April 9, 2020

Dagger State Unit 3 (DSU 3 02062020) Characterization, Remediation & Closure Report

Prepared for Advance Energy Partners Hat Mesa LLC Houston, Texas

Prepared by R.T. Hicks Consultants, Ltd. Albuquerque, New Mexico

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

Incident ID	NRM2011358419
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Advance Energy Partners Hat Mesa LLC	OGRID: 372417
Contact Name: David Harwell	Contact Telephone: 281-235-3431
Contact email: DHarwell@advanceenergypartners.com	Incident # (assigned by OCD)
Contact mailing address: 11490 Westheimer Rd. Suite 950.	
Houston, TX 77077	

Location of Release Source

Latitude <u>32.4624096</u>

Longitude <u>-103.6153213</u> (NAD 83 in decimal degrees to 5 decimal places)

Site Name: Dagger State Unit #003	Site Type: Produced water transfer line
Date Release Discovered: 02/06/2020	API# 30-025-36595

Unit Letter	Section	Township	Range	County
K	19	21S	33E	Lea

Surface Owner: 🛛 State 🗌 Federal 🗌 Tribal 🗌 Priva	Surface Owner:	State	Federal	🗌 Tribal	Private
---	----------------	-------	---------	----------	---------

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 2	Volume Recovered (bbls): 1
Produced Water	Volume Released (bbls) 15	Volume Recovered (bbls): 10
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release: Wel	lhead stuffing box failure. Vacuum truck dispatched to	location and recovered 11 barrels of produced water and
oil.	-	_

Page 2

Incident ID	NRM2011358419
District RP	
Facility ID	
Application ID	

Page 3 of 85

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
□Yes ⊠No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: <u>Andrew Parker</u> (R.T. Hicks Consultants)	Title: Sr. Env. Specialist
Signature: Adrew adres	Date: <u>February 09, 2020</u>
email: andrew@rthicksconsult.com	Telephone: <u>970-570-9535</u>
	·
OCD Only	
Received by: Ramona Marcus	Date:04/22/2020

Received by OCD: 4/17/2020 8:59:13 AM Form C-141 State of New Mexico

Oil Conservation Division

Ν	JRM2011358419 Page A of 8
Incident ID	NRM2000354631 CE
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

	1
What is the shallowest depth to groundwater beneath the area affected by the release? Plate 5 & 6	<u>179</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse? Plate 8	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)? Plate 8	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church? Plate 9	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes? Plate 7	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring? Plate 8	🗌 Yes 🕅 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field? Plate 7	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland? Plate 10	🗌 Yes 🕅 No
Are the lateral extents of the release overlying a subsurface mine? Plate 11	
Are the lateral extents of the release overlying an unstable area such as karst geology? Plate 12	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain? Plate 13	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No
2 la me receite impact a car dot on an expression, actorophicn, production, or storage site.	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- \boxtimes Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Received by OCL Form C-141	: 4/17/2020 8:59:13 AM State of New Mexico		In	NRN cident ID	//2011358419 NRM2000354	Page 5 of 85
Page 4 Oil Conservation Division			istrict RP			
				cility ID		
			A	pplication ID		
regulations all op public health or t failed to adequat addition, OCD a and/or regulation Printed Name: Signature: email: _andrew	<u>Andrew Parker</u> Title: _	otifications and po e OCD does not re nreat to groundwa of responsibility f <u>Sr. Env. Spo</u>	erform correct elieve the ope tter, surface w for compliance <u>ecialist</u>	tive actions for relear rator of liability sho ater, human health e with any other fed 2020	ases which may en- ould their operation or the environment	danger is have In
OCD Only Received by: _	Ramona Marcus	_ Date	:_04/22/	2020		

Received by OCD: 4/17/2020 8:59:13 AM Form C-141 State of New Mexico

Oil Conservation Division

NRM2	011358419	Page 6 of 85	,
Incident ID	NRM200035	4631_CE	
District RP			
Facility ID			

Application ID

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

Scaled sitemap with GPS coordinates showing delineation points

 \boxtimes Estimated volume of material to be remediated

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.
Extents of contamination must be fully delineated.
Contamination does not cause an imminent risk to human health, the environment, or groundwater.
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.
Printed Name: <u>Andrew Parker</u> Title: <u>Sr. Env. Specialist</u>
Signature: April 10, 2020
email: <u>andrew@rthicksconsult.com</u> Telephone: <u>970-570-9535</u>
OCD Only
Received by: Ramona Marcus Date: 04/22/2020
Approved Approved with Attached Conditions of Approval Denied Deferral Approved
Signature: Mutandes Date: 06/18/2020

Page 5

Page 6

Oil Conservation Division

Incident ID	NRM2000354631
District RP	
Facility ID	
Application ID	

Page 7 of 85

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: <u>Andrew Parker</u> Title: <u>Sr. Env. Specialist</u> Aden ator Date: April 10, 2020 Signature: email: <u>andrew@rthicksconsult.com</u> Telephone: 970-570-9535 **OCD Only** Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: _____ Date: _____ Printed Name: Title:

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996

▲ Carlsbad ▲ Durango

April 10, 2020

NMOCD District 1 District 1 - HOBBS 1625 N. French Drive Hobbs, New Mexico 88240 Electronic Submittal via portal

RE: Tracking # <u>Pending</u> Characterization and Closure Report Dagger State Unit 3 (DSU 3 02062020) API: 30-025-36595 Advance Energy Partners Hat Mesa, LLC

NMOCD:

R.T. Hicks Consultants submits this characterization, remediation and closure report on the behalf of Advance Energy Partners Hat Mesa, LLC (Advance Energy).

The release occurred on February 6, 2020 on an active production pad. State of New Mexico is the surface owner. The cause of the release was due to wellhead stuffing box failure. Seventeen barrels were released. Eleven barrels were recovered.

Excavation of impacted soil began on February 24, 2020 and was completed on February 28, 2020.

The C-141, including the Characterization, Remediation, and Closure Forms, is attached.

We respectfully ask NMOCD for:

- Deferment approval around the wellhead and pump jack, and
- Closure of the regulatory file for the non-deferred area.

Hick Consultants relied on 19.15.29 NMAC for characterization, remediation, and closure reporting for the above referenced release.

The location of the release is 32.4624096, - 103.6153213 (Latitude/Longitude; NAD 83); Unit Letter K, Sec 19, T21S., R33E; Lea County.

The report is divided into three sections:

- I. Initial Response
- II. Characterization
- III. Remediation and Closure

Plates

- Plate 1 Site Map
- Plate 2 EMI Survey In-Phase Susceptibility (Horizontal Mode at 0.5m Separation)
- Plate 3 EMI Survey ECa in the Horizontal Dipole Mode at 0.5 m coil separation.
- Plate 4 EMI Survey ECa in the Vertical Dipole Mode at 1.0 m coil separation.
- Plate 5 Depth to Water
- Plate 6 Potentiometric Surface
- Plate 7 Wellhead Protection
- Plate 8 Water Courses
- Plate 9 Nearby Structures
- Plate 10 Wetlands
- Plate 11 Mines and Minerals
- Plate 12 Karst Potential
- Plate 13 Flood Hazard Potential (FEMA)
- Plate 14 Base Sample Grid Diagram
- Plate 15 Wall Sample Grid Diagram

Tables

- Table 1 Sample Results Summary
- Table 2 Nearby OSE Well Summary

Appendices

- Appendix A Laboratory Certificate of Analyses
- Appendix B OSE Well Logs

Dagger State Unit 3 02062020 Tracking # Pending

1 Initial Response

The release occurred on February 06, 2020, resulting from failure of the wellhead stuffing box. The release included produced water and crude oil. The area of saturation and pooling areas remained on the active production pad (Plate 1 and Figure 1). The release consisted of 17 barrels; 11 barrels were recovered. The majority of the release was recovered from within the wellhead cellar.

The production pad was scraped within the release area on February 10th. Excavation of impacted soil caused by the release began on February 24, 2020. Excavated material was transported to an approved disposal facility.

Figure 1: Photograph viewing west from the east edge of the production pad. The release extent is visible as outlined by the melted snow (photo center). Date/Time: 02/06/2020. GPS: 32.4624139 N, 103.6146778 W.

2 Characterization

The following sections address items as described in 19.15.29.11.A, paragraphs 1-4. Please refer to the C-141 characterization checklist for additional setback criteria and verification (Plates 5-13).

2.1 Site Map

Horizontal extent of the release was determined by visual observations. R.T. Hicks Consultants was on-location the day of the release and mapped the release extent using GPS technology.

Plate 1 shows the release extent relative to excavation extent, pipelines, and release source point at the wellhead.

2.2 Electromagnetic Induction Survey (EMI)

EMI Surveys are commonly used to measure apparent electrical conductivity (EC_a , "soil salinity") in soils. Employing a Geonics EM38-MKII, field personnel can effectively delineate the horizontal and vertical (up to a depth of 5-feet) extent of a produced water release by measuring EC_a and monitoring for EC changes between background and higher EC readings. At produced water releases, increasing EC measurements suggest a higher chloride.

On February 9, 2020 we performed an EMI Survey to measure the electrical conductivity of the release area. The EMI Survey was conducted in the horizontal and vertical dipole modes at 0.5 and 1.0 meter coil separations. Sensitivity to surface material is greatest at the 0.5 coil separation, zero feet in the horizontal mode and 0.66 feet in the vertical mode (below table and Figure 2a). At the 1.0 meter coil separation, greatest sensitivity is zero feet in the horizontal mode and 1.31 feet in the vertical mode (Figure 2b). Furthermore, at the 1.0 meter coil separation, sensitivity to subsurface material has a greater depth range. For example, at the 0.5 meter coil separation in the vertical mode the sensitivity ranges from 0.7 to 2.5 feet below ground surface; at the 1.0 meter coil separation in the vertical mode the sensitivity ranges from 1.3 to 4.9 feet below ground surface.

Coil Separation	Dipole Mode	Greatest Sensitivity	Relative Range	
meters		meters (feet)	(feet) Depth (meters)	
0.5				
	Horizontal	0	0 - 0.4	0 - 1.3
	Vertical	0.2 (0.66)	0.2 - 0.8	0.7 - 2.5
1				
	Horizontal	0 0 - 0.8		0 - 2.5
	Vertical	0.4 (1.31)	0.4 - 1.5 1.3 - 4.9	

Dagger State Unit 3 02062020 Tracking # Pending

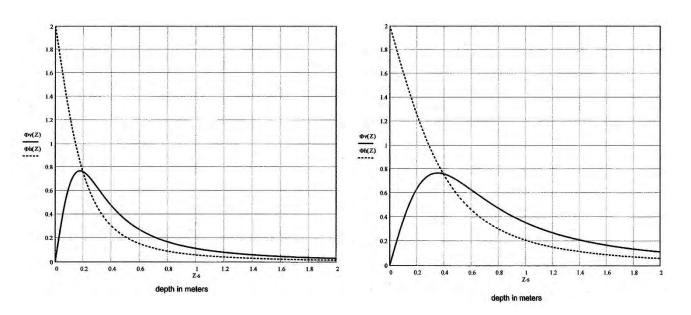


Figure 2a: 0.5-meter coil separation. Relative sensitivity with depth. Dashed line horizontal dipole mode. Solid line vertical dipole mode.

Figure 2b: 1.0-meter coil separation. Relative sensitivity with depth. Dashed line horizontal dipole mode. Solid line vertical dipole mode.

The difference in sensitivity ranges in the two coil configurations and dipole modes is important; the horizontal dipole mode will be relatively sensitive to variations near surface whereas the vertical dipole mode will be insensitive near the surface and sensitive at greater depths. This difference in sensitivity allows for a quick method for determining whether the near surface soil is more conductive (higher chloride concentration) than soils at depth, where

if a higher EC_a reading is obtained in the horizontal position than the vertical position, chloride has likely impacted the upper surface more than soils at lower depths. If a higher EC_a reading is obtained in the vertical position than the horizontal position, chloride has likely impacted soils at lower depths than the upper surface soils.

It is important to note that the EM38 is very susceptible to metal and electrical interferences. A metal object small as a steel nail can cause the apparent electrical conductivity to read high or go negative. EMI surveys near pipelines, wellheads, tank batteries, and powerlines must account for these interferences.

2.3 Metal Interference

As discussed above, the EM38-MK2 is susceptible to metal and electrical interference. These interferences need to be identified and evaluated prior to evaluation of electrical conductivity of subsurface soils.

The In-phase (IP) susceptibility of metal and electrical interferences is measured in parts per thousand (PPT). It is common for susceptibility readings to have very high and very low (negative) value.

Plate 2 shows the IP readings in the vertical dipole mode at the 0.5 meter receiver coil separation relative to IP interferences within the survey area. The IP susceptibility in this mode/coil separation, is most sensitive from 0.7 to 2.5 ft below ground surface (bgs). Dark purple and bright yellow shading highlights areas with greatest IP susceptibility. The following areas shows high IP susceptibility:

- At the pump jack and wellhead (yellow).
- Along the metal pipelines (yellow and dark purple).
- An area along the northwestern edge of the survey area (yellow). This area is off the production pad.
- A valve that was identified shows metal interference but is obscured by the pipeline leading from the wellhead to the separator.

Interpretation notes:

• The pipeline connector and other metal objects will have an influence on the electrical conductivity readings during the Quad-phase (QP) EMI survey. The user of the EMI survey needs to be aware of QP false readings near these two objects.

2.4 Electrical Conductivity

Field soil testing of electrical conductivity at discreate depths were obtained from seven hand auger samples (HA-01 and HA-07). Discrete soil samples were field tested for electrical conductivity using a Hanna DiST 4 EC Tester. EC readings were measured using a saturated paste in a 1-part soil to 5-parts distilled water solution (EC_{1:5}).

The purpose of the soil sampling was to

- 1) correlate the EMI survey with site specific $EC_{(1:5)}$ and chloride concentrations to a depth of no greater than 4-feet bgs and
- 2) determine chloride impairment relative to depth.

As shown in Figure 3, EC_{1:5} readings <0.20 dS/m correlates with a chloride concentration approximately <600 mg/kg.

Dagger State Unit 3 02062020 Tracking # Pending

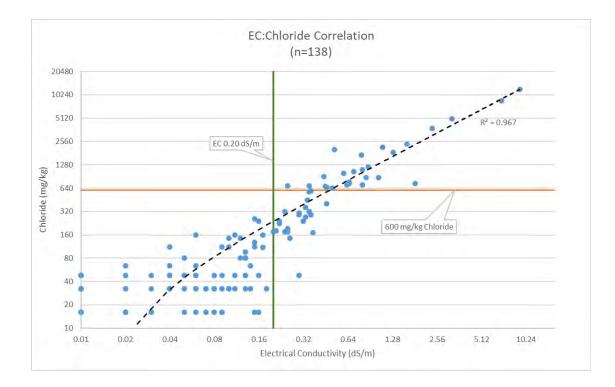


Figure 3: EC_{1:5} vs Chloride. Soil samples with an EC_{1:5} < 0.2 dS/m are likely to exhibit chloride concentrations below 600 mg/kg.

The Quad-phase (QP) readings of the EMI Survey measures apparent electrical conductivity (EC_a) in both the horizontal and vertical dipole modes.

