STUDY			
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene		0.0296	0.0300	99	70-130			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Moore Sweet

York Orders : 608722 Lab Batch #: 3074046	, Sample: 7668772-1-BKS /]	BKS Batcl	Project I h: 1 Matrix			
Units: mg/kg	Date Analyzed: 12/26/18 23:21		RROGATE R		STUDY	
	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0318	0.0300	106	70-130	
4-Bromofluorobenzene		0.0264	0.0300	88	70-130	
Lab Batch #: 3074046	Sample: 7668772-1-BSD / 1		-	-		
Units: mg/kg	Date Analyzed: 12/26/18 23:40	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes					
1,4-Difluorobenzene		0.0319	0.0300	106	70-130	
4-Bromofluorobenzene		0.0263	0.0300	88	70-130	
Lab Batch #: 3074046	Sample: 609206-040 S / MS					
Units: mg/kg	Date Analyzed: 12/27/18 00:00	SU	RROGATE R	ECOVERYS	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	•	0.0305	0.0300	102	70-130	
4-Bromofluorobenzene		0.0281	0.0300	94	70-130	
Lab Batch #: 3074046	Sample: 609206-040 SD / N	ASD Batc	h: 1 Matrix	:Soil	I I	
Units: mg/kg	Date Analyzed: 12/27/18 00:19		RROGATE R		STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	•	0.0322	0.0300	107	70-130	
4-Bromofluorobenzene		0.0263	0.0300	88	70-130	
Lab Batch #: 3074046	Sample: 7668772-1-BLK / 1	BLK Batc	h: ¹ Matrix	Solid	1 1	
Units: mg/kg	Date Analyzed: 12/27/18 00:55	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0322	0.0300	107	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Moore Sweet

York Orders : 608722 Lab Batch #: 3073493	, Sample: 7668405-1-BLK /	BLK Batc	Project II h: ¹ Matrix:			
Units: mg/kg	Date Analyzed: 12/19/18 20:57		RROGATE RI		STUDY	
	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		107	100	107	70-135	
o-Terphenyl		54.5	50.0	109	70-135	
Lab Batch #: 3073493	Sample: 7668405-1-BKS / 1	BKS Bate	h: ¹ Matrix:	Solid		
Units: mg/kg	Date Analyzed: 12/19/18 21:18	SU	RROGATE RI	ECOVERY	STUDY	
TPH	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Analytes	125	100	125	70-135	
o-Terphenyl		53.0	50.0	125	70-135	
	G 1 7669405 1 DCD //					
Lab Batch #: 3073493	Sample: 7668405-1-BSD / 1		h: 1 Matrix: RROGATE RI		STUDY	
Units: mg/kg	Date Analyzed: 12/19/18 21:38				1	
TPH	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	1 1111 1 1 1	121	100	121	70-135	
o-Terphenyl		52.9	50.0	106	70-135	
Lab Batch #: 3073493	Sample: 608832-001 S / M	S Batc	h: 1 Matrix	:Soil	1 1	
Units: mg/kg	Date Analyzed: 12/19/18 22:19	SU	RROGATE RI	ECOVERY	STUDY	
TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Analytes	100	00.6		70.125	
o-Terphenyl		108	99.6 49.8	108 96	70-135	
	01, C00022 001 CD / 1				10 133	
Lab Batch #: 3073493	Sample: 608832-001 SD / N		h: 1 Matrix: RROGATE RI		STUDV	
Units: mg/kg	Date Analyzed: 12/19/18 22:40	50			1 1	
				1	Control	
TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Limits %R	Flage
TPH	by SW8015 Mod Analytes	Found	Amount	%R	Limits	Flags

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Moore Sweet

ork Orders : 608722. Lab Batch #: 3073906	Sample: 7668683-1-BLK / 1	BLK Batcl	Project I h: 1 Matrix				
Units: mg/kg	Date Analyzed: 12/22/18 12:58		RROGATE R		STUDY		
	oy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
1-Chlorooctane		125	100	125	70-135		
o-Terphenyl		46.9	50.0	94	70-135		
Lab Batch #: 3073906	Sample: 7668683-1-BKS /]		-				
Units: mg/kg	Date Analyzed: 12/22/18 13:18	SU	RROGATE R	ECOVERY	STUDY		
TPH	oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	Analytes	126	100	126	70-135		
o-Terphenyl		56.8	50.0	1120	70-135		
Lab Batch #: 3073906	Sample: 7668683-1-BSD / 1	BSD Batcl	h: ¹ Matrix	·· Solid			
Units: mg/kg	Date Analyzed: 12/22/18 13:39	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod		I Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage	
	Analytes			[D]			
1-Chlorooctane		121	100	121	70-135		
o-Terphenyl		62.9	50.0	126	70-135		
Lab Batch #: 3073906	Sample: 609031-001 S / MS						
Units: mg/kg	Date Analyzed: 12/22/18 14:20	SU	RROGATE R	ECOVERY	STUDY		
TPH	oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		115	99.9	115	70-135		
o-Terphenyl		51.5	50.0	103	70-135		
Lab Batch #: 3073906	Sample: 609031-001 SD / N						
Units: mg/kg	Date Analyzed: 12/22/18 14:40	SU	RROGATE R	ECOVERY	STUDY		
ТРН І	oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		123	100	123	70-135		
		1		1			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Moore Sweet

Work Order #: 608722							Pro	ject ID:				
Analyst: SCM	D	ate Prepar	red: 12/17/20	18	Date Analyzed: 12/17/2018							
Lab Batch ID: 3073258 Sample: 766823	2-1-BKS	Batc	h #: 1		Matrix: Solid							
Units: mg/kg		BLAN	K /BLANK	SPIKE / 2	BLANK	SPIKE DUP	LICATE	RECOV	ERY STU	DY		
BTEX by EPA 8021 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Benzene	<0.000386	0.100	0.101	101	0.100	0.100	100	1	70-130	35		
Toluene	<0.000457	0.100	0.0925	93	0.100	0.0921	92	0	70-130	35	1	
Ethylbenzene	<0.000566	0.100	0.101	101	0.100	0.101	101	0	70-130	35	-	
m_p-Xylenes	< 0.00102	0.200	0.185	93	0.200	0.185	93	0	70-130	35	1	
o-Xylene	< 0.000345	0.100	0.0894	89	0.100	0.0898	90	0	70-130	35		
Analyst: SCM	D	ate Prepar	red: 12/26/20	18	-		Date A	nalyzed:	12/26/2018		4	
Lab Batch ID: 3074024 Sample: 766876	5-1-BKS	Batc	h #: 1					Matrix: S	Solid			
Units: mg/kg		BLAN	K /BLANK	SPIKE /	BLANK	SPIKE DUP	LICATE	RECOV	ERY STU	DY		
BTEX by EPA 8021 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Benzene	<0.000385	0.100	0.109	109	0.100	0.106	106	3	70-130	35		
Toluene	<0.000456	0.100	0.100	100	0.100	0.0973	97	3	70-130	35	+	
Ethylbenzene	< 0.000565	0.100	0.107	107	0.100	0.103	103	4	70-130	35	1	
m_p-Xylenes	< 0.00101	0.200	0.199	100	0.200	0.191	96	4	70-130	35	1	
o-Xylene	< 0.000344	0.100	0.0957	96	0.100	0.0923	92	4	70-130	35	1	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Moore Sweet

Work Order #: 608722							Pro	ject ID:			
Analyst: SCM	D	ate Preparo	ed: 12/26/201	8			Date A	nalyzed:	12/26/2018		
Lab Batch ID: 3074046 Sample: 7668772-1	-BKS	Batch	n#: 1		Matrix: Solid						
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	< 0.000384	0.0998	0.130	130	0.100	0.129	129	1	70-130	35	
Toluene	< 0.000455	0.0998	0.109	109	0.100	0.109	109	0	70-130	35	
Ethylbenzene	< 0.000564	0.0998	0.116	116	0.100	0.117	117	1	70-130	35	
m_p-Xylenes	< 0.00101	0.200	0.209	105	0.200	0.212	106	1	70-130	35	
o-Xylene	< 0.000344	0.0998	0.103	103	0.100	0.104	104	1	70-130	35	
Analyst: CHE	D	ate Preparo	ed: 12/17/201	8			Date A	nalyzed:	12/17/2018	•	•
Lab Batch ID: 3073168 Sample: 7668162-1	-BKS	Batch	n#: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	ЭY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<0.858	250	259	104	250	258	103	0	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Moore Sweet

Work Order #: 608722							Pro	ject ID:			
Analyst: CHE	D	ate Prepar	ed: 12/21/20	18			Date A	nalyzed:	12/21/2018		
Lab Batch ID: 3073892 Sample: 7668612-	-BKS	Batcl	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<0.858	250	274	110	250	274	110	0	90-110	20	
Analyst: ARM	D	ate Prepar	ed: 12/19/20	18	-	1	Date A	nalyzed:	12/19/2018	-	<u> </u>
Lab Batch ID: 3073493 Sample: 7668405-	-BKS	Batcl	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
TPH by SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Gasoline Range Hydrocarbons (GRO)	<8.00	1000	932	93	1000	921	92	1	70-135	20	
Diesel Range Organics (DRO)	<8.13	1000	973	97	1000	965	97	1	70-135	20	
Analyst: ARM	D	ate Prepar	ed: 12/21/20	18			Date A	nalyzed:	12/22/2018		
Lab Batch ID: 3073906 Sample: 7668683-	-BKS	Batcl	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
TPH by SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<8.00	1000	975	98	1000	1150	115	16	70-135	20	<u> </u>
Diesel Range Organics (DRO)	9.78	1000	977	98	1000	1160	116	17	70-135	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Project Name: Moore Sweet

Work Order # : 608722						Project II) :				
Lab Batch ID: 3073258	QC- Sample ID:	608429	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 12/17/2018	Date Prepared:	12/17/2	018	An	alyst: S	SCM					
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[0]	[D]	[E]	1105010 [1]	[G]			/0112	
Benzene	<0.000383	0.0996	0.0889	89	0.0998	0.0858	86	4	70-130	35	
Toluene	0.000590	0.0996	0.0819	82	0.0998	0.0807	80	1	70-130	35	
Ethylbenzene	0.00100	0.0996	0.0892	89	0.0998	0.0861	85	4	70-130	35	
m_p-Xylenes	0.00141	0.199	0.163	81	0.200	0.158	78	3	70-130	35	
o-Xylene	0.000670	0.0996	0.0797	79	0.0998	0.0770	76	3	70-130	35	
Lab Batch ID: 3074024	QC- Sample ID:	609206	-014 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed: 12/26/2018	Date Prepared:	12/26/2	018	An	alyst: S	SCM					
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.000385	0.100	0.110	110	0.100	0.115	115	4	70-130	35	
Toluene	<0.000456	0.100	0.109	109	0.100	0.105	105	4	70-130	35	
Ethylbenzene	<0.000565	0.100	0.124	124	0.100	0.112	112	10	70-130	35	
m_p-Xylenes	<0.00101	0.200	0.235	118	0.200	0.208	104	12	70-130	35	
o-Xylene	<0.000344	0.100	0.113	113	0.100	0.100	100	12	70-130	35	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: Moore Sweet

Work Order # :	608722						Project II):				
Lab Batch ID:	3074046	QC- Sample ID:	609206	-040 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	12/27/2018	Date Prepared:	12/26/2	018	An	alyst: S	SCM					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERYS	STUDY		
	BTEX by EPA 8021	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]		[G]				
Benzene		<0.000387	0.101	0.0954	94	0.100	0.111	111	15	70-130	35	
Toluene		<0.000458	0.101	0.0893	88	0.100	0.0939	94	5	70-130	35	
Ethylbenzene		<0.000568	0.101	0.0976	97	0.100	0.101	101	3	70-130	35	
m_p-Xylenes		<0.00102	0.201	0.180	90	0.201	0.183	91	2	70-130	35	
o-Xylene		< 0.000346	0.101	0.0882	87	0.100	0.0892	89	1	70-130	35	
Lab Batch ID:	3073168	QC- Sample ID:	608721	-003 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	12/17/2018	Date Prepared:	12/17/2	018	An	alyst: (CHE					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY S	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits %R	Control Limits	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	% K	%RPD	
Chloride		538	248	770	94	248	773	95	0	90-110	20	
Lab Batch ID:	3073168	QC- Sample ID:	608747	-002 S	Ba	tch #:	1 Matrix	k: Soil	·		-	
Date Analyzed:	12/17/2018	Date Prepared:	12/17/2	018	An	alyst: (CHE					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride		1270	250	1450	72	250	1480	84	2	90-110	20	X

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: Moore Sweet

Work Order # :	608722						Project II):				
Lab Batch ID:	3073892	QC- Sample ID:	609206	-030 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	12/21/2018	Date Prepared:	12/21/2	018	Ar	alyst: (CHE					
Reporting Units:	mg/kg		Ν	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	Kesun [F]	[G]	/0	701		
Chloride		21.3	248	283	106	248	271	101	4	90-110	20	
Lab Batch ID:	3073892	QC- Sample ID:	609489	-001 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	12/21/2018	Date Prepared:	12/21/2	018	Ar	alyst: (CHE					
Reporting Units:	mg/kg		Ν	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[C]	⁷ 6K [D]	E]	Kesuit [F]	5%K [G]	70	70K	70KFD	
Chloride		68.2	250	324	102	250	328	104	1	90-110	20	
Lab Batch ID:	3073493	QC- Sample ID:	608832	-001 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	12/19/2018	Date Prepared:	12/19/2	018	Ar	alyst: A	ARM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range	e Hydrocarbons (GRO)	<7.97	996	853	86	998	868	87	2	70-135	20	
Diesel Range C	Organics (DRO)	89.1	996	940	85	998	954	87	1	70-135	20	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: Moore Sweet

Work Order # :	608722						Project II):				
Lab Batch ID:	3073906	QC- Sample ID:	609031	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	12/22/2018	Date Prepared:	12/21/2	018	An	alyst: A	ARM					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERYS	STUDY		
]	ГРН by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range	Hydrocarbons (GRO)	<7.99	999	947	95	1000	963	96	2	70-135	20	
Diesel Range Or	rganics (DRO)	43.7	999	993	95	1000	1000	96	1	70-135	20	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

\bigcirc
ABORATOR

ì

CHAIN OF CUSTODY

Page 1 Of 1

Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors, it assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.	co will be liable only for the cost of samples received by Xenco but not ana	ons of service. Xen of samples. Any sar	s and conditi I to the cost	s standard term ity will be limite	ractors. It assign ct. Xenco's liabi	les and subconti ed to each proje	Xenco, its affilia \$75 will be appl	nt company to num charge of	r order from clie Xenco. A minir	s a valid purchase rond the control o	nent of samples constitutes due to circumstances bey outed client contract.	ument and relinquishn Client if such loses are lated under a fully exe	Notice: Notice: Signature of this document and relinquishment of samples consi losses of expenses incurred by the Client if such loses are due to circumstance be enforced unless previously negotiated under a fully executed client contract.	Notic be ø
Cooler Temp. Therma Carr. Factor	licable On Ice	Preserved where applicable	Prese	*	Custody Seal #			Received By: 5	Rece 5	Date Time:	a		Relinquished by:	ол
	Received By:	Date Time:	1	By:	Relinquished By:			ived By:	3 Rece	Date Time:		ę	Kelinquisned by:	ω
N 12/14/19,	July 2 Wester av	Date Time: 3	e>		Relinquished By:	rei lez	a (gonze) a	Received By: 1 [SQUYGNTQ	Reco	Date Time: 12 - 13 - 18		P	Relinquished by Sampler:	-1-1
		reu	DELIVERY		SION, INCLUD	ANGE POSSES	E SAMPLES CH	W EACH TIM	MENTED BELO	MUST BE DOCU	SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER			
										3	received by 5-00	eived by Lah. if	TAT Starts Day received by Lah. if received by 5-00 nm	
	algroves@paalp.com	algr			******		cklist	TRRP Checklist	П				3 Day EMERGENCY	
	bcooper@trcsolutions.com	bco		11	UST / RG -411		LP Forms)	Level 3 (CLP Forms)	П		Contract TAT		2 Day EMERGENCY	
	zconder@trcsolutions.com	ZCO		V	TRRP Level IV		Level III Std QC+ Forms	Level III St			7 Day TAT		Next Day EMERGENCY	
	cibryant@paalp.com	cibr	fraw data)		Level IV (Full Data Pkg		ц С С	Level II Std QC			5 Day TAT		Same Day TAT	
	Notes:					e Information	Data Deliverable Information					Business days)	Turnaround Time (Business days)	
		ł						ی م	9:30	2487		24	-1	10
		7						205	9:20	P3FT		23	110	9
		7						0	9:10	228-11		22	17-10	
		7	_				-	¥ ~	9:00	2181		21 '	1-1-10	7
		<u>+-</u>					~	2 P.S	8:5t	2057		20'	11-10	6
		<u> </u>						すく	8:40	19FT			5 77-1019	5
	-	+-						8	\$:3	18FT (177-10 18	4
		4	7- 7-				ł	Ъ Л	8:20	1-1-1-		1	TT-10/	ω
		*	7- 7-				-	jo V	01.8	lie rit		6	17-101	N
		<i>*</i> -	7- 7-					8	7-12-18 8:00	15FT12	/	1	17-101	1
Field Comments		втех 8 <i>Но 6</i>	TPH 80 Chloride	MEOH	H2SO4 NaOH NaHSO4	NaOH/Zn Acetate HNO3	# of HCI	ne Matrix	Date Time	Sample Depth D		Field ID / Point of Collection		No.
A = Air	-				Number of preserved bottles	Number of]		Collection	Col		C C		
O = Oil WW = Waste Water		B				t			Ř	Invoice:	THE D		Zach Conder	San
OW =Ocean/Sea Water										_			Project Contact:	Pro
SW = Surface water SL = Sludge							0	Amber Grove	Invoice To: Plains Marketing c/o Amber Groves	Plain	Phone No: 432-234-5084	com	ail: zconder@trcsolutions.com	Email:
DW = Drinking Water P = Product						エ	THE T	101107	FAC	2			10 Desta Dr. Suite 150E Midland, TX 79705	Mid
S = Soil/Sed/Solid GW =Ground Water									Project Location:	Proje			Company Address:	Con
W = Water						-1			Project Name/Number:	Proje		ration	Company Name / Branch: TRC Environmental Corporation	F S
	· · · · · · · · · · · · · · · · · · ·					-	mation -	Project Information				formation	Client / Reporting Information	[
Matrix Codes	formation	Analytical Information												
TURPIAN	Xenco Job #	*	Xenco Quote #			am	www.xenco.com							
•••							51)	432-704-52	Midland, Texas (432-704-5251)	Midi		300)	Dallas Texas (214-902-0300)	_
	5-0900)	Phoenix, Arizona (480-355-0900)	hoenix, A	T			19-3334)	xas (210-50	San Antonio, Texas (210-509-3334)	San		rce 1990 1 -4200)	Setting the Standard since 1990 Stafford,Texas (281-240-4200)	
														•

Final 1.001

Setting the Standard since 1990

San Antonio, Texas (210-509-3334)	Phoenix. Arizona (480-3	-355-0900)	
Midland, Texas (432-704-5251)			
www.xenca.com	Xenco Quote #	Xenco Job #	777
	Analytical	I Information	Matrix Codes
Project Information			
Project Name/Number:			W = Water
Project Location:			S = Soil/Sed/Solid GW =Ground Water DW = Drinking Water
			P = Product SW = Surface water
			SL = Sludge OW ≕Ocean/Sea Water
Invoice:		·····	0 = 0il
	5 M E 5 300		WW= Waste Water
	3015 de E 802		A = AIT
Date Time Matrix bottles +CI vaOH/Z	H2SO4 HaOH HAHSO4 HEOH HONE TPH H Chlor BTEX		
$(12-12-189:40 \le 1$			
			терноликиет на колоније.
			······································
Data Deliverable Informati	lion	Notes:	
Level II Std QC	Level IV (Full Data Pkg /raw data)	jbryant@paalp.com	
Level III Std QC+ Forms		conder@trcsolutions.com	
Level 3 (CLP Forms)	UST / RG -411 bc	ocooper@trcsolutions.com	
TRRP Checklist	<u>a</u>	algroves@paalp.com	
		ED-EX / UPS: Tracking #	
ne: Reçaived By: // //		,, Receive	17 h 1. /10
Received By:		T 2JU	MIN NOT
		4	
ne: Received By: 5	Custody Seal # Preserved where ap	ipplicable On Ice Cooler T	B / r Thermo. Gen Factor
control of Xenco. A minimum charge of \$75 will be applied to each	project. Xenco's liability will be limited to the cost of samples. Any s	Xenco will be liable only for the cost of samples and s / samples received by Xenco but not analyzed will be	shall nột assume any rẻsponsibility for any invoiced at \$5 per sample. These terms will
	San Antonio, Texas (210-509-3334) Midland, Texas (432-704-5251) WWM_VENCED COM Project Name/Number Project Nam	San Antonio, Texas (43,2704-533) Midland, Texas (43,2704-535) Terminal and the second secon	Phoenix, Arizona (480-355-0900) Xenco Quote # Analytical Information BTEX 8021B BTEX 8021B BTEX 8021B Information Information

Final 1.001

Contexporte. .887 sn-x1 UJH ALA AIAM IA THOINARY OVERNIGHT FRI - 14 DEC HOLD 4102 2213 6026 0201 18K# eqE 2 ן מוריב נדאראי ידירותו יב בי או כול וידין:אמארידי אמאר האוראותי ביא צריים יל בי אחדיר אואר או און וויב אבייייי או אוריב נדאראי ידירותו יב בי או כול וידע אווידי:אמאר באריאותי ביא צריים יל ביא אוויד אואר אווידע אווידע אווידע אוריב אווידע ספי SSICI /EIEE/184C TTLEL XI ANUTAIW 0081-295 (25) 3600 COUNTY ROAD 1276 SOUTH FEDEX EXPRESS SHIP CENTER TO XENCO LABORATORIES BILL RECIPIENT DIWS SEXITIN IN COD: 000328/CHEE3211 HOLMOL: 23.00 LB WW SHIP DHIE: 13DEC18 UNITED STATES US 4008 N CHIMES ETC, LLC MAIL SERVICES ETC, LLC 0597-756 (976) ABOH: 01 NISISO

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 12/14/2018 11:51:00 AM Temperature Measuring device used : R8 Work Order #: 608722 Comments Sample Receipt Checklist 1.2 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

#18 Water VOC samples have zero headspace?

Date: 12/14/2018

N/A

Checklist completed by: Bitanna Teel Checklist reviewed by: Markoath Kelsey Brooks

Date: 12/17/2018

Analytical Report 614757

for TRC Solutions, Inc

Project Manager: B Cooper

Moore Sweet

27-FEB-19

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-28), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-18) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429), North Carolina (483) Xenco-Lakeland: Florida (E84098)

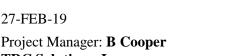


Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis (Detailed Report)	6
Explanation of Qualifiers (Flags)	13
SURR_QC_V62	14
LCS / LCSD Recoveries	18
MS / MSD Recoveries	20
Chain of Custody	22
Sample Receipt Conformance Report	24

27-FEB-19

TRC Solutions, Inc 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 614757 **Moore Sweet Project Address:**

B Cooper:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 614757. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 614757 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession KRAMER

Jessica Kramer **Project Assistant**

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 614757

TRC Solutions, Inc, Midland, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
TT 1@ 26'	S	02-13-19 00:00	26 ft	614757-001
TT 1@ 27'	S	02-13-19 00:00	27 ft	614757-002
TT 1@ 28'	S	02-13-19 00:00	28 ft	614757-003
TT 1@ 29'	S	02-13-19 00:00	29 ft	614757-004
TT 1@ 30'	S	02-13-19 00:00	30 ft	614757-005
TT 1@ 31'	S	02-13-19 00:00	31 ft	Not Analyzed
TT 1@ 32'	S	02-13-19 00:00	32 ft	Not Analyzed
TT 1@ 33'	S	02-13-19 00:00	33 ft	Not Analyzed

Client Name: TRC Solutions, Inc Project Name: Moore Sweet

Project ID: Work Order Number(s): 614757 Report Date: 27-FEB-19 Date Received: 02/15/2019

This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory.

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3080327 BTEX by EPA 8021 Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected. Samples affected are: 614757-002. Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3080460 BTEX by EPA 8021 Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected. Samples affected are: 614757-005.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

TRC Solutions, Inc, Midland, TX

Moore Sweet

Sample Id: TT 1@ 26'		Matrix:	Soil		Sample	e Depth: 26 ft		
Lab Sample Id: 614757-001		Date Collecte	ed: 02.13.19 00	0.00	Date R	eceived: 02.15.1	19 12.3	35
Analytical Method: TPH by SW8015 Mod					Prep M	Iethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3079495		Date Prep: 02	2 15 19 15 00					
Seq Number. 3079495								
		Prep seq: 76	0/1969					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	35.8	15.0	7.99	mg/kg	02.15.19 22:57		1
Diesel Range Organics (DRO)	C10C28DRO	209	15.0	8.11	mg/kg	02.15.19 22:57		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	13.7	15.0	8.11	mg/kg	02.15.19 22:57	J	1
Total TPH	PHC635	258.5		7.99	mg/kg	02.15.19 22:57		
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1-Chlorooctane		107		70 - 1	35 %	ó		
o-Terphenyl		110		70 - 1				
Analytical Method: BTEX by EPA 8021					Prep M			
Analyst: SCM		% Moist:			Tech:	SCM		
Seq Number: 3080327		Date Prep: 02	2.25.19 16.30					
		Prep seq: 76	572488					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	0.111	0.0199	0.00383	mg/kg	02.26.19 03:26		10
Toluene	108-88-3	0.0855	0.0199	0.00453	mg/kg	02.26.19 03:26		10
Ethylbenzene	100-41-4	0.0101	0.0199	0.00561	mg/kg	02.26.19 03:26	J	10
m_p-Xylenes	179601-23-1	0.0251	0.0398	0.0101	mg/kg	02.26.19 03:26	J	10
o-Xylene	95-47-6	0.152	0.0199	0.00342	mg/kg	02.26.19 03:26		10
Xylenes, Total	1330-20-7	0.1771		0.00342	mg/kg	02.26.19 03:26		
Total BTEX		0.3837		0.00342	mg/kg	02.26.19 03:26		
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag

	-	
1,4-Difluorobenzene	130	70 - 130
4-Bromofluorobenzene	118	70 - 130

% %

TRC Solutions, Inc, Midland, TX

Sample Id: TT 1@ 27'		Matrix:	Soil		Sample	Depth: 27 ft		
Sumpto fui			1 00 10 10 0		-	-	10.10	
Lab Sample Id: 614757-002		Date Collecte	d: 02.13.19 00).00	Date R	eceived: 02.15.1	19 12.3	5
Analytical Method: TPH by SW8015 Mod	l				Prep M	lethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3079495		Date Prep: 02	2.15.19 15.00					
		Prep seq: 76						
	CAS	riep seq.				Analysis		Dil Factor
Parameter	Number	Result	MQL	SDL	Units	Date	Flag	Dirractor
Gasoline Range Hydrocarbons (GRO)	PHC610	280	15.0	7.98	mg/kg	02.15.19 23:16		1
Diesel Range Organics (DRO)	C10C28DRO	879	15.0	8.10	mg/kg	02.15.19 23:16		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	58.7	15.0	8.10	mg/kg	02.15.19 23:16		1
Total TPH	PHC635	1217.7		7.98	mg/kg	02.15.19 23:16		
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
1-Chlorooctane		113		70 - 1	35 %			
o-Terphenyl		114		70 - 1	35 %)		
Analytical Method: BTEX by EPA 8021					Prep M	lethod: 5030B		
Analytical Method: BTEX by EPA 8021 Analyst: SCM		% Moist:			Prep M Tech:	lethod: 5030B SCM		
		% Moist: Date Prep: 02	2.25.19 16.30		-			
Analyst: SCM					-			
Analyst: SCM	CAS Number	Date Prep: 02		SDL	-		Flag	Dil Factor
Analyst: SCM Seq Number: 3080327		Date Prep: 02 Prep seq: 76	572488	SDL 0.0192	Tech:	SCM Analysis		Dil Factor 50
Analyst: SCM Seq Number: 3080327 Parameter	Number	Date Prep: 02 Prep seq: 76 Result	572488 MQL		Tech: Units	SCM Analysis Date		
Analyst: SCM Seq Number: 3080327 Parameter Benzene	Number 71-43-2	Date Prep: 02 Prep seq: 76 Result 0.113	572488 MQL 0.0998	0.0192	Tech: Units mg/kg	SCM Analysis Date 02.26.19 03:07		50
Analyst: SCM Seq Number: 3080327 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes	Number 71-43-2 108-88-3	Date Prep: 02 Prep seq: 76 Result 0.113 0.656	572488 MQL 0.0998 0.0998 0.0998 0.200	0.0192 0.0227	Tech: Units mg/kg mg/kg	SCM Analysis Date 02.26.19 03:07 02.26.19 03:07		50 50
Analyst: SCM Seq Number: 3080327 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene	Number 71-43-2 108-88-3 100-41-4	Date Prep: 02 Prep seq: 76 Result 0.113 0.656 0.134	0.0998 0.0998 0.0998	0.0192 0.0227 0.0282	Tech: Units mg/kg mg/kg	SCM Analysis Date 02.26.19 03:07 02.26.19 03:07 02.26.19 03:07		50 50 50
Analyst: SCM Seq Number: 3080327 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes	Number 71-43-2 108-88-3 100-41-4 179601-23-1	Date Prep: 02 Prep seq: 76 Result 0.113 0.656 0.134 0.360	572488 MQL 0.0998 0.0998 0.0998 0.200	0.0192 0.0227 0.0282 0.0506	Tech: Units mg/kg mg/kg mg/kg mg/kg	SCM Analysis Date 02.26.19 03:07 02.26.19 03:07 02.26.19 03:07 02.26.19 03:07		50 50 50 50

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
1,4-Difluorobenzene	107	70 - 130	%		
4-Bromofluorobenzene	175	70 - 130	%		**

TRC Solutions, Inc, Midland, TX

Sample Id: TT 1@ 28'		Matrix:	Soil		Sample	e Depth: 28 ft		
Lab Sample Id: 614757-003		Date Collecte	ed: 02.13.19 00	0.00	Date R	eceived: 02.15.1	19 12.3	35
Analytical Method: TPH by SW8015 Mod	l				Prep M	lethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3079495		Date Prep: 02	2.15.19 15.00					
beq rumber. 5077475		Prep seq: 76						
	CAS	riep seq. 70	5/1707			Analysis		Dil Factor
Parameter	Number	Result	MQL	SDL	Units	Date	Flag	Dirractor
Gasoline Range Hydrocarbons (GRO)	PHC610	31.0	15.0	7.98	mg/kg	02.15.19 23:35		1
Diesel Range Organics (DRO)	C10C28DRO	176	15.0	8.10	mg/kg	02.15.19 23:35		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	13.6	15.0	8.10	mg/kg	02.15.19 23:35	J	1
Total TPH	PHC635	220.6		7.98	mg/kg	02.15.19 23:35		
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1-Chlorooctane		112		70 - 1	135 %	,)		
o-Terphenyl		110		70 - 1	135 %	,)		
Analytical Method: BTEX by EPA 8021					Prep M	lethod: 5030B		
Analyst: SCM		% Moist:			Tech:	SCM		
Seq Number: 3080327		Date Prep: 02	2.25.19 16.30					
-		Prep seq: 76	672488					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	0.106	0.0201	0.00387	mg/kg	02.26.19 03:45		10
Toluene	108-88-3	0.00946	0.0201	0.00458	mg/kg	02.26.19 03:45	J	10
Ethylbenzene	100-41-4	0.0269	0.0201	0.00568	mg/kg	02.26.19 03:45		10
m_p-Xylenes	179601-23-1	0.0534	0.0402	0.0102	mg/kg	02.26.19 03:45		10
o-Xylene	95-47-6	0.0533	0.0201	0.00346	mg/kg	02.26.19 03:45		10
Xylenes, Total	1330-20-7	0.1067		0.00346	mg/kg	02.26.19 03:45		
Total BTEX		0.24906		0.00346	mg/kg	02.26.19 03:45		

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
1,4-Difluorobenzene	129	70 - 130	%		
4-Bromofluorobenzene	101	70 - 130	%		

TRC Solutions, Inc, Midland, TX

Sample Id: TT 1@ 29'		Matrix:	Soil		Sample	e Depth: 29 ft		
								_
Lab Sample Id: 614757-004		Date Collecte	d: 02.13.19 00).00	Date R	eceived: 02.15.1	9 12.3	5
Analytical Method: TPH by SW8015 Mod					Prep M	lethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3080373		Date Prep: 02	2.25.19 11.00					
		Prep seq: 76	572518					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	55.1	15.0	7.98	mg/kg	02.25.19 19:45		1
Diesel Range Organics (DRO)	C10C28DRO	286	15.0	8.10	mg/kg	02.25.19 19:45		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	24.5	15.0	8.10	mg/kg	02.25.19 19:45		1
Total TPH	PHC635	365.6		7.98	mg/kg	02.25.19 19:45		
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1-Chlorooctane		103		70 - 1	35 %	,)		
o-Terphenyl		107		70 - 1				
Analytical Method: BTEX by EPA 8021					Prep M	lethod: 5030B		
Analyst: SCM		% Moist:			Tech:	SCM		
Seq Number: 3080460		Date Prep: 02	2.26.19 13.45		100111	5011		
		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	0.00111	0.00202	0.000388	mg/kg	02.26.19 16:40	J	1
Toluene	108-88-3	0.0320	0.00202	0.000459	mg/kg	02.26.19 16:40		1
Ethylbenzene	100-41-4	0.00387	0.00202	0.000569	mg/kg	02.26.19 16:40		1
m_p-Xylenes	179601-23-1	0.00756	0.00403	0.00102	mg/kg	02.26.19 16:40		1
o-Xylene	95-47-6	0.0418	0.00202	0.000347	mg/kg	02.26.19 16:40		1
Xylenes, Total	1330-20-7	0.04936		0.000347	mg/kg	02.26.19 16:40		
Total BTEX		0.08634		0.000347	mg/kg	02.26.19 16:40		

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
1,4-Difluorobenzene	105	70 - 130	%		
4-Bromofluorobenzene	128	70 - 130	%		

TRC Solutions, Inc, Midland, TX

Sample Id: TT 1@ 30'		Matrix:	Soil		Sample	e Depth: 30 ft		
Lab Sample Id: 614757-005		Date Collecte	ed: 02.13.19 00	0.00	Date R	eceived: 02.15.	19 12.	35
Analytical Method: TPH by SW8015 Mod	ł				Prep M	lethod: 1005		
Analyst: ARM		% Moist:			Tech:	ARM		
Seq Number: 3080373		Date Prep: 02	2.25.19 11.00					
		Prep seq: 76	572518					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	8.77	15.0	7.99	mg/kg	02.25.19 20:04	J	1
Diesel Range Organics (DRO)	C10C28DRO	92.2	15.0	8.12	mg/kg	02.25.19 20:04		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<8.12	15.0	8.12	mg/kg	02.25.19 20:04	U	1
Total TPH	PHC635	100.97		7.99	mg/kg	02.25.19 20:04		
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1-Chlorooctane		97		70 -	135 %	,)		
o-Terphenyl		99		70 -	135 %			
Analytical Method: BTEX by EPA 8021					Prep M	lethod: 5030B		
					-		•	
Analyst: SCM		% Moist:			Tech:	SCM		
Seq Number: 3080460		Date Prep: 02	2.26.19 13.45					
		Prep seq: 76	572572					
	CAS					Analysis		Dil Factor

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.000383	0.00199	0.000383	mg/kg	02.26.19 16:03	U	1
Toluene	108-88-3	0.00395	0.00199	0.000454	mg/kg	02.26.19 16:03		1
Ethylbenzene	100-41-4	< 0.000563	0.00199	0.000563	mg/kg	02.26.19 16:03	U	1
m_p-Xylenes	179601-23-1	< 0.00101	0.00398	0.00101	mg/kg	02.26.19 16:03	U	1
o-Xylene	95-47-6	0.00477	0.00199	0.000343	mg/kg	02.26.19 16:03		1
Xylenes, Total	1330-20-7	0.00477		0.000343	mg/kg	02.26.19 16:03		
Total BTEX		0.00872		0.000343	mg/kg	02.26.19 16:03		
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1,4-Difluorobenzene		98		70 - 1	130 %			
4-Bromofluorobenzene		138		70 - 1	130 %)		**

TRC Solutions, Inc, Midland, TX

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Dil Factor Flag
		Prep seq: 76	71969				
Seq Number: 3079495		Date Prep: 02	.15.19 15.00				
Analyst: ARM		% Moist:			Tech:	ARM	
Analytical Method: TPH by SW8015 Mod					Prep Metho	d: 1005	
Lab Sample Id: 7671969-1-BLK		Date Collecte	d:		Date Receiv	red:	
Sample Id: 7671969-1-BLK		Matrix:	Solid		Sample Dep	oth:	

Tarancti	Number	Kesun	MQL	SDL	Onits	Date	Tiag	
Gasoline Range Hydrocarbons (GRO)	PHC610	<8.00	15.0	8.00	mg/kg	02.15.19 19:25	U	1
Diesel Range Organics (DRO)	C10C28DRO	<8.13	15.0	8.13	mg/kg	02.15.19 19:25	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<8.13	15.0	8.13	mg/kg	02.15.19 19:25	U	1
Total TPH	PHC635	<8		8	mg/kg	02.15.19 19:25	U	

Surrogate	% Recovery	Limits Units Analysis Date	Flag
1-Chlorooctane	125	70 - 135 %	
o-Terphenyl	124	70 - 135 %	
Sample Id: 7672488-1-BLK	Matrix: Solid	Sample Depth:	
Lab Sample Id: 7672488-1-BLK	Date Collected:	Date Received:	
Analytical Method: BTEX by EPA 8021		Prep Method: 5030B	

Analyst:	SCM	% Moist:	Tech:	SCM
Seq Number:	3080327	Date Prep: 02.25.19 16.30		
		Prep seq: 7672488		

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Facto
Benzene	71-43-2	< 0.000383	0.00199	0.000383	mg/kg	02.25.19 20:30	U	1
Toluene	108-88-3	< 0.000453	0.00199	0.000453	mg/kg	02.25.19 20:30	U	1
Ethylbenzene	100-41-4	< 0.000561	0.00199	0.000561	mg/kg	02.25.19 20:30	U	1
m_p-Xylenes	179601-23-1	< 0.00101	0.00398	0.00101	mg/kg	02.25.19 20:30	U	1
o-Xylene	95-47-6	< 0.000342	0.00199	0.000342	mg/kg	02.25.19 20:30	U	1
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1,4-Difluorobenzene		109		70 -	130 %	,		
4-Bromofluorobenzene		93		70 -	130 %	,)		

TRC Solutions, Inc, Midland, TX

Parameter	CAS Number	Result	MOL	SDL	Units	Analysis	Flag	Dil Factor
		Prep seq: 76	72518					
Seq Number: 3080373		Date Prep: 02	.25.19 11.00					
Analyst: ARM		% Moist:			Tech:	ARM		
Analytical Method: TPH by SW8015 Mod					Prep Metho	od: 1005		
Lab Sample Id: 7672518-1-BLK		Date Collecte	d:		Date Recei	ved:		
Sample Id: 7672518-1-BLK		Matrix:	Solid		Sample De	pth:		

Turumeter	Number	Result	MQL	SDL	emis	Date	Thug	
Gasoline Range Hydrocarbons (GRO)	PHC610	<8.00	15.0	8.00	mg/kg	02.25.19 11:51	U	1
Diesel Range Organics (DRO)	C10C28DRO	<8.13	15.0	8.13	mg/kg	02.25.19 11:51	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<8.13	15.0	8.13	mg/kg	02.25.19 11:51	U	1
Total TPH	PHC635	<8		8	mg/kg	02.25.19 11:51	U	

Surrogate	% Recovery	Limits Units Analysis Date Flag	;
1-Chlorooctane	116	70 - 135 %	
o-Terphenyl	118	70 - 135 %	
Sample Id: 7672572-1-BLK	Matrix: Solid	Sample Depth:	
Lab Sample Id: 7672572-1-BLK	Date Collected:	Date Received:	
Analytical Method: BTEX by EPA 8021		Prep Method: 5030B	
Analytical Method. BTEX by ELA 8021		Tiep Method. 5050B	
Amelante COM	% Moist:	Tash, SCM	

		CAS		Δ	nalveic	Dil Factor
			Prep seq: 7672572			
Seq Number:	3080460		Date Prep: 02.26.19 13.45			
Analyst:	SCM		% WOISt.	Tech:	SCM	

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.000383	0.00199	0.000383	mg/kg	02.26.19 15:25	U	1
Toluene	108-88-3	< 0.000454	0.00199	0.000454	mg/kg	02.26.19 15:25	U	1
Ethylbenzene	100-41-4	< 0.000563	0.00199	0.000563	mg/kg	02.26.19 15:25	U	1
m_p-Xylenes	179601-23-1	< 0.00101	0.00398	0.00101	mg/kg	02.26.19 15:25	U	1
o-Xylene	95-47-6	<0.000343	0.00199	0.000343	mg/kg	02.26.19 15:25	U	1
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
1,4-Difluorobenzene		109		70 -	130 %	,		
4-Bromofluorobenzene		103		70 -	130 %	,)		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: Moore Sweet

ork Orders: 614757			Project I			
Lab Batch #: 3080327	Sample: 7672488-1-BKS / 1		-			
Units: mg/kg	Date Analyzed: 02/25/19 18:57	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0331	0.0300	110	70-130	
4-Bromofluorobenzene		0.0304	0.0300	101	70-130	
Lab Batch #: 3080327	Sample: 7672488-1-BSD / 1		-			
Units: mg/kg	Date Analyzed: 02/25/19 19:16	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene	Anaryus	0.0331	0.0300	110	70-130	
4-Bromofluorobenzene		0.0304	0.0300	101	70-130	
	G 1 615571 001 S / MS				10 100	
Lab Batch #: 3080327	Sample: 615571-001 S / MS		h: ¹ Matrix RROGATE R		STUDV	
Units: mg/kg	Date Analyzed: 02/25/19 19:35	50				
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0335	0.0300	112	70-130	
4-Bromofluorobenzene		0.0317	0.0300	106	70-130	
Lab Batch #: 3080327	Sample: 615571-001 SD / N	ASD Batch	n: 1 Matrix	• Soil		
Units: mg/kg	Date Analyzed: 02/25/19 19:54		RROGATE R	-	STUDY	
	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0332	0.0300	111	70-130	
4-Bromofluorobenzene		0.0317	0.0300	106	70-130	
Lab Batch #: 3080327	Sample: 7672488-1-BLK /]	BLK Batch	n: 1 Matrix	:Solid		
Units: mg/kg	Date Analyzed: 02/25/19 20:30	SUI	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0326	0.0300	109	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Moore Sweet

ork Orders: 614757			Project II			
Lab Batch #: 3080460	Sample: 7672572-1-BKS / 1					
Units: mg/kg	Date Analyzed: 02/26/19 13:52	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0319	0.0300	106	70-130	
4-Bromofluorobenzene		0.0298	0.0300	99	70-130	
Lab Batch #: 3080460	Sample: 7672572-1-BSD / 1	BSD Batch	h: ¹ Matrix	:Solid		
Units: mg/kg	Date Analyzed: 02/26/19 14:11	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene	Analytes	0.0318	0.0300	106	70-130	
4-Bromofluorobenzene		0.0296	0.0300	99	70-130	
	G 1 615456 001 S / MS				10 100	
Lab Batch #: 3080460	Sample: 615456-001 S / MS		h: ¹ Matrix RROGATE R	-	STUDV	
Units: mg/kg	Date Analyzed: 02/26/19 14:30	50				
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0326	0.0300	109	70-130	
4-Bromofluorobenzene		0.0311	0.0300	104	70-130	
Lab Batch #: 3080460	Sample: 615456-001 SD / N	ASD Batch	h: 1 Matrix	:Soil	1 1	
Units: mg/kg	Date Analyzed: 02/26/19 14:49		RROGATE R	ECOVERY	STUDY	
	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0329	0.0300	110	70-130	
4-Bromofluorobenzene		0.0314	0.0300	105	70-130	
Lab Batch #: 3080460	Sample: 7672572-1-BLK / 1					
Units: mg/kg	Date Analyzed: 02/26/19 15:25	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
		0.0225		100	70-130	
1,4-Difluorobenzene		0.0327	0.0300	109	/0-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Moore Sweet

ork Orders : 614757			Project I						
Lab Batch #: 3079495	Sample: 7671969-1-BLK / 1		h: ¹ Matrix RROGATE R		STUDY				
Units: mg/kg	Date Analyzed: 02/15/19 19:25 by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
	Analytes			[D]					
1-Chlorooctane		125	100	125	70-135				
o-Terphenyl		62.2	50.0	124	70-135				
Lab Batch #: 3079495	Sample: 7671969-1-BKS / 1	BKS Batel	h: ¹ Matrix	:Solid					
Units: mg/kg	Date Analyzed: 02/15/19 19:44	SU	RROGATE R	ECOVERY	STUDY				
TPH I	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	1 11111 y 000	129	100	129	70-135				
o-Terphenyl		63.4	50.0	127	70-135				
Lab Batch #: 3079495	Sample: 7671969-1-BSD / 1	BSD Batcl	h: ¹ Matrix	r•Solid	1				
Units: mg/kg	Date Analyzed: 02/15/19 20:04								
	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag			
	Analytes			[D]					
1-Chlorooctane		115	100	115	70-135				
o-Terphenyl		64.9	50.0	130	70-135				
Lab Batch #: 3079495	Sample: 614582-001 S / MS	5 Batel	h: 1 Matrix	:Soil					
Units: mg/kg	Date Analyzed: 02/15/19 20:42	SU	RROGATE R	ECOVERY	STUDY				
ТРН І	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag			
1-Chlorooctane		127	99.9	127	70-135				
o-Terphenyl		58.6	50.0	117	70-135				
Lab Batch #: 3079495	Sample: 614582-001 SD / M	ASD Batcl	h: 1 Matrix	:Soil					
Units: mg/kg	Date Analyzed: 02/15/19 21:02	SU	RROGATE R	ECOVERY	STUDY				
TPH I	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	···· • • • • • • • • • • • • • • • • •	128	99.9	128	70-135				
1-Chiorooctane									

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Moore Sweet

ork Orders : 614757			Project II						
Lab Batch #: 3080373 Units: mg/kg	Sample: 7672518-1-BLK / Date Analyzed: 02/25/19 11:51	BLK Batch: 1 Matrix: Solid SURROGATE RECOVERY STUDY							
	bate Analyzed. 02/25/19 11:51	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
	Analytes			[D]					
1-Chlorooctane		116	100	116	70-135				
o-Terphenyl		59.2	50.0	118	70-135				
Lab Batch #: 3080373	Sample: 7672518-1-BKS /	BKS Bate	h: ¹ Matrix	:Solid					
Units: mg/kg	Date Analyzed: 02/25/19 12:11	SU	RROGATE RI	ECOVERY	STUDY				
ТРН І	oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag			
1-Chlorooctane	Analytes	109	100	109	70-135				
o-Terphenyl		47.6	50.0	95	70-135				
Lab Batch #: 3080373	Sample: 7672518-1-BSD /	BSD Batc	h: ¹ Matrix	·Solid	1				
Units: mg/kg	Date Analyzed: 02/25/19 12:31	SURROGATE RECOVERY STUDY							
ТРН І	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag				
1-Chlorooctane	Analytes	112	100		70.125				
o-Terphenyl		48.0	100 50.0	113 96	70-135				
					70-135				
Lab Batch #: 3080373	Sample: 615525-001 S / M		h: 1 Matrix RROGATE RI		STUDV				
Units: mg/kg	Date Analyzed: 02/25/19 13:10	50	KRUGAIE KI						
TPH I	oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage			
1-Chlorooctane	1 mary tes	112	99.9	112	70-135				
o-Terphenyl		52.9	50.0	106	70-135				
Lab Batch #: 3080373	Sample: 615525-001 SD / I	MSD Batc	h: 1 Matrix	:Soil	<u> </u>				
Units: mg/kg	Date Analyzed: 02/25/19 13:30		RROGATE RI	ECOVERY	STUDY				
TPH I	oy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag			
1 Chlore etc.	Analytes	107	00.7	[D]	70.125				
1-Chlorooctane		107	99.7	107	70-135				
o-Terphenyl		49.9	49.9	100	70-135				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: Moore Sweet

Work Order #: 614757							Pro	ject ID:			
Analyst: SCM	D	ate Prepai	red: 02/25/20	19			Date A	nalyzed: (02/25/2019		
Lab Batch ID: 3080327 Sample: 7672488	-1-BKS	Batc	h #: 1		Matrix: Solid						
Units: mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.000386	0.100	0.127	127	0.0996	0.124	124	2	70-130	35	
Toluene	< 0.000457	0.100	0.110	110	0.0996	0.107	107	3	70-130	35	
Ethylbenzene	< 0.000566	0.100	0.106	106	0.0996	0.102	102	4	70-130	35	
m_p-Xylenes	< 0.00102	0.200	0.211	106	0.199	0.204	103	3	70-130	35	
o-Xylene	< 0.000345	0.100	0.104	104	0.0996	0.101	101	3	70-130	35	
Analyst: SCM	Date Prepared: 02/26/2019 Date Analyzed: 02/26/2019										
Lab Batch ID: 3080460 Sample: 7672572	1-BKS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE / 2	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.000385	0.100	0.119	119	0.101	0.119	118	0	70-130	35	
Toluene	< 0.000456	0.100	0.107	107	0.101	0.106	105	1	70-130	35	
Ethylbenzene	< 0.000565	0.100	0.104	104	0.101	0.104	103	0	70-130	35	
m_p-Xylenes	< 0.00101	0.200	0.210	105	0.201	0.208	103	1	70-130	35	
o-Xylene	< 0.000344	0.100	0.103	103	0.101	0.103	102	0	70-130	35	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Moore Sweet

Work Order	#: 614757							Pro	ject ID:			
Analyst:	ARM	D	ate Prepai	ed: 02/15/20	19	Date Analyzed: 02/15/2019						
Lab Batch ID:	3079495 Sample: 767196	59-1-BKS	Batc	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE / 2	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	ЭY	
	TPH by SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analy	tes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Gasoline R	<8.00	1000	907	91	1000	1040	104	14	70-135	20		
Diesel Ran	ge Organics (DRO)	<8.13	<8.13 1000 979 98 1000 1190 119 19 70-135 20				20					
Analyst:	ARM	D	ate Prepai	red: 02/25/20	19	·		Date A	nalyzed: ()2/25/2019		
Lab Batch ID:	3080373 Sample: 76725	18-1-BKS	Batc	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE / 2	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	ЭY	
Analy	TPH by SW8015 Mod	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
	ange Hydrocarbons (GRO)	<8.00	1000	905	91	1000	900	90	1	70-135	20	
Diesel Ran	<8.13	1000	910	91	1000	914	91	0	70-135	20		

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Moore Sweet

Work Order # :	614757						Project II):				
Lab Batch ID:	3080327	QC- Sample ID:	615571	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	02/25/2019	Date Prepared:	02/25/2	019	An	alyst: S	SCM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	BTEX by EPA 8021	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[C]	[D]	[E]	Kesun [F]	[G]	/0	70K	70 KI D	
Benzene		< 0.000384	0.0998	0.0811	81	0.100	0.106	106	27	70-130	35	
Toluene		< 0.000455	0.0998	0.0681	68	0.100	0.0905	91	28	70-130	35	X
Ethylbenzene		< 0.000564	0.0998	0.0583	58	0.100	0.0825	83	34	70-130	35	X
m_p-Xylenes		< 0.00101	0.200	0.117	59	0.200	0.164	82	33	70-130	35	X
o-Xylene		< 0.000344	0.0998	0.0582	58	0.100	0.0819	82	34	70-130	35	X
Lab Batch ID:	3080460	QC- Sample ID:	615456	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	02/26/2019	Date Prepared:	02/26/2	019	An	alyst: S	SCM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene		< 0.000384	0.0998	0.0933	93	0.100	0.0953	95	2	70-130	35	
Toluene		< 0.000455	0.0998	0.0814	82	0.100	0.0827	83	2	70-130	35	
Ethylbenzene		< 0.000564	0.0998	0.0747	75	0.100	0.0764	76	2	70-130	35	
m_p-Xylenes		< 0.00101	0.200	0.152	76	0.200	0.154	77	1	70-130	35	
o-Xylene		< 0.000344	0.0998	0.0752	75	0.100	0.0767	77	2	70-130	35	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: Moore Sweet

Work Order # : 61475	7						Project II):				
Lab Batch ID: 30794	95	QC- Sample ID:	614582	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 02/15/	2019	Date Prepared:	02/15/2	019	An	alyst: A	ARM					
Reporting Units: mg/kg			Ν	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH by	y SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
A	nalytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range Hydrocar	bons (GRO)	<7.99	999	997	100	999	972	97	3	70-135	20	
Diesel Range Organics (D	RO)	<8.12	999	1120	112	999	1090	109	3	70-135	20	
Lab Batch ID: 30803	73	QC- Sample ID:	615525	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 02/25/	2019	Date Prepared:	02/25/2	019	An	alyst: A	ARM					
Reporting Units: mg/kg			N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH b	y SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
A	nalytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range Hydrocar	bons (GRO)	<7.99	999	910	91	997	887	89	3	70-135	20	
Diesel Range Organics (D	RO)	288	999	1200	91	997	1130	84	6	70-135	20	

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Setting the Standard since 1990	XENCO

Stafford, Texas (281-240-4200)

CHAIN OF CUSTODY

Page 1 Of 1

San Antonio, Texas (210-509-3334)

Phoenix, Arizona (480-355-0900)

Project Contact: Goel-LOwry Samplers's Name: Email: No. 10 Desta Dr. Suite 150E 3 9 4 Aidland, TX 79705 **IRC Environmental Corporation** œ თ сл N **Relinquished by:** Relinquished by Sampler, 3 Day EMERGENCY 2 Day EMERGENCY Next Day EMERGENCY Same Day TAT Relinquished by: mpany Address: mpany Name / Branch: Dallas Texas (214-902-0300) TAT Starts Day received by Lab, if received by 5:00 pm A Wale Howry@trcsolutions.com **Client / Reporting Information** b cooper @ tre solshows. the So 3 do and -Turnaround Time (Business days) 1 Y -4 h., Brian Ò G \odot \mathscr{O} Ò Ò 0 -4 Field ID / Point of Collection () () 3 V çê. w) 0 (V) -9 $^{\circ}$ Ś Ň 00 2 Looper J. 60) X Contract TAT 7 Day TAT 5 Day TAT Phone No: 432-466-4450 SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY Date Time: Date Time: -762 586 7728 715 1122 26.64 301-Sample Depth Ń 2-13-19 Involce: Project Midland, Texas (432-704-5251) Collection nvoice To: roject Location: Date Anber Name/Number: d. Hepelyed By Plains 0010 Received By: **Received By:** TRRP Checklist Level 3 (CLP Forms) Level III Std QC+ Forms Time Level II Std QC Project Information Fortal 200000 Sweet Matrix 5 Data Deliverable Information www.xenco.com 5 # of bottles act to HCI NaOH/Zn Acetate нлоз Relinquished By: Relinquished By: UST / RG -411 **TRRP Level IV** Level IV (Full Data Pkg /raw data) preserved bottles H2SO4 NaOH laHSO4 меон NONE \mathbf{Q} Xenco Quote # **TPH TX1005** Chloride E 300 Date Time: Date 1 NORM Analytical Information RCI S. US Receiv FED-EX / UPS: Tracking # zonder@trc: Howry@tresolutions.ccm TCLP Benzene Notes: TCLP RCRA 8 Metals Received Xenco Job # Chloride hons.com X \gtrsim × TPH 8015 M Ext (NM \gtrsim R \gtrsim BTEX Hold 5 1000 2 T o 0 Field Comments OW =Ocean/Sea Water WI = Wipe O = Oll SW = Surface water SL = Sludge DW = Drinking Water P = Product GW =Ground Water W = Water WW= Waste Water S = Soil/Sed/Solid A = Air Matrix Codes

Notes: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco. Its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the Client if such bases are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be involced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.

Custody Seal #

Preserved where applicable

l Cooler Temp.

netrio,

Corr. Factor

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc	Acceptable Temperature Range: 0 - 6 degC							
Date/ Time Received: 02/15/2019 12:35:00 PM	Air and Metal samples Acceptable Range: Ambient							
Work Order #: 614757	Temperature Measuring device used : R8							
Sample Recei	pt Checklist Comments							
#1 *Temperature of cooler(s)?	.1							
#2 *Shipping container in good condition?	Yes							
#3 *Samples received on ice?	Yes							
#4 *Custody Seals intact on shipping container/ cooler?	N/A							
#5 Custody Seals intact on sample bottles?	N/A							
#6*Custody Seals Signed and dated?	N/A							
#7 *Chain of Custody present?	Yes							
#8 Any missing/extra samples?	Νο							
#9 Chain of Custody signed when relinquished/ received?	Yes							
#10 Chain of Custody agrees with sample labels/matrix?	Yes							
#11 Container label(s) legible and intact?	Yes							
#12 Samples in proper container/ bottle?	Yes							
#13 Samples properly preserved?	Yes							
#14 Sample container(s) intact?	Yes							
#15 Sufficient sample amount for indicated test(s)?	Yes							
#16 All samples received within hold time?	Yes							
#17 Subcontract of sample(s)?	N/A							

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

#18 Water VOC samples have zero headspace?

Checklist completed by: Brianna Teel

Date: 02/15/2019

N/A

Checklist reviewed by: fession Kramer

Jessica Kramer

Date: 02/19/2019

Analytical Report 620194

for TRC Solutions/Environmental

Project Manager: Brian Cooper

NM Moore Sweet

11-APR-19

Collected By: Client

6701 Aberdeen, Suite 9 Lubbock, TX 79424

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-28), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-18) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429), North Carolina (483) Xenco-Lakeland: Florida (E84098)

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis (Detailed Report)	6
Explanation of Qualifiers (Flags)	24
SURR_QC_V62	25
LCS / LCSD Recoveries	28
MS / MSD Recoveries	30
Chain of Custody	32
IOS_COC_126051	33
IOS_Check_List_126051	34
Sample Receipt Conformance Report	35

11-APR-19

TNI TNI TNI TNI

Project Manager: **Brian Cooper TRC Solutions/Environmental** 10 Desta Dr. Ste 150E Midland, TX 79705

Reference: XENCO Report No(s): 620194 NM Moore Sweet Project Address: Lea, Co. NM

Brian Cooper:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 620194. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 620194 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Mily K.

Mike Kimmel Client Services Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 620194

TRC Solutions/Environmental, Midland, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
TT2-Comp 1 @ 3'	S	04-03-19 12:00	3 ft	620194-001
TT2-Comp 2 @ 3'	S	04-03-19 12:15	3 ft	620194-002
TT2-Comp 3 @ 3'	S	04-03-19 12:30	3 ft	620194-003
TT2-Comp 4 @ 3'	S	04-03-19 12:45	3 ft	620194-004
TT2-NW @ 1.5'	S	04-03-19 13:00	1.5 ft	620194-005
TT2-EW @ 1.5'	S	04-03-19 13:15	1.5 ft	620194-006
TT2-WW @ 1.5'	S	04-03-19 13:30	1.5 ft	620194-007
ETT-NW-B @ 2.5'	S	04-03-19 14:30	2.5 ft	620194-008

CASE NARRATIVE

Client Name: TRC Solutions/Environmental Project Name: NM Moore Sweet

Project ID: Work Order Number(s): 620194 Report Date: *11-APR-19* Date Received: *04/03/2019*

This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory.

