District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: DKS Transport LLC	OGRID: 330167
Contact Name: Josh Moser	Contact Telephone: 405-517-2408
Contact email: jmoser@dkstransport.com	Incident # (assigned by OCD)
Contact mailing address: PO Box 1084, Alva, OK 73717	

Location of Release Source

(NAD 83 in decimal degrees to 5 decimal places)

Longitude

-104.21184

Latitude 32.70417

Site Name: DKS Truck Rollover SpillSite Type: Intersection of HWY 206 and HWY 235Date Release Discovered: 12/11/2018API# (if applicable)

Unit Letter	Section	Township	Range	County
G	31	18S	28E	Eddy

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below) Crude Oil Volume Released (bbls) 10-12 Volume Recovered (bbls) ~6 Produced Water Volume Released (bbls) Volume Recovered (bbls) Is the concentration of dissolved chloride in the Yes No produced water >10,000 mg/l? Condensate Volume Released (bbls) Volume Recovered (bbls) Natural Gas Volume Released (Mcf) Volume Recovered (Mcf) Other (describe) Volume/Weight Released (provide units) Volume/Weight Recovered (provide units)

Cause of Release

Tanker truck roll-over on HWY 235 (Curry Comb Rd) just before intersection with HWY 206 (Illinois Camp Rd). Roll-over resulted in approximately 10-12 bbls of crude oil spilled onto the ground west side of HWY 235.

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
Yes No	
If YES, was immediate ne	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:Josh Moser	Title: Manager DKS Transport
Signature:	Date:6/13/2019
email:jmoser@dkstransport.com	Telephone:
OCD Only	
Received by:	Date:

Incident ID

District RP Facility ID Application ID

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🛛 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Received by OCD: 10/2	6/2020 5:01:24 PM State of New M	exico		Page 4 of 238
			Incident ID	
age 4	Oil Conservation I	D1V1S10n	District RP	
			Facility ID	
			Application ID	
regulations all operators public health or the envi failed to adequately invo addition, OCD acceptan and/or regulations. Printed Name: Signature:	Hen	release notifications and perform co port by the OCD does not relieve the t pose a threat to groundwater, surfa operator of responsibility for comp Title:Manger DKS Date:10/9/2020	orrective actions for rele e operator of liability sho ace water, human health liance with any other fee S Transport	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only				
Received by:		Date:		

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

	<u>Closure Report Attachment Checklist</u>: Each of the following in	tems must be included in the closure report.
must be notified 2 days prior to liner inspection) In the notified 2 days prior to liner inspection) Image: Instruction of the instruction instruction instruction instruction instruction in the instruction of the instr	A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Description of remediation activities Including the provided set of the prov		of the liner integrity if applicable (Note: appropriate OCD District office
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name:Josh Moser	Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name:Josh Moser Title: Manager DKS Transport email:jmoser@dkstransport.com Date: COCD Only Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.	Description of remediation activities	
and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name:Josh Moser Title: Manager DKS Transport email:jmoser@dkstransport.com Date: COCD Only Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.		
email:jmoser@dkstransport.com Telephone: OCD Only Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date:	and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rem human health or the environment. In addition, OCD acceptance of a compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the con accordance with 19.15.29.13 NMAC including notification to the O	n release notifications and perform corrective actions for releases which a C-141 report by the OCD does not relieve the operator of liability mediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for tions. The responsible party acknowledges they must substantially inditions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete.
email:jmoser@dkstransport.com Telephone: OCD Only Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date:		The: Manager DKS Transport
email:jmoser@dkstransport.com Telephone: OCD Only Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date:	Signature:	Date:10/9/2020
Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date:		
Received by: Date: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date:		
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date:	OCD Only	
remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.	Received by:	Date:
	remediate contamination that poses a threat to groundwater, surface	water, human health, or the environment nor does not relieve the responsible
Printed Name: Title:	Closure Approved by:	Date:
	Printed Name:	Title:

Page 6

LT Environmental, Inc.

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

A proud member of WSP

October 9, 2020

New Mexico Oil Conservation Division District 2 811 South First Street Artesia, New Mexico 88210

RE: Closure Request DKS Transport Truck Rollover Spill Date December 11, 2018 Eddy County, New Mexico

Dear Mr. Bratcher:

LT Environmental, Inc. (LTE), on behalf of DKS Transport Trucking, LLC (DKS), is pleased to present the following Closure Request detailing site assessment, soil sampling, and remediation activities at the DKS Transport Truck Rollover (Site) located in Unit G, Section 31, Township 18 South, Range 28 East, in Eddy County, New Mexico (Figure 1). The purpose of the site assessment and soil sampling activities was to confirm the presence or absence of impacts to soil by a release of crude oil at the Site. Based on field observations, field screening, and subsequent confirmation soil sample laboratory analytical results documented in this Closure Request, DKS respectfully requests no further action (NFA) for this December 11, 2018 release.

RELEASE BACKGROUND

On December 11, 2018, a rollover of a DKS truck caused a release of crude oil to the western, southbound right-of-way (ROW) of State Highway 235 (also referred to as Curry Comb Road), resulting in the release of approximately 10 barrels (bbls) to 12 bbls of crude oil. A vacuum truck was immediately dispatched to the Site to recover freestanding fluids; approximately 6 bbls of crude oil were recovered. The net volume of fluids released was approximately 4 bbls to 6 bbls. The release occurred within the ROW with an estimated spill extent of approximately 8,000 square feet. DKS reported the release in December 2018 to the New Mexico Oil Conservation Division (NMOCD) via email and on a Notification and Corrective Action Form C-141 (Form C-141).

SITE CHARACTERIZATION

LTE characterized the Site according to Table 1, *Closure Criteria for Soils Impacted by a Release*, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC). Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater

well with depth to groundwater data is United States Geological Survey (USGS) well 324154104115201, located approximately 1.08 miles southeast of the Site. The well was recently measured in December 2015 and has a reported depth to water of 159 feet with a total well depth of 160 feet bgs. All wells used for depth to groundwater determination are depicted on Figure 1. The referenced well records are included in Attachment 1.

The closest continuously flowing or significant watercourse to the Site is an intermittently flooded pond, located approximately 850 feet northwest of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

CLOSURE CRITERIA

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 20,000 mg/kg

Additionally, the reclamation of the affected ROW must be comprised of non-waste containing earthen material exhibiting TPH concentrations below 100 mg/kg and chloride concentrations below 600 mg/kg, which was applied per NMAC 19.15.29.13.D (1) to the top 4 feet.

SITE ASSESSMENT ACTIVITIES AND ANALYTICAL RESULTS

From December 2018 to May 2020, DKS retained Souder, Miller & Associates (SMA) for site assessment and remediation. SMA performed delineation activities followed by a surface scrape and an application of Cool-Ox[®], an oxidant, on the southern portion of the release extent following surficial scraping of crude-oil saturated soils. SMA prepared a *Remediation Plan for the DKS Transport/Artesia Crude Oil Release* (Remediation Plan), dated March 3, 2020, which describes remedial actions completed by SMA and what remedial actions SMA proposed to address residual impacts in soil. The Remediation Plan is included in Attachment 2.

In June 2020, DKS retained LTE to complete remedial actions for the Site. LTE reviewed the March 2020 Remediation Plan developed by SMA, and revised remedial actions to additional excavation in order to address residual hydrocarbon impacts in soil but utilized the confirmation sampling plan included in the Remediation Plan. Additional details regarding confirmation sampling are described in subsequent sections of this Closure Request.

The revised remedial actions began as soon as DKS received the executed permit from the New Mexico State Land Office (SLO) granting access to remediate soil impacted by the release. The executed permit was received on August 13, 2020 and on August 26, 2020, LTE personnel visited the Site to evaluate the release extent based on information provided on the Form C-141, information provided by DKS on remediation activities up to August 2020, and visual observations. LTE personnel collected three preliminary soil samples (SS01 through SS03) within the release extent at a depth of approximately 0.5 feet bgs to assess residual impacts in soil at the Site. Preliminary soil samples were field screened for volatile aromatic hydrocarbons and chloride utilizing a calibrated photoionization detector (PID) and Hach[®] chloride QuanTab[®] test strips, respectively. The release extent and preliminary soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2.

The preliminary soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody (COC) procedures to Xenco Laboratories (Xenco) in Carlsbad, New Mexico, for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

According to laboratory analytical results, TPH-GRO, TPH-DRO, TPH, and chloride in preliminary assessment soil sample SS01 and SS03 were reported at concentrations exceeding the reclamation requirement for soil between the ground surface and 4 feet bgs. In addition, TPH-GRO, TPH-DRO, and TPH concentrations in soil sample SS03, located closest to the point of release, exceeded the Closure Criteria. Based on visible staining in the release extent, elevated field screening results, and laboratory analytical results, additional excavation appeared to be corroborated with previous data and assessments.

Laboratory analytical results for the three preliminary soil samples are summarized in Table 1. The laboratory analytical report is included in Attachment 3.

EXCAVATION ACTIVITIES AND CONFIRMATION SOIL SAMPLE ANALYTICAL RESULTS

On August 31, 2020, LTE personnel were at the Site to oversee site assessment and excavation activities. Impacted soil was excavated from the release extent as indicated by field screening activities, laboratory analytical results, and visible staining. Excavation activities were performed

using a track-mounted backhoe, transport vehicle, and hydrovacuum truck. The excavation occurred in the ROW, adjacent to the pasture. To direct excavation activities, LTE screened soil for volatile aromatic hydrocarbons and chloride. Photographic documentation is included in Attachment 4.

On September 1, 2020, LTE collected 5-point composite soil samples using an EPA-approved Visual Sampling Plan (VSP) from the excavation, which was developed in the Remediation Plan. The VSP is a plan based on statistical sampling theory, which provides a randomized sampling plan representative of the soils that remain in place after the excavation. Based upon the release area, the VSP recommends nine randomly placed, composite samples for laboratory analysis (Attachment 5). The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. A total of nine composite floor soil samples (FS01 through FS09) were collected from the excavation at depths ranging from approximately 0.5 feet bgs to 1.5 feet bgs. The excavation soil samples were collected, handled, and analyzed following the same procedures as described above. The locations of the final extent of the excavation and September 1, 2020 confirmation soil samples are presented on Figure 3.

The excavation area totaled approximately 7,200 square feet. A total of approximately 240 cubic yards of impacted soil was removed during excavation activities overseen by LTE. The impacted soil was transported and properly disposed of at the R360 Facility in Hobbs, New Mexico. After completion of confirmation sampling, the excavation area was secured with fencing.

All laboratory analytical results for the nine confirmation floor samples were compliant with the Closure Criteria; however, concentrations TPH for excavation floor samples FS01, FS02, and FS09, collected on September 1, 2020, exceeded reclamation requirements applied in the top 4 feet of the pasture. As such, additional soil removal was warranted.

A new, randomized sampling plan was computed to determine the location of confirmation soil samples for collection following the scrape of the entire excavation, which is included in Attachment 5. On September 10 and 11, 2020, LTE personnel returned to the Site to oversee further excavation of the release extent. To direct excavation activities, LTE utilized equipment as described above and screened soil for volatile aromatic hydrocarbons and chloride. Following removal of additional impacted soil, LTE personnel collected nine additional confirmation samples following the new VSP sampling plan. The floor sample locations and release extent are depicted on Figure 4. An additional 100 cubic yards of impacted soil were removed and disposed of at the R360 disposal facility in Hobbs, New Mexico.

All laboratory analytical results for the nine confirmation floor samples were compliant with the Closure Criteria. Laboratory analytical results for the second set of randomized excavation confirmation floor samples, collected on September 11, 2020 indicated the chloride

concentration in floor sample FS03 exceeded the reclamation requirement applied to the top 4 feet of the pasture. Additional soil removal was warranted.

A third randomized sampling plan was computed to determine locations for the final confirmation soil samples following the scrape of the entire excavation, which is included in Attachment 4. On September 24, 2020, LTE personnel returned to the Site to oversee excavation of the release extent to address the remaining impacted soil. Excavation was completed using a hydrovacuum truck and directed by field screenings using the methods described above. After completing the excavation, LTE personnel collect nine randomized confirmation floor soil samples following the VSP sampling plan. Another 10 cubic yards of impacted soil were removed and disposed of at R360 disposal facility in Hobbs, New Mexico.

Laboratory analytical results for all final excavation confirmation soil samples (FS01 through FS09) collected on September 24, 2020, indicated benzene, BTEX, TPH-GRO, TPH-DRO, TPH, and chloride concentrations were compliant with the Closure Criteria and were compliant with the reclamation requirements. The final excavation extent and confirmation floor samples are depicted on Figure 5. Laboratory analytical results are summarized in Table 1 and laboratory analytical reports are included in Attachment 3.

CLOSURE REQUEST

Site assessment and excavation activities were conducted at the Site to address the December 11, 2018 release of crude oil to the ROW of State Highway 235. Laboratory analytical results for excavation soil samples, collected from the final excavation extent, indicated benzene, BTEX, TPH-GRO, TPH-DRO, TPH, and chloride concentrations were compliant with the Closure Criteria. Additionally, soil samples collected in the pasture from the top 4 feet of the subsurface are compliant with the reclamation requirements. Based on a review of the excavation soil sample analytical results, no further remediation appears warranted. DKS will backfill the excavation with materials purchased locally and recontour the Site to match pre-existing site conditions. The excavation will be re-seeded with a regionally approved seed mixture in the fall.

Initial response efforts which included removal of freestanding fluids via hydrovac and excavation of impacted soil have mitigated soil impacts at this Site. In addition to the surficial scrape of crude oil-saturated soils remaining onsite, completed by SMA, a total of 350 cubic yards of impacted soil have been removed from the Site. Depth to groundwater has been determined to be greater than 100 feet bgs and no other sensitive receptors are near the release extent. LTE and DKS believe these remedial actions are protective of human health, the environment, and groundwater. As such, DKS respectfully requests NFA for this release which occurred on December 11, 2018.

If you have any questions or comments, please do not hesitate to contact Mr. Daniel Moir at (432) 236-3849.

Sincerely,

LT ENVIRONMENTAL, INC.

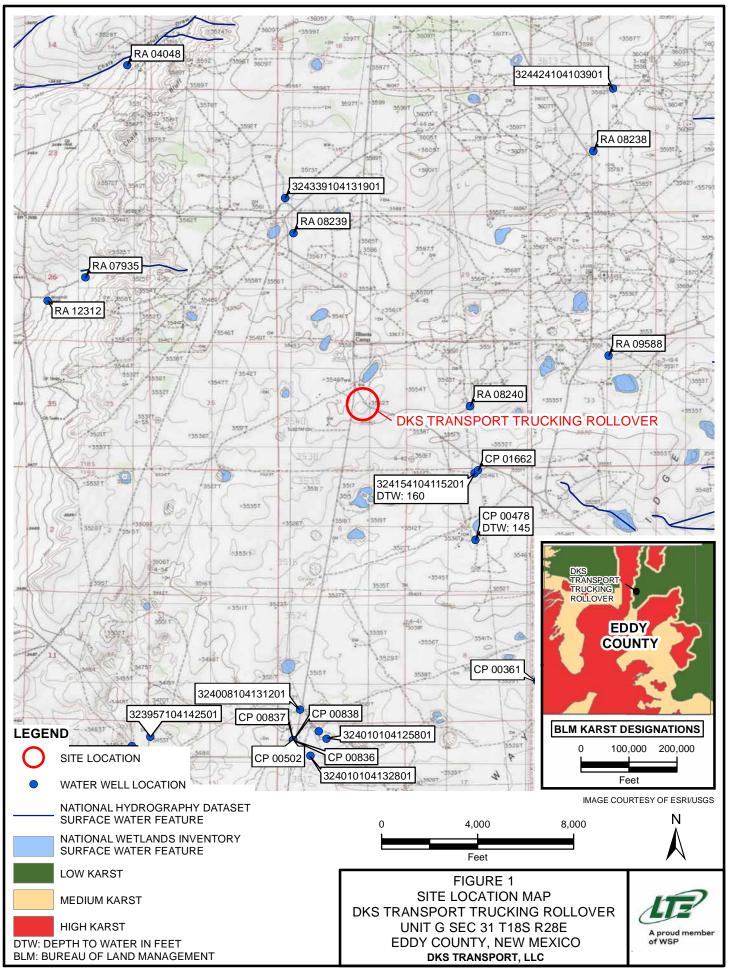
for to

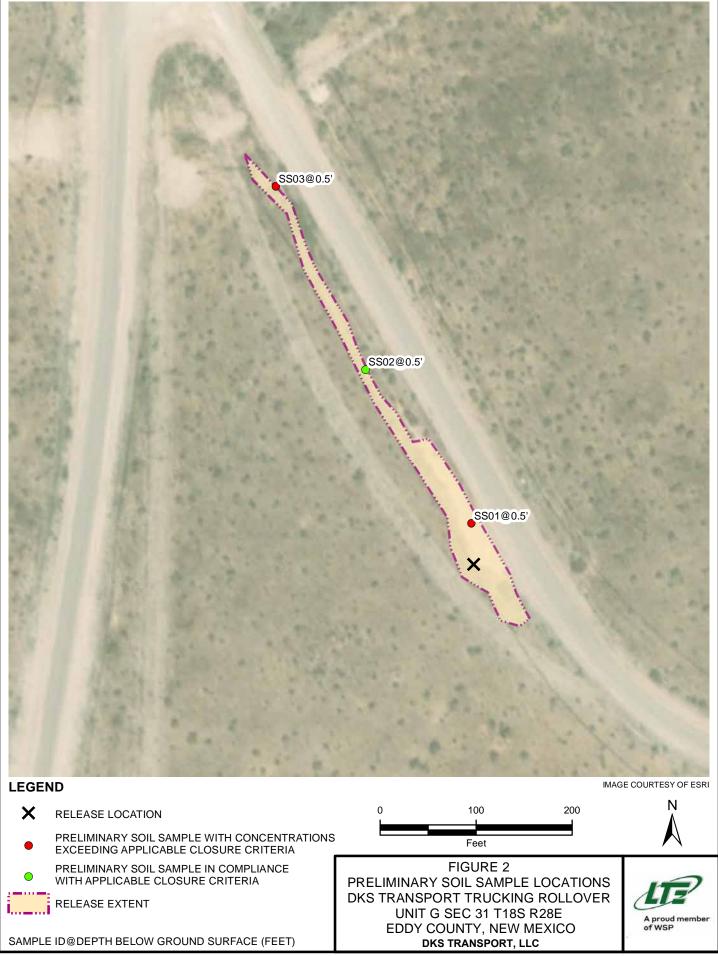
Spencer Lo Staff Geologist

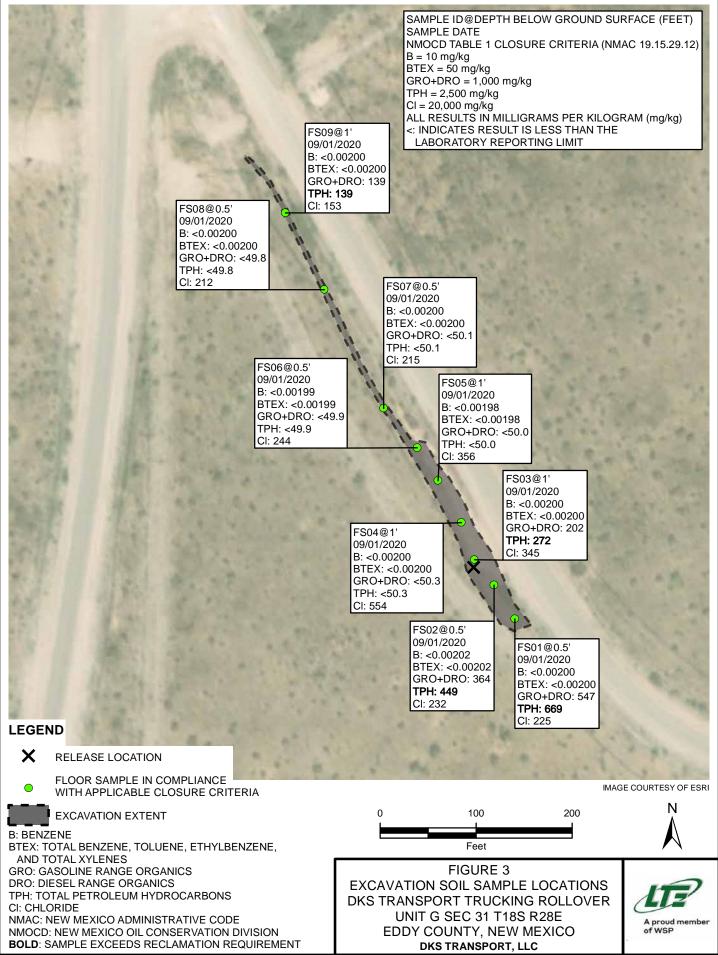
Daniel R. Moir, P.G. Senior Geologist

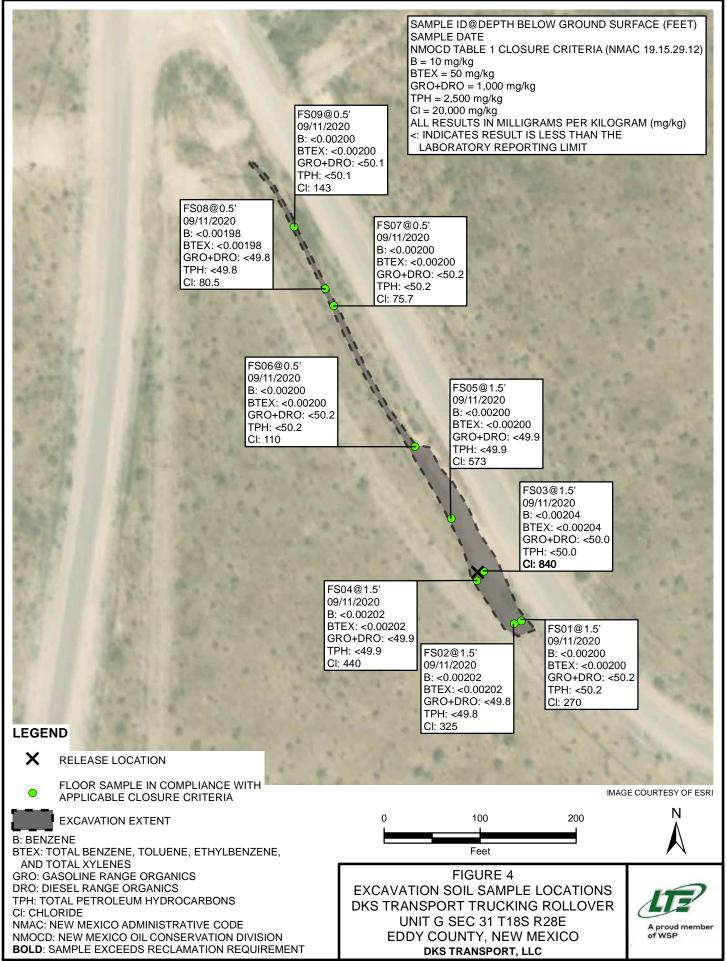
cc: Josh Moser, DKS Richard L. Harness, LMH Environmental, Inc. Robert Hamlet, NMOCD Victoria Venegas, NMOCD Ryan Mann, New Mexico State Land Office

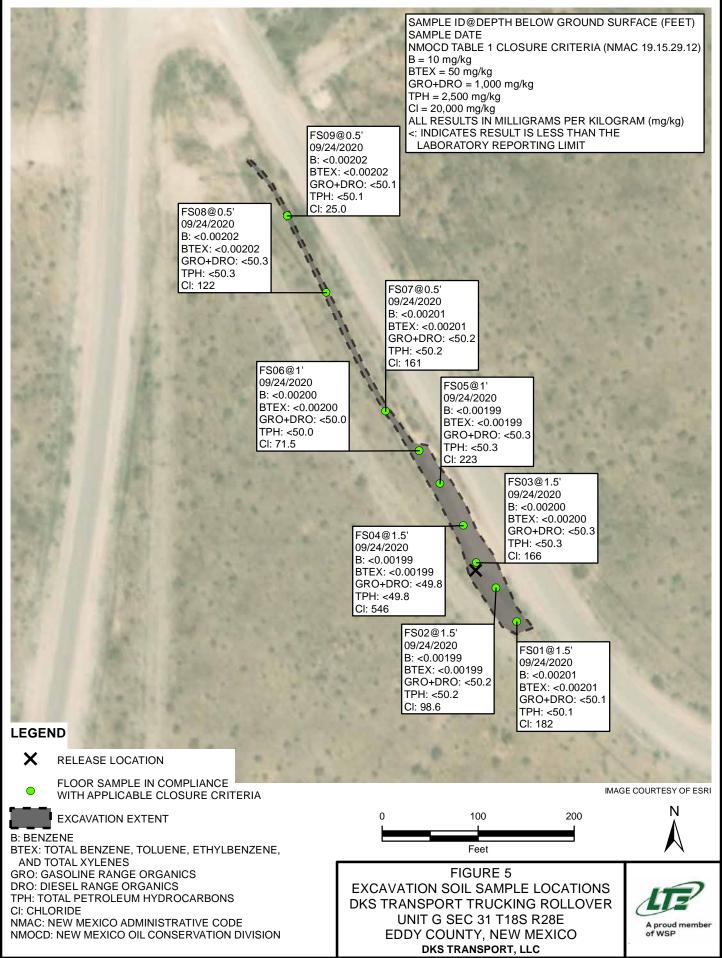
Attachments:


- Figure 1 Site Location Map
- Figure 2 Preliminary Soil Sample Locations
- Figure 3 Excavation Soil Sample Locations September 1, 2020
- Figure 4 Excavation Soil Sample Locations September 11, 2020
- Figure 5 Excavation Soil Sample Locations September 24, 2020
- Table 1 Soil Analytical Results
- Attachment 1 Referenced Well Records
- Attachment 2 SMA Remediation Work Plan
- Attachment 3 Laboratory Analytical Reports
- Attachment 4 Photographic Log
- Attachment 5 VSP Sampling Plans


Received by OCD: 10/26/2020 5:01:24 PM


•


FIGURES



Received by OCD: 10/26/2020 5:01:24 PM

-

TABLES

TABLE 1 SOIL ANALYTICAL RESULTS

DKS TRUCK ROLLOVER SPILL SPILL DATE DECEMBER 11, 2018 EDDY COUNTY, NEW MEXICO DKS TRUCKING, LLC

Sample Name	Sample Depth (feet bgs)	Sample Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
NMOCE	Table 1 Closur	e Criteria	10	NE	NE	NE	50	NE	NE	NE	1,000	2,500	20,000
SS01	0.5	08/26/2020	<0.00200	< 0.00200	<0.00200	<0.00200	<0.00200	<49.8	112	<49.8	112	112*	2420*
SS02	0.5	08/26/2020	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<50.0	<50.0	<50.0	<50.0	<50.0	44.2
SS03	0.5	08/26/2020	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<49.9	4,430	713	4,430	5,140	511
					VSP F	IELD SAMPLIN	G DATE 09/01	/2020					
FS01	0.5	09/01/2020	<0.00200	<0.00200	<0.00200	<0.00200	< 0.00200	<50.1	547	122	547	669*	225
FS02	0.5	09/01/2020	< 0.00202	< 0.00202	< 0.00202	< 0.00202	< 0.00202	<50.1	364	85.2	364	449*	232
FS03	1	09/01/2020	<0.00200	< 0.00200	< 0.00200	<0.00200	< 0.00200	<50.0	202	70.3	202	272*	345
FS04	1	09/01/2020	<0.00200	< 0.00200	< 0.00200	<0.00200	< 0.00200	<50.3	<50.3	<50.3	<50.3	<50.3	554
FS05	1	09/01/2020	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<50.0	<50.0	<50.0	<50.0	<50.0	356
FS06	0.5	09/01/2020	< 0.00199	< 0.00199	< 0.00199	<0.00199	< 0.00199	<49.9	<49.9	<49.9	<49.9	<49.9	244
FS07	0.5	09/01/2020	< 0.00200	< 0.00200	<0.00200	<0.00200	<0.00200	<50.1	<50.1	<50.1	<50.1	<50.1	215
FS08	0.5	09/01/2020	<0.00200	<0.00200	< 0.00200	<0.00200	< 0.00200	<49.8	<49.8	<49.8	<49.8	<49.8	212
FS09	1	09/01/2020	<0.00200	<0.00200	< 0.00200	<0.00200	< 0.00200	<49.9	139	<49.9	139	139*	153
					VSP F	IELD SAMPLIN	G DATE 09/11,	/2020					
FS01	1.5	09/11/2020	<0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<50.2	<50.2	<50.2	<50.2	<50.2	270
FS02	1.5	09/11/2020	<0.00202	<0.00202	< 0.00202	<0.00202	< 0.00202	<49.8	<49.8	<49.8	<49.8	<49.8	325
FS03	1.5	09/11/2020	< 0.00204	< 0.00204	< 0.00204	< 0.00204	< 0.00204	<50.0	<50.0	<50.0	<50.0	<50.0	840*
FS04	1.5	09/11/2020	< 0.00202	< 0.00202	< 0.00202	< 0.00202	< 0.00202	<49.9	<49.9	<49.9	<49.9	<49.9	440
FS05	1.5	09/11/2020	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<49.9	<49.9	<49.9	<49.9	<49.9	573
FS06	0.5	09/11/2020	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<50.2	<50.2	<50.2	<50.2	<50.2	110
FS07	0.5	09/11/2020	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<50.2	<50.2	<50.2	<50.2	<50.2	75.7
FS08	0.5	09/11/2020	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<49.8	<49.8	<49.8	<49.8	<49.8	80.5
FS09	0.5	09/11/2020	<0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<50.1	<50.1	<50.1	<50.1	<50.1	143

TABLE 1 SOIL ANALYTICAL RESULTS

DKS TRUCK ROLLOVER SPILL SPILL DATE DECEMBER 11, 2018 EDDY COUNTY, NEW MEXICO DKS TRUCKING, LLC

Sample Name	Sample Depth (feet bgs)	Sample Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
	VSP FIELD SAMPLING DATE 09/24/2020										-		
FS01	1.5	09/24/2020	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<50.1	<50.1	<50.1	<50.1	<50.1	182
FS02	1.5	09/24/2020	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<50.2	<50.2	<50.2	<50.2	<50.2	98.6
FS03	1.5	09/24/2020	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<50.3	<50.3	<50.3	<50.3	<50.3	166
FS04	1.5	09/24/2020	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<49.8	<49.8	<49.8	<49.8	<49.8	546
FS05	1	09/24/2020	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<50.3	<50.3	<50.3	<50.3	<50.3	223
FS06	1	09/24/2020	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<50.0	<50.0	<50.0	<50.0	<50.0	71.5
FS07	0.5	09/24/2020	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<50.2	<50.2	<50.2	<50.2	<50.2	161
FS08	0.5	09/24/2020	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<50.3	<50.3	<50.3	<50.3	<50.3	122
FS09	1.5	09/24/2020	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<50.1	<50.1	<50.1	<50.1	<50.1	25.0

Notes:

bgs - below ground surface

BTEX - benzene, toluene, ethylbenzene, and total xylenes

DRO - diesel range organics

GRO - gasoline range organics

mg/kg - milligrams per kilogram

Grey text - indicates soil was excavated

ORO - motor oil range organics NMAC - New Mexico Administrative Code

NMOCD - New Mexico Oil Conservation Division

NE - not established

TPH - total petroleum hydrocarbons

Bold - indicates result exceeds the applicable regulatory standard

< - indicates result is below laboratory reporting limits

Table 1 - closure criteria for soils impacted by a release per NMAC 19.15.29 August 2018

* - indicates result exceeds the applicable reclamation requirement

VSP - Visual Sampling Plan

Received by OCD: 10/26/2020 5:01:24 PM

•

USGS 324154104115201 19S.28E.05.21114

Available data for this site

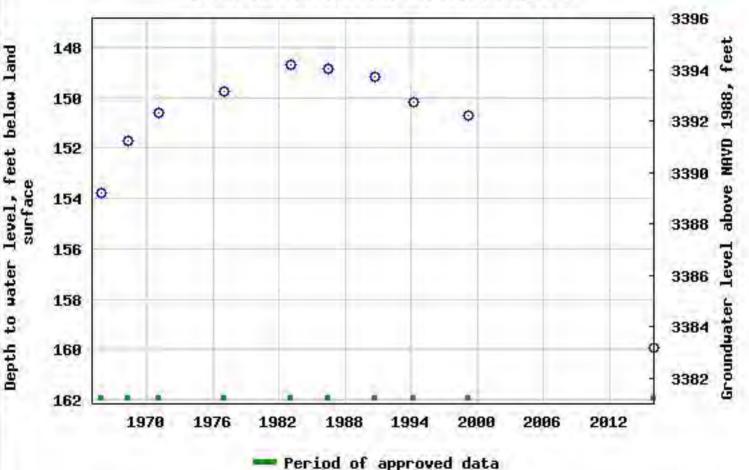
Well Site

DESCRIPTION:

Latitude 32°41'45.8", Longitude 104°11'48.7" NAD83 Eddy County, New Mexico , Hydrologic Unit 13060011 Well depth: 160 feet Land surface altitude: 3,543 feet above NAVD88. Well completed in "Rustler Formation" (312RSLR) local aquifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count	
Field groundwater-level measurements	1965-11-03	2015-12-16	10	
Revisions	Unavailable (site:0) (timeseries:0			


OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to <u>New Mexico Water Science Center Water-Data</u> <u>Inquiries</u>

Page 23 of 238

Received by OCD: 10/26/2020 5:01:24 PM

USGS 324154104115201 19S.28E.05.21114

New Mexico Office of the State Engineer Point of Diversion Summary

			< I				E 3=SW () largest)		,	D83 U	TM in meters)	
Well Tag	POD	Number	••				Tws			X	Ŷ	
0	CP (00478 POD1	1	1	4	05	19S	28E	575	5300	3617036* 🌍	
x Driller Lic	ense:	406	Drille	· Con	ipar	ıy:	TID	WEI	LL, CLYI	DE J.		
Driller Na	me:	CLYDE TIDWELL			-	-						
Drill Start	Date:	12/12/1969	Drill F	inish	Dat	te:	12	2/23/	1969	Pl	ug Date:	
Log File D	ate:	01/02/1970	PCW	Rcv I	Date	:	11	1/01/	1971	So	urce:	Shallow
Pump Typ	e:	SUBMER	Pipe D	oischa	irge	Size:				Es	timated Yield:	7 GPM
Casing Siz	e:	7.00	Depth Well:		312 feet		et	Depth Water:		145 feet		
x	Wate	er Bearing Stratificat	tions:		Тс	p I	Bottom	De	scription	1		
					15	50	160) Sa	ndstone/C	Grave	l/Conglomerate	
					20	00	262	Sa	ndstone/C	drave	/Conglomerate	
x Casing Perfor		ations:		Та	op I	Bottom	l					
					14	10	262	2				
ĸ												

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability or suitability for any particular purpose of the data.

POINT OF DIVERSION SUMMARY

Received by OCD: 10/26/2020 5:01:24 PM

•

March 3, 2020

#5E29103-T2

NMOCD District 2 811 S. First St. Artesia, New Mexico 88210

SUBJECT: Remediation Plan for the DKS Transport/Artesia Crude Oil Release (OGRID P30056), Eddy County, New Mexico

Souder, Miller & Associates+201 S. Halagueno St.+Carlsbad, NM 88220

Mr. Bratcher:

On behalf of DKS Trucking, LLC, Souder, Miller & Associates (SMA) has prepared this Remediation Plan that describes the proposed sampling and remediation for a release of crude oil resulting from a truck rollover that occurred on December 11, 2018 in Eddy County, New Mexico. The location of the truck rollover is in Section 31, Township 18S, Range 28E, Eddy County, New Mexico, on New Mexico State Land. Figure 1 illustrates the vicinity and site location on an USGS 7.5-minute quadrangle map.

Table 1 summarizes information regarding the release.

Table 1. Release Information and Closure Criteria						
Name	DKS Transport, LLC Truck Rollover	DKS Transport, LLC				
Location	32.70417, -104.21184					
Estimated Date of Release	12/11/2018	Date Reported to NMOCD	C141 initially submitted 12/19/2018, C141 resubmitted 6/13/19 after obtaining OGRID			
Landowner	New Mexico State Land Office (SLO)					
Source of Release	Truck rollover					
Released Volume	10-12 bbls	Released Material	Crude Oil			
Recovered Volume	6 bbls	Net Release	4-6 bbls			
NMOCD Closure Criteria	>100 feet to groundwater					

1.0 Background

On December 11, 2018, the rollover of a DKS Transport, LLC (DKS) truck caused a release of crude oil. According to DKS, the truck rollover only involved un-refined crude oil; no produced water or other brine-related waste was present in the truck. DKS conducted initial response activities including source

DKS Transport Truck Rollover Remediation Plan March 3, 2020

elimination, site security, and containment. Approximately 6 barrels of fluid were recovered during the initial response. An absorbent powder was also placed on the majority of the visibly stained surface area to prevent further migration of crude oil.

An initial C-141 Form was submitted on December 19, 2018 to the New Mexico Oil Conservation Division (NMOCD); however, the C-141 Form was rejected by NMOCD due to the lack of an OGRID number (Oil and Gas Reporting ID). DKS applied to obtain an OGRID, which was fulfilled on March 20, 2019. The C-141 Form was then resubmitted to NMOCD District 2 on June 13, 2019.

Figures 1 and 2 illustrate the project vicinity and site location, Figures 3 and 4 illustrate the release location. The C-141 form is included in Appendix A.

2.0 Site Information and Geology

The DKS Transport, LLC truck rollover site is located approximately 33.5 miles northwest of Carlsbad, New Mexico. The site is on land owned by the New Mexico State Land Office (SLO) at an elevation of approximately 3,568 feet above mean sea level (amsl). The release occurred on the west side of Curry Comb Road/County Road 235, a paved, two-lane county road.

According to correspondence with the SLO on December 14, 2018, the release occurred 60 feet inside the southern part of the Illinois Camp area, a former historic oil town. The site has remnants of features related to the camp, including structural foundations and subsurface cultural deposits. SLO has determined the site to be eligible for inclusion in the National Register of Historic Places. SLO requested the completion of a Right of Entry (ROE) form and required that a permitted archeological monitor be present during remediation activities. A copy of the correspondence with SLO regarding the archeological site is included in Appendix B.

The site of the release is comprised of mostly Kimbrough-Stegall loams (Web Soil Survey, 2020). The Kimbrough unit is a mixed alluvium and/or eolian sand base, with loam in the upper 9 inches and indurated (hardened) petrocalcic material, commonly known as caliche, at 9 inches and deeper. Similarly, the Stegall unit is mixed alluvium and/or eolian sand with loams/clay loams in the upper 20 inches, and an indurated, petrocalcic layer beginning around 20 inches bgs. Petrocalcic layers are typically characterized as a continuous layer of cemented carbonates and tend to be quite impermeable. A copy of the Web Soil Survey report is included in Appendix C.

Historical Google Earth[®] images indicate the area of release has shown previous disturbance. It is unknown what occurred, but images from 2014 and 2016 indicate scarring and impacts to vegetation on the west side of Curry Comb Road. The following Google Earth[®] images (Images 1 – 3) show the area of interest from 2013, 2014, and 2016, all before the December 2018 DKS truck rollover incident occurred. These indicate that the DKS truck rollover incident did not cause the current vegetative scarring that is currently observed at the site.

DKS Transport Truck Rollover Remediation Plan March 3, 2020

Image 1. Google Earth image from 4/16/2013. Area of interest appears relatively undisturbed.

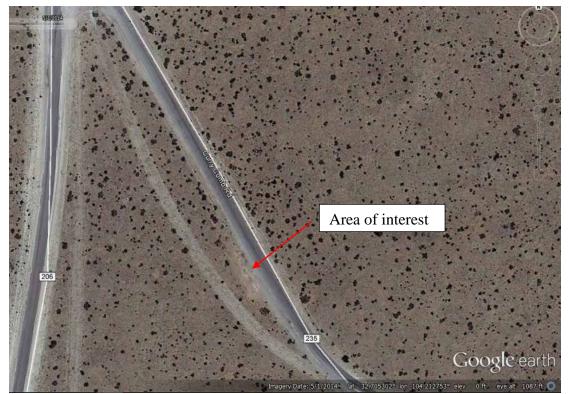


Image 2. Google Earth image from 5/1/2014. Note initial scarring to area of interest.

Page 4 of 10

DKS Transport Truck Rollover Remediation Plan March 3, 2020

Image 3. Google Earth image from 3/12/2016. Note the greater area of scarring and lack of vegetation.

2.1 Closure Criteria

Based upon New Mexico Office of State Engineer (NMOSE) data, depth to groundwater in the area is estimated to be 167 feet below grade surface (bgs). There are no known water sources within ½-mile of the location (NMOSE Online Water Well Database, 2019). The nearest significant watercourse is the Pecos River, located approximately 5.1 miles to the west. Figure 2 illustrates the site with 100-, 200-, and 300-foot radii to indicate that it does not lie within a sensitive area as described in 19.15.29.12.C(4) NMAC. Pertinent well data is attached in Appendix D.

The site is not considered an "exploration, development, production or storage site" and therefore the top four feet must be remediated to the most stringent standards. Additionally, the release area did not occur on land considered "in-use", as outlined by 19.15.29.13.D NMAC. Therefore, the release area shall be reclaimed within the upper four feet to meet the standards of 19.15.29.13.D(1).

Based on the information presented herein, the applicable NMOCD Closure Criteria for this site is for groundwater depth of greater than 100 feet bgs, plus the requirements of reclamation for the upper four feet of impacted soil. Table 2 demonstrates the Closure Criteria applicable to this location.

Table 2. NMOCD Closure Criteria						
Soil Depth (ft)	BTEX (mg/Kg)	Benzene (mg/Kg)	Total TPH (mg/Kg)	Chlorides (mg/Kg)		
0-4 feet	50	10	100	600		
>4 feet	50	10	1,000	20,000		

3.0 Release Characterization Activities and Findings

3.1 Initial Response and Release Delineation (December 12, 2018)

On December 12, 2018, SMA personnel arrived on site in response to the release associated with the DKS Transport, LLC truck rollover. SMA performed site delineation activities by collecting soil samples around the release site and throughout the visibly stained area. Soil samples were field screened for chloride using an electrical conductivity (EC) meter and for hydrocarbon impacts using a Dexsil[®] PetroFLAG TPH Analyzer.

