Email:

eived by OCD: 11	/3/2020 1:02:19 PM	<u> </u>					Page 1 a				
		SITE	INFORMA	TIO	N						
		Report Type:	: Work Pla	n	1RP	-1500					
General Site Inf		•									
Site:		EVGSAU 2230-	-002 Wellhead	Relea	se						
Company:		ConocoPhillips									
Section, Towns			Sec. 22	T 1	7S	R 35E					
Lease Number:		N/A									
County:		Lea									
GPS:			32.814051°				-103.446575°				
Surface Owner:		State of New M	lexico								
Mineral Owner: Directions:		N/A	-l NINA /NINA	220/5	l	- Dd\. II.a.a	d east on Buckeye Rd for 4				
		west for 0.6 mile					rn left onto dirt road. Head				
Release Data:											
Date Released:		7/23/2007									
Type Release:		Crude Oil and F									
Source of Contain	mination:	Wellhead Relea		<u> </u>		ī					
Fluid Released:	J.	1 bbls crude oil,									
Fluids Recovered	a:	0.5 bbls crude oil, 2.5 bbls produced water									
Official Commu	inication:										
Name:	Marvin Soriwei					Christian M	1. Llull				
Company:	Conoco Phillips -	RMR				Tetra Tech					
Address:	935 N. Eldridge P					8911 North	Capital of Texas Highway				
	832-486-2730					Building 2,					
City:	Houston, Texas 7	7079				Austin, Tex					
Phone number:	(832) 486-2730					(512) 338-2					
Fax:	(002) 100 2100					(012) 000 2					

Site Characterization	
Shallowest Depth to Groundwater:	50' below surface
Impact to groundwater or surface water:	No
Extents within 300 feet of a watercourse:	No
Extents within 200 feet of lakebed, sinkhole, or playa lake:	Yes
Extents within 300 feet of an occupied structure:	No
Extents within 500 horizontal feet of a private water well:	No
Extents within 1000 feet of any water well or spring:	No
Extents within incorporated municipal well field:	No
Extents within 300 feet of a wetland:	No
Extents overlying a subsurface mine:	No
Karst Potential:	Low
Extents within a 100-year floodplain:	No
Impact to areas not on a production site:	No

Marvin.Soriwei@conocophillips.com

christian.llull@tetratech.com

Recommended Remedial Action Levels (RRALs)								
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides				
10 mg/kg	50 mg/kg	-	100 mg/kg	600 mg/kg				

November 3, 2020

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Release Characterization and Remediation Work Plan

ConocoPhillips

EVGSAU 2230-002 Wellhead Release

Unit Letter N, Section 22, Township 17 South, Range 35 East

Lea County, New Mexico

1RP-1500

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a release that occurred at the East Vacuum Grayburg-San Andres Unit (EVGSAU) 2230-002 well (API No. 30-025-02854), located in the Public Land Survey System (PLSS) Unit Letter N, Section 22, Township 17 South, Range 35 East, in Lea County, New Mexico (Site). The Site is located at coordinates 32.814051°, -103.446575°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), the release was discovered on July 23, 2007. According to the C-141, a Multi-Skilled Operator (MSO) discovered a spill caused by a broken ½" nipple to the pressure switch on the EVGSAU 2230-002 wellhead (API No. 30-025-02854). The release consisted of 1 barrel (bbl) of crude oil and 17 bbls of produced water. The New Mexico Oil Conservation District (NMOCD) was notified the same day, and the site was subsequently assigned the Remediation Permit (RP) number 1RP-1500. The release area reported on the C-141 is an 84 foot (ft) by 99 ft area of well pad and pasture. A total of 0.5 bbls of oil and 2.5 bbls of produced water were recovered during the immediate response actions. As noted in the C-141 the onsite MSO that discovered the spill shut in the well, called a vacuum truck to pick up the free liquids, replaced the broken nipple, and put the well back into production.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, lakebeds, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. The site is in an area with low karst potential. However, the Site is located within approximately 150 ft of a playa lake.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there are no water wells within an 800-meter radius, however there are two (2) water wells within 1000-meter radius of the Site. The average depth to groundwater is 55 ft below ground surface (bgs). The site characterization data is included in Appendix B.

ConocoPhillips

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the Site's proximity to a playa lake, the RRALs for the Site are as follows:

CONSTITUENT	RRAL
Chloride	600 mg/kg
TPH (GRO+DRO+MRO)	100 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

INITIAL FIELD SCREENING

A cursory review of available aerial imagery was conducted for the Site, given the historical nature of the release. A low-lying, approximately 1,750 square-foot area south of the well pad was excavated at some point between the date of the release and August 2009, when it appeared in available aerial imagery.

Tetra Tech, Inc. (Tetra Tech) personnel visited the Site on January 3, 2020 to visually evaluate the release extent and conduct field screening of the surface soil (Figure 3) near the wellhead (release point). At the time of the site visit, the pumping unit had been removed from the well and the well was noted as plugged in the NMOCD imaging database (online records indicate the well has been plugged since 2015). The general topographical sheet flow near the wellhead was noted to the south-southeast. Thus, areas fanning out from the wellhead were in this general direction were primarily investigated. The low-lying oval-shaped excavated area to the south of the well pad that was initially identified in aerial images was confirmed in the field.

During the Site visit, surface soils in and around the release area were field screened for salinity parts per million (ppm) using an ExStik II EC 400 meter. Several locations east of the well pad were chosen for surface soil screening (based on the topography) to attempt to horizontally delineate chloride impact and to authenticate the historical release extent. The results of the surface screening identified several areas with elevated salinity values, predominantly near the northeastern side of the pad. Field screening results from three locations exhibited values interpreted to exceed the recommended remedial action levels (RRAL) for chlorides of 600 mg/kg. S-4 (approximately 56 feet from the wellhead) had a screening value of 8,720 ppm for salinity, S-8 (approximately 37 feet from the wellhead) had a screening value of 2,040 ppm for salinity, and S-9 (approximately 20 feet from the wellhead) had a screening value of 3,020 ppm for salinity.

Horizontal delineation was substantiated at screening location S-7 (approximately 70 feet from the wellhead) with a screening value of 74.1 ppm, in conjunction with the additional screenings of S-5 to the north and S-6 and S-3 to the south that provided results inferred as below the RRAL for chlorides. Additionally, field screening was conducted at "sidewall" locations within the low-lying oval-shaped area at S-1 with a screening value of 93.3 ppm and at S-2 with 53.4 ppm. The field surface screening results are shown in Table 1. Surface soil field screening locations are indicated in Figure 3.

SITE ASSESSMENT

Tetra Tech returned to the Site to conduct soil sampling on May 5, 2020 on behalf of COP. A total of seven (7) borings (BH-1 through BH-7) were installed using an air rotary drilling rig. Three borings, BH-1 through BH-3, were installed within the release extent at depths ranging from 10 ft bgs (BH-3) to 20 ft bgs (BH-2) to achieve vertical delineation of impact. One boring, BH-4, was installed within the excavated area on the southern edge of the release extent. The remaining three borings (BH-5 through BH-7) were installed along

ConocoPhillips

the perimeter of the release extent in an attempt to achieve horizontal delineation. Boring logs from the May 2020 assessment activities are included in Appendix C.

A total of thirty-seven (37) samples were collected from the seven borings and submitted to Pace Analytical National Center for Testing & Innovation in Nashville, Tennessee (Pace) to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix D. Sample locations are shown in Figure 3.