Plates 3 and 4 compare EMI readings in the uppermost and lowermost soil profiles, respectively.

• Plate 3 shows the EC_a in the horizontal dipole mode at 0.5 m coil separation with a relative sensitivity range of 0 to 1.3 ft bgs with the greatest sensitivity at the surface.

Within the release extent EC_a readings are affected by metal interference at the wellhead, valve, and pipelines. Along the southern extent of the release, the EMI survey shows higher EC_a (yellow-green shading) relative to background EC_a represented by dark green shading to the south of the release extent. The higher EC_a readings correlate with the southern release extent in areas not influenced by metal susceptibility.

 $EC_{(1:5)}$ readings at HA-03 and HA-04 confirm that the EMI survey defined the southern edge of the release. Hand Auger sample HA-03 at the surface exhibited an $EC_{(1:5)}$ reading of 1.43 dS/m. HA-04 at 0.5 feet bgs exhibited an $EC_{(1:5)}$ reading of 0.1 dS/m. As discussed above, $EC_{(1:5)}$ readings <0.2 dS/m correlated with a chloride concentration <600 mg/kg.

• Plate 4 shows EC_a in the vertical dipole mode at 1.0 m coil separation with a relative sensitivity range of 1.3 to 4.9 ft bgs with the greatest sensitivity at 1.31 ft bgs.

Along the southern release extent, EC_a is near background concentrations (darker green color) and confirmed with HA-03 at 1-ft bgs where $EC_{(1:5)}$ readings exhibited 0.08 dS/m.

At the northeastern extent, outside of the release extent, and within an area of background EC_a readings, HA-01 exhibited 0.16 dS/m, below the 0.2 dS/m threshold.

HA-05 that is within the release extent exhibited $EC_{(1:5)}$ readings of 2.5 and 0.08 dS/m at the surface and 1-ft bgs, respectively.

HA-06 at the edge of the pipeline metal interference/background and outside of the release extent exhibited an EC(1:5) reading of 0.09 dS/m at the surface.

HA-02 and HA-07 exhibits $EC_{(1:5)}$ readings above 0.2 dS/m. HA-07 is outside of the release extent and is likely from a historic release.

The EMI survey and discrete sampling indicates that remediation of the eastern two-thirds of the release will most likely be at depths between 1 and 2 feet bgs. At the western one-third of the release extent remediation will exceed 4-feet bgs.

Table 1 is a summary of analytical results and EC_{1:5} field readings. Appendix A contains the laboratory certificate of analysis.

2.5 Depth to Ground Water

Most recent depth to water data was queried from the USGS and New Mexico Office of the State Engineer (OSE) online databases (Plate 5). Spatial analysis shows:

- The nearest wells are approximately 1.3 miles to the north.
- The depth to water in the nearest well (USGS-15845) is 141.19 feet.
- Another group of water wells is approximately 2.1 miles east-southeast. Depth to water in this well cluster averages 178.5 feet.

Ground water flow is to the south-southeast as demonstrated on the potentiometric surface map (Plate 6). We relied on the USGS water wells to generate the potentiometric surface. Regionally, USGS water wells show that ground water is within the alluvium and Chinle formation.

Dagger State Unit 3 02062020 Tracking # Pending

The potentiometric surface indicates that the depth to water is approximately 179 feet below ground surface, where 179 feet = 3784 ft surface elevation – 3605 ft potentiometric surface.

Table 2 lists nearby water wells from the Office of the State Engineer's (OSE) online database. Appendix B are the wells logs listed in Table 1.

2.6 Wellhead Protection Area

Plate 7 shows that the release extent is <u>not</u>:

- Within incorporated municipal boundaries or within a defined municipal fresh water well field.
- Within ¹/₂-mile private and domestic water sources (wells and springs).
- Within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes
- Within 1000 feet of any other fresh water well or spring

2.7 Distance to Nearest Significant Water Course

Plate 8 shows that the release extent is not:

- Within ¹/₂ mile of any significant water course.
- Within 300 feet of a continuously flowing watercourse or any other significant watercourse.
- Within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark).

2.8 Soil/Waste Characteristics

The release occurred in an area where depth to water is greater than 100 ft below ground surface (bgs) and an active production pad.

The release area was restored (discussed below, Section 3) according to Closure Criteria listed in Table 1 of 19.15.29 NMAC.

Table 1 shows the analytical results of confirmation sampling. The Laboratory Certificate of Analyses are located in Appendix A.

Release excavation showed the lithology as:

0-0.75 ft: caliche production pad 0.75-4.5 ft: silty sand 4.5 ft: hard caliche layer

Dagger State Unit 3 02062020 Tracking # Pending

3 Remediation and Closure

3.1 Excavation Protocol

All surfaces were restored in accordance with 19.15.29.13 NMAC. Per Table 1 of 19.15.29 NMAC, closure criteria concentrations where depth to water >100 feet are:

Table 1 19.15.29 NMAC		Chloride	GRO+DRO	TPH+Ext	BTEX	Benzene
DTW > 100ft		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Closure Criteria	0-4 ft (not in-use)	600	1,000	2,500	50	10
Closure Criteria	>4 ft or "in-use"	20,000	1,000	2,500	50	10

Excavation of the base and walls in the upper 4-feet continued until field screening of electrical conductivity (EC_{1:5}) was less than 0.2 to 0.3 dS/m (Figure 4). As shown previously in Figure 3, EC < 0.2 dS/m correlates with a chloride concentration <600 mg/kg.

Figure 4: Field screening for electrical conductivity (EC) during excavation. Date 02/24/2020. GPS: 32.4623308 N, 103.6152389 W

3.2 Remediation Activities

The excavation extent is irregular in shape and covers a surface area of 506 square yards with an excavated volume of 242 cu. yards.

Plate 14 shows the sampling diagram for base samples. A 5-point composite sample was collected from each grid for confirmation sampling. Five-point composite sample points were evenly spaced within each sample grid to obtain a representative sample of the area (Figure 5, below example).

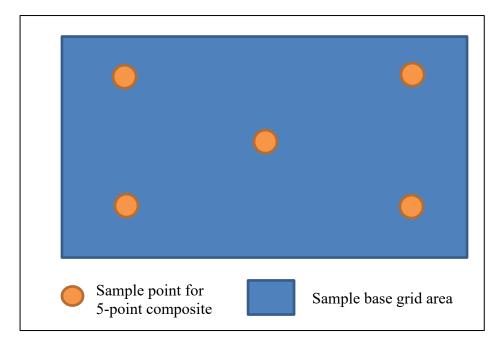


Figure 5: Example of 5-point sample grid for composite sampling.

Five-point composite soil samples were collected along the walls of the excavation as shown on Plate 15. Sample points for the composite wall samples were evenly distributed along the wall to obtain a representative 5-point composite sample. Samples were collected from the surface to 4-feet or excavation base depth, whichever is less.

If soil confirmation sampling exceeded 19.15.29 NMAC Table 1 Closure Criteria concentrations, excavation continued until soil confirmation results were below Closure Criteria with the exception around the wellhead and pump jack, discussed below.

Table 1 is a summary of analytical from confirmation sampling.

• Base confirmation samples (B-1 through B-07) exhibit concentrations below 19.15.29 NMAC Table 1 Closure Criteria.

Dagger State Unit 3 02062020 Tracking # Pending

• Wall confirmation samples (W-3 through W-11) exhibit concentrations below 19.15.29 NMAC Table 1 Closure Criteria.

The Cellar Base and Walls W-01 and W-02 exceed 19.15.29 NMAC Table 1 Closure Criteria.

Per 19.15.29.12.C(2),

If contamination is located in areas immediately under or around production equipment such as production tanks, wellheads and pipelines where remediation could cause a major facility deconstruction, the remediation, restoration and reclamation may be deferred with division written approval until the equipment is removed during other operations...

The wellhead cellar base and Wall W-02 (Figure 6) is located around production equipment (wellhead and pump jack). <u>Therefore, we ask NMOCD for deferment of these areas.</u>

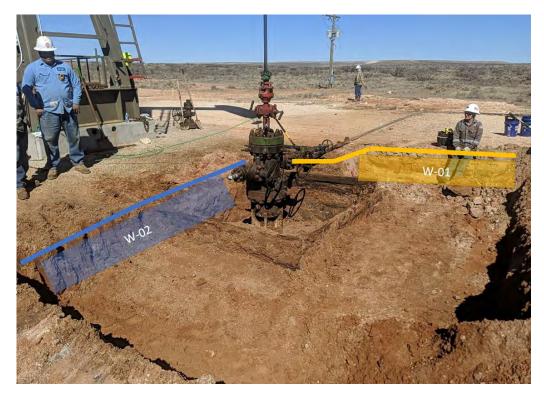


Figure 6: Photograph of wellhead and pump jack (production equipment), viewing northwest along base sample grid B-01. Wall grid extents are shown by the blue and yellow lines that are subject of deferment. Date/Time: 02/24/2020. GPS: 32.4623628 N,103.6152844 W.

Dagger State Unit 3 02062020 Tracking # Pending

Wall W-01 exhibits chloride concentrations above Table 1 of 19.15.29 NMAC Closure Criteria. The observed chloride concentrations at wall W-01 is likely from a historic release and/or consecutive releases from flowline connections. W-01 is 4-feet north of the current release extent. The area north of W-01 shall be the subject of a forthcoming release notification.

Final remediation and reclamation shall take place in accordance with 19.15.29.12 and 19.15.29.13 NMAC after production equipment is decommissioned and is no longer used for oil and gas operations.

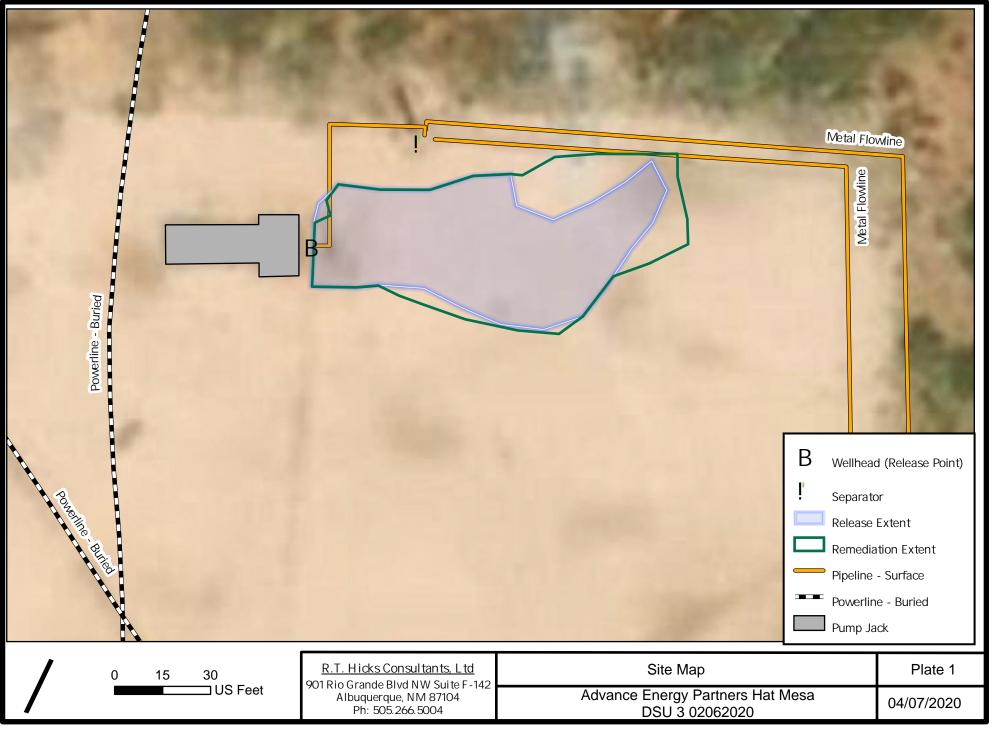
Excavated material was transported to an approved disposal facility. Clean backfill material was purchased from Merchant Livestock under a surface use agreement. Figure 7 shows the restored surface.

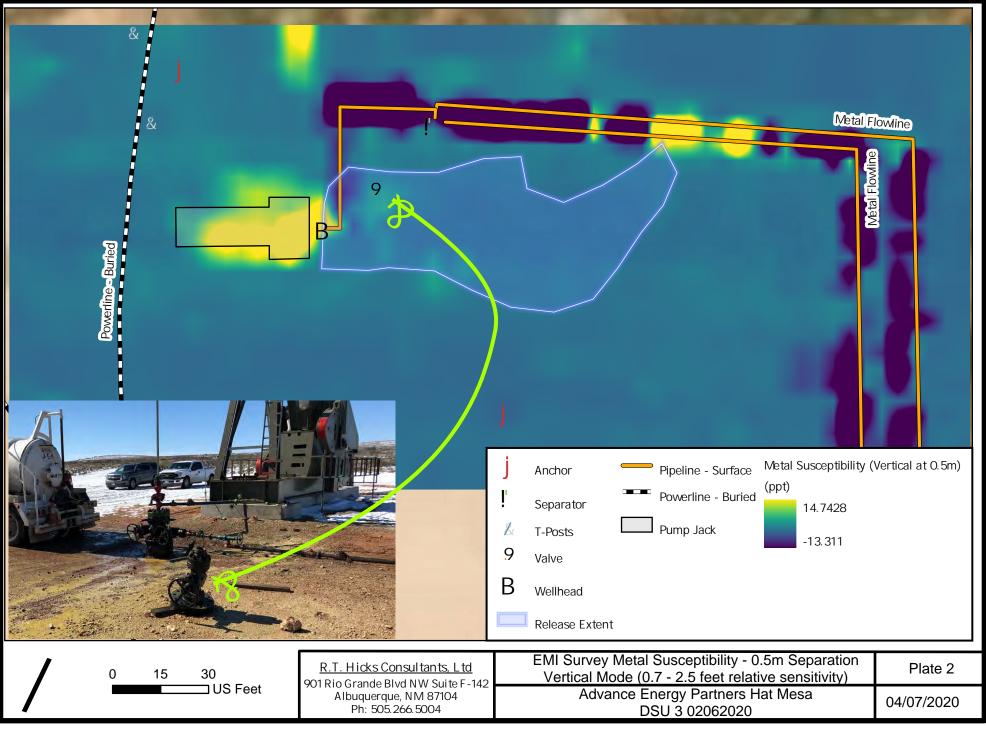
Figure 7: Restored production pad. Date: 02/28/2020 GPS: 32.4624347 N,103.6149031 W

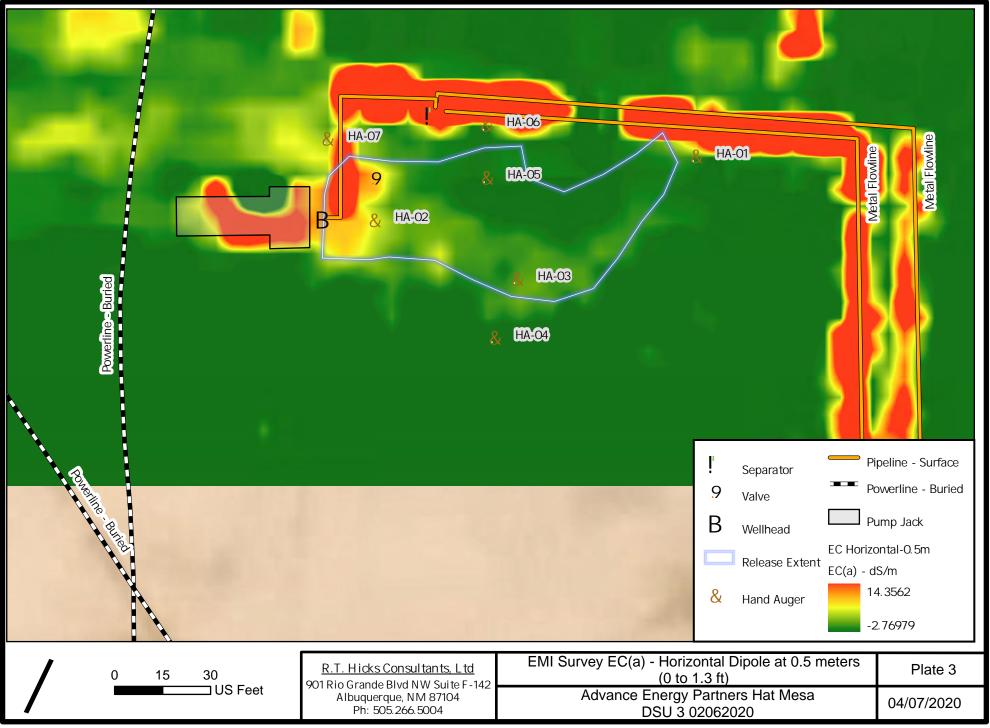
Please contact me with any questions at <u>andrew@rthicksconsult.com</u> or 970-570-9535.

