SITE INFORMATION

Report Type: Work Plan NRM2008542121									
General Site Info	rmation:								
Site:		El Paso 23 F	El Paso 23 Federal Tank Battery #2						
Company:		EOG Resou	rces						
Section, Townsh	ip and Range	Unit C	Sec. 23	T 26S	R 30E				
County:		Eddy County	ý						
GPS:			32.03222			-103.8	51992		
Surface Owner:									
Release Data:									
Date Released:		10/19/2019	10/19/2019						
Type Release:		Oil tank overflow							
Source of Contam	nination:	PW & Crude							
Fluid Released:			210 Oil & 80 PW						
Fluids Recovered	:	Obbls	Ibbls						
Official Commun	ication:								
Name:	Todd Wells				Mike Carmor	a			
Company:	EOG Reources				Tetra Tech				
Address: 5509 Champions Dr				901 West Wall Street					
					Suite 100				
City: Midland Texas, 79706					Midland, Tex	as			
Phone number: 432-686-7016					(432) 687-81	21			
Fax:									
Email:	todd_well@eogre	sources.com			mike.carmo	na@tetrate	ech.com		

Site Characterization	
Depth to Groundwater:	100' below surface
Karst Potential:	Medium

Recommended Remedial Action Levels (RRALs)							
Benzene	Total BTEX	TPH (GRO+DRO+MRO) TPH (GRO + DRO) Chloride		Chlorides			
10 mg/kg	50 mg/kg	2,500 mg/kg	1,000 mg/kg	10,000			

September 4, 2020

Mike Bratcher Environmental Engineer Specialist Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Work Plan for the EOG Resources, El Paso 23 Fed #2 TB, Unit C, Section 23, Township 26 South, Range 30 East, Eddy County, New Mexico. NRM2008542121

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by EOG Resources to assess a release that occurred at the El Paso 23 Fed #2 TB, Unit C, Section 23, Township 26 South, Range 30 East, Eddy County, New Mexico (Site). The spill site coordinates are N 32.032219 °, W 103.851992°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on October 19, 2019, due to the water dump failing causing the tank to overflow inside unlined containment. A total of 210 barrels of crude oil was released and 80 barrels of produced water. No freestanding fluids were recovered. The release occurred inside the berm and impacted an area measuring approximately 22 'x 23'. The C-141 Form is included in Appendix A.

Site Characterization

A site characterization was performed for the site, and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances and the site is in a medium karst potential area.

The nearest well is listed in the USGS National Water Information Database website in Section 22, approximately 0.87 miles southwest of the site, and has a reported depth to groundwater of 117 feet below ground surface. Site characterization data is included in Appendix B.

EOG plans to drill a bore to 55' below surface, and tag with a water level meter seventytwo (72) hours later to determine the groundwater within a $\frac{1}{2}$ mile radius. Once drilled, a drillers log will be provided for the closure request.

Regulatory

A risk-based evaluation was performed for the site following the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based on the site characterization, the proposed RRAL for TPH is 2,500 mg/kg (GRO+DRO+MRO) and 1,000 mg/kg (GRO+DRO). Additionally, based on the site characterization, the proposed RRAL for site 10,000 mg/kg.

Soil Assessment and Analytical Results

On March 16, 2020, Tetra Tech personnel were on site to evaluate and sample the release area. One trench (Trench-1) was installed in the spill area to assess and define the extents. Soil samples were collected, and field screened for chlorides. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix D. The results of the sampling are summarized in Table 1. The trench location is shown on Figure 3.

Referring to Table 1, high TPH concentrations were detected at depths from surface to 13.0' with concentrations of 6,680 mg/kg, 13,500 mg/kg, 17,600 mg/kg, 12,900 mg/kg, 12,100 mg/kg, 14,300 mg/kg, 6,440 mg/kg, 12,300 mg/kg, 15,100 mg/kg, 18,100 mg/kg, 27,100 mg/kg, 21,600 mg/kg, 9,920 mg/kg, and 12,600 mg/kg, respectively. Samples of depths 1.0'-13.0' showed Total BTEX concentrations of 256 mg/kg, 775 mg/kg, 178 mg/kg, 294 mg/kg, 607 mg/kg, 261 mg/kg, 250 mg/kg, 314 mg/kg, 583 mg/kg, 629 mg/kg, 599 mg/kg, 517 mg/kg, and 360 mg/kg, respectively. In addition, chloride was detected in all samples, but exhibited high concentrations of 4,030 mg/kg, 1,040 mg/kg, and 898 mg/kg, at depths of 2.0'-2.5', 10.0', and 11', respectively. The spill area was not vertically defined by the trench.

On June 16, 2020, Tetra Tech personnel were on site to further evaluate the spill area. One borehole (Bore Hole-1) was installed in the spill area to assess and define the extents. Soil samples were collected, and field screened for chlorides. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix D. The results of the sampling are

summarized in Table 2 bore log results are in Appendix C. The borehole location is shown on Figure 3 and is the same as trench 1.

Referring to Table 2, all collected samples except for the sampled depths at surface-1.0', 2.0'-3.0', 19.0'-20.0', and 29.0'-30.0', did not show concentrations of TPH or Total BTEX above laboratory reporting limits. Chloride concentrations were detected in all samples but exhibited one high concentration of 782 mg/kg at a depth of 29.0'-30.0'.

Work Plan

Based on the laboratory results, EOG proposes to remove the impacted soils as shown on Figure 4 and highlighted (green) on Table 1 and Table 2. The area of Trench-1 and Borehole-1 will be excavated to approximately 19.0'-20.0' below surface. The excavated areas will then be backfilled with clean material to surface grade. All of the excavated material will be transported offsite for proper disposal.

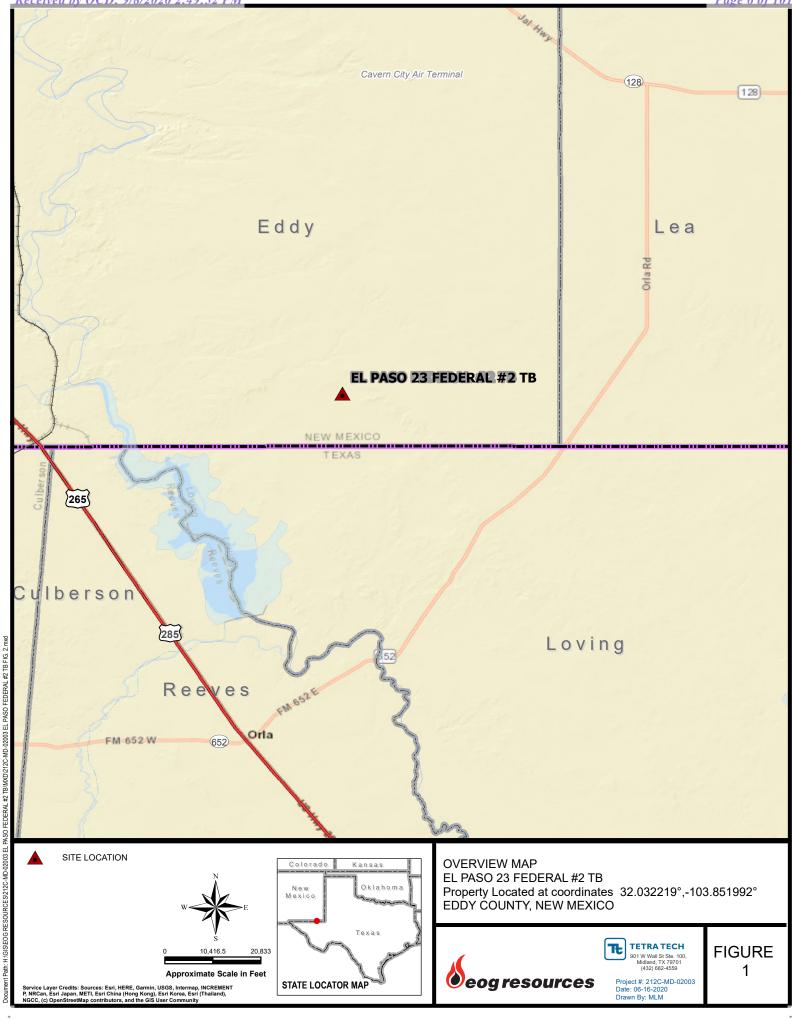
Once excavated, composite bottom hole and sidewall samples will be collected every 200 square feet to ensure proper removal of the impacted soils.

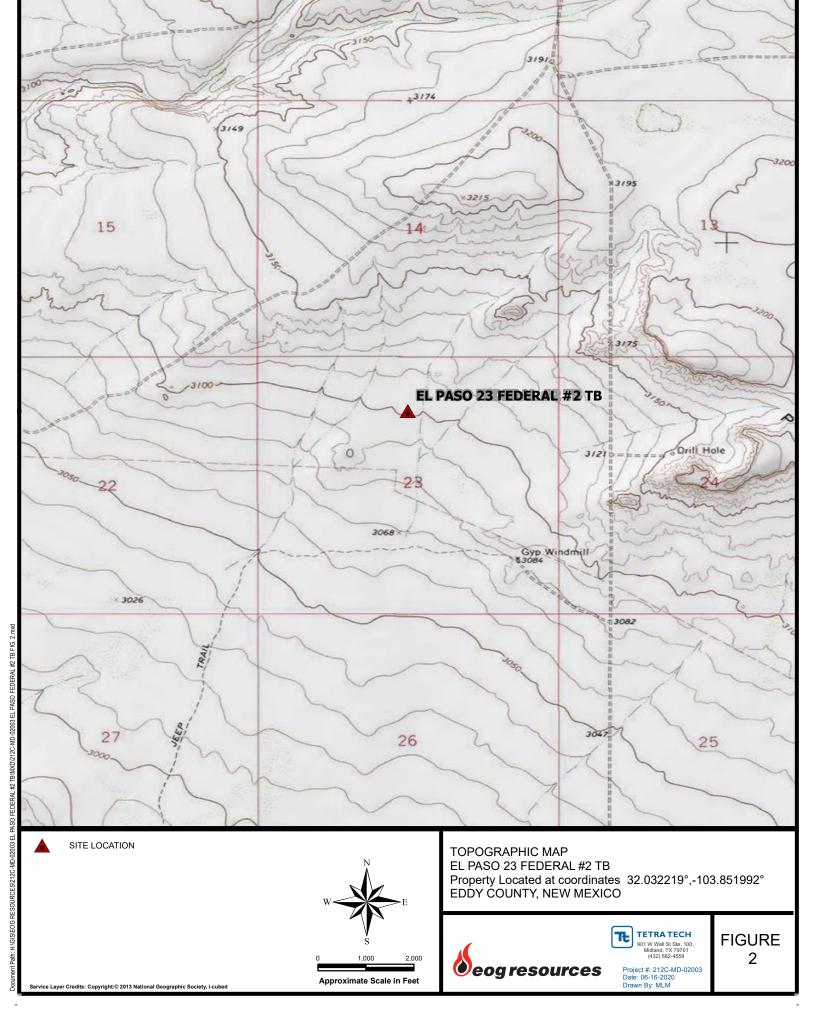
The proposed excavation depths may not be reached due to wall cave-ins and safety concerns for onsite personnel. As such, EOG will excavate the impacted soils to the maximum extent possible and have engineering controls prior to excavation.

Conclusion

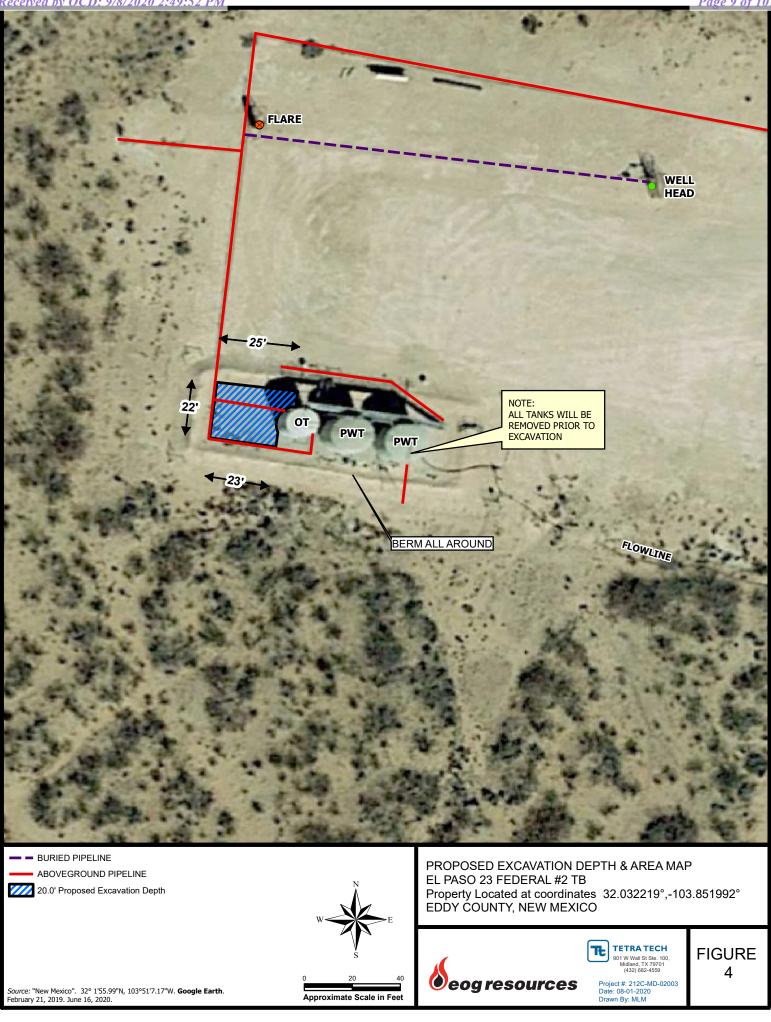
Upon completion, a final report detailing the remediation activities will be submitted to the NMOCD. If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH


Project Manager Mike Carmona


.

Figures


•

Received by OCD: 9/8/2020 2:49:52 PM

•

•

Tables

•

Table 1 EOG El Paso 23 Fed #2 TB Eddy County, New Mexico

	Sample Sample Sample		Soil Status TPH (mg/kg)			Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride			
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	3/16/2020	0-1	Х		2,910	3,770	<50.2	6,680	<0.200	0.373	0.901	48.0	49.3	63.1
	"	1-1.5	Х		8,760	4,730	<249	13,500	0.692	47.5	6.56	202	256	425
	"	2-2.5	Х		11,900	5,690	<251	17,600	6.55	231	15.3	522	775	4,030
	"	3-3.5	Х		8,630	4,270	<250	12,900	2.53	52.4	5.29	118	178	178
	"	4-4.5	Х		8,060	4,020	<251	12,100	3.96	79.2	10.1	200	294	37.1
	"	5-5.5	Х		9,940	4,350	<250	14,300	6.03	174	15.2	412	607	338
Trench-1	"	6 - 6.5	Х		4,350	2,090	<49.8	6,440	2.72	69.3	8.45	180	261	61.4
riench-i	"	7 - 7.5	Х		8,200	4,140	<251	12,300	2.01	67.7	8.04	178	250	364
	"	8' - 8.5'	Х		10,200	4,930	<249	15,100	3.78	83.9	9.96	217	314	241
	"	9 - 9.5	Х		12,300	5,800	<251	18,100	6.87	175	18.0	383	583	78.4
	"	10	Х		16,500	10,600	<249	27,100	6.85	247	28.4	502	629	1,040
	"	11	Х		14,200	7,360	<249	21,600	8.39	262	28.4	476	599	898
	"	12	Х		5,820	4,100	<249	9,920	4.19	149	15.9	348	517	570
	"	13	Х		8,160	4,440.0	<251	12,600	3.38	99.9	11.1	245	360	242

.

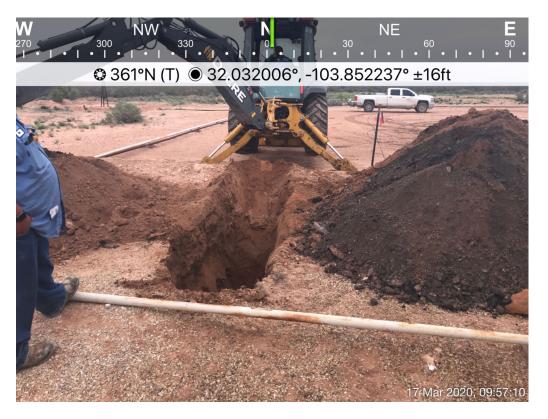
Proposed Excavation

•

Table 2 EOG El Paso 23 Fed #2 TB Eddy County, New Mexico

	Sample Sampl		Soil	Status		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	6/16/2020	0-1	Х		<50.0	568	<50.0	568	<0.00201	<0.00201	<0.00201	0.002620	0.00262	234
	"	2-3	Х		<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	0.00522	<0.00200	0.00522	32.9
	"	4-5	Х		<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	16.3
	"	6-7	Х		<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	15.4
	"	9-10	Х		<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	28.8
Bore Hole-1	"	14-15	Х		<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	86.8
Bore Hole-1	"	19-20	Х		1,160	1,520	<49.9	2,680	0.105	2.04	3.18	23.6	28.9	92.6
	"	24-25	Х		<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	75.1
	"	29-30	Х		122	491	<49.9	613	0.0414	0.0412	0.211	0.985	1.28	782
	"	34-35	Х		<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	173
	"	39-40	Х		<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	112
	"	44-45	Х		<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	126

•


Proposed Excavation

-

•

Photos

EOG Resources El Paso 23 Federal #2 TB Eddy County, New Mexico

Area of Trench-1 – View North

Area of Trench-1 – View Southeast

-

•

Appendix A

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party EOG Resources	OGRID 7377
Contact Name Todd Wells	Contact Telephone (432) 686-3613
Contact email Todd_Wells@eogresources.com	Incident # (assigned by OCD)
Contact mailing address 5509 Champions Drive Midland, TX 79706	

Location of Release Source

Latitude 32.032019°

(NAD 83 in decimal degrees to 5 decimal places)

Site Name El Paso 23 Fed #2	Site Type Tank Battery
Date Release Discovered 10/19/19	API# (if applicable) 30-015-29307

Unit Letter	Section	Township	Range	County
С	23	26S	30E	Eddy

Surface Owner: State Federal Tribal Private (*Name:*____)

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 210	Volume Recovered (bbls) 0
Produced Water	Volume Released (bbls) 80	Volume Recovered (bbls) 0
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release: The	water dump failed to open and sent water through the c	bill side of the separator, sending water to the oil tank and

Cause of Release: The water dump failed to open and sent water through the oil side of the separator, sending water to the oil tank and over filling the oil tank. Approximately 210 bbls of crude oil and 80 bbls of produced water released inside unlined containment, 0 bbls was recovered.

Page	2
	_

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? More than 25 bbls.
🛛 Yes 🗌 No	
If YES, was immediate ne	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? No

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: <u>Todd Wells</u>	Title:Environmental Specialist
Signature: <u>Todd Wells</u>	Date: <u>3-20-20</u>
email: <u>Todd Wells@eogresources.com</u>	Telephone:(432) 686-3613
OCD Only Received by:	Date:

Received by OCD: 9/8/2020 2:49:52 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

Inci	dent ID		
Dist	rict RP		
Faci	lity ID		
App	lication ID		

Page 18 of 101

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ¹ / ₂ -mile of the lateral extents of the release
Boring or excavation logs
Dhata ang ha in alu dina data and CIS information

- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 9/8/2	020 2:49:52 PM. State of New Mexico		Page 19 of 1			
			Incident ID			
age 4	Oil Conservation Division	n	District RP			
			Facility ID			
			Application ID			
public health or the envir failed to adequately inve addition, OCD acceptance and/or regulations. Printed Name: Signature:	are required to report and/or file certain release n ronment. The acceptance of a C-141 report by the stigate and remediate contamination that pose a the e of a C-141 report does not relieve the operator	e OCD does not relieve the hreat to groundwater, surfa of responsibility for comp Title: Date:	e operator of liability sh ce water, human health liance with any other fe	ould their operations have or the environment. In deral, state, or local laws		

Received by OCD: 9/8/2020 2:49:52 PM Form C-141 State of New Mexico

Oil Conservation Division

Remediation Plan Checklist: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

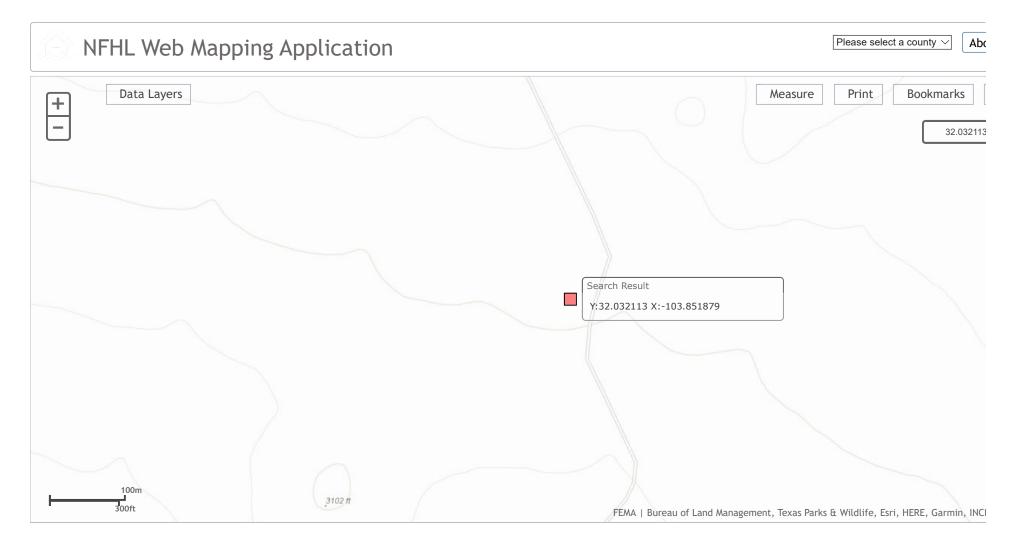
Remediation Plan

 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 								
Deferral Requests Only: Each of the following items must be co	nfirmed as part of any request for deferral of remediation.							
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.								
Extents of contamination must be fully delineated.								
Contamination does not cause an imminent risk to human healt	h, the environment, or groundwater.							
rules and regulations all operators are required to report and/or file	acceptance of a C-141 report does not relieve the operator of laws and/or regulations							
OCD Only								
Received by: Cristina Eads								
Approved Approved with Attached Conditions of Signature:	Approval Denied Deferral Approved Date: 11/02/2020							

-

•

Appendix B



National Water Information System: Mapper

Site Information

Page 23 of 101

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources	Data Category:	Geographic Area:	
<u>osas water Resources</u>	Groundwater	 ✓ United States 	∽ GO

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- Full News 🔝

Groundwater levels for the Nation

Search Results -- 1 sites found

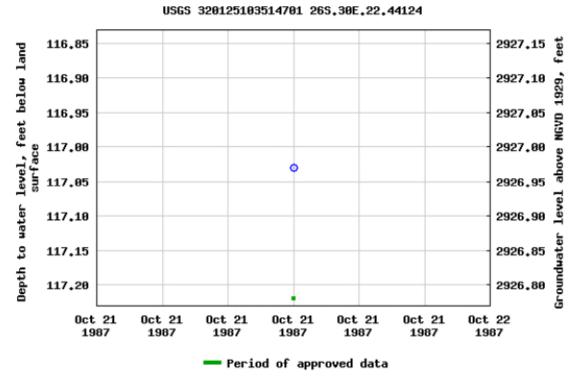
site_no list =

• 320125103514701

GO

Minimum number of levels = 1

Save file of selected sites to local disk for future upload


USGS 320125103514701 26S.30E.22.44124

Available data for this site Groundwater: Field measurements \checkmark

Eddy County, New Mexico Hydrologic Unit Code 13070001 Latitude 32°01'25", Longitude 103°51'47" NAD27 Land-surface elevation 3,044 feet above NGVD29

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Breaks in the plot represent a gap of at least one year between field measurements.