INITIAL SUMMARY OF ANALYTICAL RESULTS

Results from the May 2020 soil sampling event are summarized in Table 2. Analytical results associated with BH-2, the boring located closest to the source of the release, exceeded the RRAL for chloride down to 20 ft bgs. Additionally, analytical results associated with BH-2 exceeded the Site RRAL for TPH (100 mg/kg) down to 10 ft bgs. Analytical results associated with BH-1 exceeded the RRAL for chloride down to 5 ft bgs. To the south, analytical results associated with BH-3 and BH-4 exceeded the Site RRAL for TPH (100 mg/kg) down to 10 ft bgs and down to 1-foot bgs, respectively. On the eastern and western edges of the release, samples at boring locations BH-5 and BH-7 exceeded the Site RRAL for TPH (100 mg/kg) in the upper 3 feet. These locations are assumed to have been a portion of the initial release extent footprint. The release was horizontally delineated to the north with no exceedances of Site RRALs in boring BH-6. There were no analytical results above the Site RRAL for BTEX (50 mg/kg) in any of the analyzed samples. All other analytical results were below Site RRALs.

ADDITIONAL DELINEATION

Due to the analytical results exceeding RRALs at boring locations BH-5, BH-7 and BH-4, Tetra Tech personnel returned to the Site in July 2020 to complete horizontal delineation of the release extent. Three (3) additional hand auger borings were completed to 2 ft bgs (BH-8a and BH-8b to the east, and BH-9a to the west). A total of six (6) samples were submitted to Pace and again analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix D. Sample locations are shown in Figure 3.

Analytical results associated with the 1'-2' sample interval from the BH-9a boring location (597.4 mg/kg) were above the Site RRAL for TPH (100 mg/kg). All other analytical results from the July 2020 soil sampling event were below Site RRALs. Given the Site topography, and the fact that analytical results in the surface sample (0-1') interval from BH-9a was below the RRAL (68.8 mg/kg), the elevated TPH results in the 1'-2' sample interval from BH-9a are interpreted as unrelated to the July 2007 wellhead release.

Nonetheless, to complete and confirm delineation in the cardinal directions, Tetra Tech personnel again returned to the Site on September 2020 to install five (5) additional hand auger borings to 1 ft bgs (BH-10 and BH-11 to the southeast, BH-12 to the south, BH-13 to the southwest and BH-14 to the west of the BH-9a location). A total of five (5) samples were submitted to Pace and again analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix D. Sample locations are shown in Figure 3.

SUMMARY OF ANALYTICAL RESULTS FROM ADDITIONAL DELINEATION

Results from the May, July and September 2020 sampling events are summarized in Table 2. All results were below Site RRALs, with one exception. Analytical results associated with the surface sample (0-1') from boring location BH-10 was above the Site RRAL for TPH (100 mg/kg). The release footprint was extended to the BH-10 to reflect this finding. BH-11 provides a horizontal boundary point for the results from BH-10.

Soil borings BH-1 and BH-2 vertically delineate soil impacts within the footprint of the release area. Soil borings BH-6, BH-8b, BH-11, BH-12 BH-13, and BH-14 successfully delineated horizontal impacts to the

ConocoPhillips

cardinal directions. Therefore, the release is fully delineated following the 2020 sampling activities. Photographic documentation of the Site assessments is included as Appendix E.

REMEDIATION WORK PLAN

Based on the analytical results, ConocoPhillips proposes to remove the impacted material as shown in Figure 4. Impacted soils around BH-2, the boring located closest to the source of the release, will be excavated using heavy equipment (backhoes, hoe rams, and track hoes) to a maximum depth of 10 ft bgs. The impacted soil in the vicinity of boring locations BH-7 and BH-5 (west and east of the source of the release) will be excavated to a depth of 3 ft bgs and will be extended vertically (southeast) around BH-10 which will be excavated to a depth of 2 ft bgs. To the north of the source of the release, the area around BH-1 will be excavated to a depth of 5 ft bgs. To the south of the release source, the area around BH-3 will be excavated at a depth of 1-foot bgs. Due to the analytical results in the existing excavated area, COP proposed to excavate the area around BH-4 an additional foot to a total depth of 2 ft bgs. Excavation will continue until a representative sample from the walls and bottom of the excavation is below the RRALs to a maximum depth of 2 ft bgs.

Excavated soils will be transported offsite and disposed of an NMOCD approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX, and chlorides. Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade. The estimated volume of material to be remediated is 1,175 cubic yards.

VARIANCE REQUEST

In accordance with 19.15.29.14(A) NMAC, ConocoPhillips requests a variance for the remediation of the historical release area should excavation floor concentrations below 10 ft bgs exceed 600 mg/kg for chlorides or 100 mg/kg for TPH. A 20-mil reinforced polyethylene liner will be installed and properly seated at a depth of 10 ft within the excavated areas associated with the historical impacts. The liner will provide an engineered barrier that will inhibit the downward migration of residual constituents to groundwater.

In accordance with 19.15.29.14(A) NMAC, ConocoPhillips requests a variance to leave remaining constituents in place in the vicinity of BH-9a. The 1RP-1500 release extent was delineated horizontally and vertically, as detailed above. Remaining constituent concentrations found in the subsurface at BH-9a are believed unrelated to the 1RP-1500 extent and do not cause an imminent risk to human health, the environment, or groundwater. This area has been previously reclaimed and it is better for the established uniform vegetative cover at the ground surface in that area to remain undisturbed.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips proposes the following alternative confirmation sampling plan to adhere with NMOCD requirements. The proposed confirmation sample locations are depicted in Figure 5. Thirteen (13) confirmation floor samples and thirty-six (36) confirmation sidewall samples are proposed for verification of remedial activities. The proposed excavation encompasses an area of approximately 8,954 square feet.

These confirmation sidewall and floor samples will be representative of no more than approximately 500 square feet of excavated area. Confirmation samples will be sent to Pace Laboratories for analysis of TPH (Method 8015 modified), BTEX (Method 8260B), and chlorides (USEPA Method 300.0). Once results are received, NMOCD will be notified and the excavation will then be backfilled with clean material to surface grade.

SITE RECLAMATION AND RESTORATION PLAN

Excavated soils will be transported offsite and disposed of an NMOCD approved or permitted facility and the excavation will be backfilled with clean material to surface grade. As the well is plugged, the caliche pad area will be reclaimed along with any areas disturbed by the remediation. The backfilled areas will be

ConocoPhillips

seeded in the first favorable growing season post-remediation to aid in revegetation. Based on the soils at the site, the New Mexico State Land Office (NMSLO) Coarse (CS) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix E.

CONCLUSION

ConocoPhillips proposes to begin remediation activities at the Site within one hundred and twenty (120) days of NMOCD approval of this work plan. Upon completion of the proposed work, a final closure report detailing the remediation activities and the results of the confirmation sampling will be submitted to NMOCD.

If you have any questions concerning the soil assessment or the proposed remediation activities for the Site, please call me at (512) 338-2861 or Greg at (432) 682-4559.

Greg W. Pope, P.G.

Program Manager

Sincerely,

Tetra Tech, Inc.