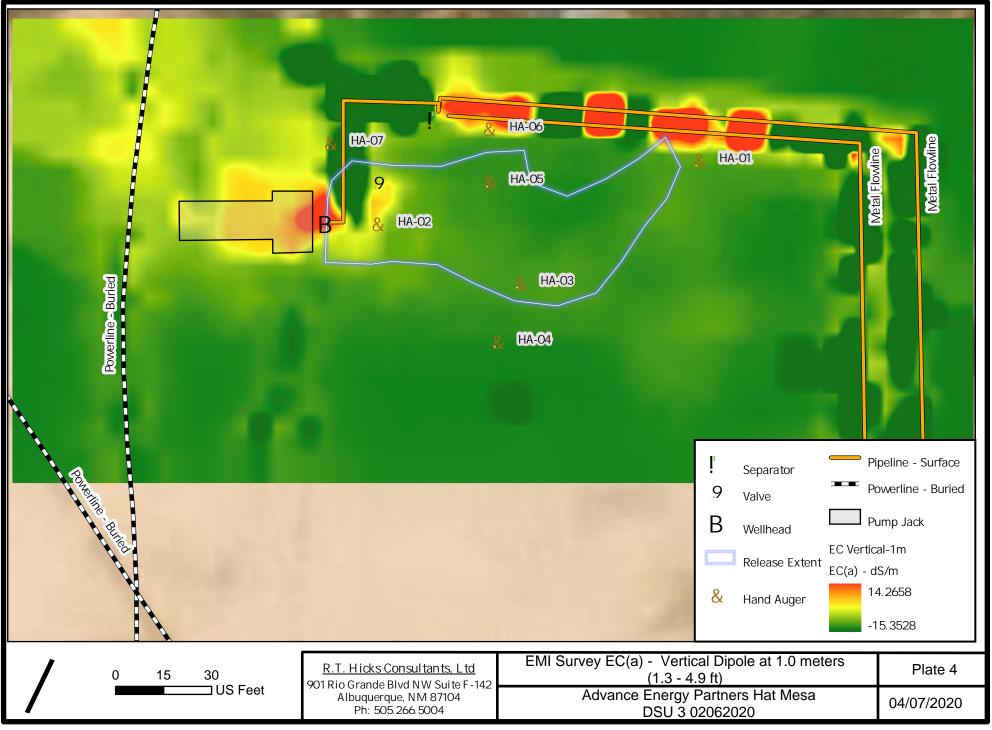
Sincerely, R.T. Hicks Consultants, Ltd.

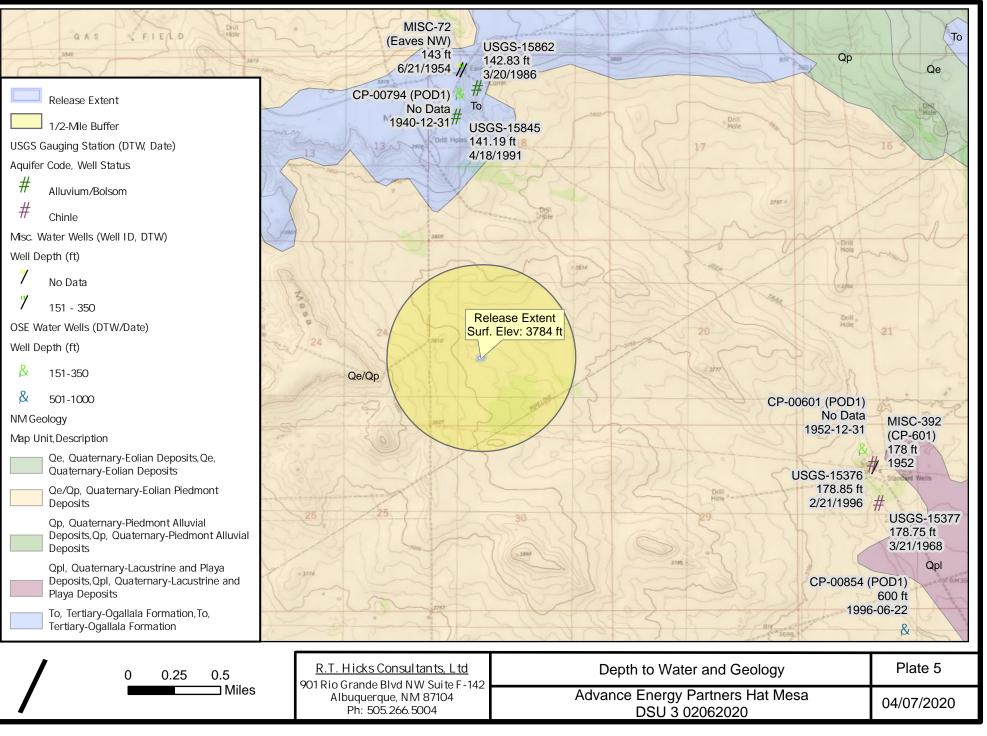
Adentation

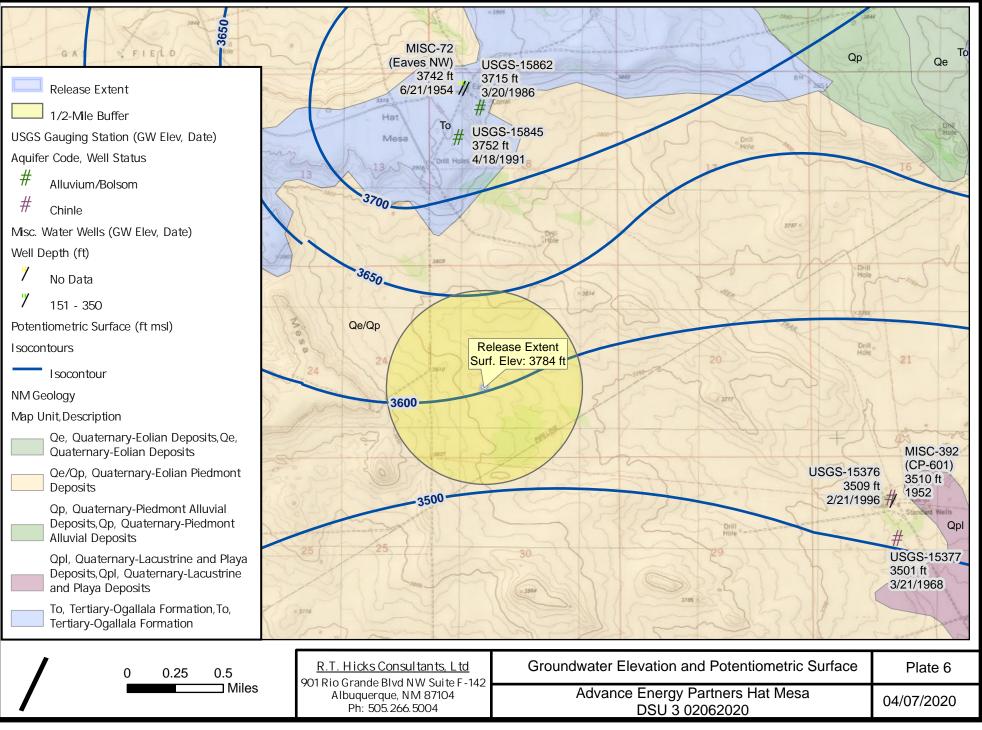

Andrew Parker Sr. Env. Specialist

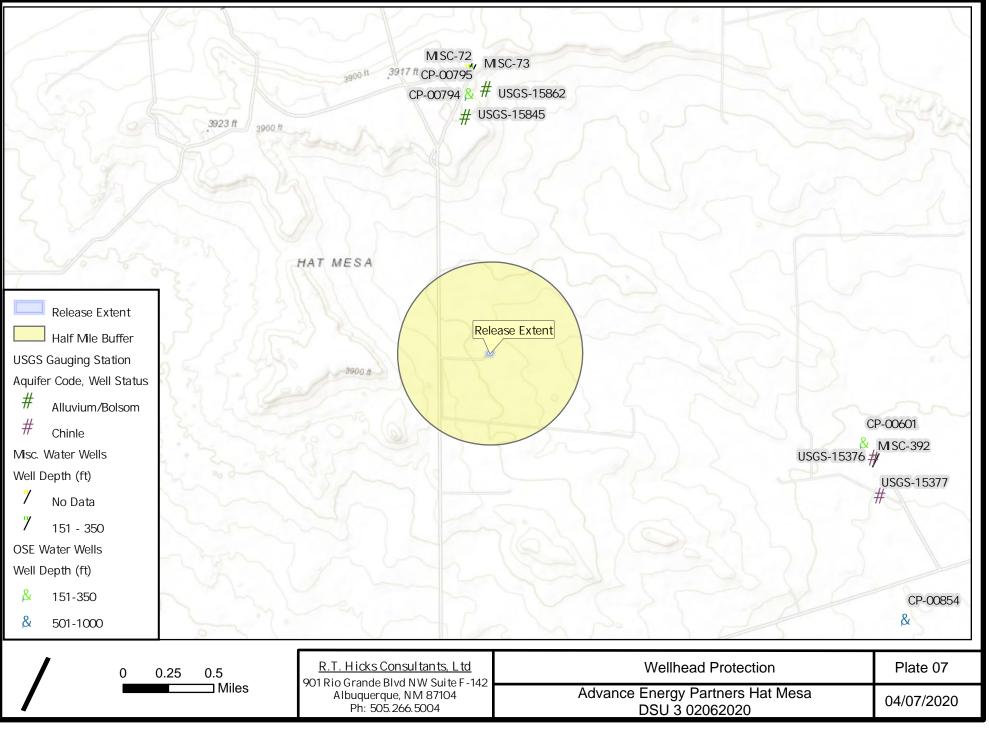

Copy: David Harwell (DHarwell@advanceenergypartners.com); Advance Energy Partners Hat Mesa, LLC Ryan Mann (rmann@slo.state.nm.us); State Land Office