Download a presentation-quality graph

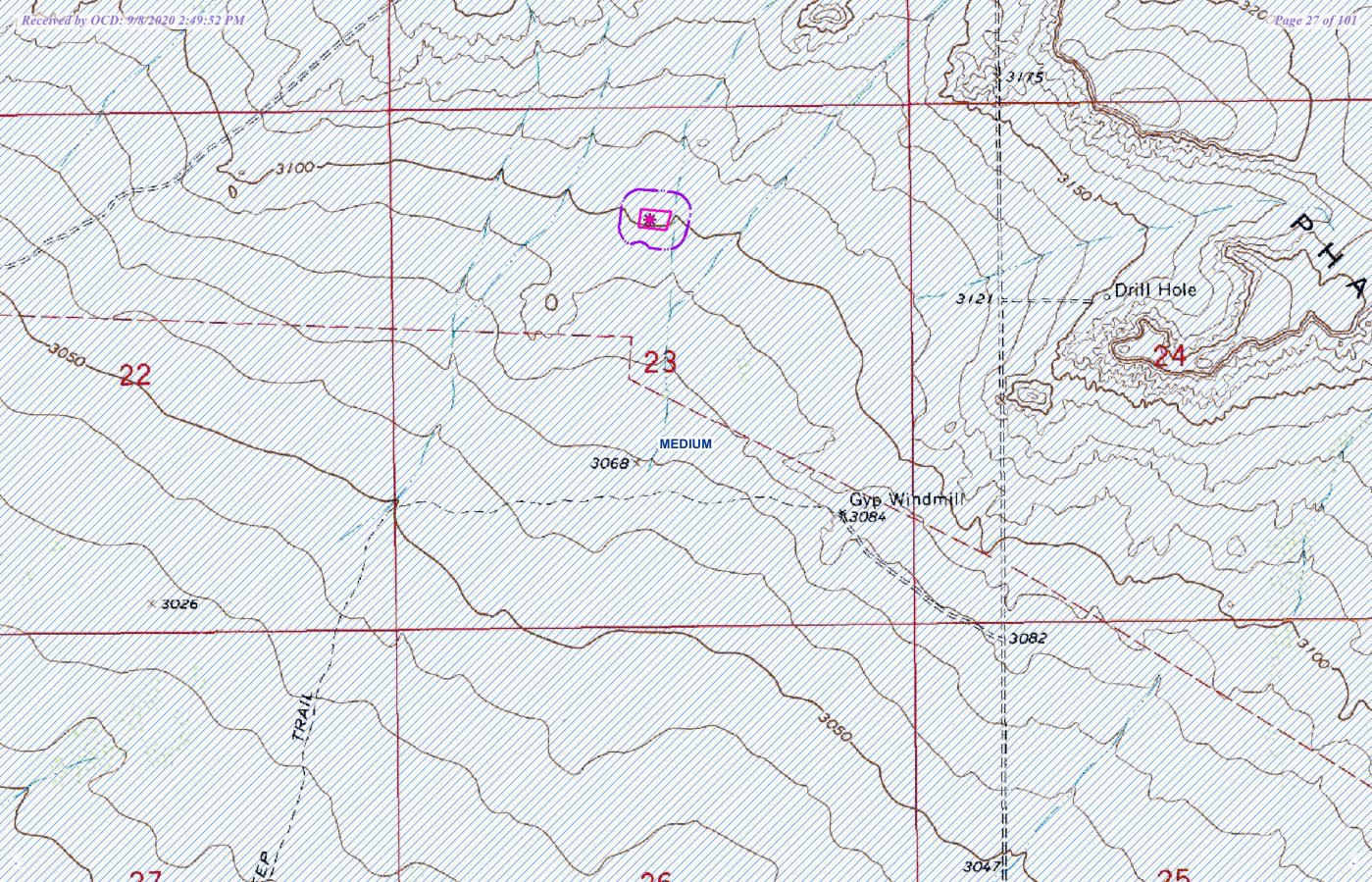
Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

AccessibilityPlug-InsFOIAPrivacyPolicies and NoticesU.S. Department of the InteriorU.S. Geological SurveyTitle:Groundwater for USA:Water LevelsURL:https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2019-11-21 10:03:30 EST 0.54 0.49 nadww01

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(qua						IE 3=SW	,	33 UTM in meters)		(In feet	:)
POD Number	POD Sub-	2 a 1 m ft		Q		See	Tura	Dna	х	Y	-	-	Water Column
C 01360	Code basin (CUB	ED					26S		6 02997	3548152	770	173	597
C 01361	CUB	ED	3	4	3	05	26S	30E	603240		775	184	591
C 02165	С	ED				24	26S	30E	610036	3544121* 🌍	440	180	260
C 03483	С	ED	4	4	4	05	26S	30E	604296	3548251 🌍	700	200	500
C 03581 POD1	CUB	ED	4	4	4	05	26S	30E	604298	3548291 🌍	800	320	480
C 04068 POD1	CUB	ED	1	3	1	16	26S	30E	604397	3546018 🌍			
										Average Depth to	Water:	211 f	eet
										Minimum	n Depth:	173 f	eet
										Maximum	Depth:	320 f	eet
Record Count: 6													


Record Count: 6

PLSS Search:

Township: 26S Range: 30E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

	25 Sc				
6 40	5	4	3	2	1
7	8	9	10 40	11	12
18	17	16	15 <mark>60</mark>	14	13
19	20	21	22	23	24
30 30	29	28	27	26	25
31	32 115	33	34	35	36

	26 Sc	outh	29	East	
6	5 78	4	3	2	1
7	8	9	10	11	12
18	17	16 125	15	14	13
19	20	21	22 57 69	23	24
30 🛡	29	28	27	26	25
31	32	33	34	35	36

Water Well Data
Average Depth to Groundwater (ft)
EOG - El Paso 23 Federal #2 TB

	25 So	outh	30		
6	5	4	3	2 295	1
7 264	8	9 295	10	11	12 390
18	17	16	15	14	13
19	20	21 265 268	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	26 So	outh	30	East	
6	5 179	4	3	2	1
	180				
7	8	9	10	11	12
	172				
18	17	16	15	14	13
19	20	21	22	23	24
			117		180
30	29	28	27	26	25
31	32	33	34	35	36

	25 Sc	outh	31	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21 <mark>390</mark> 290	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	26 Sc	outh	31	East	
6	5	4	3	2	1 335
					287
7	8 295	9	10	11	12
	275				
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

- 88 New Mexico State Engineers Well Reports
- 105 USGS Well Reports
- **90** Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- **121** Abandoned Waterwell (recently measured)

-

•

Appendix C

TE TET	TETRA TECH			H-1	Soil Drilling Log with Field Testing Results			
	oject Name : EOG EL Paso 23 Federal Tai Project No. : 212C-MD-02003	nk Battery				Tuesday, June Devin Domingu		
	Location : Eddy County, NM		-		oumpion :	Dovin Doningu	02	
C	Coordinates : 32.031989 -103.852262		-		Driller :	Scarborough D	rilling	
	Elevation : NA		-		Method :	Air Rotary		
Depth (ft.) WL	Soil Description	Organic Analyzer (ppm)	Chloride Field Test (ppm)	Depth (ft.) WL	Soil Description		Organic Analyzer (ppm)	Chloride Field Test (ppm)
° — [Brown silty sand with gravel, HO, HS	151.3		50				
	Brown silty sand, HO	186.7						
5	Brown/black sand, HO, HS Black silty sand, HO, HS	235.8 261.1		55 				
	Black silty sand, HO, HS			60				
15	Dark brown/black silty sand, HO, HS	108.8	765					
	Dark brown/black silty sand, HO, HS	1,444	1.19 ppt					
25	Brown silty sand, HO, LS	165.8	1.27 ppt					
30	Brown silty sand, HO, LS	1,475	1.42 ppt	80				
35	Light brown silty sand, no odor, no staining	23.6	422	85				
40	Light brown silty sand, no odor, no staining	18.4	394	90				
35 40 45 50	Light brown silty sand, no odor, no staining	4.5	327	95 100 				

* H.O. = Heavy Odor

* H.S. = Heavy Staining

* L.O. = Low Odor

* L.S. = Low Staining

BH-1

Soil Drilling Log with ts

-

•

Appendix D

Analytical Report 655975

for Tetra Tech- Midland

Project Manager: Mike Carmona

El Paso 23 Fed 2 TB

212C-MD-02003

20-MAR-20

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483) Received by OCD: 9/8/2020 2:49:52 PM

20-MAR-20

Project Manager: Mike Carmona **Tetra Tech- Midland** 901 West Wall ST Midland, TX 79701

Reference: XENCO Report No(s): 655975 El Paso 23 Fed 2 TB Project Address: Eddy Co, NM

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 655975. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 655975 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Vramer

Jessica Kramer Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id

Trench 1 (0-1')
Trench 1 (1-1.5')
Trench 1 (2-2.5')
Trench 1 (3-3.5')
Trench 1 (4-4.5')
Trench 1 (5-5.5')
Trench 1 (6-6.5')
Trench 1 (7-7.5')
Trench 1 (8-8.5')
Trench 1 (9-9.5')
Trench 1 (10')
Trench 1 (11')
Trench 1 (12')
Trench 1 (13')

.

Sample Cross Reference 655975

Tetra Tech- Midland, Midland, TX

El Paso 23 Fed 2 TB

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	03-16-20 00:00	0 - 1 ft	655975-001
S	03-16-20 00:00	1 - 1.5 ft	655975-002
S	03-16-20 00:00	2 - 2.5 ft	655975-003
S	03-16-20 00:00	3 - 3.5 ft	655975-004
S	03-16-20 00:00	4 - 4.5 ft	655975-005
S	03-16-20 00:00	5 - 5.5 ft	655975-006
S	03-16-20 00:00	6 - 6.5 ft	655975-007
S	03-16-20 00:00	7 - 7.5 ft	655975-008
S	03-16-20 00:00	8 - 8.5 ft	655975-009
S	03-16-20 00:00	9 - 9.5 ft	655975-010
S	03-17-20 00:00	10 - 1 ft	655975-011
S	03-17-20 00:00	11 - 1 ft	655975-012
S	03-17-20 00:00	12 - 1 ft	655975-013
S	03-17-20 00:00	13 - 1 ft	655975-014

.

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: El Paso 23 Fed 2 TB

Project ID: 212C-MD-02003 Work Order Number(s): 655975 Report Date: 20-MAR-20 Date Received: 03/17/2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3120001 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3120167 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3120331 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

212C-MD-02003

Mike Carmona

Eddy Co, NM

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 655975

Tetra Tech- Midland, Midland, TX Project Name: El Paso 23 Fed 2 TB

Date Received in Lab: Tue Mar-17-20 02:13 pm Report Date: 20-MAR-20 Project Manager: Jessica Kramer

	Lab Id:	655975-(001	655975-0	02	655975-003		655975-004		655975-005		655975-006	
Analysis Proprested	Field Id:	Trench 1 (0-1')		Trench 1 (1-1.5') Trench 1 (2-2.5')		Trench 1 (3-3.5')		Trench 1 (4-4.5')		Trench 1 (5-5.5')			
Analysis Requested		0-1 ft		1-1.5 ft	t	2-2.5 ft	t	3-3.5 f	t	4-4.5 f	t	5-5.5 ft	t
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Mar-16-20	00:00	Mar-16-20 (00:00	Mar-16-20 (00:00	Mar-16-20	00:00	Mar-16-20	00:00	Mar-16-20 (00:00
BTEX by EPA 8021B	Extracted:	Mar-17-20	15:15	Mar-17-20 1	15:15	Mar-17-20	15:15	Mar-17-20	15:15	Mar-17-20	15:15	Mar-17-20 1	15:15
	Analyzed:	Mar-17-20	19:34	Mar-17-20 1	19:55	Mar-17-20 2	20:15	Mar-17-20 2	20:36	Mar-17-20	20:56	Mar-17-20 2	21:16
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.200	0.200	0.692	0.400	6.55	0.398	2.53	0.395	3.96	0.399	6.03	0.398
Toluene		0.373	0.200	47.5	0.400	231 D	1.99	52.4	0.395	79.2	0.399	174 D	0.994
Ethylbenzene		0.901	0.200	6.56	0.400	15.3	0.398	5.29	0.395	10.1	0.399	15.2	0.398
m,p-Xylenes		23.8	0.399	155	0.800	455 D	3.98	93.9	0.791	156	0.798	346 D	1.99
o-Xylene		24.2	0.200	46.7	0.400	67.4	0.398	24.2	0.395	44.4	0.399	65.6	0.398
Total Xylenes		48.0	0.200	202	0.400	522	0.398	118	0.395	200	0.399	412	0.398
Total BTEX		49.3	0.200	256	0.400	775	0.398	178	0.395	294	0.399	607	0.398
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-17-20	17:00	Mar-17-20 17:00		Mar-17-20 17:00 Mar-17-20 17:00		Mar-17-20 17:00		Mar-17-20 17:00			
	Analyzed:	Mar-17-20	18:14	Mar-17-20 18:20		Mar-17-20 18:38		Mar-17-20 18:43		Mar-17-20 18:49		Mar-17-20 18:55	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		63.1	10.1	425	10.1	4030	10.0	178	10.1	37.1	10.1	338	10.0
TPH By SW8015 Mod	Extracted:	Mar-17-20	16:00	Mar-17-20 16:00		Mar-17-20 16:00		Mar-17-20 16:00		Mar-17-20 16:00		** ** ** **	
Analyzed:		Mar-17-20	16:01	Mar-17-20 21:12		Mar-17-20 21:33		Mar-17-20 21:53		Mar-17-20 22:13		Mar-17-20 20:52	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		2910	50.2	8760	249	11900	251	8630	250	8060	251	9940	250
Diesel Range Organics (DRO)		3770	50.2	4730	249	5690	251	4270	250	4020	251	4350	250
Motor Oil Range Hydrocarbons (MRO)		<50.2	50.2	<249	249	<251	251	<250	250	<251	251	<250	250
Total TPH		6680	50.2	13500	249	17600	251	12900	250	12100	251	14300	250

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kenner

Jessica Kramer Project Manager

Page 5 of 32

212C-MD-02003

Mike Carmona

Eddy Co, NM

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 655975

Tetra Tech- Midland, Midland, TX Project Name: El Paso 23 Fed 2 TB

Date Received in Lab: Tue Mar-17-20 02:13 pm Report Date: 20-MAR-20 Project Manager: Jessica Kramer

	1 1												
	Lab Id:	655975-0	007	655975-0	08	655975-0	09	655975-0	10	655975-0	11	655975-0	12
Analysis Requested	Field Id:	Trench 1 (6	-6.5')	Trench 1 (7-	-7.5')	Trench 1 (8-	8.5')	Trench 1 (9-	-9.5')	Trench 1 (10')	Trench 1 (1	11')
Analysis Kequesieu	Depth:	6-6.5 f	ìt	7-7.5 ft	t	8-8.5 ft		9-9.5 ft	t	10-1 ft		11-1 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Mar-16-20	00:00	Mar-16-20 (00:00	Mar-16-20 (00:00	Mar-16-20 (00:00	Mar-17-20 (00:00	Mar-17-20 0	00:00
BTEX by EPA 8021B	Extracted:	Mar-17-20	15:15	Mar-18-20	11:00	Mar-18-20 1	1:00	Mar-19-20	13:34	Mar-19-20 1	3:34	Mar-19-20 1	3:34
	Analyzed:	Mar-17-20	21:37	Mar-18-20	15:48	Mar-18-20 1	6:08	Mar-19-20	17:06	Mar-19-20 1	7:26	Mar-19-20 1	8:48
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		2.72	0.399	2.01	0.998	3.78	1.00	6.87	3.99	6.85	4.01	8.39	4.03
Toluene		69.3	0.399	61.7	0.998	83.9	1.00	175	3.99	247	4.01	262	4.03
Ethylbenzene		8.54	0.399	8.04	0.998	9.96	1.00	18.0	3.99	28.4	4.01	28.4	4.03
m,p-Xylenes		143	0.798	144	2.00	175	2.00	306	7.98	502	8.02	476	8.06
o-Xylene		37.0	0.399	34.4	0.998	41.7	1.00	77.0	3.99	127	4.01	123	4.03
Total Xylenes		180	0.399	178	0.998	217	1.00	383	3.99	629	4.01	599	4.03
Total BTEX		261	0.399	250	0.998	314	1.00	583	3.99	911	4.01	898	4.03
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-17-20	17:00	Mar-17-20	17:00	Mar-17-20 1	7:00	Mar-17-20	17:00	Mar-17-20 1	7:00	Mar-17-20 1	7:00
	Analyzed:	Mar-17-20	19:01	Mar-17-20	19:06	Mar-17-20 1	9:12	Mar-17-20	19:30	Mar-17-20 1	9:47	Mar-17-20 1	9:53
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		61.4	9.98	364	9.92	241	10.0	78.4	10.0	1040	10.1	689	9.96
TPH By SW8015 Mod	Extracted:	** ** **	**	Mar-18-20	16:30	Mar-18-20 1	6:30	Mar-18-20	14:50	Mar-18-20 1	4:50	Mar-18-20 1	4:50
	Analyzed:	Mar-17-20	16:48	Mar-18-20	17:06	Mar-18-20 1	7:28	Mar-18-20	17:48	Mar-18-20 1	8:09	Mar-18-20 1	6:46
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		4350	49.8	8200	251	10200	249	12300	251	16500	249	14200	249
Diesel Range Organics (DRO)		2090	49.8	4140	251	4930	249	5800	251	10600	249	7360	249
Motor Oil Range Hydrocarbons (MRO)		<49.8	49.8	<251	251	<249	249	<251	251	<249	249	<249	249
Total TPH		6440	49.8	12300	251	15100	249	18100	251	27100	249	21600	249

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kenner

Jessica Kramer Project Manager

Page 6 of 32

212C-MD-02003

Mike Carmona

Eddy Co, NM

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 655975

Tetra Tech- Midland, Midland, TX Project Name: El Paso 23 Fed 2 TB Page 38 of 101

Date Received in Lab:Tue Mar-17-20 02:13 pmReport Date:20-MAR-20Project Manager:Jessica Kramer

