Email:

Benzene 10 mg/kg

eived by OCD: 7/2	4/2020 8:28:29 AN		INFORM <i>A</i>	TION		Page 1
	Davi				0054070	4
	-	ort Type: W	ork Plan	NCE20	0354270	1
General Site Info	ormation:					
Site:		EVGSAU 3332-		Release		
Company:		ConocoPhillips				
Section, Towns	hip and Range		Sec. 32	T 17S	R 35 E	
Lease Number:		Associated AP	l No. 30-025-4	2115		
County: GPS:		Lea	32.788462°		1	-103.475532°
Surface Owner:		State	32.788462			-103.475532
Mineral Owner:		State				
Directions:			bbs Head tow	ard S Morris	St on F Marl	and Blvd (US-62/US-180). 15
Directions.						t onto State Highway 238 (NM
						0.3 miles. Turn Right. Go 0.3
		,	•			Site is on the right side of the
		road.	and traver 700	icci. Allivo	at location. C	one is on the right side of the
Release Data:						
Date Released:		1/10/2020				
Type Release:		Produced Wate	r/Oil			
Source of Contar	mination:	Flowline leak				
Fluid Released:		65.5 bbl				
Fluids Recovered	d:	5 bbl				
Official Commu	nication:					
Name:	Marvin Soriwei				Christian M	l. Llull
Company:	Conoco Phillips -	RMR			Tetra Tech	
Address:	935 N. Eldridge P	kwy.			8911 North	Capital of Texas Highway
					Building 2,	
City:	Houston, Texas 7	7079			Austin, Tex	
Phone number:	(832) 486-2730				(512) 338-2	
Fax:	(32) 133 2.00				(3.2) 330 2	

Site Characterization	
Shallowest Depth to Groundwater:	85' below surface
Impact to groundwater or surface water:	No
Extents within 300 feet of a watercourse:	No
Extents within 200 feet of lakebed, sinkhole, or playa la	No
Extents within 300 feet of an occupied structure:	No
Extents within 500 horizontal feet of a private water we	No
Extents within 1000 feet of any water well or spring:	No
Extents within incorporated municipal well field:	No
Extents within 300 feet of a wetland:	No
Extents overlying a subsurface mine:	No
Karst Potential:	Low
Extents within a 100-year floodplain:	No
Impact to areas not on a production site:	No

TPH (GRO+DRO)

1,000 mg/kg

christian.llull@tetratech.com

TPH (GRO+DRO+MRO)

2,500 mg/kg

Chlorides

10,000 mg/kg

marvin.soriwei@conocophillips.com

Recommended Remedial Action Levels (RRALs)

Total BTEX

50 mg/kg

July 24, 2020

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Work Plan **ConocoPhillips EVGSAU 3332-519 Flowline Release** Unit Letter I, Section 32, Township 17 South, Range 35 East Lea County, New Mexico Incident ID# NCE2003542701

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred from the flowline of the East Vacuum Grayburg-San Andres Unit (EVGSAU) 3332-519 well (Associated API No. 30-025-42115), approximately 2,200 feet west-northwest of the wellhead. The release footprint is located in Public Land Survey System (PLSS) Unit Letter I, Section 32, Township 17 South, Range 35 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.788462°, -103.475532°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Attachment A), the release was discovered on January 10, 2020. The release occurred as the result of a flowline rupture and encompassed an area of 6,010 square feet. Approximately 55.5 barrels (bbls) of produced water and 10 bbls of oil were released. of which 2.5 bbls of produced water and 2.5 bbls of oil were recovered. The New Mexico Oil Conservation District (NMOCD) received the C-141 report form for the release on January 21, 2020. The NMOCD Incident ID for this release is NCE2003542701.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.0029 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there is one water well in the Public Land Survey System (PLSS) Section 32, Township 17 South, and Range 35 East with depth to groundwater at 85 feet below ground surface (bgs). The site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization, the RRALs for the Site are as follows:

Constituent	RRAL
Chloride (0-4 ft bgs)	600 mg/kg
Chloride (>4 ft bgs)	10,000 mg/kg
TPH	2,500 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

INITIAL ASSESSMENT ACTIVITIES AND SAMPLING RESULTS

As a portion of initial response, on February 18, 2020, COP personnel collected surface soil samples from twenty-four (24) locations within the release extent. These soil samples were sent to Cardinal Laboratories in Hobbs, New Mexico to be analyzed for chloride via EPA Method SM45000Cl-B, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. Sample locations are shown in Figure 3.

Analytical results associated with all twenty-four (24) sample locations exceeded the delineation concentration of 600 mg/kg chloride required by NMOCD regulations. The analytical results associated with the majority of the soil samples exceeded the reclamation concentration for TPH (100 mg/kg) in the upper four feet. There were no detections of benzene in any of the analyzed samples, however, there were analytical results which exceeded the total BTEX RRAL at the SP#9 location. A copy of the analytical laboratory report and chain-of-custody documentation are included in Appendix C. Sample results from the initial assessment are summarized in Table 1. Neither horizontal nor vertical delineation of the release was achieved during this assessment.

INITIAL RESPONSE AND REMEDIAL ACTIVITIES

In accordance with 19.15.29.8. B. (4) NMAC that states "the responsible party may commence remediation immediately after discovery of a release", ConocoPhillips elected to begin remediation of the impacted area in 2020. The footprint of the release was excavated by COP personnel with heavy equipment to approximately 1-foot below ground surface (bgs) to remove the visually impacted soils. Figure 3 depicts the release extent, the February 2020 sampling locations and the excavated area.

SITE VISIT

On March 9, 2020, Tetra Tech personnel were onsite to visually inspect the release area. Although the area had been excavated, it appeared that fluids released from the aboveground flowline ran on the ground surface from the release origination point (approximately 250 feet north of the unrelated EVGSAU 3202-001 well pad) to the east and southeast for approximately 150 feet and south for approximately 85 feet (Figure 3). The majority of the release area footprint appeared to have been excavated to roughly 1 foot below the surrounding surface grade.

ADDITIONAL SITE ASSESSMENT

In order to achieve horizontal and vertical delineation of the release extent, Tetra Tech personnel conducted soil sampling on May 13, 2020 on behalf of ConocoPhillips. A total of five (5) borings (BH-1 through BH-5) were installed using an air rotary drilling rig. Two (2) borings (BH-4 and BH-5) were installed within the release extent to a depth of 20 feet bgs to achieve vertical delineation. The remaining 3 borings (BH-1 through BH-3) were installed along the perimeter of the release extent (to the east, south and west, respectively) to a depth of 10 feet bgs to achieve horizontal delineation. Due to steel surface lines in the vicinity of the release, the air rotary drilling rig could not access the area north of the release extent. Therefore, one (1) hand auger boring (AH-1) was installed along the northern perimeter to a depth of 1-foot bgs to achieve horizontal delineation north of the release extent. Figure 4 depicts the release extent, excavated area and the May 2020 soil boring locations. Boring logs from the May 2020 assessment activities are included in Appendix D.

Release Characterization and Remediation Work Plan July 24, 2020

ConocoPhillips

A total of twenty-four (24) samples were collected from the six (6) borings and submitted to Pace Analytical National Center for Testing & Innovation (Pace) in Nashville, Tennessee to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix C. Sample locations are shown in Figure 4. Photographic documentation of the initial release extent and the additional site inspection is included in Appendix E.

SUMMARY OF SAMPLING RESULTS

Results from the May 2020 soil sampling event are summarized in Table 2. The analytical results associated with the BH-5 sample location exceeded the Site chloride RRAL of 600 mg/kg in the 2-3' sample interval. There were no other analytical results which exceeded the chloride RRAL (600 mg/kg) during the additional assessment. The excavation floor was visibly impacted by the release and recent rains. Thus, there are no analytical results from the 1'-2' interval (open excavation floor) within the footprint. The analytical results associated with the remainder of the samples analyzed were below the BTEX or TPH Site RRALs of 50 mg/kg and 100 mg/kg, respectively.

REMEDIATION WORK PLAN

Based on the analytical results, ConocoPhillips proposes to remove the remaining impacted material as shown in Figure 5. Impacted soils will be excavated using heavy equipment (backhoes, hoe rams, and track hoes) to a maximum depth of 3 feet below the surrounding surface or until a representative sample from the walls and bottom of the excavation is below the RRALs. The northern area of the release extent that contains steel surface lines will be hand-dug to a depth of 3 feet or the maximum extent practicable and heavy equipment will come no more than 3 ft from any pressurized lines.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX, and chlorides. Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is approximately 830 cubic yards.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 6. Twenty-seven (27) confirmation floor samples and twenty-three (23) confirmation sidewall samples are proposed for verification of remedial activities. The proposed excavation encompasses a surface area of approximately 13,200 square feet.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to Pace Laboratories for analysis of TPH (Method 8015 modified), BTEX (Method 8260B), and chloride (USEPA Method 300.0). Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade.

SITE RECLAMATION AND RESTORATION PLAN

The backfilled areas will be seeded in Spring 2021 (first favorable growing season) to aid in revegetation. Based on the soils at the site, the New Mexico State Land Office (NMSLO) Sandy Loam (SL) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be

Release Characterization and Remediation Work Plan July 24, 2020

ConocoPhillips

contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix F.

CONCLUSION

ConocoPhillips proposes to begin remediation activities at the Site within 90 days of NMOCD plan approval. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD. If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 338-2861 or Greg at (432) 682-4559.

Sincerely,

Tetra Tech, Inc.

Christian M. Llull, P.G.

Project Manager

Greg W. Pope, P.G.

Program Manager

CC

Mr. Marvin Soriwei, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips Release Characterization and Remediation Work Plan July 24, 2020

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

Figure 2 – Site Location/Topographic Map

Figure 3 – Approximate Release Extent and Initial Assessment Map

Figure 4 – Additional Assessment and Initial Response Map

Figure 5 – Proposed Remediation Extent

Figure 6 – Alternative Confirmation Sampling Plan

Tables:

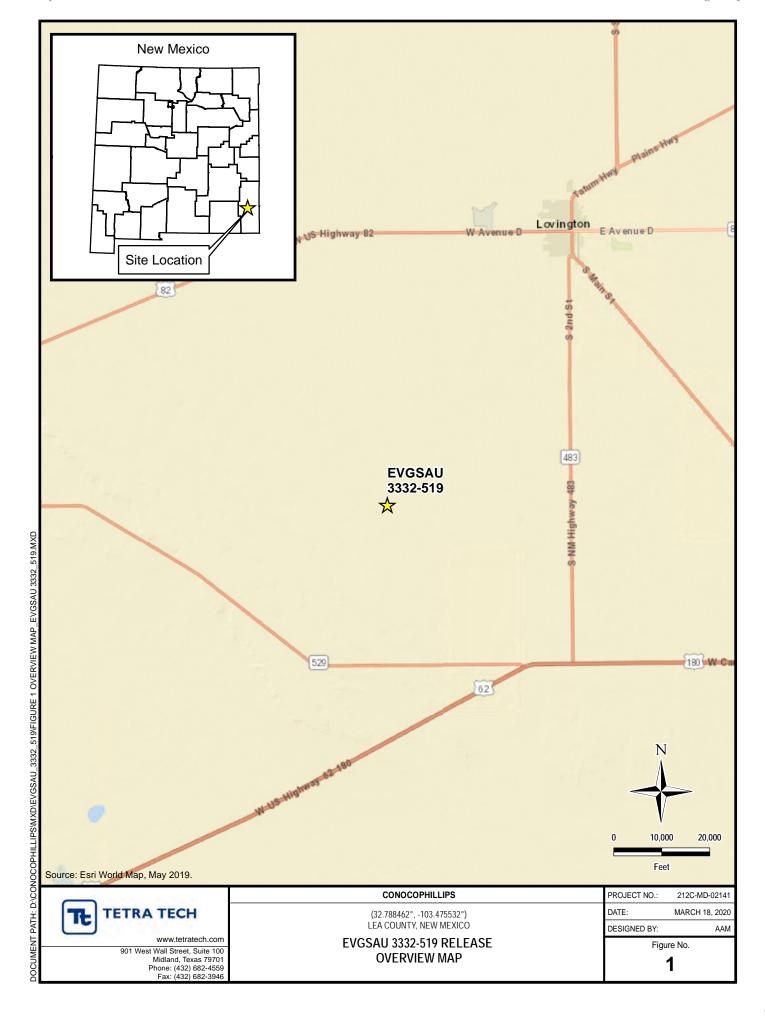
Table 1 – Summary of Analytical Results – Initial Soil Assessment

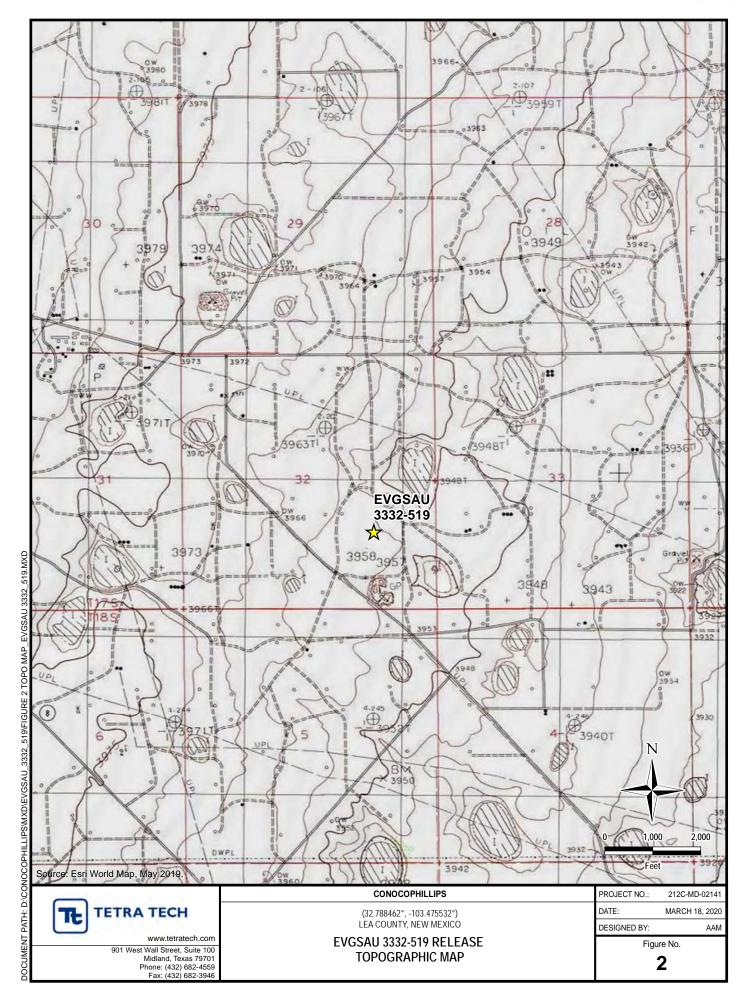
Table 2 – Summary of Analytical Results – Additional Soil Assessment

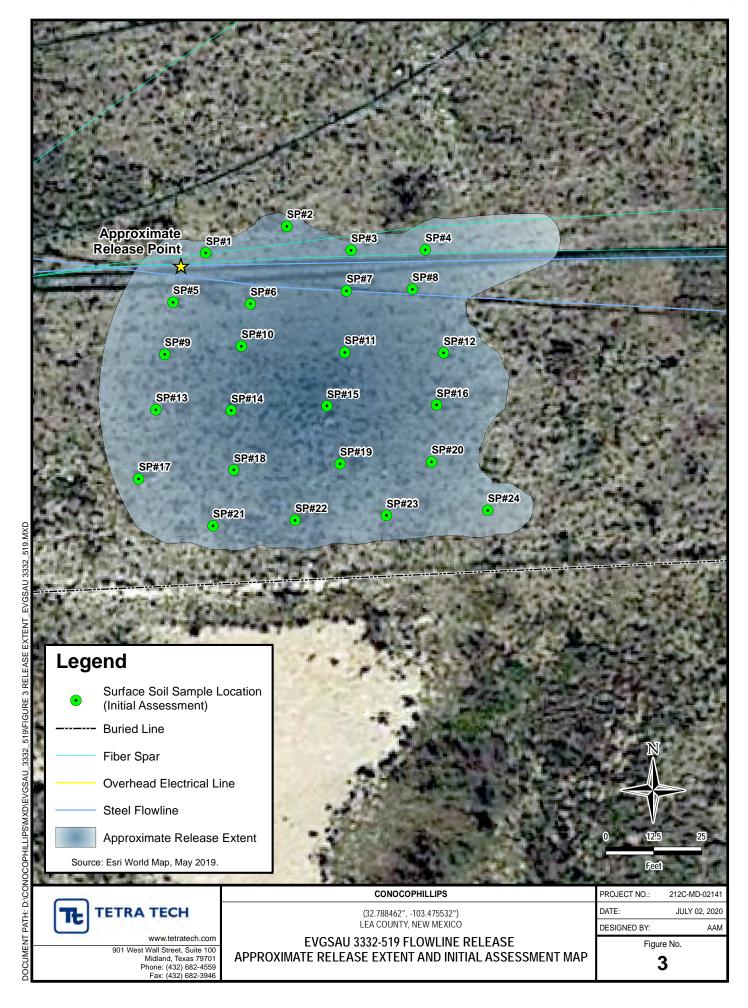
Appendices:

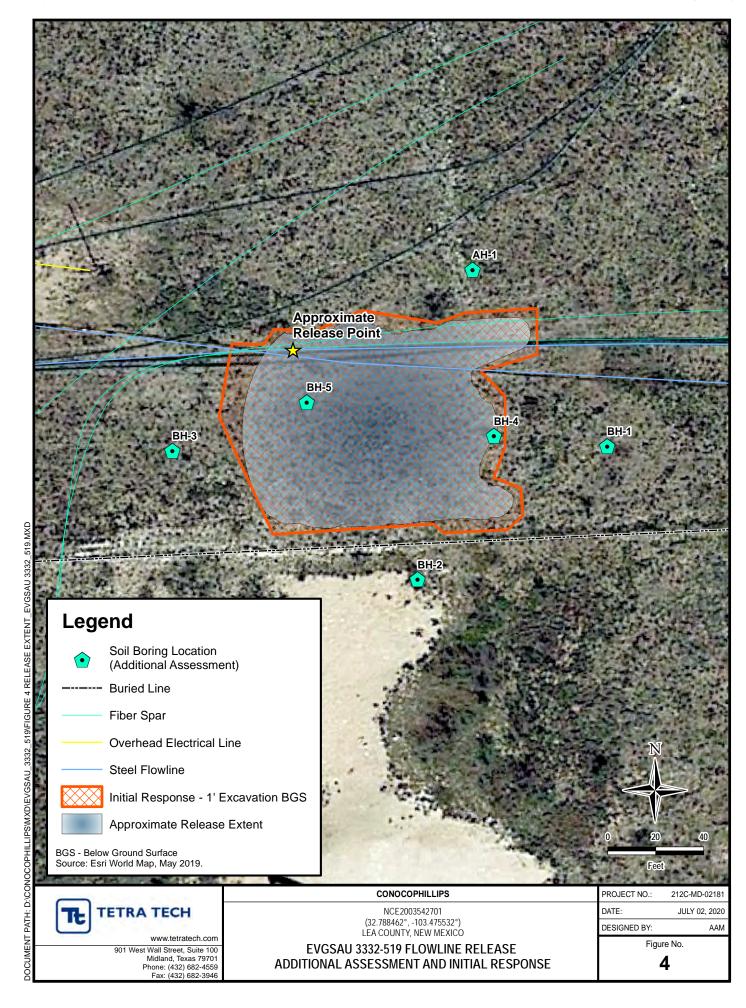
Appendix A – C-141 Forms

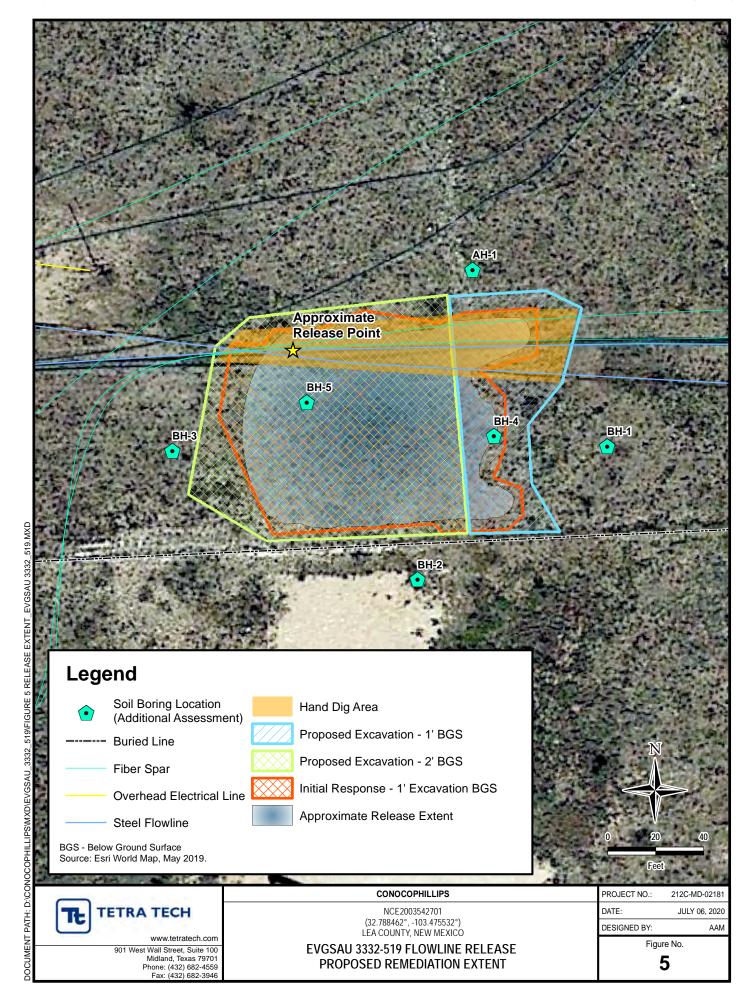
Appendix B – Site Characterization Data

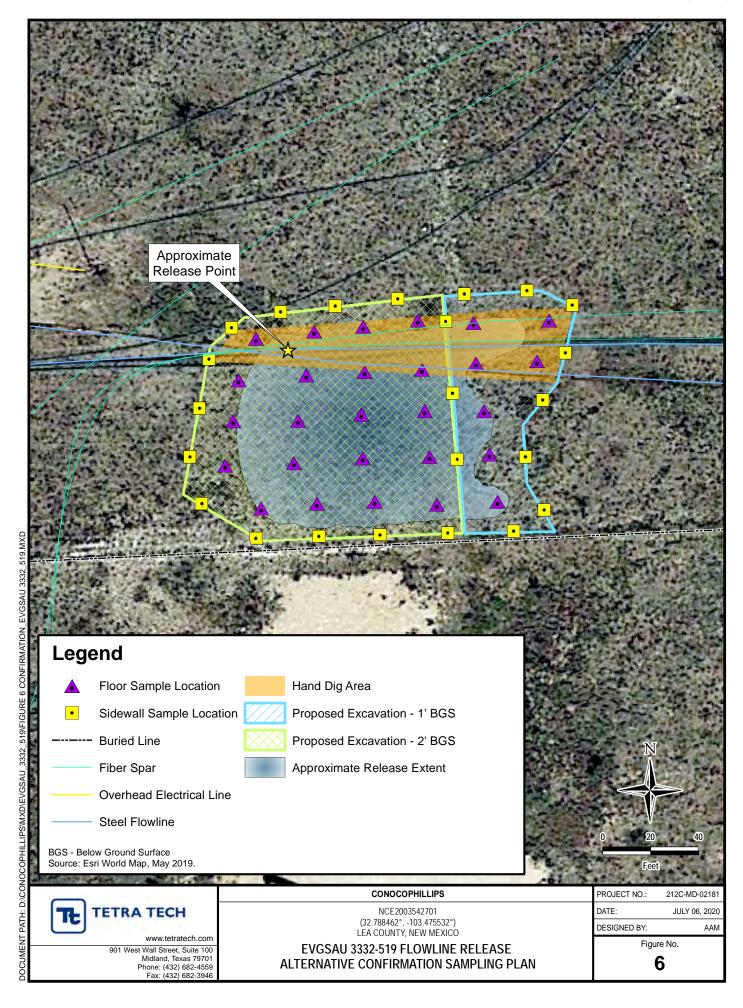

Appendix C - Laboratory Analytical Data


Appendix D - Soil Boring Logs


Appendix E – Photographic Documentation


Appendix F – NMSLO Seed Mixture Details


FIGURES



TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS INITIAL SOIL ASSESSMENT - NCE2003542701 CONOCOPHILLIPS EVSGAU 3332-519 FLOWLINE RELEASE LEA COUNTY, NM