A total of seventeen sample locations (S1-S17) were investigated using a hand-auger to depths up to 0.5 feet bgs. A restrictive rock layer, the caliche noted in the soil description, prevented deeper delineation by hand. Field screening results indicated high concentrations of total petroleum hydrocarbons (TPH) and high concentrations of chlorides predominantly in the southern portion of the release area, which is where the rollover occurred.

A total of four samples were collected for laboratory analysis for total chloride using EPA Method 300.0; benzene, toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8021B, and; TPH - motor, - diesel and -gasoline range organics (MRO, DRO, and GRO) by EPA Method 8015D. Samples were placed into laboratory supplied glassware, labeled, and maintained on ice until delivery under chain of custody to Hall Environmental Analysis Laboratory (Hall) in Albuquerque, New Mexico.

Laboratory results showed high amounts of TPH-MRO, DRO, and GRO in samples S1, S4, and S5 along the spill path. Chloride concentrations ranged from less than laboratory detection levels (<30 mg/Kg in sample S12) to 13,000 mg/Kg (sample S4).

Initial delineation activities indicated that an area of approximately 8,000 square feet (ft²) was impacted. Contaminant concentrations above the NMCOD Closure Criteria remained at the site, predominantly in the southern portion of the release path where the rollover occurred. Table 6 (attached) summarizes the field and laboratory results, Figure 3 displays sample locations, and the laboratory report is included in Appendix E.

3.2 Release Containment and Surface Scraping (December 18, 2018)

In order to contain the release and limit further impacts from any crude oil-saturated soils that remained on site, the surface of the stained area was scraped down 2 inches and removed from site on December

18, 2018. The scraped soils were noted to have a strong hydrocarbon odor and dark staining. The contaminated soils were disposed at Lea Land, LLC, an NMOCD regulated disposal facility.

3.3 Further Delineation (May 10, 2019)

SMA returned to the site with a representative from Advanced Archeological Solutions on May 10, 2019 to collect additional samples from the release area. The representative is in compliance with the SLO requirement for a certified archeological monitor. Samples were collected using a rock bar to break up the caliche layer as much as possible, though efforts to penetrate very deep into the layer were difficult. A total of four sample locations were established (L1-L4) to depths of 6-10 inches bgs, where rock refusal prevented any further investigation. The archeological representative on site did not observe any archeological findings during sample collection.

Collected soil samples were sent for laboratory analysis and analyzed for total chlorides, BTEX, and TPH-MRO, DRO, and GRO. Laboratory analysis shows that contamination extends to the indurated rock layer at 6-10 inches bgs.

Table 6 (attached) itemizes the sample screening results. Locations for all samples are depicted on Figure 3.

3.4 Application of Oxidant (July 2, 2019)

On July 2, 2019, SMA returned to the site to apply an in-situ oxidation product, Cool-Ox[®] to the southern portion of the site. Composite samples (C1-C5) were collected along the release area <u>prior</u> to application of the Cool-Ox[®] to establish a baseline for the treatment. At this time, two background samples, BG1 and BG2, were also collected from two different soil types from the opposite side of the adjacent road (Curry Comb Rd/235) in order to determine if high chloride concentrations in the soil are naturally occurring and pre-existing. Sample locations and the area of Cool-Ox[®] application is shown in Figure 4.

Results of the baseline composite samples indicated lower concentrations of TPH-contaminated soils compared to previous sampling events, though concentrations remained above the NMOCD Closure Criteria of 100 mg/Kg for the upper four feet of soil. Background sample BG1, collected from the field northeast of the release area, resulted in a chloride concentration of 400 mg/Kg. Background sample BG2, taken just east of Curry Comb Road, resulted in a chloride concentration of 8,900 mg/Kg. The variability in background chloride concentrations indicate nearby soils have potentially been impacted due to other oilfield-related activities along Curry Comb Road.

4.0 Recommendations for Site Remediation and Reclamation

An indurated caliche layer that is known to exist in the area of the release was observed during delineation activities and prevented penetration of the hand auger and rock bar to depths as shallow as 6 inches. The tightly compacted caliche layer, which is known to impede water movement into deeper

Page 32 of 238

Page 7 of 10

DKS Transport Truck Rollover Remediation Plan March 3, 2020

soil layers (Idowu & Flynn, 2015), also creates a layer of relatively lower permeability for which crude oil has likely not penetrated. Due to this less permeable layer, the release of the crude oil from the truck rollover was likely contained to the loose topsoil above, i.e. the upper 6-10 inches.

In deliberation of contaminant closure levels, the contents of the truck release were also considered. As communicated by DKS, the truck rollover only involved crude oil, meaning neither produced water or other brine-related waste was present in the truck. The chemical composition of crude oil is limited to carbon, hydrogen, sulfur, nitrogen, oxygen, and trace amounts of metals (Speight, 1999). Organic chlorides do not naturally occur in crude oil. Therefore, the release from the truck rollover did not contaminate the site with chlorides. The chlorides detected in samples collected from the release site are likely a combination of naturally occurring chlorides, impacts from the historic oilfield camp, Illinois Camp, and contributions from roadside activities related to heavy oilfield and industrial traffic (such as shown in Images 2 and 3). Therefore, SMA does not recommend remediation of chlorides as they were not part of the DKS truck rollover release.

With soil composition and the components of the release contents (crude oil) in mind, SMA proposes remediation of soils impacted with TPH and BTEX only, which consists of approximately 6-10 inches of loose topsoil. Remediation for BTEX and TPH will be performed according to the NMOCD Closure Criteria for the upper four feet of soil for a site not "in use", as shown in Table 3. SMA does not believe that remaining contamination at the site extends deeper than 4 feet bgs due to indurated caliche layer that occurs at 6-10 inches bgs. Therefore, the NMOCD closure criteria for soils greater than 4 feet bgs do not apply.

Table 3. NMOCD Closure Criteria for DKS Release Site for Soils <4 ft bgs					
BTEX (mg/Kg)	Benzene (mg/Kg)	Total TPH (mg/Kg)			
50	10	100			

SMA proposes the following iterative remediation and reclamation steps to achieve closure for the DKS release:

Step 1: Collect post-Cool-Ox[®] application samples to determine if the application from July 2019 was enough to remediate TPH and BTEX-impacted soils. Perform field-screening on these samples using the PetroFLAG TPH Analyzer. Samples will be collected at both surface and at auger refusal (6-10 inches bgs) to verify that Cool-Ox[®] penetrated to the deeper soils. If field results indicate low concentrations for TPH, then samples will be collecting and submitted for laboratory analysis. SMA proposes using the EPA-recommended Visual Sample Plan (VSP) software tool to determine the number and locations of site closure composite samples for laboratory analysis. The VSP tool is a defensible plan based on statistical sampling theory, which provides a randomized sampling plan representative of the soils that remain after treatment and/or excavation. Based on data input from the release area, VSP recommends approximately nine composite samples for laboratory analysis. The VSP analysis. The VSP sample Design Report with the

DKS Transport Truck Rollover Remediation Plan March 3, 2020

proposed sample locations is included in Appendix F. Laboratory results will indicate if further remediation of the southern portion is required, or if remediation should focus only on the remaining non-treated portion to the north.

- Step 2: If field screening from Step 1 indicates high concentrations of TPH remain, then SMA proposes excavation and removal of the upper 6-10 inches of soil (or until the petrocalcic layer is reached). Approximately 240 cubic yards (8,000 ft² x 0.8 ft depth) of soil may be removed. The indurated caliche surface will be scraped by machinery and hand tools as well as possible, then resampled and field tested for TPH. If field results indicate low TPH concentrations, then site closure composite samples will be collected per the VSP recommended sampling plan and submitted for laboratory analysis.
- **Step 3**: Should field results indicate that high concentrations of TPH remain, then a second treatment of Cool-Ox[®] is recommended for application directly on the exposed caliche. Approximately 3 months after Cool-Ox[®] application, the site will be resampled for closure.

Each step outlined above will be completed with an approved ROE form and a permitted archeological monitor on site. Sampling and/or excavation activities will be halted or altered per instructions from the onsite archeological monitor.

- **Step 4**: Upon laboratory verification that all closure samples are reported below the NMOCD Closure Criteria, the excavated area will be backfilled with clean soil, contoured to natural conditions, and seeded with a native seed mix for revegetation.
- **Step 5**: A final Closure Report will be submitted to NMOCD demonstrating sampling, excavation activities (if applicable), laboratory results, photos, field notes, and any restrictions put in place by the on-site archeological monitor. SMA anticipates completion of remediation and closure report submittal as outlined by Table 4 below:

Table 4. Anticipated Timeline for Completion of Remediation and Reclamation Activities				
Site Closure	Approximate Time to Submittal of Closure Report			
1 st Application of Cool-Ox [®] shown successful	45 days			
Excavation Required	60 days			
2 nd Application of Cool-Ox [®] necessary	150 days (3 months required for Cool-Ox [®])			

DKS Transport Truck Rollover Remediation Plan March 3, 2020

5.0 Scope and Limitations

The scope of our services included: assessment sampling; verifying release stabilization, regulatory liaison, and preparing this remediation plan. All work has been performed in accordance with generally accepted professional environmental consulting practices for oil and gas releases in the Permian Basin in New Mexico.

If there are any questions regarding this report, please contact either Shawna Chubbuck at 505-325-7535.

Submitted by: SOUDER, MILLER & ASSOCIATES Reviewed by:

Alphanie Alvols

Stephanie Hinds Staff EIT II

Shawna Chubbuck

Shawna Chubbuck Senior Scientist

ATTACHMENTS:

Figures:

Figure 1: Vicinity and Well Head Protection Map Figure 2: Surface Water Radius Map Figure 3: Site & Sample Location Map Figure 4: Site, Sample Location, & Cool-Ox[®] Application Map

Tables:

Table 5: NMOCD Closure Criteria Justification Table 6: Summary of Sample Results

Appendices:

Appendix A: Form C141 Appendix B: Correspondence with NMSLO Appendix C: Web Soil Survey Report, February 18, 2020 Appendix D: NMOSE Wells Report Appendix E: Hall Laboratory Reports Appendix F: EPA Visual Sampling Plan Page 9 of 10

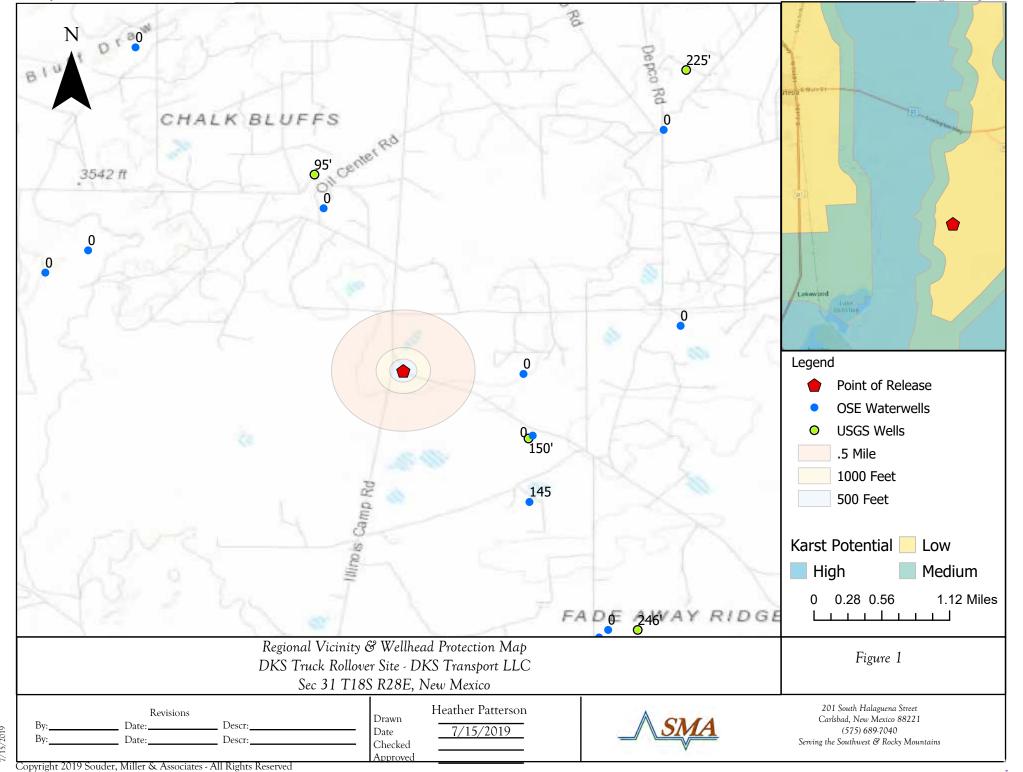
Page 10 of 10

DKS Transport Truck Rollover Remediation Plan March 3, 2020

References

Idowu, J., & Flynn, R. (2015, September). Growing Plants in Caliche Soils. Las Cruces, New Mexico, US.

- New Mexico Office of State Engineer. (2019, May 20). *NMOSE Online Water Well Database*. Retrieved from http://gis.ose.state.nm.us/gisapps/ose_pod_locations/
- Speight, J. G. (1999). *The Chemistry and Technology of Petroleum, 3rd Edition.* New York, New York, US: Marcel Dekker, Inc.


.

.

FIGURES

Received by OCD: 10/26/2020 5:01:24 PM

Page 37 of 238

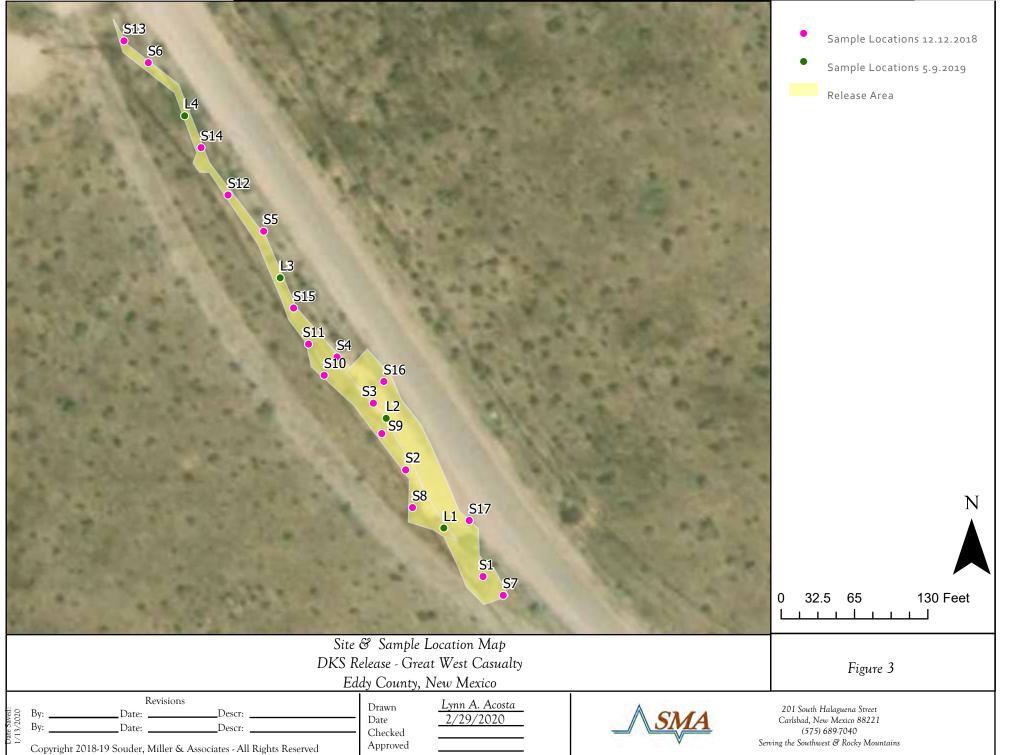
	/			·
	X		\checkmark	
		5		
	35			
		•		
11		\bigcirc		
11				0
1			X	CU
1				CU
K				CU
				CU
	Regional Vicini	ty & Wellhead	Protection Mab	CU
	Regional Vicini DKS Truck Rol Sec. 31 T18S R.	lover Spill-DKS	Transport LLC	CU

0

N

0.05 Miles

0.01 0.03


201 South Halagueno Street Carlsbad, New Mexico 88221 (575) 689-7040 Serving the Southwest & Rocky Mountains

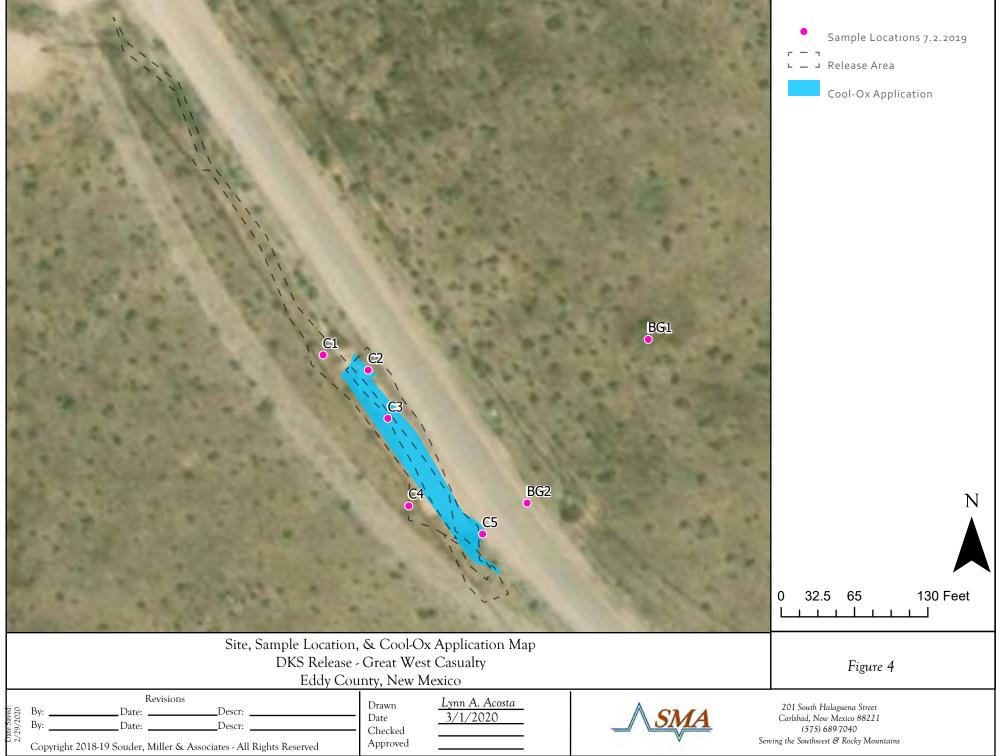

.

Figure 2

0

Received by OCD: 10/26/2020 5:01:24 PM

•

•

TABLES

Site Information (19.15.29.11.A(2, 3, and 4) NMAC)		Source/Notes
Depth to Groundwater (feet bgs)	~167'	
Hortizontal Distance From All Water Sources Within 1/2 Mile (ft)		
Hortizontal Distance to Nearest Significant Watercourse (ft)		

Closure Criteria (19.15.2	29.12.B(4) and	d Table 1 NMAC)				
			ure Criteria	a (units in n	ng/kg)	
Depth to Groundwater	Chloride *numerical limit or background, whichever is greater	ТРН	GRO + DRO	BTEX	Benzene	
< 50' BGS		600	100		50	10
51' to 100'		10000	2500	1000	50	10
>100'	Х	20000	2500	1000	50	10
Surface Water	yes or no		if ye	s, then		
<300' from continuously flowing watercourse or other significant watercourse? <200' from lakebed, sinkhole or playa lake? Water Well or Water Source	NO NO	-				
<500 feet from spring or a private, domestic fresh water well used by less than 5 households for domestic or stock watering purposes? <1000' from fresh water well or spring?	NO NO					
Human and Other Areas		600	100		50	10
<300' from an occupied permanent residence, school, hospital, institution or church?	NO					
within incorporated municipal boundaries or within a defined municipal fresh water well field?	NO					
<100' from wetland?	NO					
within area overlying a subsurface mine	NO					
within an unstable area?	NO					
within a 100-year floodplain?	NO					

Received by OCD: 10/26/2020 5:01:24 PM

Table 6: Summary of Sample Results

Sample D Sample Date (feet bg) ng/kg mg/kg mg/kg <th></th> <th></th> <th></th> <th>Metho</th> <th>od 8021B</th> <th></th> <th>Metho</th> <th>d 8015D</th> <th></th> <th>Method 300.0</th> <th>Field s</th> <th>creening</th>				Metho	od 8021B		Metho	d 8015D		Method 300.0	Field s	creening
NMOCD Closure Criteria (0-4 ft) 50 10 100 600 SUMOCD Closure Criteria (>4 ft) 50 10 100 600 S1 Surface 1236 56 5500 31000 49500 80 S2 Surface 1236 56 5500 31000 49500 80 S4 Surface 1236 56 5500 31000 49500 80 S4 Surface 11.0 2.0 840 4700 1500 7040 13000 S4 Surface 11.0 930 8800 2600 12330 700 S4 Surface -	Sample ID	Sample Date		BTEX	Benzene	GRO	DRO	MRO	Total TPH	Cl-	Cl-	DRO/MRO
NMOCD Closure Criteria (>4 ft) 50 10 1000 20,000 S1 Surface 126 56 5500 31000 49500 80 - S3 Surface - - - - - 1,987 S4 Surface - - - - - 1,480 2002 S4 Surface 11.0 2.0 840 4700 1500 7040 13000 2002 S4 Surface 11.0 2.0 840 4700 1500 7040 13000 2002 S4 Surface 11.0 2.0 840 4700 1500 7040 13000 480 700 1483 555 56 560 560 12330 700 - 1,483 555 56 560 501 501 501 501 501 501 501 501 501 501 501 501 501			(mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	(mg/Kg)	(mg/Kg)
S1 Surface 1236 56 5500 31000 13000 49500 80 1.987 S3 Surface - - - - - 1,480 2002/ S4 Surface - - - - - 1,480 2002/ S5 Surface 111.0 2.0 840 4700 1500 7040 13000 - Surface - - - - - - 1,483 2002/ Surface - - - - - - 1,483 2002/ Surface - - - - - - 1,483 2002/ Surface 110 930 8800 2600 1230 700 -			. ,		10				100	600		
S2 Surface 1,987 S3 Surface 1,987 S4 Surface . <td< td=""><td>NMC</td><td>CD Closure Cr</td><td>iteria (>4 ft)</td><td>50</td><td>10</td><td></td><td></td><td></td><td>1000</td><td>20,000</td><td></td><td></td></td<>	NMC	CD Closure Cr	iteria (>4 ft)	50	10				1000	20,000		
S3 Surface 1,480 2002/ S4 Surface 11.0 2.0 840 4700 1500 7040 13000 . . S6 Surface 15.0 1.0 930 8800 2600 12330 700 . <t< td=""><td>S1</td><td></td><td>Surface</td><td>1236</td><td>56</td><td>5500</td><td>31000</td><td>13000</td><td>49500</td><td>80</td><td></td><td></td></t<>	S1		Surface	1236	56	5500	31000	13000	49500	80		
S4 Surface 111.0 2.0 840 4700 1500 7040 13000 S5 S6 Surface - - - - - - 1,483 S6 Surface 151.0 1.0 930 8800 2600 12330 700 S8 Surface - - - - - - 4130 S8 Surface - - - - - 4130 Surface - - - - - - 4130 Surface - - - - - - 4130	S2		Surface	-	-	-	-	-	-	-	1,987	
S5 Surface 1,483 . S6 Surface 151.0 1.0 930 8800 2600 12330 700 .	S3		Surface	-	-	-	-	-	-	-	1,480	2002/2057
S6 Surface 151.0 1.0 930 8800 2600 12330 700 1 S8 12/12/2018 Surface - <td>S4</td> <td></td> <td>Surface</td> <td>111.0</td> <td>2.0</td> <td>840</td> <td>4700</td> <td>1500</td> <td>7040</td> <td>13000</td> <td></td> <td></td>	S4		Surface	111.0	2.0	840	4700	1500	7040	13000		
S7 Surface .<	S5		Surface	-	-	-	-	-	-	-	1,483	
S8 Surface - - - - - - 255 94/ S9 12/12/2018 Surface -	S6		Surface	151.0	1.0	930	8800	2600	12330	700		
S9 12/12/2018 Surface -	S7		Surface	-	-	-	-	-	-	-	<130	
S10 Surface .	S8		Surface	-	-	-	-	-	-	-	255	94/139
S11 Surface -	S9	12/12/2018	Surface	-	-	-	-	-	-	-	<130	
S12 Surface 0.062 <0.023 <4.7 <9.3 <46 <60 <30 S13 Surface - - - - - -	S10		Surface	-	-	-	-	-	-	-	<130	79/96
S13 Surface - - - - -	S11		Surface	-		-	-	-	-	-	<130	
S14 Surface - - - - - - (130) (63) S15 Surface - - - - - - (130) (130) S16 Surface - - - - - - (130) (130) S17 Surface - - - - - - (130) (140) (110)	S12		Surface	0.062	<0.023	<4.7	<9.3	<46	<60	<30		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S13		Surface	-	-	-	-	-	-	-	<130	
S16 Surface - - - - - -	S14		Surface	-	-	-	-	-	-	-	<130	63/83
S17 Surface - - - - - -	S15		Surface	-	-	-	-	-	-	-	<130	
S17 Surface - - - - - -	S16		Surface	-	-	-	-	-	-	-	<130	216/214
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S17		Surface	-	-	-	-	-	-	-	<130	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.5	<0.207	<0.023	7.0	1300	480	1787	6000		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L1		0.8	-	-	-	-	-	-	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.5	<0.217	<0.024	<4.8	300	160	460	4100		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L2	- / /	0.6	-	-	-	-	-	-	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5/10/2019		0.13	<0.024	12	6600	2000	8612	970		
L4 0.8 - - <5.0 17 <50 17 - C1 Surface <0.23	L3		0.8	-	-	<5.0	530	170	700	-		
L4 0.8 - - <5.0 17 <50 17 - C1 Surface <0.23			0.5	3.7	<0.12	71	8900	3000	11971	780		
C1-R Surface <0.21 <0.023 <4.6 29 <43 29 3900 C2 Surface <0.22	L4			-	-		17		17	-		
C1-R Surface <0.21 <0.023 <4.6 29 <43 29 3900 C2 Surface <0.22	C1		Surface	<0.23	<0.025	<5.0	360	260	620	4600		
C2 Surface <0.22 <0.025 <4.9 51 74 125 780 C3 7/2/2019 Surface <0.22		7/2/2019								3900		
C4 7/2/2019 Surface <0.23 <0.025 <5.0 <9.8 <49 <63.8 <60	C2					<4.9	51	74	125	780		
C4 Surface <0.23 <0.025 <5.0 <9.8 <49 <63.8 <60	C3		Surface	<0.22	<0.025	<5.0	95	160	255	860		
C5 Surface <1.09 <0.12 <24 2500 2900 5400 320	C4		Surface	<0.23	<0.025	<5.0	<9.8	<49	<63.8	<60		
	C5		Surface	<1.09	<0.12	<24	2500	2900	5400	320		
BG1 Surface 400	BG1		Surface	-	-	-	-	-	-	400		
BG2 Surface 8900	BG2		Surface	-	-	-	-	-	-	8900		

"--" = Not Analyzed

S/L: Sample or Location ID

C: Baseline sample prior to Cool-Ox® treatment

BG: Background sample

•

APPENDIX A

C141 Form

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural **Resources Department**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 45 of 238

Incident ID	
District RP	
Facility ID	+
Application ID	

Release Notification

Responsible Party

Responsible Party DKS Transport LLC	OGRID P2005C
Contact Name Josh Moser	P30056 Contact Telephone 405-517-2408
Contact email jmoser@dkstransport.com	Incident # (assigned by OCD)
Contact mailing address PO Box 1084, Alva, OK 7371	17

Location of Release Source

32.70417 Latitude

Longitude -104.21184 (NAD 83 in decimal degrees to 5 decimal places)

Site Name DKS Truck Rollover Spill Date Release Discovered 12/11/2018	Site Type Intersection of HWY 206 and HWY 235 API# (if applicable)
2 die Acheuse Discovereu 12/11/2018	API# (if applicable)

Unit Letter	Section	Township	Range	County
	31	18S	28E	Eddy

Surface Owner: X State Federal Tribal Private (Name: _

Nature and Volume of Release

	rial(s) Released (Select all that apply and attach calculations or spec Volume Released (bbls) 10-12	Volume Recovered (bbls) ~6
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

ause of Release

Tanker truck roll-over on HWY 235 (Curry Comb Rd) just before intersection with HWY 206 (Illinois Camp Rd). Roll-over resulted in approximately 10-12 bbls of crude oil spilled onto the ground along west side of HWY

Form C-141 Page 2	State of New Mexico Oil Conservation Division	Incident ID District RP Facility ID Application ID	
Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible par		

If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

x The source of the release has been stopped.

x The impacted area has been secured to protect human health and the environment.

x Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws

Printed Name: Josh Moser	Title:
Signature:	Date: 6/13/19
email:	Telephone:
OCD Only	
Received by:	Date:

<u>APPENDIX B</u> Correspondence with NMSLO

Stephanie Hinds

From:	Mann, Ryan <rmann@slo.state.nm.us></rmann@slo.state.nm.us>
Sent:	Monday, December 17, 2018 2:50 PM
То:	Stephanie Hinds
Subject:	FW: archeological survey inquiry

Good afternoon,

I hope this helps.

Ryan Mann Remediation Specialist Field Operation Division (575) 392-3697 (505) 699-1989 New Mexico State Land Office 2827 N. Dal Paso Suite 117 Hobbs, NM 88240 *The New Mexico State Land Office will be closed from 12/21/2018 at 1:00 PM – 01/01/2019. The office will reopen on 01/02/2019. Happy Holidays!

From: Tsesmeli, Evangelia
Sent: Friday, December 14, 2018 3:25 PM
To: Mann, Ryan <rmann@slo.state.nm.us>; Eck, David <deck@slo.state.nm.us>
Subject: RE: archeological survey inquiry

Hello Ryan,

I conducted an ARMS review for the spill area based on the .kmz file Ms. Hinds provided. The northernmost spill seems to have occurred within 60 ft inside the southern part of an area where the Illinois Camp, a historic oil town existed (and features and structural foundations still exist standing to date). This cultural resource has been determined eligible for the inclusion in the National Register of Historic Places. The archaeological surveys conducted for the remaining road ROW cover the extent of the spill as delineated in the .kmz file and yielded no further cultural resources. These surveys include at least a 45 ft buffer zone on each side of the spill. This buffered area should be sufficient for the cleaning of the spill once a ROE is obtained.

There is the possibility of subsurface deposits around the junction area of 206 and 235 (the part of the spill that is 60 ft within the eligible cultural resource) that could be destroyed during the blading/remediation of the spill area. A permitted archaeological monitor should be present during any ground disturbing remediation/cleaning. The archaeological monitor could detect possible cultural deposits not identified during the surface surveys, and assess whether further consultation with SLO archaeologists is necessary.

Lia Tsesmeli, Ph.D. *Trust Land Archaeologist Field Operations Division* 505.827.5792 New Mexico State Land Office

310 Old Santa Fe Trail P.O. Box 1148 Santa Fe, NM 87504-1148 <u>etsesmeli@slo.state.nm.us</u> <u>nmstatelands.org</u>

.....

CONFIDENTIALITY NOTICE - This e-mail transmission, including all documents, files, or previous e-mail messages attached hereto, may contain confidential and/or legally privileged information. If you are not the intended recipient, or a person responsible for delivering it to the intended recipient, you are hereby notified that you must not read this transmission and that any disclosure, copying, printing, distribution, or use of any of the information contained in and/or attached to this transmission is STRICTLY PROHIBITED. If you have received this transmission in error, please immediately notify the sender and delete the original transmission and its attachments without reading or saving in any manner. Thank you.

*The New Mexico State Land Office will be closed from 12/21/2018 at 1pm - 01/01/2019. The office will reopen on 01/02/2019. Happy Holidays!

From: Mann, Ryan
Sent: Friday, December 14, 2018 12:33 PM
To: Eck, David <<u>deck@slo.state.nm.us</u>>; Tsesmeli, Evangelia <<u>etsesmeli@slo.state.nm.us</u>>;
Subject: FW: archeological survey inquiry

Can you provide guidance to Ms. Hinds? I believe this will require a ROE and an ARMS review, but I want to double check.

Ryan Mann Remediation Specialist Field Operation Division (575) 392-3697 (505) 699-1989 New Mexico State Land Office 2827 N. Dal Paso Suite 117 Hobbs, NM 88240 *The New Mexico State Land Office will be closed from 12/21/2018 at 1:00 PM – 01/01/2019. The office will reopen on 01/02/2019. Happy Holidays!

From: Stephanie Hinds [mailto:stephanie.hinds@soudermiller.com]
Sent: Wednesday, December 12, 2018 10:08 PM
To: stucker@blm.gov; Mann, Ryan <rmann@slo.state.nm.us>
Cc: Austin Weyant austin.weyant@soudermiller.com>; Emme Mayle <Emme.Mayle@soudermiller.com</pre>
Subject: archeological survey inquiry

Hello Ms. Tucker/ Mr. Mann,

SMA completed a delineation assessment of a DKS Transport crude oil spill at the intersection of Highway 235 and Highway 206 south of Artesia (DKS file number P30056) which we believe occurred on 12/11/2018. Will we need to have an archeological review/survey completed for the site prior to breaking ground? We believe much of the spill is within the road ROW, though the wider spots may extend outside of the ROW. I have attached a kmz file showing the approximate extent of the spill. Approximately 450 yds were impacted, mostly as surface staining down to 1-2 feet. We're ready to begin excavation as soon as the arch review is completed (or deemed unnecessary). The site sits at approximately 32.704173,

-104.211836, on the SW ¼ of the NE ¼ of Section 31, T18S R28E. Please don't hesitate to let us know if you need further information from us.

Thanks, Stephanie Hinds *Staff EIT II*

Souder, Miller & Associates Engineering ♦ Environmental ♦ Surveying 401 W. Broadway Farmington, NM 87401 O: (505) 325-7535 C: (505) 793-7079 www.soudermiller.com

Notice of Confidentiality and Privileged Status: This electronic mail message, including all attachments, is for the sole use of the intended recipient(s) and may contain confidential and/or privileged information or otherwise may be protected from disclosure. Any unauthorized review, use, disclosure, distribution or actions which rely on the contents of this information is prohibited. If you are not the intended recipient, please contact the sender and delete the message and any attachment(s) from your system.

Statement on Viruses and Harmful Software: While the message and attachment(s) have been scanned with anti-virus software, SMA does not guarantee that this message or any attachment(s) is free of computer viruses or other harmful software. SMA does not accept liability for any damages caused by any computer virus or other harmful software transmitted herewith.

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit <u>http://www.symanteccloud.com</u>

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

<u>APPENDIX C</u> Web Soil Survey Report, February 18, 2020

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

DKS Release Location

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Eddy Area, New Mexico	13
KT—Kimbrough-Stegall loams, 0 to 3 percent slopes	13
SG—Simona gravelly fine sandy loam, 0 to 3 percent slopes	14
TC—Tonuco loamy sand, 0 to 3 percent slopes, eroded	16
TF—Tonuco loamy fine sand, 0 to 3 percent slopes	17
References	19
Glossary	21

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

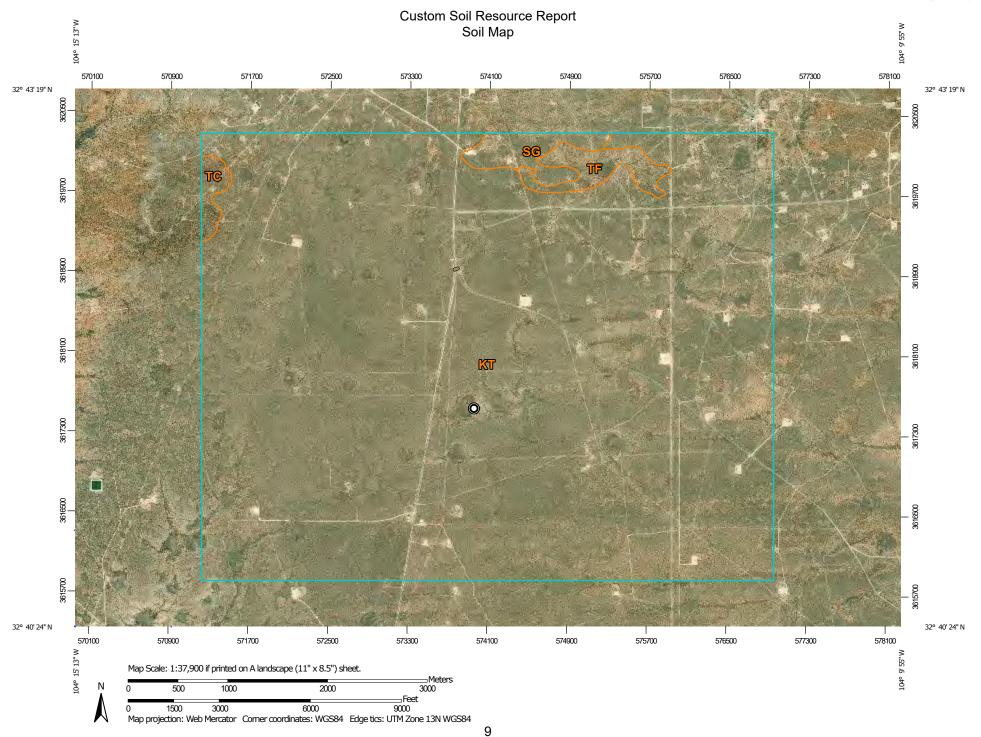
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.


Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Received by OCD: 10/26/2020 5:01:24 PM

•

Custom Soil Resource Report

MAP L	EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil Area Image: Spoil Area Image: Stony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils Soil Map Unit Polygons	 Very Stony Spot Wet Spot 	Please rely on the bar scale on each map sheet for map measurements.
Soil Map Unit Lines	▲ Other✓ Special Line Features	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
Special Point Features Blowout Borrow Pit	Water Features	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts
Clay Spot	Transportation +++ Rails Minterstate Highways	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
Gravel Pit Gravelly Spot	US Routes	This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
🚳 Landfill 🙏 Lava Flow	Local Roads	Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 15, Sep 15, 2019
	Aerial Photography	Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
Miscellaneous WaterPerennial Water		Date(s) aerial images were photographed: Nov 30, 2015—Dec 15, 2017
 Rock Outcrop Saline Spot Sandy Spot 		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor
Sandy Spot Severely Eroded Spot		shifting of map unit boundaries may be evident.
Slide or Slip		

Map l	Jnit L	egend
-------	--------	-------

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
КТ	Kimbrough-Stegall loams, 0 to 3 percent slopes	6,122.6	96.2%	
SG	Simona gravelly fine sandy loam, 0 to 3 percent slopes	103.3	1.6%	
тс	Tonuco loamy sand, 0 to 3 percent slopes, eroded	40.4	0.6%	
TF	Tonuco loamy fine sand, 0 to 3 percent slopes	99.6	1.6%	
Totals for Area of Interest		6,365.8	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

KT—Kimbrough-Stegall loams, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w4t Elevation: 2,750 to 5,000 feet Mean annual precipitation: 8 to 16 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 180 to 230 days Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough and similar soils: 70 percent *Stegall and similar soils:* 25 percent *Minor components:* 5 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kimbrough

Setting

Landform: Plains, alluvial fans Landform position (three-dimensional): Talf, rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 3 inches: loam *H2 - 3 to 9 inches:* loam *H3 - 9 to 60 inches:* indurated

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 8 to 20 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Very low (about 1.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Shallow (R042XC025NM) Hydric soil rating: No

Description of Stegall

Setting

Landform: Plains, alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 5 inches: loam

H2 - 5 to 28 inches: clay loam

H3 - 28 to 32 inches: indurated

H4 - 32 to 60 inches: variable

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 20 to 40 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.01 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 90 percent
Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Low (about 4.8 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: Loamy (R042XC007NM) Hydric soil rating: No

Minor Components

Simona

Percent of map unit: 5 percent Ecological site: Shallow Sandy (R042XC002NM) Hydric soil rating: No

SG—Simona gravelly fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w5w *Elevation:* 2,750 to 5,000 feet

Custom Soil Resource Report

Mean annual precipitation: 8 to 16 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 180 to 230 days Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Plains, alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 19 inches: gravelly fine sandy loam *H2 - 19 to 23 inches:* indurated

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: Shallow Sandy (R042XC002NM) Hydric soil rating: No

Minor Components

Simona

Percent of map unit: 4 percent Ecological site: Shallow Sandy (R042XC002NM) Hydric soil rating: No

Playa

Percent of map unit: 1 percent Landform: Playas Landform position (three-dimensional): Talf *Down-slope shape:* Concave, convex *Across-slope shape:* Concave, linear *Ecological site:* Bottomland (R042XC017NM) *Hydric soil rating:* Yes

TC—Tonuco loamy sand, 0 to 3 percent slopes, eroded

Map Unit Setting

National map unit symbol: 1w60 Elevation: 3,000 to 4,100 feet Mean annual precipitation: 10 to 14 inches Mean annual air temperature: 60 to 64 degrees F Frost-free period: 200 to 217 days Farmland classification: Not prime farmland

Map Unit Composition

Tonuco and similar soils: 98 percent *Minor components:* 2 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Tonuco

Setting

Landform: Plains, alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 5 inches: loamy sand H2 - 5 to 15 inches: loamy fine sand H3 - 15 to 19 inches: indurated

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 6 to 20 inches to petrocalcic
Natural drainage class: Excessively drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Very low (about 1.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e

Custom Soil Resource Report

Hydrologic Soil Group: D *Ecological site:* Sandy (R042XC004NM) *Hydric soil rating:* No

Minor Components

Tonuco

Percent of map unit: 1 percent Ecological site: Sandy (R042XC004NM) Hydric soil rating: No

Dune land

Percent of map unit: 1 percent Hydric soil rating: No

TF—Tonuco loamy fine sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w61 Elevation: 3,000 to 4,100 feet Mean annual precipitation: 10 to 14 inches Mean annual air temperature: 60 to 64 degrees F Frost-free period: 200 to 217 days Farmland classification: Not prime farmland

Map Unit Composition

Tonuco and similar soils: 98 percent *Minor components:* 2 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Tonuco

Setting

Landform: Plains, alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 5 inches: loamy fine sand H2 - 5 to 15 inches: loamy fine sand H3 - 15 to 19 inches: indurated

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: 6 to 20 inches to petrocalcic Natural drainage class: Excessively drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)

Custom Soil Resource Report

Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Salinity, maximum in profile: Nonsaline (0.0 to 1.0 mmhos/cm) Sodium adsorption ratio, maximum in profile: 1.0 Available water storage in profile: Very low (about 1.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: Sandy (R042XC004NM) Hydric soil rating: No

Minor Components

Tonuco

Percent of map unit: 1 percent Ecological site: Sandy (R042XC004NM) Hydric soil rating: No

Dune land

Percent of map unit: 1 percent Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX D

NMOSE Wells Report

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)						2=NE 3 st to larg	=SW 4=SE	E) IAD83 UTM in me	aters)	(In feet)	
water right ne.)	POD Sub-		Q			Sinane		ycot) (14		,(013)		Depth	Water
POD Number	Code basin Cou	nty 6	64 1	6 4	4 S€	ec Tws	Rng	Х	Y	Distance	Well	Water	Column
CP 00478 POD1	CP EI	C	1	1 4	4 0	5 195	28E	575300	3617036* 🌍	2243	312	145	167
RA 09588	RA EI	D		1 :	23	3 185	28E	576976	3619384* 🌍	3164	300		
CP 00361 POD1	CP EI		3	1 :	3 0	9 195	28E	576094	3615246* 🌍	4162	365	265	100
<u>CP 00502</u>	CP EI	D		1	1 1	8 195	28E	573001	3614478* 🌍	4376	100	91	9
CP 00836 POD1	CP EI	C		1	1 1	8 195	28E	573001	3614478* 🌍	4376	110		
CP 00837 POD1	CP EI	C		1	1 1	8 195	28E	573001	3614478* 🌍	4376	110		
CP 00838 POD1	CP EI	C		1	1 1	8 195	28E	573001	3614478* 🌍	4376	110		
									Avera	ge Depth to	Water:	167	feet
										Minimum	Depth:	91	feet
										Maximum	Depth:	265	feet
Record Count: 7													

Record Count: 7

UTMNAD83 Radius Search (in meters):

Easting (X): 573872.32

Northing (Y): 3618766.51

Radius: 5000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

.