	(55075.(12	655075.0	1.4				
Field Id:	Trench 1 ((12')	Trench 1 (13')				
Depth:	12-1 f	t	13-1 ft					
Matrix:	SOIL		SOIL					
Sampled:	Mar-17-20	00:00	Mar-17-20 (00:00				
Extracted:	Mar-19-20	13:34	Mar-19-20 1	3:34		1		
Analyzed:	Mar-19-20	19:08	Mar-19-20 1	9:29				
Units/RL:	mg/kg	RL	mg/kg	RL				
	4.19	2.00	3.38	1.98				
	149	2.00	99.9	1.98				
	15.9	2.00	11.1	1.98				
	278	3.99	196	3.97				
	70.4	2.00	49.3	1.98				
	348	2.00	245	1.98				
	517	2.00	360	1.98				
Extracted:	Mar-17-20	17:00	Mar-17-20 1	7:00				
Analyzed:	Mar-17-20	19:58	Mar-17-20 2	20:04				
Units/RL:	mg/kg	RL	mg/kg	RL				
	570	9.98	242	9.92				
Extracted:	Mar-18-20	14:50	Mar-18-20 1	4:50				
Analyzed:	Mar-18-20	17:06	Mar-18-20 1	7:28				
Units/RL:	mg/kg	RL	mg/kg	RL				
	5820	249	8160	251				
	4100	249	4440	251				
	<249	249	<251	251				
	9920	249	12600	251				
	Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed:	Field Id: Trench 1 (Depth: 12-1 f Matrix: SOIL Sampled: Mar-17-20 Extracted: Mar-19-20 Analyzed: Mar-19-20 Units/RL: mg/kg 149 15.9 278 70.4 348 517 Extracted: Mar-17-20 Analyzed: Mar-17-20 Units/RL: mg/kg 570 517 Extracted: Mar-17-20 Units/RL: mg/kg 5700 Extracted: Mar-18-20 Units/RL: Units/RL: mg/kg 5820 4100 <249	Field Id: Trench 1 (12') Depth: 12-1 ft Matrix: SOIL Sampled: Mar-17-20 00:00 Extracted: Mar-17-20 13:34 Analyzed: Mar-19-20 13:34 Manlyzed: Mar-19-20 19:08 Units/RL: mg/kg RL 4.19 2.00 15.9 2.00 2778 3.99 70.4 2.00 348 2.00 517 2.00 Extracted: Mar-17-20 17:00 Analyzed: Mar-17-20 19:58 Units/RL: mg/kg RL 570 9.98 Extracted: Mar-18-20 14:50 Analyzed: Mar-18-20 17:06 Units/RL: mg/kg RL 5820 249 4100 249 4100 249 249 249	Field Id: Trench 1 (12') Trench 1 (Depth: 12-1 ft 13-1 ft Matrix: SOIL SOIL Sampled: Mar-17-20 00:00 Mar-17-20 0 Extracted: Mar-19-20 13:34 Mar-19-20 0 Analyzed: Mar-19-20 19:08 Mar-19-20 0 Units/RL: mg/kg RL mg/kg 149 2.00 3.38 149 2.00 15.9 2.00 11.1 11.1 278 3.99 196 196 70.4 2.00 49.3 360 Extracted: Mar-17-20 17:00 Mar-17-20 17 Analyzed: Mar-17-20 19:58 Mar-17-20 17 Analyzed: Mar-17-20 19:58 Mar-17-20 17 Analyzed: Mar-18-20 14:50 Mar-18-20 14:50 Mar-18-20 14:50 Mar-18-20 14:50 Mar-18-20 17:06 Analyzed: Mar-18-20 17:06 Mar-18-20 17:06 Mar-18-20 17:06 Mar-18-20 17:06 Mar-18-20 17:06 Mar-18-20 17:06 Mar-18-20 17:06 Mar-18-20 17:06 Marolyzed: Mar-18-20 17:06 Mar-18-20	Field Id: Trench 1 (12') Trench 1 (13') Depth: 12-1 ft 13-1 ft Matrix: SOIL SOIL Sampled: Mar-17-20 00:00 Mar-17-20 00:00 Extracted: Mar-19-20 13:34 Mar-19-20 13:34 Analyzed: Mar-19-20 19:08 Mar-19-20 19:29 Units/RL: mg/kg RL mg/kg RL 149 2.00 3.38 1.98 200 11.1 1.98 15.9 2.00 11.1 1.98 278 3.99 196 3.97 70.4 2.00 49.3 1.98 Extracted: Mar-17-20 17:00 Mar-17-20 17:00 Analyzed: Mar-17-20 17:00 Mar-17-20 17:00 Analyzed: Mar-17-20 19:58 Mar-17-20 20:04 Units/RL: mg/kg RL mg/kg RL Units/RL: mg/kg RL mg/kg RL Units/RL: Mar-18-20 17:00 Mar-18-20 14:50 Mar-18-20 17:28 L Mar-18-20 17:06 Mar-18-20 17:28 Mar-18-20 17:28 U	Field Id: Trench 1 (12') Trench 1 (13') Depth: 12-1 ft 13-1 ft Matrix: SOIL SOIL Sampled: Mar-17-20 00:00 Mar-17-20 00:00 Extracted: Mar-19-20 13:34 Mar-19-20 13:34 Analyzed: Mar-19-20 19:08 Mar-19-20 19:29 Units/RL: mg/kg RL mg/kg RL 149 2.00 3.38 1.98 15.9 2.00 11.1 1.98 278 3.99 196 3.97 70.4 2.00 245 1.98 Extracted: Mar-17-20 17:00 Mar-17-20 17:00 Analyzed: Mar-17-20 19:58 Mar-17-20 0:04 Units/RL: mg/kg RL mg/kg RL Mar-17-20 19:58 Mar-17-20 0:04 Mar-17-20 0:04 Units/RL: Mg/kg RL mg/kg RL Mar-18-20 14:50 Mar-18-20 14:50 Mar-18-20 14:50 Analyzed: Mar-18-20 14:50 Mar-18-20 14:50 Analyzed: Mar-18-20 17:06 Mar-18-20 17:28 Units/RL:	Field Id: Trench 1 (12) Trench 1 (13) Depth: 12-1 ft 13-1 ft Matrix: SOIL SOIL Sampled: Mar-17-20 00:00 Mar-17-20 00:00 Extracted: Mar-19-20 13:34 Mar-19-20 13:34 Analyzed: Mar-19-20 19:08 Mar-19-20 19:29 Units/RL: mg/kg RL mg/kg RL 15.9 2.00 11.1 1.98 Call 3.39 196 3.97 Mar-17-20 17:00 Mar-17-20 17:00 Mar-17-20 17:00 Analyzed: Mar-17-20 17:00 Mar-17-20 17:00 Analyzed: Mar-17-20 17:00 Mar-17-20 20:04 Units/RL: mg/kg RL mg/kg RL Mar-18-20 17:00 Mar-17-20 20:04 Mar-17-20 20:04 Units/RL: mg/kg RL mg/kg RL Mar-18-20 14:50 Mar-18-20 14:50 Mar-18-20 14:50 Analyzed: Mar-18-20 14:50 Mar-18-20 17:28 Units/RL: mg/kg RL mg/kg RL Mar-18-20 17:28 Mar-18-20 17:28 Mar-18-20 17:28	Field Hz Trench 1 (12) Trench 1 (13) Depth: 12-1 ft 13-1 ft Marix: SOIL SOIL Samplet: Mar-17-20 0:00 Mar-17-20 0:00 Extracted: Mar-19-20 1:3:34 Mar-19-20 1:29 Marine: Mar-19-20 1:29 Mar-19-20 1:29 Units/RL: mg/kg RL mg/kg RL 1 1.11 1.98 Conceptient Conceptient 101 2.00 9.99 1.98 Conceptient Conceptient 1149 2.00 9.99 1.98 Conceptient Conceptient 115.9 2.00 11.1 1.98 Conceptient Conceptient 12.1 2.00 4.19 3.97 Conceptient Conceptient 12.1 2.00 4.91 3.98 Conceptient Conceptient 13.1 19.8 Conceptient 4.99 1.98 Conceptient 13.2 2.00 4.91 3.98 Conceptient Conceptient 14.1 2.00 4.91 3.98 Conceptient Con

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kenner

Jessica Kramer Project Manager

Page 7 of 32

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: El Paso 23 Fed 2 TB

Work Ord Lab Batch #:		Sample: 655975-001 / SMP	Batc	-	: 212C-MD-0 : Soil		
Units:	mg/kg	Date Analyzed: 03/17/20 16:01	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane	e		126	100	126	70-135	
o-Terphenyl			52.0	50.2	104	70-135	
Lab Batch #:	3120026	Sample: 655975-007 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/17/20 16:48	SU	JRROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane			131	99.5	132	70-135	
o-Terphenyl			53.9	49.8	108	70-135	
Lab Batch #:	3120001	Sample: 655975-001 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/17/20 19:34	su	JRROGATE R	ECOVERY	STUDY	
		A polytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
140.01		Analytes	0.0050	0.0000		50.100	
1,4-Difluorobe			0.0259	0.0300	86	70-130	
4-Bromofluoro Lab Batch #:		Sample: 655075-002 / SMD	0.0336 Batc	0.0300	112	70-130	
		Sample: 655975-002 / SMP					
Units:	mg/kg	Date Analyzed: 03/17/20 19:55	SU	JRROGATE R	ECOVERY S	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobe	enzene		0.0253	0.0300	84	70-130	
4-Bromofluoro	benzene		0.0323	0.0300	108	70-130	
Lab Batch #:	3120001	Sample: 655975-003 / SMP	Batc	h: 1 Matrix	: Soil	1	I
Units:	mg/kg	Date Analyzed: 03/17/20 20:15	SU	JRROGATE R	ECOVERY S	STUDY	
		by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1,4-Difluorobe			0.0235	0.0300	78	70-130	
4-Bromofluoro	benzene		0.0342	0.0300	114	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: El Paso 23 Fed 2 TB

Lab Batch #:	ers: 655975 3120001	Sample: 655975-004 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/17/20 20:36	SU	RROGATE R	ECOVERY	STUDY	
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluorobe	enzene		0.0278	0.0300	93	70-130	
4-Bromofluor	obenzene		0.0333	0.0300	111	70-130	
Lab Batch #:	3120026	Sample: 655975-006 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/17/20 20:52	SU	RROGATE R	ECOVERY S	STUDY	
		Sy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1-Chlorooctan		1 11111 y t t b	86.4	99.9	86	70-135	
o-Terphenyl			52.2	50.0	104	70-135	
Lab Batch #:	3120001	Sample: 655975-005 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/17/20 20:56	st	RROGATE R	ECOVERY	STUDY	
		by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluorobe	enzene		0.0251	0.0300	84	70-130	
4-Bromofluor			0.0345	0.0300	115	70-130	
Lab Batch #:	3120049	Sample: 655975-002 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/17/20 21:12	SU	RROGATE R	ECOVERY	STUDY	
		Sy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctan		Anarytes	92.7	99.5	93	70-135	
o-Terphenyl			54.8	49.8	93	70-135	
Lab Batch #:	3120001	Sample: 655975-006 / SMP	Batc			/0-155	
Units:	mg/kg	Date Analyzed: 03/17/20 21:16		RROGATE R		STUDY	
	BTEX	L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluorobe	enzene		0.0237	0.0300	79	70-130	
4-Bromofluor	henzene		0.0384	0.0300	128	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: El Paso 23 Fed 2 TB

	-	Sample: 655975-003 / SMP					
Units:	mg/kg	Date Analyzed: 03/17/20 21:33	SU	RROGATE R	ECOVERY	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooctan	e		81.2	101	80	70-135	
o-Terphenyl			55.5	50.3	110	70-135	
Lab Batch #:	3120001	Sample: 655975-007 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/17/20 21:37	SU	RROGATE R	ECOVERY	STUDY	
		by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1,4-Difluorob		Anaryus	0.0275	0.0300	92	70-130	
4-Bromofluor			0.0273	0.0300	110	70-130	
Lab Batch #:		Sample: 655975-004 / SMP	Batc			70-150	
Units:	mg/kg	Date Analyzed: 03/17/20 21:53		RROGATE R		STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes	[A]	[D]	[D]	70K	
1-Chlorooctan	e		77.6	100	78	70-135	
o-Terphenyl			53.2	50.1	106	70-135	
Lab Batch #:	3120049	Sample: 655975-005 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/17/20 22:13	st	RROGATE R	ECOVERY	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctan	e		77.9	100	78	70-135	
o-Terphenyl			56.6	50.2	113	70-135	
Lab Batch #:	3120167	Sample: 655975-008 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/18/20 15:48	SU	RROGATE R	ECOVERY	STUDY	
		L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluorob			0.0303	0.0300	101	70-130	
4-Bromofluor	obenzene		0.0282	0.0300	94	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: El Paso 23 Fed 2 TB

Lab Batch #:	ers: 655975 3120167	Sample: 655975-009 / SMP	Batc	Project ID h: 1 Matrix			
Units:	mg/kg	Date Analyzed: 03/18/20 16:08	su	JRROGATE R	ECOVERY S	STUDY	
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1,4-Difluorobe	enzene		0.0301	0.0300	100	70-130	
4-Bromofluoro			0.0283	0.0300	94	70-130	
Lab Batch #:	3120217	Sample: 655975-012 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/18/20 16:46	SU	JRROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		Anarytes	99.1	99.7	99	70-135	
o-Terphenyl			55.5	49.9	111	70-135	
Lab Batch #:	3120220	Sample: 655975-008 / SMP	Batc				
Units:	mg/kg	Date Analyzed: 03/18/20 17:06	su	JRROGATE R	ECOVERY S	STUDY	
	TPH B	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane	e		94.0	100	94	70-135	
o-Terphenyl			53.9	50.1	108	70-135	
Lab Batch #:	3120217	Sample: 655975-013 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/18/20 17:06	SU	JRROGATE R	ECOVERY S	STUDY	
	ТРН В	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane	e		95.0	99.5	95	70-135	
o-Terphenyl			60.8	49.8	122	70-135	
Lab Batch #:	3120220	Sample: 655975-009 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/18/20 17:28	SU	JRROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane	e		97.6	99.7	98	70-135	
o-Terphenyl			55.8	49.9	112	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: El Paso 23 Fed 2 TB

Lab Batch #:	ers: 655975 3120217	Sample: 655975-014 / SMP	Bate		: 212C-MD-0 : Soil		
Units:	mg/kg	Date Analyzed: 03/18/20 17:28	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH B	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctan	e		81.5	100	82	70-135	
o-Terphenyl			62.9	50.2	125	70-135	
Lab Batch #:	3120220	Sample: 655975-010 / SMP	Bate	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/18/20 17:48	SU	JRROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctan			116	101	115	70-135	
o-Terphenyl			55.7	50.3	111	70-135	
Lab Batch #:	3120220	Sample: 655975-011 / SMP	Bato				
Units:	mg/kg	Date Analyzed: 03/18/20 18:09	SU	JRROGATE R	ECOVERY	STUDY	
	TPH B	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctan	e		113	99.5	114	70-135	
o-Terphenyl			57.1	49.8	115	70-135	
Lab Batch #:	3120331	Sample: 655975-010 / SMP	Bate	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/19/20 17:06	SU	JRROGATE R	ECOVERY S	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1.4-Difluorobe		Analytes	0.0311	0.0300	104	70-130	
4-Bromofluoro			0.0311	0.0300	93	70-130	
Lab Batch #:		Sample: 655975-011 / SMP	Bate			10-150	
Units:	mg/kg	Date Analyzed: 03/19/20 17:26		JRROGATE R		STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluorobe	enzene		0.0307	0.0300	102	70-130	
4-Bromofluoro	benzene		0.0298	0.0300	99	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: El Paso 23 Fed 2 TB

Lab Batch #:		Sample: 655975-012 / SMP	Batc	h: 1 Matrix	. Boll		
Units:	mg/kg	Date Analyzed: 03/19/20 18:48	SU	JRROGATE R	ECOVERY	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluorobe	enzene		0.0307	0.0300	102	70-130	
4-Bromofluor	obenzene		0.0297	0.0300	99	70-130	
Lab Batch #:	3120331	Sample: 655975-013 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/19/20 19:08	SU	JRROGATE R	ECOVERY	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1.4-Difluorobe			0.0309	0.0300	103	70-130	
4-Bromofluor			0.0292	0.0300	97	70-130	
Lab Batch #:		Sample: 655975-014 / SMP	Batc			70 150	
Units:	mg/kg	Date Analyzed: 03/19/20 19:29		JRROGATE R		STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes	[**]		[D]	/011	
1,4-Difluorobe	enzene		0.0310	0.0300	103	70-130	
4-Bromofluor	obenzene		0.0297	0.0300	99	70-130	
Lab Batch #:	3120026	Sample: 7699135-1-BLK / B	LK Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/17/20 13:59	SU	JRROGATE R	ECOVERY	STUDY	
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
r		Analytes			[D]		
1-Chlorooctan	e		90.6	100	91	70-135	
o-Terphenyl		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	49.7	50.0	99	70-135	
Lab Batch #:		Sample: 7699137-1-BLK / B.					
Units:	mg/kg	Date Analyzed: 03/17/20 13:59	SU	JRROGATE R	ECOVERY	STUDY	
		3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctan	e		86.1	100	86	70-135	
o-Terphenyl			46.4	50.0	93	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: El Paso 23 Fed 2 TB

Units:	mg/kg	Date Analyzed: 03/17/20 16:51	CIT.		FCOVEDE		
UIIII.S.	mg/kg	Date Analyzeu. 05/17/20 10.51	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorobe	enzene		0.0323	0.0300	108	70-130	
4-Bromofluoro			0.0291	0.0300	97	70-130	
Lab Batch #:	3120167	Sample: 7699151-1-BLK / 1	BLK Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/18/20 11:23	SU	RROGATE R	ECOVERY	STUDY	
		L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobe		Analytes	0.0339	0.0300	113	70-130	
4-Bromofluoro			0.0339	0.0300	88	70-130	
Lab Batch #:		Sample: 7699257-1-BLK /			Solid	/0-130	
Units:	mg/kg	Date Analyzed: 03/18/20 14:02			-		
omts.	IIIg/ Kg	Date Milay201. 05/10/20 14.02	50	RROGATE R	LCOVERY	STUDY	
	TPH B	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane	e		89.1	100	89	70-135	
o-Terphenyl			49.2	50.0	98	70-135	
Lab Batch #:	3120220	Sample: 7699259-1-BLK / 1	BLK Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/18/20 14:02	SU	RROGATE R	ECOVERY	STUDY	
	TPH E	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane	e		106	100	106	70-135	
o-Terphenyl			53.6	50.0	107	70-135	
Lab Batch #:	3120331	Sample: 7699269-1-BLK /	BLK Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/19/20 12:21	SU	RROGATE R	ECOVERY	STUDY	
		K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
4 4		Analytes					
1,4-Difluorobe			0.0326	0.0300	109	70-130	
4-Bromofluoro	benzene		0.0283	0.0300	94	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: El Paso 23 Fed 2 TB

		Sample: 7699135-1-BKS /			-		
Units:	mg/kg	Date Analyzed: 03/17/20 14:20	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane	e		110	100	110	70-135	
o-Terphenyl			55.8	50.0	112	70-135	
Lab Batch #:	3120049	Sample: 7699137-1-BKS /	BKS Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/17/20 14:20	SU	JRROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane			127	100	127	70-135	
o-Terphenyl			55.6	50.0	111	70-135	
Lab Batch #:	3120001	Sample: 7699108-1-BKS /	BKS Batc	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/17/20 17:12	SU	JRROGATE R	ECOVERY	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorobe	nzene		0.0325	0.0300	108	70-130	
4-Bromofluoro	benzene		0.0274	0.0300	91	70-130	
Lab Batch #:	3120167	Sample: 7699151-1-BKS /	BKS Batc	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/18/20 11:43	SU	JRROGATE R	ECOVERY S	STUDY	
		K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobe			0.0321	0.0300	107	70-130	
4-Bromofluoro			0.0241	0.0300	80	70-130	
Lab Batch #:	3120217	Sample: 7699257-1-BKS /			: Solid		
Units:	mg/kg	Date Analyzed: 03/18/20 14:23	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH E	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane	e		111	100	111	70-135	
o-Terphenyl			49.1	50.0	98	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: El Paso 23 Fed 2 TB

Work Orde Lab Batch #:		Sample: 7699259-1-BKS /	BKS Bate	Project ID h: 1 Matrix			
Units:	mg/kg	Date Analyzed: 03/18/20 14:23	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane			120	100	120	70-135	
o-Terphenyl			56.1	50.0	112	70-135	
Lab Batch #:	3120331	Sample: 7699269-1-BKS /	BKS Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/19/20 12:41	SU	JRROGATE R	ECOVERY S	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorober			0.0322	0.0300	107	70-130	
4-Bromofluorol	benzene		0.0279	0.0300	93	70-130	
Lab Batch #:	3120026	Sample: 7699135-1-BSD /	BSD Batc	h: 1 Matrix	: Solid	1	1
Units:	mg/kg	Date Analyzed: 03/17/20 14:40	SU	JRROGATE R	ECOVERY	STUDY	
	TPH F	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane			109	100	109	70-135	
o-Terphenyl			54.8	50.0	110	70-135	
Lab Batch #:	3120049	Sample: 7699137-1-BSD /	BSD Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/17/20 14:40	SU	JRROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		•	113	100	113	70-135	
o-Terphenyl			50.1	50.0	100	70-135	
Lab Batch #:	3120001	Sample: 7699108-1-BSD /	BSD Batc	h: 1 Matrix	: Solid	1	1
Units:	mg/kg	Date Analyzed: 03/17/20 17:32	SU	JRROGATE R	ECOVERY S	STUDY	
		K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluorober			0.0324	0.0300	108	70-130	
4-Bromofluorol	penzene		0.0275	0.0300	92	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: El Paso 23 Fed 2 TB

	3120167	Sample: 7699151-1-BSD	BSD Bate		: Solid		
Units:	mg/kg	Date Analyzed: 03/18/20 12:04	SU	RROGATE R	ECOVERY	STUDY	
	BTEX	L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorobe	nzene		0.0332	0.0300	111	70-130	
4-Bromofluoro			0.0258	0.0300	86	70-130	
Lab Batch #:	3120217	Sample: 7699257-1-BSD	BSD Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/18/20 14:43	SU	RROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane			102	100	102	70-135	
o-Terphenyl			46.0	50.0	92	70-135	
Lab Batch #:	3120220	Sample: 7699259-1-BSD			: Solid		
Units:	mg/kg	Date Analyzed: 03/18/20 14:43	SU	RROGATE R	ECOVERY S	STUDY	
	ТРН В	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane	e		116	100	116	70-135	
o-Terphenyl			53.6	50.0	107	70-135	
Lab Batch #:	3120331	Sample: 7699269-1-BSD	BSD Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/19/20 13:01	SU	RROGATE R	ECOVERY S	STUDY	
		K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobe		1 1111 y tes	0.0325	0.0300	108	70-130	
4-Bromofluoro			0.0323	0.0300	95	70-130	
Lab Batch #:		Sample: 655954-001 S / N					
Units:	mg/kg	Date Analyzed: 03/17/20 15:21		RROGATE R	ECOVERY S	STUDY	
	TPH B	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane	e		120	100	120	70-135	
o-Terphenyl			59.2	50.2	118	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: El Paso 23 Fed 2 TB