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3084803 DRO-ORO By SW8015B Surrogate Tricosane, Surrogate n-Triacontane recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis. Samples affected are: 620194-002,620194-004,620194-005,620194-006.

Batch: LBA-3084840 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3084842 TPH GRO by EPA 8015 Mod.

Surrogate 4-Bromofluorobenzene recovered below QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 620194-006.

Surrogate a,a,a-Trifluorotoluene recovered above QC limits Data confirmed by re-analysis. Samples affected are: 7675211-1-BSD,620194-001 S,620194-003,620194-008.

TRC Solutions/Environmental, Midland, TX

Sample Id: TT2-Comp 1 @ 3'		Matrix:	Soil		Sample	Depth: 3 ft		
Lab Sample Id: 620194-001		Date Collecte	ed: 04.03.19 12	2.00	Date R	eceived: 04.03.	19 16.3	35
Analytical Method: Inorganic Anions by I	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3084960		Date Prep: 04	4.08.19 12.42					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575239					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	85.6	10.0	0.354	mg/kg	04.08.19 13:43		1
Analytical Method: DRO-ORO By SW80	15B				Prep M	ethod: 8015		
Analyst: MIT	150	% Moist:			Tech:	MIT		
Seq Number: 3084803		Date Prep: 04	4.05.19 14.00					
1		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	40.2	25.2	7.53	mg/kg	04.06.19 06:48		1
Oil Range Hydrocarbons (ORO)	PHCG2835	<7.53	25.2	7.53	mg/kg	04.06.19 06:48	U	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane n-Triacontane		108 120		65 - 1 46 - 1				
Analytical Method: TPH GRO by EPA 80)15 Mod.				Prep M	lethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084842		Date Prep: 04	4.05.19 14.00					
		Prep seq: 76	575211					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.262	3.87	0.262	mg/kg	04.06.19 05:45	U	19
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		90		76 - 2				
a,a,a-Trifluorotoluene		107		69 - 3	120 %)		

TRC Solutions/Environmental, Midland, TX

Sample Id: TT2-Comp 1 @ 3'		Matrix:	Soil	Sample Depth	1: 3 ft
Lab Sample Id: 620194-001		Date Collected	d: 04.03.19 12.00	Date Received	d: 04.03.19 16.35
Analytical Method: BTEX by EPA 8021				Prep Method:	5030B
Analyst: MIT		% Moist:		Tech:	MIT
Seq Number: 3084840		Date Prep: 04.	.05.19 14.00		
		Prep seq: 76'	75210		
D	CAS			An An	alysis Dil Factor

Parameter	Number	Result	MQL	SDL	Units	Date	Flag	Diffactor
Benzene	71-43-2	< 0.00874	0.0193	0.00874	mg/kg	04.06.19 05:45	U	19
Toluene	108-88-3	< 0.00453	0.0193	0.00453	mg/kg	04.06.19 05:45	U	19
Ethylbenzene	100-41-4	< 0.00596	0.0193	0.00596	mg/kg	04.06.19 05:45	U	19
m_p-Xylenes	179601-23-1	< 0.00660	0.0387	0.00660	mg/kg	04.06.19 05:45	U	19
o-Xylene	95-47-6	< 0.00660	0.0193	0.00660	mg/kg	04.06.19 05:45	U	19
Xylenes, Total	1330-20-7	< 0.00660		0.00660	mg/kg	04.06.19 05:45	U	
Total BTEX		< 0.00453		0.00453	mg/kg	04.06.19 05:45	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

4-Bromofluorobenzene	93	68 - 120	%
a,a,a-Trifluorotoluene	97	71 - 121	%

TRC Solutions/Environmental, Midland, TX

Sample Id: TT2-Comp 2 @ 3'		Matrix:	Soil		Sample	Depth: 3 ft		
Lab Sample Id: 620194-002		Date Collecte	ed: 04.03.19 12	2.15	Date R	eceived: 04.03.	19 16.3	35
Analytical Method: Inorganic Anions by	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3084960		Date Prep: 04	4.08.19 12.42					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575239					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	30.3	9.98	0.353	mg/kg	04.08.19 14:10		1
Analytical Mathed: DDO ODO Dy SW00)15D				Prep M	ethod: 8015		
Analytical Method: DRO-ORO By SW80 Analyst: MIT)15 D	% Moist:			Tech:	MIT		
Seq Number: 3084803		Date Prep: 04	4.05.19 14.00		reen.	10111		
		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	184	24.8	7.43	mg/kg	04.06.19 14:23		1
Oil Range Hydrocarbons (ORO)	PHCG2835	22.2	24.8	7.43	mg/kg	04.06.19 14:23	J	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane		220		65 -				**
n-Triacontane		202		46 -	152 %			**
Analytical Method: TPH GRO by EPA 8	015 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084842		Date Prep: 04	4.05.19 14.00					
		Prep seq: 76	575211					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.248	3.66	0.248	mg/kg	04.06.19 08:11	U	18
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		89		76 -				
a,a,a-Trifluorotoluene		109		69 -	120 %)		

TRC Solutions/Environmental, Midland, TX

Sample Id:	TT2-Comp 2 @ 3'		Matrix:	Soil	Sample Depth	: 3 ft	
Lab Sample Io	1: 620194-002		Date Collected	1: 04.03.19 12.15	Date Received	1: 04.03.19 16	5.35
Analytical Me	ethod: BTEX by EPA 8021				Prep Method:	5030B	
Analyst:	MIT		% Moist:		Tech:	MIT	
Seq Number:	3084840		Date Prep: 04.	05.19 14.00			
			Prep seq: 767	75210			
		CAS			An	alvsis	Dil F

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00826	0.0183	0.00826	mg/kg	04.06.19 08:11	U	18
Toluene	108-88-3	< 0.00428	0.0183	0.00428	mg/kg	04.06.19 08:11	U	18
Ethylbenzene	100-41-4	< 0.00563	0.0183	0.00563	mg/kg	04.06.19 08:11	U	18
m_p-Xylenes	179601-23-1	< 0.00623	0.0366	0.00623	mg/kg	04.06.19 08:11	U	18
o-Xylene	95-47-6	< 0.00623	0.0183	0.00623	mg/kg	04.06.19 08:11	U	18
Xylenes, Total	1330-20-7	< 0.00623		0.00623	mg/kg	04.06.19 08:11	U	
Total BTEX		< 0.00428		0.00428	mg/kg	04.06.19 08:11	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

Surrogate	70 Recovery	Linnts	Onto	Analysis Date	Tiag
4-Bromofluorobenzene	92	68 - 120	%		
a,a,a-Trifluorotoluene	99	71 - 121	%		

TRC Solutions/Environmental, Midland, TX

Sample Id: TT2-Comp 3 @ 3'		Matrix:	Soil		Sample	Depth: 3 ft		
Lab Sample Id: 620194-003		Date Collecte	ed: 04.03.19 12	2.30	Date R	eceived: 04.03.	19 16.3	35
Analytical Method: Inorganic Anions by	EPA 300/300.1				Prep M	lethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3084960		Date Prep: 04	4.08.19 12.42					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575239					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	42.3	10.0	0.355	mg/kg	04.08.19 14:19		1
Analytical Method: DRO-ORO By SW80)15B	% Moist:			Prep M			
Analyst: MIT		[%] Moist: Date Prep: 04	1 05 10 14 00		Tech:	MIT		
Seq Number: 3084803		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	68.3	25.0	7.47	mg/kg	04.06.19 09:42		1
Oil Range Hydrocarbons (ORO)	PHCG2835	<7.47	25.0	7.47	mg/kg	04.06.19 09:42	U	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane		143		65 -				
n-Triacontane		152		46 -	152 %)		
Analytical Method: TPH GRO by EPA 8	015 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084842		Date Prep: 04	4.05.19 14.00					
		Prep seq: 76	575211					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.268	3.95	0.268	mg/kg	04.06.19 08:36	U	20
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		102		76 -)		
a,a,a-Trifluorotoluene		122		69 -	120 %)		**

a,a,a-Trifluorotoluene

Certificate of Analytical Results 620194

TRC Solutions/Environmental, Midland, TX

NM Moore Sweet

Sample Id: TT2-Comp 3 @ 3'		Matrix:	Soil	Sample Depth:	3 ft
Lab Sample Id: 620194-003		Date Collected:	: 04.03.19 12.30	Date Received	: 04.03.19 16.35
Analytical Method: BTEX by EPA 8021				Prep Method:	5030B
Analyst: MIT		% Moist:		Tech:	MIT
Seq Number: 3084840		Date Prep: 04.0	05.19 14.00		
		Prep seq: 767	5210		
	CAS			Ana	lysis Dil Factor

Parameter	Number	Result	MQL	SDL	Units	Date	Flag	DIFFACTO
Benzene	71-43-2	< 0.00893	0.0198	0.00893	mg/kg	04.06.19 08:36	U	20
Toluene	108-88-3	< 0.00462	0.0198	0.00462	mg/kg	04.06.19 08:36	U	20
Ethylbenzene	100-41-4	< 0.00609	0.0198	0.00609	mg/kg	04.06.19 08:36	U	20
m_p-Xylenes	179601-23-1	< 0.00674	0.0395	0.00674	mg/kg	04.06.19 08:36	U	20
o-Xylene	95-47-6	< 0.00674	0.0198	0.00674	mg/kg	04.06.19 08:36	U	20
Xylenes, Total	1330-20-7	< 0.00674		0.00674	mg/kg	04.06.19 08:36	U	
Total BTEX		< 0.00462		0.00462	mg/kg	04.06.19 08:36	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
4-Bromofluorobenzene		105		68 -	120 %			

110

71 - 121

%

TRC Solutions/Environmental, Midland, TX

Sample Id: TT2-Comp 4 @ 3'		Matrix:	Soil		Sample	Depth: 3 ft		
Lab Sample Id: 620194-004		Date Collecte	ed: 04.03.19 12	2.45	Date R	eceived: 04.03.	19 16.3	35
Analytical Method: Inorganic Anions by	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3084960		Date Prep: 04	4.08.19 12.42					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575239					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	14.9	9.94	0.352	mg/kg	04.08.19 14:27		1
Analytical Mathed: DPO OPO By SW90	15D				Prep M	ethod: 8015		
Analytical Method: DRO-ORO By SW80 Analyst: MIT	130	% Moist:			Tech:	MIT		
Seq Number: 3084803		Date Prep: 04	4.05.19 14.00		T cent.	10111		
		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	153	25.2	7.55	mg/kg	04.06.19 14:59		1
Oil Range Hydrocarbons (ORO)	PHCG2835	20.4	25.2	7.55	mg/kg	04.06.19 14:59	J	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane		200		65 -				**
n-Triacontane		196		46 -	152 %	•		**
Analytical Method: TPH GRO by EPA 80	015 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084842		Date Prep: 04	4.05.19 14.00					
		Prep seq: 76	575211					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.242	3.57	0.242	mg/kg	04.06.19 09:00	U	18
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		98		76 -		1		
a,a,a-Trifluorotoluene		120		69 -	120 %)		

TRC Solutions/Environmental, Midland, TX

Sample Id: TT2-Comp 4 @ 3'		Matrix:	Soil		Sample Dept	h: 3 ft
Lab Sample Id: 620194-004		Date Collecte	d: 04.03.19 1	2.45	Date Receive	ed: 04.03.19 16.35
Analytical Method: BTEX by EPA 8021					Prep Method	: 5030B
Analyst: MIT		% Moist:			Tech:	MIT
Seq Number: 3084840		Date Prep: 04	.05.19 14.00			
		Prep seq: 76	75210			
Devenue deve	CAS	Degult	MOI	SDI	A	nalysis Dil Factor

Parameter	Number	Result	MQL	SDL	Units	Date	Flag	Diffactor
Benzene	71-43-2	< 0.00806	0.0178	0.00806	mg/kg	04.06.19 09:00	U	18
Toluene	108-88-3	< 0.00417	0.0178	0.00417	mg/kg	04.06.19 09:00	U	18
Ethylbenzene	100-41-4	< 0.00549	0.0178	0.00549	mg/kg	04.06.19 09:00	U	18
m_p-Xylenes	179601-23-1	< 0.00608	0.0357	0.00608	mg/kg	04.06.19 09:00	U	18
o-Xylene	95-47-6	< 0.00608	0.0178	0.00608	mg/kg	04.06.19 09:00	U	18
Xylenes, Total	1330-20-7	< 0.00608		0.00608	mg/kg	04.06.19 09:00	U	
Total BTEX		< 0.00417		0.00417	mg/kg	04.06.19 09:00	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

0	•			·	0
4-Bromofluorobenzene	100	68 - 120	%		
a,a,a-Trifluorotoluene	108	71 - 121	%		

TRC Solutions/Environmental, Midland, TX

Sample Id: TT2-NW @ 1.5'		Matrix:	Soil		Sample	Depth: 1.5 ft		
Lab Sample Id: 620194-005		Date Collecte	ed: 04.03.19 13	3.00	Date R	eceived: 04.03.	19 16.3	35
Analytical Method: Inorganic Anions by E	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3084960		Date Prep: 04	4.08.19 12.42					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575239					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	128	10.0	0.354	mg/kg	04.08.19 14:36		1
	150				D M			
Analytical Method: DRO-ORO By SW80	158	% Moist:			Prep M Tech:	lethod: 8015 MIT		
Analyst: MIT Seq Number: 3084803		Date Prep: 04	1 05 19 14 00		Tech:	IVII I		
Seq Number: 3084803		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	104	25.1	7.50	mg/kg	04.06.19 15:34		1
Oil Range Hydrocarbons (ORO)	PHCG2835	15.3	25.1	7.50	mg/kg	04.06.19 15:34	J	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane		174		65 -				**
n-Triacontane		175		46 -	152 %)		**
Analytical Method: TPH GRO by EPA 80	15 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084842		Date Prep: 04	4.05.19 14.00					
		Prep seq: 76	575211					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	< 0.250	3.70	0.250	mg/kg	04.06.19 09:23	U	18
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		97		76 -				
a,a,a-Trifluorotoluene		118		69 -	120 %)		

TRC Solutions/Environmental, Midland, TX

Sample Id: TT2-NW @ 1.5'		Matrix: Soil	Sample Depth: 1.5 ft
Lab Sample Id: 620194-005		Date Collected: 04.03.19 13.00	Date Received: 04.03.19 16.35
Analytical Method: BTEX by EPA 8021			Prep Method: 5030B
Analyst: MIT		% Moist:	Tech: MIT
Seq Number: 3084840		Date Prep: 04.05.19 14.00	
		Prep seq: 7675210	
	CAS		Analysis Dil F

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00835	0.0185	0.00835	mg/kg	04.06.19 09:23	U	18
Toluene	108-88-3	< 0.00433	0.0185	0.00433	mg/kg	04.06.19 09:23	U	18
Ethylbenzene	100-41-4	< 0.00569	0.0185	0.00569	mg/kg	04.06.19 09:23	U	18
m_p-Xylenes	179601-23-1	< 0.00630	0.0370	0.00630	mg/kg	04.06.19 09:23	U	18
o-Xylene	95-47-6	< 0.00630	0.0185	0.00630	mg/kg	04.06.19 09:23	U	18
Xylenes, Total	1330-20-7	< 0.00630		0.00630	mg/kg	04.06.19 09:23	U	
Total BTEX		< 0.00433		0.00433	mg/kg	04.06.19 09:23	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

Surrogate	70 Recovery	Linits	Omts	Analysis Date	Flag
4-Bromofluorobenzene	100	68 - 120	%		
a,a,a-Trifluorotoluene	106	71 - 121	%		

TRC Solutions/Environmental, Midland, TX

Sample Id: TT2-EW @ 1.5'		Matrix:	Soil		Sample	e Depth: 1.5 ft			
Lab Sample Id: 620194-006		Date Collecte	ed: 04.03.19 1	3.15	Date Received: 04.03.19 16.35				
Analytical Method: Inorganic Anions by I	EPA 300/300.1				Prep M	lethod: E300P	,		
Analyst: JYM		% Moist:			Tech:	JYM			
Seq Number: 3084960		Date Prep: 04	4.08.19 12.42						
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	675239						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor	
Chloride	16887-00-6	6.39	9.98	0.353	mg/kg	04.08.19 14:45	J	1	
Analytical Methods DDO ODO By SW/00	15D				Dron M	lethod: 8015			
Analytical Method: DRO-ORO By SW80 Analyst: MIT	13D	% Moist:			Prep M Tech:	MIT			
Seq Number: 3084803			4.05.19 14.00		reen.	WITT			
Seq Pulliber. 5004005		Prep seq: 76							
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor	
Diesel Range Organics (DRO)	C10C28DRO	106	25.1	7.52	mg/kg	04.06.19 16:10		1	
Oil Range Hydrocarbons (ORO)	PHCG2835	17.7	25.1	7.52	mg/kg	04.06.19 16:10	J	1	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag	
Tricosane		176		65 -				**	
n-Triacontane		183		46 -	152 %)		**	
Analytical Method: TPH GRO by EPA 80)15 Mod.				Prep M	lethod: 5030B			
Analyst: MIT		% Moist:			Tech:	MIT			
Seq Number: 3084842		Date Prep: 04	4.05.19 14.00						
		Prep seq: 76	675211						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor	
TPH-GRO	8006-61-9	<0.262	3.86	0.262	mg/kg	04.06.19 09:47	U	19	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag	
4-Bromofluorobenzene		74		76 -				**	
a,a,a-Trifluorotoluene		85		69 -	120 %				

TRC Solutions/Environmental, Midland, TX

Sample Id: TT2-EW @ 1.5'		Matrix: Soil	Sample Depth: 1.5 ft
Lab Sample Id: 620194-006		Date Collected: 04.03.19 13.15	Date Received: 04.03.19 16.35
Analytical Method: BTEX by EPA 8021			Prep Method: 5030B
Analyst: MIT		% Moist:	Tech: MIT
Seq Number: 3084840		Date Prep: 04.05.19 14.00	
		Prep seq: 7675210	
	CAS		Analysis Dil F

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00873	0.0193	0.00873	mg/kg	04.06.19 09:47	U	19
Toluene	108-88-3	< 0.00452	0.0193	0.00452	mg/kg	04.06.19 09:47	U	19
Ethylbenzene	100-41-4	< 0.00595	0.0193	0.00595	mg/kg	04.06.19 09:47	U	19
m_p-Xylenes	179601-23-1	< 0.00658	0.0386	0.00658	mg/kg	04.06.19 09:47	U	19
o-Xylene	95-47-6	< 0.00658	0.0193	0.00658	mg/kg	04.06.19 09:47	U	19
Xylenes, Total	1330-20-7	< 0.00658		0.00658	mg/kg	04.06.19 09:47	U	
Total BTEX		< 0.00452		0.00452	mg/kg	04.06.19 09:47	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

8	J J J J J J J J J J J J J J J J J J J		
4-Bromofluorobenzene	76	68 - 120 %	
a,a,a-Trifluorotoluene	77	71 - 121 %	

TRC Solutions/Environmental, Midland, TX

Sample Id: TT2-WW @ 1.5'		Matrix:	Soil		Sample	Depth: 1.5 ft		
Lab Sample Id: 620194-007		Date Collecte	ed: 04.03.19 13	3.30	Date R	eceived: 04.03.	19 16.3	35
Analytical Method: Inorganic Anions by	EPA 300/300.1				Prep M	lethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3084960		Date Prep: 04	4.08.19 12.42					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575239					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	176	9.98	0.353	mg/kg	04.08.19 14:54		1
Analytical Method: DRO-ORO By SW80	15B				Prep M	ethod: 8015		
Analyst: MIT	150	% Moist:			Tech:	MIT		
Seq Number: 3084803		Date Prep: 04	4.05.19 14.00					
		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	38.5	25.0	7.48	mg/kg	04.06.19 12:02		1
Oil Range Hydrocarbons (ORO)	PHCG2835	<7.48	25.0	7.48	mg/kg	04.06.19 12:02	U	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane n-Triacontane		110 130		65 - 46 -				
Analytical Method: TPH GRO by EPA 80)15 Mod.				Prep M	lethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084842		Date Prep: 04	4.05.19 14.00					
		Prep seq: 76	575211					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.241	3.56	0.241	mg/kg	04.06.19 10:11	U	18
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		97		76 -				
a,a,a-Trifluorotoluene		120		69 -	120 %			

TRC Solutions/Environmental, Midland, TX

Sample Id: TT2-WW @ 1.5'		Matrix:	Soil	Sample Depth	: 1.5 ft
Lab Sample Id: 620194-007		Date Collected	1: 04.03.19 13.30	Date Received	1: 04.03.19 16.35
Analytical Method: BTEX by EPA 8021				Prep Method:	5030B
Analyst: MIT		% Moist:		Tech:	MIT
Seq Number: 3084840		Date Prep: 04.	.05.19 14.00		
		Prep seq: 76'	75210		
	CAS			An	alysis Dil Factor

Parameter	Number	Result	MQL	SDL	Units	Date	Flag	DITTACION
Benzene	71-43-2	< 0.00804	0.0178	0.00804	mg/kg	04.06.19 10:11	U	18
Toluene	108-88-3	< 0.00416	0.0178	0.00416	mg/kg	04.06.19 10:11	U	18
Ethylbenzene	100-41-4	< 0.00548	0.0178	0.00548	mg/kg	04.06.19 10:11	U	18
m_p-Xylenes	179601-23-1	< 0.00607	0.0356	0.00607	mg/kg	04.06.19 10:11	U	18
o-Xylene	95-47-6	< 0.00607	0.0178	0.00607	mg/kg	04.06.19 10:11	U	18
Xylenes, Total	1330-20-7	< 0.00607		0.00607	mg/kg	04.06.19 10:11	U	
Total BTEX		< 0.00416		0.00416	mg/kg	04.06.19 10:11	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

Surrogate	76 Recovery	Linits	Units	Analysis Date	Flag
4-Bromofluorobenzene	99	68 - 120	%		
a,a,a-Trifluorotoluene	108	71 - 121	%		

TRC Solutions/Environmental, Midland, TX

Sample Id: ETT-NW-B @ 2.5'		Matrix:	Soil		Sample	Depth: 2.5 ft		
Lab Sample Id: 620194-008		Date Collecte	ed: 04.03.19 14	4.30	Date R	eceived: 04.03.	19 16.3	35
Analytical Method: Inorganic Anions by	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3084960		Date Prep: 04	4.08.19 12.42					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575239					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	641	10.0	0.355	mg/kg	04.08.19 15:03		1
	150				D M			
Analytical Method: DRO-ORO By SW80 Analyst: MIT	128	% Moist:			Prep M Tech:	ethod: 8015 MIT		
Seq Number: 3084803		Date Prep: 04	4.05.19 14.00		i cen.	10111		
Seq Rumber. 5004005		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	31.0	25.1	7.49	mg/kg	04.06.19 12:37		1
Oil Range Hydrocarbons (ORO)	PHCG2835	<7.49	25.1	7.49	mg/kg	04.06.19 12:37	U	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane n-Triacontane		104 117		65 - 46 -				
Analytical Method: TPH GRO by EPA 8)15 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084842		Date Prep: 04	4.05.19 14.00					
		Prep seq: 76	575211					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.268	3.95	0.268	mg/kg	04.06.19 10:35	U	20
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		106		76 -				
a,a,a-Trifluorotoluene		123		69 -	120 %)		**

a,a,a-Trifluorotoluene

Certificate of Analytical Results 620194

TRC Solutions/Environmental, Midland, TX

NM Moore Sweet

Sample Id: ETT-NW-B @ 2.5'		Matrix: Soil	Sample Depth: 2.5 ft
Lab Sample Id: 620194-008		Date Collected: 04.03.19 14.30	Date Received: 04.03.19 16.35
Analytical Method: BTEX by EPA 8021			Prep Method: 5030B
Analyst: MIT		% Moist:	Tech: MIT
Seq Number: 3084840		Date Prep: 04.05.19 14.00	
		Prep seq: 7675210	
	CAS		Analysis Dil F

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00893	0.0198	0.00893	mg/kg	04.06.19 10:35	U	20
Toluene	108-88-3	< 0.00462	0.0198	0.00462	mg/kg	04.06.19 10:35	U	20
Ethylbenzene	100-41-4	< 0.00609	0.0198	0.00609	mg/kg	04.06.19 10:35	U	20
m_p-Xylenes	179601-23-1	< 0.00674	0.0395	0.00674	mg/kg	04.06.19 10:35	U	20
o-Xylene	95-47-6	< 0.00674	0.0198	0.00674	mg/kg	04.06.19 10:35	U	20
Xylenes, Total	1330-20-7	< 0.00674		0.00674	mg/kg	04.06.19 10:35	U	
Total BTEX		< 0.00462		0.00462	mg/kg	04.06.19 10:35	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
4-Bromofluorobenzene		110		68 - 1	120 %	ó		

111

71 - 121

%

TRC Solutions/Environmental, Midland, TX

Sample Id: 7675190-1-BLK		Matrix:	Solid		Sample	Depth:		
Lab Sample Id: 7675190-1-BLK		Date Collecte	d:		Date R	eceived:		
Analytical Method: DRO-ORO By SW801	15B				Prep M	ethod: 8015		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084803		Date Prep: 04	.05.19 14.00					
		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	<7.48	25.0	7.48	mg/kg	04.06.19 06:13	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<7.48	25.0	7.48	mg/kg	04.06.19 06:13	U	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane		83		65 - 1	44 %	•		
n-Triacontane		98		46 - 1	152 %)		
Sample Id: 7675210-1-BLK		Matrix:	Solid		Sample	Depth:		
Lab Sample Id: 7675210-1-BLK		Date Collecte	d:		Date R	eceived:		
Analytical Method: BTEX by EPA 8021					Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084840		Date Prep: 04	.05.19 14.00					
		Prep seq: 76	75210					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00904	0.0200	0.00904	mg/kg	04.06.19 05:21	U	20
Toluene	108-88-3	< 0.00468	0.0200	0.00468	mg/kg	04.06.19 05:21	U	20
Ethylbenzene	100-41-4	< 0.00616	0.0200	0.00616	mg/kg	04.06.19 05:21	U	20
m_p-Xylenes	179601-23-1	< 0.00682	0.0400	0.00682	mg/kg	04.06.19 05:21	U	20
o-Xylene	95-47-6	< 0.00682	0.0200	0.00682	mg/kg	04.06.19 05:21	U	20
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		102		68 - 1	120 %	1		
a,a,a-Trifluorotoluene		107		71 - 1	121 %)		

TRC Solutions/Environmental, Midland, TX

Sample Id: 7675211-1-BLK		Matrix:	Solid		Sample	Depth:		
Lab Sample Id: 7675211-1-BLK		Date Collecte	ed:		Date R	eceived:		
Analytical Method: TPH GRO by EPA 801	15 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084842		Date Prep: 04	4.05.19 14.00					
		Prep seq: 76	575211					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.271	4.00	0.271	mg/kg	04.06.19 05:21	U	20
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene a,a,a-Trifluorotoluene		100 119		76 - 69 -				
Sample Id: 7675239-1-BLK		Matrix:	Solid		Sample	Depth:		
Lab Sample Id: 7675239-1-BLK		Date Collecte	ed:		Date R	eceived:		
Analytical Method: Inorganic Anions by E	PA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3084960		Date Prep: 04	4.08.19 12.42					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575239					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	< 0.354	10.0	0.354	mg/kg	04.08.19 09:40	U	1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: NM Moore Sweet

'ork Orders : 620194 Lab Batch #: 3084840			Project II			
	Sample: 7675210-1-BKS / 2 Date Analyzed: 04/06/19 02:55		h: ¹ Matrix RROGATE RI		STUDY	
Units: mg/kg BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0845	0.100	85	68-120	
a,a,a-Trifluorotoluene		1.69	2.00	85	71-121	
Lab Batch #: 3084840	Sample: 7675210-1-BSD / 1	BSD Bate	h: ¹ Matrix	:Solid		
Units: mg/kg	Date Analyzed: 04/06/19 03:19	SU	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	Anarytes	0.0934	0.100	93	68-120	
a,a,a-Trifluorotoluene		1.97	2.00	99	71-121	
Lab Batch #: 3084840	Sample: 7675210-1-BLK /	BLK Batc	h: ¹ Matrix	• Solid	1	
Units: mg/kg	Date Analyzed: 04/06/19 05:21		RROGATE RI		STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
4-Bromofluorobenzene	Anarytes	0.102	0.100	102	68-120	
a,a,a-Trifluorotoluene		2.14	2.00	102	71-121	
Lab Batch #: 3084840	Sample: 620194-001 S / M					
Units: mg/kg	Date Analyzed: 04/06/19 06:10		RROGATE RI		STUDY	
	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	Analytes	0.0911	0.100	91	68-120	
a,a,a-Trifluorotoluene		1.72	1.76	98	71-121	
Lab Batch #: 3084840	Sample: 620194-001 SD / N	ASD Bate	h: 1 Matrix	:Soil	1	
Units: mg/kg	Date Analyzed: 04/06/19 06:34		RROGATE RI		STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0905	0.100	91	68-120	
a,a,a-Trifluorotoluene		1.85	1.90	97	71-121	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: NM Moore Sweet

Vork Orders : 620194,	,		Project II):					
Lab Batch #: 3084803	Sample: 7675190-1-BKS / I								
Units: mg/kg	Date Analyzed: 04/06/19 03:53	SUI	RROGATE RE	COVERY	STUDY				
DRO-O	DRO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
Tricosane		8.66	10.0	87	65-144				
n-Triacontane		9.90	10.0	99	46-152	·			
Lab Batch #: 3084803	Sample: 7675190-1-BSD / I	BSD Batch	h: ¹ Matrix:	Solid	<u> </u>				
Units: mg/kg	Date Analyzed: 04/06/19 04:27	SUI	RROGATE RE	COVERY S	STUDY				
	ORO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
Tricosane	Third y tes	8.71	10.0	87	65-144				
n-Triacontane		9.69	10.0	97	46-152				
Lab Batch #: 3084803	Sample: 7675190-1-BLK / 1	BLK Batch	h: ¹ Matrix:	: Solid	<u> </u>				
Units: mg/kg	Date Analyzed: 04/06/19 06:13		RROGATE RE		STUDY				
	DRO By SW8015B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
	Analytes			[D]		I			
Tricosane		8.29	10.0	83	65-144				
n-Triacontane		9.79	10.0	98	46-152				
Lab Batch #: 3084803	Sample: 620194-001 S / MS								
Units: mg/kg	Date Analyzed: 04/06/19 07:23	SUI	RROGATE RE	COVERY S	STUDY				
	DRO By SW8015B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
	Analytes			[D]		<u> </u>			
Tricosane		11.5	10.0	115	65-144	 			
n-Triacontane		12.0	10.0	120	46-152				
Lab Batch #: 3084803	Sample: 620194-001 SD / M								
Units: mg/kg	Date Analyzed: 04/06/19 07:58	SUI	RROGATE RE	COVERY S	STUDY				
DRO-O	DRO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
Tricosane		11.0	9.99	110	65-144				
n-Triacontane		12.0	9.99	120	46-152				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: NM Moore Sweet

ork Orders : 620194			Project I			
Lab Batch #: 3084842	Sample: 7675211-1-BKS / 1		h: 1 Matrix RROGATE R		STUDV	
Units: mg/kg TPH GR(Date Analyzed: 04/06/19 03:43	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	[A]	[0]	[D]	701	
4-Bromofluorobenzene		0.0811	0.100	81	76-123	
a,a,a-Trifluorotoluene		1.99	2.00	100	69-120	
Lab Batch #: 3084842	Sample: 7675211-1-BSD / 1	BSD Bate	h: ¹ Matrix	:Solid		
Units: mg/kg	Date Analyzed: 04/06/19 04:08	SU	RROGATE R	ECOVERYS	STUDY	
TPH GRO) by EPA 8015 Mod.	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
	Analytes			[D]		
4-Bromofluorobenzene		0.107	0.100	107	76-123	**
a,a,a-Trifluorotoluene		2.45	2.00	123	69-120	**
Lab Batch #: 3084842	Sample: 7675211-1-BLK / 1					
Units: mg/kg	Date Analyzed: 04/06/19 05:21	SU	RROGATE R	ECOVERYS	STUDY	
TPH GRO) by EPA 8015 Mod.	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
	Analytes					
4-Bromofluorobenzene		0.0995	0.100	100	76-123	
a,a,a-Trifluorotoluene		2.37	2.00	119	69-120	
Lab Batch #: 3084842	Sample: 620194-001 S / MS		-	-		
Units: mg/kg	Date Analyzed: 04/06/19 06:58	SU	RROGATE R	ECOVERY	STUDY	
TPH GRO) by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.108	0.100	108	76-123	
a,a,a-Trifluorotoluene		2.44	1.96	124	69-120	**
Lab Batch #: 3084842	Sample: 620194-001 SD / M	MSD Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 04/06/19 07:23	SU	RROGATE R	ECOVERY	STUDY	
TPH GRO) by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
4-Bromofluorobenzene		0.0831	0.100	83	76-123	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: NM Moore Sweet

Work Order #: 620194							Pro	ject ID:			
Analyst: MIT	D	ate Prepar	red: 04/05/201	.9			Date A	nalyzed: (04/06/2019		
Lab Batch ID: 3084840 Sample: 7675210-1	-BKS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUE	Y	
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R [D]	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[D]	[C]	נען	[E]	Kesuit [F]	[G]				
Benzene	< 0.00904	2.00	1.97	99	2.00	1.94	97	2	55-120	20	
Toluene	< 0.00468	2.00	1.94	97	2.00	1.88	94	3	77-120	20	
Ethylbenzene	< 0.00616	2.00	1.94	97	2.00	1.89	95	3	77-120	20	
m_p-Xylenes	< 0.00682	4.00	4.01	100	4.00	3.89	97	3	78-120	20	
o-Xylene	< 0.00682	2.00	2.05	103	2.00	2.01	101	2	78-120	20	
Analyst: MIT	D	ate Prepar	red: 04/05/201	.9	•		Date A	nalyzed: ()4/06/2019		
Lab Batch ID: 3084803 Sample: 7675190-1	-BKS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUE	Y	
DRO-ORO By SW8015B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Diesel Range Organics (DRO)	<7.48	100	105	105	100	104	104	1	63-139	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: NM Moore Sweet

Work Order #: 620194							Pro	ject ID:			
Analyst: JYM	D	ate Prepar	red: 04/08/20	19			Date A	nalyzed: (04/08/2019		
Lab Batch ID: 3084960 Sample: 7675239-1-	BKS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	ΟY	
Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes											
Chloride	< 0.354	100	102	102	100	102	102	0	80-120	20	
Analyst: MIT	D	ate Prepar	red: 04/05/20	19			Date A	nalyzed: (04/06/2019		
Lab Batch ID: 3084842 Sample: 7675211-1-	BKS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	ΟY	
TPH GRO by EPA 8015 Mod. Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
TPH-GRO	< 0.271	20.0	18.8	94	20.0	17.9	90	5	35-129	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: NM Moore Sweet

Work Order # :	620194						Project II):				
Lab Batch ID:	3084840	QC- Sample ID:	620194	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/06/2019	Date Prepared:	04/05/2	019	An	alyst: N	TIM					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	BTEX by EPA 8021	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	itesute [1]	[G]		,	/ • • • • •	
Benzene		< 0.00794	1.76	1.72	98	1.90	1.87	98	8	54-120	25	
Toluene		<0.00411	1.76	1.73	98	1.90	1.88	99	8	57-120	25	
Ethylbenzene		<0.00541	1.76	1.71	97	1.90	1.85	97	8	58-131	25	
m_p-Xylenes		<0.00599	3.51	3.49	99	3.80	3.80	100	9	62-124	25	
o-Xylene		< 0.00599	1.76	1.74	99	1.90	1.91	101	9	62-124	25	
Lab Batch ID:	3084803	QC- Sample ID:	620194	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/06/2019	Date Prepared:	04/05/2	019	An	alyst: N	TIM					
Reporting Units:	mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
- 0			141	AIKIA SPIK	E/MAI		ne bei eien		OVENI	STUDI		
	RO-ORO By SW8015B	Parent Sample Regult	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
				Spiked Sample	Spiked		Duplicate	Spiked		Control		Flag
	RO-ORO By SW8015B Analytes	Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %R	Spike Added	Duplicate Spiked Sample	Spiked Dup. %R	RPD	Control Limits	Limits	Flag
D	RO-ORO By SW8015B Analytes	Sample Result [A]	Spike Added [B] 100	Spiked Sample Result [C] 129	Spiked Sample %R [D] 89	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G] 87	RPD %	Control Limits %R	Limits %RPD	Flag
Diesel Range Or	RO-ORO By SW8015B Analytes rganics (DRO)	Sample Result [A] 40.2	Spike Added [B] 100 620194	Spiked Sample Result [C] 129 -001 S	Spiked Sample %R [D] 89 Ba	Spike Added [E] 99.9	Duplicate Spiked Sample Result [F] 127 1 Matrix	Spiked Dup. %R [G] 87	RPD %	Control Limits %R	Limits %RPD	Flag
Diesel Range Or Lab Batch ID:	RO-ORO By SW8015B Analytes rganics (DRO) 3084960	Sample Result [A] 40.2 QC- Sample ID:	Spike Added [B] 100 620194 04/08/2	Spiked Sample Result [C] 129 -001 S 019	Spiked Sample %R [D] 89 Ba An	Spike Added [E] 99.9 tch #: alyst: J	Duplicate Spiked Sample Result [F] 127 1 Matrix	Spiked Dup. %R [G] 87 x: Soil	RPD %	Control Limits %R 63-139	Limits %RPD	Flag
Diesel Range Or Lab Batch ID: Date Analyzed: Reporting Units:	RO-ORO By SW8015B Analytes rganics (DRO) 3084960 04/08/2019	Sample Result [A] 40.2 QC- Sample ID: Date Prepared: Parent Sample	Spike Added [B] 100 620194 04/08/2 M Spike	Spiked Sample Result [C] 129 -001 S 019 (ATRIX SPIK Spiked Sample Result	Spiked Sample %R [D] 89 Ba An E / MAT Spiked Sample	Spike Added [E] 99.9 tch #: alyst: J RIX SPI Spike	Duplicate Spiked Sample Result [F] 127 1 Matrix YM KE DUPLICA Duplicate Spiked Sample	Spiked Dup. %R [G] 87 k: Soil TE REC Spiked Dup.	RPD % 2 OVERY RPD	Control Limits %R 63-139 STUDY Control Limits	Limits %RPD 20 Control Limits	Flag
Diesel Range Or Lab Batch ID: Date Analyzed: Reporting Units:	RO-ORO By SW8015B Analytes rganics (DRO) 3084960 04/08/2019 mg/kg	Sample Result [A] 40.2 QC- Sample ID: Date Prepared:	Spike Added [B] 100 620194 04/08/2 M	Spiked Sample Result [C] 129 -001 S 019 IATRIX SPIK Spiked Sample	Spiked Sample %R [D] 89 Ba An E / MAT Spiked	Spike Added [E] 99.9 tch #: alyst: J RIX SPI	Duplicate Spiked Sample Result [F] 127 1 Matrix YM KE DUPLICA Duplicate	Spiked Dup. %R [G] 87 k: Soil TE REC Spiked	RPD % 2 OVERY	Control Limits %R 63-139 STUDY Control	Limits %RPD 20 Control	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

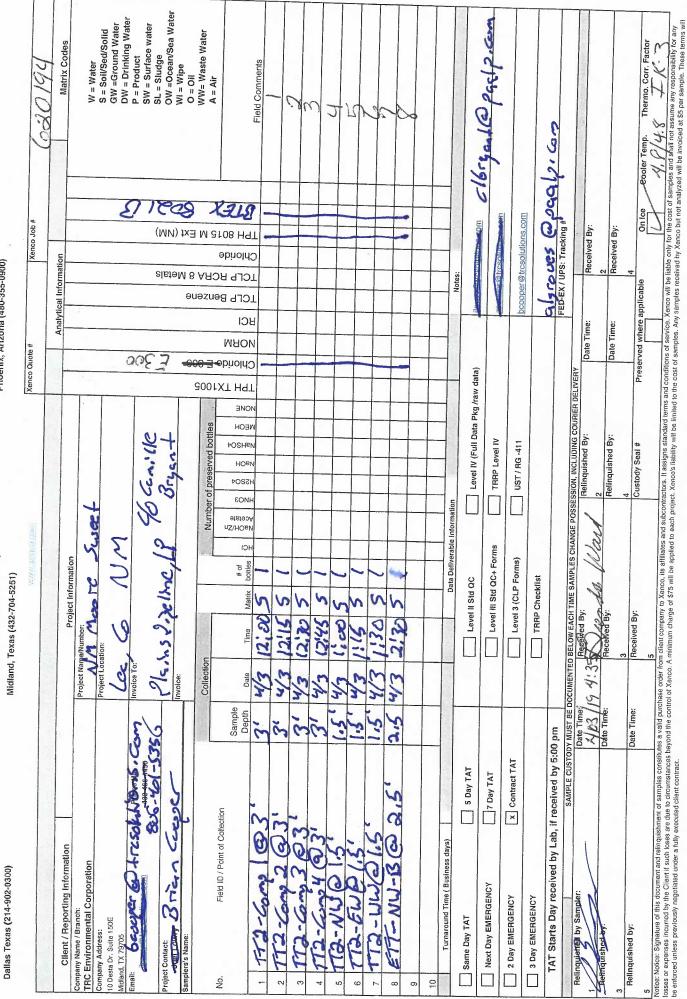
ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: NM Moore Sweet

Work Order # :	620194						Project II):				
Lab Batch ID:	3084960	QC- Sample ID:	620236	-003 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	04/08/2019	Date Prepared:	04/08/2	019	An	alyst: J	JYM					
Reporting Units:	mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
Inorgar	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	itesuit [1]	[G]		/011		
Chloride		18.1	100	124	106	100	124	106	0	80-120	20	
Lab Batch ID:	3084842	QC- Sample ID:	620194	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/06/2019	Date Prepared:	04/05/2	019	An	alyst: N	MIT					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
ТРН	GRO by EPA 8015 Mod.	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	/0K [D]	[E]	Kesut [F]	[G]	/0	/01		
TPH-GRO		<0.266	19.6	17.9	91	17.8	16.0	90	11	35-129	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E


Stafford, Texas (281-240-4200)

CHAIN OF CUSTODY

ð

San Antonio, Texas (210-509-3334) Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

Final 1.000

Inter-Office Shipment

IOS Number : 126051

Date/Time	: 04.05.20	019 10:47	Created by	:	Brenda Ward		Please sen	d report to:	Mike Kimm	el			
Lab# From	n: Lubboc	ck	Delivery l	Priority	:		Address:		6701 Aberd	een, Suit	te 9 Lu	ibbock, TX 7	9424
Lab# To:	Housto	n	Air Bill N	o.:	774902303624		E-Mail:		mike.kimme	el@xenc	o.com		
Sample Id	Matrix Clie	ent Sample Id	Sample Collection	1	Method	Method Name	Lab D	ue H	T Due	PM		Analytes	Sign
620194-001	S TT2	2-Comp 1 @ 3'	04.03.2019 12:00	E300)	Inorganic Anions by EPA 300/300.1	04.09.2	2019 0.	5.01.2019	MKI	CL		
620194-002	S TT2	2-Comp 2 @ 3'	04.03.2019 12:13	5 E300)	Inorganic Anions by EPA 300/300.1	04.09.2	2019 0.	5.01.2019	MKI	CL		
620194-003	S TT2	-Comp 3 @ 3'	04.03.2019 12:30	E300)	Inorganic Anions by EPA 300/300.1	04.09.2	2019 0.	5.01.2019	MKI	CL		
620194-004	S TT2	-Comp 4 @ 3'	04.03.2019 12:43	5 E300)	Inorganic Anions by EPA 300/300.1	04.09.2	2019 0.	5.01.2019	MKI	CL		
620194-005	S TT2	-NW @ 1.5'	04.03.2019 13:00	E300)	Inorganic Anions by EPA 300/300.1	04.09.2	2019 0.	5.01.2019	MKI	CL		
620194-006	S TT2	e-EW @ 1.5'	04.03.2019 13:1:	5 E300)	Inorganic Anions by EPA 300/300.1	04.09.2	2019 0.	5.01.2019	MKI	CL		
620194-007	S TT2	e-WW @ 1.5'	04.03.2019 13:30	E300		Inorganic Anions by EPA 300/300.1	04.09.2	2019 0.	5.01.2019	MKI	CL		
620194-008	S ETT	T-NW-B @ 2.5'	04.03.2019 14:30	E300)	Inorganic Anions by EPA 300/300.1	04.09.2	2019 0.	5.01.2019	MKI	CL		

Inter Office Shipment or Sample Comments:

Relinquished By:

renda Ward

Brenda Ward

Date Relinquished: 04.05.2019

Received By:

Monica Shakhshir

Date Received:

04.06.2019 10:00

Cooler Temperature: 1.6

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Houston IOS #: 126051

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : HOU-068

Sent By:	Brenda Ward	Date Sent:	04/05/2019 10:47 AM
Received By:	: Monica Shakhshir	Date Received:	04/06/2019 10:00 AM

Sample Receipt Checklist

Comments

#1 *Temperature of cooler(s)?	1.6
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperature?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Yes
#5 *Custody Seals Signed and dated for Containers/coolers	Yes
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	Yes
#13 Sufficient sample amount for indicated test(s)?	Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by: Autichan Monica Shakhshir

Date: 04/06/2019

XENCO Laboratories NCO ATORIES Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions/Environmental	Acceptable Temperature Range: 0 - 6 degC							
Date/ Time Received: 04/03/2019 04:35:00 PM	Air and Metal samples Acceptable Range: Ambient							
Work Order #: 620194	Temperature Measuring device used : IR-3							
Sample Rece	ipt Checklist Comments							
#1 *Temperature of cooler(s)?	4.8							
#2 *Shipping container in good condition?	Yes							
#3 *Samples received on ice?	Yes							
#4 *Custody Seals intact on shipping container/ cooler?	N/A							
#5 Custody Seals intact on sample bottles?	N/A							
#6*Custody Seals Signed and dated?	N/A							
#7 *Chain of Custody present?	Yes							
#8 Any missing/extra samples?	Νο							
#9 Chain of Custody signed when relinquished/ received?	Yes							
#10 Chain of Custody agrees with sample labels/matrix?	Yes							
#11 Container label(s) legible and intact?	Yes							
#12 Samples in proper container/ bottle?	Yes							
#13 Samples properly preserved?	Yes							
#14 Sample container(s) intact?	Yes							
#15 Sufficient sample amount for indicated test(s)?	Yes							
#16 All samples received within hold time?	Yes							
#17 Subcontract of sample(s)?	Yes Chloride sent to Stafford							
#18 Water VOC samples have zero headspace?	N/A							

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Brenda Ward Brenda Ward

Date: 04/05/2019

Checklist reviewed by: Mike Kimmel

Date: 04/11/2019

Analytical Report 620204

for TRC Solutions/Environmental

Project Manager: Brian Cooper

NM Moore Sweet

11-APR-19

Collected By: Client

6701 Aberdeen, Suite 9 Lubbock, TX 79424

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-28), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-18) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429), North Carolina (483) Xenco-Lakeland: Florida (E84098)

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis (Detailed Report)	6
Explanation of Qualifiers (Flags)	12
SURR_QC_V62	13
LCS / LCSD Recoveries	16
MS / MSD Recoveries	18
Chain of Custody	20
IOS_COC_126050	21
IOS_Check_List_126050	22
Sample Receipt Conformance Report	23

11-APR-19

TNI TNI TNI TNI

Project Manager: **Brian Cooper TRC Solutions/Environmental** 10 Desta Dr. Ste 150E Midland, TX 79705

Reference: XENCO Report No(s): 620204 NM Moore Sweet Project Address: Lea, Co. NM

Brian Cooper:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 620204. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 620204 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Mile K.

Mike Kimmel Client Services Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 620204

TRC Solutions/Environmental, Midland, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
WTT-NW-B @ 2	S	04-04-19 12:00	2 ft	620204-001
WTT-SW-B @ 2	S	04-04-19 12:15	2 ft	620204-002

CASE NARRATIVE

Client Name: TRC Solutions/Environmental Project Name: NM Moore Sweet

Project ID: Work Order Number(s): 620204 Report Date: *11-APR-19* Date Received: *04/04/2019*

This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory.

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3084803 DRO-ORO By SW8015B Surrogate Tricosane, Surrogate n-Triacontane recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis. Samples affected are: 620204-001,620204-002.

Batch: LBA-3084840 BTEX by EPA 8021 Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3084842 TPH GRO by EPA 8015 Mod.

Surrogate a,a,a-Trifluorotoluene recovered above QC limits Data confirmed by re-analysis. Samples affected are: 7675211-1-BSD,620194-001 S,620204-001.

TRC Solutions/Environmental, Midland, TX

Sample Id: WTT-NW-B @ 2		Matrix:	Soil		Sample	Depth: 2 ft		
Lab Sample Id: 620204-001		Date Collecte	ed: 04.04.19 12	2.00	Date Re	eceived: 04.04.1	19 15.5	52
Analytical Method: Inorganic Anions by	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3084960		Date Prep: 04	4.08.19 12.42					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575239					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	100	9.92	0.351	mg/kg	04.08.19 17:15		1
Analytical Mathed: DBO OBO By SW90	15D				Prep M	ethod: 8015		
Analytical Method: DRO-ORO By SW80 Analyst: MIT	/15 D	% Moist:			Tech:	MIT		
Seq Number: 3084803		Date Prep: 04	4.05.19 14.00		reen.	10111		
Seq Planoer. Soo loos		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	86.5	25.0	7.47	mg/kg	04.06.19 16:46		1
Oil Range Hydrocarbons (ORO)	PHCG2835	16.0	25.0	7.47	mg/kg	04.06.19 16:46	J	1
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
Tricosane n-Triacontane		164 173		65 - 46 -				**
n- i nacontane		175		40 -	152 /0			
Analytical Method: TPH GRO by EPA 8	015 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084842		Date Prep: 04	4.05.19 14.00					
		Prep seq: 76	575211					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	< 0.250	3.68	0.250	mg/kg	04.06.19 10:59	U	18
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
4-Bromofluorobenzene		100		76 -				
a,a,a-Trifluorotoluene		121		69 -	120 %			**

TRC Solutions/Environmental, Midland, TX

Sample Id: WTT-NW-B @ 2		Matrix:	Soil	Sample Depth	: 2 ft
Lab Sample Id: 620204-001		Date Collected	1: 04.04.19 12.00	Date Received	: 04.04.19 15.52
Analytical Method: BTEX by EPA 8021				Prep Method:	5030B
Analyst: MIT		% Moist:		Tech:	MIT
Seq Number: 3084840		Date Prep: 04.	.05.19 14.00		
		Prep seq: 76'	75210		
	CAS			An	alysis Dil Factor

Parameter	Number	Result	MQL	SDL	Units	Date	Flag	DIFACIO
Benzene	71-43-2	< 0.00832	0.0184	0.00832	mg/kg	04.06.19 10:59	U	18
Toluene	108-88-3	< 0.00431	0.0184	0.00431	mg/kg	04.06.19 10:59	U	18
Ethylbenzene	100-41-4	< 0.00567	0.0184	0.00567	mg/kg	04.06.19 10:59	U	18
m,p-Xylenes	179601-23-1	< 0.00628	0.0368	0.00628	mg/kg	04.06.19 10:59	U	18
o-Xylene	95-47-6	< 0.00628	0.0184	0.00628	mg/kg	04.06.19 10:59	U	18
Total Xylenes	1330-20-7	< 0.00628		0.00628	mg/kg	04.06.19 10:59	U	
Total BTEX		< 0.00431		0.00431	mg/kg	04.06.19 10:59	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

0	•			·	0
4-Bromofluorobenzene	100	68 - 120	%		
a,a,a-Trifluorotoluene	110	71 - 121	%		

TRC Solutions/Environmental, Midland, TX

Sample Id: WTT-SW-B @ 2		Matrix:	Soil		Sample	e Depth: 2 ft		
Lab Sample Id: 620204-002		Date Collecte	ed: 04.04.19 12	2.15	Date R	eceived: 04.04.	19 15.5	52
Analytical Method: Inorganic Anions by I	EPA 300/300.1				Prep M	lethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3084960		Date Prep: 04	.08.19 12.42					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575239					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	159	9.94	0.352	mg/kg	04.08.19 17:24		1
Analytical Method: DRO-ORO By SW80	15B				Prep M	lethod: 8015		
Analyst: MIT	150	% Moist:			Tech:	MIT		
Seq Number: 3084803		Date Prep: 04	.05.19 14.00		T com.			
		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	76.3	24.9	7.44	mg/kg	04.06.19 17:21		1
Oil Range Hydrocarbons (ORO)	PHCG2835	11.0	24.9	7.44	mg/kg	04.06.19 17:21	J	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane		146		65 -				**
n-Triacontane		160		46 -	152 %)		**
Analytical Method: TPH GRO by EPA 80)15 Mod.				Prep M	lethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084842		Date Prep: 04	.05.19 14.00					
		Prep seq: 76	575211					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.266	3.92	0.266	mg/kg	04.06.19 18:19	U	20
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		100		76 -				
a,a,a-Trifluorotoluene		108		69 -	120 %			

a,a,a-Trifluorotoluene

Certificate of Analytical Results 620204

TRC Solutions/Environmental, Midland, TX

NM Moore Sweet

Sample Id: WTT-SW-B @ 2		Matrix:	Soil		Sample Dep	th: 2 ft	
Lab Sample Id: 620204-002		Date Collected	d: 04.04.19 1	2.15	Date Receiv	ed: 04.04.	19 15.52
Analytical Method: BTEX by EPA 8021					Prep Metho	d: 5030B	i
Analyst: MIT		% Moist:			Tech:	MIT	
Seq Number: 3084840		Date Prep: 04	.05.19 14.00				
		Prep seq: 76	75210				
Doromotor	CAS	Desult	MOI	SDI	Unite	nalysis	Dil Factor

Parameter	Number	Result	MQL	SDL	Units	Date	Flag	
Benzene	71-43-2	< 0.00886	0.0196	0.00886	mg/kg	04.06.19 18:19	U	20
Toluene	108-88-3	< 0.00459	0.0196	0.00459	mg/kg	04.06.19 18:19	U	20
Ethylbenzene	100-41-4	< 0.00604	0.0196	0.00604	mg/kg	04.06.19 18:19	U	20
m,p-Xylenes	179601-23-1	0.00980	0.0392	0.00669	mg/kg	04.06.19 18:19	J	20
o-Xylene	95-47-6	< 0.00669	0.0196	0.00669	mg/kg	04.06.19 18:19	U	20
Fotal Xylenes	1330-20-7	0.00980		0.00669	mg/kg	04.06.19 18:19	J	
Fotal BTEX		0.00980		0.00459	mg/kg	04.06.19 18:19	J	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
4-Bromofluorobenzene		102		68 - 1	120 %)		

97

71 - 121

%

TRC Solutions/Environmental, Midland, TX

Sample Id: 7675190-1-BLK		Matrix:	Solid		Sample	Depth:		
Lab Sample Id: 7675190-1-BLK		Date Collecte	d:		Date R	eceived:		
Analytical Method: DRO-ORO By SW801	5B				Prep M	lethod: 8015		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084803		Date Prep: 04	.05.19 14.00					
		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	<7.48	25.0	7.48	mg/kg	04.06.19 06:13	U	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<7.48	25.0	7.48	mg/kg	04.06.19 06:13	U	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane		83		65 - 1	44 %			
n-Triacontane		98		46 - 1				
Sample Id: 7675210-1-BLK		Matrix:	Solid		Sample	e Depth:		
Lab Sample Id: 7675210-1-BLK		Date Collecte	d:		Date R	eceived:		
Analytical Method: BTEX by EPA 8021					Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084840		Date Prep: 04	.05.19 14.00					
		Prep seq: 76	75210					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00904	0.0200	0.00904	mg/kg	04.06.19 05:21	U	20
Toluene	108-88-3	< 0.00468	0.0200	0.00468	mg/kg	04.06.19 05:21	U	20
Ethylbenzene	100-41-4	< 0.00616	0.0200	0.00616	mg/kg	04.06.19 05:21	U	20
m,p-Xylenes	179601-23-1	< 0.00682	0.0400	0.00682	mg/kg	04.06.19 05:21	U	20
o-Xylene	95-47-6	< 0.00682	0.0200	0.00682	mg/kg	04.06.19 05:21	U	20
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		102		68 - 1	120 %)		
a,a,a-Trifluorotoluene		107		71 - 1	121 %)		

TRC Solutions/Environmental, Midland, TX

Sample Id: 7675211-1-BLK		Matrix:	Solid		Sample	e Depth:		
Lab Sample Id: 7675211-1-BLK		Date Collecte	ed:		Date R	eceived:		
Analytical Method: TPH GRO by EPA 80	15 Mod.				Prep M	lethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3084842		Date Prep: 04	4.05.19 14.00					
		Prep seq: 76	575211					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.271	4.00	0.271	mg/kg	04.06.19 05:21	U	20
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene a,a,a-Trifluorotoluene		100 119		76 - 69 -				
Sample Id: 7675239-1-BLK		Matrix:	Solid		Sample	e Depth:		
Lab Sample Id: 7675239-1-BLK		Date Collecte	ed:		Date R	eceived:		
Analytical Method: Inorganic Anions by E	PA 300/300.1				Prep M	lethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3084960		Date Prep: 04	4.08.19 12.42					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575239					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	< 0.354	10.0	0.354	mg/kg	04.08.19 09:40	U	1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: NM Moore Sweet

Lab Batch #: 3084840	Sample: 7675210-1-BKS /	BKS Batc	h: 1 Matrix	:Solid		
Units: mg/kg	Date Analyzed: 04/06/19 02:55		RROGATE R		STUDY	
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0845	0.100	85	68-120	
a,a,a-Trifluorotoluene		1.69	2.00	85	71-121	
Lab Batch #: 3084840	Sample: 7675210-1-BSD /	BSD Batc	h: ¹ Matrix	:Solid		
Units: mg/kg	Date Analyzed: 04/06/19 03:19	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	Analytes	0.0934	0.100	93	68-120	
a.a.a-Trifluorotoluene		1.97	2.00	99	71-121	
Lab Batch #: 3084840	Sample: 7675210-1-BLK /	BLK Batc	h: ¹ Matrix	• Solid		
Units: mg/kg	Date Analyzed: 04/06/19 05:21		RROGATE R		STUDY	
		Amount	True		Control	
DIL	X by EPA 8021 Analytes	Found [A]	Amount [B]	Recovery %R [D]	Limits %R	Flags
4-Bromofluorobenzene	1 11111 y 000	0.102	0.100	102	68-120	
a,a,a-Trifluorotoluene		2.14	2.00	107	71-121	
Lab Batch #: 3084840	Sample: 620194-001 S / M	S Batc	h: 1 Matrix	:Soil	1	
Units: mg/kg	Date Analyzed: 04/06/19 06:10	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4.D. (1.1	Analytes	0.0011	0.100		60.100	
4-Bromofluorobenzene a,a,a-Trifluorotoluene		0.0911	0.100	91 98	68-120	
					71-121	
Lab Batch #: 3084840	Sample: 620194-001 SD / N				STUDY	
Units: mg/kg	Date Analyzed: 04/06/19 06:34	50	RROGATE R			
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
4-Bromofluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0905	0.100	91	68-120	
				1 1		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: NM Moore Sweet