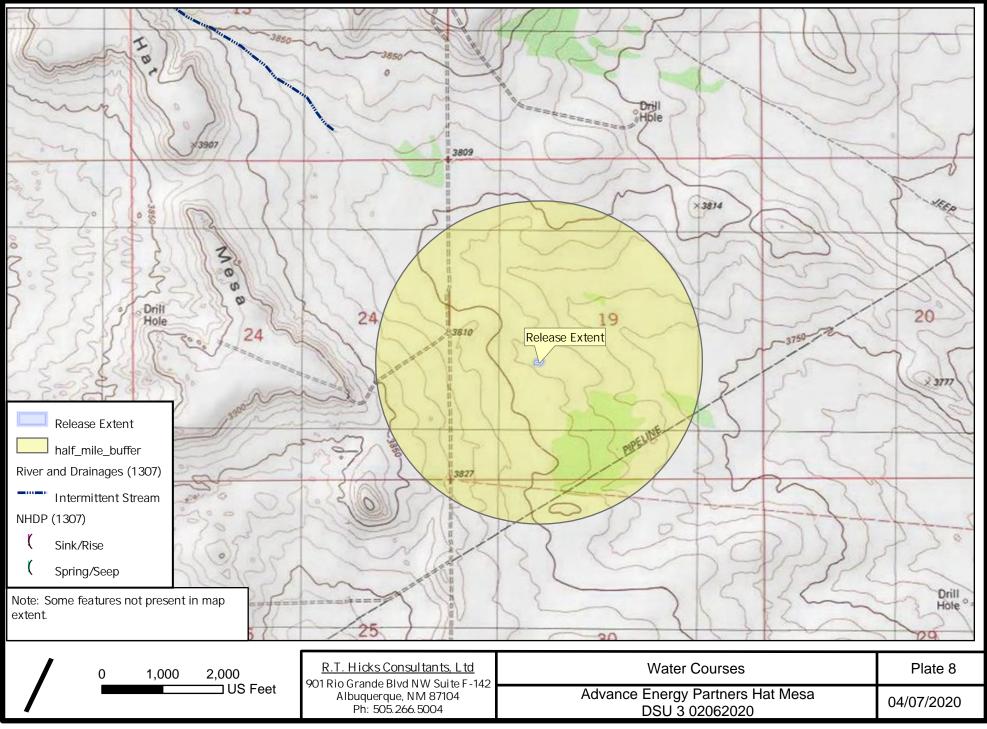

R.T. Hicks Consultants, LTD

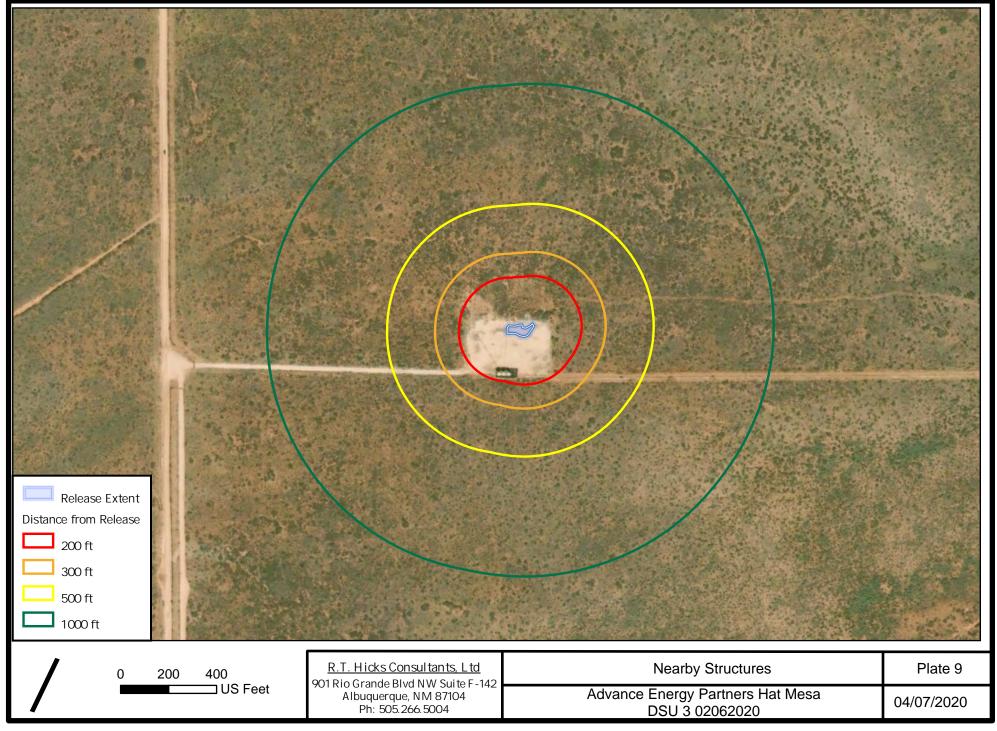

Plates

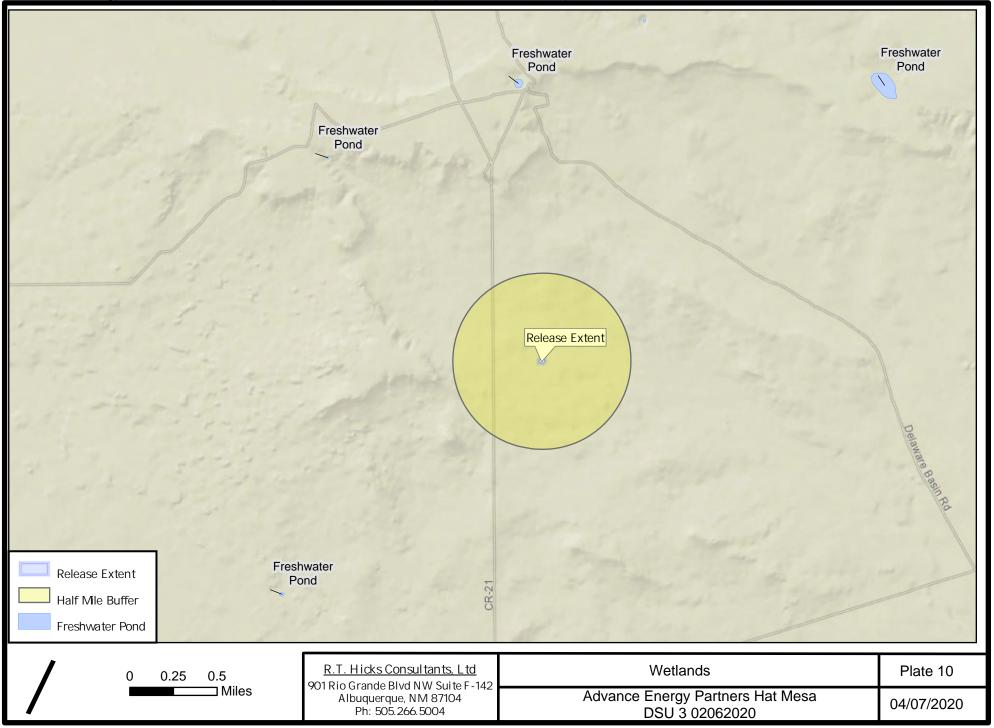

R.T. Hicks Consultants, Ltd. 901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

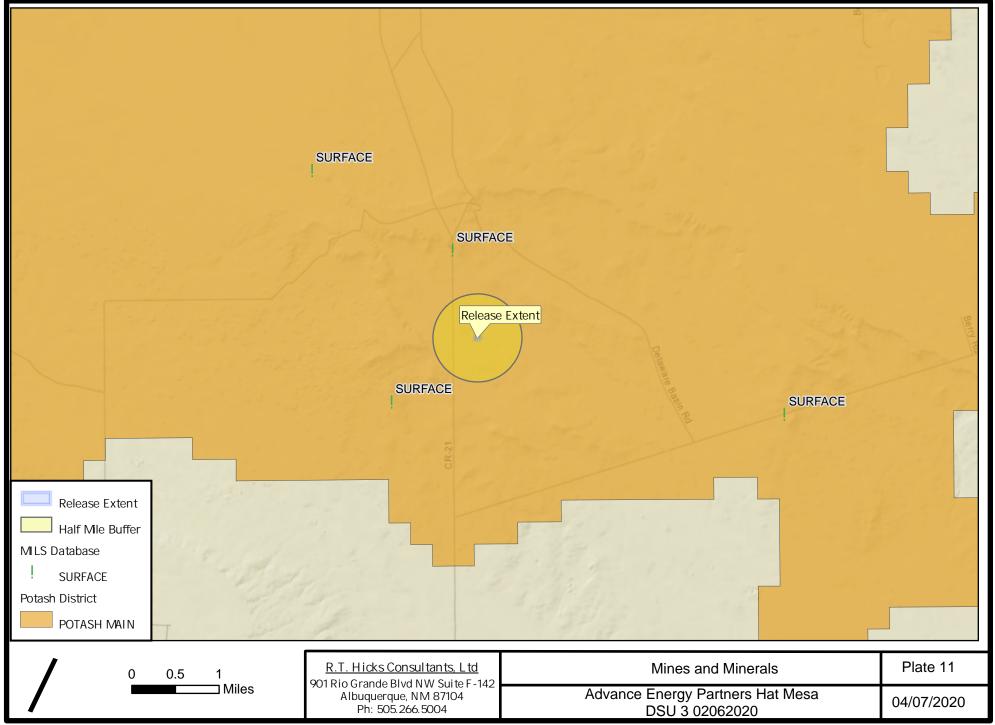


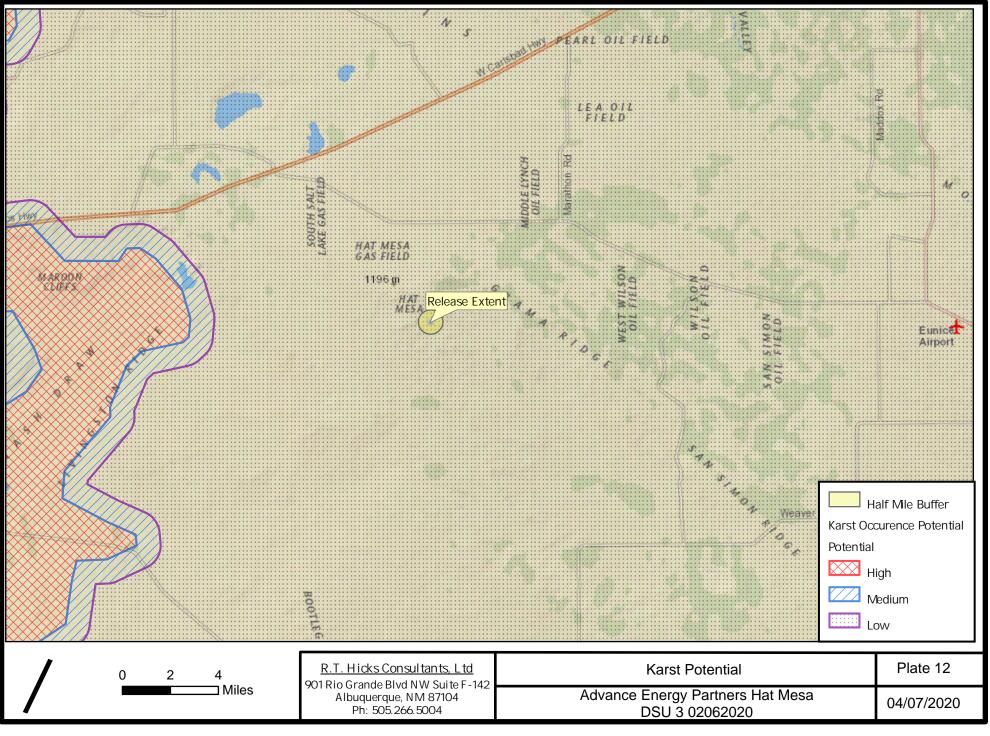


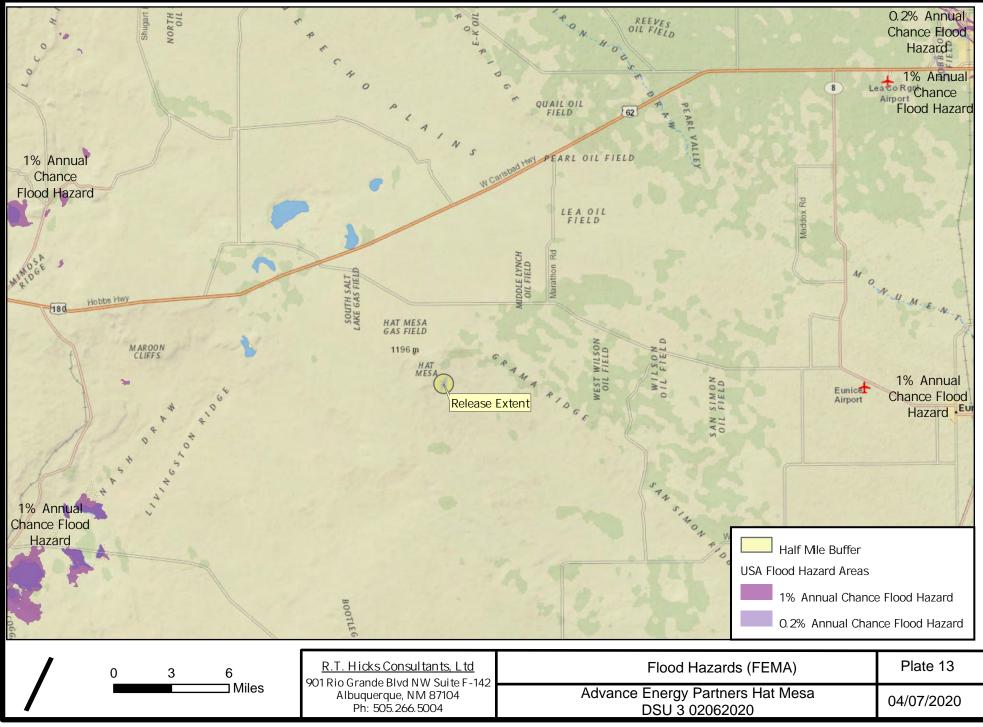


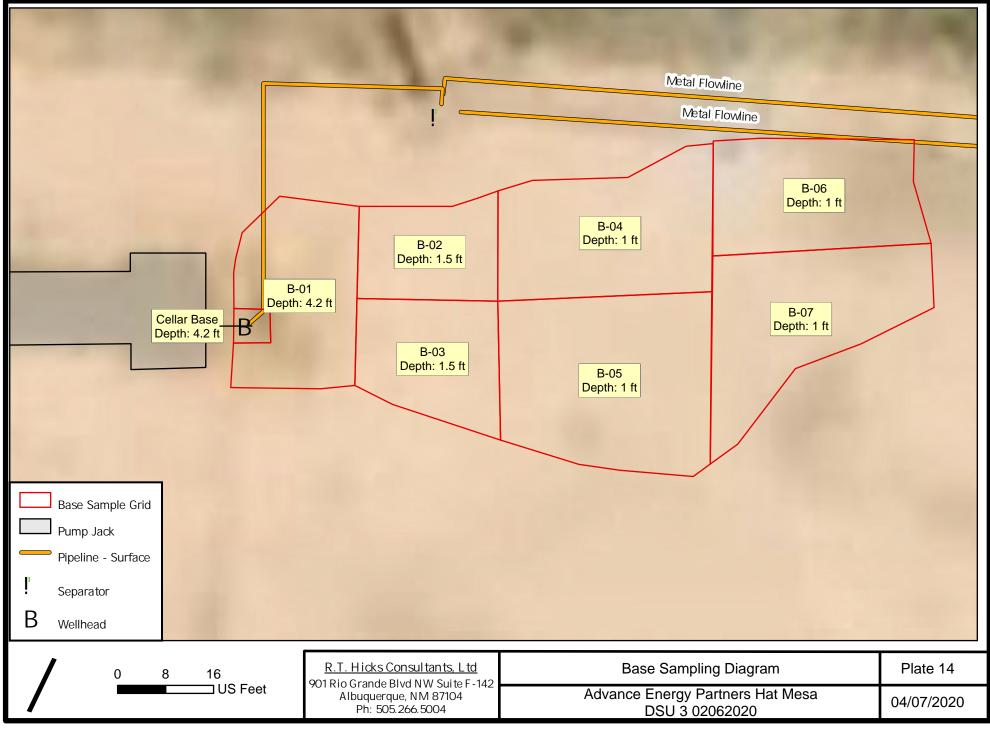


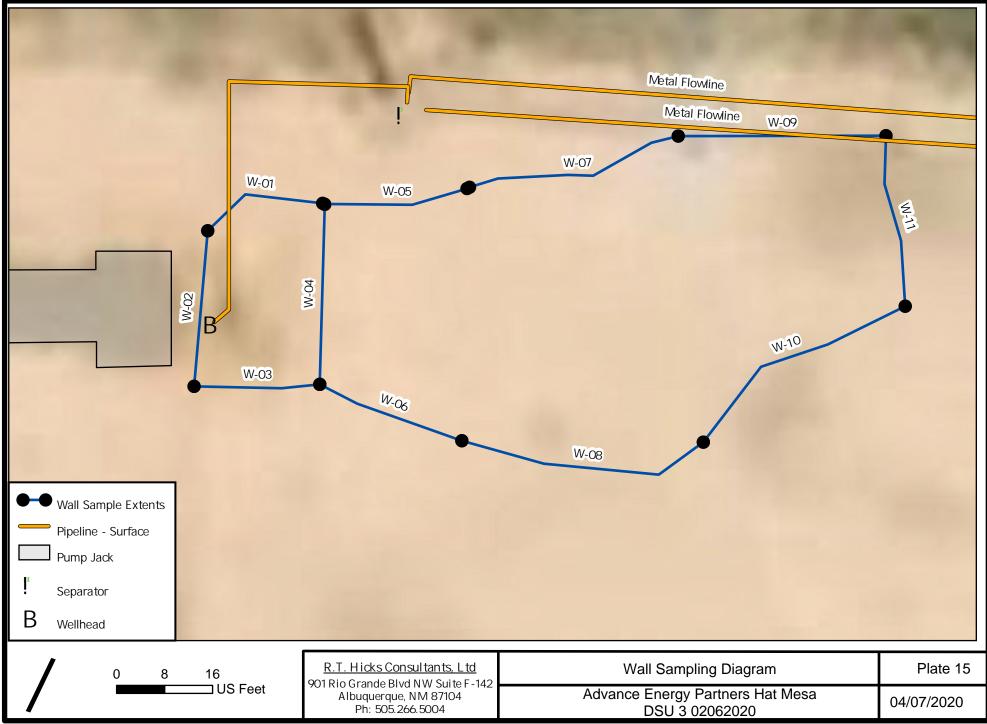












Tables

R.T. Hicks Consultants, Ltd. 901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

