RECEIVED

By OCD Dr Oberding at 2:09 pm, Mar 07, 2017

DELINEATION INVESTIGATION REPORT

Blue Dunn #1 Site Release Lea County, New Mexico

December 15, 2016

Prepared for:

Siana Operating LLC 12012 Wickchester Lane, Ste 410 Houston, Texas 77079

Prepared by:

Charger Services, Inc. 3300 N. A Street, Bldg 7 Midland, Texas 79705

Coty Woolf

Environmental Professional

Table	of Contents	
1.0	EXECUTIVE SUI	VMARY2
2.0	INTRODUCTON	1
2.1	Setting	3
3.0	SPILL INVESTIG	ATION
4.0	RECOMMENDA	ATION
List of	Tables	
	Table 1	Soil Analytical Data Summary
List of	Figures	
	Figure 1	Topographic Map
	Figure 2	Aerial Drawing
		, is the stawing
List of	Appendices	
2.01 01 .	NATIONAL TOTAL TOT	Davis at 1
	Appendix A	Boring Logs
	Appendix B	Laboratory Report

1.0 EXECUTIVE SUMMARY

This report is submitted to Siana Operating LLC (Siana), by Charger Services, Inc., (Charger), to present the delineation investigation of a crude oil and produced water spill at the Blue Dunn #1 Site, located in Lea County, New Mexico. The spill occurred before March 24, 2016, because of equipment failure. An unknown quantity of oil and produced water were lost at the Site and covering approximately 6,100 sq. ft. of the facility. Zero bbl of oil and water were recovered with unknown total lost.

On March 24, 2016, Charger personnel arrived at the Blue Dunn #1 Site to initiate an investigation into the release. While at the site, Charger personnel collected photo documentation of the incident and established a work plan with Siana field personnel.

On October 10, 2016 and October 17, 2016, Charger personnel delineated the Site. The samples were analyzed for BTEX, TPH, and Chlorides. The laboratory ran samples consecutively until below NMOCD action limits for each sample point.

Remediation recommendations will be submitted in a separate proposal.

2.0 INTRODUCTON

This report is submitted to Siana Operating LLC (Siana), by Charger Services, Inc., (Charger), to present the delineation investigation of a crude oil and produced water spill at the Blue Dunn #1 Site, located in Lea County, New Mexico. The spill occurred before March 24, 2016, because of equipment failure. An unknown quantity of oil and produced water were lost at the Site and covering approximately 6,100 sq. ft. of the facility. Zero bbl of oil and water were recovered with unknown total lost. The geodetic position for the spill is 32°37'57.21"N, 103°19'56.25"W. Figure 1 presents a topographic map. Figure 2 presents an aerial map.

2.1 Setting

The setting is as follows:

- The Site is located approximately 4 miles west of Monument, in Lea County, New Mexico;
- The elevation is approximately 3,700 feet above mean sea level (MSL);
- Groundwater was encountered at 46 ft bgs;
- The topography is slightly undulating and slopes to the northeast;
- The nearest water well is located about 0.3 miles east:
- The closet surface water feature is a playa lake (seasonal) located about 0.3 miles east of the Site;
- Runoff is to the north and east.

3.0 SPILL INVESTIGATION

On March 24, 2016, Charger personnel arrived at the Site to initiate an investigation into the crude oil and produced water release. While at the Site, Charger personnel collected photo documentation of the releases and established a work plan.

On October 10, 2016 and October 17, 2016, Charger personnel used an air rotary drill to collect soil samples at three (3) boring locations. The samples were collected at 2 ft, 5ft, 10 ft, etc. to 100 foot below ground surface (bgs) and analyzed by Permian Basin Environmental Lab, LP, (PBELAB) for total petroleum hydrocarbons (TPH) by method 8015M, BTEX by method 8021B, and Chlorides by method E-300.

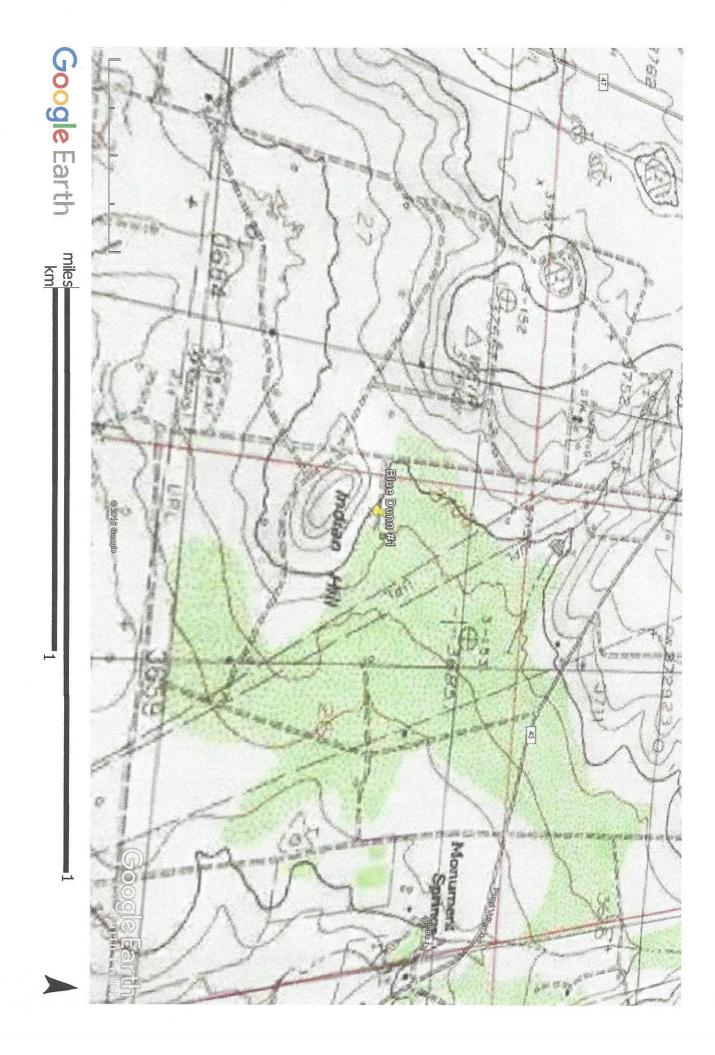
The laboratory reported chlorides concentrations above the NMOCD action level of 250 milligrams per kilogram (mg/kg) in samples down to 40 ft bgs In sample SB-1 and down to 5 ft bgs in sample SB-3. Table 1 presents a summary of the laboratory analysis. Appendix B presents the laboratory reports.

4.0 RECOMMENDATION

Remediation recommendations will be submitted in a separate proposal.

TABLES

Boring	Depth	Date	Chloride	Benzene	Toluene	Ethylbenzene	Xylene	GRO	DRO	Oil	Total TPH
	Feet BGS		mg/Kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
RRAL:											5,000
SB-1	2 - 3	10/17/2016	213	<0.00110	<0.00110	<0.00110	<0.00220	640	4,240.0	616.0	5,496
	5 - 6	10/17/2016	472	-	-	-	-	60.0	767	108	935
	10 - 11	10/17/2016	1,480	=	-	_	-	-		-	0
	15 - 16	10/17/2016	563	-		===	-	-	-	-	0
	20 - 21	10/17/2016	238			-	_		-	-	0
	25 - 26	10/17/2016	316		-		1070	1000			0
	30 - 31	10/17/2016	239	-			-		-		0
	35 - 36	10/17/2016	320	1_2		-	-	-	-	-	0
	40 - 41	10/17/2016	348		-				-		0
	45 - 46	10/17/2016	185		-	-	1923	-	-	122	0
SB-2	2-3	10/10/2016	573	<0.00106	<0.00213	<0.00106	<0.00213	245	2,010	248	2,503
	5-6	10/10/2016	163	<0.00108	<0.00215	0.0122	0.01374	32.4	302	72.6	407
	10 - 11	10/10/2016	46.6	<0.00111	<0.00222	0.00206	0.00321	<27.8	97.1	32.9	130
	15 - 16	10/10/2016	69.3	<0.00111	<0.00222	<0.00111	0.00190	28.4	78.8	<27.8	107
	20 - 21	10/10/2016	39.5	<0.00105	<0.00211	<0.00105	<0.00211	<26.3	57.1	<26.3	57.1
	25 - 26	10/10/2016	36.0	<0.00105	<0.00211	<0.00105	<0.00211	<26.4	51.1	26.6	77.7
SB-3	2-3	10/10/2016	344	<0.00108	<0.00215	<0.00108	<0.00215	<26.9	142	38.4	180
	5-6	10/10/2016	86.3	<0.00118	<0.00235	<0.00118	<0.00235	<29.4	<29.4	<29.4	<29.4
	10 - 11	10/10/2016	186	< 0.00109	<0.00217	< 0.00109	<0.00217	<27.2	48.4	<27.2	48.4
	15 - 16	10/10/2016	5.30	<0.00109	<0.00217	0.00239	0.00654	<27.2	<27.2	<27.2	<27.2
	20 - 21	10/10/2016	196	<0.00103	<0.00206	<0.00103	<0.00206	<25.8	47.8	<25.8	47.8
	25 - 26	10/10/2016	346	<0.00110	<0.00220	< 0.00110	<0.00220	<27.5	36.2	<27.5	36.2
	30 - 31	10/10/2016	328	<0.00103	<0.00206	<0.00103	<0.00206	<25.8	64.9	30.9	95.8
	35 - 36	10/10/2016	197	<0.00104	<0.00208	<0.00104	<0.00208	<26.0	48.1	<26.0	48.1
	40 - 41	10/10/2016	156	<0.00104	<0.00208	<0.00104	<0.00208	<26.0	30.2	<26.0	30.2
	45 - 46	10/10/2016	51.8	<0.00108	<0.00215	<0.00108	<0.00215	<26.9	53.6	<26.9	53.6
	50 - 51	10/10/2016	47.0	<0.00105	<0.00211	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3


Notes: Analysis performed by Prmian Basin Environmental Lab, Midland, Texas

Samples analyzed via EPA method SW-8015M (TPH) and SW-300 (chloride).