Christian M. Llull, P.G. **Project Manager**

Mr. Marvin Soriwei, RMR - ConocoPhillips

Mr. Charles Beauvais, GPBU - ConocoPhillips

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

Figure 1 – Overview Map

Figure 2 – Site Location/Topographic Map

Figure 3 – Release Assessment Map

Figure 4 – Proposed Remediation Extents

Figure 5 – Alternative Confirmation Sampling Plan

Tables:

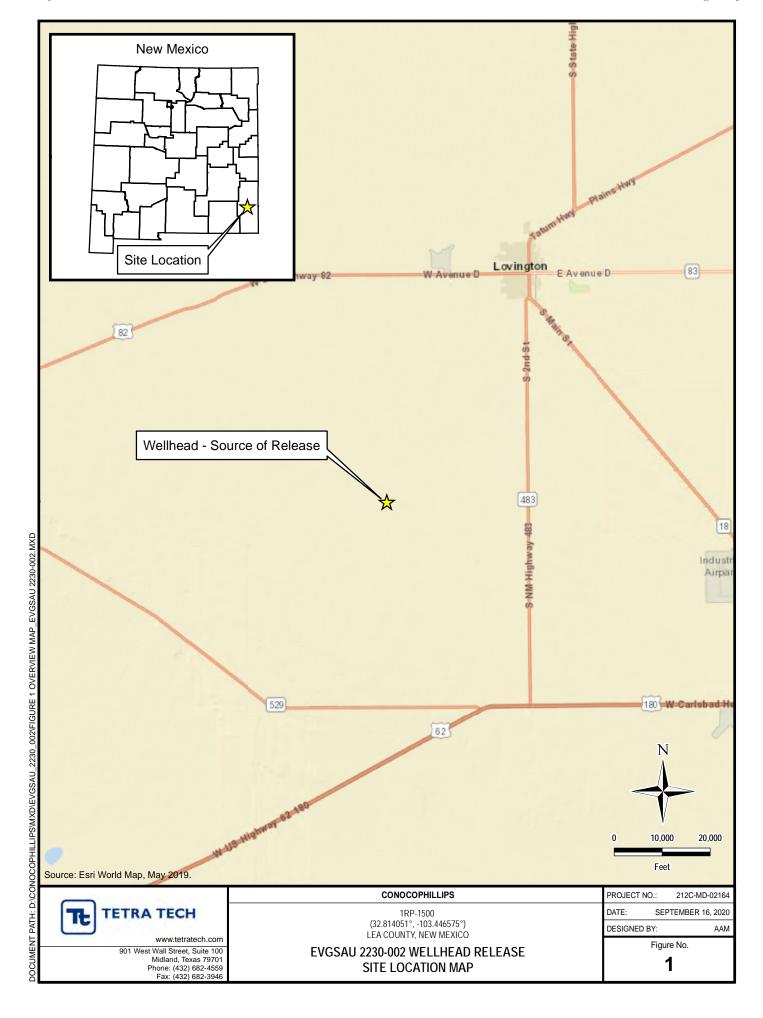
Table 1 – Summary of Field Screening Results

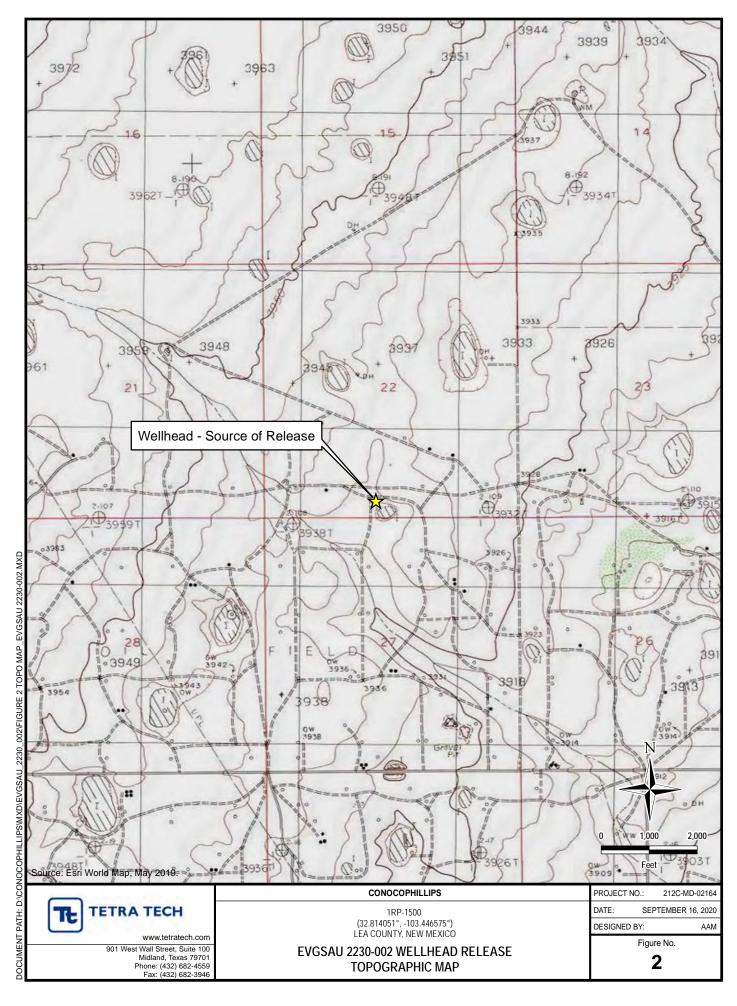
Table 2 – Summary of Analytical Results – Soil Assessment

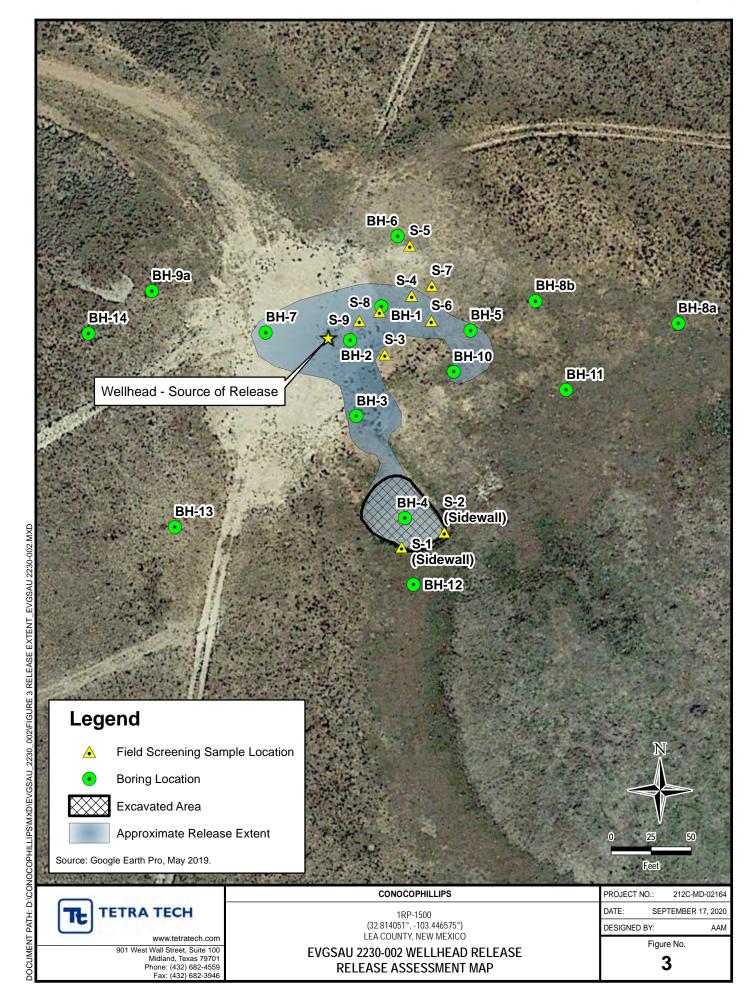
Appendices:

