SITE INFORMATION

	F	Report Type:	Work Plan	1RP-	5238					
General Site Info	ormation:									
Site:		Wilder 28 Federal #1H Release								
Company:			ConocoPhillips							
Section, Towns	hip and Range		Unit Letter A Sec. 28 T 26S R 32E							
Lease Number:		Associated API No. 30-025-40261								
County:		Lea	Lea							
GPS:			32.019299°			-103.674393°				
Surface Owner:		Federal (BLM								
Mineral Owner:		N/A	()) () () () () () () () () () () () ()	,	NIN (400 (
Directions:			()			r 30 miles. Turn left onto Or				
		Arrive at location			Sattle Axe R	d. Head east for 1.7 miles.				
		Arrive at location	n on the right.							
		1								
Release Data:				1						
Date Released:		10/10/2018								
Type Release:	. ,.	Produced Wate								
Source of Contar	mination:	Illegal dumping								
Fluid Released: Fluids Recovered	4.	12.67 bbl 0 bbl								
riulus Recovered	1.									
Official Commu					1					
Name:	Marvin Soriwei				Christian M.	. Llull				
Company:	Conoco Phillips - R	RMR			Tetra Tech					
Address:	935 N. Eldridge Pk	wy.			8911 North Capital of Texas Highway					
	832-486-2730				Building 2, S	Suite 2310				
City:	Houston, Texas 77	079			Austin, Texa					
Phone number:	(832) 486-2730				(512) 338-2861					
Fax:										
Email:	Marvin.Soriwei@co	onocophillips.com			christian.llu	ull@tetratech.com				
			•		1					

Site Characterization	
Shallowest Depth to Groundwater:	239' below surface
Impact to groundwater or surface water:	No
Extents within 300 feet of a watercourse:	No
Extents within 200 feet of lakebed, sinkhole, or playa lake:	No
Extents within 300 feet of an occupied structure:	No
Extents within 500 horizontal feet of a private water well:	No
Extents within 1000 feet of any water well or spring:	No
Extents within incorporated municipal well field:	No
Extents within 300 feet of a wetland:	No
Extents overlying a subsurface mine:	No
Karst Potential:	High
Extents within a 100-year floodplain:	No
Impact to areas not on a production site:	No

Recommended Remedial Action Levels (RRALs)									
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides					
10 mg/kg	50 mg/kg		100 mg/kg	600 mg/kg					

April 6, 2020

Rick Rickman District Supervisor Oil Conservation Division, District 1 1625 N. French Dr. Hobbs, NM 88240

Re: Release Characterization Work Plan ConocoPhillips Wilder 28 Federal #1H Release Unit Letter A, Section 28, Township 26 South, Range 32 East Lea County, New Mexico 1RP-5238 Incident ID NOY1828949839

Dear Mr. Rickman:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips to assess a release that occurred on the Wilder 28 Federal #1H well pad (API No. 30-025-40261), Unit Letter A, Section 28, Township 26 South, Range 32 East, in Lea County, New Mexico (Site). The release coordinates are 32.019299°, -103.674393°. The Site is located near the Lea/Eddy County line and the Texas state border, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), the release was discovered on October 10, 2018. As documented on the C-141 form, a truck illegally dumped contents of load on the ConocoPhillips Wilder 28 Federal Well #1 pad location. Upon arrival to site, the crew working in the area identified the release and discovered a depression in the ground with tire tracks that was consistent with the dump valve on a water hauler. The tire tread observed did not match any of the trucks located on site. The release was calculated at 12.67 barrels of produced water. Based on observations made on the ground and corroborated by drone aerial photographs taken by COP shortly following the release, the release extent was limited to the caliche pad (Figure 3). The New Mexico Oil Conservation District (NMOCD) was notified of the release in a voicemail on October 11, 2018, received the initial C-141 on October 16, 2018, and subsequently assigned the Site the Remediation Permit (RP) number 1RP-5238. The Incident ID for this release is NOY1828949839.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. However, the site is in an area with high karst potential.

There are no water wells listed in Section 28, Township 26 South, Range 32 East on the New Mexico Office of the State Engineer (NMOSE) database. The average depth to groundwater in Township 26 South, Range 32 East is 239 ft below ground surface (bgs). Site characterization data are included as Appendix B.

Release Characterization Work Plan April 6, 2020

ConocoPhillips

REGULATORY FRAMEWORK

A risk-based evaluation was performed for the Site in accordance with the NMOCD to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil. Based on the high potential for karst at the Site, the RRALs for the Site are as follows:

CONSTITUENT	RRAL
Chloride (0 – 4 ft bgs)	600 mg/kg
TPH (GRO+DRO+MRO)	100 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

SITE ASSESSMENT

Tetra Tech, Inc. (Tetra Tech) initially visited the Site on July 19, 2019 to visually observe the release extent, assess the impacted area, and conduct field screenings of the surface soil to distinguish the release extent. Several areas within the release footprint were screened for chlorides using an ExStik EC400 meter. Screening results exceeded 10,000 ppm at all five soil screening locations. The initial observed release extent and screening locations are shown on Figure 3.

On February 4 and February 7, 2020, Tetra Tech conducted soil sampling in order to achieve vertical and horizontal delineation of the release. A total of nine borings were installed using an air rotary drilling rig. Boring locations were chosen based on the soil screening results from the Site visit, as shown in Figure 3. A total of 38 soil samples were collected from the nine borings and submitted to Pace Analytical National Center for Testing & Innovation in Nashville, Tennessee (Pace) to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix C.

SUMMARY OF SAMPLING RESULTS

The results of the February 2020 sampling event are summarized in Table 1. The boring locations are shown on Figure 3. Soil screening results from seven of the nine borings indicated chloride concentrations above RRAL of 600 mg/kg for chloride in the upper 0-5 ft bgs. However, the only analytical result above the RRAL for chloride was associated with sample location BH-1 at 0-1 ft bgs. All other chloride analytical results were below the RRAL. Analytical results associated with all the collected samples were below the established RRALs for BTEX and TPH (Table 1).

REMEDIATION WORK PLAN

Based on the visual assessment and soil screening and analytical results, ConocoPhillips proposes to remove impacted material to 1 ft bgs, as shown in Figure 4. Impacted soils will be excavated until a representative sample from the walls and bottom of the excavation is below the RRAL Excavations are proposed to be performed using heavy equipment (backhoes, hoe rams, and track hoes) to a maximum depth of 1 feet below surface within the release area. Excavated soils will be transported offsite and disposed of in an NMOCD approved or permitted facility. Confirmation floor and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX and chloride. Once the sample results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be excavated is 600 cubic yards.

Release Characterization Work Plan April 6, 2020

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The confirmation sampling grid is designed such that each discrete sample (sidewall and floor) will be representative of no more than 500 square ft of excavated area (Figure 4). Based on the proposed excavation extents, the confirmation sampling plan consists of thirty-two (32) floor samples and twenty-nine (29) sidewall samples.

CONCLUSION

ConocoPhillips proposes to complete remediation activities at the Site within 90 days of NMOCD approval of this submittal. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD. If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 338-2861 or Greg at (432) 682-4559.

Sincerely, Tetra Tech, Inc.

Christian M. Llull, P.G. Project Manager

Greg W. Pope, P.G. Program Manager

CC:

Mr. Marvin Soriwei, RMR – ConocoPhillips

Mr. Charles Beauvais, GPBU - ConocoPhillips

ConocoPhillips

Release Characterization Work Plan April 6, 2020

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

Figure 2 – Site Location/Topographic Map

Figure 3 – Release Assessment Map

Figure 4 – Proposed Excavation and Confirmation Sampling Plan

Tables:

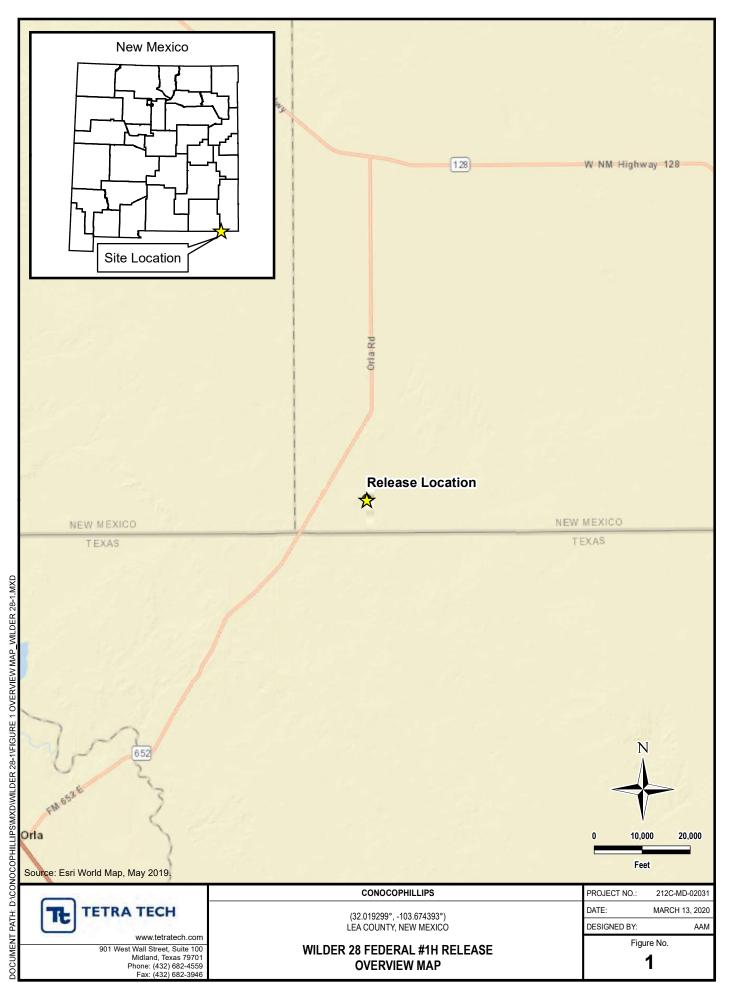
Table 1 – Summary of Analytical Results – Soil Assessment

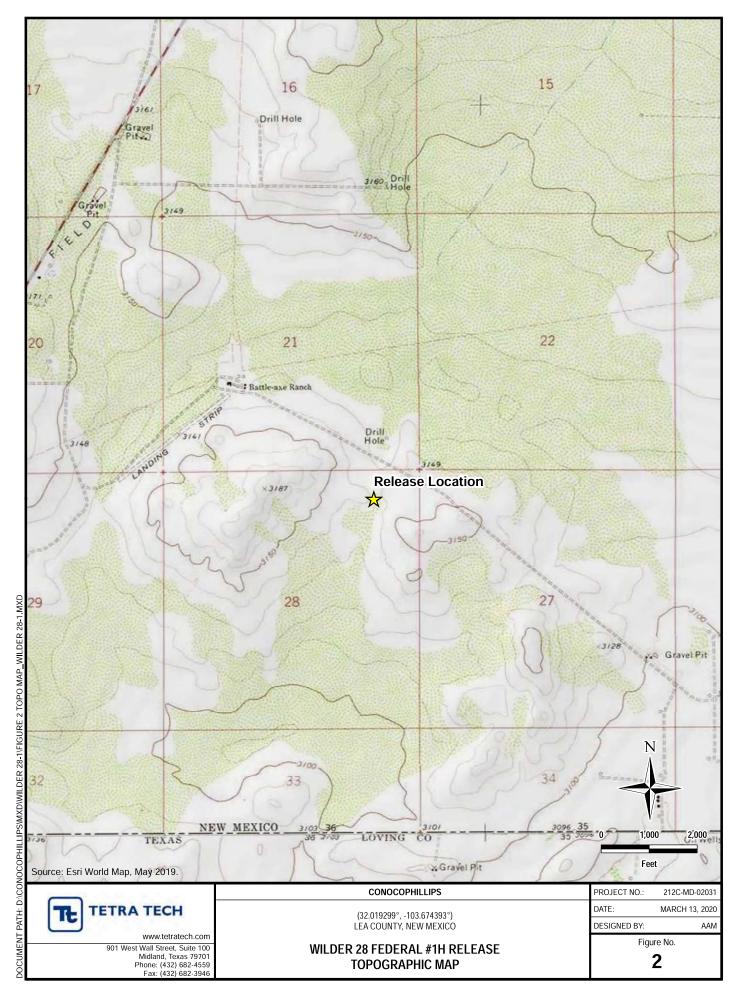
Appendices:

Appendix A – C-141 Form

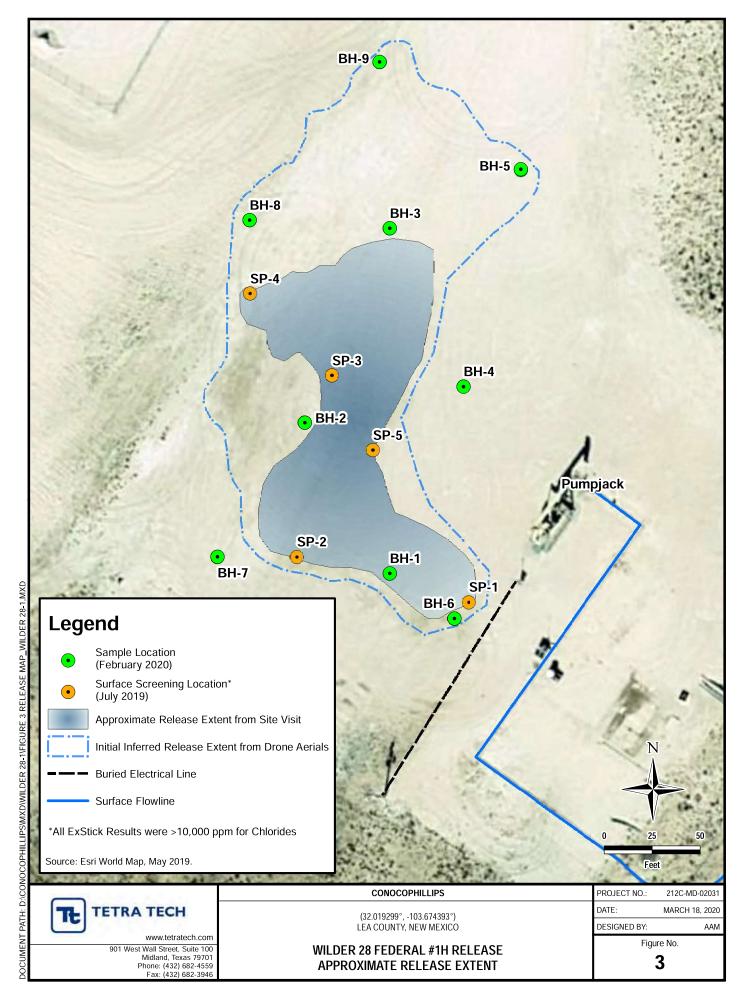
Appendix B – Site Characterization Data

Appendix C – Laboratory Analytical Data

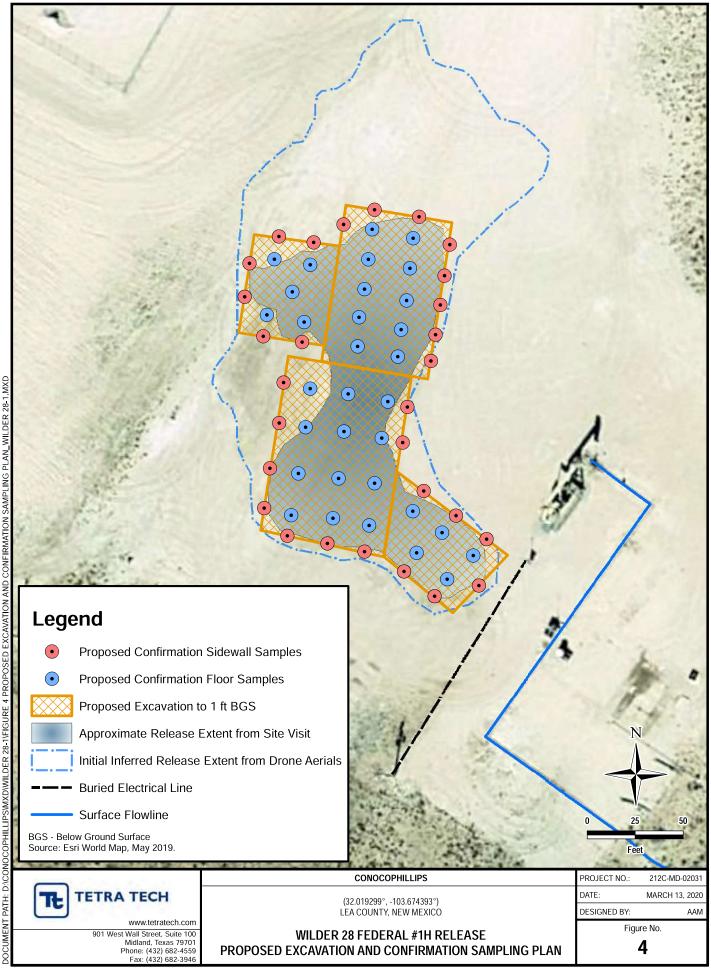

Appendix D – Boring Logs


Page 5 of 109

ConocoPhillips


.

FIGURES



Received by OCD: 4/6/2020 12:21:17 PM

Received by OCD: 4/6/2020 12:21:17 PM

TABLES

Received by OCD: 4/6/2020 12:21:17 PM

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - 1RP-5238 CONOCOPHILLIPS WILDER 28 Federal #1H RELEASE LEA COUNTY, NM

											BTEX ²								TP	H3		
		Sample Interval	Field Screening Results Chloride ¹		oride ¹						GRO ⁴		DRO	DRO ORO		ТРН						
Sample ID	Sample Date		Chloride	PID			Benzene	Benzene Toluene		Ethylbenzene		Total Xylenes		Total BTEX	C1- C10		C10- C28		C28 - C40		C3-C40	
		ft bgs	pp		mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	609	0.9	816	_	0.000486	1	0.00425	1	0.00182	1	0.0123	~	0.0189	0.0311	BJ	< 4.86	~	0.892	BJ	0.923
		2-3	472	1.1	359		< 0.00106		0.00158	J	0.000713	J	< 0.00686		0.00229	0.0430	ВJ	1.97	1	5.66	в	7.67
BH-1	02/04/20	4-5	201	1.2	78.4		< 0.00109		0.00178	J	< 0.00273		< 0.00711		0.00178	0.0453	ВJ	1.95	1	4.33	ВJ	6.33
		6-7	1150	0.2	366		< 0.00115		0.00226	J	< 0.00287		< 0.00746		0.00226	0.0454	ВJ	1.95	1	3.47	ВJ	5.47
		9-10		0.1	414		< 0.00106		0.00159	J	< 0.00265		< 0.00689		0.00159	0.0374	ВJ	< 4.24		2.35	ВJ	2.39
						-		-				-		-			_		-			
		0-1	951 508	0.2	63.4		< 0.00124		0.00217	1	< 0.00309	_	< 0.00804	-	0.00217	0.0479	ΒJ	< 4.95		1.70	B J B	1.75
BH-2	02/04/20		390	1.8	32.7	В	0.000618	1	< 0.00618		< 0.00309		< 0.00803	-	0.000618	< 0.124		< 4.94		6.66	BJ	6.66
BH-2	02/04/20	4-5 6-7	- 390	0.4	73.3		< 0.00117 < 0.00103	_	0.00167	1	< 0.00292	-	< 0.00759	-	0.00167	0.0513	B J B J	< 4.67	-	1.38	BJ	1.43
		9-10		0.9	60.9 HOLD			_		1		-	< 0.00669 HOLD	-	0.00132		R1	< 4.12 HOLD	-	1.07 HOLD	Rl	1.11
		9-10		1.1	HOLD		HOLD		HOLD		HOLD		HOLD			HOLD		HOLD		HOLD		-
		0-1	694	0.9	299		< 0.00107		< 0.00533		< 0.00266		< 0.00693		-	0.0409	ΒJ	< 4.26		7.61	В	7.65
		2-3	252	0.8	65.6		< 0.00116		0.00163	J	< 0.00290		< 0.00755		0.00163	0.0477	ΒJ	< 4.64		4.82	В	4.87
BH-3	02/04/20	4-5	1130	1.3	215		< 0.00119		0.00148	J	< 0.00296		< 0.00771		0.00148	0.0435	ΒJ	< 4.74		5.84	В	5.88
		6-7		0.1	327		< 0.00110		< 0.00551		< 0.00275		< 0.00716		-	0.0420	ΒJ	< 4.41		0.601	ΒJ	0.643
		9-10		0.0	HOLD		HOLD		HOLD		HOLD		HOLD		-	HOLD		HOLD		HOLD		-
		0-1	879	0.2	54.8	1	< 0.00107	_	< 0.00533	1	< 0.00266	-	< 0.00693			0.0386	BJ	< 4.26	-	3.44	ВJ	3.48
		2-3	501	0.1	76.3		< 0.00122	-	< 0.00608	-	< 0.00200	-	< 0.00790			0.0463	BJ	< 4.86	+	< 4.86		0.0463
BH-4	02/04/20	4-5	291	0.6	20.8	в	< 0.00105	-	0.00223		0.000943		< 0.00681		0.00317	0.0423	BI	7.65	-	17.0	B	24.7
		6-7		1.2	9.20	BJ	< 0.00104	-	0.00174	1 i	< 0.00259		< 0.00675		0.00174	0.0422	BJ	< 4.15	-	1.02	BJ	1.06
		9-10		0.3	HOLD		HOLD	-	HOLD		HOLD	-	HOLD		-	HOLD		HOLD	-	HOLD		
						-				_							_		-			
		0-1	209	2.0	38.1		< 0.00126		< 0.00629		< 0.00314		< 0.00818		-	0.0491	ВJ	< 5.03		0.648	ВJ	0.697
		2-3	198	1.1	50.9		< 0.00108		< 0.00542		< 0.00271		< 0.00705		-	0.0421	ВJ	< 4.34		2.23	ВJ	2.27
BH-5	02/04/20	4-5	•	0.8	562		< 0.00111		< 0.00555		< 0.00278		< 0.00722		-	0.0435	ΒJ	< 4.44		2.07	ВJ	2.11
		6-7	-	0.3	499		0.000556	1	< 0.00529		< 0.00265		< 0.00688		0.000556	< 0.106		< 4.23		1.27	1	1.27
		9-10	•	0.1	HOLD		HOLD		HOLD		HOLD		HOLD		-	HOLD		HOLD		HOLD		-
	1	0-1	698	1.5	121		< 0.00121		< 0.00606		< 0.00303		< 0.00787		-	< 0.121		2.82	1	10.4		13.2
		2-3	453	1.1	60.8		< 0.00109		< 0.00545		< 0.00272		< 0.00708		-	< 0.109		< 4.36		3.61	J	3.61
BH-6	02/07/20	4-5	-	0.9	50.4		< 0.00108		< 0.00541		< 0.00271		< 0.00704		-	< 0.108		< 4.33		0.444	J	0.444
		6-7	225	0.3	44.3		< 0.00110		< 0.00548		< 0.00274		< 0.00712		-	< 0.110		< 4.38		< 4.38		-
		9-10	208	0.5	31.8		< 0.00107		< 0.00534		< 0.00267		< 0.00695		-	< 0.107		< 4.28		< 4.28		-
		0.1	155	0.0	E 10		< 0.00102		< 0.00E1C		< 0.00352	_	< 0.00670	-		< 0.102		2.07		6.42		8.40
		0-1 2-3	- 155	0.9	5.19 21.1	B J B	< 0.00103	-	< 0.00516	-	< 0.00258	-	< 0.00670	-		< 0.103	-	2.07	1,	6.42 3.51		8.49
BH-7	02/07/20	4-5	1080	0.5	21.1	P	< 0.00120	-	< 0.00546	+	< 0.00301	+	< 0.00782	+		< 0.120	-	< 4.81	+	0.360	L'	0.360
	01,07/20	6-7	- 1080	0.9	487		< 0.00109		< 0.00542	-	< 0.00273		< 0.00710			< 0.109		< 4.37	+	< 4.34	<u> </u>	-
		9-10	472	1.1	HOLD		HOLD	-	< 0.00342 HOLD	+	HOLD	-	HOLD	1	-	HOLD	-	HOLD	+	HOLD		
	1									_		_		_								
		0-1	733	1.9	41.8		< 0.00125		< 0.00625		< 0.00312		< 0.00812		-	< 0.125		< 5.00		2.65	1	2.65
		2-3	293	0.8	22.1	В	< 0.00108		< 0.00542		< 0.00271		< 0.00704		-	< 0.108		< 4.34		1.71	ВJ	1.71
BH-8 02/07/20	4-5		0.5	22.3	В	< 0.00112		< 0.00558	-	< 0.00279		< 0.00725		-	< 0.112		< 4.46	-	1.80	ВJ	1.80	
	6-7	350	0.4	28.6	В	< 0.00109		< 0.00546	1	< 0.00273		< 0.00710	L_	-	< 0.109		< 4.37	-	0.939	ВJ	0.939	
	L	9-10	•	0.1	HOLD	L	HOLD		HOLD	1	HOLD	1	HOLD	1		HOLD	1	HOLD		HOLD		
	1	0-1	481	0.2	10.1	ВJ	< 0.00104		< 0.00519	1	< 0.00259		< 0.00674	1	-	< 0.104		2.54	L	12.7		15.2
		2-3	290	0.1	5.67	BJ	< 0.00113		< 0.00566	1	< 0.00283	1	< 0.00735	1	-	< 0.113		2.30	1	9.65	Н	12.0
BH-9	02/07/20	4-5		0.0	124	Ĺ	< 0.00125		< 0.00624	1	< 0.00312	1	< 0.00811	1	-	< 0.125		< 4.99		0.686	ВJ	0.686
		6-7	•	0.9	187	1	< 0.00122		< 0.00611	1	< 0.00305	1	< 0.00794		-	< 0.122		< 4.88		1.27	ВJ	1.27
		9-10		0.5	HOLD		HOLD		HOLD	1	HOLD	1	HOLD	1	-	HOLD	1	HOLD		HOLD		
																					-	

NCTES: ft Feet bgs Below ground surface ppm Parts per million mg/kg Milligrams per kilogram HOLD Hold on laboratory analysis THH Total Pertoleum Hydrocarbons GRO Gasoline range organics DRO Diesel range organics

Bold and Italicked values indicate exceedance of RRALS.
1 Method 3200
2 Method 32008
3 Method 305M
4 Method 305M
20JULITES.
9 The same analyte is found in the associated blank.
J The identification of the analyte is acceptable; the reported value is an estimate.