									BTEX ²								TPH	l ³		
Sample ID	Sample Date	Sample Depth Interval	Chloride ¹		Benzene		Toluene		Ethylbenzene		Total Xylene	,	Total BTEX	GRO⁴		DRO		ORO		Total TPH
oumpie is	Sumple Bute													C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		
SP#1	2/18/2020	ft. bgs 0.5	mg/kg 4400	Q	mg/kg <0.050	Q	mg/kg <0.050	Q	mg/kg <0.050	Q	mg/kg <0.150	Q	mg/kg <0.300	mg/kg <.10.0	Q	mg/kg <.10.0	Q	mg/kg <.10.0	Q	mg/kg
SP#2										+		<u> </u>							+	
	2/18/2020	0.5	7360		<0.050		<0.050		<0.050	4	<0.150		<0.300	10.1	<u> </u>	2340	<u> </u>	579	\dashv	2929
SP#3	2/18/2020	0.5	8320		<0.050		<0.050		<0.050	_	<0.150		<0.300	19.9		6850		1130		7999.9
SP#4	2/18/2020	0.5	9200		<0.050		<0.050		<0.050		<0.150		<0.300	<.10.0		2790	Ш	577		3367
SP#5	2/18/2020	0.5	10600		<0.050		<0.050		<0.050		<0.150		<0.300	<.10.0		109		27.1		136.1
SP#6	2/18/2020	0.5	20400		<0.050		0.090		0.397		1.02		1.50	34.6		2510		478		3023
SP#7	2/18/2020	0.5	14000		<0.050		0.098		0.754		2.18		3.03	234		18700		3300		22234
SP#8	2/18/2020	0.5	11000		<0.050		<0.050		0.050	I	<0.150		<0.300	<.10.0		3670		684	П	4354
SP#9	2/18/2020	0.5	7200		<0.050		4.03		31.1	T	57.9		93.1	1200		13000		1900	T	16100
SP#10	2/18/2020	0.5	14400		<0.050		0.118		0.645	I	1.51		2.27	62.4		4970		866	I	5898.4
SP#11	2/18/2020	0.5	20600		<0.050		0.060		0.154		0.365		0.579	21.8		5160		1090	I	6272
SP#12	2/18/2020	0.5	13200		<0.050		0.053		0.143		0.452		0.648	46.4		7190		1180	Τ	8416
SP#13	2/18/2020	0.5	9600		<0.050		<0.050		<0.050	Ι	<0.150		<0.300	<.10.0		3780		693		4473
SP#14	2/18/2020	0.5	28400		<0.050		0.150		0.577	1	1.24		1.97	54.2		6330	Ш	987		7371
SP#15	2/18/2020	0.5	12200		<0.050		0.220		0.975	1	2.02		3.22	72.2		4150		654	I	4876
SP#16	2/18/2020	0.5	15400		<0.050		0.060		0.319		0.821		1.20	18.8		1330	П	252	Π	1600.8
SP#17	2/18/2020	0.5	9600		<0.050		<0.050		<0.050	Ι	<0.150		<0.300	<.10.0		690		167		857
SP#18	2/18/2020	0.5	10400		<0.050		2.45		9.04		16.6		28.1	195		2470		402	Ι	3067
SP#19	2/18/2020	0.5	10600		0.106		3.42		12.5		21.0		36.9	258		2610		447	Π	3315
SP#20	2/18/2020	0.5	5920		<0.050		<0.050		<0.050		<0.150		<0.300	<.10.0		22.3		<.10.0	Π	22.3
SP#21	2/18/2020	0.5	12400		<0.050		<0.050		<0.050	1	<0.150		<0.300	<.10.0		2300	Ш	560	I	2860
SP#22	2/18/2020	0.5	17400		<0.050		<0.050		<0.050	Ī	<0.150		<0.300	<.10.0		5390		1180		6570
SP#23	2/18/2020	0.5	6800		<0.050		<0.050		<0.050	Ī	<0.150		<0.300	<.10.0		18.2		<.10.0		18.2
SP#24	2/18/2020	0.5	9600	П	<0.050		<0.050		<0.050	T	<0.150		<0.300	<.10.0		868	П	220	Т	1088.0

NOTES: ft.

Below ground surface

Feet

ppm Parts per million mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

EPA Method 300.0 EPA Method 8260B

EPA Method 8015

EPA Method 8015D/GRO

Bold and italicized values indicate exceedance of proposed RRALs

EPA Method SM45000CI-B

2 EPA Method 8021B

EPA Method 8015M

TABLE 2

SUMMARY OF ANALYTICAL RESULTS

ADDITIONAL SOIL ASSESSMENT - NCE2003542701

CONOCOPHILLIPS

EVGSAU 3332-519 FLOWLINE RELEASE LEA COUNTY, NM

			Field Comme								BTEX ²								TPI	H ³		
Comula ID	Samula Data	Sample Depth Interval	Field Screen	ning Results	Chloride ¹		Benzene		Toluene		Ethylbenzen		Total Xylenes		Total BTEX	GRO⁴		DRO		ORO		Total TPH
Sample ID	Sample Date	interval	Chloride	PID			Benzene		Toluene		Ethylbenzen		Total Aylenes	'	TOTAL PLEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	pp	om	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
AH-1	5/13/2020	0-1	-	-	< 20.3		< 0.00102		< 0.00508		< 0.00254		< 0.00660		-	0.0380	ВJ	3.19	J	13.9		17.1
	1	0-1	194	2.5	< 20.8		< 0.00104		< 0.00520		< 0.00260		< 0.00676		-	< 0.104		4.98		7.13		12.1
		2-3	-	1.4	10.3	J	< 0.00103		< 0.00516		< 0.00258		< 0.00671		=	< 0.103		3.13	J	2.58	J	5.71
BH-1	5/13/2020	4-5	95.1	1.1	10.3	J	< 0.00103		< 0.00514		< 0.00257		< 0.00668		=	0.0377	J	< 4.11		< 4.11		0.0377
		6-7	-	0.9	< 20.5		< 0.00102		< 0.00512		< 0.00256		< 0.00665		-	< 0.102		< 4.09		< 4.09		-
		9-10	86.1	1.0	< 20.5		< 0.00409		< 0.0205		< 0.0102		< 0.0266		-	< 0.102		< 4.09		< 4.09		
		0-1	351	1.9	137	П	< 0.00104	I	< 0.00522		< 0.00261		< 0.00679	П	-	< 0.104		4.80	ПТ	11.2		16.0
		2-3	420	1.2	136		< 0.00105		< 0.00524		< 0.00262		< 0.00681		-	< 0.105		< 4.19		3.11	J	3.11
BH-2	5/13/2020	4-5	551	1.3	220		< 0.00107		< 0.00536		< 0.00268		< 0.00696		-	< 0.107		< 4.28		1.03	J	1.03
		6-7	334	1.8	189		< 0.00103		< 0.00516		< 0.00258		< 0.00671		-	< 0.103		< 4.13		0.482	J	0.482
		9-10	209	1.1	112		< 0.00101		< 0.00505		< 0.00253		< 0.00657		=	0.0252	ВЈ	< 4.04		< 4.04		0.0252
		0-1	191	1.2	21.7		< 0.00105	I	< 0.00527	П	< 0.00263		< 0.00685		-	< 0.105	Π	< 4.21		1.35	J	1.35
		2-3	170	1.4	24.8		< 0.00104		< 0.00518		< 0.00259		< 0.00674		-	< 0.104		< 4.14		0.538	J	0.538
BH-3	5/13/2020	4-5	105	1.1	11.0	J	< 0.00104		< 0.00520		< 0.00260		< 0.00675		-	< 0.104		< 4.16		0.447	J	0.447
		6-7	121	0.9	< 20.7		< 0.00104		< 0.00518		< 0.00259		< 0.00674		=	< 0.104		< 4.15		< 4.15		=
	<u> </u>	9-10	99.0	1.3	< 21.1		< 0.00106		< 0.00528		< 0.00264		< 0.00687		-	< 0.106		< 4.23		< 4.23		-
		1-2	-	-	NA		NA		NA		NA		NA		-	NA		NA		NA		-
		2-3	-	-	13.3	J	< 0.00103		< 0.00514		< 0.00257		< 0.00669		-	0.0238	ВJ	< 4.12		1.08	J	1.10
		4-5	-	-	< 20.9		< 0.00105		< 0.00523		< 0.00262		< 0.00680		-	< 0.105		< 4.19		< 4.19		=
BH-4	5/13/2020	6-7	95.3	2.3	< 21.2		< 0.00106		< 0.00530		< 0.00265		< 0.00689		=	< 0.106		< 4.24		< 4.24		=
		9-10	-	1.9	< 21.9		< 0.00109		< 0.00546		< 0.00273		< 0.00710		-	< 0.109		< 4.37		< 4.37		
		14-15	-	1.6	NA		NA		NA		NA		NA		-	NA		NA		NA		-
		19-20	70.4	1.1	NA		NA		NA		NA		NA		=	NA		NA		NA	Ш	-
		1-2	-	-	NA		NA		NA		NA		NA		-	NA		NA		NA		-
		2-3	-	-	940		< 0.00106		< 0.00528		< 0.00264		< 0.00686		-	< 0.106		< 4.22		1.53	J	1.53
		4-5	-	-	145		< 0.00103		< 0.00514		< 0.00257		< 0.00669		=	< 0.103		< 4.12		< 4.12		=
BH-5	5/13/2020	6-7	80.4	1.4	< 20.6		< 0.00103		< 0.00515		< 0.00257		< 0.00669		=	< 0.103		< 4.12		< 4.12		=
		9-10	-	1.1	< 20.3		< 0.00102		< 0.00508		< 0.00254		< 0.00660		=	< 0.102		< 4.06		< 4.06		-
		14-15	-	0.4	NA		NA		NA		NA		NA		-	NA		NA		NA		-
		19-20	79.1	1.2	NA		NA		NA	1 7	NA	1 7	NA		-	NA		NA		NA		-

NOTES:

ft. Feet

Below ground surface ppm Parts per million

mg/kg Milligrams per kilogram

NA Not analyzed

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics ORO Oil range organics

Bold and italicized values indicate exceedance of proposed RRALs

Shaded rows indicate depth intervals proposed for excavation and remediation. 1 EPA Method 300.0

2 EPA Method 8260B

3 EPA Method 8015

4 EPA Method 8015D/GRO

QUALIFIERS:

B The same analyte is found in the associated blank.

J The identification of the analyte is acceptable; the reported value is an estimate.

APPENDIX A C-141 Forms

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fc, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NCE2003542701
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible I	Party Conc	coPhillips Com	ıpany		OGRID 2	
Contact Nam	^e Gustav	o Fejervary			Contact Te	elephone 432/210-7037
Contact emai	g.iejeiv	ary@cop.com				(assigned by OCD)
Contact maili	ng address	5735 SW 700	00 Andrews, T	TX 79	714	
	.788462		Location (NAD 83 in dec	of R	elease So	103.475532
Site Name Ev	VGSAU 3	3332-519			Site Type	flow line leak
		01/10/2020			API# (if app	
Unit Letter	Section	Township	Range		Coun	ty
[32	17S	35E	Lea	1	
Juliace Owner		☐ Federal ☐ Tr	Nature and	l Vol	lume of I	Release justification for the volumes provided below)
		Volume Release	d (bbls) 10			Volume Recovered (bbls) 2,5
✓ Produced	Water	Volume Release	d (bbls) 55.5			Volume Recovered (bbls) 2.5
			ion of total dissolv water > 10,000 mg		ids (TDS)	Yes No
Condensa	te	Volume Release				Volume Recovered (bbls)
☐ Natural G	as	Volume Release	d (Mcf)			Volume Recovered (Mcf)
Other (des	scribe)	Volume/Weight	Released (provide	units)	j	Volume/Weight Recovered (provide units)
Cause of Rele	ease Flowl	ine rupture				

Oil Conservation Division

Page	2	

Incident ID	NCE2003542701
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the responsi	ble party consider this a major release?
release as defined by 19.15.29.7(A) NMAC?	it exceeded the 25bbls defined by	the Maior release definition
✓ Yes ☐ No	,	
If YES, was immediate no	otice given to the OCD? By whom? To whom	n? When and by what means (phone, email, etc)?
,		
It was given on 1/10	0/20 to district 1 email address and	Bradford Billings
	Initial Res	ponse
The responsible	party must undertake the following actions immediately u	nless they could create a safety hazard that would result in injury
☐ The source of the rele	ease has been stopped.	
☐ The impacted area ha	as been secured to protect human health and th	e environment.
Released materials ha	ave been contained via the use of berms or dik	es, absorbent pads, or other containment devices.
☑ All free liquids and re	ecoverable materials have been removed and r	nanaged appropriately.
If all the actions describe	d above have <u>not</u> been undertaken, explain wh	y:
•		
	e e e e e e e e e e e e e e e e e e e	
	. · ·	
has begun, please attach	a narrative of actions to date. If remedial eff	ediation immediately after discovery of a release. If remediation orts have been successfully completed or if the release occurred ase attach all information needed for closure evaluation.
regulations all operators are public bealth or the environr failed to adequately investig	required to report and/or file certain release notific ment. The acceptance of a C-141 report by the OCI gate and remediate contamination that pose a threat	t of my knowledge and understand that pursuant to OCD rules and ations and perform corrective actions for releases which may endanger D does not relieve the operator of liability should their operations have to groundwater, surface water, human health or the environment. In ponsibility for compliance with any other federal, state, or local laws
Printed Name: Gustav		Title: Environmental Coordinator
Signature:	<u> </u>	Date: 1/21/20
email: g.fejervary@c	cop.com	Геlephone: <u>432/210-7037</u>
OCD Only		
Received by:	·	Oate:

NCE2003542701

						48 Spill Vo	L48 Spill Volume Estimate Form	e Form			***************************************	
		Facility	Facility Name & Number: EVGSAU 3332-519	EVGSAU 3332-519								
			Asset Area:	Asset Area: SENM (BUCKEYE)								
	Relea	se Disc	Release Discovery Date & Time: 1/9/2020/10:30AM	1/9/2020 10:30AM								
	-		Release Type: Oil Mixture	Oii Mixture								
Provid	e any kno	wn deta	Provide any known details about the event Flowline leak	Flowline leak								
			resolvent terdelsted desired transmission (nessession)		Sp	ill Calculation	Spill Calculation - On Pad Surface Pool Spill	Pool Spill				
Convert Irregular shape Length Width into a series of rectangles (ft.) (ft.)	Length (ft.)	Width (ft.)	Deepest point in each of the areas (in.)	Deepest point in No. of boundaries of each of the areas "shore" in each area (in.)	Estimated <u>Pool</u> Area (sq. ft.)	Estimated Average Depth (ft.)	Estimated volume of each pool area (bbl.)	Penetration allowance (ft.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than Oil (bbl.)
Rectangle A	0.08	60.0	0:50	4	5400.000	0.010	10.013	0.001	10.018	15,14%	1.517	8.501
Rectangle B	40,0	10.0	05.0	9	400.000	0.014	0.989	0.001	0.990	15,14%	0,150	0.840
Rectangle C	30.0	7,0	050	8	210,000	0.014	0.519	00'00	0.520	15.14%	0.079	0.441
Rectangle D					0.000	#DIA/0!	#DIV/0i	io/AlG#	i0/AIQ#		#DIA/0i	#DIV/0I
Rectangle E					0,000	#DIV/0i	#DIV/0!	i0/\IC#	#DIV/0i		#DI/\/0i	#DI//0i
Rectangle F					0.000	#DIV/0i	10//\IQ#	i0/AIQ#	i0/AlG#		#DI//\0i	#DIV/0!
Rectangle G					0.000	#DIA/0i	#DIV/0!	i0/\IG#	#DIV/0!		i0/AIG#	#DIV/01
Rectangle H					0,000	#DIA/0i	#DIV/0!	#DI/\/Oi	#DIV/0i		#DIV/0I	#DIV/0]
Rectangle					0.000	i0/AIG#	#DIV/0i	i0//\lQ#	#DIA/0i		#DIV/0i	#DIV/o[
Rectangle J					0.000	i0/AIG#	#DIV/0i	i0//\lQ#	#DIV/0[i0/∧lΩ#	#DIV/0[
								Total Volume Release:	11.527		1.745	9.782

EVGSAU 3332-519 SENIM (BUCKEYE) 35ENIM (BUCKEYE) 1/9/2020 10:30AM/ CST Oil Mixture Flowline Leak, Five barrels were recovered Spill Calculation Yes, On (in.) Depth (in.) Depth (in.) 15.12% 4.00 15.12%	L48 Spill V 332-519 OKEYE) CXEYE) CXEX-519 CXEYE) CXEX-519 CXEX-51	Received by OCD: 7/24/2020 862852904 NCE2003542701	The state of the s						e Spill - Rectangle	On Pad - 10.5%; Off Pad - 15.12% soil spilled-fluid saturation factor	Pad - 8%; Off Pad - 13.57% soil spilled-fluid saturation factor, if No, use factors above.	Estimated volume of each area Volume of Spill Spilled Fluid is a (bbl.) (bbl.) Total Estimated Volume of Spilled Fluid is a (bbl.) (bbl.) (bbl.)	320,400 48,444 15,14% 7.334 41.110	23.733 3.588 <u>15.14%</u> 0.543 3.045	12.460 1.884 15.14% 0.285 1.599	0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
by Name & Number. EVGSAU 3332-519 Asset Area: SENM (BUCKEYE) Sovery Date & Time: 1/9/2020/10:30AM CS Release Type: Oil Mixture alls about the event. Flowline Leak, Five ba alls about the event. Flowline Leak, Five ba alls about the event. Flowline Leak, Five ba (ft.) (in.) (ft.) (in.) (7.0 4.00 7.0 4.00	Facility Name & Number: EVGSAU 3332-519 Release Discovery Date & Time: 1/9/2020 10:304M CS Release Discovery Date & Time: 1/9/2020 10:304M CS Release Type: Oil Mixture Release Type: Oil Mixture Is any known details about the event Flowline Leak. Five bath Was the release on pad or off-pad? Reast a half inch in the last 24 hours? Length Width Depth (ft.) (ft.) (in.) 4.00 30.0 7.0 4.00 30.0 7.0 4.00		L48 Spill Volume Estimate Form					rrels were recovered	Spill Calculation - Subsurface S	On Pad - 10	5	Saturation	15.12%	15.12%	15.12%						
y Name & Number: Asset Area: Overy Date & Time: Release Type: alls about the event in the last 24 hours? Width (ft.) (ft.) 7.0	Facility Name & Number: Asset Area: Release Discovery Date & Time: Release Type: Is any known details about the event Was the release on pad or off-pad? I cangth (ft.) (ft.) (ft.) (ft.) (60.0 90.0 77.0			EVGSAU 3332-519	SENM (BUCKEYE)	1/9/2020 10:30AM CS	Oil Mixture	Flowline Leak. Five ba		vernentsseastvernentstaatelententententententententententententente	***************************************	Depth (in.)	4.00	4.00	4,00						
	Facili Facili any known dett Was the release Disc Length s (ft.) Length 40.0 30.0			ty Name & Number	Asset Area:	covery Date & Time:	Release Type: C	stails about the event.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	≥ on pad or off-pad?	n the last 24 hours?	Width (ft.)	0.06	10.0	7.0						

Received by OCD: 7/24/2020 8:28:29 AM Form C-141 State of New Mexico
Page 3 Oil Conservation Division

	Page 22 of 15	50
Incident ID	NCE2003542701	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	85_(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vercontamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	rtical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data	ls.
☐ Data table of soil contaminant concentration data ☐ Depth to water determination	
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release	
☑ Boring or excavation logs☑ Photographs including date and GIS information	
☐ Topographic/Aerial maps	
A Laboratory data including chain of custody	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 7/24/2020 8:28:29 AM Form C-141 State of New Mexico Page 4 Oil Conservation Division

Page	<i>23</i>	oj	f 150
------	-----------	----	-------

	1 1180 20 0 1 10
Incident ID	NCE2003542701
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.								
Printed Name: Marvin Soriwei	Title: Program Manager, Risk Management & Remediation							
Signature:	Date: 7/23/2020							
email: marvin.soriwei@conocophillips.com	Telephone: 832-486-2730							
OCD Only								
Received by: Cristina Eads	Date: _07/24/2020							

Page 24 of 150

	I ugc mir oj I
Incident ID	NCE2003542701
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)
<u>Deferral Requests Only</u> : Each of the following items must be confirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.
Extents of contamination must be fully delineated.
Contamination does not cause an imminent risk to human health, the environment, or groundwater.
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.
Printed Name: Marvin Soriwei Title: Program Manager, Risk Management & Remediation
Signature:
email: marvin.soriwei@conocophillipd.com Telephone: 832-486-2730
OCD Only
OCD Only
Received by: Cristina Eads Date: 07/24/2020
☐ Approved
Signature: Date: 09/21/2020

APPENDIX B Site Characterization Data

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a

(R=POD has been replaced, O=orphaned,

water right file.)