Appendix A – C-141 Forms

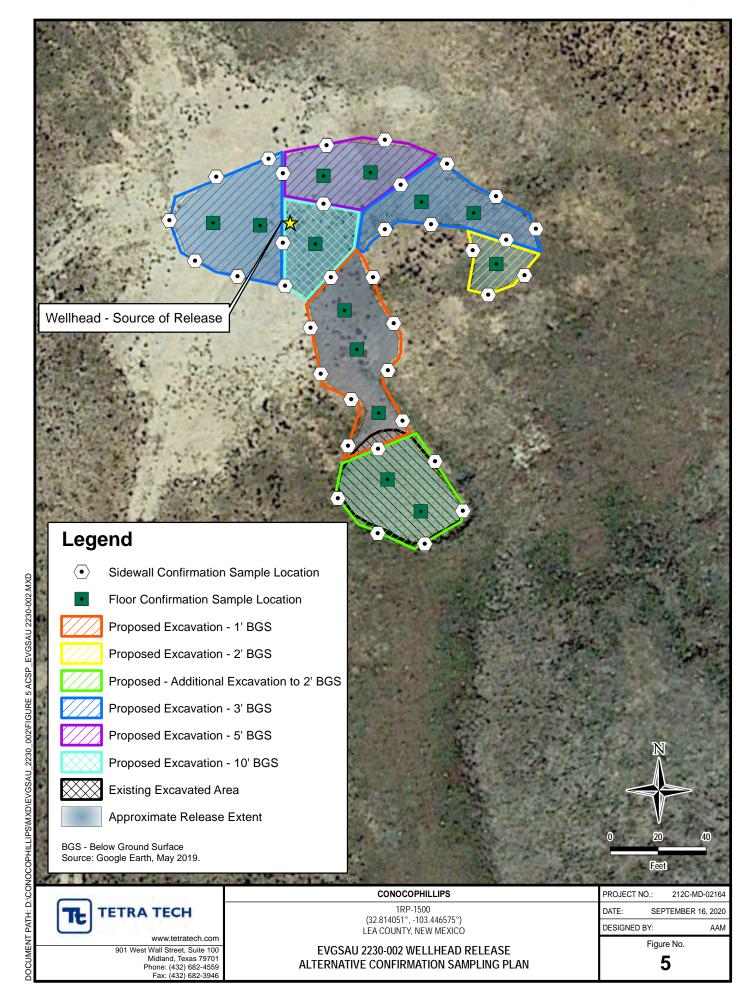
Appendix B – Site Characterization Data


Appendix C - Boring Logs


Appendix D - Laboratory Analytical Data


Appendix E – Photographic Documentation

Appendix F - NMSLO Seed Mixture Details


FIGURES

TABLES

TABLE 1 SUMMARY OF FIELD SCREENING RESULTS EVGSAU 2230-002 WELLHEAD RELEASE LEA COUNTY, NM 1RP-1500

Sample ID*	Sample Date	Chloride ¹						
		ppm						
S-1 (sidewall)	01/03/20	53.4						
S-2 (sidewall)	01/03/20	93.3						
S-3	01/03/20	254						
S-4	01/03/20	8,720						
S-5	01/03/20	242						
S-6	01/03/20	69.2						
S-7	01/03/20	74.1						
S-8	01/03/20	2,040						
S-9	01/03/20	3,020						

NOTES:

* Surface samples, unless otherwise indicated as sidewall samples.

ppm Parts per million

1 ExStik Salinity Measurement

 $Bold\ and\ italicized\ values\ indicate\ values\ inferred\ to\ equal\ an\ exceedance\ of\ the\ RRAL\ for\ chloride\ (600\ mg/kg).$

Page 16 of 191

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT CONOCOPHILLIPS EVGSAU 2230-002 WELLHEAD RELEASE 1RP-1500 LEA COUNTY, NM

			Field Carees	ning Results							BTEX ²								TP	H ³		
Sample ID	Sample Date	Sample Depth Interval	rieia screei	iing Kesuits	Chloride ¹		Benzene		Toluene		Ethylbenzen	•	Total Xylene	,	Total BTEX	GRO ⁴		DRO		ORO		Total TPH
Sample 15	Sample Date	e.va.	Chloride	PID			Belizelle		Toluelle		Ethylbenzen	e	Total Aylelle	:5	TOTAL BLEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	pp	om	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	896	9.4	672		0.00168		< 0.00543		0.000977	J	0.00190	J	0.00456	0.0295	ВJ	24.1		23.7		47.8
		2-3	-	8.9	1150		< 0.00113		< 0.00564		< 0.00282		< 0.00733		-	< 0.113		< 4.51		1.99	J	1.99
BH-1	5/5/2020	4-5	1040	-	1540		< 0.00113		< 0.00566		< 0.00283		< 0.00736		-	< 0.113		< 4.53		< 4.53		-
	2,0,2020	6-7	-	-	357		0.000509	J	< 0.00509		< 0.00255		< 0.00662		0.000509	< 0.102		< 4.07		< 4.07		=
		9-10	374	11.2	509		< 0.00103		< 0.00513		< 0.00256		< 0.00666		-	< 0.103		< 4.10		< 4.10		-
		14-15	-	-	447		< 0.00105		< 0.00525		< 0.00262		0.00129	J	0.00129	0.0274	ВJ	< 4.20		1.06	J	1.09
		0-1	-	9.8	517		< 0.00104		< 0.00521		< 0.00260		< 0.00677		-	0.0229	ВJ	189		428		617
		2-3	-	15.1	949		< 0.00109		0.00197	J	< 0.00273		0.00104	J	0.00301	0.0261	ВJ	668		1610		2278
		4-5	-	12.5	901		< 0.00110		0.00157	J	0.000931	J	< 0.00712		0.00250	0.0366	ВJ	2720		5340		8060
BH-2	5/5/2020	6-7	-	76.7	587		< 0.00108		< 0.00538		0.00129	J	0.00275	J	0.00404	0.561	V3	1000		1780		2781
		9-10	886	5.8	849		< 0.00104		< 0.00522		< 0.00261		< 0.00679		-	0.0374	ВJ	2630		4500		7130
		14-15	720	4.1					1		-		1		-			-		1		-
		19-20	421	7.2	624		< 0.00104		< 0.00522		< 0.00261		< 0.00679		-	< 0.104		80.4		162		242
		0-1	-	-	< 20.7		< 0.00103		< 0.00517		< 0.00258		< 0.00672		-	< 0.103		61.3		256		317
		2-3	-	-	< 20.8	1	< 0.00104		< 0.00521		< 0.00260		< 0.00677		-	< 0.104		2.95	J	9.94		12.9
BH-3	5/5/2020	4-5	4.3	-	14.6	J	< 0.00109		< 0.00544		< 0.00272		< 0.00707		-	< 0.109		< 4.35		0.859	J	0.859
3,3,202		6-7	-	-	< 22.1		< 0.00110		< 0.00552		< 0.00276		< 0.00718		-	< 0.110		< 4.42		3.37	J	3.37
		9-10	3.8	142	< 10.2		< 0.00111		< 0.00553		< 0.00276		< 0.00719		-	< 0.111		< 4.42		0.623	J	0.623
		0-1	167	8.1	11.0	J	< 0.00107		< 0.00536		< 0.00268		< 0.00697		-	< 0.107		25.1		78.4		104
		2-3	189	13.6	10.8	J	< 0.00109		< 0.00547		< 0.00273		< 0.00711		-	< 0.109	1	< 4.37	1	3.49	J	3.49
BH-4	5/5/2020	4-5	93.2	7.7	< 21.3	<u> </u>	< 0.00106		< 0.00532		< 0.00266		< 0.00691		-	< 0.106		< 4.25		1.21	J	1.21
		6-7	166	4.1	49.6	1	< 0.00104		< 0.00520		< 0.00260		< 0.00675		-	< 0.104		< 4.16		1.78	J	1.78
		9-10	151	5.9	23.9		< 0.00110		< 0.00548		< 0.00274		< 0.00713		-	< 0.110		< 4.39		0.684	J	0.684
	Ì	0-1	133	4.9	< 22.3		< 0.00111		< 0.00557		< 0.00279		< 0.00724		-	< 0.111	Ī	146	L	585		731
		2-3	412	5.9	< 22.3	+	< 0.00111		< 0.00557		< 0.00279		< 0.00724		-	< 0.111		120	Ť	466		586
BH-5	5/5/2020	4-5	219	12.4	< 23.3	1	< 0.00116		< 0.00582		< 0.00291		< 0.00756		-	< 0.116	1	6.43	1	21.4		27.8
		6-7	312	8.9	14.2	J	< 0.00109		< 0.00545		< 0.00272		< 0.00708		-	< 0.0236		< 4.36		1.82	J	1.82
		9-10	251	6.2	95.4		< 0.00105		< 0.00526		< 0.00263		< 0.00683		-	< 0.105		< 4.20		4.08	J	4.08
	Ì	0-1	100	10.2	25.6	T	< 0.00112		< 0.00558	T	< 0.00279		< 0.00725		I -	0.0329	1	29.3	i i	67.8		97.1
		2-3	390	7.1	164	+	< 0.00112	 	< 0.00543		< 0.00273		< 0.00725	+	_	< 0.109	ť	2.78	+	5.89		8.67
BH-6	5/5/2020	4-5	354	14.4	326	+	< 0.00105	 	< 0.00528		< 0.00271		< 0.00766	+	_	< 0.106	+	< 4.22	ť	0.615		0.615
	-,-,	6-7	331	13.0	269	+	< 0.00103	1	< 0.00528	\vdash	< 0.00254	H	< 0.00672	+	_	< 0.103	1	< 4.13	1	0.554	1	0.554
		9-10	187	10.1	238	+	< 0.00103	1	< 0.00517	H	< 0.00258	H	< 0.00671	H	_	0.122	В	< 4.13	\vdash	0.664	j	0.786
	<u>.</u> 1	0-1	501	2.4			< 0.00103		< 0.00517		< 0.00258		< 0.00671	H		< 0.103				128	H	201
		2-3	490	7.8	533 432		< 0.00103		< 0.00517		< 0.00258	H	< 0.00671	\vdash	-	< 0.103 0.0248	BJ	73.1 133		128 267		400
BH-7	5/5/2020	2-3 4-5	521	4.9								H				0.0248	BJ			2.64		2.66
DП-/	5/5/2020	4-5 6-7	405	2.5	346 469	+	< 0.00105 < 0.00106	<u> </u>	< 0.00523 < 0.00528	\vdash	< 0.00261 < 0.00264	\vdash	< 0.00680 < 0.00687	\vdash	-	< 0.106	RJ	< 4.18 7.47	\vdash	17.7	J	25.2
		9-10	209	1.9	251	+	< 0.00106	1	< 0.00528	\vdash	< 0.00258	H	< 0.00687	+	-	< 0.106	1	2.06	+	0.891	Н	2.95
	l	9-10	203	1.9	231		< 0.00103	<u> </u>	< 0.00516		< 0.00258		< 0.000/1			< 0.103	1	2.00	J	0.031	J	2.93