Lab Batch #:	3120049	Sample: 655954-002 S / MS	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/17/20 15:21	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH B	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooctan	e		118	100	118	70-135	
o-Terphenyl			51.8	50.0	104	70-135	
Lab Batch #:	3120001	Sample: 655954-001 S / MS	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/17/20 17:53	SU	JRROGATE R	ECOVERY S	STUDY	
		by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1.4-Difluorobe			0.0323	0.0300	108	70-130	
4-Bromofluor			0.0273	0.0300	91	70-130	
Lab Batch #:		Sample: 656032-001 S / MS	Batc			70 150	
Units:	mg/kg	Date Analyzed: 03/18/20 12:24		JRROGATE R		STUDY	
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluorobe	enzene		0.0335	0.0300	112	70-130	
4-Bromofluor			0.0260	0.0300	87	70-130	
Lab Batch #:	3120217	Sample: 656032-001 S / MS	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/18/20 15:24	SU	JRROGATE R	ECOVERY S	STUDY	
		Sy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctan		Anaryus	118	99.5	119	70-135	
o-Terphenyl	~		53.9	49.8	119	70-135	
Lab Batch #:	3120220	Sample: 656034-001 S / MS	Batc			10 155	
Units:	mg/kg	Date Analyzed: 03/18/20 15:24		JRROGATE R		STUDY	
	TPH B	Sy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctan	e		116	100	116	70-135	
o-Terphenyl			57.6	50.2	115	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: El Paso 23 Fed 2 TB

Lab Batch #	ers: 65597: 3120331	Sample: 656196-001 S / M	S Batch	-	: 212C-MD-0 :: Soil	2005	
Units:	mg/kg	Date Analyzed: 03/19/20 13:22	SUF	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorob	enzene		0.0324	0.0300	108	70-130	
4-Bromofluor	obenzene		0.0287	0.0300	96	70-130	
Lab Batch #	3120026	Sample: 655954-001 SD / 1	MSD Batch	: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/17/20 15:41	SUF	RROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctar		Anarytes	115	100	115	70-135	
o-Terphenyl			57.5	50.2	115	70-135	
Lab Batch #:	3120040	Sample: 655954-002 SD / 1				/0-135	
Units:	mg/kg	Date Analyzed: 03/17/20 15:41					
Units.	iiig/kg	Date Analyzeu. 05/17/20 15.41	SUF	RROGATE R	ECOVERY S	STUDY	
	TPH F	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctar	ie		116	99.7	116	70-135	
o-Terphenyl			51.9	49.9	104	70-135	
Lab Batch #	: 3120001	Sample: 655954-001 SD / I	MSD Batch	: 1 Matrix	: Soil		1
Units:	mg/kg	Date Analyzed: 03/17/20 18:13	SUF	RROGATE R	ECOVERY S	STUDY	
		K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorob		Anarytes	0.0227	0.0200		70.120	
4-Bromofluor			0.0327	0.0300	109 92	70-130	
Lab Batch #:		Sample: 656032-001 SD / I				70-130	
Units:	mg/kg	Date Analyzed: 03/18/20 12:45					
01113.	mg/ng	Datt Analyzeu, 05/10/20 12.45	SUF	RROGATE R	LUVERY	STUDY	1
		K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorob	enzene		0.0333	0.0300	111	70-130	
4-Bromofluor	obenzene		0.0270	0.0300	90	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: El Paso 23 Fed 2 TB

Work Or Lab Batch ;	ders : 65597 #: 3120217	5, Sample: 656032-001 SD / M	ASD Bate		212C-MD-0 Soil)2003	
Units:	mg/kg	Date Analyzed: 03/18/20 15:44	SU	RROGATE R	ECOVERYS	STUDY	
	TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chloroocta	ane	- 	115	100	115	70-135	
o-Terphenyl			61.5	50.2	123	70-135	
Lab Batch	#: 3120220	Sample: 656034-001 SD / M	ASD Bate	h: 1 Matrix:	Soil	1	
Units:	mg/kg	Date Analyzed: 03/18/20 15:44	SU	RROGATE R	ECOVERY S	STUDY	
	TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chloroocta	ne	Analytes	120	100	120	70-135	
o-Terphenyl			57.4	50.1	115	70-135	
Lab Batch	#: 3120331	Sample: 656196-001 SD / N				70-133	
Units:	mg/kg	Date Analyzed: 03/19/20 13:42	SU	RROGATE R	ECOVERY	STUDY	
	втех	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	benzene		0.0326	0.0300	109	70-130	
4-Bromofluc	orobenzene		0.0283	0.0300	94	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

•

Project Name: El Paso 23 Fed 2 TB

Work Order #: 655975							Pro	ject ID:	212C-MD-	02003	
Analyst: MAB	D	ate Prepar	ed: 03/17/20	20			Date A	nalyzed:	03/17/2020		
Lab Batch ID: 3120001 Sample: 769910	8-1-BKS	Batcl	n #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK	SPIKE DUP	LICATE	RECOV	ERY STU	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00200	0.100	0.0995	100	0.100	0.0998	100	0	70-130	35	
Toluene	<0.00200	0.100	0.0968	97	0.100	0.0988	99	2	70-130	35	
Ethylbenzene	<0.00200	0.100	0.0939	94	0.100	0.0955	96	2	71-129	35	
m,p-Xylenes	< 0.00400	0.200	0.193	97	0.200	0.197	99	2	70-135	35	
o-Xylene	<0.00200	0.100	0.0970	97	0.100	0.0984	98	1	71-133	35	
Analyst: MRB	D	ate Prepar	ed: 03/18/20	20	1		Date A	nalyzed:	03/18/2020		4
Lab Batch ID: 3120167 Sample: 769915	1-1-BKS	Batcl	n #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00200	0.100	0.111	111	0.100	0.118	118	6	70-130	35	
Toluene	<0.00200	0.100	0.102	102	0.100	0.107	107	5	70-130	35	
Ethylbenzene	<0.00200	0.100	0.0954	95	0.100	0.0996	100	4	71-129	35	1
m,p-Xylenes	< 0.00400	0.200	0.186	93	0.200	0.194	97	4	70-135	35	1
o-Xylene	< 0.00200	0.100	0.0917	92	0.100	0.0979	98	7	71-133	35	1

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

•

Project Name: El Paso 23 Fed 2 TB

Work Order	#: 655975							Proj	ect ID:	212C-MD-	02003	
Analyst:	MAB	D	ate Prepar	red: 03/19/202	20			Date A	nalyzed: (03/19/2020		
Lab Batch ID:	3120331 Sample: 7699269-1	-BKS	Bate	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
	BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analy	tes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene		< 0.00200	0.100	0.108	108	0.100	0.104	104	4	70-130	35	
Toluene		< 0.00200	0.100	0.104	104	0.100	0.0995	100	4	70-130	35	
Ethylbenze	ne	< 0.00200	0.100	0.100	100	0.100	0.0950	95	5	71-129	35	
m,p-Xylene	es	< 0.00400	0.200	0.207	104	0.200	0.197	99	5	70-135	35	
o-Xylene		< 0.00200	0.100	0.103	103	0.100	0.0982	98	5	71-133	35	
Analyst:	MAB	D	ate Prepar	red: 03/17/202	20			Date A	nalyzed: (03/17/2020	ł	
Lab Batch ID:	3120039 Sample: 7699128-1	-BKS	Batc	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorga	nic Anions by EPA 300/300.1 tes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride		<10.0	250	259	104	250	261	104	1	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

•

Project Name: El Paso 23 Fed 2 TB

Work Order #: 655975							Proj	ject ID:	212C-MD-()2003	
Analyst: DTH	D	ate Prepar	ed: 03/17/202	20			Date A	nalyzed: (03/17/2020		
Lab Batch ID: 3120026 Sample: 7699135-1	-BKS	Batcl	n #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK S	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	ЭY	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<50.0	1000	918	92	1000	892	89	3	70-135	35	
Diesel Range Organics (DRO)	<50.0	1000	1030	103	1000	1000	100	3	70-135	35	
Analyst: DTH	D	ate Prepar	ed: 03/17/202	20	•		Date A	nalyzed: ()3/17/2020		
Lab Batch ID: 3120049 Sample: 7699137-1	-BKS	Batcl	n #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK S	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<50.0	1000	946	95	1000	844	84	11	70-135	35	
Diesel Range Organics (DRO)	<50.0	1000	1030	103	1000	918	92	11	70-135	35	
Analyst: DTH			ed: 03/18/202				Date A		03/18/2020		
Lab Batch ID: 3120217 Sample: 7699257-1		-	h#: 1					Matrix: S			
Units: mg/kg		BLAN	K/BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<50.0	1000	829	83	1000	761	76	9	70-135	35	
Diesel Range Organics (DRO)	<50.0	1000	905	91	1000	835	84	8	70-135	35	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

.

Project Name: El Paso 23 Fed 2 TB

Work Order	r #: 655975						Proj	ect ID:	212C-MD-(02003								
Analyst:	DTH	D	ate Prepar	red: 03/18/202	20			Date A	nalyzed: (03/18/2020								
Lab Batch ID	Sample: 7699259-1	-BKS	Batc	h #: 1					Matrix: S	Solid								
Units:	mg/kg	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY										
	TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag						
Analy	ytes		[B]	[C]	[D]	[E]	Result [F]	[G]										
Gasoline	Range Hydrocarbons (GRO)	<50.0	1000	1010	101	1000	961	96	5	70-135	35							
Diesel Ra	nge Organics (DRO)	<50.0	1000	1080	108	1000	1030	103	5	70-135	35							

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Project Name: El Paso 23 Fed 2 TB

Work Order # : 655975						Project II): 212C-N	MD-02003	3		
Lab Batch ID: 3120001	QC- Sample ID:	655954-	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 03/17/2020	Date Prepared:	03/17/20	020	An	alyst: N	MAB					
Reporting Units: mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[0]	[D]	[E]		[G]	,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Benzene	<0.00198	0.0990	0.0977	99	0.101	0.108	107	10	70-130	35	
Toluene	< 0.00198	0.0990	0.0950	96	0.101	0.105	104	10	70-130	35	
Ethylbenzene	<0.00198	0.0990	0.0907	92	0.101	0.100	99	10	71-129	35	
m,p-Xylenes	< 0.00396	0.198	0.186	94	0.201	0.204	101	9	70-135	35	
o-Xylene	<0.00198	0.0990	0.0947	96	0.101	0.104	103	9	71-133	35	
Lab Batch ID: 3120167	QC- Sample ID:	656032-	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 03/18/2020	Date Prepared:	03/18/20	020	An	alyst: N	MRB					
Reporting Units: mg/kg		М	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[U]	[D]	[E]	Acoutt [F]	[G]	/0	/01	/0KI D	
Benzene	<0.00199	0.0994	0.128	129	0.100	0.122	122	5	70-130	35	
Toluene	<0.00199	0.0994	0.116	117	0.100	0.110	110	5	70-130	35	

< 0.00199

< 0.00398

< 0.00199

0.0994

0.199

0.0994

0.107

0.209

0.105

108

105

106

0.100

0.200

0.100

0.100

0.195

0.0992

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$

Ethylbenzene

m,p-Xylenes

o-Xylene

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

7

7

6

100

98

99

35

35

35

71-129

70-135

71-133

Project Name: El Paso 23 Fed 2 TB

Work Order # :	655975						Project II): 212C-1	MD-0200	3		
Lab Batch ID:	3120331	QC- Sample ID:	656196	-001 S	Ba	tch #:	1 Matrix	c: Soil				
Date Analyzed:	03/19/2020	Date Prepared:	03/19/2	020	Ar	nalyst: N	MAB					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	'RIX SPI	KE DUPLICA'	TE REC	OVERY	STUDY		
	BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R		Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	Kesun [F]	[G]		701		
Benzene		<0.00200	0.100	0.103	103	0.0992	0.104	105	1	70-130	35	
Toluene		<0.00200	0.100	0.0933	93	0.0992	0.0844	85	10	70-130	35	
Ethylbenzene		<0.00200	0.100	0.0877	88	0.0992	0.0770	78	13	71-129	35	
m,p-Xylenes		< 0.00400	0.200	0.178	89	0.198	0.153	77	15	70-135	35	
o-Xylene		< 0.00200	0.100	0.0916	92	0.0992	0.0828	83	10	71-133	35	
Lab Batch ID:	3120039	QC- Sample ID:	655954	-001 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	03/17/2020	Date Prepared:	03/17/2	020	Ar	nalyst: N	MAB					
U U	03/17/2020 mg/kg	Date Prepared:				-	MAB KE DUPLICA '	TE REC	OVERY	STUDY		
Reporting Units:		Parent Sample	M Spike	ATRIX SPIK Spiked Sample Result	E / MAT Spiked Sample	RIX SPI Spike	KE DUPLICA Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Reporting Units:	mg/kg	Parent	М	ATRIX SPIK	E / MAT Spiked	RIX SPI	KE DUPLICA' Duplicate	Spiked		Control		Flag
Reporting Units:	mg/kg nic Anions by EPA 300/300.1	Parent Sample Result	M Spike Added	ATRIX SPIK Spiked Sample Result	E / MAT Spiked Sample %R	RIX SPI Spike Added	KE DUPLICA Duplicate Spiked Sample	Spiked Dup. %R	RPD	Control Limits	Limits	Flag
Reporting Units: Inorgan	mg/kg nic Anions by EPA 300/300.1	Parent Sample Result [A]	M Spike Added [B] 200	ATRIX SPIK Spiked Sample Result [C] 211	E / MAT Spiked Sample %R [D] 99	RIX SPI Spike Added [E]	KE DUPLICA' Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G] 101	RPD %	Control Limits %R	Limits %RPD	Flag
Reporting Units: Inorgan Chloride Lab Batch ID:	^{mg/kg} nic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A] 13.4	M Spike Added [B] 200 655975	ATRIX SPIK Spiked Sample Result [C] 211 -009 S	E / MAT Spiked Sample %R [D] 99 Ba	Spike Added [E] 200	KE DUPLICA Duplicate Spiked Sample Result [F] 215 1 Matrix	Spiked Dup. %R [G] 101	RPD %	Control Limits %R	Limits %RPD	Flag
Reporting Units: Inorgan Chloride Lab Batch ID: Date Analyzed:	mg/kg nic Anions by EPA 300/300.1 Analytes 3120039	Parent Sample Result [A] 13.4 QC- Sample ID:	M Spike Added [B] 200 655975- 03/17/2	ATRIX SPIK Spiked Sample Result [C] 211 -009 S 020	E / MAT Spiked Sample %R [D] 99 Ba Ar	Spike Added [E] 200 atch #: nalyst:	KE DUPLICA Duplicate Spiked Sample Result [F] 215 1 Matrix	Spiked Dup. %R [G] 101 x: Soil	RPD %	Control Limits %R 90-110	Limits %RPD	Flag
Chloride Chloride Lab Batch ID: Date Analyzed: Reporting Units:	mg/kg nic Anions by EPA 300/300.1 Analytes 3120039 03/17/2020	Parent Sample Result [A] 13.4 QC- Sample ID: Date Prepared: Parent Sample	M Spike Added [B] 200 655975 03/17/2 M Spike	ATRIX SPIK Spiked Sample Result [C] 211 -009 S 020 ATRIX SPIK Spiked Sample Result	E / MAT Spiked Sample %R [D] 99 Ba Ar E / MAT Spiked Sample	RIX SPI Spike Added [E] 200 atch #: nalyst: RIX SPI Spike	KE DUPLICA' Duplicate Spiked Sample Result [F] 215 1 Matrix MAB KE DUPLICA' Duplicate Spiked Sample	Spiked Dup. %R [G] 101 x: Soil TE REC Spiked Dup.	RPD % 2 OVERY RPD	Control Limits %R 90-110 STUDY Control Limits	Limits %RPD 20 Control Limits	Flag
Reporting Units: Inorgan Chloride Lab Batch ID: Date Analyzed: Reporting Units:	mg/kg nic Anions by EPA 300/300.1 Analytes 3120039 03/17/2020 mg/kg	Parent Sample Result [A] 13.4 QC- Sample ID: Date Prepared: Parent	M Spike Added [B] 200 655975 03/17/20 M	ATRIX SPIK Spiked Sample Result [C] 211 -009 S 020 ATRIX SPIK Spiked Sample	E / MAT Spiked Sample %R [D] 99 Ba Ar E / MAT Spiked	Spike Added [E] 200 ntch #: nalyst: M	KE DUPLICA' Duplicate Spiked Sample Result [F] 215 1 Matrix MAB KE DUPLICA' Duplicate	Spiked Dup. %R [G] 101 x: Soil TE REC Spiked	RPD % 2 OVERY	Control Limits %R 90-110 STUDY Control	Limits %RPD 20 Control	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Project Name: El Paso 23 Fed 2 TB

.

Work Order # : 655975						Project II): 212C-1	MD-0200	3		
Lab Batch ID: 3120026	QC- Sample ID:	655954	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 03/17/2020	Date Prepared:	03/17/2	020	Ar	alyst: I	DTH					
Reporting Units: mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH By SW8015 Mod	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[C]	5%K [D]	E]	Kesunt [r]	70K [G]	70	70K	70KPD	
Gasoline Range Hydrocarbons (GRO)	<50.2	1000	956	96	1000	944	94	1	70-135	35	
Diesel Range Organics (DRO)	<50.2	1000	1110	111	1000	1100	110	1	70-135	35	
Lab Batch ID: 3120049	QC- Sample ID:	655954	-002 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 03/17/2020	Date Prepared:	03/17/2	020	Ar	alyst: I	DTH					
Reporting Units: mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH By SW8015 Mod	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Gasoline Range Hydrocarbons (GRO)	<50.0	1000	869	87	997	848	85	2	70-135	35	
Diesel Range Organics (DRO)	<50.0	1000	949	95	997	930	93	2	70-135	35	
Lab Batch ID: 3120217	QC- Sample ID:	656032	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 03/18/2020	Date Prepared:	03/18/2	020	Ar	alyst: I	DTH					
Reporting Units: mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH By SW8015 Mod	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range Hydrocarbons (GRO)	<49.8	995	850	85	1000	966	97	13	70-135	35	
Diesel Range Organics (DRO)	<49.8	995	928	93	1000	1070	107	14	70-135	35	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Project Name: El Paso 23 Fed 2 TB