Depth measurements are in feet below ground surface (bgs).

All concentrations are in milligrams per kilogram (mg/Kg) equivalent to parts per million (ppm).

FIGURES

Appendix A

Site Name:

Siana Blue Dunn #1

Job Number: Driller:

16-0401

Drill Method: Latitude:

Scarborough Drilling

Air Rotary 32°37'57.21"N Location:

Lea County, NM

SB-1

Boring ID: Date:

10/17/2016

Geologist:

A. Pachlhofer 103°19'56.25"W

Longitude: Depth PID Time USCS Munsell Color Description (ppm) Surface Medium brown/slight 2 14:00 0.0 CH red Organic silt & clays/top soil with angular cobbles of caliche 5 14:10 0.0 SM Pinkish brown Sand with fines/silts & clays/fine ground caliche 10 14:20 0.0 SM Light orange Medium sized sand/25% - 40% fines/silts & clays 15 14:30 0.0 SM Light orange to tan Medium sized sand/25% - 40% fines/silts & clays 20 14:40 0.0 SM Light orange to tan Medium sized sand/25% - 40% fines/silts & clays 25 14:50 0.0 SP Orange to light orange | Medium to fine sand/little to no silts or clays 30 15:00 0.0 SP Orange to light orange | Medium to fine sand/little to no silts or clays 35 15:10 0.0 SP Orange to light orange | Medium to fine sand/little to no silts or clays 40 15:20 0.0 SP Orange to light orange | Medium to fine sand/little to no silts or clays 15:30 0.0 SP Orange to light orange | Medium to fine sand/little to no silts or clays

Site Name: Siana Blue Dunn #1 Location: Lea County, NM Job Number: 16-0401 Boring ID: SB-2 Scarborough Drilling Driller: Date: 10/10/2016 **Drill Method:** Air Rotary Geologist: A. Pachlhofer Latitude: 32°37'57.21"N 103°19'56.25"W Longitude:

Depth	Time	PID (ppm)	USCS	Munsell Color	Description
Surface					
2	10:00	0.0	СН	Medium brown/slight red	Organic silt & clays/top soil with angular cobbles of caliche
5	10:15	0.0	SM	Pinkish brown	Sand with fines/silts & clays/fine ground caliche
10	10:30	0.0	SM	Light orange	Medium sized sand/25% - 40% fines/silts & clays
15	10:45	0.0	SM	Light orange to tan	Medium sized sand/25% - 40% fines/silts & clays
20	11:00	0.0	SM	Light orange to tan	Medium sized sand/25% - 40% fines/silts & clays
25	11:15	0.0	SP	Orange to light orange	Medium to fine sand/little to no silts or clays

Site Name: Job Number: Driller:

Siana Blue Dunn #1 16-0401

Scarborough Drilling Air Rotary

Location: Boring ID: Lea County, NM SB-3

Date:

10/10/2016 A. Pachlhofer

Drill Method: Latitude: 32°37'57.21"N Geologist: Longitude:

103°19'56.25"W

Depth	Time	PID (ppm)	USCS	Munsell Color	Description
Surface					
2	11:30	0.0	СН	Medium brown/slight red	Organic silt & clays/top soil with angular cobbles of caliche
5	11:45	0.0	SM	Pinkish brown	Sand with fines/silts & clays/fine ground caliche
10	12:00	0.0	SM	Light orange	Medium sized sand/25% - 40% fines/silts & clays
15	12:15	0.0	SM	Light orange to tan	Medium sized sand/25% - 40% fines/silts & clays
20	12:30	0.0	SM	Light orange to tan	Medium sized sand/25% - 40% fines/silts & clays
25	12:45	0.0	SP	Orange to light orange	Medium to fine sand/little to no silts or clays
30	13:00	0.0	SP	Orange to light orange	Medium to fine sand/little to no silts or clays
35	13:15	0.0	SP	Orange to light orange	Medium to fine sand/little to no silts or clays
40	13:30	0.0	SP	Orange to light orange	Medium to fine sand/little to no silts or clays
45	13:45	0.0	SP	Orange to light orange	Medium to fine sand/little to no silts or clays
50	14:00	0.0	SP	Lighter orange	Medium to fine sand/little to no silts or clays

Appendix B

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Coty Woolf Charger Services P.O. Box 53070 Midland, TX 79710

Project: Siana Blue Dunn #1
Project Number: [none]
Location:

Lab Order Number: 6J20001

NELAP/TCEQ # T104704156-16-6

Report Date: 11/08/16

Charger Services P.O. Box 53070

Midland TX, 79710

Project: Siana Blue Dunn #1

Project Number: [none]
Project Manager: Coty Woolf

Fax: (432) 695-6247

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 (2')	6J20001-01	Soil	10/17/16 14:00	10-20-2016 16:43
SB-1 (5')	6J20001-02	Soil	10/17/16 14:10	10-20-2016 16:43
SB-1 (10')	6J20001-03	Soil	10/17/16 14:20	10-20-2016 16:43
SB-1 (15')	6J20001-04	Soil	10/17/16 14:30	10-20-2016 16:43
SB-1 (20')	6J20001-05	Soil	10/17/16 14:40	10-20-2016 16:43
SB-1 (25')	6J20001-06	Soil	10/17/16 14:50	10-20-2016 16:43
SB-1 (30')	6J20001-07	Soil	10/17/16 15:00	10-20-2016 16:43
SB-1 (35')	6J20001-08	Soil	10/17/16 15:10	10-20-2016 16:43
SB-1 (40')	6J20001-09	Soil	10/17/16 15:20	10-20-2016 16:43
SB-1 (45')	6J20001-10	Soil	10/17/16 15:30	10-20-2016 16:43

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-1 (2') 6J20001-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin F	Environme	ıtal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00110	mg/kg dry	1	P6J2509	10/24/16	10/24/16	EPA 8021B	
Toluene	ND	0.00110	mg/kg dry	1	P6J2509	10/24/16	10/24/16	EPA 8021B	
Ethylbenzene	ND	0.00110	mg/kg dry	1	P6J2509	10/24/16	10/24/16	EPA 8021B	
Xylene (p/m)	ND	0.00220	mg/kg dry	1	P6J2509	10/24/16	10/24/16	EPA 8021B	
Xylene (o)	ND	0.00110	mg/kg dry	1	P6J2509	10/24/16	10/24/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		85.0 %	80-1	20	P6J2509	10/24/16	10/24/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.4 %	80-1	20	P6J2509	10/24/16	10/24/16	EPA 8021B	
General Chemistry Parameters by EF	PA / Standard Method	ls							
Chloride	213	1.10	mg/kg dry	1	P6J2002	10/20/16	10/24/16	EPA 300.0	
% Moisture	9.0	0.1	%	1	P6J2201	10/22/16	10/22/16	% calculation	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80	15M							
C6-C12	640	137	mg/kg dry	5	P6J2105	10/20/16	10/21/16	TPH 8015M	
>C12-C28	4240	137	mg/kg dry	5	P6J2105	10/20/16	10/21/16	TPH 8015M	
>C28-C35	616	137	mg/kg dry	5	P6J2105	10/20/16	10/21/16	TPH 8015M	
Surrogate: 1-Chlorooctane		97.0 %	70-1	30	P6J2105	10/20/16	10/21/16	TPH 8015M	
Surrogate: o-Terphenyl		106 %	70-1	30	P6J2105	10/20/16	10/21/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	5490	137	mg/kg dry	5	[CALC]	10/20/16	10/21/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-1 (5') 6J20001-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin I	Environmer	ıtal Lab,	L.P.				
General Chemistry Parameters by EP	A / Standard Method	S							
Chloride	472	1.12	mg/kg dry	1	P6J2002	10/20/16	10/24/16	EPA 300.0	
% Moisture	11.0	0.1	%	1	P6J2201	10/22/16	10/22/16	% calculation	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80	15M							
C6-C12	60.0	28.1	mg/kg dry	1	P6J2105	10/20/16	10/21/16	TPH 8015M	
>C12-C28	767	28.1	mg/kg dry	1	P6J2105	10/20/16	10/21/16	TPH 8015M	
>C28-C35	108	28.1	mg/kg dry	1	P6J2105	10/20/16	10/21/16	TPH 8015M	
Surrogate: 1-Chlorooctane		89.2 %	70-1	30	P6J2105	10/20/16	10/21/16	TPH 8015M	
Surrogate: o-Terphenyl		95.0 %	70-1	30	P6J2105	10/20/16	10/21/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	936	28.1	mg/kg dry	1	[CALC]	10/20/16	10/21/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-1 (10') 6J20001-03 (Soil)