.

<u>APPENDIX E</u>

Hall Laboratory Reports

December 21, 2018

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1812915

RE: DKS Crude Spill

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 4 sample(s) on 12/15/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1812915

Date Reported: 12/21/2018

CLIENT: Souder, Miller & Associates				ample II	D: S1 te: 12/12/2018 11:10:00 AM
Project: DKS Crude Spill Lab ID: 1812915-001	Matrix: SOIL	,	te: 12/12/2018 11:10:00 AM		
Analyses	Result	PQL	Qual	Units	DF Date Analyzed Batch
EPA METHOD 300.0: ANIONS					Analyst: smb
Chloride	80	30		mg/Kg	20 12/19/2018 5:40:39 PM 42200
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: Irm
Diesel Range Organics (DRO)	31000	930		mg/Kg	100 12/19/2018 10:34:58 AM 42175
Motor Oil Range Organics (MRO)	13000	4700		mg/Kg	100 12/19/2018 10:34:58 AM 42175
Surr: DNOP	0	50.6-138	S	%Rec	100 12/19/2018 10:34:58 AM 42175
EPA METHOD 8015D: GASOLINE RANG	E				Analyst: NSB
Gasoline Range Organics (GRO)	5500	240		mg/Kg	50 12/18/2018 10:53:21 AM 42158
Surr: BFB	486	73.8-119	S	%Rec	50 12/18/2018 10:53:21 AM 42158
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	56	1.2		mg/Kg	50 12/18/2018 10:53:21 AM 42158
Toluene	580	9.8		mg/Kg	200 12/18/2018 10:17:37 PM 42158
Ethylbenzene	180	2.4		mg/Kg	50 12/18/2018 10:53:21 AM 42158
Xylenes, Total	420	4.9		mg/Kg	50 12/18/2018 10:53:21 AM 42158
Surr: 4-Bromofluorobenzene	178	80-120	S	%Rec	50 12/18/2018 10:53:21 AM 42158

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В
	D	Sample Diluted Due to Matrix	Е

- Н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 8 J
- Sample pH Not In Range Р
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1812915

Date Reported: 12/21/2018

CLIENT: Souder, Miller & Associates Project: DKS Crude Spill				ample II ion Date		12/2018 11:30:00 AM	Л
Lab ID: 1812915-002	Matrix: SOIL		Receiv	ved Date	e: 12/	15/2018 9:40:00 AM	
Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analys	t: MRA
Chloride	13000	750		mg/Kg	500	12/20/2018 5:43:36 PM	A 42200
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analys	t: Irm
Diesel Range Organics (DRO)	4700	92		mg/Kg	10	12/19/2018 11:40:59 A	M 42175
Motor Oil Range Organics (MRO)	1500	460		mg/Kg	10	12/19/2018 11:40:59 A	M 42175
Surr: DNOP	0	50.6-138	S	%Rec	10	12/19/2018 11:40:59 A	M 42175
EPA METHOD 8015D: GASOLINE RANGE	E					Analys	t: NSB
Gasoline Range Organics (GRO)	840	230		mg/Kg	50	12/18/2018 11:16:59 A	M 42158
Surr: BFB	179	73.8-119	S	%Rec	50	12/18/2018 11:16:59 A	M 42158
EPA METHOD 8021B: VOLATILES						Analys	t: NSB
Benzene	2.0	1.2		mg/Kg	50	12/18/2018 11:16:59 A	M 42158
Toluene	33	2.3		mg/Kg	50	12/18/2018 11:16:59 A	M 42158
Ethylbenzene	22	2.3		mg/Kg	50	12/18/2018 11:16:59 A	M 42158
Xylenes, Total	54	4.7		mg/Kg	50	12/18/2018 11:16:59 A	
Surr: 4-Bromofluorobenzene	112	80-120		%Rec	50	12/18/2018 11:16:59 A	M 42158

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:** Value exceeds Maximum Contaminant Level. В

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 8 J
- Sample pH Not In Range Р
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1812915

Date Reported: 12/21/2018

CLIENT: Souder, Miller & Associates				ample II		
Project:DKS Crude SpillLab ID:1812915-003	Matrix: SOIL	/12/2018 11:40:00 AM /15/2018 9:40:00 AM				
Analyses	Result	PQL	Qual	Units	DF	Date Analyzed Batch
EPA METHOD 300.0: ANIONS						Analyst: smb
Chloride	700	30		mg/Kg	20	12/19/2018 6:05:29 PM 42200
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst: Irm
Diesel Range Organics (DRO)	8800	100		mg/Kg	10	12/19/2018 12:47:05 PM 42175
Motor Oil Range Organics (MRO)	2600	510		mg/Kg	10	12/19/2018 12:47:05 PM 42175
Surr: DNOP	0	50.6-138	S	%Rec	10	12/19/2018 12:47:05 PM 42175
EPA METHOD 8015D: GASOLINE RANGE	E					Analyst: NSB
Gasoline Range Organics (GRO)	930	99		mg/Kg	20	12/18/2018 10:40:59 PM 42158
Surr: BFB	326	73.8-119	S	%Rec	20	12/18/2018 10:40:59 PM 42158
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	1.0	0.49		mg/Kg	20	12/18/2018 10:40:59 PM 42158
Toluene	39	0.99		mg/Kg	20	12/18/2018 10:40:59 PM 42158
Ethylbenzene	32	0.99		mg/Kg	20	12/18/2018 10:40:59 PM 42158
Xylenes, Total	79	2.0		mg/Kg	20	12/18/2018 10:40:59 PM 42158
Surr: 4-Bromofluorobenzene	141	80-120	S	%Rec	20	12/18/2018 10:40:59 PM 42158

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associate

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 3 of 8 J
- Sample pH Not In Range Р
- Reporting Detection Limit RL
- Sample container temperature is out of limit as specified W

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1812915

Date Reported: 12/21/2018

CLIENT: Souder, Miller & Associates		Cl	ient Sample I	D: S1	2	
Project: DKS Crude Spill		(Collection Dat	e: 12	/12/2018 10:39:00 AM	
Lab ID: 1812915-004	Matrix: SOIL		/15/2018 9:40:00 AM			
Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst:	smb
Chloride	ND	30	mg/Kg	20	12/19/2018 6:17:54 PM	42200
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst:	Irm
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	12/19/2018 1:53:21 PM	42175
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	12/19/2018 1:53:21 PM	42175
Surr: DNOP	93.2	50.6-138	%Rec	1	12/19/2018 1:53:21 PM	42175
EPA METHOD 8015D: GASOLINE RANGE					Analyst:	NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	12/18/2018 12:03:50 PM	42158
Surr: BFB	96.5	73.8-119	%Rec	1	12/18/2018 12:03:50 PM	42158
EPA METHOD 8021B: VOLATILES					Analyst:	NSB
Benzene	ND	0.023	mg/Kg	1	12/18/2018 12:03:50 PM	42158
Toluene	0.062	0.047	mg/Kg	1	12/18/2018 12:03:50 PM	42158
Ethylbenzene	ND	0.047	mg/Kg	1	12/18/2018 12:03:50 PM	42158
Xylenes, Total	ND	0.094	mg/Kg	1	12/18/2018 12:03:50 PM	42158
Surr: 4-Bromofluorobenzene	97.1	80-120	%Rec	1	12/18/2018 12:03:50 PM	42158

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix
	ц	Holding times for propagation or applying average

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 4 of 8 J
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Client: Project:		r, Miller & As Crude Spill	sociate	es							
Sample ID	MB-42200	SampTy	pe: ME	BLK	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	PBS	Batch	ID: 42	200	F	RunNo: 5	6456				
Prep Date:	12/19/2018	Analysis Da	ate: 12	2/19/2018	5	SeqNo: 1	889147	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID	LCS-42200	SampTy	pe: LC	S	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	LCSS	Batch	ID: 42	200	F	RunNo: 5	6456				
Prep Date:	12/19/2018	Analysis Da	ate: 12	2/19/2018	5	SeqNo: 1	889148	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	95.4	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1812915

21-Dec-18

WO#:

Page 5 of 8

,	Miller & A ude Spill	ssociate	es							
Sample ID MB-42175	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batcl	Batch ID: 42175 RunNo: 56431								
Prep Date: 12/18/2018	Analysis E	Date: 12	2/19/2018	S	SeqNo: 1	886912	Units: mg/H	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.5		10.00		94.9	50.6	138			
Sample ID LCS-42175	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batcl	h ID: 42	175	F	unNo: 5	6431				
Prep Date: 12/18/2018	Analysis E	Date: 12	2/19/2018	S	SeqNo: 1	887406	Units: mg/k	ίg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	50	10	50.00	0	101	70	130			
Surr: DNOP	4.3		5.000		86.2	50.6	138			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

WO#: 1812915 21-Dec-18

Page 6 of 8

,	Miller & As ude Spill	sociate	es							
Sample ID MB-42158	SampTy	SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range								
Client ID: PBS	Batch	Batch ID: 42158 RunNo: 56429								
Prep Date: 12/17/2018	Analysis Da	ate: 1 2	2/18/2018	S	SeqNo: 1	886718	Units: mg/k	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) Surr: BFB	ND 1000	5.0	1000		101	73.8	119			
Sample ID LCS-42158	SampTy	/pe: LC	s	Tes	tCode: E	PA Method	8015D: Gasc	line Rang	e	
Client ID: LCSS	Batch	ID: 42	158	R	lunNo: 5	6429				
Prep Date: 12/17/2018	Analysis Da	ate: 12	2/18/2018	S	SeqNo: 1	886719	Units: mg/k	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	27	5.0	25.00	0	108	80.1	123			
Surr: BFB	1200		1000		119	73.8	119			S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1812915

21-Dec-18

WO#:

Page 7 of 8

	er, Miller & A Crude Spill	Associate	es								
Sample ID MB-42158	Samp	Type: ME	BLK	Tes	TestCode: EPA Method 8021B: Volatiles						
Client ID: PBS	Batc	h ID: 42	158	F	unNo: 5	6429					
Prep Date: 12/17/2018	Analysis [Date: 12	2/18/2018	S	SeqNo: 1	886748	Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	0.025									
Toluene	ND	0.050									
Ethylbenzene	ND	0.050									
Xylenes, Total	ND	0.10									
Surr: 4-Bromofluorobenzene	1.0		1.000		105	80	120				
Sample ID LCS-42158	Samp	Type: LC	S	Tes	tCode: E	PA Method	8021B: Vola	tiles			
Client ID: LCSS	Batc	h ID: 42	158	F	lunNo: 5	6429					
Prep Date: 12/17/2018	Analysis [Date: 12	2/18/2018	S	SeqNo: 1	886749	Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.95	0.025	1.000	0	95.3	80	120				
Toluene	1.0	0.050	1.000	0	100	80	120				
Ethylbenzene	1.0	0.050	1.000	0	101	80	120				
Xylenes, Total	3.1	0.10	3.000	0	103	80	120				
Surr: 4-Bromofluorobenzene	1.1		1.000		105	80	120				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

WO#:	1812915
	11 D 10

Page 8 of 8

21-Dec-18

.

	HALL ENVIR ANAL		5:01:24 PM AL	TEL	: 505-345-3	ntal Analysis Lab 4901 Haw, Albuquerque, NN 975 FAX: 505-34 v.hallenvironmen	kins NE 4 87109 15-4107	Sample Log-In Check List				
Client	Name:	SMA-CAR	LSBAD	Work	Order Num	ber: 1812915			RcptNo: 1			
Receiv	ved By:	Erin Mele	ndrez	12/15/20)18 9:40:00	AM	UL1	NA	3			
	eted By: ved By:	Erin Mele	ndrez 2 · 17 / 8	12/17/20)18 8:55:45	5 AM	UL U	A	5			
	LB.	DAD 1	2/17/18			t			÷			
<u>Chain</u>	of Cus	<u>tody</u>										
1. Is C	hain of C	ustody comp	lete?			Yes 🗹	No		Not Present			
2. Hoy	v was the	sample deliv	vered?			<u>Courier</u>						
<u>Log</u> / 3. Was		npt made to	cool the samp	les?	·	Yes 🗹	No					
4. Wer	e all samp	oles received	l at a tempera	ture of >0°C to	o 6.0°C	Yes 🗹	No		NA			
5. San	ıple(s) in _l	proper conta	iner(s)?			Yes 🗹	No					
6. Suff	icient sam	iple volume f	for indicated te	est(s)?		Yes 🖌	No					
7. Are	samples (except VOA	and ONG) pro	perly preserve	d?	Yes 🗹	No					
8. Was	preserva	tive added to	bottles?			Yes	No	✓	NA 🗌			
9. VOA	vials hav	e zero head	space?			Yes 🗌	No		No VOA Vials 🗹			
10. Wei	re any san	nple contain	ers received b	roken?		Yes	No		# of preserved bottles checked			
		ork match bo ancies on ch	ttle labels? ain of custody)		Yes 🗹	No		for pH: <u>S</u> (Cor >12 unless note			
12. Are I	matrices o	correctly ider	ntified on Chai	n of Custody?		Yes 🗹	No		Adjusted? NO			
13. Is it	clear what	t analyses w	ere requested	?		Yes 🗹	No					
			e to be met? authorization.)			Yes 🖌	No		Checked by: <u>DAD 13/17/1</u>			
Specia	l Handl	ing (if ap	olicable)									
				with this order?		Yes 🗌	No					
	Person	Notified:	[Date							
	By Who	om:			Via:	eMail] Phone 🗌	Fax	In Person			
	Regard	ing:				······································						
		nstructions:	[·····			a an					
16. Ad	ditional re	marks:										
1.1.1	oler Infor	The Pringle states and a second states and a s		14	salating of stars of sources and		• ··· ···	1944 wai 2012 A	1			
	Cooler No	a to the second data at the second data at the second second second second second second second second second s		A start of the second s	Seal No	Seal Date	Signed	Зý				
		1.6 2.7	Good	Yes Yes								

	. 3	>	CD: 1	202		:01:241	- <u>M</u>												S	cal report.
			www.rialiefivironmental.com 4901 Hawkins NE - Alblidherdhe NM 87109	Analysis	¢C	PCB's CD / МRC	0 / DRG /8082 /2010 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2	0 ³ 10 0 10 0 9 20 9 20 9 20	015D(Pestici Metho Br, N VOA) Semi-	7PH:8 8081 I PAH5 PAH5 CJ F, CJ F, C	×	×	X	7					Place cc. stephenie Hanks stephenie charls souderwiller	ulity. Any sub-contracted data will be clearly notated on the analytic
Turn-Around Time:	□ Standard □ Rush		DKS Crude Spill		Project Manager:	Austra Weyant (8027	E M Kes	lers: 7 (CF=M)	eleaces: 1.6% 7.7%	Container Preservative HEAL No. ビロン Type and # Type	100-	¥ 1007 ¥	X 200- X	T HON- T T				Received by: Via Date Time Ren	Redect by Via: COURIER Date Time	Admitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Chain-of-Custody Record	Client: SMA		Mailing Address: Carlshad	Phone #:	email or Fax#:	QA/QC Package:	creditation: NELAC Other	EDD (Type)		Date Time Matrix Sample Name	12-12-18 11-10 Solt SI	1128 en 54	11740 56	212 J PESOL V				Date: Time: Relinquished by:	Relinquished by:	I I I I I I I I I I I I I I I I I I I

;

May 17, 2019

Jacqui Haris Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: FAX

RE: DKS Crude Oil Spill

OrderNo.: 1905612

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Jacqui Haris:

Hall Environmental Analysis Laboratory received 8 sample(s) on 5/11/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Surr: 4-Bromofluorobenzene

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1905612

Date Reported: 5/17/2019

5/14/2019 8:18:47 PM 44877

CLIENT: Souder, Miller & Associates		Cl	ient Sa	ample II	D: L1-	-6	
Project: DKS Crude Oil Spill		(Collect	ion Dat	e: 5/10	0/2019 9:00:00 AM	
Lab ID: 1905612-001	Matrix: SOIL		Recei	ved Dat	e: 5/1	1/2019 9:30:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	MRA
Chloride	6000	300		mg/Kg	100	5/16/2019 3:51:48 PM	44920
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS					Analyst:	том
Diesel Range Organics (DRO)	1300	20		mg/Kg	2	5/14/2019 11:25:15 PM	44882
Motor Oil Range Organics (MRO)	480	100		mg/Kg	2	5/14/2019 11:25:15 PM	44882
Surr: DNOP	186	70-130	S	%Rec	2	5/14/2019 11:25:15 PM	44882
EPA METHOD 8015D: GASOLINE RAN	GE					Analyst:	NSB
Gasoline Range Organics (GRO)	7.0	4.6		mg/Kg	1	5/14/2019 8:18:47 PM	44877
Surr: BFB	145	73.8-119	S	%Rec	1	5/14/2019 8:18:47 PM	44877
EPA METHOD 8021B: VOLATILES						Analyst:	NSB
Benzene	ND	0.023		mg/Kg	1	5/14/2019 8:18:47 PM	44877
Toluene	ND	0.046		mg/Kg	1	5/14/2019 8:18:47 PM	44877
Ethylbenzene	ND	0.046		mg/Kg	1	5/14/2019 8:18:47 PM	44877
Xylenes, Total	ND	0.092		mg/Kg	1	5/14/2019 8:18:47 PM	44877

98.1

80-120

%Rec 1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 8

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1905612

Date Reported: 5/17/2019

CLIENT: Souder, Miller & Associates Project: DKS Crude Oil Spill	Client Sample ID: L2-6" Collection Date: 5/10/2019 9:10:00 AM										
Lab ID: 1905612-002	Matrix: SOIL		Recei	ved Dat	e: 5/1	1/2019 9:30:00 AM					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS						Analyst	MRA				
Chloride	4100	150		mg/Kg	50	5/16/2019 4:04:13 PM	44920				
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	том				
Diesel Range Organics (DRO)	300	9.4		mg/Kg	1	5/15/2019 12:14:07 AM	44882				
Motor Oil Range Organics (MRO)	160	47		mg/Kg	1	5/15/2019 12:14:07 AM	44882				
Surr: DNOP	209	70-130	S	%Rec	1	5/15/2019 12:14:07 AM	44882				
EPA METHOD 8015D: GASOLINE RANGE	E					Analyst	NSB				
Gasoline Range Organics (GRO)	ND	4.8		mg/Kg	1	5/14/2019 9:49:22 PM	44877				
Surr: BFB	87.5	73.8-119		%Rec	1	5/14/2019 9:49:22 PM	44877				
EPA METHOD 8021B: VOLATILES						Analyst	NSB				
Benzene	ND	0.024		mg/Kg	1	5/14/2019 9:49:22 PM	44877				
Toluene	ND	0.048		mg/Kg	1	5/14/2019 9:49:22 PM	44877				
Ethylbenzene	ND	0.048		mg/Kg	1	5/14/2019 9:49:22 PM	44877				
Xylenes, Total	ND	0.097		mg/Kg	1	5/14/2019 9:49:22 PM	44877				
Surr: 4-Bromofluorobenzene	89.6	80-120		%Rec	1	5/14/2019 9:49:22 PM	44877				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 8

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1905612

Date Reported: 5/17/2019

CLIENT: Souder, Miller & Associates		Cl	ient S	ample II	D: L3	8-6"	
Project: DKS Crude Oil Spill		(Collec	tion Dat	e: 5/1	10/2019 9:20:00 AM	
Lab ID: 1905612-003	Matrix: SOIL		Recei	ved Dat	e: 5/1	11/2019 9:30:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analys	t: smb
Chloride	970	61		mg/Kg	20	5/15/2019 1:27:48 PM	44920
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analys	t: TOM
Diesel Range Organics (DRO)	6600	99		mg/Kg	10	5/14/2019 11:59:02 AM	/ 44882
Motor Oil Range Organics (MRO)	2000	500		mg/Kg	10	5/14/2019 11:59:02 AM	/ 44882
Surr: DNOP	0	70-130	S	%Rec	10	5/14/2019 11:59:02 AM	/ 44882
EPA METHOD 8015D: GASOLINE RANG	E					Analys	t: NSB
Gasoline Range Organics (GRO)	12	4.7		mg/Kg	1	5/14/2019 10:12:03 PM	/ 44877
Surr: BFB	161	73.8-119	S	%Rec	1	5/14/2019 10:12:03 PM	/ 44877
EPA METHOD 8021B: VOLATILES						Analys	t: NSB
Benzene	ND	0.024		mg/Kg	1	5/14/2019 10:12:03 PM	/ 44877
Toluene	ND	0.047		mg/Kg	1	5/14/2019 10:12:03 PM	/ 44877
Ethylbenzene	ND	0.047		mg/Kg	1	5/14/2019 10:12:03 PM	/ 44877
Xylenes, Total	0.13	0.094		mg/Kg	1	5/14/2019 10:12:03 PM	/ 44877
Surr: 4-Bromofluorobenzene	104	80-120		%Rec	1	5/14/2019 10:12:03 PM	/ 44877

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 8

Surr: 4-Bromofluorobenzene

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1905612

Date Reported: 5/17/2019

5/14/2019 11:36:56 AM 44877

CLIENT: Souder, Miller & Associates		C	ient Sa	ample I	D: L4	-6"	
Project: DKS Crude Oil Spill		(Collect	tion Dat	e: 5/1	10/2019 9:30:00 AM	
Lab ID: 1905612-004	Matrix: SOIL		Recei	ved Dat	e: 5/1	1/2019 9:30:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: smb
Chloride	780	60		mg/Kg	20	5/15/2019 2:05:01 PM	44920
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS					Analyst	: том
Diesel Range Organics (DRO)	8900	99		mg/Kg	10	5/14/2019 12:47:59 PM	44882
Motor Oil Range Organics (MRO)	3000	500		mg/Kg	10	5/14/2019 12:47:59 PM	44882
Surr: DNOP	0	70-130	S	%Rec	10	5/14/2019 12:47:59 PM	44882
EPA METHOD 8015D: GASOLINE RAN	IGE					Analyst	: NSB
Gasoline Range Organics (GRO)	71	24		mg/Kg	5	5/14/2019 11:36:56 AM	44877
Surr: BFB	333	73.8-119	S	%Rec	5	5/14/2019 11:36:56 AM	44877
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.12		mg/Kg	5	5/14/2019 11:36:56 AM	44877
Toluene	ND	0.24		mg/Kg	5	5/14/2019 11:36:56 AM	44877
Ethylbenzene	0.76	0.24		mg/Kg	5	5/14/2019 11:36:56 AM	44877
Xylenes, Total	2.9	0.47		mg/Kg	5	5/14/2019 11:36:56 AM	44877

120

80-120 S

%Rec

5

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 8

Client: Project:		er, Miller & Ass Crude Oil Spill		es							
Sample ID:	MB-44920	SampTy	pe: ME	BLK	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	PBS	Batch	ID: 44	920	F	RunNo: 5	9922				
Prep Date:	5/14/2019	Analysis Da	ate: 5/	15/2019	S	SeqNo: 2	022149	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-44920	SampTy	pe: LC	S	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	LCSS	Batch	ID: 44	920	F	RunNo: 5	9922				
Prep Date:	5/14/2019	Analysis Da	ate: 5/	15/2019	S	SeqNo: 2	022150	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	96.5	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: **1905612** *17-May-19*

,	Miller & As ude Oil Spi		es							
Sample ID: LCS-44882	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015M/D: Di	esel Range	e Organics	
Client ID: LCSS	Batch	n ID: 44	882	F	RunNo: 59	9852				
Prep Date: 5/13/2019	Analysis D	ate: 5/	14/2019	5	SeqNo: 20	018959	Units: mg/k	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	58	10	50.00	0	117	63.9	124			
Surr: DNOP	5.4		5.000		109	70	130			
Sample ID: MB-44882	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch	n ID: 44	882	F	RunNo: 5 9	9852				
Prep Date: 5/13/2019	Analysis D	ate: 5/	14/2019	5	SeqNo: 20	018960	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	11		10.00		113	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 8

1905612

17-May-19

WO#:

,	Miller & As ude Oil Spil		es							
Sample ID: MB-44877	SampTy	/pe: ME	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBS	Batch	ID: 44	877	F	RunNo: 59	9873				
Prep Date: 5/13/2019	Analysis Da	ate: 5/	14/2019	S	SeqNo: 20	019795	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	860		1000		85.6	73.8	119			
Sample ID: LCS-44877	SampTy	/pe: LC	S	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batch	ID: 44	877	F	RunNo: 59	9873				
Prep Date: 5/13/2019	Analysis Da	ate: 5/	14/2019	S	SeqNo: 20	019796	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	22	5.0	25.00	0	87.6	80.1	123			
Surr: BFB	970		1000		96.9	73.8	119			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 8

WO#: 1905612

17-May-19

	uder, Miller & A S Crude Oil Sp		es							
Sample ID: MB-44877	Samp	Type: ME	BLK	Test	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBS	Bate	ch ID: 44	877	R	unNo: 5	9873				
Prep Date: 5/13/2019	Analysis	Date: 5/	14/2019	S	eqNo: 2	019823	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzen	e 0.87		1.000		87.2	80	120			
Sample ID: LCS-44877	Samp	Type: LC	s	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSS	Bate	ch ID: 44	877	R	unNo: 5	9873				
Prep Date: 5/13/2019	Analysis	Date: 5/	14/2019	S	eqNo: 2	019824	Units: mg/K	g		
					•					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Benzene			SPK value 1.000	SPK Ref Val 0	%REC 110	LowLimit 80	HighLimit 120	%RPD	RPDLimit	Qual
,	Result	PQL						%RPD	RPDLimit	Qual
Benzene	Result 1.1	PQL 0.025	1.000	0	110	80	120	%RPD	RPDLimit	Qual
Benzene Toluene	Result 1.1 0.97	PQL 0.025 0.050	1.000 1.000	0	110 97.4	80 80	120 120	%RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 8

WO#: **1905612**

17-May-19

HALL ENVIRONMENTAL ANALYSIS LABORATORY		901 Hawkins 1 rque, NM 871 X: 505-345-410	VE 09 Sa 07	Sample Log-In Check List				
Client Name: SMA-CARLSBAD V	Vork Order Number: 19	05612		RcptNo: 1				
Received By: Thom Maybee 5/1	1/2019 9:30:00 AM							
Completed By: Leah Baca 5/19 Reviewed By: YG 5/13/16 Labeled by DAD 5/13/19	1/2019 10:35:12 AM }	,	Lad Ba	un l				
Chain of Custody								
1. Is Chain of Custody complete?	Ve	s 🗸	No 🗌	Not Present				
2. How was the sample delivered?		urier		Not Present				
l en le	<u></u>							
Log In 3. Was an attempt made to cool the samples?	Yes		No 🗌					
4. Were all samples received at a temperature of >0°	C to 6.0°C Yes		No 🗌	NA 🗌				
5. Sample(s) in proper container(s)?	Yes		No 🗌					
6. Sufficient sample volume for indicated test(s)?	Yes		No 🗌					
7. Are samples (except VOA and ONG) properly prese			No 🗌					
8. Was preservative added to bottles?	Yes		No 🗹	NA 🗌				
9. VOA vials have zero headspace?	Yes		No 🗌					
10. Were any sample containers received broken?	Yes		No 🗹	No VOA Vials 🗹				
				# of preserved				
 Does paperwork match bottle labels? (Note discrepancies on chain of custody) 	Yes		No 🗌	bottles checked for pH:				
2. Are matrices correctly identified on Chain of Custody	2	-		(<2 or >12 unless noted)				
3. Is it clear what analyses were requested?			No 🗌	Adjusted?				
4. Were all holding times able to be met?	Yes		No 🗌	000 01				
(If no, notify customer for authorization.)	Yes		No 🗌	Checked by: DAD 5/13/19				
pecial Handling (if applicable)								
15. Was client notified of all discrepancies with this orde	er? Yes		No 🗌	NA 🔽				
Person Notified:	Date							
By Whom:	Via: eMa							
Regarding:		ail 🗌 Phone	e 🗌 Fax	In Person				
Client Instructions:		-						
I6. Additional remarks:								
7. <u>Cooler Information</u>								
Cooler No Temp °C Condition Seal Intac	t Seal No Seal Da	to 0:	ad Du					
1 3.1 Good Yes	Sear No Sear Da	Sign	ned By					

Hall ENVIRONMENTAL ANALYSIS LABORATORY ANALYSIS LABORATORY www.hallenvironmental.com Hawkins NE - Albuquerque, NM 87109 505-345-3975 Fax 505-345-4107 Analysis Request	PAHs by 8310 or 8270SIMS RCRA 8 Metals CI) ۲, – Br, – NO ₃ , – NO ₂ , PO ₄ , –SO ₄ 8260 (VOA) 8270 (Semi-VOA) Total Coliform (Present/Absent) Total Coliform (Present/Absent)		
4901 Haw Tel. 505-	EDB (Method 504.1) BTEX) MIBEL IMB's (8021) BTEX) MIBEL IMB's (8021) BTEX		Date Time Remarks: D1
Turn-Around Time: Standard Wrush 5-dou Project Name: DKS Crude 01 Spill Project #:	Project Manager: <u>Jorou Horris</u> sampler: <u>RR</u> on Ice: <u>Yres</u> No # of Coolers: <u>Coolers:</u> Cooler Temp(including cr): <u>3</u> , <u>7</u> Container Preservative <u>7</u>		Received by Via: Received by Via:
Client: SMA Cavidy Record Client: SMA Cavidsbad Mailing Address: Phone #:	email or Fax#: QA/QC Package: Carlon Standard Level 4 (Full Validation) Accreditation: Accompliance NELAC Other Carlon Date Time Matrix Sample Name	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date: Time: Relinquished by: 51919 12:11 UMMJUN, BUDUN Date: Time: Relinduished by

July 12, 2019

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: FAX:

RE: DKS

OrderNo.: 1907161

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 8 sample(s) on 7/3/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1907161

Date Reported: 7/12/2019

CLIENT: Souder, Miller & Associates Project: DKS			ient Sample II Collection Dat	e: 7/2	2/2019	
Lab ID: 1907161-001	Matrix: SOIL		Received Dat	e: 7/3	3/2019 8:55:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: smb
Chloride	4600	150	mg/Kg	50	7/10/2019 10:41:08 PM	46086
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: JME
Diesel Range Organics (DRO)	360	9.6	mg/Kg	1	7/8/2019 11:27:52 AM	46009
Motor Oil Range Organics (MRO)	260	48	mg/Kg	1	7/8/2019 11:27:52 AM	46009
Surr: DNOP	101	70-130	%Rec	1	7/8/2019 11:27:52 AM	46009
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	7/4/2019 4:09:11 PM	46006
Surr: BFB	109	73.8-119	%Rec	1	7/4/2019 4:09:11 PM	46006
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.025	mg/Kg	1	7/4/2019 4:09:11 PM	46006
Toluene	ND	0.050	mg/Kg	1	7/4/2019 4:09:11 PM	46006
Ethylbenzene	ND	0.050	mg/Kg	1	7/4/2019 4:09:11 PM	46006
Xylenes, Total	ND	0.10	mg/Kg	1	7/4/2019 4:09:11 PM	46006
Surr: 4-Bromofluorobenzene	95.2	80-120	%Rec	1	7/4/2019 4:09:11 PM	46006

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1907161

Date Reported: 7/12/2019

CLIENT: Souder, Miller & Associates Project: DKS			ient Sample II Collection Dat			
Lab ID: 1907161-002	Matrix: SOIL		Received Dat	e: 7/3	3/2019 8:55:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: smb
Chloride	3900	150	mg/Kg	50	7/10/2019 10:53:32 PM	46086
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	JME
Diesel Range Organics (DRO)	29	8.7	mg/Kg	1	7/5/2019 3:57:16 PM	46009
Motor Oil Range Organics (MRO)	ND	43	mg/Kg	1	7/5/2019 3:57:16 PM	46009
Surr: DNOP	91.3	70-130	%Rec	1	7/5/2019 3:57:16 PM	46009
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	7/4/2019 4:31:55 PM	46006
Surr: BFB	107	73.8-119	%Rec	1	7/4/2019 4:31:55 PM	46006
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.023	mg/Kg	1	7/4/2019 4:31:55 PM	46006
Toluene	ND	0.046	mg/Kg	1	7/4/2019 4:31:55 PM	46006
Ethylbenzene	ND	0.046	mg/Kg	1	7/4/2019 4:31:55 PM	46006
Xylenes, Total	ND	0.092	mg/Kg	1	7/4/2019 4:31:55 PM	46006
Surr: 4-Bromofluorobenzene	98.9	80-120	%Rec	1	7/4/2019 4:31:55 PM	46006

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1907161

Date Reported: 7/12/2019

CLIENT: Souder, Miller & Associates Project: DKS			ient Sample II Collection Dat			
Lab ID: 1907161-003	Matrix: SOIL		Received Dat	e: 7/3	3/2019 8:55:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: MRA
Chloride	780	60	mg/Kg	20	7/9/2019 9:15:42 PM	46086
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analys	t: JME
Diesel Range Organics (DRO)	51	9.9	mg/Kg	1	7/5/2019 4:21:55 PM	46009
Motor Oil Range Organics (MRO)	74	50	mg/Kg	1	7/5/2019 4:21:55 PM	46009
Surr: DNOP	89.2	70-130	%Rec	1	7/5/2019 4:21:55 PM	46009
EPA METHOD 8015D: GASOLINE RANG	E				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	7/4/2019 4:54:41 PM	46006
Surr: BFB	105	73.8-119	%Rec	1	7/4/2019 4:54:41 PM	46006
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.025	mg/Kg	1	7/4/2019 4:54:41 PM	46006
Toluene	ND	0.049	mg/Kg	1	7/4/2019 4:54:41 PM	46006
Ethylbenzene	ND	0.049	mg/Kg	1	7/4/2019 4:54:41 PM	46006
Xylenes, Total	ND	0.099	mg/Kg	1	7/4/2019 4:54:41 PM	46006
Surr: 4-Bromofluorobenzene	97.8	80-120	%Rec	1	7/4/2019 4:54:41 PM	46006

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1907161

Date Reported: 7/12/2019

CLIENT: Souder, Miller & Associates			ient Saı Collectio	-			
Project: DKS Lab ID: 1907161-004	Matrix: SOIL	,				8/2019 8:55:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: smb
Chloride	860	60		mg/Kg	20	7/10/2019 3:39:17 PM	46094
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	BRM
Diesel Range Organics (DRO)	95	9.9		mg/Kg	1	7/11/2019 2:07:13 PM	46120
Motor Oil Range Organics (MRO)	160	49		mg/Kg	1	7/11/2019 2:07:13 PM	46120
Surr: DNOP	73.6	70-130		%Rec	1	7/11/2019 2:07:13 PM	46120
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	ND	5.0		mg/Kg	1	7/4/2019 5:17:26 PM	46006
Surr: BFB	102	73.8-119		%Rec	1	7/4/2019 5:17:26 PM	46006
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.025		mg/Kg	1	7/4/2019 5:17:26 PM	46006
Toluene	ND	0.050		mg/Kg	1	7/4/2019 5:17:26 PM	46006
Ethylbenzene	ND	0.050		mg/Kg	1	7/4/2019 5:17:26 PM	46006
Xylenes, Total	ND	0.099		mg/Kg	1	7/4/2019 5:17:26 PM	46006
Surr: 4-Bromofluorobenzene	94.8	80-120		%Rec	1	7/4/2019 5:17:26 PM	46006

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1907161

Date Reported: 7/12/2019

CLIENT: Souder, Miller & Associates Project: DKS			ient Sample I Collection Dat	e: 7/2	2/2019	
Lab ID: 1907161-005	Matrix: SOIL		Received Dat	e: 7/3	3/2019 8:55:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	: MRA
Chloride	ND	60	mg/Kg	20	7/9/2019 9:52:56 PM	46086
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analys	: JME
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	7/5/2019 6:01:19 PM	46009
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	7/5/2019 6:01:19 PM	46009
Surr: DNOP	106	70-130	%Rec	1	7/5/2019 6:01:19 PM	46009
EPA METHOD 8015D: GASOLINE RANGE					Analys	: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	7/4/2019 5:40:12 PM	46006
Surr: BFB	103	73.8-119	%Rec	1	7/4/2019 5:40:12 PM	46006
EPA METHOD 8021B: VOLATILES					Analys	: NSB
Benzene	ND	0.025	mg/Kg	1	7/4/2019 5:40:12 PM	46006
Toluene	ND	0.050	mg/Kg	1	7/4/2019 5:40:12 PM	46006
Ethylbenzene	ND	0.050	mg/Kg	1	7/4/2019 5:40:12 PM	46006
Xylenes, Total	ND	0.10	mg/Kg	1	7/4/2019 5:40:12 PM	46006
Surr: 4-Bromofluorobenzene	95.0	80-120	%Rec	1	7/4/2019 5:40:12 PM	46006

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 13

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1907161

Date Reported: 7/12/2019

CLIENT: Souder, Miller & Associates Project: DKS				ample I tion Dat			
Lab ID: 1907161-006	Matrix: SOIL		Recei	ved Dat	e: 7/3	3/2019 8:55:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	MRA
Chloride	320	60		mg/Kg	20	7/9/2019 10:05:21 PM	46086
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS					Analyst	: JME
Diesel Range Organics (DRO)	2500	94		mg/Kg	10	7/5/2019 6:26:10 PM	46009
Motor Oil Range Organics (MRO)	2900	470		mg/Kg	10	7/5/2019 6:26:10 PM	46009
Surr: DNOP	0	70-130	S	%Rec	10	7/5/2019 6:26:10 PM	46009
EPA METHOD 8015D: GASOLINE RANG	BE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	24	D	mg/Kg	5	7/4/2019 6:02:57 PM	46006
Surr: BFB	113	73.8-119	D	%Rec	5	7/4/2019 6:02:57 PM	46006
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.12	D	mg/Kg	5	7/4/2019 6:02:57 PM	46006
Toluene	ND	0.24	D	mg/Kg	5	7/4/2019 6:02:57 PM	46006
Ethylbenzene	ND	0.24	D	mg/Kg	5	7/4/2019 6:02:57 PM	46006
Xylenes, Total	ND	0.49	D	mg/Kg	5	7/4/2019 6:02:57 PM	46006
Surr: 4-Bromofluorobenzene	102	80-120	D	%Rec	5	7/4/2019 6:02:57 PM	46006

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 13

Hall Environmental Analysis	s Laboratory, In	с.			Analytical Report Lab Order 1907161 Date Reported: 7/12/2	019
CLIENT: Souder, Miller & Associates Project: DKS Lab ID: 1907161-007	Matrix: SOIL	Collec	Sample I Sample I Stion Dat	:e: 7/2		
Analyses	Result	RL Qua	l Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Chloride	400	60	mg/Kg	20	Analys 7/9/2019 10:17:46 PM	st: MRA 46086

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

.

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 13

Hall Environmental Analysis	s Laboratory, In	IC.		Analytical Report Lab Order 1907161 Date Reported: 7/12/	
CLIENT: Souder, Miller & Associates Project: DKS Lab ID: 1907161-008	Matrix: SOIL	Coll	2001011 2 4	D: BG-2 te: 7/2/2019 te: 7/3/2019 8:55:00 AM	
Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Chloride	8900	300	mg/Kg	Analy 100 7/10/2019 11:05:57 F	/st: smb PM 46086

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

.