Work Order # :	655975						Project II): 212C-1	MD-0200	3		
Lab Batch ID:	3120220	QC- Sample ID:	656034	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	03/18/2020	Date Prepared:	03/18/2	2020	An	alyst: I	DTH					
Reporting Units:	mg/kg		Ν	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Г	TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	0/0	%R	%RPD	
Gasoline Range l	Hydrocarbons (GRO)	<50.2	1000	922	92	1000	950	95	3	70-135	35	
Diesel Range Or	ganics (DRO)	<50.2	1000	1020	102	1000	1040	104	2	70-135	35	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Site Manager: Froject #: Sampler Signature: Samples if benzene exceeds 10 mg/kg or MATRIX MERS D (Y/N) D21B BTEX 8260B 1005 (Ext to C35)	221B BTEX 8260B 1005 (Ext to C35) 15M (GRO - DRO - ORO - MRO) 70C	D21B BTEX 8260B 1005 (Ext to C35) 15M (GRO - DRO - ORO - MRO) 70C tals Ag As Ba Cd Cr Pb Se Hg ptals Ag As Ba Cd Cr Pb Se Hg	221B BTEX 8260B 1005 (Ext to C35) 15M (GRO - DRO - ORO - MRO) 70C tals Ag As Ba Cd Cr Pb Se Hg etals Ag As Ba Cd Cr Pb Se Hg tals Ag As Ba Cd Cr Pb Se Hg	P21B BTEX 8260B 1005 (Ext to C35) 15M (GRO - DRO - ORO - MRO) 70C tals Ag As Ba Cd Cr Pb Se Hg latiles mi Volatiles Method No. Vol. 8270C/625 082 / 608 Destos) Sulfate TDS Water Chemistry (see attached list) ation Balance	Page Sulfate TDS Water Chemistry (see attached list)) Trench 1 (0-1") Trench 1 (1-1.5") Trench 1 (2-2.5") Trench 1 (3-3.5") Trench 1 (3-3.5") Trench 1 (3-5.5") Trench 1 (3-5.5") Trench 1 (3-5.5") Trench 1 (3-9.5") dby: 	rench 1 (0-1') rench 1 (2-2.5') rench 1 (3-3.5') rench 1 (4-4.5') rench 1 (5-5.5') rench 1 (6-6.5') rench 1 (6-8.5') rench 1 (8-8.5') Date: Time: Date:	rench 1 (0-1') rench 1 (2-2.5') rench 1 (3-3.5') rench 1 (3-3.5') rench 1 (4-4.5') rench 1 (6-6.5') rench 1 (6-6.5') rench 1 (6-8.5') rench 1 (8-8.5) rench 1 (8-8.5) rench 1 (8-8.5') Date: Time: Jate: Time:	rench 1 (0-1') rench 1 (1-1.5') rench 1 (2-2.5') rench 1 (3-3.5') rench 1 (4-4.5') rench 1 (4-4.5') rench 1 (4-5.5') rench 1 (6-6.5') rench 1 (7-7.5') rench 1 (7-7.5') rench 1 (7-7.5') rench 1 (9-9.5') Date: Time: $3/17/2o$ 1 4 :	rench 1 (0-1') rench 1 (1-1.5') rench 1 (2-2.5') rench 1 (3-3.5') rench 1 (3-3.5') rench 1 (4-4.5') rench 1 (5-5.5') rench 1 (6-6.5') rench 1 (7-7.5') rench 1 (8-8.5') rench 1 (9-9.5') Date: M and M $3/17/2o$ $3/17/2o$	rench 1 (0-1') rench 1 (1-1.5') rench 1 (2-2.5') rench 1 (3-3.5') rench 1 (4-4.5') rench 1 (5-5.5') rench 1 (5-5.5') rench 1 (6-6.5') rench 1 (7-7.5') rench 1 (8-8.5)	LAB USE ONLY Trench 1 (0-1") Trench 1 (1-1.5") Trench 1 (2-2.5") Trench 1 (3-3.5") Trench 1 (4-4.5") Trench 1 (4-4.5") Trench 1 (5-5.5") Trench 1 (6-6.5") Trench 1 (7-7.5") Trench 1 (8-8.5")) Trench 1 (0-1') Trench 1 (1-1.5') Trench 1 (2-2.5') Trench 1 (3-3.5') Trench 1 (4-4.5') Trench 1 (5-5.5') Trench 1 (6-6.5') Trench 1 (7-7.5')) Trench 1 (0-1') Trench 1 (1-1.5') Trench 1 (2-2.5') Trench 1 (3-3.5') Trench 1 (4-4.5') Trench 1 (5-5.5') Trench 1 (6-6.5')) Trench 1 (0-1') Trench 1 (1-1.5') Trench 1 (2-2.5') Trench 1 (3-3.5') Trench 1 (4-4.5') Trench 1 (5-5.5')) Trench 1 (0-1') Trench 1 (1-1.5') Trench 1 (2-2.5') Trench 1 (3-3.5') Trench 1 (4-4.5')) Trench 1 (0-1') Trench 1 (1-1.5') Trench 1 (2-2.5') Trench 1 (3-3.5')) Trench 1 (0-1') Trench 1 (1-1.5') Trench 1 (2-2.5')) Trench 1 (0-1') Trench 1 (1-1.5')) Trench 1 (0-1'))		LAB # SAMPLE IDENTIFICATION		Comments: Run deeper samples if TPH (GRO + DRO + MRO) exceet Total BTEX exceeds 50 mg/kg.	Receiving Laboratory: Xenco	Invoice to: EOG - Todd Wells	Project Location: (county, state) Eddy Co, NM	Project Name: El Paso 23 Fed 2 TB	Client Name: EOG	Tetra Tech, Inc.	analysis Request of Chain of Custody Record	of 101
X X <td>No. No. No. No. No. No.</td> <td>Image: Pictered (YN) Q Image: Pictered (YN) Q <td< td=""><td>Image: Constraint of the second se</td><td>Image: Construction of the construc</td><td>Image: Standard S</td><td>Received by: Received by:</td><td>Received by:</td><td>Received by:</td><td>Deceived hy:</td><td>L</td><td>Heceweeday:</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>DATE</td><td>YEAR: 2020</td><td>SAMPLING</td><td>ds 100 mg/kg. Run de∈</td><td>Sampler Signature:</td><td></td><td>Project #:</td><td></td><td>Site Manager:</td><td></td><td></td><td></td></td<></td>	No. No. No.	Image: Pictered (YN) Q Image: Pictered (YN) Q <td< td=""><td>Image: Constraint of the second se</td><td>Image: Construction of the construc</td><td>Image: Standard S</td><td>Received by: Received by:</td><td>Received by:</td><td>Received by:</td><td>Deceived hy:</td><td>L</td><td>Heceweeday:</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>3/16/2020</td><td>DATE</td><td>YEAR: 2020</td><td>SAMPLING</td><td>ds 100 mg/kg. Run de∈</td><td>Sampler Signature:</td><td></td><td>Project #:</td><td></td><td>Site Manager:</td><td></td><td></td><td></td></td<>	Image: Constraint of the second se	Image: Construction of the construc	Image: Standard S	Received by: Received by:	Received by:	Received by:	Deceived hy:	L	Heceweeday:	3/16/2020	3/16/2020	3/16/2020	3/16/2020	3/16/2020	3/16/2020	3/16/2020	3/16/2020	3/16/2020	3/16/2020	DATE	YEAR: 2020	SAMPLING	ds 100 mg/kg. Run de∈	Sampler Signature:		Project #:		Site Manager:			
	Norm Norm <th< td=""><td>Sample Temperature PHLTERED (17/N) Q Image: Sample Temperature Image: Sample Temperature<td>Sample Normalize Image: Sample Image: Sample Image: Sample Image: Sampl</td><td>Anion/Cation Balance</td><td>Image: Standard S</td><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td></td><td>R</td><td>MATRIX</td><td>per samples if I</td><td>Conne</td><td></td><td>212C-</td><td></td><td>Mike Car</td><td>901W V Midia Tel Fax</td><td></td><td></td></td></th<>	Sample Temperature PHLTERED (17/N) Q Image: Sample Temperature Image: Sample Temperature <td>Sample Normalize Image: Sample Image: Sample Image: Sample Image: Sampl</td> <td>Anion/Cation Balance</td> <td>Image: Standard S</td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td></td> <td>R</td> <td>MATRIX</td> <td>per samples if I</td> <td>Conne</td> <td></td> <td>212C-</td> <td></td> <td>Mike Car</td> <td>901W V Midia Tel Fax</td> <td></td> <td></td>	Sample Normalize Image: Sample Image: Sample Image: Sample Image: Sampl	Anion/Cation Balance	Image: Standard S			7					×	×	×	×	×	×	×	×	×		R	MATRIX	per samples if I	Conne		212C-		Mike Car	901W V Midia Tel Fax		
	Nomple X X X X X X X BTEX 8021B BTEX 8260B TPH TX1005 (Ext to C35) X<	Sample X <td>Image: Somple Temperature Image: Somple Temperature Image: Somple Temperature Image: Some Temperature Image: Some Temperature <t< td=""><td>A X</td><td>ANALYSIS REQUEST Circle or Specify Method No.) Circle or Spe</td><td></td><td></td><td></td><td></td><td>mp.</td><td>me:</td><td></td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>HNO₃ ICE</td><td></td><td>PRESERVATIVE</td><td>benzene exceed</td><td>er Moehring</td><td></td><td>-MD-02003</td><td></td><td>rmona</td><td>Wall Street, Ste 100 and, Texas 79705 (432) 682-4559 (432) 682-3946</td><td></td><td></td></t<></td>	Image: Somple Temperature Image: Somple Temperature Image: Somple Temperature Image: Some Temperature Image: Some Temperature <t< td=""><td>A X</td><td>ANALYSIS REQUEST Circle or Specify Method No.) Circle or Spe</td><td></td><td></td><td></td><td></td><td>mp.</td><td>me:</td><td></td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>HNO₃ ICE</td><td></td><td>PRESERVATIVE</td><td>benzene exceed</td><td>er Moehring</td><td></td><td>-MD-02003</td><td></td><td>rmona</td><td>Wall Street, Ste 100 and, Texas 79705 (432) 682-4559 (432) 682-3946</td><td></td><td></td></t<>	A X	ANALYSIS REQUEST Circle or Specify Method No.) Circle or Spe					mp.	me:		×	×	×	×	×	×	×	×	×	HNO ₃ ICE		PRESERVATIVE	benzene exceed	er Moehring		-MD-02003		rmona	Wall Street, Ste 100 and, Texas 79705 (432) 682-4559 (432) 682-3946		
No. Σ ×	X X X X X X X BTEX 8021B BTEX 8260B Image: Complete Temperative Image: Complete TemperateTemperative Image:	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	Image: Constraint of the constr	Image: Special Report Limits or TRRP Report Image: Special Report Report Limits or TRRP Report Im	Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report					(4:13	1 N		1 Z	z							FILTER	ED (Y/N)	9								
	PAH 8270C	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	Image: Second Compose Age Image: Second Compose Age Image: Second Compose Age Image: Second Compose Age <td>Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report</td> <td>Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Repor</td> <td></td> <td>29</td> <td>20</td> <td>Sample T</td> <td></td> <td>۰ ¥</td> <td></td> <td>ТРН ТУ</td> <td>(1005</td> <td>(Ext to</td> <td>o C35)</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>	Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report Image: Special Report Limits or TRRP Report	Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Links or TRRP Report Image: Special Report Repor		29	20	Sample T		۰ ¥											ТРН ТУ	(1005	(Ext to	o C35)				_				
Image: Constraint of the constr		Special Control Contro		24 h 48 h 72	So T TRRP Report 24 h (AB) X X X X X X X X X X X X Chloride Od No. Y X X X X X X X X X X X X X X X Chloride Chloride Sulfate TDS Od No. Y X X X X X X X X X X X X X X X X Chloride General Water Chemistry (see attached list) Od No. Y X X X X X X X X X X X X X X X X X X X		Repor	harges		Same	ANDA														B270C/62	5			_	주 교			
Image: Constraint of the constr		NUSH: STANDA RCI Special Report Standard Standard <th< td=""><td>Report AND GC/MS Semi. Vol. 8270C/625 FREQ PCB's 8082 / 608 PCB's 8082 / 608 MOD</td><td>Anion/Cation Balance Anion/Cation Balance</td><td>Anion/Cation Balance Anion/Cation Balance</td><td></td><td>Limits</td><td>Autho</td><td></td><td></td><td>RD</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Contraction of the</td><td>sbesto</td><td>os)</td><td></td><td></td><td>-</td><td></td><td>_</td><td>UEST</td><td></td><td>P</td><td>C</td></th<>	Report AND GC/MS Semi. Vol. 8270C/625 FREQ PCB's 8082 / 608 PCB's 8082 / 608 MOD	Anion/Cation Balance Anion/Cation Balance	Anion/Cation Balance Anion/Cation Balance		Limits	Autho			RD	-										Contraction of the	sbesto	os)			-		_	UEST		P	C
Remarks: TCLP Metals Ag As Ba Cd Cr Pb Se Hig Image: Strange and the	Interview Interview Image: Special Report Limit Image: Special Report Limit	al Report Limiti	Report Limit the average of the second secon				or TRF	rized		24 hr		×	×	×	×	×	×	×	×	×	×	and the second	22	ulfate	TDS					2		age	S
Remarks: TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Volatiles TCLP Semi Volatiles PRUSH: Same Day PCB's 8082 / 608 NORM PL	Image: Special Report Limit Image: Special Repor	al Report Limiting Authors and ARD	Report Limit the average of the second secon	N 1			RP Rep		G	48 hr		F									-					ee atta	ached I	list)		0			2
Remarks: TCLP Metals Ag As Ba Cd CP Pb Se Hg TCLP Volatiles TCLP Volatiles TCLP Semi Volatiles PRUSH: Same Day PCB's 8082 / 608 NORM PL	Image: Special Report Limit Image: Special Repor	al Report Limit of Avalage and	Report Limit the average of the second secon				ort					F		-						-							_	_	_			-	4

Final 1.000

d by	OCD: 9	(8/202	02:49	32 J	PM							(0			(cot	Pro		
	OCD: Inquished by:	function of.	10m	adjshed by:								ONLY)	LAB #		Comments.	Comments:		Project Location: (county, state)	Project Name:		
	Date	√ vate:	15 Long and 3					Trench 1 (12)	Trench 1 (12')	Trench 1 (11')	Trench 1 (10')		SAMPLE IDENTIFICATION		Run deeper samples if TPH (GRO + DRO + MRO) exceeds 100 mg/kg. Run deeper samples if benzene exceeds 10 mg/kg Total BTEX exceeds 50 mg/kg.	Xenco	EOG - Todd Wells	n: Eddy Co, NM	El Paso 23 Fed 2	EOG	Tetra Tec
	e: Time:	e: lime:	22/20	Date: Time:									TIFICATION		O + DRO + MRO) exceeds				TB		Tetra Tech, Inc.
	Received by:	Heceived by:	Q	Received hv:			3/17/2020	0/17/2020	3/17/2020	3/17/2020	3/17/2020	DATE	YEAR: 2020	SAMPLING	100 mg/kg. Run de	Sampler Signature:		Project #:		Site Manager:	
	D	(De	M				×	>	< >	×	X	TIME WATEF SOIL	1	MATRIX	eeper samples if t			212C-		Mike Carmona	901W 1 Midt Tet Fax
	Date: Time:	Date: Time:	3/17/20				×	>	< >	×	X	HCL HNO ₃ ICE None		PRESERVATIVE METHOD	benzene exceeds	Conner Moehring		212C-MD-02003		rmona	901W Wall Street, Ste 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946
10:0		Sar	C14:13				L N	Z		л . 2	Z	# CONT/ FILTERE BTEX 80	D (Y	/N)	s 10 mg/kg or 8260B						1
	2 P	Sample Temperature	LAB USE ONLY									TPH TX1 TPH 801 PAH 827 Total Meta TCLP Meta	005 5M (0C als A	(Ext to GRO - g As B	C35) DRO - C a Cd Cr F	PRO - M Pb Se H	lg		(Circle		
	Special Re	X RUSH: Same Day									•	TCLP Vol TCLP Ser RCI GC/MS Vo GC/MS Se	atiles ni Vo ol. 8	latiles 260B /	624		iy		le or Specify	A	
-	JHush Charges Authorized Special Report Limits or TRRP Report	24 hr	s: STANDARD				×	×	×	< >	× ()	PCB's 80 NORM PLM (Asb Chloride Chloride	82 / 6	608 ;)	TDS				Method		
	P Report	48 hr 72 hr	}								(General V Anion/Cat	Vate	Chen	nistry (se	e attac	hed lis	t)	No.)		
											H	loid							_		

Page 31 of 32

Final 1.000

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 03.17.2020 02.13.00 PM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 655975	Temperature Measuring device used : T-NM-007
Sample Recei	pt Checklist Comments
#1 *Temperature of cooler(s)?	2.8
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Yes
#5 Custody Seals intact on sample bottles?	Yes
#6*Custody Seals Signed and dated?	Yes
#7 *Chain of Custody present?	Yes
#8 Any missing/extra samples?	No
#9 Chain of Custody signed when relinquished/ received?	Yes
#10 Chain of Custody agrees with sample labels/matrix?	Yes
#11 Container label(s) legible and intact?	Yes
#12 Samples in proper container/ bottle?	Yes
#13 Samples properly preserved?	Yes
#14 Sample container(s) intact?	Yes
#15 Sufficient sample amount for indicated test(s)?	Yes
#16 All samples received within hold time?	Yes
#17 Subcontract of sample(s)?	No
#18 Water VOC samples have zero headspace?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Elizabeth McClellan

Date: 03.17.2020

Checklist reviewed by: Martha Castro

Date: 03.19.2020

Project Id:

Certificate of Analysis Summary 664790

Tetra Tech- Midland, Midland, TX

Project Name: El Paso 23 Federal Tank Battery

 Date Received in Lab:
 Thu 06.18.2020 10:44

 Report Date:
 07.02.2020 09:47

Project Manager: Jessica Kramer

		< < 1 7 00 0		664 8 00.0		< 4 7 00 0		664 8 00.4		664 5 00 0		664 5 00.0	0.4
	Lab Id:	664790-0	101	664790-0	02	664790-0	03	664790-0	004	664790-0	005	664790-0	06
Analysis Requested	Field Id:	BH-1 0-1	1'	BH-1 2'-3	3'	BH-1 4'-5'		BH-1 6'-7	'	BH-1 9'-10)'	BH-1 14'-1	5'
Inalysis Requesieu	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL	,	SOIL		SOIL	
	Sampled:	06.16.2020	00:00	06.16.2020	00:00	06.16.2020	00:00	06.16.2020	00:00	06.16.2020	00:00	06.16.2020	00:00
BTEX by EPA 8021B	Extracted:	06.25.2020	16:30	06.25.2020	16:30	06.25.2020	16:30	06.25.2020	16:30	06.25.2020	16:30	06.25.2020	16:30
	Analyzed:	06.26.2020	03:27	06.26.2020	03:48	06.26.2020	04:08	06.26.2020	04:28	06.26.2020	04:49	06.26.2020	05:09
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00200	0.00200
Toluene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00200	0.00200
Ethylbenzene		< 0.00201	0.00201	0.00522	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00200	0.00200
m,p-Xylenes		< 0.00402	0.00402	< 0.00399	0.00399	< 0.00398	0.00398	< 0.00398	0.00398	< 0.00397	0.00397	< 0.00399	0.00399
o-Xylene		0.00262	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00200	0.00200
Total Xylenes		0.00262	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00200	0.00200
Total BTEX		0.00262	0.00201	0.00522	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00200	0.00200
Inorganic Anions by EPA 300/300.1	Extracted:	06.19.2020	15:40	06.19.2020	17:10	06.19.2020	17:10	06.19.2020	17:10	06.19.2020	17:10	06.19.2020	17:10
	Analyzed:	06.20.2020	00:38	06.19.2020	17:42	06.19.2020	17:57	06.19.2020	18:02	06.19.2020	18:07	06.19.2020	18:12
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		234	25.0	32.9	5.01	16.3	4.98	15.4	4.95	28.8	4.95	86.8	49.5
TPH By SW8015 Mod	Extracted:	06.20.2020	11:00	06.20.2020	11:00	06.20.2020	11:00	06.20.2020	11:00	06.20.2020	11:00	06.20.2020	11:00
	Analyzed:	06.21.2020	00:09	06.21.2020	01:05	06.21.2020	01:24	06.21.2020	01:42	06.21.2020	02:01	06.21.2020	02:20
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<50.0	50.0	<50.0	50.0	<50.0	50.0	<49.9	49.9	<50.0	50.0	<49.9	49.9
Diesel Range Organics (DRO)		568	50.0	<50.0	50.0	<50.0	50.0	<49.9	49.9	<50.0	50.0	<49.9	49.9
Motor Oil Range Hydrocarbons (MRO)		<50.0	50.0	<50.0	50.0	<50.0	50.0	<49.9	49.9	<50.0	50.0	<49.9	49.9
Total TPH		568	50.0	<50.0	50.0	<50.0	50.0	<49.9	49.9	<50.0	50.0	<49.9	49.9

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

212C-MD-02003

Contact:Mike CarmonaProject Location:Eddy County, New Mexico

212C-MD-02003

Eddy County, New Mexico

Mike Carmona

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 664790

Tetra Tech- Midland, Midland, TX

Project Name: El Paso 23 Federal Tank Battery

Date Received in Lab: Thu 06.18.2020 10:44

Report Date: 07.02.2020 09:47

Project Manager: Jessica Kramer

	Lab Id:	664790-0	007	664790-0	008	664790-0	09	664790-0	010	664790-0	011	664790-0	12
Analysis Requested	Field Id:	BH-1 19'-	20'	BH-1 24'-	25'	BH-1 29'-3	0'	BH-1 34'-3	5'	BH-1 39'-40)'	BH-1 44'-45	5'
Analysis Requested	Depth:												
	Matrix:	SOIL	,	SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	06.16.2020	00:00	06.16.2020	00:00	06.16.2020	00:00	06.16.2020	00:00	06.16.2020	00:00	06.16.2020	00:00
BTEX by EPA 8021B	Extracted:	06.25.2020	16:30	06.25.2020	16:30	06.25.2020	16:30	06.25.2020	16:30	06.25.2020	16:30	06.25.2020	16:30
	Analyzed:	06.26.2020	08:15	06.26.2020	05:30	06.26.2020	08:35	06.26.2020	05:50	06.26.2020	06:10	06.26.2020	06:31
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		0.105	0.0998	< 0.00200	0.00200	0.0414	0.0400	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00201	0.00201
Toluene		2.04	0.0998	< 0.00200	0.00200	0.0412	0.0400	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00201	0.00201
Ethylbenzene		3.18	0.0998	< 0.00200	0.00200	0.211	0.0400	< 0.00199	0.00199	<0.00199	0.00199	< 0.00201	0.00201
m,p-Xylenes		19.1	0.200	< 0.00401	0.00401	0.771	0.0800	< 0.00398	0.00398	<0.00398	0.00398	< 0.00402	0.00402
o-Xylene		4.45	0.0998	< 0.00200	0.00200	0.214	0.0400	< 0.00199	0.00199	<0.00199	0.00199	< 0.00201	0.00201
Total Xylenes		23.6	0.0998	< 0.00200	0.00200	0.985	0.0400	< 0.00199	0.00199	<0.00199	0.00199	< 0.00201	0.00201
Total BTEX		28.9	0.0998	< 0.00200	0.00200	1.28	0.0400	< 0.00199	0.00199	<0.00199	0.00199	< 0.00201	0.00201
Inorganic Anions by EPA 300/300.1	Extracted:	06.19.2020	17:10	06.19.2020	17:10	06.19.2020	17:10	06.19.2020	17:10	06.19.2020	17:10	06.19.2020	17:10
	Analyzed:	06.19.2020	18:28	06.19.2020	18:33	06.19.2020	18:38	06.19.2020	18:43	06.19.2020	18:48	06.19.2020	18:53
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		92.6	50.4	75.1	49.5	782	25.0	173	24.9	112	5.03	126	5.05
TPH By SW8015 Mod	Extracted:	06.20.2020	11:00	06.19.2020	15:00	06.19.2020	15:00	06.19.2020	15:00	06.19.2020	15:00	06.19.2020	15:00
	Analyzed:	06.21.2020	02:39	06.20.2020	04:27	06.20.2020	04:48	06.20.2020	05:09	06.20.2020	05:31	06.20.2020	05:52
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		1160	49.9	<50.0	50.0	122	49.9	<50.0	50.0	<49.8	49.8	<49.9	49.9
Diesel Range Organics (DRO)		1520	49.9	<50.0	50.0	491	49.9	<50.0	50.0	<49.8	49.8	<49.9	49.9
Motor Oil Range Hydrocarbons (MRO)		<49.9	49.9	<50.0	50.0	<49.9	49.9	<50.0	50.0	<49.8	49.8	<49.9	49.9
Total TPH		2680	49.9	<50.0	50.0	613	49.9	<50.0	50.0	<49.8	49.8	<49.9	49.9

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Xenco

Analytical Report 664790

Page 66 of 101

for

Tetra Tech- Midland

Project Manager: Mike Carmona

El Paso 23 Federal Tank Battery

212C-MD-02003

07.02.2020

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-36), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-25), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-17) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-22) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-7) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483)

Xenco

07.02.2020

Project Manager: **Mike Carmona Tetra Tech- Midland** 901 West Wall ST Midland, TX 79701

Reference: Eurofins Xenco, LLC Report No(s): **664790 El Paso 23 Federal Tank Battery** Project Address: Eddy County, New Mexico

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 664790. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 664790 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vermer

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Xenco

Sample Cross Reference 664790

El Paso 23 Federal Tank Battery

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BH-1 0-1'	S	06.16.2020 00:00		664790-001
BH-1 2'-3'	S	06.16.2020 00:00		664790-002
BH-1 4'-5'	S	06.16.2020 00:00		664790-003
BH-1 6'-7'	S	06.16.2020 00:00		664790-004
BH-1 9'-10'	S	06.16.2020 00:00		664790-005
BH-1 14'-15'	S	06.16.2020 00:00		664790-006
BH-1 19'-20'	S	06.16.2020 00:00		664790-007
BH-1 24'-25'	S	06.16.2020 00:00		664790-008
BH-1 29'-30'	S	06.16.2020 00:00		664790-009
BH-1 34'-35'	S	06.16.2020 00:00		664790-010
BH-1 39'-40'	S	06.16.2020 00:00		664790-011
BH-1 44'-45'	S	06.16.2020 00:00		664790-012

Xenco

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: El Paso 23 Federal Tank Battery

Project ID: 212C-MD-02003 Work Order Number(s): 664790
 Report Date:
 07.02.2020

 Date Received:
 06.18.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3129568 TPH By SW8015 Mod Surrogate o-Terphenyl recovered above QC limits Data confirmed by re-analysis. Samples affected are: 7705874-1-BLK.