Page 1 of 1

Page 12 of

APPENDIX A C-141 Forms

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 14 of 109

NOY1828949839					
1RP-5238					
pOY1828947976					

Release Notification

Responsible Party

Responsible Party ConocoPhillips	OGRID 217817				
Contact Name Brandon Davis	Contact Telephone 281-687-2852				
Contact email Brandon.Davis@ConocoPhillips.com	Incident # (assigned by OCD) NOY1828949839				
Contact mailing address 15 W London Rd, Loving, NM					

Location of Release Source

	Longitude <u>-103.674506 W</u> grees to 5 decimal places)
Site Name Wilder 28-1	Site Type Well Pad
Date Release Discovered 10/10/2018	API# (if applicable) 30-025-40261

Unit Letter	Section	Township	Range	County	Federal minerals
Ā	28	268	32E	Lea	

Surface Owner: State X Federal Tribal Private (Name:____

Nature and Volume of Release

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
X Produced Water	Volume Released (bbls) 12.67	Volume Recovered (bbls)
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

Truck illegal dumped contents of load on ConocoPhillips pad location. Upon arrival to site on 10/10/2018 the crew working in the area identified the spill and discovered a depression in the ground with tire tracks that are consistent with the dump valve on a water hauler. Tire tread of the tracks did not match any of the trucks located on site. The spill was calculated at 12.67 barrels of produced water.

rm C-141	State of New Mexico	Incident ID	Page 15 (NOY1828949839
ge 2	Oil Conservation Division	District RP	1RP-5238
~		Facility ID	
		Application ID	pOY1828947976
			<u></u>
Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible	e party consider this a major releas	
🗌 Yes 🖾 No			
		When and hy what means (phone)	amail etc.)?
If YES, was immediate n Brandon Davis called Oli	otice given to the OCD? By whom? To whom? Vivia Yu and left a voicemail on 10/11/2018.	when and by what means (phone,)	sman, etc) /
Dialition Dayib conce of			
	Initial Resp	onse	
The responsible	party must undertake the following actions immediately unle	ess they could create a safety hazard that w	ould result in injury
X The source of the rel	ease has been stopped.		
	as been secured to protect human health and the e	environment.	
	ave been contained via the use of berms or dikes		nent devices.
—			
	ecoverable materials have been removed and ma		
If all the actions describe	ed above have <u>not</u> been undertaken, explain why:		
If all the actions describe	ed above have <u>not</u> been undertaken, explain why:		
If all the actions describe	ed above have <u>not</u> been undertaken, explain why:		
If all the actions describe	ed above have <u>not</u> been undertaken, explain why:		
If all the actions describe	ed above have <u>not</u> been undertaken, explain why:		
Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containme	MAC the responsible party may commence reme a narrative of actions to date. If remedial effor ent area (see 19.15.29.11(A)(5)(a) NMAC), pleas	diation immediately after discover ts have been successfully comple e attach all information needed for	closure evaluation.
Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containme I hereby certify that the info regulations all operators are public health or the environ failed to adequately investi	MAC the responsible party may commence reme a particle of actions to date. If remedial effor	diation immediately after discover ts have been successfully comple e attach all information needed for of my knowledge and understand that ions and perform corrective actions for loes not relieve the operator of liability groundwater, surface water, human he	ted or if the release occurred closure evaluation. pursuant to OCD rules and releases which may endanger y should their operations have ealth or the environment. In
Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containme I hereby certify that the info regulations all operators are public health or the environ faile& to adequately investig addition, OCD acceptance of	MAC the responsible party may commence reme a narrative of actions to date. If remedial effor ent area (see 19.15.29.11(A)(5)(a) NMAC), pleas cormation given above is true and complete to the best e required to report and/or file certain release notificati ment. The acceptance of a C-141 report by the OCD of gate and remediate contamination that pose a threat to of a C-141 report does not relieve the operator of respon	diation immediately after discover ts have been successfully comple e attach all information needed for of my knowledge and understand that ions and perform corrective actions for loes not relieve the operator of liability groundwater, surface water, human he	ted or if the release occurred closure evaluation. pursuant to OCD rules and releases which may endanger y should their operations have ealth or the environment. In
Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containme I hereby certify that the info regulations all operators are public health or the environ faile& to adequately investig addition, OCD acceptance of and/or regulations.	MAC the responsible party may commence reme a narrative of actions to date. If remedial effor ent area (see 19.15.29.11(A)(5)(a) NMAC), pleas cormation given above is true and complete to the best e required to report and/or file certain release notification ment. The acceptance of a C-141 report by the OCD of gate and remediate contamination that pose a threat to of a C-141 report does not relieve the operator of respondent Dayis T	diation immediately after discover ts have been successfully comple e attach all information needed for of my knowledge and understand that ions and perform corrective actions for loes not relieve the operator of liability groundwater, surface water, human he onsibility for compliance with any oth	ted or if the release occurred closure evaluation. pursuant to OCD rules and releases which may endanger y should their operations have ealth or the environment. In
Per 19.15.29.8 B. (4) NM has begun, please attach within a lined containme I hereby certify that the info regulations all operators are public health or the environ faile& to adequately investig addition, OCD acceptance of and/or regulations. Printed Name: <u>Brandon</u>	MAC the responsible party may commence reme a narrative of actions to date. If remedial effor ent area (see 19.15.29.11(A)(5)(a) NMAC), pleas ormation given above is true and complete to the best e required to report and/or file certain release notification ment. The acceptance of a C-141 report by the OCD of gate and remediate contamination that pose a threat to of a C-141 report does not relieve the operator of respondence Davis T	diation immediately after discover ts have been successfully comple e attach all information needed for of my knowledge and understand that ions and perform corrective actions for does not relieve the operator of liability groundwater, surface water, human he onsibility for compliance with any oth Fitle: <u>HSE Specialist</u>	ted or if the release occurred closure evaluation. pursuant to OCD rules and releases which may endanger y should their operations have ealth or the environment. In

Received by: By Olivia Yu at 1:55 pm, Oct 16, 2018

Date: ____

Received by OCD: 4/6/2020 12:21:17 PM Form C-141 State of New Mexico

Oil Conservation Division

Incident ID	NOY1828949839
District RP	1RP-5238
Facility ID	
Application ID	pOY1828947976

Page 16 of 109

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🖌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🖌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🖌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🖌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🖌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🖌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🖌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
 Field data
- **D**ata table of soil contaminant concentration data
- \checkmark Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Soring or excavation logs
- Photographs including date and GIS information
- **Topographic/Aerial maps**
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Received by OCD: 4/6/20	20 12:21:17 PM State of New Mexico			Page 17 of 109
Form C-141			Incident ID	NOY1828949839
Page 4	Oil Conservation Divisi	ion	District RP	1RP-5238
			Facility ID	
			Application ID	pOY1828947976
regulations all operators a public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name: Marvin Signature:		e notifications and perform c the OCD does not relieve the a threat to groundwater, surfa tor of responsibility for comp	orrective actions for rel e operator of liability shace water, human health liance with any other for nager, Risk Manage	eases which may endanger nould their operations have n or the environment. In
OCD Only Received by: Cristina E	ads	Date: 04/06/	2020	

Received by OCD: 4/6/2020 12:21:17 PM Form C-141 State of New Mexico

Page 5

Oil Conservation Division

Incident ID	NOY1828949839
District RP	1RP-5238
Facility ID	
Application ID	pOY1828947976

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

Scaled sitemap with GPS coordinates showing delineation points

Estimated volume of material to be remediated
 Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Defensed Dequests Only Each of the following items must be son	firmed as part of any request for defound of nomediation
<u>Deferral Requests Only</u> : Each of the following items must be con	firmea as part of any request for deferrat of remeatation.
Contamination must be in areas immediately under or around prodeconstruction.	oduction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health	, the environment, or groundwater.
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file c which may endanger public health or the environment. The acceptan liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD a responsibility for compliance with any other federal, state, or local la	ertain release notifications and perform corrective actions for releases nee of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, neceptance of a C-141 report does not relieve the operator of
Printed Name: Marvin Soriwei	Title: Program Manager, Risk Management & Remediation.
Signature:	Date: 4/6/2020
email: marvin.soriwei@conocophillips.com	Telephone: 832-486-2730
OCD Only	
Received by: Cristina Eads	Date: 04/06/2020
Approved \square Approved with Attached Conditions of A	Approval Denied Deferral Approved
Signature: Mulander	Date: 05/08/2020

Incident ID	NOY1828949839
District RP	1RP-5238
Facility ID	
Application ID	pOY1828947976

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

 Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

 A scaled site and sampling diagram as described in 19.15.29.11 NMAC

 Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

 Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

 Description of remediation activities

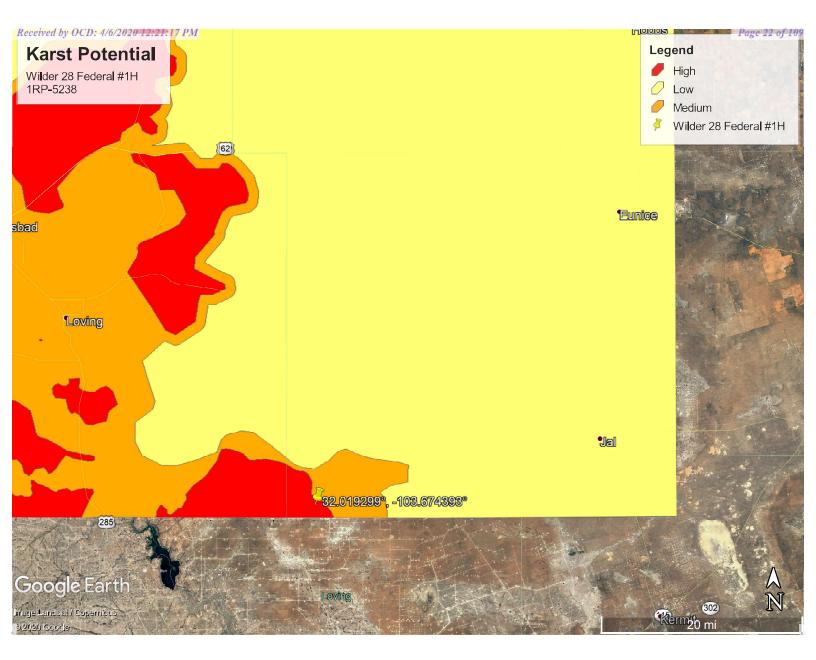
Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible for regulations.
Closure Approved by:	Date:
Printed Name:	Title:

Page 6

APPENDIX B Site Characterization Data

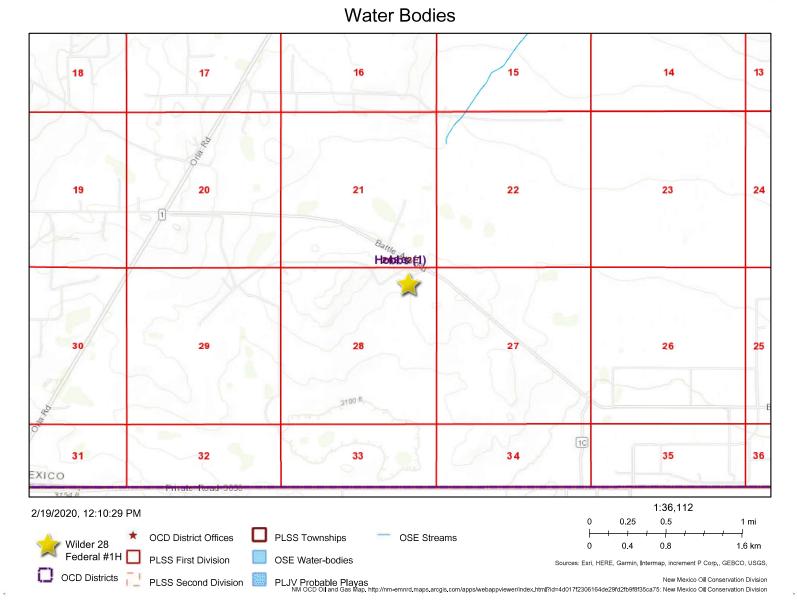
New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a	(R=POD ha been replac O=orphane C=the file is	ed, d,	arters a	are	1=N'	W 2=N	IE 3=SV	V 4=SE)				
water right file.)	closed)	(qua	arters	are	sma	lest to	largest) (NAD8	3 UTM in meters)		(In feet)
	POD		~ ~									
POD Number	Sub Code basi		Q (v 64 1			: Tws	Rng	х	Y		Depth Water	Water Column
C 02271	R CUE				21	26S	-	624449	3544111* 🌍	150	125	25
C 02271 POD2	CUE	B LE	32	3	21	26S	32E	624348	3544010* 🌍	270	250	20
<u>C 02274</u>	CUE	B LE	2 1	2	31	26S	32E	621742	3541730* 🌍	300	295	5
<u>C 02323</u>	С	LE	32	3	21	26S	32E	624348	3544010* 🌍	405	405	0
C 03537 POD1	CUE	B LE	32	3	21	26S	32E	624250	3543985 🌍	850		
C 03595 POD1	CUE	B LE	42	3	21	26S	32E	624423	3544045 🌍	280	180	100
C 03829 POD1	CUE	B LE	33	1	06	26S	32E	620628	3549186 🌍	646	350	296
C 04209 POD1	CUE	B LE	23	3	06	26S	32E	620903	3548619 🌍	360	155	205
C 04209 POD2	С	LE	23	3	06	26S	32E	620818	3548657 🌍	340	155	185
									Average Depth to	Water:	239 fe	eet
									Minimum	Depth:	125 fe	eet
									Maximum	Depth:	405 fe	eet


Record Count: 9

PLSS Search:

Township: 26S Range: 32E


*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Received by OCD: 4/6/2020 12:21:17 PM

APPENDIX C Laboratory Analytical Data

Received by OCD: 4/6/2020 12:21:17 PM

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number:

Description:

Report To:

L1189076 02/13/2020 212C-MD-02031 COP Wilder 28-1 Dumping

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Ср Τс Ss Cn Sr Qc GI AI Sc

Entire Report Reviewed By:

chu, foph June

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0068 More sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: ConocoPhillips - Tetra Tech **PROJECT**: 212C-MD-02031

SDG: L1189076 DATE/TIME: 02/24/20 17:09

PAGE:

1 of 75

Page 25 of 109

Cree Creeser Donne			
Cp: Cover Page			1
Tc: Table of Contents			2
Ss: Sample Summary			4
Cn: Case Narrative			12
Sr: Sample Results			13
BH-1 (0-1') L1189076-01			13
BH-1 (2-3') L1189076-02			14
BH-1 (4-5') L1189076-03			15
BH-1 (6-7') L1189076-04			16
BH-1 (9-10') L1189076-05			17
BH-2 (0-1') L1189076-06			18
BH-2 (2-3') L1189076-07			19
BH-2 (4-5') L1189076-08			20
BH-2 (6-7') L1189076-09			21
BH-3 (0-1') L1189076-10			22
BH-3 (2-3') L1189076-11			23
BH-3 (4-5') L1189076-12			24
BH-3 (6-7') L1189076-13			25
BH-4 (0-1') L1189076-14			26
BH-4 (2-3') L1189076-15			27
BH-4 (4-5') L1189076-16			28
BH-4 (6-7') L1189076-17			29
BH-5 (0-1') L1189076-18			30
BH-5 (2-3') L1189076-19			31
BH-5 (4-5') L1189076-20			32
BH-5 (6-7') L1189076-21			33
BH-6 (0-1') L1189076-22			34
BH-6 (2-3') L1189076-23			35
BH-6 (4-5') L1189076-24			36
BH-6 (6-7') L1189076-25			37
BH-6 (9-10') L1189076-26			38
BH-7 (0-1') L1189076-27			39
BH-7 (2-3') L1189076-28			40
BH-7 (4-5') L1189076-29			41
BH-7 (6-7') L1189076-30			42
BH-8 (0-1') L1189076-31			43
BH-8 (2-3') L1189076-32			44
BH-8 (4-5') L1189076-33			45
BH-8 (6-7') L1189076-34			46
BH-9 (0-1') L1189076-35			47
ACCOUNT:	PROJECT:	SDG:	DATE/TIME:

212C-MD-02031

L1189076

02/24/20 17:09

² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ GI ⁸ AI ⁹ Sc

•

ConocoPhillips - Tetra Tech

BH-9 (2-3') L1189076-36	48
BH-9 (4-5') L1189076-37	49
BH-9 (6-7') L1189076-38	50
Qc: Quality Control Summary	51
Total Solids by Method 2540 G-2011	51
Wet Chemistry by Method 300.0	56
Volatile Organic Compounds (GC) by Method 8015D/GRO	58
Volatile Organic Compounds (GC/MS) by Method 8260B	62
Semi-Volatile Organic Compounds (GC) by Method 8015	65
GI: Glossary of Terms	68
Al: Accreditations & Locations	69
Sc: Sample Chain of Custody	70

ACCOUNT: ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02031

SDG: L1189076 DATE/TIME: 02/24/20 17:09

IME: 17:09 **PAGE**: 3 of 75

ONE LAB. NAT Rage 28 of 109

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

BH-1 (0-1') L1189076-01 Solid			Collected by	Collected date/time 02/04/20 12:00	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427899	1	02/14/20 22:50	02/14/20 22:57	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 15:46	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1427939	1	02/13/20 22:59	02/14/20 18:36	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 11:22	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 19:20	JDG	Mt. Juliet, TN
BH-1 (2-3') L1189076-02 Solid			Collected by	Collected date/time 02/04/20 12:05	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427899	1	02/14/20 22:50	02/14/20 22:57	КВС	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 15:55	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 12:45	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 11:41	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 19:37	JDG	Mt. Juliet, TN
BH-1 (4-5') L1189076-03 Solid			Collected by	Collected date/time 02/04/20 12:10	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1427899	1	02/14/20 22:50	02/14/20 22:57	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 16:05	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 13:05	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 12:00	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 19:54	JDG	Mt. Juliet, TN
BH-1 (6-7') L1189076-04 Solid			Collected by	Collected date/time 02/04/20 12:15	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427899	1	02/14/20 22:50	02/14/20 22:57	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 16:24	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 13:26	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 12:19	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 20:08	JDG	Mt. Juliet, TN
BH-1 (9-10') L1189076-05 Solid			Collected by	Collected date/time 02/04/20 12:20	Received date/time 02/13/20 09:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427899	1	02/14/20 22:50	02/14/20 22:57	КВС	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 16:33	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 13:46	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 12:38	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 20:25	JDG	Mt. Juliet, TN

PROJECT: 212C-MD-02031

SDG: L1189076 DATE/TIME: 02/24/20 17:09 **PAGE**: 4 of 75

ONE LAB. NAT Rage 29 of 109

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

BH-2 (0-1') L1189076-06 Solid			Collected by	Collected date/time 02/04/20 12:30	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1427902	1	02/14/20 18:52	02/14/20 19:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 16:43	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 14:07	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 12:56	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 20:40	JDG	Mt. Juliet, TN
BH-2 (2-3') L1189076-07 Solid			Collected by	Collected date/time 02/04/20 12:35	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427902	1	02/14/20 18:52	02/14/20 19:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 17:11	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1429393	1	02/13/20 22:59	02/18/20 11:49	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 13:15	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 21:29	JDG	Mt. Juliet, TN
BH-2 (4-5') L1189076-08 Solid			Collected by	Collected date/time 02/04/20 12:40	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1427902	1	02/14/20 18:52	02/14/20 19:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 17:21	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 14:48	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 13:34	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 21:46	JDG	Mt. Juliet, TN
BH-2 (6-7') L1189076-09 Solid			Collected by	Collected date/time 02/04/20 12:45	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427902	1	02/14/20 18:52	02/14/20 19:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 17:30	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 15:08	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 13:53	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 22:01	JDG	Mt. Juliet, TN
BH-3 (0-1') L1189076-10 Solid			Collected by	Collected date/time 02/04/20 13:00	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1427902	1	02/14/20 18:52	02/14/20 19:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 17:40	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 15:29	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 14:12	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 22:18	JDG	Mt. Juliet, TN