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT CONOCOPHILLIPS EVGSAU 2230-002 WELLHEAD RELEASE

LEA COUNTY, NM

1RP-1500

			Field Carees	Field Screening Results							BTEX ²			TPH ³								
Sample ID Sample Da	Sample Date	Sample Depth Interval	rieiu screening kesuits		Chloride ¹		Benzene		Toluene		Ethylbenzen	•	Total Xylene		Total BTEX	GRO⁴		DRO		ORO		Total TPH
	Sample Date	c.va.	Chloride	PID				Belizelle		Totale		Luiyibelizelle		:5	TOTAL BIEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	pp	ım	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
BH-8A	7/23/2020	0-1	44	0	< 20.8		< 0.00104		< 0.00519		< 0.00259		< 0.00674		-	< 0.104		4.51		18.2		22.7
BITOA	7/23/2020	1-2	48	0	< 20.7		< 0.00104		< 0.00518		< 0.00259		< 0.00674		-	0.0295	J	3.12	J	5.46		8.6
BH-8B	7/23/2020	0-1	37	0.5	< 23.7		< 0.00137		< 0.00683		< 0.00341		< 0.00887		=	< 0.118		4.19	J	9.88		14.1
BI1-6B	7/23/2020	1-2	122	0.1	< 21.7		< 0.00109		< 0.00543		< 0.00271		< 0.00705		-	< 0.110		3.46	J	15.3		18.8
BH-9A	7/23/2020	0-1	54	3.3	11.2	J	< 0.00104		< 0.00520		< 0.00260		< 0.00676		=	0.0497	J	12		56.8		68.8
BIT-9A	7/23/2020	1-2*	60	-	31.2		< 0.00104		< 0.00521		< 0.00260		< 0.00677		-	< 0.104		78.4		519		597
BH-10	9/11/2020	0-1	106	-	15.3	J	0.000674	J	0.00395	J	< 0.00293		0.00164	J	0.00626	0.757	ВЈ	64.3		241		306
BH-11	9/11/2020	0-1	225	-	< 21.2		< 0.00122		0.00362	J	< 0.00305		0.00173	J	0.00535	< 3.05		8.67		57.4		66.1
BH-12	9/11/2020	0-1	83.5	-	12.6	J	< 0.00118		0.00315	J	< 0.00295		0.00141	J	0.00456	1.08	ВЈ	7.42		39.1		47.6
BH-13	9/11/2020	0-1	100	-	< 20.4		< 0.00111		0.00329	J	< 0.00276		0.00144	J	0.00473	< 2.76		3.71	J	18.9		22.6
BH-14	9/11/2020	0-1	83.8	-	< 20.5	T	< 0.00110		0.00318	J	0.00101	J	0.00153	J	0.00572	< 2.75		2.52	J	15.3		17.8

NOTES:

ft. Feet

bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

NS Not sampled

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

* Results interpreted as unrelated to the July 2007 EVGSAU 2230-002 Wellhead Release

Shaded intervals are proposed for excavation

Bold and italicized values indicate exceedance of proposed RRALs

1 EPA Method 300.0

2 EPA Method 8260B

3 EPA Method 8015

4 EPA Method 8015D/GRO

QUALIFIERS:

B The same analyte is found in the associated blank.

J The identification of the analyte is acceptable; the reported value is an estimate.

V3 The internal standard exhibited poor recovery due to sample matrix interference. The analtyical results will be biased high. BDL results will be unaffected.

APPENDIX A C-141 Forms

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action														
					OPERATO	R		nitia 🔯	al Report) 🔲 Final Report					
Name of Co						Mickey D. Garn								
				nd, TX 79705-5		No. 505.391.3								
Facility Nan	ne EVGS	AU 2230-00)2		Facility T	ype Oil and Ga	<u>s</u>							
Surface Own	ner State	of New Me	xico	Mineral O	wner State of I	lew Mexico		Lease N	lo 30-025-02854-00-00					
				LOCA	TION OF R									
Unit Letter N	Section 22	Township 17S	Range 35E	Feet from the	North/South Line	Feet from the	East/\	West Line	County Lea					
Latitude N 32 48.840 Longitude W 103 26.794 CONTROL LOW														
Type of Relea	ase			NAI	Volume of Rele		<u> </u>	Volume F	Recovered					
Crude Oil a		ced Water			18bbl (1oil, 17	<i>V</i> 2		(0.50il, 2.						
Source of Rel			-		Date and Hour				Hour of Discovery					
1/2" nipple					7-23-2007 04:0			7-23-200	7 08:45					
Was Immedia		iven? 'es No	⊠ Not	Required	If YES, To Who Pat Roberts R	ichards								
By Whom?						7-23-2007 12:48								
Was a Watero	course Reac	hed?	Yes 🗵] No	N/A	Impacting the Wat	tercourse	€.						
If a Watercou N/A	rse was Im	pacted, Descr	ibe Fully.	***************************************	1									
Describe Area	used by a laced the	1/2" nipple broken nipple and Cleanup	to pressole and p	sure switch brea out the well back cen.*	k on production	. The Chloride c	oncent	ration for	n truck to pick up the free this area is 53,000. MOCD guidelines					
		83/6'												
regulations al public health should their o	I operators or the envir perations h iment. In a	are required to ronment. The ave failed to a ddition, NMC	o report ar acceptand idequately OCD accep	nd/or file certain rece of a C-141 reporting and re	elease notifications rt by the NMOCD emediate contamin	and perform corre- marked as "Final Ration that pose a thi	ctive act leport" or reat to gr	ions for rele loes not rele round water	suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other					
		\mathcal{A}		_		OIL CON	SERV	<u>'ATION</u>	<u>DIVISION</u>					
Signature:	X	$\times \mathbb{L}$	<u> </u>	\rightarrow	Approved	ESSIVED by District-Supervis		\neg \wedge						
Printed Name	: Mickey	D. Garner			Approved		Ser. R	-kallen	ತ ಿ					
Title: HSER	Lead				Approval I	Date: 7-26-87		Expiration	Date: 9.2307					
E-mail Addre	ss: Mickey	.D.Garner@	conocoph	illips.com	Conditions	of Approval:			Attached					
Date: 7-24-	2007		Phone:	505.391.3158	อินBm	nt full de	él nem	£ 100						
Attacl	h Addition	al Sheets If	Necessar	у	of Hor For Ch w/ Chr	OF HORIZONAN & VERTICAL FOR CHLORIDES ALONG # POP SOON WI CLEANUP PROPOSAL FOR DCD APPROVAL BY 9.73.07								
					*	-								