Vork Orders : 620204,	,		Project II):								
Lab Batch #: 3084803	Sample: 7675190-1-BKS / I	B/BKS Batch: 1 Matrix: Solid										
Units: mg/kg	Date Analyzed: 04/06/19 03:53	SU	RROGATE RE	ECOVERY S	STUDY							
DRO-O	PRO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
Tricosane		8.66	10.0	87	65-144							
n-Triacontane		9.90	10.0	99	46-152							
Lab Batch #: 3084803	Sample: 7675190-1-BSD / 1	BSD Batcl	h: ¹ Matrix:	Solid								
Units: mg/kg	Date Analyzed: 04/06/19 04:27	SURROGATE RECOVERY STUDY										
DRO-O	PRO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
Tricosane		8.71	10.0	87	65-144							
n-Triacontane		9.69	10.0	97	46-152							
Lab Batch #: 3084803	Sample: 7675190-1-BLK / 1	BLK Batch	h: 1 Matrix:	• Solid	<u> </u>							
Units: mg/kg	Date Analyzed: 04/06/19 06:13		RROGATE RE	-	STUDY							
	PRO By SW8015B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags						
	Analytes			[D]								
Tricosane		8.29	10.0	83	65-144							
n-Triacontane		9.79	10.0	98	46-152							
Lab Batch #: 3084803	Sample: 620194-001 S / MS			-								
Units: mg/kg	Date Analyzed: 04/06/19 07:23	SU	RROGATE RE	ECOVERY S	STUDY							
DRO-O	DRO By SW8015B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
	Analytes											
Tricosane n-Triacontane		11.5	10.0	115	65-144							
		12.0	10.0	120	46-152	<u>.</u>						
Lab Batch #: 3084803	Sample: 620194-001 SD / M											
Units: mg/kg	Date Analyzed: 04/06/19 07:58	50	RROGATE RE									
DRO-O	PRO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
Tricosane		11.0	9.99	110	65-144							
n-Triacontane		12.0	9.99	120	46-152							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: NM Moore Sweet

ork Orders : 620204 Lab Batch #: 3084842	., Sample: 7675211-1-BKS /	RKS Data	Project I h: 1 Matrix			
Lab Batch #: 5064642 Units: mg/kg	Date Analyzed: 04/06/19 03:43		RROGATE R		STUDY	
	D by EPA 8015 Mod.	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0811	0.100	81	76-123	
a,a,a-Trifluorotoluene		1.99	2.00	100	69-120	
Lab Batch #: 3084842	Sample: 7675211-1-BSD /		-			
Units: mg/kg	Date Analyzed: 04/06/19 04:08	SU	RROGATE R	ECOVERY	STUDY	
TPH GRO	D by EPA 8015 Mod.	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	Analytes	0.107	0.100		76 102	
a,a,a-Trifluorotoluene		0.107	0.100	107	76-123 69-120	**
					09-120	
Lab Batch #: 3084842	Sample: 7675211-1-BLK /					
Units: mg/kg	Date Analyzed: 04/06/19 05:21	SU	RROGATE R	ECOVERY	STUDY	
TPH GRO	D by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0995	0.100	100	76-123	
a.a.a-Trifluorotoluene		2.37	2.00	119	69-120	
Lab Batch #: 3084842	Secondary 620104 001 S / M					
	Sample: 620194-001 S / M		RROGATE R	-	STUDY	
Units: mg/kg	Date Analyzed: 04/06/19 06:58		1			
TPH GRO	D by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.108	0.100	108	76-123	
a,a,a-Trifluorotoluene		2.44	1.96	124	69-120	**
Lab Batch #: 3084842	Sample: 620194-001 SD / N	MSD Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 04/06/19 07:23	SU	RROGATE R	ECOVERY	STUDY	
TPH GRO	D by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	J •••					
4-Bromofluorobenzene		0.0831	0.100	83	76-123	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: NM Moore Sweet

Work Order #: 620204							Pro	ject ID:				
Analyst: MIT	D	ate Prepar	red: 04/05/201	.9			Date A	nalyzed: (04/06/2019			
Lab Batch ID: 3084840 Sample: 7675210-1	-BKS	Bate	h #: 1					Matrix: Solid				
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUE	Y		
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Analytes		[D]	[C]	[D]	[E]	Kesuit [F]	[G]					
Benzene	< 0.00904	2.00	1.97	99	2.00	1.94	97	2	55-120	20		
Toluene	< 0.00468	2.00	1.94	97	2.00	1.88	94	3	77-120	20		
Ethylbenzene	< 0.00616	2.00	1.94	97	2.00	1.89	95	3	77-120	20		
m,p-Xylenes	< 0.00682	4.00	4.01	100	4.00	3.89	97	3	78-120	20		
o-Xylene	< 0.00682	2.00	2.05	103	2.00	2.01	101	2	78-120	20		
Analyst: MIT	D	ate Prepar	red: 04/05/201	.9	•		Date A	nalyzed: ()4/06/2019			
Lab Batch ID: 3084803 Sample: 7675190-1	-BKS	Bate	h #: 1					Matrix: S	Solid			
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUE	Y		
DRO-ORO By SW8015B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Diesel Range Organics (DRO)	<7.48	100	105	105	100	104	104	1	63-139	20		

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: NM Moore Sweet

Work Order #: 620204							Proj	ject ID:				
Analyst: JYM	D	ate Prepar	red: 04/08/201	19			Date A	nalyzed: (04/08/2019			
Lab Batch ID: 3084960 Sample: 7675239-1-	-BKS	Batc	h #: 1		Matrix: Solid							
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK §	SPIKE DUP	LICATE	RECOVI	ERY STUF	ЭY		
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Chloride	< 0.354	100	102	102	100	102	102	0	80-120	20		
Analyst: MIT	D	ate Prepar	red: 04/05/201	19	. <u>.</u>		Date A	nalyzed: (04/06/2019	·		
Lab Batch ID: 3084842 Sample: 7675211-1-	-BKS	Batc	h #: 1					Matrix: S	Solid			
Units: mg/kg		BLAN	NK /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	Y		
TPH GRO by EPA 8015 Mod. Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
TPH-GRO	<0.271	20.0	18.8	94	20.0	17.9	90	5	35-129	20		

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: NM Moore Sweet

Work Order # :	620204						Project II) :				
Lab Batch ID:	3084840	QC- Sample ID:	620194	-001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	04/06/2019	Date Prepared:	04/05/2	019	Ar	alyst: 1	MIT					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	BTEX by EPA 8021	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]		[G]				
Benzene		< 0.00794	1.76	1.72	98	1.90	1.87	98	8	54-120	25	
Toluene		<0.00411	1.76	1.73	98	1.90	1.88	99	8	57-120	25	
Ethylbenzene		< 0.00541	1.76	1.71	97	1.90	1.85	97	8	58-131	25	
m,p-Xylenes		< 0.00599	3.51	3.49	99	3.80	3.80	100	9	62-124	25	
o-Xylene		< 0.00599	1.76	1.74	99	1.90	1.91	101	9	62-124	25	
Lab Batch ID:	3084803	QC- Sample ID:	620194	-001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	04/06/2019	Date Prepared:	04/05/2	019	Ar	alyst: 1	MIT					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
D	RO-ORO By SW8015B	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	Added [B]	[C]	5%K [D]	[E]	Kesunt [r]	76K [G]	70	70K	70KFD	
Diesel Range Or	rganics (DRO)	40.2	100	129	89	99.9	127	87	2	63-139	20	
Lab Batch ID:	3084960	QC- Sample ID:	620194	-001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	04/08/2019	Date Prepared:	04/08/2	019	Ar	alyst: J	YM					
Reporting Units:	mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
		Parent		Spiked Sample	•	6	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Inorgar	nic Anions by EPA 300/300.1	Sample Result	Spike	Result	Sample	Spike			1			Flag
Inorgar	nic Anions by EPA 300/300.1 Analytes	Sample Result [A]	Spike Added [B]	C]	Sample %R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	riag

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: NM Moore Sweet

Work Order # :	620204						Project II):				
Lab Batch ID:	3084960	QC- Sample ID:	620236	-003 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	04/08/2019	Date Prepared:	04/08/2	019	An	alyst: J	JYM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
Inorgan	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	itesuit [1]	[G]			/ viti D	
Chloride		18.1	100	124	106	100	124	106	0	80-120	20	
Lab Batch ID:	3084842	QC- Sample ID:	620194	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/06/2019	Date Prepared:	04/05/2	019	An	alyst: N	MIT					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
ТРН	GRO by EPA 8015 Mod.	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	Kesut [F]	[G]				
TPH-GRO		<0.266	19.6	17.9	91	17.8	16.0	90	11	35-129	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Chain of Custom Chain of Custom Prime International custom Chain of Custom	Work Order No: 1200204	www.xenco.com Pace of	Comments			Reporting:Level II Clevel III PST/UST TTRRP 1 Avel IV		Ň	K	an isomerican and a solution	Algancs Bag (pice	Cleryant Open (21 com		TAT starts the day received by the	lab, if received by 4:30pm	Sample Comments		2				. 36 Ag SIUZ Na Sr II Sn U V Zn 1631/245.1/7470 /7471 : Hg	nd conditions and the control gotiated.	Received by: (Signature) Date/Time			Revised Date 051418 Rev. 2018 1
Chailer Contraction To the second and the second an				2020 Che, 2P		Reporting:Level II	Deliverables: EDD	ANAI YSIS REOLIEST		······································	3		510	29	Ha	2					Ba Be B Cd Ca Cr Co Ci Ea Dh Mo Mn Mo Ni V	s Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U	any to venco, its attiliates and subcontractors. It assigns standard terms ar xpenses incurred by the client if such losses are due to circumstances beyor Xenco, but not analyzed. These terms will be enforced unless previously ner	Relinguished by: (Signature)	- D'L	+ 0	
Manager: Control of the control of t			+ shirley	Company Name:	Supe (sol Address:	Midland, TX 7825 City, State ZIP:	G Email:	Move Swet	Routine	l		Thomas No		No N/A Correction Factor: O	Matrix Date Time Date	Sampled Sampled Depth	12, co 2'	12215 3'			13PPM Texas 11 AI	Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: 8RCRA Sb Access Signature of this document and relinguishment of samples constitutions of this document and relinguishment of samples constitutions of the second s	 Xenco will be liable only for the cost of samples and shall not assume a pure pure any responsibility for any losses or e A minimum charge of \$75.00 will be applied to deal project and a charge of \$5 for each sample submitted to 			2	

Page 20 of 23

Final 1.000

Inter-Office Shipment

$IOS \ Number: 126050$

Date/Time	: 04.05.2019 10:44	Created by:	Brenda Ward		Please send report to:	Mike Kimme	el		
Lab# From	n: Lubbock	Delivery Priority	/:		Address:	6701 Aberde	en, Suit	e 9 Lubbock, TX 7	9424
Lab# To:	Houston	Air Bill No.:	774902303624		E-Mail:	mike.kimme	l@xenco	o.com	
Sample Id	Matrix Client Sample Id	Sample Collection	Method	Method Name	Lab Due I	HT Due	PM	Analytes	Sign
620204-001	S WTT-NW-B @ 2	04.04.2019 12:00 E30	0 1	Inorganic Anions by EPA 300/300.1	04.10.2019 (05.02.2019	MKI	CL	
620204-002	S WTT-SW-B @ 2	04.04.2019 12:15 E30	0 1	Inorganic Anions by EPA 300/300.1	04.10.2019	05.02.2019	MKI	CL	

Inter Office Shipment or Sample Comments:

Relinquished By:

Ward renda

Brenda Ward

Date Relinquished: 04.05.2019

Received By:

0

Monica Shakhshir

Date Received: 04.06.2019 10:00

Cooler Temperature: 1.6

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Houston IOS #: 126050

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : HOU-068

Sent By:	Brenda Ward	Date Sent:	04/05/2019 10:44 AM
Received By:	: Monica Shakhshir	Date Received:	04/06/2019 10:00 AM

Sample Receipt Checklist

Comments

#1 *Temperature of cooler(s)?	1.6
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperature?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Yes
#5 *Custody Seals Signed and dated for Containers/coolers	Yes
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	Yes
#13 Sufficient sample amount for indicated test(s)?	Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by: Autichan Monica Shakhshir

Date: 04/06/2019

XENCO Laboratories NCO ATORIES Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions/Environmental	Acceptable Temperature Range: 0 - 6 degC							
Date/ Time Received: 04/04/2019 03:52:00 PM	Air and Metal samples Acceptable Range: Ambient							
Work Order #: 620204	Temperature Measuring device used :							
Sample Receip	ot Checklist Comments							
#1 *Temperature of cooler(s)?	5.1							
#2 *Shipping container in good condition?	Yes							
#3 *Samples received on ice?	Yes							
#4 *Custody Seals intact on shipping container/ cooler?	N/A							
#5 Custody Seals intact on sample bottles?	N/A							
#6*Custody Seals Signed and dated?	N/A							
#7 *Chain of Custody present?	Yes							
#8 Any missing/extra samples?	No							
#9 Chain of Custody signed when relinquished/ received?	Yes							
#10 Chain of Custody agrees with sample labels/matrix?	Yes							
#11 Container label(s) legible and intact?	Yes							
#12 Samples in proper container/ bottle?	Yes							
#13 Samples properly preserved?	Yes							
#14 Sample container(s) intact?	Yes							
#15 Sufficient sample amount for indicated test(s)?	Yes							
#16 All samples received within hold time?	Yes							
#17 Subcontract of sample(s)?	Yes Chloride sent to Stafford							
#18 Water VOC samples have zero headspace?	N/A							

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#: IR-3

Checklist completed by: Brenda Ward Brenda Ward

Date: 04/05/2019

Checklist reviewed by: Muckie Mike Kimmel

Date: 04/11/2019

Analytical Report 621277

for TRC Solutions/Environmental

Project Manager: Curt Stanely

NM Moore Sweet

07-MAY-19

Collected By: Client

6701 Aberdeen, Suite 9 Lubbock, TX 79424

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-29), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-19-19), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-20) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429), North Carolina (483)

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis (Detailed Report)	7
Explanation of Qualifiers (Flags)	17
SURR_QC_V62	18
LCS / LCSD Recoveries	22
MS / MSD Recoveries	24
Chain of Custody	26
IOS_COC_37182	27
IOS_Check_List_37182	28
Sample Receipt Conformance Report	29

07-MAY-19

Project Manager: **Curt Stanely TRC Solutions/Environmental** 10 Desta Dr. Ste 150E Midland, TX 79705

Reference: XENCO Report No(s): 621277 NM Moore Sweet Project Address:

Curt Stanely :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 621277. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 621277 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession KRAMER

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 621277

TRC Solutions/Environmental, Midland, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
STT-NW-B @ 6'	S	04-16-19 10:00	6 In	621277-001
STT-EW-B @ 6'	S	04-16-19 10:15	6 In	621277-002
STT-SW-B @ 6'	S	04-16-19 10:30	6 In	621277-003
STT-WW-B @ 6'	S	04-16-19 10:45	6 In	621277-004

CASE NARRATIVE

Client Name: TRC Solutions/Environmental Project Name: NM Moore Sweet

Project ID: Work Order Number(s): 621277 Report Date: 07-MAY-19 Date Received: 04/16/2019

This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory.

Sample receipt non conformances and comments:

TPH method blank had detected result above the SDL but below the MQL; therefore the data was accepted.

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3086071 Benzene By EPA 8021B

Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 621277-001 S,621277-001 SD,621277-002,621277-001.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Lab Sample ID 621277-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzene, Ethylbenzene, Toluene, m_p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 621277-001, -002, -003, -004.

The Laboratory Control Sample for Toluene, Benzene, Ethylbenzene, m_p-Xylenes, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3086074 TPH GRO by EPA 8015 Mod.

Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 621277-001 S,621277-001 SD,621277-001.

Surrogate a,a,a-Trifluorotoluene recovered above QC limits Data confirmed by re-analysis. Samples affected are: 7676005-1-BSD.

Batch: LBA-3086410 TPH GRO by EPA 8015 Mod.

Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 621277-004.

Surrogate a,a,a-Trifluorotoluene recovered above QC limits Data confirmed by re-analysis. Samples affected are: 7676207-1-BLK,621518-001 SD.

CASE NARRATIVE

Client Name: TRC Solutions/Environmental Project Name: NM Moore Sweet

Project ID: Work Order Number(s): 621277 Report Date: 07-MAY-19 Date Received: 04/16/2019

Batch: LBA-3086429 DRO-ORO By SW8015B

Lab Sample ID 621277-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Diesel Range Organics (DRO) recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 621277-001, -002, -003, -004.

The Laboratory Control Sample for Diesel Range Organics (DRO) is within laboratory Control Limits, therefore the data was accepted.

Surrogate n-Triacontane recovered below QC limits Data confirmed by re-analysis. Samples affected are: 7676032-1-BKS,621277-001.

Surrogate Tricosane recovered below QC limits Data confirmed by re-analysis. Samples affected are: 7676032-1-BSD.

Surrogate n-Triacontane recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 621277-002,621277-003,621277-004.

Surrogate Tricosane recovered above QC limits. Matrix interferences is suspected; data confirmed by reanalysis.

Samples affected are: 621277-002,621277-004.

Lab Sample ID 621277-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Diesel Range Organics (DRO) recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 621277-001, -002, -003, -004.

The Laboratory Control Sample for Diesel Range Organics (DRO) is within laboratory Control Limits, therefore the data was accepted.

TRC Solutions/Environmental, Midland, TX

Sample Id: STT-NW-B @ 6'		Matrix:	Soil		Sample	Depth: 6 In		
Lab Sample Id: 621277-001		Date Collecte	ed: 04.16.19 10	0.00	Date Re	eceived: 04.16.	19 14.	13
Analytical Method: Inorganic Anions by	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086040		Date Prep: 04	4.17.19 14.17					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575946					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	48.0	10.0	0.354	mg/kg	04.17.19 18:25		1
Analytical Method: DRO-ORO By SW80	015B				Prep M			
Analyst: MIT		% Moist:	1 17 10 12 00		Tech:	MIT		
Seq Number: 3086429		Date Prep: 04						
	C L C	Prep seq: 76	576052					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	1210	24.9	7.44	mg/kg	04.17.19 22:06	Х	1
Oil Range Hydrocarbons (ORO)	PHCG2835	28.9	24.9	7.44	mg/kg	04.17.19 22:06		1
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
Tricosane		107		65 -				
n-Triacontane		44		46 -	152 %			**
Analytical Method: TPH GRO by EPA 80	015 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086074		Date Prep: 04	4.17.19 13.00					
		Prep seq: 76	576005					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	126	8.00	0.542	mg/kg	04.17.19 21:28		40
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
4-Bromofluorobenzene		176		76 -	123 %			**
a,a,a-Trifluorotoluene		94		69 -	120 %			

TRC Solutions/Environmental, Midland, TX

Dovomator	CAS	D14	MOI CDI	An An	alysis Dil Factor
		Prep seq: 76	76004		
Seq Number: 3086071		Date Prep: 04.	17.19 13.00		
Analyst: MIT		% Moist:		Tech:	MIT
Analytical Method: BTEX by EPA 8021				Prep Method:	5030B
Lab Sample Id: 621277-001		Date Collected	1: 04.16.19 10.00	Date Received	d: 04.16.19 14.13
Sample Id: STT-NW-B @ 6'		Matrix:	Soil	Sample Depth	n: 6 In

Parameter	Number	Result	MQL	SDL	Units	Date	Flag	Diffuctor
Benzene	71-43-2	< 0.0181	0.0400	0.0181	mg/kg	04.17.19 21:28	UX	40
Toluene	108-88-3	< 0.00936	0.0400	0.00936	mg/kg	04.17.19 21:28	UX	40
Ethylbenzene	100-41-4	0.0200	0.0400	0.0123	mg/kg	04.17.19 21:28	JX	40
m_p-Xylenes	179601-23-1	0.364	0.0800	0.0136	mg/kg	04.17.19 21:28	Х	40
o-Xylene	95-47-6	< 0.0136	0.0400	0.0136	mg/kg	04.17.19 21:28	UX	40
Xylenes, Total	1330-20-7	0.364		0.0136	mg/kg	04.17.19 21:28		
Total BTEX		0.384		0.00936	mg/kg	04.17.19 21:28		
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

0	•		·	0
4-Bromofluorobenzene	126	68 - 120 %		**
a,a,a-Trifluorotoluene	79	71 - 121 %		

TRC Solutions/Environmental, Midland, TX

Sample Id: STT-EW-B @ 6'		Matrix:	Soil		Sample	Depth: 6 In		
Lab Sample Id: 621277-002		Date Collecte	ed: 04.16.19 10	0.15	Date Re	eceived: 04.16.	19 14.	13
Analytical Method: Inorganic Anions by	/ EPA 300/300.1				Prep M	ethod: E300P	,	
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086040		Date Prep: 04	4.17.19 14.17					
Subcontractor: SUB: T104704215-19-29)	Prep seq: 76	675946					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	1770	10.0	0.354	mg/kg	04.17.19 18:33		1
	0.155					1 1 0015		
Analytical Method: DRO-ORO By SW8	3015B	% Moist:			Prep M Tech:	ethod: 8015 MIT		
Analyst: MIT Seq Number: 3086429		Date Prep: 04	1 17 19 13 00		Tech:	IVII I		
Seq Number. 5080429		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	5470	125	37.3	mg/kg	04.18.19 00:29		5
Oil Range Hydrocarbons (ORO)	PHCG2835	145	125	37.3	mg/kg	04.18.19 00:29		5
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
Tricosane		388		65 -				**
n-Triacontane		199		46 -	152 %			**
Analytical Method: TPH GRO by EPA	8015 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086410		Date Prep: 04	4.18.19 15.00					
		Prep seq: 76	576207					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	526	77.4	5.24	mg/kg	04.20.19 20:43		387
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
4-Bromofluorobenzene		121		76 -				
a,a,a-Trifluorotoluene		114		69 -	120 %			

TRC Solutions/Environmental, Midland, TX

Sample Id: STT-EW-B @ 6'		Matrix: Soil		Sample Depth:	6 In
Lab Sample Id: 621277-002		Date Collected: 04.1	6.19 10.15	Date Received:	04.16.19 14.13
Analytical Method: BTEX by EPA 8021				Prep Method:	5030B
Analyst: MIT		% Moist:		Tech:	MIT
Seq Number: 3086071		Date Prep: 04.17.19	13.00		
		Prep seq: 7676004			
	CAS			Anal	vsis Dil H

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	0.0598	0.0996	0.0450	mg/kg	04.17.19 23:55	J	100
Toluene	108-88-3	3.07	0.0996	0.0233	mg/kg	04.17.19 23:55		100
Ethylbenzene	100-41-4	4.56	0.0996	0.0307	mg/kg	04.17.19 23:55		100
m_p-Xylenes	179601-23-1	16.1	0.199	0.0340	mg/kg	04.17.19 23:55		100
o-Xylene	95-47-6	8.35	0.0996	0.0340	mg/kg	04.17.19 23:55		100
Xylenes, Total	1330-20-7	24.5		0.0340	mg/kg	04.17.19 23:55		
Total BTEX		32.1		0.0233	mg/kg	04.17.19 23:55		
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

9	· · · · · · · · · · · · · · · · · · ·			9	
4-Bromofluorobenzene	152	68 - 120	%		**
a,a,a-Trifluorotoluene	76	71 - 121	%		

TRC Solutions/Environmental, Midland, TX

Sample Id: STT-SW-B @ 6'		Matrix:	Soil		Sample	e Depth: 6 In		
Lab Sample Id: 621277-003		Date Collecte	ed: 04.16.19 10	0.30	Date R	eceived: 04.16.	19 14.	3
Analytical Method: Inorganic Anions by	EPA 300/300.1				Prep M	lethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086040		Date Prep: 04	4.17.19 14.17					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	575946					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	99.1	10.0	0.354	mg/kg	04.17.19 18:42		1
Analytical Method: DRO-ORO By SW80	115B	% Moist:			Prep M Tech:	lethod: 8015 MIT		
Analyst: MIT		Date Prep: 04	1 17 10 13 00		Tech:	IVII I		
Seq Number: 3086429		Prep seq: 76						
	CAS	Thep seq. 70	10032			Analysis		Dil Factor
Parameter	Number	Result	MQL	SDL	Units	Date	Flag	Dirractor
Diesel Range Organics (DRO)	C10C28DRO	57.2	25.2	7.54	mg/kg	04.18.19 01:04	В	1
Oil Range Hydrocarbons (ORO)	PHCG2835	8.18	25.2	7.54	mg/kg	04.18.19 01:04	J	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane		142		65 -				
n-Triacontane		159		46 -	152 %)		**
Analytical Method: TPH GRO by EPA 80	015 Mod.				Prep M	lethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086074		Date Prep: 04	4.17.19 13.00					
		Prep seq: 76	676005					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	14.2	3.99	0.270	mg/kg	04.18.19 00:19		20
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		82		76 -				
a,a,a-Trifluorotoluene		84		69 -	120 %)		

TRC Solutions/Environmental, Midland, TX

Sample Id: STT-SW-B @ 6'		Matrix:	Soil	Sample Depth	: 6 In				
Lab Sample Id: 621277-003		Date Collected	d: 04.16.19 10.30	Date Received: 04.16.19 14.13					
Analytical Method: BTEX by EPA 8021				Prep Method:	5030B				
Analyst: MIT		% Moist:		Tech:	MIT				
Seq Number: 3086071		Date Prep: 04.	17.19 13.00						
		Prep seq: 767	76004						
	CAS			An	alysis Dil Factor				

Parameter	Number	Result	MQL	SDL	Units	Date	Flag	Diffactor
Benzene	71-43-2	< 0.00902	0.0200	0.00902	mg/kg	04.18.19 00:19	U	20
Toluene	108-88-3	< 0.00467	0.0200	0.00467	mg/kg	04.18.19 00:19	U	20
Ethylbenzene	100-41-4	0.0838	0.0200	0.00615	mg/kg	04.18.19 00:19		20
m_p-Xylenes	179601-23-1	0.186	0.0399	0.00681	mg/kg	04.18.19 00:19		20
o-Xylene	95-47-6	0.0499	0.0200	0.00681	mg/kg	04.18.19 00:19		20
Xylenes, Total	1330-20-7	0.236		0.00681	mg/kg	04.18.19 00:19		
Total BTEX		0.320		0.00467	mg/kg	04.18.19 00:19		
Surrogate		% Recovery		I imite	Un	ite Analycie	Date	Flag

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
4-Bromofluorobenzene	75	68 - 120	%		
a,a,a-Trifluorotoluene	71	71 - 121	%		

TRC Solutions/Environmental, Midland, TX

Sample Id: STT-WW-B @ 6'		Matrix:	Soil		Sample	Depth: 6 In		
Lab Sample Id: 621277-004		Date Collecte	ed: 04.16.19 10	0.45	Date Re	eceived: 04.16.1	19 14.	13
Analytical Method: Inorganic Anions by	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086040		Date Prep: 04	4.17.19 14.17					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	675946					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	63.3	10.0	0.354	mg/kg	04.17.19 18:51		1
Analytical Method: DRO-ORO By SW80	015B	0/ 14-:-+-			Prep M			
Analyst: MIT		% Moist:	1 17 10 12 00		Tech:	MIT		
Seq Number: 3086429		Date Prep: 04						
	6 4 6	Prep seq: 76	576052					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO) Oil Range Hydrocarbons (ORO)	C10C28DRO PHCG2835	6280 196	124 124	37.2 37.2	mg/kg mg/kg	04.18.19 01:40 04.18.19 01:40		5
On Runge reputer bond (ORC)	111002000	170	121	57.2	mg/ng	01.10.17 01.10		5
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
Tricosane		837		65 -				**
n-Triacontane		484		46 -	152 %			**
Analytical Method: TPH GRO by EPA 80)15 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086410		Date Prep: 04	4.18.19 15.00					
		Prep seq: 76	576207					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	661	73.8	5.00	mg/kg	04.20.19 21:07		369
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
4-Bromofluorobenzene		163		76 -				**
a,a,a-Trifluorotoluene		109		69 -	120 %			

TRC Solutions/Environmental, Midland, TX

Sample Id: STT-WW-B @ 6'	Matri	x: Soil	Sample Depth:	6 In	
Lab Sample Id: 621277-004	Date	Collected: 04.16.19 10.45	Date Received	: 04.16.19 14.13	
Analytical Method: BTEX by EPA 8021			Prep Method:	5030B	
Analyst: MIT	% Me	bist:	Tech:	MIT	
Seq Number: 3086071	Date	Prep: 04.17.19 13.00			
	Prep	seq: 7676004			
	CAS		Ana	lvsis Dil F	actor

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.0385	0.0852	0.0385	mg/kg	04.18.19 00:43	U	85
Toluene	108-88-3	< 0.0199	0.0852	0.0199	mg/kg	04.18.19 00:43	U	85
Ethylbenzene	100-41-4	0.698	0.0852	0.0262	mg/kg	04.18.19 00:43		85
m_p-Xylenes	179601-23-1	4.12	0.170	0.0290	mg/kg	04.18.19 00:43		85
o-Xylene	95-47-6	< 0.0290	0.0852	0.0290	mg/kg	04.18.19 00:43	U	85
Xylenes, Total	1330-20-7	4.12		0.0290	mg/kg	04.18.19 00:43		
Total BTEX		4.82		0.0199	mg/kg	04.18.19 00:43		
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

Surrogate	/u Recovery	Linits	Cinto	Tinary 515 Dute	Thug
4-Bromofluorobenzene	116	68 - 120	%		
a,a,a-Trifluorotoluene	93	71 - 121	%		

TRC Solutions/Environmental, Midland, TX

Sample Id: 7675946-1-BLK		Matrix:	Solid		Sample	e Depth:		
Lab Sample Id: 7675946-1-BLK		Date Collecte	ed:		Date R	eceived:		
Analytical Method: Inorganic Anions by I	EPA 300/300.1				Prep M	lethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086040		Date Prep: 04	4.17.19 14.17					
Subcontractor: SUB: T104704215-19-29		Prep seq: 70						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	< 0.354	10.0	0.354	mg/kg	04.17.19 16:31	U	1
Sample Id: 7676004-1-BLK		Matrix:	Solid		Sample	e Depth:		
Lab Sample Id: 7676004-1-BLK		Date Collecte	ed:		Date R	eceived:		
Analytical Method: BTEX by EPA 8021					Prep M	Iethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086071		Date Prep: 04	4.17.19 13.00					
		Prep seq: 70	676004					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00904	0.0200	0.00904	mg/kg	04.17.19 21:04	U	20
Toluene	108-88-3	< 0.00468	0.0200	0.00468	mg/kg	04.17.19 21:04	U	20
Ethylbenzene m_p-Xylenes	100-41-4 179601-23-1	<0.00616 <0.00682	0.0200 0.0400	0.00616 0.00682	mg/kg mg/kg	04.17.19 21:04 04.17.19 21:04	U U	20 20
o-Xylene	95-47-6	<0.00682	0.0200	0.00682	mg/kg	04.17.19 21:04	U	20
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
4-Bromofluorobenzene		81		68 - 1	20 %	<u>,</u>		
a,a,a-Trifluorotoluene		82		71 - 1				
Sample Id: 7676005-1-BLK		Matrix:	Solid		Sample	e Depth:		
Lab Sample Id: 7676005-1-BLK		Date Collecte	ed:		Date R	eceived:		
Analytical Method: TPH GRO by EPA 80	15 Mod.				Prep M	Iethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086074		Date Prep: 04	4.17.19 13.00					
		Prep seq: 76	676005					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.271	4.00	0.271	mg/kg	04.17.19 21:04	U	20
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
4-Bromofluorobenzene		86		76 - 1	23 %	Ď		
a,a,a-Trifluorotoluene		98		69 - 1	20 %	ó		

a,a,a-Trifluorotoluene

Certificate of Analytical Results 621277

**

TRC Solutions/Environmental, Midland, TX

NM Moore Sweet

Sample Id: 7676032-1-BLK		Matrix:	Solid		Sample	Depth:		
Lab Sample Id: 7676032-1-BLK		Date Collecte	d:		Date Re	eceived:		
Analytical Method: DRO-ORO By SW801	.5B				Prep M	ethod: 8015		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086429		Date Prep: 04	.17.19 13.00					
		Prep seq: 76	76032					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	11.7	25.0	7.48	mg/kg	04.17.19 21:29	J	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<7.48	25.0	7.48	mg/kg	04.17.19 21:29	U	1
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
Tricosane		111		65 - 1	44 %			
Sample Id: 7676207-1-BLK		Matrix:	Solid		Sample	Depth:		
Lab Sample Id: 7676207-1-BLK		Date Collecte	d:		Date Re	eceived:		
Analytical Method: TPH GRO by EPA 80	15 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086410		Date Prep: 04	.18.19 15.00					
		Prep seq: 76	76207					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.271	4.00	0.271	mg/kg	04.20.19 16:40	U	20
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
4-Bromofluorobenzene		105		76 - 1	23 %	•		U

128

69 - 120

%

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: NM Moore Sweet

ork Orders : 621277 Lab Batch #: 3086071	, Sample: 7676004-1-BKS / 1	BKS Batch	Project I	D: x:Solid		
Units: mg/kg	Date Analyzed: 04/17/19 18:38		RROGATE R		STUDY	
	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0839	0.100	84	68-120	
a,a,a-Trifluorotoluene		1.56	2.00	78	71-121	
Lab Batch #: 3086071	Sample: 7676004-1-BSD / 1	BSD Batch	n: 1 Matrix	x:Solid		
Units: mg/kg	Date Analyzed: 04/17/19 19:03	SURROGATE RECOVERY STUDY				
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	Analytes	0.0849	0.100	85	68-120	
a,a,a-Trifluorotoluene		1.60	2.00	80	71-121	
	S1- 7676004 1 DLV / 1			x:Solid	,	
Lab Batch #: 3086071	Sample: 7676004-1-BLK /] Date Analyzed: 04/17/19 21:04		n: 1 Matrix		STUDY	
Units: mg/kg	-					
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	A mary tes	0.0810	0.100	81	68-120	
a,a,a-Trifluorotoluene		1.63	2.00	82	71-121	
Lab Batch #: 3086071	Sample: 621277-001 S / MS	Batch	n: 1 Matrix	x:Soil	1 1	
Units: mg/kg	Date Analyzed: 04/17/19 21:53		RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4.D. (1	Analytes					
4-Bromofluorobenzene a,a,a-Trifluorotoluene		0.139	0.100	139	68-120	**
		3.29	3.96	83	71-121	
Lab Batch #: 3086071	Sample: 621277-001 SD / M					
Units: mg/kg	Date Analyzed: 04/17/19 22:17	SU	RROGATE R	ECOVERYS	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
4-Bromofluorobenzene	5	0.132	0.100	132	68-120	**

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: NM Moore Sweet

Work Orders : 621277	,	Project ID:					
Lab Batch #: 3086429	Sample: 7676032-1-BKS / 2	BKS Bate	h: ¹ Matrix:	Solid			
Units: mg/kg	Date Analyzed: 04/17/19 19:02	SU	RROGATE RI	ECOVERY	STUDY		
DRO-O	DRO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
n-Triacontane		1.09	10.0	11	46-152	**	
Lab Batch #: 3086429	Sample: 7676032-1-BSD / 1	BSD Batc	h: ¹ Matrix:	Solid			
Units: mg/kg	Date Analyzed: 04/17/19 19:38		RROGATE RI		STUDY		
DRO-0	ORO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Tricosane	· · · · · · · · · · · · · · · · · · ·	0.680	10.0	7	65-144	**	
Lab Batch #: 3086429	Sample: 7676032-1-BLK / /	BLK Batc	h: 1 Matrix	Solid			
Units: mg/kg	Date Analyzed: 04/17/19 21:29	SURROGATE RECOVERY STUDY					
DRO-ORO By SW8015B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
Tricosane		11.1	10.0	111	65-144		
Lab Batch #: 3086429	Sample: 621277-001 S / MS						
Units: mg/kg	Date Analyzed: 04/17/19 22:42	SU	RROGATE RI	ECOVERY	STUDY		
DRO-O	DRO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Tricosane		9.04	10.0	90	65-144		
n-Triacontane		4.78	10.0	48	46-152		
Lab Batch #: 3086429	Sample: 621277-001 SD / N	MSD Bate	h: ¹ Matrix	Soil			
Units: mg/kg	Date Analyzed: 04/17/19 23:17	SU	RROGATE RI	ECOVERY	STUDY		
DRO-0	DRO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Tricosane		14.1	10.1	140	65-144		
n-Triacontane		6.32	10.1	63	46-152		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: NM Moore Sweet

ork Orders : 621277			Project I			
Lab Batch #: 3086074	Sample: 7676005-1-BKS / 1		h: ¹ Matrix		TUDV	
Units: mg/kg	Date Analyzed: 04/17/19 19:27	50	KRUGAIE R			
TPH GRO) by EPA 8015 Mod.	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0983	0.100	98	76-123	
a,a,a-Trifluorotoluene		2.11	2.00	106	69-120	
Lab Batch #: 3086074	Sample: 7676005-1-BSD / 1	BSD Batch	h: ¹ Matrix	x: Solid		
Units: mg/kg	Date Analyzed: 04/17/19 19:51	SURROGATE RECOVERY STUDY				
TPH GRO) by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
4-Bromofluorobenzene	Anarytes	0.111	0.100	111	76-123	
a.a.a-Trifluorotoluene		2.55	2.00	111	69-120	**
	G 1 7676005 1 DI K /			-		
Lab Batch #: 3086074	Sample: 7676005-1-BLK / 3		h: ¹ Matrix RROGATE R		STUDV	
Units: mg/kg	Date Analyzed: 04/17/19 21:04	50				
TPH GRO) by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
4-Bromofluorobenzene		0.0860	0.100	86	76-123	
a,a,a-Trifluorotoluene		1.95	2.00	98	69-120	
Lab Batch #: 3086074	Sample: 621277-001 S / MS	S Batcl	h: 1 Matrix	x:Soil	1 1	
Units: mg/kg	Date Analyzed: 04/17/19 22:42		RROGATE R	ECOVERY S	STUDY	
) by EPA 8015 Mod.	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
	Analytes			[D]		
4-Bromofluorobenzene		0.181	0.100	181	76-123	**
				1		
		3.80	3.95	96	69-120	
a,a,a-Trifluorotoluene	Sample: 621277-001 SD / N				69-120	
a,a,a-Trifluorotoluene	Sample: 621277-001 SD / M Date Analyzed: 04/17/19 23:06	MSD Batcl		soil		
a,a,a-Trifluorotoluene Lab Batch #: 3086074 Units: mg/kg	Date Analyzed: 04/17/19 23:06 D by EPA 8015 Mod.	MSD Batch	h: ¹ Matrix	Recovery %R		Flag
a,a,a-Trifluorotoluene Lab Batch #: 3086074 Units: mg/kg	Date Analyzed: 04/17/19 23:06	MSD Batcl SU Amount Found	h: ¹ Matrix RROGATE R True Amount	x: Soil ECOVERY S Recovery	STUDY Control Limits	Flag

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: NM Moore Sweet

ork Orders : 621277 Lab Batch #: 3086410	, Sample: 7676207-1-BKS / 1	BKS Batcl	Project I h: 1 Matrix	D: x:Solid		
Units: mg/kg	Date Analyzed: 04/20/19 15:04		RROGATE R		STUDY	
) by EPA 8015 Mod.	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0897	0.100	90	76-123	
a,a,a-Trifluorotoluene		2.07	2.00	104	69-120	
Lab Batch #: 3086410	Sample: 7676207-1-BSD / 1	BSD Batcl	h: ¹ Matrix	x:Solid		
Units: mg/kg	Date Analyzed: 04/20/19 15:28	SU	RROGATE R	ECOVERY	STUDY	
TPH GRO) by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
4-Bromofluorobenzene	Analytes	0.0893	0.100	89	76-123	
a,a,a-Trifluorotoluene		2.12	2.00	106	69-120	
Lab Batch #: 3086410	Sample: 7676207-1-BLK / 1	BLK Batcl	h: 1 Matrix	x:Solid		
Units: mg/kg	Date Analyzed: 04/20/19 16:40		RROGATE R		STUDY	
TPH GRO) by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
4-Bromofluorobenzene	Analytes	0.105	0.100	105	76-123	
a.a.a-Trifluorotoluene		2.56	2.00	103	69-120	**
Lab Batch #: 3086410	Sample: 621518-001 S / MS				07 120	
Units: mg/kg	Date Analyzed: 04/20/19 18:17		RROGATE R		STUDY	
) by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
4-Bromofluorobenzene	Timely tes	0.0820	0.100	82	76-123	
a,a,a-Trifluorotoluene		1.71	1.80	95	69-120	
Lab Batch #: 3086410	Sample: 621518-001 SD / N		h: 1 Matrix	s•Soil	1	
Units: mg/kg	Date Analyzed: 04/20/19 18:42		RROGATE R		STUDY	
) by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
4-Bromofluorobenzene		0.109	0.100	109	76-123	
a,a,a-Trifluorotoluene						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: NM Moore Sweet

Work Order #: 621277							Pro	ject ID:			
Analyst: MIT	D	ate Prepar	red: 04/17/201	9			Date A	nalyzed: (04/17/2019		
Lab Batch ID: 3086071 Sample: 7676004-1-	BKS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY						DY			
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[D]			[E]	Kesuit [F]	[G]				
Benzene	< 0.00904	2.00	2.00	100	2.00	2.01	101	0	55-120	20	
Toluene	< 0.00468	2.00	1.95	98	2.00	1.95	98	0	77-120	20	
Ethylbenzene	< 0.00616	2.00	1.94	97	2.00	1.96	98	1	77-120	20	
m_p-Xylenes	< 0.00682	4.00	3.87	97	4.00	3.91	98	1	78-120	20	
o-Xylene	< 0.00682	2.00	1.97	99	2.00	1.99	100	1	78-120	20	
Analyst: MIT	D	ate Prepar	red: 04/17/201	9	•		Date A	nalyzed: ()4/17/2019	*	
Lab Batch ID: 3086429 Sample: 7676032-1-	BKS	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY	
DRO-ORO By SW8015B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Diesel Range Organics (DRO)	11.7	100	118	118	100	122	122	3	63-139	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: NM Moore Sweet

Work Order #: 621277							Proj	ect ID:			
Analyst: JYM	D	ate Prepar	ed: 04/17/20	19			Date A	nalyzed: (04/17/2019		
Lab Batch ID: 3086040 Sample: 7675946-1	-BKS	Batch	n #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 0.354	100	102	102	100	102	102	0	80-120	20	
Analyst: MIT	D	ate Prepar	ed: 04/17/20	19	4		Date A	nalyzed: (04/17/2019		·'
Lab Batch ID: 3086074 Sample: 7676005-1	-BKS	Batch	n#: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
TPH GRO by EPA 8015 Mod. Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
TPH-GRO	<0.271	20.0	19.4	97	20.0	21.0	105	8	35-129	20	
Analyst: MIT	D	ate Prepar	ed: 04/18/20	19	-	1	Date A	nalyzed: (04/20/2019	1	ļ]
Lab Batch ID: 3086410 Sample: 7676207-1	-BKS	Batch	n#: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
TPH GRO by EPA 8015 Mod.	Blank	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Sample Result [A]	[B]	Result [C]	%R [D]	[E]	Duplicate Result [F]	% R [G]	%	%R	%RPD	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

621277

Work Order # :

Form 3 - MS / MSD Recoveries

Project Name: NM Moore Sweet

Lab Batch ID:	3086071	QC- Sample ID:	621277-	001 S	Ba	tch #:	1 Matrix	c: Soil				
Date Analyzed:	04/17/2019	Date Prepared:	04/17/20)19	An	alyst: N	AIT					
Reporting Units:	mg/kg		M	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA'	TE REC	OVERY	STUDY		
	BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Anarytes											
Benzene		< 0.0179	3.96	1.78	45	3.98	1.77	44	1	54-120	25	Х
Toluene		<0.00927	3.96	1.70	43	3.98	1.69	42	1	57-120	25	X
Ethylbenzene		0.0200	3.96	1.73	43	3.98	1.78	44	3	58-131	25	Х
m_p-Xylenes		0.364	7.92	3.87	44	7.95	4.09	47	6	62-124	25	Х
o-Xylene		<0.0135	3.96	1.96	49	3.98	1.98	50	1	62-124	25	X
								a 11				
Lab Batch ID:	3086429	QC- Sample ID:	621277-	001 S	Ba	tch #:	1 Matrix	c: Soil				
Lab Batch ID: Date Analyzed:	3086429 04/17/2019	QC- Sample ID: Date Prepared:				tch #: alyst: N		: Soil				
			04/17/20)19	An	alyst: N			OVERY	STUDY		
Date Analyzed: Reporting Units:	04/17/2019	Date Prepared: Parent Sample	04/17/20 M Spike)19 ATRIX SPIK Spiked Sample Result	An E / MAT Spiked Sample	alyst: M RIX SPI	MIT KE DUPLICA' Duplicate Spiked Sample	TE REC Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Date Analyzed: Reporting Units:	04/17/2019 mg/kg	Date Prepared:	04/17/20 M)19 ATRIX SPIK Spiked Sample	An E / MAT Spiked	alyst: M RIX SPI	MIT KE DUPLICA' Duplicate	TE REC		Control		Flag
Date Analyzed: Reporting Units:	04/17/2019 mg/kg RO-ORO By SW8015B Analytes	Date Prepared: Parent Sample Result	04/17/20 M Spike Added)19 ATRIX SPIK Spiked Sample Result	An E / MAT Spiked Sample %R	alyst: M RIX SPI Spike Added	MIT KE DUPLICA' Duplicate Spiked Sample	TE REC Spiked Dup. %R	RPD	Control Limits	Limits	Flag
Date Analyzed: Reporting Units:	04/17/2019 mg/kg RO-ORO By SW8015B Analytes	Date Prepared: Parent Sample Result [A]	04/17/20 M Spike Added [B] 100)19 ATRIX SPIK Spiked Sample Result [C] 1480	An E / MAT Spiked Sample %R [D] 270	alyst: M RIX SPI Spike Added [E]	MIT KE DUPLICA' Duplicate Spiked Sample Result [F]	TE REC Spiked Dup. %R [G] 356	RPD %	Control Limits %R	Limits %RPD	
Date Analyzed: Reporting Units: DI Diesel Range Or	04/17/2019 mg/kg RO-ORO By SW8015B Analytes rganics (DRO)	Date Prepared: Parent Sample Result [A] 1210	04/17/20 M Spike Added [B] 100 620960-)19 ATRIX SPIK Spiked Sample Result [C] 1480 001 S	An E / MAT Spiked Sample %R [D] 270 Ba	alyst: M RIX SPI Spike Added [E] 101	MIT KE DUPLICA Duplicate Spiked Sample Result [F] 1570 1 Matrix	TE REC Spiked Dup. %R [G] 356	RPD %	Control Limits %R	Limits %RPD	
Date Analyzed: Reporting Units: DI Diesel Range Or Lab Batch ID:	04/17/2019 mg/kg RO-ORO By SW8015B Analytes rganics (DRO) 3086040	Date Prepared: Parent Sample Result [A] 1210 QC- Sample ID:	04/17/20 M Spike Added [B] 100 620960- 04/17/20)19 ATRIX SPIK Spiked Sample Result [C] 1480 001 S)19	An E / MAT Spiked Sample %R [D] 270 Ba An	alyst: N RIX SPI Spike Added [E] 101 tch #: alyst: J	MIT KE DUPLICA Duplicate Spiked Sample Result [F] 1570 1 Matrix	TE REC Spiked Dup. %R [G] 356 c: Soil	RPD %	Control Limits %R 63-139	Limits %RPD	
Date Analyzed: Reporting Units: DI Diesel Range Or Lab Batch ID: Date Analyzed: Reporting Units:	04/17/2019 mg/kg RO-ORO By SW8015B Analytes rganics (DRO) 3086040 04/17/2019	Date Prepared: Date Prepared: Parent Sample Result [A] 1210 QC- Sample ID: Date Prepared: Parent Sample	04/17/20 M Spike Added [B] 100 620960- 04/17/20 M Spike)19 ATRIX SPIK Spiked Sample Result [C] 1480 001 S 019 ATRIX SPIK Spiked Sample Result	An E / MAT Spiked Sample %R [D] 270 Ba An E / MAT Spiked Sample	alyst: N RIX SPI Spike Added [E] 101 tch #: alyst: J RIX SPI Spike	MIT KE DUPLICA' Duplicate Spiked Sample Result [F] 1570 1 Matrix YM KE DUPLICA' Duplicate Spiked Sample	TE REC Spiked Dup. %R [G] 356 :: Soil TE REC Spiked Dup.	RPD % 6 OVERY RPD	Control Limits %R 63-139 STUDY Control Limits	Limits %RPD 20 Control Limits	
Date Analyzed: Reporting Units: DI Diesel Range Or Lab Batch ID: Date Analyzed: Reporting Units:	04/17/2019 mg/kg RO-ORO By SW8015B Analytes ganics (DRO) 3086040 04/17/2019 mg/kg	Date Prepared: Parent Sample Result [A] 1210 QC- Sample ID: Date Prepared: Parent	04/17/20 M Spike Added [B] 100 620960- 04/17/20 M)19 ATRIX SPIK Spiked Sample Result [C] 1480 001 S)19 ATRIX SPIK Spiked Sample	An E / MAT Spiked Sample %R [D] 270 Ba An E / MAT Spiked	alyst: N RIX SPI Spike Added [E] 101 tch #: alyst: J RIX SPI	MIT KE DUPLICA' Duplicate Spiked Sample Result [F] 1570 1 Matrix YM KE DUPLICA' Duplicate	TE REC Spiked Dup. %R [G] 356 x: Soil TE REC Spiked	RPD % 6 OVERY	Control Limits %R 63-139 STUDY Control	Limits %RPD 20 Control	X

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Project ID:

Form 3 - MS / MSD Recoveries

Project Name: NM Moore Sweet

Work Order # :	621277						Project II):				
Lab Batch ID:	3086074	QC- Sample ID:	621277	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/17/2019	Date Prepared:	04/17/2	019	An	alyst: N	TIM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
ТРН	GRO by EPA 8015 Mod.	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	Kesutt [F]	[G]	/0			
TPH-GRO		126	39.5	148	56	38.5	150	62	1	35-129	20	
Lab Batch ID:	3086410	QC- Sample ID:	621518	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/20/2019	Date Prepared:	04/18/2	019	An	alyst: N	MIT					
Reporting Units:	mg/kg		Ν	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
ТРН	GRO by EPA 8015 Mod.	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	/0K [D]	[E]	Acsuit [F]	[G]	/0	/01		
TPH-GRO		<0.243	18.0	15.2	84	19.3	17.6	91	15	35-129	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

10: U21277	m Page of Comments Operation writelds RRC Superfund writelds TRRP Level IV TT Other: Other: Work Order Notes Peage More Schule Mork Order Notes Peage More Schule Mork Scurs Peage More Schule MS rows Peage More Schule More Schule More Schule MS rows Peage More Schule More Schule <th>Sr Ti Sn U V Zn 45.1/7470 / 7471 : Hg Date/Time</th>	Sr Ti Sn U V Zn 45.1/7470 / 7471 : Hg Date/Time
	WWW.Xenco.cor Work Order UST/PST PRP Brow of Project: Level II DS Ess: EDD ADAP	1631/2 1631/2
Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-343 Lubbock,TX (806)794-1296 Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tamna EI (813-500 0000)	ANALYSIS REQUEST AND ANALYSIS	Total 200.7 / 6010 200.8 / 6020: BRCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K e Ag S Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: BRCRA Sb As Ba Be Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K e Ag S Netee: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affinites and subcontractors. It assigns standard terms and conditions of samples of \$55 for each sample submitted to Xenco, its affinites and subcontractors. It assigns standard terms and conditions of Xenco. Aminimum charge of \$75.00 will be applied to a charge of \$55 for each sample submitted to Xenco, but not analyzed. These area will be enforced unless previously negotiate. Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Received by: (Signature) Received by: (Signature)
	Matrix Sam Da Ma	20: BRCRA 13PPM Texas 11 AI S <i>be analyzed</i> TCLP / SPLP 6010: BRCRA ishment of samples constitutes a valid purchase order from clic at d samples and a charge of \$5 for each sample sub- applied to egath project and a charge of \$5 for each sample sub- Redeived by: (Signature)
X XENCION LABORATORIE	Project Manager: Company Name: TRC Company Name: TRC Address: Io Desi City, State ZIP: M.M. Phone: Reference Project Name: N.M. Project Number: Sampler's Name: Sampler's Name: Revel Sample Custody Seals: Yes Sample Custody Seals: Yes Sample Custody Seals: Yes Sample Identification Sample'Salade Sample	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed Notice: Signature of this document and relinquishment of samples and of Xenco. A minimum charge of \$75.00 will be applied to egd p Relinquished by: (Signature) 3 5

Inter-Office Shipment

${\rm IOS}~{\rm Number}: 37182$

Date/Time	: 04.16.2019 15:37	Created by:	Brenda Ward		Please send report to	: Mike Kimn	nel		
Lab# From	Lubbock	Delivery Priority	/:		Address:	6701 Aberd	leen, Sui	te 9 Lubbock, TX 7942	24
Lab# To:	Houston	Air Bill No.:	774988381500)	E-Mail:	mike.kimm	el@xenc	co.com	
Sample Id	Matrix Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign
621277-001	S STT-NW-B @ 6'	04.16.2019 10:00 E30	0	Inorganic Anions by EPA 300/300.1	04.22.2019	05.14.2019	MKI	CL	
621277-002	S STT-EW-B @ 6'	04.16.2019 10:15 E30	0	Inorganic Anions by EPA 300/300.1	04.22.2019	05.14.2019	MKI	CL	
621277-003	S STT-SW-B @ 6'	04.16.2019 10:30 E30	0	Inorganic Anions by EPA 300/300.1	04.22.2019	05.14.2019	MKI	CL	
621277-004	S STT-WW-B @ 6'	04.16.2019 10:45 E30	0	Inorganic Anions by EPA 300/300.1	04.22.2019	05.14.2019	MKI	CL	

Inter Office Shipment or Sample Comments:

Relinquished By:

renda Ward

Brenda Ward

Date Relinquished: 04.16.2019

Received By: Taha Hedib Date Received: 04.17.2019 09:45 Cooler Temperature: 2.8

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Houston IOS #: 37182

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : hou-068

Sent By:	Brenda Ward	Date Sent:	04/16/2019 03:37 PM
Received By:	Taha Hedib	Date Received:	04/17/2019 09:45 AM

Sample Receipt Checklist

Comments

• •	
#1 *Temperature of cooler(s)?	2.8
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperature?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	No
#5 *Custody Seals Signed and dated for Containers/coolers	N/A
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	Yes
#13 Sufficient sample amount for indicated test(s)?	Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by:

+	-/	
-4	A	
~((

Taha Hedib

Date: 04/17/2019

XENCO Laboratories NCO ATORIES Prelogin/Nonconformance Report- Sample Log-In

Date/ Time Received: 04/16/2019 02:13:00 PMAir and Metal samples Acceptable Range: Ambient Temperature Measuring device used : IR-3Work Order #: 621277CommentsSample Receipt ChecklistComments#1 *Temperature of cooler(s)?4.8#2 *Shipping container in good condition?Yes#3 *Samples received on ice?Yes#4 *Custody Seals intact on shipping container/ cooler?N/A#5 Custody Seals intact on sample bottles?N/A#6 Custody Seals intact on sample bottles?N/A#7 *Chain of Custody present?Yes#8 Any missing/extra samples?No#9 Chain of Custody agrees with sample labels/matrix?Yes#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?Yes#18 Water VOC samples have zero headspace?N/A	Client: TRC Solutions/Environmental	Acceptable Temperature Range: 0 - 6 degC						
Work Order #. 021217Sample Receipt ChecklistComments#1 *Temperature of cooler(s)?4.8#2 *Shipping container in good condition?Yes#3 *Samples received on ice?Yes#4 *Custody Seals intact on shipping container/ cooler?N/A#5 Custody Seals intact on sample bottles?N/A#6 *Custody Seals Signed and dated?N/A#7 *Chain of Custody present?Yes#8 Any missing/extra samples?No#9 Chain of Custody signed when relinquished/ received?Yes#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	Date/ Time Received: 04/16/2019 02:13:00 PM							
#1 *Temperature of cooler(s)?4.8#2 *Shipping container in good condition?Yes#3 *Samples received on ice?Yes#4 *Custody Seals intact on shipping container/ cooler?N/A#5 Custody Seals intact on sample bottles?N/A#6*Custody Seals Signed and dated?N/A#7 *Chain of Custody present?Yes#8 Any missing/extra samples?No#9 Chain of Custody signed when relinquished/ received?Yes#10 Chain of Custody agrees with sample labels/matrix?Yes#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	Work Order #: 621277	Temperature Measuring device used : IR-3						
#2 *Shipping container in good condition?Yes#3 *Samples received on ice?Yes#4 *Custody Seals intact on shipping container/ cooler?N/A#5 Custody Seals intact on sample bottles?N/A#6*Custody Seals Signed and dated?N/A#7 *Chain of Custody present?Yes#8 Any missing/extra samples?No#9 Chain of Custody signed when relinquished/ received?Yes#10 Chain of Custody agrees with sample labels/matrix?Yes#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	Sample Reco	eipt Checklist Comments						
#3 *Samples received on ice?Yes#4 *Custody Seals intact on shipping container/ cooler?N/A#5 Custody Seals intact on sample bottles?N/A#6*Custody Seals Signed and dated?N/A#7 *Chain of Custody present?Yes#8 Any missing/extra samples?No#9 Chain of Custody agrees with sample labels/matrix?Yes#10 Chain of Custody agrees with sample labels/matrix?Yes#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#1 *Temperature of cooler(s)?	4.8						
#4 *Custody Seals intact on shipping container/ cooler?N/A#5 Custody Seals intact on sample bottles?N/A#6*Custody Seals Signed and dated?N/A#7 *Chain of Custody present?Yes#8 Any missing/extra samples?No#9 Chain of Custody signed when relinquished/ received?Yes#10 Chain of Custody agrees with sample labels/matrix?Yes#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#2 *Shipping container in good condition?	Yes						
#5 Custody Seals intact on sample bottles?N/A#6*Custody Seals Signed and dated?N/A#7 *Chain of Custody present?Yes#8 Any missing/extra samples?No#9 Chain of Custody signed when relinquished/ received?Yes#10 Chain of Custody agrees with sample labels/matrix?Yes#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#3 *Samples received on ice?	Yes						
#6*Custody Seals Signed and dated?N/A#7 *Chain of Custody present?Yes#8 Any missing/extra samples?No#9 Chain of Custody signed when relinquished/ received?Yes#10 Chain of Custody agrees with sample labels/matrix?Yes#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#4 *Custody Seals intact on shipping container/ cooler?	N/A						
#7 *Chain of Custody present?Yes#8 Any missing/extra samples?No#9 Chain of Custody signed when relinquished/ received?Yes#10 Chain of Custody agrees with sample labels/matrix?Yes#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#5 Custody Seals intact on sample bottles?	N/A						
#8 Any missing/extra samples?No#9 Chain of Custody signed when relinquished/ received?Yes#10 Chain of Custody agrees with sample labels/matrix?Yes#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#6*Custody Seals Signed and dated?	N/A						
#9 Chain of Custody signed when relinquished/ received?Yes#10 Chain of Custody agrees with sample labels/matrix?Yes#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#7 *Chain of Custody present?	Yes						
#10 Chain of Custody agrees with sample labels/matrix?Yes#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#8 Any missing/extra samples?	No						
#11 Container label(s) legible and intact?Yes#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#9 Chain of Custody signed when relinquished/ received?	Yes						
#12 Samples in proper container/ bottle?Yes#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#10 Chain of Custody agrees with sample labels/matrix?	Yes						
#13 Samples properly preserved?Yes#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#11 Container label(s) legible and intact?	Yes						
#14 Sample container(s) intact?Yes#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#12 Samples in proper container/ bottle?	Yes						
#15 Sufficient sample amount for indicated test(s)?Yes#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesYesChlorides sent to Stafford	#13 Samples properly preserved?	Yes						
#16 All samples received within hold time?Yes#17 Subcontract of sample(s)?YesChlorides sent to Stafford	#14 Sample container(s) intact?	Yes						
#17 Subcontract of sample(s)? Yes Chlorides sent to Stafford	#15 Sufficient sample amount for indicated test(s)?	Yes						
	#16 All samples received within hold time?	Yes						
#18 Water VOC samples have zero headspace? N/A	#17 Subcontract of sample(s)?	Yes Chlorides sent to Stafford						
	#18 Water VOC samples have zero headspace?	N/A						

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Brenda Ward Brenda Ward

Date: 04/16/2019

Checklist reviewed by: Mike Kimmel

Date: 04/19/2019

Analytical Report 621518

for TRC Solutions, Inc

Project Manager: Curt Stanley

NM Moore Sweet

30-APR-19

Collected By: Client

6701 Aberdeen, Suite 9 Lubbock, TX 79424

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-28), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-18) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429), North Carolina (483) Xenco-Lakeland: Florida (E84098)

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
Case Narrative	5
Certificate of Analysis (Detailed Report)	6
Explanation of Qualifiers (Flags)	24
SURR_QC_V62	25
LCS / LCSD Recoveries	28
MS / MSD Recoveries	30
Chain of Custody	32
IOS_COC_37317	33
IOS_Check_List_37317	34
Sample Receipt Conformance Report	35

30-APR-19

Project Manager: **Curt Stanley TRC Solutions, Inc** 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 621518 NM Moore Sweet Project Address: ---

Curt Stanley:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 621518. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 621518 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kalei Stout Lubbock Laboratory Director

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id

TT2-NW-B @ 1.5'
TT2-EW-B @ 1.5'
TT2 Comp 2 @ 4'
TT2-Comp 4 @ 4'
WTT-NW-C @ 2'
ETT-NW-C @ 2.5'
ETT-Comp 4 @ 5'
ETT- Comp 1 @ 6'

Sample Cross Reference 621518

TRC Solutions, Inc, Midland, TX

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	04-17-19 12:00	1.5 ft	621518-001
S	04-17-19 12:15	1.5 ft	621518-002
S	04-17-19 12:30	4 ft	621518-003
S	04-17-19 12:45	4 ft	621518-004
S	04-17-19 13:00	2 ft	621518-005
S	04-17-19 13:15	2.5 ft	621518-006
S	04-17-19 13:30	5 ft	621518-007
S	04-17-19 13:45	6 ft	621518-008

CASE NARRATIVE

Client Name: TRC Solutions, Inc Project Name: NM Moore Sweet

Project ID: ---Work Order Number(s): 621518 Report Date: 30-APR-19 Date Received: 04/18/2019

This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory.