									I .
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	1480	10.3 mg/kg dry	10	P6J2004	10/20/16	10/21/16	EPA 300.0
% Moisture	3.0	0.1 %	1	P6J2201	10/22/16	10/22/16	% calculation

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-1 (15') 6J20001-04 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	563	1.14 mg/kg dry	1	P6J2004	10/20/16	10/21/16	EPA 300.0
% Moisture	12.0	0.1 %	1	P6J2201	10/22/16	10/22/16	% calculation

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-1 (20') 6J20001-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	238	1.03 mg/kg dry	1	P6K0110	11/01/16	11/02/16	EPA 300.0
% Moisture	3.0	0.1 %	1	P6K0104	11/01/16	11/01/16	% calculation

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-1 (25') 6J20001-06 (Soil)

									I .
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	316	1.04 mg/kg dry	1	P6K0110	11/01/16	11/02/16	EPA 300.0
% Moisture	4.0	0.1 %	1	P6K0104	11/01/16	11/01/16	% calculation

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-1 (30') 6J20001-07 (Soil)

									I .
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	239	1.04 mg/kg dry	1	P6K0110	11/01/16	11/02/16	EPA 300.0
% Moisture	4.0	0.1 %	1	P6K0104	11/01/16	11/01/16	% calculation

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-1 (35') 6J20001-08 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	320	1.05 mg/kg dry	1	P6K0110	11/01/16	11/02/16	EPA 300.0
% Moisture	5.0	0.1 %	1	P6K0104	11/01/16	11/01/16	% calculation

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-1 (40') 6J20001-09 (Soil)

									1
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	348	1.05 mg/kg dry	1	P6K0110	11/01/16	11/02/16	EPA 300.0
% Moisture	5.0	0.1 %	1	P6K0104	11/01/16	11/01/16	% calculation

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-1 (45') 6J20001-10 (Soil)

									I .
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Chloride	185	1.03 mg/kg dry	1	P6K0202	11/02/16	11/03/16	EPA 300.0
% Moisture	3.0	0.1 %	1	P6K0104	11/01/16	11/01/16	% calculation

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (P6J2509-BLK1)				Prepared &	Analyzed:	10/24/16				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.0601		"	0.0600		100	80-120			
Surrogate: 4-Bromofluorobenzene	0.0477		"	0.0600		79.5	80-120			S-GC
LCS (P6J2509-BS1)				Prepared &	Analyzed:	10/24/16				
Benzene	0.0904	0.00100	mg/kg wet	0.100		90.4	80-120			
Toluene	0.0934	0.00100	"	0.100		93.4	80-120			
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120			
Xylene (p/m)	0.213	0.00200	"	0.200		106	80-120			
Xylene (o)	0.0968	0.00100	"	0.100		96.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.0461		"	0.0600		76.8	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.0653		"	0.0600		109	80-120			
LCS Dup (P6J2509-BSD1)				Prepared &	Analyzed:	10/24/16				
Benzene	0.0925	0.00100	mg/kg wet	0.100		92.5	80-120	2.35	20	
Toluene	0.0945	0.00100	"	0.100		94.5	80-120	1.18	20	
Ethylbenzene	0.117	0.00100	"	0.100		117	80-120	0.845	20	
Xylene (p/m)	0.216	0.00200	"	0.200		108	80-120	1.46	20	
Xylene (o)	0.100	0.00100	"	0.100		100	80-120	3.54	20	
Surrogate: 1,4-Difluorobenzene	0.0692		"	0.0600		115	80-120			
Surrogate: 4-Bromofluorobenzene	0.0460		"	0.0600		76.6	80-120			S-GC
Matrix Spike (P6J2509-MS1)	Sour	ce: 6J20005	-01	Prepared: 10	0/24/16 A	nalyzed: 10	0/25/16			
Benzene	0.193	0.0241	mg/kg dry	0.241	ND	80.1	80-120			
Toluene	0.171	0.0241	"	0.241	ND	71.0	80-120			QM-07
Ethylbenzene	0.230	0.0241	"	0.241	ND	95.4	80-120			
Xylene (p/m)	0.358	0.0482	"	0.482	ND	74.4	80-120			QM-07
Xylene (o)	0.147	0.0241	"	0.241	ND	60.9	80-120			QM-07
Surrogate: 4-Bromofluorobenzene	0.0405		"	0.0723		56.0	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.0741		"	0.0723		103	80-120			

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch P6J2509 - General Preparation (GC)

Matrix Spike Dup (P6J2509-MSD1)	Sour	ce: 6J20005	-01	Prepared: 1	0/24/16 A					
Benzene	0.174	0.0241	mg/kg dry	0.241	ND	72.1	80-120	10.5	20	QM-07
Toluene	0.176	0.0241	"	0.241	ND	73.1	80-120	2.91	20	QM-07
Ethylbenzene	0.218	0.0241	"	0.241	ND	90.4	80-120	5.38	20	
Xylene (p/m)	0.338	0.0482	"	0.482	ND	70.1	80-120	5.96	20	QM-07
Xylene (o)	0.150	0.0241	"	0.241	ND	62.4	80-120	2.43	20	QM-07
Surrogate: 1,4-Difluorobenzene	0.0728		"	0.0723		101	80-120			
Surrogate: 4-Bromofluorobenzene	0.0386		"	0.0723		53.4	80-120			S-GC

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

		Reporting		Spike	Source				RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P6J2002 - *** DEFAULT PREP ***										
Blank (P6J2002-BLK1)				Prepared:	10/20/16 Aı	nalyzed: 10	/24/16			
Chloride	ND	1.00	mg/kg wet							
LCS (P6J2002-BS1)				Prepared:	10/20/16 A	nalyzed: 10	/24/16			
Chloride	436	1.00	mg/kg wet	400		109	80-120			
LCS Dup (P6J2002-BSD1)				Prepared:	10/20/16 A	nalyzed: 10	/24/16			
Chloride	454	1.00	mg/kg wet	400		113	80-120	4.04	20	
Duplicate (P6J2002-DUP1)	Sou	rce: 6J19003	-03	Prepared:	10/20/16 A	nalyzed: 10	/24/16			
Chloride	1030	5.49	mg/kg dry		1030			0.331	20	
Duplicate (P6J2002-DUP2)	Sou	rce: 6J19003	-13	Prepared:	10/20/16 A	nalyzed: 10				
Chloride	2220	11.2	mg/kg dry		2220			0.0203	20	
Matrix Spike (P6J2002-MS1)	Sou	rce: 6J19003	-03	Prepared:	10/20/16 A	nalyzed: 10	/24/16			
Chloride	2120	5.49	mg/kg dry	1100	1030	99.6	80-120			
Batch P6J2004 - *** DEFAULT PREP ***										
Daten 1 002004 DELITEEL TREE										
Blank (P6J2004-BLK1)				Prepared:	10/20/16 Ai	nalyzed: 10	/21/16			
	ND	1.00	mg/kg wet	Prepared:	10/20/16 Ai	nalyzed: 10	/21/16			
Blank (P6J2004-BLK1)	ND	1.00	mg/kg wet	•	10/20/16 An	<u> </u>				
Blank (P6J2004-BLK1) Chloride	ND 468	1.00	mg/kg wet	•		<u> </u>				
Blank (P6J2004-BLK1) Chloride LCS (P6J2004-BS1)				Prepared:		nalyzed: 10	7/21/16 80-120			