C=the file is (quarters are 1=NW 2=NE 3=SW 4=SE)

closed) (quarters are smallest to largest) (NAD83 UTM in meters)

POD Sub-QQQ Depth Depth Water **POD Number Well Water Column** Code basin County 64 16 4 Sec Tws Rng 642554 L 04829 S 3 4 32 17S 35E 3628586* 198 113

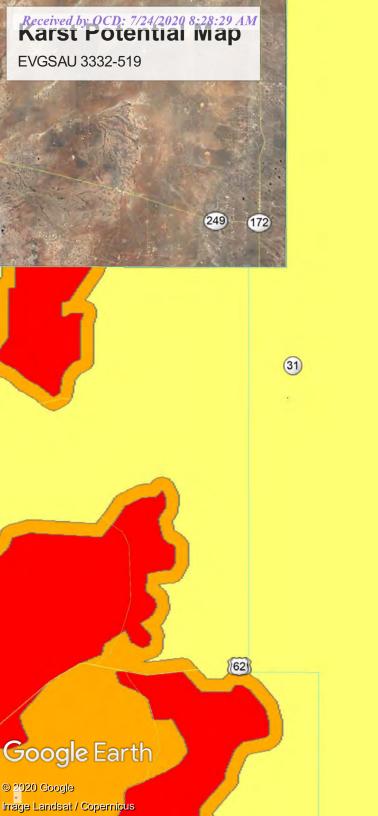
> Average Depth to Water: 85 feet

> > 85 feet Minimum Depth:

(In feet)

85 feet Maximum Depth:

Record Count: 1

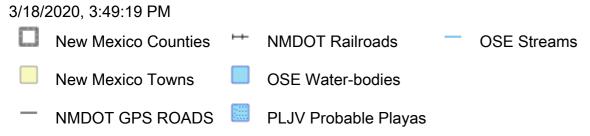

PLSS Search:

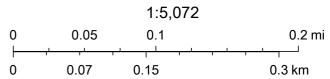
Section(s): 32

Township: 17S

Range: 35E

7/14/20 9:50 PM


82 Lovington Lea EVGSAU 3332-519


Page 27 of 150 Legend EVGSAU 3332-519 High Low Medium 83 **Hobbs** 20 mi

Eunice

EVGSAU 3332-519 NMOCD Map

US Census Bureau, NMDOT, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the

APPENDIX C Laboratory Analytical Data

March 05, 2020

JUSTIN WRIGHT

Conoco Phillips - Hobbs

P. O. BOX 325

Hobbs, NM 88240

RE: EVGSAU 3332-519

Enclosed are the results of analyses for samples received by the laboratory on 02/19/20 16:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Total Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2 Regulated VOCs and Total Trihalomethanes (TTHM)

Method EPA 552.2 Total Haloacetic Acids (HAA-5)

Celey D. Keine

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Reported: 05-Mar-20 09:11

Fax To: (575) 297-1477

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP # 1	H000528-01	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 2	H000528-02	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 3	H000528-03	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 4	H000528-04	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 5	H000528-05	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 6	H000528-06	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 7	H000528-07	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 8	H000528-08	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 9	H000528-09	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 10	H000528-10	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 11	H000528-11	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 12	H000528-12	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 13	H000528-13	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 14	H000528-14	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 15	H000528-15	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 16	H000528-16	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 17	H000528-17	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 18	H000528-18	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 19	H000528-19	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 20	H000528-20	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 21	H000528-21	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 22	H000528-22	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 23	H000528-23	Soil	18-Feb-20 00:00	19-Feb-20 16:10
SP # 24	H000528-24	Soil	18-Feb-20 00:00	19-Feb-20 16:10

03/04/20 - Client revised the project name via email.

03/05/20 - This is the revised report and will replace the one sent on 02/25/20.

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 1 H000528-01 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	4400		16.0	mg/kg	4	0022404	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds b	y EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			100 %	73.3	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by G	C FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	0022106	CK	22-Feb-20	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	0022106	CK	22-Feb-20	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	0022106	CK	22-Feb-20	8015B	
Surrogate: 1-Chlorooctane			80.9 %	44.3	-144	0022106	CK	22-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			84.9 %	42.2	-156	0022106	CK	22-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 2 H000528-02 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	7360		16.0	mg/kg	4	0022404	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		103 %	73.3	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by C	GC FID									
GRO C6-C10*	10.1		10.0	mg/kg	1	0022106	CK	22-Feb-20	8015B	
DRO >C10-C28*	2340		10.0	mg/kg	1	0022106	CK	22-Feb-20	8015B	
EXT DRO >C28-C36	579		10.0	mg/kg	1	0022106	CK	22-Feb-20	8015B	
Surrogate: 1-Chlorooctane			79.5 %	44.3	-144	0022106	CK	22-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			135 %	42.2	-156	0022106	CK	22-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

05-Mar-20 09:11

Reported:

Fax To: (575) 297-1477

SP # 3 H000528-03 (Soil)

Batch Analyst Analyzed Method Notes
22404 GM 24-Feb-20 4500-Cl-B
22110 CK 23-Feb-20 8021B
S-04
22106 CK 22-Feb-20 8015B
22 22 22 22 22 22 22

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

05-Mar-20 09:11

Reported:

SP # 4 H000528-04 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	9200		16.0	mg/kg	4	0022404	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds h	y EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PID)	1		102 %	73.3	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by G	SC FID									S-04
GRO C6-C10*	<10.0		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
DRO >C10-C28*	2790		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	QM-07
EXT DRO >C28-C36	577		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctane			88.9 %	44.3	-144	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			161 %	42.2	-156	0022107	CK	23-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Reported:

8021B

8021B

05-Mar-20 09:11

Volatile Organic Compounds by EPA Method 8021

< 0.050

< 0.050

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240

Benzene*

Toluene*

Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

SP # 5 H000528-05 (Soil)

4	Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
	Cardinal Laboratories											
Inorganic Compounds												
Cl	hloride	10600		16.0	mg/kg	4	0022404	GM	24-Feb-20	4500-Cl-B		

mg/kg

mg/kg

50

50

0022110

0022110

CK

CK

23-Feb-20

23-Feb-20

0.050

0.050

Ethylbenzene*	< 0.050	0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	< 0.150	0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	< 0.300	0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PII	102 %	73.3-129		0022110	CK	23-Feb-20	8021B		
Petroleum Hydrocarbons by GC FID									
GRO C6-C10*	<10.0	10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
DRO >C10-C28*	109	10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
EXT DRO >C28-C36	27.1	10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctane		90.3 %	44.3-144		0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane		96.6 %	42.2-156		0022107	CK	23-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240

Surrogate: 1-Chlorooctadecane

Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 6 H000528-06 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	ories					
Inorganic Compounds										
Chloride	20400		16.0	mg/kg	4	0022404	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds by	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	0.090		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	0.397		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	1.02		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	1.50		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			119 %	73.3-	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by GC	FID									S-04
GRO C6-C10*	34.6		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
DRO >C10-C28*	2510		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
EXT DRO >C28-C36	478		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctane			108 %	44.3-	-144	0022107	CK	23-Feb-20	8015B	

42.2-156

0022107

CK

23-Feb-20

8015B

160 %

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Reported: 05-Mar-20 09:11

Fax To: (575) 297-1477

SP # 7 H000528-07 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	14000		16.0	mg/kg	4	0022404	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds by E	PA Method	8021								S-04
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	24-Feb-20	8021B	
Toluene*	0.098		0.050	mg/kg	50	0022110	CK	24-Feb-20	8021B	
Ethylbenzene*	0.754		0.050	mg/kg	50	0022110	CK	24-Feb-20	8021B	
Total Xylenes*	2.18		0.150	mg/kg	50	0022110	CK	24-Feb-20	8021B	
Total BTEX	3.03		0.300	mg/kg	50	0022110	CK	24-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			155 %	73.3	-129	0022110	CK	24-Feb-20	8021B	
Petroleum Hydrocarbons by GC F	ID									S-06
GRO C6-C10*	234		50.0	mg/kg	5	0022107	CK	23-Feb-20	8015B	
DRO >C10-C28*	18700		50.0	mg/kg	5	0022107	CK	23-Feb-20	8015B	
EXT DRO >C28-C36	3300		50.0	mg/kg	5	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctane			172 %	44.3	-144	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			586 %	42.2	-156	0022107	CK	23-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Reported: 05-Mar-20 09:11

Fax To: (575) 297-1477

SP # 8 H000528-08 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	tories					
Inorganic Compounds										
Chloride	11000		16.0	mg/kg	4	0022404	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PII	D)		105 %	73.3	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by	GC FID									S-04
GRO C6-C10*	<10.0		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
DRO >C10-C28*	3670		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
EXT DRO >C28-C36	684		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctane			86.8 %	44.3	-144	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			190 %	42.2	-156	0022107	CK	23-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

4.03

31.1

57.9

93.1

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

23-Feb-20

23-Feb-20

23-Feb-20

23-Feb-20

8021B

8021B

8021B

8021B

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240

Toluene* Ethylbenzene*

Total Xylenes*

Total BTEX

Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 9 H000528-09 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardin	al Laborat	ories					
Inorganic Compounds										
Chloride	7200		16.0	mg/kg	4	0022404	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compo	ınds by EPA Method 8	3021								
Benzene*	< 0.500		0.500	mg/kg	500	0022110	CK	23-Feb-20	8021B	

mg/kg

mg/kg

mg/kg

mg/kg

0.500

0.500

1.50

3.00

500

500

500

500

0022110

0022110

0022110

0022110

CK

 CK

CK

CK

Surrogate: 4-Bromofluorobenzene (PID)		125 %	73.3-1	29	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by GC	FID								S-06
GRO C6-C10*	1200	50.0	mg/kg	5	0022107	CK	23-Feb-20	8015B	
DRO >C10-C28*	13000	50.0	mg/kg	5	0022107	CK	23-Feb-20	8015B	
EXT DRO >C28-C36	1900	50.0	mg/kg	5	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctane		239 %	44.3-1	44	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane		415 %	42.2-1	56	0022107	CK	23-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celes D. Keene

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: USTIN WRIGHT

Project Manager: JUSTIN WRIGHT Fax To: (575) 297-1477 Reported: 05-Mar-20 09:11

SP # 10 H000528-10 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	tories					
Inorganic Compounds										
Chloride	14400		16.0	mg/kg	4	0022404	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050	·	0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	0.118		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	0.645		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	1.51		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	2.27		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		122 %	73.3	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by C	GC FID									S-04
GRO C6-C10*	62.4		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
DRO >C10-C28*	4970		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
EXT DRO >C28-C36	866		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctane			122 %	44.3	-144	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			233 %	42.2	-156	0022107	CK	23-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 11 H000528-11 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	20600		16.0	mg/kg	4	0022404	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	0.060		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	0.154		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	0.365		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	0.579		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		104 %	73.3	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by C	GC FID									S-04
GRO C6-C10*	21.8		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
DRO >C10-C28*	5160		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
EXT DRO >C28-C36	1090		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctane			91.1 %	44.3	-144	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			252 %	42.2	-156	0022107	CK	23-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240

Surrogate: 1-Chlorooctadecane

Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 12 H000528-12 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	13200		16.0	mg/kg	4	0022404	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	0.053		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	0.143		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	0.452		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	0.648		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PIL))	·	113 %	73.3	-129	0022110	CK	23-Feb-20	8021B	·
Petroleum Hydrocarbons by	GC FID									S-04
GRO C6-C10*	46.4	·	10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
DRO >C10-C28*	7190		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
EXT DRO >C28-C36	1180		10.0	mg/kg	1	0022107	CK	23-Feb-20	8015B	
Surrogate: 1-Chlorooctane			131 %	44.3	-144	0022107	CK	23-Feb-20	8015B	

42.2-156

0022107

CK

23-Feb-20

8015B

298 %

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 13 H000528-13 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Labora	tories					
Inorganic Compounds										
Chloride	9600		16.0	mg/kg	4	0022413	GM	24-Feb-20	4500-Cl-B	QM-07
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050	·	0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		100 %	73.3	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by C	GC FID									S-04
GRO C6-C10*	<10.0		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
DRO >C10-C28*	3780		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
EXT DRO >C28-C36	693		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctane			84.4 %	44.3	-144	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			193 %	42.2	-156	0022107	CK	24-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 14

H000528-14 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	28400		16.0	mg/kg	4	0022413	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds by	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	0.150		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	0.577		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	1.24		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	1.97		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			116 %	73.3	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by GC	FID									S-04
GRO C6-C10*	54.2		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
DRO >C10-C28*	6330		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
EXT DRO >C28-C36	987		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctane			104 %	44.3	-144	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			266 %	42.2	-156	0022107	CK	24-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 15 H000528-15 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	12200		16.0	mg/kg	4	0022413	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds b	y EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	0.220		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	0.975		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	2.02		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	3.22		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			122 %	73.3	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by G	C FID									S-04
GRO C6-C10*	72.2		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
DRO >C10-C28*	4150		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
EXT DRO >C28-C36	654		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctane			124 %	44.3	-144	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			204 %	42.2	-156	0022107	CK	24-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 16 H000528-16 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	tories					
Inorganic Compounds										
Chloride	15400		16.0	mg/kg	4	0022413	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	0.060		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	0.319		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	0.821		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	1.20		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PIL	0)		113 %	73.3	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	18.8		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
DRO >C10-C28*	1330		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
EXT DRO >C28-C36	252		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctane			98.7 %	44.3	-144	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			126 %	42.2	-156	0022107	CK	24-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240

Surrogate: 4-Bromofluorobenzene (PID)

Petroleum Hydrocarbons by GC FID

Project: EVGSAU 3332-519 Project Number: NONE GIVEN Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP#17 H000528-17 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardin	al Laborat	ories					
Inorganic Compounds										
Chloride	9600		16.0	mg/kg	4	0022413	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	

73.3-129

0022110

CK

23-Feb-20

8021B

GRO C6-C10*	<10.0	10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B
DRO >C10-C28*	690	10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B
EXT DRO >C28-C36	167	10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B
Surrogate: 1-Chlorooctane		85.2 %	44.3-1	44	0022107	CK	24-Feb-20	8015B
Surrogate: 1-Chlorooctadecane		97.2 %	42.2-1.	56	0022107	CK	24-Feb-20	8015B

99.7 %

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Reported: 05-Mar-20 09:11

Fax To: (575) 297-1477

SP # 18 H000528-18 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	10400		16.0	mg/kg	4	0022413	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds by I	EPA Method	8021								S-04
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	2.45		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	9.04		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	16.6		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	28.1		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			192 %	73.3	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by GC	FID									
GRO C6-C10*	195		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
DRO >C10-C28*	2470		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
EXT DRO >C28-C36	402		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctane			144 %	44.3	-144	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			151 %	42.2	-156	0022107	CK	24-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 19

H000528-19 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	tories					
Inorganic Compounds										
Chloride	10600		16.0	mg/kg	4	0022413	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								S-04
Benzene*	0.106		0.100	mg/kg	100	0022110	CK	24-Feb-20	8021B	
Toluene*	3.42		0.100	mg/kg	100	0022110	CK	24-Feb-20	8021B	
Ethylbenzene*	12.5		0.100	mg/kg	100	0022110	CK	24-Feb-20	8021B	
Total Xylenes*	21.0		0.300	mg/kg	100	0022110	CK	24-Feb-20	8021B	
Total BTEX	36.9		0.600	mg/kg	100	0022110	CK	24-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PIL))		169 %	73.3	-129	0022110	CK	24-Feb-20	8021B	
Petroleum Hydrocarbons by	GC FID									S-04
GRO C6-C10*	258		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
DRO >C10-C28*	2610		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
EXT DRO >C28-C36	447		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctane			160 %	44.3	-144	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			148 %	42.2	-156	0022107	CK	24-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 20 H000528-20 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	5920		16.0	mg/kg	4	0022413	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	0022110	CK	23-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PIL))		99.3 %	73.3	-129	0022110	CK	23-Feb-20	8021B	
Petroleum Hydrocarbons by C	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
DRO >C10-C28*	22.3		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctane			85.6 %	44.3	-144	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			88.5 %	42.2	-156	0022107	CK	24-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Reported: 05-Mar-20 09:11

Fax To: (575) 297-1477

SP # 21 H000528-21 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	ories					
Inorganic Compounds										
Chloride	12400		16.0	mg/kg	4	0022413	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PII	D)		100 %	73.3	-129	0022111	CK	24-Feb-20	8021B	
Petroleum Hydrocarbons by	GC FID									S-04
GRO C6-C10*	<10.0		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
DRO >C10-C28*	2300		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
EXT DRO >C28-C36	560		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctane			86.2 %	44.3	-144	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			167 %	42.2	-156	0022107	CK	24-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 22 H000528-22 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	17400		16.0	mg/kg	4	0022413	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		100 %	73.3	-129	0022111	CK	24-Feb-20	8021B	
Petroleum Hydrocarbons by C	GC FID									S-04_
GRO C6-C10*	<10.0		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
DRO >C10-C28*	5390		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
EXT DRO >C28-C36	1180		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctane			83.2 %	44.3	-144	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			269 %	42.2	-156	0022107	CK	24-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

SP # 23 H000528-23 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	ories					
Inorganic Compounds										
Chloride	6800		16.0	mg/kg	4	0022413	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PII	D)		101 %	73.3	-129	0022111	CK	24-Feb-20	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
DRO >C10-C28*	18.2		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctane			89.2 %	44.3	-144	0022107	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			93.3 %	42.2	-156	0022107	CK	24-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Reported: 05-Mar-20 09:11

Fax To: (575) 297-1477

SP # 24 H000528-24 (Soil)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	ories					
Inorganic Compounds										
Chloride	9600		16.0	mg/kg	4	0022413	GM	24-Feb-20	4500-Cl-B	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	0022111	CK	24-Feb-20	8021B	
Surrogate: 4-Bromofluorobenzene (PIL))		102 %	73.3	-129	0022111	CK	24-Feb-20	8021B	
Petroleum Hydrocarbons by C	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	0022410	CK	24-Feb-20	8015B	
DRO >C10-C28*	868		10.0	mg/kg	1	0022410	CK	24-Feb-20	8015B	
EXT DRO >C28-C36	220		10.0	mg/kg	1	0022410	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctane			89.7 %	44.3	-144	0022410	CK	24-Feb-20	8015B	
Surrogate: 1-Chlorooctadecane			115 %	42.2	-156	0022410	CK	24-Feb-20	8015B	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

Inorganic Compounds - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0022404 - 1:4 DI Water										
Blank (0022404-BLK1)				Prepared &	Analyzed:	24-Feb-20				
Chloride	ND	16.0	mg/kg							
LCS (0022404-BS1)				Prepared &	Analyzed:	24-Feb-20				
Chloride	416	16.0	mg/kg	400	·	104	80-120		·	·
LCS Dup (0022404-BSD1)				Prepared &	Analyzed:	24-Feb-20				
Chloride	416	16.0	mg/kg	400		104	80-120	0.00	20	
Batch 0022413 - 1:4 DI Water										
Blank (0022413-BLK1)				Prepared &	Analyzed:	24-Feb-20				
Chloride	ND	16.0	mg/kg							
LCS (0022413-BS1)				Prepared &	Analyzed:	24-Feb-20				
Chloride	416	16.0	mg/kg	400		104	80-120			
LCS Dup (0022413-BSD1)				Prepared &	Analyzed:	24-Feb-20				
Chloride	432	16.0	mg/kg	400		108	80-120	3.77	20	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

%REC

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Spike

Source

Reported: 05-Mar-20 09:11

RPD

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal Laboratories

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0022110 - Volatiles										
Blank (0022110-BLK1)				Prepared: 2	21-Feb-20 <i>A</i>	Analyzed: 2	23-Feb-20			
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	ND		mg/kg	0.0500		99.0	73.3-129			
LCS (0022110-BS1)				Prepared: 2	21-Feb-20 A	Analyzed: 2	23-Feb-20			
Benzene	1.87	0.050	mg/kg	2.00		93.7	72.2-131			
Toluene	1.91	0.050	mg/kg	2.00		95.7	71.7-126			
Ethylbenzene	1.87	0.050	mg/kg	2.00		93.7	68.9-126			
Total Xylenes	5.43	0.150	mg/kg	6.00		90.6	71.4-125			
Surrogate: 4-Bromofluorobenzene (PID)	0.0484		mg/kg	0.0500		96.9	73.3-129			
LCS Dup (0022110-BSD1)				Prepared: 2	21-Feb-20 A	Analyzed: 2	23-Feb-20			
Benzene	1.91	0.050	mg/kg	2.00		95.3	72.2-131	1.70	14.6	
Toluene	1.94	0.050	mg/kg	2.00		96.8	71.7-126	1.10	17.4	
Ethylbenzene	1.92	0.050	mg/kg	2.00		96.2	68.9-126	2.60	18.9	
Total Xylenes	5.57	0.150	mg/kg	6.00		92.8	71.4-125	2.49	18.5	
Surrogate: 4-Bromofluorobenzene (PID)	0.0492		mg/kg	0.0500		98.4	73.3-129			
Batch 0022111 - Volatiles										
Blank (0022111-BLK1)				Prepared: 2	21-Feb-20 A	Analyzed: 2	24-Feb-20			
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							

Cardinal Laboratories

Surrogate: 4-Bromofluorobenzene (PID)

Total BTEX

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence are any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether successing is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

mg/kg

mg/kg

0.0500

102

73.3-129

ND

0.0509

0.300

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Reported: 05-Mar-20 09:11

Fax To: (575) 297-1477

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal Laboratories

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
			Prepared: 2	1-Feb-20 A	nalyzed: 2	4-Feb-20			
1.77	0.050	mg/kg	2.00		88.3	72.2-131			
1.75	0.050	mg/kg	2.00		87.6	71.7-126			
1.76	0.050	mg/kg	2.00		88.1	68.9-126			
5.09	0.150	mg/kg	6.00		84.9	71.4-125			
0.0511		mg/kg	0.0500		102	73.3-129			
			Prepared: 2	1-Feb-20 A	nalyzed: 2	4-Feb-20			
1.89	0.050	mg/kg	2.00		94.5	72.2-131	6.87	14.6	
1.88	0.050	mg/kg	2.00		93.9	71.7-126	6.95	17.4	
1.90	0.050	mg/kg	2.00		95.0	68.9-126	7.53	18.9	
5.48	0.150	mg/kg	6.00		91.4	71.4-125	7.38	18.5	
0.0508		mg/kg	0.0500		102	73.3-129			
	1.77 1.75 1.76 5.09 0.0511 1.89 1.88 1.90 5.48	Result Limit 1.77 0.050 1.75 0.050 1.76 0.050 5.09 0.150 0.0511 0.050 1.89 0.050 1.88 0.050 1.90 0.050 5.48 0.150	Result Limit Units 1.77 0.050 mg/kg 1.75 0.050 mg/kg 1.76 0.050 mg/kg 5.09 0.150 mg/kg 0.051I mg/kg 1.89 0.050 mg/kg 1.88 0.050 mg/kg 1.90 0.050 mg/kg 5.48 0.150 mg/kg	Result Limit Units Level	Prepared: 21-Feb-20 A	Result Limit Units Level Result %REC Prepared: 21-Feb-20 Analyzed: 2 1.77 0.050 mg/kg 2.00 88.3 1.75 0.050 mg/kg 2.00 87.6 1.76 0.050 mg/kg 2.00 88.1 5.09 0.150 mg/kg 6.00 84.9 O.0511 mg/kg 0.0500 102 Prepared: 21-Feb-20 Analyzed: 2 1.89 0.050 mg/kg 2.00 94.5 1.88 0.050 mg/kg 2.00 93.9 1.90 0.050 mg/kg 2.00 95.0 5.48 0.150 mg/kg 6.00 91.4	Result Limit Units Level Result %REC Limits Prepared: 21-Feb-20 Analyzed: 24-Feb-20 1.77 0.050 mg/kg 2.00 88.3 72.2-131 1.75 0.050 mg/kg 2.00 88.1 68.9-126 5.09 0.150 mg/kg 6.00 84.9 71.4-125 0.0511 mg/kg 0.0500 102 73.3-129 Prepared: 21-Feb-20 Analyzed: 24-Feb-20 1.89 0.050 mg/kg 2.00 94.5 72.2-131 1.88 0.050 mg/kg 2.00 93.9 71.7-126 1.90 0.050 mg/kg 2.00 95.0 68.9-126 5.48 0.150 mg/kg 6.00 91.4 71.4-125	Result Limit Units Level Result %REC Limits RPD Prepared: 21-Feb-20 Analyzed: 24-Feb-20 1.77 0.050 mg/kg 2.00 88.3 72.2-131 71.7-126 71.7-126 71.7-126 71.7-126 71.7-126 71.7-126 71.7-126 71.7-126 71.7-126 71.7-125 71.7-125 71.7-125 71.7-125 71.7-125 71.7-126	Result Limit Units Level Result %REC Limits RPD Limit Prepared: 21-Feb-20 Analyzed: 24-Feb-20 1.77 0.050 mg/kg 2.00 88.3 72.2-131 <td< td=""></td<>