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3086407 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3086410 TPH GRO by EPA 8015 Mod.

Surrogate a,a,a-Trifluorotoluene recovered above QC limits Data confirmed by re-analysis. Samples affected are: 7676207-1-BLK,621518-001 SD,621518-002,621518-003,621518-004,621518-007,621518-001,621518-008.

Batch: LBA-3087200 DRO-ORO By SW8015B

Surrogate Tricosane recovered above QC limits. Matrix interferences is suspected; data confirmed by reanalysis.

Samples affected are: 621518-001 S,621518-001 SD,621518-004,621518-003,621518-006,621518-007. Surrogate n-Triacontane recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 621518-003,621518-004,621518-007.

TRC Solutions, Inc, Midland, TX

Sample Id: TT2-NW-B @ 1.5'		Matrix:	Soil		Sample	Depth: 1.5 ft		
Lab Sample Id: 621518-001		Date Collecte	ed: 04.17.19 12	2.00	Date Re	ceived: 04.18.1	19 16.5	53
Analytical Method: Inorganic Anions by E	PA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086362		Date Prep: 04	4.19.19 12.29					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	676142					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	136	10.0	0.354	mg/kg	04.19.19 14:46		1
Analytical Method: DRO-ORO By SW801	5B				Prep M	ethod: 8015		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3087200		Date Prep: 04	4.26.19 11.00					
		Prep seq: 76	676717					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	41.3	25.0	7.47	mg/kg	04.26.19 19:26		1
Oil Range Hydrocarbons (ORO)	PHCG2835	<7.47	25.0	7.47	mg/kg	04.26.19 19:26	U	1
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
Tricosane		134		65 -	144 %			
n-Triacontane		123		46 -	152 %			
Analytical Method: TPH GRO by EPA 80	15 Mod.				Prep M	ethod: 5030B		
Analyst: MIT	10 10100	% Moist:			Tech:	MIT		
Seq Number: 3086410		Date Prep: 04	4.18.19 15.00					
		Prep seq: 76	576207					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	< 0.260	3.83	0.260	mg/kg	04.20.19 17:04	U	19
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
4-Bromofluorobenzene		98		76 -	123 %			
a,a,a-Trifluorotoluene		122		69 -	120 %			**

a,a,a-Trifluorotoluene

Certificate of Analytical Results 621518

TRC Solutions, Inc, Midland, TX

NM Moore Sweet

Sample Id: TT2-NW-B @ 1.5'	Matrix: Soil	Sample Depth: 1.5 ft
Lab Sample Id: 621518-001	Date Collected: 04.17.19 12.00	Date Received: 04.18.19 16.53
Analytical Method: BTEX by EPA 8021		Prep Method: 5030B
Analyst: MIT	% Moist:	Tech: MIT
Seq Number: 3086407	Date Prep: 04.18.19 15.00	
	Prep seq: 7676206	

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Facto
Benzene	71-43-2	< 0.00866	0.0192	0.00866	mg/kg	04.20.19 17:04	U	19
Toluene	108-88-3	< 0.00448	0.0192	0.00448	mg/kg	04.20.19 17:04	U	19
Ethylbenzene	100-41-4	< 0.00590	0.0192	0.00590	mg/kg	04.20.19 17:04	U	19
m_p-Xylenes	179601-23-1	< 0.00653	0.0383	0.00653	mg/kg	04.20.19 17:04	U	19
o-Xylene	95-47-6	< 0.00653	0.0192	0.00653	mg/kg	04.20.19 17:04	U	19
Xylenes, Total	1330-20-7	< 0.00653		0.00653	mg/kg	04.20.19 17:04	U	
Total BTEX		<0.00448		0.00448	mg/kg	04.20.19 17:04	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
4-Bromofluorobenzene		91		68 - 1	120 %	5		

99

%

71 - 121

TRC Solutions, Inc, Midland, TX

Sample Id: TT2-EW-B @ 1.5'		Matrix:	Soil		Sample	Depth: 1.5 ft		
Lab Sample Id: 621518-002		Date Collecte	ed: 04.17.19 12	2.15	Date Re	eceived: 04.18.	19 16.5	53
Analytical Method: Inorganic Anions by l	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086362		Date Prep: 04	4.19.19 12.29					
Subcontractor: SUB: T104704215-19-29		Prep seq: 70	676142					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	51.4	9.98	0.353	mg/kg	04.19.19 14:58		1
Analytical Method: DRO-ORO By SW80	15B				Prep M	ethod: 8015		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3087200		Date Prep: 04	4.26.19 11.00					
		Prep seq: 70						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	17.7	25.2	7.54	mg/kg	04.26.19 22:04	J	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<7.54	25.2	7.54	mg/kg	04.26.19 22:04	U	1
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
Tricosane n-Triacontane		119 112		65 - 46 -				
Analytical Method: TPH GRO by EPA 80	015 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086410		Date Prep: 04	4.18.19 15.00					
		Prep seq: 76	676207					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	< 0.232	3.43	0.232	mg/kg	04.20.19 19:55	U	17
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
4-Bromofluorobenzene		100		76 -				
a,a,a-Trifluorotoluene		126		69 -	120 %			**

TRC Solutions, Inc, Midland, TX

Sample Id: TT2-EW-B @ 1.5 '	Matrix: Soil	Sample Depth: 1.5 ft
Lab Sample Id: 621518-002	Date Collected: 04.17.19 12.15	Date Received: 04.18.19 16.53
Analytical Method: BTEX by EPA 8021		Prep Method: 5030B
Analyst: MIT	% Moist:	Tech: MIT
Seq Number: 3086407	Date Prep: 04.18.19 15.00	
	Prep seq: 7676206	

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00775	0.0172	0.00775	mg/kg	04.20.19 19:55	U	17
Toluene	108-88-3	< 0.00401	0.0172	0.00401	mg/kg	04.20.19 19:55	U	17
Ethylbenzene	100-41-4	< 0.00528	0.0172	0.00528	mg/kg	04.20.19 19:55	U	17
m_p-Xylenes	179601-23-1	< 0.00585	0.0343	0.00585	mg/kg	04.20.19 19:55	U	17
o-Xylene	95-47-6	< 0.00585	0.0172	0.00585	mg/kg	04.20.19 19:55	U	17
Xylenes, Total	1330-20-7	< 0.00585		0.00585	mg/kg	04.20.19 19:55	U	
Total BTEX		< 0.00401		0.00401	mg/kg	04.20.19 19:55	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

	•		•
4-Bromofluorobenzene	92	68 - 120 %	
a,a,a-Trifluorotoluene	103	71 - 121 %	

TRC Solutions, Inc, Midland, TX

Sample Id: TT2 Comp 2 @ 4'		Matrix:	Soil		Sample	Depth: 4 ft		
Lab Sample Id: 621518-003		Date Collecte	ed: 04.17.19 12	2.30	Date Re	eceived: 04.18.	19 16.5	53
Analytical Method: Inorganic Anions by E	PA 300/300.1				Prep Me	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086362		Date Prep: 04	4.19.19 12.29					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	576142					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	35.1	9.96	0.353	mg/kg	04.19.19 15:10		1
Analytical Method: DRO-ORO By SW801	5B				Prep Me	ethod: 8015		
Analyst: MIT	50	% Moist:			Tech:	MIT		
Seq Number: 3087200		Date Prep: 04	4.26.19 11.00					
		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	399	124	37.2	mg/kg	04.26.19 22:46		5
Oil Range Hydrocarbons (ORO)	PHCG2835	<37.2	124	37.2	mg/kg	04.26.19 22:46	U	5
Surrogate		% Recovery		Limits	Unit	ts Analysis	Date	Flag
Tricosane		236		65 - 3				**
n-Triacontane		177		46 - 1	152 %			**
Analytical Method: TPH GRO by EPA 80	15 Mod.				Prep Me	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086410		Date Prep: 04	4.18.19 15.00					
		Prep seq: 76	576207					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	0.340	3.40	0.230	mg/kg	04.21.19 00:44	J	17
Surrogate		% Recovery		Limits	Unit	ts Analysis	Date	Flag
4-Bromofluorobenzene		102		76 - 3				**
a,a,a-Trifluorotoluene		126		69 -	120 %			

a,a,a-Trifluorotoluene

Certificate of Analytical Results 621518

TRC Solutions, Inc, Midland, TX

NM Moore Sweet

Sample Id: TT2 Comp 2 @ 4'	Matrix: Soil	Sample Depth: 4 ft
Lab Sample Id: 621518-003	Date Collected: 04.17.19 12.30	Date Received: 04.18.19 16.53
Analytical Method: BTEX by EPA 8021		Prep Method: 5030B
Analyst: MIT	% Moist:	Tech: MIT
Seq Number: 3086407	Date Prep: 04.18.19 15.00	
	Prep seq: 7676206	

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Facto
Benzene	71-43-2	< 0.00769	0.0170	0.00769	mg/kg	04.21.19 00:44	U	17
Toluene	108-88-3	< 0.00398	0.0170	0.00398	mg/kg	04.21.19 00:44	U	17
Ethylbenzene	100-41-4	< 0.00524	0.0170	0.00524	mg/kg	04.21.19 00:44	U	17
m_p-Xylenes	179601-23-1	< 0.00580	0.0340	0.00580	mg/kg	04.21.19 00:44	U	17
o-Xylene	95-47-6	< 0.00580	0.0170	0.00580	mg/kg	04.21.19 00:44	U	17
Xylenes, Total	1330-20-7	< 0.0058		0.0058	mg/kg	04.21.19 00:44	U	
Total BTEX		<0.00398		0.00398	mg/kg	04.21.19 00:44	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
4-Bromofluorobenzene		94		68 - 1	120 %	5		

102

71 - 121

%

TRC Solutions, Inc, Midland, TX

Sample Id: TT2-Comp 4 @ 4'		Matrix:	Soil		Sample	Depth: 4 ft		
Lab Sample Id: 621518-004		Date Collecte	ed: 04.17.19 12	2.45	Date Re	eceived: 04.18.	19 16.5	53
Analytical Method: Inorganic Anions by I	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086362		Date Prep: 04	4.19.19 12.29					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	576142					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	30.8	10.0	0.355	mg/kg	04.19.19 15:22		1
Analytical Method: DRO-ORO By SW80	15B	0/ 14 .			Prep M			
Analyst: MIT		% Moist:	1 26 10 11 00		Tech:	MIT		
Seq Number: 3087200		Date Prep: 04						
	~ ~ ~	Prep seq: 76	0/0/1/					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	275	126	37.7	mg/kg	04.26.19 23:21		5
Oil Range Hydrocarbons (ORO)	PHCG2835	<37.7	126	37.7	mg/kg	04.26.19 23:21	U	5
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
Tricosane		204		65 -	144 %			**
n-Triacontane		164		46 -	152 %			**
Analytical Method: TPH GRO by EPA 80)15 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086410		Date Prep: 04	4.18.19 15.00					
-		Prep seq: 76	576207					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	0.667	3.70	0.250	mg/kg	04.21.19 01:08	J	18
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
4-Bromofluorobenzene		96		76 -	123 %			
a,a,a-Trifluorotoluene		122		69 -	120 %			**

TRC Solutions, Inc, Midland, TX

Sample Id: TT2-Comp 4 @ 4'	Matrix: Soil	Sample Depth: 4 ft
Lab Sample Id: 621518-004	Date Collected: 04.17.19 12.45	Date Received: 04.18.19 16.53
Analytical Method: BTEX by EPA 8021		Prep Method: 5030B
Analyst: MIT	% Moist:	Tech: MIT
Seq Number: 3086407	Date Prep: 04.18.19 15.00	
	Prep seq: 7676206	

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00835	0.0185	0.00835	mg/kg	04.21.19 01:08	U	18
Toluene	108-88-3	< 0.00433	0.0185	0.00433	mg/kg	04.21.19 01:08	U	18
Ethylbenzene	100-41-4	< 0.00569	0.0185	0.00569	mg/kg	04.21.19 01:08	U	18
m_p-Xylenes	179601-23-1	< 0.00630	0.0370	0.00630	mg/kg	04.21.19 01:08	U	18
o-Xylene	95-47-6	< 0.00630	0.0185	0.00630	mg/kg	04.21.19 01:08	U	18
Xylenes, Total	1330-20-7	< 0.0063		0.0063	mg/kg	04.21.19 01:08	U	
Total BTEX		< 0.00433		0.00433	mg/kg	04.21.19 01:08	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag

	,,			J ~~~ —	8
4-Bromofluorobenzene	89	68 - 120	%		
a,a,a-Trifluorotoluene	98	71 - 121	%		

TRC Solutions, Inc, Midland, TX

Sample Id: WTT-NW-C @ 2'		Matrix:	Soil		Sample	Depth: 2 ft		
Lab Sample Id: 621518-005		Date Collecte	ed: 04.17.19 13	3.00	Date R	eceived: 04.18.	19 16.5	53
Analytical Method: Inorganic Anions by I	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086362		Date Prep: 04	.19.19 12.29					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	676142					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	965	9.94	0.352	mg/kg	04.19.19 15:35		1
Applutical Mathed: DPO OPO Py SW90	15D				Prep M	ethod: 8015		
Analytical Method: DRO-ORO By SW80 Analyst: MIT	130	% Moist:			Tech:	MIT		
Seq Number: 3087200		Date Prep: 04	26.19 11.00		i cen.	10111		
5007200		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	12.5	24.8	7.42	mg/kg	04.26.19 23:57	J	1
Oil Range Hydrocarbons (ORO)	PHCG2835	<7.42	24.8	7.42	mg/kg	04.26.19 23:57	U	1
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane n-Triacontane		131 123		65 - 1 46 - 1				
Analytical Method: TPH GRO by EPA 80)15 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086410		Date Prep: 04	.18.19 15.00					
		Prep seq: 76	576207					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	< 0.256	3.78	0.256	mg/kg	04.20.19 20:19	U	19
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		93		76 - 3				
a,a,a-Trifluorotoluene		110		69 - 1	120 %	1		

a,a,a-Trifluorotoluene

Certificate of Analytical Results 621518

TRC Solutions, Inc, Midland, TX

NM Moore Sweet

Sample Id: WTT-NW-C @ 2'	Matrix: Soil	Sample Depth: 2 ft
Lab Sample Id: 621518-005	Date Collected: 04.17.19 13.00	Date Received: 04.18.19 16.53
Analytical Method: BTEX by EPA 8021		Prep Method: 5030B
Analyst: MIT	% Moist:	Tech: MIT
Seq Number: 3086407	Date Prep: 04.18.19 15.00	
	Prep seq: 7676206	

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00854	0.0189	0.00854	mg/kg	04.20.19 20:19	U	19
Toluene	108-88-3	< 0.00442	0.0189	0.00442	mg/kg	04.20.19 20:19	U	19
Ethylbenzene	100-41-4	< 0.00582	0.0189	0.00582	mg/kg	04.20.19 20:19	U	19
m_p-Xylenes	179601-23-1	< 0.00645	0.0378	0.00645	mg/kg	04.20.19 20:19	U	19
o-Xylene	95-47-6	< 0.00645	0.0189	0.00645	mg/kg	04.20.19 20:19	U	19
Xylenes, Total	1330-20-7	< 0.00645		0.00645	mg/kg	04.20.19 20:19	U	
Total BTEX		< 0.00442		0.00442	mg/kg	04.20.19 20:19	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
4-Bromofluorobenzene		86		68 - 1	120 %	5		

91

%

71 - 121

TRC Solutions, Inc, Midland, TX

Sample Id: ETT-NW-C @ 2.5'		Matrix:	Soil		Sample	Depth: 2.5 ft		
Lab Sample Id: 621518-006		Date Collecte	ed: 04.17.19 13	.15	Date R	eceived: 04.18.	19 16.5	53
Analytical Method: Inorganic Anions by l	EPA 300/300.1				Prep M	lethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086362		Date Prep: 04	4.19.19 12.29					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	576142					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	197	9.98	0.353	mg/kg	04.19.19 15:47		1
Analytical Method: DRO-ORO By SW80	15B				Prep M	lethod: 8015		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3087200		Date Prep: 04	1.26.19 11.00					
		Prep seq: 76	576717					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	359	250	74.7	mg/kg	04.27.19 00:38		10
Oil Range Hydrocarbons (ORO)	PHCG2835	<74.7	250	74.7	mg/kg	04.27.19 00:38	U	10
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Tricosane		284		65 -)		**
n-Triacontane		91		46 -	152 %			
Applying Mathed, TDU CDO by EDA 90	15 Mod				Duon M	athadu 5020D		
Analytical Method: TPH GRO by EPA 80 Analyst: MIT	115 Mod.	% Moist:			Prep M Tech:	lethod: 5030B MIT		
5		Date Prep: 04	1 18 19 15 00		Tech.	10111		
Seq Number: 3086410			576207					
	CAS	Thep seq. 70	10201			Analysis		Dil Factor
Parameter	Number	Result	MQL	SDL	Units	Analysis Date	Flag	DII Factor
TPH-GRO	8006-61-9	<0.232	3.42	0.232	mg/kg	04.21.19 01:33	U	17
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		78		76 -	123 %	-		-
a,a,a-Trifluorotoluene		91		69 -				

a,a,a-Trifluorotoluene

Certificate of Analytical Results 621518

TRC Solutions, Inc, Midland, TX

NM Moore Sweet

Sample Id: ETT-NW-C @ 2.5'	Matrix: Soil	Sample Depth: 2.5 ft
Lab Sample Id: 621518-006	Date Collected: 04.17.19 13.15	Date Received: 04.18.19 16.53
Analytical Method: BTEX by EPA 8021		Prep Method: 5030B
Analyst: MIT	% Moist:	Tech: MIT
Seq Number: 3086407	Date Prep: 04.18.19 15.00	
	Prep seq: 7676206	

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00774	0.0171	0.00774	mg/kg	04.21.19 01:33	U	17
Toluene	108-88-3	< 0.00401	0.0171	0.00401	mg/kg	04.21.19 01:33	U	17
Ethylbenzene	100-41-4	< 0.00527	0.0171	0.00527	mg/kg	04.21.19 01:33	U	17
m_p-Xylenes	179601-23-1	< 0.00584	0.0342	0.00584	mg/kg	04.21.19 01:33	U	17
o-Xylene	95-47-6	< 0.00584	0.0171	0.00584	mg/kg	04.21.19 01:33	U	17
Xylenes, Total	1330-20-7	< 0.00584		0.00584	mg/kg	04.21.19 01:33	U	
Total BTEX		< 0.00401		0.00401	mg/kg	04.21.19 01:33	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
4-Bromofluorobenzene		74		68 - 1	120 %			

74

71 - 121

%

TRC Solutions, Inc, Midland, TX

Sample Id: ETT-Comp 4 @ 5'		Matrix:	Soil		Sample	Depth: 5 ft		
Lab Sample Id: 621518-007		Date Collecte	ed: 04.17.19 13	3.30	Date Re	ceived: 04.18.1	19 16.5	53
Analytical Method: Inorganic Anions by l	EPA 300/300.1				Prep Me	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086362		Date Prep: 04	4.19.19 12.29					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	576142					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	724	10.0	0.354	mg/kg	04.19.19 15:59		1
Analytical Method: DRO-ORO By SW80	15B	0/ 14 .			Prep Me			
Analyst: MIT		% Moist:	1 26 10 11 00		Tech:	MIT		
Seq Number: 3087200		Date Prep: 04						
	~ ~ ~	Prep seq: 76	0/0/1/					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	291	25.2	7.55	mg/kg	04.27.19 01:14		1
Oil Range Hydrocarbons (ORO)	PHCG2835	17.0	25.2	7.55	mg/kg	04.27.19 01:14	J	1
Surrogate		% Recovery		Limits	Unit	ts Analysis	Date	Flag
Tricosane		260		65 -				**
n-Triacontane		193		46 -	152 %			**
Analytical Method: TPH GRO by EPA 80)15 Mod.				Prep Me	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086410		Date Prep: 04	4.18.19 15.00					
-		Prep seq: 76	576207					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	0.395	3.42	0.232	mg/kg	04.21.19 01:57	J	17
Surrogate		% Recovery		Limits	Unit	ts Analysis	Date	Flag
4-Bromofluorobenzene		106		76 -	123 %			
a,a,a-Trifluorotoluene		128		69 -	120 %			**

a,a,a-Trifluorotoluene

Certificate of Analytical Results 621518

TRC Solutions, Inc, Midland, TX

NM Moore Sweet

Sample Id:	ETT-Comp 4 @ 5'		Matrix:	Soil	Sample Depth:	5 ft	
Lab Sample Id:	621518-007		Date Collected	: 04.17.19 13.30	Date Received	: 04.18.19 16.5	53
Analytical Met	hod: BTEX by EPA 8021				Prep Method:	5030B	
Analyst:	MIT		% Moist:		Tech:	MIT	
Seq Number:	3086407		Date Prep: 04.	18.19 15.00			
			Prep seq: 767	6206			
		CAS			Ana	lvsis	Dil I

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00773	0.0171	0.00773	mg/kg	04.21.19 01:57	U	17
Toluene	108-88-3	< 0.00400	0.0171	0.00400	mg/kg	04.21.19 01:57	U	17
Ethylbenzene	100-41-4	< 0.00526	0.0171	0.00526	mg/kg	04.21.19 01:57	U	17
m_p-Xylenes	179601-23-1	< 0.00583	0.0342	0.00583	mg/kg	04.21.19 01:57	U	17
o-Xylene	95-47-6	< 0.00583	0.0171	0.00583	mg/kg	04.21.19 01:57	U	17
Xylenes, Total	1330-20-7	< 0.00583		0.00583	mg/kg	04.21.19 01:57	U	
Total BTEX		< 0.004		0.004	mg/kg	04.21.19 01:57	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
4-Bromofluorobenzene		101		68 - 1	120 %	, D		

106

71 - 121

%

TRC Solutions, Inc, Midland, TX

Sample Id: ETT- Comp 1 @ 6'		Matrix:	Soil		Sample	Depth: 6 ft		
Lab Sample Id: 621518-008		Date Collecte	ed: 04.17.19 13	3.45	Date Re	eceived: 04.18.	19 16.5	53
Analytical Method: Inorganic Anions by H	EPA 300/300.1				Prep M	ethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086362		Date Prep: 04	4.19.19 12.29					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	576142					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	615	9.98	0.353	mg/kg	04.19.19 16:11		1
Analytical Method: DRO-ORO By SW80	15B				Prep M	ethod: 8015		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3087200		Date Prep: 04	4.26.19 11.00					
		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO)	C10C28DRO	29.3	24.8	7.41	mg/kg	04.27.19 01:49		1
Oil Range Hydrocarbons (ORO)	PHCG2835	<7.41	24.8	7.41	mg/kg	04.27.19 01:49	U	1
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
Tricosane n-Triacontane		132 129		65 - 46 -				
Analytical Method: TPH GRO by EPA 80	015 Mod.				Prep M	ethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086410		Date Prep: 04	4.18.19 15.00					
		Prep seq: 76	676207					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.242	3.57	0.242	mg/kg	04.20.19 19:30	U	18
Surrogate		% Recovery		Limits	Uni	ts Analysis	Date	Flag
4-Bromofluorobenzene		101		76 -				
a,a,a-Trifluorotoluene		123		69 -	120 %			**

a,a,a-Trifluorotoluene

Certificate of Analytical Results 621518

TRC Solutions, Inc, Midland, TX

NM Moore Sweet

Sample Id: ETT- Comp 1 @ 6'	Matrix: Soil	Sample Depth: 6 ft
Lab Sample Id: 621518-008	Date Collected: 04.17.19 13.45	Date Received: 04.18.19 16.53
Analytical Method: BTEX by EPA 8021		Prep Method: 5030B
Analyst: MIT	% Moist:	Tech: MIT
Seq Number: 3086407	Date Prep: 04.18.19 15.00	
	Prep seq: 7676206	

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00807	0.0179	0.00807	mg/kg	04.20.19 19:30	U	18
Toluene	108-88-3	< 0.00418	0.0179	0.00418	mg/kg	04.20.19 19:30	U	18
Ethylbenzene	100-41-4	< 0.00550	0.0179	0.00550	mg/kg	04.20.19 19:30	U	18
m_p-Xylenes	179601-23-1	< 0.00609	0.0357	0.00609	mg/kg	04.20.19 19:30	U	18
o-Xylene	95-47-6	< 0.00609	0.0179	0.00609	mg/kg	04.20.19 19:30	U	18
Xylenes, Total	1330-20-7	< 0.00609		0.00609	mg/kg	04.20.19 19:30	U	
Total BTEX		< 0.00418		0.00418	mg/kg	04.20.19 19:30	U	
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag
4-Bromofluorobenzene		92		68 - 1	120 %	ó		

101

%

71 - 121

TRC Solutions, Inc, Midland, TX

Sample Id: 7676142-1-BLK		Matrix:	Solid		Sample	e Depth:		
Lab Sample Id: 7676142-1-BLK		Date Collecte	ed:		Date R	eceived:		
Analytical Method: Inorganic Anions by I	EPA 300/300.1				Prep M	lethod: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3086362		Date Prep: 04	4.19.19 12.29					
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	576142					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	< 0.354	10.0	0.354	mg/kg	04.19.19 08:28	U	1
Sample Id: 7676206-1-BLK		Matrix:	Solid		Sample	e Depth:		
Lab Sample Id: 7676206-1-BLK		Date Collecte	ed:		Date R	eceived:		
Analytical Method: BTEX by EPA 8021					Prep M	lethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086407		Date Prep: 04	4.18.19 15.00					
		Prep seq: 76	676206					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00904	0.0200	0.00904	mg/kg	04.20.19 16:40	U	20
Toluene	108-88-3	< 0.00468	0.0200	0.00468	mg/kg	04.20.19 16:40	U	20
Ethylbenzene m_p-Xylenes	100-41-4 179601-23-1	<0.00616 <0.00682	0.0200 0.0400	0.00616 0.00682	mg/kg mg/kg	04.20.19 16:40 04.20.19 16:40	U U	20 20
o-Xylene	95-47-6	<0.00682	0.0200	0.00682	mg/kg	04.20.19 16:40	U	20
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		97		68 - 1	20 %	,)		-
a,a,a-Trifluorotoluene		105		71 - 1				
Sample Id: 7676207-1-BLK		Matrix:	Solid		Sample	e Depth:		
Lab Sample Id: 7676207-1-BLK		Date Collecte	ed:		Date R	eceived:		
Analytical Method: TPH GRO by EPA 80	015 Mod.				Prep M	lethod: 5030B		
Analyst: MIT		% Moist:			Tech:	MIT		
Seq Number: 3086410		Date Prep: 04	4.18.19 15.00					
		Prep seq: 76	576207					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
TPH-GRO	8006-61-9	<0.271	4.00	0.271	mg/kg	04.20.19 16:40	U	20
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
4-Bromofluorobenzene		105		76 - 1	23 %	,)		
a,a,a-Trifluorotoluene		128		69 - 1	20 %	,)		**

TRC Solutions, Inc, Midland, TX

Sample Id: 7676717-1-BLK	Matrix:	Solid		Sample	e Depth:		
Lab Sample Id: 7676717-1-BLK	Date Collecte	ed:		Date R	eceived:		
Analytical Method: DRO-ORO By SW8015B				Prep M	lethod: 8015		
Analyst: MIT	% Moist:			Tech:	MIT		
Seq Number: 3087200	Date Prep: 04	4.26.19 11.00					
	Prep seq: 7	676717					
Parameter CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Range Organics (DRO) C10C28DRO	<7.48	25.0	7.48	mg/kg	04.26.19 18:47	U	1
Oil Range Hydrocarbons (ORO) PHCG2835	<7.48	25.0	7.48	mg/kg	04.26.19 18:47	U	1

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
Tricosane	115	65 - 144	%		
n-Triacontane	100	46 - 152	%		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Form 2 - Surrogate Recoveries

Project Name: NM Moore Sweet

Lab Batch #: 3086407	, Sample: 7676206-1-BKS / I	BKS Batcl	Project I h: 1 Matrix			
Units: mg/kg	Date Analyzed: 04/20/19 14:16	SU.	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0963	0.100	96	68-120	
a,a,a-Trifluorotoluene		1.91	2.00	96	71-121	
Lab Batch #: 3086407	Sample: 7676206-1-BSD / I	BSD Batcl	h: ¹ Matrix	Solid		
Units: mg/kg	Date Analyzed: 04/20/19 14:40	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	Analytes	0.0979	0.100	98	68-120	
a.a.a-Trifluorotoluene		1.95	2.00	98	71-121	
, ,					/1 121	
Lab Batch #: 3086407	Sample: 7676206-1-BLK / 1		h: ¹ Matrix RROGATE R		STUDV	
Units: mg/kg	Date Analyzed: 04/20/19 16:40					
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	1111119005	0.0972	0.100	97	68-120	
a,a,a-Trifluorotoluene		2.10	2.00	105	71-121	
Lab Batch #: 3086407	Sample: 621518-001 S / MS	5 Batcl	h: 1 Matrix	:Soil	1 1	
Units: mg/kg	Date Analyzed: 04/20/19 17:29		RROGATE R	ECOVERY	STUDY	
	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
	Analytes			[D]		
4-Bromofluorobenzene		0.0938	0.100	94	68-120	
a,a,a-Trifluorotoluene		1.96	1.94	101	71-121	
Lab Batch #: 3086407	Sample: 621518-001 SD / M					
Units: mg/kg	Date Analyzed: 04/20/19 17:53	SU.	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
4 D (1 1		0.0952	0.100	95	68-120	
4-Bromofluorobenzene						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: NM Moore Sweet

Vork Orders : 621518,	,	Project ID:						
Lab Batch #: 3087200	Sample: 7676717-1-BKS / I							
Units: mg/kg	Date Analyzed: 04/26/19 16:03	SUR	ROGATE RI	ECOVERY	STUDY			
DRO-O	DRO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Tricosane		11.2	10.0	112	65-144			
n-Triacontane		9.42	10.0	94	46-152			
Lab Batch #: 3087200	Sample: 7676717-1-BSD / I	BSD Batch:	1 Matrix:	Solid				
Units: mg/kg	Date Analyzed: 04/26/19 16:44	SUR	ROGATE RI	COVERY	STUDY			
DRO-O	ORO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Tricosane	Anary Co	11.4	10.0	114	65-144			
n-Triacontane		9.24	10.0	92	46-152			
Lab Batch #: 3087200	Sample: 7676717-1-BLK / 1	BLK Batch:	1 Matrix:	<u> </u> • Solid	<u> </u>			
Units: mg/kg	Date Analyzed: 04/26/19 18:47		ROGATE RE		STUDY			
-	DRO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Tricosane		11.5	10.0	115	65-144			
n-Triacontane		9.98	10.0	100	46-152			
Lab Batch #: 3087200	Sample: 621518-001 S / MS	S Batch:	1 Matrix:	:Soil	<u>.</u> .			
Units: mg/kg	Date Analyzed: 04/26/19 20:04	SUR	ROGATE RI	ECOVERY	STUDY			
DRO-O	DRO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Tricosane		14.7	10.0	147	65-144	**		
n-Triacontane		12.4	10.0	124	46-152			
Lab Batch #: 3087200	Sample: 621518-001 SD / M	ASD Batch:	1 Matrix:	:Soil	<u>.</u>			
Units: mg/kg	Date Analyzed: 04/26/19 20:44	SUR	ROGATE RI	ECOVERY	STUDY			
DRO-O	DRO By SW8015B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Tricosane		14.7	9.97	147	65-144	**		
n-Triacontane		12.6	9.97	126	46-152			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: NM Moore Sweet

ork Orders : 621518 Lab Batch #: 3086410	, Sample: 7676207-1-BKS / 1	BKS Batc	Project I h: 1 Matrix			
Units: mg/kg	Date Analyzed: 04/20/19 15:04		RROGATE R		STUDY	
) by EPA 8015 Mod.	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0897	0.100	90	76-123	
a,a,a-Trifluorotoluene		2.07	2.00	104	69-120	
Lab Batch #: 3086410	Sample: 7676207-1-BSD / 1	BSD Bate	h: ¹ Matrix	x: Solid		
Units: mg/kg	Date Analyzed: 04/20/19 15:28	SU	RROGATE R	ECOVERY S	STUDY	
TPH GRO) by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	Anarytes	0.0893	0.100	89	76-123	
a.a.a-Trifluorotoluene		2.12	2.00	106	69-120	
					0, 120	
Lab Batch #: 3086410	Sample: 7676207-1-BLK / 1		h: ¹ Matrix RROGATE R		STUDV	
Units: mg/kg	Date Analyzed: 04/20/19 16:40	30	KROGATE K			
TPH GRO) by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	Anary (CS	0.105	0.100	105	76-123	
a,a,a-Trifluorotoluene		2.56	2.00	103	69-120	**
Lab Batch #: 3086410	Sample: 621518-001 S / MS					
Units: mg/kg	Date Analyzed: 04/20/19 18:17		RROGATE R		STUDY	
	D by EPA 8015 Mod.	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	Thury tes	0.0820	0.100	82	76-123	
a,a,a-Trifluorotoluene		1.71	1.80	95	69-120	
Lab Batch #: 3086410	Sample: 621518-001 SD / N					
	•		RROGATE R		STUDY	
Units: mg/kg	Date Analyzed: 04/20/19 18:42					
TPH GRO) by EPA 8015 Mod. Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	·	0.109	0.100	109	76-123	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: NM Moore Sweet

Work Order #: 621518							Pro	ject ID: -			
Analyst: MIT	D	ate Prepar	red: 04/18/201	9			Date A	nalyzed: (04/20/2019		
Lab Batch ID: 3086407 Sample: 7676206-1-	-BKS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	ЭY	
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R [D]	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[D]	[C]	נען	[E]	Kesuit [F]	[G]				
Benzene	< 0.00904	2.00	1.87	94	2.00	1.88	94	1	55-120	20	
Toluene	< 0.00468	2.00	1.79	90	2.00	1.80	90	1	77-120	20	
Ethylbenzene	< 0.00616	2.00	1.81	91	2.00	1.84	92	2	77-120	20	
m_p-Xylenes	< 0.00682	4.00	3.61	90	4.00	3.67	92	2	78-120	20	
o-Xylene	< 0.00682	2.00	1.84	92	2.00	1.87	94	2	78-120	20	
Analyst: MIT	D	ate Prepar	red: 04/26/201	9	•		Date A	nalyzed: ()4/26/2019	•	
Lab Batch ID: 3087200 Sample: 7676717-1-	-BKS	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
DRO-ORO By SW8015B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Diesel Range Organics (DRO)	<7.48	100	127	127	100	129	129	2	63-139	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: NM Moore Sweet

Work Order #: 621518							Proj	ject ID: -			
Analyst: JYM	D	ate Prepar	red: 04/19/201	19			Date A	nalyzed: (04/19/2019		
Lab Batch ID: 3086362 Sample: 7676142-1-	-BKS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / J	BLANK §	SPIKE DUP	LICATE	RECOVI	ERY STUI	УY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 0.354	100	102	102	100	108	108	6	80-120	20	
Analyst: MIT	D	ate Prepar	red: 04/18/201	19	+		Date A	nalyzed: (04/20/2019		·
Lab Batch ID: 3086410 Sample: 7676207-1-	-BKS	Bate	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	ЭY	
TPH GRO by EPA 8015 Mod. Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
TPH-GRO	<0.271	20.0	19.1	96	20.0	18.3	92	4	35-129	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: NM Moore Sweet

Work Order # : 621518						Project II	D:				
Lab Batch ID: 3086407	QC- Sample ID:	621518	-001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed: 04/20/2019	Date Prepared:	04/18/2	019	An	alyst: 1	MIT					
Reporting Units: mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[0]	[D]	[E]	11050110[1]	[G]		,	/ • • • • •	
Benzene	<0.00876	1.94	1.73	89	1.79	1.65	92	5	54-120	25	
Toluene	<0.00453	1.94	1.71	88	1.79	1.64	92	4	57-120	25	
Ethylbenzene	<0.00597	1.94	1.69	87	1.79	1.65	92	2	58-131	25	
m_p-Xylenes	<0.00661	3.88	3.34	86	3.58	3.27	91	2	62-124	25	
o-Xylene	<0.00661	1.94	1.67	86	1.79	1.65	92	1	62-124	25	
Lab Batch ID: 3087200	QC- Sample ID:	621518	-001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed: 04/26/2019	Date Prepared:	04/26/2	019	An	alyst: 1	MIT					
Reporting Units: mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
DRO-ORO By SW8015B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[C]	/0K [D]	[E]	Kesunt [F]	[G]	70	70K	70KI D	
Diesel Range Organics (DRO)	41.3	100	154	113	99.7	165	124	7	63-139	20	
Lab Batch ID: 3086362	QC- Sample ID:	621050	-002 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed: 04/19/2019	Date Prepared:	04/19/2	019	An	alyst: J	YM					
Reporting Units: mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
			1				Spiked		Control	Control	
Inorganic Anions by EPA 300/300.1	Sample	Spike Added	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample Result [F]	Dup.	RPD	Limits	Limits	Flag
Inorganic Anions by EPA 300/300.1 Analytes		Spike Added [B]		· · ·	Spike Added [E]			RPD %			Flag

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: NM Moore Sweet

Work Order # :	621518						Project II):				
Lab Batch ID:	3086362	QC- Sample ID:	621050	-003 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/19/2019	Date Prepared:	04/19/2	019	An	alyst: J	YM					
Reporting Units:	mg/kg		N	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgai	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	itesuit [i]	[G]			/ viti D	
Chloride		659	100	747	88	100	747	88	0	80-120	20	
Lab Batch ID:	3086410	QC- Sample ID:	621518	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/20/2019	Date Prepared:	04/18/2	019	An	alyst: N	MIT					
Reporting Units:	mg/kg		N	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH	GRO by EPA 8015 Mod.	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Bosult [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		76K [D]	E]	Result [F]	%K [G]	70	70K	70KPD	
TPH-GRO		<0.243	18.0	15.2	84	19.3	17.6	91	15	35-129	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

The start of t	X AENCO		WULK UTGET NO: POND
Project Manager Cart Han Cart Andrea Bill to it at frame Manager Andrea Project Manager De Start Andrea De Start Andrea De Start Andrea Project Matter De Start Andrea De Start Andrea De Start Andrea Determination De Start Andrea De Start Andrea De Start Andrea Determination De Start Andrea De Start Andrea De Start Andrea Determination De Start Andrea De Start Andrea De Start Andrea Determination De Start Andrea De Start Andrea De Start Andrea Description De Start Andrea De Start Andrea De Start Andrea Description De Start Andrea De Start Andrea De Start Andrea Description De Start Andrea De Start Andrea De Start Andrea Description Mark Andrea De Start Andrea De Start Andrea Description Mark Andrea De Start Andrea De Start Andrea Description Mark Andrea De Start Andrea De Start Andrea Description Mark Andrea De Start Andrea De Start Andrea Description De Start Andrea De Start Andrea De Start Andrea Description Mark Andrea De Start Andrea De Start Andrea <tr< td=""><td>и</td><td>las,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 -355-0900) Atlanta,GA (770-449-8800) Tampa,FL (815</td><td></td></tr<>	и	las,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 -355-0900) Atlanta,GA (770-449-8800) Tampa,FL (815	
Company Name: Car	Curt Starle	Centle Breat	www.xenco.com Page
Address: IC Orth Local Activity Nature State Nature	TRC Solution S	Plains Prorting	
Other State 21: Other State 21: Other State 21: Other State 21: Patient 21: P	10 Doste Dri Surke 1805		
Prine Second Secon	Millerel TX 79705 City, State		Reporting:Level III Level III PST/UST TRBP 1 avv
Project Nume: MM. Vasi R. S. J. etc. Turn. Normal Num. YSIS REQUEST Expect Number: Expect Number: Routine Rout	206-402-5356 Email CSA	4 Otro Solutions. Can	
Project Number: Routing Routing <throuting< th=""> Routing <throuting< th=""></throuting<></throuting<>	NM Meore Sweet	ANAL VSIS BECILE	
P. O. Number: Bush: Sampler Nume: Srever 1 Sampler Nume: Srever 1 Sampler Nume: Srever 1 Sampler Nume: Srever 1 Construction: Very No. Distribution: Very No. Sample Identification Mark No.	Ro		
Sampler Kinene: Date Date: Due Date: Sampler Kinene: Temperature (C) Temperature (C) Termentation: Termentation: Termentation: Termentation: Termentation: Termentation: Sample (dentification Markin Sample Dentification Sample (dentification Markin Sample Dentification <		2	Pconsel CHrs
SAMPLE RECEIPT Temp Blank Very load	is new cape	Ser and a series of the series	ALSOUCSEN D
Imperature (C): Transmitter Transmitter <thtransmitter< t<="" td=""><td>Temp Blank: Yes No Wet Ice: Yes No</td><td>w S E</td><td>ClBreato</td></thtransmitter<>	Temp Blank: Yes No Wet Ice: Yes No	w S E	ClBreato
102 N/	Thermometer B	15	
102 Ni 1631	Yes No NA Correction Earlier	10.20	
	Yes No N/A Total Containers:	8 3 2	TAT starts the day receiv
	Matrix Date Time Depth	401 172	lab, if received by 4:3
	- NW-B@ 1.5' 5 4/17 12:00 1.5'		
	EW-BQ1.5' 1 1		
	220 4 1 12:30		20
	Shici		
	0 0-1-1		
	Creation 1		6
			8
	Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 AI S Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: 8RCRA	As Ba Be B Cd Ca Cr Co Cu Fe Pb N Sb As Ba Be Cd Cr Co Cu Pb Mn Mo N	
lature)	otice: Signature of this document and relinquispment of samples constitutes a valid purchase order from clie f service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any los f Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample subn	t company to Xenco, its affiliates and subcontractors. It ass es or expenses incurred by the client if such losses are due tted to Xenco, but not analyzed. These terms will be enforce	
	Relinquished by: (Signature) Repeated by: (Signature)	ate/Time Relinquished by: (Signature	lature)
		CG.mL1	
		- œ	

Final 1.001

Inter-Office Shipment

IOS Number : 37317

Date/Time	: 04.18.2019 09	:42 Created by	: Brenda	Ward	Please send report	to: Kalei Stou	t		
Lab# From	n: Lubbock	Delivery P	Priority:		Address:	6701 Aber	deen, Su	ite 9 Lubbock, TX 7	9424
Lab# To:	Houston	Air Bill No	o.: 775011	637307	E-Mail:	kalei.stout	@xenco.	com	
Sample Id	Matrix Client Sam	ple Id Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign
621518-001	S TT2-NW-B	04.17.2019 12:00	E300	Inorganic Anions by EPA 300/300.1	04.24.2019	05.15.2019	KLS	CL	
621518-002	S TT2-EW-B	04.17.2019 12:15	E300	Inorganic Anions by EPA 300/300.1	04.24.2019	05.15.2019	KLS	CL	
621518-003	S TT2 Comp 2	^{@ 4'} 04.17.2019 12:30	E300	Inorganic Anions by EPA 300/300.1	04.24.2019	05.15.2019	KLS	CL	
621518-004	S TT2-Comp 4	^{@ 4'} 04.17.2019 12:45	E300	Inorganic Anions by EPA 300/300.1	04.24.2019	05.15.2019	KLS	CL	
621518-005	S WTT-NW-C	^{@ 2'} 04.17.2019 13:00	E300	Inorganic Anions by EPA 300/300.1	04.24.2019	05.15.2019	KLS	CL	
621518-006	S ETT-NW-C	04.17.2019 13:15	E300	Inorganic Anions by EPA 300/300.1	04.24.2019	05.15.2019	KLS	CL	
621518-007	S ETT-Comp 4	^{@ 5'} 04.17.2019 13:30	E300	Inorganic Anions by EPA 300/300.1	04.24.2019	05.15.2019	KLS	CL	
621518-008	S ETT- Comp	^{@ 6'} 04.17.2019 13:45	E300	Inorganic Anions by EPA 300/300.1	04.24.2019	05.15.2019	KLS	CL	

Inter Office Shipment or Sample Comments:

Relinquished By:

renda Ward

Brenda Ward

Date Relinquished: 04.18.2019

Received By:

Monica Shakhshir

Date Received:

ved: 04.19.2019 09:40

Cooler Temperature: 2.4

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Houston IOS #: 37317

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : HOU-068

Sent By:	Brenda Ward	Date Sent:	04/18/2019 09:42 AM
Received By:	: Monica Shakhshir	Date Received:	04/19/2019 09:40 AM

Sample Receipt Checklist

Comments

#1 *Temperature of cooler(s)?	2.4
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperature?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Yes
#5 *Custody Seals Signed and dated for Containers/coolers	Yes
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	Yes
#13 Sufficient sample amount for indicated test(s)?	Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by: Autichan Monica Shakhshir

Date: 04/19/2019

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc	Acceptable Temperature Range: 0 - 6 degC					
Date/ Time Received: 04/18/2019 04:53:00 PM	Air and Metal samples Acceptable Range: Ambient					
Work Order #: 621518	Temperature Measuring device used : IR-3					
Sample Recei	pt Checklist Comments					
#1 *Temperature of cooler(s)?	4.6					
#2 *Shipping container in good condition?	Yes					
#3 *Samples received on ice?	Yes					
#4 *Custody Seals intact on shipping container/ cooler?	N/A					
#5 Custody Seals intact on sample bottles?	N/A					
#6*Custody Seals Signed and dated?	N/A					
#7 *Chain of Custody present?	Yes					
#8 Any missing/extra samples?	Νο					
#9 Chain of Custody signed when relinquished/ received?	Yes					
#10 Chain of Custody agrees with sample labels/matrix?	Yes					
#11 Container label(s) legible and intact?	Yes					
#12 Samples in proper container/ bottle?	Yes					
#13 Samples properly preserved?	Yes					
#14 Sample container(s) intact?	Yes					
#15 Sufficient sample amount for indicated test(s)?	Yes					
#16 All samples received within hold time?	Yes					
#17 Subcontract of sample(s)?	Yes Chlorides					
#18 Water VOC samples have zero headspace?	N/A					

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Brenda Ward Brenda Ward

Date: 04/18/2019

Checklist reviewed by: Kalei Stout

Date: 04/19/2019

Analytical Report 634062

for

Tasman Geosciences, LLC

Project Manager: Zach Conder

NM Moore Sweet

08.23.2019

Collected By: Client

6701 Aberdeen, Suite 9 Lubbock, TX 79424

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-29), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142), North Carolina (681)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-19-19), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-20) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429), North Carolina (483)

08.23.2019

Project Manager: Zach Conder Tasman Geosciences, LLC 2620 W. Marland Blvd. Hobbs, NM 88240

Reference: XENCO Report No(s): 634062 NM Moore Sweet Project Address:

Zach Conder:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 634062. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 634062 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

John Builes Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Sample Cross Reference 634062

Tasman Geosciences, LLC, Hobbs, NM

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
ETT-NW-D @ 2.5'	S	08.14.2019 12:00	2.5 ft	634062-001
WTT-NW-D @ 2'	S	08.14.2019 12:15	2 ft	634062-002
TT2-Comp 2 @ 5'	S	08.14.2019 12:30	5 ft	634062-003
TT2-Comp 4 @ 5'	S	08.14.2019 12:45	5 ft	634062-004

CASE NARRATIVE

Client Name: Tasman Geosciences, LLC Project Name: NM Moore Sweet

Project ID: Work Order Number(s): 634062
 Report Date:
 08.23.2019

 Date Received:
 08.14.2019

This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory.

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3098990 BTEX-MTBE by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Tasman Geosciences, LLC, Hobbs, NM

Sample Id: ETT-NW-D @ 2.5'		Matrix:	Soil		Sampl	le Depth: 2.5 ft		
Lab Sample Id: 634062-001		Date Collecte	d: 08.14.201	9 12:00	Date H	Received: 08.14.20	19 15:	13
Analytical Method: Inorganic Anions by l	EPA 300/300.1				Prep N	Method: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3098689		Date Prep: 08	3.15.2019 10:	59				
Subcontractor: SUB: T104704215-19-29		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	861	9.98	0.353	mg/kg	08.15.2019 16:48		1
Analytical Method: TPH by SW8015 Mo	d				Prep N	Method: 1005		
Analyst: ISU		% Moist:			Tech:	ISU		
Seq Number: 3098797		Date Prep: 08	3.16.2019 09:	56				
Subcontractor: SUB: T104704215-19-29		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Total TPH	PHC610 C10C28DRO PHCG2835 PHC635	<9.92 100 59.6 160	49.6 49.6 49.6	9.92 9.92 9.92 9.92	mg/kg mg/kg mg/kg mg/kg	08.16.2019 17:42 08.16.2019 17:42 08.16.2019 17:42 08.16.2019 17:42	U	1 1 1
Surrogate		% Recovery		Limits	Units	Analysis Dat	e	Flag
Surrogate 1-Chlorooctane o-Terphenyl		% Recovery 82 86		Limits 70 - 135 70 - 135	Units % %	Analysis Dat	e	Flag
1-Chlorooctane o-Terphenyl		82		70 - 135	% %		e	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021		82		70 - 135	% % Prep N	Method: 5030B	e	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT		82 86 % Moist:	3.19.2019 14:	70 - 135 70 - 135	% %		e	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021		82 86 % Moist: Date Prep: 08	3.19.2019 14: 584501	70 - 135 70 - 135	% % Prep N	Method: 5030B	e	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT	CAS Number	82 86 % Moist: Date Prep: 08		70 - 135 70 - 135	% % Prep N	Method: 5030B	e Flag	Flag Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990		82 86 % Moist: Date Prep: 08 Prep seq: 76	584501	70 - 135 70 - 135 00	% % Prep M Tech:	Method: 5030B MIT Analysis		U
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene	Number 71-43-2 108-88-3	82 86 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00804 <0.00416	584501 MQL 0.0178 0.0178	70 - 135 70 - 135 00 SDL 0.00804 0.00416	% % Prep M Tech: Units mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 18:27 08.19.2019 18:27	Flag U U	Dil Factor 18 18
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene	Number 71-43-2 108-88-3 100-41-4	82 86 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00804 <0.00416 <0.00548	584501 MQL 0.0178 0.0178 0.0178	70 - 135 70 - 135 00 SDL 0.00804 0.00416 0.00548	% % Prep M Tech: Units mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27	Flag U U U U	Dil Factor 18 18 18 18
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes	Number 71-43-2 108-88-3 100-41-4 179601-23-1	82 86 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00804 <0.00416 <0.00548 <0.00607	584501 MQL 0.0178 0.0178 0.0178 0.0356	70 - 135 70 - 135 00 SDL 0.00804 0.00416 0.00548 0.00607	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27	Flag U U U U U	Dil Factor 18 18 18 18 18
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	82 86 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00804 <0.00416 <0.00548 <0.00607 <0.00607	584501 MQL 0.0178 0.0178 0.0178	70 - 135 70 - 135 00 SDL 0.00804 0.00416 0.00548 0.00607 0.00607	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27	Flag U U U U U U U	Dil Factor 18 18 18 18
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total	Number 71-43-2 108-88-3 100-41-4 179601-23-1	82 86 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00804 <0.00416 <0.00548 <0.00607 <0.00607 <0.00607	584501 MQL 0.0178 0.0178 0.0178 0.0356	70 - 135 70 - 135 00 SDL 0.00804 0.00416 0.00548 0.00607 0.00607 0.00607	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27	Flag U U U U U	Dil Factor 18 18 18 18 18
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	82 86 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00804 <0.00416 <0.00548 <0.00607 <0.00607	584501 MQL 0.0178 0.0178 0.0178 0.0356	70 - 135 70 - 135 00 SDL 0.00804 0.00416 0.00548 0.00607 0.00607	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27	Flag U U U U U U U U	Dil Factor 18 18 18 18 18
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	82 86 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00804 <0.00416 <0.00548 <0.00607 <0.00607 <0.00607	584501 MQL 0.0178 0.0178 0.0178 0.0356	70 - 135 70 - 135 00 SDL 0.00804 0.00416 0.00548 0.00607 0.00607 0.00607	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27	Flag U U U U U U U U U	Dil Factor 18 18 18 18 18
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total Total BTEX	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	82 86 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00804 <0.00416 <0.00607 <0.00607 <0.00607 <0.00607 <0.00416	584501 MQL 0.0178 0.0178 0.0178 0.0356	70 - 135 70 - 135 00 SDL 0.00804 0.00416 0.00548 0.00607 0.00607 0.00607 0.00607 0.00416	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27 08.19.2019 18:27	Flag U U U U U U U U U	Dil Factor 18 18 18 18 18 18 18

Tasman Geosciences, LLC, Hobbs, NM

Sample Id: WTT-NW-D @ 2'		Matrix:	Soil		Samp	le Depth: 2 ft		
Lab Sample Id: 634062-002		Date Collecte	d: 08.14.201	9 12:15	Date I	Received: 08.14.20	19 15:	13
Analytical Method: Inorganic Anions by	EPA 300/300.1				Prep M	Method: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3098689		Date Prep: 08	3.15.2019 10:	59				
Subcontractor: SUB: T104704215-19-29		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	130	9.94	0.352	mg/kg	08.15.2019 17:13		1
Analytical Method: TPH by SW8015 Mo	d				Prep N	Method: 1005		
Analyst: ISU		% Moist:			Tech:	ISU		
Seq Number: 3098797		Date Prep: 08	3.16.2019 09:	59	Teen.	150		
Subcontractor: SUB: T104704215-19-29			584305					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Total TPH	PHC610 C10C28DRO PHCG2835 PHC635	<9.98 321 138 459	49.9 49.9 49.9	9.98 9.98 9.98 9.98	mg/kg mg/kg mg/kg mg/kg	08.16.2019 18:01 08.16.2019 18:01 08.16.2019 18:01 08.16.2019 18:01	U	1 1 1
Surrogate		% Recovery		Limits	Units	Analysis Date	e	Flag
Surrogate 1-Chlorooctane o-Terphenyl		% Recovery 79 73		Limits 70 - 135 70 - 135	Units % %	Analysis Date	2	Flag
1-Chlorooctane		79		70 - 135	% %	Analysis Date Method: 5030B	2	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021		79		70 - 135	% % Prep M	Method: 5030B	2	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT		79 73 % Moist:	8 19 2019 14·	70 - 135 70 - 135	% %		3	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021		79 73 % Moist: Date Prep: 08	3.19.2019 14: 584501	70 - 135 70 - 135	% % Prep M	Method: 5030B	2	Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT	CAS Number	79 73 % Moist: Date Prep: 08		70 - 135 70 - 135	% % Prep M	Method: 5030B	Flag	Flag Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990		79 73 % Moist: Date Prep: 08 Prep seq: 76	584501	70 - 135 70 - 135 00	% % Prep M Tech:	Method: 5030B MIT Analysis		U
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter	Number	79 73 % Moist: Date Prep: 08 Prep seq: 76 Result	584501 MQL	70 - 135 70 - 135 00 SDL	% % Prep M Tech: Units	Method: 5030B MIT Analysis Date	Flag	Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene	Number 71-43-2 108-88-3 100-41-4	79 73 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00890 <0.00461 <0.00606	584501 MQL 0.0197 0.0197 0.0197	70 - 135 70 - 135 00 SDL 0.00890 0.00461 0.00606	% % Prep M Tech: Units mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15	Flag U U U	Dil Factor 20 20 20 20 20
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes	Number 71-43-2 108-88-3 100-41-4 179601-23-1	79 73 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00890 <0.00461 <0.00606 <0.00671	584501 MQL 0.0197 0.0197 0.0197 0.0394	70 - 135 70 - 135 00 SDL 0.00890 0.00461 0.00606 0.00671	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15	Flag U U U U U	Dil Factor 20 20 20 20 20 20
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	79 73 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00890 <0.00461 <0.00606 <0.00671 <0.00671	584501 MQL 0.0197 0.0197 0.0197	70 - 135 70 - 135 00 SDL 0.00890 0.00461 0.00606 0.00671 0.00671	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15	Flag U U U U U U U	Dil Factor 20 20 20 20 20
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total	Number 71-43-2 108-88-3 100-41-4 179601-23-1	79 73 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00890 <0.00461 <0.00606 <0.00671 <0.00671 <0.00671	584501 MQL 0.0197 0.0197 0.0197 0.0394	70 - 135 70 - 135 00 SDL 0.00890 0.00461 0.00606 0.00671 0.00671 0.00671	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15	Flag U U U U U U U U U	Dil Factor 20 20 20 20 20 20
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	79 73 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00890 <0.00461 <0.00606 <0.00671 <0.00671	584501 MQL 0.0197 0.0197 0.0197 0.0394	70 - 135 70 - 135 00 SDL 0.00890 0.00461 0.00606 0.00671 0.00671	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15	Flag U U U U U U U	Dil Factor 20 20 20 20 20 20
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	79 73 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00890 <0.00461 <0.00606 <0.00671 <0.00671 <0.00671	584501 MQL 0.0197 0.0197 0.0197 0.0394	70 - 135 70 - 135 00 SDL 0.00890 0.00461 0.00606 0.00671 0.00671 0.00671	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15	Flag U U U U U U U U U	Dil Factor 20 20 20 20 20 20
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021 Analyst: MIT Seq Number: 3098990 Parameter Benzene Toluene Ethylbenzene m_p-Xylenes o-Xylene Xylenes, Total Total BTEX	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	79 73 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00890 <0.00461 <0.00606 <0.00671 <0.00671 <0.00671 <0.00671 <0.00461	584501 MQL 0.0197 0.0197 0.0197 0.0394	70 - 135 70 - 135 00 SDL 0.00890 0.00461 0.00606 0.00671 0.00671 0.00671 0.00671 0.00461	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15 08.19.2019 20:15	Flag U U U U U U U U U	Dil Factor 20 20 20 20 20