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P6J2004 - *** DEFAULT PREP ***										
Duplicate (P6J2004-DUP1)	Sou	rce: 6J20001	-03	Prepared:	10/20/16 A	nalyzed: 10	0/21/16			
Chloride	1490	10.3	mg/kg dry		1480			0.445	20	
Duplicate (P6J2004-DUP2)	Sou	rce: 6J20007-	-04	Prepared:	10/20/16 A	nalyzed: 10	0/21/16			
Chloride	6740	26.0	mg/kg dry		6100			9.97	20	
Matrix Spike (P6J2004-MS1)	Sou	rce: 6J20001-	-03	Prepared:	10/20/16 A	nalyzed: 10	0/21/16			
Chloride	2260	10.3	mg/kg dry	773	1480	101	80-120			
Batch P6J2201 - *** DEFAULT PREP ***										
Blank (P6J2201-BLK1)				Prepared &	& Analyzed:	10/22/16				
% Moisture	ND	0.1	%							
Duplicate (P6J2201-DUP1)	Sou	rce: 6J19003-	-12	Prepared &	& Analyzed:	10/22/16				
% Moisture	11.0	0.1	%		11.0			0.00	20	
Duplicate (P6J2201-DUP2)	Sou	rce: 6J19010-	-01	Prepared &	& Analyzed:	10/22/16				
% Moisture	13.0	0.1	%		14.0			7.41	20	
Batch P6K0104 - *** DEFAULT PREP ***										
Blank (P6K0104-BLK1)				Prepared &	& Analyzed:	11/01/16				
% Moisture	ND	0.1	%							
Duplicate (P6K0104-DUP1)	Sou	rce: 6J31008	-02	Prepared &	& Analyzed:	11/01/16				
% Moisture	2.0	0.1	%		3.0			40.0	20	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P6K0104 - *** DEFAULT PREP ***										
Duplicate (P6K0104-DUP2)	Sou	rce: 6J20003-	-13	Prepared &	Analyzed:	11/01/16				
% Moisture	2.0	0.1	%		1.0			66.7	20	
Batch P6K0110 - *** DEFAULT PREP ***										
Blank (P6K0110-BLK1)				Prepared:	11/01/16 A	nalyzed: 11	/02/16			
Chloride	ND	1.00	mg/kg wet							
LCS (P6K0110-BS1)				Prepared:	11/01/16 A	nalyzed: 11	/02/16			
Chloride	417	1.00	mg/kg wet	400		104	80-120			
LCS Dup (P6K0110-BSD1)				Prepared:	11/01/16 A	nalyzed: 11	/02/16			
Chloride	426	1.00	mg/kg wet	400		107	80-120	2.09	20	
Duplicate (P6K0110-DUP1)	Sou	rce: 6J17005-	07	Prepared:	11/01/16 A	nalyzed: 11	/02/16			
Chloride	150	1.05	mg/kg dry		150			0.0979	20	
Duplicate (P6K0110-DUP2)	Sou	rce: 6J17005-	17	Prepared:	11/01/16 A	nalyzed: 11	/02/16			
Chloride	32.9	1.04	mg/kg dry		32.8			0.349	20	
Matrix Spike (P6K0110-MS1)	Sou	rce: 6J17005-	07	Prepared:	11/01/16 A	nalyzed: 11	/02/16			
Chloride	1090	1.05	mg/kg dry	1050	150	89.2	80-120			
Batch P6K0202 - *** DEFAULT PREP ***										
Blank (P6K0202-BLK1)				Prepared:	11/02/16 A	nalyzed: 11	/03/16			
Chloride	ND	1.00	mg/kg wet							

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P6K0202 - *** DEFAULT PREP ***										
LCS (P6K0202-BS1)				Prepared:	11/02/16 A	nalyzed: 11	/03/16			
Chloride	389	1.00	mg/kg wet	400		97.2	80-120			
LCS Dup (P6K0202-BSD1)				Prepared:	11/02/16 A	nalyzed: 11	/03/16			
Chloride	387	1.00	mg/kg wet	400		96.8	80-120	0.461	20	
Duplicate (P6K0202-DUP1)	Sour	ce: 6J20001	-10	Prepared:	11/02/16 A	nalyzed: 11	/03/16			
Chloride	137	1.03	mg/kg dry		185			29.6	20	R3
Duplicate (P6K0202-DUP2)	Sour	ce: 6J21003	-05	Prepared:	11/02/16 A	nalyzed: 11	/03/16			
Chloride	505	1.09	mg/kg dry		499			1.10	20	
Matrix Spike (P6K0202-MS1)	Sour	ce: 6J20001	-10	Prepared:	11/02/16 A	nalyzed: 11	/03/16			
Chloride	1030	1.03	mg/kg dry	1030	185	81.7	80-120			

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P6J2105 - TX 1005										
Blank (P6J2105-BLK1)				Prepared &	Analyzed:	10/20/16				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	125		"	100		125	70-130			
Surrogate: o-Terphenyl	68.1		"	50.0		136	70-130			S-GC
LCS (P6J2105-BS1)				Prepared &	Analyzed:	10/20/16				
C6-C12	916	25.0	mg/kg wet	1000		91.6	75-125			
>C12-C28	904	25.0	"	1000		90.4	75-125			
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	54.7		"	50.0		109	70-130			
LCS Dup (P6J2105-BSD1)										
C6-C12	900	25.0	mg/kg wet	1000		90.0	75-125	1.83	20	
>C12-C28	809	25.0	"	1000		80.9	75-125	11.0	20	
Surrogate: 1-Chlorooctane	104		"	100		104	70-130			
Surrogate: o-Terphenyl	50.8		"	50.0		102	70-130			
Matrix Spike (P6J2105-MS1)	Sou	rce: 6J20003	-02	Prepared: 1	10/20/16 Aı	nalyzed: 10	/21/16			
C6-C12	872	29.8	mg/kg dry	1190	ND	73.2	75-125			
>C12-C28	803	29.8	"	1190	18.0	66.0	75-125			
Surrogate: 1-Chlorooctane	88.8		"	119		74.6	70-130			
Surrogate: o-Terphenyl	41.1		"	59.5		69.0	70-130			
Matrix Spike Dup (P6J2105-MSD1)	Sour	rce: 6J20003	-02	Prepared:	10/20/16 A	nalyzed: 10	/21/16			
C6-C12	1110	29.8	mg/kg dry	1190	ND	93.5	75-125	24.4	20	
>C12-C28	1100	29.8	"	1190	18.0	91.1	75-125	32.0	20	
Surrogate: 1-Chlorooctane	126		"	119		106	70-130			
Surrogate: o-Terphenyl	56.9		,,	59.5		95.7	70-130			

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

R3 The RPD exceeded the acceptance limit due to sample matrix effects.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

BULK Samples received in Bulk soil containers

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Burn Barron			
Report Approved By:		Date:	11/8/2016	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

Relinquished by:	Relinquished by:	Relinquished by:	Special Instructions:		9	4		5	N-	۷	1	7	-88	LAB#(lab use only)	(lab use only) ORDER #:	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	Masaran
)	of low	(154)	(10°)	(,52)	(201)	(5.50	()0')	(1/5/)	((o'))	(<7)	/ (\ \)	FIELD CODE	20001	ignature:	No:	Zip:	Address:	Name	ınager:	
Date	Date	10/19/16 4	P/ 5	145	B	3:	30	، اور)	<i>\\</i>		\$	ر ا	Beginning Depth			>				Co	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST
Time	Time	Time 7	50,	4	400	300		576	7	57/20	0	6		Ending Depth	4					\	h	ODY R
Received by:	Received by:		Nes	6		6 36							10/17/16	Date Sampled						Char	hac!	ECORD AND /
Ø			un less	370	220	310	300	12c	0740	2%	A r	2/0	200	Time Sampled		e-mail:	Fax No:			W/S	N :2	ANALYSIS RE
1			N		_	_		7			_	_		Field Filtered Total #. of Containers	<u>_</u>					(\tilde{Q}_{i})	1400 Rankin Hv Midland, Texas	EQUEST Permian Basin Environmental Lab, LP
			(-)	K	\triangleright	X	X	\times	X	X	X	Ķ	X	ice	P)	d, Te	ST n Bas
			1/2	′├─	-	-	_							HNO _{3 250,ml Poly}	Preserva					1	(as	; 3
			52		╁	 							 	H ₂ SO ₄			Ì			10	79701	viror
			2											NaOH	on & # of Containers			1		10	-	ımer
			2											Na ₂ S ₂ O ₃	- Contai					M	1	聖
5		Ī	"	'	-	_							<u> </u>	None 1L Poly	- Reg							ab,
10-19-101	Vale		12		-	╄		-	_			_	-	NaOH/ZnAc DW=Drinking Water SL=Studge		•	ı	1	1	1	1	5
È			12	1	~	1	7	5	5	W	W	W.	\bigvee	GW = Groundwater S=Soil/Solid	Matrix		Rep					
E]	16	L			<u></u> '			Ĺ	L	Ĺ	Ĺ	NP=Non-Potable Specify Other		7	Report Format:		P	_	Project Name:	
			Les	\triangleright	Q	\nearrow		X	Q	X	ĺΧ	X	尽	TPH by TX 1005 80151 80151	<u>*</u>		orm m	_	Project Loc:	Project #:	Ž.	
- RE		1	120	以	\mathcal{C}		X	公	仸	X	X	K	1	BTEX by 802185			<u>::</u>	PO #:	L 00	# **	ame	
1 Emperators 1 Received: 2		Custody seals on container(s) Custody seals on container(s) Custody seals on cooler(s)	Sample Containers Intact? VOCs Free of Headspace? Labels on containers?	aboratory Comments:	Y	17	4	X		10		10	10	J. L. W. COZIG			×	ا آ		1	ΪΛ	
giusted: 2 °C °C Factor M	y Sal	Q Q S	F F O		+	+	+	\vdash	\vdash	\vdash	1	\vdash	+			1	Ste				(V)	
7.70	mple	eals	e 91	중 <u>-</u>	+	+	+-	\vdash	+	\vdash	\vdash	T	1			P	Standard				40	Phone: 432-686-7235
1) 8	₹ , ₫ ₫	299	Hea	%	T	\top	1	1	†	f^{-}	\vdash	T	1			Analyze	ā				10	≅
			dsp.	를	+	1	1	T	1	T		Г	T			77					**	432.
ကြိုင် ကြိုင်	ရှိတ် <u>ရှိ</u>	aine er(s)	ace?	s:	T	1			I					·		9				1		-686
Fact	呈	(s)								\prod							TRRP				\mathcal{D}	-723
9		10.5							L	_			<u> </u>			1	ס				1	წ
15	FedEx	~		$\downarrow \!\!\! \perp$	1	_	4	1	1	1	1	<u> </u>	1							}	1	
H		h''	~ ~	기	_	_	1	1	 	-	 	╀	┼				Z	-	-	- 1		_
		zzz			+	_	+	-	+	+	+	+	+	Duch 24 49 70 /Dic	200 03[1)	-	NPDES				2	
1	One Star	- <u>-</u> - Z	zzz	1	_	1	1	+	Ł	*	+	+	+	Rush 24 48 72 (Please) Standard	ase call)		Ö		1		7	
-	对加盟的基础	1676	go sa	MT	くけつ	\checkmark	イン	47	ゝァ	ヘト	حرا>	ιν	-1 /	wianadia	1			1	1	_	Page 22	