Table 1 Summary of Analytical

Sample ID	Date	Location	Discrete Depth	Top Depth	Bottom Depth	EC (1:5)	Chloride	GRO+DRO	TPH Ext.	Benzene	BTEX	Comments
•			(Feet)	(Feet)	(Feet)	dS/m	(PPM)	(PPM)	(PPM)	(PPM)	(PPM)	
NMOCD Closure Criteria												
0 - 4 feet & "not in-use"	1						600		2,500	10	50	
> 4 ft or "in-use"							20,000	1,000	2,500	10	50	
HA-01	2/21/2020	Grab	0.0			0.76		,	,			Characterization
HA-01	2/21/2020	Grab	0.5			0.16						Characterization
HA-02	2/21/2020	Grab	0.0			2.66						Characterization
HA-02	2/21/2020	Grab	0.5			1.56						Characterization
HA-02	2/21/2020	Grab	1.0			0.94						Characterization
HA-02	2/21/2020	Grab	2.0			0.6				-		Characterization
HA-02	2/21/2020	Grab	3.0			0.72						Characterization
HA-03	2/24/2020	Grab	0.0			1.43						Characterization
HA-03	2/24/2020	Grab	1.0			0.08						Characterization
HA-04	2/24/2020	Grab	0.5			0.1						Characterization
HA-05	2/24/2020	Grab	0.0			2.51						Characterization
HA-05	2/24/2020	Grab	1.0			0.08						Characterization
HA-06	2/24/2020	Grab	0.0			0.09						Characterization
HA-07	2/24/2020	Grab	0.0			2.54						Characterization
HA-07	2/24/2020	Grab	1.0			0.84						Characterization
HA-07	2/24/2020	Grab	2.0			1.11						Characterization
B-01	2/24/2020	Base	4.2			0.62	512	<27	<39.8	<0.05	<0.3	
B-02	2/25/2020	Base	1.5			0.17	112	<20	<30	<0.05	<0.3	
B-03	2/25/2020	Base	1.5			0.23	144	<20	<30	<0.05	<0.3	
B-04	2/25/2020	Base	1.0			0.1	80	<20	<30	<0.05	<0.3	
B-05	2/25/2020	Base	1.0			0.1	48	<20	<30	<0.05	<0.3	
B-06	2/25/2020	Base	1.0			0.1	64	<20	<30	<0.05	<0.3	
B-07	2/25/2020	Base	1.0			0.26	160	<20	<30	<0.05	<0.3	
Cellar (base)	2/24/2020	Base	4.2				2640	1134	1293	0.143	10.1	Defer
W-01	2/24/2020	Wall		0.0	4.0	1.08	816	<21.3	<31.3	<0.05	<0.3	Defer
W-02	2/24/2020	Wall		0.0	4.0	1.74	1460	296.9	334.7	<0.05	<0.3	Defer
W-03	2/24/2020	Wall		0.0	4.0	0.14	80	<20	<30	<0.05	<0.3	
W-04	2/24/2020	Wall		1.0	4.0	0.34	336	<20	<30	<0.05	<0.3	
W-05	2/25/2020	Wall		0.0	1.5	0.17	112	<20	<30	<0.05	<0.3	
W-06	2/25/2020	Wall		0.0	1.5	0.35	272	<20	<30	<0.05	<0.3	
W-07	2/25/2020	Wall		0.0	1.0	0.13	80	<20	<30	<0.05	<0.3	
W-08	2/25/2020	Wall		0.0	1.0	0.1	96	<20	<30	<0.05	<0.3	
W-09	2/25/2020	Wall		0.0	1.0	0.09	64	<20	<30	<0.05	<0.3	
W-10	2/25/2020	Wall		0.0	1.0	0.15	112	<20	<30	<0.05	<0.3	
W-11	2/25/2020	Wall		0.0	1.0	0.13	144	<20	<30	<0.05	<0.3	

Exceed Closure Criteria

.

•

Table 2 OSE Water Well Log Data Summary

POD Number	Date	Top of Water Bearing Strata	Bottom of Water Bearing Strata	Depth to Water	Source	Height Above Confining Layer
		Feet	Feet	Feet		Feet
CP-00601	1952		223	178		
CP 00854	6/22/1996	755	890	600	Artesian	155

.

•

Appendix A

Certificate of Analysis

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

March 30, 2020

ANDREW PARKER R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE, NM 87104

RE: ADVANCE ENERGY

Enclosed are the results of analyses for samples received by the laboratory on 02/25/20 17:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

901 RIO GRANDE BLVD SUITE F-142Project Number:DSU 330-Mar-20 11:12ALBUQUERQUE NM, 87104Project Manager:ANDREW PARKER Fax To:NONE		Project Number: Project Manager:	ANDREW PARKER	Reported: 30-Mar-20 11:12
---	--	-------------------------------------	---------------	------------------------------

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B - 01 4.2'	H000602-01	Soil	24-Feb-20 11:00	25-Feb-20 17:00
CELLAR BASE 4.2'	H000602-02	Soil	24-Feb-20 11:30	25-Feb-20 17:00
W - 01 0-4'	H000602-03	Soil	24-Feb-20 12:00	25-Feb-20 17:00
W - 02 0-4'	H000602-04	Soil	24-Feb-20 12:15	25-Feb-20 17:00
W - 03 0-4'	H000602-05	Soil	24-Feb-20 12:30	25-Feb-20 17:00
W - 04 1-4'	H000602-06	Soil	24-Feb-20 13:00	25-Feb-20 17:00

03/27/20 - Client revised sample ID on -06.

03/30/20 - Revised report issued to reflect change made on 03/27/20. This report will replace the one sent on 02/28/20.

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE ALBUQUERQUE NM, 87104	F-142		Project: ADVANCE ENERGY Project Number: DSU 3 Project Manager: ANDREW PARKER Fax To: NONE						Reported: 30-Mar-20 11:12		
				01 4.2' 602-01 (Se							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
Inorganic Compounds											
Chloride	512		16.0	mg/kg	4	0022711	GM	28-Feb-20	4500-Cl-B		
Volatile Organic Compounds by	EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Surrogate: 4-Bromofluorobenzene (PID)			98.8 %	73.3	-129	0022706	CK	27-Feb-20	8021B		
Petroleum Hydrocarbons by GC	FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B		
DRO >C10-C28*	17.0		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B		
EXT DRO >C28-C36	12.8		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B		
Surrogate: 1-Chlorooctane			96.6 %	44.3	-144	0022723	CK	28-Feb-20	8015B		
Surrogate: 1-Chlorooctadecane			102 %	42.2	-156	0022723	СК	28-Feb-20	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SL ALBUQUERQUE NM, 87104			Project Num Project Mana		Reported: 30-Mar-20 11:12					
				R BASE 502-02 (So						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds	• < 10		160	7	4	0022711	GM	28-Feb-20	4500 CL D	
Chloride	2640		16.0	mg/kg	4	0022711	GM	28-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								S-04
Benzene*	0.143		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B	
Toluene*	0.989		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B	
Total Xylenes*	8.96		0.150	mg/kg	50	0022706	CK	27-Feb-20	8021B	
Total BTEX	10.1		0.300	mg/kg	50	0022706	CK	27-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PII	D)		205 %	73.3	-129	0022706	CK	27-Feb-20	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	153		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B	_
DRO >C10-C28*	981		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B	
EXT DRO >C28-C36	159		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B	
Surrogate: 1-Chlorooctane			125 %	44.3	-144	0022723	CK	28-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			123 %	42.2	-156	0022723	СК	28-Feb-20	8015B	

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitstoewer shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SI ALBUQUERQUE NM, 8710	UITE F-142		Project: ADVANCE ENERGY Project Number: DSU 3 Project Manager: ANDREW PARKER Fax To: NONE						Reported: 30-Mar-20 11:12		
				- 01 0-4 602-03 (So							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	816		16.0	mg/kg	4	0022711	GM	28-Feb-20	4500-Cl-B		
Volatile Organic Compounds	s by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	D)		98.4 %	73.3	-129	0022706	СК	27-Feb-20	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	11.3		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B		
Surrogate: 1-Chlorooctane			97.5 %	44.3	-144	0022723	CK	28-Feb-20	8015B		
Surrogate: 1-Chlorooctadecane			103 %	42.2	-156	0022723	СК	28-Feb-20	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SU ALBUQUERQUE NM, 87104	JITE F-142		Project: ADVANCE ENERGY Project Number: DSU 3 Project Manager: ANDREW PARKER Fax To: NONE						Reported: 30-Mar-20 11:12		
				- 02 0-4 502-04 (Se							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	1460		16.0	mg/kg	4	0022711	GM	28-Feb-20	4500-Cl-B		
Volatile Organic Compounds	by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Ethylbenzene*	0.106		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Surrogate: 4-Bromofluorobenzene (PI	D)		106 %	73.3	-129	0022706	CK	27-Feb-20	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	11.9		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B		
DRO >C10-C28*	285		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B		
EXT DRO >C28-C36	37.8		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B		
Surrogate: 1-Chlorooctane			94.9 %	44.3	-144	0022723	CK	28-Feb-20	8015B	_	
Surrogate: 1-Chlorooctadecane			111 %	42.2	-156	0022723	CK	28-Feb-20	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD S ALBUQUERQUE NM, 8710		Project: ADVANCE ENERGY Project Number: DSU 3 Project Manager: ANDREW PARKER Fax To: NONE						Reported: 30-Mar-20 11:12		
				- 03 0-4 602-05 (Se						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	80.0		16.0	mg/kg	4	0022711	GM	28-Feb-20	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022706	CK	27-Feb-20	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	0022706	CK	27-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PL	ID)		98.6 %	73.3	-129	0022706	СК	27-Feb-20	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B	
Surrogate: 1-Chlorooctane			97.5 %	44.3	-144	0022723	CK	28-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			103 %	42.2	-156	0022723	СК	28-Feb-20	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD S ALBUQUERQUE NM, 8710	SUITE F-142		Project: ADVANCE ENERGY Project Number: DSU 3 Project Manager: ANDREW PARKER Fax To: NONE						Reported: 30-Mar-20 11:12		
				- 04 1-4 602-06 (So							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	336		16.0	mg/kg	4	0022711	GM	28-Feb-20	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	0022706	CK	27-Feb-20	8021B		
Surrogate: 4-Bromofluorobenzene (P.	ID)		99.9 %	73.3	-129	0022706	СК	27-Feb-20	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	0022723	CK	28-Feb-20	8015B		
Surrogate: 1-Chlorooctane			93.0 %	44.3	-144	0022723	CK	28-Feb-20	8015B		
Surrogate: 1-Chlorooctadecane			98.9 %	42.2	-156	0022723	СК	28-Feb-20	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104	Project: Project Number: Project Manager: Fax To:	ANDREW PARKER	Reported: 30-Mar-20 11:12
---	--	---------------	------------------------------

Inorganic Compounds - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0022711 - 1:4 DI Water										
Blank (0022711-BLK1)				Prepared &	Analyzed:	27-Feb-20				
Chloride	ND	16.0	mg/kg							
LCS (0022711-BS1)				Prepared &	Analyzed:	27-Feb-20				
Chloride	416	16.0	mg/kg	400		104	80-120			
LCS Dup (0022711-BSD1)				Prepared &	Analyzed:	27-Feb-20				
Chloride	432	16.0	mg/kg	400		108	80-120	3.77	20	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104	Project: AD Project Number: DS Project Manager: AN Fax To: NO	DREW PARKER	Reported: 30-Mar-20 11:12	
---	--	-------------	------------------------------	--

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0022706 - Volatiles										
Blank (0022706-BLK1)				Prepared &	Analyzed:	27-Feb-20	1			
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	ND		mg/kg	0.0500		98.3	73.3-129			
LCS (0022706-BS1)				Prepared &	Analyzed:	27-Feb-20	1			
Benzene	2.00	0.050	mg/kg	2.00		99.9	72.2-131			
Toluene	2.02	0.050	mg/kg	2.00		101	71.7-126			
Ethylbenzene	2.03	0.050	mg/kg	2.00		101	68.9-126			
Total Xylenes	5.89	0.150	mg/kg	6.00		98.1	71.4-125			
Surrogate: 4-Bromofluorobenzene (PID)	0.0501		mg/kg	0.0500		100	73.3-129			
LCS Dup (0022706-BSD1)				Prepared &	Analyzed:	27-Feb-20				
Benzene	2.08	0.050	mg/kg	2.00		104	72.2-131	4.28	14.6	
Toluene	2.10	0.050	mg/kg	2.00		105	71.7-126	4.10	17.4	
Ethylbenzene	2.11	0.050	mg/kg	2.00		106	68.9-126	4.11	18.9	
Total Xylenes	6.14	0.150	mg/kg	6.00		102	71.4-125	4.15	18.5	
Surrogate: 4-Bromofluorobenzene (PID)	0.0498		mg/kg	0.0500		99.5	73.3-129			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104	Project Number:	ANDREW PARKER	Reported: 30-Mar-20 11:12
---	-----------------	---------------	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0022723 - General Prep - Organics										
Blank (0022723-BLK1)				Prepared: 2	27-Feb-20 A	analyzed: 2	8-Feb-20			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	52.3		mg/kg	50.0		105	44.3-144			
Surrogate: 1-Chlorooctadecane	53.8		mg/kg	50.0		108	42.2-156			
LCS (0022723-BS1)				Prepared: 2	27-Feb-20 A	analyzed: 2	8-Feb-20			
GRO C6-C10	220	10.0	mg/kg	200		110	78.8-127			
DRO >C10-C28	209	10.0	mg/kg	200		105	80-132			
Total TPH C6-C28	429	10.0	mg/kg	400		107	81.3-128			
Surrogate: 1-Chlorooctane	56.3		mg/kg	50.0		113	44.3-144			
Surrogate: 1-Chlorooctadecane	53.6		mg/kg	50.0		107	42.2-156			
LCS Dup (0022723-BSD1)				Prepared: 2	27-Feb-20 A	analyzed: 2	8-Feb-20			
GRO C6-C10	220	10.0	mg/kg	200		110	78.8-127	0.322	15.1	
DRO >C10-C28	206	10.0	mg/kg	200		103	80-132	1.90	17.1	
Total TPH C6-C28	426	10.0	mg/kg	400		106	81.3-128	0.758	15	
Surrogate: 1-Chlorooctane	55.8		mg/kg	50.0		112	44.3-144			
Surrogate: 1-Chlorooctadecane	58.0		mg/kg	50.0		116	42.2-156			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARDINAL Laboratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name:	(575) 393-2326 FAX (575) 393-2476	<u></u> б	BILL TO	ANALYSIS REQUEST
	Andrew Reike		P.O. 井	
2	P:10		Company: NT 125	Prichs
City:	State:	Zip:	Attn: Send	
Phone #:	Fax #		Address: andruve 1	12 T K to 15
Project #:	Project Owner:		City: Cansul 150	Locam
Project Name: A	dund Energy		State: Zip:	
Project Location:	E MED		Phone #:	
Sampler Name:	SHEWZ		Fax #:	
FOR LAB USE ONLY	Contraction of the second	MATRIX	PRESERV. SAMPLING	U
Lab I.D.	Sample I.D.	3 OR (C)OMP. TAINERS NDWATER EWATER GE	BASE:	Chiloris BTEX TP17
H006602		# CC GRC WAS	ICE OTH	,
	Cellor 16455 4,26T		1 1/20	11:3ann 1 1 1
13	10			1201
	W-02 0-4/27			12: 100
5	W-03 0-41			M V V M Civer
*	W-04 19-41-1	۲ ۲	5	
PLEASE NOTE: Liability and Da analyses. All claims including the service. In no event shall Cardin	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim ansing whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unlass made in writing and received by Cardinal within 30 days after completion of the applicable analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unlass made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be liable for inclidental or consequential damages, including without limitation, business interruptions, loss of use or loss of profits incurred by client, its subsidiaries, service. In no event shall Cardinal be liable for inclidental or consequential damages, including without limitation, business interruptions, loss of use or loss of profits incurred by client, its subsidiaries, service. In no event shall Cardinal be liable for inclidental or consequential damages, including without limitation.	nt's exclusive remedy for any claim ansing whether based in contract of tort, shall b sause whatsoever shall be deemed waived unless made in writing and received by / quental damages, including without limitation, business interruptions, loss of us or quental damages.	or tort, shall be limited to the amount paid I received by Cardinal within 30 days after loss of use, or loss of profits incurred by cli loss fused ince any of the above stated read	said by the client for the applicable y clien completion of the applicable y client, its subsidiaries.
Relinquished By:	Relinquished By:	Received By:	11/11/1	Phone Result: Yes No Add'I Phone #: Fax Result: Yes No Add'I Fax #:
SK aB	Splint Time 700 Date:	Received By:	alland	Sample Ic
Delivered By Circle One)	Circle One)	Sample Condition	CH	40
Sampler - UPS - Bus - Other:	5.20	1 Har	s (Initials)	
	0:0	No	X	