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Fax To: (575) 297-1477

Reported: 05-Mar-20 09:11

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0022106 - General Prep - Organics										
Blank (0022106-BLK1)				Prepared: 2	21-Feb-20 A	nalyzed: 2	2-Feb-20			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	48.7		mg/kg	50.0		97.3	44.3-144			
Surrogate: 1-Chlorooctadecane	50.3		mg/kg	50.0		101	42.2-156			
LCS (0022106-BS1)				Prepared: 2	21-Feb-20 A	nalyzed: 2	2-Feb-20			
GRO C6-C10	193	10.0	mg/kg	200		96.4	78.8-127			
DRO >C10-C28	206	10.0	mg/kg	200		103	80-132			
Total TPH C6-C28	399	10.0	mg/kg	400		99.8	81.3-128			
Surrogate: 1-Chlorooctane	51.1		mg/kg	50.0		102	44.3-144			
Surrogate: I-Chlorooctadecane	50.8		mg/kg	50.0		102	42.2-156			
LCS Dup (0022106-BSD1)				Prepared: 2	21-Feb-20 A	nalyzed: 2	2-Feb-20			
GRO C6-C10	197	10.0	mg/kg	200		98.5	78.8-127	2.22	15.1	
DRO >C10-C28	212	10.0	mg/kg	200		106	80-132	2.75	17.1	
Total TPH C6-C28	409	10.0	mg/kg	400		102	81.3-128	2.50	15	
Surrogate: 1-Chlorooctane	50.2		mg/kg	50.0		100	44.3-144			
Surrogate: 1-Chlorooctadecane	51.3		mg/kg	50.0		103	42.2-156			
Batch 0022107 - General Prep - Organics										
Blank (0022107-BLK1)				Prepared: 2	21-Feb-20 A	nalyzed: 2	3-Feb-20			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	48.8		mg/kg	50.0		97.7	44.3-144			
Surrogate: 1-Chlorooctadecane	50.5		mg/kg	50.0		101	42.2-156			

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Reported: 05-Mar-20 09:11

Fax To: (575) 297-1477

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0022107 - General Prep - Organics										
LCS (0022107-BS1)				Prepared: 2	21-Feb-20 A	nalyzed: 2	3-Feb-20			
GRO C6-C10	206	10.0	mg/kg	200		103	78.8-127			
DRO >C10-C28	217	10.0	mg/kg	200		109	80-132			
Total TPH C6-C28	423	10.0	mg/kg	400		106	81.3-128			
Surrogate: 1-Chlorooctane	54.2		mg/kg	50.0		108	44.3-144			
Surrogate: 1-Chlorooctadecane	55.0		mg/kg	50.0		110	42.2-156			
LCS Dup (0022107-BSD1)				Prepared: 2	21-Feb-20 A	nalyzed: 2	3-Feb-20			
GRO C6-C10	200	10.0	mg/kg	200		100	78.8-127	2.73	15.1	
DRO >C10-C28	212	10.0	mg/kg	200		106	80-132	2.27	17.1	
Total TPH C6-C28	413	10.0	mg/kg	400		103	81.3-128	2.49	15	
Surrogate: 1-Chlorooctane	51.3		mg/kg	50.0		103	44.3-144			
Surrogate: 1-Chlorooctadecane	53.2		mg/kg	50.0		106	42.2-156			
Batch 0022410 - General Prep - Organics										
Blank (0022410-BLK1)				Prepared &	Analyzed:	24-Feb-20				
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	49.7		mg/kg	50.0		99.4	44.3-144			
Surrogate: 1-Chlorooctadecane	50.3		mg/kg	50.0		101	42.2-156			
LCS (0022410-BS1)				Prepared &	z Analyzed:	24-Feb-20				
GRO C6-C10	190	10.0	mg/kg	200		95.1	78.8-127			
DRO >C10-C28	178	10.0	mg/kg	200		88.8	80-132			
Total TPH C6-C28	368	10.0	mg/kg	400		92.0	81.3-128			
Surrogate: 1-Chlorooctane	53.1		mg/kg	50.0		106	44.3-144			

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Conoco Phillips - Hobbs P. O. BOX 325 Hobbs NM, 88240 Project: EVGSAU 3332-519
Project Number: NONE GIVEN
Project Manager: JUSTIN WRIGHT

Reported: 05-Mar-20 09:11

Fax To: (575) 297-1477

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

	Batch	0022410 -	General	Prep -	Organics
--	-------	-----------	---------	--------	----------

LCS Dup (0022410-BSD1)				Prepared & Ana	alyzed: 24-Feb-20)			
GRO C6-C10	195	10.0	mg/kg	200	97.6	78.8-127	2.53	15.1	
DRO >C10-C28	178	10.0	mg/kg	200	89.1	80-132	0.329	17.1	
Total TPH C6-C28	373	10.0	mg/kg	400	93.3	81.3-128	1.47	15	
Surrogate: 1-Chlorooctane	54.0		mg/kg	50.0	108	44.3-144			
Surrogate: 1-Chlorooctadecane	53.8		mg/kg	50.0	108	42.2-156			

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence aring any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

FORM-006 R 3.0

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

□Yes □Yes □ No

Corrected Temp. °C

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 34 of 36 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name: ConocoPhillips	ps		8/11				ANALYSIS R	REQUEST	
Project Manager: Justin Wright	ā		P.O. #:		1				
Address:			Company: COPC						
City: Hobbs	St NM	Zip #			_				
Phone #: 575-631-9092	Fax #:		Address:		_				
Project #:	Project Owner:	: COPC	City:						
Project Name: FYGSAU 3	EV65AU 3202-012 333	32-519	State: Zip:	j					
Project Location: Lea Co	Lea County, NAM		#						
Sampler Name: Justin Wright	1 / 1		Fax #:						
FOR LAB USE ONLY		MATRIX	PRESERV. SAN	SAMPLING	-				
Lab I.D. Sam	Sample I.D.	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE	OTHER: ACID/BASE: ICE / COOL OTHER:	TIME	Chlorides	BTEX			
57 #1		*	*		\	\			
2 57#2		*	* 2-/8		,	<			
3 SP#3		*	* 2-19		1	<			
1-1425 h		۰ *	* 2-18		1	4			
5 57#5		*	*		1	٩			
6 SP#6		*	* 2-18		-	`			
		*	* 2-18		4	•			
8 5P#9		*	* 2-18		9	_			
5 P#6		*	* 2-18		1	<			
10 SP#10 PLEASE NOTE: Liability and Damages Cardinal's liability	v and client's evelocite remade for any	*	* 278	20	9	1			
receive wite: unamity and unmages. Cardina's liability and client's exclusive tennedy for any claim arising whether based in contract or for, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Oxidinal within 30 days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of layoff or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such daim is based upon any of the above stated reasons or otherwise.	y and client's exclusive remedy for any y other cause whatsoever shall be deere or consequental damages, including with formance of services hereunder by Carr	claim arising whether based in contract or to med waived unless made in writing and rec nout limitation, business interruptions, loss of dinal, regardless of whether such claim is b	tort, shall be limited to the amount paid by eived by Cardinal within 30 days after com of uso, or loss of profits incurred by client, speed upon any of the above stated reasor	the client for the pletion of the applicable its subsidiaries, is or otherwise.					
Relinquisned by:	Date: 3-19-30 Timpe:	Received By:		Verbal Result: [All Results are em	lt: □ Yes re emailed. ∣	es □ No d. Please provii	□ Yes □ No Add'i Phone #; ailed. Please provide Email address:		
Relinquished By:	Date: /	Received By:		REMARKS: ** Frojust N	Hran	ne revised	esper Ch	amerenised aspen Christian. 3/4/20	1 5
Delivered By: (Circle One)	Observed Temp. °C		ion CHECKED BY: (Initials)	Turnaround Time:	ime:	Standard Rush	Bacteria (o	Bacteria (only) Sample Condition	ń
Sampler - UPS - Bus - Other:	Corrected Temp. °C			Thermometer ID -#97- Correction Factor ±0.4	tor ±0.4%			res No Corrected Temp. C	š

Sampler - UPS - Bus - Other: Delivered By: (Circle One)

Observed Temp. °C
Corrected Temp. °C

Sample Condition Cool Intact Yes Yes

CHECKED BY: (Initials)

Turnaround Time:

Bacteria (only) Sample Condition
Cool Intact Observed Temp. °C

Yes Yes
No Corrected Temp. °C

FORM-006 R 3.0

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Thermometer ID #97 Correction Factor +0.4°C

4113 Standard Rush

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 35 of 36 aboratories

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

company Name: ConocoPhillips				TACTOR AND
Project Manager: Justin Wright		P.O. #:		
Address:		Company: COPC		
City: Hobbs	St NM Zip #	Attn:		
Phone #: 575-631-9092	Fax #:	Address:		
Project #:	Project Owner: COPC	City:		
Project Name: EVGSAU \$202-912	912 3332-519 K	State: Zip:		
Project Location: Lea County, MM	WW. W	Phone #:		
Sampler Name: Justin Wright	11	Fax #:		
FOR LAB USE ONLY	MATRIX	PRESERV. SAMPLING	NG	
Lab I.D. Sample I.D.	(G)RAB OR (C)OMF # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	SLUDGE OTHER: ACID/BASE: ICE/COOL OTHER:	Chlorides BTEX TPH	
III SPHI)	*	*	\ \ \ \ \	
12 SP418	o *	*		
13 SP#18	G *	* 2-70	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
MAGS III	6	* %		
15 SP#15	G *	*		
16 SP#16	ο *	* 2-18	2 2	
17 85 TI	o *	*	1 4	
81465 81	G *	3/2	4	
61 #ds b1	φ *	*	< <	
70 SP#20	ο	* 2-18	4 4 4	
"LEASE NOT E: Lability and Damages. Cardinal's liability and panayses. All claims including those for negligence and any oth revice. In no event shall Cardinal be liable for incidental or confiliates or successors arising out of or related to the performa	remedy for any cla ver shall be deema es, including witho ereunder by Cardia	or fort, shall be limited to the amount paid by the client for th received by-Cardinal within 30 days after completion of the a ss of tag/ or loss of profils incured by client, its subsidiaries is byted upon any of the above stated reasons or otherwise.	nt for the of the applicable of the applicable sidiaries, therwise.	
Relinquished By:	Date: 3-10-10 Time: 41/0-24		Result: □ Yes □ No ılts are emailed. Please provi	Add'I Phone #: de Email address:
Relinquished By:	Date: / Received By:	Z.	REMARKS:	

FORM-006 R 3.0

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 36 of 36

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name: Co	ConocoPhillips				Ш			*****				1	BILL 70					ANA	ANALYSIS REQUEST	IEST
Project Manager: Jus	Justin Wright							T	P.O. #	#							+			
Address:								C	Company:	par	Υ.		COPC							
City: Hobbs	St NM	Zip :	#					A	Attn:											
Phone #: 575-631-9092	92 Fax #:							D	Address:	ess										
Project #:	Project Owner:		COPC	റ്				C	City:								_			
Project Name: FW	EVGSAU 3202-012 3332-519	2-5	19	*	-			S	State:				Zip:							
Project Location: 100	8							ס	Phone #:	le #	.r.									
Sampler Name: Jus	Justin Wright							TI	Fax #:	.*	10									
FOR LAB USE ONLY					Z.	MATRIX	×	ŀ	P	PRESERV.	Ŕ	<	SAMPLING							
Lab I.D.	Sample I.D.	RAB OR (C)OMP	OUNDWATER	STEWATER	L		IDGE	HER:	D/BASE:	/ COOL		IER:		hlorides	TEX	- 1	PH			
12 pds 12	20			_	-		-	-	_	-	-		2-18		<					
22 SP# 22	33	ഒ			*					-	*		2.18	<	ς.		_			
23 57433	3	ഒ			*					-	*		3-18	<	5	٠.	`			
metals bi	T	ດ			*						*		3/8	۲.	<	<	_			
		ດ			*	-				46	*									
		ດ			*						*									
		റ		-	*						*									
		0	-	H	*						*									
		ດ ດ			* *	1					* *					T				
LEASE NOTE: Liability and Damages. halyses. All claims including those for ne	LEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the national values. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the anoticable.	claim arisir	ng whe	ther ba	ased in te in w	contr	act or	tort, s	hall b	e limit	ed to	the a	mount paid by the client for the	e e	Ī	ı	ŀ	Ì		
ervice. In no event shall Cardinal be liable for inciden filliates or successors arising out of or related to the	ervice. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, filliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise.	hout limitat dinal, rega	ion, bu	of whe	intern ther s	uch cla	, loss	of us	upon	any.	Proff the	s inc	proffs incurred by client, its subsidiaries the above stated reasons or otherwise							
Relinquished By:	Date: 2-/9-36 Time: 4///Opan	Received By:	jive	B				de	M				Verbal All Resu	Verbal Result: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	□ Yes mailed. I	P	□ No	Add'I vide Em	Verbal Result: ☐ Yes ☐ No ☐ Add'I Phone #: All Results are emailed. Please provide Email address:	
Relinguished By:	Date: /	Received By:	ive	В			1	-					REMARKS:	KS:						
Delivered By: (Circle One)	e) Observed Temp. °C			S S	Sample Condition	의를 S	et nd	ion		Ω	÷ Ü	ECKED (Initials)	BY:	Turnaround Time:			Standard		Bacteria (only) S Cool Intact	Bacteria (only) Sample Condition
Sampler - OPS - Bus - Other:			-	be	Yes Yes		ză	0 0		1	2	W	Thermon Correction	Thermometer ID #97 Correction Factor +0.4°C	197°C		4113		□ Yes □ Yes □ No	Corrected Temp. °C
TCRM-006 R 3.0											Ì	1	The second secon							The state of the s

ANALYTICAL REPORT

May 28, 2020

ConocoPhillips - Tetra Tech

Sample Delivery Group:

L1220029

Samples Received:

05/19/2020

Project Number:

212C-MD-02181

Description:

COP EVGSAU 3332-519

Report To:

Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	8
Sr: Sample Results	g
BH-1 (0'-1') L1220029-01	g
BH-1 (2'-3') L1220029-02	10
BH-1 (4'-5') L1220029-03	11
BH-1 (6'-7') L1220029-04	12
BH-1 (9'-10') L1220029-05	13
BH-2 (0'-1') L1220029-06	14
BH-2 (2'-3') L1220029-07	15
BH-2 (4'-5') L1220029-08	16
BH-2 (6'-7') L1220029-09	17
BH-2 (9'-10') L1220029-10	18
BH-3 (0'-1') L1220029-11	19
BH-3 (2'-3') L1220029-12	20
BH-3 (4'-5') L1220029-13	21
BH-3 (6'-7') L1220029-14	22
BH-3 (9'-10') L1220029-15	23
BH-4 (2'-3') L1220029-16	24
BH-4 (4'-5') L1220029-17	25
BH-4 (6'-7') L1220029-18	26
BH-4 (9'-10') L1220029-19	27
BH-5 (2'-3') L1220029-20	28
BH-5 (4'-5') L1220029-21	29
BH-5 (6'-7') L1220029-22	30
BH-5 (9'-10') L1220029-23	31
AH-1 (0'-1') L1220029-24	32
Qc: Quality Control Summary	33
Total Solids by Method 2540 G-2011	33
Wet Chemistry by Method 300.0	37
Volatile Organic Compounds (GC) by Method 8015D/GRO	39
Volatile Organic Compounds (GC/MS) by Method 8260B	42
Semi-Volatile Organic Compounds (GC) by Method 8015	44
GI: Glossary of Terms	48
Al: Accreditations & Locations	49
Sc: Sample Chain of Custody	50