PROJECT: 212C-MD-02031

SDG: L1189076

DATE/TIME: 02/24/20 17:09

PAGE: 5 of 75

ONE LAB. NAT Rage 30 of 109

Τс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

BH-3 (2-3') L1189076-11 Solid			Collected by	Collected date/time 02/04/20 13:05	Received date/time 02/13/20 09:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427902	1	02/14/20 18:52	02/14/20 19:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 17:50	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 15:50	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 14:31	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 22:34	JDG	Mt. Juliet, TN
BH-3 (4-5') L1189076-12 Solid			Collected by	Collected date/time 02/04/20 13:10	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427902	1	02/14/20 18:52	02/14/20 19:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 18:18	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 16:10	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 14:50	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 22:51	JDG	Mt. Juliet, TN
BH-3 (6-7') L1189076-13 Solid			Collected by	Collected date/time 02/04/20 13:15	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427902	1	02/14/20 18:52	02/14/20 19:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 18:28	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 16:31	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 15:09	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 23:08	JDG	Mt. Juliet, TN
BH-4 (0-1') L1189076-14 Solid			Collected by	Collected date/time 02/04/20 13:30	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427902	1	02/14/20 18:52	02/14/20 19:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 18:37	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 16:51	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 15:28	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 23:24	JDG	Mt. Juliet, TN
BH-4 (2-3') L1189076-15 Solid			Collected by	Collected date/time 02/04/20 13:35	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427902	1	02/14/20 18:52	02/14/20 19:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 19:06	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 17:12	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 15:46	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 23:41	JDG	Mt. Juliet, TN

PROJECT: 212C-MD-02031

SDG: L1189076 DATE/TIME: 02/24/20 17:09 PAGE: 6 of 75

ONE LAB. NATRAGE 31 of 19

Ср

Τс

้Ss

Cn

Sr

Qc

GI

ΆI

Sc

Received by OCD: 4/6/2020 12:21:17 PM	SAMPLE S	SUMN	/ARY		ONE L	LAB. NATK ag
BH-4 (4-5') L1189076-16 Solid			Collected by	Collected date/time 02/04/20 13:40	Received da 02/13/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427903	1	02/14/20 18:35	02/14/20 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 19:15	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 17:32	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 16:42	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/14/20 23:58	JDG	Mt. Juliet, TN
BH-4 (6-7') L1189076-17 Solid			Collected by	Collected date/time 02/04/20 13:45	Received da 02/13/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427903	1	02/14/20 18:35	02/14/20 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 19:25	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 17:53	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 17:01	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/15/20 00:14	JDG	Mt. Juliet, TN
BH-5 (0-1') L1189076-18 Solid			Collected by	Collected date/time 02/04/20 13:00	Received date/time 02/13/20 09:40	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1427903	1	02/14/20 18:35	02/14/20 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 19:34	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 18:14	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 17:19	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/15/20 00:31	JDG	Mt. Juliet, TN
BH-5 (2-3') L1189076-19 Solid			Collected by	Collected date/time 02/04/20 13:05	Received da 02/13/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427903	1	02/14/20 18:35	02/14/20 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429466	1	02/18/20 13:58	02/18/20 19:53	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428015	1	02/13/20 22:59	02/14/20 18:34	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 17:38	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1427771	1	02/14/20 07:17	02/15/20 00:47	JDG	Mt. Juliet, TN
BH-5 (4-5') L1189076-20 Solid			Collected by	Collected date/time 02/04/20 13:10	Received date/time 02/13/20 09:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427903	1	02/14/20 18:35	02/14/20 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 19:54	ST	Mt. Juliet, TN
	WG1428015	1	02/13/20 22:59	02/14/20 18:55	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO					DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1427887	1	02/13/20 22:59	02/14/20 17:57	DWR	ML JUNEL IN

ACCOUNT: ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02031

SDG: L1189076

DATE/TIME: 02/24/20 17:09

PAGE: 7 of 75

ONE LAB. NAT Rage 32 of 109

Τс

Ss

Ċn

Sr

Qc

GI

ΆI

Sc

BH-5 (6-7') L1189076-21 Solid			Collected by	Collected date/time 02/04/20 13:15	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1427903	1	02/14/20 18:35	02/14/20 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 20:12	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 14:53	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428016	1	02/14/20 08:27	02/14/20 12:20	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428660	1	02/15/20 19:29	02/16/20 01:08	KME	Mt. Juliet, TN
BH-6 (0-1') L1189076-22 Solid			Collected by	Collected date/time 02/07/20 10:00	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427903	1	02/14/20 18:35	02/14/20 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1427903 WG1429584	1	02/14/20 18:35	02/19/20 20:22	ST	Mt. Juliet, TN Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1429384 WG1428117	1	02/19/20 17.40	02/14/20 15:16	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 80150/GRO	WG1428016	1	02/14/20 08:27	02/14/20 12:39	DWR	Mt. Juliet, TN Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8005	WG1428660	1	02/15/20 19:29	02/16/20 01:21	KME	Mt. Juliet, TN
BH-6 (2-3') L1189076-23 Solid			Collected by	Collected date/time 02/07/20 10:05	Received date/time 02/13/20 09:40	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1427903	1	02/14/20 18:35	02/14/20 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 20:31	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 15:40	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428016	1	02/14/20 08:27	02/14/20 12:58	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428660	1	02/15/20 19:29	02/16/20 01:34	KME	Mt. Juliet, TN
BH-6 (4-5') L1189076-24 Solid			Collected by	Collected date/time 02/07/20 10:10	Received date/time 02/13/20 09:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427903	1	02/14/20 18:35	02/14/20 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 20:41	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 16:03	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428016	1	02/14/20 08:27	02/14/20 13:17	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428660	1	02/15/20 19:29	02/16/20 09:40	KME	Mt. Juliet, TN
BH-6 (6-7') L1189076-25 Solid			Collected by	Collected date/time 02/07/20 10:15	Received date/time 02/13/20 09:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427903	1	02/14/20 18:35	02/14/20 18:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 20:50	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 16:27	JHH	Mt. Juliet, TN
	WG1428016	1	02/14/20 08:27	02/14/20 13:36	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B						,

PROJECT: 212C-MD-02031

SDG: L1189076 DATE/TIME: 02/24/20 17:09

PAGE: 8 of 75

ONE LAB. NAT Rage 33 of 109

Τс

Ss

Ċn

Sr

Qc

GI

ΆI

Sc

BH-6 (9-10') L1189076-26 Solid			Collected by	Collected date/time 02/07/20 10:20	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1427904	1	02/14/20 18:19	02/14/20 18:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	.8928571	02/19/20 17:40	02/19/20 21:00	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 16:51	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428016	1	02/14/20 08:27	02/14/20 13:55	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428660	1	02/15/20 19:29	02/16/20 02:14	KME	Mt. Juliet, TN
BH-7 (0-1') L1189076-27 Solid			Collected by	Collected date/time 02/07/20 11:00	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427904	1	02/14/20 18:19	02/14/20 18:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 21:28	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 17:15	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428016	1	02/14/20 08:27	02/14/20 14:14	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428660	1	02/15/20 19:29	02/16/20 02:27	KME	Mt. Juliet, TN
BH-7 (2-3') L1189076-28 Solid			Collected by	Collected date/time 02/07/20 11:05	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
include.	Batan	Diration	date/time	date/time	7 mary 50	Location
Total Solids by Method 2540 G-2011	WG1427904	1	02/14/20 18:19	02/14/20 18:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 21:38	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1429384 WG1428117	1	02/13/20 17:40	02/14/20 17:54	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 80150/GKO	WG1428016	1	02/14/20 08:27	02/14/20 14:33	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 2000	WG1428660	1	02/15/20 19:29	02/16/20 02:41	KME	Mt. Juliet, TN
BH-7 (4-5') L1189076-29 Solid			Collected by	Collected date/time 02/07/20 11:10	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427904	1	02/14/20 18:19	02/14/20 18:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 21:47	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 18:18	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428016	1	02/14/20 08:27	02/14/20 14:52	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428660	1	02/15/20 19:29	02/16/20 09:01	KME	Mt. Juliet, TN
BH-7 (6-7') L1189076-30 Solid			Collected by	Collected date/time 02/07/20 11:15	Received date/time 02/13/20 09:40	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	-	
Total Solids by Method 2540 G-2011	WG1427904	1	02/14/20 18:19	02/14/20 18:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 21:57	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 19:06	JHH	Mt. Juliet, TN
	WG1428016	1	02/14/20 08:27	02/14/20 15:11	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B						

PROJECT: 212C-MD-02031

SDG: L1189076

DATE/TIME: 02/24/20 17:09

PAGE: 9 of 75

ONE LAB. NAT Rage 34 of 109

Τс

Ss

Ċn

Sr

Qc

GI

ΆI

Sc

BH-8 (0-1') L1189076-31 Solid			Collected by	Collected date/time 02/07/20 11:20	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427904	1	02/14/20 18:19	02/14/20 18:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 22:07	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 19:30	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428016	1	02/14/20 08:27	02/14/20 15:30	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428660	1	02/15/20 19:29	02/16/20 03:47	KME	Mt. Juliet, TN
BH-8 (2-3') L1189076-32 Solid			Collected by	Collected date/time 02/07/20 12:05	Received da 02/13/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427904	1	02/14/20 18:19	02/14/20 18:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 22:16	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 19:54	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428016	1	02/14/20 08:27	02/14/20 15:49	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428883	1	02/17/20 06:21	02/17/20 15:08	KME	Mt. Juliet, TN
BH-8 (4-5') L1189076-33 Solid			Collected by	Collected date/time 02/07/20 12:10	Received date/time 02/13/20 09:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427904	1	02/14/20 18:19	02/14/20 18:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 22:45	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 20:18	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428016	1	02/14/20 08:27	02/14/20 16:08	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428883	1	02/17/20 06:21	02/17/20 15:20	KME	Mt. Juliet, TN
BH-8 (6-7') L1189076-34 Solid			Collected by	Collected date/time 02/07/20 12:15	Received date/time 02/13/20 09:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427904	1	02/14/20 18:19	02/14/20 18:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 22:54	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 20:42	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428016	1	02/14/20 08:27	02/14/20 16:27	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428883	1	02/17/20 06:21	02/17/20 15:33	KME	Mt. Juliet, TN
BH-9 (0-1') L1189076-35 Solid			Collected by	Collected date/time 02/07/20 13:00	Received date/time 02/13/20 09:40	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1427904	1	02/14/20 18:19	02/14/20 18:32	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 23:23	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 21:58	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428051	1	02/14/20 08:27	02/14/20 15:07	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428883	1	02/17/20 06:21	02/17/20 17:15	KME	Mt. Juliet, TN

PROJECT: 212C-MD-02031

SDG: L1189076 DATE/TIME: 02/24/20 17:09

PAGE: 10 of 75

ONE LAB. NAT Rage 35 of 109

<i>Accived by OCD</i> . 4/0/2020 12.21.17 1 M	SAMPLES	SUMI	VIARY		ONEL	LAB. NA LUAS	
			Collected by	Collected date/time			
BH-9 (2-3') L1189076-36 Solid				02/07/20 13:05	02/13/20 09:40		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1427905	1	02/19/20 09:29	02/19/20 09:41	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 23:32	ST	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 22:22	JHH	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428051	1	02/14/20 08:27	02/14/20 15:27	BMB	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428883	1	02/17/20 06:21	02/17/20 16:49	KME	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
BH-9 (4-5') L1189076-37 Solid				02/07/20 13:10	02/13/20 09	02/13/20 09:40	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1427905	1	02/19/20 09:29	02/19/20 09:41	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 23:42	ST	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 22:46	JHH	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1428051	1	02/14/20 08:27	02/14/20 15:47	BMB	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1428883	1	02/17/20 06:21	02/17/20 15:46	KME	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
BH-9 (6-7') L1189076-38 Solid				02/07/20 13:20	02/13/20 09:40		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
	14/04/10/2005		date/time	date/time	KDW	NAL 1 11. 1 Th	
Total Solids by Method 2540 G-2011	WG1427905	1	02/19/20 09:29	02/19/20 09:41	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 23:51	ST	Mt. Juliet, TN	

Volatile Organic Con Volatile Organic Con Semi-Volatile Organi

	DdlCII	Dilution	Preparation	Andiysis	Andiyst	LOCATION
			date/time	date/time		
thod 2540 G-2011	WG1427905	1	02/19/20 09:29	02/19/20 09:41	KDW	Mt. Juliet, TN
Method 300.0	WG1429584	1	02/19/20 17:40	02/19/20 23:51	ST	Mt. Juliet, TN
ompounds (GC) by Method 8015D/GRO	WG1428117	1	02/14/20 08:27	02/14/20 23:10	JHH	Mt. Juliet, TN
ompounds (GC/MS) by Method 8260B	WG1428051	1	02/14/20 08:27	02/14/20 16:07	BMB	Mt. Juliet, TN
nic Compounds (GC) by Method 8015	WG1428883	1	02/17/20 06:21	02/17/20 15:59	KME	Mt. Juliet, TN

DATE/TIME: 02/24/20 17:09

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ue, fagel s

Chris McCord Project Manager

ACCOUNT: ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02031

SDG: L1189076 DATE/TIME: 02/24/20 17:09

ИЕ: 7:09 PAGE: 12 of 75 Received (b) - 9 SD: 4/6/2020 12:21:17 PM Collected date/time: 02/04/20 12:00

SAMPLE RESULTS - 01

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	82.3		1	02/14/2020 22:57	WG1427899	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	816		0.966	12.2	1	02/18/2020 15:46	WG1429466

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0311	ВJ	0.0264	0.122	1	02/14/2020 18:36	WG1427939
(S) a,a,a-Trifluorotoluene(FID)	95.5			77.0-120		02/14/2020 18:36	WG1427939

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000486	J	0.000486	0.00122	1	02/14/2020 11:22	<u>WG1427887</u>
Toluene	0.00425	J	0.00152	0.00608	1	02/14/2020 11:22	<u>WG1427887</u>
Ethylbenzene	0.00182	J	0.000644	0.00304	1	02/14/2020 11:22	<u>WG1427887</u>
Total Xylenes	0.0123		0.00581	0.00790	1	02/14/2020 11:22	WG1427887
(S) Toluene-d8	102			75.0-131		02/14/2020 11:22	WG1427887
(S) 4-Bromofluorobenzene	90.8			67.0-138		02/14/2020 11:22	WG1427887
(S) 1,2-Dichloroethane-d4	115			70.0-130		02/14/2020 11:22	WG1427887

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.96	4.86	1	02/14/2020 19:20	<u>WG1427771</u>
C28-C40 Oil Range	0.892	ВJ	0.333	4.86	1	02/14/2020 19:20	<u>WG1427771</u>
(S) o-Terphenyl	52.8			18.0-148		02/14/2020 19:20	<u>WG1427771</u>

SDG: L1189076

Received (2-00): 4/6/2020 12:21:17 PM Collected date/time: 02/04/20 12:05

SAMPLE RESULTS - 02

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.7		1	02/14/2020 22:57	WG1427899	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	359		0.839	10.6	1	02/18/2020 15:55	WG1429466	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0430	ВJ	0.0229	0.106	1	02/14/2020 12:45	WG1428015
(S) a,a,a-Trifluorotoluene(FID)	88.1			77.0-120		02/14/2020 12:45	WG1428015

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000422	0.00106	1	02/14/2020 11:41	<u>WG1427887</u>
Toluene	0.00158	J	0.00132	0.00528	1	02/14/2020 11:41	<u>WG1427887</u>
Ethylbenzene	0.000713	J	0.000559	0.00264	1	02/14/2020 11:41	<u>WG1427887</u>
Total Xylenes	U		0.00505	0.00686	1	02/14/2020 11:41	<u>WG1427887</u>
(S) Toluene-d8	104			75.0-131		02/14/2020 11:41	<u>WG1427887</u>
(S) 4-Bromofluorobenzene	88.8			67.0-138		02/14/2020 11:41	<u>WG1427887</u>
(S) 1,2-Dichloroethane-d4	104			70.0-130		02/14/2020 11:41	WG1427887

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.97	J	1.70	4.22	1	02/14/2020 19:37	WG1427771
C28-C40 Oil Range	5.66	B	0.289	4.22	1	02/14/2020 19:37	<u>WG1427771</u>
(S) o-Terphenyl	68.9			18.0-148		02/14/2020 19:37	<u>WG1427771</u>

Received (12-99): 4/6/2020 12:21:17 PM Collected date/time: 02/04/20 12:10

SAMPLE RESULTS - 03 L1189076

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch)
Analyte	%			date / time		2	
Total Solids	91.5		1	02/14/2020 22:57	WG1427899	Tc	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	78.4		0.869	10.9	1	02/18/2020 16:05	WG1429466	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0453	ВJ	0.0237	0.109	1	02/14/2020 13:05	WG1428015	
(S) a,a,a-Trifluorotoluene(FID)	88.8			77.0-120		02/14/2020 13:05	<u>WG1428015</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000437	0.00109	1	02/14/2020 12:00	WG1427887
Toluene	0.00178	J	0.00137	0.00547	1	02/14/2020 12:00	WG1427887
Ethylbenzene	U		0.000579	0.00273	1	02/14/2020 12:00	WG1427887
Total Xylenes	U		0.00523	0.00711	1	02/14/2020 12:00	WG1427887
(S) Toluene-d8	100			75.0-131		02/14/2020 12:00	WG1427887
(S) 4-Bromofluorobenzene	87.6			67.0-138		02/14/2020 12:00	WG1427887
(S) 1,2-Dichloroethane-d4	101			70.0-130		02/14/2020 12:00	WG1427887

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.95	J	1.76	4.37	1	02/14/2020 19:54	WG1427771
C28-C40 Oil Range	4.33	ВJ	0.300	4.37	1	02/14/2020 19:54	<u>WG1427771</u>
(S) o-Terphenyl	74.6			18.0-148		02/14/2020 19:54	<u>WG1427771</u>

SDG: L1189076

Received (b) -990: 4/6/2020 12:21:17 PM Collected date/time: 02/04/20 12:15

SAMPLE RESULTS - 04

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	87.1		1	02/14/2020 22:57	WG1427899	ŤС

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	366		0.912	11.5	1	02/18/2020 16:24	WG1429466

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0454	ВJ	0.0249	0.115	1	02/14/2020 13:26	WG1428015
(S) a,a,a-Trifluorotoluene(FID)	88.4			77.0-120		02/14/2020 13:26	WG1428015

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000459	0.00115	1	02/14/2020 12:19	WG1427887
Toluene	0.00226	J	0.00143	0.00574	1	02/14/2020 12:19	WG1427887
Ethylbenzene	U		0.000608	0.00287	1	02/14/2020 12:19	WG1427887
Total Xylenes	U		0.00549	0.00746	1	02/14/2020 12:19	WG1427887
(S) Toluene-d8	105			75.0-131		02/14/2020 12:19	WG1427887
(S) 4-Bromofluorobenzene	90.7			67.0-138		02/14/2020 12:19	WG1427887
(S) 1,2-Dichloroethane-d4	103			70.0-130		02/14/2020 12:19	WG1427887

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.95	J	1.85	4.59	1	02/14/2020 20:08	WG1427771
C28-C40 Oil Range	3.47	ВJ	0.314	4.59	1	02/14/2020 20:08	WG1427771
(S) o-Terphenyl	69.6			18.0-148		02/14/2020 20:08	WG1427771

Received (by 06D: 4/6/2020 12:21:17 PM Collected date/time: 02/04/20 12:20

SAMPLE RESULTS - 05

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.4		1	02/14/2020 22:57	WG1427899	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	414		0.842	10.6	1	02/18/2020 16:33	WG1429466	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0374	ВJ	0.0230	0.106	1	02/14/2020 13:46	WG1428015
(S) a,a,a-Trifluorotoluene(FID)	89.6			77.0-120		02/14/2020 13:46	WG1428015

Volatile Organic Compounds (GC/MS) by Method 8260B

Result (dry) Qualifier MDL (dry) RDL (dry) Dilution Analysis Batch Analyte mg/kg mg/kg mg/kg date / time date / time Benzene U 0.000424 0.00106 1 02/14/2020 12:38 WG1427887 Toluene 0.00159 J 0.00520 0.00255 1 02/14/2020 12:38 WG1427887 Ethylbenzene U 0.000562 0.00265 1 02/14/2020 12:38 WG1427887 Total Xylenes U 0.00507 0.00689 1 02/14/2020 12:38 WG1427887 (S) Toluene-d8 103 - 75.0-131 02/14/2020 12:38 WG1427887 (S) 4-Bromofluorobenzene 88.6 - - 75.0-131 02/14/2020 12:38 WG1427887 (S) 1,2-Dichloroethane-d4 103 - 70.0-130 02/14/2020 12:38 WG1427887								
Benzene U 0.000424 0.00106 1 02/14/2020 12:38 WG1427887 Toluene 0.00159 J 0.00132 0.00530 1 02/14/2020 12:38 WG1427887 Ethylbenzene U 0.000562 0.00265 1 02/14/2020 12:38 WG1427887 Total Xylenes U 0.00507 0.00689 1 02/14/2020 12:38 WG1427887 (S) Toluene-d8 103 75.0-131 02/14/2020 12:38 WG1427887 (S) 4-Bromofluorobenzene 88.6 67.0-138 02/14/2020 12:38 WG1427887		Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Toluene 0.00159 J 0.00132 0.00530 1 02/14/2020 12:38 WG1427887 Ethylbenzene U 0.000562 0.00265 1 02/14/2020 12:38 WG1427887 Total Xylenes U 0.00507 0.00689 1 02/14/2020 12:38 WG1427887 (S) Toluene-d8 103 75.0-131 02/14/2020 12:38 WG1427887 (S) 4-Bromofluorobenzene 88.6 67.0-138 02/14/2020 12:38 WG1427887	Analyte	mg/kg		mg/kg	mg/kg		date / time	
Ethylbenzene U 0.000562 0.00265 1 02/14/2020 12:38 WG1427887 Total Xylenes U 0.00507 0.00689 1 02/14/2020 12:38 WG1427887 (S) Toluene-d8 103 75.0-131 02/14/2020 12:38 WG1427887 (S) 4-Bromofluorobenzene 88.6 67.0-138 02/14/2020 12:38 WG1427887	Benzene	U		0.000424	0.00106	1	02/14/2020 12:38	<u>WG1427887</u>
Total Xylenes U 0.00507 0.00689 1 02/14/2020 12:38 WG1427887 (s) Toluene-d8 103 75.0-131 02/14/2020 12:38 WG1427887 (s) 4-Bromofluorobenzene 88.6 67.0-138 02/14/2020 12:38 WG1427887	Toluene	0.00159	J	0.00132	0.00530	1	02/14/2020 12:38	<u>WG1427887</u>
(S) Toluene-d8 103 75.0-131 02/14/2020 12:38 WG1427887 (S) 4-Bromofluorobenzene 88.6 67.0-138 02/14/2020 12:38 WG1427887	Ethylbenzene	U		0.000562	0.00265	1	02/14/2020 12:38	WG1427887
(S) 4-Bromofluorobenzene 88.6 67.0-138 02/14/2020 12:38 WG1427887	Total Xylenes	U		0.00507	0.00689	1	02/14/2020 12:38	<u>WG1427887</u>
	(S) Toluene-d8	103			75.0-131		02/14/2020 12:38	WG1427887
(S) 1,2-Dichloroethane-d4 103 70.0-130 02/14/2020 12:38 WG1427887	(S) 4-Bromofluorobenzene	88.6			67.0-138		02/14/2020 12:38	<u>WG1427887</u>
	(S) 1,2-Dichloroethane-d4	103			70.0-130		02/14/2020 12:38	WG1427887