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 13

Client: Project:	Souder DKS	, Miller & Associates					
Sample ID: I	MB-46086	SampType: MBLK	TestCode: EPA Method	300.0: Anions			
Client ID:	PBS	Batch ID: 46086	RunNo: 61239				
Prep Date:	7/9/2019	Analysis Date: 7/9/2019	SeqNo: 2078063	Units: mg/Kg			
Analyte Chloride		Result PQL SPK value ND 1.5	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual		
Sample ID: I	LCS-46086	-46086 SampType: LCS TestCode: EPA Method 300.0: Anions					
Client ID:	LCSS	Batch ID: 46086	RunNo: 61239				
Prep Date:	7/9/2019	Analysis Date: 7/9/2019	SeqNo: 2078064	Units: mg/Kg			
Analyte		Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual		
Chloride		14 1.5 15.00	0 94.3 90	110			
Sample ID: I	MB-46094	SampType: MBLK	TestCode: EPA Method	300.0: Anions			
Client ID:	PBS	Batch ID: 46094	RunNo: 61307				
Prep Date:	7/10/2019	Analysis Date: 7/10/2019	SeqNo: 2078230	Units: mg/Kg			
Analyte		Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual		
Chloride		ND 1.5					
Sample ID: I	LCS-46094	SampType: LCS	TestCode: EPA Method	300.0: Anions			
Client ID:	LCSS	Batch ID: 46094	RunNo: 61307				
Prep Date:	7/10/2019	Analysis Date: 7/10/2019	SeqNo: 2078231	Units: mg/Kg			
Analyte		Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual		
Chloride		14 1.5 15.00	0 92.9 90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 13

1907161

12-Jul-19

WO#:

Client: Project:	Souder, N DKS	Miller & Assoc	iates						
Sample ID:	MB-45994	SampType:	MBLK	Tes	tCode: EPA Metho	od 8015M/D: Dies	sel Range	e Organics	
Client ID:	PBS	Batch ID:	45994	F	unNo: 61163				
Prep Date:	7/3/2019	Analysis Date:	7/5/2019	S	eqNo: 2072907	Units: %Rec			
Analyte		Result PC	QL SPK value	SPK Ref Val	%REC LowLim	it HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		8.3	10.00		83.3 7	0 130			
Sample ID:	MB-46009	SampType:	MBLK	Tes	tCode: EPA Metho	od 8015M/D: Die:	sel Range	e Organics	
Client ID:	PBS	Batch ID:	46009	F	unNo: 61163				
Prep Date:	7/3/2019	Analysis Date:	7/5/2019	S	eqNo: 2072908	Units: mg/Kg	J		
Analyte		Result PC	QL SPK value	SPK Ref Val	%REC LowLim	it HighLimit	%RPD	RPDLimit	Qual
-	Organics (DRO)	ND	10						
-	ge Organics (MRO)	ND	50		90 E 7	0 420			
Surr: DNOP		9.0	10.00		89.5 7	0 130			
Sample ID:	LCS-45994	SampType:	LCS	Tes	tCode: EPA Metho	od 8015M/D: Dies	sel Range	e Organics	
Client ID:	LCSS	Batch ID:	45994	F	unNo: 61163				
Prep Date:	7/3/2019	Analysis Date:	7/5/2019	S	eqNo: 2072909	Units: %Rec			
Analyte		Result PC	QL SPK value	SPK Ref Val	%REC LowLim	it HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		4.0	5.000		80.7 7	0 130			
Sample ID:	LCS-46009	SampType:	LCS	Tes	tCode: EPA Metho	od 8015M/D: Dies	sel Range	e Organics	
Client ID:	LCSS	Batch ID:	46009	F	RunNo: 61163				
Prep Date:	7/3/2019	Analysis Date:	7/5/2019	S	SeqNo: 2072910	Units: mg/Kg	9		
Analyte		Result PC	QL SPK value	SPK Ref Val	%REC LowLim	it HighLimit	%RPD	RPDLimit	Qual
Diesel Range	Organics (DRO)	56	10 50.00	0	111 63.	9 124			
Surr: DNOP		5.4	5.000		109 7	0 130			
Sample ID:	LCS-46087	SampType:	LCS	Tes	tCode: EPA Metho	od 8015M/D: Die:	sel Range	e Organics	
Client ID:	LCSS	Batch ID:	46087	F	unNo: 61294				
Prep Date:	7/9/2019	Analysis Date:	7/10/2019	S	eqNo: 2077836	Units: %Rec			
Analyte		Result PC	QL SPK value	SPK Ref Val	%REC LowLim	it HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		6.8	5.000		135 7				S
Sample ID:	MB-46087	SampType:	MBLK	Tes	tCode: EPA Metho	od 8015M/D: Dies	sel Range	e Organics	
Client ID:		Batch ID:			unNo: 61294		5	-	
Prep Date:		Analysis Date:			SeqNo: 2077837	Units: %Rec			
Analyte				SPK Ref Val	%REC LowLim	it HighLimit	%RPD	RPDLimit	Qual

Surr: DNOP

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

147

70

130

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

10.00

15

S

1907161

12-Jul-19

WO#:

Project: DKS										
Sample ID: LCS-46120 SampType: LCS				TestCode: EPA Method 8015M/D: Diesel Range Organics						
lient ID: LCSS Batch ID: 46120			RunNo: 61303							
Prep Date: 7/11/2019	Analysis Date: 7/11/2019			SeqNo: 2078451			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	53	10	50.00	0	105	63.9	124			
Surr: DNOP	4.5		5.000		89.3	70	130			
Sample ID: MB-46120	SampType: MBLK			TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID: PBS	Batch ID: 46120			RunNo: 61303						
Prep Date: 7/11/2019	Analysis Date: 7/11/2019			SeqNo: 2078452			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.4		10.00		93.6	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 13

WO#: 1907161 12-Jul-19

	ouder, Miller & A	ssociate	S							
Project: I	OKS									
Sample ID: MB-4600	S Samp	Туре: МЕ	BLK	Tes	tCode: EF	PA Method	8015D: Gasc	line Rang	e	
Client ID: PBS	Batc	h ID: 460	006	F	RunNo: 6	152				
Prep Date: 7/3/2019	Analysis I	Date: 7/4	4/2019	5	SeqNo: 20)72252	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) ND	5.0								
Surr: BFB	1100		1000		105	73.8	119			
Sample ID: LCS-460	6 Samp	Туре: LC	s	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	9	
Client ID: LCSS	Batc	h ID: 460	006	F	RunNo: 6	152				
Prep Date: 7/3/2019	Analysis [Date: 7/4	4/2019	5	SeqNo: 20	072253	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) 24	5.0	25.00	0	96.4	80.1	123			
Surr: BFB	1200		1000		120	73.8	119			S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 13

12-Jul-19

1907161

WO#:

Client: Souder Project: DKS	, Miller & A	ssociate	es							
Sample ID: MB-46006	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID: PBS	Batch	n ID: 46	006	F	unNo: 6	1152				
Prep Date: 7/3/2019	Analysis D	ate: 7/	4/2019	S	eqNo: 20	072290	Units: mg/K	íg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.97		1.000		97.2	80	120			
Sample ID: LCS-46006	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID: LCSS	Batch	n ID: 46	006	F	tunNo: 6	1152				
Prep Date: 7/3/2019	Analysis D	ate: 7/	4/2019	S	eqNo: 20	072291	Units: mg/K	íg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.0	0.025	1.000	0	101	80	120			
Toluene	1.0	0.050	1.000	0	100	80	120			
Ethylbenzene	0.99	0.050	1.000	0	98.5	80	120			
× · · · ·				â	~~~~	00	400			
Xylenes, Total	2.9	0.10	3.000	0	96.9	80	120			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 13

WO#: 1907161 12-Jul-19

HALL ENVI	0/26/2020 5 RONMENT YSIS RATORY		TE	ll Environme L: 505-345-, Website: ww	49 Albuquer 3975 FAX:	01 Hawki que, NM 505-345	ins NE 87109 5-4107	Sar	nple Log-In Che	Page 111 eck List
Client Name:	SMA-CAR	LSBAD	Work	Order Num	ber: 190	7161			RcptNo: 1	
Received By:	Leah Bac	а	7/3/201	9 8:55:00 A	M		Lal	Bae	a	
Completed By:	Isaiah Or	tiz	7/3/201	9 11:07:39	AM		7	Baa	24	
Reviewed By:	18		7/3/1	5						
Chain of Cu	<u>stody</u>									
1. Is Chain of C	Custody comp	lete?			Yes		N	o 🗌	Not Present	
2. How was the	e sample deliv	vered?			Cou	rier				
Log In 3. Was an atte	mpt made to	cool the same	les?		Yes	~	N	о П		
4. Were all sam	ples received	l at a tempera	ture of >0° C	to 6.0°C	Yes		N	b		
5. Sample(s) in	proper conta	iner(s)?			Yes	~	N	b		
6. Sufficient sar	nple volume f	or indicated to	est(s)?		Yes	~	No			
7. Are samples	(except VOA	and ONG) pro	operly preserve	ed?	Yes		No			
8. Was preserve	ative added to	bottles?			Yes		No		NA 🗌	
9. VOA vials ha	ve zero head	space?			Yes		No		No VOA Vials 🗹	
10. Were any sa			roken?		Yes					
11. Does paperw (Note discrep			Ň		Yes		No		# of preserved bottles checked for pH:	(unless seterity
12. Are matrices			the second s		Yes		No		Adjusted?	unless noted)
13. Is it clear what					Yes					
14. Were all hold	ing times able				Yes				Checked by: DAD	7/3/19
Special Hand	ling (if ap	olicable)								
15. Was client n		A CONTRACTOR OF A	with this order?	,	Yes		N	•	NA 🔽	
Persor	Notified:	1		Date	-	_				
By Wh	om:	1		Via:	eM	ail 🗌	Phone [Fax	In Person	
Regard	2.7	[
Client	Instructions:	1								
16. Additional re	emarks:									
17. Cooler Info	and the second sec		and the							
Cooler No	the second s	1	Seal Intact	Seal No	Seal D	ate	Signed	Ву	_	
1 2	2.6 3.9	Good Good	Yes Yes							

IENTAL RATORY																							ige 112	
HALL ENVIRONMENTAL	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	[⊅] O ⁴	rt/Abse PCB's PCB's	1022) 8270 8270 923,	8/86 604 2 3, 1 3, 5 (AC	310 310 310 310 310 310 310 310 310 310	astid betho 3 M 6 3 r, 1 3 M 3 M 6 3 M 6 3 M 6 3 M 6	641 P6 208 (M 200 (M 200 (V 200 (V	8 7 7 8 8 8 8		×					×			arks:	\sim	lity. Any sub-contracted data will be clearly notated on the ana
Rush DAY						N WEVAUT 15 (802			8E	1+ 05=2,60 34905-3905	ervative HEAL No.	× 100-	- m07 V	-0/13 X	~004 X	-005 X	~006 X	~00J	- 003			L2/19/20	e T	$-\frac{1}{2}\sqrt{3}\sqrt{4}$ $-\frac{1}{2}\sqrt{5}$
Turn-Around Time:	Project Name:		Project #:		Project Manager:	HUS7	Sampler:	On Ice: 🛛 🕅 Y	# of Coolers: 2	Cooler Temp(including CF): 2	Container Prese		1,4	Unit 1	463 1	402 1	4021	Utot 1	4071			Received by: Via:	b K	bcontracted to other accredite
Client: SMA CBC		Malling Address: JAN >	HALAGUEND	Phone #:	email or Fax#:	QA/QC Package:	Accreditation: 🛛 Az Compliance		EDD (Type)		Toto Timo Matrix Samula Nama	- Sual	0-1-2	C2	6.5	ちい	0.02)	1 100 120-1	N/ N/ BG-2	>	//	Date: Time: Relinquished by:	Date: Time: Relinquished by:	1 If n

.

APPENDIX F

EPA Visual Sampling Plan

VSP Sample Design Report for Using Stratified Sampling to Estimate the Population Proportion

Summary

This report summarizes the stratified sampling design used, associated statistical assumptions, as well as general guidelines for conducting post-sampling data analysis. Sampling plan components presented here include how many sampling locations to choose and where within the sampling area to collect those samples. The type of medium to sample (i.e., soil, groundwater, etc.) and how to analyze the samples (in-situ, fixed laboratory, etc.) are addressed in other sections of the sampling plan. It is important to note that the decision for sample size calculation is determined for the combined strata, rather than any individual strata.

The following table summarizes the proportion stratified sampling design developed. A figure that shows sampling locations in the field and a table that lists sampling location coordinates are also provided below.

SUMMARY	OF SAMPLING DESIGN
Primary Objective of Design	Estimate the population proportion of all strata combined
Criteria for Determining Total Number of Samples	Achieve pre-specified precision of the estimated proportion for specified stratum costs, but no restriction on total costs
Sample Placement (Location) in the Field	Random sampling within grids within each stratum
Formula for calculating number of sampling locations	From Gilbert (1987, page 51)
Method for calculating number of sampling locations in each stratum	Optimal Allocation
Calculated total number of samples	9
Stratum 1	9
Total area of all strata	891.88 m ²
Total cost of sampling ^a	

^a Including measurement analyses and fixed overhead costs. See the Cost of Sampling section for an explanation of the costs presented here.

Area: Area 1

X Coord	Y Coord	Label	Value	Туре	Historical	Sample Area
-11600796.6066	3856084.9773			Random in Grid		
-11600807.2377	3856107.1434			Random in Grid		
-11600810.3285	3856114.8886			Random in Grid		
-11600816.4153	3856128.8201			Random in Grid		
-11600835.3214	3856150.8987			Random in Grid		
-11600830.9739	3856142.0953			Random in Grid		
-11600843.1128	3856166.4948			Random in Grid		
-11600856.7885	3856194.8614			Random in Grid		
-11600876.6038	3856236.6671			Random in Grid		

Primary Sampling Objective

The primary purpose of sampling at this site is to estimate the proportion for the entire site, i.e., for all strata combined, such that the estimated proportion has the minimum possible standard deviation under the condition that the sampling and measurement costs cannot exceed a specified amount. Preexisting information was used to divide the site into 1 non-overlapping strata that were expected to be more homogeneous internally than for the entire site (all strata combined). The expected variability of values within each stratum was estimated or approximated, and the stratum weights, W_h , were determined so that the total number of samples could be allocated appropriately among the strata.

Number of Total Samples: Calculation Equation and Inputs

The total number of samples is computed to achieve the pre-specified precision of the estimated population proportion for specified stratum costs, but no restriction on total costs. *Note that the calculation is for the total number of samples, i.e., for combined strata, rather than individual strata.*

The formula used to calculate the total number of samples is:

$$n = \frac{\left(\sum_{h=1}^{L} W_h \sqrt{P_h (1 - P_h)} \sqrt{c_h}\right) \sum_{h=1}^{L} \frac{W_h \sqrt{P_h (1 - P_h)}}{\sqrt{c_h}}}{V + \frac{1}{N} \sum_{h=1}^{L} W_h P_h (1 - P_h)}$$

where

L is the number of strata, h=1,2,...,L,

 P_h is the estimated proportion of measurements in stratum *h*, $W_h = N_h / N$ is the weight associated with stratum *h*,

 N_{h}^{n} is the total number of possible sampling locations (units) in stratum h,

N is the total number of possible units in all strata combined,

$$=\sum_{h=1}N_h$$

Ν

V is the pre-specified variance or precision, and

 c_h is the cost of collecting and measuring a sample in stratum *h*.

The values of these inputs that result in the calculated number of sampling locations are:

Parameter	Stratum
	1
P _h	0.2
C _h	
W _h	891.883

Parameter Input Value

Allocation of Samples to Strata

The total number of samples is allocated to the individual strata on an optimal basis using the formula:

$$n_{h} = n \frac{N_{h} \sqrt{P_{h} (1 - P_{h})} / \sqrt{c_{h}}}{\sum_{h=1}^{L} N_{h} \sqrt{P_{h} (1 - P_{h})} / \sqrt{c_{h}}}$$

where

- n_h is the number of samples allocated to stratum h,
- L' is the number of strata,
- N_h is the total number of units in stratum *h*,
- $P_h^{\prime\prime}$ is the proportion in stratum h,
- c_h is the cost per population unit in stratum *h*.

n is the total number of units sampled in all strata,

$$n = \sum_{h=1}^{2} n_h$$

ĩ

Using this formula, the number of samples allocated to each stratum is:

Stratum	Number of Samples
1	9
Total Samples	9

Method for Determining Sampling Locations

Five methods for determining sample locations are provided in VSP: 1) simple random sampling, 2) random sampling within grids, 3) systematic sampling with a random start, 4) systematic sampling with a fixed start and 5) adaptive grid sampling. One may use a different method for each stratum, based on the conceptual site model and decision to be made for a given stratum. For this site, sample locations were chosen using random sampling within grids in each stratum.

Locating the sample points using a random sampling within grids method combines appealing aspects of both the random and the systematic grid methods. It provides data that are separated by many distances, providing information about the spatial structure of the potential contamination. It also ensures good coverage of the entire site, although not as completely as if systematic grid sampling were performed.

Statistical Assumptions

The assumptions associated with the formulas for computing the number of samples are:

- 1. The estimated stratum proportions, P_{h} , are reasonable and representative of the stratum populations being sampled.
- 2. The sampling locations are selected using simple random sampling.
- 3. The stratum costs, C_h , and the fixed cost C_0 , are accurate.

The first and third assumptions will be assessed in a post data collection analysis. The second assumption, although not strictly valid for strata where systematic grid sampling was used rather than simple random sampling, is not expected to significantly affect conclusions of the study because (1) the gridded sample locations were selected based on a random start and (2) any patterns of contamination in the field that may exist are not expected to coincide with the regularity of the grid sampling pattern.

Cost of Sampling

The total cost of the completed sampling program depends on several cost inputs, some of which are fixed, and others that are based on the number of samples collected and measured. Based on the numbers of samples determined above, the estimated total cost of sampling and analysis at this site is \$5,500.00, which averages out to a per sample cost of \$611.11. The following table summarizes the inputs and resulting cost estimates.

COST INFORMATION

Stratum	Samples	Collection Cost Per Sample	Analytic Cost Per Sample	Total Cost
1	9			
Total Samples:	9		Subtotal:	
			Fixed Startup Cost:	
			Grand Total:	

Recommended Data Analysis Activities

Post data collection activities generally follow those outlined in EPA's Guidance for Data Quality Assessment (EPA, 2000). The data analysts will become familiar with the context of the problem and goals for data collection and assessment. The data will be verified and validated before being subjected to statistical or other analyses. Graphical and analytical tools will be used to verify to the extent possible the assumptions of any statistical analyses that are performed as well as to achieve a general understanding of the data. The data will be assessed to determine whether they are adequate in both quality and quantity to support the primary objective of sampling.

Estimates for the proportion of the population values will be calculated using the formulas appropriate for stratified sampling; these formulas are found in EPA QA/G-5S (EPA, 2001). Results of the exploratory and quantitative assessments of the data will be reported, along with conclusions that may be supported by them.

This report was automatically produced* by Visual Sample Plan (VSP) software version 7.12a.

This design was last modified 2/8/2020 11:56:54 AM.

Software and documentation available at http://vsp.pnnl.gov

Software copyright (c) 2020 Battelle Memorial Institute. All rights reserved.

* - The report contents may have been modified or reformatted by end-user of software.

•

🔅 eurofins

Environment Testing Xenco

Project Id: 104320001 Dan Moir

Contact:

Project Location:

Certificate of Analysis Summary 671127

LT Environmental, Inc., Arvada, CO

Project Name: DKS Transport Truck Rollover

Date Received in Lab: Wed 08.26.2020 17:15

Report Date: 08.31.2020 10:02

Project Manager: Jessica Kramer

	Lab Id:	671127-0	01	671127-00	02	671127-0	03		
Analysis Requested	Field Id:	SS01		SS02		SS03			
Anuiysis Nequesieu	Depth:	0.5- ft		0.5- ft		0.5- ft			
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	08.26.2020	12:10	08.26.2020	12:25	08.26.2020	12:35		
BTEX by EPA 8021B	Extracted:	08.27.2020	12:30	08.27.2020	12:30	08.27.2020	12:30		
	Analyzed:	08.27.2020	14:28	08.27.2020	14:49	08.27.2020	15:09		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199		
Toluene		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199		
Ethylbenzene		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199		
m,p-Xylenes		< 0.00399	0.00399	< 0.00398	0.00398	< 0.00398	0.00398		
o-Xylene		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199		
Total Xylenes		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199		
Total BTEX		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199		
Chloride by EPA 300	Extracted:	08.27.2020	13:02	08.27.2020	13:02	08.27.2020	13:02		
	Analyzed:	08.27.2020	14:40	08.27.2020	14:51	08.27.2020	14:57		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		2420	49.6	44.2	9.96	511	9.98		
TPH by SW8015 Mod	Extracted:	08.27.2020	13:00	08.27.2020	13:00	08.27.2020	13:00		
	Analyzed:	08.27.2020	15:48	08.27.2020	16:09	08.27.2020	20:53		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<49.8	49.8	<50.0	50.0	<49.9	49.9		
Diesel Range Organics (DRO)		112	49.8	<50.0	50.0	4430	49.9		
Motor Oil Range Hydrocarbons (MRO)		<49.8	49.8	<50.0	50.0	713	49.9		
Total GRO-DRO		112	49.8	<50.0	50.0	4430	49.9		
Total TPH		112	49.8	<50.0	50.0	5140	49.9		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

Final 1.000

eurofins Environment Testing Xenco

Analytical Report 671127

for

LT Environmental, Inc.

Project Manager: Dan Moir

DKS Transport Truck Rollover

104320001

08.31.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-37), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483)

08.31.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: Eurofins Xenco, LLC Report No(s): 671127 DKS Transport Truck Rollover Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 671127. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 671127 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

.

Sample Cross Reference 671127

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS01	S	08.26.2020 12:10	0.5 ft	671127-001
SS02	S	08.26.2020 12:25	0.5 ft	671127-002
SS03	S	08.26.2020 12:35	0.5 ft	671127-003

Environment Testing Xenco

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: DKS Transport Truck Rollover

 Project ID:
 104320001

 Work Order Number(s):
 671127

 Report Date:
 08.31.2020

 Date Received:
 08.26.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Seq Number: 3135805

•

Environment Testi Xenco

Certificate of Analytical Results 671127

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

od: Chloride by EPA (IAB IAB 135806	300	Date Prep:			Prep Method: % Moisture:	E300P	
		Date Trep.	08.27.2020 13:02		Basis:	Wet Weight	
	Cas Number	Result	RL	Units	Analysis Da	nte Flag	Dil
	16887-00-6	2420	49.6	mg/kg	08.27.2020 14	1:40	5
TH	Mod		09 27 2020 12 00		% Moisture:		
]	2	16887-00-6 d: ТРН by SW8015 Mod ГН	16887-00-6 2420 d: TPH by SW8015 Mod FH	16887-00-6 2420 49.6 d: TPH by SW8015 Mod	16887-00-6 2420 49.6 mg/kg d: TPH by SW8015 Mod	Image: Second	16887-00-6 2420 49.6 mg/kg 08.27.2020 14:40 d: TPH by SW8015 Mod Prep Method: SW8015P fH % Moisture: %

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	08.27.2020 15:48	U	1
Diesel Range Organics (DRO)	C10C28DRO	112	49.8		mg/kg	08.27.2020 15:48		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	08.27.2020 15:48	U	1
Total GRO-DRO	PHC628	112	49.8		mg/kg	08.27.2020 15:48		1
Total TPH	PHC635	112	49.8		mg/kg	08.27.2020 15:48		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	126	%	70-135	08.27.2020 15:48		
o-Terphenyl		84-15-1	119	%	70-135	08.27.2020 15:48		

.

Environment Test Xenco

Certificate of Analytical Results 671127

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id:SS01Lab Sample Id:671127-001	Matrix: Date Collecte	Soil ed: 08.26.2020 12:10	Date Received Sample Depth	d:08.26.2020 17:15 n: 0.5 ft
Analytical Method: BTEX by EPA 8021B Tech: MAB			Prep Method: % Moisture:	SW5035A
Analyst: MAB Seq Number: 3135786	Date Prep:	08.27.2020 12:30	Basis:	Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	08.27.2020 14:28	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	08.27.2020 14:28	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	08.27.2020 14:28	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	08.27.2020 14:28	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	08.27.2020 14:28	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	08.27.2020 14:28	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	08.27.2020 14:28	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	100	%	70-130	08.27.2020 14:28		
4-Bromofluorobenzene		460-00-4	104	%	70-130	08.27.2020 14:28		

Xenco

.

Certificate of Analytical Results 671127

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: SS02 Lab Sample Id: 671127-002		Matrix: Date Co	Soil llected: 08.26.202	0 12:25	Date Received:08. Sample Depth: 0.5		:15
Analytical Method: Chloride b Tech: MAB Analyst: MAB Seq Number: 3135806	y EPA 300	Date Pre	ep: 08.27.202	0 13:02	Prep Method: E30 % Moisture: Basis: We	00P et Weight	
Parameter Chloride	Cas Number 16887-00-6	Result	RL 9.96	Units mg/kg	Analysis Date 08.27.2020 14:51	Flag	Dil

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 08.	27.2020 13:00		Basis: W	Vet Weight	
Seq Number: 3135805								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	08.27.2020 16:0	9 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	08.27.2020 16:0	9 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	08.27.2020 16:0	9 U	1
Total GRO-DRO	PHC628	<50.0	50.0		mg/kg	08.27.2020 16:09	9 U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	08.27.2020 16:09	9 U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Da	te Flag	
1-Chlorooctane		111-85-3	129	%	70-135	08.27.2020 16	:09	
o-Terphenyl		84-15-1	117	%	70-135	08.27.2020 16	:09	

.

Xenco

Certificate of Analytical Results 671127

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: SS02 Lab Sample Id: 671127-002	Matrix: Date Collecte	Soil d: 08.26.2020 12:25	Date Receive Sample Dept	ed:08.26.2020 17:15 h: 0.5 ft
Analytical Method: BTEX by EPA 8021B Tech: MAB Analyst: MAB	Date Prep:	08.27.2020 12:30	Prep Method % Moisture: Basis:	: SW5035A Wet Weight
Seq Number: 3135786				

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	08.27.2020 14:49	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.27.2020 14:49	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.27.2020 14:49	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.27.2020 14:49	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.27.2020 14:49	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.27.2020 14:49	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.27.2020 14:49	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	96	%	70-130	08.27.2020 14:49		
4-Bromofluorobenzene		460-00-4	100	%	70-130	08.27.2020 14:49		

.

Certificate of Analytical Results 671127

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: SS03 Lab Sample Id: 671127-003		Matrix: Date Collec	Soil eted: 08.26.2020 12:35		Date Received:08.2 Sample Depth: 0.5		7:15
Analytical Method: Chloride by I Tech: MAB Analyst: MAB Seq Number: 3135806	EPA 300	Date Prep:	08.27.2020 13:02		Prep Method: E3(% Moisture: Basis: We	00P t Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	511	9.98	mg/kg	08.27.2020 14:57		1
Analytical Method: TPH by SW8	0015 M-J				Prep Method: SW	0015D	

Analyst: DTH Seg Number: 3135805		Date P	rep: 08	27.2020 13:00		Basis: W	et Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	08.27.2020 20:53	U	1
Diesel Range Organics (DRO)	C10C28DRO	4430	49.9		mg/kg	08.27.2020 20:53		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	713	49.9		mg/kg	08.27.2020 20:53		1
Total GRO-DRO	PHC628	4430	49.9		mg/kg	08.27.2020 20:53		1
Total TPH	PHC635	5140	49.9		mg/kg	08.27.2020 20:53		1
Surrogate	(Cas Number	% Recovery	Units	Limits	Analysis Dat	e Flag	
1-Chlorooctane	1	111-85-3	126	%	70-135	08.27.2020 20:	53	
o-Terphenyl	8	34-15-1	124	%	70-135	08.27.2020 20:	53	

.

Xenco

Certificate of Analytical Results 671127

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: SS03 Lab Sample Id: 671127-003	Matrix: Soil Date Collected: 08.26.202	Date Received:08.26.2020 17:15 20 12:35 Sample Depth: 0.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3135786	Date Prep: 08.27.202	Prep Method: SW5035A % Moisture: 20 12:30 Basis: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	08.27.2020 15:09	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	08.27.2020 15:09	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	08.27.2020 15:09	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	08.27.2020 15:09	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	08.27.2020 15:09	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	08.27.2020 15:09	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	08.27.2020 15:09	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	101	%	70-130	08.27.2020 15:09		
4-Bromofluorobenzene		460-00-4	97	%	70-130	08.27.2020 15:09		

Xenco

Environment Testing

🔅 eurofins

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected			
RL Reporting Limit				
MDL Method Detection Limit	SDL Sample De	tection Limit	LOD Limit of Detection	
PQL Practical Quantitation Limit	ctical Quantitation Limit MQL Method Quantitation Limit			n
DL Method Detection Limit				
NC Non-Calculable				
SMP Client Sample		BLK	Method Blank	
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD Method Duplicate/Samp	ble Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate
+ NELAC certification not offered	l for this compound.			

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

eurofins Environment Testing Xenco

QC Summary 671127

LT Environmental, Inc.

DKS Transport Truck Rollover

Analytical Method: Seq Number: MB Sample Id:	Chloride by 3135806 7710280-1-2		00		Matrix: nple Id:	Solid 7710280-1	I-BKS			rep Methe Date Pr D Sample	ep: 08.2	0P 27.2020 0280-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Boggett	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		<10.0	250 Allount	263	105	Result 265	% Rec 106	90-110	1	20	mg/kg	08.27.2020 12:54	
Analytical Method: Seq Number:	Chloride by 3135806	y EPA 30	00		Matrix:	Soil			Pr	rep Metho Date Pr		0P 27.2020	
Parent Sample Id:	671092-003					671092-00)3 S		MS		-	092-003 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		85.2	199	290	103	289	102	90-110	0	20	mg/kg	08.27.2020 13:11	
Analytical Method: Seq Number: Parent Sample Id:	Chloride by 3135806 671112-008)0		Matrix: nple Id:	Soil 671112-00)8 S			rep Methe Date Pr D Sample	ep: 08.2	0P 27.2020 112-008 SD	
Parameter		Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD	Units	Analysis	Flag
Chloride		Result 8.29	Amount 199	Result 210	%Rec 101	Result 210	%Rec 101	90-110	0	Limit 20	mg/kg	Date 08.27.2020 14:29	1 .ug
Analytical Method: Seq Number:	TPH by SV 3135805	V8015 M	od		Matrix:					rep Metho Date Pr	od: SW ep: 08.2	8015P 27.2020	
MB Sample Id:	7710279-1-	BLK			nple Id:	7710279-3	I-BKS			-		0279-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb		<50.0	1000	1000	100	964	96	70-135	4	35	mg/kg	08.27.2020 13:47	
Diesel Range Organics	(DRO)	<50.0	1000	1080	108	1050	105	70-135	3	35	mg/kg	08.27.2020 13:47	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1-Chlorooctane o-Terphenyl		117 114			27 27		132 118			-135 -135	% %	08.27.2020 13:47 08.27.2020 13:47	
Analytical Method: Seq Number:	TPH by SV 3135805	V8015 M	od		Matrix: nple Id:	Solid 7710279-1	I-BLK		Pi	rep Methe Date Pr		8015P 27.2020	
Parameter				MB Result							Units	Analysis Date	Flag
Motor Oil Range Hydrocar	bons (MRO)			<50.0							mg/kg	08.27.2020 13:27	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 13 of 16

Final 1.000

🔅 eurofins **Environment Testing** Xenco

QC Summary 671127

LT Environmental, Inc.

DKS Transport Truck Rollover

Analytical Method:	TPH by SV	V8015 M	od						P	rep Metho	od: SW	8015P	
Seq Number:	3135805]	Matrix:	Soil				Date Pr	ep: 08.2	27.2020	
Parent Sample Id:	671126-001	l		MS San	nple Id:	671126-00	01 S		MS	D Sample	e Id: 671	126-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	< 50.0	999	947	95	969	97	70-135	2	35	mg/kg	08.27.2020 14:47	
Diesel Range Organics ((DRO)	<50.0	999	1040	104	1050	105	70-135	1	35	mg/kg	08.27.2020 14:47	
Surrogate					IS Rec	MS Flag	MSE %Re			imits	Units	Analysis Date	
1-Chlorooctane				1	32		134	Ļ	70	-135	%	08.27.2020 14:47	
o-Terphenyl				1	24		124	Ļ	70	-135	%	08.27.2020 14:47	

Analytical Method:	BTEX by EPA 8021	В						P	rep Metho	od: SW	5035A	
Seq Number:	3135786]	Matrix:	Solid				Date Pro	ep: 08.2	27.2020	
MB Sample Id:	7710267-1-BLK		LCS San	nple Id:	7710267-	I-BKS		LCS	D Sample	e Id: 771	0267-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.104	104	0.101	101	70-130	3	35	mg/kg	08.27.2020 11:30	
Toluene	< 0.00200	0.100	0.100	100	0.0974	97	70-130	3	35	mg/kg	08.27.2020 11:30	
Ethylbenzene	< 0.00200	0.100	0.106	106	0.102	102	71-129	4	35	mg/kg	08.27.2020 11:30	
m,p-Xylenes	< 0.00400	0.200	0.213	107	0.209	105	70-135	2	35	mg/kg	08.27.2020 11:30	
o-Xylene	< 0.00200	0.100	0.105	105	0.102	102	71-133	3	35	mg/kg	08.27.2020 11:30	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Ree			imits	Units	Analysis Date	
1,4-Difluorobenzene	105		9	98		97		70	-130	%	08.27.2020 11:30	
4-Bromofluorobenzene	111		9	9		98		70	-130	%	08.27.2020 11:30	

Analytical Method:	BTEX by EPA 8021	lB						Pi	rep Metho	od: SW	5035A	
Seq Number:	3135786			Matrix:	Soil				Date Pr	ep: 08.2	27.2020	
Parent Sample Id:	671126-001		MS Sar	nple Id:	671126-00	01 S		MS	D Sample	e Id: 671	126-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.111	111	0.0960	96	70-130	14	35	mg/kg	08.27.2020 12:32	
Toluene	< 0.00199	0.0996	0.104	104	0.0924	93	70-130	12	35	mg/kg	08.27.2020 12:32	
Ethylbenzene	< 0.00199	0.0996	0.110	110	0.0957	96	71-129	14	35	mg/kg	08.27.2020 12:32	
m,p-Xylenes	< 0.00398	0.199	0.220	111	0.195	98	70-135	12	35	mg/kg	08.27.2020 12:32	
o-Xylene	< 0.00199	0.0996	0.108	108	0.0967	97	71-133	11	35	mg/kg	08.27.2020 12:32	
Surrogate				IS Rec	MS Flag	MSD %Red			imits	Units	Analysis Date	
1,4-Difluorobenzene			ç	8		98		70	-130	%	08.27.2020 12:32	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

4-Bromofluorobenzene

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

102

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

08.27.2020 12:32

Page 14 of 16

101

Final 1.000

70-130

%

ge 13.	ABORATORIES	Midland	,TX (281) 240-4200 1 d,TX (432-704-5440)	Dallas, TX (214) 902-030 EL Paso, TX (915)585-3	Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296		
Pa	2	Hobbs, NM (575-392	-7550) Phoenix,AZ (4	180-355-0900) Atlanta, (Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000)	www.xenco.com	Page 1 of J
Project Manager:	Dan Moir		Bill to: (if different)	Kyle Littrell		Work Order Comments	nments
Company Name:	LT Environmental, Inc.,	., Permian office	Company Name:	XTO Energy		Program: UST/PST PRP Brownfields RRC	Ids RRC Juperfund
Address:	3300 North A Street		Address:	3104 East Green Street	Street		
City, State ZIP:	Midland, TX 79705		City, State ZIP:	Carlsbad, NM 88220	20	Reporting:Level IIevel IIIST/UST	ST RRP evel IV
Phone:	(432) 236-3849	Email:	Email: slo@ltenv.com, dmoir@ltenv.com	noir@ltenv.com			Other:
Project Name:	DKS Transport	Truck Rallow	Turn Around		ANALYSIS REQUEST	IEST	Work Order Notes
Project Number:	1043 20001	Ro	ine 4				
P.O. Number:		Rush:					
Sampler's Name:	Spencer Lo	r Lo Due Date	Date:				
SAMPLE RECEIPT	IPT Temp Blank:	Cer No Wet Ice: Yes	No				
Temperature (°C):	5.2 5.0	Ther		-			
Received Intact:	3	1- NN -00-	onta	021			
Sample Custody Seals:	s: Yes No N/A	Total Containers:	10.2	PA 0=		ТА	TAT starts the day received by the
Sample Identification	tification Matrix	Date Time Sampled Sampled	Depth	TPH (EF BTEX (E Chloride			Sample Comments
Ssol	2	0	0.51 1	~ 1			
5562	2	8.26.20 1225	0.51	XXX			
e ese	5	8.26.00 1235		* * *			
/							
				>			
				1	6		
PM							
:24							
5 Circle Method(s) a	Iotal 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	8R	CRA 13PPM Texas 11 AI TCLP / SPLP 6010: 8RCRA	Sb As Ba Be Sb As Ba Be	B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U	K Se Ag SiC	12 Na Sr TI Sn U V Zn 1631 / 245.1 / 7470 / 7471 : Hg
Ce: Signature of this d Rearvice. Xenco will be li Rearvice. A minimum chau	ocument and relinquishment of iable only for the cost of sampl rge of \$75.00 will be applied to	samples constitutes a valid pures and shall not assume any res each project and a charge of \$5	rchase order from clier sponsibility for any loss for each sample subm	it company to Xenco, its a ses or expenses incurred itted to Xenco, but not an	Wice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions arvice. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control we enco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	ans standard terms and conditions o circumstances beyond the control unless previously negotiated.	
Relinquished by: (Signature)	(Signature)	Received by: (Signature)	re)	Date/Time	Relinquished by: (Signature)	ure) Received by: (Signature)	Date/Time
y OCI	Zu Clar			51:21 C. BC. B	4 2		

Final 1.000

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature Range: 0 - 6 degC						
Date/ Time Received: 08.26.2020 05.15.00 PM	Air and Metal samples Acceptab						
Work Order #: 671127	Temperature Measuring device	used:T_NM_007					
Sample Recei	pt Checklist Cor	nments					
#1 *Temperature of cooler(s)?	5						
#2 *Shipping container in good condition?	Yes						
#3 *Samples received on ice?	Yes						
#4 *Custody Seals intact on shipping container/ cooler?	Yes						
#5 Custody Seals intact on sample bottles?	Yes						
#6*Custody Seals Signed and dated?	Yes						
#7 *Chain of Custody present?	Yes						
#8 Any missing/extra samples?	No						
#9 Chain of Custody signed when relinquished/ received?	Yes						
#10 Chain of Custody agrees with sample labels/matrix?	Yes						
#11 Container label(s) legible and intact?	Yes						
#12 Samples in proper container/ bottle?		ples received in bulk ainers.					
#13 Samples properly preserved?	Yes						
#14 Sample container(s) intact?	Yes						
#15 Sufficient sample amount for indicated test(s)?	Yes						
#16 All samples received within hold time?	Yes						
#17 Subcontract of sample(s)?	No						
#18 Water VOC samples have zero headspace?	N/A						

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

.

PH Device/Lot#:

Checklist completed by:

Date: 08.27.2020

Checklist reviewed by: Jessica Kramer

Date: 08.28.2020

🛟 eurofins

Environment Testing Xenco

Project Id: 104320001 Dan Moir

Contact:

Project Location:

Г

Certificate of Analysis Summary 671630

LT Environmental, Inc., Arvada, CO

Project Name: DKS Transport Truck Rollover

Date Received in Lab: Wed 09.02.2020 12:25 **Report Date:** 09.03.2020 12:18

Project Manager: Jessica Kramer

	Lab Id:	671630-0	001	671630-0	02	671630-0	003	671630-	004	671630-0	05	671630-0	006
Analysis Requested	Field Id:	FS01		FS02		FS03		FS04		FS05		FS06	
Anuiysis Requesieu	Depth:	0.5- ft	:	0.5- ft		1- ft		1- ft		1- ft		0.5- ft	
	Matrix:	SOIL		SOIL		SOIL	,	SOIL	,	SOIL		SOIL	
	Sampled:	09.01.2020	13:15	09.01.2020	13:35	09.01.2020	13:55	09.01.2020	14:15	09.01.2020	14:35	09.01.2020	14:55
BTEX by EPA 8021B	Extracted:	09.02.2020	14:29	09.02.2020	14:29	09.02.2020	14:29	09.02.2020	14:29	09.02.2020	14:29	09.02.2020	14:29
	Analyzed:	09.02.2020	19:33	09.02.2020	19:53	09.02.2020	20:13	09.02.2020	20:34	09.02.2020	20:54	09.02.2020	21:15
	Units/RL:	mg/kg	RL										
Benzene		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00199	0.00199
Toluene		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00199	0.00199
Ethylbenzene		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00199	0.00199
m,p-Xylenes		< 0.00399	0.00399	< 0.00403	0.00403	< 0.00401	0.00401	< 0.00399	0.00399	< 0.00397	0.00397	< 0.00398	0.00398
o-Xylene		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00199	0.00199
Total Xylenes		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00199	0.00199
Total BTEX		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00198	0.00198	< 0.00199	0.00199
Chloride by EPA 300	Extracted:	09.02.2020	15:24	09.02.2020	15:24	09.02.2020	15:24	09.02.2020	15:24	09.02.2020	15:24	09.02.2020	15:24
	Analyzed:	09.02.2020	16:53	09.02.2020	17:09	09.02.2020	17:15	09.02.2020	17:21	09.02.2020	17:26	09.02.2020	17:32
	Units/RL:	mg/kg	RL										
Chloride		225	9.96	232	9.96	345	9.92	554	9.98	356	9.94	244	9.90
TPH by SW8015 Mod	Extracted:	09.02.2020	14:00	09.02.2020	14:00	09.02.2020	14:00	09.02.2020	14:00	09.02.2020	14:00	09.02.2020	14:00
	Analyzed:	09.02.2020	19:46	09.02.2020	16:45	09.02.2020	17:05	09.02.2020	17:25	09.02.2020	17:45	09.02.2020	18:05
	Units/RL:	mg/kg	RL										
Gasoline Range Hydrocarbons (GRO)		<50.1	50.1	<50.1	50.1	<50.0	50.0	<50.3	50.3	<50.0	50.0	<49.9	49.9
Diesel Range Organics (DRO)		547	50.1	364	50.1	202	50.0	<50.3	50.3	<50.0	50.0	<49.9	49.9
Motor Oil Range Hydrocarbons (MRO)		122	50.1	85.2	50.1	70.3	50.0	<50.3	50.3	<50.0	50.0	<49.9	49.9
Total GRO-DRO		547	50.1	364	50.1	202	50.0	<50.3	50.3	<50.0	50.0	<49.9	49.9
Total TPH		669	50.1	449	50.1	272	50.0	<50.3	50.3	<50.0	50.0	<49.9	49.9

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

Final 1.000

🔅 eurofins

Environment Testing Xenco

Project Id: 104320001 Dan Moir

Contact:

Project Location:

Certificate of Analysis Summary 671630

LT Environmental, Inc., Arvada, CO

Project Name: DKS Transport Truck Rollover

Date Received in Lab: Wed 09.02.2020 12:25 **Report Date:** 09.03.2020 12:18

Project Manager: Jessica Kramer

	Lab Id:	671630-0	07	671630-0	08	671630-0	009		
Analysis Requested	Field Id:	FS07		FS08		FS09			
Anuiysis Requesteu	Depth:	0.5- ft		0.5- ft		1- ft			
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	09.01.2020	15:15	09.01.2020	15:35	09.01.2020	15:55		
BTEX by EPA 8021B	Extracted:	09.02.2020	14:29	09.02.2020	14:29	09.02.2020	14:29		
	Analyzed:	09.02.2020	22:30	09.02.2020	22:51	09.02.2020	23:11		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00200	0.00200		0.00200	< 0.00200	0.00200		
Toluene		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200		
Ethylbenzene		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200		
m,p-Xylenes		< 0.00399	0.00399	< 0.00399	0.00399	< 0.00399	0.00399		
o-Xylene		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200		
Total Xylenes		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200		
Total BTEX		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200		
Chloride by EPA 300	Extracted:	09.02.2020	15:24	09.02.2020	15:24	09.02.2020	15:24		
	Analyzed:	09.02.2020	17:37	09.02.2020	17:54	09.02.2020	18:00		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		215	9.92	212	9.98	153	10.0		
TPH by SW8015 Mod	Extracted:	09.02.2020	14:00	09.02.2020	14:00	09.02.2020	14:00		
	Analyzed:	09.02.2020	18:25	09.02.2020	19:06	09.02.2020	19:26		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<50.1	50.1	<49.8	49.8	<49.9	49.9		
Diesel Range Organics (DRO)		<50.1	50.1	<49.8	49.8	139	49.9		
Motor Oil Range Hydrocarbons (MRO)		<50.1	50.1	<49.8	49.8	<49.9	49.9		
Total GRO-DRO		<50.1	50.1	<49.8	49.8	139	49.9		
Total TPH		<50.1	50.1	<49.8	49.8	139	49.9		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

Final 1.000

eurofins Environment Testing Xenco

Analytical Report 671630

for

LT Environmental, Inc.