Tasman Geosciences, LLC, Hobbs, NM

Sample Id: TT2-Comp 2 @ 5'		Matrix:	Soil		Samp	le Depth: 5 ft		
Lab Sample Id: 634062-003		Date Collecte	ed: 08.14.201	9 12:30	Date I	Received: 08.14.20	19 15:	13
Analytical Method: Inorganic Anions by H	EPA 300/300.1				Prep M	Method: E300P		
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3098689		Date Prep: 08	8.15.2019 10:	:59				
Subcontractor: SUB: T104704215-19-29		Prep seq: 70						
Parameter	CAS	Result	MQL	SDL	Units	Analysis	Flag	Dil Factor
Chloride	Number 16887-00-6	53.3	9.96	0.353	mg/kg	Date 08.15.2019 17:21		1
Analytical Method: TPH by SW8015 Mod	1				Prep M	Method: 1005		
Analyst: ISU		% Moist:			Tech:	ISU		
Seq Number: 3098797		Date Prep: 08	8.16.2019 10:	:02				
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	584305					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Total TPH	PHC610 C10C28DRO PHCG2835 PHC635	10.4 960 218 1190	50.0 50.0 50.0	10.0 10.0 10.0 10.0	mg/kg mg/kg mg/kg mg/kg	08.19.2019 16:11 08.19.2019 16:11 08.19.2019 16:11 08.19.2019 16:11	J	1 1 1
Surrogate		% Recovery		Limits	Units	Analysis Dat	e	Flag
1-Chlorooctane o-Terphenyl		127 103		70 - 135 70 - 135	% %			
Analytical Method: BTEX by EPA 8021					Pren M	Method: 5030B		
Analyst: MIT		% Moist:			Tech:			
Seq Number: 3098990		Date Prep: 08	8 19 2019 14·	·00	reen.	IVII I		
Seq Number. 5098990		•	584501	.00				
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00868	0.0192	0.00868	mg/kg	08.19.2019 20:42	U	19
Toluene	108-88-3	< 0.00449	0.0192	0.00449	mg/kg	08.19.2019 20:42	U	19
Ethylbenzene	100-41-4	< 0.00591	0.0192	0.00591	mg/kg	08.19.2019 20:42	U	19
m_p-Xylenes	179601-23-1	< 0.00655	0.0384	0.00655	mg/kg	08.19.2019 20:42	U	19
o-Xylene		< 0.00655	0.0192	0.00655	mg/kg	08.19.2019 20:42	U	19
Vulanas Tot-1	95-47-6			0.00055	- /I	09 10 2010 20 42	тт	
Xylenes, Total Total BTEX	95-47-6 1330-20-7	<0.00655 <0.00449		0.00655 0.00449	mg/kg mg/kg	08.19.2019 20:42 08.19.2019 20:42	U U	
Total BTEX		<0.00655 <0.00449		0.00449	mg/kg	08.19.2019 20:42	U	
Total BTEX Surrogate		<0.00655 <0.00449 % Recovery		0.00449 Limits	mg/kg Units		U	Flag
Total BTEX		<0.00655 <0.00449		0.00449	mg/kg	08.19.2019 20:42	U	Flag

Tasman Geosciences, LLC, Hobbs, NM

	TT2-Comp 4 @ 5'		Matrix:	Soil		Sampl	le Depth: 5 ft		
Lab Sample Id	l: 634062-004		Date Collecte	d: 08.14.201	9 12:45	Date I	Received: 08.14.20	19 15:	13
Analytical Met	thod: Inorganic Anions by E	PA 300/300.1				Prep M	Method: E300P		
Analyst:	JYM		% Moist:			Tech:			
-			Date Prep: 08	15 2010 10.	50	reen.	5 1 1 1		
Seq Number:	3098689				39				
Subcontractor:	: SUB: T104704215-19-29		Prep seq: 76	84283					
Parameter	r	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride		16887-00-6	24.5	9.92	0.351	mg/kg	08.15.2019 17:29		1
Analytical Met	thod: TPH by SW8015 Mod					Prep M	Method: 1005		
Analyst:	ISU		% Moist:			Tech:	ISU		
-	3098797		Date Prep: 08	.16.2019 10:	05				
•	: SUB: T104704215-19-29		Prep seq: 76						
Parameter		CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Diesel Rang	ange Hydrocarbons (GRO) ge Organics (DRO) ange Hydrocarbons (MRO)	PHC610 C10C28DRO PHCG2835 PHC635	11.0 1900 376 2290	50.0 50.0 50.0	9.99 9.99 9.99 9.99	mg/kg mg/kg mg/kg mg/kg	08.16.2019 18:39 08.16.2019 18:39 08.16.2019 18:39 08.16.2019 18:39	J	1 1 1
Surrogate			0/ Decovery		T • • • •	Units	Analysis Dat		Flag
-			% Recovery		Limits	Units	Analysis Date	e	Flag
1-Chlorooct o-Terpheny			95 81		70 - 135 70 - 135 70 - 135	% %	Anarysis Dau	e	Гіад
1-Chlorooct o-Terpheny	4		95		70 - 135	% %		a	Fiag
I-Chlorooct o-Terpheny Analytical Met	thod: BTEX by EPA 8021		95		70 - 135	% % Prep N	Method: 5030B	a	Гад
1-Chlorooct o-Terpheny Analytical Met Analyst:	thod: BTEX by EPA 8021 MIT		95 81 % Moist:	19 2019 14·	70 - 135 70 - 135	% %			Гад
I-Chlorooct o-Terpheny Analytical Met	thod: BTEX by EPA 8021		95 81 % Moist: Date Prep: 08		70 - 135 70 - 135	% % Prep N	Method: 5030B	e	Гад
1-Chlorooct o-Terpheny Analytical Met Analyst:	/l thod: BTEX by EPA 8021 MIT 3098990	CAS Number	95 81 % Moist:		70 - 135 70 - 135	% % Prep N	Method: 5030B	Flag	Dil Factor
1-Chlorooct o-Terpheny Analytical Met Analyst: Seq Number:	/l thod: BTEX by EPA 8021 MIT 3098990		95 81 % Moist: Date Prep: 08 Prep seq: 76	84501	70 - 135 70 - 135 00	% % Prep N Tech:	Method: 5030B MIT Analysis		
1-Chlorooct o-Terpheny Analytical Met Analyst: Seq Number: Parameter Benzene Toluene	/l thod: BTEX by EPA 8021 MIT 3098990	Number 71-43-2 108-88-3	95 81 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00799 <0.00413	84501 MQL 0.0177 0.0177	70 - 135 70 - 135 00 SDL 0.00799 0.00413	% % Prep M Tech: Units	Method: 5030B MIT Analysis Date	Flag	Dil Factor 18 18
1-Chlorooct o-Terpheny Analytical Met Analyst: Seq Number: Parameter Benzene Toluene Ethylbenzer	thod: BTEX by EPA 8021 MIT 3098990 r	Number 71-43-2 108-88-3 100-41-4	95 81 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00799 <0.00413 <0.00544	84501 MQL 0.0177 0.0177 0.0177	70 - 135 70 - 135 00 SDL 0.00799 0.00413 0.00544	% % Prep M Tech: Units mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09	Flag U U U	Dil Factor 18 18 18 18
1-Chlorooct o-Terpheny Analytical Met Analyst: Seq Number: Parameter Benzene Toluene Ethylbenzer m_p-Xylene	thod: BTEX by EPA 8021 MIT 3098990 r	Number 71-43-2 108-88-3 100-41-4 179601-23-1	95 81 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00799 <0.00413 <0.00544 <0.00602	0.0177 0.0177 0.0177 0.0177 0.0353	70 - 135 70 - 135 00 SDL 0.00799 0.00413 0.00544 0.00602	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09	Flag U U U U U	Dil Factor 18 18 18 18 18
1-Chlorooct o-Terpheny Analytical Met Analyst: Seq Number: Parameter Benzene Toluene Ethylbenzer m_p-Xylene o-Xylene	thod: BTEX by EPA 8021 MIT 3098990 r	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	95 81 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00799 <0.00413 <0.00544 <0.00602 <0.00602	84501 MQL 0.0177 0.0177 0.0177	70 - 135 70 - 135 00 SDL 0.00799 0.00413 0.00544 0.00602 0.00602	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09	Flag U U U U U U U	Dil Factor 18 18 18 18
1-Chlorooct o-Terpheny Analytical Met Analyst: Seq Number: Parameter Benzene Toluene Ethylbenzer m_p-Xylene	thod: BTEX by EPA 8021 MIT 3098990 r	Number 71-43-2 108-88-3 100-41-4 179601-23-1	95 81 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00799 <0.00413 <0.00544 <0.00602	0.0177 0.0177 0.0177 0.0177 0.0353	70 - 135 70 - 135 00 SDL 0.00799 0.00413 0.00544 0.00602	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09	Flag U U U U U	Dil Factor 18 18 18 18 18
1-Chlorooct o-Terpheny Analytical Met Analyst: Seq Number: Parameter Benzene Toluene Ethylbenzer m_p-Xylene o-Xylene Xylenes, To	thod: BTEX by EPA 8021 MIT 3098990 r	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	95 81 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00799 <0.00413 <0.00544 <0.00602 <0.00602 <0.00602	0.0177 0.0177 0.0177 0.0177 0.0353	70 - 135 70 - 135 00 SDL 0.00799 0.00413 0.00544 0.00602 0.00602 0.00602	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09	Flag U U U U U U U U U	Dil Factor 18 18 18 18 18
1-Chlorooct o-Terpheny Analytical Met Analyst: Seq Number: Parameter Benzene Toluene Ethylbenzer m_p-Xylene o-Xylene Xylenes, To Total BTEX	thod: BTEX by EPA 8021 MIT 3098990 r	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	95 81 % Moist: Date Prep: 08 Prep seq: 76 Result <0.00799 <0.00413 <0.00544 <0.00602 <0.00602 <0.00602 <0.00602 <0.00602 <0.00602 <0.00613	0.0177 0.0177 0.0177 0.0177 0.0353	70 - 135 70 - 135 00 SDL 0.00799 0.00413 0.00544 0.00602 0.00602 0.00602 0.00602 0.00413	% % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Method: 5030B MIT Analysis Date 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09 08.19.2019 21:09	Flag U U U U U U U U U	Dil Factor 18 18 18 18 18 18 18

o-Terphenyl

Certificate of Analytical Results 634062

Tasman Geosciences, LLC, Hobbs, NM

NM Moore Sweet

Sample Id: 7684283-1-BLK		Matrix:	Solid		Sampl	le Depth:		
Lab Sample Id: 7684283-1-BLK		Date Collecte	d:		Date H	Received:		
Analytical Method: Inorganic Anions by H	EPA 300/300.1				Prep N	Method: SW9056	P	
Analyst: JYM		% Moist:			Tech:	JYM		
Seq Number: 3098689		Date Prep: 08	3.15.2019 10:	59				
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	684283					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	< 0.354	10.0	0.354	mg/kg	08.15.2019 15:08	U	1
Sample Id: 7684305-1-BLK		Matrix:	Solid		Samp	le Depth:		
Lab Sample Id: 7684305-1-BLK		Date Collecte	d:		Date H	Received:		
Analytical Method: TPH by SW8015 Mod	l				Prep N	Method: 1005		
Analyst: ISU		% Moist:			Tech:	ISU		
Seq Number: 3098797		Date Prep: 08	3.15.2019 16:	30				
Subcontractor: SUB: T104704215-19-29		Prep seq: 76	584305					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	<10.0	50.0	10.0	mg/kg	08.15.2019 17:54	U	1
Diesel Range Organics (DRO)	C10C28DRO	<10.0	50.0	10.0	mg/kg	08.15.2019 17:54	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<10.0	50.0	10.0	mg/kg	08.15.2019 17:54	U	1
Total TPH	PHC635	<10.0		10.0	mg/kg	08.15.2019 17:54	U	
Surrogate		% Recovery		Limits	Units	Analysis Dat	e	Flag
1-Chlorooctane		88		70 - 135	%			

88

70 - 135

%

a,a,a-Trifluorotoluene

Certificate of Analytical Results 634062

Tasman Geosciences, LLC, Hobbs, NM

NM Moore Sweet

Doromotor	CAS	Docult	MOI SD	I Uni	An	alysis	Flog	Dil Factor
		Prep seq: 76	84501					
Seq Number: 3098990		Date Prep: 08	.19.2019 14:00					
Analyst: MIT		% Moist:		Te	ch:	MIT		
Analytical Method: BTEX by EPA 8021				Pr	ep Method:	5030B		
Lab Sample Id: 7684501-1-BLK		Date Collected	1:	Da	te Received	:		
Sample Id: 7684501-1-BLK		Matrix:	Solid	Sa	mple Depth:			

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	< 0.00904	0.0200	0.00904	mg/kg	08.19.2019 18:00	U	20
Toluene	108-88-3	< 0.00468	0.0200	0.00468	mg/kg	08.19.2019 18:00	U	20
Ethylbenzene	100-41-4	< 0.00616	0.0200	0.00616	mg/kg	08.19.2019 18:00	U	20
m_p-Xylenes	179601-23-1	< 0.00682	0.0400	0.00682	mg/kg	08.19.2019 18:00	U	20
o-Xylene	95-47-6	< 0.00682	0.0200	0.00682	mg/kg	08.19.2019 18:00	U	20
Xylenes, Total	1330-20-7	< 0.00682		0.00682	mg/kg	08.19.2019 18:00	U	
Total BTEX		< 0.00468		0.00468	mg/kg	08.19.2019 18:00	U	
Surrogate		% Recovery		Limits	Units	Analysis Dat	e	Flag
4-Bromofluorobenzene		90		68 - 120	%			

71 - 121

%

93

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

- RL Reporting Limit
- MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	nt Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate
	~			

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Form 2 - Surrogate Recoveries

Project Name: NM Moore Sweet

	ders : 63406			Project II			
Lab Batch	#: 3098990	Sample: 7684501-1-BKS / B					
Units:	mg/kg	Date Analyzed: 08.19.2019 16:12	SU	RROGATE RE	ECOVERY	STUDY	
		X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
	lorobenzene		0.0956	0.100	96	68-120	
a,a,a-Trifluo	orotoluene		1.71	2.00	86	71-121	
Lab Batch	#: 3098990	Sample: 7684501-1-BSD / B	BSD Batcl	h: 1 Matrix	:Solid		
Units:	mg/kg	Date Analyzed: 08.19.2019 16:39	SU	RROGATE RE	ECOVERY	STUDY	
		X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4 Bromoflu	lorobenzene	Analytes	0.0016	0.100		69,120	
4-Bromofiu			0.0916	0.100	92	68-120	
			1.73	2.00	87	71-121	
Lab Batch	#: 3098990	Sample: 7684501-1-BLK / E					
Units:	mg/kg	Date Analyzed: 08.19.2019 18:00	SU.	RROGATE RE	ECOVERY	STUDY	
		X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
4 Dromoflu	lorobenzene	Analytes	0.0005	0.100	[D]	co 100	
4-Bromofiu			0.0895	0.100	90	68-120 71-121	
						/1-121	
	#: 3098990	Sample: 634062-001 S / MS				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Units:	mg/kg	Date Analyzed: 08.19.2019 18:54	50.	RROGATE RE	ECOVERY	STUDY	
		X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromoflu	ıorobenzene		0.0969	0.100	97	68-120	
a,a,a-Trifluo			1.70	1.96	87	71-121	
Lab Ratch	#: 3098990	Sample: 634062-001 SD / M			I	1	
Units:	mg/kg	Date Analyzed: 08.19.2019 19:21		RROGATE RE		STUDY	
	BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromoflu	ıorobenzene		0.0964	0.100	96	68-120	
a,a,a-Trifluo	orotoluene		1.54	1.82	85	71-121	. <u></u>

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: NM Moore Sweet

Work Orders: 63400	52		Project II):		
Lab Batch #: 3098797	Sample: 7684305-1-BLK / H					
Units: mg/kg	Date Analyzed: 08.15.2019 17:54	SU	RROGATE RE	COVERY S	STUDY	
	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes	~~ 1				
1-Chlorooctane		88.1	100	88	70-135	
o-Terphenyl		44.0	50.0	88	70-135	
Lab Batch #: 3098797	Sample: 7684305-1-BKS / E					
Units: mg/kg	Date Analyzed: 08.15.2019 18:14	SU.	RROGATE RE	COVERY 3	STUDY	
	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Allaryus	91.2	100	91	70-135	
o-Terphenyl		42.7	50.0	85	70-135	
Lab Batch #: 3098797	Sample: 7684305-1-BSD / E	BSD Batcl	h: 1 Matrix:	• Salid	<u> </u>	
Units: mg/kg	Date Analyzed: 08.15.2019 18:33		RROGATE RE		STUDY	
			True		1 1	
	by SW8015 Mod	Amount Found [A]	Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Analytes	05.0	100		70.125	
o-Terphenyl		95.0 43.0	50.0	95 86	70-135	
				I	/0-155	
Lab Batch #: 3098797	Sample: 633722-001 SD / M				OTINV	
Units: mg/kg	Date Analyzed: 08.15.2019 19:31	30.	RROGATE RE			
	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	A line y cos	94.5	99.3	95	70-135	
o-Terphenyl		37.6	49.7	76	70-135	
Lab Batch #: 3098797				I	<u> </u>	
Units: mg/kg	Date Analyzed: 08.16.2019 12:32		RROGATE RE		STUDY	
TPH t	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]	= 125	ļ
1-Chlorooctane		86.6	99.6	87	70-135	
o-Terphenyl		35.1	49.8	70	70-135	1

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: NM Moore Sweet

Work Order #: 634062							Pro	ject ID:			
Analyst: MIT	D	ate Prepar	red: 08.19.20	19			Date A	nalyzed:	08.19.2019		
Lab Batch ID: 3098990 Sample: 7684501-	1-BKS	Bate	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /	BLANK	SPIKE DUP	LICATE	RECOV	ERY STU	DY	
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes Benzene	<0.00904	2.00	1.82	91	2.00	1.95	98	7	55-120	20	
Toluene				-		1		/		-	
	<0.00468	2.00	1.97	99	2.00	1.95	98	1	77-120	20	
Ethylbenzene	< 0.00616	2.00	1.97	99	2.00	1.96	98	1	77-120	20	
m_p-Xylenes	< 0.00682	4.00	3.95	99	4.00	3.91	98	1	78-120	20	
o-Xylene	< 0.00682	2.00	1.96	98	2.00	1.96	98	0	78-120	20	
Analyst: JYM	D	ate Prepar	red: 08.15.20	19	•		Date A	nalyzed:	08.15.2019		-
Lab Batch ID: 3098689 Sample: 7684283-	1-BKS	Batc	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /	BLANK	SPIKE DUP	LICATE	RECOV	ERY STU	DY	
Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	< 0.354	100	104	104	100	105	105	1	80-120	20	1

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: NM Moore Sweet

Work Order	: #: 634062					Project ID:								
Analyst:	ISU		D	ate Prepar	ed: 08.15.201	9			Date A	nalyzed: (8.15.2019			
Lab Batch ID	: 3098797 Samp	le: 7684305-1-	-BKS	Batc	h #: 1					Matrix: S	Solid			
Units:	mg/kg			BLAN	K /BLANK	SPIKE / 1	BLANK	SPIKE DUP	LICATE	RECOV	ERY STU	DY		
	TPH by SW8015 Mod		Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Analy	ytes			[B]	[C]	[D]	[E]	Result [F]	[G]					
Gasoline	Range Hydrocarbons (GRO)		<10.0	1000	915	92	1000	942	94	3	70-135	35		
Diesel Ra	nge Organics (DRO)		<10.0	1000	855	86	1000	868	87	2	70-135	35		

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: NM Moore Sweet

Work Order # :	634062				Project ID:
Lab Batch ID:	3098990	QC- Sample ID:	634062-001 S	Batch #: 1	Matrix: Soil
Date Analyzed:	08.19.2019	Date Prepared:	08.19.2019	Analyst: MIT	
Reporting Units:	mg/kg				

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

	BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene		< 0.00885	1.96	1.81	92	1.82	1.63	90	10	54-120	25	
Toluene		< 0.00458	1.96	2.04	104	1.82	1.82	100	11	57-120	25	
Ethylbenzene		< 0.00603	1.96	2.15	110	1.82	1.91	105	12	58-131	25	
m_p-Xylenes		< 0.00667	3.91	4.32	110	3.64	3.86	106	11	62-124	25	
o-Xylene		< 0.00667	1.96	2.12	108	1.82	1.90	104	11	62-124	25	
Lab Batch ID:	3098689	C- Sample ID:	634062	-001 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	08.15.2019 E	ate Prepared:	08.15.2	019	An	alyst: J	YM					
Reporting Units:	mg/kg											

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

	Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Ch	ıloride	861	100	944	83	100	950	89	1	80-120	20	

 $\begin{array}{l} Matrix \ Spike \ Percent \ Recovery \quad [D] = 100^{*}(C\text{-}A) \ / \ B \\ Relative \ Percent \ Difference \quad RPD = 200^{*}|(C\text{-}F) \ / \ (C\text{+}F)| \end{array}$

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A) / E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: NM Moore Sweet

Work Order # :	634062				Project ID:
Lab Batch ID:	3098689	QC- Sample ID:	634076-003 S	Batch #: 1	Matrix: Soil
Date Analyzed:	08.15.2019	Date Prepared:	08.15.2019	Analyst: JYM	
Reporting Units:	mg/kg				

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorgai	nic Anions by EPA 300/300.1	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride		101	114	214	99	113	212	98	1	80-120	20	
Lab Batch ID:	3098797	QC- Sample ID:	633722	-001 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed:	08.16.2019	Date Prepared:	08.15.2	019	An	alyst: I	SU					
Reporting Units:	mg/kg											

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]		Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	15.5	1040	910	86	1030	1020	98	11	70-135	35	
Diesel Range Organics (DRO)	967	1040	1580	59	1030	1840	85	15	70-135	35	X

Matrix Spike Duplicate Percent Recovery $[G] = 100^{*}(F-A) / E$

Work Order No: 232022	Work Order Comments Work Order Comments Level III PST/UST Level III PST/UST AbaPT Other: Sample Comments Sample Comments	<pre> Se Ag SIOZ Na SF II SH U V ZH 1631/245.1/7470 /7471 : Hg ind conditions out conditions gordiated. </pre>	Received by: (Signature) Date/Time Reviewd Date 051418 Rev. 2018.1
	ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS REQUEST ANALYSIS REQUEST	Cd Cd Cr Co Cu Fe PD Mg Mn Mo Ni K Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U Its affiliates and subcontractors. It assigns standard terms ar red by the client if such losses are due to circumstances beyo thankized. These terms will be enforced unless previously ney tankized. These terms will be enforced unless previously ney	: (Signature) Receiv
Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Hohns NM (575-392-7550) Phoenix A7 (480-355-0900) Atlanta (5A (770-449-8800) Tampar,FL (813-620-2000)	AMALYSIS AMALYSIS CHANNEL C	SD AS B& BE B Cd Ca Cr Co Cu Fe PD Mg Mn Mo Ni K Se Ag Si A Sb As B& Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U structured by the Contractors. It assigns standard terms and conditions losses or expenses incurred by the client if such losses are due to circumstances beyond the control bubmitted to Xenco, but no analyzed. These terms will be enforced unless previously negotiated.	Date/Time Relinquished by: (Signature)
C Houston,TX (281) 240-4200 Da Midland,TX (432-704-5440) E Hothis NM (575-392-7550) Phoenix A7 (48	Company Name: Bill to: (if different) Company Name: Company Name: Solution Address: Solution Address: Solution Email: Final: Email: City, State ZIP: Email: Solution Email: City, State ZIP: Email: Solution Email: City, State ZIP: Email: Solution Email: Control Routine Rush: Rush: Rush: Due Date: Ves No With 121/2 Sampled 23.5' Solution 23.5' Solution 23.5'	0: BRCRA 13PPM Texas 11 AI SD AS Ba Be B Cd Ca Cr Co Cu Fe PD Mg Mn Mo Ni K Se A De analyzed ToLP / SPLP 6010: BRCRA SD As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U finent of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditionent of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditionent of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditionent of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditioned projection of active of \$5 for each sample submitted to Xenco, its affiliates and subcontractors. It assigns standard terms and conditioned projection of active of \$5 for each sample submitted to Xenco.	Reseived by: (Bigmature)
C 3402 C XENCO LABORATORIES	nager: Birth Constraint Vame: Anne: Anne ZIP: Huchs, NM Anne me: NM Anne Month mber: Blank: Month stody Seals: Yes No Month stody Seals: Yes No Month mple Identification Matrix Month Mu-DOC3S S S CondadeS S S Stody Seals: Yes No Month	Total 200.7 / 6010 200.8 / 6020: BRCRA 13PPM Texas 11 AI SD AS Ba Be B Cd Ca Cr Co Cu Fe PD Mg Mn Mo NI K Se Ag S Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010: BRCRA SD AS Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its attiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be lable only for the cost of samples constitutes a valid purchase order from client company to Xenco, its attiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be lable only for the cost of samples submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	

Inter-Office Shipment

IOS Number : 46292

Date/Time	: 08.14.2	2019 16:39	Created by:	Brenda Ward		Please send report to	o: John Buile	S		
Lab# From	n: Lubb	ock	Delivery Pri	ority:		Address:	6701 Aber	deen, Sui	ite 9 Lubbock, TX 7942	24
Lab# To:	Houst	on	Air Bill No.	: 77598915614	775989156149		john.builes	@xenco.	com	
Sample Id	Matrix C	lient Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign
634062-001	S E	CTT-NW-D @ 2.5'	08.14.2019 12:00	E300	Inorganic Anions by EPA 300/300.1	08.20.2019	09.11.2019	JHB	CL	
634062-001	S E	CTT-NW-D @ 2.5'	08.14.2019 12:00	SW8015MOD_NM	TPH by SW8015 Mod	08.20.2019	08.28.2019	JHB	PHCC10C28 PHCC28C3	5
634062-002	s v	VTT-NW-D @ 2'	08.14.2019 12:15	E300	Inorganic Anions by EPA 300/300.1	08.20.2019	09.11.2019	JHB	CL	
634062-002	s v	VTT-NW-D @ 2'	08.14.2019 12:15	SW8015MOD_NM	TPH by SW8015 Mod	08.20.2019	08.28.2019	JHB	PHCC10C28 PHCC28C3	<u>.</u>
634062-003	S T	'T2-Comp 2 @ 5'	08.14.2019 12:30	SW8015MOD_NM	TPH by SW8015 Mod	08.20.2019	08.28.2019	JHB	PHCC10C28 PHCC28C3	-
634062-003	S T	'T2-Comp 2 @ 5'	08.14.2019 12:30	E300	Inorganic Anions by EPA 300/300.1	08.20.2019	09.11.2019	JHB	CL	
634062-004	S T	'T2-Comp 4 @ 5'	08.14.2019 12:45	SW8015MOD_NM	TPH by SW8015 Mod	08.20.2019	08.28.2019	JHB	PHCC10C28 PHCC28C3	5
634062-004	S T	'T2-Comp 4 @ 5'	08.14.2019 12:45	E300	Inorganic Anions by EPA 300/300.1	08.20.2019	09.11.2019	JHB	CL	

Inter Office Shipment or Sample Comments:

Relinquished By:

renda Ward

Brenda Ward

Date Relinquished: 08.14.2019

Received By:

vaysfinning

Travis Simmons

Date Received:

eived: 08.15.2019 09:30

Cooler Temperature: 2.9

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Houston IOS #: 46292

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : HOU-068

Sent By:	Brenda Ward	Date Sent:	08.14.2019 04.39 PM
Received By	: Travis Simmons	Date Received:	08.15.2019 09.30 AM

Sample Receipt Checklist

Comments

#1 *Temperature of cooler(s)?	2.9
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperature?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	N/A
#5 *Custody Seals Signed and dated for Containers/coolers	N/A
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	Yes
#13 Sufficient sample amount for indicated test(s)?	Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by:

uaujo

Travis Simmons

Date: 08.15.2019

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Tasman Geosciences, LLC Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 08.14.2019 03.13.00 PM Temperature Measuring device used : IR-4 Work Order #: 634062 Comments Sample Receipt Checklist #1 *Temperature of cooler(s)? 4.4 #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A N/A #6*Custody Seals Signed and dated? #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? Yes Chlorides & 8015 sent to Stafford

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Brenda Ward Brenda Ward

#18 Water VOC samples have zero headspace?

Date: 08.14.2019

N/A

Checklist reviewed by:

John Builes

Date: 08.16.2019

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Curt Stanley TRC Solutions- Midland, Texas 10 Desta Dr STE 150E Midland, TX 79705

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Location: Lea County, NM

Lab Order Number: 9I27014

NELAP/TCEQ # T104704516-18-9

Report Date: 10/05/19

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MN-S1C #1	9I27014-01	Soil	09/24/19 08:10	09-26-2019 16:23
MW-S1C	9I27014-02	Soil	09/24/19 08:20	09-26-2019 16:23
MW-F1C #1@ 5'	9I27014-03	Soil	09/24/19 08:30	09-26-2019 16:23
MW-F1C #2@ 5'	9I27014-04	Soil	09/24/19 08:40	09-26-2019 16:23
MSW-S1C	9I27014-05	Soil	09/24/19 08:50	09-26-2019 16:23
MSW-F1C @ 5'	9127014-06	Soil	09/24/19 09:00	09-26-2019 16:23
MS-S1C	9I27014-07	Soil	09/24/19 09:10	09-26-2019 16:23
MS-F1C @ 5'	9I27014-08	Soil	09/24/19 09:20	09-26-2019 16:23
ME-S1C	9I27014-09	Soil	09/24/19 09:30	09-26-2019 16:23
ME-F1C #1 @ 4'	9I27014-10	Soil	09/24/19 09:40	09-26-2019 16:23
ME-F1C #2 @ 4'	9I27014-11	Soil	09/24/19 09:50	09-26-2019 16:23
MN-S1C #2	9I27014-12	Soil	09/24/19 10:00	09-26-2019 16:23
MNW-S2	9I27014-13	Soil	09/24/19 10:10	09-26-2019 16:23
MNW-F2 @ 10'	9I27014-14	Soil	09/24/19 10:20	09-26-2019 16:23
MW-S2	9I27014-15	Soil	09/24/19 10:30	09-26-2019 16:23
MW-F2 @ 10'	9I27014-16	Soil	09/24/19 10:40	09-26-2019 16:23
MSW-S2	9I27014-17	Soil	09/24/19 10:50	09-26-2019 16:23
MSW-F2 @ 10'	9I27014-18	Soil	09/24/19 11:00	09-26-2019 16:23
MS-S2	9I27014-19	Soil	09/24/19 11:10	09-26-2019 16:23
MS-F2 @ 10'	9I27014-20	Soil	09/24/19 11:20	09-26-2019 16:23
ME-S2	9I27014-21	Soil	09/24/19 11:40	09-26-2019 16:23
ME-F2 @ 10'	9I27014-22	Soil	09/24/19 11:50	09-26-2019 16:23
MN-S2	9I27014-23	Soil	09/24/19 12:00	09-26-2019 16:23
MN-F2 @ 10'	9I27014-24	Soil	09/24/19 12:10	09-26-2019 16:23

Rerun of Chloride analysis for sample MEF1C #2 @ 4' (9127014-11) was requested by client on 10-04-19. The results of the rerun are immediately following the results of the initial sample and are denoted by "RE1"

MN-S1C #1

9I27014-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	11an Basin E	Invironmen	tal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00105	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00211	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00105	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	75-12	5	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.3 %	75-12	5	P9I2706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EPA /	Standard Method	ls							
Chloride	29.0	1.05	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	5.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by	y EPA Method 80)15M							
C6-C12	ND	26.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		80.3 %	70-13	0	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		91.7 %	70-13	0	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MW-S1C

9I27014-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin E	nvironmen	ital Lab, I	P.				
Organics by GC									
Benzene	ND	0.00102	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00204	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00102	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		102 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		113 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EPA	Standard Method	ls							
Chloride	695	1.02	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	2.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8(015M							
C6-C12	ND	25.5	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		82.5 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		94.5 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MW-F1C #1@ 5'

9I27014-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin F	Invironmen	ıtal Lab, I	P .				
Organics by GC									
Benzene	ND	0.00106	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00213	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00106	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.8 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		95.5 %	75-1	25	P912706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	ls							
Chloride	59.2	1.06	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	6.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8(015M							
C6-C12	ND	26.6	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		83.0 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		95.4 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MW-F1C #2@ 5'

9I27014-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin E	Environmen	ital Lab, I	P .				
Organics by GC									
Benzene	ND	0.00106	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00213	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00106	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.5 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		106 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	ls							
Chloride	42.6	1.06	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	6.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	015M							
C6-C12	ND	26.6	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		82.6 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		94.7 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MSW-S1C

9I27014-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	al Lab, I	P.				
Organics by GC									
Benzene	ND	0.00133	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00133	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00267	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00133	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00133	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.7 %	75-12	5	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		113 %	75-12	5	P9I2706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EPA /	Standard Method	s							
Chloride	86.7	1.33	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	25.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 80	15M							
C6-C12	ND	33.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	33.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	33.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		84.8 %	70-13	0	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		100 %	70-13	0	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	33.3	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MSW-F1C @ 5'

9I27014-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Invironmer	ıtal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00102	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00204	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00102	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.5 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		112 %	75-1	25	P912706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EF	PA / Standard Method	s							
Chloride	42.4	1.02	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	11.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	25.5	mg/kg dry	1	P9I3004	09/30/19	10/04/19	TPH 8015M	
>C12-C28	186	25.5	mg/kg dry	1	P9I3004	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P9I3004	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		106 %	70-1	30	P9I3004	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		121 %	70-1	30	P9I3004	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	186	25.5	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Permian Basin Environmental Lab, L.P.

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MS-S1C

9I27014-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perr	nian Basin E	nvironmen	tal Lab, I					
Organics by GC									
Benzene	ND	0.00103	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00206	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00103	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		90.7 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		87.6 %	75-1.	25	P912706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EPA / Sta	andard Metho	ds							
Chloride	596	1.03	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	3.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by I	EPA Method 8	015M							
C6-C12	ND	25.8	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		90.9 %	70-1.	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		97.0 %	70-1.	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MS-F1C @ 5'

9I27014-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmen	ıtal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00109	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00217	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00109	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		112 %	75-1	25	P912706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		105 %	75-1	25	P912706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	ls							
Chloride	124	1.09	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	8.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80)15M							
C6-C12	ND	27.2	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		79.3 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		95.2 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

ME-S1C

9I27014-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	nvironmer	ital Lab, I	P.				
Organics by GC									
Benzene	ND	0.00105	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00211	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00105	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		102 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EP	A / Standard Method	s							
Chloride	2100	26.3	mg/kg dry	25	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	5.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	46.6	26.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		96.8 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	46.6	26.3	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

ME-F1C #1 @ 4'

9I27014-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin F	Invironmer	ıtal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00112	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00112	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00225	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00112	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00112	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.8 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		89.2 %	75-1	25	P912706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Metho	ds							
Chloride	603	1.12	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	11.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M							
C6-C12	ND	28.1	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	28.1	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	28.1	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		93.4 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	28.1	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

ME-F1C #2 @ 4'

9127	014-11	(Soil)
9127	014-11	(501)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	1ian Basin F	Invironmer	ıtal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00108	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00215	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00108	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		86.5 %	75-1	25	P912706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		111 %	75-1	25	P912706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	ls							
Chloride	4050	26.9	mg/kg dry	25	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	7.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80)15M							
C6-C12	ND	26.9	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		92.6 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley Fax: (432) 520-7701

ME-F1C #2 @ 4'

9I27014-11RE1 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permiar	ı Basin Er	nvironmer	ıtal Lab, I	P.				
General Chemistry Parameters	by EPA / Standard Methods								
Chloride	3650	26.9	mg/kg dry	25	P9J0108	10/01/19	10/05/19	EPA 300.0	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MN-S1C #2

9I27014-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Cnvironmer	ntal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00105	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00211	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00105	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.8 %	75-1	25	P912706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EPA /	Standard Method	s							
Chloride	197	1.05	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	5.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 I	oy EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		89.9 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Permian Basin Environmental Lab, L.P.

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MNW-S2

9I27014-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin F	Environmer	ntal Lab, I	L .P.				
Organics by GC									
Benzene	ND	0.00101	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00202	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00101	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		92.0 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EF	PA / Standard Method	ls							
Chloride	214	1.01	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	1.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 8()15M							
C6-C12	ND	25.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	87.0	25.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		93.2 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		100 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	87.0	25.3	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Permian Basin Environmental Lab, L.P.

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MNW-F2 @ 10'

9I27014-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Invironmen	ital Lab, I	P .				
Organics by GC									
Benzene	ND	0.00109	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Ethylbenzene	ND	0.00217	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (p/m)	ND	0.00109	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		113 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		90.6 %	75-1	25	P9I2706	09/27/19	09/27/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	S							
Chloride	9.26	1.09	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	8.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	5 by EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		85.0 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		99.2 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Permian Basin Environmental Lab, L.P.

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

MW-S2

9I27014-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	ian Basin E	nvironmer	ıtal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00102	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00204	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00102	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		90.2 %	75-1	25	P9I2706	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		114 %	75-1	25	P9I2706	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EI	PA / Standard Method	s							
Chloride	109	1.02	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	2.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	015M							
C6-C12	ND	25.5	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	61.1	25.5	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		89.8 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	61.1	25.5	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Permian Basin Environmental Lab, L.P.

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MW-F2 @ 10'

9I27014-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Invironmen	ital Lab, I	P .				
Organics by GC									
Benzene	ND	0.00109	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00217	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00109	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		86.8 %	75-1	25	P9I2706	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	75-1	25	P912706	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	ds							
Chloride	33.7	1.09	mg/kg dry	1	P9J0108	10/01/19	10/02/19	EPA 300.0	
% Moisture	8.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M							
C6-C12	ND	27.2	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		103 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		120 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

MSW-S2

9I27014-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Invironmer	ıtal Lab, I	P .				
Organics by GC									
Benzene	ND	0.00104	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00208	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00104	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	75-1	25	P9I2706	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.2 %	75-1	25	P912706	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	ls							
Chloride	509	1.04	mg/kg dry	1	P9J0210	10/02/19	10/02/19	EPA 300.0	
% Moisture	4.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	015M							
C6-C12	ND	26.0	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		99.5 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Permian Basin Environmental Lab, L.P.

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

MSW-F2 @ 10'

9I27014-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perr	nian Basin E	Invironme	ntal Lab, l	L.P.				
Organics by GC									
Benzene	ND	0.00111	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00222	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00111	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.0 %	75-1	25	P912706	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		113 %	75-1	25	P912706	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA	Standard Metho	ds							
Chloride	353	1.11	mg/kg dry	1	P9J0210	10/02/19	10/02/19	EPA 300.0	
% Moisture	10.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M							
C6-C12	ND	27.8	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P9I3004	09/30/19	10/03/19	TPH 8015M	
Surrogate: 1-Chlorooctane		105 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	-
Surrogate: o-Terphenyl		122 %	70-1	30	P9I3004	09/30/19	10/03/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	09/30/19	10/03/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MS-S2

9I27014-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Environmen	tal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00108	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00215	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00108	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P9I2706	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.8 %	75-125		P9I2706	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		115 %	75-12	25	P9I2706	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA	Standard Method	s							
Chloride	348	1.08	mg/kg dry	1	P9J0210	10/02/19	10/02/19	EPA 300.0	
% Moisture	7.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		94.1 %	70-13	0	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-13	0	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MS-F2 @ 10'

9I27014-20 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin E	nvironmer	ıtal Lab, l	L.P.				
Organics by GC									
Benzene	ND	0.00108	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00215	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00108	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.4 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EP	A / Standard Method	ls							
Chloride	61.3	1.08	mg/kg dry	1	P9J0210	10/02/19	10/02/19	EPA 300.0	
% Moisture	7.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C.	35 by EPA Method 8()15M							
C6-C12	ND	26.9	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	620	26.9	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	149	26.9	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		91.1 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	769	26.9	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Permian Basin Environmental Lab, L.P.

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

ME-S2

9I27014-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Invironmen	tal Lab, I	P .				
Organics by GC									
Benzene	ND	0.00122	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00122	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00244	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00122	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00122	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		105 %	75-12	25	P912707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		117 %	75-12	25	P912707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA /	Standard Method	s							
Chloride	1030	1.22	mg/kg dry	1	P9J0210	10/02/19	10/02/19	EPA 300.0	
% Moisture	8.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 80	15M							
C6-C12	ND	30.5	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	30.5	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	30.5	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		93.5 %	70-13	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		108 %	70-13	80	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	30.5	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

ME-F2 @ 10'

9I27014-22 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Invironmen	tal Lab, I	P .				
Organics by GC									
Benzene	ND	0.00112	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00112	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00225	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00112	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00112	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.1 %	75-125		P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	75-1.	25	P912707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	S							
Chloride	372	1.12	mg/kg dry	1	P9J0210	10/02/19	10/02/19	EPA 300.0	
% Moisture	11.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	15M							
C6-C12	ND	28.1	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	28.1	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	28.1	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		95.5 %	70-1.	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-1.	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	28.1	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Г

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MN-S2

9I27014-23 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Invironmen	tal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00102	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00204	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00102	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.3 %	75-12	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		119 %	75-12	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	s							
Chloride	1080	1.02	mg/kg dry	1	P9J0210	10/02/19	10/02/19	EPA 300.0	
% Moisture	2.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	15M							
C6-C12	ND	25.5	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		97.9 %	70-13	80	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-13	80	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Г

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

MN-F2 @ 10'

9I27014-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environmen	tal Lab, I	P .				
Organics by GC									
Benzene	ND	0.00104	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00208	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00104	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		115 %	75-12	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		97.6 %	75-12	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA / S	Standard Method	ls							
Chloride	138	1.04	mg/kg dry	1	P9J0210	10/02/19	10/02/19	EPA 300.0	
% Moisture	4.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 8	015M							
C6-C12	ND	26.0	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		80.9 %	70-1.	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		94.2 %	70-1.	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
רוומוץוד	Result	Limit	Units	Level	Result	70KEU	LIINIIS	κťυ	Limit	inotes
Batch P9I2706 - General Preparation (GC)										
Blank (P9I2706-BLK1)				Prepared &	Analyzed:	09/27/19				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00200	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.129		"	0.120		107	75-125			
Surrogate: 1,4-Difluorobenzene	0.108		"	0.120		90.1	75-125			
LCS (P9I2706-BS1)				Prepared &	Analyzed:	09/27/19				
Benzene	0.0814	0.00100	mg/kg wet	0.100		81.4	80-120			
Toluene	0.109	0.00100	"	0.100		109	80-120			
Ethylbenzene	0.114	0.00200	"	0.100		114	80-120			
Xylene (p/m)	0.224	0.00100	"	0.200		112	80-120			
Xylene (o)	0.109	0.00100	"	0.100		109	80-120			
Surrogate: 4-Bromofluorobenzene	0.133		"	0.120		111	75-125			
Surrogate: 1,4-Difluorobenzene	0.142		"	0.120		118	75-125			
LCS Dup (P912706-BSD1)				Prepared &	Analyzed:	09/27/19				
Benzene	0.0865	0.00100	mg/kg wet	0.100		86.5	80-120	6.10	20	
Toluene	0.105	0.00100	"	0.100		105	80-120	3.57	20	
Ethylbenzene	0.107	0.00200	"	0.100		107	80-120	6.54	20	
Xylene (p/m)	0.212	0.00100	"	0.200		106	80-120	5.77	20	
Xylene (o)	0.106	0.00100	"	0.100		106	80-120	2.85	20	
Surrogate: 4-Bromofluorobenzene	0.120		"	0.120		99.7	75-125			
Surrogate: 1,4-Difluorobenzene	0.127		"	0.120		106	75-125			
Calibration Blank (P9I2706-CCB1)				Prepared &	Analyzed:	09/27/19				
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.103		"	0.120		86.0	75-125			
Surrogate: 4-Bromofluorobenzene	0.115		"	0.120		95.9	75-125			

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9I2706 - General Preparation (GC)										
Calibration Blank (P912706-CCB2)				Prepared &	Analyzed:	09/27/19				
Benzene	0.00		mg/kg wet	•	2					
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		110	75-125			
Surrogate: 1,4-Difluorobenzene	0.113		"	0.120		93.9	75-125			
Calibration Blank (P912706-CCB3)				Prepared: 0	9/27/19 Ai	nalyzed: 09	/28/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		102	75-125			
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		91.0	75-125			
Calibration Check (P9I2706-CCV1)				Prepared &	Analyzed:	09/27/19				
Benzene	0.0832	0.00100	mg/kg wet				80-120			
Toluene	0.108	0.00100	"				80-120			
Ethylbenzene	0.108	0.00200	"				80-120			
Xylene (p/m)	0.237	0.00100	"				80-120			
Xylene (o)	0.106	0.00100	"				80-120			
Surrogate: 4-Bromofluorobenzene	0.139		"	0.120		116	75-125			
Surrogate: 1,4-Difluorobenzene	0.133		"	0.120		111	75-125			
Calibration Check (P912706-CCV2)				Prepared &	Analyzed:	09/27/19				
Benzene	0.0967	0.00100	mg/kg wet				80-120			
Toluene	0.109	0.00100	"				80-120			
Ethylbenzene	0.119	0.00200	"				80-120			
Xylene (p/m)	0.215	0.00100	"				80-120			
Xylene (o)	0.106	0.00100	"				80-120			
Surrogate: 1,4-Difluorobenzene	0.135		"	0.120		112	75-125			
Surrogate: 4-Bromofluorobenzene	0.124		"	0.120		104	75-125			

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P912706 - General Preparation (GC)										
Calibration Check (P9I2706-CCV3)				Prepared: 0)9/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0950	0.00100	mg/kg wet				80-120			
Toluene	0.114	0.00100	"				80-120			
Ethylbenzene	0.124	0.00200	"				80-120			
Xylene (p/m)	0.218	0.00100	"				80-120			
Xylene (o)	0.120	0.00100	"				80-120			
Surrogate: 1,4-Difluorobenzene	0.144		"	0.120		120	75-125			
Surrogate: 4-Bromofluorobenzene	0.140		"	0.120		116	75-125			
Matrix Spike (P9I2706-MS1)	Sou	rce: 9127014	-01	Prepared: 0)9/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0728	0.00105	mg/kg dry	0.105	ND	69.1	80-120			QM-0
Toluene	0.0803	0.00105	"	0.105	ND	76.3	80-120			QM-0
Ethylbenzene	0.0928	0.00211	"	0.105	ND	88.2	80-120			
Xylene (p/m)	0.155	0.00105	"	0.211	ND	73.4	80-120			QM-0
Xylene (o)	0.0733	0.00105	"	0.105	ND	69.6	80-120			QM-0
Surrogate: 1,4-Difluorobenzene	0.139		"	0.126		110	75-125			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.126		97.1	75-125			
Matrix Spike Dup (P9I2706-MSD1)	Sou	rce: 9I27014	-01	Prepared: 0)9/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0809	0.00105	mg/kg dry	0.105	ND	76.8	80-120	10.5	20	QM-0
Toluene	0.0882	0.00105	"	0.105	ND	83.8	80-120	9.38	20	
Ethylbenzene	0.100	0.00211	"	0.105	ND	95.0	80-120	7.41	20	
Xylene (p/m)	0.166	0.00105	"	0.211	ND	78.9	80-120	7.21	20	QM-0
Xylene (o)	0.0805	0.00105	"	0.105	ND	76.5	80-120	9.42	20	QM-0
Surrogate: 1,4-Difluorobenzene	0.149		"	0.126		118	75-125			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.126		103	75-125			
Batch P9I2707 - General Preparation (GC)										
				Prepared: 0)9/27/19 A	nalyzed: 09	/28/19			
Benzene	ND	0.00100	mg/kg wet	-		-				
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00200								
Xylene (p/m)	ND	0.00100								
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		106	75-125			
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120		87.6	75-125			

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

	D k	Reporting	TT '4	Spike	Source	N/DEC	%REC	DDD	RPD	N T (
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9I2707 - General Preparation (GC)										
LCS (P9I2707-BS1)				Prepared: 0	9/27/19 Ai	nalyzed: 09	/28/19			
Benzene	0.0886	0.00100	mg/kg wet	0.100		88.6	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.103	0.00200	"	0.100		103	80-120			
Xylene (p/m)	0.189	0.00100	"	0.200		94.5	80-120			
Xylene (o)	0.0941	0.00100	"	0.100		94.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.132		"	0.120		110	75-125			
LCS Dup (P9I2707-BSD1)				Prepared: 0	9/27/19 Ai	nalyzed: 09	/28/19			
Benzene	0.0900	0.00100	mg/kg wet	0.100		90.0	80-120	1.47	20	
Toluene	0.110	0.00100	"	0.100		110	80-120	7.37	20	
Ethylbenzene	0.115	0.00200	"	0.100		115	80-120	11.0	20	
Xylene (p/m)	0.204	0.00100	"	0.200		102	80-120	7.54	20	
Xylene (o)	0.104	0.00100	"	0.100		104	80-120	10.2	20	
Surrogate: 1,4-Difluorobenzene	0.141		"	0.120		118	75-125			
Surrogate: 4-Bromofluorobenzene	0.136		"	0.120		113	75-125			
Calibration Blank (P9I2707-CCB1)				Prepared: 0	9/27/19 Ai	nalyzed: 09	/28/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		91.0	75-125			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		102	75-125			
Calibration Blank (P9I2707-CCB2)				Prepared: 0	9/27/19 Ai	nalyzed: 09	/28/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	75-125			
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120		87.6	75-125			

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting	 .	Spike	Source	a. = = =	%REC	D.F.=	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9I2707 - General Preparation (G	C)									
Calibration Blank (P9I2707-CCB3)				Prepared: (9/27/19 A	nalyzed: 09	/28/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	75-125			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		94.7	75-125			
Calibration Check (P9I2707-CCV1)				Prepared: (9/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0950	0.00100	mg/kg wet				80-120			
Toluene	0.114	0.00100	"				80-120			
Ethylbenzene	0.124	0.00200	"				80-120			
Xylene (p/m)	0.218	0.00100	"				80-120			
Xylene (o)	0.120	0.00100	"				80-120			
Surrogate: 4-Bromofluorobenzene	0.140		"	0.120		116	75-125			
Surrogate: 1,4-Difluorobenzene	0.144		"	0.120		120	75-125			
Calibration Check (P9I2707-CCV2)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0972	0.00100	mg/kg wet				80-120			
Toluene	0.110	0.00100	"				80-120			
Ethylbenzene	0.112	0.00200	"				80-120			
Xylene (p/m)	0.203	0.00100	"				80-120			
Xylene (o)	0.113	0.00100	"				80-120			
Surrogate: 1,4-Difluorobenzene	0.136		"	0.120		113	75-125			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	75-125			
Calibration Check (P9I2707-CCV3)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.107	0.00100	mg/kg wet				80-120			
Toluene	0.115	0.00100	"				80-120			
Ethylbenzene	0.110	0.00200	"				80-120			
Xylene (p/m)	0.206	0.00100	"				80-120			
Xylene (o)	0.116	0.00100	"				80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.3	75-125			
Surrogate: 1,4-Difluorobenzene	0.139		"	0.120		116	75-125			

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

	Reporting		Spike	Source		%REC		RPD	
Analyte Resu	t Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P9I2707 - General Preparation (GC)

Matrix Spike (P9I2707-MS1)	Sour	ce: 9I27014-	-20	Prepared: 0	9/27/19 A	nalyzed: 09	0/28/19			
Benzene	0.0471	0.00108	mg/kg dry	0.108	ND	43.8	80-120			QM-05
Toluene	0.0531	0.00108	"	0.108	ND	49.4	80-120			QM-05
Ethylbenzene	0.0595	0.00215	"	0.108	ND	55.3	80-120			QM-05
Xylene (p/m)	0.107	0.00108	"	0.215	ND	49.6	80-120			QM-05
Xylene (o)	0.0521	0.00108	"	0.108	ND	48.4	80-120			QM-05
Surrogate: 4-Bromofluorobenzene	0.128		"	0.129		<i>99.3</i>	75-125			
Surrogate: 1,4-Difluorobenzene	0.150		"	0.129		116	75-125			
Matrix Spike Dup (P9I2707-MSD1)	Sour	-ce: 9I27014-	-20	Prepared: 0	9/27/19 A	nalyzed: 09	0/28/19			
Benzene	0.0645	0.00108	mg/kg dry	0.108	ND	60.0	80-120	31.3	20	QM-05
Toluene	0.0737	0.00108	"	0.108	ND	68.6	80-120	32.5	20	QM-05
Ethylbenzene	0.0798	0.00215	"	0.108	ND	74.2	80-120	29.2	20	QM-05
Xylene (p/m)	0.117	0.00108	"	0.215	ND	54.3	80-120	9.00	20	QM-05
Xylene (o)	0.0564	0.00108	"	0.108	ND	52.4	80-120	7.99	20	QM-05
Surrogate: 1,4-Difluorobenzene	0.151		"	0.129		117	75-125			
Surrogate: 4-Bromofluorobenzene	0.146		"	0.129		113	75-125			

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9I2901 - *** DEFAULT PREP ***										
Blank (P9I2901-BLK2)				Prepared &	د Analyzed	: 09/29/19				
% Moisture	ND	0.1	%							
Duplicate (P9I2901-DUP1)	Sour	ce: 9127004-0	5	Prepared 8	د Analyzed	: 09/29/19				
% Moisture	8.0	0.1	%		8.0			0.00	20	
Duplicate (P9I2901-DUP2)	Sour	ce: 9127005-2	.4	Prepared &	k Analyzed	: 09/29/19				
% Moisture	5.0	0.1	%		5.0			0.00	20	
Duplicate (P9I2901-DUP3)	Sour	ce: 9127007-0	07	Prepared &	k Analyzed	: 09/29/19				
% Moisture	2.0	0.1	%		3.0			40.0	20	
Duplicate (P9I2901-DUP4)	Sour	rce: 9127009-1	4	Prepared &						
% Moisture	14.0	0.1	%		14.0			0.00	20	
Duplicate (P9I2901-DUP5)	Sour		5	Prepared 8	د Analyzed	: 09/29/19				
% Moisture	7.0	0.1	%		6.0			15.4	20	
Duplicate (P9I2901-DUP6)	Sour	ce: 9I27014-1	1	Prepared &	د Analyzed	: 09/29/19				
% Moisture	8.0	0.1	%	1	7.0			13.3	20	
Duplicate (P9I2901-DUP7)	Sour	ce: 9127022-0)1	Prepared &	2 Analyzed	: 09/29/19				
% Moisture	12.0	0.1	%	1	19.0			45.2	20	
Batch P9J0108 - *** DEFAULT PREP ***										
Blank (P9J0108-BLK1)				Prepared:	10/01/19 A	nalyzed: 10	/02/19			
Chloride	ND	1.00	mg/kg we	t						

Permian Basin Environmental Lab, L.P.

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Notes
Batch P9J0108 - *** DEFAULT PREP ***										
LCS (P9J0108-BS1)				Prepared:	10/01/19	Analyzed:	10/02/19			
Chloride	430	1.00	mg/kg wet	400		108	80-120			
LCS Dup (P9J0108-BSD1)				Prepared:	10/01/19	Analyzed:	10/02/19			
Chloride	423	1.00	mg/kg wet	400		106	80-120	1.71	20	
Calibration Blank (P9J0108-CCB1)				Prepared:	10/01/19	Analyzed:	10/02/19			
Chloride	0.00		mg/kg wet	-		•				
Calibration Blank (P9J0108-CCB2)				Prepared:	10/01/19	Analyzed:	10/02/19			
Chloride	0.00		mg/kg wet							
Calibration Check (P9J0108-CCV1)				Prepared:	10/01/19	Analyzed:	10/02/19			
Chloride	20.6		mg/kg	20.0		103	0-200			
Calibration Check (P9J0108-CCV2)				Prepared:	10/01/19	Analyzed:	10/02/19			
Chloride	19.3		mg/kg	20.0		96.7	0-200			
Calibration Check (P9J0108-CCV3)				Prepared:	10/01/19	Analyzed:	10/02/19			
Chloride	22.1		mg/kg	20.0		110	0-200			
Matrix Spike (P9J0108-MS1)	Sou	rce: 9I27010-	-14	Prepared:	10/01/19	Analyzed:	10/02/19			
Chloride	1360	6.10	mg/kg dry	610	728	104	80-120			
Matrix Spike (P9J0108-MS2)	Sou	rce: 9I27014-	.09	Prepared:	10/01/19	Analyzed:	10/02/19			
Chloride	5000	26.3	mg/kg dry	2630	2100	110	80-120			
Matrix Spike Dup (P9J0108-MSD1)	Sou	rce: 9I27010-	-14	Prepared:	10/01/19	Analyzed:	10/02/19			
Chloride	1350	6.10	mg/kg dry	610	728	102	80-120	0.711	20	

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Palialyte	Kesuit	Limit	Units	Level	Result	70KEU	LIIIIIIS	KrD	LIIIII	notes
Batch P9J0108 - *** DEFAULT PREP ***										
Matrix Spike Dup (P9J0108-MSD2)	Sou	rce: 9I27014-	-09	Prepared: 1	0/01/19 A	nalyzed: 10	/02/19			
Chloride	5110	26.3	mg/kg dry	2630	2100	114	80-120	2.21	20	
Batch P9J0210 - *** DEFAULT PREP ***										
Blank (P9J0210-BLK1)				Prepared &	Analyzed:	10/02/19				
Chloride	ND	1.00	mg/kg wet							
LCS (P9J0210-BS1)				Prepared &	Analyzed:	10/02/19				
Chloride	420	1.00	mg/kg wet	400		105	80-120			
LCS Dup (P9J0210-BSD1)				Prepared &	Analyzed:	10/02/19				
Chloride	439	1.00	mg/kg wet	400		110	80-120	4.46	20	
Calibration Blank (P9J0210-CCB1)				Prepared &	Analyzed:	10/02/19				
Chloride	0.00		mg/kg wet							
Calibration Blank (P9J0210-CCB2)				Prepared &	Analyzed:	10/02/19				
Chloride	0.00		mg/kg wet							
Calibration Check (P9J0210-CCV1)				Prepared &	Analyzed:	10/02/19				
Chloride	22.1		mg/kg	20.0	•	110	0-200			
Calibration Check (P9J0210-CCV2)				Prepared &	Analyzed:	10/02/19				
Chloride	21.5		mg/kg	20.0		107	0-200			
Calibration Check (P9J0210-CCV3)				Prepared: 1	0/02/19 Ai	nalyzed: 10	/03/19			
Chloride	21.4		mg/kg	20.0		107	0-200			

Permian Basin Environmental Lab, L.P.