Received by OCD: 11/3/2020 1:02:19 PM Form C-141 State of New Mexico Page 3 Oil Conservation Division

	Page 20 of 191
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

 $This information \ must be provided \ to \ the \ appropriate \ district \ of fice \ no \ later \ than \ 90 \ days \ after \ the \ release \ discovery \ date.$

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody	ls.

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/3/2020 1:02:19 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 21 of 191
Incident ID	
District RP	
Facility ID	

Application ID

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:

Title:

Date:

Telephone:

Date:

Date:

Date:

Date:

Date:

Date:

Received by OCD: 11/3/2020 1:02:19 PM Form C-141 State of New Mexico Page 5 Oil Conservation Division

	Page 22 of 19.	1
Incident ID	nBGB2104654782	
District RP		
Facility ID		
Application ID		

Remediation Plan

Remediation Plan Checklist: Each of the following items must be inclu	ided in the plan.
□ Detailed description of proposed remediation technique □ Scaled sitemap with GPS coordinates showing delineation points □ Estimated volume of material to be remediated □ Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(□ Proposed schedule for remediation (note if remediation plan timeline	4) NMAC
Defermed Degreests Only Early of the full mine it was a few and the confirmation	I am most of more more at four Informal of more distinct
Deferral Requests Only: Each of the following items must be confirmed	a as part of any request for aeferral of remediation.
Contamination must be in areas immediately under or around product deconstruction.	ion equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health, the	environment, or groundwater.
I hereby certify that the information given above is true and complete to the rules and regulations all operators are required to report and/or file certain which may endanger public health or the environment. The acceptance of liability should their operations have failed to adequately investigate and a surface water, human health or the environment. In addition, OCD accept responsibility for compliance with any other federal, state, or local laws at	release notifications and perform corrective actions for releases a C-141 report by the OCD does not relieve the operator of emediate contamination that pose a threat to groundwater, ance of a C-141 report does not relieve the operator of
Printed Name: Ti	ile:
Printed Name: Ti Signature: Da	te:
,	lephone:
OCD Only	
<u>OCD OIN</u>	
Received by: Dat	e:
☐ Approved ☐ Approved with Attached Conditions of Appro	val Denied Deferral Approved
Signature: Bradford Billings Date:	02/15/2021

Variance request for maximum 500 sq.ft. for confirmation sampling is approved. Possible variance for liner is approved as described in report.

APPENDIX B Site Characterization Data

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned,

C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

(In feet)

POD

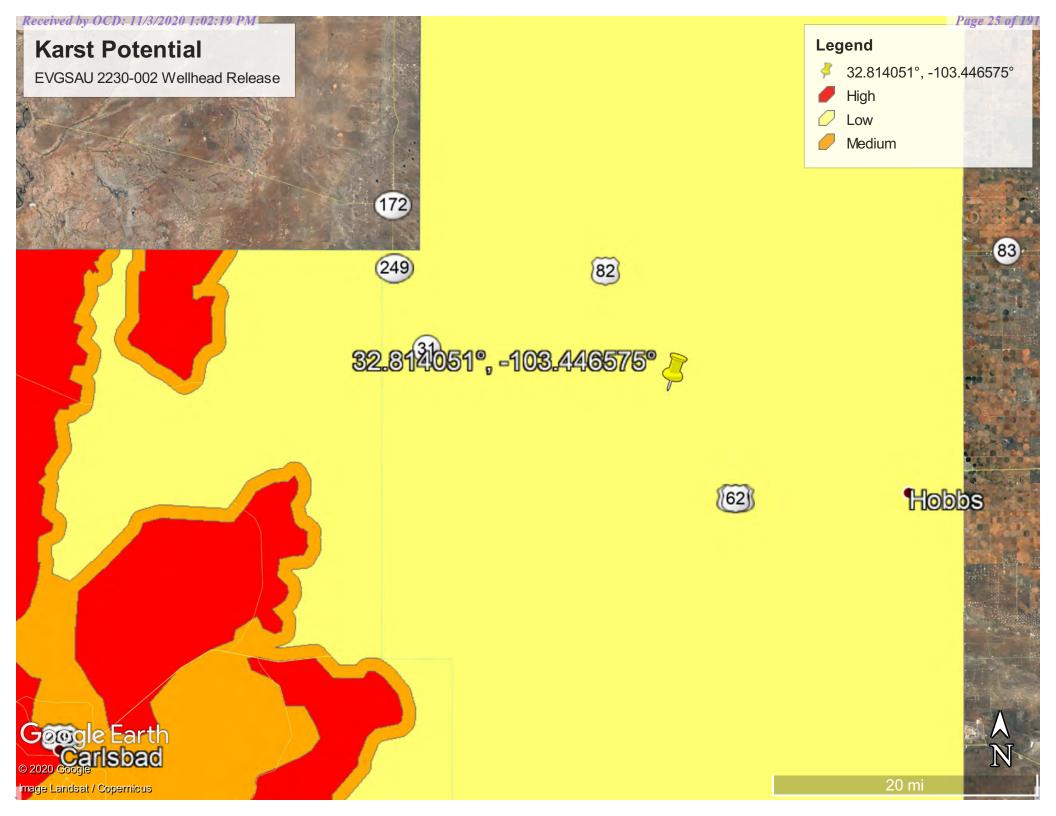
Sub-QQQ Water **POD Number** DistanceDepthWellDepthWater Column Code basin County 6416 4 Sec Tws Rng X L 10062 LE 2 4 22 17S 35E 646127 3632252* 142 L 05207 LE 27 17S 35E 645552 3630825* 80