.

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: BH-1 0-1' Lab Sample Id: 664790-001		Matrix: Date Colle	Soil cted: 06.16	.2020 00:00		Date Received:06.18	8.2020 10:	44
Analytical Method: Inorganic Anio Tech: CHE Analyst: CHE Seq Number: 3129542	ns by EPA 300/300.1	Date Prep:	06.19	.2020 15:40		Prep Method: E300 % Moisture: Basis: Wet)P Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	234	25.0		mg/kg	06.20.2020 00:38		5
	15 14 1						0150	
Analytical Method: TPH By SW80 Tech: DVM Analyst: ARM Seq Number: 3129568	15 Mod	Date Prep:	06.20	.2020 11:00		Prep Method: SW8 % Moisture: Basis: Wet	015P Weight	
Tech: DVM Analyst: ARM	15 Mod Cas Number	·	06.20. RL	.2020 11:00	Units	% Moisture:		Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter		·		.2020 11:00		% Moisture: Basis: Wet	Weight	Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number	Result	RL	.2020 11:00	Units	 Moisture: Basis: Wet Analysis Date 	Weight Flag	
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610	Result <50.0	RL 50.0	.2020 11:00	Units mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 00:09	Weight Flag	1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO	Result <50.0 568	RL 50.0 50.0	.2020 11:00	Units mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 00:09 06.21.2020 00:09	Weight Flag U	1
Tech:DVMAnalyst:ARMSeq Number:3129568	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result <50.0 568 <50.0 568	RL 50.0 50.0 50.0	.2020 11:00 Units	Units mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 00:09 06.21.2020 00:09 06.21.2020 00:09 06.21.2020 00:09	Weight Flag U	1 1 1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Total TPH	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result <50.0	RL 50.0 50.0 50.0 50.0 50.0		Units mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 00:09 06.21.2020 00:09 06.21.2020 00:09 06.21.2020 00:09	Weight Flag U U	1 1 1

.

Xenco

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: Lab Sample I	BH-1 0-1' Id: 664790-001		Matrix: Date Collecte	Soil 1: 06.16.2020 00:00	Date Receiv	ed:06.18.2020 10	:44
Analytical M	ethod: BTEX by EPA 80	21B			Prep Metho	d: SW5035A	
Tech:	KTL				% Moisture:	:	
Analyst:	KTL		Date Prep:	06.25.2020 16:30	Basis:	Wet Weight	
Seq Number:	3130050		-				
Parameter		Cas Number	Result RI	. T	Inite Analysis	Data Flag	Dil

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	06.26.2020 03:27	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	06.26.2020 03:27	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	06.26.2020 03:27	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	06.26.2020 03:27	U	1
o-Xylene	95-47-6	0.00262	0.00201		mg/kg	06.26.2020 03:27		1
Total Xylenes	1330-20-7	0.00262	0.00201		mg/kg	06.26.2020 03:27		1
Total BTEX		0.00262	0.00201		mg/kg	06.26.2020 03:27		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	98	%	70-130	06.26.2020 03:27		
4-Bromofluorobenzene		460-00-4	104	%	70-130	06.26.2020 03:27		

.

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: BH-1 2'-3' Lab Sample Id: 664790-002		Matrix: Date Coll	Soil ected: 06.16	.2020 00:00		Date Received:06.1	8.2020 10:	:44
Analytical Method: Inorganic Anio Tech: CHE	ons by EPA 300/300.	1				Prep Method: E300 % Moisture:	9P	
Analyst: CHE		Date Prep	06.19	.2020 17:10		Basis: Wet	Weight	
Seq Number: 3129543								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	32.9	5.01		mg/kg	06.19.2020 17:42		1
Analytical Method: TPH By SW80 Tech: DVM	015 Mod					Prep Method: SW8 % Moisture:	8015P	
	015 Mod	Date Prep	o: 06.20	.2020 11:00		% Moisture:	3015P Weight	
Tech: DVM Analyst: ARM Seq Number: 3129568	015 Mod Cas Number	Date Prep Result	o: 06.20 RL	.2020 11:00	Units	% Moisture:		Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter				.2020 11:00		% Moisture: Basis: Wet	Weight	Dil
Tech: DVM Analyst: ARM	Cas Number	Result	RL	.2020 11:00	Units	Moisture: Basis: Wet Analysis Date	Weight Flag	
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number PHC610	Result <50.0	RL 50.0	.2020 11:00	Units mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 01:05	Weight Flag U	1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO	Result <50.0 <50.0	RL 50.0 50.0	.2020 11:00	Units mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 01:05 06.21.2020 01:05	Weight Flag U U	1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result <50.0 <50.0 <50.0 <50.0 <50.0	RL 50.0 50.0 50.0	.2020 11:00 Units	Units mg/kg mg/kg mg/kg	Moisture: Basis: Wet Analysis Date 06.21.2020 01:05 06.21.2020 01:05 06.21.2020 01:05 06.21.2020 01:05 06.21.2020 01:05 06.21.2020 01:05 06.21.2020 01:05	Weight Flag U U U	1 1 1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Fotal TPH	Cas Number PHC610 C10C28DRO PHCG2835 PHC635 Cas	Result <50.0 <50.0 <50.0 <50.0 <50.0	RL 50.0 50.0 50.0 50.0		Units mg/kg mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 01:05 06.21.2020 01:05 06.21.2020 01:05 06.21.2020 01:05 06.21.2020 01:05 Analysis Date	Weight Flag U U U U U	1 1 1

Xenco

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: Lab Sample I	BH-1 2'-3' Id: 664790-002		Matrix: Date Collecte	Soil d: 06.16.2020 00:00	Date Receive	d:06.18.2020 10:4	44
Analytical M	ethod: BTEX by EPA 8021	В			Prep Method	SW5035A	
Tech:	KTL				% Moisture:		
Analyst:	KTL		Date Prep:	06.25.2020 16:30	Basis:	Wet Weight	
Seq Number:	3130050						
Parameter		Cas Number	Result RI	. 1	Inite Analysis F	ata Flag	Dil

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.26.2020 03:48	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.26.2020 03:48	U	1
Ethylbenzene	100-41-4	0.00522	0.00200		mg/kg	06.26.2020 03:48		1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	06.26.2020 03:48	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.26.2020 03:48	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.26.2020 03:48	U	1
Total BTEX		0.00522	0.00200		mg/kg	06.26.2020 03:48		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	108	%	70-130	06.26.2020 03:48		
1,4-Difluorobenzene		540-36-3	98	%	70-130	06.26.2020 03:48		

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: BH-1 4'-5' Lab Sample Id: 664790-003		Matrix: Date Colle	Soil cted: 06.16.2	2020 00:00		Date Received:06.18	8.2020 10:	:44
Analytical Method: Inorganic Anio Tech: CHE	ns by EPA 300/300.1	l				Prep Method: E300 % Moisture:)P	
Analyst: CHE		Date Prep:	06.19.2	2020 17:10		Basis: Wet	Weight	
Seq Number: 3129543								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	16.3	4.98		mg/kg	06.19.2020 17:57		1
Analytical Method: TPH By SW80 Tech: DVM	15 Mod					Prep Method: SW8 % Moisture:	015P	
	15 Mod Cas Number	Date Prep: Result	06.20.2 RL	2020 11:00	Units	% Moisture: Basis: Wet	Weight	Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter				2020 11:00	Units	% Moisture: Basis: Wet Analysis Date		Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number	Result	RL	2020 11:00	Units mg/kg	% Moisture: Basis: Wet	Weight Flag	
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610	Result <50.0	RL 50.0	2020 11:00	Units	% Moisture: Basis: Wet Analysis Date 06.21.2020 01:24	Weight Flag U	1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO	Result <50.0 <50.0	RL 50.0 50.0	2020 11:00	Units mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 01:24 06.21.2020 01:24	Weight Flag U U	1 1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result <50.0	RL 50.0 50.0 50.0	2020 11:00 Units	Units mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Malysis Date 06.21.2020 01:24 06.21.2020 01:24 06.21.2020 01:24	Weight Flag U U U	1 1 1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Fotal TPH	Cas Number PHC610 C10C28DRO PHCG2835 PHC635 Cas	Result <50.0	RL 50.0 50.0 50.0 50.0		Units mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Maalysis Date 06.21.2020 01:24 06.21.2020 01:24 06.21.2020 01:24 06.21.2020 01:24 Maalysis Date	Weight Flag U U U U U	1 1 1

Xenco

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: Lab Sample I	BH-1 4'-5' d: 664790-003		Matrix: Date Collected	Soil l: 06.16.2020 00:00	Date Receive	d:06.18.2020 10:	44
Analytical M	ethod: BTEX by EPA 80	21B			Prep Method:	SW5035A	
Tech:	KTL				% Moisture:		
Analyst:	KTL		Date Prep:	06.25.2020 16:30	Basis:	Wet Weight	
Seq Number:	3130050						
Parameter		Cas Number	Result DI	т	Inita Analysia D	ato Flag	Dil

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.26.2020 04:08	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.26.2020 04:08	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.26.2020 04:08	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.26.2020 04:08	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.26.2020 04:08	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.26.2020 04:08	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.26.2020 04:08	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	104	%	70-130	06.26.2020 04:08		
1,4-Difluorobenzene		540-36-3	102	%	70-130	06.26.2020 04:08		

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: BH-1 6'-7' Lab Sample Id: 664790-004		Matrix: Date Colle	Soil ected: 06.16	.2020 00:00		Date Received:06.18	8.2020 10:	:44
Analytical Method: Inorganic Anio Tech: CHE	ns by EPA 300/300.1	l				Prep Method: E300 % Moisture:)P	
Analyst: CHE		Date Prep	06.19	.2020 17:10		Basis: Wet	Weight	
Seq Number: 3129543								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	15.4	4.95		mg/kg	06.19.2020 18:02		1
Analytical Method: TPH By SW80 Tech: DVM	15 Mod					Prep Method: SW8 % Moisture:	015P	
Tech: DVM Analyst: ARM Seq Number: 3129568		Date Prep		.2020 11:00	Unite	% Moisture: Basis: Wet	Weight	Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter	Cas Number	Result	RL	.2020 11:00	Units	% Moisture: Basis: Wet Analysis Date	Weight Flag	Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number PHC610	Result <49.9	RL 49.9	.2020 11:00	mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 01:42	Weight Flag U	1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter	Cas Number PHC610 C10C28DRO	Result <49.9 <49.9	RL 49.9 49.9	.2020 11:00	mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 01:42 06.21.2020 01:42	Weight Flag U U	1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610	Result <49.9	RL 49.9	.2020 11:00	mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 01:42	Weight Flag U	1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result <49.9	RL 49.9 49.9 49.9	.2020 11:00 Units	mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 01:42 06.21.2020 01:42 06.21.2020 01:42	Weight Flag U U U	1 1 1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Fotal TPH	Cas Number PHC610 C10C28DRO PHCG2835 PHC635 Cas	Result <49.9	RL 49.9 49.9 49.9 49.9		mg/kg mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 01:42 06.21.2020 01:42 06.21.2020 01:42 06.21.2020 01:42	Weight Flag U U U U U	1 1 1

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: Lab Sample I	BH-1 6'-7' d: 664790-004		Matrix: Date Collected	Soil 1: 06.16.2020 00:00		Date Received	1:06.18.2	020 10:4	44
Analytical M	ethod: BTEX by EPA 80	21B				Prep Method:	SW503	5A	
Tech:	KTL					% Moisture:			
Analyst:	KTL		Date Prep:	06.25.2020 16:30		Basis:	Wet We	eight	
Seq Number:	3130050								
Parameter		Cas Number	Result RI		Units	Analysis D	ate I	lao	Dil

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.26.2020 04:28	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.26.2020 04:28	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.26.2020 04:28	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.26.2020 04:28	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.26.2020 04:28	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.26.2020 04:28	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.26.2020 04:28	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	100	%	70-130	06.26.2020 04:28		
4-Bromofluorobenzene		460-00-4	100	%	70-130	06.26.2020 04:28		

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: BH-1 9'-10' Lab Sample Id: 664790-005		Matrix: Date Colle	Soil cted: 06.16.20	020 00:00		Date Received:06.18	8.2020 10	44
Analytical Method: Inorganic Anio Tech: CHE Analyst: CHE Seq Number: 3129543	ns by EPA 300/300.1	Date Prep:	06.19.20	020 17:10		Prep Method: E300 % Moisture: Basis: Wet)P Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	28.8	4.95		mg/kg	06.19.2020 18:07		1
Analytical Method:TPH By SW80Tech:DVMAnalyst:ARMSeq Number:3129568	15 Mod	Date Prep:	06.20.20	020 11:00		Prep Method: SW8 % Moisture: Basis: Wet	3015P Weight	
Tech: DVM Analyst: ARM	15 Mod Cas Number	·	06.20.20 RL	020 11:00		% Moisture:		Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter		·		020 11:00		% Moisture: Basis: Wet	Weight	Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number	Result	RL	020 11:00	Units	% Moisture: Basis: Wet Analysis Date	Weight Flag	
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610	Result <50.0	RL 50.0	020 11:00	Units mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 02:01	Weight Flag U	1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO	Result <50.0 <50.0	RL 50.0 50.0	020 11:00	Units mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 02:01 06.21.2020 02:01	Weight Flag U U	1
Tech:DVMAnalyst:ARMSeq Number:3129568	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result <50.0	RL 50.0 50.0 50.0	020 11:00 Units	Units mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 02:01 06.21.2020 02:01 06.21.2020 02:01 06.21.2020 02:01	Weight Flag U U U	1 1 1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Total TPH	Cas Number PHC610 C10C28DRO PHCG2835 PHC635 Cas	Result <50.0	RL 50.0 50.0 50.0 50.0 50.0		Units mg/kg mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 02:01 06.21.2020 02:01 06.21.2020 02:01 06.21.2020 02:01 06.21.2020 02:01	Weight Flag U U U U U	1 1 1

Xenco

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: Lab Sample I	BH-1 9'-10' d: 664790-005		latrix: ate Collected	Soil : 06.16.2020 00:00	Date Received	1:06.18.2020 10:44
Analytical M	ethod: BTEX by EPA 8021B				Prep Method:	SW5035A
Tech:	KTL				% Moisture:	
Analyst:	KTL	D	ate Prep:	06.25.2020 16:30	Basis:	Wet Weight
Seq Number:	3130050					
D		Dogu	14 DI			

4-Bromofluorobenzene 460-00-4 101 % 70-130 06.26.2020 04:49	RL	ılt	r Result	Cas Number	rameter	Result	Cas Number Result	RL	Units	Analysis Date	Flag	Dil
Ethylbenzene 100-41-4 <0.00198	0.00198	00198	<0.001	71-43-2	nzene	< 0.00198	71-43-2 <0.00198 0	0.00198	mg/kg	06.26.2020 04:49	U	1
m,p-Xylenes 179601-23-1 <0.00397	0.00198	00198	< 0.001	108-88-3	luene	< 0.00198	108-88-3 <0.00198 0	0.00198	mg/kg	06.26.2020 04:49	U	1
o-Xylene 95-47-6 <0.00198	0.00198	00198	< 0.001	100-41-4	nylbenzene	< 0.00198	100-41-4 <0.00198 0	0.00198	mg/kg	06.26.2020 04:49	U	1
Total Xylenes 1330-20-7 <0.00198 0.00198 mg/kg 06.26.2020 04:49 U Total BTEX U Surrogate Cas Number % Recovery Units Limits Analysis Date F 4-Bromofluorobenzene 460-00-4 101 % 70-130 06.26.2020 04:49 F	0.00397	00397	< 0.003	179601-23-1	p-Xylenes	< 0.00397	179601-23-1 <0.00397 0	0.00397	mg/kg	06.26.2020 04:49	U	1
Total BTEX <0.00198 0.00198 mg/kg 06.26.2020 04:49 U Surrogate Cas Number % Recovery Units Limits Analysis Date F 4-Bromofluorobenzene 460-00-4 101 % 70-130 06.26.2020 04:49 F	0.00198	00198	< 0.001	95-47-6	<i>Cylene</i>	< 0.00198	95-47-6 <0.00198 0	0.00198	mg/kg	06.26.2020 04:49	U	1
SurrogateCas Number% RecoveryUnitsLimitsAnalysis DateF4-Bromofluorobenzene460-00-4101%70-13006.26.202004:49	0.00198	00198	< 0.001	1330-20-7	tal Xylenes	< 0.00198	1330-20-7 <0.00198 0	0.00198	mg/kg	06.26.2020 04:49	U	1
4-Bromofluorobenzene 460-00-4 101 % 70-130 06.26.2020 04:49	0.00198	00198	< 0.001		tal BTEX	< 0.00198	<0.00198 0	0.00198	mg/kg	06.26.2020 04:49	U	1
	% Recovery Units	oer %	Cas Number		Surrogate	umber	Cas Number % I	Recovery Units	Limits	Analysis Date	Flag	
1.4-Difluorobenzene 540-36-3 97 % 70-130 06.26.2020 04:49	101 %		460-00-4		4-Bromofluorobenzene	0-4	460-00-4	101 %	70-130	06.26.2020 04:49		
-,	97 %		540-36-3		1,4-Difluorobenzene	6-3	540-36-3	97 %	70-130	06.26.2020 04:49		

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: BH-1 14'-15' Lab Sample Id: 664790-006		Matrix: Date Colle	Soil cted: 06.16.	2020 00:00		Date Received:06.18	8.2020 10	:44
Analytical Method: Inorganic Ani Tech: CHE	ons by EPA 300/300.	1				Prep Method: E300 % Moisture:)P	
Analyst: CHE		Date Prep:	06.19.	2020 17:10		Basis: Wet	Weight	
Seq Number: 3129543								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	86.8	49.5		mg/kg	06.19.2020 18:12		10
Analytical Method: TPH By SW8 Tech: DVM	015 Mod					Prep Method: SW8 % Moisture:	8015P	
Tech: DVM Analyst: ARM Seq Number: 3129568		Date Prep:		2020 11:00	Units	% Moisture: Basis: Wet	Weight	Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter	Cas Number	Result	RL	2020 11:00	Units	% Moisture: Basis: Wet Analysis Date	Weight Flag	Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number PHC610	Result <49.9	RL 49.9	2020 11:00	mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 02:20	Weight Flag U	1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter	Cas Number	Result	RL	2020 11:00	mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date	Weight Flag U U	
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610 C10C28DRO	Result <49.9 <49.9	RL 49.9 49.9	2020 11:00	mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 02:20 06.21.2020 02:20	Weight Flag U	1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result <49.9 <49.9 <49.9 <49.9	RL 49.9 49.9 49.9	2020 11:00 Units	mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 02:20 06.21.2020 02:20 06.21.2020 02:20 06.21.2020 02:20	Weight Flag U U U	1 1 1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Fotal TPH	Cas Number PHC610 C10C28DRO PHCG2835 PHC635 Cas	Result <49.9 <49.9 <49.9 <49.9	RL 49.9 49.9 49.9 49.9 49.9		mg/kg mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 02:20 06.21.2020 02:20 06.21.2020 02:20 06.21.2020 02:20 06.21.2020 02:20	Weight Flag U U U U U	1 1 1

Xenco

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: Lab Sample I	BH-1 14'-15' d: 664790-006		Matrix: Date Collecte	Soil d: 06.16.2020 00:00	Date Receiv	ed:06.18.2020 10	:44
Analytical M	ethod: BTEX by EPA 802	1B			Prep Method	l: SW5035A	
Tech:	KTL				% Moisture:		
Analyst:	KTL		Date Prep:	06.25.2020 16:30	Basis:	Wet Weight	
Seq Number:	3130050						
Parameter		Cas Number	Result RI		Unite Analysis	Data Flan	ы

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.26.2020 05:09	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.26.2020 05:09	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.26.2020 05:09	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	06.26.2020 05:09	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.26.2020 05:09	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.26.2020 05:09	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.26.2020 05:09	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	100	%	70-130	06.26.2020 05:09		
4-Bromofluorobenzene		460-00-4	102	%	70-130	06.26.2020 05:09		