		Reporting	Spike	Source		%REC		RPD	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J0210 - *** DEFAULT PREP ***									
Matrix Spike (P9J0210-MS1)	Sourc	e: 9I27014-17	Prepared &	Analyzed:	10/02/19				
Chloride	1040	1.04 mg/kg dry	521	509	101	80-120			
Matrix Spike (P9J0210-MS2)	Sourc	e: 9127015-03	Prepared &	Analyzed:	10/02/19				
Chloride	1180	1.01 mg/kg dry	505	741	86.8	80-120			
Matrix Spike Dup (P9J0210-MSD1)	Sourc	e: 9I27014-17	Prepared &	Analyzed:	10/02/19				
Matrix Spike Dup (P9J0210-MSD1) Chloride	Sourc 969	e: 9127014-17 1.04 mg/kg dry	Prepared & 521	Analyzed: 509	10/02/19 88.2	80-120	6.87	20	
	969		521	,	88.2	80-120	6.87	20	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9I3004 - TX 1005										
Blank (P9I3004-BLK1)				Prepared: ()9/30/19 Ai	nalyzed: 10	/03/19			
C6-C12	ND	25.0	mg/kg wet	*						
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	151		"	140		108	70-130			
Surrogate: o-Terphenyl	85.3		"	70.0		122	70-130			
LCS (P9I3004-BS1)				Prepared: ()9/30/19 Ai	nalyzed: 10	/03/19			
C6-C12	945	25.0	mg/kg wet	1000		94.5	75-125			
>C12-C28	1010	25.0	"	1000		101	75-125			
Surrogate: 1-Chlorooctane	126		"	140		90.3	70-130			
Surrogate: o-Terphenyl	63.0		"	70.0		90.1	70-130			
LCS Dup (P9I3004-BSD1)				Prepared: ()9/30/19 Ai	nalyzed: 10	/03/19			
C6-C12	1150	25.0	mg/kg wet	1000		115	75-125	19.5	20	
>C12-C28	1160	25.0	"	1000		116	75-125	13.6	20	
Surrogate: 1-Chlorooctane	145		"	140		103	70-130			
Surrogate: o-Terphenyl	80.5		"	70.0		115	70-130			
Calibration Blank (P9I3004-CCB1)				Prepared: (09/30/19 Ai	nalyzed: 10	/03/19			
C6-C12	4.77		mg/kg wet							
>C12-C28	6.00		"							
Surrogate: 1-Chlorooctane	133		"	140		95.1	70-130			
Surrogate: o-Terphenyl	74.2		"	70.0		106	70-130			
Calibration Blank (P9I3004-CCB2)				Prepared: (09/30/19 Ai	nalyzed: 10	/03/19			
C6-C12	7.16		mg/kg wet							
>C12-C28	12.2		"							
Surrogate: 1-Chlorooctane	136		"	140		97.4	70-130			
Surrogate: o-Terphenyl	77.2		"	70.0		110	70-130			

Permian Basin Environmental Lab, L.P.

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

	D k	Reporting	TT '4	Spike	Source	MARC	%REC	DDD	RPD	NT (
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9I3004 - TX 1005										
Calibration Check (P9I3004-CCV1)				Prepared: (09/30/19 A	nalyzed: 10	/03/19			
C6-C12	483	25.0	mg/kg wet	500		96.5	85-115			
>C12-C28	518	25.0	"	500		104	85-115			
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	52.5		"	50.0		105	70-130			
Calibration Check (P9I3004-CCV2)				Prepared: (09/30/19 A	nalyzed: 10	/03/19			
C6-C12	487	25.0	mg/kg wet	500		97.4	85-115			
>C12-C28	519	25.0	"	500		104	85-115			
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	50.8		"	50.0		102	70-130			
Calibration Check (P9I3004-CCV3)				Prepared: (09/30/19 A	nalyzed: 10	/04/19			
C6-C12	516	25.0	mg/kg wet	500		103	85-115			
>C12-C28	561	25.0	"	500		112	85-115			
Surrogate: 1-Chlorooctane	121		"	100		121	70-130			
Surrogate: o-Terphenyl	55.2		"	50.0		110	70-130			
Matrix Spike (P9I3004-MS1)	Sourc	e: 9127014	-18	Prepared: (09/30/19 A	nalyzed: 10	/03/19			
C6-C12	1020	27.8	mg/kg dry	1110	ND	92.2	75-125			
>C12-C28	1080	27.8	"	1110	17.7	96.0	75-125			
Surrogate: 1-Chlorooctane	123		"	111		111	70-130			
Surrogate: o-Terphenyl	61.2		"	55.6		110	70-130			
Matrix Spike Dup (P9I3004-MSD1)	Sourc	e: 9127014	-18	Prepared: (09/30/19 A	nalyzed: 10	/04/19			
C6-C12	1020	27.8	mg/kg dry	1110	ND	91.4	75-125	0.911	20	
>C12-C28	1050	27.8	"	1110	17.7	93.0	75-125	3.14	20	
Surrogate: 1-Chlorooctane	119		"	111		107	70-130			
Surrogate: o-Terphenyl	62.8		"	55.6		113	70-130			

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9J0206 - TX 1005										
Blank (P9J0206-BLK1)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	98.4		"	140		70.3	70-130			
Surrogate: o-Terphenyl	52.8		"	70.0		75.4	70-130			
LCS (P9J0206-BS1)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	936	25.0	mg/kg wet	1000		93.6	75-125			
>C12-C28	1000	25.0	"	1000		100	75-125			
Surrogate: 1-Chlorooctane	127		"	140		90.7	70-130			
Surrogate: o-Terphenyl	50.6		"	70.0		72.3	70-130			
LCS Dup (P9J0206-BSD1)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	954	25.0	mg/kg wet	1000		95.4	75-125	1.92	20	
>C12-C28	1020	25.0		1000		102	75-125	2.05	20	
Surrogate: 1-Chlorooctane	125		"	140		89.2	70-130			
Surrogate: o-Terphenyl	51.0		"	70.0		72.8	70-130			
Calibration Blank (P9J0206-CCB1)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	10.9		mg/kg wet							
>C12-C28	11.5		"							
Surrogate: 1-Chlorooctane	95.9		"	140		68.5	70-130			S-G
Surrogate: o-Terphenyl	51.4		"	70.0		73.4	70-130			
Calibration Blank (P9J0206-CCB2)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	5.35		mg/kg wet							
>C12-C28	13.6									
Surrogate: 1-Chlorooctane	102		"	140		72.6	70-130			
Surrogate: o-Terphenyl	53.9		"	70.0		77.0	70-130			

Permian Basin Environmental Lab, L.P.

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		D		G 1	9		WREG		DDD	
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J0206 - TX 1005										
Calibration Check (P9J0206-CCV1)				Prepared: (09/30/19 A	nalyzed: 10	/04/19			
C6-C12	536	25.0	mg/kg wet	500		107	85-115			
·C12-C28	547	25.0		500		109	85-115			
Surrogate: 1-Chlorooctane	122		"	140		87.3	70-130			
urrogate: o-Terphenyl	56.0		"	70.0		80.0	70-130			
Calibration Check (P9J0206-CCV2)				Prepared: (09/30/19 A	nalyzed: 10	/04/19			
C6-C12	544	25.0	mg/kg wet	500		109	85-115			
·C12-C28	546	25.0	"	500		109	85-115			
Surrogate: 1-Chlorooctane	124		"	140		88.9	70-130			
urrogate: o-Terphenyl	55.1		"	70.0		78.7	70-130			
Matrix Spike (P9J0206-MS1)	Sou	rce: 9I27014	-23	Prepared: (09/30/19 A	nalyzed: 10	/04/19			
C6-C12	834	25.5	mg/kg dry	1020	10.5	80.7	75-125			
·C12-C28	881	25.5		1020	10.2	85.3	75-125			
Surrogate: 1-Chlorooctane	125		"	143		87.8	70-130			
urrogate: o-Terphenyl	51.5		"	71.4		72.1	70-130			

Compared and control of control limits. The date

0.00

Project: Plains - Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

Notes and Definitions

S-GC	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
ROI	Received on Ice
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
BULK	Samples received in Bulk soil containers
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

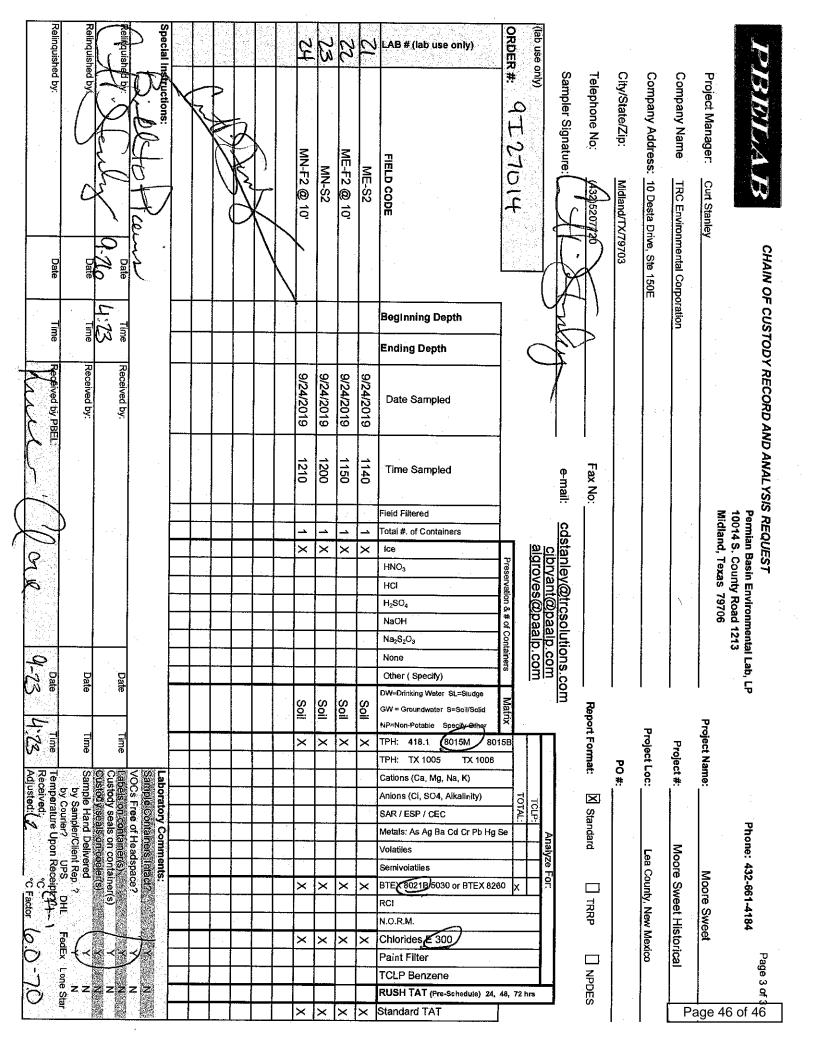
Report Approved By:

Barron

Date: 10/5/2019

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.


If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Permian Basin Environmental Lab, L.P.

Relinquished by: Date	Relinquished by:	Reminquisoner by:	Bullton	Shocial Instructions: 0 ME-F1C #1 @ 4'	A ME-S1C	8 MS-F1C @ 5'	MS-S1C	() MSW-F1C @ 5	5 MSW-S1C	4 MW-F1C #2 @ 5	3 MW-F1C #1 @ 5'	Z MW-S1C	MN-S1C #1	LAB # (lab use only)	ORDER # 9171014	(iab use only)	Sampler Signature:	Telephone No: (432)6207729	City/State/Zip: Midland/TX/79703	Company Address: 10 Desta Drive, Ste 150E	Company Name TRC Environmental Corporation	Project Manager: Curt Stanley	PBRIDAB CHAI	
Ö	<u></u>	16	la la											Periode Dest	Ţ		F	-))		150E	Corporati		V OF C	
Time	Time		ĥ	-	_	<u> </u>								Beginning Depth			K				IS I		USTO	
		\sim					<u> </u>		<u> </u>			. 	 	Ending Depth	4	1	×						ΙΥα	
Received by PBEL	Received by:	Received by:	,	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	Date Sampled									CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Permian Basi 10014 S. Cor Midland, Tex	
$\hat{\mathbf{C}}$				940	930	920	910	900	850	840	830	820	810	Time Sampled			e-mail:	Fax No:					D ANALYSIS	
louch				<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>	·	<u> </u>	Field Filtered Total #. of Containers	-		8						S REQUEST Permian Basin Environmental Lab, LP 10014 S. County Road 1213 Midland, Texas 79706	
2				X	×	×	×	×	×	×	×	×	×	lce	\mathbf{T}	<u>[0]</u>	sta				. :		an E 4 S. o	
													1	HNO3	Prese	gro	cdstanley@trcsolutions.c cibryant@paalp.com						ST Sasin Cou Texa	
														HCI	Preservation &	ves							nty F	
		1 A.			-			<u> </u>						H₂SO₄ NaOH		<u>@</u> p	<u>ap</u>					.	nvironr Road 79706	
				-										Na ₂ S ₂ O ₃	e Co	aal							men(121	
9			· ·			<u> </u>								None	# of Containers	paalp.com	Sign						ູ <u>ພ</u> ີ	
9-26	Date	Date									·			Other (Specify)	Ś	Ĕ	solutions.com baalp.com						je L	
	e	Φ		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	DW=Drinking Water SL=Siudge GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Matrix		Ĕ	Report Format:		_		P	T	
4)B	Time	Time		×	×	×	×	×	×	×	Х	×	×		15B		1 .	t For		oje	Pro	oject		
			 001 ⊓</td <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>TPH: TX 1005 TX 1006</td> <td></td> <td></td> <td></td> <td>mat:</td> <td>РО #</td> <td>Project Loc:</td> <td>Project #:</td> <td>Project Name:</td> <td></td> <td></td>	<u> </u>										TPH: TX 1005 TX 1006				mat:	РО #	Project Loc:	Project #:	Project Name:		
Temperature Up Received: Adjusted:	ampl by	abels ustoc	anor			$\left - \right $			-					Cations (Ca, Mg, Na, K) Anions (Cl, SO4, Alkalinity)	-	<u> </u>			.# 	2 	*	1		
ed:	nple Hand I by Sampler	y se ly se	e Co											SAR / ESP / CEC		TOLP		X Sta						
	nd D bler/C	ionta als o als o	ofH											Metals: As Ag Ba Co Cr Pb Hg			¥	Standard					Pho	
yon R	elive Jient	iner(eads											Volatiles	\square		Analvze	a		Lea	Moc		ne:	
Temperature Upon Receipt Received: Adjusted:	nple Hand Delivered by Sampler/Client Rep. ? by Courier?	s) Itaine Iller(s	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	×	×	×	×	×	×	×	×	\times	×	Semivolatiles BTEX 60218/5030 or BTEX 824	60 x	┼┨┆	For			Cou	ore S	ş	432-	
°C Factor	PH NH	Labels on containet(S) Custody seals on container(S) Custody seals on coolet(S)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	-	Ê				<u> </u>	$\hat{}$	$\hat{}$	<u></u>		RCI	K	╧╋		Ц Т		Lea County, New Mexico	Moore Sweet Historical	Moore Sweet	Phone: 432-661-4184	
							1							N.O.R.M.				TRRP		Vew I	t Hig	Swe	1184	
				×	×	×	×	×	×	×	×	×	×	Chlorides E 300						Mexic	storic	B	_	
IV I			Ľ			$\left - \right $								Paint Filter TCLP Benzene			ĺ	□ z		8	cal		Page	
U i		zzz	zz	-	1	\square					-		_	RUSH TAT (Pre-Schedule) 24,	48, 72	hrs:		NPDES					Page 1 of 3	
<u></u>	2			×	×	×	×	×	×	×	×	×	_	Standard TAT				S			Pa	age	ىن 44 of 46	

Relinquished by: Date	Relinquished by:	Relidquished by Andre 9-26 L	Maria Alto Para	70 MS-F2 @ 10'		18 MSW-F2 @ 10'	MSW-S2	16 MW-F2 @ 10'	5 MW-S2	14 MNW-F2 @ 10'	13 MNW-S2	12 MN-S1C #2	ME-F1C #2 @ 4'	LAB # (lab use only)		10T0T0		Sampler Signature:	Telephone No: (432)5207730	City/State/Zip: Midland/TX/79703	Company Address: 10 Desta Drive, Ste 150E	Company Name TRC Environmental Corporation	Project Manager: Curt Stanley	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Permian Bas 10014 S. Con Midland. Ter
Time	Time	L'13												Beginning Depth			\sim		\$			lion		USTO
.	R													Ending Depth			\bigcirc	\mathbf{N}						א עמי
the provided by PBEL	Received by:	Received by:		9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	Date Sampled										RECORD ANI
	ĺ			1120	1110	1100	1050	1040	1030	1020	1010	1000	950	Time Sampled				e-mail:	Fax No:					D ANALYSIS
B				<u> </u>	<u> </u>				<u> </u>	<u> </u>			<u> </u>	Field Filtered	-			ß						S REQUEST Permian Basin Environmenta 10014 S. County Road 1213 Midland. Texas 79706
X				Ī×	×	×	×	×	×	1 ×	×	×	×		+	1	<u>clbryant@p</u>	dsta						QUE 4 S.
					Ē		F		•			-		HNO ₃	Pres			inle						ST Basii Cou
														нсі	Preservation &)		ð		l				n En nty I
					L	ļ								H₂SO₄			<u>8</u> 8	l <u>o</u>						nvironn / Road 79706
					.									NaOH	# of Containers			öl					· '	umer d 12
				<u> </u>		<u> </u>	┣—							Na ₂ S ₂ O ₃	ontair			itio						ntal I 13
9.26	· ==			┣──	\vdash	┼──	⊢						<u> </u>	Other (Specify)	ers		baalp.com	<u>15.</u>		ļ			Į	nmental Lab, LP id 1213 i6
C ate	Date	Date			\mathbf{T}									DW=Drinking Water SL=Sludge				solutions.com	l	!	I	l	I	Ę.
2				Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	GW = Groundwater S=Soil/Solid NP=Non-Potable Specif <u>y Ot</u> her	Matrix	•			Report Format:				P	
Time 4:73	Time	Time		×	×	×	×	×	×	×	×	×	×)15B	Г			fFo		Proje	7	ojec	
1. 1. J. 1978														TPH: TX 1005 TX 1006] [rmat	ፖ	Project Loc:	Project #:	Project Name:	
Ten Rec Adju	San	Cus	San											Cations (Ca, Mg, Na, K)						PO #	, <u>8</u>	#	ле:	
Temperature Upon Receipt: Of - Received Adjusted	Sample Hand Delivered by Sampler/Client Rep. ? by Couner? UPS	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	 	 	<u> </u>		 	<u> </u>					Anions (CI, SO4, Alkalinity)		TOTAL	TCIP		N S		·			
	fand mple	i cor seals	x Si Z	<u> </u>	-				<u> </u>	┣—				SAR / ESP / CEC Metals: As Ag Ba Cd Cr Pb Hg	Se	F.	1.		Standard					Ph
_ <u>B</u>	"Clie	itain ion	iner Hea	┢─	┼──			<u> /</u>			 .	-		Volatiles		┝╊	Analyze		ard			ş		One
Re	ivered ont Rep	Souts Souts	dspe		<u> </u>	\vdash	-	<u> </u>					-	Semivolatiles			yze F				eaC	oore	_	.: 43
	ം നല്പ	iner Iner	če ?	×	×	×	×	×	×	×	×	×	×	BTEX 8021B 5030 or BTEX 82	260	х	<u> </u> 3				Lea County, New Mexico	Moore Sweet Historical	Moore Sweet	Phone: 432-661-4184
acto	Ę	(s)												RCI					TRRP		Y, Ne	eet	e S	4
67	-			_		<u> </u>								N.O.R.M.					Ĩ		N W	Hist	wee	84
þ́ ∽		≺		×	×	×	×	×	×	×	×	×	×	Chlorides E 300			┦│		_		lexic	oric	–	т
1					-	-				'			┣	Paint Filter TCLP Benzene					NPDES		ſ°	<u>8</u>		Page 2 of 3
70	/ N N Star	zzz	zz	-		┢──					<u> </u>	<u> </u>		RUSH TAT (Pre-Schedule) 24	, 48.	72 hr			PDE					2 of
	ne Star	NN	z	×	×	×	×	×	×	X	×	×	×	Standard TAT	Ţ				S			Pa		ي 45 of 46

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Curt Stanley TRC Solutions- Midland, Texas 10 Desta Dr STE 150E Midland, TX 79705

Project: Moore Sweet Project Number: Moore Sweet Historical Location: Lea Co NM

Lab Order Number: 9I27016

NELAP/TCEQ # T104704516-18-9

Report Date: 10/05/19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Sample #1 @ 17'	9I27016-01	Soil	09/24/19 16:00	09-26-2019 16:23
Sample #2 @ 17'	9127016-02	Soil	09/24/19 16:15	09-26-2019 16:23
Sample #3 @ 17'	9127016-03	Soil	09/24/19 16:30	09-26-2019 16:23
Sample #4 @ 17'	9I27016-04	Soil	09/24/19 16:45	09-26-2019 16:23
Sample #5 @ 17'	9I27016-05	Soil	09/24/19 17:00	09-26-2019 16:23

Rerun of Chloride analysis for Sample #5 @ 17' (9I27016-05) was requested by client on 10-04-19. The results of the rerun are immediately following the results of the initial sample and are denoted by "RE1"

Sample #1 @ 17' 9I27016-01 (Soil)

		9127	016-01 (Soi	1)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Perr	nian Basin F	Invironme	ntal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00111	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00222	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00111	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		90.7 %	75-1	25	P912707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA /	Standard Metho	ds							
Chloride	83.5	1.11	mg/kg dry	1	P9J0210	10/02/19	10/03/19	EPA 300.0	
% Moisture	10.0	0.1	%	1	P9I3005	09/30/19	09/30/19	ASTM D2216	
<u>Total Petroleum Hydrocarbons C6-C35 l</u>	oy EPA Method 8	015M							
C6-C12	ND	27.8	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		88.1 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		97.7 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Г

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

Sample #2 @ 17'

9I27016-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmen	tal Lab, I	P .				
Organics by GC									
Benzene	ND	0.00109	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00217	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00109	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.9 %	75-1.	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		113 %	75-1.	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA /	Standard Method	ls							
Chloride	46.4	1.09	mg/kg dry	1	P9J0210	10/02/19	10/03/19	EPA 300.0	
% Moisture	8.0	0.1	%	1	P9I3005	09/30/19	09/30/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 8	015M							
C6-C12	ND	27.2	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		88.7 %	70-1.	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-1.	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Permian Basin Environmental Lab, L.P.

Sample #3 @ 17'

9I27016-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmen	tal Lab, I	P .				
Organics by GC									
Benzene	ND	0.00110	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00110	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00220	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00110	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00110	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.4 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	75-1.	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA	Standard Metho	ds							
Chloride	383	1.10	mg/kg dry	1	P9J0210	10/02/19	10/03/19	EPA 300.0	
% Moisture	9.0	0.1	%	1	P9I3005	09/30/19	09/30/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M							
C6-C12	ND	27.5	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		104 %	70-1.	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		123 %	70-1.	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.5	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Г

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

Sample #4 @ 17'

9I27016-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Invironmen	ıtal Lab, I	P .				
Organics by GC									
Benzene	ND	0.00111	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00222	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00111	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		115 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		94.0 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	ds							
Chloride	150	1.11	mg/kg dry	1	P9J0211	10/02/19	10/03/19	EPA 300.0	
% Moisture	10.0	0.1	%	1	P9I3005	09/30/19	09/30/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M							
C6-C12	ND	27.8	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		87.7 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Permian Basin Environmental Lab, L.P.

Г

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

Sample #5 @ 17'

9I27016-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin E	nvironmen	ital Lab, I	P .				
Organics by GC									
Benzene	ND	0.00109	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00109	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00217	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00109	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		104 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.1 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	ls							
Chloride	801	1.09	mg/kg dry	1	P9J0211	10/02/19	10/03/19	EPA 300.0	
% Moisture	8.0	0.1	%	1	P9I3005	09/30/19	09/30/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8()15M							
C6-C12	ND	27.2	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		89.7 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Permian Basin Environmental Lab, L.P.

Fax: (432) 520-7701

EPA 300.0

Sample #5 @ 17'	

9I27016-05RE1 (Soil)

		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
	Permian Basin Environmental Lab, L.P.											
General Chemistry Parameters	by EPA / Standard Methods											

Chlo	ride
CIIIU	nuc

1.09 mg/kg dry

1040

10/02/19 10/05/19

P9J0211

1

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
הוומוץוד	Result	Limit	Units	Level	result	/0KEU	LIINIIS	ΚťIJ	Limit	inotes
Batch P9I2707 - General Preparation (GC)										
Blank (P9I2707-BLK1)				Prepared: (09/27/19 Ai	nalyzed: 09	/28/19			
Benzene	ND	0.00100	mg/kg wet	_		_	_	_		_
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00200	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		106	75-125			
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120		87.6	75-125			
LCS (P9I2707-BS1)				Prepared: ()9/27/19 Ai	nalyzed: 09	/28/19			
Benzene	0.0886	0.00100	mg/kg wet	0.100		88.6	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.103	0.00200	"	0.100		103	80-120			
Xylene (p/m)	0.189	0.00100	"	0.200		94.5	80-120			
Xylene (o)	0.0941	0.00100	"	0.100		94.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.132		"	0.120		110	75-125			
LCS Dup (P9I2707-BSD1)				Prepared: ()9/27/19 Ai	nalyzed: 09	/28/19			
Benzene	0.0900	0.00100	mg/kg wet	0.100		90.0	80-120	1.47	20	
Toluene	0.110	0.00100	"	0.100		110	80-120	7.37	20	
Ethylbenzene	0.115	0.00200	"	0.100		115	80-120	11.0	20	
Xylene (p/m)	0.204	0.00100	"	0.200		102	80-120	7.54	20	
Xylene (o)	0.104	0.00100	"	0.100		104	80-120	10.2	20	
Surrogate: 4-Bromofluorobenzene	0.136		"	0.120		113	75-125			
Surrogate: 1,4-Difluorobenzene	0.141		"	0.120		118	75-125			
Calibration Blank (P9I2707-CCB1)				Prepared: ()9/27/19 Ai	nalyzed: 09	0/28/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		102	75-125			
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		91.0	75-125			

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

	D	Reporting	TT	Spike	Source	A/2523	%REC	0.00	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9I2707 - General Preparation (GC)										
Calibration Blank (P9I2707-CCB2)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	75-125			
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120		87.6	75-125			
Calibration Blank (P9I2707-CCB3)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	75-125			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		94.7	75-125			
Calibration Check (P9I2707-CCV1)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0950	0.00100	mg/kg wet				80-120			
Toluene	0.114	0.00100	"				80-120			
Ethylbenzene	0.124	0.00200	"				80-120			
Xylene (p/m)	0.218	0.00100	"				80-120			
Xylene (o)	0.120	0.00100	"				80-120			
Surrogate: 4-Bromofluorobenzene	0.140		"	0.120		116	75-125			
Surrogate: 1,4-Difluorobenzene	0.144		"	0.120		120	75-125			
Calibration Check (P9I2707-CCV2)				Prepared: ()9/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0972	0.00100	mg/kg wet				80-120			
Toluene	0.110	0.00100	"				80-120			
Ethylbenzene	0.112	0.00200	"				80-120			
Xylene (p/m)	0.203	0.00100	"				80-120			
Xylene (o)	0.113	0.00100	"				80-120			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	75-125			
Surrogate: 1,4-Difluorobenzene	0.136		"	0.120		113	75-125			

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting	T T 1.	Spike	Source	ANDEC	%REC		RPD	N (
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9I2707 - General Preparation (GC)										
Calibration Check (P9I2707-CCV3)				Prepared: ()9/27/19 A	nalyzed: 09	/28/19			
Benzene	0.107	0.00100	mg/kg wet				80-120			
Toluene	0.115	0.00100	"				80-120			
Ethylbenzene	0.110	0.00200	"				80-120			
Xylene (p/m)	0.206	0.00100	"				80-120			
Xylene (o)	0.116	0.00100	"				80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.3	75-125			
Surrogate: 1,4-Difluorobenzene	0.139		"	0.120		116	75-125			
Matrix Spike (P9I2707-MS1)	Sou	rce: 9I27014	-20	Prepared: ()9/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0471	0.00108	mg/kg dry	0.108	ND	43.8	80-120			QM-05
Toluene	0.0531	0.00108	"	0.108	ND	49.4	80-120			QM-05
Ethylbenzene	0.0595	0.00215	"	0.108	ND	55.3	80-120			QM-05
Xylene (p/m)	0.107	0.00108	"	0.215	ND	49.6	80-120			QM-05
Xylene (o)	0.0521	0.00108	"	0.108	ND	48.4	80-120			QM-0
Surrogate: 1,4-Difluorobenzene	0.150		"	0.129		116	75-125			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.129		99.3	75-125			
Matrix Spike Dup (P9I2707-MSD1)	Sou	rce: 9I27014	-20	Prepared: ()9/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0645	0.00108	mg/kg dry	0.108	ND	60.0	80-120	31.3	20	QM-03
Toluene	0.0737	0.00108	"	0.108	ND	68.6	80-120	32.5	20	QM-03
Ethylbenzene	0.0798	0.00215	"	0.108	ND	74.2	80-120	29.2	20	QM-05
Xylene (p/m)	0.117	0.00108	"	0.215	ND	54.3	80-120	9.00	20	QM-05
Xylene (o)	0.0564	0.00108	"	0.108	ND	52.4	80-120	7.99	20	QM-05
Surrogate: 4-Bromofluorobenzene	0.146		"	0.129		113	75-125			
Surrogate: 1,4-Difluorobenzene	0.151		"	0.129		117	75-125			

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

	D L	Reporting	TT '	Spike	Source	A/DEC	%REC	DDD	RPD	N. (
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9I3005 - *** DEFAULT PREP ***										
Blank (P9I3005-BLK1)				Prepared &	Analyzed:	09/30/19				
% Moisture	ND	0.1	%							
Duplicate (P9I3005-DUP2)	Sou	rce: 9I27030-	-02	Prepared &	Analyzed:	09/30/19				
% Moisture	19.0	0.1	%		19.0			0.00	20	
Batch P9J0210 - *** DEFAULT PREP ***										
Blank (P9J0210-BLK1)				Prepared &	Analyzed:	10/02/19				
Chloride	ND	1.00	mg/kg wet							
LCS (P9J0210-BS1)				Prepared &	Analyzed:	10/02/19				
Chloride	420	1.00	mg/kg wet	400		105	80-120			
LCS Dup (P9J0210-BSD1)				Prepared &	Analyzed:	10/02/19				
Chloride	439	1.00	mg/kg wet	400		110	80-120	4.46	20	
Calibration Blank (P9J0210-CCB1)				Prepared &	Analyzed:	10/02/19				
Chloride	0.00		mg/kg wet							
Calibration Blank (P9J0210-CCB2)				Prepared &	Analyzed:	10/02/19				
Chloride	0.00		mg/kg wet	-	~					
Calibration Check (P9J0210-CCV1)				Prepared &	Analyzed:	10/02/19				
Chloride	22.1		mg/kg	20.0		110	0-200			
Calibration Check (P9J0210-CCV2)				Prepared &	Analyzed:	10/02/19				
Chloride	21.5		mg/kg	20.0		107	0-200			

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J0210 - *** DEFAULT PREP ***										
Calibration Check (P9J0210-CCV3)				Prepared:	10/02/19 A	nalyzed: 10)/03/19			
Chloride	21.4		mg/kg	20.0		107	0-200			
Matrix Spike (P9J0210-MS1)	Sou	ce: 9127014-	-17	Prepared &	k Analyzed	: 10/02/19				
Chloride	1040	1.04	mg/kg dry	521	509	101	80-120			
Matrix Spike (P9J0210-MS2)	Sou	-ce: 9127015-	-03	Prepared &	& Analyzed	: 10/02/19				
Chloride	1180	1.01	mg/kg dry	505	741	86.8	80-120			
Matrix Spike Dup (P9J0210-MSD1)	Source: 9127014-17			Prepared &	k Analyzed					
Chloride	969	1.04	mg/kg dry	521	509	88.2	80-120	6.87	20	
Matrix Spike Dup (P9J0210-MSD2)	Sou	ce: 9I27015-	-03	Prepared & Analyzed: 10/02/19						
Chloride	1230	1.01	mg/kg dry	505	741	96.1	80-120	3.88	20	
Batch P9J0211 - *** DEFAULT PREP ***										
Blank (P9J0211-BLK1)				Prepared: 1	10/02/19 A	nalyzed: 10)/03/19			
Chloride	ND	1.00	mg/kg wet							
LCS (P9J0211-BS1)				Prepared: 1	10/02/19 A	nalyzed: 10)/03/19			
Chloride	438	1.00	mg/kg wet	400		109	80-120			
LCS Dup (P9J0211-BSD1)				Prepared:	10/02/19 A	nalyzed: 10)/03/19			
Chloride	428	1.00	mg/kg wet	400		107	80-120	2.27	20	
Calibration Blank (P9J0211-CCB1)				Prepared: 1	10/02/19 A	nalyzed: 10)/03/19			
Chloride	0.00		mg/kg wet	-		•				

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result			RPD	Limit	Notes
Batch P9J0211 - *** DEFAULT PREP ***										
Calibration Blank (P9J0211-CCB2)				Prepared: 1	10/02/19	Analyzed:	10/03/19			
Chloride	0.00		mg/kg wet							
Calibration Check (P9J0211-CCV1)				Prepared:	10/02/19	Analyzed:	10/03/19			
Chloride	21.4		mg/kg	20.0		107	0-200			
Calibration Check (P9J0211-CCV2)				Prepared:	10/02/19	Analyzed:	10/03/19			
Chloride	21.5		mg/kg	20.0		107	0-200			
Calibration Check (P9J0211-CCV3)				Prepared:	10/02/19	Analyzed:	10/03/19			
Chloride	19.7		mg/kg	20.0		98.3	0-200			
Matrix Spike (P9J0211-MS1)	Sour	ce: 9127017-	-03	Prepared: 1	10/02/19	Analyzed:	10/03/19			
Chloride	1380	5.10	mg/kg dry	510	962	81.9	80-120			
Matrix Spike (P9J0211-MS2)	Sour	ce: 9127020-	-01	Prepared: 1	10/02/19	Analyzed:	10/03/19			
Chloride	4030	12.5	mg/kg dry	1250	2900	90.1	80-120			
Matrix Spike Dup (P9J0211-MSD1)	Sour	ce: 9I27017-	.03	Prepared: 1	10/02/19	Analyzed:	10/03/19			
Chloride	1390	5.10	mg/kg dry	510	962	83.6	80-120	0.623	20	
Matrix Spike Dup (P9J0211-MSD2)	Source: 9I27020-01			Prepared: 1	10/02/19	Analyzed:				
Chloride	4040	12.5	mg/kg dry	1250	2900	90.6	80-120	0.171	20	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9J0206 - TX 1005										
Blank (P9J0206-BLK1)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	98.4		"	140		70.3	70-130			
Surrogate: o-Terphenyl	52.8		"	70.0		75.4	70-130			
LCS (P9J0206-BS1)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	936	25.0	mg/kg wet	1000		93.6	75-125			
>C12-C28	1000	25.0	"	1000		100	75-125			
Surrogate: 1-Chlorooctane	127		"	140		90.7	70-130			
Surrogate: o-Terphenyl	50.6		"	70.0		72.3	70-130			
LCS Dup (P9J0206-BSD1)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	954	25.0	mg/kg wet	1000		95.4	75-125	1.92	20	
>C12-C28	1020	25.0		1000		102	75-125	2.05	20	
Surrogate: 1-Chlorooctane	125		"	140		89.2	70-130			
Surrogate: o-Terphenyl	51.0		"	70.0		72.8	70-130			
Calibration Blank (P9J0206-CCB1)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	10.9		mg/kg wet							
>C12-C28	11.5		"							
Surrogate: 1-Chlorooctane	95.9		"	140		68.5	70-130			S-G
Surrogate: o-Terphenyl	51.4		"	70.0		73.4	70-130			
Calibration Blank (P9J0206-CCB2)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	5.35		mg/kg wet							
>C12-C28	13.6									
Surrogate: 1-Chlorooctane	102		"	140		72.6	70-130			
Surrogate: o-Terphenyl	53.9		"	70.0		77.0	70-130			

Permian Basin Environmental Lab, L.P.

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

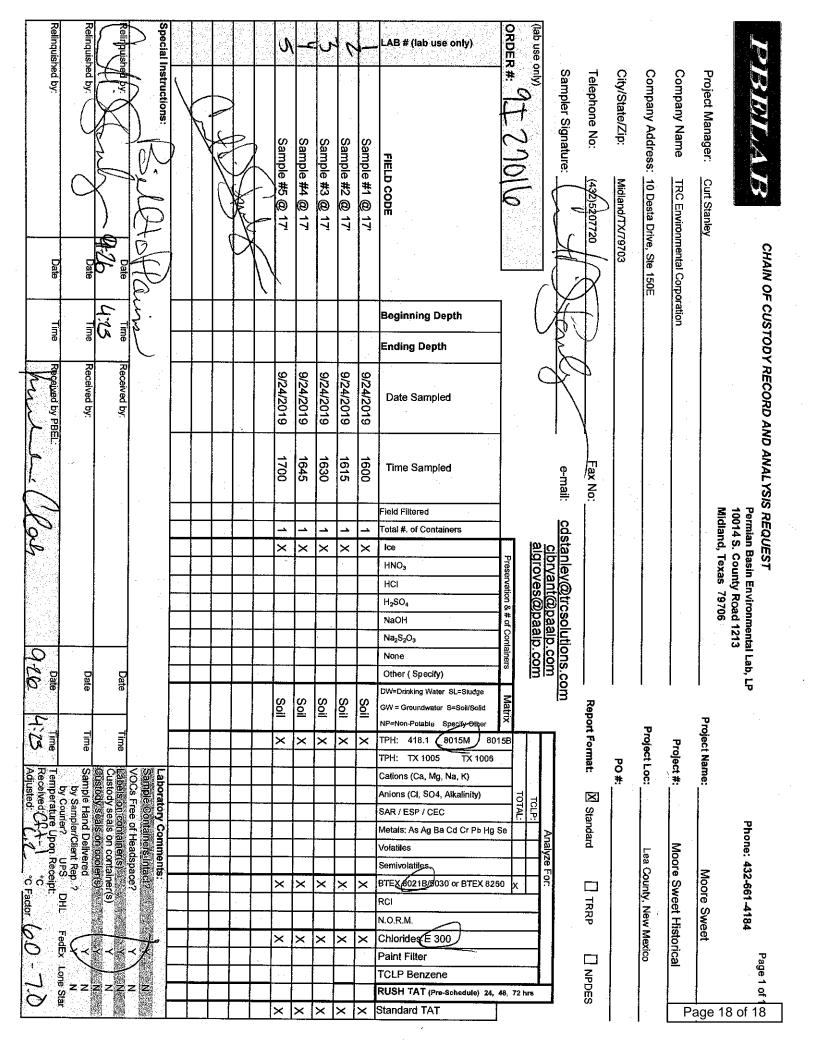
		D		G 1	9		WREG		DDD	
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J0206 - TX 1005										
Calibration Check (P9J0206-CCV1)				Prepared: (09/30/19 A	nalyzed: 10	/04/19			
C6-C12	536	25.0	mg/kg wet	500		107	85-115			
·C12-C28	547	25.0		500		109	85-115			
Surrogate: 1-Chlorooctane	122		"	140		87.3	70-130			
urrogate: o-Terphenyl	56.0		"	70.0		80.0	70-130			
Calibration Check (P9J0206-CCV2)				Prepared: (09/30/19 A	nalyzed: 10	/04/19			
C6-C12	544	25.0	mg/kg wet	500		109	85-115			
·C12-C28	546	25.0	"	500		109	85-115			
Surrogate: 1-Chlorooctane	124		"	140		88.9	70-130			
urrogate: o-Terphenyl	55.1		"	70.0		78.7	70-130			
Matrix Spike (P9J0206-MS1)	Sou	rce: 9I27014	-23	Prepared: (09/30/19 A	nalyzed: 10	/04/19			
C6-C12	834	25.5	mg/kg dry	1020	10.5	80.7	75-125			
·C12-C28	881	25.5		1020	10.2	85.3	75-125			
Surrogate: 1-Chlorooctane	125		"	143		87.8	70-130			
urrogate: o-Terphenyl	51.5		"	71.4		72.1	70-130			

Notes and Definitions

S-GC	Surrogate recovery outside of control limits. T	he data was accepted based on valid recovery	of the remaining surrogate.

- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
- BULK Samples received in Bulk soil containers
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Bun Barron Report Approved By:


Date: 10/5/2019

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Curt Stanley TRC Solutions- Midland, Texas 10 Desta Dr STE 150E Midland, TX 79705

Project: Moore Sweet Project Number: Moore Sweet Historical Location: Lea Co NM

Lab Order Number: 9I27015

NELAP/TCEQ # T104704516-18-9

Report Date: 10/04/19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
M Ramp ES2	9I27015-01	Soil	09/24/19 13:00	09-26-2019 16:23
M Ramp E FL @ 10'	9I27015-02	Soil	09/24/19 13:10	09-26-2019 16:23
M Ramp ES3	9I27015-03	Soil	09/24/19 13:20	09-26-2019 16:23
M Ramp WS3	9I27015-04	Soil	09/24/19 13:30	09-26-2019 16:23
M Ramp WS2	9I27015-05	Soil	09/24/19 13:40	09-26-2019 16:23
M Ramp W FL @ 10'	9I27015-06	Soil	09/24/19 13:50	09-26-2019 16:23
M Ramp Floor #1 Comp	9I27015-07	Soil	09/24/19 14:00	09-26-2019 16:23
M Ramp Floor #2 Comp	9I27015-08	Soil	09/24/19 14:10	09-26-2019 16:23
M Ramp Floor #3 Comp	9I27015-09	Soil	09/24/19 14:20	09-26-2019 16:23

M Ramp ES2 9I27015-01 (Soil)

			013-01 (301	,					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin F	Invironmen	tal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00104	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00208	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00104	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.2 %	75-12	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		88.8 %	75-12	25	P912707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA /	Standard Method	ls							
Chloride	31.2	1.04	mg/kg dry	1	P9J0210	10/02/19	10/02/19	EPA 300.0	
% Moisture	4.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 8	015M							
C6-C12	ND	26.0	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		99.2 %	70-13	80	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		111 %	70-13	80	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

M Ramp E FL @ 10'

9I27015-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Invironmer	ntal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00106	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00213	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00106	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		90.8 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		116 %	75-1	25	P912707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA / S	Standard Method	ds							
Chloride	36.3	1.06	mg/kg dry	1	P9J0210	10/02/19	10/02/19	EPA 300.0	
% Moisture	6.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 8	015M							
C6-C12	ND	26.6	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		93.6 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

M Ramp ES3

9I27015-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin E	Invironmen	tal Lab, I	P .				
Organics by GC									
Benzene	ND	0.00101	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00202	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00101	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		116 %	75-1.	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		102 %	75-1.	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA / S	Standard Method	ls							
Chloride	741	1.01	mg/kg dry	1	P9J0210	10/02/19	10/02/19	EPA 300.0	
% Moisture	1.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by	y EPA Method 80	015M							
C6-C12	ND	25.3	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		114 %	70-1.	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-1.	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

M Ramp WS3

9I27015-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin F	Invironmen	tal Lab, I	P .				
Organics by GC									
Benzene	ND	0.00101	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00202	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00101	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		113 %	75-12	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		95.2 %	75-12	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA /	Standard Method	ls							
Chloride	304	1.01	mg/kg dry	1	P9J0210	10/02/19	10/03/19	EPA 300.0	
% Moisture	1.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 80	015M							
C6-C12	ND	25.3	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		99.9 %	70-13	80	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-13	80	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

M Ramp WS2

9I27015-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	1ian Basin E	nvironmer	ntal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00106	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00213	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00106	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		102 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		111 %	75-1	25	P912707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EF	PA / Standard Method	ls							
Chloride	9.69	1.06	mg/kg dry	1	P9J0210	10/02/19	10/03/19	EPA 300.0	
% Moisture	6.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80)15M							
C6-C12	ND	26.6	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	136	26.6	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		110 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		124 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	136	26.6	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Permian Basin Environmental Lab, L.P.

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

M Ramp W FL @ 10'

9I27015-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmer	ital Lab, I	P.				
Organics by GC									
Benzene	ND	0.00106	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00213	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00106	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.9 %	75-1	25	P912707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		117 %	75-1	25	P912707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA /	<u>Standard Methoo</u>	ds							
Chloride	34.5	1.06	mg/kg dry	1	P9J0210	10/02/19	10/03/19	EPA 300.0	
% Moisture	6.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 b	<u>y EPA Method 8(</u>	015M							
C6-C12	ND	26.6	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		86.1 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		99.3 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

M Ramp Floor #1 Comp

9I27015-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Environmei	ntal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00111	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00111	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00222	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00111	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		90.9 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		119 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EF	A / Standard Method	S							
Chloride	165	1.11	mg/kg dry	1	P9J0210	10/02/19	10/03/19	EPA 300.0	
% Moisture	10.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	27.8	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	108	27.8	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		90.3 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		104 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	108	27.8	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

M Ramp Floor #2 Comp

9I27015-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Invironmer	ital Lab, I	P.				
Organics by GC									
Benzene	ND	0.00105	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00211	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00105	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		84.5 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		103 %	75-1	25	P912707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EP	A / Standard Method	S							
Chloride	288	1.05	mg/kg dry	1	P9J0210	10/02/19	10/03/19	EPA 300.0	
% Moisture	5.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	179	26.3	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		101 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	179	26.3	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

M Ramp Floor #3 Comp

9I27015-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Cnvironmer	ıtal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00102	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00204	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00102	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		86.0 %	75-1	25	P912707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EP	A / Standard Method	S							
Chloride	149	1.02	mg/kg dry	1	P9J0210	10/02/19	10/03/19	EPA 300.0	
% Moisture	2.0	0.1	%	1	P9I2901	09/29/19	09/29/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C.	35 by EPA Method 80	15M							
C6-C12	ND	25.5	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C12-C28	117	25.5	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: 1-Chlorooctane		89.8 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Surrogate: o-Terphenyl		98.3 %	70-1	30	P9J0206	09/30/19	10/04/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	117	25.5	mg/kg dry	1	[CALC]	09/30/19	10/04/19	calc	

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyta	D. 1	Reporting	TT'.	Spike	Source	0/050	%REC	מחמ	RPD Limit	NT -
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9I2707 - General Preparation (GC)										
Blank (P9I2707-BLK1)				Prepared: ()9/27/19 An	alyzed: 09	/28/19			
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00200	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120		87.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		106	75-125			
LCS (P9I2707-BS1)				Prepared: ()9/27/19 An	alyzed: 09	/28/19			
Benzene	0.0886	0.00100	mg/kg wet	0.100		88.6	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.103	0.00200	"	0.100		103	80-120			
Xylene (p/m)	0.189	0.00100	"	0.200		94.5	80-120			
Xylene (o)	0.0941	0.00100	"	0.100		94.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.132		"	0.120		110	75-125			
LCS Dup (P9I2707-BSD1)				Prepared: ()9/27/19 Ar	alyzed: 09	/28/19			
Benzene	0.0900	0.00100	mg/kg wet	0.100		90.0	80-120	1.47	20	
Toluene	0.110	0.00100	"	0.100		110	80-120	7.37	20	
Ethylbenzene	0.115	0.00200	"	0.100		115	80-120	11.0	20	
Xylene (p/m)	0.204	0.00100	"	0.200		102	80-120	7.54	20	
Xylene (o)	0.104	0.00100	"	0.100		104	80-120	10.2	20	
Surrogate: 1,4-Difluorobenzene	0.141		"	0.120		118	75-125			
Surrogate: 4-Bromofluorobenzene	0.136		"	0.120		113	75-125			
Calibration Blank (P912707-CCB1)				Prepared: ()9/27/19 An	alyzed: 09	/28/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		91.0	75-125			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		102	75-125			

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

	D	Reporting	TT .	Spike	Source	A/2523	%REC	DEC	RPD	N T -
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9I2707 - General Preparation (GC)										
Calibration Blank (P9I2707-CCB2)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120		87.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	75-125			
Calibration Blank (P9I2707-CCB3)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		94.7	75-125			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	75-125			
Calibration Check (P9I2707-CCV1)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0950	0.00100	mg/kg wet				80-120			
Toluene	0.114	0.00100	"				80-120			
Ethylbenzene	0.124	0.00200	"				80-120			
Xylene (p/m)	0.218	0.00100	"				80-120			
Xylene (o)	0.120	0.00100	"				80-120			
Surrogate: 4-Bromofluorobenzene	0.140		"	0.120		116	75-125			
Surrogate: 1,4-Difluorobenzene	0.144		"	0.120		120	75-125			
Calibration Check (P9I2707-CCV2)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0972	0.00100	mg/kg wet				80-120			
Toluene	0.110	0.00100	"				80-120			
Ethylbenzene	0.112	0.00200	"				80-120			
Xylene (p/m)	0.203	0.00100	"				80-120			
Xylene (o)	0.113	0.00100	"				80-120			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	75-125			
Surrogate: 1,4-Difluorobenzene	0.136		"	0.120		113	75-125			

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting	T T 1.	Spike	Source	WREG	%REC		RPD	N (
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9I2707 - General Preparation (GC)										
Calibration Check (P9I2707-CCV3)				Prepared: ()9/27/19 A	nalyzed: 09	/28/19			
Benzene	0.107	0.00100	mg/kg wet				80-120			
Toluene	0.115	0.00100	"				80-120			
Ethylbenzene	0.110	0.00200	"				80-120			
Xylene (p/m)	0.206	0.00100	"				80-120			
Xylene (o)	0.116	0.00100	"				80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.3	75-125			
Surrogate: 1,4-Difluorobenzene	0.139		"	0.120		116	75-125			
Matrix Spike (P9I2707-MS1)	Sou	rce: 9I27014	-20	Prepared: ()9/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0471	0.00108	mg/kg dry	0.108	ND	43.8	80-120			QM-05
Toluene	0.0531	0.00108	"	0.108	ND	49.4	80-120			QM-05
Ethylbenzene	0.0595	0.00215	"	0.108	ND	55.3	80-120			QM-05
Xylene (p/m)	0.107	0.00108	"	0.215	ND	49.6	80-120			QM-05
Xylene (o)	0.0521	0.00108	"	0.108	ND	48.4	80-120			QM-0
Surrogate: 4-Bromofluorobenzene	0.128		"	0.129		99.3	75-125			
Surrogate: 1,4-Difluorobenzene	0.150		"	0.129		116	75-125			
Matrix Spike Dup (P9I2707-MSD1)	Sou	rce: 9I27014	-20	Prepared: ()9/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0645	0.00108	mg/kg dry	0.108	ND	60.0	80-120	31.3	20	QM-03
Toluene	0.0737	0.00108	"	0.108	ND	68.6	80-120	32.5	20	QM-05
Ethylbenzene	0.0798	0.00215	"	0.108	ND	74.2	80-120	29.2	20	QM-05
Xylene (p/m)	0.117	0.00108	"	0.215	ND	54.3	80-120	9.00	20	QM-05
Xylene (o)	0.0564	0.00108	"	0.108	ND	52.4	80-120	7.99	20	QM-05
Surrogate: 4-Bromofluorobenzene	0.146		"	0.129		113	75-125			
Surrogate: 1,4-Difluorobenzene	0.151		"	0.129		117	75-125			

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9I2901 - *** DEFAULT PREP ***										
Blank (P9I2901-BLK2)				Prepared &	z Analyzed	: 09/29/1 <u></u> 9				
% Moisture	ND	0.1	%							
Duplicate (P9I2901-DUP1)	Sour	ce: 9127004-0)5	Prepared &	Analyzed	: 09/29/19				
% Moisture	8.0	0.1	%		8.0			0.00	20	
Duplicate (P9I2901-DUP2)	Sour	ce: 9127005-2	24	Prepared &	z Analyzed	: 09/29/19				
% Moisture	5.0	0.1	%	*	5.0			0.00	20	
Duplicate (P9I2901-DUP3)	Sour	ce: 9127007-0)7	Prepared &	Analyzed:	: 09/29/19				
% Moisture	2.0	0.1	%	*	3.0			40.0	20	
Duplicate (P912901-DUP4)	Sour	ce: 9127009-1	4	Prepared &	Analyzed	: 09/29/19				
% Moisture	14.0	0.1	%		14.0			0.00	20	
Duplicate (P9I2901-DUP5)	Sour	ce: 9I27011-0)5	Prepared &	Analyzed:	: 09/29/19				
% Moisture	7.0	0.1	%		6.0			15.4	20	
Duplicate (P9I2901-DUP6)	Sour	ce: 9I27014-1	1	Prepared 8	Analyzed:	: 09/29/19				
% Moisture	8.0	0.1	%	-	7.0			13.3	20	
Duplicate (P9I2901-DUP7)	Sour	ce: 9127022-0)1	Prepared &	z Analyzed	: 09/29/19				
% Moisture	12.0	0.1	%	*	19.0			45.2	20	
Batch P9J0210 - *** DEFAULT PREP ***										
Blank (P9J0210-BLK1)				Prepared &	Analyzed	10/02/19				
Chloride	ND	1.00	mg/kg we	t						

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9J0210 - *** DEFAULT PREP ***						,				
LCS (P9J0210-BS1)				Prepared &	a Analyzed	: 10/02/19				
Chloride	420	1.00	mg/kg wet	400		105	80-120			
LCS Dup (P9J0210-BSD1)				Prepared 8	k Analyzed	: 10/02/19				
Chloride	439	1.00	mg/kg wet	400		110	80-120	4.46	20	
Calibration Blank (P9J0210-CCB1)				Prepared &	a Analyzed	: 10/02/19				
Chloride	0.00		mg/kg wet	-						
Calibration Blank (P9J0210-CCB2)				Prepared 8	k Analyzed	: 10/02/19				
Chloride	0.00		mg/kg wet							
Calibration Check (P9J0210-CCV1)				Prepared 8	k Analyzed	: 10/02/19				
Chloride	22.1		mg/kg	20.0		110	0-200			
Calibration Check (P9J0210-CCV2)				Prepared &	x Analyzed	: 10/02/19				
Chloride	21.5		mg/kg	20.0		107	0-200			
Calibration Check (P9J0210-CCV3)				Prepared:	10/02/19 A	nalyzed: 10	/03/19			
Chloride	21.4		mg/kg	20.0		107	0-200			
Matrix Spike (P9J0210-MS1)	Sou	rce: 9I27014-	17	Prepared 8	k Analyzed	: 10/02/19				
Chloride	1040	1.04	mg/kg dry	521	509	101	80-120			
Matrix Spike (P9J0210-MS2)	Sou	rce: 9I27015-	-03	Prepared 8	k Analyzed	: 10/02/19				
Chloride	1180	1.01	mg/kg dry	505	741	86.8	80-120			
Matrix Spike Dup (P9J0210-MSD1)	Sou	rce: 9I27014-	-17	Prepared &	k Analyzed	: 10/02/19				
Chloride	969	1.04	mg/kg dry	521	509	88.2	80-120	6.87	20	

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9J0210 - *** DEFAULT PREP ***										
Matrix Spike Dup (P9J0210-MSD2)	Sour	rce: 9I27015-0	03	Prepared &	Analyzed:	10/02/19				
Chloride	1230	1.01	mg/kg dry	505	741	96.1	80-120	3.88	20	

Permian Basin Environmental Lab, L.P.

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9J0206 - TX 1005										
Blank (P9J0206-BLK1)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	98.4		"	140		70.3	70-130			
Surrogate: o-Terphenyl	52.8		"	70.0		75.4	70-130			
LCS (P9J0206-BS1)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	936	25.0	mg/kg wet	1000		93.6	75-125			
>C12-C28	1000	25.0	"	1000		100	75-125			
Surrogate: 1-Chlorooctane	127		"	140		90.7	70-130			
Surrogate: o-Terphenyl	50.6		"	70.0		72.3	70-130			
LCS Dup (P9J0206-BSD1)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	954	25.0	mg/kg wet	1000		95.4	75-125	1.92	20	
>C12-C28	1020	25.0	"	1000		102	75-125	2.05	20	
Surrogate: 1-Chlorooctane	125		"	140		89.2	70-130			
Surrogate: o-Terphenyl	51.0		"	70.0		72.8	70-130			
Calibration Blank (P9J0206-CCB1)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	10.9		mg/kg wet							
>C12-C28	11.5		"							
Surrogate: 1-Chlorooctane	95.9		"	140		68.5	70-130			S-G
Surrogate: o-Terphenyl	51.4		"	70.0		73.4	70-130			
Calibration Blank (P9J0206-CCB2)				Prepared: (09/30/19 Ai	nalyzed: 10	/04/19			
C6-C12	5.35		mg/kg wet							
>C12-C28	13.6		"							
Surrogate: 1-Chlorooctane	102		"	140		72.6	70-130			
Surrogate: o-Terphenyl	53.9		"	70.0		77.0	70-130			

Permian Basin Environmental Lab, L.P.