Trail Solids by Method 2540 G-2011 WC1400813 WC1400813 WC1400813 WC1400813 WC1400813 WC1400814 WC14008150 yb Method 300.00 WC1400980			_				
Barb							
	3H-1 (0'-1') L1220029-01 Solid			JT	05/13/20 10:00	05/19/20 08	:45
table Solids by Method 2540 G-2011 WC 1481813 1 057620 8-30 WC 1473248 1 057620 1413 MC 1473248 1 057620 1413 MC 1573248 1 057620 1413 MC 1573248 MC 15	ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
Michael Mich				date/time	date/time		
Deletic Organic Compounds (GCL by Method 805D/GR0 WG14809987 1 G5/27/20 1146 G5/27/20 2337 DWR Mt. Juliet. DWR Mt. Juliet. DWR Mt. Juliet. DWR	otal Solids by Method 2540 G-2011	WG1481813	1	05/26/20 16:30	05/26/20 16:44	KDW	Mt. Juliet, T
Delication Compounds (GC/MS) by Michael 8055 WGH80987 1 05/21/20 72:57 05/21/20 23:37 DWR Mt. Juliet, seni-Volatile Organic Compounds (GC) by Method 8015 WGH80987 1 05/21/20 72:57 05/21/20 02:37 DWR Mt. Juliet, seni-Volatile Organic Compounds (GC) by Method 8015 WGH80987 1 05/21/20 72:57 05/21/20 10:01 05/81/	et Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 15:57	ELN	Mt. Juliet, T
### Processor Compounds (GC) by Method 8015 ### WG1480987 1 05/22/20 22:52 05/24/20 00:49 J.D.G Mt. Juliet, Collected by Collected date-time Received data-time Received data-time Control of Star (Collected by Collected data-time Collected data-time Control of Star (Collected by Collected data-time Collected Collec	olatile Organic Compounds (GC) by Method 8015D/GRO	WG1480940	1	05/21/20 11:46	05/23/20 14:10	JAH	Mt. Juliet, T
## All-1 (2'-3') L1220029-02 SOIId ## Dilution Peparation SANSY Disable Capiac Ca	olatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/21/20 23:37	DWR	Mt. Juliet, T
##H (2"-3") L1220029-02 Solid Batch Batch Dilution Preparation Analysis Analyst Location date time Analysis Analysis Analyst Location date time Analysis Analysis Analyst Location Michael Preparation Analysis Analysis Analyst Location Michael Preparation Analysis Analysis	emi-Volatile Organic Compounds (GC) by Method 8015	WG1480987	1	05/22/20 22:52	05/24/20 00:49	JDG	Mt. Juliet, TI
Balch Dilution Preparation Analysis Analysis Location				Collected by	Collected date/time	Received da	te/time
	3H-1 (2'-3') L1220029-02 Solid			JT	05/13/20 10:10	05/19/20 08	:45
Statistic Spilot Spilot Method 2540 G-2011 WG1481813 1 OS/26/20 16:30 OS/26/20 16:44 KDW Mt. Juliet, et Chemistry by Method 3010 O WG1479248 1 OS/20/20 14:13 OS/20/20 18:16 ELN Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015D/GRO WG1480987 1 OS/21/20 11:46 OS/21/20 23:56 DWR Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015D/GRO WG1480987 1 OS/21/20 12:52 OS/24/20 10:52 JDG Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/21/20 12:52 OS/24/20 10:52 JDG Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/21/20 12:52 OS/24/20 10:52 JDG Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/21/20 12:52 OS/24/20 10:20 JDG Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/26/20 16:30 OS/26/20 16:44 KDW Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/26/20 16:30 OS/26/20 16:25 ELN Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/22/20 14:66 OS/22/20 10:55 DWR Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/22/20 14:66 OS/22/20 10:51 JDG Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/22/20 14:66 OS/22/20 16:15 DWR Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/22/20 12:52 OS/23/20 23:17 JDG Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/22/20 12:52 OS/23/20 23:17 JDG Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/22/20 12:52 OS/23/20 23:17 JDG Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/22/20 12:52 OS/23/20 23:10 JDG Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/22/20 12:46 OS/23/20 16:35 ELN Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/22/20 11:46 OS/23/20 16:35 ELN Mt. Juliet, polatile Organic Compounds (GC MS) by Method 8015 WG1480987 1 OS/22/20 11:46	ethod	Batch	Dilution	•	•	Analyst	Location
	Callida Iv. Mada ad 2540 C 2044	WC4404042				KDW	NAL LUCE TO
Dilution Preparation Dilution Preparation Dilution Dilution Dilution Display Dilution Display Dilution Display	•						
Miles Organic Compounds (CC/MS) by Method 8260B WG1480587 1 05/21/20 11:46 05/21/20 23:56 DWR Mt. Juliet, with Volatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/24/20 01:02	• •						,
### Worldatile Organic Compounds (GC) by Method 8015 WG1480987 1							
SH-1 (4'-5') L1220029-03 Solid Batch Dilution Preparation Analysis Analyst Location date/time da							,
### 1 (4'-5') L1220029-03 Solid ### Batch Dilution Preparation Analysis Analyst Location	emi-volatile Organic Compounds (GC) by Method 8015	WG1480987	ı	05/22/20 22:52	05/24/20 01:02	JDG	Mt. Juliet, II
Batch Dilution Preparation Analysis Analyst Location date/time				Collected by	Collected date/time	Received da	te/time
State Stat	3H-1 (4'-5') L1220029-03 Solid			JT	05/13/20 10:20	05/19/20 08	:45
tal Solids by Method 2540 G-2011	ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
tet Chemistry by Method 300.0 WG1479248 1 05/20/20 14:13 05/20/20 16:25 ELN Mt. Juliet, olatile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/21/20 11:46 05/22/20 01:15 JMR Mt. Juliet, olatile Organic Compounds (GC/MS) by Method 8260B WG1480587 1 05/21/20 11:46 05/22/20 01:15 DWR Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/21/20 12:52 05/23/20 23:17 JDG Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:17 JDG Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:17 JDG Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/26/20 21:30 05/26/20 21:41 KDW Mt. Juliet, olatile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/20/20 14:13 05/20/20 16:35 ELN Mt. Juliet, olatile Organic Compounds (GC) by Method 8050B WG1480987 1 05/20/20 14:46 05/22/20 03:4 DWR Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/20/20 12:52 05/23/20 15:12 JAH Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/20/20 12:52 05/23/20 15:12 JAH Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/20/20 12:52 05/23/20 23:30 JDG Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/20/20 22:52 05/23/20 23:30 JDG Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480940 1 05/20/20 14:13 05/20/20 14:14 KDW Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480940 1 05/20/20 13:0 05/23/20 15:12 JAH Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480940 1 05/20/20 13:0 05/23/20 15:23 JAH Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480940 1 05/20/20 14:13 05/20/20 14:13 DWR Mt. Juliet, olatile Organic Compounds (GC) by Method 8060B WG1480940 1 05/20/20 14:13 05/20/20 14:13 DWR Mt. Juliet, olatile Organic Compounds (GC) by Method 8060B WG1480940 1 05/20/20 14:13 05/20/20 02:18 DWR Mt. Juliet, olatile Organic Compounds (GC) by Method 8060B				date/time	date/time		
Diable Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/21/20 11:46 05/23/20 14:51 JAH Mt. Juliet, platile Organic Compounds (GC/MS) by Method 8260B WG1480987 1 05/21/20 11:46 05/22/20 00:15 DWR Mt. Juliet, emi-Volatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:17 JDG Mt. Juliet, emi-Volatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:17 JDG Mt. Juliet, Collected by DF1/20 10:30 05/19/20 08:45 WG1480987 1 05/22/20 22:52 05/23/20 23:17 JDG Mt. Juliet, Collected by GC office date/time Received date/time date/time date/time WG1481814 1 05/26/20 21:30 05/26/20 21:41 KDW Mt. Juliet, et Chemistry by Method 2540 G-2011 WG1481814 1 05/26/20 21:30 05/26/20 21:41 KDW Mt. Juliet, et Chemistry by Method 300.0 WG1479248 1 05/20/20 14:31 05/20/20 16:35 ELN Mt. Juliet, Diabile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/21/20 11:46 05/23/20 15:12 JAH Mt. Juliet, Diabile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, Pmi-Volatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, Diabile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, Diabile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, Diabile Organic Compounds (GC) by Method 8015 WG1480940 1 05/20/20 21:30 05/20/20 21:41 KDW Mt. Juliet, Diabile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/20/20 11:46 05/20/20 11:41 KDW Mt. Juliet, Diabile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/20/20 11:46 05/20/20 11:33 JAH Mt. Juliet, Diabile Organic Compounds (GC) by Method 8060B WG1480987 4 05/20/20 11:46 05/20/20 02:18 DWR Mt. Juliet, Diabile Organic Compounds (GC/MS) by Method 8060B	otal Solids by Method 2540 G-2011	WG1481813	1	05/26/20 16:30	05/26/20 16:44	KDW	Mt. Juliet, TI
Diable Organic Compounds (GC/MS) by Method 8260B WG1480587 1 05/21/20 11:46 05/22/20 02:15 DWR Mt. Juliet, SH-1 (6'-7') L1220029-04 Solid Ethod Dilution Preparation Analysis Analysis Location date/time date/time date/time Dilution Directed by Directed Directe	et Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 16:25	ELN	Mt. Juliet, T
#H-1 (6'-7') L1220029-04 Solid Batch Dilution Preparation date/time date/time date/time obs/20/20 15:30 05/23/20 16:35 ELN Mt. Juliet, et Chemistry by Method 300.0 WG1480940 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, et Chemistry Oganic Compounds (GC) by Method 8015D/GRO WG1480947 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, et Chemistry Oganic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/22/20 21:30 05/22/20 03:4 DWR Mt. Juliet, et Chemistry Oganic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/22/20 11:46 05/23/20 15:12 JAH Mt. Juliet, et Chemistry Oganic Compounds (GC) by Method 8015D/GRO WG1480947 1 05/22/20 11:46 05/23/20 15:12 JAH Mt. Juliet, et Chemistry Oganic Compounds (GC) by Method 8015D/GRO WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, et Chemistry Oganic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, et Chemistry Oganic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, et Chemistry Oganic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, et Chemistry Oganic Compounds (GC) WG1480940 1 05/20/20 14:14 KDW Mt. Juliet, et Chemistry Oganic Compounds (GC) WG1480940 1 05/20/20 14:13 05/20/20 14:14 KDW Mt. Juliet, et Chemistry Oganic Compounds (GC) WG1480940 1 05/20/20 14:13 05/20/20 14:14 ELN Mt. Juliet, obtaile Organic Compounds (GC) WG1480940 1 05/20/20 14:14 CDC 14:14 ELN Mt. Juliet, obtaile Organic Compounds (GC) WG1480940 1 05/20/20 14:16 05/23/20 15:33 JAH Mt. Juliet, obtaile Organic Compounds (GC/MS) by Method 80608 WG1480587 4 05/20/20 14:16 05/22/20 02:18 DWR Mt. Juliet, obtaile Organic Compounds (GC/MS) by Method 80608 WG1480587 4 05/20/20 14:16 05/22/20 02:18 DWR Mt. Juliet, obtaile Organic Compounds (GC/MS) by Method 80608 WG1480587 4 05/20/20 14:16 05/22/20 02:18 DWR Mt. Juliet, obtaile Organic Compounds (GC/MS) by Method 80608 WG1480587 4 05/20/20 14:16 05/22/20 02:18 DWR Mt. Juliet, obtaile Organic Compounds (GC/MS) by Method 80608 WG1480587 4 05/2	platile Organic Compounds (GC) by Method 8015D/GRO	WG1480940	1	05/21/20 11:46	05/23/20 14:51	JAH	Mt. Juliet, TI
Collected by Collected date/time Received date/time of 5/13/20 10:30 05/19/20 08:45 Batch Dilution Preparation Analysis Analyst Location date/time date/time date/time of 1/20/20 10:30 05/19/20 08:45 Dilution Preparation Analysis Analyst Location date/time date/time date/time of 1/20/20 10:30 05/26/20 21:41 KDW Mt. Juliet, volatile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/20/20 14:13 05/20/20 16:35 ELN Mt. Juliet, olatile Organic Compounds (GC/MS) by Method 8015D/GRO WG1480940 1 05/21/20 11:46 05/22/20 00:34 DWR Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/20/20 14:13 05/20/20 14:14 KDW Mt. Juliet, olatile Organic Compounds (GC) by Method 8015 WG1480940 1 05/20/20 14:13 05/20/20 16:44 ELN Mt. Juliet, olatile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/21/20 11:46 05/23/20 15:33 JAH Mt. Juliet, olatile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/21/20 11:46 05/22/20 02:18 DWR Mt. Juliet, olatile Organic Compounds (GC/MS) by Method 80608 WG1480587 4 05/21/20 11:46 05/22/20 02:18 DWR Mt. Juliet, olatile Organic Compounds (GC/MS) by Method 80608 WG1480587 4 05/21/20 11:46 05/22/20 02:18 DWR Mt. Juliet, olatile Organic Compounds (GC/MS) by Method 80608 WG1480587 4 05/21/20 11:46 05/22/20 02:18 DWR Mt. Juliet, olatile Organic Compounds (GC/MS) by Method 80608 WG1480587 4 05/21/20 11:46 05/22/20 02:18 DWR Mt. Juliet, olatile Organic Compounds (GC/MS) by Method 80608 WG1480587 4 05/21/20 11:46 05/22/20 02:18 DWR Mt. Juliet, olatile Organic Compounds (GC/MS) by Method 80608 WG1480587 4 05/21/20 11:46 05/22/20 02:18 DWR Mt. Juliet, olatile	platile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 00:15	DWR	Mt. Juliet, TI
#H-1 (6'-7') L1220029-04 Solid ### Batch	emi-Volatile Organic Compounds (GC) by Method 8015	WG1480987	1	05/22/20 22:52	05/23/20 23:17	JDG	Mt. Juliet, Ti
Batch Dilution Preparation Analysis Analyst Location				Collected by	Collected date/time	Received da	te/time
Detail Compounds (GC) by Method 8015 Dilution Preparation Distribute Dist	3H-1 (6'-7') L1220029-04 Solid			JT	05/13/20 10:30	05/19/20 08	:45
Detail Solids by Method 2540 G-2011 WG1481814 1 05/26/20 21:30 05/26/20 21:41 KDW Mt. Juliet, Vet Chemistry by Method 300.0 WG1479248 1 05/20/20 14:13 05/20/20 16:35 ELN Mt. Juliet, Olatile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/21/20 11:46 05/23/20 15:12 JAH Mt. Juliet, Olatile Organic Compounds (GC/MS) by Method 8260B WG1480587 1 05/21/20 11:46 05/22/20 00:34 DWR Mt. Juliet, Olatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet, Olatile Organic Compounds (GC) by Method 8015 WG1480987 Mt. Juliet, Olatile Organic Compounds (GC) Dilution Olate/time Olate/ti	lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
Vert Chemistry by Method 300.0 WG1479248 1 05/20/20 14:13 05/20/20 16:35 ELN Mt. Juliet, olatile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/21/20 11:46 05/23/20 15:12 JAH Mt. Juliet, olatile Organic Compounds (GC/MS) by Method 8260B WG1480587 1 05/21/20 11:46 05/22/20 00:34 DWR Mt. Juliet, emi-Volatile Organic Compounds (GC) by Method 8015 WG1480987 1 05/22/20 22:52 05/23/20 23:30 JDG Mt. Juliet,				date/time	date/time		
Delatile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/21/20 11:46 05/23/20 15:12	otal Solids by Method 2540 G-2011	WG1481814	1	05/26/20 21:30	05/26/20 21:41	KDW	Mt. Juliet, Ti
Description	et Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 16:35	ELN	Mt. Juliet, Ti
### Pemi-Volatile Organic Compounds (GC) by Method 8015 WG1480987 1	platile Organic Compounds (GC) by Method 8015D/GRO	WG1480940	1	05/21/20 11:46	05/23/20 15:12	JAH	Mt. Juliet, TI
Collected by Collected date/time Received date/time O5/13/20 10:40 O5/19/20 08:45 SH-1 (9'-10') L1220029-05 Solid Batch Dilution Preparation date/time date/time date/time Dilution Preparation Dilution Preparation date/time date/time date/time O5/26/20 21:30 O5/26/20 21:41 KDW Mt. Juliet, O5/26/20 11:41 VGH Mt. Juliet, O5/20/20 10:40		WG1480587	1	05/21/20 11:46	05/22/20 00:34	DWR	Mt. Juliet, TI
BH-1 (9'-10') L1220029-05 Solid Batch Dilution Preparation date/time date/time date/time date/time tet Chemistry by Method 300.0 WG1481814 WG148948 Dilution WG1480940 WG1480940 Dilution Preparation date/time date/time date/time date/time date/time Mt. Juliet, Dilution Preparation date/time date/time date/time date/time Dilution Dilution Preparation Dilution Preparation Dilution Dis/26/20 21:30 Dis/26/20 21:41	emi-Volatile Organic Compounds (GC) by Method 8015	WG1480987	1	05/22/20 22:52	05/23/20 23:30	JDG	Mt. Juliet, T
H-1 (9'-10') L1220029-05 Solid Batch Dilution Preparation date/time date/time date/time btal Solids by Method 2540 G-2011 WG1481814 WG1481814 MG1479248 MG1479248 MG1479248 MG1480940 MG				Collected by	Collected data/time	Pacaivad da	ta/tima
Batch Dilution Preparation Analysis Analyst Location	3H-1 (9'-10') L1220029-05 Solid						
date/time date/time rotal Solids by Method 2540 G-2011 WG1481814 1 05/26/20 21:30 05/26/20 21:41 KDW Mt. Juliet, Vet Chemistry by Method 300.0 WG1479248 1 05/20/20 14:13 05/20/20 16:44 ELN Mt. Juliet, rolatile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/21/20 11:46 05/23/20 15:33 JAH Mt. Juliet, rolatile Organic Compounds (GC/MS) by Method 8260B WG1480587 4 05/21/20 11:46 05/22/20 02:18 DWR Mt. Juliet, rolatile Organic Compounds (GC/MS) by Method 8260B		Batch	Dilution	Preparation	Analysis	Analyst	Location
/et Chemistry by Method 300.0 WG1479248 1 05/20/20 14:13 05/20/20 16:44 ELN Mt. Juliet, olatile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/21/20 11:46 05/23/20 15:33 JAH Mt. Juliet, olatile Organic Compounds (GC/MS) by Method 8260B WG1480587 4 05/21/20 11:46 05/22/20 02:18 DWR Mt. Juliet,					•		
Delatile Organic Compounds (GC) by Method 8015D/GRO WG1480940 1 05/21/20 11:46 05/23/20 15:33 JAH Mt. Juliet, Delatile Organic Compounds (GC/MS) by Method 8260B WG1480587 4 05/21/20 11:46 05/22/20 02:18 DWR Mt. Juliet,	otal Solids by Method 2540 G-2011	WG1481814	1	05/26/20 21:30	05/26/20 21:41	KDW	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B WG1480587 4 05/21/20 11:46 05/22/20 02:18 DWR Mt. Juliet,	et Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 16:44	ELN	Mt. Juliet, Ti
	platile Organic Compounds (GC) by Method 8015D/GRO	WG1480940	1	05/21/20 11:46	05/23/20 15:33	JAH	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015 WG1481780 1 05/25/20 07:45 05/25/20 16:51 KLM Mt. Juliet,	platile Organic Compounds (GC/MS) by Method 8260B	WG1480587	4	05/21/20 11:46	05/22/20 02:18	DWR	Mt. Juliet, Ti
	emi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 16:51	KLM	Mt. Juliet, Ti

	0, 22 (J U	.,			
BH-2 (0'-1') L1220029-06 Solid			Collected by JT	Collected date/time 05/13/20 10:50	Received da 05/19/20 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Method	Batch	Dilution	date/time	date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1481814	1	05/26/20 21:30	05/26/20 21:41	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 16:54	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1480943	1	05/21/20 11:46	05/22/20 23:24	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 02:38	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 20:21	KLM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (2'-3') L1220029-07 Solid			JT	05/13/20 11:00	05/19/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1481814	1	05/26/20 21:30	05/26/20 21:41	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 17:03	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1480943	1	05/21/20 11:46	05/22/20 23:44	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 02:57	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 17:04	KLM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (4'-5') L1220029-08 Solid			JT	05/13/20 11:10	05/19/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1481814	1	05/26/20 21:30	05/26/20 21:41	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 17:35	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1480943	1	05/21/20 11:46	05/23/20 00:05	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 03:16	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 17:17	KLM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (6'-7') L1220029-09 Solid			JT	05/13/20 11:20	05/19/20 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1481814	1	05/26/20 21:30	05/26/20 21:41	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 17:45	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1480943	1	05/21/20 11:46	05/23/20 00:26	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 03:36	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 17:30	KLM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-2 (9'-10') L1220029-10 Solid			JT	05/13/20 11:30	05/19/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1481814	1	05/26/20 21:30	05/26/20 21:41	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 18:13	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1481347	1	05/21/20 11:46	05/23/20 14:31	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 03:55	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 17:43	KLM	Mt. Juliet, TN

	JAMII LL V		/I//I/ I			
BH-3 (0'-1') L1220029-11 Solid			Collected by JT	Collected date/time 05/13/20 11:40	Received date/time 05/19/20 08:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	•	
Total Solids by Method 2540 G-2011	WG1481814	1	05/26/20 21:30	05/26/20 21:41	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 18:23	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1480943	1	05/21/20 11:46	05/23/20 01:13	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 04:14	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 17:57	KLM	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
BH-3 (2'-3') L1220029-12 Solid			JT	05/13/20 11:50	05/19/20 08:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1481814	1	05/26/20 21:30	05/26/20 21:41	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 18:32	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1480943	1	05/21/20 11:46	05/23/20 01:34	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 04:34	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 18:10	KLM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-3 (4'-5') L1220029-13 Solid			JT	05/13/20 12:00	05/19/20 08:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1481814	1	05/26/20 21:30	05/26/20 21:41	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 18:42	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1480943	1	05/21/20 11:46	05/23/20 01:54	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 04:53	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 18:23	KLM	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
BH-3 (6'-7') L1220029-14 Solid			JT	05/13/20 12:10	05/19/20 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1481815	1	05/26/20 21:05	05/26/20 21:21	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 18:51	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1480943	1	05/21/20 11:46	05/23/20 06:36	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 05:12	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 18:36	KLM	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
BH-3 (9'-10') L1220029-15 Solid			JT	05/13/20 12:20	05/19/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1481815	1	05/26/20 21:05	05/26/20 21:21	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 19:01	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1481347	1	05/21/20 11:46	05/23/20 14:52	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 05:32	DWR	Mt. Juliet, TN
J						

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1481780

05/25/20 07:45

05/25/20 18:49

KLM

Mt. Juliet, TN

			Collected by JT		Received date/time 05/19/20 08:45	
BH-4 (2'-3') L1220029-16 Solid			JI	05/13/20 12:30	05/19/20 06	.40
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T-1-1 C-1: 1- h. M-1h - 1 25 40 C 2044	WC140404F		date/time	date/time	KDW	MA Indian TNI
Total Solids by Method 2540 G-2011	WG1481815	1	05/26/20 21:05	05/26/20 21:21	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 19:29	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1481347	1	05/21/20 11:46	05/23/20 15:13	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1480587 WG1481780	1 1	05/21/20 11:46 05/25/20 07:45	05/22/20 05:51 05/25/20 19:02	DWR KLM	Mt. Juliet, TN Mt. Juliet, TN
	WO1461/60	'	03/23/20 07.43	03/23/20 13.02	KLIVI	Mit. Juliet, TN
			Collected by	Collected date/time	Received date/time	
BH-4 (4'-5') L1220029-17 Solid			JT	05/13/20 12:40	05/19/20 08:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Calida hu Mathad 25 40 C 2011	WC140101F	1	date/time	date/time	KDW	M4 Juliat TN
Total Solids by Method 2540 G-2011	WG1481815	1	05/26/20 21:05	05/26/20 21:21	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 19:39	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1481347	1	05/21/20 11:46	05/23/20 15:33	JAH DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1480587 WG1481780	1 1	05/21/20 11:46 05/25/20 07:45	05/22/20 06:10 05/25/20 19:15	KLM	Mt. Juliet, TN Mt. Juliet, TN
Semi-volatile organic compounds (OC) by Method 8013	W01401700	'	03/23/20 07.43	03/23/20 19.13	KLIVI	Mit. Juliet, TN
			Collected by	Collected date/time	Received date/time	
BH-4 (6'-7') L1220029-18 Solid			JT	05/13/20 12:50	05/19/20 08:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1481815	1	05/26/20 21:05	05/26/20 21:21	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479248	1	05/20/20 14:13	05/20/20 19:48	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1481347	1	05/21/20 11:46	05/23/20 15:54	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 06:29	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 19:28	KLM	Mt. Juliet, TN
			Callantadla	Callanta di data hima	D	
			Collected by		e Received date/time 05/19/20 08:45	
BH-4 (9'-10') L1220029-19 Solid			JT	05/13/20 13:00	05/19/20 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Solids by Method 2540 G-2011	WG1481815	1	date/time 05/26/20 21:05	date/time 05/26/20 21:21	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1479248	1	05/20/20 21:05	05/20/20 21:21	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1473248 WG1481347	1	05/21/20 11:46	05/23/20 16:15	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 06:48	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 19:42	KLM	Mt. Juliet, TN
Schii Volulic Organic Compounds (CC) by Method CO15		·	00,20,20 07.10	00,20,20 10.12		ma danet, m
			Collected by	Collected date/time	Received date/time	
BH-5 (2'-3') L1220029-20 Solid			JT	05/13/20 14:00	05/19/20 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Solids by Mothad 2540 C 2011	WC140104F	1	date/time	date/time	KDM	M+ luliat TA
Total Solids by Method 2540 G-2011	WG1481815	1	05/26/20 21:05	05/26/20 21:21	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479248 WG1481347	5 1	05/20/20 14:13	05/20/20 20:17	ELN JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO			05/21/20 11:46	05/23/20 16:35		Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480587	1	05/21/20 11:46	05/22/20 07:08	DWR	Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1481780

05/25/20 07:45

05/25/20 19:55

KLM

Mt. Juliet, TN

	07 ((()) 22 (3 0 11111	VII VII VII			
			Collected by	Collected date/time 05/13/20 14:10	Received date/time 05/19/20 08:45	
BH-5 (4'-5') L1220029-21 Solid			JT			
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1481815	1	05/26/20 21:05	05/26/20 21:21	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479249	1	05/20/20 16:05	05/20/20 21:33	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1481347	1	05/21/20 11:46	05/23/20 16:56	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480325	1	05/21/20 11:46	05/22/20 04:51	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481780	1	05/25/20 07:45	05/25/20 20:08	KLM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
BH-5 (6'-7') L1220029-22 Solid			JT	05/13/20 14:20	05/19/20 08:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1481815	1	05/26/20 21:05	05/26/20 21:21	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479249	1	05/20/20 16:05	05/20/20 21:52	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1481347	1	05/21/20 11:46	05/23/20 17:16	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480325	1	05/21/20 11:46	05/22/20 05:10	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481870	1	05/26/20 16:44	05/27/20 14:29	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
BH-5 (9'-10') L1220029-23 Solid			JT	05/13/20 14:30	05/19/20 08:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1481815	1	05/26/20 21:05	05/26/20 21:21	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479249	1	05/20/20 16:05	05/20/20 22:02	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1481347	1	05/21/20 11:46	05/23/20 17:37	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1480325	1	05/21/20 11:46	05/22/20 05:29	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1481870	1	05/26/20 16:44	05/27/20 14:45	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
AH-1 (0'-1') L1220029-24 Solid			JT	05/13/20 15:30	05/19/20 08:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1481816	1	05/26/20 20:41	05/26/20 21:00	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1479249	1	05/20/20 20:41	05/20/20 22:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1481347	1	05/20/20 10:05	05/23/20 17:58	JAH	Mt. Juliet, TN
voiding organic compounds (OC) by Method 60130/0RO	WO140134/	'	05/21/20 11.40	03/23/20 17.30	JAII	ivit. Juiict, IIV

WG1480325

WG1481781

1

1

05/21/20 11:46

05/25/20 07:49

05/22/20 05:48

05/26/20 02:27

JAH

KLM

Mt. Juliet, TN

Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

Chris McCord Project Manager

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ConocoPhillips - Tetra Tech

ONE LAB. NATRAGE 74 of \$50

Collected date/time: 05/13/20 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.2		1	05/26/2020 16:44	<u>WG1481813</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.57	20.8	1	05/20/2020 15:57	WG1479248

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	05/23/2020 14:10	WG1480940
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		05/23/2020 14:10	WG1480940

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	<u>'</u>	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00104	1	05/21/2020 23:37	WG1480587
Toluene	U		0.00135	0.00520	1	05/21/2020 23:37	WG1480587
Ethylbenzene	U		0.000767	0.00260	1	05/21/2020 23:37	WG1480587
Total Xylenes	U		0.000915	0.00676	1	05/21/2020 23:37	WG1480587
(S) Toluene-d8	112			75.0-131		05/21/2020 23:37	WG1480587
(S) 4-Bromofluorobenzene	91.2			67.0-138		05/21/2020 23:37	WG1480587
(S) 1,2-Dichloroethane-d4	107			70.0-130		05/21/2020 23:37	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.98		1.67	4.16	1	05/24/2020 00:49	WG1480987
C28-C40 Oil Range	7.13		0.285	4.16	1	05/24/2020 00:49	WG1480987
(S) o-Terphenyl	86.4			18.0-148		05/24/2020 00:49	WG1480987