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: BH-1 19'-20' Lab Sample Id: 664790-007		Matrix: Date Colle	Soil cted: 06.16	.2020 00:00		Date Received:06.18	8.2020 10:	44
Analytical Method: Inorganic Anion Tech: CHE Analyst: CHE	s by EPA 300/300.1	Date Prep:	06.19	.2020 17:10		Prep Method: E300 % Moisture: Basis: Wet)P Weight	
Seq Number: 3129543								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	92.6	50.4		mg/kg	06.19.2020 18:28		10
Analytical Method: TPH By SW801	5 Mod					Prep Method: SW8	8015P	
Analytical Method: TPH By SW801 Tech: DVM Analyst: ARM Seq Number: 3129568	5 Mod	Date Prep:	06.20	.2020 11:00		% Moisture:	8015P Weight	
Tech: DVM Analyst: ARM Seq Number: 3129568	5 Mod Cas Number	Date Prep: Result	06.20 RL	.2020 11:00	Units	% Moisture:		Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter				.2020 11:00	Units mg/kg	% Moisture: Basis: Wet	Weight	Dil
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number	Result	RL	.2020 11:00		% Moisture: Basis: Wet Analysis Date	Weight	
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610	Result 1160	RL 49.9	.2020 11:00	mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 02:39	Weight	1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number PHC610 C10C28DRO	Result 1160 1520	RL 49.9 49.9	.2020 11:00	mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 02:39 06.21.2020 02:39	Weight Flag	1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result 1160 1520 <49.9 2680	RL 49.9 49.9 49.9	.2020 11:00 Units	mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 02:39 06.21.2020 02:39 06.21.2020 02:39	Weight Flag	1 1 1
Tech: DVM Analyst: ARM Seq Number: 3129568 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Total TPH	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result 1160 1520 <49.9 2680 Number %	RL 49.9 49.9 49.9 49.9 49.9		mg/kg mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.21.2020 02:39 06.21.2020 02:39 06.21.2020 02:39 06.21.2020 02:39	Weight Flag U	1 1 1

Xenco

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: Lab Sample I	BH-1 19'-20' d: 664790-007	Matrix: Date Collecte	Soil d: 06.16.2020 00:00	Date Receive	d:06.18.2020 10:44
Analytical Mo	ethod: BTEX by EPA 8021B			Prep Method	: SW5035A
Tech: Analyst:	KTL KTL	Date Prep:	06.25.2020 16:30	% Moisture: Basis:	Wet Weight
Seq Number:	3130050				C

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	0.105	0.0998		mg/kg	06.26.2020 08:15		50
Toluene	108-88-3	2.04	0.0998		mg/kg	06.26.2020 08:15		50
Ethylbenzene	100-41-4	3.18	0.0998		mg/kg	06.26.2020 08:15		50
m,p-Xylenes	179601-23-1	19.1	0.200		mg/kg	06.26.2020 08:15		50
o-Xylene	95-47-6	4.45	0.0998		mg/kg	06.26.2020 08:15		50
Total Xylenes	1330-20-7	23.6	0.0998		mg/kg	06.26.2020 08:15		50
Total BTEX		28.9	0.0998		mg/kg	06.26.2020 08:15		50
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	97	%	70-130	06.26.2020 08:15		
4-Bromofluorobenzene		460-00-4	114	%	70-130	06.26.2020 08:15		

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: BH-1 24'-25' Lab Sample Id: 664790-008		Matrix: Date Coll	Soil lected: 06.16	.2020 00:00		Date Received:06.1	8.2020 10	:44
Analytical Method: Inorganic Anio Tech: CHE	ns by EPA 300/300.	1				Prep Method: E300 % Moisture:	0P	
Analyst: CHE		Date Prep	p: 06.19	.2020 17:10		Basis: Wet	Weight	
Seq Number: 3129543								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	75.1	49.5		mg/kg	06.19.2020 18:33		10
Analytical Method: TPH By SW80	15 Mod					Prep Method: SW8	8015P	
Analytical Method: TPH By SW80 Tech: DVM Analyst: ARM Seq Number: 3129565	15 Mod	Date Prep	p: 06.19	.2020 15:00		% Moisture:	8015P Weight	
Tech: DVM Analyst: ARM Seq Number: 3129565	15 Mod Cas Number	Date Prep Result	o: 06.19 RL	.2020 15:00	Units	% Moisture:		Dil
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter				.2020 15:00	Units mg/kg	% Moisture: Basis: Wet	Weight	Dil 1
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number	Result	RL	.2020 15:00		% Moisture: Basis: Wet Analysis Date	Weight Flag	
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610	Result <50.0	RL 50.0	.2020 15:00	mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 04:27	Weight Flag U	1
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO	Result <50.0 <50.0	RL 50.0 50.0	.2020 15:00	mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 04:27 06.20.2020 04:27	Weight Flag U U	1
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result <50.0 <50.0 <50.0 <50.0 <50.0	RL 50.0 50.0 50.0	.2020 15:00 Units	mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 04:27 06.20.2020 04:27 06.20.2020 04:27 06.20.2020 04:27	Weight Flag U U U	1 1 1
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Fotal TPH	Cas Number PHC610 C10C28DRO PHCG2835 PHC635 Cas	Result <50.0 <50.0 <50.0 <50.0 <50.0	RL 50.0 50.0 50.0 50.0 50.0		mg/kg mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 04:27 06.20.2020 04:27 06.20.2020 04:27 06.20.2020 04:27	Weight Flag U U U U U	1 1 1

Xenco

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: Lab Sample Id	BH-1 24'-25' d: 664790-008	Matrix: Date Collecte	Soil d: 06.16.2020 00:00	Date Receive	ed:06.18.2020 10:44
5	ethod: BTEX by EPA 8021B			Prep Method	: SW5035A
Tech: Analyst:	KTL KTL		06.25.2020 16:30	% Moisture: Basis:	Wet Weight
Seq Number:		Date Prep:	06.23.2020 16:30	Dasis.	wet weight
		D. K. D.			

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.26.2020 05:30	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.26.2020 05:30	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.26.2020 05:30	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	06.26.2020 05:30	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.26.2020 05:30	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.26.2020 05:30	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.26.2020 05:30	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	100	%	70-130	06.26.2020 05:30		
4-Bromofluorobenzene		460-00-4	100	%	70-130	06.26.2020 05:30		

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: BH-1 29'-30' Lab Sample Id: 664790-009		Matrix: Date Colle	Soil ccted: 06.16.	.2020 00:00		Date Received:06.13	8.2020 10:	44
Analytical Method: Inorganic Anion Tech: CHE	s by EPA 300/300.1					Prep Method: E300 % Moisture:		
Analyst: CHE Seq Number: 3129543		Date Prep:	06.19.	.2020 17:10		Basis: Wet	Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	782	25.0		mg/kg	06.19.2020 18:38		5
Analytical Method: TPH By SW801	5 Mod					Prep Method: SW8	3015P	
Analytical Method: TPH By SW801 Tech: DVM Analyst: ARM Seq Number: 3129565	5 Mod	Date Prep:	06.19.	.2020 15:00		Prep Method: SW8 % Moisture: Basis: Wet	8015P Weight	
Tech:DVMAnalyst:ARMSeq Number:3129565	5 Mod Cas Number	Date Prep: Result	06.19. RL	.2020 15:00	Units	% Moisture:		Dil
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter				.2020 15:00	Units mg/kg	% Moisture: Basis: Wet	Weight	Dil
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number	Result	RL	.2020 15:00		% Moisture: Basis: Wet Analysis Date	Weight	
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610	Result 122	RL 49.9	.2020 15:00	mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 04:48	Weight	1
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO	Result 122 491	RL 49.9 49.9	.2020 15:00	mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 04:48 06.20.2020 04:48	Weight Flag	1 1
Tech: DVM Analyst: ARM	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result 122 491 <49.9 613	RL 49.9 49.9 49.9	.2020 15:00 Units	mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 04:48 06.20.2020 04:48 06.20.2020 04:48	Weight Flag	1 1 1
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Total TPH	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result 122 491 <49.9 613 Number %	RL 49.9 49.9 49.9 49.9 49.9		mg/kg mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 04:48 06.20.2020 04:48 06.20.2020 04:48 06.20.2020 04:48	Weight Flag U	1 1 1

Xenco

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: Lab Sample I	BH-1 29'-30' d: 664790-009		Matrix: Date Collecte	Soil d: 06.16.2020 00:00		Date Received	1:06.18.2020 10):44
5	ethod: BTEX by EPA 80	21B				Prep Method:	SW5035A	
Tech:	KTL					% Moisture:		
Analyst:	KTL		Date Prep:	06.25.2020 16:30		Basis:	Wet Weight	
Seq Number:	3130050							
Parameter		Cas Number	Result RI	,	Units	Analysis D	ate Flag	Dil

Parameter	Cas Numbe	er Kesult	KL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	0.0414	0.0400		mg/kg	06.26.2020 08:35		20
Toluene	108-88-3	0.0412	0.0400		mg/kg	06.26.2020 08:35		20
Ethylbenzene	100-41-4	0.211	0.0400		mg/kg	06.26.2020 08:35		20
m,p-Xylenes	179601-23-1	0.771	0.0800		mg/kg	06.26.2020 08:35		20
o-Xylene	95-47-6	0.214	0.0400		mg/kg	06.26.2020 08:35		20
Total Xylenes	1330-20-7	0.985	0.0400		mg/kg	06.26.2020 08:35		20
Total BTEX		1.28	0.0400		mg/kg	06.26.2020 08:35		20
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	98	%	70-130	06.26.2020 08:35		
4-Bromofluorobenzene		460-00-4	93	%	70-130	06.26.2020 08:35		

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: BH-1 34'-35' Lab Sample Id: 664790-010		Matrix: Date Col	Soil lected: 06.16	.2020 00:00		Date Received:06.18	8.2020 10:	:44
Analytical Method: Inorganic Anio Tech: CHE	ns by EPA 300/300.	.1				Prep Method: E300 % Moisture:)P	
Analyst: CHE Seq Number: 3129543		Date Prej	p: 06.19	.2020 17:10		Basis: Wet	Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	173	24.9		mg/kg	06.19.2020 18:43		5
Analytical Method: TPH By SW80	15 Mod					Prep Method: SW8	8015P	
Tech: DVM Analyst: ARM Seq Number: 3129565		Date Pre		.2020 15:00		% Moisture: Basis: Wet	Weight	
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter	Cas Number	Result	RL	.2020 15:00	Units	 Moisture: Basis: Wet Analysis Date 	Weight Flag	Dil
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number PHC610	Result	RL 50.0	.2020 15:00	Units mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 05:09	Weight Flag U	1
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610 C10C28DRO	Result <50.0 <50.0	RL 50.0 50.0	.2020 15:00	Units mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 05:09 06.20.2020 05:09	Weight Flag U U	1
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610	Result	RL 50.0	.2020 15:00	Units mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 05:09	Weight Flag U	1
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Total TPH	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result <50.0 <50.0 <50.0 <50.0 <50.0	RL 50.0 50.0 50.0 50.0	.2020 15:00 Units	Units mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 05:09 06.20.2020 05:09 06.20.2020 05:09	Weight Flag U U U U U	1 1 1
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO PHCG2835 PHC635 Ca	Result <50.0 <50.0 <50.0 <50.0 <50.0	RL 50.0 50.0 50.0		Units mg/kg mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 05:09 06.20.2020 05:09 06.20.2020 05:09 06.20.2020 05:09	Weight Flag U U U	1 1 1

Xenco

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: Lab Sample I	BH-1 34'-35' (d: 664790-010		Matrix: Date Collecte	Soil d: 06.16.2020 00:00	Date Received:06.18.2020 10			
Analytical M	ethod: BTEX by EPA 802	21B			Prep I	Method: SW5	035A	
Tech:	KTL				% Mo	isture:		
Analyst:	KTL		Date Prep:	06.25.2020 16:30	Basis:	Wet	Weight	
Seq Number:	3130050							
Parameter		Cas Number	Result RI	. 1	Unite Ar	alvsis Data	Flag	ы

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.26.2020 05:50	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.26.2020 05:50	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.26.2020 05:50	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.26.2020 05:50	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.26.2020 05:50	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.26.2020 05:50	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.26.2020 05:50	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	103	%	70-130	06.26.2020 05:50		
1,4-Difluorobenzene		540-36-3	100	%	70-130	06.26.2020 05:50		

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: BH-1 39'-40' Lab Sample Id: 664790-011		Matrix: Date Col	Soil lected: 06.16	5.2020 00:00		Date Received:06.18.2020 10:44				
Analytical Method:Inorganic AniorTech:CHEAnalyst:CHE	ns by EPA 300/300	0.1 Date Prej	p: 06.19	.2020 17:10		Prep Method: E300 % Moisture: Basis: Wet)P Weight			
Seq Number: 3129543										
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil		
Chloride	16887-00-6	112	5.03		mg/kg	06.19.2020 18:48		1		
Analytical Method: TPH By SW80	15 Mod					Prep Method: SW8	8015P			
Tech: DVM Analyst: ARM Seq Number: 3129565		Date Prej	F -	.2020 15:00		% Moisture: Basis: Wet	Weight			
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter	Cas Number	Result	RL	2.2020 15:00	Units	% Moisture: Basis: Wet Analysis Date	Weight Flag	Dil		
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number PHC610	Result <49.8	RL 49.8	2.2020 15:00	mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 05:31	Weight Flag U	1		
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610 C10C28DRO	Result <49.8 <49.8	RL 49.8 49.8	0.2020 15:00	mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 05:31 06.20.2020 05:31	Weight Flag U U	1		
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610	Result <49.8	RL 49.8	.2020 15:00	mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 05:31	Weight Flag U	1		
Tech: DVM Analyst: ARM	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result <49.8 <49.8 <49.8 <49.8 <49.8	RL 49.8 49.8 49.8	0.2020 15:00 Units	mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 05:31 06.20.2020 05:31 06.20.2020 05:31 06.20.2020 05:31 06.20.2020 05:31 06.20.2020 05:31	Weight Flag U U U	1 1 1		
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Fotal TPH	Cas Number PHC610 C10C28DRO PHCG2835 PHC635 Ca	Result <49.8 <49.8 <49.8 <49.8 <49.8	RL 49.8 49.8 49.8 49.8 49.8		mg/kg mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 05:31 06.20.2020 05:31 06.20.2020 05:31 06.20.2020 05:31 06.20.2020 05:31 06.20.2020 05:31 06.20.2020 05:31 06.20.2020 05:31 06.20.2020 05:31 06.20.2020 05:31	Weight Flag U U U U U	1 1 1		

Xenco

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id:	BH-1 39'-40' d: 664790-011	Matrix:	Soil d: 06.16.2020 00:00	Date Received:06.18.2020 10:44				
Lao Sample I	a. 004790-011	Date Collecte	a: 00.10.2020 00:00					
Analytical M	ethod: BTEX by EPA 8021B			Prep Metho	d: SW5035A			
Tech:	KTL			% Moisture	:			
Analyst:	KTL	Date Prep:	06.25.2020 16:30	Basis:	Wet Weight			
Seq Number:	3130050							
		.						

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.26.2020 06:10	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.26.2020 06:10	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.26.2020 06:10	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.26.2020 06:10	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.26.2020 06:10	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.26.2020 06:10	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.26.2020 06:10	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	102	%	70-130	06.26.2020 06:10		
4-Bromofluorobenzene		460-00-4	105	%	70-130	06.26.2020 06:10		

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: BH-1 44'-45' Lab Sample Id: 664790-012		Matrix: Date Colle	Soil ected: 06.16.	2020 00:00		Date Received:06.18.2020 10:44			
Analytical Method: Inorganic Anio Tech: CHE	ns by EPA 300/300.	l				Prep Method: E300 % Moisture:	0P		
Analyst: CHE Seq Number: 3129543		Date Prep:	06.19.	2020 17:10		Basis: Wet	Weight		
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	126	5.05		mg/kg	06.19.2020 18:53		1	
Analytical Method: TPH By SW80 Tech: DVM Analyst: ARM Seq Number: 3129565	15 Mod	Date Prep:	06.19.	2020 15:00		Prep Method: SW8 % Moisture: Basis: Wet	3015P Weight		
Tech: DVM Analyst: ARM Seq Number: 3129565	15 Mod Cas Number	Date Prep: Result	06.19. RL	2020 15:00		% Moisture:		Dil	
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter				2020 15:00		% Moisture: Basis: Wet	Weight	Dil	
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO)	Cas Number	Result	RL	2020 15:00	Units	% Moisture: Basis: Wet Analysis Date	Weight Flag		
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO)	Cas Number PHC610	Result <49.9	RL 49.9	2020 15:00	Units mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 05:52	Weight Flag U	1	
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO	Result <49.9 <49.9	RL 49.9 49.9	2020 15:00	Units mg/kg mg/kg	Moisture: Basis: Wet Analysis Date 06.20.2020 05:52 06.20.2020 05:52	Weight Flag U U	1	
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO)	Cas Number PHC610 C10C28DRO PHCG2835 PHC635	Result <49.9	RL 49.9 49.9 49.9	2020 15:00 Units	Units mg/kg mg/kg mg/kg	Moisture: Basis: Wet Analysis Date 06.20.2020 05:52 06.20.2020 05:52 06.20.2020 05:52 06.20.2020 05:52 06.20.2020 05:52 06.20.2020 05:52	Weight Flag U U U	1 1 1	
Tech: DVM Analyst: ARM Seq Number: 3129565 Parameter Gasoline Range Hydrocarbons (GRO) Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Total TPH	Cas Number PHC610 C10C28DRO PHCG2835 PHC635 Cas	Result <49.9	RL 49.9 49.9 49.9 49.9 49.9		Units mg/kg mg/kg mg/kg mg/kg	% Moisture: Basis: Wet Analysis Date 06.20.2020 05:52 06.20.2020 05:52 06.20.2020 05:52 06.20.2020 05:52 Analysis Date	Weight Flag U U U U U	1 1 1	

Xenco

Certificate of Analytical Results 664790

Tetra Tech- Midland, Midland, TX

El Paso 23 Federal Tank Battery

Sample Id: Lab Sample I	BH-1 44'-45' Id: 664790-012		Matrix: Date Collecte	Soil d: 06.16.2020 00:00	Date Received:06.18.2020 1			
Analytical M	ethod: BTEX by EPA 802	21B			Prep M	lethod: SW50)35A	
Tech:	KTL				% Moi	sture:		
Analyst:	KTL		Date Prep:	06.25.2020 16:30	Basis:	Wet V	Weight	
Seq Number:	3130050		-					
Parameter		Cas Number	Result RI	. 1	Units An	alveis Data	Flag	Dil

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	06.26.2020 06:31	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	06.26.2020 06:31	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	06.26.2020 06:31	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	06.26.2020 06:31	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	06.26.2020 06:31	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	06.26.2020 06:31	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	06.26.2020 06:31	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	102	%	70-130	06.26.2020 06:31		
1,4-Difluorobenzene		540-36-3	101	%	70-130	06.26.2020 06:31		

Xenco

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.	ND Not Detected			
RL Reporting Limit				
MDL Method Detection Limit	SDL Sample De	tection Limit	LOD Limit of Detection	
PQL Practical Quantitation Limit	MQL Method Qu	antitation Limit	LOQ Limit of Quantitation	n
DL Method Detection Limit				
NC Non-Calculable				
SMP Client Sample		BLK	Method Blank	
BKS/LCS Blank Spike/Laboratory	Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD Method Duplicate/Samp	ble Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate
+ NELAC certification not offered	for this compound.			