Project Manager: Dan Moir

DKS Transport Truck Rollover

104320001

09.03.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-38), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483)

eurofins Environment Testing Xenco

09.03.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: Eurofins Xenco, LLC Report No(s): 671630 DKS Transport Truck Rollover Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 671630. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 671630 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

.

Sample Cross Reference 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
FS01	S	09.01.2020 13:15	0.5 ft	671630-001
FS02	S	09.01.2020 13:35	0.5 ft	671630-002
FS03	S	09.01.2020 13:55	1 ft	671630-003
FS04	S	09.01.2020 14:15	1 ft	671630-004
FS05	S	09.01.2020 14:35	1 ft	671630-005
FS06	S	09.01.2020 14:55	0.5 ft	671630-006
FS07	S	09.01.2020 15:15	0.5 ft	671630-007
FS08	S	09.01.2020 15:35	0.5 ft	671630-008
FS09	S	09.01.2020 15:55	1 ft	671630-009

Environment Testing Xenco

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: DKS Transport Truck Rollover

 Project ID:
 104320001

 Work Order Number(s):
 671630

 Report Date:
 09.03.2020

 Date Received:
 09.02.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

.

Xenco

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS01 Lab Sample Id: 671630-001		Matrix: Date Collecte	Soil ed: 09.01.2020 13:15		Date Received Sample Depth	1:09.02.2020 12 : 0.5 ft	:25
Analytical Method:Chloride byTech:MABAnalyst:MABSeq Number:3136283	7 EPA 300	Date Prep:	09.02.2020 15:24		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter	Cas Number	Result R	L	Units	Analysis Da	ate Flag	Dil
Chloride	16887-00-6	225	9.96	mg/kg	09.02.2020 16	5:53	1
Chloride Analytical Method: TPH by SW Tech: DTH Analyst: DTH		225 Date Prep:	9.96 09.02.2020 14:00	mg/kg	09.02.2020 16 Prep Method: % Moisture: Basis:		1

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.1	50.1		mg/kg	09.02.2020 19:46	U	1
Diesel Range Organics (DRO)	C10C28DRO	547	50.1		mg/kg	09.02.2020 19:46		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	122	50.1		mg/kg	09.02.2020 19:46		1
Total GRO-DRO	PHC628	547	50.1		mg/kg	09.02.2020 19:46		1
Total TPH	PHC635	669	50.1		mg/kg	09.02.2020 19:46		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	102	%	70-135	09.02.2020 19:46		
o-Terphenyl		84-15-1	109	%	70-135	09.02.2020 19:46		

.

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS01	Matrix:	Soil	Date Received	d:09.02.2020 12:25
Lab Sample Id: 671630-001	Date Collecte	ed: 09.01.2020 13:15	Sample Depth	n: 0.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3136275	Date Prep:	09.02.2020 14:29	Prep Method: % Moisture: Basis:	SW5035A Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.02.2020 19:33	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.02.2020 19:33	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.02.2020 19:33	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	09.02.2020 19:33	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.02.2020 19:33	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.02.2020 19:33	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.02.2020 19:33	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	93	%	70-130	09.02.2020 19:33		
1,4-Difluorobenzene		540-36-3	105	%	70-130	09.02.2020 19:33		

Seq Number: 3136233

.

Environment Testin Xenco

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id:FS02Lab Sample Id:671630-002			Matrix: Date Collec	Soil cted: 09.01.2020 13:35		Date Received:09.02.2020 12:25 Sample Depth: 0.5 ft			
Analytical M Tech: Analyst: Seq Number	lethod: Chloride by EP. MAB MAB : 3136283	A 300	Date Prep:	09.02.2020 15:24		Prep Method: % Moisture: Basis:	E300P Wet Weight		
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil	
Chloride		16887-00-6	232	9.96	mg/kg	09.02.2020 17	:09	1	
Analytical M Tech: Analyst:	lethod: TPH by SW801 DTH DTH	5 Mod	Date Prep:	09.02.2020 14:00		Prep Method: % Moisture: Basis:	SW8015P Wet Weight		

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.1	50.1		mg/kg	09.02.2020 16:45	U	1
Diesel Range Organics (DRO)	C10C28DRO	364	50.1		mg/kg	09.02.2020 16:45		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	85.2	50.1		mg/kg	09.02.2020 16:45		1
Total GRO-DRO	PHC628	364	50.1		mg/kg	09.02.2020 16:45		1
Total TPH	PHC635	449	50.1		mg/kg	09.02.2020 16:45		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	100	%	70-135	09.02.2020 16:45		
o-Terphenyl		84-15-1	108	%	70-135	09.02.2020 16:45		

.

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS02 Lab Sample Id: 671630-002	Matrix: Soil Date Collected: 09.01.2020 13:3	Date Received:09.02.2020 12:25 Sample Depth: 0.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3136275	Date Prep: 09.02.2020 14:2	Prep Method: SW5035A % Moisture: 29 Basis: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	09.02.2020 19:53	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	09.02.2020 19:53	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	09.02.2020 19:53	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	09.02.2020 19:53	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	09.02.2020 19:53	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	09.02.2020 19:53	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	09.02.2020 19:53	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	104	%	70-130	09.02.2020 19:53		
4-Bromofluorobenzene		460-00-4	92	%	70-130	09.02.2020 19:53		

.

Environment Testin Xenco

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: F Lab Sample Id: 67	S03 71630-003		Matrix: Date Colle	Soil seted: 09.01.2020 13:55		Date Received Sample Depth		12:25
Tech: M. Analyst: M.	d: Chloride by EPA 3 AB AB 36283	300	Date Prep:	09.02.2020 15:24		Prep Method: % Moisture: Basis:	E300P Wet Weigh	t
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride		16887-00-6	345	9.92	mg/kg	09.02.2020 17	7:15	1
Tech: DT Analyst: DT	d: ТРН by SW8015 M ГН ГН 36233	Mod	Date Prep:	09.02.2020 14:00		Prep Method: % Moisture: Basis:	SW8015P Wet Weigh	t
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil

r al ameter	Cas Numbe	i Kesuit	KL		Units	Analysis Date	Flag	DII
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	09.02.2020 17:05	U	1
Diesel Range Organics (DRO)	C10C28DRO	202	50.0		mg/kg	09.02.2020 17:05		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	70.3	50.0		mg/kg	09.02.2020 17:05		1
Total GRO-DRO	PHC628	202	50.0		mg/kg	09.02.2020 17:05		1
Total TPH	PHC635	272	50.0		mg/kg	09.02.2020 17:05		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	100	%	70-135	09.02.2020 17:05		
o-Terphenyl		84-15-1	106	%	70-135	09.02.2020 17:05		

.

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS03	Matrix:	Soil	Date Receive	ed:09.02.2020 12:25
Lab Sample Id: 671630-003	Date Collect	ed: 09.01.2020 13:55	Sample Dep	th: 1 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3136275	Date Prep:	09.02.2020 14:29	Prep Methoo % Moisture: Basis:	l: SW5035A Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.02.2020 20:13	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.02.2020 20:13	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.02.2020 20:13	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	09.02.2020 20:13	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.02.2020 20:13	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.02.2020 20:13	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.02.2020 20:13	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	107	%	70-130	09.02.2020 20:13		
4-Bromofluorobenzene		460-00-4	95	%	70-130	09.02.2020 20:13		

.

Xenco

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: Lab Sample I	FS04 d: 671630-004		Matrix: Date Col	Soil lected: 09.01.2020 14:1:	5	Date Received Sample Depth		2.2020 12:	25
Analytical Me Tech: Analyst: Seq Number:	ethod: Chloride by EPA MAB MAB 3136283	. 300	Date Prep	p: 09.02.2020 15:24	1	Prep Method: % Moisture: Basis:		P Weight	
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil
Chloride		16887-00-6	554	9.98	mg/kg	09.02.2020 17	7:21		1

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 0	9.02.2020 14:00		Basis: V	Vet Weight	
Seq Number: 3136233								
Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.3	50.3		mg/kg	09.02.2020 17:2	5 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.3	50.3		mg/kg	09.02.2020 17:2	5 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.3	50.3		mg/kg	09.02.2020 17:2	5 U	1
Total GRO-DRO	PHC628	<50.3	50.3		mg/kg	09.02.2020 17:2	5 U	1
Total TPH	PHC635	<50.3	50.3		mg/kg	09.02.2020 17:2	5 U	1
Surrogate		Cas Number	% Recove	ry Units	Limits	Analysis Da	ite Flag	
1-Chlorooctane		111-85-3	100	%	70-135	09.02.2020 17	:25	
o-Terphenyl		84-15-1	107	%	70-135	09.02.2020 17	:25	

.

Environment Test Xenco

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS04	Matrix:	Soil	Date Receive	ed:09.02.2020 12:25
Lab Sample Id: 671630-004	Date Collecte	ed: 09.01.2020 14:15	Sample Dept	h: 1 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3136275	Date Prep:	09.02.2020 14:29	Prep Method % Moisture: Basis:	: SW5035A Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.02.2020 20:34	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.02.2020 20:34	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.02.2020 20:34	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	09.02.2020 20:34	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.02.2020 20:34	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.02.2020 20:34	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.02.2020 20:34	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	96	%	70-130	09.02.2020 20:34		
1,4-Difluorobenzene		540-36-3	101	%	70-130	09.02.2020 20:34		

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Analytical Method: Chloride by EPA 300 Prep Method: E300P % Moisture: %	Sample Id: Lab Sample Id	FS05 d: 671630-005		Matrix: Date Co	Soil llected: 09.01.2020 14:	35	Date Received:09 Sample Depth: 1		:25
Parameter Cas Number Result RL Units Analysis Date Flag I	Tech:	MAB	A 300	Date Pre	p: 09.02.2020 15:	24	% Moisture:		
	Seq Number:	3136283							
Chloride 16887-00-6 356 9.94 mg/kg 09.02.2020 17:26	Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
	Chloride		16887-00-6	356	9.94	mg/kg	09.02.2020 17:20	6	1

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09	.02.2020 14:00		Basis: W	Vet Weight	
Seq Number: 3136233								
Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	09.02.2020 17:4	5 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	09.02.2020 17:4	5 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	09.02.2020 17:4	5 U	1
Total GRO-DRO	PHC628	<50.0	50.0		mg/kg	09.02.2020 17:4	5 U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	09.02.2020 17:4	5 U	1
Surrogate		Cas Number	% Recover	y Units	Limits	Analysis Da	te Flag	
1-Chlorooctane		111-85-3	99	%	70-135	09.02.2020 17	:45	
o-Terphenyl		84-15-1	105	%	70-135	09.02.2020 17	:45	

.

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS05	Matrix: Soil	Date Received:09.02.2020 12:25
Lab Sample Id: 671630-005	Date Collected: 09.01.2020 14:35	Sample Depth: 1 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3136275	Date Prep: 09.02.2020 14:29	Prep Method: SW5035A % Moisture: Basis: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	3 0.00198		mg/kg	09.02.2020 20:54	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	09.02.2020 20:54	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	09.02.2020 20:54	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	09.02.2020 20:54	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	09.02.2020 20:54	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	09.02.2020 20:54	U	1
Total BTEX		< 0.00198	3 0.00198		mg/kg	09.02.2020 20:54	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	104	%	70-130	09.02.2020 20:54		
4-Bromofluorobenzene		460-00-4	97	%	70-130	09.02.2020 20:54		

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS06 Lab Sample Id: 671630-006		Matrix: Date Colle	Soil ected: 09.01.2020 14:55		Date Received Sample Depth:		12:25
Analytical Method: Chloride by EPA Tech: MAB	300				Prep Method: % Moisture:	E300P	
Analyst: MAB		Date Prep	: 09.02.2020 15:24		Basis:	Wet Weigh	ıt
Seq Number: 3136283							
Parameter	Cas Number	Result	RL	Units	Analysis Da	ite Flag	Dil
Chloride	16887-00-6	244	9.90	mg/kg	09.02.2020 17	:32	1

Analytical Me	ethod: TPH by SW80	15 Mod				Prep Method: SW	/8015P	
Tech:	DTH					% Moisture:		
Analyst:	DTH		Date Prep	o: 09.02.20	20 14:00	Basis: We	t Weight	
Seq Number:	3136233							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range	Hydrocarbons (GRO)	PHC610	<49.9	49.9	mg/kg	09.02.2020 18:05	U	1
Diesel Range Or	ganics (DRO)	C10C28DRO	<49.9	49.9	mg/kg	09.02.2020 18:05	U	1

Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.	9 49.9		mg/kg	09.02.2020 18:05	U	1
Total GRO-DRO	PHC628	<49.	9 49.9		mg/kg	09.02.2020 18:05	U	1
Total TPH	PHC635	<49.	9 49.9		mg/kg	09.02.2020 18:05	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
Surrogate 1-Chlorooctane		Cas Number 111-85-3	% Recovery 96	Units %	Limits 70-135	Analysis Date 09.02.2020 18:05	Flag	

.

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS06 Lab Sample Id: 671630-006	Matrix: Soil Date Collected: 09.01.2020 14:55	Date Received:09.02.2020 12:25 Sample Depth: 0.5 ft
Analytical Method: BTEX by EPA 8021B Tech: MAB		Prep Method: SW5035A % Moisture:
Analyst: MAB Seq Number: 3136275	Date Prep: 09.02.2020 14:29	Basis: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	09.02.2020 21:15	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	09.02.2020 21:15	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	09.02.2020 21:15	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	09.02.2020 21:15	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	09.02.2020 21:15	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	09.02.2020 21:15	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	09.02.2020 21:15	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	78	%	70-130	09.02.2020 21:15		
1,4-Difluorobenzene		540-36-3	96	%	70-130	09.02.2020 21:15		

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: Lab Sample I	FS07 d: 671630-007		Matrix: Date Col	Soil lected: 09.01.2020 15	5:15	Date Received:09.02.2020 1 Sample Depth: 0.5 ft		
Analytical Mo Tech:	ethod: Chloride by EPA MAB	. 300				Prep Method: 1 % Moisture:	E300P	
Analyst:	MAB		Date Prep	p: 09.02.2020 15	5:24	Basis:	Wet Weight	
Seq Number:	3136283							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride		16887-00-6	215	9.92	mg/kg	09.02.2020 17:	37	1

Analytical Method: TPH by SW801 Tech: DTH Analyst: DTH Seq Number: 3136233	15 Mod	Date Pr	rep: 09	.02.2020 14:00		Prep Method: SV % Moisture: Basis: W	W8015P Tet Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.1	50.1		mg/kg	09.02.2020 18:25	i U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.1	50.1		mg/kg	09.02.2020 18:25	U U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.1	50.1		mg/kg	09.02.2020 18:25	U U	1
Total GRO-DRO	PHC628	<50.1	50.1		mg/kg	09.02.2020 18:25	U	1
Total TPH	PHC635	<50.1	50.1		mg/kg	09.02.2020 18:25	U U	1
Surrogate	(Cas Number	% Recovery	y Units	Limits	Analysis Dat	e Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Fla
1-Chlorooctane	111-85-3	99	%	70-135	09.02.2020 18:25	
o-Terphenyl	84-15-1	105	%	70-135	09.02.2020 18:25	

.

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS07	Matrix:	Soil	Date Receiv	ved:09.02.2020 12:25
Lab Sample Id: 671630-007	Date Collect	ed: 09.01.2020 15:15	Sample Dep	pth: 0.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3136275	Date Prep:	09.02.2020 14:29	Prep Metho % Moisture Basis:	d: SW5035A :: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.02.2020 22:30	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.02.2020 22:30	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.02.2020 22:30	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	09.02.2020 22:30	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.02.2020 22:30	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.02.2020 22:30	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.02.2020 22:30	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	103	%	70-130	09.02.2020 22:30		
4-Bromofluorobenzene		460-00-4	101	%	70-130	09.02.2020 22:30		

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id:	FS08		Matrix:	Soil		Date Received	:09.02.2020 12	2:25
Lab Sample Id: 671630-008			Date Col	lected: 09.01.2020	0 15:35	Sample Depth:	: 0.5 ft	
Analytical M	ethod: Chloride by EPA	300				Prep Method:	E300P	
Tech:	MAB					% Moisture:		
Analyst:	MAB		Date Prep	p: 09.02.2020	0 15:24	Basis:	Wet Weight	
Seq Number:	3136283							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite Flag	Dil
Chloride		16887-00-6	212	9.98	mg/kg	09.02.2020 17	2:54	1

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09	0.02.2020 14:00		Basis: W	Vet Weight	
Seq Number: 3136233								
Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	09.02.2020 19:0	6 U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	09.02.2020 19:0	6 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	09.02.2020 19:0	6 U	1
Total GRO-DRO	PHC628	<49.8	49.8		mg/kg	09.02.2020 19:0	6 U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	09.02.2020 19:0	6 U	1
Surrogate		Cas Number	% Recover	y Units	Limits	Analysis Da	te Flag	
1-Chlorooctane		111-85-3	99	%	70-135	09.02.2020 19	:06	
o-Terphenyl		84-15-1	102	%	70-135	09.02.2020 19	:06	

.

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS08	Matrix: Soil	Date Received:09.02.2020 12:25
Lab Sample Id: 671630-008	Date Collected: 09.01.2020 15:35	Sample Depth: 0.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3136275	Date Prep: 09.02.2020 14:29	Prep Method: SW5035A % Moisture: Basis: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.02.2020 22:51	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.02.2020 22:51	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.02.2020 22:51	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	09.02.2020 22:51	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.02.2020 22:51	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.02.2020 22:51	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.02.2020 22:51	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	97	%	70-130	09.02.2020 22:51		
1,4-Difluorobenzene		540-36-3	103	%	70-130	09.02.2020 22:51		

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: Lab Sample I	FS09 d: 671630-009		Matrix: Date Col	Soil lected: 09.01.2020 15:5	55	Date Received Sample Depth		2020 12:	25
Analytical Me Tech: Analyst: Seq Number:	ethod: Chloride by EPA MAB MAB 3136283	. 300	Date Pre	p: 09.02.2020 15:2	24	Prep Method: % Moisture: Basis:	E300P Wet W		
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil
Chloride		16887-00-6	153	10.0	mg/kg	09.02.2020 18	8:00		1

Analytical Method: TPH by SW801	5 Mod					Prep Method: SV	V8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09	0.02.2020 14:00		Basis: W	et Weight	
Seq Number: 3136233								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	09.02.2020 19:26	U	1
Diesel Range Organics (DRO)	C10C28DRO	139	49.9		mg/kg	09.02.2020 19:26		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	09.02.2020 19:26	U	1
Total GRO-DRO	PHC628	139	49.9		mg/kg	09.02.2020 19:26		1
Total TPH	PHC635	139	49.9		mg/kg	09.02.2020 19:26		1
Surrogate		Cas Number	% Recover	y Units	Limits	Analysis Dat	e Flag	
1-Chlorooctane		111-85-3	97	%	70-135	09.02.2020 19:2	26	
o-Terphenyl		84-15-1	98	%	70-135	09.02.2020 19:2	26	

.

Certificate of Analytical Results 671630

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS09	Matrix:	Soil	Date Receive	ed:09.02.2020 12:25
Lab Sample Id: 671630-009	Date Collect	ed: 09.01.2020 15:55	Sample Dept	h: 1 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3136275	Date Prep:	09.02.2020 14:29	Prep Method % Moisture: Basis:	: SW5035A Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.02.2020 23:11	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.02.2020 23:11	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.02.2020 23:11	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	09.02.2020 23:11	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.02.2020 23:11	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.02.2020 23:11	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.02.2020 23:11	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	108	%	70-130	09.02.2020 23:11		
4-Bromofluorobenzene		460-00-4	96	%	70-130	09.02.2020 23:11		

Xenco

Environment Testing

🔅 eurofins

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected			
RL Reporting Limit				
MDL Method Detection Limit	SDL Sample De	tection Limit	LOD Limit of Detection	
PQL Practical Quantitation Limit	MQL Method Qu	antitation Limit	LOQ Limit of Quantitation	n
DL Method Detection Limit				
NC Non-Calculable				
SMP Client Sample		BLK	Method Blank	
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD Method Duplicate/Samp	ble Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate
+ NELAC certification not offered	l for this compound.			

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

eurofins Environment Testing Xenco

QC Summary 671630

LT Environmental, Inc.

DKS Transport Truck Rollover

Analytical Method: Seq Number: MB Sample Id:	Chloride by 3136283 7710696-1-1		00		Matrix: nple Id:	Solid 7710696-1	-BKS			ep Metho Date Pro D Sample	ep: 09.0	0P)2.2020 0696-1-BSD	
Parameter		MB	Spike Amount	LCS Result		LCSD	LCSD	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		Result <10.0	250 Amount	266	%Rec 106	Result 268	%Rec 107	90-110	1	20	mg/kg	09.02.2020 16:08	
Analytical Method:	Chlorido h		0						Dr	ep Metho	od: E30	Ω₽	
Seq Number:	3136283	y LIA J	10		Matrix:	Soil			11	Date Pro		02.2020	
Parent Sample Id:	671625-001			MS Sar	nple Id:	671625-00	01 S		MS	D Sample	e Id: 671	625-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		325	200	533	104	533	104	90-110	0	20	mg/kg	09.02.2020 16:25	
Analytical Method: Seq Number: Parent Sample Id:	Chloride by 3136283 671630-007		00		Matrix: nple Id:	Soil 671630-00	07 S			ep Metho Date Pro D Sample	ep: 09.0	0P)2.2020 630-007 SD	
Parameter		Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD	Units	Analysis	Flag
Chloride		Result 215	Amount 199	Result 420	%Rec 103	Result 420	%Rec 103	90-110	0	Limit 20	mg/kg	Date 09.02.2020 17:43	
Cillonite		210		120	100	.20	100	<i>y</i> 0 110	Ũ	20			
Analytical Method: Seq Number:	3136233		od		Matrix:		DUG			ep Metho Date Pro	ep: 09.0	8015P 02.2020	
MB Sample Id:	7710673-1-]		<i>a</i> n		-	7710673-1				-		0673-1-BSD	
Parameter		MB Result	Spike	LCS	LCS	LCSD				RPD			
Gasoline Range Hydrocarb	(CDO)		Amount	Result	%Rec	Result	LCSD %Rec	Limits	%RPD	Limit	Units	Analysis Date	Flag
Discol Dance Orecolice	ons (GRO)	<50.0	1000	832	83	Result 823	%Rec 82	70-135	1	Limit 35	mg/kg	Date 09.02.2020 11:50	Flag
Diesel Range Organics		<50.0 <50.0				Result	%Rec			Limit		Date	Flag
Surrogate			1000	832 940 L	83 94 CS	Result 823	%Rec 82	70-135 70-135 LCS	1 2 D Li	Limit 35	mg/kg	Date 09.02.2020 11:50	Flag
Surrogate		<50.0 MB %Rec 93	1000 1000 MB	832 940 L %	83 94 CS Rec 11	Result 823 920 LCS	%Rec 82 92 LCSI %Re 108	70-135 70-135 D LCS c Fla	1 2 D Li g 70	Limit 35 35 mits -135	mg/kg mg/kg Units %	Date 09.02.2020 11:50 09.02.2020 11:50 Analysis Date 09.02.2020 11:50	Flag
Surrogate		<50.0 MB %Rec	1000 1000 MB	832 940 L %	83 94 CS Rec	Result 823 920 LCS	%Rec 82 92 LCSI %Rec	70-135 70-135 D LCS c Fla	1 2 D Li g 70	Limit 35 35 mits	mg/kg mg/kg Units	Date 09.02.2020 11:50 09.02.2020 11:50 Analysis Date	Flag
Surrogate	(DRO)	<50.0 MB %Rec 93 100	1000 1000 MB Flag	832 940 L %1 1 1	83 94 CS Rec 11 10 Matrix:	Result 823 920 LCS Flag	%Rec 82 92 LCSI %Rec 108 107	70-135 70-135 D LCS c Fla	1 2 D Li g 70 70	Limit 35 35 mits -135	mg/kg mg/kg Units % % od: SW3	Date 09.02.2020 11:50 09.02.2020 11:50 Analysis Date 09.02.2020 11:50	Flag
Surrogate 1-Chlorooctane o-Terphenyl Analytical Method:	(DRO) TPH by SW	<50.0 MB %Rec 93 100	1000 1000 MB Flag	832 940 L % 1 1 1 1 8 MB San MB San	83 94 CS Rec 11 10 Matrix:	Result 823 920 LCS Flag	%Rec 82 92 LCSI %Rec 108 107	70-135 70-135 D LCS c Fla	1 2 D Li g 70 70	Limit 35 35 mits -135 -135	mg/kg mg/kg Units % % od: SW3	Date 09.02.2020 11:50 09.02.2020 11:50 Analysis Date 09.02.2020 11:50 09.02.2020 11:50 8015P 02.2020 Analysis	Flag
Surrogate 1-Chlorooctane o-Terphenyl Analytical Method: Seq Number:	(DRO) TPH by SW 3136233	<50.0 MB %Rec 93 100	1000 1000 MB Flag	832 940 L % 1 1 1 8 MB San	83 94 CS Rec 11 10 Matrix:	Result 823 920 LCS Flag	%Rec 82 92 LCSI %Rec 108 107	70-135 70-135 D LCS c Fla	1 2 D Li g 70 70	Limit 35 35 mits -135 -135	mg/kg mg/kg Units % % od: SW3 ep: 09.0	Date 09.02.2020 11:50 09.02.2020 11:50 Analysis Date 09.02.2020 11:50 09.02.2020 11:50 8015P 02.2020	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 26 of 29

Final 1.000

Environment Testing Xenco

QC Summary 671630

LT Environmental, Inc.

DKS Transport Truck Rollover

Analytical Method:	TPH by SW	V8015 M	od						Pi	rep Metho	od: SW	8015P	
Seq Number:	3136233]	Matrix:	Soil				Date Pre	ep: 09.0	02.2020	
Parent Sample Id:	671640-001			MS San	nple Id:	671640-00	01 S		MS	D Sample	e Id: 671	640-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	<49.9	998	835	84	813	81	70-135	3	35	mg/kg	09.02.2020 15:03	
Diesel Range Organics (DRO)	<49.9	998	939	94	922	92	70-135	2	35	mg/kg	09.02.2020 15:03	
Surrogate					IS Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	
1-Chlorooctane				1	15		111		70	-135	%	09.02.2020 15:03	
o-Terphenyl				1	13		110)	70	-135	%	09.02.2020 15:03	

Analytical Method:	BTEX by EPA 8021	B						Pi	rep Metho	od: SW	5035A	
Seq Number:	3136275		I	Matrix:	Solid				Date Pr	ep: 09.0	02.2020	
MB Sample Id:	7710698-1-BLK		LCS San	ple Id:	7710698-1	-BKS		LCS	D Sample	e Id: 771	0698-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0961	96	0.0968	97	70-130	1	35	mg/kg	09.02.2020 16:14	
Toluene	< 0.00200	0.100	0.0905	91	0.0925	93	70-130	2	35	mg/kg	09.02.2020 16:14	
Ethylbenzene	< 0.00200	0.100	0.0942	94	0.0961	96	71-129	2	35	mg/kg	09.02.2020 16:14	
m,p-Xylenes	< 0.00400	0.200	0.190	95	0.194	97	70-135	2	35	mg/kg	09.02.2020 16:14	
o-Xylene	< 0.00200	0.100	0.0954	95	0.0975	98	71-133	2	35	mg/kg	09.02.2020 16:14	
Surrogate	MB %Rec	MB Flag	L0 %1		LCS Flag	LCSD %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene	101		10	00		101		70	-130	%	09.02.2020 16:14	
4-Bromofluorobenzene	98		9	2		92		70	-130	%	09.02.2020 16:14	

Analytical Method:	BTEX by EPA 8021	lB						P	rep Metho	od: SW	5035A	
Seq Number:	3136275]	Matrix:	Soil				Date Pr	ep: 09.0	02.2020	
Parent Sample Id:	671625-001		MS San	nple Id:	671625-00	01 S		MS	D Sample	e Id: 671	625-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0994	0.0927	93	0.105	105	70-130	12	35	mg/kg	09.03.2020 01:54	
Toluene	< 0.00199	0.0994	0.0863	87	0.0963	96	70-130	11	35	mg/kg	09.03.2020 01:54	
Ethylbenzene	< 0.00199	0.0994	0.0903	91	0.0943	94	71-129	4	35	mg/kg	09.03.2020 01:54	
m,p-Xylenes	< 0.00398	0.199	0.178	89	0.185	93	70-135	4	35	mg/kg	09.03.2020 01:54	
o-Xylene	< 0.00199	0.0994	0.0912	92	0.0897	90	71-133	2	35	mg/kg	09.03.2020 01:54	
Surrogate				IS Rec	MS Flag	MSD %Ree			imits	Units	Analysis Date	
1,4-Difluorobenzene			9	7		101		70	-130	%	09.03.2020 01:54	

88

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

4-Bromofluorobenzene

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

09.03.2020 01:54

Page 27 of 29

91

Final 1.000

70-130

%

ge 162	ABORATORIES	Hohhs NM (57)	uston,TX (281) 240-420 idland,TX (432-704-544	0 Dallas,TX (214) 902-0300 San Antoni 0) EL Paso,TX (915)585-3443 Lubbook	Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296		
Project Manager:	Dan Moir		Rill to: /if different	(480-355-0900) Atiani	Bill to: (if different)	W	Page of
Company Name:	LT Environmental, Inc.,	c., Permian office	Company Name:	0			mments
Address:	3300 North A Street		Address:			State of Brainet	elds CRC Duperfund
City, State ZIP:	Midland, TX 79705		City, State ZIP:				1
Phone:	(432) 236-3849	Е	Email: slo@ltenv.com,	dmoir@ltenv.com			
Project Name:	DKS transport	Truck Rollover	Turn Around			nuar -	Omer:
Project Number:	1043 20001				ANALYSIS REQUEST		Work Order Notes
P.O. Number:			Rush:				
Sampler's Name:	Spencer Lo		Due Date:				
SAMPLE RECEIPT	Ter	Yes No We	()				
Temperature (°C):	2.4	Ther	ON CON				
Received Intact:	Res	TUMOD		21)			
Cooler Custody Seals:	Yes		-0-2	015) 0=80			
	AIN MY CAL	I OTAL C	ber o	EPA 8 (EPA de (E			IAT starts the day received by the lab, if received by 4:30pm
cumple menuitration	Matrix		Depth	трн вте)			Sample Comments
+501		9.1.20 1315	0.5' 1	XX			Constant and a second
4502	1	1335	· 2.0	111			
FSOJ		1355					
1000		5/1/	5 1.0'				
+205		1435	1.0.				
1006		5541	0.5'				
1994		1515		_			
FS08		1535					
tsor .	¢	£551 A	1. 8	1444			
			t	C.			/
Circle Method(s) a	Circle Method(s) and Metal(s) to be analyzed	8RCRA 13F alyzed TCLP / S	CRA 13PPM Texas 11 AI	I Sb As Ba Be B Sb As Ba Be C	Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni Sb As Ba Be Cd Cr Co Cu ph Mo Mi Co Ar Tr	g SiC	Sr TI Sn U V Zn
ervice. Xenco will be liab	ument and relinquishment of le only for the cost of sample of \$75.00 will be applied to	samples constitutes a valid as and shall not assume any	purchase order from clie responsibility for any los	nt company to Xenco, its ses or expenses incurred	Series or supression of the series of the cost of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions the cost of samples and shall not samples and subcontractors by the client if such losses are due to circumstance because the conditions of \$75.00 will be applied to cost or the cost of the c		
Relinquished by: (Signature)	Signature	Doosing L 10:	active cachi sample subr	nuted to Xenco, but not ar	nalyzed. These terms will be enforced un	less previously negotiated.	
1. (~ ~ ~ · · · · · · ·		Received by (Signature)	ture)	Date/Time	Relinquished by: (Signature)	 Received by: (Signature) 	Date/Time
D:		AND NATION	1.1.1	11:00m	2 With	A.e	9/2/20 12:25

1

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature R	ange: 0 - 6 degC
Date/ Time Received: 09.02.2020 12.25.00 PM	Air and Metal samples Acc	eptable Range: Ambient
Work Order #: 671630	Temperature Measuring de	vice used: T_NM_007
Sample Recei	pt Checklist	Comments
#1 *Temperature of cooler(s)?	2.2	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	Yes	
#6*Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	Samples received in bulk containers.
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	No	
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

.

PH Device/Lot#:

Checklist completed by:

Date: 09.02.2020

Checklist reviewed by: fession Kramer

Date: 09.03.2020

🛟 eurofins

Environment Testing Xenco

Project Id: 104320001 Dan Moir

Contact:

Project Location:

Г

Certificate of Analysis Summary 672397

LT Environmental, Inc., Arvada, CO

Project Name: DKS Transport Truck Rollover

Date Received in Lab: Fri 09.11.2020 16:51 **Report Date:** 09.16.2020 10:42

Project Manager: Jessica Kramer

	Lab Id:	672397-0	001	672397-0	02	672397-0	003	672397-0	004	672397-0	005	672397-0	06
Analysis Requested	Field Id:	FS01		FS02		FS03		FS04		FS05		FS06	
Anulysis Requested	Depth:	1.5- ft		1.5- ft		1.5- ft		1.5- ft		1.5- ft		0.5- ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL	,	SOIL		SOIL	
	Sampled:	09.11.2020	13:20	09.11.2020	13:30	09.11.2020	13:40	09.11.2020	13:50	09.11.2020	14:00	09.11.2020	14:10
BTEX by EPA 8021B	Extracted:	09.14.2020	11:00	09.14.2020	11:00	09.14.2020	11:00	09.14.2020	11:00	09.14.2020	11:00	09.14.2020	11:00
	Analyzed:	09.14.2020	17:49	09.14.2020	19:05	09.14.2020	19:25	09.14.2020	19:46	09.14.2020	20:06	09.14.2020	20:26
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00204	0.00204	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200
Toluene		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00204	0.00204	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200
Ethylbenzene		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00204	0.00204	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200
m,p-Xylenes		< 0.00401	0.00401	< 0.00404	0.00404	< 0.00408	0.00408	< 0.00403	0.00403	< 0.00401	0.00401	< 0.00400	0.00400
o-Xylene		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00204	0.00204	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200
Total Xylenes		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00204	0.00204	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200
Total BTEX		< 0.00200	0.00200	< 0.00202	0.00202	< 0.00204	0.00204	< 0.00202	0.00202	< 0.00200	0.00200	< 0.00200	0.00200
Chloride by EPA 300	Extracted:	09.14.2020	12:05	09.14.2020 12:05		09.14.2020	12:05	09.14.2020	12:05	09.14.2020 12:05		09.14.2020 12:05	
	Analyzed:	09.14.2020	14:27	09.14.2020	14:43	09.14.2020 14:49		09.14.2020 15:05		09.14.2020 15:11		09.14.2020 15:16	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		270	9.92	325	10.1	840	10.1	440	9.90	573	10.1	110	10.0
TPH by SW8015 Mod	Extracted:	09.14.2020	10:30	09.14.2020	10:30	09.14.2020	10:30	09.14.2020	10:30	09.14.2020	10:30	09.14.2020	10:30
	Analyzed:	09.14.2020	12:54	09.14.2020	13:14	09.14.2020	13:34	09.14.2020	13:54	09.14.2020	14:15	09.14.2020	14:35
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<50.2	50.2	<49.8	49.8	<50.0	50.0	<49.9	49.9	<49.9	49.9	<50.2	50.2
Diesel Range Organics (DRO)		< 50.2	50.2	<49.8	49.8	<50.0	50.0	<49.9	49.9	<49.9	49.9	<50.2	50.2
Motor Oil Range Hydrocarbons (MRO)		<50.2	50.2	<49.8	49.8	<50.0	50.0	<49.9	49.9	<49.9	49.9	<50.2	50.2
Total GRO-DRO		<50.2	50.2	<49.8	49.8	<50.0	50.0	<49.9	49.9	<49.9	49.9	<50.2	50.2
Total TPH		< 50.2	50.2	<49.8	49.8	<50.0	50.0	<49.9	49.9	<49.9	49.9	<50.2	50.2

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

Final 1.000

🛟 eurofins

Environment Testing Xenco

Project Id: 104320001 Dan Moir

Contact:

Project Location:

Certificate of Analysis Summary 672397

LT Environmental, Inc., Arvada, CO

Project Name: DKS Transport Truck Rollover

Date Received in Lab: Fri 09.11.2020 16:51 **Report Date:** 09.16.2020 10:42

Project Manager: Jessica Kramer

	Lab Id:	672397-0	07	672397-0	08	672397-0	09		
Analysis Requested	Field Id:	FS07		FS08		FS09			
Anulysis Kequesteu	Depth:	0.5- ft		0.5- ft		0.5- ft			
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	09.11.2020	14:20	09.11.2020	14:30	09.11.2020	15:00		
BTEX by EPA 8021B	Extracted:	09.14.2020	11:00	09.14.2020	11:00	09.14.2020	11:00		
	Analyzed:	09.14.2020	20:47	09.14.2020	21:07	09.14.2020	21:28		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00200	0.00200		0.00198	< 0.00200	0.00200		
Toluene		< 0.00200	0.00200	<0.00198	0.00198	< 0.00200	0.00200		
Ethylbenzene		< 0.00200	0.00200	<0.00198	0.00198	< 0.00200	0.00200		
m,p-Xylenes		< 0.00399	0.00399	<0.00396	0.00396	< 0.00401	0.00401		
o-Xylene		< 0.00200	0.00200	< 0.00198	0.00198	< 0.00200	0.00200		
Total Xylenes		< 0.00200	0.00200	< 0.00198	0.00198	< 0.00200	0.00200		
Total BTEX		< 0.00200	0.00200	< 0.00198	0.00198	< 0.00200	0.00200		
Chloride by EPA 300	Extracted:	09.14.2020	12:05	09.14.2020	12:05	09.14.2020	12:05		
	Analyzed:	09.14.2020	15:22	09.14.2020	15:27	09.14.2020	15:33		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		75.7	10.0	80.5	10.0	143	10.1		
TPH by SW8015 Mod	Extracted:	09.14.2020	10:30	09.14.2020	10:30	09.14.2020	10:30		
	Analyzed:	09.14.2020	15:15	09.14.2020	15:35	09.14.2020	15:55		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<50.2	50.2	<49.8	49.8	<50.1	50.1		
Diesel Range Organics (DRO)		<50.2	50.2	<49.8	49.8	<50.1	50.1		
Motor Oil Range Hydrocarbons (MRO)		<50.2	50.2	<49.8	49.8	<50.1	50.1		
Total GRO-DRO		<50.2	50.2	<49.8	49.8	<50.1	50.1		
Total TPH		<50.2	50.2	<49.8	49.8	<50.1	50.1		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession KRAMER

Final 1.000

eurofins Environment Testing Xenco

Analytical Report 672397

for

LT Environmental, Inc.

Project Manager: Dan Moir

DKS Transport Truck Rollover

104320001

09.16.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-38), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483)

09.16.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: Eurofins Xenco, LLC Report No(s): 672397 DKS Transport Truck Rollover Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 672397. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 672397 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

eurofins Environment Testing Xenco

.