ONE LAB. NAT Bage 75 of \$\$0

Collected date/time: 05/13/20 10:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.8		1	05/26/2020 16:44	WG1481813

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.3	<u>J</u>	9.50	20.7	1	05/20/2020 16:16	WG1479248

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/23/2020 14:31	WG1480940
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		05/23/2020 14:31	WG1480940

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

			•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	05/21/2020 23:56	WG1480587
Toluene	U		0.00134	0.00516	1	05/21/2020 23:56	WG1480587
Ethylbenzene	U		0.000761	0.00258	1	05/21/2020 23:56	WG1480587
Total Xylenes	U		0.000909	0.00671	1	05/21/2020 23:56	WG1480587
(S) Toluene-d8	113			75.0-131		05/21/2020 23:56	WG1480587
(S) 4-Bromofluorobenzene	94.9			67.0-138		05/21/2020 23:56	WG1480587
(S) 1,2-Dichloroethane-d4	105			70.0-130		05/21/2020 23:56	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.13	<u>J</u>	1.66	4.13	1	05/24/2020 01:02	WG1480987
C28-C40 Oil Range	2.58	<u>J</u>	0.283	4.13	1	05/24/2020 01:02	WG1480987
(S) o-Terphenyl	92.8			18.0-148		05/24/2020 01:02	WG1480987

ONE LAB. NAT Page 76 of 150

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.3		1	05/26/2020 16:44	<u>WG1481813</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.3	<u>J</u>	9.46	20.6	1	05/20/2020 16:25	WG1479248

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0377	<u>J</u>	0.0223	0.103	1	05/23/2020 14:51	WG1480940
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		05/23/2020 14:51	WG1480940

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	05/22/2020 00:15	WG1480587
Toluene	U		0.00134	0.00514	1	05/22/2020 00:15	WG1480587
Ethylbenzene	U		0.000758	0.00257	1	05/22/2020 00:15	WG1480587
Total Xylenes	U		0.000905	0.00668	1	05/22/2020 00:15	WG1480587
(S) Toluene-d8	109			75.0-131		05/22/2020 00:15	WG1480587
(S) 4-Bromofluorobenzene	89.1			67.0-138		05/22/2020 00:15	WG1480587
(S) 1,2-Dichloroethane-d4	103			70.0-130		05/22/2020 00:15	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.11	1	05/23/2020 23:17	WG1480987
C28-C40 Oil Range	U		0.282	4.11	1	05/23/2020 23:17	WG1480987
(S) o-Terphenyl	94.7			18.0-148		05/23/2020 23:17	WG1480987

ONE LAB. NATRAGATE OF 150

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.7		1	05/26/2020 21:41	WG1481814

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.41	20.5	1	05/20/2020 16:35	WG1479248

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	05/23/2020 15:12	WG1480940
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		05/23/2020 15:12	WG1480940

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

			•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000478	0.00102	1	05/22/2020 00:34	WG1480587
Toluene	U		0.00133	0.00512	1	05/22/2020 00:34	WG1480587
Ethylbenzene	U		0.000754	0.00256	1	05/22/2020 00:34	WG1480587
Total Xylenes	U		0.000900	0.00665	1	05/22/2020 00:34	WG1480587
(S) Toluene-d8	113			75.0-131		05/22/2020 00:34	WG1480587
(S) 4-Bromofluorobenzene	95.2			67.0-138		05/22/2020 00:34	WG1480587
(S) 1,2-Dichloroethane-d4	105			70.0-130		05/22/2020 00:34	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.09	1	05/23/2020 23:30	WG1480987
C28-C40 Oil Range	U		0.280	4.09	1	05/23/2020 23:30	WG1480987
(S) o-Terphenyl	90.5			18.0-148		05/23/2020 23:30	WG1480987

ONE LAB. NATBAGG 78 of 150

Collected date/time: 05/13/20 10:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.7		1	05/26/2020 21:41	WG1481814

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.41	20.5	1	05/20/2020 16:44	WG1479248

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	05/23/2020 15:33	WG1480940
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		05/23/2020 15:33	WG1480940

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.00191	0.00409	4	05/22/2020 02:18	WG1480587
Toluene	U		0.00532	0.0205	4	05/22/2020 02:18	WG1480587
Ethylbenzene	U		0.00302	0.0102	4	05/22/2020 02:18	WG1480587
Total Xylenes	U		0.00360	0.0266	4	05/22/2020 02:18	WG1480587
(S) Toluene-d8	108			<i>75.0-131</i>		05/22/2020 02:18	WG1480587
(S) 4-Bromofluorobenzene	113			67.0-138		05/22/2020 02:18	WG1480587
(S) 1,2-Dichloroethane-d4	96.9			70.0-130		05/22/2020 02:18	WG1480587

Sample Narrative:

L1220029-05 WG1480587: Elevated diltuion due to foamy matrix.

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.09	1	05/25/2020 16:51	WG1481780
C28-C40 Oil Range	U		0.280	4.09	1	05/25/2020 16:51	WG1481780
(S) o-Terphenyl	65.0			18.0-148		05/25/2020 16:51	WG1481780

ONE LAB. NATRAGE 79 of 150

Collected date/time: 05/13/20 10:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.8		1	05/26/2020 21:41	<u>WG1481814</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	137		9.61	20.9	1	05/20/2020 16:54	WG1479248

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.104	1	05/22/2020 23:24	WG1480943
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		05/22/2020 23:24	WG1480943

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000488	0.00104	1	05/22/2020 02:38	WG1480587
Toluene	U		0.00136	0.00522	1	05/22/2020 02:38	WG1480587
Ethylbenzene	U		0.000769	0.00261	1	05/22/2020 02:38	WG1480587
Total Xylenes	U		0.000919	0.00679	1	05/22/2020 02:38	WG1480587
(S) Toluene-d8	112			<i>75.0-131</i>		05/22/2020 02:38	WG1480587
(S) 4-Bromofluorobenzene	93.3			67.0-138		05/22/2020 02:38	WG1480587
(S) 1,2-Dichloroethane-d4	97.8			70.0-130		05/22/2020 02:38	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.80		1.68	4.18	1	05/25/2020 20:21	WG1481780
C28-C40 Oil Range	11.2		0.286	4.18	1	05/25/2020 20:21	WG1481780
(S) o-Terphenyl	179	J1		18.0-148		05/25/2020 20:21	WG1481780

ONE LAB. NATRAGE 80 of 10

Collected date/time: 05/13/20 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.4		1	05/26/2020 21:41	WG1481814

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	136		9.64	21.0	1	05/20/2020 17:03	WG1479248

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	05/22/2020 23:44	WG1480943
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		05/22/2020 23:44	WG1480943

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

3		, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000490	0.00105	1	05/22/2020 02:57	WG1480587
Toluene	U		0.00136	0.00524	1	05/22/2020 02:57	WG1480587
Ethylbenzene	U		0.000773	0.00262	1	05/22/2020 02:57	WG1480587
Total Xylenes	U		0.000923	0.00681	1	05/22/2020 02:57	WG1480587
(S) Toluene-d8	113			<i>75.0-131</i>		05/22/2020 02:57	WG1480587
(S) 4-Bromofluorobenzene	96.5			67.0-138		05/22/2020 02:57	WG1480587
(S) 1,2-Dichloroethane-d4	90.1			70.0-130		05/22/2020 02:57	WG1480587

⁹Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.19	1	05/25/2020 17:04	WG1481780
C28-C40 Oil Range	3.11	<u>J</u>	0.287	4.19	1	05/25/2020 17:04	WG1481780
(S) o-Terphenyl	77.4			18.0-148		05/25/2020 17:04	WG1481780

ONE LAB. NAT Page 81 of \$10

Collected date/time: 05/13/20 11:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.4		1	05/26/2020 21:41	WG1481814

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	220		9.85	21.4	1	05/20/2020 17:35	WG1479248

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	05/23/2020 00:05	WG1480943
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		05/23/2020 00:05	WG1480943

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000500	0.00107	1	05/22/2020 03:16	WG1480587
Toluene	U		0.00139	0.00536	1	05/22/2020 03:16	WG1480587
Ethylbenzene	U		0.000789	0.00268	1	05/22/2020 03:16	WG1480587
Total Xylenes	U		0.000943	0.00696	1	05/22/2020 03:16	WG1480587
(S) Toluene-d8	112			<i>75.0-131</i>		05/22/2020 03:16	WG1480587
(S) 4-Bromofluorobenzene	93.1			67.0-138		05/22/2020 03:16	WG1480587
(S) 1,2-Dichloroethane-d4	98.6			70.0-130		05/22/2020 03:16	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.72	4.28	1	05/25/2020 17:17	WG1481780
C28-C40 Oil Range	1.03	<u>J</u>	0.293	4.28	1	05/25/2020 17:17	WG1481780
(S) o-Terphenyl	73.3			18.0-148		05/25/2020 17:17	WG1481780

ONE LAB. NATRAGE 82 of \$50

Collected date/time: 05/13/20 11:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.9		1	05/26/2020 21:41	<u>WG1481814</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	189		9.50	20.6	1	05/20/2020 17:45	WG1479248

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/23/2020 00:26	WG1480943
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		05/23/2020 00:26	WG1480943

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	05/22/2020 03:36	WG1480587
Toluene	U		0.00134	0.00516	1	05/22/2020 03:36	WG1480587
Ethylbenzene	U		0.000761	0.00258	1	05/22/2020 03:36	WG1480587
Total Xylenes	U		0.000908	0.00671	1	05/22/2020 03:36	WG1480587
(S) Toluene-d8	114			75.0-131		05/22/2020 03:36	WG1480587
(S) 4-Bromofluorobenzene	92.7			67.0-138		05/22/2020 03:36	WG1480587
(S) 1,2-Dichloroethane-d4	88.8			70.0-130		05/22/2020 03:36	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	05/25/2020 17:30	WG1481780
C28-C40 Oil Range	0.482	<u>J</u>	0.283	4.13	1	05/25/2020 17:30	WG1481780
(S) o-Terphenyl	63.8			18.0-148		05/25/2020 17:30	WG1481780

ONE LAB. NAT Bage 33 of \$\$0

Collected date/time: 05/13/20 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.9		1	05/26/2020 21:41	<u>WG1481814</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	112		9.30	20.2	1	05/20/2020 18:13	WG1479248

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0252	ВЈ	0.0219	0.101	1	05/23/2020 14:31	WG1481347
(S) a,a,a-Trifluorotoluene(FID)	89.4			77.0-120		05/23/2020 14:31	WG1481347

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

			*				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000472	0.00101	1	05/22/2020 03:55	WG1480587
Toluene	U		0.00131	0.00505	1	05/22/2020 03:55	WG1480587
Ethylbenzene	U		0.000745	0.00253	1	05/22/2020 03:55	WG1480587
Total Xylenes	U		0.000890	0.00657	1	05/22/2020 03:55	WG1480587
(S) Toluene-d8	111			<i>75.0-131</i>		05/22/2020 03:55	WG1480587
(S) 4-Bromofluorobenzene	91.3			67.0-138		05/22/2020 03:55	WG1480587
(S) 1,2-Dichloroethane-d4	91.1			70.0-130		05/22/2020 03:55	WG1480587

⁹Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.04	1	05/25/2020 17:43	WG1481780
C28-C40 Oil Range	U		0.277	4.04	1	05/25/2020 17:43	WG1481780
(S) o-Terphenyl	64.0			18.0-148		05/25/2020 17:43	WG1481780

ONE LAB. NATRAGE 84 of \$50

Collected date/time: 05/13/20 11:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.9		1	05/26/2020 21:41	WG1481814

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	21.7		9.69	21.1	1	05/20/2020 18:23	WG1479248

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	05/23/2020 01:13	WG1480943
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		05/23/2020 01:13	WG1480943

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•	,						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	05/22/2020 04:14	WG1480587
Toluene	U		0.00137	0.00527	1	05/22/2020 04:14	WG1480587
Ethylbenzene	U		0.000776	0.00263	1	05/22/2020 04:14	WG1480587
Total Xylenes	U		0.000927	0.00685	1	05/22/2020 04:14	WG1480587
(S) Toluene-d8	110			<i>75.0-131</i>		05/22/2020 04:14	WG1480587
(S) 4-Bromofluorobenzene	87.1			67.0-138		05/22/2020 04:14	WG1480587
(S) 1,2-Dichloroethane-d4	95.4			70.0-130		05/22/2020 04:14	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.21	1	05/25/2020 17:57	WG1481780
C28-C40 Oil Range	1.35	<u>J</u>	0.289	4.21	1	05/25/2020 17:57	WG1481780
(S) o-Terphenyl	72.0			18.0-148		05/25/2020 17:57	WG1481780

ONE LAB. NATRAGE 85 of \$50

Collected date/time: 05/13/20 11:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.5		1	05/26/2020 21:41	<u>WG1481814</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	24.8		9.53	20.7	1	05/20/2020 18:32	WG1479248

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	05/23/2020 01:34	WG1480943
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		05/23/2020 01:34	WG1480943

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000484	0.00104	1	05/22/2020 04:34	WG1480587
Toluene	U		0.00135	0.00518	1	05/22/2020 04:34	WG1480587
Ethylbenzene	U		0.000764	0.00259	1	05/22/2020 04:34	WG1480587
Total Xylenes	U		0.000912	0.00674	1	05/22/2020 04:34	WG1480587
(S) Toluene-d8	114			75.0-131		05/22/2020 04:34	WG1480587
(S) 4-Bromofluorobenzene	90.1			67.0-138		05/22/2020 04:34	WG1480587
(S) 1,2-Dichloroethane-d4	97.5			70.0-130		05/22/2020 04:34	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.14	1	05/25/2020 18:10	WG1481780
C28-C40 Oil Range	0.538	<u>J</u>	0.284	4.14	1	05/25/2020 18:10	WG1481780
(S) o-Terphenyl	79.2			18.0-148		05/25/2020 18:10	WG1481780

ONE LAB. NATRAGE &6 of \$50

Collected date/time: 05/13/20 12:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.2		1	05/26/2020 21:41	<u>WG1481814</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	11.0	<u>J</u>	9.56	20.8	1	05/20/2020 18:42	WG1479248

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	05/23/2020 01:54	WG1480943
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		05/23/2020 01:54	WG1480943

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

		•					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	05/22/2020 04:53	WG1480587
Toluene	U		0.00135	0.00520	1	05/22/2020 04:53	WG1480587
Ethylbenzene	U		0.000766	0.00260	1	05/22/2020 04:53	WG1480587
Total Xylenes	U		0.000914	0.00675	1	05/22/2020 04:53	WG1480587
(S) Toluene-d8	111			75.0-131		05/22/2020 04:53	WG1480587
(S) 4-Bromofluorobenzene	88.1			67.0-138		05/22/2020 04:53	WG1480587
(S) 1,2-Dichloroethane-d4	101			70.0-130		05/22/2020 04:53	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.16	1	05/25/2020 18:23	WG1481780
C28-C40 Oil Range	0.447	<u>J</u>	0.285	4.16	1	05/25/2020 18:23	WG1481780
(S) o-Terphenyl	83.4			18.0-148		05/25/2020 18:23	WG1481780

ONE LAB. NATRAGE 87. of \$10

Collected date/time: 05/13/20 12:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.5		1	05/26/2020 21:21	WG1481815

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.54	20.7	1	05/20/2020 18:51	WG1479248

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	05/23/2020 06:36	WG1480943
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		05/23/2020 06:36	WG1480943

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

3		(/	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000484	0.00104	1	05/22/2020 05:12	WG1480587
Toluene	U		0.00135	0.00518	1	05/22/2020 05:12	WG1480587
Ethylbenzene	U		0.000764	0.00259	1	05/22/2020 05:12	WG1480587
Total Xylenes	U		0.000912	0.00674	1	05/22/2020 05:12	WG1480587
(S) Toluene-d8	113			<i>75.0-131</i>		05/22/2020 05:12	WG1480587
(S) 4-Bromofluorobenzene	89.5			67.0-138		05/22/2020 05:12	WG1480587
(S) 1,2-Dichloroethane-d4	95.2			70.0-130		05/22/2020 05:12	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.15	1	05/25/2020 18:36	WG1481780
C28-C40 Oil Range	U		0.284	4.15	1	05/25/2020 18:36	WG1481780
(S) o-Terphenvl	68.9			18.0-148		05/25/2020 18:36	WG1481780

ONE LAB. NAT Page 88 of 150

Collected date/time: 05/13/20 12:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.6		1	05/26/2020 21:21	WG1481815

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.72	21.1	1	05/20/2020 19:01	WG1479248

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	05/23/2020 14:52	WG1481347
(S) a,a,a-Trifluorotoluene(FID)	89.5			77.0-120		05/23/2020 14:52	WG1481347

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	• •						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000494	0.00106	1	05/22/2020 05:32	WG1480587
Toluene	U		0.00137	0.00528	1	05/22/2020 05:32	WG1480587
Ethylbenzene	U		0.000779	0.00264	1	05/22/2020 05:32	WG1480587
Total Xylenes	U		0.000930	0.00687	1	05/22/2020 05:32	WG1480587
(S) Toluene-d8	113			75.0-131		05/22/2020 05:32	WG1480587
(S) 4-Bromofluorobenzene	90.4			67.0-138		05/22/2020 05:32	WG1480587
(S) 1,2-Dichloroethane-d4	94.7			70.0-130		05/22/2020 05:32	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.23	1	05/25/2020 18:49	WG1481780
C28-C40 Oil Range	U		0.290	4.23	1	05/25/2020 18:49	WG1481780
(S) o-Terphenyl	63.3			18.0-148		05/25/2020 18:49	WG1481780

ONE LAB. NATRAGE 89 of \$50

Collected date/time: 05/13/20 12:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.2		1	05/26/2020 21:21	<u>WG1481815</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	13.3	<u>J</u>	9.47	20.6	1	05/20/2020 19:29	WG1479248

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0238	ВЈ	0.0223	0.103	1	05/23/2020 15:13	WG1481347
(S) a,a,a-Trifluorotoluene(FID)	89.3			77.0-120		05/23/2020 15:13	WG1481347

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	05/22/2020 05:51	WG1480587
Toluene	U		0.00134	0.00514	1	05/22/2020 05:51	WG1480587
Ethylbenzene	U		0.000758	0.00257	1	05/22/2020 05:51	WG1480587
Total Xylenes	U		0.000905	0.00669	1	05/22/2020 05:51	WG1480587
(S) Toluene-d8	111			75.0-131		05/22/2020 05:51	WG1480587
(S) 4-Bromofluorobenzene	89.4			67.0-138		05/22/2020 05:51	WG1480587
(S) 1,2-Dichloroethane-d4	102			70.0-130		05/22/2020 05:51	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.12	1	05/25/2020 19:02	WG1481780
C28-C40 Oil Range	1.08	<u>J</u>	0.282	4.12	1	05/25/2020 19:02	WG1481780
(S) o-Terphenyl	68.9			18.0-148		05/25/2020 19:02	WG1481780

ONE LAB. NATRAGE 90 of 100

Collected date/time: 05/13/20 12:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.6		1	05/26/2020 21:21	<u>WG1481815</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.63	20.9	1	05/20/2020 19:39	WG1479248

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	05/23/2020 15:33	WG1481347
(S) a,a,a-Trifluorotoluene(FID)	89.0			77.0-120		05/23/2020 15:33	WG1481347

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

			•				
<u> </u>	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000489	0.00105	1	05/22/2020 06:10	WG1480587
Toluene	U		0.00136	0.00523	1	05/22/2020 06:10	WG1480587
Ethylbenzene	U		0.000771	0.00262	1	05/22/2020 06:10	WG1480587
Total Xylenes	U		0.000921	0.00680	1	05/22/2020 06:10	WG1480587
(S) Toluene-d8	112			75.0-131		05/22/2020 06:10	WG1480587
(S) 4-Bromofluorobenzene	89.9			67.0-138		05/22/2020 06:10	WG1480587
(S) 1,2-Dichloroethane-d4	102			70.0-130		05/22/2020 06:10	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.19	1	05/25/2020 19:15	WG1481780
C28-C40 Oil Range	U		0.287	4.19	1	05/25/2020 19:15	WG1481780
(S) o-Terphenvl	76.4			18.0-148		05/25/2020 19:15	WG1481780

ONE LAB. NATRAGE 91 of 150

Collected date/time: 05/13/20 12:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.4		1	05/26/2020 21:21	<u>WG1481815</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.75	21.2	1	05/20/2020 19:48	WG1479248

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	05/23/2020 15:54	WG1481347
(S) a,a,a-Trifluorotoluene(FID)	89.2			77.0-120		05/23/2020 15:54	WG1481347

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00106	1	05/22/2020 06:29	WG1480587
Toluene	U		0.00138	0.00530	1	05/22/2020 06:29	WG1480587
Ethylbenzene	U		0.000781	0.00265	1	05/22/2020 06:29	WG1480587
Total Xylenes	U		0.000933	0.00689	1	05/22/2020 06:29	WG1480587
(S) Toluene-d8	108			<i>75.0-131</i>		05/22/2020 06:29	WG1480587
(S) 4-Bromofluorobenzene	84.1			67.0-138		05/22/2020 06:29	WG1480587
(S) 1,2-Dichloroethane-d4	99.2			70.0-130		05/22/2020 06:29	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.24	1	05/25/2020 19:28	WG1481780
C28-C40 Oil Range	U		0.290	4.24	1	05/25/2020 19:28	WG1481780
(S) o-Terphenyl	72.6			18.0-148		05/25/2020 19:28	WG1481780

ONE LAB. NATRAGE 92 of \$50

Collected date/time: 05/13/20 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.5		1	05/26/2020 21:21	WG1481815

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.1	21.9	1	05/20/2020 19:58	WG1479248

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	05/23/2020 16:15	WG1481347
(S) a,a,a-Trifluorotoluene(FID)	89.5			77.0-120		05/23/2020 16:15	WG1481347

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	<u>'</u>	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000510	0.00109	1	05/22/2020 06:48	WG1480587
Toluene	U		0.00142	0.00546	1	05/22/2020 06:48	WG1480587
Ethylbenzene	U		0.000805	0.00273	1	05/22/2020 06:48	WG1480587
Total Xylenes	U		0.000962	0.00710	1	05/22/2020 06:48	WG1480587
(S) Toluene-d8	113			75.0-131		05/22/2020 06:48	WG1480587
(S) 4-Bromofluorobenzene	89.1			67.0-138		05/22/2020 06:48	WG1480587
(S) 1,2-Dichloroethane-d4	101			70.0-130		05/22/2020 06:48	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.37	1	05/25/2020 19:42	WG1481780
C28-C40 Oil Range	U		0.299	4.37	1	05/25/2020 19:42	WG1481780
(S) o-Terphenyl	69.1			18.0-148		05/25/2020 19:42	WG1481780

ONE LAB. NAT Page 93 of \$\$0

Collected date/time: 05/13/20 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.8		1	05/26/2020 21:21	<u>WG1481815</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	940		48.5	106	5	05/20/2020 20:17	WG1479248

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	05/23/2020 16:35	WG1481347
(S) a,a,a-Trifluorotoluene(FID)	90.0			77.0-120		05/23/2020 16:35	WG1481347