Received by OCD: 4/17/2020 8:59:13 AM

March 02, 2020

ANDREW PARKER R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE, NM 87104

RE: ADVANCE ENERGY

Enclosed are the results of analyses for samples received by the laboratory on 02/25/20 17:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celez D. Keine

Celey D. Keene Lab Director/Quality Manager

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: B - 02 1.5' (H000603-01)

BTEX 8021B	mg	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/27/2020	ND	2.00	99.9	2.00	4.28	
Toluene*	<0.050	0.050	02/27/2020	ND	2.02	101	2.00	4.10	
Ethylbenzene*	<0.050	0.050	02/27/2020	ND	2.03	101	2.00	4.11	
Total Xylenes*	<0.150	0.150	02/27/2020	ND	5.89	98.1	6.00	4.15	
Total BTEX	<0.300	0.300	02/27/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.1	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	02/28/2020	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/02/2020	ND	220	110	200	0.322	
DRO >C10-C28*	<10.0	10.0	03/02/2020	ND	209	105	200	1.90	
EXT DRO >C28-C36	<10.0	10.0	03/02/2020	ND					
Surrogate: 1-Chlorooctane	94.1	% 44.3-14	14						
Surrogate: 1-Chlorooctadecane	97.3	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: B - 03 1.5' (H000603-02)

BTEX 8021B	mg/	′kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/27/2020	ND	2.00	99.9	2.00	4.28	
Toluene*	<0.050	0.050	02/27/2020	ND	2.02	101	2.00	4.10	
Ethylbenzene*	<0.050	0.050	02/27/2020	ND	2.03	101	2.00	4.11	
Total Xylenes*	<0.150	0.150	02/27/2020	ND	5.89	98.1	6.00	4.15	
Total BTEX	<0.300	0.300	02/27/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.6	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	02/28/2020	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/29/2020	ND	216	108	200	5.42	
DRO >C10-C28*	<10.0	10.0	02/29/2020	ND	229	115	200	5.36	
EXT DRO >C28-C36	<10.0	10.0	02/29/2020	ND					
Surrogate: 1-Chlorooctane	100 \$	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	106 9	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: B - 04 1' (H000603-03)

BTEX 8021B	mg/	′kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/27/2020	ND	2.00	99.9	2.00	4.28	
Toluene*	<0.050	0.050	02/27/2020	ND	2.02	101	2.00	4.10	
Ethylbenzene*	<0.050	0.050	02/27/2020	ND	2.03	101	2.00	4.11	
Total Xylenes*	<0.150	0.150	02/27/2020	ND	5.89	98.1	6.00	4.15	
Total BTEX	<0.300	0.300	02/27/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.0	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/28/2020	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/29/2020	ND	216	108	200	5.42	
DRO >C10-C28*	<10.0	10.0	02/29/2020	ND	229	115	200	5.36	
EXT DRO >C28-C36	<10.0	10.0	02/29/2020	ND					
Surrogate: 1-Chlorooctane	95.7	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	102 9	% 42.2-15	1						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: B - 05 1' (H000603-04)

BTEX 8021B	mg/	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/27/2020	ND	2.00	99.9	2.00	4.28	
Toluene*	<0.050	0.050	02/27/2020	ND	2.02	101	2.00	4.10	
Ethylbenzene*	<0.050	0.050	02/27/2020	ND	2.03	101	2.00	4.11	
Total Xylenes*	<0.150	0.150	02/27/2020	ND	5.89	98.1	6.00	4.15	
Total BTEX	<0.300	0.300	02/27/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.1	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/28/2020	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/29/2020	ND	216	108	200	5.42	
DRO >C10-C28*	<10.0	10.0	02/29/2020	ND	229	115	200	5.36	
EXT DRO >C28-C36	<10.0	10.0	02/29/2020	ND					
Surrogate: 1-Chlorooctane	102	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	106	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: B - 06 1' (H000603-05)

BTEX 8021B	mg/	′kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/27/2020	ND	2.00	99.9	2.00	4.28	
Toluene*	<0.050	0.050	02/27/2020	ND	2.02	101	2.00	4.10	
Ethylbenzene*	<0.050	0.050	02/27/2020	ND	2.03	101	2.00	4.11	
Total Xylenes*	<0.150	0.150	02/27/2020	ND	5.89	98.1	6.00	4.15	
Total BTEX	<0.300	0.300	02/27/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	02/28/2020	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/29/2020	ND	216	108	200	5.42	
DRO >C10-C28*	<10.0	10.0	02/29/2020	ND	229	115	200	5.36	
EXT DRO >C28-C36	<10.0	10.0	02/29/2020	ND					
Surrogate: 1-Chlorooctane	105	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	110 9	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: B - 07 1' (H000603-06)

BTEX 8021B	mg,	′kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/28/2020	ND	1.78	88.8	2.00	8.33	
Toluene*	<0.050	0.050	02/28/2020	ND	1.79	89.4	2.00	8.44	
Ethylbenzene*	<0.050	0.050	02/28/2020	ND	1.79	89.6	2.00	8.66	
Total Xylenes*	<0.150	0.150	02/28/2020	ND	5.26	87.7	6.00	8.94	
Total BTEX	<0.300	0.300	02/28/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	02/28/2020	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/29/2020	ND	216	108	200	5.42	
DRO >C10-C28*	<10.0	10.0	02/29/2020	ND	229	115	200	5.36	
EXT DRO >C28-C36	<10.0	10.0	02/29/2020	ND					
Surrogate: 1-Chlorooctane	104	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	108	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: W - 05 0-1.5' (H000603-07)

BTEX 8021B	mg,	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/28/2020	ND	1.78	88.8	2.00	8.33	
Toluene*	<0.050	0.050	02/28/2020	ND	1.79	89.4	2.00	8.44	
Ethylbenzene*	<0.050	0.050	02/28/2020	ND	1.79	89.6	2.00	8.66	
Total Xylenes*	<0.150	0.150	02/28/2020	ND	5.26	87.7	6.00	8.94	
Total BTEX	<0.300	0.300	02/28/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	02/28/2020	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/29/2020	ND	216	108	200	5.42	
DRO >C10-C28*	<10.0	10.0	02/29/2020	ND	229	115	200	5.36	
EXT DRO >C28-C36	<10.0	10.0	02/29/2020	ND					
Surrogate: 1-Chlorooctane	98.0	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	100	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: W - 06 0-1.5' (H000603-08)

BTEX 8021B	mg	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/28/2020	ND	1.78	88.8	2.00	8.33	
Toluene*	<0.050	0.050	02/28/2020	ND	1.79	89.4	2.00	8.44	
Ethylbenzene*	<0.050	0.050	02/28/2020	ND	1.79	89.6	2.00	8.66	
Total Xylenes*	<0.150	0.150	02/28/2020	ND	5.26	87.7	6.00	8.94	
Total BTEX	<0.300	0.300	02/28/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	02/28/2020	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/29/2020	ND	216	108	200	5.42	
DRO >C10-C28*	<10.0	10.0	02/29/2020	ND	229	115	200	5.36	
EXT DRO >C28-C36	<10.0	10.0	02/29/2020	ND					
Surrogate: 1-Chlorooctane	97.3	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	100	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: W - 07 0-1' (H000603-09)

BTEX 8021B	mg/	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/28/2020	ND	1.78	88.8	2.00	8.33	
Toluene*	<0.050	0.050	02/28/2020	ND	1.79	89.4	2.00	8.44	
Ethylbenzene*	<0.050	0.050	02/28/2020	ND	1.79	89.6	2.00	8.66	
Total Xylenes*	<0.150	0.150	02/28/2020	ND	5.26	87.7	6.00	8.94	
Total BTEX	<0.300	0.300	02/28/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	02/28/2020	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/29/2020	ND	216	108	200	5.42	
DRO >C10-C28*	<10.0	10.0	02/29/2020	ND	229	115	200	5.36	
EXT DRO >C28-C36	<10.0	10.0	02/29/2020	ND					
Surrogate: 1-Chlorooctane	93.1	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	94.5	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: W - 08 0-1' (H000603-10)

BTEX 8021B	mg,	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/28/2020	ND	1.78	88.8	2.00	8.33	
Toluene*	<0.050	0.050	02/28/2020	ND	1.79	89.4	2.00	8.44	
Ethylbenzene*	<0.050	0.050	02/28/2020	ND	1.79	89.6	2.00	8.66	
Total Xylenes*	<0.150	0.150	02/28/2020	ND	5.26	87.7	6.00	8.94	
Total BTEX	<0.300	0.300	02/28/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	02/28/2020	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/29/2020	ND	216	108	200	5.42	
DRO >C10-C28*	<10.0	10.0	02/29/2020	ND	229	115	200	5.36	
EXT DRO >C28-C36	<10.0	10.0	02/29/2020	ND					
Surrogate: 1-Chlorooctane	97.5	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	97.4	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: W - 09 0-1' (H000603-11)

BTEX 8021B	mg/	′kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/28/2020	ND	1.78	88.8	2.00	8.33	
Toluene*	<0.050	0.050	02/28/2020	ND	1.79	89.4	2.00	8.44	
Ethylbenzene*	<0.050	0.050	02/28/2020	ND	1.79	89.6	2.00	8.66	
Total Xylenes*	<0.150	0.150	02/28/2020	ND	5.26	87.7	6.00	8.94	
Total BTEX	<0.300	0.300	02/28/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	02/28/2020	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/29/2020	ND	216	108	200	5.42	
DRO >C10-C28*	<10.0	10.0	02/29/2020	ND	229	115	200	5.36	
EXT DRO >C28-C36	<10.0	10.0	02/29/2020	ND					
Surrogate: 1-Chlorooctane	99.2	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	101 9	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: W - 10 0-1' (H000603-12)

BTEX 8021B	mg,	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/28/2020	ND	1.78	88.8	2.00	8.33	
Toluene*	<0.050	0.050	02/28/2020	ND	1.79	89.4	2.00	8.44	
Ethylbenzene*	<0.050	0.050	02/28/2020	ND	1.79	89.6	2.00	8.66	
Total Xylenes*	<0.150	0.150	02/28/2020	ND	5.26	87.7	6.00	8.94	
Total BTEX	<0.300	0.300	02/28/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	02/28/2020	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/29/2020	ND	216	108	200	5.42	
DRO >C10-C28*	<10.0	10.0	02/29/2020	ND	229	115	200	5.36	
EXT DRO >C28-C36	<10.0	10.0	02/29/2020	ND					
Surrogate: 1-Chlorooctane	99.8	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	102	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS ANDREW PARKER 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	02/25/2020	Sampling Date:	02/25/2020
Reported:	03/02/2020	Sampling Type:	Soil
Project Name:	ADVANCE ENERGY	Sampling Condition:	Cool & Intact
Project Number:	DSU 3	Sample Received By:	Tamara Oldaker
Project Location:	NOT GIVEN		

Sample ID: W - 11 0-1' (H000603-13)

BTEX 8021B	mg/	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/28/2020	ND	1.78	88.8	2.00	8.33	
Toluene*	<0.050	0.050	02/28/2020	ND	1.79	89.4	2.00	8.44	
Ethylbenzene*	<0.050	0.050	02/28/2020	ND	1.79	89.6	2.00	8.66	
Total Xylenes*	<0.150	0.150	02/28/2020	ND	5.26	87.7	6.00	8.94	
Total BTEX	<0.300	0.300	02/28/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	02/28/2020	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/29/2020	ND	216	108	200	5.42	
DRO >C10-C28*	<10.0	10.0	02/29/2020	ND	229	115	200	5.36	
EXT DRO >C28-C36	<10.0	10.0	02/29/2020	ND					
Surrogate: 1-Chlorooctane	99.2	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	102	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose share there applied by the services arise of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 69 of 85 Page 16 of 17 aboratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

(575) 393-2326 FAX (575) 393-2476 101 East Marland, Hobbs, NM 88240

Received by OCD: 4/17/2020 8:59:13 AM

Page 70 of 85 Page 17 of 17 aboratories

(575) 393-2326 FAX (575) 393-2476 101 East Marland, Hobbs, NM 88240

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

City: Project Manager: Company Name: RT analyses, All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors ansing out of or related to the performance of services hereundar by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Sampler Name: Project Location: Project Name: Project #: Phone #: Address: Relinquished By: Relinquished By: PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in H000603 FOR LAB USE ONLY Delivered By: (Circle One) Lab I.D. J. A. J. P 3 NO W-11 6-10 10-M (al P T drived SACan psa NOVEN Sample I.D ヨフエ AT Ch. ins Energy Or. Mi SAEN2 Date: d'assau Time; 700 Fax #: Project Owner: Time: Date: State: 2-1-1-57 0 0-1 - / D ĩ Zip: E Received By (G)RAB OR (C)OMP Received By: # CONTAINERS Sample Condition Cool Intact Pres Pres GROUNDWATER WASTEWATER MATRIX SOIL 52 OIL contract or lort, shall be limited to the amount paid by the client for the SLUDGE State: City: Attn: P.O. #: Fax #: Phone #: Address: OTHER : Company: ACID/BASE: PRESERV CHECKED BY: ICE / COOL 5 BILL andrewe OTHER : Send Consult: Com Zip: 100 -1 DATE SAMPLING 70 Hicks 70 rthichs Fax Result: REMARKS: Lpn Phone Result: Ina 1:390 TIME chlos ide GTEL Yes No ANALYSIS Add'l Phone #: Add'l Fax #: REQUES.