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.24	1	02/14/2020 20:25	<u>WG1427771</u>
C28-C40 Oil Range	2.35	B J	0.290	4.24	1	02/14/2020 20:25	<u>WG1427771</u>
(S) o-Terphenyl	73.2			18.0-148		02/14/2020 20:25	<u>WG1427771</u>

SDG: L1189076

Recreized by OCP: 4/6/2020 12:21:17 PM Collected date/time: 02/04/20 12:30

SAMPLE RESULTS - 06

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	80.8		1	02/14/2020 19:03	WG1427902	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	63.4		0.984	12.4	1	02/18/2020 16:43	WG1429466

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quaimer	mg/kg	mg/kg	Dilution	date / time	Datch	
TPH (GC/FID) Low Fraction	0.0479	ВJ	0.0268	0.124	1	02/14/2020 14:07	WG1428015	
(S) a,a,a-Trifluorotoluene(FID)	89.5			77.0-120		02/14/2020 14:07	WG1428015	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00124	1	02/14/2020 12:56	<u>WG1427887</u>
Toluene	0.00217	J	0.00155	0.00619	1	02/14/2020 12:56	WG1427887
Ethylbenzene	U		0.000656	0.00309	1	02/14/2020 12:56	WG1427887
Total Xylenes	U		0.00591	0.00804	1	02/14/2020 12:56	WG1427887
(S) Toluene-d8	104			75.0-131		02/14/2020 12:56	WG1427887
(S) 4-Bromofluorobenzene	86.7			67.0-138		02/14/2020 12:56	WG1427887
(S) 1,2-Dichloroethane-d4	101			70.0-130		02/14/2020 12:56	<u>WG1427887</u>

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.99	4.95	1	02/14/2020 20:40	WG1427771
C28-C40 Oil Range	1.70	ВJ	0.339	4.95	1	02/14/2020 20:40	WG1427771
(S) o-Terphenyl	45.7			18.0-148		02/14/2020 20:40	WG1427771

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	80.9		1	02/14/2020 19:03	WG1427902	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	32.7	B	0.983	12.4	1	02/18/2020 17:11	WG1429466	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0268	0.124	1	02/18/2020 11:49	WG1429393	
(S) a,a,a-Trifluorotoluene(FID)	98.5			77.0-120		02/18/2020 11:49	WG1429393	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000618	J	0.000494	0.00124	1	02/14/2020 13:15	<u>WG1427887</u>
Toluene	U		0.00155	0.00618	1	02/14/2020 13:15	<u>WG1427887</u>
Ethylbenzene	U		0.000655	0.00309	1	02/14/2020 13:15	WG1427887
Total Xylenes	U		0.00591	0.00803	1	02/14/2020 13:15	<u>WG1427887</u>
(S) Toluene-d8	104			75.0-131		02/14/2020 13:15	<u>WG1427887</u>
(S) 4-Bromofluorobenzene	89.9			67.0-138		02/14/2020 13:15	WG1427887
(S) 1,2-Dichloroethane-d4	100			70.0-130		02/14/2020 13:15	WG1427887

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.99	4.94	1	02/14/2020 21:29	WG1427771
C28-C40 Oil Range	6.66	В	0.339	4.94	1	02/14/2020 21:29	<u>WG1427771</u>
(S) o-Terphenyl	56.6			18.0-148		02/14/2020 21:29	WG1427771

Received (p. 00): 4/6/2020 12:21:17 PM Collected date/time: 02/04/20 12:40

SAMPLE RESULTS - 08

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	85.6		1	02/14/2020 19:03	WG1427902	ЪТ

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	73.3		0.929	11.7	1	02/18/2020 17:21	WG1429466	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0513	ВJ	0.0253	0.117	1	02/14/2020 14:48	WG1428015
(S) a,a,a-Trifluorotoluene(FID)	88.4			77.0-120		02/14/2020 14:48	WG1428015

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000467	0.00117	1	02/14/2020 13:34	<u>WG1427887</u>
Toluene	0.00167	J	0.00146	0.00584	1	02/14/2020 13:34	<u>WG1427887</u>
Ethylbenzene	U		0.000619	0.00292	1	02/14/2020 13:34	WG1427887
Total Xylenes	U		0.00558	0.00759	1	02/14/2020 13:34	WG1427887
(S) Toluene-d8	103			75.0-131		02/14/2020 13:34	WG1427887
(S) 4-Bromofluorobenzene	86.8			67.0-138		02/14/2020 13:34	WG1427887
(S) 1,2-Dichloroethane-d4	102			70.0-130		02/14/2020 13:34	WG1427887

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.88	4.67	1	02/14/2020 21:46	WG1427771
C28-C40 Oil Range	1.38	ВJ	0.320	4.67	1	02/14/2020 21:46	<u>WG1427771</u>
(S) o-Terphenyl	69.6			18.0-148		02/14/2020 21:46	<u>WG1427771</u>

Recreized by OCP: 4/6/2020 12:21:17 PM Collected date/time: 02/04/20 12:45

SAMPLE RESULTS - 09

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	97.2		1	02/14/2020 19:03	WG1427902	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	60.9		0.818	10.3	1	02/18/2020 17:30	WG1429466

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0373	ВJ	0.0223	0.103	1	02/14/2020 15:08	WG1428015
(S) a,a,a-Trifluorotoluene(FID)	90.1			77.0-120		02/14/2020 15:08	WG1428015

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000412	0.00103	1	02/14/2020 13:53	<u>WG1427887</u>
Toluene	0.00132	J	0.00129	0.00514	1	02/14/2020 13:53	WG1427887
Ethylbenzene	U		0.000545	0.00257	1	02/14/2020 13:53	WG1427887
Total Xylenes	U		0.00492	0.00669	1	02/14/2020 13:53	WG1427887
(S) Toluene-d8	103			75.0-131		02/14/2020 13:53	WG1427887
(S) 4-Bromofluorobenzene	88.7			67.0-138		02/14/2020 13:53	<u>WG1427887</u>
(S) 1,2-Dichloroethane-d4	104			70.0-130		02/14/2020 13:53	<u>WG1427887</u>

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.12	1	02/14/2020 22:01	<u>WG1427771</u>
C28-C40 Oil Range	1.07	B J	0.282	4.12	1	02/14/2020 22:01	<u>WG1427771</u>
(S) o-Terphenyl	74.3			18.0-148		02/14/2020 22:01	WG1427771

SAMPLE RESULTS - 10 L1189076

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.8		1	02/14/2020 19:03	WG1427902	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	299		0.847	10.7	1	02/18/2020 17:40	WG1429466

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0409	ВJ	0.0231	0.107	1	02/14/2020 15:29	WG1428015
(S) a,a,a-Trifluorotoluene(FID)	90.1			77.0-120		02/14/2020 15:29	WG1428015

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000426	0.00107	1	02/14/2020 14:12	WG1427887
Toluene	U		0.00133	0.00533	1	02/14/2020 14:12	WG1427887
Ethylbenzene	U		0.000565	0.00266	1	02/14/2020 14:12	WG1427887
Total Xylenes	U		0.00509	0.00693	1	02/14/2020 14:12	WG1427887
(S) Toluene-d8	102			75.0-131		02/14/2020 14:12	WG1427887
(S) 4-Bromofluorobenzene	85.6			67.0-138		02/14/2020 14:12	WG1427887
(S) 1,2-Dichloroethane-d4	97.4			70.0-130		02/14/2020 14:12	WG1427887

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.26	1	02/14/2020 22:18	WG1427771
C28-C40 Oil Range	7.61	B	0.292	4.26	1	02/14/2020 22:18	WG1427771
(S) o-Terphenyl	65.9			18.0-148		02/14/2020 22:18	WG1427771

22 of 75

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	86.1		1	02/14/2020 19:03	WG1427902	ЪС

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	65.6		0.923	11.6	1	02/18/2020 17:50	WG1429466

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0477	ВJ	0.0252	0.116	1	02/14/2020 15:50	WG1428015	
(S) a,a,a-Trifluorotoluene(FID)	89.0			77.0-120		02/14/2020 15:50	WG1428015	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000464	0.00116	1	02/14/2020 14:31	WG1427887
Toluene	0.00163	J	0.00145	0.00580	1	02/14/2020 14:31	WG1427887
Ethylbenzene	U		0.000615	0.00290	1	02/14/2020 14:31	WG1427887
Total Xylenes	U		0.00555	0.00755	1	02/14/2020 14:31	WG1427887
(S) Toluene-d8	104			75.0-131		02/14/2020 14:31	WG1427887
(S) 4-Bromofluorobenzene	85.6			67.0-138		02/14/2020 14:31	WG1427887
(S) 1,2-Dichloroethane-d4	97.5			70.0-130		02/14/2020 14:31	WG1427887

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.87	4.64	1	02/14/2020 22:34	<u>WG1427771</u>
C28-C40 Oil Range	4.82	В	0.318	4.64	1	02/14/2020 22:34	<u>WG1427771</u>
(S) o-Terphenyl	64.4			18.0-148		02/14/2020 22:34	WG1427771

SDG: L1189076

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	84.4		1	02/14/2020 19:03	WG1427902	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	215		0.942	11.9	1	02/18/2020 18:18	WG1429466	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0435	ВJ	0.0257	0.119	1	02/14/2020 16:10	WG1428015
(S) a,a,a-Trifluorotoluene(FID)	88.7			77.0-120		02/14/2020 16:10	WG1428015

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000474	0.00119	1	02/14/2020 14:50	<u>WG1427887</u>
Toluene	0.00148	J	0.00148	0.00593	1	02/14/2020 14:50	WG1427887
Ethylbenzene	U		0.000628	0.00296	1	02/14/2020 14:50	WG1427887
Total Xylenes	U		0.00567	0.00771	1	02/14/2020 14:50	WG1427887
(S) Toluene-d8	104			75.0-131		02/14/2020 14:50	WG1427887
(S) 4-Bromofluorobenzene	88.9			67.0-138		02/14/2020 14:50	WG1427887
(S) 1,2-Dichloroethane-d4	101			70.0-130		02/14/2020 14:50	WG1427887

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.91	4.74	1	02/14/2020 22:51	WG1427771
C28-C40 Oil Range	5.84	В	0.325	4.74	1	02/14/2020 22:51	WG1427771
(S) o-Terphenyl	58.8			18.0-148		02/14/2020 22:51	<u>WG1427771</u>

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	90.8		1	02/14/2020 19:03	WG1427902	Ťc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	327		0.876	11.0	1	02/18/2020 18:28	WG1429466

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0420	ВJ	0.0239	0.110	1	02/14/2020 16:31	WG1428015
(S) a,a,a-Trifluorotoluene(FID)	88.8			77.0-120		02/14/2020 16:31	WG1428015

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000441	0.00110	1	02/14/2020 15:09	<u>WG1427887</u>
Toluene	U		0.00138	0.00551	1	02/14/2020 15:09	<u>WG1427887</u>
Ethylbenzene	U		0.000584	0.00275	1	02/14/2020 15:09	<u>WG1427887</u>
Total Xylenes	U		0.00527	0.00716	1	02/14/2020 15:09	<u>WG1427887</u>
(S) Toluene-d8	105			75.0-131		02/14/2020 15:09	WG1427887
(S) 4-Bromofluorobenzene	89.0			67.0-138		02/14/2020 15:09	<u>WG1427887</u>
(S) 1,2-Dichloroethane-d4	98.8			70.0-130		02/14/2020 15:09	WG1427887

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.41	1	02/14/2020 23:08	<u>WG1427771</u>
C28-C40 Oil Range	0.601	B J	0.302	4.41	1	02/14/2020 23:08	<u>WG1427771</u>
(S) o-Terphenyl	73.9			18.0-148		02/14/2020 23:08	<u>WG1427771</u>

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	(Ср
Analyte	%			date / time		2	_
Total Solids	93.8		1	02/14/2020 19:03	WG1427902		Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	54.8		0.847	10.7	1	02/18/2020 18:37	WG1429466

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0386	ВJ	0.0231	0.107	1	02/14/2020 16:51	WG1428015	
(S) a,a,a-Trifluorotoluene(FID)	90.4			77.0-120		02/14/2020 16:51	WG1428015	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000426	0.00107	1	02/14/2020 15:28	WG1427887
Toluene	U		0.00133	0.00533	1	02/14/2020 15:28	WG1427887
Ethylbenzene	U		0.000565	0.00266	1	02/14/2020 15:28	WG1427887
Total Xylenes	U		0.00509	0.00693	1	02/14/2020 15:28	WG1427887
(S) Toluene-d8	103			75.0-131		02/14/2020 15:28	WG1427887
(S) 4-Bromofluorobenzene	86.6			67.0-138		02/14/2020 15:28	WG1427887
(S) 1,2-Dichloroethane-d4	100			70.0-130		02/14/2020 15:28	WG1427887

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.26	1	02/14/2020 23:24	<u>WG1427771</u>
C28-C40 Oil Range	3.44	ВJ	0.292	4.26	1	02/14/2020 23:24	<u>WG1427771</u>
(S) o-Terphenyl	67.6			18.0-148		02/14/2020 23:24	<u>WG1427771</u>

SDG: L1189076

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	82.2		1	02/14/2020 19:03	WG1427902	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	76.3		0.967	12.2	1	02/18/2020 19:06	WG1429466	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		0
TPH (GC/FID) Low Fraction	0.0463	ВJ	0.0264	0.122	1	02/14/2020 17:12	WG1428015	
(S) a,a,a-Trifluorotoluene(FID)	88.6			77.0-120		02/14/2020 17:12	WG1428015	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00122	1	02/14/2020 15:46	<u>WG1427887</u>
Toluene	U		0.00152	0.00608	1	02/14/2020 15:46	WG1427887
Ethylbenzene	U		0.000645	0.00304	1	02/14/2020 15:46	WG1427887
Total Xylenes	U		0.00581	0.00790	1	02/14/2020 15:46	WG1427887
(S) Toluene-d8	103			75.0-131		02/14/2020 15:46	WG1427887
(S) 4-Bromofluorobenzene	87.3			67.0-138		02/14/2020 15:46	WG1427887
(S) 1,2-Dichloroethane-d4	98.2			70.0-130		02/14/2020 15:46	WG1427887

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.96	4.86	1	02/14/2020 23:41	<u>WG1427771</u>
C28-C40 Oil Range	U		0.333	4.86	1	02/14/2020 23:41	<u>WG1427771</u>
(S) o-Terphenyl	40.2			18.0-148		02/14/2020 23:41	WG1427771

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.4		1	02/14/2020 18:47	WG1427903	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	20.8	B	0.833	10.5	1	02/18/2020 19:15	WG1429466

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0423	ВJ	0.0227	0.105	1	02/14/2020 17:32	WG1428015
(S) a,a,a-Trifluorotoluene(FID)	88.3			77.0-120		02/14/2020 17:32	WG1428015

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000419	0.00105	1	02/14/2020 16:42	<u>WG1427887</u>
Toluene	0.00223	J	0.00131	0.00524	1	02/14/2020 16:42	<u>WG1427887</u>
Ethylbenzene	0.000943	J	0.000556	0.00262	1	02/14/2020 16:42	<u>WG1427887</u>
Total Xylenes	U		0.00501	0.00681	1	02/14/2020 16:42	WG1427887
(S) Toluene-d8	105			75.0-131		02/14/2020 16:42	WG1427887
(S) 4-Bromofluorobenzene	87.6			67.0-138		02/14/2020 16:42	WG1427887
(S) 1,2-Dichloroethane-d4	97.7			70.0-130		02/14/2020 16:42	WG1427887

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.65		1.69	4.19	1	02/14/2020 23:58	WG1427771
C28-C40 Oil Range	17.0	В	0.287	4.19	1	02/14/2020 23:58	<u>WG1427771</u>
(S) o-Terphenyl	64.5			18.0-148		02/14/2020 23:58	<u>WG1427771</u>

SDG: L1189076

Received by OCP: 4/6/2020 12:21:17 PM Collected date/time: 02/04/20 13:45

SAMPLE RESULTS - 17

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.4		1	02/14/2020 18:47	WG1427903	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	9.20	ВJ	0.825	10.4	1	02/18/2020 19:25	WG1429466

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0422	ВJ	0.0225	0.104	1	02/14/2020 17:53	WG1428015
(S) a,a,a-Trifluorotoluene(FID)	89.2			77.0-120		02/14/2020 17:53	WG1428015

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000415	0.00104	1	02/14/2020 17:01	<u>WG1427887</u>
Toluene	0.00174	J	0.00130	0.00519	1	02/14/2020 17:01	<u>WG1427887</u>
Ethylbenzene	U		0.000550	0.00259	1	02/14/2020 17:01	WG1427887
Total Xylenes	U		0.00496	0.00675	1	02/14/2020 17:01	<u>WG1427887</u>
(S) Toluene-d8	105			75.0-131		02/14/2020 17:01	WG1427887
(S) 4-Bromofluorobenzene	86.1			67.0-138		02/14/2020 17:01	<u>WG1427887</u>
(S) 1,2-Dichloroethane-d4	91.3			70.0-130		02/14/2020 17:01	WG1427887

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.15	1	02/15/2020 00:14	WG1427771
C28-C40 Oil Range	1.02	ВJ	0.284	4.15	1	02/15/2020 00:14	<u>WG1427771</u>
(S) o-Terphenyl	65.2			18.0-148		02/15/2020 00:14	WG1427771

SDG: L1189076

Received by OCP: 4/6/2020 12:21:17 PM Collected date/time: 02/04/20 13:00

SAMPLE RESULTS - 18

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	79.5		1	02/14/2020 18:47	WG1427903	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	38.1		1.00	12.6	1	02/18/2020 19:34	WG1429466

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0491	ВJ	0.0273	0.126	1	02/14/2020 18:14	WG1428015
(S) a,a,a-Trifluorotoluene(FID)	88.9			77.0-120		02/14/2020 18:14	WG1428015

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000503	0.00126	1	02/14/2020 17:19	<u>WG1427887</u>
Toluene	U		0.00157	0.00629	1	02/14/2020 17:19	<u>WG1427887</u>
Ethylbenzene	U		0.000667	0.00314	1	02/14/2020 17:19	<u>WG1427887</u>
Total Xylenes	U		0.00601	0.00818	1	02/14/2020 17:19	<u>WG1427887</u>
(S) Toluene-d8	107			75.0-131		02/14/2020 17:19	<u>WG1427887</u>
(S) 4-Bromofluorobenzene	86.3			67.0-138		02/14/2020 17:19	<u>WG1427887</u>
(S) 1,2-Dichloroethane-d4	98.2			70.0-130		02/14/2020 17:19	<u>WG1427887</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.03	5.03	1	02/15/2020 00:31	<u>WG1427771</u>
C28-C40 Oil Range	0.648	ВJ	0.345	5.03	1	02/15/2020 00:31	<u>WG1427771</u>
(S) o-Terphenyl	49.5			18.0-148		02/15/2020 00:31	<u>WG1427771</u>

SDG: L1189076

Received by OGP: 4/6/2020 12:21:17 PM Collected date/time: 02/04/20 13:05

SAMPLE RESULTS - 19

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.2		1	02/14/2020 18:47	WG1427903	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	50.9		0.862	10.8	1	02/18/2020 19:53	WG1429466	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0421	ВJ	0.0235	0.108	1	02/14/2020 18:34	WG1428015
(S) a,a,a-Trifluorotoluene(FID)	88.3			77.0-120		02/14/2020 18:34	WG1428015

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000434	0.00108	1	02/14/2020 17:38	WG1427887
Toluene	U		0.00136	0.00542	1	02/14/2020 17:38	WG1427887
Ethylbenzene	U		0.000575	0.00271	1	02/14/2020 17:38	WG1427887
Total Xylenes	U		0.00518	0.00705	1	02/14/2020 17:38	WG1427887
(S) Toluene-d8	105			75.0-131		02/14/2020 17:38	WG1427887
(S) 4-Bromofluorobenzene	85.9			67.0-138		02/14/2020 17:38	WG1427887
(S) 1,2-Dichloroethane-d4	95.6			70.0-130		02/14/2020 17:38	WG1427887

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.75	4.34	1	02/15/2020 00:47	<u>WG1427771</u>
C28-C40 Oil Range	2.23	ВJ	0.297	4.34	1	02/15/2020 00:47	<u>WG1427771</u>
(S) o-Terphenyl	69.8			18.0-148		02/15/2020 00:47	<u>WG1427771</u>

SDG: L1189076

Received by OGP: 4/6/2020 12:21:17 PM Collected date/time: 02/04/20 13:10

SAMPLE RESULTS - 20

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	90.0		1	02/14/2020 18:47	WG1427903	ЪС

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	562		0.883	11.1	1	02/19/2020 19:54	WG1429584	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		0
TPH (GC/FID) Low Fraction	0.0435	ВJ	0.0241	0.111	1	02/14/2020 18:55	WG1428015	
(S) a,a,a-Trifluorotoluene(FID)	88.6			77.0-120		02/14/2020 18:55	WG1428015	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000444	0.00111	1	02/14/2020 17:57	<u>WG1427887</u>
Toluene	U		0.00139	0.00555	1	02/14/2020 17:57	WG1427887
Ethylbenzene	U		0.000589	0.00278	1	02/14/2020 17:57	WG1427887
Total Xylenes	U		0.00531	0.00722	1	02/14/2020 17:57	WG1427887
(S) Toluene-d8	107			75.0-131		02/14/2020 17:57	WG1427887
(S) 4-Bromofluorobenzene	88.1			67.0-138		02/14/2020 17:57	WG1427887
(S) 1,2-Dichloroethane-d4	99.0			70.0-130		02/14/2020 17:57	<u>WG1427887</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.44	1	02/15/2020 01:04	<u>WG1427771</u>
C28-C40 Oil Range	2.07	<u>B J</u>	0.304	4.44	1	02/15/2020 01:04	<u>WG1427771</u>
(S) o-Terphenyl	66.7			18.0-148		02/15/2020 01:04	WG1427771

SDG: L1189076

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.5		1	02/14/2020 18:47	WG1427903	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	499		0.841	10.6	1	02/19/2020 20:12	WG1429584	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	02/14/2020 14:53	WG1428117
(S) a,a,a-Trifluorotoluene(FID)	97.7			77.0-120		02/14/2020 14:53	<u>WG1428117</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000556	J	0.000423	0.00106	1	02/14/2020 12:20	<u>WG1428016</u>
Toluene	U		0.00132	0.00529	1	02/14/2020 12:20	<u>WG1428016</u>
Ethylbenzene	U		0.000561	0.00265	1	02/14/2020 12:20	WG1428016
Total Xylenes	U		0.00506	0.00688	1	02/14/2020 12:20	<u>WG1428016</u>
(S) Toluene-d8	104			75.0-131		02/14/2020 12:20	WG1428016
(S) 4-Bromofluorobenzene	90.8			67.0-138		02/14/2020 12:20	<u>WG1428016</u>
(S) 1,2-Dichloroethane-d4	111			70.0-130		02/14/2020 12:20	WG1428016