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Coty Woolf Charger Services P.O. Box 53070 Midland, TX 79710

Project: Siana Blue Dunn #1
Project Number: [none]
Location:

Lab Order Number: 6J10011

NELAP/TCEQ # T104704156-16-6

Report Date: 10/14/16

Charger Services

Project: Siana Blue Dunn #1

P.O. Box 53070 Midland TX, 79710 Project Number: [none]
Project Manager: Coty Woolf

Fax: (432) 695-6247

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-2 (2-3)	6J10011-01	Soil	10/10/16 10:00	10-10-2016 16:45
SB-2 (5-6)	6J10011-02	Soil	10/10/16 10:15	10-10-2016 16:45
SB-2 (10-11)	6J10011-03	Soil	10/10/16 10:30	10-10-2016 16:45
SB-2 (15-16)	6J10011-04	Soil	10/10/16 10:45	10-10-2016 16:45
SB-2 (20-21)	6J10011-05	Soil	10/10/16 11:00	10-10-2016 16:45
SB-2 (25-26)	6J10011-06	Soil	10/10/16 11:15	10-10-2016 16:45
SB-3 (2-3)	6J10011-07	Soil	10/10/16 11:30	10-10-2016 16:45
SB-3 (5-6)	6J10011-08	Soil	10/10/16 11:45	10-10-2016 16:45
SB-3 (10-11)	6J10011-09	Soil	10/10/16 12:00	10-10-2016 16:45
SB-3 (15-16)	6J10011-10	Soil	10/10/16 12:15	10-10-2016 16:45
SB-3 (20-21)	6J10011-11	Soil	10/10/16 12:30	10-10-2016 16:45
SB-3 (25-26)	6J10011-12	Soil	10/10/16 12:45	10-10-2016 16:45
SB-3 (30-31)	6J10011-13	Soil	10/10/16 13:00	10-10-2016 16:45
SB-3 (35-36)	6J10011-14	Soil	10/10/16 13:15	10-10-2016 16:45
SB-3 (40-41)	6J10011-15	Soil	10/10/16 13:30	10-10-2016 16:45
SB-3 (45-46)	6J10011-16	Soil	10/10/16 13:45	10-10-2016 16:45
SB-3 (50-51)	6J10011-17	Soil	10/10/16 14:00	10-10-2016 16:45

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-2 (2-3) 6J10011-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin F	Environme	ntal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00106	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Toluene	ND	0.00213	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		76.7 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		73.1 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	S-GC
General Chemistry Parameters by EP	A / Standard Method	ls							
Chloride	573	10.6	mg/kg dry	10	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	6.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80	15M							
C6-C12	245	26.6	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C12-C28	2010	26.6	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C28-C35	248	26.6	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: 1-Chlorooctane		90.8 %	70-1	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: o-Terphenyl		98.8 %	70-1	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	2500	26.6	mg/kg dry	1	[CALC]	10/11/16	10/12/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-2 (5-6) 6J10011-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Result	Liillit	Ullits	Dilution	Daten	ricpared	Allalyzeu	Menion	Notes
	Pern	nian Basin E	Environmen	tal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00108	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Toluene	ND	0.00215	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Ethylbenzene	0.0122	0.00108	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (p/m)	0.00869	0.00215	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (o)	0.00505	0.00108	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		90.7 %	75-1.	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		120 %	75-1.	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Method	ls							
Chloride	163	10.8	mg/kg dry	10	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	7.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C	C35 by EPA Method 80	15M							
C6-C12	32.4	26.9	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C12-C28	302	26.9	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C28-C35	72.6	26.9	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: 1-Chlorooctane		85.8 %	70-1.	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: o-Terphenyl		94.7 %	70-1.	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	407	26.9	mg/kg dry	1	[CALC]	10/11/16	10/12/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-2 (10-11) 6J10011-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Pern	nian Basin F	Environmen	ıtal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00111	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Toluene	ND	0.00222	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Ethylbenzene	0.00206	0.00111	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (p/m)	0.00321	0.00222	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.5 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.0 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Method	ls							
Chloride	46.6	5.56	mg/kg dry	5	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	10.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C	C35 by EPA Method 80	15M							
C6-C12	ND	27.8	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C12-C28	97.1	27.8	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C28-C35	32.9	27.8	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: 1-Chlorooctane		92.4 %	70-1	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: o-Terphenyl		99.4 %	70-1	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	130	27.8	mg/kg dry	1	[CALC]	10/11/16	10/12/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-2 (15-16) 6J10011-04 (Soil)

	p. 1	Reporting	TT '	D'I d'	D. d	D 1		Mala	NI :
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environmer	ıtal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00111	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Toluene	ND	0.00222	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (o)	0.00190	0.00111	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		72.5 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	S-GC
Surrogate: 4-Bromofluorobenzene		84.3 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Method	ls							
Chloride	69.3	1.11	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	10.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C	C35 by EPA Method 80	15M							
C6-C12	28.4	27.8	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C12-C28	78.8	27.8	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: 1-Chlorooctane		93.1 %	70-1	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-1	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	107	27.8	mg/kg dry	1	[CALC]	10/11/16	10/12/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-2 (20-21) 6J10011-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		nian Basin E				1			
Organics by GC				•					
Benzene	ND	0.00105	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Toluene	ND	0.00211	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		85.9 %	75-1.	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		92.1 %	75-1.	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
General Chemistry Parameters by El	PA / Standard Method	ls							
Chloride	39.5	1.05	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	5.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C12-C28	57.1	26.3	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: 1-Chlorooctane		90.7 %	70-1.	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: o-Terphenyl		97.4 %	70-1.	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	57.1	26.3	mg/kg dry	1	[CALC]	10/11/16	10/12/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-2 (25-26) 6J10011-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmen	ıtal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00105	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Toluene	ND	0.00211	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		74.4 %	75-1.	25	P6J1303	10/12/16	10/13/16	EPA 8021B	S-GC
Surrogate: 4-Bromofluorobenzene		80.9 %	75-1.	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
General Chemistry Parameters by EI	PA / Standard Method	ls						-	
Chloride	36.0	1.05	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	5.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C.	35 by EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C12-C28	51.1	26.3	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C28-C35	26.6	26.3	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: 1-Chlorooctane		90.7 %	70-1.	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: o-Terphenyl		97.3 %	70-1.	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	77.7	26.3	mg/kg dry	1	[CALC]	10/11/16	10/12/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-3 (2-3) 6J10011-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin F	Environmen	ıtal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00108	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Toluene	ND	0.00215	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		82.7 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		92.5 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
General Chemistry Parameters by EI	PA / Standard Method	ls							
Chloride	344	1.08	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	7.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C.	35 by EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C12-C28	142	26.9	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C28-C35	38.4	26.9	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: 1-Chlorooctane		86.1 %	70-1	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: o-Terphenyl		93.6 %	70-1	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	180	26.9	mg/kg dry	1	[CALC]	10/11/16	10/12/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-3 (5-6) 6J10011-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Per	mian Basin E	Environmer	ıtal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00118	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Toluene	ND	0.00235	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00118	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00235	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00118	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		73.7 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	S-GC
Surrogate: 4-Bromofluorobenzene		82.5 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
General Chemistry Parameters by EPA / State	ndard Metho	ds							
Chloride	86.3	1.18	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	15.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C35 by E	PA Method 80	015M							
C6-C12	ND	29.4	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C12-C28	ND	29.4	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C28-C35	ND	29.4	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: 1-Chlorooctane		98.0 %	70-1	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: o-Terphenyl		107 %	70-1	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	29.4	mg/kg dry	1	[CALC]	10/11/16	10/12/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-3 (10-11) 6J10011-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
y		nian Basin F				- 100	111111, 204		1.300
Organics by GC	1011			240, 1					
Benzene	ND	0.00109	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	•
Toluene	ND	0.00217	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00109	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00217	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		85.3 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		75.8 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
General Chemistry Parameters by EI	PA / Standard Method	ls							
Chloride	186	1.09	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	8.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C12-C28	48.4	27.2	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: 1-Chlorooctane		83.5 %	70-1	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Surrogate: o-Terphenyl		91.5 %	70-1	30	P6J1214	10/11/16	10/12/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	48.4	27.2	mg/kg dry	1	[CALC]	10/11/16	10/12/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-3 (15-16) 6J10011-10 (Soil)