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000493	0.00106	1	05/22/2020 07:08	WG1480587
Toluene	U		0.00137	0.00528	1	05/22/2020 07:08	WG1480587
Ethylbenzene	U		0.000778	0.00264	1	05/22/2020 07:08	WG1480587
Total Xylenes	U		0.000929	0.00686	1	05/22/2020 07:08	WG1480587
(S) Toluene-d8	117			75.0-131		05/22/2020 07:08	WG1480587
(S) 4-Bromofluorobenzene	95.3			67.0-138		05/22/2020 07:08	WG1480587
(S) 1,2-Dichloroethane-d4	95.4			70.0-130		05/22/2020 07:08	WG1480587

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.22	1	05/25/2020 19:55	WG1481780
C28-C40 Oil Range	1.53	<u>J</u>	0.289	4.22	1	05/25/2020 19:55	WG1481780
(S) o-Terphenyl	83.3			18.0-148		05/25/2020 19:55	WG1481780

ONE LAB. NATRAGE 94 of 150

Collected date/time: 05/13/20 14:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.2		1	05/26/2020 21:21	<u>WG1481815</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	145		9.47	20.6	1	05/20/2020 21:33	WG1479249

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	05/23/2020 16:56	WG1481347
(S) a,a,a-Trifluorotoluene(FID)	89.8			77.0-120		05/23/2020 16:56	WG1481347

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	05/22/2020 04:51	WG1480325
Toluene	U		0.00134	0.00514	1	05/22/2020 04:51	WG1480325
Ethylbenzene	U		0.000758	0.00257	1	05/22/2020 04:51	WG1480325
Total Xylenes	U		0.000905	0.00669	1	05/22/2020 04:51	WG1480325
(S) Toluene-d8	107			75.0-131		05/22/2020 04:51	WG1480325
(S) 4-Bromofluorobenzene	85.0			67.0-138		05/22/2020 04:51	WG1480325
(S) 1,2-Dichloroethane-d4	95.6			70.0-130		05/22/2020 04:51	WG1480325

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.12	1	05/25/2020 20:08	WG1481780
C28-C40 Oil Range	U		0.282	4.12	1	05/25/2020 20:08	WG1481780
(S) o-Terphenyl	78.1			18.0-148		05/25/2020 20:08	WG1481780

ONE LAB. NAT Bage 95 of \$\$0

Collected date/time: 05/13/20 14:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.1		1	05/26/2020 21:21	<u>WG1481815</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.47	20.6	1	05/20/2020 21:52	WG1479249

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	05/23/2020 17:16	WG1481347
(S) a,a,a-Trifluorotoluene(FID)	89.6			77.0-120		05/23/2020 17:16	WG1481347

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000481	0.00103	1	05/22/2020 05:10	WG1480325
Toluene	U		0.00134	0.00515	1	05/22/2020 05:10	WG1480325
Ethylbenzene	U		0.000759	0.00257	1	05/22/2020 05:10	WG1480325
Total Xylenes	U		0.000906	0.00669	1	05/22/2020 05:10	WG1480325
(S) Toluene-d8	106			75.0-131		05/22/2020 05:10	WG1480325
(S) 4-Bromofluorobenzene	86.1			67.0-138		05/22/2020 05:10	WG1480325
(S) 1,2-Dichloroethane-d4	91.8			70.0-130		05/22/2020 05:10	WG1480325

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.12	1	05/27/2020 14:29	WG1481870
C28-C40 Oil Range	U		0.282	4.12	1	05/27/2020 14:29	WG1481870
(S) o-Terphenyl	69.6			18.0-148		05/27/2020 14:29	WG1481870

ONE LAB. NATRAGE 96 of 150

Collected date/time: 05/13/20 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.5		1	05/26/2020 21:21	<u>WG1481815</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.34	20.3	1	05/20/2020 22:02	WG1479249

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.102	1	05/23/2020 17:37	WG1481347
(S) a,a,a-Trifluorotoluene(FID)	89.8			77.0-120		05/23/2020 17:37	WG1481347

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		' '					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000474	0.00102	1	05/22/2020 05:29	WG1480325
Toluene	U		0.00132	0.00508	1	05/22/2020 05:29	WG1480325
Ethylbenzene	U		0.000748	0.00254	1	05/22/2020 05:29	WG1480325
Total Xylenes	U		0.000894	0.00660	1	05/22/2020 05:29	WG1480325
(S) Toluene-d8	105			75.0-131		05/22/2020 05:29	WG1480325
(S) 4-Bromofluorobenzene	86.3			67.0-138		05/22/2020 05:29	WG1480325
(S) 1,2-Dichloroethane-d4	96.5			70.0-130		05/22/2020 05:29	WG1480325

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.06	1	05/27/2020 14:45	WG1481870
C28-C40 Oil Range	U		0.278	4.06	1	05/27/2020 14:45	WG1481870
(S) o-Terphenyl	67.5			18.0-148		05/27/2020 14:45	WG1481870

ONE LAB. NAT Bage 97. of 150

Collected date/time: 05/13/20 15:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.4		1	05/26/2020 21:00	WG1481816

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.35	20.3	1	05/20/2020 22:11	WG1479249

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0380	ВЈ	0.0220	0.102	1	05/23/2020 17:58	WG1481347
(S) a,a,a-Trifluorotoluene(FID)	88.6			77.0-120		05/23/2020 17:58	WG1481347

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000474	0.00102	1	05/22/2020 05:48	WG1480325
Toluene	U		0.00132	0.00508	1	05/22/2020 05:48	WG1480325
Ethylbenzene	U		0.000749	0.00254	1	05/22/2020 05:48	WG1480325
Total Xylenes	U		0.000894	0.00660	1	05/22/2020 05:48	WG1480325
(S) Toluene-d8	108			<i>75.0-131</i>		05/22/2020 05:48	WG1480325
(S) 4-Bromofluorobenzene	82.8			67.0-138		05/22/2020 05:48	WG1480325
(S) 1,2-Dichloroethane-d4	96.3			70.0-130		05/22/2020 05:48	WG1480325

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.19	<u>J</u>	1.64	4.06	1	05/26/2020 02:27	WG1481781
C28-C40 Oil Range	13.9		0.278	4.06	1	05/26/2020 02:27	WG1481781
(S) o-Terphenyl	83.2			18.0-148		05/26/2020 02:27	WG1481781

ONE LAB. NAT Page 98 of 150

Total Solids by Method 2540 G-2011

L1220029-01,02,03

Method Blank (MB)

(MB) R3532010-1 0	5/26/20 16:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

²Tc

³Ss

(LCS) R3532010-2 05/26	/20 16:44				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NATRAGE 99 of 150

Ss

Cn

Total Solids by Method 2540 G-2011

L1220029-04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3532084-1 05	5/26/20 21:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1220029-12 Original Sample (OS) • Duplicate (DUP)

(OS) L1220029-12	05/26/20 21:41 • (DUP) R3532084-3	05/26/20 21:41

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.5	96.3	1	0.268		10

Laboratory Control Sample (LCS)

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85.0-115

E: 53

ONE LAB. NAPagev100 of 150

[†]Cn

Total Solids by Method 2540 G-2011

L1220029-14,15,16,17,18,19,20,21,22,23

Method Blank (MB)

(MB) R3532069-1	05/26/20 21:21			
(MB) K3332009-1 V				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1220029-18 Original Sample (OS) • Duplicate (DUP)

(OS) L1220029-18 05/	/26/20 21:21 • (DU	P) R3532069-3	3 05/26/2	0 21:21		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.4	94.2	1	0.208		10

(LCS) R3532069-2 05/26/20 21:21					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NAPagev101 of 150

Total Solids by Method 2540 G-2011

L1220029-24

Method Blank (MB)

(MB) R3532065-1 05	5/26/20 21:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

²Tc

Ss

(LCS) R3532065-2 05/26/20 21:00						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	%	%	%	%		
Total Solids	50.0	50.0	100	85.0-115		

ONE LAB. NA Page 102 of 150

Wet Chemistry by Method 300.0

 $L1220029 \hbox{-} 01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20$

Method Blank (MB)

(MB) R353	30257-1 05/20/2	0 15:29			
		MB Result	MB Qualifier	MB MDL	MB RDL
Analyte		mg/kg		mg/kg	mg/kg
Chloride		U		9.20	20.0

L1220029-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1220029-01 05/20/2	20 15:57 • (DUP) R3530257-3	05/20/20	0 16:06		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	П	11	1	0.000		20

L1220029-19 Original Sample (OS) • Duplicate (DUP)

(OS) I 1220029-19 05/20/20 19·58 • (DUP) R3530257-6 05/20/20 20:07

(03) 11220029-13 03/20/2	Original Result (dry)	,	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3530257-2 05/20/20 15:38

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	190	95.2	90.0-110	

L1220029-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OST 1220029 09 05/20/20 17:45 - (MS) D2530257 4 05/20/20 17:54 - (MSD) D3530257 5 05/20/20 18:04

(O3) L1220029-09 03/	20/20 17.43 • (10)) K3330237-4	03/20/20 17.3	4 • (IVI3D) K33	30237-3 03/2	20/20 16.04							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	516	189	707	682	100	95.5	1	80.0-120			3.53	20	

ONE LAB. NA Page 103 of 150

Wet Chemistry by Method 300.0

L1220029-21,22,23,24

Method Blank (MB)

(MB) R3530260-1	05/20/20 21:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

Ss

[†]Cn

L1220029-21 Original Sample (OS) • Duplicate (DUP)

(OS) L1220029-21 05/20/2	.0 21:33 • (DUP) R3530260-3	05/20/20	21:43		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	145	149	1	2.85		20

(LCS) R3530260-2 05/20	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	192	95.9	90.0-110	

Reserved by 660 5/24/2020 8:28:29 AM

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev104 of 150

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1220029-01,02,03,04,05

Method Blank (MB)

(MB) R3531571-2 05/23/2	20 12:12				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120	

(LCS) R3531571-1 05/23/2	0 10:46				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.30	115	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			99.3	77.0-120	

Reserved by 660 3/24/2020 8:28:29 AM

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev105 of 150

L1220029-06,07,08,09,11,12,13,14 Volatile Organic Compounds (GC) by Method 8015D/GRO

Method Blank (MB)

(MB) R3531754-2 05/22/	20 22:28			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120

[†]Cn

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.87	107	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			99.1	77.0-120	

ONE LAB. NA Page 106 of 150

Volatile Organic Compounds (GC) by Method 8015D/GRO

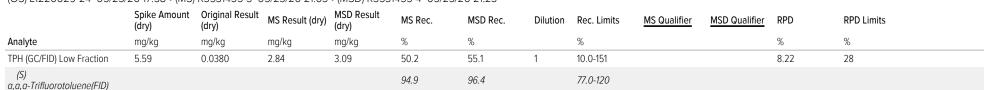
L1220029-10,15,16,17,18,19,20,21,22,23,24

Method Blank (MB)

(MB) R3531455-2 05/23/20 13:29							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
TPH (GC/FID) Low Fraction	0.0217	<u>J</u>	0.0217	0.100			
(S) a,a,a-Trifluorotoluene(FID)	93.6			77.0-120			

[†]Cn

Laboratory Control Sample (LCS)


(LCS) R3531455-1 05/23/	20 12:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.53	82.4	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			106	77.0-120	

L1220029-24 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1220029-24 05/23/20 17:58 • (MS) R3531455-3 05/23/20 21:03 • (MSD) R3531455-4 05/23/20 21:23

ONE LAB. NA Page 107 of 150

L1220029-21,22,23,24 Volatile Organic Compounds (GC/MS) by Method 8260B

106

106

Method	Blank ((MB)
--------	---------	------

(MB) R3531615-3 05/22/2	20 00:45					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Benzene	U		0.000467	0.00100		
Ethylbenzene	U		0.000737	0.00250		
Toluene	U		0.00130	0.00500		
Xylenes, Total	U		0.000880	0.00650		
(S) Toluene-d8	106			75.0-131		
(S) 4-Bromofluorobenzene	85.6			67.0-138		
(S) 1,2-Dichloroethane-d4	93.4			70.0-130		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3531615-1 05/21/20 23:29 • (LCSD) R3531615-2 05/21/20 23

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	L
Benzene	0.125	0.109	0.108	87.2	86.4	70.0-123			0.922	20	Ī
Ethylbenzene	0.125	0.0991	0.102	79.3	81.6	74.0-126			2.88	20	
Toluene	0.125	0.104	0.103	83.2	82.4	75.0-121			0.966	20	. [
Xylenes, Total	0.375	0.284	0.287	75.7	76.5	72.0-127			1.05	20	П
(S) Toluene-d8				99.1	101	75.0-131					l
(S) 4-Bromofluorobenzene				90.3	90.7	67.0-138					

70.0-130

(S) 1,2-Dichloroethane-d4

ONE LAB. NAPage 198 of 150

Volatile Organic Compounds (GC/MS) by Method 8260B

L1220029-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Ameliaka		ind Guainici		
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	108			75.0-131
(S) 4-Bromofluorobenzene	87.7			67.0-138
(S) 1,2-Dichloroethane-d4	102			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3531851-1 05/21/2	0 20:51 • (LCSD) R3531851-2	05/21/20 21:10								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.111	0.107	88.8	85.6	70.0-123			3.67	20	
Ethylbenzene	0.125	0.137	0.136	110	109	74.0-126			0.733	20	
Toluene	0.125	0.110	0.112	88.0	89.6	75.0-121			1.80	20	
Xylenes, Total	0.375	0.328	0.333	87.5	88.8	72.0-127			1.51	20	
(S) Toluene-d8				107	108	75.0-131					
(S) 4-Bromofluorobenzene				93.4	94.3	67.0-138					
(S) 1,2-Dichloroethane-d4				109	107	70.0-130					

L1220029-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.132	U	0.114	0.103	86.4	77.8	1	10.0-149			10.4	37
Ethylbenzene	0.132	U	0.152	0.129	115	97.6	1	10.0-160			16.5	38
Toluene	0.132	U	0.123	0.107	93.6	80.8	1	10.0-156			14.7	38
Xylenes, Total	0.396	U	0.360	0.309	90.9	78.1	1	10.0-160			15.1	38
(S) Toluene-d8					108	108		75.0-131				
(S) 4-Bromofluorobenzene					91.6	91.8		67.0-138				
(S) 1,2-Dichloroethane-d4					107	106		70.0-130				

05/28/20 21:38

²Tc

Reserved by 6608 7/24/2020 8:28:29 AM

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev109 of 150

Semi-Volatile Organic Compounds (GC) by Method 8015

L1220029-01,02,03,04

Method Blank (MB)

(MB) R3531146-1 05/23/2	0 11:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	75.8			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3531146-2 05/23/20 11:40						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
C10-C28 Diesel Range	50.0	41.8	83.6	50.0-150		
(S) o-Terphenyl			96.8	18.0-148		

Reserved by OFB 07/24/2020 8:28:29 AM

QUALITY CONTROL SUMMARY

ONE LAB. NAPagevitto of 150

Semi-Volatile Organic Compounds (GC) by Method 8015

L1220029-05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21

Method Blank (MB)

(MB) R3531499-1 05/25	5/20 16:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	63.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3531499-2 05/2	5/20 16:38				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	35.4	70.8	50.0-150	
(S) o-Terphenyl			94.3	18.0-148	

L1220029-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1220029-06 05/25/20 20:21 • (MS) R3531499-3 05/25/20 20:34 • (MSD) R3531499-4 05/25/20 20:47

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	52.0	4.80	38.7	43.3	65.3	74.1	1	50.0-150			11.2	20
(S) o-Terphenyl					224	345		18.0-148	<u>J1</u>	<u>J1</u>		

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 11 of 150

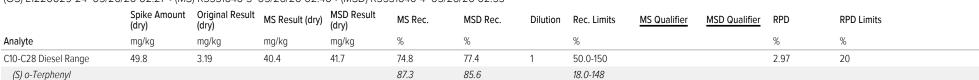
Semi-Volatile Organic Compounds (GC) by Method 8015

L1220029-24

Method Blank (MB)

(MB) R3531640-1 05/25	5/20 21:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	<i>7</i> 5. <i>8</i>			18.0-148

(LCS) R3531640-2 05/2	25/20 22:06				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	39.1	78.2	50.0-150	
(S) o-Terphenyl			99.4	18.0-148	



L1220029-24 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1220029-24 05/26/20 02:27 • (MS) R3531640-3 05/26/20 02:40 • (MSD) R3531640-4 05/26/20 02:53

QUALITY CONTROL SUMMARY

ONE LAB. NAPageviti2 of 150

Semi-Volatile Organic Compounds (GC) by Method 8015

L1220029-22,23

Method Blank (MB)

(MB) R3532334-1 05/27	/20 13:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	68.6			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3532334-2 05/27	(LCS) R3532334-2 05/27/20 14:13						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
C10-C28 Diesel Range	50.0	30.6	61.2	50.0-150			
(S) o-Terphenyl			57.1	18.0-148			

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifi∆r	\Box	escri)	ntion
Qua		\vdash	/C3C11	Puon

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:

 ConocoPhillips - Tetra Tech
 212C-MD-02181
 L1220029
 05/28/20 21:38

PAGE:

48 of 53

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

1220029 Page: 1 of 3

Page 115 of 150

alysis nequest of Chain of Custody Record

TŁ	Tetra	Tech,	Inc.
_		,	

901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946

	,					Fax	(43	2) 682-	3946	6																
Client Name:	Conoco Phillips	Site Manage	er:	Ch	ristian	Llull									<i>(</i> 0.						EQL					
Project Name:	COP EVGSAU 3332-519	Contact Info):		ail: ch			l@tetra 1667	tech	.com		1	1	1	(Ci	rcle or Specify Method No.))	11		
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	2C-MD	0-021	81					1														
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701		11/4									1											1	st)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	ınature:	1	×	1	1					11	- ORO - MRO)		Se Hg	Se Hg								(see attached list)		
Comments: COPTETE	RA Acctnum											8260B	DRO - ORC		d Cr Pb	Ag As Ba Cd Cr Pb			4	8270C/625			S	y (see att		
		SAMP	LING	M	ATRIX	PR		RVATIV	VE	38	î		GRO - DI		As Ba (As Ba	tiles		0B / 62				e TDS	hemistr	ance	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020							٦	INE	D (Y/N)	18	D) W	0	s Ag		i Volatiles		. 826	ni. Vo	7	stos)	Sulfate	ater C	n Bal	
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO3	NONE		# CONTAINERS	FILTERED	BTEX 8021B	FPH 14 1003 (EXT 10 C.35)	PAH 8270C	otal Metals Ag As Ba Cd Cr Pb Se Hg	CLP Metals	CLP Semi	JOE JOE	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol.	NORM	LM (Asbestos)	Chloride	General Water Chemistry	Anion/Cation Balance TPH 8015R	НОГР
-01	BH-1 (0'-1')	05/13/20	1000		X			X	1	1	N	X	X	-			-	<u></u>	0	0 0	2	<u>a</u> (X	0	< -	I
02	BH-1 (2'-3')	05/13/20	1010		X			X	1	1	N	X	X		Н				H	+			X	H		
03	BH-1 (4'-5')	05/13/20	1020		X			x	1	1	N	X	X		Н				\Box	1			X	\Box		
04	BH-1 (6'-7')	05/13/20	1030		X			x	1	1	N	X	X						\Box				X	\Box		
05	BH-1 (9'-10')	05/13/20	1040		X			X	1	1	N	Х	X		П	1							X			
06	BH-2 (0'-1')	05/13/20	1050		X			X	T	1	N	Х	X		П				П				X			
on	BH-2 (2'-3')	05/13/20	1100		X			X		1	N	Х	X						П				K			
06	BH-2 (4'-5')	05/13/20	1110		Х			X	1	1	N	Х	X						П	1			<			
09	BH-2 (6'-7')	05/13/20	1120		Х			X		1	N	Х	X		П					1			(
W	BH-2 (9'-10')	05/13/20	1130		X			X		1	N	Х	X										<			
Relinquished by:	Date: Time: 5-18-20 14:00	Received by:	7		5	-18	ite:		4:	2		ı	AB	US		R] Sta	andar							
Relinquished by:	Date: Time: 5-8-20 (6-60) Date: Time:			2	5-6	8-7		- 1	6	: œ	2	Samp	le Te	mpe	rature			•			Day Author		. 48	3 hr. 7	'2 hr.	
1	Date. Time.	Received by:	opa	2	5		9-	JO		34	5										t Limits	s or TI	RRP R	leport		
4430 3	423 7093 28total	No T		J	097	,			Fi	8,-	Z	(Circle)		1.0	,	IVER	ED	FEC	DEX		5-01	70	#:			

Page 116 of 150

1226029 Page: 2 of 3

TŁ	Tetra Tech, Inc.				901	Mid	land I (43	, Tex 32) 68	reet, 9 as 79 82-45 82-39	59	00																
Client Name:	Conoco Phillips	Site Manage	er:	Ch	ristian	Llull						Γ					AN	IAL	YSI	SR	EQI	JES	Т				
Project Name:	COP EVGSAU 3332-519	Contact Info	o:		nail: ch					ch.con	1	1	1	1	(Circle or Specify Method No.)							1	1				
Project Location: (county, state)	Lea County, New Mexico	Project #:			2C-ME							1															
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	01			ì							1												£			
Receiving Laboratory:	Pace Analytical	Sampler Sig	gnature:	_	4	4	/)		-		1	- MRO		Se Hg	Se Hg								sched lis			
Comments: COPTETE	RA Acctnum											8260B	C35) DRO - ORO - MRO)			Cd Cr Pb				8270C/625				(see attached list)			
		SAME	PLING	M	ATRIX	PF		ERVA	TIVE		2	×			3a (As Ba	tiles		30B / 624		80		of The	hemistry	ance		
LAB# (LAB USE ONLY)	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	NONE	CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005 (Ext to TPH 8015M (GRO -	PAH 8270C	Metals	CLP Metals Ag	I CLP Volatiles	5	GC/MS Vol. 8260B / 624		VORM 8082 / 608		Chloride Sulfate		nion/Cation Balar	U0100 U	НОГР
11	BH-3 (0'-1')	05/13/20	1140	>	X	T	T	X	2	# 1	N	X	X	P	ř	ř ř	- -	E	Ö	0 0	Ž	-	X	Ğ	Ar		H
12	BH-3 (2'-3')	05/13/20	1150		X			X		1	N	X	1 _X			+	+		H	+	+		X	H			
3	BH-3 (4'-5')	05/13/20	1200	П	X			X		1	N	Х	×			+	+		H	+	+		X	\vdash	+	+	
14	BH-3 (6'-7')	05/13/20	1210		Х			X		1	N	Х	×			+	+		H	+		\vdash	X		+		
15	BH-3 (9'-10')	05/13/20	1220		X			X		1	N	X	1 _×	-		+				+	+	-	X	H			
16	BH-4 (2'-3')	05/13/20	1230	П	X			X		1	N	Х	X		H	+				+			x	H		+	
17	BH-4 (4'-5')	05/13/20	1240		X			X	+	1	N	X	×			+				+		-	x	H		+	
18	BH-4 (6'-7')	05/13/20	1250		X			X		1	N	X	×			+						-	X	H		H	
19	BH-4 (9'-10')	05/13/20	1300		Х			X		1	N	X	×			1							x				
620	BH-4 (14'-15')	05/13/20	1310		X			X		1	N						+	H		+					+		X
Relinquished by:	Date: Time: 5-18-20 14:00	Received by:	Ri)	D. 3-12	ate:		Time:	4:	00		LAB	US		F	-	Sta		d							
Relinquished by:	Date: Time: 5-8-20 (G-co) Date: Time:	Received by:	-		5	18	ate:	5	Time:	6-1		Sam	ole Te	mper	rature	9	RUSH: Same Day 24 hr. 48 hr. 72 hr. Rush Charges Authorized										
		1 1.	appo	0	9					84	5	(Cir-	la) II	ANG	55:									Report			
11.		OHIOHVA	-0011									(CITC	ie) H	AND	DEL	IVE	ILD	FEL	JEX	UPS	S Tr	acking	7#:				

4430 34237093 28 total No TB

1.8-2=1.6 MAG

1220029

Page 117 of 150

29 Page: 3 of 3

T

Tetra Tech, Inc.