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.23	1	02/16/2020 01:08	WG1428660
C28-C40 Oil Range	1.27	J	0.290	4.23	1	02/16/2020 01:08	WG1428660
(S) o-Terphenyl	59.9			18.0-148		02/16/2020 01:08	WG1428660

Received by OCP: 4/6/2020 12:21:17 PM Collected date/time: 02/07/20 10:00

SAMPLE RESULTS - 22

ONE LAB. NAT Rage 58 of 109

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	82.6		1	02/14/2020 18:47	WG1427903	ЪТс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	121		0.963	12.1	1	02/19/2020 20:22	WG1429584

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0263	0.121	1	02/14/2020 15:16	WG1428117
(S) a,a,a-Trifluorotoluene(FID)	99.2			77.0-120		02/14/2020 15:16	WG1428117

Volatile Organic Compounds (GC/MS) by Method 8260B

	ng/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis	Batch
			mg/kg	mg/kg			
Benzene U	J			0 0		date / time	
			0.000484	0.00121	1	02/14/2020 12:39	WG1428016
Toluene U	J		0.00151	0.00606	1	02/14/2020 12:39	WG1428016
Ethylbenzene U	J		0.000642	0.00303	1	02/14/2020 12:39	WG1428016
Total Xylenes U	J		0.00579	0.00787	1	02/14/2020 12:39	WG1428016
(S) Toluene-d8 104	04			75.0-131		02/14/2020 12:39	WG1428016
(S) 4-Bromofluorobenzene 85.	35.1			67.0-138		02/14/2020 12:39	WG1428016
(S) 1,2-Dichloroethane-d4 104	04			70.0-130		02/14/2020 12:39	WG1428016

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.82	J	1.95	4.84	1	02/16/2020 01:21	<u>WG1428660</u>
C28-C40 Oil Range	10.4		0.332	4.84	1	02/16/2020 01:21	<u>WG1428660</u>
(S) o-Terphenyl	57.2			18.0-148		02/16/2020 01:21	WG1428660

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.8		1	02/14/2020 18:47	WG1427903	ЪС

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	60.8		0.866	10.9	1	02/19/2020 20:31	WG1429584

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	02/14/2020 15:40	WG1428117	
(S) a,a,a-Trifluorotoluene(FID)	97.8			77.0-120		02/14/2020 15:40	WG1428117	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000436	0.00109	1	02/14/2020 12:58	WG1428016
Toluene	U		0.00136	0.00545	1	02/14/2020 12:58	WG1428016
Ethylbenzene	U		0.000578	0.00272	1	02/14/2020 12:58	WG1428016
Total Xylenes	U		0.00521	0.00708	1	02/14/2020 12:58	WG1428016
(S) Toluene-d8	103			75.0-131		02/14/2020 12:58	WG1428016
(S) 4-Bromofluorobenzene	88.1			67.0-138		02/14/2020 12:58	WG1428016
(S) 1,2-Dichloroethane-d4	107			70.0-130		02/14/2020 12:58	WG1428016

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.75	4.36	1	02/16/2020 01:34	WG1428660
C28-C40 Oil Range	3.61	J	0.299	4.36	1	02/16/2020 01:34	WG1428660
(S) o-Terphenyl	67.2			18.0-148		02/16/2020 01:34	<u>WG1428660</u>

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.4		1	02/14/2020 18:47	WG1427903	ЪС

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	50.4		0.861	10.8	1	02/19/2020 20:41	WG1429584

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0235	0.108	1	02/14/2020 16:03	WG1428117
(S) a,a,a-Trifluorotoluene(FID)	98.1			77.0-120		02/14/2020 16:03	WG1428117

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000433	0.00108	1	02/14/2020 13:17	WG1428016
Toluene	U		0.00135	0.00541	1	02/14/2020 13:17	WG1428016
Ethylbenzene	U		0.000574	0.00271	1	02/14/2020 13:17	WG1428016
Total Xylenes	U		0.00517	0.00704	1	02/14/2020 13:17	WG1428016
(S) Toluene-d8	104			75.0-131		02/14/2020 13:17	WG1428016
(S) 4-Bromofluorobenzene	83.9			67.0-138		02/14/2020 13:17	WG1428016
(S) 1,2-Dichloroethane-d4	104			70.0-130		02/14/2020 13:17	WG1428016

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.33	1	02/16/2020 09:40	<u>WG1428660</u>
C28-C40 Oil Range	0.444	J	0.297	4.33	1	02/16/2020 09:40	<u>WG1428660</u>
(S) o-Terphenyl	59.5			18.0-148		02/16/2020 09:40	WG1428660

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.3		1	02/14/2020 18:47	WG1427903	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	44.3		0.871	11.0	1	02/19/2020 20:50	WG1429584	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch
TPH (GC/FID) Low Fraction	U		0.0238	0.110	1	02/14/2020 16:27	WG1428117
(S) a,a,a-Trifluorotoluene(FID)	97.8			77.0-120		02/14/2020 16:27	<u>WG1428117</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000438	0.00110	1	02/14/2020 13:36	<u>WG1428016</u>
Toluene	U		0.00137	0.00548	1	02/14/2020 13:36	<u>WG1428016</u>
Ethylbenzene	U		0.000580	0.00274	1	02/14/2020 13:36	<u>WG1428016</u>
Total Xylenes	U		0.00524	0.00712	1	02/14/2020 13:36	<u>WG1428016</u>
(S) Toluene-d8	106			75.0-131		02/14/2020 13:36	<u>WG1428016</u>
(S) 4-Bromofluorobenzene	86.0			67.0-138		02/14/2020 13:36	<u>WG1428016</u>
(S) 1,2-Dichloroethane-d4	94.3			70.0-130		02/14/2020 13:36	WG1428016

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.38	1	02/16/2020 02:01	WG1428660
C28-C40 Oil Range	U		0.300	4.38	1	02/16/2020 02:01	WG1428660
(S) o-Terphenyl	56.9			18.0-148		02/16/2020 02:01	<u>WG1428660</u>

SDG: L1189076

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	93.6		1	02/14/2020 18:32	WG1427904	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	31.8		0.759	9.54	.8928571	02/19/2020 21:00	WG1429584

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	02/14/2020 16:51	WG1428117	
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		02/14/2020 16:51	WG1428117	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000428	0.00107	1	02/14/2020 13:55	<u>WG1428016</u>
Toluene	U		0.00134	0.00534	1	02/14/2020 13:55	<u>WG1428016</u>
Ethylbenzene	U		0.000567	0.00267	1	02/14/2020 13:55	WG1428016
Total Xylenes	U		0.00511	0.00695	1	02/14/2020 13:55	<u>WG1428016</u>
(S) Toluene-d8	107			75.0-131		02/14/2020 13:55	WG1428016
(S) 4-Bromofluorobenzene	<i>86.2</i>			67.0-138		02/14/2020 13:55	<u>WG1428016</u>
(S) 1,2-Dichloroethane-d4	101			70.0-130		02/14/2020 13:55	<u>WG1428016</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.28	1	02/16/2020 02:14	WG1428660
C28-C40 Oil Range	U		0.293	4.28	1	02/16/2020 02:14	WG1428660
(S) o-Terphenyl	64.2			18.0-148		02/16/2020 02:14	WG1428660

SDG: L1189076

Received by GGD: 4/6/2020 12:21:17 PM Collected date/time: 02/07/20 11:00

SAMPLE RESULTS - 27

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	97.0		1	02/14/2020 18:32	WG1427904	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	5.19	ВJ	0.820	10.3	1	02/19/2020 21:28	WG1429584

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	02/14/2020 17:15	WG1428117
(S) a,a,a-Trifluorotoluene(FID)	99.4			77.0-120		02/14/2020 17:15	WG1428117

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000412	0.00103	1	02/14/2020 14:14	<u>WG1428016</u>
Toluene	U		0.00129	0.00516	1	02/14/2020 14:14	<u>WG1428016</u>
Ethylbenzene	U		0.000546	0.00258	1	02/14/2020 14:14	WG1428016
Total Xylenes	U		0.00493	0.00670	1	02/14/2020 14:14	<u>WG1428016</u>
(S) Toluene-d8	98.6			75.0-131		02/14/2020 14:14	WG1428016
(S) 4-Bromofluorobenzene	85.1			67.0-138		02/14/2020 14:14	<u>WG1428016</u>
(S) 1,2-Dichloroethane-d4	96.1			70.0-130		02/14/2020 14:14	WG1428016

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.07	J	1.66	4.12	1	02/16/2020 02:27	<u>WG1428660</u>
C28-C40 Oil Range	6.42		0.283	4.12	1	02/16/2020 02:27	<u>WG1428660</u>
(S) o-Terphenyl	67.4			18.0-148		02/16/2020 02:27	<u>WG1428660</u>

Ss

Cn

Ŝr

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	83.2		1	02/14/2020 18:32	WG1427904	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	21.1	В	0.956	12.0	1	02/19/2020 21:38	WG1429584	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0261	0.120	1	02/14/2020 17:54	WG1428117
(S) a,a,a-Trifluorotoluene(FID)	99.7			77.0-120		02/14/2020 17:54	<u>WG1428117</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000481	0.00120	1	02/14/2020 14:33	<u>WG1428016</u>
Toluene	U		0.00150	0.00601	1	02/14/2020 14:33	<u>WG1428016</u>
Ethylbenzene	U		0.000637	0.00301	1	02/14/2020 14:33	WG1428016
Total Xylenes	U		0.00575	0.00782	1	02/14/2020 14:33	<u>WG1428016</u>
(S) Toluene-d8	107			75.0-131		02/14/2020 14:33	WG1428016
(S) 4-Bromofluorobenzene	84.7			67.0-138		02/14/2020 14:33	<u>WG1428016</u>
(S) 1,2-Dichloroethane-d4	95.8			70.0-130		02/14/2020 14:33	WG1428016

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.94	4.81	1	02/16/2020 02:41	WG1428660
C28-C40 Oil Range	3.51	J	0.329	4.81	1	02/16/2020 02:41	WG1428660
(S) o-Terphenyl	54.7			18.0-148		02/16/2020 02:41	WG1428660

SDG: L1189076

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.5		1	02/14/2020 18:32	WG1427904	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	209		0.868	10.9	1	02/19/2020 21:47	WG1429584	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	02/14/2020 18:18	WG1428117	
(S) a,a,a-Trifluorotoluene(FID)	98.4			77.0-120		02/14/2020 18:18	WG1428117	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000437	0.00109	1	02/14/2020 14:52	WG1428016
Toluene	U		0.00137	0.00546	1	02/14/2020 14:52	WG1428016
Ethylbenzene	U		0.000579	0.00273	1	02/14/2020 14:52	WG1428016
Total Xylenes	U		0.00522	0.00710	1	02/14/2020 14:52	WG1428016
(S) Toluene-d8	107			75.0-131		02/14/2020 14:52	WG1428016
(S) 4-Bromofluorobenzene	82.6			67.0-138		02/14/2020 14:52	WG1428016
(S) 1,2-Dichloroethane-d4	95.5			70.0-130		02/14/2020 14:52	WG1428016

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.37	1	02/16/2020 09:01	WG1428660
C28-C40 Oil Range	0.360	J	0.299	4.37	1	02/16/2020 09:01	WG1428660
(S) o-Terphenyl	73.5			18.0-148		02/16/2020 09:01	<u>WG1428660</u>

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.3		1	02/14/2020 18:32	WG1427904	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	487		0.862	10.8	1	02/19/2020 21:57	WG1429584	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0235	0.108	1	02/14/2020 19:06	WG1428117	
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		02/14/2020 19:06	WG1428117	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000434	0.00108	1	02/14/2020 15:11	<u>WG1428016</u>
Toluene	U		0.00135	0.00542	1	02/14/2020 15:11	<u>WG1428016</u>
Ethylbenzene	U		0.000574	0.00271	1	02/14/2020 15:11	<u>WG1428016</u>
Total Xylenes	U		0.00518	0.00704	1	02/14/2020 15:11	<u>WG1428016</u>
(S) Toluene-d8	108			75.0-131		02/14/2020 15:11	<u>WG1428016</u>
(S) 4-Bromofluorobenzene	82.8			67.0-138		02/14/2020 15:11	<u>WG1428016</u>
(S) 1,2-Dichloroethane-d4	109			70.0-130		02/14/2020 15:11	<u>WG1428016</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.34	1	02/16/2020 03:34	WG1428660
C28-C40 Oil Range	U		0.297	4.34	1	02/16/2020 03:34	<u>WG1428660</u>
(S) o-Terphenyl	55.9			18.0-148		02/16/2020 03:34	WG1428660

SDG: L1189076

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	80.0		1	02/14/2020 18:32	WG1427904	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	41.8		0.994	12.5	1	02/19/2020 22:07	WG1429584

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0271	0.125	1	02/14/2020 19:30	WG1428117
(S) a,a,a-Trifluorotoluene(FID)	97.8			77.0-120		02/14/2020 19:30	WG1428117

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000500	0.00125	1	02/14/2020 15:30	<u>WG1428016</u>
Toluene	U		0.00156	0.00625	1	02/14/2020 15:30	WG1428016
Ethylbenzene	U		0.000662	0.00312	1	02/14/2020 15:30	WG1428016
Total Xylenes	U		0.00597	0.00812	1	02/14/2020 15:30	<u>WG1428016</u>
(S) Toluene-d8	105			75.0-131		02/14/2020 15:30	WG1428016
(S) 4-Bromofluorobenzene	85.5			67.0-138		02/14/2020 15:30	<u>WG1428016</u>
(S) 1,2-Dichloroethane-d4	101			70.0-130		02/14/2020 15:30	WG1428016

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.01	5.00	1	02/16/2020 03:47	<u>WG1428660</u>
C28-C40 Oil Range	2.65	J	0.342	5.00	1	02/16/2020 03:47	<u>WG1428660</u>
(S) o-Terphenyl	54.9			18.0-148		02/16/2020 03:47	WG1428660

SDG: L1189076

SAMPLE RESULTS - 32 L1189076

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.3		1	02/14/2020 18:32	WG1427904	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	22.1	В	0.862	10.8	1	02/19/2020 22:16	WG1429584

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0235	0.108	1	02/14/2020 19:54	WG1428117	
(S) a,a,a-Trifluorotoluene(FID)	97.9			77.0-120		02/14/2020 19:54	WG1428117	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000434	0.00108	1	02/14/2020 15:49	<u>WG1428016</u>
Toluene	U		0.00135	0.00542	1	02/14/2020 15:49	<u>WG1428016</u>
Ethylbenzene	U		0.000574	0.00271	1	02/14/2020 15:49	WG1428016
Total Xylenes	U		0.00518	0.00704	1	02/14/2020 15:49	WG1428016
(S) Toluene-d8	106			75.0-131		02/14/2020 15:49	WG1428016
(S) 4-Bromofluorobenzene	80.7			67.0-138		02/14/2020 15:49	WG1428016
(S) 1,2-Dichloroethane-d4	108			70.0-130		02/14/2020 15:49	WG1428016

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.34	1	02/17/2020 15:08	WG1428883
C28-C40 Oil Range	1.71	ВJ	0.297	4.34	1	02/17/2020 15:08	WG1428883
(S) o-Terphenyl	62.7			18.0-148		02/17/2020 15:08	WG1428883

SDG: L1189076

Received (p. 00): 4/6/2020 12:21:17 PM Collected date/time: 02/07/20 12:10

SAMPLE RESULTS - 33

ONE LAB. NAT Rage 69 of 109

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Resi	lt Qualifi	er Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	89.7		1	02/14/2020 18:32	WG1427904	ЪТ

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	22.3	B	0.887	11.2	1	02/19/2020 22:45	WG1429584

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0242	0.112	1	02/14/2020 20:18	WG1428117
(S) a,a,a-Trifluorotoluene(FID)	97.9			77.0-120		02/14/2020 20:18	WG1428117

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000446	0.00112	1	02/14/2020 16:08	<u>WG1428016</u>
Toluene	U		0.00139	0.00558	1	02/14/2020 16:08	<u>WG1428016</u>
Ethylbenzene	U		0.000591	0.00279	1	02/14/2020 16:08	WG1428016
Total Xylenes	U		0.00533	0.00725	1	02/14/2020 16:08	<u>WG1428016</u>
(S) Toluene-d8	97.6			75.0-131		02/14/2020 16:08	<u>WG1428016</u>
(S) 4-Bromofluorobenzene	83.0			67.0-138		02/14/2020 16:08	<u>WG1428016</u>
(S) 1,2-Dichloroethane-d4	107			70.0-130		02/14/2020 16:08	WG1428016

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.80	4.46	1	02/17/2020 15:20	<u>WG1428883</u>
C28-C40 Oil Range	1.80	ВJ	0.306	4.46	1	02/17/2020 15:20	<u>WG1428883</u>
(S) o-Terphenyl	63.8			18.0-148		02/17/2020 15:20	WG1428883

SDG: L1189076

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.5		1	02/14/2020 18:32	WG1427904	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	28.6	В	0.869	10.9	1	02/19/2020 22:54	WG1429584

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	02/14/2020 20:42	WG1428117
(S) a,a,a-Trifluorotoluene(FID)	98.8			77.0-120		02/14/2020 20:42	<u>WG1428117</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000437	0.00109	1	02/14/2020 16:27	<u>WG1428016</u>
Toluene	U		0.00137	0.00546	1	02/14/2020 16:27	WG1428016
Ethylbenzene	U		0.000579	0.00273	1	02/14/2020 16:27	WG1428016
Total Xylenes	U		0.00522	0.00710	1	02/14/2020 16:27	WG1428016
(S) Toluene-d8	97.5			75.0-131		02/14/2020 16:27	WG1428016
(S) 4-Bromofluorobenzene	79.2			67.0-138		02/14/2020 16:27	<u>WG1428016</u>
(S) 1,2-Dichloroethane-d4	109			70.0-130		02/14/2020 16:27	WG1428016

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.37	1	02/17/2020 15:33	WG1428883
C28-C40 Oil Range	0.939	ВJ	0.299	4.37	1	02/17/2020 15:33	WG1428883
(S) o-Terphenyl	62.3			18.0-148		02/17/2020 15:33	WG1428883

SDG: L1189076

Received by OCP: 4/6/2020 12:21:17 PM Collected date/time: 02/07/20 13:00

SAMPLE RESULTS - 35

ONE LAB. NATRAGE 71 of 209

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.4		1	02/14/2020 18:32	WG1427904	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.1	ВJ	0.824	10.4	1	02/19/2020 23:23	WG1429584

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	02/14/2020 21:58	WG1428117
(S) a,a,a-Trifluorotoluene(FID)	99.3			77.0-120		02/14/2020 21:58	WG1428117

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000415	0.00104	1	02/14/2020 15:07	<u>WG1428051</u>
Toluene	U		0.00130	0.00519	1	02/14/2020 15:07	<u>WG1428051</u>
Ethylbenzene	U		0.000550	0.00259	1	02/14/2020 15:07	<u>WG1428051</u>
Total Xylenes	U		0.00496	0.00674	1	02/14/2020 15:07	<u>WG1428051</u>
(S) Toluene-d8	108			75.0-131		02/14/2020 15:07	<u>WG1428051</u>
(S) 4-Bromofluorobenzene	107			67.0-138		02/14/2020 15:07	<u>WG1428051</u>
(S) 1,2-Dichloroethane-d4	96.1			70.0-130		02/14/2020 15:07	WG1428051

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.54	J	1.67	4.15	1	02/17/2020 17:15	WG1428883
C28-C40 Oil Range	12.7		0.284	4.15	1	02/17/2020 17:15	WG1428883
(S) o-Terphenyl	62.7			18.0-148		02/17/2020 17:15	WG1428883

SDG: L1189076

Received by OSP: 4/6/2020 12:21:17 PM Collected date/time: 02/07/20 13:05

SAMPLE RESULTS - 36

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	88.4		1	02/19/2020 09:41	WG1427905		Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	5.67	ВJ	0.900	11.3	1	02/19/2020 23:32	WG1429584

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0246	0.113	1	02/14/2020 22:22	WG1428117
(S) a,a,a-Trifluorotoluene(FID)	97.7			77.0-120		02/14/2020 22:22	<u>WG1428117</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000453	0.00113	1	02/14/2020 15:27	<u>WG1428051</u>
Toluene	U		0.00141	0.00566	1	02/14/2020 15:27	<u>WG1428051</u>
Ethylbenzene	U		0.000600	0.00283	1	02/14/2020 15:27	WG1428051
Total Xylenes	U		0.00541	0.00735	1	02/14/2020 15:27	<u>WG1428051</u>
(S) Toluene-d8	107			75.0-131		02/14/2020 15:27	WG1428051
(S) 4-Bromofluorobenzene	103			67.0-138		02/14/2020 15:27	<u>WG1428051</u>
(S) 1,2-Dichloroethane-d4	98.3			70.0-130		02/14/2020 15:27	<u>WG1428051</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.30	J	1.82	4.53	1	02/17/2020 16:49	<u>WG1428883</u>
C28-C40 Oil Range	9.65		0.310	4.53	1	02/17/2020 16:49	<u>WG1428883</u>
(S) o-Terphenyl	65.5			18.0-148		02/17/2020 16:49	WG1428883

SDG: L1189076

SAMPLE RESULTS - 37

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	80.1		1	02/19/2020 09:41	WG1427905	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	124		0.992	12.5	1	02/19/2020 23:42	WG1429584

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		0
TPH (GC/FID) Low Fraction	U		0.0271	0.125	1	02/14/2020 22:46	WG1428117	
(S) a,a,a-Trifluorotoluene(FID)	98.8			77.0-120		02/14/2020 22:46	WG1428117	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000499	0.00125	1	02/14/2020 15:47	<u>WG1428051</u>
Toluene	U		0.00156	0.00624	1	02/14/2020 15:47	<u>WG1428051</u>
Ethylbenzene	U		0.000661	0.00312	1	02/14/2020 15:47	WG1428051
Total Xylenes	U		0.00597	0.00811	1	02/14/2020 15:47	<u>WG1428051</u>
(S) Toluene-d8	107			75.0-131		02/14/2020 15:47	WG1428051
(S) 4-Bromofluorobenzene	106			67.0-138		02/14/2020 15:47	<u>WG1428051</u>
(S) 1,2-Dichloroethane-d4	95.6			70.0-130		02/14/2020 15:47	<u>WG1428051</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.01	4.99	1	02/17/2020 15:46	WG1428883
C28-C40 Oil Range	0.686	B J	0.342	4.99	1	02/17/2020 15:46	<u>WG1428883</u>
(S) o-Terphenyl	36.9			18.0-148		02/17/2020 15:46	WG1428883