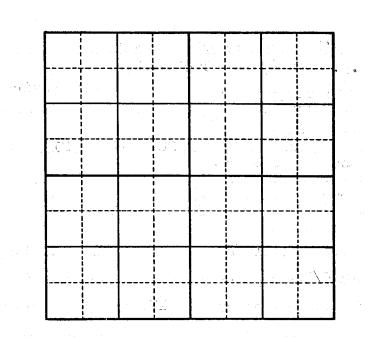
Received by OCD: 4/17/2020 8:59:13 AM

Sampler - UPS - Bus - Other:

2.50 #113

Appendix B OSE Well Logs

R.T. Hicks Consultants, Ltd.


901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

Declaration of Own	CAPITAN	BASIN		₿ 1	79 APR 20
Declaration No. <u>CP-601</u>	DACI	NINAME	Anril	17 10	979
Declaration No.		Date received	- ADTTT	<u> </u>	879TE ENGIN
		TEMENT	NT77		SANTA FE, N
1. Name of Declarant <u>THE MERCHANT</u> Mailing Address <u>P.O. Box 51</u>		arlsbad	ANI		
County of Eddy			New Me	xico	
2. Source of water supply Shallow	(artes	ian or shallow w	vater aquifer)	· · ·	
3. Describe well location under one of the following a ¼ NE ¼ NW	¼ of Sec	<u>28</u> тw	/p. 21S	Rge	33-Е N.M.P.M.
b. Tract No of Map No	County				
c. X = feet, Y =		feet, N. M. Coor	dinate System _		Zo
in the On land owned by				· · · · · · · · · · · · · · · · · · ·	Gran
4. Description of well: date drilled	1952	driller		depth	2231 fee
outside diameter of casing <u>6_5/8</u> inches	; original cap	acity	_gal. per min.	; present ca	apacity3
gal. per min.; pumping liftfeet; st					-
make and type of pump		an the Carac	·		
make, type, horsepower, etc., of power pla				-	r
Fractitional or percentage interest claime	d in well	100%			
5. Quantity of water appropriated and benefic	ially used			up t	:0_3
for <u>stock water</u>		C(XXXXXXXX)	CRCXCX	(acre fee	et per annum)
	, located and	described as fo	ollows (descri	be only land	ls actually irrigate
and the second		and and the second	Acres		
Subdivision Sec.	Twp.	Range Irrig	jated		Owner
	<u> </u>	<u>Stock</u>	mly T	he Merc	hant Lives
			·	STA	ø
e de la composition de				n n n	3
				S Z G	
(Note: location of well and acree	age actually in	igated must be sh	own on plat on	reverse side.	.) =
7. Water was first applied to beneficial use_			1952	NR NO	and sia ce that tir
has been used fully and continuously on al	month ll of the abov	day e described land	ye ls or for the a		bed pu sses excep
as follows:	· · ·			m	·····
				• , •	n an
		e	· · · · · · · · · · · · · · · · · · ·		
8. Additional statements or explanations					
8. Additional statements or explanations			·		
		······································			н 19
	· · · · ·			,	· · · · ·
I, J. D. Merchant, Jr.	Preside	at	bein	g first duly	sworn upon my oat
depose and say that the above is a full and verse side of this form and submitted in ev	in an	atement prepared nership of a vali	d in accordanc d undergroups	e with the i	instructions on the
read each and all of the items fortained it	erein and tha	t the same are t	rue to the bes	t of my know	wledge and belief.
	- 小子 石酸			TUDODA	CK CO. declara:
		THE ME	RCHANT I	TAFRIC	Ch. CO. declara:

C

Locate	well	and areas	actually	irrigated	88	accurately a	s possible	on	following pl	lat:	<i>4</i>	y T.
				23 - 13 - 14 14 - 14			1					i.
Section	(8)			Township .			, Range		······		N. M. P. I	M.
					_							
						ee de la service						
÷						1						

INSTRUCTIONS

Declaration shall be executed (preferably typewritten) in triplicate and must be accompanied by a \$1.00 filing fee. Each of triplicate copies must be properly signed and attested.

A separate declaration must be filed for each well in use.

All blanks shall be filled out fully. Required information which cannot be sworn to by declarant shall be supplied by affidavit of person or persons familiar with the facts and shall be submitted herewith.

Secs. 1-3. Complete all blanks.

S - 5

Sec. 4. Fill out all blanks applicable as fully as possible.

Sec. 5. Irrigation use shall be stated in acre feet of water per acre per year applied on the land. If used for domestic, municipal. or other purposes, state total quantity in acre feet used annually.

0.00

Sec: 6. Describe only the acreage actually irrigated. When necessary to clearly define irrigated acreages, describe to nearest 2½ acre subdivision. If located on unsurveyed lands. describe by legal supdivision "as projected" from the nearest government survey corners, or describe by metes and bounds and tie survey to some permanent, easily-located natural object.

Sec. 7. Explain and give dates as nearly as possible of any years when all or part of acreage claimed was not irrigated.

Sec. 8. If well irrigates or supplies supplemental water to any other land than that described above, or if land is also irrigated from any other source, explain under this section. Give any other data necessary to fully describe water right.

If additional space is necessary, use a separate sheet or sheets and attach securely hereto.

БC

FC

*78 APR 20 PM 3 00

April 17, 1979

OTITE ENGINEER OFFICE L. L. F. F. N.M. 01501

Files: CP-584; CP-585; CP-586; CP-587; CP-588; CP-589; CP-590; CP-591; CP-592; CP-593; CP-594; CP-595; CP-596; CP-597; CP-598; CP-599; CP-600; CP-601; CP-602

The Merchant Livestock Company P. O. Box 548 Carlsbad, NM 88220

Gentlemen:

Enclosed are your copies of Declarations of Owner of Underground Water Right as numbered above, which have been filed for record in the office of the State Engineer.

Please refer to each individual number in all future correspondence concerning these declarations.

The filing of these declarations does not indicate affirmation or rejection of the statements contained therein.

Yours very truly,

J. C. Groseclose Basin Supervisor

JCG/fh Encls. cc: Santa Fe

563298

				``		NW 2=NE 3 nallest to lar		,	M in meters)	
Well Tag	РО	D Numl	ber	· ·		Sec Tws	• •		Y	
U	СР	00854				33 21S	•		3590223	9
Driller Licens	se:	421	Drill	er Con	npany	GLENN	I'S WAT	ER WELL	SERVICE	
Driller Name	:	GLENN	, CLARK A."CC	RKY"	(LD)					
Drill Start Da	ite:	06/22/1	996 Drill	Finish	Date:	06/	22/1996	B Plug	Date:	
Log File Date	e:	07/11/1	996 PCV	V Rcv I	Date:	10/	17/2013	s Sour	ce:	Shallow
Pump Type:		SUBME	R Pipe	Disch	arge S	Size: 2.8	75	Estir	nated Yield	d: 100 GPM
Casing Size:		6.63	Dep	th Wel	l:	950) feet	Dept	h Water:	600 feet
v	Vater	Bearin	g Stratification	s:	Тор	Bottom	Descrip	otion		
					755	805	Sandsto	one/Gravel	/Conglome	rate
					860	890	Sandsto	one/Gravel	/Conglome	rate
		Cas	ing Perforatior	าร:	Тор	Bottom				
			-		760	950				
N	leter	Numbe	r: 8514			Meter M	ake:	BLA	NCETT	
Ν	leter	Serial I	Number: 04071	1711		Meter M	ultiplier	: 1.00	00	
N	lumb	er of Di	als: 7			Meter Ty	ype:	Dive	ersion	
U	nit o	of Measu	Ire: Barrel	s 42 ga	al.	Return I	-low Pe	rcent:		
U	Isage	e Multip	lier:			Reading	J Freque	ency: Qua	rterly	
 Meter Rea	ading	gs (in A	cre-Feet)							
Read D	ate	Year	Mtr Reading	Flag	Rdr	Comme	nt		Mtr	Amount
03/15/2	004	2004	121	А	jw					0
03/29/2	004	2004	69871	А	jw					0
05/17/2	004	2004	8758	А	jw					2.651
06/11/2	004	2004	79641	А	jw					2.998
01/27/2	012	2012	18062553	А	RPT	Initial rea	ading			0
03/01/2	012	2012	19039807	А	RPT	-				2.999
05/29/2	013	2013	179696	А	RPT	initial rea	ading			0
10/07/2	013	2013	460774	А		Qtr IV 20	-			36.229
11/11/2	013	2013	540326	А	RPT	-				10.254
01/01/2	014	2013	614283	А	RPT	-				9.533
10/01/2		2014	1122654	А	RPT					65.526
01/01/2		2014	1212343	А	RPT					11.560
03/31/2										
03/31/2	015	2015	1307063	А	RPT	-				12.209

Read Date Y	fear Mti	Reading	Flag	g Rdr Com	ment	Mtr Amount
09/30/2015 2	2015	1371471	А	RPT		0.247
10/22/2015 2	2015	1400502	А	RPT		3.742
11/30/2015 2	2015	1400502	А	RPT		0
04/28/2016 2	2016	1464116	А	RPT "JD3	3 Well"	8.199
06/01/2016 2	2016	1464116	А	RPT		0
07/27/2016 2	2016	1496980	А	RPT JD33	Well	4.236
09/01/2016 2	2016	1510835	А	RPT JD 3	3 Well	1.786
09/30/2016 2	2016	1517146	А	RPT		0.813
10/31/2016 2	2016	1531178	А	RPT JD 3	3 well	1.809
11/29/2016 2	2016	1553285	А	RPT JD33	Well	2.849
03/01/2017 2	2017	1583100	А	RPT		3.843
**YTD Meter A	Amounts:	Year		Amount		
		2004		5.649		
		2012		2.999		
		2013		56.016		
		2014		77.086		
		2015		24.253		
		2016		19.692		
		2017		3.843		

				(quart	ers are 1	=NW 2:	=NE 3=	=SW 4=SE	Ξ)			
			(quarters are smallest to largest)						(NAD83	UTN	I in meters))
Well Tag	PC	OD Number		Q64	Q16 Q4	Sec	Tws	Rng		Х	Y	,
	CF	P 01349 POD1		2	3 1	27	21S	33E	63530	4	3591576	; 🥌
Driller Licer	nse:	421	Drill	er Co	ompan	y: GI	ENN	I'S WAT	ER WEL	LS	SERVICE	
Driller Name	e:	GLENN, CLARK	A."CO	RKY								
Drill Start D	ate:	07/12/2014	Drill	Finis	sh Date	: :	07/	18/2014	Pl	ug l	Date:	
Log File Da	PCW Rcv Date:						So	ourc	e:	Artesian		
Pump Type	:		Pipe Discharge Size:						Es	tim	ated Yiel	ld:
Casing Size):	7.00	Dep	th W	ell:		118	88 feet	De	pth	Water:	572 feet
	Wate	r Bearing Stratifi	cation	s:	Тор	Bott	om	Descrip	otion			
				990	1	188	Sandsto	one/Grav	/el/(Conglome	erate	
	Casing Perfo				Тор	Bott	om					
					721	1	188					

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

STALE ENGINEER OFFICE

2014 SEP 10 PM 2: 15

	OSE POD N	UMBER (V	VELL NUMBER)	<u> </u>	·····	OSE FILE NU	MBER(S)		
N	CP-1355	(East S	tandard South) **	* * Revised 09/09/14 * * *					
Ē.	WELL OWN	ER NAME	E(S)			PHONE (OPT	IONAL)		
COC -	Merchan	ts/Gler	nn's Water Well Ser	vice, Inc.		575-398-2	2424		
GENERAL AND WELL LOCATION	WELL OWN P. O. Box		NG ADDRESS			CITY Tatum		state NM 8826	ZIP 57
. é	WELL		DEGREE	S MINUTES SECO	ONDS	1 			· · · · ·
AL AD	LOCATIO (FROM G	N I	ATITUDE 32	26 54.8	W		Y REQUIRED: ONE TEN QUIRED: WGS 84	TH OF A SECOND	
, EB	(i Kom G	I I	LONGITUDE 103	33 58.3	W			-	
GE	DESCRIPTIO	N RELATIN	G WELL LOCATION TO STREE	T ADDRESS AND COMMON LANDMARKS -	PLSS (SECTION, T	OWNSHJIP, RANG	GE) WHERE AVAILABLE		
				wnship 21 South, Range 33 E	ast on Merc	hants Lives			
	WD 421	JMBER	NAME OF LICENSED	DRILLER			NAME OF WELL DR Glenn's Water V	ILLING COMPANY Well Service, Inc.	
	DRILLING 8 07/22/14		DRILLING ENDED 07/29/14	DEPTH OF COMPLETED WELL (FT) 1,192'	BORE HOI 1,192'	LE DEPTH (FT)	DEPTH WATER FIR: 925'	ST ENCOUNTERED (FT))
z	COMPLETE	D WELL IS	s: 💽 artesian	C dry hole C shallow (u	NCONFINED)		STATIC WATER LEV	YEL IN COMPLETED WE	ELL (FT)
OIL	DRILLING F	LUID:	€ AIR	C MUD ADDITIVES -	SPECIFY		_I	A.K	*****
DRMA	DRILLING N		• ROTARY	C HAMMER C CABLE TOOL		R - SPECIFY:			
. NE	DEPTH	(feet bgl) BORE HOLE	CASING MATERIAL AND/OR	C A	ASING	CASING	CASING WALL	SLOT
2. DRILLING & CASING INFORMATION	FROM TO DIAM (inches)			GRADE (include each casing string, and note sections of screen)	CONN	VECTION TYPE	INSIDE DIAM. (inches)	THICKNESS (inches)	SIZE (inches)
C x	.0 ^r	40'	20"	16"	None		15 1/2"	.250	
0	0'	757'	14 3/4"	9 5/8"	Thread	& Collar	8.921"	36 lbs.	none
T	690'	1,192	' 8 3/4"	7" (502.14' Total)		& Collar	6.366"	23 lbs.	1/8"
RID				317.96 perforated					
2. I				on bottom of liner				· · · · · · · · · · · · · · · · · · ·	
-		·							
et e e N						- 	· · · · ·		
	DEPTH	(feet bgl)	DOIG NODE	LIST ANNULAR SEAL	MATERIAL A	ND	AMOUNT	METHO	
ML	FROM	TO	DIAM. (inches)	GRAVEL PACK SIZE-RAY	NGE BY INTE	RVAL	(cubic feet)	PLACEN	ÆNT
ER	0'	40'	20"	Cemented			2 yds.	Top Pour	
ANNULAR MATERIAL	0 .	757'	14 3/4"	Float and shoe cemented t	o surface		962	Circulated	
AR				· · ·		1.1.1.	-		
15N									
			· •			·····			
e.							· · · · · · ·		
FOR	OSE INTER	NAL US	E.	J			WELL RECORD		8/2012)
	NUMBER	1	P-1355	POD NUMB	ER /		NUMBER 6	LUC (VEISION 00/0	0.2012)
LOC	ATION	Exc	7	215		E.2	/	PAGE	1 OF 2