Sample Cross Reference 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
FS01	S	09.11.2020 13:20	1.5 ft	672397-001
FS02	S	09.11.2020 13:30	1.5 ft	672397-002
FS03	S	09.11.2020 13:40	1.5 ft	672397-003
FS04	S	09.11.2020 13:50	1.5 ft	672397-004
FS05	S	09.11.2020 14:00	1.5 ft	672397-005
FS06	S	09.11.2020 14:10	0.5 ft	672397-006
FS07	S	09.11.2020 14:20	0.5 ft	672397-007
FS08	S	09.11.2020 14:30	0.5 ft	672397-008
FS09	S	09.11.2020 15:00	0.5 ft	672397-009

Environment Testing Xenco

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: DKS Transport Truck Rollover

 Project ID:
 104320001

 Work Order Number(s):
 672397

 Report Date:
 09.16.2020

 Date Received:
 09.11.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

.

Environment Testi Xenco

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: Lab Sample Id	FS01 d: 672397-001		Matrix: Date Col	Soil lected: 09.11.2020 13:20)	Date Received Sample Depth			51
2	ethod: Chloride by EPA	. 300				Prep Method:	E300	P	
Tech:	MAB					% Moisture:			
Analyst:	MAB		Date Prep	o: 09.14.2020 12:05	5	Basis:	Wet	Weight	
Seq Number:	3137104								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil
Chloride		16887-00-6	270	9.92	mg/kg	09.14.2020 14	4:27		1

Analytical Method: TPH by SW801	15 Mod					Prep Method: SV	V8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09.	14.2020 10:30		Basis: W	et Weight	
Seq Number: 3137103								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.2	50.2		mg/kg	09.14.2020 12:54	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.2	50.2		mg/kg	09.14.2020 12:54	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.2	50.2		mg/kg	09.14.2020 12:54	U	1
Total GRO-DRO	PHC628	<50.2	50.2		mg/kg	09.14.2020 12:54	U	1
Total TPH	PHC635	<50.2	50.2		mg/kg	09.14.2020 12:54	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Dat	e Flag	
1-Chlorooctane		111-85-3	105	%	70-135	09.14.2020 12::	54	
o-Terphenyl		84-15-1	110	%	70-135	09.14.2020 12::	54	

.

Xenco

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id:FS01Lab Sample Id:672397-001	Matrix: Soil Date Collected: 09.11.2020 13:20	Date Received:09.11.2020 16:51 Sample Depth: 1.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MRBSeq Number:3137106	Date Prep: 09.14.2020 11:00	Prep Method: SW5035A % Moisture: Basis: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.14.2020 17:49	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.14.2020 17:49	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.14.2020 17:49	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	09.14.2020 17:49	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.14.2020 17:49	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.14.2020 17:49	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.14.2020 17:49	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	90	%	70-130	09.14.2020 17:49		
1,4-Difluorobenzene		540-36-3	96	%	70-130	09.14.2020 17:49		

.

Environment Testi Xenco

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Chloride		16887-00-6	325	10.1	mg/kg	09.14.2020 14:	:43	1
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Seq Number:	3137104							
Analyst:	MAB		Date Pre	p: 09.14.202	20 12:05	Basis:	Wet Weight	
Tech:	MAB					% Moisture:		
Analytical Me	ethod: Chloride by EPA	. 300				Prep Method:	E300P	
Lab Sample Id	d: 672397-002		Date Col	lected: 09.11.202	20 13:30	Sample Depth:	1.5 ft	
Sample Id:	FS02		Matrix:	Soil		Date Received:	09.11.2020 16	:51

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09	.14.2020 10:30		Basis: W	Vet Weight	
Seq Number: 3137103								
Parameter	Cas Number	e Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	09.14.2020 13:14	4 U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	09.14.2020 13:14	4 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	09.14.2020 13:14	4 U	1
Total GRO-DRO	PHC628	<49.8	49.8		mg/kg	09.14.2020 13:14	4 U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	09.14.2020 13:14	4 U	1
Surrogate		Cas Number	% Recover	y Units	Limits	Analysis Da	te Flag	
1-Chlorooctane		111-85-3	110	%	70-135	09.14.2020 13	:14	
o-Terphenyl		84-15-1	117	%	70-135	09.14.2020 13	:14	

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS02 Lab Sample Id: 672397-002	Matrix: Soil Date Collected: 09.11.2020	Date Received:09.11.2020 16:51 3:30 Sample Depth: 1.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MRBSeq Number:3137106	Date Prep: 09.14.2020 1	Prep Method: SW5035A % Moisture: 1:00 Basis: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	09.14.2020 19:05	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	09.14.2020 19:05	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	09.14.2020 19:05	U	1
m,p-Xylenes	179601-23-1	< 0.00404	0.00404		mg/kg	09.14.2020 19:05	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	09.14.2020 19:05	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	09.14.2020 19:05	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	09.14.2020 19:05	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	98	%	70-130	09.14.2020 19:05		
1,4-Difluorobenzene		540-36-3	102	%	70-130	09.14.2020 19:05		

.

Environment Testi Xenco

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: Lab Sample I	FS03 Id: 672397-003		Matrix: Soil Date Collected: 09.11.2020 13:40			Date Received:09.11.2020 16:5 0 Sample Depth: 1.5 ft			
Analytical M Tech: Analyst:	lethod: Chloride by EP MAB MAB	A 300	Date Prep:	09.14.2020 12:05		Prep Method: E30 % Moisture: Basis: Wet	0P Weight		
Seq Number:	: 3137104								
Parameter Chloride		Cas Number 16887-00-6	Result 840	RL 10.1	Units mg/kg	Analysis Date 09.14.2020 14:49	Flag	Dil	
	lethod: TPH by SW80					Prep Method: SW8	20155		

Tech: D'	TH						% Moisture:		
Analyst: D'	ТН		Date P	rep: 09	.14.2020 10:30		Basis: W	Vet Weight	
Seq Number: 31	137103								
Parameter		Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hyd	rocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	09.14.2020 13:3	4 U	1
Diesel Range Organi	ics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	09.14.2020 13:3	4 U	1
Motor Oil Range Hydro	ocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	09.14.2020 13:3	4 U	1
Total GRO-DRO		PHC628	<50.0	50.0		mg/kg	09.14.2020 13:3	4 U	1
Total TPH		PHC635	<50.0	50.0		mg/kg	09.14.2020 13:3	4 U	1
Surrogate			Cas Number	% Recover	y Units	Limits	Analysis Da	te Flag	
1-Chlorooctane	e		111-85-3	111	%	70-135	09.14.2020 13	:34	
o-Terphenyl			84-15-1	111	%	70-135	09.14.2020 13	:34	

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS03	Matrix: Soil	Date Received:09.11.2020 16:51
Lab Sample Id: 672397-003	Date Collected: 09.11.2020 13:40	Sample Depth: 1.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MRBSeq Number:3137106	Date Prep: 09.14.2020 11:00	Prep Method: SW5035A % Moisture: Basis: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00204	0.00204		mg/kg	09.14.2020 19:25	U	1
Toluene	108-88-3	< 0.00204	0.00204		mg/kg	09.14.2020 19:25	U	1
Ethylbenzene	100-41-4	< 0.00204	0.00204		mg/kg	09.14.2020 19:25	U	1
m,p-Xylenes	179601-23-1	< 0.00408	0.00408		mg/kg	09.14.2020 19:25	U	1
o-Xylene	95-47-6	< 0.00204	0.00204		mg/kg	09.14.2020 19:25	U	1
Total Xylenes	1330-20-7	< 0.00204	0.00204		mg/kg	09.14.2020 19:25	U	1
Total BTEX		< 0.00204	0.00204		mg/kg	09.14.2020 19:25	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	102	%	70-130	09.14.2020 19:25		
4-Bromofluorobenzene		460-00-4	98	%	70-130	09.14.2020 19:25		

.

Environment Testi Xenco

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Tech: MAB Analyst: MAB		Date Pre	p: 09.14.2020 12:05		% Moisture: Basis: Wet	Weight	
Seq Number: 3137	104						
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	440	9.90	mg/kg	09.14.2020 15:05		1

Analytical Method: TPH by SW801 Tech: DTH Analyst: DTH Seq Number: 3137103	5 Mod	Date P	rep: 09.	14.2020 10:30		Prep Method: SW % Moisture: Basis: We	8015P t Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	09.14.2020 13:54	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	09.14.2020 13:54	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	09.14.2020 13:54	U	1
Total GRO-DRO	PHC628	<49.9	49.9		mg/kg	09.14.2020 13:54	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	09.14.2020 13:54	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	106	%	70-135	09.14.2020 13:54	4	
o-Terphenyl		84-15-1	109	%	70-135	09.14.2020 13:54	4	

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS04	Matrix: Soil	Date Received:09.11.2020 16:51		
Lab Sample Id: 672397-004	Date Collected: 09.11.2020 13:50	Sample Depth: 1.5 ft		
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MRBSeq Number:3137106	Date Prep: 09.14.2020 11:00	Prep Method: SW5035A % Moisture: Basis: Wet Weight		

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	09.14.2020 19:46	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	09.14.2020 19:46	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	09.14.2020 19:46	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	09.14.2020 19:46	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	09.14.2020 19:46	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	09.14.2020 19:46	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	09.14.2020 19:46	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	105	%	70-130	09.14.2020 19:46		
4-Bromofluorobenzene		460-00-4	99	%	70-130	09.14.2020 19:46		

Surrogate

o-Terphenyl

.

1-Chlorooctane

Environment Testing Xenco

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Chloride		16887-00-6	573	10.1	mg/kg	09.14.2020 15:	11	1
Parameter		Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Seq Number:	3137104							
Analyst:	MAB		Date Prep	o: 09.14.2020 12:0	5	Basis:	Wet Weight	
Tech:	MAB					% Moisture:		
Analytical Me	ethod: Chloride by EPA	. 300				Prep Method:	E300P	
Lab Sample I	d: 672397-005		Date Coll	ected: 09.11.2020 14:0	0 Sample Depth: 1.5 ft			
Sample Id:	FS05		Matrix:	Soil		Date Received:	09.11.2020 16	5:51

Analytical Method:TPH by SW801Tech:DTHAnalyst:DTHSeq Number:3137103	15 Mod	Date Prep	p: 09.14.2020 10:30		Prep Method: SW % Moisture: Basis: We	8015P t Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9	mg/kg	09.14.2020 14:15	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9	mg/kg	09.14.2020 14:15	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9	mg/kg	09.14.2020 14:15	U	1
Total GRO-DRO	PHC628	<49.9	49.9	mg/kg	09.14.2020 14:15	U	1
Total TPH	PHC635	<49.9	49.9	mg/kg	09.14.2020 14:15	U	1

% Recovery

108

115

Units

% % Limits

70-135

70-135

Analysis Date

09.14.2020 14:15

09.14.2020 14:15

Flag

.

Cas Number

111-85-3

84-15-1

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id:FS05Lab Sample Id:672397-005	Matrix: Date Collecte	Soil ed: 09.11.2020 14:00	Date Received Sample Depth	d:09.11.2020 16:51 n: 1.5 ft
Analytical Method: BTEX by EPA 8021B Tech: MAB			Prep Method: % Moisture:	SW5035A
Analyst:MRBSeq Number:3137106	Date Prep:	09.14.2020 11:00	Basis:	Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.14.2020 20:06	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.14.2020 20:06	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.14.2020 20:06	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	09.14.2020 20:06	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.14.2020 20:06	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.14.2020 20:06	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.14.2020 20:06	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	99	%	70-130	09.14.2020 20:06		
1,4-Difluorobenzene		540-36-3	108	%	70-130	09.14.2020 20:06		

o-Terphenyl

.

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id:FS06Lab Sample Id:672397-006			Matrix: Soil Date Collected: 09.11.2020 14:10)	Date Received:09.11.2020 16:51 Sample Depth: 0.5 ft			
2	ethod: Chloride by EPA	. 300				Prep Method:	E300	Р	
Tech:	MAB					% Moisture:			
Analyst:	MAB		Date Prep	o: 09.14.2020 12:05		Basis:	Wet V	Weight	
Seq Number:	3137104								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil
Chloride		16887-00-6	110	10.0	mg/kg	09.14.2020 1	5:16		1

Analytical Method: TPH by SW801	Prep Method: SW8015P								
Tech: DTH						% Moisture:			
Analyst: DTH		Date Pr	ep: 09	: 09.14.2020 10:30		Basis: Wet		Weight	
Seq Number: 3137103									
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.2	50.2		mg/kg	09.14.2020 14:35	U	1	
Diesel Range Organics (DRO)	C10C28DRO	<50.2	50.2		mg/kg	09.14.2020 14:35	U	1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.2	50.2		mg/kg	09.14.2020 14:35	U	1	
Total GRO-DRO	PHC628	< 50.2	50.2		mg/kg	09.14.2020 14:35	U	1	
Total TPH	PHC635	<50.2	50.2		mg/kg	09.14.2020 14:35	U	1	
Surrogate		Cas Number	% Recovery	units	Limits	Analysis Dat	e Flag		
1-Chlorooctane		111-85-3	109	%	70-135	09.14.2020 14:	35		

109

%

70-135

09.14.2020 14:35

84-15-1

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS06	Matrix:	Soil	Date Received:09.11.2020 16	
Lab Sample Id: 672397-006	Date Collected	d: 09.11.2020 14:10	Sample Depth: 0.5 ft	
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MRBSeq Number:3137106	Date Prep:	09.14.2020 11:00	Prep Method: % Moisture: Basis:	SW5035A Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.14.2020 20:26	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.14.2020 20:26	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.14.2020 20:26	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	09.14.2020 20:26	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.14.2020 20:26	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.14.2020 20:26	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.14.2020 20:26	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	99	%	70-130	09.14.2020 20:26		
1,4-Difluorobenzene		540-36-3	107	%	70-130	09.14.2020 20:26		

.

Environment Testi Xenco

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS07 Lab Sample Id: 672397-00	7	Matrix: Date Coll	Soil ected: 09.11.2020 14:20)	Date Received: Sample Depth: (5:51
Analytical Method: Chlori Tech: MAB	de by EPA 300				Prep Method: I % Moisture:	E300P	
Analyst: MAB Seq Number: 3137104		Date Prep	: 09.14.2020 12:05		Basis:	Wet Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride	16887-00-6	75.7	10.0	mg/kg	09.14.2020 15:2	22	1

Analytical Method:TPH by SW80Tech:DTHAnalyst:DTHSeq Number:3137103	15 Mod	Date Prep	o: 09.14.2020 10:30		Prep Method: SW % Moisture: Basis: Wo	V8015P et Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.2	50.2	mg/kg	09.14.2020 15:15	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.2	50.2	mg/kg	09.14.2020 15:15	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.2	50.2	mg/kg	09.14.2020 15:15	U	1
Total GRO-DRO	PHC628	<50.2	50.2	mg/kg	09.14.2020 15:15	U	1
Total TPH	PHC635	<50.2	50.2	mg/kg	09.14.2020 15:15	U	1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1-Chlorooctane	111-85-3	109	%	70-135	09.14.2020 15:15	
o-Terphenyl	84-15-1	108	%	70-135	09.14.2020 15:15	

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS07	Matrix: Soil	Date Received:09.11.2020 16:51
Lab Sample Id: 672397-007	Date Collected: 09.11.	.2020 14:20 Sample Depth: 0.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MRBSeq Number:3137106	Date Prep: 09.14.	Prep Method: SW5035A % Moisture: 4.2020 11:00 Basis: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.14.2020 20:47	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.14.2020 20:47	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.14.2020 20:47	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	09.14.2020 20:47	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.14.2020 20:47	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.14.2020 20:47	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.14.2020 20:47	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	101	%	70-130	09.14.2020 20:47		
1,4-Difluorobenzene		540-36-3	104	%	70-130	09.14.2020 20:47		

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS Lab Sample Id: 67	508 2397-008		Matrix: Date Colle	Soil cted: 09.11.2020 14:30		Date Received:09.11.2020 16 Sample Depth: 0.5 ft			51
Tech: MA Analyst: MA		00	Date Prep:	09.14.2020 12:05		Prep Method: % Moisture: Basis:		P Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil
Chloride		16887-00-6	80.5	10.0	mg/kg	09.14.2020 1	5:27		1

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09.	14.2020 10:30		Basis: W	et Weight	
Seq Number: 3137103								
Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	09.14.2020 15:35	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	09.14.2020 15:35	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	09.14.2020 15:35	U	1
Total GRO-DRO	PHC628	<49.8	49.8		mg/kg	09.14.2020 15:35	U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	09.14.2020 15:35	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Dat	e Flag	
1-Chlorooctane		111-85-3	114	%	70-135	09.14.2020 15:	35	
o-Terphenyl		84-15-1	114	%	70-135	09.14.2020 15:	35	

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS08 Lab Sample Id: 672397-008	Matrix: Date Collecte	Soil ed: 09.11.2020 14:30	Date Received Sample Depth	d:09.11.2020 16:51 n: 0.5 ft
Analytical Method: BTEX by EPA 8021B Tech: MAB			Prep Method: % Moisture:	SW5035A
Analyst:MRBSeq Number:3137106	Date Prep:	09.14.2020 11:00	Basis:	Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	09.14.2020 21:07	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	09.14.2020 21:07	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	09.14.2020 21:07	U	1
m,p-Xylenes	179601-23-1	< 0.00396	0.00396		mg/kg	09.14.2020 21:07	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	09.14.2020 21:07	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	09.14.2020 21:07	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	09.14.2020 21:07	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	95	%	70-130	09.14.2020 21:07		
1,4-Difluorobenzene		540-36-3	103	%	70-130	09.14.2020 21:07		

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS09 Lab Sample Id: 6723		Matrix: Date Colle	Soil cted: 09.11.2020 15:00)	Date Received:09.11.2020 16 Sample Depth: 0.5 ft			51
Analytical Method: 0 Tech: MAB	Chloride by EPA 300				Prep Method: % Moisture:	E300P	•	
Analyst: MAB		Date Prep:	09.14.2020 12:05		Basis:	Wet W	/eight	
Seq Number: 31371	04							
Parameter	Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil
Chloride	16887-00-6	143	10.1	mg/kg	09.14.2020 15	5:33		1

Analytical Method: TPH by SW801 Tech: DTH	5 Mod				Prep Method: SW % Moisture:	/8015P	
Analyst: DTH		Date Prep	: 09.14.2020 10:30		Basis: We	t Weight	
Seq Number: 3137103							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.1	50.1	mg/kg	09.14.2020 15:55	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.1	50.1	mg/kg	09.14.2020 15:55	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.1	50.1	mg/kg	09.14.2020 15:55	U	1
Total GRO-DRO	PHC628	< 50.1	50.1	mg/kg	09.14.2020 15:55	U	1
Total TPH	PHC635	<50.1	50.1	mg/kg	09.14.2020 15:55	U	1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1-Chlorooctane	111-85-3	111	%	70-135	09.14.2020 15:55	
o-Terphenyl	84-15-1	109	%	70-135	09.14.2020 15:55	

Certificate of Analytical Results 672397

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS09	Matrix: Soil	Date Received:09.11.2020 16:51
Lab Sample Id: 672397-009	Date Collected: 09.11.2020 15:00	Sample Depth: 0.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MRBSeq Number:3137106	Date Prep: 09.14.2020 11:00	Prep Method:SW5035A% Moisture:Basis:Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.14.2020 21:28	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.14.2020 21:28	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.14.2020 21:28	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	09.14.2020 21:28	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.14.2020 21:28	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.14.2020 21:28	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.14.2020 21:28	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	102	%	70-130	09.14.2020 21:28		
4-Bromofluorobenzene		460-00-4	99	%	70-130	09.14.2020 21:28		

Xenco

Environment Testing

🔅 eurofins

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected			
RL Reporting Limit				
MDL Method Detection Limit	SDL Sample De	tection Limit	LOD Limit of Detection	
PQL Practical Quantitation Limit	MQL Method Qu	antitation Limit	LOQ Limit of Quantitation	n
DL Method Detection Limit				
NC Non-Calculable				
SMP Client Sample		BLK	Method Blank	
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD Method Duplicate/Samp	ble Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate
+ NELAC certification not offered	l for this compound.			

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

eurofins Environment Testing Xenco

LT Environmental, Inc.

DKS Transport Truck Rollover

Analytical Method: Seq Number: MB Sample Id:	Chloride by EPA 3137104 7711276-1-BLK	300	LCS Sar	Matrix: nple Id:	Solid 7711276-1	1-BKS			ep Metho Date Pro D Sample	ep: 09.1	0P 14.2020 1276-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<10.0		258	103	258	103	90-110	0	20	mg/kg	09.14.2020 12:59	
Analytical Method:	Chloride by EPA 3	300						Pı	ep Metho	od: E30	0P	
Seq Number:	3137104			Matrix:	Soil				Date Pre		4.2020	
Parent Sample Id:	672315-001		MS Sar	nple Id:	672315-00	01 S		MS	D Sample	e Id: 672	315-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	32.6	198	235	102	235	102	90-110	0	20	mg/kg	09.14.2020 13:16	
Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3137104 672397-001	300		Matrix: nple Id:	Soil 672397-00	01 S			rep Metho Date Pre D Sample	ep: 09.1	0P 14.2020 397-001 SD	
Parameter	Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD	Units	Analysis	Flag
	Result	Amount	Result	%Rec	Result	%Rec			Limit		Date	1145
Chloride	270	199	471	101	470	101	90-110	0	20	mg/kg	09.14.2020 14:32	
Analytical Method:	TPH by SW8015 I	Mod		Matrix:	Solid			Pı	ep Metho Date Pro		8015P 1.2020	
Seq Number: MB Sample Id:	3137103 7711226-1-BLK				7711226-1	1-BKS		LCS		-	1226-1-BSD	
	7711226-1-BLK MB	Spike Amount	LCS Sar LCS	nple Id: LCS	7711226-2 LCSD	LCSD	Limits	LCS % RPD	D Sample RPD	-	1226-1-BSD Analysis	Flag
MB Sample Id:	7711226-1-BLK MB Result	Amount	LCS Sar	nple Id:	7711226-3		Limits 70-135	%RPD	D Sample RPD Limit	Id: 771 Units	1226-1-BSD	Flag
MB Sample Id: Parameter	7711226-1-BLK MB Result ons (GRO) <50.0	Amount 1000	LCS Sar LCS Result	nple Id: LCS %Rec	7711226- LCSD Result	LCSD %Rec			D Sample RPD	Id: 771	1226-1-BSD Analysis Date	Flag
MB Sample Id: Parameter Gasoline Range Hydrocarb	7711226-1-BLK MB Result ons (GRO) <50.0	Amount 1000 1000 MB	LCS Sar LCS Result 739 816 L	nple Id: LCS %Rec 74	7711226-3 LCSD Result 739	LCSD %Rec 74	70-135 70-135 LCS	%RPD 0 1 D Li	D Sample RPD Limit 35	Id: 771 Units mg/kg	1226-1-BSD Analysis Date 09.14.2020 10:12	Flag
MB Sample Id: Parameter Gasoline Range Hydrocarb Diesel Range Organics Surrogate 1-Chlorooctane	7711226-1-BLK MB Result ons (GRO) <50.0 (DRO) <50.0 MB	Amount 1000 1000 MB	LCS Sar LCS Result 739 816 L	nple Id: LCS %Rec 74 82 CS	7711226-2 LCSD Result 739 824 LCS	LCSD %Rec 74 82 LCSI %Rec 98	70-135 70-135 LCS	%RPD 0 1 D Li g	D Sample RPD Limit 35 35	Id: 771 Units mg/kg mg/kg	1226-1-BSD Analysis Date 09.14.2020 10:12 09.14.2020 10:12 Analysis Date 09.14.2020 10:12	Flag
MB Sample Id: Parameter Gasoline Range Hydrocarb Diesel Range Organics Surrogate	7711226-1-BLK MB Result ons (GRO) <50.0 (DRO) <50.0 MB %Re	Amount 1000 1000 MB	LCS Sar LCS Result 739 816 L %	nple Id: LCS %Rec 74 82 CS Rec	7711226-2 LCSD Result 739 824 LCS	LCSD %Rec 74 82 LCSI %Rec	70-135 70-135 LCS	%RPD 0 1 D Li g 70	D Sample RPD Limit 35 35 35 mits	d: 771 Units mg/kg mg/kg Units	1226-1-BSD Analysis Date 09.14.2020 10:12 09.14.2020 10:12 Analysis Date	Flag
MB Sample Id: Parameter Gasoline Range Hydrocarb Diesel Range Organics Surrogate 1-Chlorooctane	7711226-1-BLK MB Result ons (GRO) <50.0 (DRO) <50.0 MB %Re 98 102	Amount 1000 1000 MB c Flag	LCS Sar LCS Result 739 816 L % 9	nple Id: LCS %Rec 74 82 CS Rec 99 93 Matrix:	7711226- LCSD Result 739 824 LCS Flag	LCSD %Rec 74 82 LCSI %Rec 98 93	70-135 70-135 LCS	%RPD 0 1 D Li g 70 70	D Sample RPD Limit 35 35 mits -135	d: 771 Units mg/kg mg/kg Units % % od: SW ep: 09.1	1226-1-BSD Analysis Date 09.14.2020 10:12 09.14.2020 10:12 Analysis Date 09.14.2020 10:12 09.14.2020 10:12 09.14.2020 10:12 8015P 11.2020	Flag
MB Sample Id: Parameter Gasoline Range Hydrocarb Diesel Range Organics of Surrogate 1-Chlorooctane o-Terphenyl Analytical Method:	7711226-1-BLK MB Result ons (GRO) <50.0 (DRO) <50.0 MB %Re 98 102 TPH by SW8015 M	Amount 1000 1000 MB c Flag	LCS Sar LCS Result 739 816 L %	nple Id: LCS %Rec 74 82 CS Rec 99 93 Matrix:	7711226- LCSD Result 739 824 LCS Flag	LCSD %Rec 74 82 LCSI %Rec 98 93	70-135 70-135 LCS	%RPD 0 1 D Li g 70 70	D Sample RPD Limit 35 35 mits -135 -135 rep Metho	d: 771 Units mg/kg mg/kg Units % %	1226-1-BSD Analysis Date 09.14.2020 10:12 09.14.2020 10:12 Analysis Date 09.14.2020 10:12 09.14.2020 10:12 09.14.2020 10:12	Flag
MB Sample Id: Parameter Gasoline Range Hydrocarb Diesel Range Organics of Surrogate 1-Chlorooctane o-Terphenyl Analytical Method: Seq Number:	7711226-1-BLK MB Result ons (GRO) <50.0 (DRO) <50.0 MB %Re 98 102 TPH by SW8015 P 3137103	Amount 1000 1000 MB c Flag	LCS Sar LCS Result 739 816 L % 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	nple Id: LCS %Rec 74 82 CS Rec 99 93 Matrix:	7711226- LCSD Result 739 824 LCS Flag	LCSD %Rec 74 82 LCSI %Rec 98 93	70-135 70-135 LCS	%RPD 0 1 D Li g 70 70	D Sample RPD Limit 35 35 mits -135 -135 rep Metho	d: 771 Units mg/kg mg/kg Units % % od: SW ep: 09.1	1226-1-BSD Analysis Date 09.14.2020 10:12 09.14.2020 10:12 Mnalysis Date 09.14.2020 10:12 09.14.2020 10:12 09.14.2020 10:12 8015P 1.2020 Analysis	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 26 of 29

Final 1.000

🔅 eurofins **Environment Testing** Xenco

LT Environmental, Inc.

DKS Transport Truck Rollover

Analytical Method:	TPH by SV	W8015 M	od						P	rep Meth	od: SW	8015P	
Seq Number:	3137103				Matrix:	Soil				Date Pr	ep: 09.1	1.2020	
Parent Sample Id:	672315-00	1		MS Sar	nple Id:	672315-00	01 S		MS	D Sample	e Id: 672	315-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<50.3	1010	707	70	752	75	70-135	6	35	mg/kg	09.14.2020 11:13	
Diesel Range Organics	(DRO)	<50.3	1010	783	78	841	84	70-135	7	35	mg/kg	09.14.2020 11:13	
Surrogate					IS Rec	MS Flag	MSE %Re			imits	Units	Analysis Date	
1-Chlorooctane				1	15		124	Ļ	70	-135	%	09.14.2020 11:13	
o-Terphenyl				1	12		118	;	70	-135	%	09.14.2020 11:13	

Analytical Method:	BTEX by EPA 8021	B						P	rep Metho	od: SW	5035A	
Seq Number:	3137106]	Matrix:	Solid				Date Pr	ep: 09.1	4.2020	
MB Sample Id:	7711274-1-BLK		LCS San	nple Id:	7711274-1	I-BKS		LCS	D Sample	e Id: 771	1274-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0922	92	0.0927	93	70-130	1	35	mg/kg	09.14.2020 12:29	
Toluene	< 0.00200	0.100	0.0872	87	0.0900	90	70-130	3	35	mg/kg	09.14.2020 12:29	
Ethylbenzene	< 0.00200	0.100	0.0897	90	0.0912	91	71-129	2	35	mg/kg	09.14.2020 12:29	
m,p-Xylenes	< 0.00400	0.200	0.178	89	0.183	92	70-135	3	35	mg/kg	09.14.2020 12:29	
o-Xylene	< 0.00200	0.100	0.0938	94	0.0939	94	71-133	0	35	mg/kg	09.14.2020 12:29	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	101		9	07		98		70	-130	%	09.14.2020 12:29	
4-Bromofluorobenzene	102		9	91		95		70	-130	%	09.14.2020 12:29	

Analytical Method:	BTEX by EPA 8021	B						Pı	rep Metho	od: SW	5035A	
Seq Number:	3137106			Matrix:	Soil				Date Pre	ep: 09.1	4.2020	
Parent Sample Id:	672315-001		MS Sar	nple Id:	672315-00	01 S		MS	D Sample	e Id: 672	315-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.104	104	0.112	112	70-130	7	35	mg/kg	09.14.2020 13:10	
Toluene	< 0.00200	0.100	0.0971	97	0.105	105	70-130	8	35	mg/kg	09.14.2020 13:10	
Ethylbenzene	< 0.00200	0.100	0.101	101	0.109	109	71-129	8	35	mg/kg	09.14.2020 13:10	
m,p-Xylenes	< 0.00401	0.200	0.205	103	0.218	108	70-135	6	35	mg/kg	09.14.2020 13:10	
o-Xylene	< 0.00200	0.100	0.101	101	0.106	106	71-133	5	35	mg/kg	09.14.2020 13:10	
Surrogate				1S Rec	MS Flag	MSD %Ree			imits	Units	Analysis Date	
1,4-Difluorobenzene			1	00		101		70	-130	%	09.14.2020 13:10	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

4-Bromofluorobenzene

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

98

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

09.14.2020 13:10

Page 27 of 29

93

Final 1.000

70-130

%

- U	P	Relinquished by: (Signature)	envice. Xenco will be li		Circle Method(s) and Metal(s) to be analyzed	1:24	PM FS09	FS08	FS07	FS06	FS05	FS04	FS03	FS02	FS01	Sample Identification	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	Temperature (°C):	SAMPLE RECEIPT	Sampler's Name:	P.O. Number:	Project Number:	Project Name:	Phone:	City, State ZIP:	Address:	-	oject Manager:	age 191
	25	(Signature)	able only for the co: ge of \$75.00 will be	ocument and relingu	10 200.8 / 6020:) and Metal(s) to be											ification	s: Yes tho	Yes	R	1	>				DKS Tran	(432) 236-3849	Midland, TX 79705	3300 North A Street	LT Environmental, Inc.,	Dan Moir	ERATORIES
	()lue		st of sample applied to	ishment of	to be an:		S	S	S	S	S	S	S	S	S	Matrix	N/A	T	17	0.2	Temp Blank:	Spencer Lo		104320001	isport Tri		705	Street	ital, Inc.,		60
	Cuffen	Received t	es and shall not each project and	samples consti	8R		9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020	Date Sampled	Total	Corre	T-N	T	Me No	Lo		01	DKS Transport Truck Rollover				Permian office		Hobbs,
	Í	Received by: (Signature)	assume any res d a charge of \$5	tutes a valid pu	BRCRA 13PPM TCLP / SPLP		1500	1430	1420	1410	1400	1350	1340	1330	1320	Time Sampled	Total Containers:		1-NM-00-	Thermometer ID	Wet Ice:	Due Date:	Rush:	Routine		Email:			fice		Houston, Midland NM (575-392-
		re)	sponsibility for a for each sample	rchase order fro	CRA 13PPM Texas 11 AI TCLP / SPLP 6010: 8RCRA	m	0.5'	0.5'	0.5'	0.5'	1.5'	1.5'	1.5'	1.5'	1.5'	Depth		0.0		ō	Nes No	Date:		ne	Turn Around	Email: slo@ltenv.com, dmoir@ltenv.com	City, State ZIP:	Address:	Company Name:	Bill to: (if different)	TX (281) 240-4 ,TX (432-704-5 7550) Phoenix
	9.11.20		ny losses submitte	m client c		8	1	-	-	-	-	-	1	-	1	Numb	er c	ofC	ont	aine	rs					m, dmoi	P		ime:	ent)	200 Dalla (440) EL (480-
	20 11	Date/Time	or expens d to Xenc	ompany to	Sb As Ba Sb As Ba	H	×	××	××	×××	× ×	×	××	×	××	TPH (E	-		-	4)	_	-	-	_		r@ltenv.		1			as,TX (21 Paso,TX 355-0900
	16:51	ne	ses incurn o, but not	Xenco, it	Ba Be B Ba Be C	H	×	×	×	×	×	××	×	××		Chlorid	-	-	-	-		-	-			com					4) 902-03 (915)585)) Atlanta
6	4 N	Relinquished by: (Signature)	ervice. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control enco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.		Cd Ca Cr C d Cr Co Cu																				ANALYSIS REQUEST						Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-3334 Midland,TX (432-704-5440) EL Paso,TX (915)585-3443 Lubbock,TX (806)794-1296 Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000)
		re) Received by: (Signature)	circumstances beyond the control unless previously negotiated.	ns standard terms and conditions	o Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr Ti Sn U Pb Mn Mo Ni Se Ag Ti U 1631/245.1/7470											<u>s</u>	lat	TAT st								Deliverables: EDD ADaPT	Reporting:Level IIIevel IIIST/UST [State of Project:	Program: UST/PST PRP Brownfields	Work Order Comments	620-2000) www.xenco.com Page of
		Date/Time			TI Sn U V Zn 5.1 / 7470 / 7471 : Hg											Sample Comments	lab, if received by 4:30pm	TAT starts the day recevied by the							Work Order Notes	Other:			RRC Duperfund	onts	ge of

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature F	Range: 0 - 6 degC
Date/ Time Received: 09.11.2020 04.51.00 PM	Air and Metal samples Acc	
Work Order #: 672397	Temperature Measuring de	evice used: T_NM_007
Sample Recei	pt Checklist	Comments
#1 *Temperature of cooler(s)?	.2	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	Yes	
#6*Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	Samples received in bulk containers.
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	No	
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

.

PH Device/Lot#:

Checklist completed by:

Date: 09.11.2020

Checklist reviewed by: Jessica Kramer

Date: 09.14.2020

🔅 eurofins

Environment Testing Xenco

Project Id: 104320001 Dan Moir

Contact:

Project Location:

Certificate of Analysis Summary 673572

LT Environmental, Inc., Arvada, CO

Project Name: DKS Transport Truck Rollover

Date Received in Lab: Thu 09.24.2020 16:50 **Report Date:** 09.29.2020 10:41

Project Manager: Jessica Kramer

	Lab Id:	673572-0	001	673572-0	02	673572-0	003	673572-0	004	673572-0	005	673572-0	06
Analysis Requested	Field Id:	FS01		FS02		FS03		FS04		FS05		FS06	
Analysis Requested	Depth:	1.5- ft		1.5- ft		1.5- ft		1.5- ft	:	1.0- ft		1.0- ft	
	Matrix:	SOIL		SOIL		SOIL	,	SOIL		SOIL		SOIL	
	Sampled:	09.24.2020	15:20	09.24.2020	15:10	09.24.2020	15:00	09.24.2020	14:50	09.24.2020	14:40	09.24.2020	14:30
BTEX by EPA 8021B	Extracted:	09.25.2020	15:39	09.25.2020	15:39	09.25.2020	15:39	09.25.2020	15:39	09.25.2020	15:39	09.25.2020	16:43
	Analyzed:	09.26.2020	11:23	09.26.2020	11:46	09.26.2020	12:08	09.26.2020	12:30	09.26.2020	12:53	09.26.2020	08:39
	Units/RL:	mg/kg	RL										
Benzene		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00199	0.00199	<0.00199	0.00199	< 0.00200	0.00200
Toluene		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00199	0.00199	<0.00199	0.00199	< 0.00200	0.00200
Ethylbenzene		< 0.00201	0.00201	<0.00199	0.00199	< 0.00200	0.00200	< 0.00199	0.00199	<0.00199	0.00199	< 0.00200	0.00200
m,p-Xylenes		< 0.00402	0.00402	< 0.00398	0.00398	< 0.00401	0.00401	< 0.00398	0.00398	<0.00398	0.00398	< 0.00399	0.00399
o-Xylene		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00199	0.00199	<0.00199	0.00199	< 0.00200	0.00200
Total Xylenes		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00199	0.00199	<0.00199	0.00199	< 0.00200	0.00200
Total BTEX		< 0.00201	0.00201	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00199	0.00199	<0.00199	0.00199	< 0.00200	0.00200
Chloride by EPA 300	Extracted:	09.25.2020	15:09	09.25.2020	15:09	09.25.2020	15:09	09.25.2020	15:09	09.25.2020	15:09	09.25.2020	15:09
	Analyzed:	09.25.2020	15:19	09.25.2020	15:36	09.25.2020	15:41	09.25.2020	15:47	09.25.2020	15:55	09.25.2020	16:19
	Units/RL:	mg/kg	RL										
Chloride		182	10.0	98.6	9.92	166	9.90	546	9.94	223	10.0	71.5	10.0
TPH by SW8015 Mod	Extracted:	09.25.2020	10:30	09.25.2020	10:30	09.25.2020	10:30	09.25.2020	10:30	09.25.2020	10:30	09.25.2020	10:30
	Analyzed:	09.25.2020	14:21	09.25.2020	14:42	09.25.2020	15:22	09.25.2020	15:42	09.25.2020	16:02	09.25.2020	16:23
	Units/RL:	mg/kg	RL										
Gasoline Range Hydrocarbons (GRO)		<50.1	50.1	<50.2	50.2	<50.3	50.3	<49.8	49.8	<50.3	50.3	<50.0	50.0
Diesel Range Organics (DRO)		<50.1	50.1	<50.2	50.2	<50.3	50.3	<49.8	49.8	<50.3	50.3	<50.0	50.0
Motor Oil Range Hydrocarbons (MRO)		<50.1	50.1	<50.2	50.2	<50.3	50.3	<49.8	49.8	<50.3	50.3	<50.0	50.0
Total GRO-DRO		<50.1	50.1	<50.2	50.2	<50.3	50.3	<49.8	49.8	<50.3	50.3	<50.0	50.0
Total TPH		<50.1	50.1	<50.2	50.2	<50.3	50.3	<49.8	49.8	<50.3	50.3	<50.0	50.0

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

Final 1.000

Page 193 of 238

🔅 eurofins

Environment Testing Xenco

Project Id: 104320001 Dan Moir

Contact:

Project Location:

Certificate of Analysis Summary 673572

LT Environmental, Inc., Arvada, CO

Project Name: DKS Transport Truck Rollover

Date Received in Lab: Thu 09.24.2020 16:50

Report Date: 09.29.2020 10:41

Project Manager: Jessica Kramer

	Lab Id:	673572-0	07	673572-0	08	673572-0	09		
Analysis Requested	Field Id:	FS07		FS08		FS09			
Anuiysis Kequesieu	Depth:	0.5- ft		0.5- ft		1.5- ft			
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	09.24.2020	14:20	09.24.2020	14:10	09.24.2020	14:00		
BTEX by EPA 8021B	Extracted:	09.28.2020	10:07	09.28.2020	10:07	09.28.2020	10:07		
	Analyzed:	09.28.2020	18:39	09.28.2020	19:02	09.28.2020	19:24		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00201	0.00201	< 0.00202	0.00202	< 0.00202	0.00202		
Toluene		< 0.00201	0.00201	< 0.00202	0.00202	< 0.00202	0.00202		
Ethylbenzene		< 0.00201	0.00201	< 0.00202	0.00202	< 0.00202	0.00202		
m,p-Xylenes		< 0.00402	0.00402	< 0.00404	0.00404	< 0.00404	0.00404		
o-Xylene		< 0.00201	0.00201	< 0.00202	0.00202	< 0.00202	0.00202		
Total Xylenes		< 0.00201	0.00201	< 0.00202	0.00202	< 0.00202	0.00202		
Total BTEX		< 0.00201	0.00201	< 0.00202	0.00202	<0.00202 0.00202			
Chloride by EPA 300	Extracted:	09.25.2020	15:09	09.25.2020 15:09		09.25.2020	15:09		
	Analyzed:	09.25.2020	16:24	09.25.2020	16:30	09.25.2020	16:36		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		161	9.94	122	9.92	25.0	10.0		
TPH by SW8015 Mod	Extracted:	09.25.2020	10:30	09.25.2020	10:30	09.25.2020	10:30		
	Analyzed:	09.25.2020	16:43	09.25.2020	17:03	09.25.2020	17:23		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<50.2	50.2	<50.3	50.3	<50.1	50.1		
Diesel Range Organics (DRO)		<50.2	50.2	<50.3	50.3	<50.1	50.1		
Motor Oil Range Hydrocarbons (MRO)		<50.2	50.2	<50.3	50.3	<50.1	50.1		
Total GRO-DRO		<50.2	50.2	<50.3	50.3	<50.1	50.1		
Total TPH		<50.2	50.2	<50.3	50.3	<50.1	50.1		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jession Vramer

Page 2 of 31

eurofins Environment Testing Xenco

Analytical Report 673572

for

LT Environmental, Inc.

Project Manager: Dan Moir

DKS Transport Truck Rollover

104320001

09.29.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-38), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2020-014), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483)

eurofins Environment Testing Xenco

09.29.2020

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: Eurofins Xenco, LLC Report No(s): 673572 DKS Transport Truck Rollover Project Address:

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 673572. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 673572 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

eurofins Environment Testing Xenco

.