SDG: L1189076 DATE/TIME: 02/24/20 17:09

SAMPLE RESULTS - 38

Ss

Cn

ΪΑ

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	81.9		1	02/19/2020 09:41	WG1427905	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	187		0.971	12.2	1	02/19/2020 23:51	WG1429584	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0265	0.122	1	02/14/2020 23:10	WG1428117
(S) a,a,a-Trifluorotoluene(FID)	98.7			77.0-120		02/14/2020 23:10	<u>WG1428117</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000488	0.00122	1	02/14/2020 16:07	WG1428051
Toluene	U		0.00153	0.00611	1	02/14/2020 16:07	WG1428051
Ethylbenzene	U		0.000647	0.00305	1	02/14/2020 16:07	WG1428051
Total Xylenes	U		0.00584	0.00794	1	02/14/2020 16:07	WG1428051
(S) Toluene-d8	109			75.0-131		02/14/2020 16:07	WG1428051
(S) 4-Bromofluorobenzene	107			67.0-138		02/14/2020 16:07	WG1428051
(S) 1,2-Dichloroethane-d4	94.9			70.0-130		02/14/2020 16:07	WG1428051

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.97	4.88	1	02/17/2020 15:59	WG1428883
C28-C40 Oil Range	1.27	ВJ	0.335	4.88	1	02/17/2020 15:59	WG1428883
(S) o-Terphenyl	51.1			18.0-148		02/17/2020 15:59	WG1428883

Regering the PSD; c/6/2020 12:21:17 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATRAge 75 of 209

MB) R3500505-1 (02/14/20 22:57			
	MB Result MB Qua	ifier MB MDL	MB RDL	2
Analyte	%	%	%	2_
otal Solids	0.00500			
				3
_1189074-05 (Original Sample (OS) •	Duplicate (Dl		4
0011100074.05	02/14/20 22:57 • (DUP) R3500!	505 3 02/14/20 2		[[]

L1189074-05 Original Sample (OS) • Duplicate (DUP)

(LCS) R3500505-2 02/	14/20 22:57						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	%	%	%	%			
Total Solids	50.0	49.9	99.9	85.0-115			

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	51 of 75

Regeiredby 990 4/6/2020 12:21:17 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY <u>L1189076-06,07,08,09,10,11,12,13,14,15</u>

ONE LAB. NATRAge 76 of 209

Method Blank	(IVIB)				
(MB) R3500069-1	02/14/20 19:03				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.00300				

L1189076-12 Original Sample (OS) • Duplicate (DUP)

Total Solids	0.00300					
11189076-12 C) Priginal Sample ((OS) • Dur	olicate ('			
	02/14/20 19:03 • (DUP)			,		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	84.4	84.3	1	0.0255		10
	ontrol Sample (LC	CS)				
(LCS) R3500069-2						
	Spike Amount	LCS Result	LCS Rec.	c. Rec. Limi	nits LCS Qua	lifier

(LCS) R3500069-2 (02/14/20 19:03				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	52 of 75

Regering the \$6/2020 12:21:17 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY <u>L1189076-16,17,18,19,20,21,22,23,24,25</u>

ONE LAB. NATRAge 77. of 209

(MB) R3500068-1	02/14/20 18:47			
	MB Result MB Q	ualifier MB MDL	MB RDL	2
Analyte	%	%	%	2
Total Solids	0.00300			
				3
		-	_	L
L1189076-22 (Original Sample (OS)	 Duplicate (DL) 	P)	4

L1189076-22 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	82.6	81.8	1	0.912		10	
Laboratory Con	trol Sample (L(CS)					

Spike Amount LCS Result LCS Rec. Imits LCS Qualifier Analyte % % % Total Solids 50.0 50.0 99.9 85.0-115	(LCS) R3500068-2 0
% % %	
atal Salide 50.0 50.0 90.0 95.0.115	nalyte
Juli Solida S	otal Solids

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	53 of 75

Regering 4/6/2020 12:21:17 РМ

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY <u>11189076-26,27,28,29,30,31,32,33,34,35</u>

ONE LAB. NATRAge 78 of 209

Method Blank					
(MB) R3500067 - 1 (02/14/20 18:32				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.00700				

L1189076-34 Original Sample (OS) • Duplicate (DUP)

Analyte	/0		/0	/0					
otal Solids	0.00700								
_1189076-34 0	riginal Sample	(OS) • Du	plicate (DUP)					
OS) L1189076-34 0	2/14/20 18:32 • (DUP)	R3500067-3	3 02/14/20	18:32					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	%	%		%		%			
Total Solids	91.5	91.6	1	0.124		10			

	ntrol Sample (Lo	-5)				
CS) R3500067 - 2						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	%	%	%	%		
otal Solids	50.0	50.0	100	85.0-115		

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	54 of 75

Regegiedby 990 #/6/2020 12:21:17 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NAT Rage 79 of 209

(MB) R3501326-1 0	2/19/20 09:41			
	MB Result MB Qualifie	er MB MDL	MB RDL	-
Analyte	%	%	%	2
Total Solids	0.000			
				з

L1189086-01 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result DUP RPD DUP Qualifier DUP RPD limits Analyte % % % Total Solids 94.8 95.4 1 0.704 10
Total Solids 94.9 95.4 1 0.70.4 10

_CS) R3501326-2	ntrol Sample (L	00)				
(LC3) K3501520-2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
alyte	%	%	%	%		
Total Solids	50.0	50.0	100	85.0-115		

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	55 of 75

Regering 44 94 94 6/2020 12:21:17 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1189076-01.02.03.04.05.06.07.08.09.10.11.12.13.14.15.16.17.18.19

ONE LAB. NAT Rage 80 of 109

wet chemistry i	y wethou soolo			<u></u>	5070-01,02,0	5,04,05,00,07,00,05,10,11,12,15,14,15,10,17,10,15	
Method Blank	(MB)						100
(MB) R3500942-1	02/18/20 14:51		-				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL			2
Analyte	mg/kg		mg/kg	mg/kg			 Tc
Chloride	2.83	J	0.795	10.0			
							³ Ss
14400070.00	<u></u>		1 <i></i>				
	Original Sample						 ⁴ Cn
(OS) L1189076-03	02/18/20 16:05 • (DUP		; 02/18/20	16:14			Cir
	Original Result (dry)	t DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁵ Sr
Analyte	mg/kg	mg/kg		%		%	51
Chloride	78.4	71.8	1	8.73		20	6
							်ဴQc
1 4400070 40 (Deterinal Cample /		Lasta /E	מדיר			7
	Driginal Sample (V F		,			GI
(OS) L1189076-18	02/18/20 19:34 • (DUP)	R3500942 - 6	02/18/20	19:44			
	Original Result (dry)	t DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ AI
Analyte	mg/kg	mg/kg		%		%	
Chloride	38.1	40.9	1	7.10		20	Sc
							00

L1189076-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1189076-03 02/18/20) 16:05 • (DUP)	R3500942-3	02/18/20) 16:14		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	78.4	71.8	1	8.73		20

L1189076-18 Original Sample (OS) • Duplicate (DUP)

(OS) L1189076-18 (02/18/20 19:34 • (DUP)	R3500942 - 6	02/18/20	19:44				
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/kg	mg/kg		%		%		
Chloride	38.1	40.9	1	7.10		20		

Laboratory Control Sample (LCS)

(LCS) R3500942-2 02/18	8/20 15:00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	190	95.2	90.0-110	

L1189076-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1189076-11 02/18/20	(OS) L189076-11 02/18/20 17:50 • (MS) R3500942-4 02/18/20 17:59 • (MSD) R3500942-5 02/18/20 18:09											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Resu l t (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	580	65.6	632	625	97.6	96.3	1	80.0 - 120			1.15	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	56 of 75

Regering 4 by 9 5 B 4/6/2020 12:21:17 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY 1189076-20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38

ONE LAB. NAT Rage 81 of 209

wet chemistry c	by Method 300.0			<u></u>	070-20,21,22,	2,23,24,23,20,27,20,27,20,31,32,33,34,33,30,37,38	
Method Blank	< (MB)						1 00
(MB) R3501308-1 (J2/19/20 18:59						Ср
	MB Result	MB Qualifier	MB MDL	MB RDL			2
Analyte	mg/kg		mg/kg	mg/kg			[*] Tc
Chloride	3.14	J	0.795	10.0			
							³ Ss
11120076 20	Original Sample		alicato /	(חווס)			
	Original Sample						
(OS) L1189076-20	02/19/20 19:54 • (DUP		02/19/20	20:03			
	Original Result (dry)	It DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD – Limits	⁵ Sr
Analyte	mg/kg	mg/kg		%		%	51
Chloride	562	582	1	3.40		20	6
							်ီQc
4400047.01(O tette - I Comple		Viento //				7
	Original Sample						GI
(OS) L1190047-01 (02/20/20 00:01 · (DUF	P) R3501308-6	, 02/20/20	J 00:10			
	Original Result (dry)	It DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ AI
Analyte	mg/kg	mg/kg		%		%	
Chloride	223	234	1	4.81		20	ຶSc

L1189076-20 Original Sample (OS) • Duplicate (DUP)

(OS) L1189076-20 02	2/19/20 19:54 • (DUP)	R3501308-3	02/19/20	20:03		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	562	582	1	3.40		20

L1190047-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1190047-01	02/20/20 00:01 • (DUP) R3501308-6	02/20/20	00:10			
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	UP RPD imits	
Analyte	mg/kg	mg/kg		%			
Chloride	223	234	1	4.81		0	

Laboratory Control Sample (LCS)

(LCS) R3501308-2 02/19	(LCS) R3501308-2 02/19/20 19:09								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Chloride	200	193	96.4	90.0-110					

L1189076-32 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1189076-32 02/19/20	(OS) L189076-32 02/19/20 22:16 • (MS) R3501308-4 02/19/20 22:26 • (MSD) R3501308-5 02/19/20 22:35											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Resu l t (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	542	22.1	530	535	93.7	94.7	1	80.0 - 120			1.03	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	57 of 75

Ree @ e 4 2 96 2 3/6/2020 12:21:17 РМ

QUALITY CONTROL SUMMARY

ONE LAB. NAT Rage 82 of 109

Volatile Organic Compounds (GC) by Method 8015D/GRO

Method Blank (MB	3)												1
(MB) R3500264-3 02/14/	1												 - ['C
. ,	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/kg		mg/kg	mg/kg									_ ² T
TPH (GC/FID) Low Fraction	0.0235	J	0.0217	0.100									
(S) a,a,a-Trifluorotoluene(FID)	96.9			77.0-120									35
													4
Laboratory Contro	J Sample (L	.CS)											Ľ
(LCS) R3500264-2 02/14	4/20 10:30												 5
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								Ľ
Analyte	mg/kg	mg/kg	%	%									6
TPH (GC/FID) Low Fraction	5.50	5.64	103	72.0 - 127									ິ(
(S) a,a,a-Trifluorotoluene(FID)			111	77.0-120									7
													ľ
14000070-01-0			· • • • • • • • •			1							8
L1188679-01 Origin				. ,		,	D)						 _
(OS) L1188679-01 02/14/2													
	Spike Amount	: Original Result	. MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution		MS Qualifier	MSD Qualifier		RPD Limits	9
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	_ L
					00.0	00.1	05	40.0454			40 E	20	

Laboratory Control Sample (LCS)

(LCS) R3500264-2 02/14	/20 10:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.64	103	72.0 - 127	
(S) a,a,a-Trifluorotoluene(FID)			111	77.0-120	

L1188679-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1188679-01 02/14/20	0 12:03 • (MS) R	3500264-4 02	2/14/20 18:56 •	(MSD) R35002	264-5 02/14/20	0 19:17							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	950
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	112	ND	99.9	111	89.2	99.1	25	10.0 - 151			10.5	28	
(S) a.a.a-Trifluorotoluene(EID)					110	113		77.0-120					

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	58 of 75

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1189076-02,03,04,05,06,08,09,10,11,12,13,14,15,16,17,18,19,20

ONE LAB. NAT Rage 83 of 209

Тс

Ss

⁴Cn

⁵Sr

⁷Gl

³AI

	Method Blank (MB)											
(MB) R3500522-2 02/14/20 10:51												
		MB Result	MB Qualifier	MB MDL	MB RDL							
	Analyte	mg/kg		mg/kg	mg/kg							
	TPH (GC/FID) Low Fraction	0.0390	J	0.0217	0.100							
	(S) a,a,a-Trifluorotoluene(FID)	91.5			77.0-120							

Laboratory Control Sample (LCS)

(LCS) R3500522-1 02/14	/20 10:10					5
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
TPH (GC/FID) Low Fraction	5.50	4.69	85.3	72.0 - 127		
(S) a,a,a-Trifluorotoluene(FID)			96.1	77.0-120		F

L1189162-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1189162-01 02/14/2	0 12:03 • (MS) R	3500522 - 3 0	2/14/20 19:15	• (MSD) R35005	522 - 4 02/14/2	20 19:36							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	⁹ Sc
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	50
TPH (GC/FID) Low Fraction	27500	1800	5060	28300	11.9	96.4	5000	10.0 - 151		<u>J3</u>	139	28	
(S) a,a,a-Trifluorotoluene(FID)					85.8	99.9		77.0-120					

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	59 of 75

Regering 4/6/2020 12:21:17 РМ

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1189076-21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38

ONE LAB. NAT Page 84 of 109

Tc

Ss

⁴Cn

³AI

Sc

Method Blank (MB)									
(MB) R3500698-2 02/14/20 13:21									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
TPH (GC/FID) Low Fraction	U		0.0217	0.100					
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120					

(LCS) R3500698-1 02/14	/20 12:33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.71	104	72.0 - 127	
(S) a,a,a-Trifluorotoluene(FID)			106	77.0-120	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	60 of 75

Regegiedby 951 3/6/2020 12:21:17 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAT Rage 85 of 109

Sc

(LCS) R3500795-1 02/18/	/20 10:00					5
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		6
TPH (GC/FID) Low Fraction	5.50	5.90	107	72.0 - 127		Ь
(S) a,a,a-Trifluorotoluene(FID)			105	77.0-120		7
						Ĺ.
						8

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	61 of 75

Regeoredby 980 7/6/2020 12:21:17 PM

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

ONE LAB. NATRAge 86 of 109

Method Blank (MB)

(MB) R3500711-2 02/14/20	0 10:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	102			75.0-131
(S) 4-Bromofluorobenzene	89.6			67.0-138
(S) 1,2-Dichloroethane-d4	101			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3500711-1 02/14/20	CS) R3500711-1 02/14/20 09:39							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Benzene	0.125	0.106	84.8	70.0 - 123				
Ethylbenzene	0.125	0.108	86.4	74.0-126				
Toluene	0.125	0.122	97.6	75.0-121				
Xylenes, Total	0.375	0.349	93.1	72.0-127				
(S) Toluene-d8			102	75.0-131				
(S) 4-Bromofluorobenzene			95.5	67.0-138				
(S) 1,2-Dichloroethane-d4			106	70.0-130				

L1189076-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	DS) L1189076-20 02/14/20 17:57 • (MS) R3500711-3 02/14/20 18:16 • (MSD) R3500711-4 02/14/20 18:35											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.139	U	0.114	0.130	82.4	93.6	1	10.0 - 149			12.7	37
Ethylbenzene	0.139	U	0.111	0.127	80.0	91.2	1	10.0-160			13.1	38
Toluene	0.139	U	0.133	0.151	96.0	109	1	10.0-156			12.5	38
Xylenes, Total	0.416	U	0.345	0.384	82.9	92.3	1	10.0 - 160			10.7	38
(S) Toluene-d8					101	103		75.0-131				
(S) 4-Bromofluorobenzene					86.6	85.6		67.0-138				
(S) 1,2-Dichloroethane-d4					100	102		70.0-130				

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:	
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	62 of 75	

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

Sc

Regering 4 by 860: 3/6/2020 12:21:17 РМ

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY <u>L1189076-21,22,23,24,25,26,27,28,29,30,31,32,33,34</u>

ONE LAB. NATRAge 87 of 109

Tc

Ss

⁴Cn

⁵Sr

Method Blank (MB)

(MB) R3500277-2 02/14/2	20 10:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	101			75.0-131
(S) 4-Bromofluorobenzene	85.6			67.0-138
(S) 1,2-Dichloroethane-d4	112			70.0-130

Laboratory Control Sample (LCS)

Laboratory Cor	ntrol Sample (LC	CS)				
(LCS) R3500277-1 02	2/14/20 09:38					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.110	88.0	70.0 - 123		
Ethylbenzene	0.125	0.114	91.2	74.0-126		
Toluene	0.125	0.121	96.8	75.0-121		
Xylenes, Total	0.375	0.307	81.9	72.0 - 127		
(S) Toluene-d8			103	75.0-131		
(S) 4-Bromofluorobenz	ene		87.9	67.0-138		
(S) 1,2-Dichloroethane-	·d4		97.2	70.0-130		

L1189076-34 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1189076-34 02/14/2					277 - 4 02/14/20	18:59						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.137	U	0.0880	0.114	64.4	83.2	1	10.0 - 149			25.5	37
Ethylbenzene	0.137	U	0.0928	0.120	67.9	88.0	1	10.0 - 160			25.8	38
Toluene	0.137	U	0.101	0.128	74.2	93.6	1	10.0 - 156			23.2	38
Xylenes, Total	0.410	U	0.247	0.326	60.3	79.5	1	10.0 - 160			27.5	38
(S) Toluene-d8					104	104		75.0-131				
(S) 4-Bromofluorobenzene					79.8	84.9		67.0-138				
(S) 1,2-Dichloroethane-d4					97.7	98.8		70.0-130				

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:	
ConocoPhillips - Tetra	ech 212C-MD-02031	L1189076	02/24/20 17:09	63 of 7 5	

Reg @ q4by 8605 4/6/2020 12:21:17 PM

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

ONE LAB. NATRAge 88 of 109

Tc

Ss

⁴Cn

⁵Sr

Method Blank (MB)

(MB) R3500157-2 02/14/2	0 10:40				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000400	0.00100	
Ethylbenzene	U		0.000530	0.00250	
Toluene	U		0.00125	0.00500	
Xylenes, Total	U		0.00478	0.00650	
(S) Toluene-d8	110			75.0-131	
(S) 4-Bromofluorobenzene	103			67.0-138	
(S) 1,2-Dichloroethane-d4	91.9			70.0-130	

Laboratory Control Sample (LCS)

(LCS)	R3500157-1	02/14/20	09.39

Laboratory Contr	rol Sample (L(CS)				⁶ Qc
(LCS) R3500157-1 02/1	4/20 09:39					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	GI
Analyte	mg/kg	mg/kg	%	%	l	
Benzene	0.125	0.103	82.4	70.0 - 123		⁸ AI
Ethylbenzene	0.125	0.104	83.2	74.0 - 126		AI
Toluene	0.125	0.102	81.6	75.0-121		
Xylenes, Total	0.375	0.309	82.4	72.0 - 127		⁹ Sc
(S) Toluene-d8			109	75.0-131		
(S) 4-Bromofluorobenzen	ie		106	67.0-138		
(S) 1,2-Dichloroethane-d4	4		98.1	70.0-130		

L1189076-35 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1189076-35 02/14/2	0 15:07 • (MS) F	R3500157-3 02	2/14/20 17:07 •	(MSD) R350015	57-4 02/14/20	17:27						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.130	U	0.0786	0.109	60.6	84.0	1	10.0 - 149			32.3	37
Ethylbenzene	0.130	U	0.0828	0.112	63.8	86.4	1	10.0 - 160			30.0	38
Toluene	0.130	U	0.0795	0.108	61.4	83.2	1	10.0-156			30.2	38
Xylenes, Total	0.389	U	0.250	0.332	64.3	85.3	1	10.0 - 160			28.2	38
(S) Toluene-d8					109	108		75.0-131				
(S) 4-Bromofluorobenzene					105	104		67.0-138				
(S) 1,2-Dichloroethane-d4					96.5	98.2		70.0-130				

ConocoPhillips - Tetra Tech 212C-MD-02031 L1189076 02/24/20 17:09 64 of 75	ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
	ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	64 of 75

Regeoredby 997. 4/6/2020 12:21:17 РМ

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

ONE LAB. NAT Rage 89 of 209

Тс

Ss

Cn

Sr

GI

Method Blank (MB)

(MB) R3500065-1 02/14/	20 18:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	3.34	J	0.274	4.00
(S) o-Terphenyl	73.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3500065-2 02	/14/20 19:05				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	40.1	80.2	50.0 - 150	
(S) o-Terphenyl			75.5	18.0-148	

L1189076-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

L1189076-06 Origi	nal Sample	(OS) • Mat	rix Spike (N	1S) • Matri×	Spike Du	plicate (MS	D)						⁸ A I
(OS) L1189076-06 02/14/2	(OS) L189076-06 02/14/20 20:40 • (MS) R3500065-3 02/14/20 20:57 • (MSD) R3500065-4 02/14/20 21:12 Spike Amount (dry) Original Result (dry) MSD Result (dr												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	⁹ Sc
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	61.9	U	38.6	43.8	62.4	70.8	1	50.0 - 150			12.6	20	
(S) o-Terphenyl					47.1	60.5		18.0-148					

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	65 of 75

Ree @ e 4 2 8615 0/6/2020 12:21:17 РМ

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY <u>L1189076-21,22,23,24,25,26,27,28,29,30,31</u>

ONE LAB. NAT Rage 90 of 209

Тс

Ss

Cn

Sr

GI

Method Blank (MB)	
(MB) R3500174-1 02/16/20 00:41	

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	66.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3500174-2 02/1	6/20 00:55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	34.4	68.8	50.0 - 150	
(S) o-Terphenyl			79.0	18.0-148	

L1189076-29 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

L1189076-29 Origi	L1189076-29 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)								⁸ Δ1				
(OS) L1189076-29 02/16/20 09:01 • (MS) R3500174-3 02/16/20 09:14 • (MSD) R3500174-4 02/16/20 09:27 Spike Amount Original Result (dry) MS Result (dry) MS Result (dry) (dry) MS Result (dry) (dry) RSD Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	⁹ Sc
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	54.6	U	39.4	42.7	72.2	78.2	1	50.0 - 150			7.98	20	
(S) o-Terphenyl					79.0	90.2		18.0-148					

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	66 of 75

Ree @ e 4 by 86b 3/6/2020 12:21:17 РМ

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY <u>L1189076-32,33,34,35,36,37,38</u>

ONE LAB. NAT Rage 91 of 209

Тс

Ss

Cn

Sr

GI

³AI

Sc

(MB) R3500629-1 02/17	7/20 14:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	0.845	J	0.274	4.00
(S) o-Terphenyl	66.5			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3500629-2 (02/17/20 14:55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	33.0	66.0	50.0 - 150	
(S) o-Terphenyl			60.7	18.0-148	

L1189164-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1189164-01 02/17/2	OS) L1189164-01 02/17/20 18:05 • (MS) R3500629-3 02/17/20 18:18 • (MSD) R3500629-4 02/17/20 18:30												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	48.2	ND	46.9	49.5	97.3	105	10	50.0 - 150			5.39	20	
(S) o-Terphenyl					87.4	75.8		18.0-148					

Sample Narrative:

 $\ensuremath{\mathsf{OS}}$: Cannot run at lower dilution due to viscosity of extract

 ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-02031	L1189076	02/24/20 17:09	67 of 75

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

(de.)	Depute we consider the optimal of the second of the second of the second state of the
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.