		Damanti							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environmen	ıtal Lab, l	P.				
Organics by GC									
Benzene	ND	0.00109	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Toluene	ND	0.00217	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Ethylbenzene	0.00239	0.00109	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (p/m)	0.00654	0.00217	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00109	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		69.5 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	S-GC
Surrogate: 4-Bromofluorobenzene		78.6 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
General Chemistry Parameters by EP.	A / Standard Method	ls							
Chloride	5.30	1.09	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	8.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: 1-Chlorooctane		88.1 %	70-1	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: o-Terphenyl		91.2 %	70-1	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	10/12/16	10/13/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-3 (20-21) 6J10011-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environmen	tal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00103	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Toluene	ND	0.00206	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		66.7 %	75-1.	25	P6J1303	10/12/16	10/13/16	EPA 8021B	S-GC
Surrogate: 4-Bromofluorobenzene		76.4 %	75-1.	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
General Chemistry Parameters by El	PA / Standard Method	ls							
Chloride	196	1.03	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	3.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	25.8	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C12-C28	47.8	25.8	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: 1-Chlorooctane		89.8 %	70-1.	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: o-Terphenyl		93.1 %	70-1.	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	47.8	25.8	mg/kg dry	1	[CALC]	10/12/16	10/13/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-3 (25-26) 6J10011-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environme	ıtal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00110	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Toluene	ND	0.00220	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00110	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00220	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00110	mg/kg dry	1	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		82.6 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		79.9 %	75-1	25	P6J1303	10/12/16	10/13/16	EPA 8021B	
General Chemistry Parameters by El	PA / Standard Method	ls							
Chloride	346	1.10	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	9.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	27.5	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C12-C28	36.2	27.5	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: 1-Chlorooctane		88.6 %	70-1	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: o-Terphenyl		91.8 %	70-1	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	36.2	27.5	mg/kg dry	1	[CALC]	10/12/16	10/13/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-3 (30-31) 6J10011-13 (Soil)

		Reporting	TT 1.	Dil d	D . 1	ъ.		M d d	NT.
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environmen	tal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00103	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Toluene	ND	0.00206	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.7 %	75-1.	25	P6J1408	10/13/16	10/13/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		89.1 %	75-1.	25	P6J1408	10/13/16	10/13/16	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Method	s							
Chloride	328	1.03	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	3.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	25.8	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C12-C28	64.9	25.8	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C28-C35	30.9	25.8	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: 1-Chlorooctane		85.9 %	70-1.	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: o-Terphenyl		88.4 %	70-1.	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	95.8	25.8	mg/kg dry	1	[CALC]	10/12/16	10/13/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-3 (35-36) 6J10011-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		nian Basin E				Trepured	7 mary 200	memod	110102
0 1 00	1 6111	iliali Dasili E	anvii ommen	itai Lab, i	⊔.1.				
Organics by GC) ID	0.00104		1	DC I 1 400	10/12/16	10/12/16	EPA 8021B	
Benzene	ND	0.00104	mg/kg dry	1	P6J1408	10/13/16	10/13/16		
Toluene	ND	0.00208	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		86.5 %	75-1.	25	P6J1408	10/13/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		78.4 %	75-1.	25	P6J1408	10/13/16	10/13/16	EPA 8021B	
General Chemistry Parameters by El	PA / Standard Method	ls							
Chloride	197	1.04	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	4.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	26.0	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C12-C28	48.1	26.0	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: 1-Chlorooctane		90.7 %	70-1.	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: o-Terphenyl		94.3 %	70-1.	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	48.1	26.0	mg/kg dry	1	[CALC]	10/12/16	10/13/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-3 (40-41) 6J10011-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		nian Basin E				Trepured	7 mary 200	memod	110102
Ouganies by CC	1 6111	illali Dasili E	anvii ommen	itai Lab, i	⊔• 1 •				
Organics by GC Benzene	ND	0.00104	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
			mg/kg dry	1	P6J1408			EPA 8021B EPA 8021B	
Toluene	ND	0.00208				10/13/16	10/13/16		
Ethylbenzene	ND	0.00104	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		84.5 %	75-1.	25	P6J1408	10/13/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		78.4 %	75-1.	25	P6J1408	10/13/16	10/13/16	EPA 8021B	
General Chemistry Parameters by El	PA / Standard Method	ls							
Chloride	156	1.04	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	4.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	26.0	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C12-C28	30.2	26.0	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: 1-Chlorooctane		99.5 %	70-1.	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-1.	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	30.2	26.0	mg/kg dry	1	[CALC]	10/12/16	10/13/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-3 (45-46) 6J10011-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Environmen	tal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00108	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Toluene	ND	0.00215	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.8 %	75-1.	25	P6J1408	10/13/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		83.1 %	75-1.	25	P6J1408	10/13/16	10/13/16	EPA 8021B	
General Chemistry Parameters by EI	PA / Standard Method	s							
Chloride	51.8	1.08	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	7.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C12-C28	53.6	26.9	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: 1-Chlorooctane		93.3 %	70-1.	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: o-Terphenyl		97.2 %	70-1.	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	53.6	26.9	mg/kg dry	1	[CALC]	10/12/16	10/13/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

SB-3 (50-51) 6J10011-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	nian Basin F	Environmen	ıtal Lab, I	P.				
Organics by GC									
Benzene	ND	0.00105	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Toluene	ND	0.00211	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P6J1408	10/13/16	10/13/16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		79.9 %	75-1.	25	P6J1408	10/13/16	10/13/16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		75.2 %	75-1.	25	P6J1408	10/13/16	10/13/16	EPA 8021B	
General Chemistry Parameters by EPA / S	Standard Method	s							
Chloride	47.0	1.05	mg/kg dry	1	P6J1106	10/11/16	10/13/16	EPA 300.0	
% Moisture	5.0	0.1	%	1	P6J1205	10/12/16	10/12/16	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: 1-Chlorooctane		90.1 %	70-1.	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Surrogate: o-Terphenyl		92.6 %	70-1.	30	P6J1213	10/12/16	10/13/16	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	10/12/16	10/13/16	calc	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

0.225

0.385

0.188

0.0722

0.0863

0.00109

0.00217

0.00109

0.217

0.435

0.217

0.0870

0.0870

0.00239

0.00654

ND

103

87.0

86.5

83.1

99.3

80-120

80-120

80-120

75-125

75-125

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P6J1303 - General Preparation	n (GC)									
Blank (P6J1303-BLK1)				Prepared: 1	0/12/16 A	nalyzed: 10	/13/16			
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00200	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.0736		"	0.0800		92.0	75-125			
Surrogate: 1,4-Difluorobenzene	0.0633		"	0.0800		79.2	75-125			
LCS (P6J1303-BS1)				Prepared: 1	0/12/16 A	nalyzed: 10	/13/16			
Benzene	0.0868	0.00100	mg/kg wet	0.100		86.8	70-130			
Toluene	0.0828	0.00200	"	0.100		82.8	70-130			
Ethylbenzene	0.109	0.00100	"	0.100		109	70-130			
Xylene (p/m)	0.205	0.00200	"	0.200		102	70-130			
Xylene (o)	0.103	0.00100	"	0.100		103	70-130			
Surrogate: 1,4-Difluorobenzene	0.0593		"	0.0800		74.1	75-125			S-GC
Surrogate: 4-Bromofluorobenzene	0.0610		"	0.0800		76.3	75-125			
LCS Dup (P6J1303-BSD1)				Prepared: 1	0/12/16 A	nalyzed: 10	/13/16			
Benzene	0.108	0.00100	mg/kg wet	0.100		108	70-130	21.6	20	
Toluene	0.109	0.00200	"	0.100		109	70-130	26.9	20	
Ethylbenzene	0.111	0.00100	"	0.100		111	70-130	1.62	20	
Xylene (p/m)	0.199	0.00200	"	0.200		99.7	70-130	2.55	20	
Xylene (o)	0.120	0.00100	"	0.100		120	70-130	15.5	20	
Surrogate: 1,4-Difluorobenzene	0.0678		"	0.0800		84.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.0683		"	0.0800		85.4	75-125			
Matrix Spike (P6J1303-MS1)	Sour	rce: 6J10011	-10	Prepared: 1	0/12/16 A	nalyzed: 10	/13/16			
Benzene	0.164	0.00109	mg/kg dry	0.217	ND	75.3	80-120			QM-07
Toluene	0.172	0.00217	"	0.217	ND	78.9	80-120			QM-07