901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946

	= 332 th = 2021, 1110.								682-39																		
Client Name:	Conoco Phillips	Site Manag	er:	Ch	ristian	Llul	1	T				T							YS								
Project Name:	COP EVGSAU 3332-519	Contact Info	o:		nail: ch					ch.cor	n	1	1	1	(Ci	rcl	le or Specify Method No.)							1			
Project Location: (county, state)	Lea County, New Mexico	Project #:			2C-ME							1															
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	1										1													t)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	gnature:	,	Z	1-1	Il	/				1		- MRO)	e Hg	Se Hg									iched lis		
Comments: COPTETE	RA Acctnum					0						3260B	(2)	10 - ORO	Ag As Ba Cd Cr Pb Se Hg	Ag As Ba Cd Cr Pb Se Hg				8270C/625				(0)	(see atta		
		SAME	PLING	M	ATRIX	P		ERV	ATIVE		(Z	BTEX 8	(Ext to C35)	RO - DH	As Ba C	As Ba C	diloo	ames	8260B / 624		80			te TDS	Chemistry	Rinos	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020				Т				I NE	0 (3	118)05 (F	N C	14		tilles	Seriii Volaiiles		Semi. Vol.	12/6	(2040	0.00	Sulfate	ater C	-	
(LAB USE)		DATE	TIME	WATER	SOIL	4CL	HNO3	ICE	NONE	# CONTAINERS	FILTERED (Y/N)	BTEX 8021	TPH TX1005	PAH 8270C		CLP Metals	TCLP Volar	RCI	GC/MS Vol.	GC/MS Se	PCB's 8082 / 608	NORM PI M (Ashe	Chloride 300.0	Chloride	General Water Chemistry (see attached list)	FPH 8015R	НОГР
	BH-4 (19'-20')	05/13/20	1320	Í	X			X		1	N							- 111	0	0	Δ.	2 0	- 0	0	O A	-	X
26	BH-5 (2'-3')	05/13/20	1400		X	1		Х		1	N	X		x	\vdash		+			H	+		X	H	+	H	^
21	BH-5 (4'-5')	05/13/20	1410		X	1		X		1	N	X		x			+	+		\forall			X	\rightarrow	-	H	
22	BH-5 (6'-7')	05/13/20	1420		X	T		Х		1	N	X		x	\forall		+			\Box	1	+	X	-		H	
23	BH-5 (9'-10')	05/13/20	1430		X	1		Х		1	N	X		x			+	+	H		+		X	-	+	H	
	BH-5 (14'-15')	05/13/20	1440		X			X		1	N	Н	1	+			+	+						\Box		\Box	X
	BH-5 (19'-20')	05/13/20	1450		X			Х		1	N	H	1	+			+	+	H	\Box				H	+	H	X
24	AH-1 (0'-1')	05/13/20	1530		Х			X		1	N	X		x									X				
						+	H					H		-			-	+			+	+	-		-	H	
Relinquished by: S-/ Relinquished by:	3 10 00 14.00	Received/by:	St	9)	54	ate:	22		4:	20			B U		F	>		tanda								
Relinquished by:	Date: Time: 5-18-20 (4:-8) Date: Time:	Received by:	V.	<	5-1	18	ate:	6	Time:	6:	0	Sam	ple T	empe	eratur	е	RUSH: Same Day 24 hr. 48 hr. 72 hr. Rush Charges Authorized										
ioniquation by.	Date: Time:	Received by:	ppa	0	5		19		Time:	84	5	1						Sp	ecial	Repo	ort Lir	nits o	r TRR	P Rep	oort		
4430	3423 7093 28 tota	ORIGINA	L'COPY									(Circ	cle)	HANI	D DEI	LIVE	RED	FEI	DEX	UP	S	Track	king #				

4430 3423 7093 28 total Note

1.8-2=16 My

Pace Analytical National Center for Testing & Innov Cooler Receipt Form	vation	
Client: COPTETRA	12200	29
Cooler Received/Opened On: 5 / 9 / 20 Temperature:	1.6	
Received By: Michael Pappas		
Signature: Mappa		
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		
COC Signed / Accurate?		
Bottles arrive intact?	/	William Carl
Correct bottles used?	/	
Sufficient volume sent?	/	
If Applicable		
VOA Zero headspace?		
Preservation Correct / Checked?		

APPENDIX D Soil Boring Logs

	<u>a by</u>	<u>OCD</u>	: 7/24	4/2020	0:2	0:25	AM						<u>Page 120</u>
212	2C-ME	0-0218	31	T	F	ETR	ATEC	Н				LOG OF BORING AH-1	Page 1 of 1
Proje	ect Na	ame:	EVG	SAU 3	332	-519	Flov	vline	Rele	ease			
Bore	ehole l	Location	on: G	SPS: 32.7	78856	62°, -1	03.475	5353°				Surface Elevation: 3954 ft	
			er: A							В		ole 2 Date Started: 5/13/2020 Date Finished	: 5/13/2020
						(9)					iaiiie	WATER LEVEL OBSERVATIONS While Drilling □ DRY ft Upon Completion of Drilling □ DRY	
		,	∫€	Ê	/ (%)	% 			<u> </u>			Remarks:	<u></u>
DEPTH (ft)	OPERATION TYPE	SAMPLE T CHI OPIDE EIELT	k screening (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (E) HE GE GE HE GE GE HE GE GE HE GE G	REMARKS
		nn,		21.2							<u> </u>	-TOPSOIL- Brown, loose, with organics, no odor,	AH-1 (0'-1')
		۷]									1/ . 11	no staining. 1 1 Bottom of borehole at 1.0 feet.	-
2000	ipler		Split Spoon			e Line) pera ypes	tion			Hand Auger Notes:	

212C-MD-02181	TE TETRATECH	н	LOG OF BORING BH-1							
Project Name: EV0	GSAU 3332-519 Flowlin	line Release								
Borehole Location:	GPS: 32.788358°, -103.47517		Surface Elevation: 3955 ft							
Borehole Number:	BH-1	Boreh Diame	ole ster (in.): 8 Date Started: 5/13/2020 Date Finished:	: 5/13/2020						
E E E D bbm)	ppm) ERY (%) TENT (%)	×	WATER LEVEL OBSERVATIONS While Drilling □ DRY ft Upon Completion of Drilling □ DR Remarks:	RY ft						
DEPTH (ft) OPERATION TYPE SAMPLE THE SAMPLE SCREENING (ppm)		T LIQUID LIMIT PLASTICITY INDEX MINUS NO. 200 (%) GRAPHIC LOG		REMARKS						
194	2.5	\triangle \gamma_1 \gamma_2 \gamma_1 \gamma_1 \gamma_2 \gamm		BH-1 (0'-1')						
	1.4		-CALICHE- White, hard, indurated, heavily	BH-1 (2'-3')						
5 95.1	1.1		,	BH-1 (4'-5')						
	0.9		-SM- SILTY SAND: White, with occasional gravel, heavily cemented, with no odor, no staining.	BH-1 (6'-7')						
10 86.1	1		.]	BH-1 (9'-10')						
Sameles		operation.	Bottom of borehole at 10.0 feet.							
Sampler Types: Split Spoon Shelby Bulk Sample Grab Sample	Acctate Liner Typ	peration pes: Mud Rotary Continuous Flight Auger Wash Rotary	Hand Auger Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the "Remarks" or Surface elevation is an estimated value.	olumn.						

212C-MD-02181	TETRATECH	LOG OF BORING BH-2 Page 1 of 1								
Project Name: EVGS	SAU 3332-519 Flowline Release									
Borehole Location: G	SPS: 32.788208°, -103.475431°	Surface Elevation: 3957 ft								
Borehole Number: B	H-2 Bor	ehole neter (in.): Date Started: 5/13/2020 Date Finished	d: 5/13/2020							
E ELD ppm)	ppm) ERY (%) FENT (%) 5f) UDEX 6)	WATER LEVEL OBSERVATIONS While Drilling ☐ DRY ft Upon Completion of Drilling ☐ DRY	RY_ft							
OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)		MATERIAL DESCRIPTION (i) HEAD	REMARKS							
351	19	gry no stanning.	BH-2 (0'-1')							
420	1.2	-CALICHE- White, hard, indurated, heavily cemented, with no odor, no staining.	BH-2 (2'-3')							
5 551	1.3	5	BH-2 (4'-5')							
334	1.8	-SM- SILTY SAND: White, with occasional gravel, heavily cemented, with no odor, no staining.	BH-2 (6'-7')							
10 209	1.1		BH-2 (9'-10')							
10 17 // /		Bottom of borehole at 10.0 feet.	,							
Sampler Salit	Acetate Liner Operation									
Sampler Types: Split Spoon Shelby Bulk Sample Grab Sample	Acetate Liner Vane Shear California Test Pit Coperation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Hand Auger Air Rotary Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the "Remarks" of Surface elevation is an estimated value.	column.							

			Page 1 of 1							
Project Name: EVGSAU 33	332-519 Flowline Release		•							
Borehole Location: GPS: 32.78	88357°, -103.475762°	Surface Elevation: 3956 ft								
Borehole Number: BH-3	Borel Diam	hole started: 5/13/2020 Date Finished	d: 5/13/2020							
E E E bbm)		WATER LEVEL OBSERVATIONS	RY_ft							
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm) UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%) MOISTURE CONTENT (%) DRY DENSITY (pcf) T LIQUID LIMIT D PLASTICITY INDEX MINUS NO. 200 (%) GRAPHIC I OG		REMARKS							
191 1.2	7 - 7 2 - 7	101 0012 Brown, locos, mar organico, no odor,	BH-3 (0'-1')							
170 1.4		1.5	BH-3 (2'-3')							
5 105 1.1		5	BH-3 (4'-5')							
121 0.9		-SM- SILTY SAND: White, with occasional gravel, heavily cemented, with no odor, no staining.	BH-3 (6'-7')							
10 99 1.3			BH-3 (9'-10')							
Bottom of borehole at 10.0 feet.										
Shelby Va Bulk Sample Grab	Operation Types: Ane Shear Alifornia Alifornia Best Pit Operation Types: Mud Rotary Flight Auger Wash Rotary Drilling Equipment: A	Hand Auger Air Rotary Air Rotary Direct Push Core Barrel Driller: Scarborough Drilling	column.							

212C-MD-02181 TETRATECH					L	OG OF BORING BH-4			Page 1 of 1							
Proje	Project Name: EVGSAU 3332-519 Flowline Release							vline	Rele	ease						•
Bore	hole	Lo	cation:	GPS: 32.7	78837	71°, -1	03.475	5326°				Surface Elevation	: 3954 ft			
Bore	hole	Nu	mber:	BH-4						E	Boreho Diame	ole eter (in.):	Date Started: 5/13/2020	Date Fi	nished	d: 5/13/2020
	111		LD (md¢	(mda	ERY (%)	ENT (%)	(i)		DEX		Jiame	\	WATER LEVEL OBSERVATIO ✓ DRY ft Upon Completion of D		Ā D	PRY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	T LIQUID LIMIT	D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATE	ERIAL DESCRIPTION		DEPTH (ft)	REMARKS
												Previously ex	cavated and not replaced.			
_	\ \ \ \	X									> - \(\) - \(\) - \(\) - \(\)	-CALICHE- V cemented, wit	Vhite, hard, indurated, heavily th no odor, no staining.	-	1.5 —	BH-4 (2'-3')
5		X													_	BH-4 (4'-5')
- - - - 10		X	95.3	2.3								-SM- SILTY Scemented, with	SAND: White, with low gravel, he th no odor, no staining.	avily		BH-4 (6'-7') BH-4 (9'-10')
		X		1.6											- - -	
_	$\rangle \rangle$														_	
		X	70.4	1.1								-SM- SILTY S moderate cen	SAND: Tan, with moderate grave nented, with no odor, no staining.	l, -	_17 	
												Bot	tom of borehole at 20.0 feet.			
Sam	Sampler Spoin Acetate Liner Operation Types: Whand Auger Notes:															
Types: Spoon Shelby Vane Shear Shelby Vane Shear Shelby California Sample Sample Test Pit Drilling Equipment: As					Air Rotary An Su Direct Push Core Barrel	alytical samples are shown in the rface elevation is an estimated v	e "Rema alue.	rks" (column.							

212C-MD-02181 TETRATECH					L	OG OF BORING BH-5			Page 1 of 1							
Project Name: EVGSAU 3332-519 Flowline Release							Flov	vline	Rele	ease						
Bore	hole	Lo	cation:	GPS: 32.	7884	12°, -1	03.475	5579°				Surface Elevation	: 3957 ft			
Bore	hole	Nu	mber:	BH-5						E	Boreho Diame	ole eter (in.):	Date Started: 5/13/2020	Date Fir	nished	d: 5/13/2020
			(mdc	(mdt	ERY (%)	ENT (%)	(DEX		Jiame	'	WATER LEVEL OBSERVATIO ☐ DRY ft Upon Completion of D		Ā D	RY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	T LIQUID LIMIT	D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG		ERIAL DESCRIPTION		DEРТН (ft)	REMARKS
												Previously ex	cavated and not replaced.			
_		X									> - \(\) - \(\) - \(\) - \(\)	-CALICHE- V cemented, wir	White, hard, indurated, heavily th no odor, no staining.	-	1.5 -	BH-5 (2'-3')
5_		X													_	BH-5 (4'-5')
- -		X	80.4	1.4							> - \ - \ - \ - \ - \ - \ - \ - \ - \ -	-SM- SILTY scemented, with	SAND: White, with low gravel, he th no odor, no staining.			BH-5 (6'-7')
		X		1.1										-	_	BH-5 (9'-10')
		X		0.4										-	_ _ _ 17	
		X	79.1	1.2								-SM- SILTY S moderate cen	SAND: Tan, with moderate grave nented, with no odor, no staining.	I,	_ _ _ _ 20	
	\	1			•			•				Bot	tom of borehole at 20.0 feet.			
Sampler Types: Split Spoon Acetate Liner Vane Shear Bulk Sample California Grab Sample Test Pit Operation Types: Mud Rotary Flight Auger Wash Rotary					Hand Auger Air Rotary Direct Push Core Barrel	es: alytical samples are shown in the rface elevation is an estimated v	e "Remai alue.	rks" (column.							
Logo	er.	loo	Tulor					rillin	a Ea	iinma	nt. Vir	. Potoni Dril	ler: Scarborough Drilling			

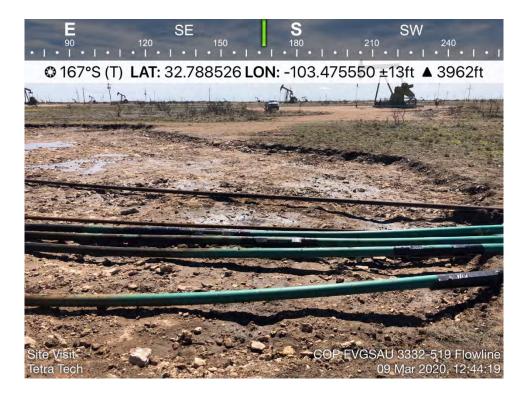
APPENDIX E Photographic Documentation

TETRA TECH, INC. PROJECT NO. 212C-MD-02181	DESCRIPTION	View east. Impacted area from the western extent.	1
	SITE NAME	EVGSAU 3332-519 Flowline Release	1/10/2020

TETRA TECH, INC. PROJECT NO. 212C-MD-02181	DESCRIPTION	View east. Release source at fiber flow lines.	2
	SITE NAME	EVGSAU 3332-519 Flowline Release	1/10/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View northeast. Northern portion of the impacted area.	3
212C-MD-02181	SITE NAME	EVGSAU 3332-519 Flowline Release	3/9/2020

TETRA TECH, INC.	DESCRIPTION	View southwest. Northeastern extent of scraped area.	4
212C-MD-02181	SITE NAME	EVGSAU 3332-519 Flowline Release	3/9/2020


TETRA TECH, INC. PROJECT NO. 212C-MD-02181	DESCRIPTION	View south. Scraped area from near northern extent.	5
	SITE NAME	EVGSAU 3332-519 Flowline Release	3/9/2020

TETRA TECH, INC. PROJECT NO. 212C-MD-02181	DESCRIPTION	View northeast. Repairs at release point near the northwest extent.	6
	SITE NAME	EVGSAU 3332-519 Flowline Release	3/9/2020

TETRA TECH, INC. PROJECT NO. 212C-MD-02181	DESCRIPTION	View west. Flowlines running across release area.	7
	SITE NAME	EVGSAU 3332-519 Flowline Release	3/9/2020

TETRA TECH, INC.	DESCRIPTION	View south. Southern portion of release area.	8
PROJECT NO. 212C-MD-02181	SITE NAME	EVGSAU 3332-519 Flowline Release	3/9/2020

APPENDIX F NMSLO Seed Mixture Details

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

EVGSAU 3332-519

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map (EVGSAU 3332-519 Release)	
Legend	
Map Unit Legend (EVGSAU 3332-519 Release)	
Map Unit Descriptions (EVGSAU 3332-519 Release)	
Lea County, New Mexico	13
KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes	13
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot Sandy Spot

Severely Eroded Spot

Sinkhole

Sodic Spot

Slide or Slip

Spoil Area

å

Stony Spot

Very Stony Spot

Ŷ

Wet Spot Other

Δ

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

00

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 17, Jun 8, 2020

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Sep 18, 2016—Nov 20. 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend (EVGSAU 3332-519 Release)

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
KU	Kimbrough-Lea complex, dry, 0 to 3 percent slopes	0.3	100.0%			
Totals for Area of Interest		0.3	100.0%			

Map Unit Descriptions (EVGSAU 3332-519 Release)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The

delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw46 Elevation: 2,500 to 4,800 feet

Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F

Frost-free period: 180 to 220 days

Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough and similar soils: 45 percent

Lea and similar soils: 25 percent Minor components: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kimbrough

Setting

Landform: Plains, playa rims

Down-slope shape: Linear, convex

Across-slope shape: Linear, concave

Parent material: Loamy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam

Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 4 to 18 inches to petrocalcic

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.01 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 95 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Sodium adsorption ratio, maximum in profile: 1.0

Available water storage in profile: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: Very Shallow 12-17" PZ (R077DY049TX)

Hydric soil rating: No

Description of Lea

Setting

Landform: Plains

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous, loamy eolian deposits from the blackwater draw formation of pleistocene age over indurated caliche of pliocene age

Typical profile

A - 0 to 10 inches: loam Bk - 10 to 18 inches: loam

Bkk - 18 to 26 inches: gravelly fine sandy loam Bkkm - 26 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 22 to 30 inches to petrocalcic

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 90 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Sodium adsorption ratio, maximum in profile: 3.0

Available water storage in profile: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: Sandy Loam 12-17" PZ (R077DY047TX)

Hydric soil rating: No

Minor Components

Douro

Percent of map unit: 12 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: Sandy Loam 12-17" PZ (R077DY047TX)

Hydric soil rating: No

Kenhill

Percent of map unit: 12 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: Clay Loam 12-17" PZ (R077DY038TX)

Hydric soil rating: No

Spraberry

Percent of map unit: 6 percent Landform: Plains, playa rims
Down-slope shape: Linear, convex

Across-slope shape: Linear Ecological site: Very Shallow 12-17" PZ (R077DY049TX)

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

SLO Seed Mix SM Series

1 REVEGETATION PLANS

The following Revegetation Plans were developed for revegetation of sites in southeastern New Mexico. To determine which revegetation plan is appropriate follow procedures in the section titled Determining the Revegetation Plan.

Revegetation Plans contain seed mixtures, as well as seed bed preparation and planting requirements. The detailed instructions for seedbed preparation and planting can be found in the section Revegetation Techniques.

Table 3 - Revegetation Plans, Codes, and Soil Types for Southeastern New Mexico

REVEGTATION PLANS	CODE	SOIL TEXTURES
Clay	С	Clay, Silty Clay, Stony Silty Clay, Clay Loam, Silty Clay Loam (including saline and sodic Clay soils)
Loam	L	Silty Loam, Cobbly Silt Loam, Stony Silt Loam, Silt, Loam, Sandy, Clay Loam
Sandy Loam	SL	Very Fine Sandy Loam, Fine Sandy Loam, Cobbly Fine Sandy Loam, Sandy Loam, Cobbly Sandy Loam, Gravelly Fine Sandy Loam, Very Gravelly Fine Sand Loam, Stony Fine Sandy Loam, Stony Sandy Loam
Shallow	SH	Rocky Loam, Cobbly Loam
Course	CS	Gravelly Loam, very Gravelly Loam, Gravelly Sandy Loam, Very Gravelly Sandy Loam, Stony Loam, Stony Sandy Loam
Sandy	S	Loamy Fine Sand, Loam Sand, Very Gravelly Loamy Fine Sand
Blow Sand	BS	Fine Sand, Sand, Coarse Sand
Mountain Meadow	MM	Clay, Loam
Mountain Upland	MU	Clay Loam, Loam

NMSLO Seed Mix

Sandy Loam (SL)

SANDY LOAM (SL) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX	
Grasses:				
Galleta grass	Viva, VNS, So.	2.5	${f F}$	
Little bluestem	Cimmaron, Pastura	2.5	${f F}$	
Blue grama	Hachita, Lovington	2.0	D	
Sideoats grama	Vaughn, El Reno	2.0	${f F}$	
Sand dropseed	VNS, Southern	1.0	S	
Forbs:				
Indian blanketflower	VNS, Southern	1.0	D	
Parry penstemon	VNS, Southern	1.0	D	
Blue flax	Appar	1.0	D	
Desert globemallow	VNS, Southern	1.0	D	
Shrubs:				
Fourwing saltbush	VNS, Southern	2.0	D	
Common winterfat	VNS, Southern	1.0	F	
Apache plume	VNS, Southern	0.75	\mathbf{F}	
	Total PLS/acro	e 17.75		

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box

- VNS, Southern No Variety Stated, seed should be from a southern latitude collection of this species.
- Double above seed rates for broadcast or hydroseeding.
- If Parry penstemon is not available, substitute firecracker penstemon.
- If desert globemallow is not available, substitute scarlet globemallow or Nelson globemallow.
- If a species is not available, provide a suggested substitute to the New Mexico Land Office for approval. Increasing all other species proportionately may be acceptable.