SDG: L1189076 DATE/TIME: 02/24/20 17:09

Received by OCD: 4/6/2020 12:21:17 PM CCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 14	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ConocoPhillips - Tetra Tech

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

212C-MD-02031

L1189076

02/24/20 17:09

Client Name: Conco Phillips Site Manager: Christian Lluit Charlance Christian Lluit Project Name: COP Wilder 28-1Dumping C/C rele or Specify Method No.3 C/C rele or Specify Method No.3 Project Location: Lag County, New Mexico Project 1: 212C-MD-02031 Image: County, New Mexico Project 1: 212C-MD-02031 Imovide De: Accounts Payable 501 Vest Wall Street, Suite 100 Midland, Texas 79701 Sampler Signature: Image: County, New Mexico Project 1: 212C-MD-02031 Comments: COPTETRA Acctuum Sampler Signature: Image: County, New Mexico Project 1:	T	of Chain of Custody Record Tetra Tech, Inc.			a the second second	N	/est W /lidland Tel (4 Fax (4	i, Tex 32) 68	as 79 82-45	59	10			-				Œ,	GC	04				e C S Proj	
Project Name: COP Wilder 28-1 Dumping Project Location: Les County, New Mexico Project #: 212C-MD-02031 Invoice to: 901 West Wail Street, Suite 100 Midland, Texas 75701 901 901 West Wail Street, Suite 100 Midland, Texas 75701 Receiving Laboratory: Pace Analytical Sampler Signature: Invoice 100 900 Wilding W	Client Name:	Conoco Phillips	Site Manage	er:	Chri	stian	Llull							10	irol	1.1.58							c)		
Project Location: (county, state) Lea County, New Mexico Project #: 212C-MD-02031 Accounty Payable 901 West Wall Street, Suite 100 Midland, Texas 79701 Sampler Signature:	Project Name:	COP Wilder 28-1 Dumping	and the										11						y					1	1
Accounts Payable 901 West Wall Street, Suite 100 Midland, Toxas 79701 Image: Sampler Signature: Image: Sampler Signature: <thimage: sampler="" signature:<="" th=""> Imag</thimage:>	Project Location:	Lea County, New Mexico	Project #:		2	212C-	MD-0	2031																	
Receiving Laboratory: Pace Analytical Sampler Signature:	contract of the second second	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texa	s 79701	de -			Å						ō												
LAB # SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION MATRIX PRESENTIVE METHOD QUAR OUT	Receiving Laborato	and a second		gnature:	0	A	S	7			-		O - MR	00	b Se Hg								attached		3
LAB # SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION MATRIX PRESENTIVE METHOD Restrict Restrict <threstrit< th=""> <threstrit< th=""> Restrict</threstrit<></threstrit<>	Comments: COPT	ETRA Acctnum	en de la composition de la composition La composition de la c						Sec.			8260B	RO - OR	č				24	0C/625			DS	try (see a		
LAB USE OMLY DATE TIME TIME TO Y OV Y TO Y TO Y <td></td> <td>and the second second</td> <td>SAMP</td> <td>LING</td> <td>MA</td> <td>TRIX</td> <td></td> <td></td> <td></td> <td>RS</td> <td>(N)</td> <td>BTEX</td> <td>GRO - D</td> <td>á</td> <td>g As Ba</td> <td></td> <td>Iduido</td> <td>260B / 6</td> <td>Vol. 827 SOR</td> <td></td> <td>(9</td> <td>ate</td> <td></td> <td>Dealer-</td> <td>23. 212</td>		and the second	SAMP	LING	MA	TRIX				RS	(N)	BTEX	GRO - D	á	g As Ba		Iduido	260B / 6	Vol. 827 SOR		(9	ate		Dealer-	23. 212
LAB USE OMLY DATE TIME TIME TO Y OV Y TO Y TO Y <td>140.4</td> <td>SAMPLE IDENTIFICATION</td> <td>YEAR: 2020</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AINE</td> <td>ED (Y</td> <td>021B</td> <td>15M ((</td> <td>700</td> <td>etals A</td> <td>latiles</td> <td></td> <td>/ol. 82</td> <td>Semi. \</td> <td></td> <td>bestos</td> <td>Sul</td> <td>Water ation B</td> <td>5H</td> <td>RA S</td>	140.4	SAMPLE IDENTIFICATION	YEAR: 2020							AINE	ED (Y	021B	15M ((700	etals A	latiles		/ol. 82	Semi. \		bestos	Sul	Water ation B	5H	RA S
O/L BH-1 (0'-1') 2/4/202 1200 X 1 N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I I N X X I I N X X I I N X X I I N X X I I N X X I I N X X I I N X X I I N X X I I N X X I I I N X X I I I I N X <td>/ LAB USE</td> <td>AN</td> <td>DATE</td> <td>TIME</td> <td>WATER</td> <td>SOIL</td> <td>HCL</td> <td>ICE</td> <td>NONE</td> <td># CONT</td> <td>FILTER</td> <td>BTEX 8</td> <td>TPH 80</td> <td>PAH 82</td> <td>TCLP M</td> <td>TCLP Vo</td> <td>5</td> <td>GC/MS</td> <td>GC/MS</td> <td></td> <td>PLM (As</td> <td>Chloride</td> <td>General Anion/C</td> <td>TPH 80</td> <td></td>	/ LAB USE	AN	DATE	TIME	WATER	SOIL	HCL	ICE	NONE	# CONT	FILTER	BTEX 8	TPH 80	PAH 82	TCLP M	TCLP Vo	5	GC/MS	GC/MS		PLM (As	Chloride	General Anion/C	TPH 80	
CL BH-1 (2-3) 24/2020 1200 X X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 1	-61	BH-1 (0'-1')	2/4/2020	1200		_		Х		1											;	×			
65 BH-1 (4'-5') 2/4/2020 1210 X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 1 N X <td>02</td> <td>BH-1 (2'-3')</td> <td>2/4/2020</td> <td>1205</td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td>1</td> <td>-</td> <td>22</td> <td>-</td> <td></td>	02	BH-1 (2'-3')	2/4/2020	1205				X		1	-	22	-												
09 BH-1 (9',1) 2/4/2020 1220 X X 1 N X 1 N X 1 N X 1 N X 1 N X 1 <td>and the second second</td> <td>BH-1 (4'-5')</td> <td>2/4/2020</td> <td>1210</td> <td></td> <td>10</td> <td></td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td>-</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>4</td>	and the second second	BH-1 (4'-5')	2/4/2020	1210		10		-		1			-	10								-			4
05 BH-1 (9-10) 2/4/2020 1230 X X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N <td>04</td> <td>BH-1 (6'-7')</td> <td>2/4/2020</td> <td>1215</td> <td></td> <td></td> <td></td> <td>-</td> <td>ter al</td> <td>1</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td>-</td>	04	BH-1 (6'-7')	2/4/2020	1215				-	ter al	1	-				-		-					10			-
0L BH-2 (0'-1') 2/4/2020 1230 X 1 N X X I N X I I N X I I N X I I N X I I N X I N X I I N X X I I N X X I I N X X <td>09</td> <td>BH-1 (9'-10')</td> <td>2/4/2020</td> <td>1220</td> <td></td> <td>x</td> <td></td> <td>X</td> <td></td> <td>1</td> <td>N</td> <td>X</td> <td></td> <td>24</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>7. 1.68</td> <td></td> <td></td> <td>+</td>	09	BH-1 (9'-10')	2/4/2020	1220		x		X		1	N	X		24			-					7. 1.68			+
07 BH-2 (2'-3') 2/4/2020 1235 X 1 N X X 1 <td>Sector and a sector of the sec</td> <td>BH-2 (0'-1')</td> <td>2/4/2020</td> <td>1230</td> <td></td> <td>X</td> <td></td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>24 - 14 - 14 14 - 14 - 14 - 14 - 14 - 14</td> <td></td> <td>1</td> <td></td> <td></td> <td>100</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td>	Sector and a sector of the sec	BH-2 (0'-1')	2/4/2020	1230		X		-		1					24 - 14 - 14 14 - 14 - 14 - 14 - 14 - 14		1			100		-			-
0% BH-2 (4'-5) 2/4/2020 1/240 A <td>and the second se</td> <td>BH-2 (2'-3')</td> <td>2/4/2020</td> <td>1235</td> <td></td> <td>Х</td> <td></td> <td>X</td> <td></td> <td>1</td> <td>1</td> <td>X</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>\square</td> <td></td> <td>+</td> <td></td> <td>1</td> <td></td> <td>_</td>	and the second se	BH-2 (2'-3')	2/4/2020	1235		Х		X		1	1	X			-		-		\square		+		1		_
BH-2 (6'-7) 2/4/2020 1243 A	08	BH-2 (4'-5')	2/4/2020	1240		Х		X		1	1.1.1	X	1.5.							-					
BH-2 (9-10) Date: Time: Received by: Date: Time: LAB USE ONLY Remarks: Relinquished by: Date: Time: Received by: Date: Time: LAB USE ONLY STANDARD Relinquished by: Date: Time: Received by: Date: Time: RUSH: Same Day 24 hr. 48 hr. 72 hr. Relinquished by: Date: Time: Received by: Date: Time: Relinquished by: Date: Time: Rush Charges Authorized Relinquished by: Date: Time: Date: Time:	09	BH-2 (6'-7')	2/4/2020	1245		х		-			-	X	X		100 Jack		_	-				×		\square	+
Relinquished by: Date: Time: Received by: Date: Time: Sample Temperature HUSH: Same Day 24 nr. 48 nr. 72 nr. Relinquished by: Date: Time: Date: Time: Sample Temperature Rush Charges Authorized Relinquished by: Date: Time: Date: Time: Date: Time: Relinquished by: Date: Time: Date: Time: Date: Time:	Relinquished by:	Date: Time:		1		1		te:	Tim	9:	1				E				IDAR	D				1	
All Date: Time: Pecked by: Date: Time: Date: Date: Time: Date:	Relinguished by:	Date: Time:	Received by		<u> </u>	in .	184		-		0	Sam			ature		R	USH	: Sar	ne Day	y 24	hr. 41	3 <u>hr</u> . 72	2 hr.	
Relinquished by: Date: Time: Hecewed by: Date: Time. A27 Special Report Limits or TRRP Report	ann	- 100	Fet	X	14	2	-11-2	28	Contraction of the	~ ·	D					[R	ush (Charge	s Auth	norized				
MARTI MANATONITO IN	Relinquished by:	Date; Time:	Hecewed by	, has	Mat	, 2					40	0.	A	s		[S	pecia	l Repo	ort Limi	its or T	RRP R	eport		

T	Tetra Tech, Inc.				901 1	Midla Tel	nd, 7 (432	Street, Texas 79) 682-45 2) 682-39	9701 559	00													1. 		
Client Name:	Conoco Phillips	Site Manage	er:	Ch	ristiar	n Llull								Ci.	olo						EST tho		(<u>ما</u>		
Project Name:	COP Wilder 28-1 Dumping	. 3	in an									1	1											1	
Project Location: (county, state)	Lea County, New Mexico	Project #:			2120	-MD-	020)31	-					- 24											
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas	s 79701										6	5	85.e									d list)		
Receiving Laborat	ory: Pace Analytical	Sampler Si	gnature:		\bigcirc	6	2	tas				ORO - MROI		Se Hg	o Se Hg								ittached		
Comments: COP	TETRA Acctnum	Serie Actions		495			C				8260B	35) RO - OR		d Cr Pb	Cd Cr PI			8/624 8270C/625				TDS	ry (see a		
		SAMP	LING	M	ATRIX	P		RVATIVE	RS	(N)	BTEX	(Ext to C: GRO - DI		181	m	atiles						1	Chemist	Balance	
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020							AINE	ED (Y	8021B	TX1005 (E	8270C	als Ag	Itals Ag	mi Vola		Vol. 8260	382 / 6		(Asbestos) ide 300.0	Sulfate	Water (5R	1
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO ₃	NONE	# CONTAINERS	FILTERED (Y/N)	X	TPH TX1005 (Ext to C35) TPH 8015M (GRO - DBC -	PAH 827	Total Metals	TCLP Metals Ag As	TCLP Semi Volatiles	RCI	GC/MS V	PCB's 8082 / 608	NORM	PLM (Asbestos Chloride 300.0	Chloride	General V	Anion/Cation TPH 8015R	
10	BH-3 (0'-1')	2/4/2020	1300		x			х	-1	N	X)	x								×	-			
11	BH-3 (2'-3')	2/4/2020	1305		X			x	1	Ν	х)	×								X	(100
12	BH-3 (4'-5')	2/4/2020	1310	1	x			x	1	Ν	X)	x								>	(
B	BH-3 (6'-7')	2/4/2020	1315	17	x	1		x	1	N	х)	x					1 1 34		d al	>	(1	100
	BH-3 (9'-10')	2/4/2020	1320		X			x	1	Ν							-1	100		1		9 64 2 8.2			
14	BH-4 (0'-1')	2/4/2020	1330		x			х	1	N	X)	X					100		1)	<			
15	BH-4 (2'-3')	2/4/2020	1335		X			X	1	N	X)	×)	(
16	BH-4 (4'-5')	2/4/2020	1340		X			x	1	N	x)	x		N	-					>	<		-	
17	BH-4 (6'-7')	2/4/2020	1345		x			x	1	N	х)	×		1			9			>	<		in sit	
	BH-4 (9'-10')	2/4/2020	1350		X			x	1	N															
Relinquished by:	Date: Time: Detto J-11-20 1500 Date: Time:	Received by: Received by:	Du	-1	/	2.	ate: /(- ate:	Tim Za Tim	15:0	ه		0	B U NL	Y				AND			· 24 h	nr. 4	8 hr.	72 hr.	
10/11	X 2-1-20 16:0	Fell	T.	27 - S 17 - S 19 - S	•	2-1	42	Tim	10:	w	San	2-	remp	eratu	re		_] Ru	sh Ch	arges	Auth	orized				
Relinquished by:	Date: Time:	Received by	e v	Inn	nn			тіт 13/U				4	130	~] Sp	ecial F	leport	Limit	is or TF	RP	Report	1	
		(anal)		~~	7	1				1. A.		cle)	HAN	D DE	LIVE	RED	FEI	DEX	UPS	Tr	racking	j #: .	15.16	1000	24-17

Project Name: COP Wilder 28-1 Dumping Project Location: County, State) Accounts Pavable COP Wilder 28-1 Dumping County New Mexico Project #: 212C-MD-02031 County State)	T	Tetra Tech, Inc.		生 あり 。			Vest W Midland Tel (4 Fax (4	l, Texa 32) 68	as 79 32-45	701 59					Þ				1. AN							
Project Name: COP Wilder 28-1 Dumping Project Location: Lea County, New Mexico Project #: 212C-MD-02031 Accounts Payable Boil West Wall Street, Suite 100 Midland, Texas 79701 Sampler Signature: Becelving Laboratory: Project #: 212C-MD-02031 Mode County, New Mexico Project #: 212C-MD-02031 Becelving Laboratory: Project #: 212C-MD-02031 Becelving Laboratory: Project #: 212C-MD-02031 Mode County, New Mexico Project #: 212C-MD-02031 Market Mail Street, Suite 100 Midland, Texas 79701 Sampler Signature: Sampler Signature: Market Mail Street, Suite 100 Midland, Texas 79701 Sampler Signature: Sampler Signature: Sampler Signature: Market Mail Street, Suite 100 Midland, Texas 79701 Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Market Mail Street, Suite 100 Midland, Texas 79701 Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Market Mail Street, Suite 100 Midland, Texas 79701 Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: 103 BH-5 (0-11) Sa	Client Name:	Conoco Phillips	Site Manage	er:	Chr	istian	Llull							11	Cir								d N	•)		
Project Location: county, state) Lea County, New Mexico Project #: 212C-MD-02031 Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701 Sampler Signature: Image: Control (Control (C	Project Name:	COP Wilder 28-1 Dumping	C.M.	ine.				i f Garda						יי 				- JP							11	
Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701 Sampler Signature: Receiving Laboratory: Pace Analytical Sampler Signature: LAB # Sampler Signature:	Project Location:	Lea County, New Mexico	Project #:	a an		212C	-MD-0	2031	13 27 - 1.																	
Bacelving Laboratory: Pace Analytical pample signature. Comments: COPTETRA Acctnum VEAB # SAMPLE IDENTIFICATION VEAD VEAD DATE TIME MATRIX PRESERVATIVE METHOD Status Status <t< td=""><td>nvoice to:</td><td>Accounts Payable 901 West Wall Street, Suite 100 Midland, Te</td><td>exas 79701</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Terres .</td><td></td><td></td><td>(0)</td><td></td><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Te	exas 79701							Terres .			(0)			6										
Comments: COPTETRA Acctinum SampLing MATRIX Pesservative METHOD Signature Sign	Receiving Laboratory	Pace Analytical	Sampler Sig	gnature:		Ð	An	1					1 1		Set	Se								attacne		
LAB # SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION SUBMULATION SUBMULATION <t< td=""><td>Comments: COPTET</td><td>RA Acctnum</td><td></td><td></td><td></td><td>-C</td><td></td><td></td><td></td><td></td><td></td><td>8260B</td><td>1.20</td><td></td><td>Cd Cr F</td><td></td><td></td><td></td><td>24 0C/625</td><td></td><td></td><td></td><td>DS</td><td>try (see</td><td></td><td></td></t<>	Comments: COPTET	RA Acctnum				-C						8260B	1.20		Cd Cr F				24 0C/625				DS	try (see		
16 BH-5 (0·1) 2/4/2020 1300 X 1 N		The definition of the second sec	SAMP	LING	M	ATRIX				RS	(N)				Ba	g As	latiles		260B / 6	308		1	ate	Chemis alance		12
15 BH-5 (0'-1) 2/4/2020 1300 X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N <td></td> <td>SAMPLE IDENTIFICATION</td> <td>YEAR: 2020</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AINE</td> <td>ED (Y</td> <td>21B</td> <td></td> <td>SC</td> <td>als Ag</td> <td>Iatiles</td> <td>mi Vo</td> <td></td> <td>ol. 82</td> <td>082 / 6</td> <td></td> <td>300.0</td> <td></td> <td>Water tion B</td> <td>SR</td> <td></td>		SAMPLE IDENTIFICATION	YEAR: 2020							AINE	ED (Y	21B		SC	als Ag	Iatiles	mi Vo		ol. 82	082 / 6		300.0		Water tion B	SR	
15 BH-5 (0'-1') 2/4/202 1300 X X 1 N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I I N X X I N X X I I N X I N X X I I N X I N X I N X I N X I N X I N X I N X I N X I N <td>(LAB USE)</td> <td>JAMPLE DETITION</td> <td>DATE</td> <td>TIME</td> <td>WATER</td> <td>SOIL</td> <td>HCL</td> <td>ICE</td> <td>NONE</td> <td># CONT</td> <td>FILTERI</td> <td>BTEX 80</td> <td></td> <td></td> <td>Total Met</td> <td>TCLP Me</td> <td>TCLP Se</td> <td>RCI</td> <td>GC/MS V GC/MS S</td> <td>PCB's 80</td> <td>NORM</td> <td>Chloride</td> <td>Chloride</td> <td>General v Anion/Ca</td> <td>TPH 801</td> <td></td>	(LAB USE)	JAMPLE DETITION	DATE	TIME	WATER	SOIL	HCL	ICE	NONE	# CONT	FILTERI	BTEX 80			Total Met	TCLP Me	TCLP Se	RCI	GC/MS V GC/MS S	PCB's 80	NORM	Chloride	Chloride	General v Anion/Ca	TPH 801	
19 BH-5 (2'-3) 2/4/2020 1305 X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 N X 1 1 N <td>15</td> <td>BH-5 (0'-1')</td> <td>2/4/2020</td> <td>1300</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>N</td> <td>х</td> <td>X</td> <td></td> <td></td> <td></td> <td>17</td> <td></td> <td></td> <td></td> <td>1</td> <td>X</td> <td></td> <td></td> <td></td> <td>987</td>	15	BH-5 (0'-1')	2/4/2020	1300						1	N	х	X				17				1	X				987
20 BH-5 (4'-5') 2/4/2020 1310 X X 1 N X X <td></td> <td>BH-5 (2'-3')</td> <td>2/4/2020</td> <td>1305</td> <td></td> <td>x</td> <td></td> <td>X</td> <td></td> <td>1</td> <td>N</td> <td>X</td> <td>X</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td></td>		BH-5 (2'-3')	2/4/2020	1305		x		X		1	N	X	X									X				
21 BH-5 (6'-7') 2/4/2020 1315 X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X X 1 N X 1 1 N X 1 <td></td> <td>BH-5 (4'-5')</td> <td>2/4/2020</td> <td>1310</td> <td></td> <td>x</td> <td></td> <td>X</td> <td></td> <td>1</td> <td>N</td> <td>x</td> <td>X</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td></td>		BH-5 (4'-5')	2/4/2020	1310		x		X		1	N	x	X						1			X				
BH-5 (9'-10') 2/4/2020 1320 X X 1 N 22 BH-6 (0'-1') 2/7/2020 1000 X X 1 N X X 1 N 23 BH-6 (2'-3') 2/7/2020 1005 X X 1 N X X 1 N 24 BH-6 (4'-5') 2/7/2020 1010 X X 1 N X X 1 N 24 BH-6 (6'-7') 2/7/2020 1010 X X 1 N X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X	12000 - 200000	BH-5 (6'-7')	2/4/2020	1315		X		X		1	Ν	X	X						-			X		61. m		2 mil
22 BH-6 (0-1) 21/2020 1005 X X 1 N X X 1 23 BH-6 (2'-3') 27/2020 1005 X X 1 N X X 1 24 BH-6 (4'-5') 27/2020 1010 X X 1 N X X 1 X 1	and the second sec	BH-5 (9'-10')	2/4/2020	1320		X		Х		1	N				1		1								120	
23 BH-6 (2'-3) 27/2020 1005 X X 1 N X X I I N X X I I N X X I I N X X I I N X X I I N X X I I N	22	BH-6 (0'-1')	2/7/2020	1000		X		X	471 1.8	1	N	X	X	in.		-						X		20		
24 BH-6 (4'-5') 27/2020 1010 X X 1 N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I N X X I I N X X I I N X X I I N X X I I N X X I I N X X I I N X X I I N X X I I N X X I I N X <td></td> <td>BH-6 (2'-3')</td> <td>2/7/2020</td> <td>1005</td> <td></td> <td>X</td> <td></td> <td>X</td> <td></td> <td>1</td> <td>N</td> <td>X</td> <td>X</td> <td></td> <td></td> <td></td> <td></td> <td>\square</td> <td>-</td> <td></td> <td></td> <td>X</td> <td></td> <td>1</td> <td>\square</td> <td></td>		BH-6 (2'-3')	2/7/2020	1005		X		X		1	N	X	X					\square	-			X		1	\square	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		BH-6 (4'-5')	2/7/2020	1010		X		X		1	N	X	X				-							-		
Image: Product of the second day Date: Time: Tim		BH-6 (6'-7')	2/7/2020	1015		x		X		1	N	×	X						1			X				
Relinquished by: Date: Time: Received by: Date: Time: Received by: Date: Time: Rush: Sample Temperature Rush Charges Authorized Date: Time: Rush Charges Authorized	26	BH-6 (9'-10')	2/7/2020	1020		X		25 1.25		1	N	X	X					1.30				X				
Relinduitsbed by: Date: Time: Beceived by: Date: Time: Carleal Rush Charges Authorized	Relinquished by:	- for 2-11-20 150	20 Helle	hd	2	2	_ (_	22	K	520	0					F] st.	AND		Dav	24.6	. 40	hr 1	70 hr	
Date: Time: Received by: Date: Time:	Relinquished by:	. /	1./ /	EX .		C	11-	20](6-	0					e		_					. 40		210.	
	Relinquished by:	Date: Time:	Received by	e he	m	1012 I					40		A	25	-] Spe	ecial R	eport I	Limits	or TR	RP Re	port		