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		D		G 1	9		WREG		DDD	
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J0206 - TX 1005										
Calibration Check (P9J0206-CCV1)				Prepared: (09/30/19 A	nalyzed: 10	/04/19			
C6-C12	536	25.0	mg/kg wet	500		107	85-115			
·C12-C28	547	25.0		500		109	85-115			
Surrogate: 1-Chlorooctane	122		"	140		87.3	70-130			
urrogate: o-Terphenyl	56.0		"	70.0		80.0	70-130			
Calibration Check (P9J0206-CCV2)				Prepared: (09/30/19 A	nalyzed: 10	/04/19			
C6-C12	544	25.0	mg/kg wet	500		109	85-115			
·C12-C28	546	25.0	"	500		109	85-115			
Surrogate: 1-Chlorooctane	124		"	140		88.9	70-130			
urrogate: o-Terphenyl	55.1		"	70.0		78.7	70-130			
Matrix Spike (P9J0206-MS1)	Sou	rce: 9I27014	-23	Prepared: (09/30/19 A	nalyzed: 10	/04/19			
C6-C12	834	25.5	mg/kg dry	1020	10.5	80.7	75-125			
·C12-C28	881	25.5		1020	10.2	85.3	75-125			
Surrogate: 1-Chlorooctane	125		"	143		87.8	70-130			
urrogate: o-Terphenyl	51.5		"	71.4		72.1	70-130			

Notes and Definitions

S-GC	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
- BULK Samples received in Bulk soil containers
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Bun Barron Report Approved By:

Date: 10/4/2019

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Relinquished by: Date	Relinquished by:	Reininguisheeday:	Mary and	Special Instructions:	1.00	M Ramp Floor #3 Comp	M Ramp Floor #2 Comp	M Ramp Floor #1 Comp		M Ramp WS2		M Ramp ES3	M Ramp E FL @ 10'	M Ramp ES2	LAB # (lab use only)	ORDER # 41.71012	+ 5 8	Sampler Signature:	Telephone No: (432) 207720	City/State/Zip: Midland/TX/79703	Company Address: 10 Desta Drive, Ste 150E	Company Name TRC Environmental Corporation	Project Manager: Curt Stanley	
		4	1					\square		·		1		-	Beginning Depth		(R	-D			oratior		, S
Time	Time	:23	- MA		<u>.</u>	-			<u> </u> .					+ -	Ending Depth	-	~	K				_		3/01
	-			· .		_	<u> </u>	_	ļ	 		 				4	0	K,	1				· .	UYr
Received by PBEL	Received by:	Received by:	Societad by:			9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	9/24/2019	Date Sampled									CHAIN OF CUSTODT RECORD AND ANALTSIS REQUEST Permian Basi 10014 S. Coi Midland, Tev
7						1420	1410	1400	1350	1340	1330	1320	1310	1300	Time Sampled			e-mail:	Fax No:					ANALISIS
\leq	-							ļ		ļ			ļ	<u></u>	Field Filtered	-		0						• KEQUES I Permian Basin Environmental Lab, LP 10014 S. County Road 1213 Midland, Texas 79706
\mathcal{Z}															Total #. of Containers	+	lo i	dst						nian 14 S
					×	×	×	×	×	×	×	×	×	×		Pa	ligr	cdstanley@trcs						, Tej
2	1													\vdash	HCI	Preservation &	0Xe							in E unty (as
					\vdash			1			╞──		1	\uparrow	H ₂ SO ₄	tion &	S Q							nviro / Roa 7971
															NaOH	# 9	pa							onme ad 1: 06
							Ļ							·	Na ₂ S ₂ O ₃	# of Containers	paalp.com	solutions.c	1					ntal 213
2						\square	-	<u> </u>	<u> </u>		 			<u> </u>	None	ners	ß			İ				Lab
Date	Date	Date				+						-	-		Other (Specify) DW=Drinking Water SL≈Sludge	H	120	solutions.com	I		ļ	I	ļ	Ģ
					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soi	GW = Groundwater S=Soil/Solid	Matrix		Ξ	Re					
Time I	T	Ţ	4			_					[<u> </u>	<u> </u>	<u> </u>	<u> </u>	NP=Non-Potable Specify Other	-	<u> </u>	-	ŏ		P		Proj	
1 me	Time	lime			×	×	×	×	×	×	×	×	×	×		15B			Report Format:		Project Loc:	Proj	Project Name:	
궀之	<u>s</u>	<u>@</u> 0 []	L ≩≲	Se F	-	1	-	<u> </u>	\vdash					-	TPH: TX 1005 TX 1008 Cations (Ca, Mg, Na, K)	_			lat:	PO #:	Ĺ	Project #:	lame	
Temperatu Received:	y and	ibels Istoc	ŝ	ibor Impl	╞	+	<u> </u>			<u> </u>			\vdash	-	Anions (CI, SO4, Alkalinity)			·	\mathbf{X}	"	" 	·	, r 	
ed:	e Ha Sam	on (ly se ly se	Free	ator,				Γ							SAR / ESP / CEC		TCLP:							
7 ⊡e	Sample Hand Delivered by Sampler/Client Rep. ? by Courier? UPS	als o als o	VOCs Free of Headspace?	Laboratory Comments: Sample Containers Infac											Metals: As Ag Ba Cd Cr Pb Hg		TT.		Standard					Pho
on F)elive Xient		leads	nme ers i							· · ·	ļ			Volatiles				¢.		Fe	Moc		ne:
ece?	PS PS	(S) Intain Oleif	space	ints:								<u> </u>	<u> </u>		Semivolatiles			2			ŝ	ore	ž	432.
Temperature Upon Receipt:	_ •> ⊡	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	ŝ	Laboratory Comments: Sample Containers Intact?	ľ	×	×	×	×	×	×	×	×	×	BTEX 8021B/5030 or BTEX 82 RCI	60 X	Щ,	1			hit.	Swe	Moore Sweet	Phone: 432-661-4184
P	F	с С	J.C. T		-	-							┝	-	N.O.R.M.				TRRP		New	e∉ H	SW	418
-		10.0	1	<u> </u>	×	×	×	×	×	×	×	×	×	×	Chloride E 300				-		Lea County, New Mexico	Moore Sweet Historical	eet	<u>Å</u>
1		$\dot{\mathbf{x}}$	5	B											Paint Filter						Ř	rical		Pa
)															TCLP Benzene				NPE					Page 1 of
ſ	N N N	NZŻ	Z	N											RUSH TAT (Pre-Schedule) 24,	48, 72	2 hrs		NPDES					
₁₀		潮湖			×	×	×	×	×	×	×	×	×	×	Standard TAT					1			age	21 of 21

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Curt Stanley TRC Solutions- Midland, Texas 10 Desta Dr STE 150E Midland, TX 79705

Project: Moore Sweet Project Number: Moore Sweet Historical Location: Lea Co NM

Lab Order Number: 9I27017

NELAP/TCEQ # T104704516-18-9

Report Date: 10/05/19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MS3 #1	9I27017-01	Soil	09/24/19 15:00	09-26-2019 16:23
MS3 #2	9127017-02	Soil	09/24/19 15:15	09-26-2019 16:23
MS3 #3	9127017-03	Soil	09/24/19 15:30	09-26-2019 16:23

MS3 #1

9I27017-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perr	nian Basin E	nvironmen	tal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00101	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Toluene	ND	0.00101	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Ethylbenzene	ND	0.00202	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (p/m)	ND	0.00101	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.2 %	75-1	25	P9I2707	09/27/19	09/28/19	EPA 8021B	
General Chemistry Parameters by EPA / Sta	ndard Metho	ds							
Chloride	48.8	1.01	mg/kg dry	1	P9J0211	10/02/19	10/03/19	EPA 300.0	
% Moisture	1.0	0.1	%	1	P9I3005	09/30/19	09/30/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by E	PA Method 8	015M							
C6-C12	ND	25.3	mg/kg dry	1	P9J0207	10/01/19	10/05/19	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P9J0207	10/01/19	10/05/19	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P9J0207	10/01/19	10/05/19	TPH 8015M	
Surrogate: 1-Chlorooctane		95.3 %	70-1	30	P9J0207	10/01/19	10/05/19	TPH 8015M	
Surrogate: o-Terphenyl		97.3 %	70-1	30	P9J0207	10/01/19	10/05/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.3	mg/kg dry	1	[CALC]	10/01/19	10/05/19	calc	

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

MS3 #2

9I27017-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perr	nian Basin E	nvironmen	ital Lab, I					
Organics by GC									
Benzene	ND	0.00106	mg/kg dry	1	P9J0106	10/01/19	10/01/19	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P9J0106	10/01/19	10/01/19	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P9J0106	10/01/19	10/01/19	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P9J0106	10/01/19	10/01/19	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P9J0106	10/01/19	10/01/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.0 %	75-1	25	P9J0106	10/01/19	10/01/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		117 %	75-1	25	P9J0106	10/01/19	10/01/19	EPA 8021B	
General Chemistry Parameters by EPA / St	andard Metho	ds							
Chloride	551	1.06	mg/kg dry	1	P9J0211	10/02/19	10/03/19	EPA 300.0	
% Moisture	6.0	0.1	%	1	P9I3005	09/30/19	09/30/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 8	015M							
C6-C12	ND	26.6	mg/kg dry	1	P9J0207	10/01/19	10/05/19	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P9J0207	10/01/19	10/05/19	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P9J0207	10/01/19	10/05/19	TPH 8015M	
Surrogate: 1-Chlorooctane		94.2 %	70-1	30	P9J0207	10/01/19	10/05/19	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-1	30	P9J0207	10/01/19	10/05/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	10/01/19	10/05/19	calc	

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

MS3 #3

9I27017-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmer	ıtal Lab, I					
Organics by GC									
Benzene	ND	0.00102	mg/kg dry	1	P9J0106	10/01/19	10/01/19	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P9J0106	10/01/19	10/01/19	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P9J0106	10/01/19	10/01/19	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P9J0106	10/01/19	10/01/19	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P9J0106	10/01/19	10/01/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		114 %	75-1	25	P9J0106	10/01/19	10/01/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		93.4 %	75-1	25	P9J0106	10/01/19	10/01/19	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Method	ls							
Chloride	962	5.10	mg/kg dry	5	P9J0211	10/02/19	10/03/19	EPA 300.0	
% Moisture	2.0	0.1	%	1	P9I3005	09/30/19	09/30/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	015M							
C6-C12	ND	25.5	mg/kg dry	1	P9J0207	10/01/19	10/05/19	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P9J0207	10/01/19	10/05/19	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P9J0207	10/01/19	10/05/19	TPH 8015M	
Surrogate: 1-Chlorooctane		107 %	70-1	30	P9J0207	10/01/19	10/05/19	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-1	30	P9J0207	10/01/19	10/05/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.5	mg/kg dry	1	[CALC]	10/01/19	10/05/19	calc	

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
/ mary to	result	Limit	Units	Level	result	/0NEC	LIIIIIS	ΛŕD	LIIIII	inotes
Batch P9I2707 - General Preparation (GC)										
Blank (P9I2707-BLK1)				Prepared: 0	09/27/19 Ar	nalyzed: 09	/28/19			
Benzene	ND	0.00100	mg/kg wet			_	_	_		_
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00200	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120		87.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		106	75-125			
LCS (P9I2707-BS1)				Prepared: 0)9/27/19 Ar	nalyzed: 09	/28/19			
Benzene	0.0886	0.00100	mg/kg wet	0.100		88.6	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.103	0.00200	"	0.100		103	80-120			
Xylene (p/m)	0.189	0.00100	"	0.200		94.5	80-120			
Xylene (o)	0.0941	0.00100	"	0.100		94.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	75-125			
Surrogate: 1,4-Difluorobenzene	0.132		"	0.120		110	75-125			
LCS Dup (P9I2707-BSD1)				Prepared: 0	9/27/19 Ar	nalyzed: 09	/28/19			
Benzene	0.0900	0.00100	mg/kg wet	0.100		90.0	80-120	1.47	20	
Toluene	0.110	0.00100	"	0.100		110	80-120	7.37	20	
Ethylbenzene	0.115	0.00200	"	0.100		115	80-120	11.0	20	
Xylene (p/m)	0.204	0.00100	"	0.200		102	80-120	7.54	20	
Xylene (o)	0.104	0.00100	"	0.100		104	80-120	10.2	20	
Surrogate: 4-Bromofluorobenzene	0.136		"	0.120		113	75-125			
Surrogate: 1,4-Difluorobenzene	0.141		"	0.120		118	75-125			
Calibration Blank (P9I2707-CCB1)				Prepared: 0)9/27/19 Ar	nalyzed: 09	/28/19			
Benzene	0.00		mg/kg wet	-		-				
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		102	75-125			
Surrogate: 1,4-Difluorobenzene	0.109		"	0.120		91.0	75-125			

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

	D	Reporting	TT .	Spike	Source	A/2523	%REC	DEC	RPD	21
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9I2707 - General Preparation (GC)										
Calibration Blank (P9I2707-CCB2)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	75-125			
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120		87.6	75-125			
Calibration Blank (P9I2707-CCB3)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		94.7	75-125			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	75-125			
Calibration Check (P9I2707-CCV1)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0950	0.00100	mg/kg wet				80-120			
Toluene	0.114	0.00100	"				80-120			
Ethylbenzene	0.124	0.00200	"				80-120			
Xylene (p/m)	0.218	0.00100	"				80-120			
Xylene (o)	0.120	0.00100	"				80-120			
Surrogate: 4-Bromofluorobenzene	0.140		"	0.120		116	75-125			
Surrogate: 1,4-Difluorobenzene	0.144		"	0.120		120	75-125			
Calibration Check (P9I2707-CCV2)				Prepared: (09/27/19 A	nalyzed: 09	/28/19			
Benzene	0.0972	0.00100	mg/kg wet				80-120			
Toluene	0.110	0.00100	"				80-120			
Ethylbenzene	0.112	0.00200	"				80-120			
Xylene (p/m)	0.203	0.00100	"				80-120			
Xylene (o)	0.113	0.00100	"				80-120			
Surrogate: 4-Bromofluorobenzene	0.131		"	0.120		109	75-125			
Surrogate: 1,4-Difluorobenzene	0.136		"	0.120		113	75-125			

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9I2707 - General Preparation (GC)										
Calibration Check (P9I2707-CCV3)				Prepared: 0)9/27/19 A	nalyzed: 09	9/28/19			
Benzene	0.107	0.00100	mg/kg wet	-		-	80-120			
Toluene	0.115	0.00100	"				80-120			
Ethylbenzene	0.110	0.00200	"				80-120			
Xylene (p/m)	0.206	0.00100	"				80-120			
Xylene (o)	0.116	0.00100	"				80-120			
Surrogate: 1,4-Difluorobenzene	0.139		"	0.120		116	75-125			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.3	75-125			
Matrix Spike (P9I2707-MS1)	Sou	rce: 9I27014-	-20	Prepared: 0	09/27/19 A	nalyzed: 09	9/28/19			
Benzene	0.0471	0.00108	mg/kg dry	0.108	ND	43.8	80-120			QM-0
Toluene	0.0531	0.00108	"	0.108	ND	49.4	80-120			QM-0
Ethylbenzene	0.0595	0.00215	"	0.108	ND	55.3	80-120			QM-0
Xylene (p/m)	0.107	0.00108	"	0.215	ND	49.6	80-120			QM-0
Xylene (o)	0.0521	0.00108	"	0.108	ND	48.4	80-120			QM-0
Surrogate: 4-Bromofluorobenzene	0.128		"	0.129		<i>99.3</i>	75-125			
Surrogate: 1,4-Difluorobenzene	0.150		"	0.129		116	75-125			
Matrix Spike Dup (P9I2707-MSD1)	Sou	rce: 9I27014-	-20	Prepared: 0	09/27/19 A	nalyzed: 09	9/28/19			
Benzene	0.0645	0.00108	mg/kg dry	0.108	ND	60.0	80-120	31.3	20	QM-0
Toluene	0.0737	0.00108	"	0.108	ND	68.6	80-120	32.5	20	QM-0
Ethylbenzene	0.0798	0.00215	"	0.108	ND	74.2	80-120	29.2	20	QM-0
Xylene (p/m)	0.117	0.00108	"	0.215	ND	54.3	80-120	9.00	20	QM-0
Xylene (o)	0.0564	0.00108	"	0.108	ND	52.4	80-120	7.99	20	QM-0
Surrogate: 1,4-Difluorobenzene	0.151		"	0.129		117	75-125			
Surrogate: 4-Bromofluorobenzene	0.146		"	0.129		113	75-125			
Batch P9J0106 - General Preparation (GC)										
Blank (P9J0106-BLK1)				Prepared &	Analyzed:	10/01/19				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00200								
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.0	75-125			
Surrogate: 4-Bromofluorobenzene	0.138		"	0.120		115	75-125			

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Limit	Notes
Batch P9J0106 - General Preparation (GC)										
LCS (P9J0106-BS1)				Prepared &	Analyzed:	10/01/19				
Benzene	0.0968	0.00100	mg/kg wet	0.100		96.8	70-130			
Toluene	0.112	0.00100	"	0.100		112	70-130			
Ethylbenzene	0.117	0.00100	"	0.100		117	70-130			
Xylene (p/m)	0.237	0.00200	"	0.200		119	70-130			
Xylene (o)	0.115	0.00100	"	0.100		115	70-130			
Surrogate: 4-Bromofluorobenzene	0.112		"	0.120		93.6	75-125			
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.2	75-125			
LCS Dup (P9J0106-BSD1)				Prepared &	Analyzed:	10/01/19				
Benzene	0.0948	0.00100	mg/kg wet	0.100		94.8	70-130	2.06	20	
Toluene	0.110	0.00100	"	0.100		110	70-130	1.03	20	
Ethylbenzene	0.115	0.00100	"	0.100		115	70-130	1.63	20	
Xylene (p/m)	0.226	0.00200	"	0.200		113	70-130	4.74	20	
Xylene (o)	0.110	0.00100	"	0.100		110	70-130	4.33	20	
Surrogate: 4-Bromofluorobenzene	0.103		"	0.120		86.1	75-125			
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.2	75-125			
Calibration Blank (P9J0106-CCB1)				Prepared &	Analyzed:	10/01/19				
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.106		"	0.120		88.3	75-125			
Surrogate: 1,4-Difluorobenzene	0.111		"	0.120		92.4	75-125			
Calibration Blank (P9J0106-CCB2)				Prepared &	Analyzed:	10/01/19				
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.132		"	0.120		110	75-125			
Surrogate: 1,4-Difluorobenzene	0.102		"	0.120		85.3	75-125			

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC	DT -	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J0106 - General Preparation (GC)										
Calibration Blank (P9J0106-CCB3)				Prepared: 1	0/01/19 A	nalyzed: 10	/02/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.121		"	0.120		100	75-125			
Surrogate: 4-Bromofluorobenzene	0.128		"	0.120		107	75-125			
Calibration Check (P9J0106-CCV1)				Prepared &	Analyzed:	10/01/19				
Benzene	0.110	0.00100	mg/kg wet	0.100		110	80-120			
Toluene	0.109	0.00100	"	0.100		109	80-120			
Ethylbenzene	0.105	0.00100	"	0.100		105	80-120			
Xylene (p/m)	0.228	0.00200	"	0.200		114	80-120			
Xylene (o)	0.118	0.00100	"	0.100		118	80-120			
Surrogate: 4-Bromofluorobenzene	0.116		"	0.120		97.0	75-125			
Surrogate: 1,4-Difluorobenzene	0.124		"	0.120		104	75-125			
Calibration Check (P9J0106-CCV2)				Prepared &	Analyzed:	10/01/19				
Benzene	0.0940	0.00100	mg/kg wet	0.100		94.0	80-120			
Toluene	0.116	0.00100	"	0.100		116	80-120			
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120			
Xylene (p/m)	0.207	0.00200	"	0.200		103	80-120			
Xylene (o)	0.103	0.00100	"	0.100		103	80-120			
Surrogate: 4-Bromofluorobenzene	0.139		"	0.120		116	75-125			
Surrogate: 1,4-Difluorobenzene	0.123		"	0.120		103	75-125			
Calibration Check (P9J0106-CCV3)				Prepared: 1	0/01/19 A	nalyzed: 10	/02/19			
Benzene	0.0914	0.00100	mg/kg wet	0.100		91.4	80-120			
Toluene	0.108	0.00100	"	0.100		108	80-120			
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120			
Xylene (p/m)	0.208	0.00200	"	0.200		104	80-120			
Xylene (o)	0.113	0.00100	"	0.100		113	80-120			
Surrogate: 1,4-Difluorobenzene	0.122		"	0.120		102	75-125			
Surrogate: 4-Bromofluorobenzene	0.130		"	0.120		108	75-125			

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9J0106 - General Preparation (GC)										

Matrix Spike (P9J0106-MS1)	Sour	ce: 9I27017-	-02	Prepared: 1	0/01/19 A	nalyzed: 10	0/02/19			
Benzene	0.0611	0.00106	mg/kg dry	0.106	ND	57.4	80-120			QM-07
Toluene	0.0848	0.00106	"	0.106	ND	79.7	80-120			QM-07
Ethylbenzene	0.113	0.00106	"	0.106	ND	107	80-120			
Xylene (p/m)	0.173	0.00213	"	0.213	ND	81.5	80-120			
Xylene (o)	0.0867	0.00106	"	0.106	ND	81.5	80-120			
Surrogate: 1,4-Difluorobenzene	0.139		"	0.128		109	75-125			
Surrogate: 4-Bromofluorobenzene	0.147		"	0.128		115	75-125			
Matrix Spike Dup (P9J0106-MSD1)	Sour	·ce: 9I27017-	-02	Prepared: 1	0/01/19 A	nalyzed: 10	0/02/19			
Benzene	0.0785	0.00106	mg/kg dry	0.106	ND	73.8	80-120	25.0	20	QM-07
Toluene	0.0960	0.00106	"	0.106	ND	90.2	80-120	12.3	20	
Ethylbenzene	0.121	0.00106	"	0.106	ND	114	80-120	6.38	20	
Xylene (p/m)	0.196	0.00213	"	0.213	ND	91.9	80-120	12.0	20	
Xylene (o)	0.102	0.00106	"	0.106	ND	96.1	80-120	16.5	20	
Surrogate: 1,4-Difluorobenzene	0.147		"	0.128		115	75-125			
	0.144		"	0.128		113	75-125			

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			Prepared &	Analyzed	: 09/30/19				
ND	0.1	%	1						
Sou	rce: 9I27030-	02	Prepared &	Analyzed	: 09/30/19				
19.0	0.1	%		19.0			0.00	20	
			Prepared: 1	0/02/19 A	nalyzed: 10	0/03/19			
ND	1.00	mg/kg wet							
			Prepared: 1	0/02/19 A	nalyzed: 10)/03/19			
438	1.00	mg/kg wet	400		109	80-120			
			Prepared: 1	0/02/19 A	nalyzed: 10)/03/19			
428	1.00	mg/kg wet	400		107	80-120	2.27	20	
			Prepared: 1	0/02/19 A	nalyzed: 10)/03/19			
0.00		mg/kg wet							
			Prepared: 1	0/02/19 A	nalyzed: 10)/03/19			
0.00		mg/kg wet							
			Prepared: 1	0/02/19 A	nalyzed: 10)/03/19			
21.4		mg/kg	20.0		107	0-200			
			Prepared: 1	0/02/19 A	nalyzed: 10)/03/19			
21.5		mg/kg	20.0		107	0-200			
	ND Sou 19.0 ND 438 428 0.00 0.00 21.4	Result Limit ND 0.1 Source: 9127030- 19.0 0.1 MD 1.00 438 1.00 438 1.00 428 1.00 0.00 21.4	Result Limit Units ND 0.1 % Source: 9127030-02 19.0 0.1 % ND 0.1 % 438 1.00 mg/kg wet 428 1.00 mg/kg wet 0.00 mg/kg wet mg/kg wet 21.4 mg/kg mg/kg	Result Limit Units Level ND 0.1 % Prepared & Source: 9127030-02 Prepared & 19.0 0.1 % Prepared & 19.0 0.1 % Prepared & 19.0 0.1 % Prepared & ND 1.00 mg/kg wet MO A38 1.00 mg/kg wet 400 428 1.00 mg/kg wet 400 0.00 mg/kg wet 400 Prepared: 1 0.00 mg/kg wet 20.0 Prepared: 1 21.4 mg/kg 20.0 Prepared: 1	Result Limit Units Level Result ND 0.1 % Prepared & Analyzed Source: 9127030-02 Prepared & Analyzed 19.0 0.1 % 19.0 ND 0.1 % 19.0 19.0 0.1 % 19.0 ND 0.1 % 19.0 19.0 0.1 % 19.0 ND 1.00 mg/kg wet Prepared: 10/02/19 A38 1.00 mg/kg wet 400 428 1.00 mg/kg wet 400 0.00 mg/kg wet Prepared: 10/02/19 A 0.00 mg/kg wet Prepared: 10/02/19 A 21.4 mg/kg 20.0 Prepared: 10/02/19 A	Result Limit Units Level Result %REC Prepared & Analyzed: 09/30/19 ND 0.1 % Source: 9127030-02 Prepared & Analyzed: 09/30/19 19.0 0.1 % 19.0 19.0 0.1 % 19.0 Prepared & Analyzed: 09/30/19 19.0 0.1 % 19.0 Prepared & Analyzed: 09/30/19 19.0 0.1 % 19.0 19.0 0.1 % 19.0 Prepared & Analyzed: 09/30/19 19.0 0.1 % 19.0 Prepared & Analyzed: 09/30/19 19.0 0.1 % 19.0 Prepared: 10/02/19 Analyzed: 10 438 1.00 mg/kg wet 400 109 428 1.00 mg/kg wet 400 107 0.00 mg/kg wet Prepared: 10/02/19 Analyzed: 10 0.00 mg/kg wet 20.0 107	Result Limit Units Level Result %REC Limits Prepared & Analyzed: 09/30/19 ND 0.1 % Prepared & Analyzed: 09/30/19 Source: 9127030-02 Prepared & Analyzed: 09/30/19 Verpared 19.0 0.1 % 19.0 Verpared 19.0 0.1 % 19.0 Verpared ND 1.00 mg/kg wet Prepared: 10/02/19 Analyzed: 10/03/19 ND 1.00 mg/kg wet 400 109 80-120 Prepared: 10/02/19 Analyzed: 10/03/19 80-120 Prepared: 10/02/19 Analyzed: 10/03/19 438 1.00 mg/kg wet 400 107 80-120 Prepared: 10/02/19 Analyzed: 10/03/19 Prepared: 10/02/19 Analyzed: 10/03/19 0.00 mg/kg wet Prepared: 10/02/19 Analyzed: 10/03/19 0.00 mg/kg wet Prepared: 10/02/19 Analyzed: 10/03/19 0.00 mg/kg wet Prepared: 10/02/19 Analyzed: 10/03/19	Result Limit Units Level Result %REC Limits RPD Prepared & Analyzed: 09/30/19 ND 0.1 % 9/30/19 9/30/19 ND 0.1 % Prepared & Analyzed: 09/30/19 0.00 19.0 0.1 % 19.0 0.00 Prepared & Analyzed: 09/30/19 19.0 0.1 % 19.0 0.00 Prepared: 10/02/19 Analyzed: 10/03/19 ND 1.00 mg/kg wet 400 109 80-120 Prepared: 10/02/19 Analyzed: 10/03/19 428 1.00 mg/kg wet 400 107 80-120 2.27 Prepared: 10/02/19 Analyzed: 10/03/19 428 1.00 mg/kg wet 400 107 80-120 2.27 Prepared: 10/02/19 Analyzed: 10/03/19 0.00 mg/kg wet 20.0 107 0.03/19 Prepared: 10/02/19 Analyzed: 10/03/19 Prepared: 10/02/19 Analyzed: 10/03/19 <td>Result Limit Units Level Result %REC Limits RPD Limit ND 0.1 %</td>	Result Limit Units Level Result %REC Limits RPD Limit ND 0.1 %

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J0211 - *** DEFAULT PREP ***										
Calibration Check (P9J0211-CCV3)				Prepared: 1	0/02/19	Analyzed: 10	/03/19			
Chloride	19.7		mg/kg	20.0		98.3	0-200			
Matrix Spike (P9J0211-MS1)	Source	e: 9127017-	03	Prepared: 1	0/02/19	Analyzed: 10	/03/19			
Chloride	1380	5.10	mg/kg dry	510	962	81.9	80-120			
Matrix Spike (P9J0211-MS2)	Source	e: 9127020-	01	Prepared: 1	0/02/19	Analyzed: 10	/03/19			
Chloride	4030	12.5	mg/kg dry	1250	2900	90.1	80-120			
Matrix Spike Dup (P9J0211-MSD1)	Source	e: 9127017-	03	Prepared: 1	0/02/19	Analyzed: 10	/03/19			
Chloride	1390	5.10	mg/kg dry	510	962	83.6	80-120	0.623	20	
Matrix Spike Dup (P9J0211-MSD2)	Source	e: 9127020-	01	Prepared: 1	0/02/19	Analyzed: 10	/03/19			
Chloride	4040	12.5	mg/kg dry	1250	2900	90.6	80-120	0.171	20	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9J0207 - TX 1005										
Blank (P9J0207-BLK1)				Prepared: 1	10/01/19 Ai	nalyzed: 10	/05/19			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0								
>C28-C35	ND	25.0								
Surrogate: 1-Chlorooctane	102		"	100		102	70-130			
Surrogate: o-Terphenyl	54.2		"	50.0		108	70-130			
LCS (P9J0207-BS1)				Prepared: 1	10/01/19 Ai	nalyzed: 10	/05/19			
C6-C12	992	25.0	mg/kg wet	1000		99.2	75-125			
>C12-C28	1070	25.0		1000		107	75-125			
Surrogate: 1-Chlorooctane	129		"	100		129	70-130			
Surrogate: o-Terphenyl	49.2		"	50.0		98.5	70-130			
LCS Dup (P9J0207-BSD1)				Prepared: 1	10/01/19 Ai	nalyzed: 10	/05/19			
C6-C12	983	25.0	mg/kg wet	1000		98.3	75-125	0.908	20	
>C12-C28	1050	25.0		1000		105	75-125	2.11	20	
Surrogate: 1-Chlorooctane	127		"	100		127	70-130			
Surrogate: o-Terphenyl	49.4		"	50.0		98.8	70-130			
Calibration Blank (P9J0207-CCB1)				Prepared: 1	10/01/19 Ai	nalyzed: 10	/05/19			
C6-C12	6.76		mg/kg wet							
>C12-C28	15.2		"							
Surrogate: 1-Chlorooctane	102		"	100		102	70-130			
Surrogate: o-Terphenyl	53.8		"	50.0		108	70-130			
Calibration Blank (P9J0207-CCB2)				Prepared: 1	10/01/19 Ai	nalyzed: 10	/05/19			
C6-C12	9.57		mg/kg wet	-						
>C12-C28	22.4									
Surrogate: 1-Chlorooctane	99.4		"	100		99.4	70-130			
Surrogate: o-Terphenyl	53.1		"	50.0		106	70-130			

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J0207 - TX 1005										
Calibration Check (P9J0207-CCV1)				Prepared:	10/01/19	Analyzed: 10	/05/19			
C6-C12	515	25.0	mg/kg wet	500		103	85-115			
>C12-C28	537	25.0	"	500		107	85-115			
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	52.1		"	50.0		104	70-130			
Calibration Check (P9J0207-CCV2)				Prepared:	10/01/19	Analyzed: 10	/05/19			
C6-C12	511	25.0	mg/kg wet	500		102	85-115			
>C12-C28	542	25.0	"	500		108	85-115			
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	51.8		"	50.0		104	70-130			
Matrix Spike (P9J0207-MS1)	Sou	rce: 9I27017-	-01	Prepared:	10/01/19	Analyzed: 10	/05/19			
C6-C12	983	25.3	mg/kg dry	1010	10.5	96.2	75-125			
>C12-C28	1030	25.3	"	1010	12.2	101	75-125			
Surrogate: 1-Chlorooctane	121		"	101		120	70-130			
Surrogate: o-Terphenyl	64.3		"	50.5		127	70-130			

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
BULK	Samples received in Bulk soil containers
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Sun Barron

Date: 10/5/2019

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Relinquished by: Date	Relinquished by:	N "	Special Instructions: JULA Acui	7.							MS3 #3	MS3 #2	MS3 #1	LAB # (lab use only)		してくうろう	(lab use only) where the set of t	Sampler Signature:	Telephone No: (432)5207726)	City/State/Zip: Midland/TX/79703	Company Address: 10 Desta Drive, Ste 150E	Company Name TRC Environmental Corporation	Project Manager: Curt Stanley	
Time	Time	4:03												Beginning Depth	_		Ŭ	Ł				ion		USTO
												<u> </u>		Ending Depth			Ś	R	\mathcal{P}					Ϋ́ΩΎ́F
Reported by PBE	Received by:	Received by:									9/24/2019	9/24/2019	9/24/2019	Date Sampled				$\left \right\rangle$						RECORD AN
											1530	1515	1500	Time Sampled				e-mail:	Fax No:					D ANALYSIS
X												· .		Field Filtered Total #. of Containers				Q						S <i>REQUEST</i> Permian Basin Environmental Lab, LP 10014 S. County Road 1213 Midland, Texas 79706
ટિં		:		┝							1 X	×	×	Ice	+		algroves@paalp.com	dsta	- E					QUE Ilan I 4 S. and,
\uparrow														HNO ₃	Pres		In a local diagram of the loca	nle						EST Basin Environmenta County Road 1213 Texas 79706
	н н Н	÷												НСІ	Preservation &		Ves							n Env as 7
														H₂SO₄			<u>8</u> 8							nviror / Road 7970
				L										NaOH	# of Containers)aa							nmer d 12
				┣—							·····		┣──	Na ₂ S ₂ O ₃ None	ontain		00			ŀ				13
P.				-		-			·					Other (Specify)	ers			<u>18.0</u>	1.					ab,
Q-23	Date	Date		·····										DW=Drinking Water SL=Sludge			_	Ö	I	Ŀ	I	Ι.	I	ج
											Soil	Soii	Soli	GW = Groundwater S≈Soli/Solid	Matrix				Rep				т	
Lime H'3	. 1	Ę			$\left - \right $						X	$\overline{}$		NP=Non-Potable Specify-Other TPH: 418.1 (8015M) 80)15B			1	Report Format:		Pro	-	Project Name:	
Ø ä	Time	Time			$\left \right $							×	×	TPH: TX 1005 TH 1008					om.	-	Project Loc:	Project #:	ict N	
Ad	្លួ	<u>8</u> 28	Sa La	-	╞╴┤									Cations (Ca, Mg, Na, K)					at	PO #:	Loc.	°ct#	ame	
mpe ceiv juste	by s	belš stod stod				-								Anions (CI, SO4, Alkalinity)		5			X	Ë	ľ -	ſ	ļ.	
Temperature U Received: Adjusted: (2	Hai	on c y se: y se:	nee Con											SAR / ESP / CEC		TOTAL:	TCLP:							_
р С	, ier D	onta als oi als oi	of H					Ţ						Metals: As Ag Ba Cd Cr Pb Hg	Se				Standard					hor
Ōn R	elive lient	ner(nme ers in eads					\dashv						Volatiles			Analyze		ц Ц		Lea	Moc		
Temperature Upon Receipt	nple Hand Delivered by Sampler/Client Rep. ?	LabelS on containeir(s) Custody seals on container(s) Custody seals on cooler(s)	Laboratory Comments: Sample Containers Infact? VCCs Free of Headspace?	\vdash	 			-			$\overline{}$	$\overline{}$		Semivolatiles BTEX 8021B/5030 or BTEX 82	en.		- For		—	·	Lea County, New Mexico	Moore Sweet Historical	ş	Phone: 432-661-4184
°C Factor	2	er(s)	ંગ્ર	\vdash							×	X	×	RCI	.00	×	- ``				nty,	we	Moore Sweet	661-
₫ Ţ				\vdash	╞╴┤									N.O.R.M			┨		TRRP		New	et H	Sw	4184
6		10000	1000					Ì			×	×	Х	Chlorides E 300			1				Mex	istor	ĕt	+-
- 0e	~~	×××	≺K)											Paint Filter]				8	ical		Pa
L Die		1985 - 2019	1455 P		ЦŢ		Ţ							TCLP Benzene			1] NPDES					Page 1 of
-7 D	? [∠] Z	zzz	z z		\square	_		_	\downarrow	_				RUSH TAT (Pre-Schedule) 24,	48,	72 hr	s)ES					
		能 關	100						[×	×	×	Standard TA⊺							1		age	e 17 of 17

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Curt Stanley TRC Solutions- Midland, Texas 10 Desta Dr STE 150E Midland, TX 79705

Project: Moore Sweet Project Number: Moore Sweet Historical Location: Lea County, NM

Lab Order Number: 9J21006

NELAP/TCEQ # T104704516-18-9

Report Date: 10/30/19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-S1C-A	9J21006-01	Soil	10/17/19 10:40	10-21-2019 11:26
MSW-F1C @ 7'	9J21006-02	Soil	10/17/19 11:19	10-21-2019 11:26
MS-F2 @ 13'	9J21006-03	Soil	10/17/19 14:02	10-21-2019 11:26
ME-S1C-A	9J21006-04	Soil	10/18/19 15:00	10-21-2019 11:26
ME-F1C #2 @ 7'	9J21006-05	Soil	10/18/19 15:10	10-21-2019 11:26
ME-F1C #1 @ 7'	9J21006-06	Soil	10/18/19 15:20	10-21-2019 11:26
ME-S2-A	9J21006-07	Soil	10/18/19 15:30	10-21-2019 11:26

MW-S1C-A 9J21006-01 (Soil)

		JJ 210	00-01 (30	u)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permian	Basin E	nvironme	ntal Lab, I	P.				
General Chemistry Parameters by EPA	/ Standard Methods								
Chloride	114	1.12	mg/kg dry	1	P9J2806	10/28/19	10/29/19	EPA 300.0	
% Moisture	11.0	0.1	%	1	P9J2201	10/22/19	10/22/19	ASTM D2216	

Permian Basin Environmental Lab, L.P.

MSW-F1C @ 7'

9J21006-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	ian Basin F	Environmen	tal Lab, I	L.P.				
General Chemistry Parameters by EP	PA / Standard Methods								
% Moisture	11.0	0.1	%	1	P9J2201	10/22/19	10/22/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 801	5M							
C6-C12	ND	28.1	mg/kg dry	1	P9J2308	10/23/19	10/24/19	TPH 8015M	
>C12-C28	83.6	28.1	mg/kg dry	1	P9J2308	10/23/19	10/24/19	TPH 8015M	
>C28-C35	ND	28.1	mg/kg dry	1	P9J2308	10/23/19	10/24/19	TPH 8015M	
Surrogate: 1-Chlorooctane		130 %	70-13	0	P9J2308	10/23/19	10/24/19	TPH 8015M	
Surrogate: o-Terphenyl		143 %	70-13	0	P9J2308	10/23/19	10/24/19	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	83.6	28.1	mg/kg dry	1	[CALC]	10/23/19	10/24/19	calc	

MS-F2 @ 13'

9J21006-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin I	Environmen	tal Lab,	L.P.				
General Chemistry Parameters by EP	A / Standard Methods								
% Moisture	13.0	0.1	%	1	P9J2201	10/22/19	10/22/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 801	5M							
C6-C12	ND	28.7	mg/kg dry	1	P9J2308	10/23/19	10/24/19	TPH 8015M	
>C12-C28	485	28.7	mg/kg dry	1	P9J2308	10/23/19	10/24/19	TPH 8015M	
>C28-C35	65.0	28.7	mg/kg dry	1	P9J2308	10/23/19	10/24/19	TPH 8015M	
Surrogate: 1-Chlorooctane		122 %	70-13	30	P9J2308	10/23/19	10/24/19	TPH 8015M	
Surrogate: o-Terphenyl		134 %	70-13	80	P9J2308	10/23/19	10/24/19	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	550	28.7	mg/kg dry	1	[CALC]	10/23/19	10/24/19	calc	

ME-S1C-A

9J21006-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin E	nvironmer	ıtal Lab, I	P.				
General Chemistry Parameters	by EPA / Standard Methods								
Chloride	439	1.16	mg/kg dry	1	P9J2806	10/28/19	10/29/19	EPA 300.0	
% Moisture	14.0	0.1	%	1	P9J2201	10/22/19	10/22/19	ASTM D2216	

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley Fax: (432) 520-7701

ME-F1C #2 @ 7' 9J21006-05 (Soil)												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
	Permi	an Basin E	nvironme	ntal Lab, I	P .							
General Chemistry Paramete	ers by EPA / Standard Methods											
Chloride	158	1.11	mg/kg dry	1	P9J2806	10/28/19	10/29/19	EPA 300.0				

%

1

P9J2201

10/22/19

10/22/19

ASTM D2216

0.1

10.0

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

	ME-F1C #1 @ 7' 9J21006-06 (Soil)												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes				
	Permia	n Basin E	nvironme	ntal Lab, I	P .								
General Chemistry Paramet	ters by EPA / Standard Methods												
Chloride	72.2	1.14	mg/kg dry	1	P9J2806	10/28/19	10/29/19	EPA 300.0					

%

1

P9J2201

10/22/19

10/22/19

ASTM D2216

0.1

12.0

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

			IE-S2-A)06-07 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin E	nvironme	ntal Lab, I	P.				
General Chemistry Paramet	ters by EPA / Standard Methods								
Chloride	285	1.12	mg/kg dry	1	P9J2806	10/28/19	10/29/19	EPA 300.0	

%

1

P9J2201

10/22/19

10/22/19

ASTM D2216

0.1

11.0

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9J2201 - *** DEFAULT PREP ***										
Blank (P9J2201-BLK1)				Prepared &	Analyzed:	10/22/19				
% Moisture	ND	0.1	%							
Duplicate (P9J2201-DUP1)	Sour	ce: 9J19005-1	13	Prepared 8	Analyzed:	10/22/19				
% Moisture	8.0	0.1	%		10.0			22.2	20	R2
Duplicate (P9J2201-DUP2)	Sour	ce: 9J19003-()9	Prepared &	Analyzed:	10/22/19				
% Moisture	11.0	0.1	%	*	7.0			44.4	20	R2
Duplicate (P9J2201-DUP3)	Sour	ce: 9J19007-()4	Prepared &	z Analyzed:	10/22/19				
% Moisture	4.0	0.1	%		4.0			0.00	20	
Duplicate (P9J2201-DUP4)	Sour	ce: 9J19008-1	11	Prepared &	Analyzed:	10/22/19				
% Moisture	4.0	0.1	%		4.0			0.00	20	
Duplicate (P9J2201-DUP5)	Sour	ce: 9J19008-3	38	Prepared 8	Analyzed:	10/22/19				
% Moisture	7.0	0.1	%		8.0			13.3	20	
Duplicate (P9J2201-DUP6)	Sour	ce: 9J21001-1	17	Prepared &	Analyzed:	10/22/19				
% Moisture	10.0	0.1	%	*	7.0			35.3	20	R2
Duplicate (P9J2201-DUP7)	Sour	ce: 9J21006-0)7	Prepared &	Analyzed:	10/22/19				
% Moisture	11.0	0.1	%		11.0			0.00	20	
Batch P9J2806 - *** DEFAULT PREP ***										
Blank (P9J2806-BLK1)				Prepared:	0/28/19 A	nalyzed: 10	/29/19			
Chloride	ND	0.100	mg/kg we	t						

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Notes
-	Result	Linit	Onits	Level	Result	70KEC	Linits	KI D	Liint	Notes
Batch P9J2806 - *** DEFAULT PREP ***										
LCS (P9J2806-BS1)				Prepared:	10/28/19	Analyzed: 1	0/29/19			
Chloride	433	1.00	mg/kg wet	400		108	80-120			
LCS Dup (P9J2806-BSD1)				Prepared:	10/28/19	Analyzed: 1	0/29/19			
Chloride	438	1.00	mg/kg wet	400		109	80-120	1.07	20	
Calibration Blank (P9J2806-CCB1)				Prepared:	10/28/19	Analyzed: 1	0/29/19			
Chloride	0.00		mg/kg wet							
Calibration Blank (P9J2806-CCB2)				Prepared:	10/28/19	Analyzed: 1	0/29/19			
Chloride	0.00		mg/kg wet							
Calibration Check (P9J2806-CCV1)				Prepared:	10/28/19	Analyzed: 1	0/29/19			
Chloride	20.7		mg/kg	20.0		104	0-200			
Calibration Check (P9J2806-CCV2)				Prepared:	10/28/19	Analyzed: 1	0/29/19			
Chloride	20.7		mg/kg	20.0		104	0-200			
Calibration Check (P9J2806-CCV3)				Prepared:	10/28/19	Analyzed: 1	0/29/19			
Chloride	21.2		mg/kg	20.0		106	0-200			
Matrix Spike (P9J2806-MS1)	Sou	rce: 9J28001-	-01	Prepared:	10/28/19	Analyzed: 1	0/29/19			
Chloride	519	1.00	mg/kg dry	500	37.9	96.2	80-120			
Matrix Spike (P9J2806-MS2)	Sou	rce: 9J22003-	-02	Prepared:	10/28/19	Analyzed: 1	0/29/19			
Chloride	12000	29.4	mg/kg dry	2940	8820	108	80-120			
Matrix Spike Dup (P9J2806-MSD1)	Sou	rce: 9J28001-	-01	Prepared:	10/28/19	Analyzed: 1	0/29/19			
Chloride	516	1.00	mg/kg dry	500	37.9	95.6	80-120	0.512	20	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9J2806 - *** DEFAULT PREP ***										
Matrix Spike Dup (P9J2806-MSD2)	Sour	rce: 9J22003-0	2	Prepared: 1	0/28/19 At	nalyzed: 10	/29/19			
Chloride	11700	29.4	mg/kg dry	2940	8820	98.2	80-120	2.50	20	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9J2308 - TX 1005										
Blank (P9J2308-BLK1)				Prepared: 1	10/23/19 Aı	nalyzed: 10	/24/19			
C6-C12	ND	25.0	mg/kg wet	*						
>C12-C28	ND	25.0								
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	121		"	100		121	70-130			
Surrogate: o-Terphenyl	64.4		"	50.0		129	70-130			
LCS (P9J2308-BS1)				Prepared: 1	10/23/19 Ar	nalyzed: 10	/24/19			
C6-C12	893	25.0	mg/kg wet	1000		89.3	75-125			
>C12-C28	882	25.0	"	1000		88.2	75-125			
Surrogate: 1-Chlorooctane	99.0		"	100		99.0	70-130			
Surrogate: o-Terphenyl	51.7		"	50.0		103	70-130			
LCS Dup (P9J2308-BSD1)				Prepared: 1	10/23/19 Ar	nalyzed: 10	/24/19			
C6-C12	933	25.0	mg/kg wet	1000		93.3	75-125	4.41	20	
>C12-C28	925	25.0	"	1000		92.5	75-125	4.71	20	
Surrogate: 1-Chlorooctane	105		"	100		105	70-130			
Surrogate: o-Terphenyl	54.6		"	50.0		109	70-130			
Calibration Blank (P9J2308-CCB1)				Prepared: 1	10/23/19 Ar	nalyzed: 10	/24/19			
C6-C12	7.29		mg/kg wet							
>C12-C28	5.45		"							
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	60.2		"	50.0		120	70-130			
Calibration Blank (P9J2308-CCB2)	Prepared: 10/23/19 Analyzed: 10/24/19									
C6-C12	8.19		mg/kg wet							
>C12-C28	15.3									
Surrogate: 1-Chlorooctane	106		"	100		106	70-130			
Surrogate: o-Terphenyl	56.6		"	50.0		113	70-130			

Permian Basin Environmental Lab, L.P.

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
, ,	result	Linit	Onto	Level	result	, utele	Linito	IU D	Linin	110105
Batch P9J2308 - TX 1005										
Calibration Check (P9J2308-CCV1)				Prepared:	10/23/19 A	nalyzed: 10	/24/19			
C6-C12	491	25.0	mg/kg wet	500		98.3	85-115			
>C12-C28	484	25.0	"	500		96.7	85-115			
Surrogate: 1-Chlorooctane	102		"	100		102	70-130			
Surrogate: o-Terphenyl	54.5		"	50.0		109	70-130			
Calibration Check (P9J2308-CCV2)				Prepared:	10/23/19 A	nalyzed: 10	/24/19			
C6-C12	438	25.0	mg/kg wet	500		87.5	85-115			
>C12-C28	446	25.0	"	500		89.1	85-115			
Surrogate: 1-Chlorooctane	92.9		"	100		92.9	70-130			
Surrogate: o-Terphenyl	49.6		"	50.0		99.2	70-130			
Matrix Spike (P9J2308-MS1)	Sou	rce: 9J22001	-09	Prepared:	10/23/19 A	nalyzed: 10	/24/19			
C6-C12	871	25.0	mg/kg dry	1000	ND	87.1	75-125			
>C12-C28	862	25.0	"	1000	461	40.1	75-125			QM-0
Surrogate: 1-Chlorooctane	91.1		"	100		91.1	70-130			
Surrogate: o-Terphenyl	46.0		"	50.0		92.1	70-130			
Matrix Spike Dup (P9J2308-MSD1)	Sou	Prepared:	10/23/19 A	nalyzed: 10	/24/19					
C6-C12	879	25.0	mg/kg dry	1000	ND	87.9	75-125	0.900	20	
>C12-C28	898	25.0	"	1000	461	43.7	75-125	8.45	20	QM-0
Surrogate: 1-Chlorooctane	92.5		"	100		92.5	70-130			
Surrogate: o-Terphenyl	46.5		"	50.0		92.9	70-130			

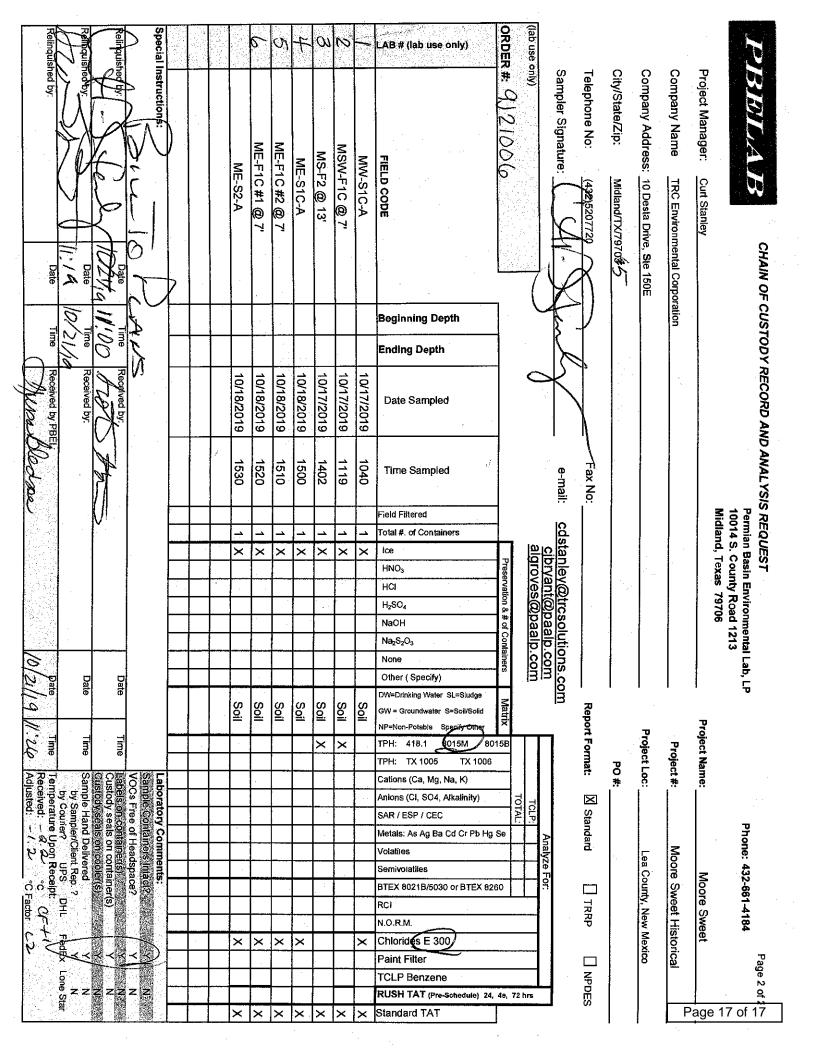
Notes and Definitions

S-GC	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
ROI	Received on Ice
R2	The RPD exceeded the acceptance limit.
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
BULK	Samples received in Bulk soil containers
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Sun Barron

Date: 10/30/2019


Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Curt Stanley TRC Solutions- Midland, Texas 10 Desta Dr STE 150E Midland, TX 79705

Project: Moore Sweet Project Number: Moore Sweet Historical Location: Lea County, NM

Lab Order Number: 9J22004

NELAP/TCEQ # T104704516-18-9

Report Date: 10/30/19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MN-S2-A	9J22004-01	Soil	10/21/19 11:32	10-22-2019 15:34
MS3 #3-A	9J22004-02	Soil	10/21/19 12:31	10-22-2019 15:34
Sample #5A @ 17'	9J22004-03	Soil	10/21/19 14:02	10-22-2019 15:34

MN-S2-A 9122004-01 (Soil)

		9J220	04-01 (50	11)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permian	ı Basin E	nvironme	ntal Lab, I	P .				
<u>General Chemistry Parameters b</u>	y EPA / Standard Methods								
Chloride	78.1	1.04	mg/kg dry	1	P9J2806	10/28/19	10/29/19	EPA 300.0	
% Moisture	4.0	0.1	%	1	P9J2403	10/24/19	10/24/19	ASTM D2216	

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

			S3 #3-A 004-02 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	nn Basin E	nvironme	ntal Lab, I	P.				
General Chemistry Parameter	rs by EPA / Standard Methods								
Chloride	75.1	1.12	mg/kg dry	1	P9J2806	10/28/19	10/29/19	EPA 300.0	

%

1

P9J2403

10/24/19

10/24/19

ASTM D2216

0.1

11.0

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley Fax: (432) 520-7701

		-	e #5A @ 004-03 (So						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin E	nvironme	ntal Lab, I	P.				
General Chemistry Parameter	rs by EPA / Standard Methods								
Chloride	13.9	1.14	mg/kg dry	1	P9J2806	10/28/19	10/29/19	EPA 300.0	

%

1

P9J2403

10/24/19

10/24/19

ASTM D2216

0.1

12.0

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9J2403 - *** DEFAULT PREP ***										
Blank (P9J2403-BLK1)				Prepared &	Analyzed:	10/24/19				
% Moisture	ND	0.1	%							
Duplicate (P9J2403-DUP1)	Sou		09	Prepared &	Analyzed:	10/24/19				
% Moisture	8.0	0.1	%		8.0			0.00	20	
Duplicate (P9J2403-DUP2)	Sou	-ce: 9J23006-	03	Prepared &	Analyzed:	10/24/19				
% Moisture	8.0	0.1	%		8.0			0.00	20	
Duplicate (P9J2403-DUP3)	Sou	-ce: 9J23006-	05	Prepared &	z Analyzed:					
% Moisture	10.0	0.1	%	-	9.0			10.5	20	
Batch P9J2806 - *** DEFAULT PREP ***										
Blank (P9J2806-BLK1)				Prepared: 1	10/28/19 A	nalyzed: 10)/29/19			
Chloride	ND	0.100	mg/kg wet							
LCS (P9J2806-BS1)				Prepared: 1	10/28/19 A	nalyzed: 10)/29/19			
Chloride	433	1.00	mg/kg wet	400		108	80-120			
LCS Dup (P9J2806-BSD1)				Prepared: 1	10/28/19 A	nalyzed: 1()/29/19			
Chloride	438	1.00	mg/kg wet	400		109	80-120	1.07	20	
Calibration Blank (P9J2806-CCB1)				Prepared: 1	10/28/19 A	nalyzed: 10)/29/19			
Chloride	0.00		mg/kg wet	-		-				
Calibration Blank (P9J2806-CCB2)				Prepared: 1	10/28/19 A	nalyzed: 10)/29/19			
Chloride	0.00		mg/kg wet	-		-				

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

	Reporting		Spike	Source		%REC		RPD				
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes			
			Prepared:	10/28/19 A	analyzed: 10)/29/19						
20.7		mg/kg	20.0		104	0-200						
Prepared: 10/28/19 Analyzed: 10/29/19												
20.7		mg/kg	20.0		104	0-200						
			Prepared:	10/28/19 A	Analyzed: 10							
21.2		mg/kg	20.0		106	0-200						
Sour	ce: 9J28001	-01	Prepared:	10/28/19 A	nalyzed: 10							
519	1.00	mg/kg dry	500	37.9	96.2	80-120						
Sour	ce: 9J22003-	-02	Prepared:	10/28/19 A	analyzed: 10							
12000	29.4	mg/kg dry	2940	8820	108	80-120						
Sour	ce: 9J28001	-01	Prepared:	10/28/19 A	Analyzed: 10)/29/19						
516	1.00	mg/kg dry	500	37.9	95.6	80-120	0.512	20				
pike Dup (P9J2806-MSD2) Source: 9J22003-02				10/28/19 A	Analyzed: 10)/29/19						
11700	29.4	mg/kg dry	2940	8820	98.2	80-120	2.50	20				
	20.7 20.7 21.2 Sour 519 Sour 12000 Sour 516 Sour	Result Limit 20.7 20.7 20.7 21.2 Source: 9J28001 519 519 1.00 Source: 9J22003 12000 29.4 Source: 9J28001 516 1.00 Source: 9J22003 516	Result Limit Units 20.7 mg/kg 20.7 mg/kg 20.7 mg/kg 21.2 mg/kg 519 1.00 mg/kg dry 519 1.00 mg/kg dry 12000 29.4 mg/kg dry 516 1.00 mg/kg dry	Result Limit Units Level Limit Units Level 20.7 mg/kg 20.0 21.2 mg/kg 20.0 Source: 9J28001-01 Prepared: 519 1.00 mg/kg dry 519 1.00 mg/kg dry 12000 29.4 mg/kg dry 2940 29.4 mg/kg dry 516 1.00 mg/kg dry 510 1.00 mg/kg dry	Result Limit Units Level Result Prepared: 10/28/19 A 20.7 mg/kg 20.0 21.2 mg/kg 20.0 Source: 9J28001-01 Prepared: 10/28/19 519 1.00 mg/kg dry 500 37.9 12000 29.4 mg/kg dry 2940 8820 Source: 9J28001-01 Prepared: 10/28/19 A 516 1.00 mg/kg dry 500 37.9 Source: 9J22003-02 Prepared: 10/28/19 A	Result Limit Units Level Result %REC Prepared: 10/28/19 Analyzed: 10 20.7 mg/kg 20.0 104 21.2 mg/kg 20.0 106 Source: 9J28001-01 519 1.00 mg/kg dry 500 37.9 96.2 Source: 9J22003-02 Prepared: 10/28/19 Analyzed: 10 12000 29.4 mg/kg dry 2940 8820 108 Source: 9J28001-01 516 1.00 mg/kg dry 500 37.9 95.6 Source: 9J22003-02 Prepared: 10/28/19 Analyzed: 10	Result Limit Units Level Result %REC Limits Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 20.7 mg/kg 20.0 104 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 21.2 mg/kg 20.0 106 0-200 Source: 9J28001-01 Prepared: 10/28/19 Analyzed: 10/29/19 519 1.00 mg/kg dry 500 37.9 96.2 80-120 Source: 9J28001-01 Prepared: 10/28/19 Analyzed: 10/29/19 12000 29.4 mg/kg dry 2940 8820 108 80-120 Source: 9J28001-01 Prepared: 10/28/19 Analyzed: 10/29/19 <td cols<="" td=""><td>Result Limit Units Level Result %REC Limits RPD Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 106 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 21.2 mg/kg 20.0 106 0-200 Source: 9J28001-01 Prepared: 10/28/19 Analyzed: 10/29/19 519 1.00 mg/kg dry 500 37.9 96.2 80-120 Source: 9J22003-02 Prepared: 10/28/19 Analyzed: 10/29/19 Prepared: 10/28/19 Analyzed: 10/29/19 516 1.00 mg/kg dry 500 37.9 95.6 80-120 0.512 Source: 9J22003-02 Prepared: 10/28/19 Analyzed: 10/29/19 516 1.00 mg/kg dry 500 37.9<!--</td--><td>Result Limit Units Level Result %REC Limits RPD Limit Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 </td></td></td>	<td>Result Limit Units Level Result %REC Limits RPD Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 106 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 21.2 mg/kg 20.0 106 0-200 Source: 9J28001-01 Prepared: 10/28/19 Analyzed: 10/29/19 519 1.00 mg/kg dry 500 37.9 96.2 80-120 Source: 9J22003-02 Prepared: 10/28/19 Analyzed: 10/29/19 Prepared: 10/28/19 Analyzed: 10/29/19 516 1.00 mg/kg dry 500 37.9 95.6 80-120 0.512 Source: 9J22003-02 Prepared: 10/28/19 Analyzed: 10/29/19 516 1.00 mg/kg dry 500 37.9<!--</td--><td>Result Limit Units Level Result %REC Limits RPD Limit Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 </td></td>	Result Limit Units Level Result %REC Limits RPD Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 106 0-200 Prepared: 10/28/19 Analyzed: 10/29/19 21.2 mg/kg 20.0 106 0-200 Source: 9J28001-01 Prepared: 10/28/19 Analyzed: 10/29/19 519 1.00 mg/kg dry 500 37.9 96.2 80-120 Source: 9J22003-02 Prepared: 10/28/19 Analyzed: 10/29/19 Prepared: 10/28/19 Analyzed: 10/29/19 516 1.00 mg/kg dry 500 37.9 95.6 80-120 0.512 Source: 9J22003-02 Prepared: 10/28/19 Analyzed: 10/29/19 516 1.00 mg/kg dry 500 37.9 </td <td>Result Limit Units Level Result %REC Limits RPD Limit Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200 </td>	Result Limit Units Level Result %REC Limits RPD Limit Prepared: 10/28/19 Analyzed: 10/29/19 20.7 mg/kg 20.0 104 0-200		

Notes and Definitions

- BULK Samples received in Bulk soil containers
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

un Barron

Report Approved By:

Date: _____]

10/30/2019

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

	Relinqui	Relinqui	Relinquish	\sum_{i}	Specia								دَر)	2		LAB # (lab use only)	ORDER #:		(lab use only)							X
	Relinquished by:	Relinquished by:	And by:		Special Instructions:								Sample #5A @ 17	MS3 #3-A	MN-S2-A	FIELD CODE		Tovec 10	te de la la la substance de la (Aluc) :	Sampler Signature:	Telephone No: (432)5	City/State/Zip: Midlar	Company Address: 10 De	Company Name TRC E	Project Manager: Curt Stanley	BRIAB
	Date	Date	Ided 19										@ 17'	1		Ĩ				A i A	(432)5207720	Midland/TX/79703	10 Desta Drive, Ste 150E	TRC Environmental Corporation	tanley	CHAIN OF
	-		3_													Beginning Depth				k	P			ation		cus
	Fime (lime	12:34 12:34									1.				Ending Depth			С	F	\$					TOD
- Jone	Received by PBE	Received by:	Received by:										10/21/2019	10/21/2019	10/21/2019	Date Sampled			~)						CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST
						والمستعدية والمرتب بالمرتب بالمرتب والمرتب والمرتب والمرتب والمرتب والمرتب والمرتب والمرتب والمرتب والمرتب والم							1402	1231	1132	Time Sampled				e-mail:	Fax No:					D ANALYSI
								·								Field Filtered	ŀ							÷	10014 S. County Road 1213 Midland, Texas 79706	S REQUEST Permian Basin Environmental Lab, LP
													$\frac{1}{\times}$	×	<u>1</u> ×	Total #. of Containers	┢	1 1	algroves@paalp.com	dsta		1.13			and,	
													Ê	Ê	<u> </u>	HNO ₃	- 7			anle					Tex	Basi
1. S. 194									┟──		· ·					HCI	Preservation &								las	с П
																H₂SO₄	lốn &		<u>9</u> 6						7970	, Viro
																NaOH] #		pa	sol					6 1	nme
									Ľ					ļ	. ¹ .1	Na ₂ S ₂ O ₃	# of Containers								213	ntal
t	5								L							None	iners		S	SUC						Lab
	Date	Date	Date		:											Other (Specify)	╞		312	CO		.]]	1 -	[Ę
	5			j							- A -		Soil	Soi	Soil	DW=Drinking Water SL=Siudge GW = Groundwater S=Soil/Solid	Matrix			B	Re					
5	Date Time			1									=	ă:	<u>1</u>	NP≂Non-Potable Specify Other	X				Report Format:		υ		Pro	
~	Lime	Time	Time													TPH: 418.1 8015M 80	15B		Γ		For		roje	Pr	ject	÷.,
<u> </u>							 									TPH: TX 1005 TX 1006					mat:	PO #:	Project Loc:	Project #:	Project Name:	
<u>j</u>	e ce	b sam	abe	/oc	abo											Cations (Ca, Mg, Na, K)						* *	, N	_∰	, De:	
Aujusieu.	Temperat Received:	ole. ySa yCo	ody s	ole (s Fre	irato				•	·						Anions (Cl, SO4, Alkalinity) SAR / ESP / CEC		TOTAL	TOP	÷ .	X w					
- 14	, 0 , <u></u>	larıd mple urier	icon ieals ieals	e of	2	—			· ·						•	Metals: As Ag Ba Cd Cr Pb Hg	Se				Standard					2
¢.0	000 00 00 00	² Clie	on	Hea	omi								1			Volatiles		$\left \cdot \right $	Anal		lard			S		юле
1	Re	LP R	ir(s)	sunta dspa	Laboratory Comments:								•			Semivolatiles		\square	Analyze For:				ea (oore	-	
Ś	Temperature Upon Receipt. Received: 5.0 °C C	nple Hand Delivered by Sampler/Client Rep. 7 by Courier? UPS	Labels on container(s). Custody seals on container(s) Custody seals on cooler(s)	Sample Containers Intact? VOCs Free of Headspace?	?											BTEX 8021B/5030 or BTEX 82	60		9				Lea County, New Mexico	Moore Sweet Historica	Moore Sweet	Phone: 432-661-4184
acic	\mathbf{A}	물	S) S													RCI					TRRP		y, u	/eet	6 0	<u> </u>
	A															N.O.R.M					Å		ew N	His	Wee	184
1	12						· · · ·	• • • • • •					Х	Х	Х	Chlorides E 300							Viexi	tori	≌	
		-	X_1 X_1		2									· · ·		Paint Filter				Í			8	<u>8</u>		Page 1
		one Sta	zzz	ZZ												TCLP Benzene RUSH TAT (Pre-schedule) 24,	40	70 -			NPDES					
		វីឆ្នាំ	zzż	N N									Х	×	×	Standard TAT	48,	12 Nř	9 	l	S III		1	Ļ		<u>e</u>
	15 9 57	ena ferra da di A		阙	51	1							\sim		$\hat{}$	www.rusarw.trtt	L					1	1 [P	age 9 o	19

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Curt Stanley TRC Solutions- Midland, Texas 10 Desta Dr STE 150E Midland, TX 79705

Project: Moore Sweet Project Number: Moore Sweet Historical Location: Lea County,NM

Lab Order Number: 9J23006

NELAP/TCEQ # T104704516-17-8

Report Date: 10/30/19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
M Ramp ES3-A	9J23006-01	Soil	10/22/19 12:30	10-23-2019 11:11
M Ramp WS2-A	9J23006-02	Soil	10/22/19 12:35	10-23-2019 11:11
M Ramp Floor #1A Comp.	9J23006-03	Soil	10/22/19 14:10	10-23-2019 11:11
M Ramp Floor #2A Comp.	9J23006-04	Soil	10/22/19 14:15	10-23-2019 11:11
M Ramp Floor #3A Comp.	9J23006-05	Soil	10/22/19 14:20	10-23-2019 11:11

M Ramp ES3-A 9J23006-01 (Soil)

<i>5</i> 3 2 3 00 - 01 (300)													
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes				
Permian Basin Environmental Lab, L.P.													
General Chemistry Parameters by EPA /	Standard Methods												
Chloride	21.8	1.10	mg/kg dry	1	P9J2807	10/28/19	10/30/19	EPA 300.0					
% Moisture	9.0	0.1	%	1	P9J2403	10/24/19	10/24/19	ASTM D2216					

Permian Basin Environmental Lab, L.P.