Sample Cross Reference 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
FS01	S	09.24.2020 15:20	1.5 ft	673572-001
FS02	S	09.24.2020 15:10	1.5 ft	673572-002
FS03	S	09.24.2020 15:00	1.5 ft	673572-003
FS04	S	09.24.2020 14:50	1.5 ft	673572-004
FS05	S	09.24.2020 14:40	1.0 ft	673572-005
FS06	S	09.24.2020 14:30	1.0 ft	673572-006
FS07	S	09.24.2020 14:20	0.5 ft	673572-007
FS08	S	09.24.2020 14:10	0.5 ft	673572-008
FS09	S	09.24.2020 14:00	1.5 ft	673572-009

Environment Testing Xenco

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: DKS Transport Truck Rollover

 Project ID:
 104320001

 Work Order Number(s):
 673572

 Report Date:
 09.29.2020

 Date Received:
 09.24.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

.

Environment Testi Xenco

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id:	FS01		Matrix:	Soil	• •	Date Received		5:50
Lab Sample I	d: 673572-001		Date Col	lected: 09.24.2020 15:	20	Sample Depth:	1.5 ft	
Analytical Me	ethod: Chloride by EPA	. 300				Prep Method:	E300P	
Tech:	MAB					% Moisture:		
Analyst:	MAB		Date Pre	p: 09.25.2020 15:	09	Basis:	Wet Weight	
Seq Number:	3138248							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	182	10.0	mg/kg	09.25.2020 15	:19	1

Analytical Method:TPH by SW801Tech:DTHAnalyst:DTHSeq Number:3138171	5 Mod	Date Prep	: 09.25.2020 10:30		Prep Method: SW % Moisture: Basis: Wo	/8015P et Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.1	50.1	mg/kg	09.25.2020 14:21	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.1	50.1	mg/kg	09.25.2020 14:21	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.1	50.1	mg/kg	09.25.2020 14:21	U	1
Total GRO-DRO	PHC628	<50.1	50.1	mg/kg	09.25.2020 14:21	U	1
Total TPH	PHC635	<50.1	50.1	mg/kg	09.25.2020 14:21	U	1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1-Chlorooctane	111-85-3	120	%	70-135	09.25.2020 14:21	
o-Terphenyl	84-15-1	117	%	70-135	09.25.2020 14:21	

.

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS01 Lab Sample Id: 673572-001	Matrix:	Soil	Date Received	d:09.24.2020 16:50
	Date Collecte	ed: 09.24.2020 15:20	Sample Depth	n: 1.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3138238	Date Prep:	09.25.2020 15:39	Prep Method: % Moisture: Basis:	SW5035A Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	09.26.2020 11:23	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	09.26.2020 11:23	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	09.26.2020 11:23	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	09.26.2020 11:23	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	09.26.2020 11:23	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	09.26.2020 11:23	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	09.26.2020 11:23	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	120	%	70-130	09.26.2020 11:23		
1,4-Difluorobenzene		540-36-3	106	%	70-130	09.26.2020 11:23		

Environment Testi Xenco

.

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id:	FS02		Matrix:	Soil		Date Received:09	.24.2020 16	50
Lab Sample Id: 673572-002			Date Col	lected: 09.24.2020 15:10		Sample Depth: 1.5 ft		
Analytical M	ethod: Chloride by EI	PA 300				Prep Method: E3	00P	
Tech:	MAB					% Moisture:		
Analyst:	MAB		Date Pre	p: 09.25.2020 15:09		Basis: W	et Weight	
Seq Number:	3138248							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	98.6	9.92	mg/kg	09.25.2020 15:36		1

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	SW8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 0	9.25.2020 10:30		Basis: V	Wet Weight	
Seq Number: 3138171								
Parameter	Cas Number	Result	RL		Units	Analysis Date	e Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.2	50.2		mg/kg	09.25.2020 14:4	2 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.2	50.2		mg/kg	09.25.2020 14:4	2 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.2	50.2		mg/kg	09.25.2020 14:4	2 U	1
Total GRO-DRO	PHC628	<50.2	50.2		mg/kg	09.25.2020 14:4	2 U	1
Total TPH	PHC635	<50.2	50.2		mg/kg	09.25.2020 14:4	2 U	1
Surrogate		Cas Number	% Recover	ry Units	Limits	Analysis Da	ate Flag	
1-Chlorooctane		111-85-3	122	%	70-135	09.25.2020 14	4:42	
o-Terphenyl		84-15-1	126	%	70-135	09.25.2020 14	1:42	

.

Environment Test Xenco

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS02 Lab Sample Id: 673572-002	Matrix: Soil Date Collected: 09.24.2020 15:10	Date Received:09.24.2020 16:50 Sample Depth: 1.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3138238	Date Prep: 09.25.2020 15:39	Prep Method:SW5035A% Moisture:Basis:Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	09.26.2020 11:46	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	09.26.2020 11:46	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	09.26.2020 11:46	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	09.26.2020 11:46	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	09.26.2020 11:46	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	09.26.2020 11:46	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	09.26.2020 11:46	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	104	%	70-130	09.26.2020 11:46		
4-Bromofluorobenzene		460-00-4	116	%	70-130	09.26.2020 11:46		

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS03 Lab Sample Id: 673572-003		Matrix: Soil Date Collected: 09.24.2020 15:00			Date Received:09.24.2020 16:50 Sample Depth: 1.5 ft			
Analytical Method:ChloridaTech:MABAnalyst:MABSeq Number:3138248	e by EPA 300	Date Prep	o: 09.25.2020 15:09		Prep Method: E300 % Moisture: Basis: Wet	0P Weight		
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	166	9.90	mg/kg	09.25.2020 15:41		1	
Analytical Method: TPH by	SW8015 Mod				Prep Method: SW8	3015P		

Thatytical Method. 1111 by 5 w 60	15 1000					riep method. E		
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09.2	25.2020 10:30)	Basis: V	Vet Weight	
Seq Number: 3138171								
Parameter	Cas Number	r Result	RL		Units	Analysis Date	e Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.3	50.3		mg/kg	09.25.2020 15:2	2 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.3	50.3		mg/kg	09.25.2020 15:2	2 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.3	50.3		mg/kg	09.25.2020 15:2	2 U	1
Total GRO-DRO	PHC628	<50.3	50.3		mg/kg	09.25.2020 15:2	2 U	1
Total TPH	PHC635	<50.3	50.3		mg/kg	09.25.2020 15:2	2 U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Da	nte Flag	
1-Chlorooctane		111-85-3	124	%	70-135	09.25.2020 15	5:22	
o-Terphenyl		84-15-1	122	%	70-135	09.25.2020 15	5:22	

Environment Tes Xenco

.

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS03 Lab Sample Id: 673572-003	Matrix: Soil Date Collected: 09.24.2020 15:00	Date Received:09.24.2020 16:50 Sample Depth: 1.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3138238	Date Prep: 09.25.2020 15:39	Prep Method: SW5035A % Moisture: Basis: Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.26.2020 12:08	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.26.2020 12:08	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.26.2020 12:08	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	09.26.2020 12:08	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.26.2020 12:08	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.26.2020 12:08	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.26.2020 12:08	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	120	%	70-130	09.26.2020 12:08		
1,4-Difluorobenzene		540-36-3	106	%	70-130	09.26.2020 12:08		

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id:FS04Lab Sample Id:673572-004		Matrix: Date Col	Soil lected: 09.24.2020) 14:50	Date Received Sample Depth:		6:50
Analytical Method: Chloride by EP. Tech: MAB	A 300				Prep Method: % Moisture:	E300P	
Analyst: MAB		Date Pre	p: 09.25.2020) 15:09	Basis:	Wet Weight	
Seq Number: 3138248							
Parameter	Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride	16887-00-6	546	9.94	mg/kg	09.25.2020 15	:47	1

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09	.25.2020 10:30		Basis: W	Vet Weight	
Seq Number: 3138171								
Parameter	Cas Number	e Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	09.25.2020 15:42	2 U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	09.25.2020 15:42	2 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	09.25.2020 15:42	2 U	1
Total GRO-DRO	PHC628	<49.8	49.8		mg/kg	09.25.2020 15:42	2 U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	09.25.2020 15:42	2 U	1
Surrogate		Cas Number	% Recover	y Units	Limits	Analysis Da	te Flag	
1-Chlorooctane		111-85-3	122	%	70-135	09.25.2020 15	:42	
o-Terphenyl		84-15-1	127	%	70-135	09.25.2020 15	:42	

Environment Tes Xenco

.

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id:FS04Lab Sample Id:673572-004	Matrix: Soil Date Collected: 09.24.2020 14:50	Date Received:09.24.2020 16:50 Sample Depth: 1.5 ft
Analytical Method: BTEX by EPA 8021B Tech: MAB		Prep Method: SW5035A % Moisture:
Analyst:MABSeq Number:3138238	Date Prep: 09.25.2020 15:39	Basis: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	09.26.2020 12:30	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	09.26.2020 12:30	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	09.26.2020 12:30	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	09.26.2020 12:30	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	09.26.2020 12:30	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	09.26.2020 12:30	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	09.26.2020 12:30	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	122	%	70-130	09.26.2020 12:30		
1,4-Difluorobenzene		540-36-3	104	%	70-130	09.26.2020 12:30		

•

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

FS05		Matrix:	Soil		Date Received:0	9.24.2020 16	:50	
673572-005		Date Coll	lected: 09.24.2020	0 14:40	Sample Depth: 1	Sample Depth: 1.0 ft		
hod: Chloride by EPA	300				Prep Method: E	300P		
MAB					% Moisture:			
MAB		Date Prep	p: 09.25.2020) 15:09	Basis: W	Vet Weight		
3138248								
	Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil	
	16887-00-6	223	10.0	mg/kg	09.25.2020 15:5	5	1	
ł	673572-005 hod: Chloride by EPA MAB MAB	673572-005 hod: Chloride by EPA 300 MAB MAB 3138248 Cas Number	673572-005 Date Col hod: Chloride by EPA 300 MAB MAB Date Prej 3138248 Cas Number Result	673572-005 Date Collected: 09.24.2020 hod: Chloride by EPA 300 MAB Date Prep: 09.25.2020 3138248 Cas Number Result RL	FloorDate673572-005Date Collected: 09.24.2020 14:40hod: Chloride by EPA 300Date Prep: 09.25.2020 15:09MABDate Prep: 09.25.2020 15:093138248Cas NumberResultRLUnits	673572-005 Date Collected: 09.24.2020 14:40 Sample Depth: 1 hod: Chloride by EPA 300 Prep Method: E MAB % Moisture: MAB Date Prep: 09.25.2020 15:09 Basis: W 3138248 Cas Number Result RL Units Analysis Date	673572-005 Date Collected: 09.24.2020 14:40 Sample Depth: 1.0 ft hod: Chloride by EPA 300 Prep Method: E300P MAB % Moisture: MAB Date Prep: 09.25.2020 15:09 Basis: Wet Weight 3138248 Cas Number Result Result RL Units Analysis Date	

Analytical Method: TPH by SW801	15 Mod					Prep Method: S'	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09	.25.2020 10:30		Basis: W	et Weight	
Seq Number: 3138171								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.3	50.3		mg/kg	09.25.2020 16:02	2 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.3	50.3		mg/kg	09.25.2020 16:02	2 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.3	50.3		mg/kg	09.25.2020 16:02	2 U	1
Total GRO-DRO	PHC628	<50.3	50.3		mg/kg	09.25.2020 16:02	2 U	1
Total TPH	PHC635	<50.3	50.3		mg/kg	09.25.2020 16:02	2 U	1
Surrogate		Cas Number	% Recover	y Units	Limits	Analysis Dat	te Flag	
1-Chlorooctane		111-85-3	118	%	70-135	09.25.2020 16:	02	
o-Terphenyl		84-15-1	122	%	70-135	09.25.2020 16:	02	

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS05 Lab Sample Id: 673572-005	Matrix: Soil Date Collected: 09.24.2020 14:40	Date Received:09.24.2020 16:50 Sample Depth: 1.0 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3138238	Date Prep: 09.25.2020 15:39	Prep Method: SW5035A % Moisture: Basis: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	09.26.2020 12:53	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	09.26.2020 12:53	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	09.26.2020 12:53	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	09.26.2020 12:53	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	09.26.2020 12:53	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	09.26.2020 12:53	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	09.26.2020 12:53	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	103	%	70-130	09.26.2020 12:53		
4-Bromofluorobenzene		460-00-4	115	%	70-130	09.26.2020 12:53		

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: Lab Sample I	FS06 d: 673572-006		Matrix: Date Col	Soil lected: 09.24.2020 1	4:30	Date Received: Sample Depth: 1		:50
Analytical Mo Tech:	ethod: Chloride by EPA MAB	. 300				Prep Method: I % Moisture:	E300P	
Analyst:	MAB		Date Pre	p: 09.25.2020 1	5:09	/	Wet Weight	
Seq Number:	3138248							
Parameter		Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride		16887-00-6	71.5	10.0	mg/kg	09.25.2020 16:1	19	1

9.25.2020 10:30	р :		
	Basis:	Wet Weight	t
Un	nits Analysis D	ate Flag	Dil
) mg	g/kg 09.25.2020 1	6:23 U	1
) mg	g/kg 09.25.2020 1	6:23 U	1
) mg	g/kg 09.25.2020 1	6:23 U	1
	g/kg 09.25.2020 1	6:23 U	1
) mg		())	1
۱	1118	88	mg/kg 09.25.2020 16:23 U

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1-Chlorooctane	111-85-3	111	%	70-135	09.25.2020 16:23	
o-Terphenyl	84-15-1	110	%	70-135	09.25.2020 16:23	

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS06	Matrix:	Soil	Date Receiv	ved:09.24.2020 16:50
Lab Sample Id: 673572-006	Date Collecte	ed: 09.24.2020 14:30	Sample Dep	pth: 1.0 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3138239	Date Prep:	09.25.2020 16:43	Prep Metho % Moisture Basis:	d: SW5035A :: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	09.26.2020 08:39	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	09.26.2020 08:39	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	09.26.2020 08:39	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	09.26.2020 08:39	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	09.26.2020 08:39	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	09.26.2020 08:39	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	09.26.2020 08:39	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	102	%	70-130	09.26.2020 08:39		
4-Bromofluorobenzene		460-00-4	85	%	70-130	09.26.2020 08:39		

o-Terphenyl

.

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS07		Matrix:	Soil		Date Received	1:09.24.2020 1	6:50
Lab Sample Id: 673572-007		Date Coll	ected: 09.24.2020 14:20		Sample Depth	: 0.5 ft	
Analytical Method: Chloride by EPA	300				Prep Method:	E300P	
Tech: MAB					% Moisture:		
Analyst: MAB		Date Prep	: 09.25.2020 15:09		Basis:	Wet Weight	
Seq Number: 3138248							
Parameter	Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride	16887-00-6	161	9.94	mg/kg	09.25.2020 16	5:24	1

Analytical Method: TPH by SW801	5 Mod					Prep Method: S	W8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date Pr	ep: 09.2	25.2020 10:30		Basis: W	et Weight	
Seq Number: 3138171								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.2	50.2		mg/kg	09.25.2020 16:43	3 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.2	50.2		mg/kg	09.25.2020 16:43	3 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.2	50.2		mg/kg	09.25.2020 16:43	3 U	1
Total GRO-DRO	PHC628	< 50.2	50.2		mg/kg	09.25.2020 16:43	3 U	1
Total TPH	PHC635	<50.2	50.2		mg/kg	09.25.2020 16:43	3 U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Da	te Flag	
1-Chlorooctane		111-85-3	116	%	70-135	09.25.2020 16	:43	

115

%

70-135

84-15-1

.

09.25.2020 16:43

.

Xenco

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS07 Lab Sample Id: 673572-007	Matrix:	Soil	Date Received	d:09.24.2020 16:50
	Date Collecte	ed: 09.24.2020 14:20	Sample Depth	n: 0.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3138297	Date Prep:	09.28.2020 10:07	Prep Method: % Moisture: Basis:	SW5035A Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	09.28.2020 18:39	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	09.28.2020 18:39	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	09.28.2020 18:39	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	09.28.2020 18:39	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	09.28.2020 18:39	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	09.28.2020 18:39	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	09.28.2020 18:39	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	117	%	70-130	09.28.2020 18:39		
1,4-Difluorobenzene		540-36-3	107	%	70-130	09.28.2020 18:39		

1-Chlorooctane

o-Terphenyl

.

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS08		Matrix:	Soil		Date Received	1:09.24.2	2020 16:	50
Lab Sample Id: 673572-008		Date Coll	ected: 09.24.2020 14:10)	Sample Depth	:0.5 ft		
Analytical Method: Chloride by EPA	300				Prep Method:	E300P		
Tech: MAB					% Moisture:			
Analyst: MAB		Date Prep	: 09.25.2020 15:09	1	Basis:	Wet W	eight	
Seq Number: 3138248								
Parameter	Cas Number	Result	RL	Units	Analysis D	ate 1	Flag	Dil
Chloride	16887-00-6	122	9.92	mg/kg	09.25.2020 1	6:30		1

Analytical Method: TPH by SW80	15 Mod					Prep Method: S	SW8015P	
Tech: DTH						% Moisture:		
Analyst: DTH		Date P	rep: 09	25.2020 10:30		Basis: V	Vet Weight	
Seq Number: 3138171								
Parameter	Cas Number	Result	RL		Units	Analysis Date	e Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.3	50.3		mg/kg	09.25.2020 17:0	03 U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.3	50.3		mg/kg	09.25.2020 17:0	03 U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.3	50.3		mg/kg	09.25.2020 17:0	03 U	1
Total GRO-DRO	PHC628	<50.3	50.3		mg/kg	09.25.2020 17:0	03 U	1
Total TPH	PHC635	<50.3	50.3		mg/kg	09.25.2020 17:0	03 U	1
Surrogate		Cas Number	% Recovery	Units	Limits	s Analysis Da	ate Flag	

118

119

111-85-3

84-15-1

.

09.25.2020 17:03

09.25.2020 17:03

70-135

70-135

%

%

.

Environment Test Xenco

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id:FS08Lab Sample Id:673572-008	Matrix: Soil Date Collected: 09.24.2020 14:	Date Received:09.24.2020 16:50 Sample Depth: 0.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3138297	Date Prep: 09.28.2020 10:	Prep Method: SW5035A % Moisture: 07 Basis: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	09.28.2020 19:02	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	09.28.2020 19:02	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	09.28.2020 19:02	U	1
m,p-Xylenes	179601-23-1	< 0.00404	0.00404		mg/kg	09.28.2020 19:02	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	09.28.2020 19:02	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	09.28.2020 19:02	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	09.28.2020 19:02	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	111	%	70-130	09.28.2020 19:02		
1,4-Difluorobenzene		540-36-3	99	%	70-130	09.28.2020 19:02		

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id:	FS09		Matrix:	Soil		Date Received	1:09.24.2020	0 16:50
Lab Sample Id: 673572-009			Date Collected: 09.24.2020 14:00)	Sample Depth: 1.5 ft		
Analytical M	ethod: Chloride by EPA	300				Prep Method:	E300P	
Tech:	MAB					% Moisture:		
Analyst:	MAB		Date Prep	o: 09.25.2020 15:09)	Basis:	Wet Weigl	ht
Seq Number:	3138248							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	g Dil
Chloride		16887-00-6	25.0	10.0	mg/kg	09.25.2020 10	5:36	1

Analytical Method: TPH by SW80				Prep Method: SV	V8015P		
Tech: DTH				% Moisture:			
Analyst: DTH		Date Prep:	: 09.25.2020 10:30		Basis: We	Wet Weight	
Seq Number: 3138171							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.1	50.1	mg/kg	09.25.2020 17:23	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.1	50.1	mg/kg	09.25.2020 17:23	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.1	50.1	mg/kg	09.25.2020 17:23	U	1
Total GRO-DRO	PHC628	<50.1	50.1	mg/kg	09.25.2020 17:23	U	1
Total TPH	PHC635	<50.1	50.1	mg/kg	09.25.2020 17:23	U	1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1-Chlorooctane	111-85-3	120	%	70-135	09.25.2020 17:23	
o-Terphenyl	84-15-1	119	%	70-135	09.25.2020 17:23	

Certificate of Analytical Results 673572

LT Environmental, Inc., Arvada, CO

DKS Transport Truck Rollover

Sample Id: FS09 Lab Sample Id: 673572-009	Matrix: Soil Date Collected: 09.24.2020 14:00	Date Received:09.24.2020 16:50 Sample Depth: 1.5 ft
Analytical Method:BTEX by EPA 8021BTech:MABAnalyst:MABSeq Number:3138297	Date Prep: 09.28.2020 10:07	Prep Method: SW5035A % Moisture: Basis: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	09.28.2020 19:24	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	09.28.2020 19:24	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	09.28.2020 19:24	U	1
m,p-Xylenes	179601-23-1	< 0.00404	0.00404		mg/kg	09.28.2020 19:24	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	09.28.2020 19:24	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	09.28.2020 19:24	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	09.28.2020 19:24	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	104	%	70-130	09.28.2020 19:24		
4-Bromofluorobenzene		460-00-4	125	%	70-130	09.28.2020 19:24		

Xenco

Environment Testing

🔅 eurofins

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected			
RL Reporting Limit				
MDL Method Detection Limit	SDL Sample De	tection Limit	LOD Limit of Detection	
PQL Practical Quantitation Limit	MQL Method Qu	antitation Limit	LOQ Limit of Quantitation	n
DL Method Detection Limit				
NC Non-Calculable				
SMP Client Sample		BLK	Method Blank	
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD Method Duplicate/Samp	ple Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate
+ NELAC certification not offered	l for this compound.			

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

eurofins Environment Testing Xenco

QC Summary 673572

LT Environmental, Inc.

DKS Transport Truck Rollover

Analytical Method: Seq Number: MB Sample Id:	Chloride b 3138248 7712181-1-	-)0		Matrix: nple Id:	Solid 7712181-1	I-BKS			ep Metho Date Pro D Sample	ep: 09.2	0P 25.2020 2181-1-BSD	
Parameter		MB	Spike Amount	LCS Becult		LCSD		Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		Result <10.0	Amount 250	Result 255	%Rec 102	Result 254	%Rec 102	90-110	0	20	mg/kg	09.25.2020 15:08	
			200	200	102	201	102	<i>y</i> 0 110	Ū				
Analytical Method:	Chloride b	y EPA 30)0		M	C - 11			Pr	ep Metho			
Seq Number: Parent Sample Id:	5138248 673572-001				Matrix:	673572-00)1 S		MS	Date Pro D Sample	-	25.2020 572-001 SD	
Parameter	013312 001	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		182	201	393	105	393	105	90-110	0	20	mg/kg	09.25.2020 15:24	
Analytical Method: Seq Number: Parent Sample Id:	Chloride b 3138248 673636-002	2		MS Sar	•	673636-00			MS	-	ep: 09.2 e Id: 673	25.2020 636-002 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride		<9.98	200	207	104	208	104	90-110	0	20	mg/kg	09.25.2020 16:52	
Analytical Method: Seq Number: MB Sample Id:	TPH by SV 3138171 7712106-1-		od		Matrix: nple Id:	Solid 7712106-1	I-BKS			ep Metho Date Pro D Sample	ep: 09.2	8015P 25.2020 2106-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<50.0	1000				/once			Linne			
Diesel Range Organics			1000	891	89	853	85	70-135	4	35	mg/kg	09.25.2020 10:19	
	(DRO)	<50.0	1000	891 784	89 78	853 763	85 76	70-135 70-135	4 3	35 35	mg/kg mg/kg	09.25.2020 10:19 09.25.2020 10:19	
Surrogate	(DRO)			784 L				70-135) LCS	3 D Li				
1-Chlorooctane	(DRO)	<50.0 MB %Rec 87	1000 MB	784 L % 1	78 CS Rec 26	763 LCS	76 LCSI %Re 125	70-135 D LCS c Flag	3 D Li g 70	35 mits -135	mg/kg Units %	09.25.2020 10:19 Analysis Date 09.25.2020 10:19	
0	(DRO)	<50.0 MB %Rec	1000 MB	784 L % 1	78 CS Rec	763 LCS	76 LCSI %Ree	70-135 D LCS c Flag	3 D Li g 70	35 mits	mg/kg Units	09.25.2020 10:19 Analysis Date	
1-Chlorooctane	х <i>г</i>	<50.0 MB %Rec 87 92	1000 MB Flag	784 L % 1 1	78 CS Rec 26 25 Matrix:	763 LCS Flag	76 LCSI %Re 125 126	70-135 D LCS c Flag	3 D Li g 70 70	35 mits -135	mg/kg Units % % od: SW3 ep: 09.2	09.25.2020 10:19 Analysis Date 09.25.2020 10:19 09.25.2020 10:19 8015P 25.2020	
1-Chlorooctane o-Terphenyl Analytical Method:	TPH by SV	<50.0 MB %Rec 87 92	1000 MB Flag	784 L % 1 1	78 CS Rec 26 25 Matrix:	763 LCS Flag Solid	76 LCSI %Re 125 126	70-135 D LCS c Flag	3 D Li g 70 70	35 mits -135 -135	mg/kg Units % % od: SW3	09.25.2020 10:19 Analysis Date 09.25.2020 10:19 09.25.2020 10:19 8015P	Flag
1-Chlorooctane o-Terphenyl Analytical Method: Seq Number:	TPH by SV 3138171	<50.0 MB %Rec 87 92	1000 MB Flag	784 L % 1 1 MB Sar MB	78 CS Rec 26 25 Matrix:	763 LCS Flag Solid	76 LCSI %Re 125 126	70-135 D LCS c Flag	3 D Li g 70 70	35 mits -135 -135	mg/kg Units % % od: SW3 ep: 09.2	09.25.2020 10:19 Analysis Date 09.25.2020 10:19 09.25.2020 10:19 8015P 25.2020 Analysis	Flag

MS/MSD Percent Recovery

Relative Percent Difference LCS/LCSD Recovery Log Difference

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 26 of 31

eurofins Environment Testing Xenco

QC Summary 673572

LT Environmental, Inc.

DKS Transport Truck Rollover

Analytical Method:	TPH by SW	V8015 M	od						Pı	ep Metho	od: SW	8015P	
Seq Number:	3138171			1	Matrix:	Soil				Date Pro	ep: 09.2	25.2020	
Parent Sample Id:	673561-001			MS San	nple Id:	673561-00	01 S		MS	D Sample	e Id: 673	561-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ns (GRO)	<49.8	996	915	92	910	91	70-135	1	35	mg/kg	09.25.2020 11:19	
Diesel Range Organics (DRO)	<49.8	996	810	81	810	81	70-135	0	35	mg/kg	09.25.2020 11:19	
Surrogate					IS Rec	MS Flag	MSD %Re			mits	Units	Analysis Date	
1-Chlorooctane				1.	35		131		70	-135	%	09.25.2020 11:19	
o-Terphenyl				13	34		130		70	-135	%	09.25.2020 11:19	

Analytical Method:	BTEX by EPA 8021	B						P	rep Meth	od: SW	5035A	
Seq Number:	3138238			Matrix:	Solid				Date Pr	ep: 09.2	25.2020	
MB Sample Id:	7712176-1-BLK		LCS San	nple Id:	7712176-	1-BKS		LCS	D Sample	e Id: 771	2176-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0987	99	0.103	103	70-130	4	35	mg/kg	09.26.2020 02:44	
Toluene	< 0.00200	0.100	0.0947	95	0.0973	97	70-130	3	35	mg/kg	09.26.2020 02:44	
Ethylbenzene	< 0.00200	0.100	0.0976	98	0.101	101	71-129	3	35	mg/kg	09.26.2020 02:44	
m,p-Xylenes	< 0.00400	0.200	0.197	99	0.201	101	70-135	2	35	mg/kg	09.26.2020 02:44	
o-Xylene	< 0.00200	0.100	0.0986	99	0.0988	99	71-133	0	35	mg/kg	09.26.2020 02:44	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	102		ç	99		102		70	-130	%	09.26.2020 02:44	
4-Bromofluorobenzene	115		1	09		109		70	-130	%	09.26.2020 02:44	

Analytical Method:	BTEX by EPA 8021	B						P	rep Metho	od: SW	5035A	
Seq Number:	3138239			Matrix:	Solid				Date Pr	ep: 09.2	25.2020	
MB Sample Id:	7712177-1-BLK		LCS San	nple Id:	7712177-	I-BKS		LCS	D Sample	e Id: 771	2177-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.104	104	0.115	115	70-130	10	35	mg/kg	09.25.2020 22:35	
Toluene	< 0.00200	0.100	0.100	100	0.110	110	70-130	10	35	mg/kg	09.25.2020 22:35	
Ethylbenzene	< 0.00200	0.100	0.0933	93	0.102	102	71-129	9	35	mg/kg	09.25.2020 22:35	
m,p-Xylenes	< 0.00400	0.200	0.188	94	0.205	103	70-135	9	35	mg/kg	09.25.2020 22:35	
o-Xylene	< 0.00200	0.100	0.0933	93	0.101	101	71-133	8	35	mg/kg	09.25.2020 22:35	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	99		ç	99		98		70	-130	%	09.25.2020 22:35	
4-Bromofluorobenzene	88		ç	90		84		70	-130	%	09.25.2020 22:35	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 27 of 31

Xenco

Environment Testing

🔅 eurofins

QC Summary 673572

LT Environmental, Inc.

DKS Transport Truck Rollover

Analytical Method:	BTEX by EPA 8021	IB						P	rep Meth	od: SW	5035A	
Seq Number:	3138297			Matrix:	Solid				Date Pr	ep: 09.2	28.2020	
MB Sample Id:	7712178-1-BLK		LCS San	nple Id:	7712178-	I-BKS		LCS	D Sample	e Id: 771	2178-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0905	91	0.0972	97	70-130	7	35	mg/kg	09.28.2020 10:23	
Toluene	< 0.00200	0.100	0.0854	85	0.0900	90	70-130	5	35	mg/kg	09.28.2020 10:23	
Ethylbenzene	< 0.00200	0.100	0.0860	86	0.0920	92	71-129	7	35	mg/kg	09.28.2020 10:23	
m,p-Xylenes	< 0.00400	0.200	0.174	87	0.185	93	70-135	6	35	mg/kg	09.28.2020 10:23	
o-Xylene	< 0.00200	0.100	0.0883	88	0.0959	96	71-133	8	35	mg/kg	09.28.2020 10:23	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSD %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene	101		ç	98		102		70	-130	%	09.28.2020 10:23	
4-Bromofluorobenzene	115		1	06		112		70	-130	%	09.28.2020 10:23	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 8021 3138238 673428-008	B] MS San	Matrix: nple Id:)8 S			rep Metho Date Pro D Sample	ep: 09.2	5035A 25.2020 428-008 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00201	0.100	0.105	105	0.0983	98	70-130	7	35	mg/kg	09.26.2020 03:29	
Toluene	< 0.00201	0.100	0.0978	98	0.0878	88	70-130	11	35	mg/kg	09.26.2020 03:29	
Ethylbenzene	< 0.00201	0.100	0.105	105	0.0900	90	71-129	15	35	mg/kg	09.26.2020 03:29	
m,p-Xylenes	< 0.00402	0.201	0.210	104	0.180	90	70-135	15	35	mg/kg	09.26.2020 03:29	
o-Xylene	< 0.00201	0.100	0.104	104	0.0904	90	71-133	14	35	mg/kg	09.26.2020 03:29	
Surrogate				IS Rec	MS Flag	MSD %Ree			imits	Units	Analysis Date	
1,4-Difluorobenzene			1	01		96		70	-130	%	09.26.2020 03:29	
4-Bromofluorobenzene			1	14		111		70	-130	%	09.26.2020 03:29	

Analytical Method:	BTEX by EPA 8021	lB						P	rep Metho	od: SW	5035A	
Seq Number:	3138239]	Matrix:	Soil				Date Pr	ep: 09.2	25.2020	
Parent Sample Id:	673399-027		MS San	nple Id:	673399-02	27 S		MS	D Sample	e Id: 673	399-027 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.128	128	0.127	127	70-130	1	35	mg/kg	09.25.2020 23:19	
Toluene	< 0.00200	0.100	0.124	124	0.122	122	70-130	2	35	mg/kg	09.25.2020 23:19	
Ethylbenzene	< 0.00200	0.100	0.115	115	0.113	113	71-129	2	35	mg/kg	09.25.2020 23:19	
m,p-Xylenes	< 0.00400	0.200	0.232	116	0.228	114	70-135	2	35	mg/kg	09.25.2020 23:19	
o-Xylene	< 0.00200	0.100	0.113	113	0.112	112	71-133	1	35	mg/kg	09.25.2020 23:19	
Surrogate				IS Rec	MS Flag	MSD %Ree			imits	Units	Analysis Date	
1,4-Difluorobenzene			9	9		99		70	-130	%	09.25.2020 23:19	
4-Bromofluorobenzene			8	89		95		70	-130	%	09.25.2020 23:19	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 28 of 31

Xenco

🔅 eurofins

QC Summary 673572

LT Environmental, Inc.

DKS Transport Truck Rollover

Environment Testing

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3138297 673636-001	lB		Matrix: nple Id:	Soil 673636-00)1 S			rep Metho Date Pr D Sample	ep: 09.2	5035A 28.2020 636-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0965	97	0.0930	93	70-130	4	35	mg/kg	09.28.2020 12:27	
Toluene	< 0.00200	0.100	0.0912	91	0.0900	90	70-130	1	35	mg/kg	09.28.2020 12:27	
Ethylbenzene	< 0.00200	0.100	0.0987	99	0.0950	95	71-129	4	35	mg/kg	09.28.2020 12:27	
m,p-Xylenes	< 0.00400	0.200	0.202	101	0.192	96	70-135	5	35	mg/kg	09.28.2020 12:27	
o-Xylene	< 0.00200	0.100	0.0985	99	0.0960	96	71-133	3	35	mg/kg	09.28.2020 12:27	
Surrogate				IS Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene			1	03		98		70	-130	%	09.28.2020 12:27	
4-Bromofluorobenzene			1	13		106		70	-130	%	09.28.2020 12:27	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