Average Depth to Water: 55 feet
Minimum Depth: 50 feet

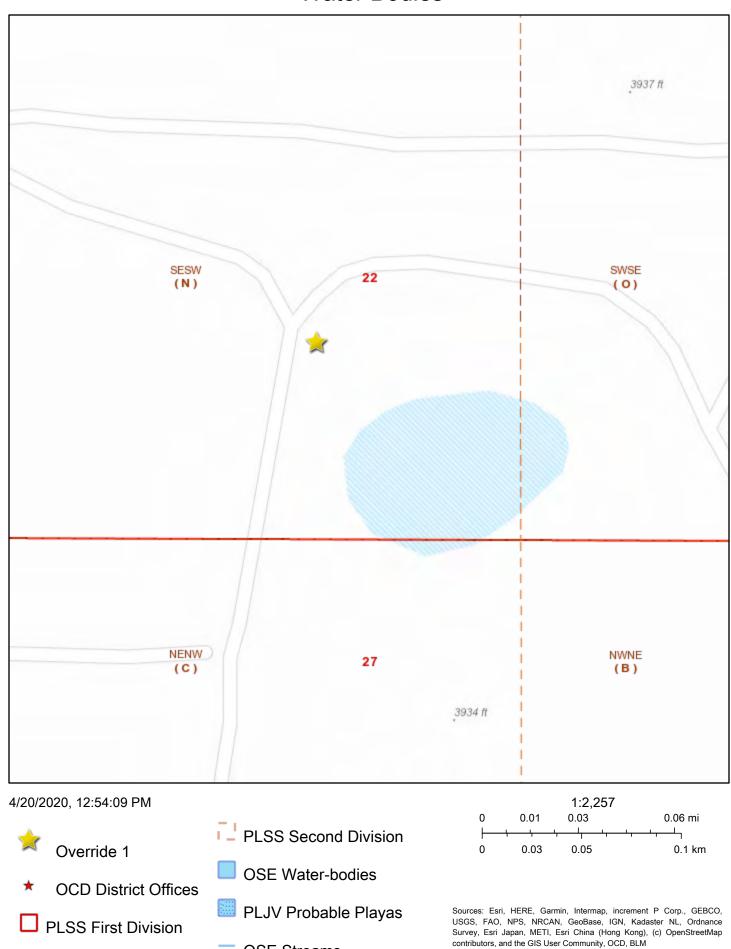
Maximum Depth: 60 feet

Record Count:2

UTMNAD83 Radius Search (in meters):


Easting (X): 645427 Northing (Y): 3631741.294 Radius: 1000

*UTM location was derived from PLSS - see Help


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/16/20 2:18 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Water Bodies

OSE Streams

APPENDIX C Boring Logs

212C-M	2164	T	E)	ETR	ATEC	Н					LC	OG OF BORING BH-1		Page 1 of 1	
Project N	lam	e: EV	GSAU 2	2230	-002	Flov	vline	Rele	ease						
Borehole	Loc	cation:	GPS: 32.8	81410)3°, -1	03.446	6468°				Surface Elevation	on:	3931 ft		
Borehole Number: BH-1 Bore									B	oreh Diame	ole eter (in.):		Date Started: 5/5/2020	Date Finishe	ed: 5/5/2020
Į.		ELD (mdd)	(mdd	ERY (%)	TENT (%)	cf)		NDEX			While Drilling		ATER LEVEL OBSERVATIO DRY ft Upon Completion of E		DRY_ft
DEPTH (ft) OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MAT	TEF	RIAL DESCRIPTION	DEPTH (ft)	REMARKS
	M	896	9.4							///	-SC- CLAYE	EY S	SAND: Brown, dense, with		BH-1 (0'-1')
			8.9								-CL- SILTY	′ CL	AY: Brown, medium stiff, with	3.5	BH-1 (2'-3')
5_\(\langle\)	M	1040									odor, no stai	ainin	g.		BH-1 (4'-5')
	X									> - \ - \ - \ - \ - \ - \ - \ - \ - \ -	CALICHE cemented, w	E: V with	Vhite, hard, indurated, heavily no odor, no staining.	5.5	BH-1 (6'-7')
10		374	11.2											-	BH-1 (9'-10')
15	M									<u>- </u>				15	BH-1 (14'-15')
Sampler Types:		Split		Acetat	e Line	r <u>[</u>) pera ypes	ation		П			m of borehole at 15.0 feet.		
Types:	1/1/1/	Split Spoon Shelby Bulk Sampl Grab Sampl			Shear nia	' 1	ypes	Muc Rota	ary tinuous nt Auge sh	s E) Air Rotany A	lotes Analy Surfa	: ytical samples are shown in the ace elevation is an estimated v	e "Remarks" alue.	column.
Loggor.	1	T. 4					منااند	~ F~	iinma	nt	D-4	rillor	· Caarbara and Drilling		

212C-MD-02164 TETRA TECH													LOG OF BORING BH-2			Page 1 of 1
Proje	ct Na	me	: EVO	SSAU 2	230	-002	Flov	vline	Rele	ease						
Boreh	ole L	_oca	ation:	GPS: 32.8	31404	6°, -10	03.446	532°				Surface Elevation	on: 3931 ft			
Borehole Number: BH-2 Borel										E	Boreho Diame	ole ter (in.):	Date Started: 5/5/2020	Date Fi	nished	d: 5/5/2020
	ш		(mdc	(mdc	ERY (%)	'ENT (%)	31)		DEX			While Drilling Remarks:	WATER LEVEL OBSERVATION ✓ DRY ft Upon Completion of		Ā D	RY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	D PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MAT	TERIAL DESCRIPTION		DEPTH (ft)	REMARKS
		$\langle $		9.8							///	-SC- CLAYE moderate or	EY SAND: Brown, dense, with dor, no staining.			BH-2 (0'-1')
				15.1							//////////////////////////////////////	dd.dd	zor, no otaning.			BH-2 (2'-3')
5		7		12.5							///				_	BH-2 (4'-5')
				76.7							- \ - \ - \ - \ - \ - \ - \ - \ - \ - \	CALICHE cemented, v	E: White, hard, indurated, heavily with moderate odor, no staining.	, ,	5.5 —	BH-2 (6'-7')
10_			886	5.8							> - \(\) - \(\) - \(\) - \(\) - \(\)				_	BH-2 (9'-10')
											> — «	-SM- SILTY with abunda	SAND: Tan, hard, heavily cement nt gravel, no odor, no staining.	ented,		
15_			720	4.1											_	
-	$\rangle \mid \downarrow$		424	7.0											_	DLI 2 (40! 20!)
20))V	Ί_	421	7.2								Bo	ottom of borehole at 20.0 feet.		20	BH-2 (19'-20')
Samp Types	ler s:		Split Spoon Shelby Bulk Sample Grab Sample				r T)pera ypes	: Mud Rota ☐ Con	ary tinuou nt Aug sh	is er	Air Rotany A	otes: nalytical samples are shown in th turface elevation is an estimated	ne "Rema value.	rks" d	column.
Logge	er: J	loe T	vler				Г	Orillin	a Eai	ıipme	ent: Air	Rotary Di	riller: Scarborough Drilling			

212C-MD-02164	TE TETRAT	TECH	LOG OF BORING BH-3	Page 1 of 1
Project Name: E\	/GSAU 2230-002 F	Flowline Release		
Borehole Location:	GPS: 32.813915°, -103	3.446520°	Surface Elevation: 3931 ft	
Borehole Number:	BH-3	Borel Diam	hole neter (in.): 8 Date Started: 5/5/2020 Date Finished	5/5/2020
E E C C C C C C C C C C C C C C C C C C	эрт) ERY (%) ENT (%)	Mark Market	WATER LEVEL OBSERVATIONS While Drilling ☐ DRY ft Upon Completion of Drilling ☐ Remarks:	RY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm)	SCREENING (ppm) SAMPLE RECOVERY (%) MOISTURE CONTENT (%)	DRY DENSITY (pcf) LIQUID LIMIT DRASTICITY INDEX MINUS NO. 200 (%)		REMARKS
			ouor, no stanning.	BH-3 (0'-1') BH-3 (2'-3')
5	4.3		5.5	BH-3 (4'-5')
			- CALICHE: White, hard, indurated, heavily cemented, with no odor, no staining.	BH-3 (6'-7')
10	3.8			BH-3 (9'-10')
			Bottom of borehole at 10.0 feet.	
Sampler Types: Split Spool Shell Shell Sam	vane Shear California	Operation Types: Mud Rotary Flight Auger Wash Rotary Wash Rotary	Hand Auger Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the "Remarks" or Surface elevation is an estimated value.	olumn.