M Ramp WS2-A

9J23006-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes					
Permian Basin Environmental Lab, L.P.														
General Chemistry Parameters by EPA /	General Chemistry Parameters by EPA / Standard Methods													
% Moisture	10.0	0.1	%	1	P9J2403	10/24/19	10/24/19	ASTM D2216						
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 80	15M												
C6-C12	ND	27.8	mg/kg dry	1	P9J2401	10/24/19	10/30/19	TPH 8015M						
>C12-C28	ND	27.8	mg/kg dry	1	P9J2401	10/24/19	10/30/19	TPH 8015M						
>C28-C35	ND	27.8	mg/kg dry	1	P9J2401	10/24/19	10/30/19	TPH 8015M						
Surrogate: 1-Chlorooctane		102 %	70-1	30	P9J2401	10/24/19	10/30/19	TPH 8015M						
Surrogate: o-Terphenyl		124 %	70-1	30	P9J2401	10/24/19	10/30/19	TPH 8015M						
Total Petroleum Hydrocarbon C6-C35	ND	27.8	mg/kg dry	1	[CALC]	10/24/19	10/30/19	calc						

M Ramp Floor #1A Comp.

9J23006-03 (Soil)

		Reporting												
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes					
Permian Basin Environmental Lab, L.P.														
General Chemistry Parameters by EPA / Standard Methods														
% Moisture	8.0	0.1	%	1	P9J2403	10/24/19	10/24/19	ASTM D2216						
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 80	15M												
C6-C12	ND	27.2	mg/kg dry	1	P9J2401	10/24/19	10/30/19	TPH 8015M						
>C12-C28	ND	27.2	mg/kg dry	1	P9J2401	10/24/19	10/30/19	TPH 8015M						
>C28-C35	ND	27.2	mg/kg dry	1	P9J2401	10/24/19	10/30/19	TPH 8015M						
Surrogate: 1-Chlorooctane		109 %	70-1	30	P9J2401	10/24/19	10/30/19	TPH 8015M						
Surrogate: o-Terphenyl		131 %	70-1	30	P9J2401	10/24/19	10/30/19	TPH 8015M	S-GC					
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	10/24/19	10/30/19	calc						

M Ramp Floor #2A Comp.

9J23006-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	tal Lab, I	L.P.				
General Chemistry Parameters by EPA	A / Standard Method	s							
% Moisture	8.0	0.1	%	1	P9J2403	10/24/19	10/24/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P9J2401	10/24/19	10/30/19	TPH 8015M	
>C12-C28	115	27.2	mg/kg dry	1	P9J2401	10/24/19	10/30/19	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P9J2401	10/24/19	10/30/19	TPH 8015M	
Surrogate: 1-Chlorooctane		107 %	70-1.	30	P9J2401	10/24/19	10/30/19	TPH 8015M	
Surrogate: o-Terphenyl		131 %	70-1.	30	P9J2401	10/24/19	10/30/19	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	115	27.2	mg/kg dry	1	[CALC]	10/24/19	10/30/19	calc	

M Ramp Floor #3A Comp.

9J23006-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmei	ntal Lab, 1	L.P.				
General Chemistry Parameters by EPA /	Standard Method	S							
% Moisture	9.0	0.1	%	1	P9J2403	10/24/19	10/24/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 l	oy EPA Method 80	15M							
C6-C12	ND	27.5	mg/kg dry	1	P9J2404	10/24/19	10/30/19	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P9J2404	10/24/19	10/30/19	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P9J2404	10/24/19	10/30/19	TPH 8015M	
Surrogate: 1-Chlorooctane		119 %	70-1	30	P9J2404	10/24/19	10/30/19	TPH 8015M	
Surrogate: o-Terphenyl		129 %	70-1	30	P9J2404	10/24/19	10/30/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.5	mg/kg dry	1	[CALC]	10/24/19	10/30/19	calc	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9J2403 - *** DEFAULT PREP ***										
				Prepared &	a Analyzed	d: 10/24/1	9			
% Moisture	ND	0.1	%							
Duplicate (P9J2403-DUP1)	Sou	rce: 9J23001-	09	Prepared &	a Analyzed	1: 10/24/1	9			
% Moisture	8.0	0.1	%		8.0			0.00	20	
Duplicate (P9J2403-DUP2)	Sou	rce: 9J23006-	03	Prepared &	a Analyzed	1: 10/24/1	9			
% Moisture	8.0	0.1	%		8.0			0.00	20	
Duplicate (P9J2403-DUP3)	Sou	rce: 9J23006-	05	Prepared &	z Analyzed	1: 10/24/1	9			
% Moisture	10.0	0.1	%	-	9.0			10.5	20	
Batch P9J2807 - *** DEFAULT PREP ***										
Blank (P9J2807-BLK1)				Prepared:	10/28/19	Analyzed:	10/29/19			
Chloride	ND	0.100	mg/kg wet							
LCS (P9J2807-BS1)				Prepared:	10/28/19	Analyzed:	10/29/19			
Chloride	436	1.00	mg/kg wet	400		109	80-120			
LCS Dup (P9J2807-BSD1)				Prepared:	10/28/19	Analyzed:	10/29/19			
Chloride	442	1.00	mg/kg wet	1		110	80-120	1.25	20	
Calibration Blank (P9J2807-CCB1)				Prepared:	10/28/19	Analyzed:	10/29/19			
Chloride	0.00		mg/kg wet	1						
Calibration Blank (P9J2807-CCB2)				Prepared:	10/28/19	Analyzed:	10/29/19			
	0.00		mg/kg wet	1		<i>J</i>				

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source	e	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J2807 - *** DEFAULT PREP ***										
Calibration Check (P9J2807-CCV1)				Prepared:	10/28/19	Analyzed:	10/29/19			
Chloride	21.2		mg/kg	20.0		106	0-200			
Calibration Check (P9J2807-CCV2)				Prepared:	10/28/19	Analyzed:	10/29/19			
Chloride	20.5		mg/kg	20.0		103	0-200			
Calibration Check (P9J2807-CCV3)				Prepared:	10/28/19	Analyzed:	10/30/19			
Chloride	20.9		mg/kg	20.0		105	0-200			
Matrix Spike (P9J2807-MS1)	Sou	rce: 9J22005	-04	Prepared:	10/28/19	Analyzed:	10/29/19			
Chloride	1190	11.2	mg/kg dry	1120	2.84	105	80-120			
Matrix Spike (P9J2807-MS2)	Sou	rce: 9J22005	-13	Prepared:	10/28/19	Analyzed:	10/30/19			
Chloride	745	5.38	mg/kg dry	538	223	97.2	80-120			
Matrix Spike Dup (P9J2807-MSD1)	Sou	rce: 9J22005	-04	Prepared:	10/28/19	Analyzed:	10/29/19			
Chloride	1140	11.2	mg/kg dry	1120	2.84	101	80-120	4.32	20	
Matrix Spike Dup (P9J2807-MSD2)	Sou	rce: 9J22005	-13	Prepared:	10/28/19	Analyzed:	10/30/19			
Chloride	765	5.38	mg/kg dry	538	223	101	80-120	2.66	20	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J2401 - TX 1005										
Blank (P9J2401-BLK1)				Prepared:	10/24/19 A	nalyzed: 10)/30/19			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	70.4		"	50.0		141	70-130			<i>S-G</i> (
LCS (P9J2401-BS1)				Prepared:	10/24/19 A	nalyzed: 10)/30/19			
C6-C12	895	25.0	mg/kg wet	1000		89.5	75-125			
>C12-C28	1010	25.0	"	1000		101	75-125			
Surrogate: 1-Chlorooctane	110		"	100		110	70-130			
Surrogate: o-Terphenyl	58.9		"	50.0		118	70-130			
LCS Dup (P9J2401-BSD1)				Prepared:	10/24/19 A	nalyzed: 10)/30/19			
C6-C12	883	25.0	mg/kg wet	1000		88.3	75-125	1.34	20	
>C12-C28	994	25.0	"	1000		99.4	75-125	1.89	20	
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	58.5		"	50.0		117	70-130			
Calibration Blank (P9J2401-CCB1)				Prepared:	10/24/19 A	nalyzed: 10)/30/19			
C6-C12	0.00		mg/kg wet							
>C12-C28	0.00		"							
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	62.7		"	50.0		125	70-130			
Calibration Blank (P9J2401-CCB2)				Prepared:	10/24/19 A	nalyzed: 10)/30/19			
C6-C12	0.00		mg/kg wet			•				
>C12-C28	0.00									
Surrogate: 1-Chlorooctane	109		"	100		109	70-130			
Surrogate: o-Terphenyl	65.7		"	50.0		131	70-130			S-G0

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J2401 - TX 1005										
Calibration Check (P9J2401-CCV1)				Prepared:	10/24/19 A	nalyzed: 10)/30/19			
C6-C12	490	25.0	mg/kg wet	500		97.9	85-115			
>C12-C28	549	25.0	"	500		110	85-115			
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	60.8		"	50.0		122	70-130			
Calibration Check (P9J2401-CCV2)				Prepared:	10/24/19 A	nalyzed: 10)/30/19			
C6-C12	506	25.0	mg/kg wet	500		101	85-115			
>C12-C28	557	25.0	"	500		111	85-115			
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	63.4		"	50.0		127	70-130			
Matrix Spike (P9J2401-MS1)	Sour	ce: 9J23004	-02	Prepared:	10/24/19 A	nalyzed: 10)/30/19			
C6-C12	882	26.0	mg/kg dry	1040	ND	84.7	75-125			
>C12-C28	964	26.0	"	1040	ND	92.5	75-125			
Surrogate: 1-Chlorooctane	111		"	104		106	70-130			
Surrogate: o-Terphenyl	50.0		"	52.1		96.1	70-130			
Matrix Spike Dup (P9J2401-MSD1)	Sour	ce: 9J23004	-02	Prepared:	10/24/19 A	nalyzed: 10)/30/19			
C6-C12	901	26.0	mg/kg dry	1040	ND	86.5	75-125	2.12	20	
>C12-C28	978	26.0	"	1040	ND	93.9	75-125	1.46	20	
Surrogate: 1-Chlorooctane	101		"	104		96.8	70-130			
Surrogate: o-Terphenyl	50.1		"	52.1		96.2	70-130			
Batch P9J2404 - TX 1005										
Blank (P9J2404-BLK1)				Prepared:	10/24/19 A	nalyzed: 10	0/30/19			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							

140

70.0

"

,,

0.00

0.00

Surrogate: 1-Chlorooctane

Surrogate: o-Terphenyl

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

70-130

70-130

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J2404 - TX 1005										
LCS (P9J2404-BS1)				Prepared:	10/24/19 A	nalyzed: 10	/30/19			
C6-C12	ND	25.0	mg/kg wet	1000			75-125			
>C12-C28	ND	25.0	"	1000			75-125			
Surrogate: 1-Chlorooctane	0.00		"	100			70-130			
Surrogate: o-Terphenyl	0.00		"	50.0			70-130			
LCS Dup (P9J2404-BSD1)				Prepared:	10/24/19 A	nalyzed: 10	/30/19			
C6-C12	ND	25.0	mg/kg wet	1000			75-125		20	
>C12-C28	ND	25.0	"	1000			75-125		20	
Surrogate: 1-Chlorooctane	0.00		"	100			70-130			
Surrogate: o-Terphenyl	0.00		"	50.0			70-130			
Calibration Blank (P9J2404-CCB1)				Prepared:	10/24/19 A	nalyzed: 10	/30/19			
C6-C12	0.00		mg/kg wet							
>C12-C28	0.00		"							
Surrogate: 1-Chlorooctane	0.00		"	100			70-130			
Surrogate: o-Terphenyl	0.00		"	50.0			70-130			
Calibration Check (P9J2404-CCV1)				Prepared:	10/24/19 A	nalyzed: 10	/30/19			
C6-C12	ND	25.0	mg/kg wet	500			85-115			
>C12-C28	ND	25.0	"	500			85-115			
Surrogate: 1-Chlorooctane	0.00		"	100			70-130			
Surrogate: o-Terphenyl	0.00		"	50.0			70-130			
Calibration Check (P9J2404-CCV2)				Prepared:	10/24/19 A	nalyzed: 10	/30/19			
C6-C12	ND	25.0	mg/kg wet	500			85-115			
>C12-C28	ND	25.0	"	500			85-115			
Surrogate: 1-Chlorooctane	0.00		"	100			70-130			
Surrogate: o-Terphenyl	0.00		"	50.0			70-130			

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J2404 - TX 1005										
Matrix Spike (P9J2404-MS1)	Sour	ce: 9J24001-	-04	Prepared: 1	10/24/19 A	nalyzed: 10	/30/19			
C6-C12	ND	25.0	mg/kg dry	1000	ND		75-125			
>C12-C28	ND	25.0		1000	ND		75-125			
Surrogate: 1-Chlorooctane	0.00		"	100			70-130			
Surrogate: o-Terphenyl	0.00		"	50.0			70-130			
Matrix Spike Dup (P9J2404-MSD1)	Sour	ce: 9J24001-	-04	Prepared:	10/24/19 A	nalyzed: 10	/30/19			
C6-C12	ND	25.0	mg/kg dry	1000	ND		75-125		20	
>C12-C28	ND	25.0	"	1000	ND		75-125		20	
Surrogate: 1-Chlorooctane	0.00		"	100			70-130			
Surrogate: o-Terphenyl	0.00		"	50.0			70-130			

Notes and Definitions

S-GC	Surrogate recovery outside of control limits.	The data was accepted based on valid r	ecovery of the remaining surrogate.

- ROI Received on Ice
- BULK Samples received in Bulk soil containers
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Sun Barron

Report Approved By:

10/30/2019

Date:

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Relinquished by:	Relinquished by:	Reinquished by:	Special Ins					Č					LAB # (lab use only)	ORDER #:	(lab use only)		'n		0.	0	O (P	
í by:	I by:	N N	Special Instructions: Bill to Plains						M Ranp Floor #2A Comp	M Ramp Floor #1A Comp.	M Ramp WS2-A	M Ramp ES3-A	PEL	4022004		ampici Ognataio.	Samnler Signafure:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	A 749 KG FS
Date	Date							comp.	Comp.	comp.			FIELD CODE			0000	Aart	(432)5207720	Midland/TX/79705	10 Desta Drive Suite 150E	TRC Environmental Corporation	Curt Stanley	Спніл
										-		-	Beginning Depth]			1	\$		150E	orporation		
Time	Time	lime						-					Ending Depth	-			N				-		
Received by PBEL	Received by:	Received by:						BLOZ7Z701.	10/22/2019	10/22/2019	10/22/2019	10/22/2019	Date Sampled										כחאות טר כטיז טעד הבכטהע אועע אועאב דאוא הבעטבי ז Permian Basi 10014 S. Cou Midland. Tex
								14:20	14:15	14:10	12:35	12:30	Time Sampled				e-mail·	Fax No:					
									T		1		Field Filtered		100								Nid Mid
				┣—	┝╌╢			- - -	_				Total #. of Containers	+	ssta a		ndstanlev@tro						י אבעעבטי Permian Basin Environmenta 10014 S. County Road 1213 Midland. Texas 79706
				 				-				1	HNO ₃	Pres	algroves@p tanley@trcsc	Š	20	1		1			Cou Tex
h						_		-	╈	- -	\uparrow	1	нсі	Preservation &			ž D				-		as
$ \mathfrak{Y} $													H₂SO₄	on &	rc Q	<u></u>	Ť	ļ					nvironn / Road 79706
				<u> </u>	Ľ.								NaOH	# of C	oaa olu		2			ĺ		'	nme d 12
				<u> </u>				+		+	_	<u> </u>	Na ₂ S ₂ O ₃	of Containers	tion.		t: S						ntal 13
21	j.								+		+	┼──	None Other (Specify)	ners	<u>paalp.com</u> olutions.com	aalp.com	20				}		nmental Lab, LP Id 1213 I6
P 23-P	Date	Date				-		+-			-	-	DW=0rinking Water SL=Sludge	┢	В.	baalp.com	n n	I	I		1	1	Ŀ
		<u> </u>	1					U.	S	S	S	S	GW = Groundwater S≍Soil/Solid NP=Non-Potable Specify Other	Matrix		-	-	Report Format:				ש	
Time	Time	lime				_		┥	×	×	×			158		Г		a T		Proj	υ	rojec	
1 C A 2 A		ត								\bot	1	1	TPH: TX 1005 TX 1006	_	1			rma	פ	Project Loc:	Project #:	Project Name:	
by Couner? UPS D Temperature Upon Receipt Received: U. C. C. C. Fac	San	Cus	San										Cations (Ca, Mg, Na, K)]				PO #	ŝ	.#	me:	
sted	Sample Hand Delivered by Sampler/Client Rep. ?	els o	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?										Anions (Ci, SO4, Alkalinity)		TOTAL:	1		X					
ature	tody seals on cooler(s) nple Hand Delivered by Sampler/Client Rep. ?	Seal	Coa Vory	<u> </u>	\square			_		╇			SAR / ESP / CEC		TCLP:			Standard			ļ		σ
᠕ᡱ᠌	d De	Is on	Com Com	<u> </u>	┝	_		-	+		+		Metals: As Ag Ba Cd Cr Pb Hg	Se	╞╌┼╴┨	Ana		dard			~		hon
⊇xٍ ک	ent F	Con	men adsp	\vdash	$\left - \right $	\neg	-+-		+		+-	╢	Volatiles Semivolatiles	-	$\left + \right $	Analvze		_			loor		e 4
ိုင်း ကို ကို ဂို	ep.	taine	iace	 	┝─┤	_		┿	+	┿	+	+	BTEX 6021B/5030 or BTEX 82	80	x	3				Lea	e S	Mor	32-6
CEIPT: DHL	·>	Ч(S)						+	╈	+-	+	1-	RCI							Cour	wee	ore	۲. 10
q ≓ ~								\top	+	1-	\top	1	N.O.R.M.	_				TRRP		Lea County, NM	Η	Moore Sweet	Phone: 432-661-4184
CF1	((Labels on container(s) Custody seals on container(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?									×	Chlorides E 300	_						ξ	Moore Sweet Historical	Ĕ	-
	Y		- 1868 I -										Paint Filter								Ca		гаде
	- B2																	-	1				يد
<u>∫</u>	zzz	N	zz			_				_			TCLP Benzene RUSH TAT (Pro-Schodule) 24,	_				NPDES					e 2 01

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Curt Stanley TRC Solutions- Midland, Texas 10 Desta Dr STE 150E Midland, TX 79705

Project: Moore Sweet Project Number: Moore Sweet Historical Location: Lea County, NM

Lab Order Number: 9J25005

NELAP/TCEQ # T104704516-17-8

Report Date: 10/31/19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
South Stockpile	9J25005-01	Soil	10/23/19 11:50	10-25-2019 12:08
North Stockpile	9J25005-02	Soil	10/23/19 12:00	10-25-2019 12:08

South Stockpile 9J25005-01 (Soil)

			000 01 (501	,					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Pern	nian Basin E	Invironmen	ital Lab, I	P.				
Organics by GC									
Benzene	ND	0.00106	mg/kg dry	1	P9J2504	10/25/19	10/25/19	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P9J2504	10/25/19	10/25/19	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P9J2504	10/25/19	10/25/19	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P9J2504	10/25/19	10/25/19	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P9J2504	10/25/19	10/25/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		97.0 %	75-1	25	P9J2504	10/25/19	10/25/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		89.9 %	75-1	25	P9J2504	10/25/19	10/25/19	EPA 8021B	
General Chemistry Parameters by EPA	A / Standard Method	ls							
Chloride	209	1.06	mg/kg dry	1	P9J3010	10/30/19	10/31/19	EPA 300.0	
% Moisture	6.0	0.1	%	1	P9J2802	10/28/19	10/28/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 80	015M							
C6-C12	ND	26.6	mg/kg dry	1	P9J2513	10/25/19	10/28/19	TPH 8015M	
>C12-C28	74.6	26.6	mg/kg dry	1	P9J2513	10/25/19	10/28/19	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P9J2513	10/25/19	10/28/19	TPH 8015M	
Surrogate: 1-Chlorooctane		80.5 %	70-1	30	P9J2513	10/25/19	10/28/19	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-1	30	P9J2513	10/25/19	10/28/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	74.6	26.6	mg/kg dry	1	[CALC]	10/25/19	10/28/19	calc	

Permian Basin Environmental Lab, L.P.

Г

Project: Moore Sweet Project Number: Moore Sweet Historical Project Manager: Curt Stanley

٦

North Stockpile

9J25005-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin E	Cnvironmer	ntal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00103	mg/kg dry	1	P9J2504	10/25/19	10/25/19	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P9J2504	10/25/19	10/25/19	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P9J2504	10/25/19	10/25/19	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P9J2504	10/25/19	10/25/19	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P9J2504	10/25/19	10/25/19	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		102 %	75-1	25	P9J2504	10/25/19	10/25/19	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		106 %	75-1	25	P9J2504	10/25/19	10/25/19	EPA 8021B	
General Chemistry Parameters by EF	PA / Standard Method	ls							
Chloride	164	1.03	mg/kg dry	1	P9J3010	10/30/19	10/31/19	EPA 300.0	
% Moisture	3.0	0.1	%	1	P9J2802	10/28/19	10/28/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80)15M							
C6-C12	ND	25.8	mg/kg dry	1	P9J2513	10/25/19	10/28/19	TPH 8015M	
>C12-C28	50.9	25.8	mg/kg dry	1	P9J2513	10/25/19	10/28/19	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P9J2513	10/25/19	10/28/19	TPH 8015M	
Surrogate: 1-Chlorooctane		89.1 %	70-1	30	P9J2513	10/25/19	10/28/19	TPH 8015M	
Surrogate: o-Terphenyl		111 %	70-1	30	P9J2513	10/25/19	10/28/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	50.9	25.8	mg/kg dry	1	[CALC]	10/25/19	10/28/19	calc	

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting	 .	Spike	Source	0.77-	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J2504 - General Preparation (GC)										
Blank (P9J2504-BLK1)				Prepared &	Analyzed:	10/25/19				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.143		"	0.120		120	75-125			
Surrogate: 1,4-Difluorobenzene	0.128		"	0.120		107	75-125			
LCS (P9J2504-BS1)				Prepared &	Analyzed:	10/25/19				
Benzene	0.102	0.00100	mg/kg wet	0.100		102	70-130			
Toluene	0.109	0.00100	"	0.100		109	70-130			
Ethylbenzene	0.119	0.00100	"	0.100		119	70-130			
Xylene (p/m)	0.206	0.00200	"	0.200		103	70-130			
Xylene (o)	0.0966	0.00100	"	0.100		96.6	70-130			
Surrogate: 1,4-Difluorobenzene	0.123		"	0.120		102	75-125			
Surrogate: 4-Bromofluorobenzene	0.127		"	0.120		106	75-125			
LCS Dup (P9J2504-BSD1)				Prepared &	Analyzed:	10/25/19				
Benzene	0.0985	0.00100	mg/kg wet	0.100		98.5	70-130	3.37	20	
Toluene	0.105	0.00100	"	0.100		105	70-130	3.58	20	
Ethylbenzene	0.108	0.00100	"	0.100		108	70-130	9.45	20	
Xylene (p/m)	0.208	0.00200	"	0.200		104	70-130	0.647	20	
Xylene (o)	0.110	0.00100	"	0.100		110	70-130	13.1	20	
Surrogate: 1,4-Difluorobenzene	0.120		"	0.120		100	75-125			
Surrogate: 4-Bromofluorobenzene	0.106		"	0.120		88.0	75-125			
Calibration Blank (P9J2504-CCB1)				Prepared &	Analyzed:	10/25/19				
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.132		"	0.120		110	75-125			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	75-125			

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source	0/55-	%REC		RPD	37
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J2504 - General Preparation (GC)										
Calibration Blank (P9J2504-CCB3)				Prepared: 1	0/25/19 A	nalyzed: 10	/26/19			
Benzene	0.00		mg/kg wet							
Toluene	0.00		"							
Ethylbenzene	0.00		"							
Xylene (p/m)	0.00		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.112		"	0.120		93.0	75-125			
Surrogate: 4-Bromofluorobenzene	0.125		"	0.120		105	75-125			
Calibration Check (P9J2504-CCV1)				Prepared &	Analyzed:	10/25/19				
Benzene	0.109	0.00100	mg/kg wet	0.100		109	80-120			
Toluene	0.113	0.00100	"	0.100		113	80-120			
Ethylbenzene	0.119	0.00100		0.100		119	80-120			
Xylene (p/m)	0.213	0.00200	"	0.200		106	80-120			
Xylene (o)	0.117	0.00100	"	0.100		117	80-120			
Surrogate: 1,4-Difluorobenzene	0.135		"	0.120		113	75-125			
Surrogate: 4-Bromofluorobenzene	0.115		"	0.120		96.1	75-125			
Calibration Check (P9J2504-CCV3)				Prepared: 1	0/25/19 A	nalyzed: 10	/26/19			
Benzene	0.101	0.00100	mg/kg wet	0.100		101	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120			
Xylene (p/m)	0.186	0.00200	"	0.200		93.1	80-120			
Xylene (o)	0.105	0.00100	"	0.100		105	80-120			
Surrogate: 4-Bromofluorobenzene	0.132		"	0.120		110	75-125			
Surrogate: 1,4-Difluorobenzene	0.138		"	0.120		115	75-125			
Matrix Spike (P9J2504-MS1)	Sou	urce: 9J25001	-01	Prepared: 1	0/25/19 A	nalyzed: 10	/26/19			
Benzene	0.0784	0.00104	mg/kg dry	0.104	ND	75.2	80-120			QM-0
Toluene	0.0745	0.00104	"	0.104	ND	71.5	80-120			QM-0
Ethylbenzene	0.0676	0.00104	"	0.104	ND	64.9	80-120			QM-0
Xylene (p/m)	0.0981	0.00208	"	0.208	ND	47.1	80-120			QM-0
Xylene (o)	0.0486	0.00104		0.104	ND	46.6	80-120			QM-0
Surrogate: 1,4-Difluorobenzene	0.122		"	0.125		97.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.104		"	0.125		83.1	75-125			

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P9J2504 - General Preparation (GC)

Matrix Spike Dup (P9J2504-MSD1)	Sour	ce: 9J25001	-01	Prepared: 1	0/25/19 A	nalyzed: 10	0/26/19			
Benzene	0.0805	0.00104	mg/kg dry	0.104	ND	77.2	80-120	2.65	20	QM-05
Toluene	0.0794	0.00104	"	0.104	ND	76.3	80-120	6.39	20	QM-05
Ethylbenzene	0.0920	0.00104	"	0.104	ND	88.3	80-120	30.5	20	QM-05
Xylene (p/m)	0.135	0.00208	"	0.208	ND	64.6	80-120	31.4	20	QM-05
Xylene (o)	0.0662	0.00104	"	0.104	ND	63.5	80-120	30.7	20	QM-05
Surrogate: 4-Bromofluorobenzene	0.114		"	0.125		91.2	75-125			
Surrogate: 1,4-Difluorobenzene	0.137		"	0.125		109	75-125			

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J2802 - *** DEFAULT PREP ***										
Blank (P9J2802-BLK1)				Prepared &	Analyzed:	10/28/19				
% Moisture	ND	0.1	%							
Duplicate (P9J2802-DUP1)	Sour	-ce: 9J25004-	16	Prepared &	Analyzed:	10/28/19				
% Moisture	2.0	0.1	%		2.0			0.00	20	
Duplicate (P9J2802-DUP2)	Sour	ce: 9J25009-	10	Prepared &	Analyzed:	10/28/19				
% Moisture	5.0	0.1	%		6.0			18.2	20	
Batch P9J3010 - *** DEFAULT PREP ***										
Blank (P9J3010-BLK1)				Prepared &	Analyzed:	10/30/19				
Chloride	ND	0.100	mg/kg wet							
LCS (P9J3010-BS1)				Prepared &	Analyzed:	10/30/19				
Chloride	424	1.00	mg/kg wet	400		106	80-120			
LCS Dup (P9J3010-BSD1)				Prepared &	Analyzed:	10/30/19				
Chloride	418	1.00	mg/kg wet	400		105	80-120	1.45	20	
Calibration Blank (P9J3010-CCB1)				Prepared &	Analyzed:	10/30/19				
Chloride	0.00		mg/kg wet	*						
Calibration Blank (P9J3010-CCB2)				Prepared:	0/30/19 A	nalyzed: 10	/31/19			
Chloride	0.00		mg/kg wet							
Calibration Check (P9J3010-CCV1)				Prepared &	Analyzed:	10/30/19				
Chloride	19.8		mg/kg	20.0		98.9	0-200			

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J3010 - *** DEFAULT PREP ***										
Calibration Check (P9J3010-CCV2)				Prepared:	10/30/19 A	nalyzed: 10	/31/19			
Chloride	19.7		mg/kg	20.0		98.6	0-200			
Calibration Check (P9J3010-CCV3)				Prepared:	10/30/19 A	nalyzed: 10	/31/19			
Chloride	18.8		mg/kg	20.0		93.8	0-200			
Matrix Spike (P9J3010-MS1)	Sour	ce: 9J30005-	-01	Prepared &	Analyzed:	10/30/19				
Chloride	1560	11.6	mg/kg dry	1160	402	99.4	80-120			
Matrix Spike (P9J3010-MS2)	Sour	ce: 9J25001-	-02	Prepared:	10/30/19 A	nalyzed: 10	/31/19		RPD Limit Note 3.77 20 2.14 20	
Chloride	17700	54.9	mg/kg dry	5490	12400	97.4	80-120			
Matrix Spike Dup (P9J3010-MSD1)	Sour	ce: 9J30005-	-01	Prepared &	Analyzed:	10/30/19				
Chloride	1500	11.6	mg/kg dry	1160	402	94.5	80-120	3.77	20	
Matrix Spike Dup (P9J3010-MSD2)	Sour	ce: 9J25001-	-02	Prepared:	10/30/19 A	nalyzed: 10	/31/19			
Chloride	17300	54.9	mg/kg dry	5490	12400	90.6	80-120	2.14	20	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
7 mary 6	Kesult	Liiliit	Onits	Level	Result	/0ICLC	Linits	ΝD	Linin	ivotes
Batch P9J2513 - TX 1005										
Blank (P9J2513-BLK1)				Prepared:	0/25/19 Ai	nalyzed: 10	/28/19			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	96.8		"	100		96.8	70-130			
Surrogate: o-Terphenyl	57.8		"	50.0		116	70-130			
LCS (P9J2513-BS1)				Prepared: 1	10/25/19 Ai	nalyzed: 10	/28/19			
C6-C12	1090	25.0	mg/kg wet	1000		109	75-125			
>C12-C28	1180	25.0	"	1000		118	75-125			
Surrogate: 1-Chlorooctane	110		"	100		110	70-130			
Surrogate: o-Terphenyl	57.6		"	50.0		115	70-130			
LCS Dup (P9J2513-BSD1)				Prepared: 1	10/25/19 Ai	nalyzed: 10	/28/19			
C6-C12	1070	25.0	mg/kg wet	1000		107	75-125	2.38	20	
>C12-C28	1170	25.0	"	1000		117	75-125	0.608	20	
Surrogate: 1-Chlorooctane	107		"	100		107	70-130			
Surrogate: o-Terphenyl	56.2		"	50.0		112	70-130			
Calibration Blank (P9J2513-CCB1)				Prepared: 1	10/25/19 Ai	nalyzed: 10	/28/19			
C6-C12	19.8		mg/kg wet							
>C12-C28	22.4		"							
Surrogate: 1-Chlorooctane	99.9		"	100		99.9	70-130			
Surrogate: o-Terphenyl	59.3		"	50.0		119	70-130			
Calibration Blank (P9J2513-CCB2)	Prepared: 10/25/19 Analyzed: 10/28/19									
C6-C12	23.0		mg/kg wet	*						
>C12-C28	18.2									
Surrogate: 1-Chlorooctane	98.1		"	100		98.1	70-130			
Surrogate: o-Terphenyl	58.7		"	50.0		117	70-130			

Permian Basin Environmental Lab, L.P.

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9J2513 - TX 1005										
Calibration Check (P9J2513-CCV1)				Prepared:	10/25/19 A	nalyzed: 10)/28/19			
C6-C12	541	25.0	mg/kg wet	500		108	85-115			
>C12-C28	536	25.0	"	500		107	85-115			
Surrogate: 1-Chlorooctane	98.2		"	100		98.2	70-130			
Surrogate: o-Terphenyl	54.4		"	50.0		109	70-130			
Calibration Check (P9J2513-CCV2)	Prepared: 10/25/19 Analyzed: 10/28/19									
C6-C12	527	25.0	mg/kg wet	500		105	85-115			
>C12-C28	547	25.0	"	500		109	85-115			
Surrogate: 1-Chlorooctane	95.7		"	100		95.7	70-130			
Surrogate: o-Terphenyl	53.2		"	50.0		106	70-130			
Calibration Check (P9J2513-CCV3)				Prepared:	10/25/19 A	nalyzed: 10)/28/19			
C6-C12	523	25.0	mg/kg wet	500		105	85-115			
>C12-C28	558	25.0	"	500		112	85-115			
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	58.5		"	50.0		117	70-130			
Matrix Spike (P9J2513-MS1)	Sour	ce: 9J25006	-04	Prepared:	10/25/19 A	nalyzed: 10)/28/19			
C6-C12	7170	145	mg/kg dry	1160	1820	460	75-125			QM-0
>C12-C28	7570	145	"	1160	4260	285	75-125			QM-07
Surrogate: 1-Chlorooctane	145		"	116		125	70-130			
Surrogate: o-Terphenyl	70.5		"	58.1		121	70-130			
Matrix Spike Dup (P9J2513-MSD1)	Sour	ce: 9J25006	-04	Prepared:	10/25/19 A	nalyzed: 10)/28/19			
C6-C12	7230	145	mg/kg dry	1160	1820	465	75-125	1.03	20	QM-07
>C12-C28	10500	145	"	1160	4260	536	75-125	61.3	20	QM-07
Surrogate: 1-Chlorooctane	145		"	116		125	70-130			
Surrogate: o-Terphenyl	65.1		"	58.1		112	70-130			

Permian Basin Environmental Lab, L.P.

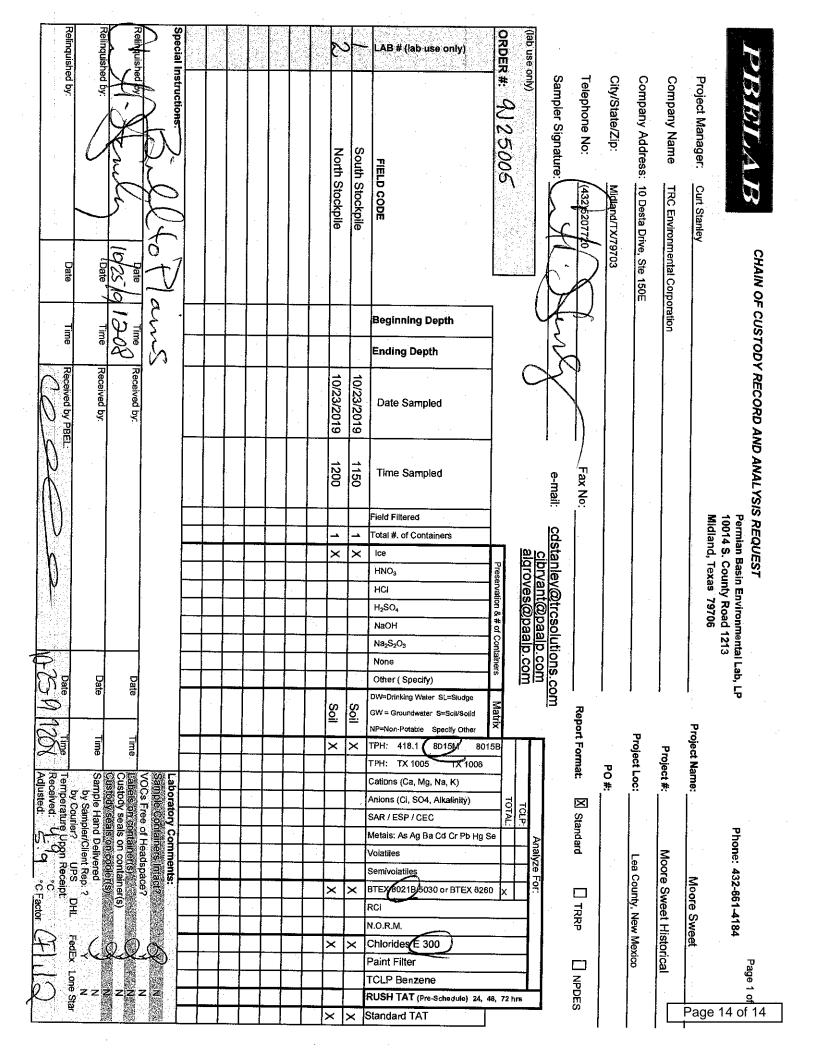
Notes and Definitions

ROI	Received on Ice
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
BULK	Samples received in Bulk soil containers
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Date: 10/31/2019

Brent Barron, Laboratory Director/Technical Director


This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

un Barron

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Permian Basin Environmental Lab, L.P.

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Revised Analytical Report

Prepared for:

Curt Stanley TRC Solutions- Midland, Texas 10 Desta Dr STE 150E Midland, TX 79705

Project: Moore Sweet Project Number: Moore Sweet Historical Location: Lea County, NM

Lab Order Number: 9K08002

NELAP/TCEQ # T104704516-17-8

Report Date: 11/14/19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
M Ramp Floor #2B Comp	9K08002-01	Soil	11/07/19 11:05	11-07-2019 16:20
MS-F2 @ 14'	9K08002-02	Soil	11/07/19 09:30	11-07-2019 16:20

M Ramp Floor #2B Comp 9K08002-01 (Soil)

				<i>,</i>					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Perm	ian Basin F	Invironmen	tal Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Method	S							
% Moisture	16.0	0.1	%	1	P9K1202	11/12/19	11/12/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 l	oy EPA Method 80	15M							
C6-C12	ND	29.8	mg/kg dry	1	P9K0806	11/08/19	11/11/19	TPH 8015M	
>C12-C28	ND	29.8	mg/kg dry	1	P9K0806	11/08/19	11/11/19	TPH 8015M	
>C28-C35	ND	29.8	mg/kg dry	1	P9K0806	11/08/19	11/11/19	TPH 8015M	
Surrogate: 1-Chlorooctane		113 %	70-13	30	P9K0806	11/08/19	11/11/19	TPH 8015M	
Surrogate: o-Terphenyl		117 %	70-13	80	P9K0806	11/08/19	11/11/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	29.8	mg/kg dry	1	[CALC]	11/08/19	11/11/19	calc	

MS-F2 @ 14'

9K08002-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin F	nvironmen	tal Lab, I	L.P.				
General Chemistry Parameters by EPA	/ Standard Methods								
% Moisture	9.0	0.1	%	1	P9K1202	11/12/19	11/12/19	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 801	5M							
C6-C12	ND	27.5	mg/kg dry	1	P9K0806	11/08/19	11/11/19	TPH 8015M	
>C12-C28	38.3	27.5	mg/kg dry	1	P9K0806	11/08/19	11/11/19	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P9K0806	11/08/19	11/11/19	TPH 8015M	
Surrogate: 1-Chlorooctane		114 %	70-13	80	P9K0806	11/08/19	11/11/19	TPH 8015M	
Surrogate: o-Terphenyl		121 %	70-13	80	P9K0806	11/08/19	11/11/19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	38.3	27.5	mg/kg dry	1	[CALC]	11/08/19	11/11/19	calc	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9K1202 - *** DEFAULT PREP ***										
Blank (P9K1202-BLK1)				Prepared &	Analyzed:	11/12/19				
% Moisture	ND	0.1	%							
Duplicate (P9K1202-DUP1)	Sou	rce: 9K08011-	12	Prepared &	Analyzed:	11/12/19				
% Moisture	7.0	0.1	%		20.0			96.3	20	
Duplicate (P9K1202-DUP2)	Sou	rce: 9K08006-	04	Prepared &	Analyzed:	11/12/19				
% Moisture	18.0	0.1	%		6.0			100	20	
Duplicate (P9K1202-DUP3)	Sou	rce: 9K08012-	24	Prepared &	Analyzed:	11/12/19				
% Moisture	11.0	0.1	%		9.0			20.0	20	
Duplicate (P9K1202-DUP4)	Sou	rce: 9K08019-	01	Prepared &	Analyzed:	11/12/19				
% Moisture	14.0	0.1	%		15.0			6.90	20	
Duplicate (P9K1202-DUP5)	Sou	rce: 9K08023-	18	Prepared &	Analyzed:	11/12/19				
% Moisture	5.0	0.1	%		11.0			75.0	20	
Duplicate (P9K1202-DUP6)	Source: 9K11001-06			Prepared &	Analyzed:	11/12/19				
% Moisture	3.0	0.1	%		3.0			0.00	20	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9K0806 - TX 1005										
Blank (P9K0806-BLK1)				Prepared: 1	1/08/19 A	nalyzed: 11	/10/19			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	113		"	100		113	70-130			
Surrogate: o-Terphenyl	57.9		"	50.0		116	70-130			
LCS (P9K0806-BS1)				Prepared: 1	1/08/19 A	nalyzed: 11	/10/19			
C6-C12	1060	25.0	mg/kg wet	1000		106	75-125			
>C12-C28	1070	25.0	"	1000		107	75-125			
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	53.1		"	50.0		106	70-130			
LCS Dup (P9K0806-BSD1)				Prepared: 1	1/08/19 A	nalyzed: 11	/10/19			
C6-C12	995	25.0	mg/kg wet	1000		99.5	75-125	6.37	20	
>C12-C28	988	25.0	"	1000		98.8	75-125	7.94	20	
Surrogate: 1-Chlorooctane	103		"	100		103	70-130			
Surrogate: o-Terphenyl	51.2		"	50.0		102	70-130			
Calibration Blank (P9K0806-CCB1)				Prepared: 1	1/08/19 A	nalyzed: 11	/10/19			
C6-C12	7.69		mg/kg wet							
>C12-C28	42.0		"							
Surrogate: 1-Chlorooctane	122		"	100		122	70-130			
Surrogate: o-Terphenyl	60.6		"	50.0		121	70-130			
Calibration Blank (P9K0806-CCB2)				Prepared: 1	1/08/19 A	nalyzed: 11	/11/19			
C6-C12	9.12		mg/kg wet	-						
>C12-C28	53.9		"							
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	61.7		"	50.0		123	70-130			

Permian Basin Environmental Lab, L.P.

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9K0806 - TX 1005										
Calibration Check (P9K0806-CCV1)				Prepared: 1	1/08/19 A	nalyzed: 11	/10/19			
C6-C12	562	25.0	mg/kg wet	500		112	85-115			
>C12-C28	563	25.0	"	500		113	85-115			
Surrogate: 1-Chlorooctane	107		"	100		107	70-130			
Surrogate: o-Terphenyl	53.5		"	50.0		107	70-130			
Calibration Check (P9K0806-CCV2)				Prepared: 1	1/08/19 A	nalyzed: 11	/11/19			
C6-C12	524	25.0	mg/kg wet	500		105	85-115			
>C12-C28	558	25.0	"	500		112	85-115			
Surrogate: 1-Chlorooctane	101		"	100		101	70-130			
Surrogate: o-Terphenyl	52.4		"	50.0		105	70-130			
Calibration Check (P9K0806-CCV3)				Prepared: 1	1/08/19 A	nalyzed: 11	/11/19			
C6-C12	561	25.0	mg/kg wet	500		112	85-115			
>C12-C28	556	25.0	"	500		111	85-115			
Surrogate: 1-Chlorooctane	108		"	100		108	70-130			
Surrogate: o-Terphenyl	55.3		"	50.0		111	70-130			
Matrix Spike (P9K0806-MS1)	Sour	ce: 9K08004	4-02	Prepared: 1	1/08/19 A	nalyzed: 11	/11/19			
C6-C12	987	27.2	mg/kg dry	1090	ND	90.8	75-125			
>C12-C28	921	27.2	"	1090	14.0	83.5	75-125			
Surrogate: 1-Chlorooctane	102		"	109		93.5	70-130			
Surrogate: o-Terphenyl	52.9		"	54.3		97.3	70-130			
Matrix Spike Dup (P9K0806-MSD1)	Sour	ce: 9K08004	4-02	Prepared: 1	1/08/19 A	nalyzed: 11	/11/19			
C6-C12	996	27.2	mg/kg dry	1090	ND	91.7	75-125	0.974	20	
>C12-C28	960	27.2	"	1090	14.0	87.0	75-125	4.21	20	
Surrogate: 1-Chlorooctane	102		"	109		94.3	70-130			
Surrogate: o-Terphenyl	53.9		"	54.3		<i>99.2</i>	70-130			

Permian Basin Environmental Lab, L.P.

Notes and Definitions

ROI	Received	on	Ice
ROI	Received	on	Ice

- BULK Samples received in Bulk soil containers
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

un Barron

Report Approved By:

Date:

11/14/2019

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

EDILARIS CHANNOF CUSTODY RECORD AUDAMAL'ISS RECUEST mena bain Environment I.a. LP Environment II.a. LP Environment III.a. LP Environment III.a. LP	Special Instru Bill t Reinquished by Relinquished by				4	-0	2	-	LAB # (lab use only)	ORDER #:	(lab use only)							P
CHAIN OF CUSTOOV RECORD AND ANALYSE RECUEST regional tank to find the information tank to find the inf	Special Instructions: Bill to Plains Reinquished by: Relinquished by:				8		8	M Ramp Floor #2B Comp	FIELD COD	R# 9K08002	only)	Sampler Signature	-					BELAB
Init Revironmental Lab, LP Project 1213 Moore Sweet Project 1213 Project 1213 Project 1213 Moore Sweet Project 1213 Project 1213 Moore Sweet Project 1213 Project 1213 Moore Sweet Project 1213 Moore Sweet Project 1213 Project 1213 Moore Sweet Project 1213 Project 1213 Moore Sweet Project 1213	the la				Charl						(M. Ster	207720	d/TX/79705	sta Drive Suite 150E	invironmental Corporation	tanley	CHAIN OF CUS
Init Revironmental Lab, LP Project 1213 Project 1213<	ne 00								Ending Depth		~	8	K					TOD
Init Revironmental Lab, LP Project 1213 Moore Sweet Project 1213 Project 1213 Project 1213 Moore Sweet Project 1213 Project 1213 Moore Sweet Project 1213 Project 1213 Moore Sweet Project 1213 Moore Sweet Project 1213 Project 1213 Moore Sweet Project 1213 Project 1213 Moore Sweet Project 1213	Received by: Received by: Received by PBE				11/7/2019	11/7/2019	11/7/2019	11/7/2019	Date Sampled		C	X						Y RECORD AN
Init Revironmental Lab, LP Project 1213 Project 1213<	Blednor				950	940	930	1105	Time Sampled			e-mail:	Fax No:					D ANALYSIS
Init Rovironmental Lab, LP Project Name: Moore Sweet Historical Project Name: La County, NM Pro	S Y	\vdash	+	_			1.1				10	10						RE Perm 1001
as 7976 Project Name: Moore Sweet Historical Project Name: La County, NM Project Name: Nather Stable Section Project Name:	A	┝─┾─	+				1.00	-		+	S ala	dsta						QUI Nian 4 S.
as 7976 Project Name: Moore Sweet Historical Project Name: Noore Sweet Historical Project Name: Moore Sweet Status Project Name: Moore Sweet Status Noore Moore Sweet Status Noore Marker Status Noore Satur Noore Satus Noore Marker Status <td>Y</td> <td>-+</td> <td>+</td> <td></td> <td>H^</td> <td>ŕ</td> <td>f</td> <td>ŕ</td> <td></td> <td>Pre</td> <td>inle</td> <td>anle</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>EST Basi Col</td>	Y	-+	+		H^	ŕ	f	ŕ		Pre	inle	anle						EST Basi Col
Project Name: Moore Sweet Project Name: Noore Sweet Project Name: Moore Sweet Project Name: Noore Sweet Project Name:						+	+	+		serva	Va	yan						in Er unty
Project Name: Moore Sweet Project Name: Nore Sweet Project Name: Pr						+	+	\vdash	H ₂ SO ₄	tion 8	sa	terra						Roi 797
Project Name: Moore Sweet Project Name: Nore Sweet Project Name: Pr	10.32					+	1		NaOH	# of	sol	paa						ad 1
Project Name: Moore Sweet Project Name: Nore Sweet Project Name: No									Na ₂ S ₂ O ₃	Cont	utio	alp						enta 213
Project Name: Moore Sweet Project Name: Nore Sweet Project Name: No	11								None	ainers	ns.	COL						La
Project Name: Moore Sweet Project Name: Nore Sweet Project Name: No	Date Date	\vdash	\rightarrow		\square	_	-			Ц	S I	IT CO						,, ,,
Project Name: Moore Sweet Project Loc: Moore Sweet Historical Project Loc: Laboratory Comments: Norre Sweet Historical Po#: Po#: Moore Sweet Historical Po#: Laboratory Comments: Standard TRRP NPDES Norre Sweet Historical Norre Sweet Historical NPDES Po#: Cations (Cl, SO4, Alkalinity) Laboratory Comments: Norre Sweet Historical NPDES Norre Sweet Historical Norre Sweet Historical NPDES NPDES NPDES Norre Sweet Historical Norre Sweet Historical NPDES NPDES Norre Sweet Historical Norre Sweet Historical Norre Sweet Historical Norre Sweet Historical Norre Sweet Historical NPDES Nore Received Addition State Norre Sweet His	19					0	0	0		Ma	В	IB	R					12
Analyze For: Analyze For: An							0	ľ	All faithers a strategies	trix			por		-		Pro	ATA
Analyze For: Analyze For: An	Tim						×	×	TPH: 418.1 8015M 80	015B			t Fo		roje	P	oject	ACK
Anions (Calions (Ca, Mg, Na, K) Moore Sweet Historical Moore Sweet Historical Moore Sweet Historical Moore Sweet Head Delivered Moore Sweet Historical Moore Sweet Historical Moore Sweet Historical Moore Sweet His									TPH: TX 1005 TX 1006				rmat	P	ect L	ojec	t Na	NG
BTEX 8021B/5030 or BTEX 8260 x I A Oore Sweet Historical Ore Sweet Historical RCI N.O.R.M. DHL Paint Filter V V V	Lab San VOQ VOQ Cus Cus Cus Cus San San Ten								Cations (Ca, Mg, Na, K)				IT	#	C	#	me:	X
BTEX 8021B/5030 or BTEX 8260 x I A Oore Sweet Historical Ore Sweet Historical RCI N.O.R.M. DHL Paint Filter V V V	orat nple Cs F Cs F Cs F Cs F Cs F Cs F Cs F Cs F								Anions (CI, SO4, Alkalinity)		510							(NX)
BTEX 8021B/5030 or BTEX 8260 x F ACounty, NM RCI N.O.R.M. Chlorides E 300 Y	Con Sea Sea Sea Sea Sea Sea Sea Sea Sea Sea			_					No fourier and the second s		A P		Stan					AB.
BTEX 8021B/5030 or BTEX 8260 x I A Oore Sweet Historical Ore Sweet Historical RCI N.O.R.M. DHL Paint Filter V V V	Corr taine taine b of He ls or ls or		+	_		+	-			Se	_	Ana	Idaro					hon
BTEX 8021B/5030 or BTEX 8260 x I A Oore Sweet Historical Ore Sweet Historical RCI N.O.R.M. DHL Paint Filter V V V	nme ers li ner(n con n con con n con n con con n con n con n con con n con con con con con con con con con con		+	_		-	-	-		_	-	alyze	4			Moc		Ie: 4
OHL RCI RCI eet Historical N.O.R.M. N.O.R.M. Chlorides E 300 CH Chlorides E 300 V V	nts: pace pace s) ntain ntain ntain pler(PS PS	\vdash	+	_		+-	+	-		000	-	For			Lea	re	Mo	\$32-
Page 2 of 2 N.O.R.M. N.O.R.M. N.O.R.M. N.O.R.M. ND	e? e? e? s) s) s) bpt: D	\vdash	+	_		+-	-	-	0.00	00	<	2			Cot	Swe	ore	661.
Peder Chlorides E 300 NP Paint Filter NP NP NP <t< td=""><td>C H</td><td>\vdash</td><td>+</td><td>_</td><td></td><td>+</td><td>+-</td><td>-</td><td></td><td></td><td></td><td></td><td>RRF</td><td></td><td>unty.</td><td>et H</td><td>Sw</td><td>418</td></t<>	C H	\vdash	+	_		+	+-	-					RRF		unty.	et H	Sw	418
Image: State of state	st z	 -	++			+-	+-	-		_			0		MN	listo	leet	4
Image: State of the state o	Marxxxxxx		++		\vdash	+	+	+								orica		P
RUPH TAT Preschedule) 48, 72 hrs	Lo		+		×	×							NF.			The second secon		age
	ne z z z z z z						85	Dia		48, 1	72 hrs	Ч	DE					2 of
Page 9 of 9	ar		++			1	X	X	Standard TAT	1	2.		S			1	Page	

Appendix F Request for Approval to Accept Solid Waste (NMOCD Form C-138) District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

PRINT NAME:

SIGNATURE:

Kimber

lindials

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

*Surface Waste Management Facility Operator and Generator shall maintain and make this documentation available for Division inspection.

DENIED (Must Be Maintained As Permanent Record)

TELEPHONE NO .: 575-347-04.34

MI DATE: 1/2-18

REQUEST FOR APPROVAL TO ACCEPT SOLID WASTE
1. Generator Name and Address:
Plains Marketing, LP 505 Big Spring St, Suite 600
Midland, Texas 79701
2. Originating Site: Magna Support Historical
Moore Sweet Historical
3. Location of Material (Street Address, City, State or ULSTR): UL "A&H", Sec. 13, T11S, R32E
4. Source and Description of Waste:
Waste was generated due to a crude oil release.
Estimated Volume $2,500$ yd ³ / bbls Known Volume (to be entered by the operator at the end of the haul) yd ³ / bbls
5. GENERATOR CERTIFICATION STATEMENT OF WASTE STATUS
I, <u>Amber Groves</u> , representative or authorized agent for <u>Plains Marketing, LP</u> do hereby
certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988
regulatory determination, the above described waste is: (Check the appropriate classification)
RCRA Exempt: Oil field wastes generated from oil and gas exploration and production operations and are not mixed with non- exempt waste. Operator Use Only: Waste Acceptance Frequency Image: Monthly Image: Per Load
RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24, or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items)
🗆 MSDS Information 🛛 RCRA Hazardous Waste Analysis 🗆 Process Knowledge 🗆 Other (Provide description in Box 4)
GENERATOR 19.15.36.15 WASTE TESTING CERTIFICATION STATEMENT FOR LANDFARMS
I, Amber Groves , representative for Plains Marketing, LP do hereby certify that
representative samples of the oil field waste have been subjected to the paint filter test and tested for chloride content and that the samples
have been found to conform to the specific requirements applicable to landfarms pursuant to Section 15 of 19.15.36 NMAC. The results
of the representative samples are attached to demonstrate the above-described waste conform to the requirements of Section 15 of 19.15.36 NMAC.
5. Transporter: Gandy, Corp.
OCD Permitted Surface Waste Management Facility
Name and Facility Permit #: Gandy Marley, Inc. – NMOCD Permit #NM-1-019
Address of Facility: Section 4, T11S, R31E
Method of Treatment and/or Disposal:
Evaporation Injection Treating Plant Landfarm 🔀 Landfill Other
Waste Acceptance Status:

TITLE:

APPROVED