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Xenco

💱 eurofins

QC Summary 664790

Tetra Tech- Midland

El Paso 23 Federal Tank Battery

Seq Number:	Inorganic Anions b 3129542	y EPA 300/		Matrix:	Solid 7705823-1	DVS			ep Metho Date Pr	ep: 06.1	0P 9.2020 5823-1-BSD	
MB Sample Id:	7705823-1-BLK MB	Spike	LCS Sal		LCSD	LCSD	Limits	%RPD	RPD	Units	Analysis	
Parameter	Result	Amount	Result	%Rec	Result	%Rec	Linits	/oki D	Limit	Units	Date	Flag
Chloride	<5.00	250	254	102	254	102	90-110	0	20	mg/kg	06.19.2020 21:34	
Analytical Method: Seq Number:	Inorganic Anions b 3129543	y EPA 300/		Matrix:	Solid			Pr	ep Meth Date Pr		0P 9.2020	
MB Sample Id:	7705852-1-BLK		LCS Sar	nple Id:	7705852-	I-BKS		LCSI	O Sample	e Id: 770	5852-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	246	98	230	92	90-110	7	20	mg/kg	06.19.2020 17:32	
Analytical Method: Seq Number:	Inorganic Anions b 3129542	y EPA 300/		Matrix:	Soil			Pr	ep Meth Date Pr		0P 9.2020	
Parent Sample Id:	664787-083		MS Sar	nple Id:	664787-08	33 S		MS	D Sample	e Id: 664	787-083 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	17.9	249	282	106	280	105	90-110	1	20	mg/kg	06.19.2020 21:53	
Analytical Method: Seq Number:	Inorganic Anions b 3129542	y EPA 300/		Matrix:	Soil			Pr	ep Meth Date Pr		0P 9.2020	
-	-	y EPA 300,			Soil 664787-09	93 S			Date Pr	ep: 06.1		
Seq Number:	3129542 664787-093 Parent	Spike	MS Sar MS	nple Id: MS	664787-09 MSD	MSD	Limits		Date Pr D Sample RPD	ep: 06.1	9.2020	Flag
Seq Number: Parent Sample Id:	3129542 664787-093	-	MS Sar	nple Id:	664787-09		Limits 90-110	MS	Date Pr D Sample	ep: 06.1 e Id: 664	9.2020 787-093 SD Analysis	Flag
Seq Number: Parent Sample Id: Parameter	3129542 664787-093 Parent Result	Spike Amount	MS Sar MS Result	nple Id: MS %Rec	664787-09 MSD Result	MSD %Rec		MS] %RPD	Date Pr D Sample RPD Limit	ep: 06.1 e Id: 664' Units	9.2020 787-093 SD Analysis Date	Flag
Seq Number: Parent Sample Id: Parameter Chloride Analytical Method:	3129542 664787-093 Parent Result 20.4 Inorganic Anions b	Spike Amount 250	MS Sar MS Result 280	mple Id: MS %Rec 104	664787-09 MSD Result 279	MSD %Rec		MS] %RPD 0	Date Pr D Sample RPD Limit 20	ep: 06.1 e Id: 664' Units mg/kg od: E30	9.2020 787-093 SD Analysis Date 06.19.2020 23:21	Flag
Seq Number: Parent Sample Id: Parameter Chloride	3129542 664787-093 Parent Result 20.4	Spike Amount 250	MS Sar MS Result 280	mple Id: MS %Rec 104 Matrix:	664787-09 MSD Result 279	MSD %Rec 103		MSI %RPD 0 Pr	Date Pr D Sample RPD Limit 20 rep Methe Date Pr	ep: 06.1 e Id: 664' Units mg/kg od: E30 ep: 06.1	9.2020 787-093 SD Analysis Date 06.19.2020 23:21	Flag
Seq Number: Parent Sample Id: Parameter Chloride Analytical Method: Seq Number:	3129542 664787-093 Parent Result 20.4 Inorganic Anions b 3129543	Spike Amount 250	MS Sar MS Result 280	mple Id: MS %Rec 104 Matrix:	664787-09 MSD Result 279 Soil 664790-00 MSD	MSD %Rec 103		MSI %RPD 0 Pr	Date Pr D Sample RPD Limit 20 rep Methe Date Pr	ep: 06.1 e Id: 664' Units mg/kg od: E30 ep: 06.1	9.2020 787-093 SD Analysis Date 06.19.2020 23:21 0P 9.2020	Flag
Seq Number: Parent Sample Id: Parameter Chloride Analytical Method: Seq Number: Parent Sample Id:	3129542 664787-093 Parent Result 20.4 Inorganic Anions b 3129543 664790-002 Parent	Spike Amount 250 y EPA 300, Spike	MS Sar MS Result 280 /300.1 MS Sar MS	nple Id: MS %Rec 104 Matrix: nple Id: MS	664787-09 MSD Result 279 Soil 664790-00	MSD %Rec 103	90-110	MSI %RPD 0 Pr MSI	Date Pr D Sample RPD Limit 20 ep Methe Date Pr D Sample RPD	ep: 06.1 e Id: 664' Units mg/kg od: E30 ep: 06.1 e Id: 664'	9.2020 787-093 SD Analysis Date 06.19.2020 23:21 0P 9.2020 790-002 SD Analysis	
Seq Number: Parent Sample Id: Parameter Chloride Analytical Method: Seq Number: Parent Sample Id: Parameter	3129542 664787-093 Parent Result 20.4 Inorganic Anions b 3129543 664790-002 Parent Result	Spike Amount 250 y EPA 300, Spike Amount	MS Sar MS Result 280 (300.1 MS Sar MS Result	nple Id: MS %Rec 104 Matrix: nple Id: MS %Rec	664787-09 MSD Result 279 Soil 664790-00 MSD Result	MSD %Rec 103)2 S MSD %Rec	90-110 Limits	MSI %RPD 0 Pr MSI %RPD	Date Pr D Sample RPD Limit 20 ep Methe Date Pr D Sample RPD Limit	ep: 06.1 e Id: 664' Units mg/kg od: E30 ep: 06.1 e Id: 664' Units	9.2020 787-093 SD Analysis Date 06.19.2020 23:21 0P 9.2020 790-002 SD Analysis Date	
Seq Number: Parent Sample Id: Parameter Chloride Analytical Method: Seq Number: Parent Sample Id: Parameter Chloride Analytical Method:	3129542 664787-093 Parent Result 20.4 Inorganic Anions b 3129543 664790-002 Parent Result 32.9 Inorganic Anions b	Spike Amount 250 y EPA 300, Spike Amount 251	MS Sar MS Result 280 /300.1 MS Sar MS Result 275 /300.1	nple Id: MS %Rec 104 Matrix: nple Id: MS %Rec 96	664787-09 MSD Result 279 Soil 664790-00 MSD Result 297	MSD %Rec 103)2 S MSD %Rec	90-110 Limits	MSI %RPD 0 Pr MSI %RPD 8	Date Pr D Sample RPD Limit 20 ep Methe Date Pr D Sample RPD Limit 20	ep: 06.1 e Id: 664' Units mg/kg od: E30 ep: 06.1 e Id: 664' Units mg/kg	9.2020 787-093 SD Analysis Date 06.19.2020 23:21 0P 9.2020 790-002 SD Analysis Date 06.19.2020 17:47	
Seq Number: Parent Sample Id: Parameter Chloride Analytical Method: Seq Number: Parent Sample Id: Parameter Chloride	3129542 664787-093 Parent Result 20.4 Inorganic Anions b 3129543 664790-002 Parent Result 32.9	Spike Amount 250 y EPA 300, Spike Amount 251	MS Sar MS Result 280 /300.1 MS Sar MS Result 275 /300.1	nple Id: MS %Rec 104 Matrix: nple Id: MS %Rec 96 Matrix:	664787-09 MSD Result 279 Soil 664790-00 MSD Result 297	MSD %Rec 103)2 S MSD %Rec 105	90-110 Limits	MSI %RPD 0 Pr MSI %RPD 8	Date Pr D Sample RPD Limit 20 ep Methe Date Pr D Sample Limit 20 ep Methe Date Pr	ep: 06.1 e Id: 664' Units mg/kg od: E30 ep: 06.1 e Id: 664' Units mg/kg od: E30 ep: 06.1	9.2020 787-093 SD Analysis Date 06.19.2020 23:21 0P 9.2020 790-002 SD Analysis Date 06.19.2020 17:47	
Seq Number: Parent Sample Id: Parameter Chloride Analytical Method: Seq Number: Parent Sample Id: Parameter Chloride Analytical Method: Seq Number:	3129542 664787-093 Parent Result 20.4 Inorganic Anions b 3129543 664790-002 Parent Result 32.9 Inorganic Anions b 3129543	Spike Amount 250 y EPA 300, Spike Amount 251	MS Sar MS Result 280 /300.1 MS Sar MS Result 275 /300.1	nple Id: MS %Rec 104 Matrix: nple Id: MS %Rec 96 Matrix:	664787-09 MSD Result 279 Soil 664790-00 MSD Result 297 Soil	MSD %Rec 103)2 S MSD %Rec 105	90-110 Limits	MSI %RPD 0 Pr MSI %RPD 8	Date Pr D Sample RPD Limit 20 ep Methe Date Pr D Sample Limit 20 ep Methe Date Pr	ep: 06.1 e Id: 664' Units mg/kg od: E30 ep: 06.1 e Id: 664' Units mg/kg od: E30 ep: 06.1	9.2020 787-093 SD Analysis Date 06.19.2020 23:21 0P 9.2020 790-002 SD Analysis Date 06.19.2020 17:47 0P 9.2020	
Seq Number: Parent Sample Id: Parameter Chloride Analytical Method: Seq Number: Parent Sample Id: Chloride Analytical Method: Seq Number: Parent Sample Id:	3129542 664787-093 Parent Result 20.4 Inorganic Anions b 3129543 664790-002 Parent Result 32.9 Inorganic Anions b 3129543 664790-012 Parent	Spike Amount 250 y EPA 300, Spike Amount 251 y EPA 300, Spike	MS Sar MS Result 280 (300.1 MS Sar MS Result 275 (300.1 MS Sar MS	nple Id: MS %Rec 104 Matrix: nple Id: %Rec 96 Matrix: nple Id: MS	664787-09 MSD Result 279 Soil 664790-00 MSD Result 297 Soil 664790-00 MSD	MSD %Rec 103 02 S MSD %Rec 105	90-110 Limits 90-110	MSI %RPD 0 Pr MSI %RPD 8 Pr MSI	Date Pr D Sample RPD Limit 20 ep Methe Date Pr D Sample RPD Limit 20 ep Methe Date Pr D Sample RPD Limit	ep: 06.1 e Id: 664' Units mg/kg od: E30 ep: 06.1 e Id: 664' Units mg/kg od: E30 ep: 06.1 e Id: 664'	9.2020 787-093 SD Analysis Date 06.19.2020 23:21 0P 9.2020 790-002 SD Analysis Date 06.19.2020 17:47 0P 9.2020 790-012 SD Analysis	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 32 of 38

Final 1.001

Xenco

💱 eurofins

QC Summary 664790

Tetra Tech- Midland

El Paso 23 Federal Tank Battery

Analytical Method:	TPH By S	SW8015 M	od						Pi	rep Meth	od: SW	8015P	
Seq Number:	3129565				Matrix:	Solid				Date Pr	ep: 06.1	9.2020	
MB Sample Id:	7705837-1	I-BLK		LCS Sar	nple Id:	7705837-	1-BKS		LCS	D Sample	e Id: 770	5837-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocart	oons (GRO)	< 50.0	1000	883	88	825	83	70-130	7	20	mg/kg	06.19.2020 21:22	
Diesel Range Organics	(DRO)	<50.0	1000	908	91	863	86	70-130	5	20	mg/kg	06.19.2020 21:22	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1-Chlorooctane		83		ç	93		95		70	-130	%	06.19.2020 21:22	
o-Terphenyl		94		1	05		112	!	70	-130	%	06.19.2020 21:22	

Analytical Method:	TPH By S	W8015 M	od						Pı	rep Metho	od: SW	8015P	
Seq Number:	3129568]	Matrix:	Solid				Date Pr	ep: 06.2	20.2020	
MB Sample Id:	7705874-1	-BLK		LCS San	nple Id:	7705874-1	I-BKS		LCS	D Sample	e Id: 770	5874-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<50.0	1000	1090	109	1130	113	70-130	4	20	mg/kg	06.20.2020 23:32	
Diesel Range Organics	(DRO)	< 50.0	1000	1130	113	1170	117	70-130	3	20	mg/kg	06.20.2020 23:32	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSE %Rec			imits	Units	Analysis Date	
1-Chlorooctane		127		9	02		87		70	-130	%	06.20.2020 23:32	
o-Terphenyl		135	**	1	29		74		70	-130	%	06.20.2020 23:32	

Analytical Method:	TPH By SW8015 Mod			Prep Method:	SW	8015P	
Seq Number:	3129565	Matrix:	Solid	Date Prep:	06.1	9.2020	
		MB Sample Id:	7705837-1-BLK				
Parameter		MB Result		τ	Inits	Analysis Date	Flag
Motor Oil Range Hydrocard	bons (MRO)	<50.0		m	ig/kg	06.19.2020 21:01	

Analytical Method: Seq Number:	TPH By SW8015 Mod 3129568	Matrix: MB Sample Id:	Solid 7705874-1-BLK	Prep Method: Date Prep:			
Parameter		MB Result			Jnits	Analysis Date	Flag
Motor Oil Range Hydrocar	bons (MRO)	<50.0		m	ng/kg	06.20.2020 23:13	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 33 of 38

Xenco

💱 eurofins

QC Summary 664790

Tetra Tech- Midland

El Paso 23 Federal Tank Battery

Analytical Method:	TPH By S	W8015 M	lod						Pi	ep Meth	od: SW	8015P		
Seq Number:	3129565				Matrix:	Soil				Date Pr	ep: 06.1	19.2020		
Parent Sample Id:	664787-08	1		MS Sar	nple Id:	664787-08	81 S		MSD Sample Id: 664787-081 SD					
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Gasoline Range Hydrocarb	ons (GRO)	<49.9	997	839	84	891	89	70-130	6	20	mg/kg	06.19.2020 22:26		
Diesel Range Organics	(DRO)	<49.9	997	874	88	865	87	70-130	1	20	mg/kg	06.19.2020 22:26		
Surrogate					1S Rec	MS Flag	MSD %Re			mits	Units	Analysis Date		
1-Chlorooctane				ç	90		86		70	-130	%	06.19.2020 22:26		
o-Terphenyl				ç	98		96		70	-130	%	06.19.2020 22:26		

Analytical Method:	TPH By SV	V8015 M	od						Pi	ep Metho	od: SW	8015P		
Seq Number:	3129568]	Matrix:	Soil	oil Date Prep: 06.20.2020							
Parent Sample Id:	664790-001			MS San	nple Id:	664790-00	01 S		MS	D Sample	790-001 SD			
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Gasoline Range Hydrocarbo	ons (GRO)	<49.9	998	1040	104	1030	103	70-130	1	20	mg/kg	06.21.2020 00:28		
Diesel Range Organics ((DRO)	568	998	1770	120	1730	117	70-130	2	20	mg/kg	06.21.2020 00:28		
Surrogate					IS Rec	MS Flag	MSD %Re			mits	Units	Analysis Date		
1-Chlorooctane				1	29		128		70	-130	%	06.21.2020 00:28		
o-Terphenyl				9	9		128		70	-130	%	06.21.2020 00:28		

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 8021 3130050 7706239-1-BLK	B	LCS San	Matrix: nple Id:	Solid 7706239-	1-BKS			rep Metho Date Pr D Sample	ep: 06.2	5035A 25.2020 6239-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0914	91	0.0921	92	70-130	1	35	mg/kg	06.26.2020 01:24	
Toluene	< 0.00200	0.100	0.0926	93	0.0925	93	70-130	0	35	mg/kg	06.26.2020 01:24	
Ethylbenzene	< 0.00200	0.100	0.0933	93	0.0943	94	70-130	1	35	mg/kg	06.26.2020 01:24	
m,p-Xylenes	< 0.00400	0.200	0.187	94	0.191	96	70-130	2	35	mg/kg	06.26.2020 01:24	
o-Xylene	< 0.00200	0.100	0.0950	95	0.0970	97	70-130	2	35	mg/kg	06.26.2020 01:24	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSE %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene	100		ç	97		98		70	-130	%	06.26.2020 01:24	
4-Bromofluorobenzene	97		9	97		98		70	-130	%	06.26.2020 01:24	

.

 $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 34 of 38

Xenco

🛟 eurofins

QC Summary 664790

Flag

06.26.2020 02:05

Tetra Tech- Midland

El Paso 23 Federal Tank Battery

100

70-130

%

Analytical Method: Seq Number:	BTEX by EPA 8021 3130050	В		Matrix:	Soil			P	rep Metho Date Pro		5035A 25.2020
Parent Sample Id:	664790-004		MS Sar	nple Id:	664790-00	04 S		MS	D Sample	e Id: 664	790-004 SD
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Benzene	< 0.00199	0.0994	0.0881	89	0.0873	88	70-130	1	35	mg/kg	06.26.2020 02:05
Toluene	< 0.00199	0.0994	0.0886	89	0.0890	90	70-130	0	35	mg/kg	06.26.2020 02:05
Ethylbenzene	< 0.00199	0.0994	0.0892	90	0.0899	90	70-130	1	35	mg/kg	06.26.2020 02:05
m,p-Xylenes	< 0.00398	0.199	0.176	88	0.179	90	70-130	2	35	mg/kg	06.26.2020 02:05
o-Xylene	< 0.00199	0.0994	0.0893	90	0.0904	91	70-130	1	35	mg/kg	06.26.2020 02:05
Surrogate				1S Rec	MS Flag	MSD %Re			imits	Units	Analysis Date
1,4-Difluorobenzene			9	98		97		70	-130	%	06.26.2020 02:05

100

4-Bromofluorobenzene

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

.

[D] = 100*(C-A) / B LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike AddedD = MSD/LCSD % Rec

.

Page 35 of 38

Final 1.001

Received by	OCD:	9/8/	202	0 2:49	.52	PM	بنسبب																	P	age 99 of 101
N	Relinquisted by:	46	Relinquished by:	Helinquished by:											(LAB USE)	LAB #		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	ह्न	Analysis Request c
	Date: Time:		Date: Time:	$b_{\rm pate: Time:}$	BH-1 34'-35'	BH-1 29'-30'	BH-1 24'-25'	BH-1 19'-20'	BH-1 14'-15'	BH-1 9'-10'	BH-1 6'-7'	BH-1 4'-5'	BH-1 2'-3'	BH-1 0-1'		SAMPLE IDENTIFICATION			Xenco	Todd Wells	Eddy County, New Mexico	El Paso 23 Federal Tank Battery	EOG	Tetra Tech, Inc.	24 of 101 Analysis Request of Chain of Custody Record
ORIGINAL COPY	Received by:		Received by:	Herselved by:	6/16/2020	6/16/2020	6/16/2020	6/16/2020	6/16/2020	6/16/2020	6/16/2020	6/16/2020	6/16/2020	6/16/2020	DATE	YEAR: 2020	SAMPLING		Sampler Signature:		Project #:		Site Manager:		
~			•	3/10)	×	×	×	×	X	X	×	X	X	×	WATER SOIL		MATRIX		Devin		212C-		Mike Carmona	900 West Tel (Fax)	
	Date: Time:		Date: Time:	Date: Time:	X	×	X	×	X	X	X	X	X	X	HCL HNO ₃ ICE None		PRESERVATIV		Devin Dominguez		212C-MD-02003		mona	900 West Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946	
				<u>I</u> G Y M	1 N	1 N	-1 Z	1 V	1 N	1 N	1 N	1 N	1 N		# CONTA		RS								
Ĉ			Sar		×	×	×	×	×		×	×	×		BTEX 80	21B	вт	EX 8260E	}				L		\mathcal{O}
(Circle) H	- 20 - 20	J	Sample Temperature	OL	×	×	×	×	×	×	X	X	X	×	TPH TX1 TPH 801				DRO - I	MRO)					UPHTO
HAND DELIVERED	N W	5	mpera	LAB USE	Ê	Ê						<u> </u>			PAH 827 Total Meta	0C							<u>ŝ</u>		12
DELIVE			ture		 													Ba Cd Cr Ba Cd Cr					Circle		1
															TCLP Vol TCLP Ser			S				<u>\$</u>	ANA		\square
FEDEX	L l	Rus													RCI							{	ANALYSIS REQUEST		
X UPS	icial R	ih Cha	SH:	stai											GC/MS V GC/MS S		ll ll		5			;	IS RE		
	leport	arges ,	RUSH: Same Day	s: STANDARD											PCB's 80 NORM	82 /	608								
Tracking #:	Limits	Rush Charges Authorized		RD											PLM (Asb	esto	os)					į	EST		Page
#	Special Report Limits or TRRP Report	ized	24 hr		×	×	×	×	×	×	×	×	×	×	Chloride Chloride	S	ulfate	TDS					N		ō
	RP R		48 hr												General \ Anion/Ca	Nate	ər Ch		ee atta	ched li	st)				
	eport														TPH 801		Daid		<u> </u>						1 of
			72 hr																						₽ I
															Hold										N
•					L		I			I		P	age	36	of 38					Fina	l 1.00 [°]	1			h •

u oy	Relinquistied by:	Helinatushed by:	relinduished by:	~					(LAB USE)	LAB #			Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	4
	Date: Time:	Date: Time:					BH-1 44'-45'	BH-1 39'-40'		SAMPLE IDENTIFICATION			Xenco	Todd Wells	Eddy County, New Mexico	El Paso 23 Federal Tank Battery	EOG	Tetra Tech, Inc.
	Received by:	Received by:	Hecewed by:				6/16/2020	6/16/2020	DATE	YEAR: 2020	SAMPLING		Sampler Signature:		Project #:		Site Manager:	
ЮРҮ			6		-		 ×	×	TIME WATE SOIL	R					212C-		Mike Carmona	900 West Midla Tel Fax (
	Date: Time:	Date: Time:					×	×	HCL HNO ₃ ICE None		PRESERVATIVE		Devin Dominguez		212C-MD-02003		mona	900 West Wall Street, Ste 100 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
							_1 Z		# CON									
(Circle) HAND DELIVERED	Ç.	Sample Temperature	LAB USE				 ×		PAH 8 Total M	X1005 015M 270C letals /	(Ext t (GRO Ag As	- DRO - Ba Cd Cr	ORO - Pb Se	Hg			(Circle	
FEDEX			REMARKS:						TCLP V TCLP S RCI GC/MS	/olatile Semi V Vol.	s olatile 3260B			e Hg				
UPS Tracking #:	Special Report Limits or TRRP Report	RUSH: Same Day 24 hr					×	×	PCB's NORM PLM (A Chloride	8082 / sbesto	608		······································				ALYSIS REQUEST	
	RRP Report	ır 48 hr 72 hr								al Wat Cation	er Che	emistry (s	see atta	ached li	ist)			
							Page		Hold					F ¹	ıl 1.001			

•

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland	Acceptable Temperat	Acceptable Temperature Range: 0 - 6 degC							
Date/ Time Received: 06.18.2020 10.44.00 AM	Air and Metal sample	s Acceptable Range: Ambient							
Work Order #: 664790	Temperature Measuri	ng device used : IR-8							
Samp	le Receipt Checklist	Comments							
#1 *Temperature of cooler(s)?	1.3								
#2 *Shipping container in good condition?	Yes	5							
#3 *Samples received on ice?	Yes	5							
#4 *Custody Seals intact on shipping container/ coc	bler? N/A	N Contraction of the second seco							
#5 Custody Seals intact on sample bottles?	N/A	N Contraction of the second seco							
#6*Custody Seals Signed and dated?	N/A	۱.							
#7 *Chain of Custody present?	Yes	5							
#8 Any missing/extra samples?	No								
#9 Chain of Custody signed when relinquished/ rec	eived? Yes	5							
#10 Chain of Custody agrees with sample labels/ma	atrix? Yes	5							
#11 Container label(s) legible and intact?	Yes	5							
#12 Samples in proper container/ bottle?	Yes	BTEX was in bulk container							
#13 Samples properly preserved?	Yes	5							
#14 Sample container(s) intact?	Yes	5							
#15 Sufficient sample amount for indicated test(s)?	Yes	5							
#16 All samples received within hold time?	Yes	5							
#17 Subcontract of sample(s)?	N/A	N Contraction of the second seco							
#18 Water VOC samples have zero headspace?	N/A	N Contraction of the second seco							

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

.

PH Device/Lot#:

Checklist completed by: Billion Tall Brianna Teel

Date: 06.18.2020

Checklist reviewed by: Jession Vramer

Jessica Kramer

Date: 06.19.2020