Ethylbenzene

Xylene (p/m)

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,4-Difluorobenzene

Xylene (o)

%REC

RPD

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P6J1303 - General Preparation (GC)										.2.30
Matrix Spike Dup (P6J1303-MSD1)	Sou	rce: 6J10011-	-10	Prepared: 1	10/12/16 Aı	nalyzed: 10	/13/16			
Benzene	0.139	0.00109	mg/kg dry	0.217	ND	63.9	80-120	16.3	20	QM-0
Toluene	0.150	0.00217	"	0.217	ND	68.9	80-120	13.6	20	QM-0'
Ethylbenzene	0.203	0.00109	"	0.217	0.00239	92.3	80-120	10.5	20	
Xylene (p/m)	0.349	0.00217	"	0.435	0.00654	78.8	80-120	9.92	20	QM-0
Xylene (o)	0.170	0.00109	"	0.217	ND	78.2	80-120	10.0	20	QM-0
Surrogate: 1,4-Difluorobenzene	0.0838		"	0.0870		96.4	75-125			
Surrogate: 4-Bromofluorobenzene	0.0796		"	0.0870		91.5	75-125			
Batch P6J1408 - General Preparation (GC)										
Blank (P6J1408-BLK1)				Prepared &	Analyzed:	10/13/16				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00200	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.0595		"	0.0800		74.3	75-125			S-G
Surrogate: 4-Bromofluorobenzene	0.0694		"	0.0800		86.8	75-125			
LCS (P6J1408-BS1)				Prepared &	z Analyzed:	10/13/16				
Benzene	0.0906	0.00100	mg/kg wet	0.100		90.6	70-130			
Toluene	0.0933	0.00200	"	0.100		93.3	70-130			
Ethylbenzene	0.0951	0.00100	"	0.100		95.1	70-130			
Xylene (p/m)	0.226	0.00200	"	0.200		113	70-130			
Xylene (o)	0.110	0.00100	"	0.100		110	70-130			
Surrogate: 1,4-Difluorobenzene	0.0713		"	0.0800		89.1	75-125			
Surrogate: 4-Bromofluorobenzene	0.0696		"	0.0800		87.0	75-125			

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

Organics by GC - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P6J1408 - General Preparation (G	C)									
LCS Dup (P6J1408-BSD1)				Prepared &	Analyzed:	10/13/16				
Benzene	0.0954	0.00100	mg/kg wet	0.100		95.4	70-130	5.25	20	
Toluene	0.0971	0.00200	"	0.100		97.1	70-130	4.07	20	
Ethylbenzene	0.101	0.00100	"	0.100		101	70-130	5.78	20	
Xylene (p/m)	0.230	0.00200	"	0.200		115	70-130	1.81	20	
Xylene (o)	0.119	0.00100	"	0.100		119	70-130	7.19	20	
Surrogate: 1,4-Difluorobenzene	0.0696		"	0.0800		87.0	75-125			
Surrogate: 4-Bromofluorobenzene	0.0702		"	0.0800		87.7	75-125			
Matrix Spike (P6J1408-MS1)	Sou	rce: 6J11002	-03	Prepared: 1	0/13/16 A	nalyzed: 10	/14/16			
Benzene	0.119	0.00114	mg/kg dry	0.114	ND	105	80-120			
Toluene	0.134	0.00227	"	0.114	ND	118	80-120			
Ethylbenzene	0.132	0.00114	"	0.114	ND	117	80-120			
Xylene (p/m)	0.265	0.00227	"	0.227	ND	116	80-120			
Xylene (o)	0.130	0.00114	"	0.114	ND	114	80-120			
Surrogate: 4-Bromofluorobenzene	0.0645		"	0.0909		70.9	75-125			S-GO
Surrogate: 1,4-Difluorobenzene	0.0786		"	0.0909		86.5	75-125			
Matrix Spike Dup (P6J1408-MSD1)	Sou	rce: 6J11002	-03	Prepared: 1	0/13/16 A	nalyzed: 10	/14/16			
Benzene	0.129	0.00114	mg/kg dry	0.114	ND	114	80-120	8.36	20	
Toluene	0.143	0.00227	"	0.114	ND	125	80-120	6.19	20	QM-0
Ethylbenzene	0.136	0.00114	"	0.114	ND	120	80-120	2.52	20	
Xylene (p/m)	0.262	0.00227	"	0.227	ND	115	80-120	1.18	20	
Xylene (o)	0.151	0.00114	"	0.114	ND	133	80-120	14.9	20	QM-0
Surrogate: 4-Bromofluorobenzene	0.0812		"	0.0909		89.3	75-125			
Surrogate: 1,4-Difluorobenzene	0.0873		"	0.0909		96.0	75-125			

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

	_	Reporting	_	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P6J1106 - *** DEFAULT PREP ***										
Blank (P6J1106-BLK1)				Prepared:	10/11/16 A	nalyzed: 10	0/13/16			
Chloride	ND	1.00	mg/kg wet							
LCS (P6J1106-BS1)				Prepared:	10/11/16 A	nalyzed: 10	0/13/16			
Chloride	409	1.00	mg/kg wet	400		102	80-120			
LCS Dup (P6J1106-BSD1)				Prepared:	10/11/16 A	nalyzed: 10	0/13/16			
Chloride	415	1.00	mg/kg wet	400		104	80-120	1.42	20	
Duplicate (P6J1106-DUP1)	Sou	rce: 6J10011-	-01	Prepared:	10/11/16 A	nalyzed: 10	0/13/16			
Chloride	581	10.6	mg/kg dry		573			1.44	20	
Duplicate (P6J1106-DUP2)	Sou	rce: 6J10011	-11	Prepared:	10/11/16 A	nalyzed: 10	0/13/16			
Chloride	208	1.03	mg/kg dry		196			6.02	20	
Matrix Spike (P6J1106-MS1)	Sou	rce: 6J10011-	-01	Prepared:	10/11/16 A	nalyzed: 10	0/13/16			
Chloride	1480	10.6	mg/kg dry	1060	573	85.0	80-120			
Batch P6J1205 - *** DEFAULT PREP ***										
Blank (P6J1205-BLK1)				Prepared &	Analyzed:	10/12/16				
% Moisture	ND	0.1	%		-					
Duplicate (P6J1205-DUP1)	Sou	rce: 6J10011-	-17	Prepared &	Analyzed:	10/12/16				
% Moisture	5.0	0.1	%		5.0			0.00	20	
Duplicate (P6J1205-DUP2)	Sou	rce: 6J11006-	-03	Prepared &	Analyzed:	10/12/16				
% Moisture	6.0	0.1	%		7.0			15.4	20	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

General Chemistry Parameters by EPA / Standard Methods - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P6J1205 - *** DEFAULT PREP ***										
Duplicate (P6J1205-DUP3)	Sourc	e: 6J11008-1	6	Prepared &	Analyzed:	10/12/16				
% Moisture	2.0	0.1	%		2.0			0.00	20	
Duplicate (P6J1205-DUP4)	Sourc	e: 6J11010-0	5	Prepared &	Analyzed:	10/12/16				
% Moisture	1.0	0.1	%		1.0			0.00	20	

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

		Reporting	** .	Spike	Source		%REC	222	RPD	3.7
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P6J1213 - TX 1005										
Blank (P6J1213-BLK1)				Prepared &	Analyzed:	10/12/16				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	93.5		"	100		93.5	70-130			
Surrogate: o-Terphenyl	48.8		"	50.0		97.5	70-130			
LCS (P6J1213-BS1)				Prepared &	Analyzed:	10/12/16				
C6-C12	1150	25.0	mg/kg wet	1000		115	75-125			
>C12-C28	1150	25.0	"	1000		115	75-125			
Surrogate: 1-Chlorooctane	116		"	100		116	70-130			
Surrogate: o-Terphenyl	58.4		"	50.0		117	70-130			
Batch P6J1214 - TX 1005										
Blank (P6J1214-BLK1)				Prepared: 1	10/11/16 Aı	nalyzed: 10	/12/16			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	91.4		"	100		91.4	70-130			
Surrogate: o-Terphenyl	51.9		"	50.0		104	70-130			
LCS (P6J1214-BS1)				Prepared: 1	10/11/16 Aı	nalyzed: 10	/12/16			
C6-C12	854	25.0	mg/kg wet	1000		85.4	75-125			
>C12-C28	764	25.0	"	1000		76.4	75-125			
Surrogate: 1-Chlorooctane	93.0		"	100		93.0	70-130			
	46.6		"	50.0		93.1	70-130			

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P6J1214 - TX 1005										
LCS Dup (P6J1214-BSD1)				Prepared: 1	0/11/16 Ar	nalyzed: 10	/12/16			
C6-C12	894	25.0	mg/kg wet	1000		89.4	75-125	4.61	20	
>C12-C28	800	25.0	"	1000		80.0	75-125	4.62	20	
Surrogate: 1-Chlorooctane	94.5		"	100		94.5	70-130			
Surrogate: o-Terphenyl	49.0		"	50.0		98.1	70-130			