NUME International file International file <th>Chain of Custoy Monto fue custop Monto fue custop</th> <th></th> <th></th> <th>6</th> <th>-</th> <th></th> <th></th> <th></th> <th>ved by</th>	Chain of Custoy Monto fue custop			6	-				ved by	
Non- Note NT (201) Advance Note NT (201	Chain of Custoy Work Order O Project Manage: Image: TX (427) 24400 Email: TX (427) 24400		\square	16:50 2	924	th		6	OCD.	
NOT OF CONSIDER NOT OF CONSIDER Work Order Not Offer Not Order Not	Chain of Custory Nork Order Of Custory Nork Nork Of Custory N	Signature)	Relinquished by: (Signature) Rec	Date/Time	-	ed by: (Signature)	Receiv	signature)		
Non- Instant (C) Sundari <	Chain of Custody Work Order N: Project Variage: Non Nor: Project Variage:	and conditions /ond the control legotiated.	iates and subcontractors. It assigns standard terms ar the client if such losses are due to circumstances beyo zed. These terms will be enforced unless previously neg	ompany to xenco, its affili or expenses incurred by i d to Xenco, but not analyz	sibility for any losses ach sample submitte	I not assume any response t and a charge of \$5 for e	of samples and sha plied to each proje	ble only for the cost of \$75.00 will be ap	Continue to the second	
Nork Order N Nork Order N<	Chain of Custody Work Order O Nork Order O Nork Order O Nork Order O Nork Order O Nork Order O Nork Order O Nork Order O Nork Order O Nork Order O Nork Order O Nork Order O Nork Order O Project Amage: O Anthair Nork Order O Order Order O Nork Order O Nork Order O Nork Order O Nork Order O Nork Order O Nork Order O Nork Order O O <th col<="" td=""><td>3 SiO2 Na Sr TI Sn U 1631/245.1/7470</td><td>d ca Cr Co Cu Fe Pb Mg Mn Mo N Cr Co Cu Pb Mn Mo Ni Se Ag Ti U</td><td>Sb As Ba Be Cd</td><td>010: 8RCRA</td><td>TCLP / SPLP 6</td><td>be analyzed</td><td>and Metal(s) to</td><td>Circle Method(s)</td></th>	<td>3 SiO2 Na Sr TI Sn U 1631/245.1/7470</td> <td>d ca Cr Co Cu Fe Pb Mg Mn Mo N Cr Co Cu Pb Mn Mo Ni Se Ag Ti U</td> <td>Sb As Ba Be Cd</td> <td>010: 8RCRA</td> <td>TCLP / SPLP 6</td> <td>be analyzed</td> <td>and Metal(s) to</td> <td>Circle Method(s)</td>	3 SiO2 Na Sr TI Sn U 1631/245.1/7470	d ca Cr Co Cu Fe Pb Mg Mn Mo N Cr Co Cu Pb Mn Mo Ni Se Ag Ti U	Sb As Ba Be Cd	010: 8RCRA	TCLP / SPLP 6	be analyzed	and Metal(s) to	Circle Method(s)
Image: Image:<	Chain of Custory Work Order W Chain of Custory Work Order W Mage: Tenvionnental. Inc., Perman office Billio (referee) Work Order Cistory Wor				Þ		20:		Total	
Nonkor TV (81) 20-200 NONKO Colspan="2"Nonko	Chain of Custoy Work Order Of Custop Work Order Of Cu		and the						24	
Instant IX (24) 204200 Data Number IX (24) 204200 Data Number IX (24) 802400 Saveton	Chain of Custoy Work Order Of Custop Work Order Of Custop Work Order Of Custop Populat Name Work Order Of Custop Work Order Of Custop Work Order Of Custop Custop Same Dia Custop Same Dia Custop Work Order Of Custop Work Order Of Custop Sample Custop Same Dia Custop Same Dia Custop Sample Custop Same Dia Custop			K	e	1			1	
Number Instant IX (24) 204000 Data Number IX (24) 204000 Data Number IX (24) 204000 Sava functor IX (24) 204000 Sava functor IX (24) 20400 Sava functor IX (24) 204	Chain of Custoy Work Order Ministry (281) 240-4200 Balles TX (24) 922-000 Star Antones TX (24) 922-000 Star Antone Star Antones TX (24) Pantone Star Antone Star Antone Star Antones TX				5				Econ B	
Image: Date Final Company Name: Final Company Na	Chain of Custoy Work Order M Chain of Custoy Work Order M None: Dam Mir Work Order M Comeany Name: Interview mental, Inc, Permian office Comeany Name: Moder, X (28) 24-400 Dates XX (24) 920-2000 Stan Antenen, XX (21) 930-2000 Work Order O Comeany Name: Interview Mitter X (28) 70-4440; Elsex 2550 Proview Mitter X (28) 70-4440; Elsex 2550 Proview Mitter X (28) 70-4440; Elsex 2550 Proview Mitter State 2550 Proview Mitter				5		5		102-	
Image: Daries Frank Company Name: Frank Company Name: Frank Company Name: Frank Company Name:	Chain of Custody Notion of Custody <th col<="" td=""><td></td><td></td><td></td><td>01</td><td></td><td>5</td><td></td><td>1506</td></th>	<td></td> <td></td> <td></td> <td>01</td> <td></td> <td>5</td> <td></td> <td>1506</td>				01		5		1506
Image: Dar. Noir Molecon TX (281) 240-4200 Dales, TX (214) 202-300 Samuelic TX (2010 50-331 Molecon TX (281) 240-4200 Dales, TX (214) 202-300 Samuelic TX (2010 50-331 Molecon TX (281) 240-4200 Dales, TX (214) 202-300 Samuelic TX (2010 50-331 Molecon TX (281) 240-4200 Dales, TX (214) 202-300 Samuelic TX (2010 50-331 Molecon TX (281) 240-4200 Dales, TX (214) 202-300 Samuelic TX (2010 50-331 Molecon TX (2017) 410-2000 Samuelic TX (2010 50-331 Molecon TX (2017) 410-2000 Samuelic TX (2017) 410-2000 Samuelic TX (2017) 410-2000 Molecon TX (2017) 410-	Chain of Custody Work Order N Project Manage: Dan Moir Work Order N Company Name: Interview memory Work Order C Work Order C Chystee I Ton Notifie Company Name: Interview Interview Interview Work Order C Chystee I Ton Notifie Notifie Company Name: Notifie Notifie Notifie Notifie Notifie Notifie Notifie Work Order C Origination office Company Name: Notifie Notifie Notifie Notifie Notifie Notifie Notifie Notifie Notifie Notifie Notifie Notifie Notifie Notin N <td></td> <td></td> <td></td> <td>2'</td> <td></td> <td>5</td> <td></td> <td>CODI</td>				2'		5		CODI	
Noncentration Terminal Inc. Perminan office Company Name Terminan office Company Name Name State of Projecting State of Projecting State of Projecting S	Chain of Custody Work Order N Chain of Custody Work Order N Project Manage: In Moir Work Order N Work Order N Company Name: It Environmental, Inc., Permian office Company Name: Moint Work Order C Company Name: It Environmental, Inc., Permian office Company Name: Moint Work Order C Company Name: It Environmental, Inc., Permian office Company Name: Moint office Company Name: Moint office Company Name: Colspan="2">Same of Project: Tope Invo Same of Project: Tope: No Samplet Loutori				2	1.	1 - 1		Fron	
Number: Induing: Transport Fundamentation Transport Work Order Numer: Numer: Work Order Numer: Work Order Numer: Numer: Numer: Numer: Work Order Numer:	Chain of Custody Work Order N Name: Interviewents Work Order N Project Manage: Interviewents Work Order N Work Order N Company Name: Interviewents Work Order C Work Order C Company Name: Interviewents Work Order C Work Order C Company Name: Interviewents Work Order C Work Order C Company Name: Interviewents Work Order C Company Name: Interviewents Work Order C Work Order C Mathematic Interviewents Work Order C Work Order C Company Name: Total Company Name: Work Order C Work Order C Company Name: Total Containers Work Order C Total Containers Work Order C Contr				51		1		Fort	
Moliand TX (281) 240-4200 Data TX (271) 422-701-4240 Delta TX (271) 592-2000 Sam Anton, TX (210) 593-334 Work Order N Project Manager: Dan Moir Hobbs MM (375-382-356) Fnoenix, X (240) EL Paso, TX (958) 594-30 Sam Anton, TX (100) 593-334 Work Order O Company Name: LT Environmental, Inc., Permian office Company Name: Bill for (if affreen) Company Name: Frage SA43 Work Order O City, State ZIP: Midland, TX 77005 City, State ZIP: Moldand, TX (251) 502-01 Work Order O State of Project: No State of Project: No State of Project: No No State of Project: No No State of Project: No	Chain of Custody Work Order Name Project Manager: Dan Moir Work Order Name Work Order Order Company Name L Tenvironmental, Inc., Permian office company Name Company Name Company Name Company Name Work Order Order Work Order Company Name Work Order Company Name Company Name Company Name Company Name Work Order Company Name Company Name Company Name Work Order Company Name Company Name Company Name Company Name Company Name Company Name Company Name Company Name Company Name Company Name Company Name Company Name Company Name Company Name <th colspa<="" td=""><td></td><td></td><td></td><td>5'</td><td></td><td></td><td></td><td>R</td></th>	<td></td> <td></td> <td></td> <td>5'</td> <td></td> <td></td> <td></td> <td>R</td>				5'				R
View Normality Hussion, TX (28) 240-4200 Datas, TX (24) 292-300 San Artenon, TX (20) 593-331 Work Order N Project Manage: Dan Moir Hubbs.MM (375-392-764-50) Florenix, AZ (480-385-0900) Attanta, GA (770-44-8800) Tampa F, 8(3-820-2000) Montan, TX (26) 593-331 Project Manage: Dan Moir Ell to: (r athseen) Work Order C Company Name: L Tenvironmental, Inc., Permian office Company Name: Moland, TX (95) 596-5441, Usobox, TX (96) 593-342 Project Name: L Tenvironmental, Inc., Permian office Company Name: Address. Program: USTPST [PRP]Brown Project Name: I C Trevsfor-H Trev Rultin: V (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Chain of Custody Work Order N Project Manager: Dan Moir Work Order N Work Order N Project Manager: Dan Moir Work Order N Work Order N Project Manager: Dan Moir Work Order C Work Order C Project Manager: Dan Moir Work Order C Work Order C Project Manager: Dan Moir Work Order C Cly, state ZIP: Midland, TX 79705 Cly, state ZIP: Work Order C Project Name: Droit Tanspert Trum Around Tur Manager: Oly Work Order C Sample clustody Seats: No. Work Order C On Winher: Cluy, state ZIP: Cluy, state ZIP: No. Work Order C Project Name: Cluy, state ZIP: No. Work Order C Project Name: Sample: Cluy Name: Cluy, state				1 5.	1520			Fran	
Normanical Inc. Periodic Manage: Dan Moir Houston, TX (28) 240-420 Dallas, TX (21) 920.200 Sample Company Name Inc. Periodic Manage Dan Moir Work Order N Company Name I.T. Environmental, Inc., Permian office Company Name I.T. Environmental, Inc., Permian office Company Name Inc. Final Science Work Order C City, Sale ZIP: Midland, TX (27) 236-3849 E. Paso, TX (21) 920.200 Multocit, X (28) 92.200 Multocit, X (28) 92.20	Chain of Custody Work Order N Project Manage: Dan Moir Work Order N Work Order N Project Manage: Dan Moir Work Order N Work Order N Project Manage: Dan Moir Work Order N Work Order N Project Manage: Dan Moir Work Order C Work Order C Cly, State ZIP: Midland, TX (9705 Cly, State ZIP: Mork Order C Work Order C Project Name: Address: Cly, State ZIP: Mork Order C Work Order C Project Name: Address: True More Turn Around Work Order C Project Name: Do In True Torue Norder N Work Order N Sample Cound True Torue Norder N AnALYSIS REOUEST Thermometer ID AnALYSIS REOUEST Thermometer ID ADA	Sample Comments		вт		Sampled	-		feat	
Containing Control Chail of Control Containing Control Work Order N Project Manager: Dan Moir Bill to: (r/ affireen) Bill to: (r/ affireen) Work Order N Company Name: LT Environmental, Inc., Permian office Company Name: Company Name: Tenvironmental, Inc., Permian office Company Name: Miland, TX (32) 204-200 Allants, AZ (480-356-000) Allants, GA (770-449-8800) Tampa FL (81-860-2000) Work Order C Address: 3300 North A Street Address: City, State ZIP: Program: UST/PSTPRP Program: UST/PSTPRPBrown Project Name: DKS_Transpert, Track_Ra/Low Routine Nork Order C Program: UST/PSTPRPBrown State of Project: Project Number: 1/4/3 b. 0 ori Rush: Nork Net tos: Ves. No Not tos: No = 0 allas: 300 Number: Spencer Lo Due Date: Nork Net tos: No = 0 - 2 No = 0	Chain of Custody Work Order M Normanna Normanna Work Order M Project Manage: Dan Moir Hobbs NM (75-392-7560) Nume: Work Order O Company Name: IT Environmental, Inc., Permian office Address: Sample: X (210) 509-334 Work Order C Ciry, State ZIP: Midland, TX (2705 Ciry, State ZIP: Midland, TX 79705 Ciry, State ZIP: Work Order C Yole: Name: XE Trenstort Tume Isolog/Itemv.com Mort Truck Redress: Address: Topiert Name: NALYSIS REQUEST Work Order C Project Name: ISSpencer Lo Tum Polet: From Spencer Lo Multicity Ciry, State ZIP: AMALYSIS REQUEST Work Order C Sample: Name: Spencer Lo Tum Polet: From Spencer Lo Dole Date: Sample: State of Project: Reculin Correction Factor - O, -Z Addresset	lab, if received by 4:30pm		EX (E		Time			Sample Ident	
Work Order No: Work Order No: Work Order No: Project Manager: Dan Moir Bill 0: (# diffuent) Bill 0: (# dif	Chain of Custody Work Order No: Chain of Custody Notion of Custody Work Order No: Chain of Custody Notion of Custody Work Order No: Chain of Custody Midland TX (281) 240-4200 Balls, TX (214) 902-0300 San Antenio, TX (210) 593-334 Work Order No: Chain of Custody Project Manager: Dan Moir Invironmental, Inc., Permian office Bill to: (r if Memon) Bill to: (r if Memon) Work Order Comments Page Address: 3300 North A Street Address: Address: Work Order Comments Program: USTPST TPR Brownfields RC City, State ZIP: Midland, TX 19705 City, State ZIP: Address: North Order Comments Program: USTPST TPR Brownfields RC Project Name: D/S Transport Trun Around Trun Around Trun Around State of Project: Reporting: Level III State of Project: Reporting: Level III State of Project: No DPT Other Sampler's Name: Spencer Lo Due Date: No Work Order No K Order No K Order Sampler's Name: Ves No Work Order Other	TAT starts the day received by		PA (9 r of	Total Containers:) NIA	Yes	Sample Custody Seal	
Work Order No: Muland, TX (281) 20-0200 Bill TV (214) 920-0200 Bill TV (216) 920-0200 Bill TV	Chain of Custody Work Order No: Chain of Custody Mousen, TX (281) 240-4200 Dallas, TX (214) 980-3030 San Antonio, TX (210) 590-334 Work Order No: Carpage Project Manager: Dan Moir Intervironmental, Inc., Permian office Company Name: IT Environmental, Inc., Permian office Company Name: Bill to: (11 different) Bill to: (280-355-0400) Nama, EL (91-320-2000) Work Order Comments Address: 3300 North A Street Address: Bill to: (280-355-0400) Atlanta, GA (770-44-9800) Tampa, FL (91-320-2000) Work Order Comments Page Project Manager: 4320 26-3849 Email: slo@lenv.com, dmoir@lenv.com, dmoir@lenv.com			0=80	2	Correction Factor: -	NA	Yes	Cooler Custody Seals	
Molecularity Fundamental (170, 1983) Fundamental (170, 1983) Work Order No: Image: Project Manager: Dan Moir Intervironmental, Inc., Permian office Company Name: LT Environmental, Inc., Permian office Company Name: LT Environmental, Inc., Permian office Company Name: Dan Moir Work Order Commental, Company Name: Work Order Commental, Company Name: Unit Not (170, 490, 350, 4900) Number, V(219) 596, 343 Work Order Commental, Company Name: Work Order Commental, Commental, Company Name: Vorder Order Commental, Commental, Company Name: Work Order Commental, Commental, Company Name: Vorder Order Commental, Commental, Company Name: Program: USTPST PR Brownfields Project: Program: USTPST PR Brownfields Project: Program: USTPST PR Brownfields Project: Project NoaPT Other NoaPT Other NoaPT Other NoaPT Other No. 20. Number: 104/3 b D oci Reporting: Level II Environmental, Company Name: NoaPT Work Order Commental, Company Name: NoaPT	Chain of Custody Work Order No: Chain of Custody Houston,TX (281) 240-4200 Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-334 Work Order No: Chain of Custody Moland,TX (210) 509-334 Project Manager: Dan Moir Into: Notifice Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-334 Work Order No: Chain of Custody Project Manager: Dan Moir Into: Notifice Dallas,TX (214) 902-0300 San Antonio,TX (210) 509-334 Work Order Commental, Inc. Permian office Dallas,TX (214) 902-0300 San Antonio,TX (808) 794-1285 Address: 3300 North A Street Address: Moland, TX 79705 Work Order Comments Phone: 1/232-236-3849 Enall iso@lterv.com. dmoir@lterv.com Project: Reporting:Level II Project: Project Name: 1/4/32-050-2001 Enall iso@lterv.com. dmoir@lterv.com Project: Reporting:Level II Project: Project Name: 1/4/32-0.001 Routine No No House No Korder Comments 20. Number: 1/24/32-0.001 Spencer Lo Due Date: No Korder No Korder SAMPLE RECEIPT Temponder ID Die Date: Thermoneter ID Thermoneter ID Norkorkor				ntai	TNMOOT	No		Received Intact:	
More Current of the second	Chain of Custody Work Order No:)		Thermometer ID	A	E	Temperature (°C):	
Work Order No: Image: Company Name: Invironmental, Inc., Permian office Bill to: (if different) Invironmental, Inc., Permian office Company Name: IT Environmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian office Company Name: It is upper invironmental, Inc., Permian	Chain of Custody Work Order No:				No	Wet Ice:	-		SAMPLE RECE	
Chain of Custory Work Order No: (14) Project Manager: Dan Moir Hobs.NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlans,TX (214) 902-0300 San Antonio,TX (210) 509-334 Work Order No: (14) Project Manager: Dan Moir Bill to: (170-449-800) Tampa,FL (813-620-200) Work Order Commental, 100, 100, 100, 100, 100, 100, 100, 10	Chain of Custody Work Order No: (J32) Project Manager: Dan Moir Muland; TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-334 Work Order No: (J32) Muland; TX (210) 509-334 Project Manager: Dan Moir IT Environmental, Inc., Permian office Company Name: IT Environmental, Inc., Permian office Company Name: Work Order Comments Page Address: 3300 North A Street Address: Address: Work Order Comments Program: UST/PST PRP PrownK Order Comments Program: UST/PST PRP Brownfields [Rc City, State ZIP: Muland; TX 79705 Email: slo@itenv.com; dmoir@itenv.com City, State ZIP: Work Order Comments Project: Project Name: DKS Transport Email: slo@itenv.com; dmoir@itenv.com Project: Reporting:Level III State of Project: Reporting:Level III Other Project Number: I 043 5: D Ori Routine \grace AnaLysis REQUEST Work Order Work Order 20. Number: I 043 5: D Ori Rush: Rush: Mork Order Mork Order Work Order				te:	Due Da	pencer Lo		Sampler's Name:	
Company Name: LT Environmental, Inc., Permian office Company Name: City, State ZIP: Midland, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-334 Work Order No: City Company Name: LT Environmental, Inc., Permian office Company Name: Bill to: (if different) Bill to: (if different) Work Order Commental, GA (770-449-8800) Tampa, FL (813-620-2000) Work Order Commental, GA (770-449-8800) Tamp	Chain of Custody Work Order No:					Rush:			P.O. Number:	
Moder No: Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-334 Work Order No: Image: Moder No: Image: Moder No: Image: Noir Image: Bill to: If aminental, Inc., Permian office Company Name: I T Environmental, Inc., Permian office Company Name: I T Environmental, Inc., Permian office Company Name: Midland, TX (732-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 Work Order Comm Page City, State ZIP: 3300 North A Street Address: City, State ZIP: Midland, TX 79705 City, State ZIP: Work Order Comments State of Project: State of Project: Reporting:Level II Evel III ST/UST PRP Project Name: ØKS Trenspert Trick Reliever Email: slo@ltenv.com dmir@ltenv.com Deliverables: EDD AdaPT Other	Chain of Custody Work Order No:	Work Order Notes			5	Ro		1043200	Project Number:	
Chail of Custory Work Order No: Work Order No: Project Manager: Dan Moir Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Atlanta,GA (770-449-8800) Tampa,FL (813-620-2000) Work Order Company Name; LT Environmental, Inc., Permian office Company Name: LT Environmental, Inc., Permian office Company Name: Midland, TX 79705 Bill to: (if different) Work Order Comments Program: UST/PST PRP Program: UST/PST Program: UST/PST PRP Prownfields RRC City, State ZIP: Midland, TX 79705 City, State ZIP: Reporting:Level II Level III State of Project: Deliverables: EDD Address: Company City of Address: City of A	Chain of Custody Work Order No: Project Manager: Dan Moir Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-334 Work Order No: Chain of Custody Project Manager: Dan Moir Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813- Company Name: LT Environmental, Inc., Permian office Company Name: Bill to: (if different) Work Order Comments Address: 3300 North A Street Address: Address: Address: Vork Order Comments City, State ZIP: Midland, TX 79705 City, State ZIP: City, State ZIP: City, State ZIP: Project: Phone: (432) 236-3849 Email: Si@ltenv.com, dmoir@itenv.com City, State ZIP: Panet Project: Phone: (432) 236-3849 Email: Si@ltenv.com, dmoir@itenv.com Panet Paper Other		ANAI VSIS BEOLIEST				Truck	DKS Transpo	Project Name:	
Work Order No: Work Order No: Project Manager: Dan Moir Bill to: If different) Bill to: Bill to: If different) Work Order Commental Mork Order Commental Address: 3300 North A Street Address: Address: Address: Midland, TX 79705 City, State ZIP: Midland, TX 79705 City, State ZIP:	Chain of Custody Work Order No: CHain of Custody Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-334 Mork Order No: CHAIN Chain of Custody Project Manager: Dan Moir Hobs, NM (575-392-7560) Phoenix, AZ (480-356-0900) Atlanta, GA (770-449-8800) Tampa, FL (81-3620-2000) www.xenco.com Page Company Name: LT Environmental, Inc., Permian office Company Name: Bill to: (if different) Bill to: (if different) Work Order Comments Address: 3300 North A Street Address: Address: Work Order Comments City, State ZIP: Midland, TX 79705 City, State ZIP: Program: UST/PRP Prownfields CRC	ADaPT I Other	Deliverables:	oir@ltenv.com		Email: s		(432) 236-3849	Phone:	
Image: Dan Moir Bill to: If differenty Bill to: If differenty Bill to: Bill to: If differenty Image:	Chain of Custody Work Order No:	Level III ST/UST PRP	Reporting:Lev		ity, State ZIP:	0	705	Midland, TX 79	City, State ZIP:	
Chail of Custody Work Order No: Chail of Custody Work Order No: Midland, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-334 Work Order No: Image: Project Manager: Dan Moir Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000) www.xenco.com Page Company Name: LT Environmental, Inc., Permian office Company Name: Bill to: (if different) Work Order Comments	Chain of Custody Work Order No: UR Project Manager: Dan Moir Houston, TX. (281) 240-4200 Dallas, TX. (214) 902-0300 San Antonio, TX. (210) 509-3334 Work Order No: UR UR Project Manager: Dan Moir Hobbs, NM. (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000) Work Order Commental Page Company Name: LT Environmental, Inc., Permian office Company Name: Company Name: Mork Order Commental Work Order Commental		State of Pr		ddress:	A	itreet	3300 North A S	Address:	
Chain of Custory Work Order No: Chain of Custory Midland, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Mork Order No: C1	Chain of Custody Work Order No: (335) Project Manager: Dan Moir Bill to: (if different)	PRP Brownfielde PPC	Program: US		ompany Name:		ital, Inc., Pern	LT Environmer	Company Name:	
Midland, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Work Order No: C1 C1 <thc1< th=""> C1 C1 <</thc1<>	Chain of Custody Work Order No: 1355 Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Work Order No: 1355 Midland, TX (432-704-5440) EL Paso, TX (915)585-343 Lubbock, TX (806)794-1296 Work Order No: 1355 Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, EL (813-620-2000) WWW xenco com Page 1	ommente			sill to: (if different)			Dan Moir		
Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Work Order No:	Chain of Custody Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Work Order No:	Dana	443 Lubbock,TX (806)794-1296 A (770-449-8800) Tampa,FL (813-620-2000)	EL Paso, IX (915)585-34 30-355-0900) Atlanta, G	A (+32-704-3440) (50) Phoenix,AZ (4	Hobbs, NM (575-392-78	r			
	Chain of Custode		J San Antonio,TX (210) 509-3334	allas,TX (214) 902-0300	(281) 240-4200 E	Houston, T	Ö			

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature Range: 0 - 6 degC					
Date/ Time Received: 09.24.2020 04.50.00 PM	Air and Metal samples Acc	ceptable Range: Ambient				
Work Order #: 673572	Temperature Measuring de	evice used: T_NM_007				
Sample Rece	ipt Checklist	Comments				
#1 *Temperature of cooler(s)?	3.4					
#2 *Shipping container in good condition?	Yes					
#3 *Samples received on ice?	Yes					
#4 *Custody Seals intact on shipping container/ cooler?	Yes					
#5 Custody Seals intact on sample bottles?	Yes					
#6*Custody Seals Signed and dated?	Yes					
#7 *Chain of Custody present?	Yes					
#8 Any missing/extra samples?	No					
#9 Chain of Custody signed when relinquished/ received?	Yes					
#10 Chain of Custody agrees with sample labels/matrix?	Yes					
#11 Container label(s) legible and intact?	Yes					
#12 Samples in proper container/ bottle?	Yes	Samples received in bulk containers.				
#13 Samples properly preserved?	Yes					
#14 Sample container(s) intact?	Yes					
#15 Sufficient sample amount for indicated test(s)?	Yes					
#16 All samples received within hold time?	Yes					
#17 Subcontract of sample(s)?	No					
#18 Water VOC samples have zero headspace?	N/A					

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

.

PH Device/Lot#:

Checklist completed by:

Date: 09.25.2020

Checklist reviewed by: Jessica Kramer

Date: 09.25.2020

•

ATTACHMENT 4: PHOTOGRAPHIC LOG

PHOTOGRAPHIC LOG

Photograph 1: Northern view of release.

Photograph 3: Southern view of September 11th excavation down to caliche.

Photograph 2: Southern view of September 1st excavation.

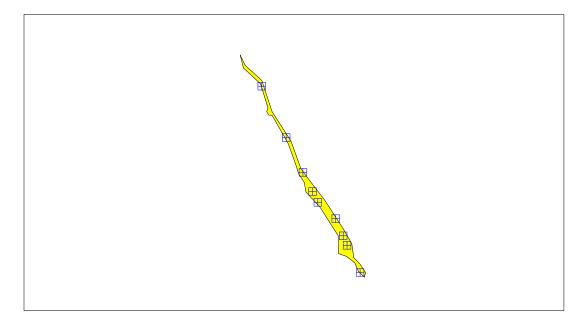
Photograph 4: Northern view of September 24th hydrovac excavation.

DKS Trucking Spill Rollover Spill Date: December 11, 2018 Photographs Taken: August 26, 2020 – September 24, 2020

Page 1 of 1

•

VSP Sample Design Report for Using Stratified Sampling to Estimate the Population Proportion


Summary

This report summarizes the stratified sampling design used, associated statistical assumptions, as well as general guidelines for conducting post-sampling data analysis. Sampling plan components presented here include how many sampling locations to choose and where within the sampling area to collect those samples. The type of medium to sample (i.e., soil, groundwater, etc.) and how to analyze the samples (in-situ, fixed laboratory, etc.) are addressed in other sections of the sampling plan. It is important to note that the decision for sample size calculation is determined for the combined strata, rather than any individual strata.

The following table summarizes the proportion stratified sampling design developed. A figure that shows sampling locations in the field and a table that lists sampling location coordinates are also provided below.

SUMMARY	OF SAMPLING DESIGN
Primary Objective of Design	Estimate the population proportion of all strata combined
Criteria for Determining Total Number of Samples	Achieve pre-specified precision of the estimated proportion for specified stratum costs, but no restriction on total costs
Sample Placement (Location) in the Field	Random sampling within grids within each stratum
Formula for calculating number of sampling locations	From Gilbert (1987, page 51)
Method for calculating number of sampling locations in each stratum	Optimal Allocation
Calculated total number of samples	9
Stratum 1	9
Total area of all strata	891.88 m ²
Total cost of sampling ^a	

^a Including measurement analyses and fixed overhead costs. See the Cost of Sampling section for an explanation of the costs presented here.

Area: Area 1

X Coord	Y Coord	Label	Value	Туре	Historical	Sample Area
-11600796.6066	3856084.9773			Random in Grid		
-11600807.2377	3856107.1434			Random in Grid		
-11600810.3285	3856114.8886			Random in Grid		
-11600816.4153	3856128.8201			Random in Grid		
-11600835.3214	3856150.8987			Random in Grid		
-11600830.9739	3856142.0953			Random in Grid		
-11600843.1128	3856166.4948			Random in Grid		
-11600856.7885	3856194.8614			Random in Grid		
-11600876.6038	3856236.6671			Random in Grid		

Primary Sampling Objective

The primary purpose of sampling at this site is to estimate the proportion for the entire site, i.e., for all strata combined, such that the estimated proportion has the minimum possible standard deviation under the condition that the sampling and measurement costs cannot exceed a specified amount. Preexisting information was used to divide the site into 1 non-overlapping strata that were expected to be more homogeneous internally than for the entire site (all strata combined). The expected variability of values within each stratum was estimated or approximated, and the stratum weights, W_h , were determined so that the total number of samples could be allocated appropriately among the strata.

Number of Total Samples: Calculation Equation and Inputs

The total number of samples is computed to achieve the pre-specified precision of the estimated population proportion for specified stratum costs, but no restriction on total costs. *Note that the calculation is for the total number of samples, i.e., for combined strata, rather than individual strata.*

The formula used to calculate the total number of samples is:

$$n = \frac{\left(\sum_{h=1}^{L} W_h \sqrt{P_h (1 - P_h)} \sqrt{c_h}\right) \sum_{h=1}^{L} \frac{W_h \sqrt{P_h (1 - P_h)}}{\sqrt{c_h}}}{V + \frac{1}{N} \sum_{h=1}^{L} W_h P_h (1 - P_h)}$$

where

L is the number of strata, h=1,2,...,L,

 P_h is the estimated proportion of measurements in stratum *h*, $W_h = N_h / N$ is the weight associated with stratum *h*,

 N_h is the total number of possible sampling locations (units) in stratum h,

N'' is the total number of possible units in all strata combined, N = N''

$$=\sum_{k=1}N_k$$

V is the pre-specified variance or precision, and

 c_h is the cost of collecting and measuring a sample in stratum *h*.

The values of these inputs that result in the calculated number of sampling locations are:

Parameter	Stratum
	1
P _h	0.2
C _h	
W _h	891.883

Parameter Input Value

Allocation of Samples to Strata

The total number of samples is allocated to the individual strata on an optimal basis using the formula:

$$n_{h} = n \frac{N_{h} \sqrt{P_{h} (1 - P_{h})} / \sqrt{c_{h}}}{\sum_{h=1}^{L} N_{h} \sqrt{P_{h} (1 - P_{h})} / \sqrt{c_{h}}}$$

where

- n_h is the number of samples allocated to stratum h,
- L' is the number of strata,
- N_h is the total number of units in stratum *h*,
- $P_h^{\prime\prime}$ is the proportion in stratum h,
- c_h is the cost per population unit in stratum *h*.

n is the total number of units sampled in all strata,

$$n = \sum_{h=1}^{2} n_h$$

ĩ

Using this formula, the number of samples allocated to each stratum is:

Stratum	Number of Samples
1	9
Total Samples	9

Method for Determining Sampling Locations

Five methods for determining sample locations are provided in VSP: 1) simple random sampling, 2) random sampling within grids, 3) systematic sampling with a random start, 4) systematic sampling with a fixed start and 5) adaptive grid sampling. One may use a different method for each stratum, based on the conceptual site model and decision to be made for a given stratum. For this site, sample locations were chosen using random sampling within grids in each stratum.

Locating the sample points using a random sampling within grids method combines appealing aspects of both the random and the systematic grid methods. It provides data that are separated by many distances, providing information about the spatial structure of the potential contamination. It also ensures good coverage of the entire site, although not as completely as if systematic grid sampling were performed.

Statistical Assumptions

The assumptions associated with the formulas for computing the number of samples are:

- 1. The estimated stratum proportions, P_{h} , are reasonable and representative of the stratum populations being sampled.
- 2. The sampling locations are selected using simple random sampling.
- 3. The stratum costs, C_h , and the fixed cost C_0 , are accurate.

The first and third assumptions will be assessed in a post data collection analysis. The second assumption, although not strictly valid for strata where systematic grid sampling was used rather than simple random sampling, is not expected to significantly affect conclusions of the study because (1) the gridded sample locations were selected based on a random start and (2) any patterns of contamination in the field that may exist are not expected to coincide with the regularity of the grid sampling pattern.

Cost of Sampling

The total cost of the completed sampling program depends on several cost inputs, some of which are fixed, and others that are based on the number of samples collected and measured. Based on the numbers of samples determined above, the estimated total cost of sampling and analysis at this site is \$5,500.00, which averages out to a per sample cost of \$611.11. The following table summarizes the inputs and resulting cost estimates.

COST INFORMATION

Stratum	Samples	Collection Cost Per Sample	Analytic Cost Per Sample	Total Cost
1	9			
Total Samples:	9		Subtotal:	
			Fixed Startup Cost:	
			Grand Total:	

Recommended Data Analysis Activities

Post data collection activities generally follow those outlined in EPA's Guidance for Data Quality Assessment (EPA, 2000). The data analysts will become familiar with the context of the problem and goals for data collection and assessment. The data will be verified and validated before being subjected to statistical or other analyses. Graphical and analytical tools will be used to verify to the extent possible the assumptions of any statistical analyses that are performed as well as to achieve a general understanding of the data. The data will be assessed to determine whether they are adequate in both quality and quantity to support the primary objective of sampling.

Estimates for the proportion of the population values will be calculated using the formulas appropriate for stratified sampling; these formulas are found in EPA QA/G-5S (EPA, 2001). Results of the exploratory and quantitative assessments of the data will be reported, along with conclusions that may be supported by them.

This report was automatically produced* by Visual Sample Plan (VSP) software version 7.12a.

This design was last modified 2/8/2020 11:56:54 AM.

Software and documentation available at http://vsp.pnnl.gov

Software copyright (c) 2020 Battelle Memorial Institute. All rights reserved.

* - The report contents may have been modified or reformatted by end-user of software.

VSP Sample Design Report for Using Stratified Sampling to Estimate the Population Mean

Summary

This report summarizes the stratified sampling design used, associated statistical assumptions, as well as general guidelines for conducting post-sampling data analysis. Sampling plan components presented here include how many sampling locations to choose and where within the sampling area to collect those samples. The type of medium to sample (i.e., soil, groundwater, etc.) and how to analyze the samples (in-situ, fixed laboratory, etc.) are addressed in other sections of the sampling plan. It is important to note that the decision for sample size calculation is determined for the combined strata, rather than any individual strata.

The following table summarizes the mean stratified sampling design developed. A figure that shows sampling locations in the field and a table that lists sampling location coordinates are also provided below.

SUMMARY OF SAMPLING DESIGN			
Primary Objective of Design	Estimate the population mean		
	of all strata combined		
Criteria for Determining	Minimize the variance of the estimated mean		
Total Number of Samples	given a fixed total sampling and analysis cost		
Sample Placement (Location)	Simple random sampling		
in the Field	within each stratum		
Formula for calculating	From Gilbert (1987, equation 5.10, page 51)		
number of sampling locations			
Method for calculating number of	Optimal Allocation		
sampling locations in each stratum			
Calculated total number of samples	9		
Stratum 1	9		
Total area of all strata	7200.51 ft ²		
Total cost of sampling ^a			

^a Including measurement analyses and fixed overhead costs. See the Cost of Sampling section for an explanation of the costs presented here.

Area: Area 1						
X Coord	Y Coord	Label	Value	Туре	Historical	Sample Area
578753.9874	619877.7882			Random		
578580.6440	620156.3610			Random		
578704.7953	619929.5524			Random		
578658.1654	620048.0650			Random		
578566.8088	620189.0541			Random		
578740.1521	619872.3394			Random		
578534.0141	620258.5270			Random		
578683.9326	619982.6787			Random		
578712.0424	619945.8989			Random		

Primary Sampling Objective

The primary purpose of sampling at this site is to estimate the mean for the entire site, i.e., for all strata combined, such that the estimated mean has the minimum possible standard deviation under the condition that the sampling and measurement costs cannot exceed a specified amount. Preexisting information was used to divide the site into 1 non-overlapping strata that were expected to be more homogeneous internally than for the entire site (all strata combined). The expected variability of values within each stratum was estimated or approximated, and the stratum weights, W_h , were determined so that the total number of samples could be allocated appropriately among the strata.

Number of Total Samples: Calculation Equation and Inputs

The total number of samples is computed to maximize the precision of the estimated population mean for a pre-specified fixed total cost, C- C_0 , of collecting and measuring samples. Note that the calculation is for the total number of samples, *i.e.*, for combined strata, rather than individual strata.

The formula used to calculate the total number of samples is:

$$n = \frac{(C - c_0) \sum_{h=1}^{L} \frac{W_h s_h}{\sqrt{c_h}}}{\sum_{h=1}^{L} W_h s_h \sqrt{c_h}}$$

where

L is the number of strata, h=1,2,...,L,

 S_h is the estimated standard deviation of the measured values in stratum *h*,

 $W_h = N_h / N$ is the weight associated with stratum *h*,

 N_h is the total number of possible sampling locations (units) in stratum h,

$$N = \sum_{h=1}^{L} N_h$$

N is the total number of possible units in all strata combined,

$$(C = c_o + \sum_{h=1}^{\infty} c_h n_h)$$

C is the total sampling budget, c_0 is the fixed overhead cost,

 c_h is the cost of collecting and measuring a sample in stratum *h*, and

 n_h is the number of samples collected in stratum *h*.

The values of these inputs that result in the calculated number of sampling locations are:

Parameter Stratum

	1
Sh	1
Ch	
W _h	7200.51

Parameter	Input Value
С	
Co	

Allocation of Samples to Strata

The total number of samples is allocated to the individual strata on an optimal basis using the formula:

$$n_{h} = n \frac{N_{h} \sigma_{h} / \sqrt{c_{h}}}{\sum_{h=1}^{L} N_{h} \sigma_{h} / \sqrt{c_{h}}}$$

where

- n_h is the number of samples allocated to stratum h,
- L is the number of strata,
- N_h is the total number of units in stratum h,
- σ_h is the true population standard deviation for stratum *h*,
- c_h is the cost per population unit in stratum *h*.

$$n = \sum_{h=1}^{L} n_h$$

n is the total number of units sampled in all strata,

Using this formula, the number of samples allocated to each stratum is:

Stratum	Number of Samples
1	9
Total Samples	9

Method for Determining Sampling Locations

Five methods for determining sample locations are provided in VSP: 1) simple random sampling, 2) random sampling within grids, 3) systematic sampling with a random start, 4) systematic sampling with a fixed start and 5) adaptive grid sampling. One may use a different method for each stratum, based on the conceptual site model and decision to be made for a given stratum. For this site, sample locations were chosen using simple random sampling in each stratum.

Locating the sample points randomly within each stratum provides sampling locations that can, due to the random selection process, leave some areas of the stratum that are not well represented in the samples collected. This potential problem is not expected to result in inappropriate data for estimating the strata means or the entire site mean if the population values in each stratum do not vary greatly among different portions of the stratum. If major spatial patterns of population values are expected to occur within a stratum, then systematic grid sampling is usually a better choice for that stratum.

Statistical Assumptions

The assumptions associated with the formulas for computing the number of samples are:

- 1. The estimated stratum standard deviations, s_h , are reasonable and representative of the stratum populations being sampled.
- 2. The sampling locations are selected using simple random sampling.
- 3. The stratum costs, C_h , and the fixed cost C_0 , are accurate.

The first and third assumptions will be assessed in a post data collection analysis. The second assumption is valid because simple random sampling is used.

Cost of Sampling

The total cost of the completed sampling program depends on several cost inputs, some of which are fixed, and others that are based on the number of samples collected and measured. Based on the numbers of samples determined above, the estimated total cost of sampling and analysis at this site is \$5,500.00, which averages out to a per sample cost of \$611.11. The following table summarizes the inputs and resulting cost estimates.

	COST INFORMATION				
Stratum	Samples	Collection Cost Per Sample	Analytic Cost Per Sample	Total Cost	
1	9				
Total Samples:	9		Subtotal:		
			Fixed Startup Cost:		
			Grand Total:		

Recommended Data Analysis Activities

Post data collection activities generally follow those outlined in EPA's Guidance for Data Quality Assessment (EPA, 2000). The data analysts will become familiar with the context of the problem and goals for data collection and assessment. The data will be verified and validated before being subjected to statistical or other analyses. Graphical and analytical tools will be used to verify to the extent possible the assumptions of any statistical analyses that are performed as well as to achieve a general understanding of the data. The data will be assessed to determine whether they are adequate in both quality and quantity to support the primary objective of sampling.

Estimates for the mean and standard deviation of the population values will be calculated using the formulas appropriate for stratified sampling; these formulas are found in EPA QA/G-5S (EPA, 2001). Results of the exploratory and quantitative assessments of the data will be reported, along with conclusions that may be supported by them.

This report was automatically produced* by Visual Sample Plan (VSP) software version 7.13.

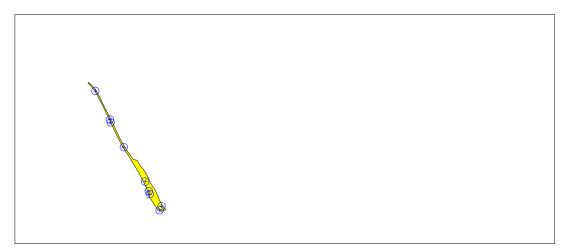
This design was last modified 9/10/2020 10:30:46 AM.

Software and documentation available at http://vsp.pnnl.gov

Software copyright (c) 2020 Battelle Memorial Institute. All rights reserved.

* - The report contents may have been modified or reformatted by end-user of software.

VSP Sample Design Report for Using Stratified Sampling to Estimate the Population Mean


Summary

This report summarizes the stratified sampling design used, associated statistical assumptions, as well as general guidelines for conducting post-sampling data analysis. Sampling plan components presented here include how many sampling locations to choose and where within the sampling area to collect those samples. The type of medium to sample (i.e., soil, groundwater, etc.) and how to analyze the samples (in-situ, fixed laboratory, etc.) are addressed in other sections of the sampling plan. It is important to note that the decision for sample size calculation is determined for the combined strata, rather than any individual strata.

The following table summarizes the mean stratified sampling design developed. A figure that shows sampling locations in the field and a table that lists sampling location coordinates are also provided below.

SUMMARY OF SAMPLING DESIGN		
Primary Objective of Design	Estimate the population mean of all strata combined	
Criteria for Determining Total Number of Samples	Minimize the variance of the estimated mean given a fixed total sampling and analysis cost	
Sample Placement (Location) in the Field	Simple random sampling within each stratum	
Formula for calculating number of sampling locations	From Gilbert (1987, equation 5.10, page 51)	
Method for calculating number of sampling locations in each stratum	Optimal Allocation	
Calculated total number of samples	9	
Stratum 1	9	
Total area of all strata	7200.51 ft ²	
Total cost of sampling ^a		

^a Including measurement analyses and fixed overhead costs. See the Cost of Sampling section for an explanation of the costs presented here.

Area: Area 1							
X Coord	Y Coord	Label	Value	Туре	Historical	Sample Area	
578558.3761	620203.4590			Random			
578708.2947	619927.6107			Random			

578753.9730	619881.2954	Random
578608.7394	620108.1040	Random
578746.9456	619864.9488	Random
578690.7261	619975.2882	Random
578554.8624	620214.3567	Random
578704.7810	619938.5084	Random
578498.6429	620324.6960	Random

Primary Sampling Objective

The primary purpose of sampling at this site is to estimate the mean for the entire site, i.e., for all strata combined, such that the estimated mean has the minimum possible standard deviation under the condition that the sampling and measurement costs cannot exceed a specified amount. Preexisting information was used to divide the site into 1 non-overlapping strata that were expected to be more homogeneous internally than for the entire site (all strata combined). The expected variability of values within each stratum was estimated or approximated, and the stratum weights, W_h , were determined so that the total number of samples could be allocated appropriately among the strata.

Number of Total Samples: Calculation Equation and Inputs

The total number of samples is computed to maximize the precision of the estimated population mean for a pre-specified fixed total cost, $C-C_0$, of collecting and measuring samples. Note that the calculation is for the total number of samples, *i.e., for combined strata, rather than individual strata.*

The formula used to calculate the total number of samples is:

$$n = \frac{(C - c_0) \sum_{h=1}^{L} \frac{W_h s_h}{\sqrt{c_h}}}{\sum_{h=1}^{L} W_h s_h \sqrt{c_h}}$$

where

L is the number of strata, h=1,2,...,L, S_h is the estimated standard deviation of the measured values in stratum h.

 $W_h = N_h / N$ is the weight associated with stratum h,

 N_h is the total number of possible sampling locations (units) in stratum *h*,

N is the total number of possible units in all strata combined,

$$V = \sum_{k=1}^{-} N_k$$

C is the total sampling budget, $C = c_{-}$

$$c_o + \sum_{h=1}^{L} c_h n_h$$
)

 c_0 is the fixed overhead cost,

 $\vec{c_h}$ is the cost of collecting and measuring a sample in stratum *h*, and

 n'_h is the number of samples collected in stratum *h*.

The values of these inputs that result in the calculated number of sampling locations are:

Parameter	Stratum
	1
S _h	1
C _h	
W _h	7200.51

Parameter Input Value

Allocation of Samples to Strata

The total number of samples is allocated to the individual strata on an optimal basis using the formula:

$$n_{h} = n \frac{N_{h}\sigma_{h} / \sqrt{c_{h}}}{\sum_{h=1}^{L} N_{h}\sigma_{h} / \sqrt{c_{h}}}$$

where

- n_h is the number of samples allocated to stratum h,
- L' is the number of strata,
- N_{h} is the total number of units in stratum h,
- σ_h is the true population standard deviation for stratum *h*,
- $c_h^{''}$ is the cost per population unit in stratum *h*.
- *n* is the total number of units sampled in all strata,

$$n = \sum_{h=1}^{L} n_h$$

Using this formula, the number of samples allocated to each stratum is:

Stratum	Number of Samples		
1	9		
Total Samples	9		

Method for Determining Sampling Locations

Five methods for determining sample locations are provided in VSP: 1) simple random sampling, 2) random sampling within grids, 3) systematic sampling with a random start, 4) systematic sampling with a fixed start and 5) adaptive grid sampling. One may use a different method for each stratum, based on the conceptual site model and decision to be made for a given stratum. For this site, sample locations were chosen using simple random sampling in each stratum.

Locating the sample points randomly within each stratum provides sampling locations that can, due to the random selection process, leave some areas of the stratum that are not well represented in the samples collected. This potential problem is not expected to result in inappropriate data for estimating the strata means or the entire site mean if the population values in each stratum do not vary greatly among different portions of the stratum. If major spatial patterns of population values are expected to occur within a stratum, then systematic grid sampling is usually a better choice for that stratum.

Statistical Assumptions

The assumptions associated with the formulas for computing the number of samples are:

- 1. The estimated stratum standard deviations, s_h , are reasonable and representative of the stratum populations being sampled.
- 2. The sampling locations are selected using simple random sampling.
- 3. The stratum costs, C_h , and the fixed cost C_0 , are accurate.

The first and third assumptions will be assessed in a post data collection analysis. The second assumption is valid because simple random sampling is used.

Cost of Sampling

The total cost of the completed sampling program depends on several cost inputs, some of which are fixed, and others that are based on the number of samples collected and measured. Based on the numbers of samples determined above, the estimated total cost of sampling and analysis at this site is \$5,500.00, which averages out to a per sample cost of \$611.11. The following table summarizes the inputs and resulting cost estimates.

COST INFORMATION

Stratum	Samples	Collection Cost Per Sample	Analytic Cost Per Sample	Total Cost
1	9			
Total Samples:	9		Subtotal:	
			Fixed Startup Cost:	
			Grand Total:	

Recommended Data Analysis Activities

Post data collection activities generally follow those outlined in EPA's Guidance for Data Quality Assessment (EPA, 2000). The data analysts will become familiar with the context of the problem and goals for data collection and assessment. The data will be verified and validated before being subjected to statistical or other analyses. Graphical and analytical tools will be used to verify to the extent possible the assumptions of any statistical analyses that are performed as well as to achieve a general understanding of the data. The data will be assessed to determine whether they are adequate in both quality and quantity to support the primary objective of sampling.

Estimates for the mean and standard deviation of the population values will be calculated using the formulas appropriate for stratified sampling; these formulas are found in EPA QA/G-5S (EPA, 2001). Results of the exploratory and quantitative assessments of the data will be reported, along with conclusions that may be supported by them.

This report was automatically produced* by Visual Sample Plan (VSP) software version 7.13.

This design was last modified 9/24/2020 1:48:24 PM.

Software and documentation available at http://vsp.pnnl.gov

Software copyright (c) 2020 Battelle Memorial Institute. All rights reserved.

* - The report contents may have been modified or reformatted by end-user of software.