•

FROM	H (feet bgl)	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER ESTIMATEI WATER YIELD FOR BEARING? WATER- (YES / NO) BEARING ZONES (gpm
0	4'	4'	Sand	
4'	28'	24'	Caliche	
28'	120'	92'	Sand & Clay	
120'	260'	140'	Red Clay	
260'	757'	497'	Red & Brown Shale, and Clay (some blue)	
757'	815'	58'	Red & Brown Shale	
815'	840'	25'	Blue Clay & Shale	
840'	925'	85'	Red and Brown Shale (some sandrock)	
925'	975'	50'	Watersand and Gravel	
975'	1,185'	210'	Watersand (brown sandrock)	
			Red Shale	
1,185'	1,192'	7'.		
			· · · · · · · · · · · · · · · · · · ·	
			· · · ·	
				$O^{Y} O^{N}$
				OY ON
				O ^Y O ^N
				OY ON
METHO	OUSED TO E	STIMATE YIELI	O OF WATER-BEARING STRATA: O PUMP T	OTAL ESTIMATED
CAIRL	JET C	BAILER C	OTHER – SPECIFY:	VELL YIELD (gpm):
WELL T			ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER	
MISCEL	LANEOUS IN	FORMATION:		
1	57' drilled w	ith mud. d with air and	form	
/3/ 10	T 192 Unite	a with an and	Toam.	
		DUL DIO (UDD	NUCCON THAT DRONNED ONGITE OUDERVICION OF WELL CONCE	
PRINT N	AME(S) OF L	FILL RIG SUPE	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONST.	XUCTION OTHER THAN LICENSE
			FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF.	THE EODECOINC IS A TRUE AND
	DEDSIGNED		DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL REC	
j correc	T RECORD O	OF THE ABOVE I		ORD WITH THE STATE ENGINEER
j correc	T RECORD O	OF THE ABOVE I	20 DAYS AFTER COMPLETION OF WELL DRILLING:	ORD WITH THE STATE ENGINEER
j correc	T RECORD O	OF THE ABOVE I		ORD WITH THE STATE ENGINEER
j correc	T RECORD O	OF THE ABOVE I		$\frac{9}{9}$
j correc	CT RECORD (E PERMIT HO	OF THE ABOVE I	20 DAYS AFTER COMPLETION OF WELL DRILLING:	<u>9 /9 /14</u> DATE
CORRECT AND TH	CT RECORD (E PERMIT HO SIGNA	of the above i older within	20 DAYS AFTER COMPLETION OF WELL DRILLING:	9/9/14- DATE
CORRECT AND TH	ERNAL USE	of the above i older within	20 DAYS AFTER COMPLETION OF WELL DRILLING:	9/9/14- DATE RECORD & LOG (Version 06/08/20)

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

Z			LL NUMBER) ndard (South)			OSE FILE NU	MBER(S)		ين ح
OCATIC	WELL OWN	ER NAME(S)	r Well Service, Inc.		PHONE (OPTI (575)398-2	·		
AND WELL LOCATION	WELL OWN		ADDRESS			crry Tatum			
AND	WELL	IN T	DEGREE 11TUDE 32	s minutes secone 26 54.8	N N	* ACCURACY	REQUIRED: ONE TEN		2 7 7
GENERAL	(FROM GI		NGITUDE 103	33 58.3	W	-	QUIRED: WGS 84	3	i 2
1. GEI	1			T ADDRESS AND COMMON LANDMARKS - PLS Merchants Livestock Land	S (SECTION, T	OWNSHJIP, RANC	E) WHERE AVAILABLE	<u>ann - 1</u> 999 - 1999 -	<u> </u>
5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	LICENSE NU WD 421	JMBER	NAME OF LICENSED	DRILLER	Annonen and a second second	WWPAN	NAME OF WELL DR	ULLING COMPANY Well Service, Inc.	n mar an an an Ar Well Phone Se
	DRILLING S 7/29/14		DRILLING ENDED 8/2/14	DEPTH OF COMPLETED WELL (FT) 1192'	BORE HOI 1192'	LE DEPTH (FT)	DEPTH WATER FIR 925'	ST ENCOUNTERED (FT)
Z	COMPLETEI	O WELL IS:	• ARTESIAN	C DRY HOLE C SHALLOW (UNC	ONFINED)	STATIC WATER LEV	VEL IN COMPLETED WI	ELL (FT)	
MATIC	DRILLING F		C AIR	C MUD ADDITIVES - SPI	~	R-SPECIFY:	· · · ·	· · · · · · · · · · · · · · · · · · ·	
FOR		(feet bgl)		CASING MATERIAL AND/OR		SPECIFI:		· · · · · · · · · · · · · · · · · · · ·	1
DRILLING & CASING INFORMATION	FROM	TO	BORE HOLE DIAM (inches)	GRADE (include each casing string, and note sections of screen)	CONN	ASING VECTION YPE	CASING INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)	SLOT SIZE (inches)
& C	0'	40'	20"	16"	None		15 1/2"	.250	
NG	0'	757'	14 3/4"	9 5/8"		and Collar	.352	36 lbs.	none
2. DRILLI	757'	1192'	8 3/4'	. 7 [°]	Thread	and Collar	6.5"	23 lbs.	1/8"
7			·····						
	DEPTH	(feet bgl)	BORE HOLE	LIST ANNULAR SEAL MA		ND	AMOUNT		
AL	FROM	TO	DIAM. (inches)	GRAVEL PACK SIZE-RANG			(cubic feet)	METHO	
ERI	0'	40'	20"	Cemented			2 yds	Top Pour	
RAT S	0'	757'	14 3/4"	Float and Shoe Cemented to	Surface		1034	Circulated	
ANNULAR MATERIAI									· ·
3. AN			· · · · · · · · · · · · · · · · · · ·			·	:		
FOR	OSE INTER	NALUSE		<u> </u>		WR-2	WELL RECORD	& LOG (Version 06/0	8/2012)

FILE NUMBER	CP	- 1355	POD NUMBER /	TRN NUMBER	549450
LOCATION	EXV	1	215.33E:	27.312	PAGE 1 OF 2
			· · · · · · · · · · · · · · · · · · ·		

.

DEPTH FROM	(feet bgl)	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER YIELD FO BEARING? WATER (YES / NO) BEARING ZONES (gr
0'	4'	4'	Soil	
4'	28'	24'	Caleche	C Y O N
28'	120'	92'	Sand and Clay	
120'	260'	140'	Red Clay	
260'	757'	497'	Red and Brown Shale and Clay(some blue)	
757'	815'	58'	Red and Brown Shale	
815'	840'	25'	Blue Clay and Shale	
840'	925'	85'	Red and Brown Shale(some sandrock)	
925'	975'	50'	Watersand and Gravel	O Y C N
975'	1185'	210'	Watersand(brown sandrock)	
1185'	1192'	7	Red Shale	
	<u> </u>	•		
·	1			$O^{Y} O^{N}$
				$\begin{array}{c c} C & C \\ \hline C & Y & C \\ \end{array}$
)				$\bigcirc \bigcirc $
·				
	· · · · ·	<u> </u>		
METHOD C AIR LII		I STIMATE YIELI BAILER C		TOTAL ESTIMATED WELL YIELD (gpm): 50
WELL TE			TACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCL IME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVE	
MISCELLA	NEOUS IN	FORMATION:		and the second
0'to 75	7' drilled v	vith mud. 757	" to 1192' drilled with air and foam.	
PRINT NA	ME(S) OF L	RILL RIG SUPE	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONS	TRUCTION OTHER THAN LICENS
CORRECT	RECORD ()F THE ABOVE I	FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RE 20 DAYS AFTER COMPLETION OF WELL DRILLING:	
	SIGNAT	URE OF DRILL	Corky G/esse ER / PRINT SIGNEE NAME	/ <u>17/14</u> DATE
and and a first second second	and the second sec	· · · · · · · · · · · · · · · · · · ·		
	NAT USE		WR-20 WFI	L RECORD & LOG (Version 06/08/20
R OSE INTEL LE NUMBER		-1355	POD NUMBER / TRN NUMBI	··· · · · · · · · · · · · · · · · · ·

				ters are 1= irters are s			,	NAD83 UT	M in meters)	
Well Tag	PO	D Number	Q64	Q16 Q4	Sec Tv	vs R	Rng	Х	Ŷ	
	CP	01356 POD1	4	2 2	33 21	S 3	33E	634560	3590014	9
Driller Licen	se:	421	Driller C	ompany	: GLEN	IN'S	WATER	RWELL	SERVICE	
Driller Name	:	GLENN, CLARK	A."CORKY	/"						
Drill Start Da	ate:	08/01/2014	Drill Finish Date: 08/09/2014					Plug	Date:	
Log File Date	og File Date: 08/25/2014			PCW Rcv Date:					ce:	Artesian
Pump Type:			Pipe Discharge Size:					Estir	nated Yield	ł:
Casing Size:	asing Size: 6.37			Depth Well: 1098 feet					h Water:	555 feet
v	Vater	Bearing Stratifi	cations:	Тор	Bottom	De	escriptio	on		
•	rate.			765	795		•		/Conalomer	ate
				795	825	3				
				825	920) Sa	andstone	e/Gravel	/Conglomer	ate
				920	935			dstone/S	•	
				935	968	Sa	andstone	e/Gravel	/Conglomer	ate
				968	976	S Sh	nale/Muo	dstone/S	iltstone	
				976	1005	5 Sa	andstone	e/Gravel	/Conglomer	ate
				1005	1092	2 Sa	andstone	e/Gravel	/Conglomer	ate
		Casing Perfe	orations:	Тор	Bottom					
				735	1098	3				

			(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in mete								M in meters)		
Well Tag	PO) Number	`	•					Rng	(X	Y	
-	СР	01357 POD1		4	3	1	27	21S	33E	6347	82	3591347	9
Driller Licens	se: 4	421	Driller	Со	mpa	ny:	: GL	ENN	I'S WA	TER WE	ELL	SERVICE	
Driller Name:	: (GLENN, CLARK	A."COR	KY"									
Drill Start Da	Drill F	inis	h Da	te:		08/	26/2014	4 P	lug	Date:			
Log File Date	PCW I	Rcv	Date	:				Source: Ar			Artesian		
Pump Type:	Pipe D	Pipe Discharge Size:						E	Estimated Yield:				
Casing Size:								128	36 feet	D	ept	h Water:	578 feet
w	ater	Bearing Stratific	ations:		То	р	Botte	om	Descri	iption			
					94	5	ę	60	Sandst	tone/Gra	avel/	Conglome	rate
					96	0	10	77	Shale/I	Mudstor	ne/S	iltstone	
					107	7	12	15	Sandst	tone/Gra	avel/	Conglome	rate
			121	5	12	86	Shale/I	Mudstor	ne/S	iltstone			
		Casing Perfo	rations	:	То	р	Botte	om					
					84	6	12	86					

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

8	OSE POD NO CP-1701-F	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	W	ELL TAG ID NO.		OSE FILE NO(S).	tery typeng tantag generation for	<u></u>		
OCATI	WELL OWN The Jimmy		T and 2005 GST T	rusts			PHONE (OPTI	ONAL)				
AND WELL LOCATION	well own						CITY Loving		STATE NM 88256-1	ZIP 358		
GENERAL AND	WELL LOCATIO (FROM GH	2S)	DI TITUDE NGITUDE	EGREES 32 103	0.5 N 10.1 W	* ACCURACY REQUIRED: ONE TENTH OF A SECOND * DATUM REQUIRED: WGS \$4						
1. GENI	DESCRIPTIO		IG WELL LOCATION TO	O STREET ADDRESS	DMARKS – PLS	S (SECTION, TO	WNSHJIP, RANGE) WE	IERE AVAILABLE				
	LICENSE NO WD1		NAME OF LICENSED		vce Wallace	. <u>1. 51 - 1</u>	tining data di kara sana taka d	NAME OF WELL DR Elite	ILLING COMPANY Drillers Corporation			
	DRILLING S 10/15		DRILLING ENDED 11/29/18	DEPTH OF COMPL	BORE HO	LE DEPTH (FT) 880	DEPTH WATER FIR	ST ENCOUNTERED (FT)			
Z	COMPLETEI	O WELL IS:	ARTESIAN	DRY HOLE	SHALLOW (UN	(CONFINED)		STATIC WATER LE	VEL IN COMPLETED WI	LL (FT)		
RMATIC	DRILLING F		V AIR	MUD	ADDITIVËS – S		R – SPECIFY:	· · · · · · · · · · · · · · · · · · ·	. 14" 			
CASING INFORMATION	DEPTH FROM	(feet bgl) TO	BORE HOLE DIAM (inches)	G (include each	TERIAL AND/OR RADE casing string, and ions of screen)	CON	ASING NECTION TYPE ling diameter)	CASING INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)	SLOT SIZE (inches)		
2 8	0	20	12.75		Grade B Steel		N/A	12.57	.188			
9	+2	460	12.25	ASTM53	Grade B steel	W	Velded	6.065	.28			
2. DRILLING	460	840	12.25	SDI	R17 PVC		Spline	6	SDR17	.032		
		* ****			ι							
EAL	DEPTH FROM	(feet bgl) TO	BORE HOLE DIAM. (inches)		ANNULAR SEAL I PACK SIZE-RAN			AMOUNT (cubic feet)	METHC PLACEN			
ER	0	20	12.75		Portland I/II C	ement		17	Pou	r		
WA	0	453	12.25		Baroid Bensea	Grout		247	Trimi	nie		
ANNULAR MATERIAL	453	860	12.25		8/16 Silica S	and		285	Pou	ı.		
¢.							· · · ·					

FOR OSE INTERNAL USE	WR-20 WELL R	WR-20 WELL RECORD & LOG (Version 06/30/17)			
FILE NO. CP-1701	POD NO.	TRN NO.	19305		
LOCATION Expl	215.32E.35.31	WELL TAG ID NO.		PAGE 1 OF 2	

1

•

	DEPTH (feet bgl) TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONE (attach supplemental sheets to fully describe all units)	ES	WATER BEARING? (YES / NO)		ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)		
HYDROGEOLOGIC LOG OF WELL	0	5	5	ТорѕоіІ	†	Y	N			
	5	8	3	Caliche	+	Y	N			
	8	80	72	Tan/Red sandy caliche		Y	N			
	80	190	110	Red clay		Y	N			
	190	400	210	Tan/Red sandstone		Y	N			
	400	560	160	Red siltstone			N			
	560	575	15	Red siltstone/Gyp		√ Y	N	5.00		
	575	750	175	Red siltstone			N			
90,	750	770	20	Red siltstonc/Gyp	u		N	25.00		
	770	840	70	Red silisione			N			
EOG	840	880	40	Red Shale			N			
EO						Y	N			
RO						Y	N			
HYD						Y	N			
4			<u> </u>			Y	N			
						Y	N			
						Y	N	L		
					_	Y	N			
						Y	N			
						Y	N			
						Y	N			
	METHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA:				L ESTIMA L YIELD		30.00			
	WELL TEST START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.				4et HO D,					
VOISIV							D.			
TEST; RIG SUPERVI	MISCELLANEOUS INFORMATION:									
5. TES	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:									
SIGNATURE	THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 20 DAYS AFTER COMPLETION OF WELL DRILLING:									
6. SIGN	_lh	Bryce Wallace			12/10/2					
	SIGNATURE OF DRILLER / PRINT SIGNEE NAME				E	DATE				
<u> </u>	OSE INTERN	IAL USE			LL REC	ORD & LO	DG (Ver	sion 06/30/2017)		
FILE NO. CP-10 POD NO. 1 TRN NO. 419305										
LOC	ATION E	מצ	2	15.32E.35.31 WELL TAG ID NO.	-			PAGE 2 OF 2		