P.O. Box 53070 Project Number: [none]
Midland TX, 79710 Project Manager: Coty Woolf

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Drew	Darron			
Report Approved By:			Date:	10/14/2016	

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Relinquished by:		Relinquished by:	Relinquished by:	14	Special I	3	٥	4		6	٨,	ς	3	7		LAB#(lab use only)	(lab use only ORDER #:							
ed by:		ed by:	ed by:	lower 5	Special Instructions:	7-7	-5	-3	56-3	~>	4	+	4	- 2	511-2	FIELD CODE	only (051001	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	
Date		Date		amples unless		-										CO Dm	_							CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Permian B 1400 Rank
Time		Time	人が emit			12/	101		2	296	20	15/	10	3	-	Beginning Depth						,	10	JSTOD
20		_		Ser		6		E	\sim	8	7	6	13	2	_	Ending Depth							1)Y RE
Received by:	1	Received by:		threshold is		_									10/10/16	Date Sampled						large	Local	CORD AND
) 			Broche		71(4)	1200	11:45	11:30	51:17	11100	54:01	10:30	51:01	10:00	Time Sampled		e-mail:	Fax No:			200		ANAL YSIS F
		1		E		_	_	_	<u> </u>		_	_	_	_	_	Field Filtered Total #. of Containers		1_	1			1/2	Midland, Texas 79701	EQUEST Permian Basin Enviro 1400 Rankin Hwy
				`	•	\equiv										Ice	力	13				100	a,	EST ian Ba
					}		-	<u> </u>	_		_	<u> </u>	<u> </u>			HNO _{3 250 mi Poly}	Preservation &	2,				10	exas	asin E
						-	-	-	-	_	_	-	-	-	 	H ₂ SO ₄	- Page	1/2	.				797	S invir
																NaOH		17					2	onme
		4			İ		_	_	ļ.		<u> </u>	_	_	_	_	Na ₂ S ₂ O ₃	# of Containers	10	3					nmentai Lab, LP
			D				-	-		-	-	-	-	-	-	None 1L Poly NaOH/ZnAc	-18	0						
10-10-10 M		Date	Date			_								_	5	DW=Drinking Water SL=Sludge GW= Groundwater S=Soil/Solid	Matrix	Sign	Repo		•	•	י ס	'0
Sh. M		Time	Time			_									×	NP=Non-Potable Specify Other TPH by TX 1005 8015B 8015M		Пβ	Report Format:		Proje	P	oject	
> 7)" > 20 -	<u> </u> 			•	10	<u>_</u>		E	=	F			F		Q	Chloride E 3 Q o		1	mat:	PO #.	Project Loc:	Project #:	Project Name:	
ecei	G B	amp	ebel usto	amp	abo			\vdash	F	F	F				16	BTEX by 8021B		6	· ×	#) D	# 	<u>.</u>	
ed:	Com	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	dyse Ses	Free Free	aton			 	 -	\vdash	\vdash	\vdash	<u> </u>	-	 -			2				Ì	5	
	ter/C	因	als o	or main	CON													C C S.	Standard				12	Phor
) S		liver	ner(s	Sample Containers Intact? VOCs Free of Headspace?	men		_	╀	┝	┞-	├-	-	┞	-	-			Analyze For:	, , _				75	<u>9</u>
Received: 2 0 °C Fau	Ω Ω	ä	Labels on container(s) Custody seals on container(s) Custody seals on container(s)	lact?	2													음 /	, ⊏	3				12-68
°C Factor	물		•						F	F	L	$oxedsymbol{oxedsymbol{oxed}}$	igsqcut	lacksquare	L		,		⊤RRP				6	Phone: 432-686-7235
3	F.,		~ ~				-	+	+	\vdash	\vdash	\vdash	_	_	+				סר				12	.
MCFC	V -4	3)	t It	SE)							匚								1			1/4	
0	Lone Star	Z	Z Z 2	zz			-	-		-	 	_	_	_	<u> </u>	Duol 24 40 70 /51		4	NPDES			1 }	1/	T S
	Star						\vdash	+	+	+	+	\vdash	+	+	\vdash	Rush 24 48 72 (Plea Standard	ise call)		S				100	
												. '					· -			-	•		Page	28 of 29

sendusied by.	Selingule ha	Relinguished by	Relinquished by:	Special Ir				3	16	7.		آ تر	-		LAB#(lab use only)	ORDER#	non-						
a dy.	4		ad by:	Special instructions:				۲-	-3	-3	-3	3	<u>√</u>	\$ 100 m		# (O	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	7537)
			lowel	,											FIELD CODE		nature:	<u> </u>	р; 	ddress:	ame	lager:	
Date	uate	14/10/16	Garplos															1					CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Permian B 1400 Rank
=		 	22	F	+	\perp		3 5	7 8	× × ×	100	4	2 /	<u> </u>	Beginning Depth							0	OF CU
Time	Time		unless	\	\dagger	+			10/4					~	Ending Depth		$ \rangle$					de	STOD
Received by:	Received by:		3				~	7	工		1	†		0									Y RECC
S. Contraction	Ŋ.		hreshold		1								0,10	10/16	Date Sampled					,	14	B	IRD AN
*							4.	1 2 2 2		1:1	00,00	12		ج	Time Sampled		I	1			3.	4	ANA DI
			8/eecha	L	_	_			30	1	8	3		5			e-mail;	Fax No:			3		SISA7
	- 1		2	-	十	+	\pm	+	_	┼	┼	$oldsymbol{\perp}$	+		Field Filtered]					2	Z :	7 11 G 4
	. [2		十	┪	+=		+	\vdash	E	F	+		Total #L of Containers	<u> </u> .	5				4	d a	
	1		1		1	1	1	十	1	╁	\dagger	+	Y	\mathcal{H}	HNO _{3 250 mi Poly}	- ₂	13				1/CB	Widland, Texas	in Be
	.			I				\top	\dagger	†	╁╴	\dagger	十		HCI	Preservalion &	34				,	exa	
K1 447 1					\perp		L				1	T	T	十	H ₂ SO ₄	allon	Ca					s 797	
		*		_	1_	\perp	_	$oldsymbol{\perp}$					T		NaOH		12					701	ron
				<u> </u>	+	-	 -	_	_			L			Na ₂ S ₂ O ₃	# of Contain	1		•				nent
	o			\vdash	╀	╫	+	╀	_	┞	<u> </u>	<u> </u>	\downarrow		None 1L Poly	ainers	6						<u>r</u>
Date 0 16 45	Date	Date		-	╁	+-	+	ナ	+-	-	├-	╀	╀		NaOH/ZnAc	\Box	1/2						<i>IEQUEST</i> Permian Basin Environmental Lab, LP 1400 Rankin Hwy
						1	1	+	╁	-	├	├-	-	. 1	OW=Drinking Water SL=Sludge GW= Groundwater S=Soll/Solid	ı.	MI	20			•		. To
61	=	=		-	+	-	╀-	1	_					-1	IP=Non-Polable Specify Other	Matrix	Ň	P P P P P	· · · · .		:	9	
22	an and	Time		-	┼	┼	╀	╀	-	_		<u> </u>	$oldsymbol{\perp}$	_	PH by TX 1005 8015B 8015M		16	r g	•	Pole	T	2. D	
by Counter? UPS DI Temperature Upon Receipt Received: C C Received: C C Fac	S C	Labels on container(s) Custody seals on container(s)	S & 1		1	\dagger	\dagger	+	+	 	-	-	+		MEV by 80345		2	Report Format:	P	Project Loc:	Project #	Project Name	
npe seive	Page 1	Stores.	Sample Containers Intact? VOCs Free of Headsnare?		1	+	+	+	+-	 	<u> </u>	-	+	+	TEX by 8021B		1	_	PO #	č	* (j Z	
	San Har	y se			T	+	+	\dagger	1	-			+	+			1	×	1		l	_	
` ૄ૿ \$	がしる						1	†				 	†	十			3	Standard		.		\bigcirc	ט
3 20 c		88											T	十		Analyze For	5	ä		1	1	9.	Tog S
္ကိုင္တိုင္တဲ့ လူလိုင္တာ	Rep Her			-	<u> </u>		_	<u> </u>								Ze	2,		- 1	- 1))	9. A
PHL Factor	•	(S)	5 3	-	├	├	├-	-	\vdash	·			_	1		Ŕ	1		İ	- 1			32-6g
UPS DHL I				-	\vdash	\vdash	\vdash	\vdash			_		-	+				Z Z Z					Phone: 432-686-7235
	$\sum \nabla$	757								\dashv	\neg		-	十			,	0			- 1	P	ដូ មា
() ×	CI	70												T				,				u,	
	22 <i>7</i>	zzz												I						1	JH.	1	
				$\vdash \vdash$		<u> </u>		_	\sqcup		\Box			R	ush 24 48 72 (Please	e call)		Vacan		- 1	4	di	
	20. SER.	<u>6 - 新疆书</u>			L			<u> </u>			\dashv			S	tandard						13	•	
																						Page	29 of 29