Ŧ	Tetra Tech, Inc.					West W Midlan Tel (4 Fax (4	d, Te (32) 6	xas 79	9701 659	00									à					9.84 S.
Client Name:	Conoco Phillips	Site Manag	er:	Chr	ristiar	Llull												S RE		2 J - 18		-		
Project Name:	COP Wilder 28-1 Dumping	2.51			×				t R		1	11	(0	irc		or S	peo 	cify	Me1	iho 	dN	o.)	1	11
Project Location: (county, state)	Lea County, New Mexico	Project #:			212C	-MD-0	2031	1													14.2			
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas	\$ 79701			P.S. 1							(0										list)		
Receiving Laborator	y: Pace Analytical	Sampler Si	gnature:	25 K	4	Ala	in ,	7		t a ^{re}		ORO - MRO)	0	Se Hg								tached		
Comments: COPTE	TRA Acctnum		1		L	-0					8260B		N Cr Dh	Cd Cr Pb			4	C/625			S	y (see at		
Real of a		SAMP	LING	ма	ATRIX		SERV	ATIVE	RS	(N/)			AH 8270C	g As Ba (atiles	8260B / 624	ol. 8270C/ 08			ate TDS	Chemistry	llance	
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020		-	10				AINE	ED (Y	21B		8270C	Metals Ag	Volatiles	mi Voli	ol. 82	Semi. Vol. 8082 / 608		(Asbestos) ide 300.0	Sulfate	Water Che	N/Cation Balance 8015R	
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	ICE	NONE	# CONTAINERS	FILTERED (Y/N)		TPH 801	PAH 827	TCLP Me	TCLP Vo	TCLP Semi Volatiles RCI	GC/MS Vol.	GC/MS Semi. Vol. PCB's 8082 / 608	NORM	PLM (Asbestos Chloride 300.0	Chloride	General V	TPH 8015R	
27	BH-7 (0'-1')	2/7/2020	1100		x		X	1	1	N	х	X	-					T	ĪĪ	X				
28	BH-7 (2'-3')	2/7/2020	1105		х		X		1	N	x	X		1 191						X				
29	BH-7 (4'-5')	2/7/2020	1110		х		X		1	N	x	x								X				
30	BH-7 (6'-7')	2/7/2020	1115		х		X	10	1	N	X	X								x	Π			
and the second second second	BH-7 (9'-10')	2/7/2020	1120		х		X		1	Ň			1										T	1
31	BH-8 (0'-1')	2/7/2020	1200		x		X		1	Ň	X	X	-							x		1		
32	BH-8 (2'-3')	2/7/2020	1205		х		x		1	Ν	x	X								X			10.0	1.5
33	BH-8 (4'-5')	2/7/2020	1210		х		x		1	N	X	X		-		<u>a.</u>				X				
34	BH-8 (6'-7')	2/7/2020	1215		х		X		1	Ν	х	X								X				
	BH-8 (9'-10')	2/7/2020	1220		Х		X		1	N														
Relinquished by:	Date: Time: 210- 211-20 1500	Received by:	hat	Q	22	Date 2_)(~		Time		D						X s		DARD						
Relinquished by	Date: Time: 2-11-23 (6:50	Received by:			2	Date		Time		D	1.000	ple Tem				_		Same			. 48	hr. 7	72 hr.	
Relinquished by:	Date: Time;	Received by:	3 her			-(1-2 Date	e: 17	Time	» 9:4	10	K	the				_		Report			RP Re	port		

RAD SCREEN: <0.5 mR/hr

alysis Request	of Chain of Custody Record Tetra Tech, Inc.			90	M	idland Fel (4	d, Te (32)	exas 7 682-4	, Suite 79701 4559 3946	3 100				- 	1		1) 							-	1
	Conoco Phillips	Site Manager	• 18 ¹	Christ	ian l	lull	4		19		*			(C	ircl						UES eth		No.	1	
lient Name:	and the second												11			-						1			1
roject Name:	COP Wilder 28-1 Dumping		11 Fig. 27	21	2C-	MD-0	0203	31	- 55%) 								1			1					
roject Location: county, state)	Lea County, New Mexico	Project #:		-	LU		- 1				_									4			ist)		
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Te	exas 79701			-	1					-		MRO)	PH	6H e								attached I	La Ca	
	ory: Pace Analytical	Sampler Sig	nature:	C	Y	Re	10	Az		_	_	_	ORO - 1	Ph Se	Pb Se				12				ee attac		
sil constraints												K 8260E	GRO - DRO - ORO - MRO)	CHO	Ag As Ba Cd Cr Pb Se Hg			624	8270C/625			0	IUS listry (se		
Comments: COP	TETRA Accurati	SAMPL	ING	MA	TRIX	P		RVATI	VE	RS	(N)	8021B BTEX 82	GRO -	A De Ro	Ag As B		olatiles	8260B / 624		608	IS)		sultate ater Chem	Balance	
See. 1		YEAR: 2020		T						AINE	ED ()	8021B	8015M (70C	Metals A	Volatiles	mi Vo		Semi.	1082 /	sbesto	300.0	Wate	ation	E
LAB #	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	INCINE	# CONTAINERS	FILTERED (Y/N)		TPH 801	PAH 8270C	TCLP Me	TCLP VG	TCLP Semi Volatiles RCI	GC/MS Vol.	GC/MS Semi. Vol.	PCB's 8082 / 608	PLM (Asbestos)	_	Chloride Sultate LDS General Water Chemistry	Anion/Cation Balance	אס נוגדו
(IAB USE ONLY)		2/7/2020	1300		X			X	11 - C.S.	1	N	Х	X	4			_					X		-	
35	BH-9 (0'-1') BH-9 (2'-3')	2/7/2020	1305		x			х		1	N	X	X			12.0	-	-				X X			+
36	BH-9 (2'-5')	2/7/2020	1310		х	- 4		x		1	N	X	X								-	x			1000
37	BH-9 (6'-7')	2/7/2020	1320		X			х	-	1	N	X	X											+	+
26	BH-9 (9'-10')	2/7/2020	1330		X	+		X	-	1	N									1					
						1				a di			-								-				+
				6	H	+	+	+																	
				+	+	+	1	+																	1
Relinquished by:	Date: Time: De Jut D-11-20 ISC	Received b	Y:	-7	/		Date		Time	(SE	5		LAE	B US		RE	_	STA	NDA			04 hr	48 hr.	721	hr
Relinquished by:	Date: Time:	in Fea	iv: EX	and and a second	2	2-4	Date	: 7.C	Time		· ē		nple T								uthoriz				40
Relinquished by:	Date: Time:	Received	by:	how	nn		21	". [] <i>S</i>]/	W	9:	.40		A	21	~		100			10			P Repo	rt	
	A STATE OF A	1 dan	10L	10/10/	7	5. '		11.4	199	5.46	1. 19	(C	ircle)	HAND	DEL	IVER	ED	FED	EX I	JPS	Trac	king #	#:		_

Received by OCD: 4/6/2020 12:21:17 PM

Pace Analytical National Center for Testing & Innovation **Cooler Receipt Form** 1189076 COPTETRA Client: Cooler Received/Opened On: 2 Temperature: 113 / 20 Received By: Carol Kemp Signature: and emo NP Yes No **Receipt Check List** COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used? Sufficient volume sent? If Applicable VOA Zero headspace? Preservation Correct / Checked?

Page 99 of 109

APPENDIX D Boring Logs

212	C-M	D-02	2031		Ŀ	ETR/	A TEC	н				LOG OF BORING BH-1	Page 1 of 1
roje	ect N	ame	e: Wilc	der 28-1	I								I
ore	hole	Loc	ation:	GPS: 32	2.019	069°	, -103	3.674	380°			Surface Elevation: ft	
ore	hole	Nur	nber: I	BH-1						E	Boreh Diame	ole teter (in.): 8 Date Started: 2/4/2020 Date Finished	I: 2/4/2020
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	ΓΙΩΝΙΣ ΓΙΜΙΤ	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	Remarks:	RY_ft REMARKS
Щ Д	Р	SA	ExStik	PID	SA	¥	В	LL	ΡI	Σ	GR GR		
_	$\langle \langle$	Д	609	0.9								-FILL- FILL MATERIAL; Brownish tan, with few gravel, poorly cemented, with no odor, with no	BH-1 (0'-1')
_		X	472	1.1								Staining. -SM- SILTY SAND; Brownish tan, with few gravel, poorly cemented, with no odor, with no staining.	BH-1 (2'-3')
5_		X	201	1.2								-SM- SILTY SAND; Tan, with moderate gravel, heavily cemented, with no odor, with no staining.	BH-1 (4'-5')
_	$\left\langle \right\rangle$	X	1150	0.2									BH-1 (6'-7')
0		X		0.1								Bottom of borehole at 10.0 feet.	<u>BH-1 (9'-10')</u>

	C-M	ID-0	02031	T	b]T	ETR/	A TEC	н				LOG OF BORING BH-2	age of 1
Proje	ct N	lam	ne: Wild	der 28-1									
3ore	hole	Lo	cation:	GPS: 32	2.019	285°	, -103	3.674	521°			Surface Elevation: ft	
Bore	hole	Nu	umber:	BH-2						E	oreh	hole eter (in.): 8 Date Started: 2/4/2020 Date Finished: 2/4/20	20
			ppm)	(mqt	ERY (%)	ENT (%)	t)		DEX			WATER LEVEL OBSERVATIONS While Drilling <u>URY</u> ft Upon Completion of Drilling <u>URY</u> ft Remarks:	
DEPTH (ft)	OPERATION TYPE	SAMPLE	EX SCREENING (ppm) SCREENING (ppm)	UNCE FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	ARKS
	$\langle \rangle$	X	951	0.2								-FILL- FILL MATERIAL; Brownish tan, with few gravel, poorly cemented, with no odor, with no1 BH-2 (0'-1	')
	$\left< \right>$	X	508	1.8								-SM- SILTY SAND; Brownish tan, with few gravel, poorly cemented, with no odor, with no staining. BH-2 (2'-3	3')
5	$\left< \right>$	X	390	0.4								-SM- SILTY SAND; Tan, with moderate gravel, heavily cemented, with no odor, with no staining. BH-2 (4'-5	5')
	$\langle \rangle$	X		0.9								BH-2 (6'-7	")
_	$\langle \langle$		7										
0	$\langle \langle$	X		1.1								Bottom of borehole at 10.0 feet.	0')
10				1.1								Bottom of borehole at 10.0 feet.	0')

	C-MI	D-02	2031		ť	ETR/	TEC	н				LOG OF BORING BH-3		Page 1 of 1
Proje	ct N	ame	e: Wil	der 28-	1									
Boreł	no l e	Loc	ation:	GPS: 3	2.019	562°	-103	8.674	377°			Surface Elevation: ft		
Boreł	no l e	Nun	nber:	BH-3						E	Boreho Diame	le er (in.): 8 Date Started: 2/4/2020 Date Finis	hed:	2/4/2020
	/PE		FIELD 3 (ppm)	(mqq) €	NERY (%)	NTENT (%)	(pcf)	Т	, INDEX			WATER LEVEL OBSERVATIONS	DR	<u>/_</u> ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	The second secon	D SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		Development PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION		REMARKS
	$\left\langle \right\rangle$	X	694	0.9								-FILL- FILL MATERIAL; Brownish tan, with few gravel, poorly cemented, with no odor, with no staining.	Bł	H-3 (0'-1')
_		X	252	0.8								-SM- SILTY SAND; Brownish tan, with few gravel, poorly cemented, with no odor, with no staining. -SM- SILTY SAND; Tan, with moderate gravel,	Bł	H-3 (2'-3')
5		X	1130	1.3								heavily cemented, with no odor, with no staining.	Bł	H-3 (4'-5')
_		X		0.1									Bł	H-3 (6'-7')
											만난			
_ 10				0								Bottom of borehole at 10.0 feet.	Bł	1-3 (9'-10')
10				0									Bł	1-3 (9'-10')

2120	C-ME	D-0 2	2031		۲ ا	ETR	ΑΤΕ	сн				L	og of Boring BH-4			Page 1 of 1
Proje	ct Na	ame	e: Wil	der 28-	1											I
orel	nole	Loc	ation:	GPS: 3	2.01	9335°	, - 103	3.674	254°			Surface Elevation	ft			
orel	nole	Nur	nber:	BH - 4						E	Boreh Diame	ole 8 eter (in.):	Date Started: 2/4/2020	Date Fi	nishe	d: 2/4/2020
			۵Ê	Ê	(%) X	NT (%)			EX			V	VATER LEVEL OBSERVATIO		<u>¥</u> C	DRY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	The second secon	U VOC FIELD C SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)			MINUS NO. 200 (%)	GRAPHIC LOG		RIAL DESCRIPTION		DEPTH (ft)	REMARKS
_	$\langle \langle $	X	879	0.2								⊈ gravel, poorly	ATERIAL; Brownish tan, with fe cemented, with no odor, with no	w	1	BH-4 (0'-1')
_		X	501	0.1								staining. -SM- SILTY S poorly cement	AND; Brownish tan, with few gra ed, with no odor, with no staining	g.		BH-4 (2'-3')
5_		X	291	0.6								-SM- SILTY S heavily cemer	AND; Tan, with moderate grave ted, with no odor, with no stainir	I,	_	BH-4 (4'-5')
_				1.2										-	_	BH-4 (6'-7')
 				0.3										-	— — 10	BH-4 (9'-10')
amp ype:	oler s:		Split Spoon Shelby Bulk Sampl		Acetat Vane		r T	Dpera ∫ypes	:] Muc Rota	d ary ht Aug	s		es: alytical samples are shown in the face elevation is an estimated v		rks" (column.

2120	C-MI)- 02	031	T	b]'	ETR	A TEC	н				LOG OF BORING BH-5 Page 1 of 1
Proje	ct Na	ame	: Wile	der 28-1	1							
3oreh	nole	Loca	ation:	GPS: 32	2.019	645°	, -103	3.674	156°			Surface Elevation: ft
Borehole Number: BH-5 Borehol Diamete										E	Boreh Diame	ole eter (in.): 8 Date Started: 2/4/2020 Date Finished: 2/4/2020
			D D	(mq	(%) ۲	ENT (%)			DEX			WATER LEVEL OBSERVATIONS While Drilling \overline{V} DRY ft Upon Completion of Drilling \overline{V} DRY ft Remarks: \overline{V} DRY ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	X CHLORIDE FIELD SCREENING (ppm)	UNCE FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		Development PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION
	$\left\langle \right\rangle$	X	209	2								-FILL- FILL MATERIAL; Brownish tan, with few gravel, poorly cemented, with no odor, with no1 BH-5 (0'-1') staining.
_	$\left\langle \right\rangle$	X	198	1.1								-SM- SILTY SAND; Brownish tan, with few gravel, poorly cemented, with no odor, with no staining. BH-5 (2'-3')
5_		X		0.8								-SM- SILTY SAND; Tan, with moderate gravel, heavily cemented, with no odor, with no staining. BH-5 (4'-5')
_		X		0.3								BH-5 (6'-7')
 10	$\langle \rangle$	X		0.1								Bottom of borehole at 10.0 feet.

 Logger:
 Joe Tyler
 Drilling Equipment:
 Air Rotary
 Driller:
 Scarborough Drilling

 WILDER 28-1.GPJ ` 3-9-20 ` TT_AUSTIN_GEOTECH_NOWELL3 ` 2015 TT TEMPLATE DECEMBER WELL.GDT ` `
 Scarborough Drilling

212C - M	ID-C	02031	T	Ŀ	ETR/	A TEC	н				LOG OF BORING BH-6	ge f 1
Project N	lam	ie: Wild	der 28-´	1								
Borehole	Lo	cation:	GPS: 32	2.019	004°	, -103	3.674	272°			Surface Elevation: ft	
Borehole	Nu	Imber:	BH-6						E	oreh	ole eter (in.): 2 Date Started: 2/7/2020 Date Finished: 2/7/202	20
		iLD ppm)	(mqc	ERY (%)	ENT (%)	ıf)		IDEX			WATER LEVEL OBSERVATIONS While Drilling $\underline{\Psi}$ DRY ft Upon Completion of Drilling $\underline{\Psi}$ DRY ft Remarks: Ψ	
DEPTH (ft) OPERATION TYPE	SAMPLE	EXEENING (ppm)	UNCE FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	RKS
_		698	1.5								-SM- SILTY SAND; Brownish tan, with few gravel, moderately cemented, with no odor, with no staining.	
5			0.9								- BH-6 (2'-3" -SM- SILTY SAND; Tan, with moderate gravel, heavily cemented, with no odor, with no staining. BH-6 (4'-5"	
	X	225	0.3								BH-6 (6'-7')	1
<u>10 </u>		208	0.5								Bottom of borehole at 10.0 feet.)' <u>)</u>
<u>10 </u>		208	0.5								Bottom of borehole at 10.0 feet.))

212	C-MI	D- 02	2031	T	t]'	ETR	A TEC	сн				LOG OF BORING BH-7	Page 1 of 1
⊃roje	ect Na	ame	e: Wil	der 28-´	1								
Bore	ho l e	Loc	ation:	GPS: 32	2.019	9094°	, -103	3.674	670°			Surface Elevation: ft	
Bore	hole	Nun	nber:	BH-7						E	Boreho Diame	ole 2 Date Started: 2/7/2020 Date Finished: 2/	7/2020
			۵Ê	(E	۲ (%)	NT (%)			EX			WATER LEVEL OBSERVATIONS While Drilling $\underline{\nabla}$ DRY ft Upon Completion of Drilling $\underline{\Psi}$ DRY f Remarks:	t
DEPTH (ft)	OPERATION TYPE	SAMPLE	THORIDE FIELD SCREENING (ppm)	D SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		Development PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
_		X	155	0.9								-SM- SILTY SAND; Brownish tan, with few gravel, moderately cemented, with no odor, with no staining.	(0'-1')
_				0.5								-SM- SILTY SAND; Tan, with moderate gravel,	(2'-3')
5			1080	0.3								with no odor, with no staining. HC _ BH-7	(4'-5')
_		X		0.9								BH-7	(6'-7')
	$\left\{ \right\}$	X	472	1.1								Bottom of borehole at 10.0 feet.	(9'-10')
Sam Type	pler s:		Split Spoor Shelby Bulk Samp	<i>،</i> ا		e Line Shear mia	r T	Opera ypes □	Muc Rota	l ary tinuou	5	Auger Notes: Air Rotary Analytical samples are shown in the "Remarks" colum Surface elevation is an estimated value.	

Driller: Scarborough Drilling

 Logger:
 Joe Tyler
 Drilling Equipment: Air Rotary
 Driller:

 WILDER 28-1.GPJ ` 3-9-20 ` TT_AUSTIN_GEOTECH_NOWELL3 ` 2015 TT TEMPLATE DECEMBER WELL.GDT '
 Driller:
 Driller:

212	C-M	D-02	2031	T	b]T	ETR	A TEC	СН				LOG OF BORING BH-8	Page 1 of 1
⊃roje	ect N	ame	e: Wilc	der 28-1	1							l.	
Bore	ho l e	Loc	ation:	GPS: 32	2.019	9575°	, -103	3.674	612°			Surface Elevation: ft	
Bore	ho l e	Nur	nber: I	BH-8						E	Boreho Diame	ble ter (in.): 2 Date Started: 2/7/2020 Date Finished: 2	:/7/2020
			dpm)	(mqt	ERY (%)	ENT (%)	ţ)		IDEX			WATER LEVEL OBSERVATIONS While Drilling <u>V DRY</u> ft Upon Completion of Drilling <u>V DRY</u> Remarks:	ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	XX CHLORIDE FIELD SCREENING (ppm)	UNCE FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		Development PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	REMARKS
_	$\left\{ \right\}$	X	733	1.9								-SM- SILTY SAND; Brownish tan, with few gravel, moderately cemented, with no odor, with no staining.	8 (0'-1')
_	$\langle \rangle$	X	293	0.8								-SM- SILTY SAND; Tan, with moderate gravel,	8 (2'-3')
5				0.5								with no odor, with no staining. HC	8 (4'-5')
_	$\langle \langle \rangle$	X	350	0.4								ВН-	8 (6'-7')
_ 10_		X		0.1								Bottom of borehole at 10,0 feet,	8 (9' - 10')
Samı Type	pler s:		Split Spoon Shelby Bulk Sample Grab Sample			e Line Shear nia	r T	Dpera	Muc Rota	ary itinuou ht Auge	s er	Auger Notes: Air Rotary Analytical samples are shown in the "Remarks" colur Direct Push Direct Push	nn.

 Logger:
 Joe Tyler
 Drilling Equipment:
 Air Rotary
 Driller:
 Scarborough Drilling

 WILDER 28-1.GPJ ` 3-9-20 ` TT_AUSTIN_GEOTECH_NOWELL3 ` 2015 TT TEMPLATE DECEMBER WELL.GDT ` `
 Scarborough Drilling

212C-MD-02031 TETRA TECH Project Name: Wilder 28-1												LOG OF BORING BH-9					Page 1 of 1
-				der 28-1													
ore	hole	Loc		GPS: 32	2.019	800°	, -103	3.674	392°			Surface Elevatio					
ore	ho l e	Nu	mber:	BH-9	1	1		1	1		Diame	ole ter (in.): 2	Date Started: 2			inishe	d: 2/7/2020
			(mdi	(mq	۲ (%)	ENT (%)	Û.		DEX	(9			WATER LEVEL(<u>☑ DRY</u> ft Upor			<u>¥</u> [<u>DRY_</u> ft
ИЕРТН (П)	OPERATION TYPE	SAMPLE	EXERTING (ppm)	UNCE FIELD	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)		D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MAT	ERIAL DESCRIF	PTION		DEPTH (ft)	REMARKS
_	$\langle \rangle$	X	481	0.2								-SM- SILTY moderately of staining.	SAND; Brownish t emented, with no o	an, with few gr odor, with no	avel,	_	BH-9 (0'-1')
	$\left\langle \right\rangle$	X	290	0.1								-SM- SILTY	SAND; Tan, with r	moderate grave		3.5	BH-9 (6'-7')
5_	$\left \right\rangle$	X		0								with no odor	with no staining. I	HC	,	_	BH-9 (4'-5')
_	$\langle \rangle$	X		0.9												_	BH-9 (6'-7')
-	$\langle \langle \rangle$	X		0.5									ttom of borehole a				BH-9 (9'-10')
			Split Spoon				r C) pera	tion			Auger No					

 Logger:
 Joe Tyler
 Drilling Equipment:
 Air Rotary
 Driller:
 Scarborough Drilling

 WILDER 28-1.GPJ ` 3-9-20 ` TT_AUSTIN_GEOTECH_NOWELL3 ` 2015 TT TEMPLATE DECEMBER WELL.GDT ` `
 TT_AUSTIN_GEOTECH_NOWELL3 ` 2015 TT TEMPLATE DECEMBER WELL.GDT ` `