212C-MD-02164 TETRA		LOG OF BORING BH-4	Page 31 of Page of 1
Project Name: EVGSAU 2230-002	Flowline Release		
Borehole Location: GPS: 32.813740°, -103		Surface Elevation: 3931 ft	
Borehole Number: BH-4	Borel Diam	chole neter (in.): Date Started: 5/5/2020 Date Finished: 5/5/2020	2020
ELD ppm) ppm) ERY (%) ENT (%)	×	WATER LEVEL OBSERVATIONS While Drilling ☐ DRY ft Upon Completion of Drilling ☐ DRY ft Remarks:	
DEPTH (ft) OPERATION TYPE SAMPLE SCREENING (ppm) SCREENING (ppm) SCREENING (ppm) SCREENING (ppm) SCREENING (ppm) SAMPLE RECOVERY (%)	DRY DENSITY (pcf) T LIQUID LIMIT D PLASTICITY INDEX MINUS NO. 200 (%)		MARKS
167 8.1		-SC- CLAYEY SAND: Brown, dense, with no odor, no staining.	'-1')
189 13.6		BH-4 (2	'-3')
93.2 7.7		-CL- SILTY CLAY: Brown, medium stiff, with no odor, no staining. BH-4 (4	'-5')
166 4.1		CALICHE: White, hard, indurated, heavily cemented, with no odor, no staining. BH-4 (6	'-7')
10 151 5.9		>	'-10')
	Operation	Bottom of borehole at 10.0 feet.	
Sampler Types: Split Spoon Acetate Liner Shelby Vane Shear Bulk Sample Grab Sample Test Pit	Operation Types: Mud Rotary Continuous Flight Auger Wash Rotary	Hand Auger Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value.	

212C-M		i i	T		ETR	ATEC	Н				LOG OF BORING BH-5		Page 12 01 1 of 1
Project N	lam	e: EV	GSAU 2	230	-002	Flov	vline	Rele	ease				
Borehole	Loc	cation:	GPS: 32.8	31404	l2°, -10	03.446	6327°				urface Elevation: 3931 ft		
Borehole	Nu	mber:	BH-5						E	Boreho Diame	e Ber (in.): 8 Date Started: 5/5/2020 Date Finite	shed	: 5/5/2020
В		Dbm)	(mdd	ERY (%)	TENT (%)	of)		ADEX			WATER LEVEL OBSERVATIONS	<u></u> Di	RY_ft
DEPTH (ft) OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	T LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION	DEPTH (ft)	REMARKS
	X	133 412	4.9 5.9							X	-SC- CLAYEY SAND: Brown, dense, with no odor, no staining.		BH-5 (0'-1') BH-5 (2'-3')
5		219	12.4								-CL- SILTY CLAY: Brown, medium stiff, with no odor, no staining.	3.5	BH-5 (4'-5')
	X	312	8.9							> — · > — ·	CALICHE: White, hard, indurated, heavily cemented, with no odor, no staining.		BH-5 (6'-7')
10	X	251	6.2							>	Bottom of borehole at 10.0 feet.	10	BH-5 (9'-10')
								44.					
Sampler Types:	2	Split Spoon Shelby Bulk Sampl Grab Sampl	y			r C	opera ypes	: Muc Rota Con	ary tinuou: nt Auge sh	s er	Hand Auger Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the "Remark Surface elevation is an estimated value.	(s" c	olumn.

212C-MD-02164	TE TETRATECH	LOG OF BORING BH-6	Page 1 of 1
Project Name: EVGS	SAU 2230-002 Flowline Release		
Borehole Location: GP	PS: 32.814223°, -103.446434°	Surface Elevation: 3932 ft	
Borehole Number: BH	H-6 Boreł Diam	hole leter (in.): 8 Date Started: 5/5/2020 Date Finished	: 5/5/2020
E E E E E D bpm)	m) NT (%) EX	WATER LEVEL OBSERVATIONS	RY_ft
1 III L Z	VOC FIELD SCREENING (ppm)		REMARKS
100	7.1	odor, no stanning.	BH-6 (0'-1') BH-6 (2'-3')
5 354	14.4	-CL- SILTY CLAY: Brown, medium stiff, with no	BH-6 (4'-5')
331	13	CALICHE: White, hard, indurated, heavily cemented, with no odor, no staining.	BH-6 (6'-7')
10 187	10.1	Bottom of borehole at 10.0 feet.	BH-6 (9'-10')
Sampler Massie	Acctate Liner Operation		
Sampler Types: Split Spoon Shelby Bulk Sample Grab Sample	Acetate Liner Vane Shear California Test Pit Coperation Types: Mud Rotary Flight Auger Wash Rotary	Hand Auger Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the "Remarks" of Surface elevation is an estimated value.	olumn.

212C-MD-02164	TE TETRATECH	LOG OF BORING BH-7	Page 1 of 1
Project Name: EVGSAU	J 2230-002 Flowline Release		
Borehole Location: GPS: 3		Surface Elevation: 3933 ft	
Borehole Number: BH-7	Borel Diam	hole leter (in.): 8 Date Started: 5/5/2020 Date Finished	: 5/5/2020
E E E E E E E E E E E E E E E E E E E	MT (%)	WATER LEVEL OBSERVATIONS	RY_ft
DEPTH (ft) OPERATION TYPE SAMPLE CHLORIDE FIELD SCREENING (ppm) CONTRIBUTE CHLORIDE FIELD SCREENING (ppm) CONTRIBUTE CONTRIBUTE	<u> </u>		REMARKS
501 2.4		odor, no stanning.	BH-7 (0'-1') BH-7 (2'-3')
5 521 4.9		-CL- SILTY CLAY: Brown, medium stiff, with no	BH-7 (4'-5')
405 2.5	5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CALICHE: White, hard, indurated, heavily	BH-7 (6'-7')
10 209 1.9	9	Bottom of borehole at 10.0 feet.	BH-7 (9'-10')
Sampler A colit	Acetata Liner Operation		
Sampler Types: Split Spoon Shelby Shelby Sample Grab Sample	Acetate Liner Vane Shear California Test Pit Operation Mud Rotary Flight Auger Wash Rotary	Hand Auger Air Rotary Direct Push Core Barrel Notes: Analytical samples are shown in the "Remarks" of Surface elevation is an estimated value.	olumn.

<u>ceive</u>	<u>d b</u> j	v 0	CD: 11/	/3/2020	1:0	2:19	PM	<u> </u>					Page 35 of
212	212C-MD-02164 TETRATECH											LOG OF BORING BH-8a	Page 1 of 1
Proj	ect N	lam	e: EVC	SSAU 2	230	-002	Flov	vline	Rele	ease	·		
Bore	hole	Lo	cation:	GPS: 32.8	81407	'0°, -1	03.445	5864°				Surface Elevation: 3936 ft	
Bore	Borehole Number: BH-8a										Boreho Diame	ole ter (in.): 8 Date Started: 7/22/2020 Date Finished	I: 7/22/2020
			(mdt	(mda	ERY (%)	ENT (%)	(f)		IDEX	(9		WATER LEVEL OBSERVATIONS While Drilling □ DRY ft Upon Completion of Drilling □ D Remarks:	RY_ft
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	MATERIAL DESCRIPTION (i)	REMARKS
		M	44	0								-SM- SILTY SAND: Brown, loose, dry	BH-8a (0'-1')
-		M	48	0								Pea gravel at 1'	BH-8a (1'-2')
				•		•	•	•	•			Bottom of borehole at 2.0 feet.	

<u>ceive</u>	<u>d b</u> у	, <u>0</u>	CD: 11	/3/2020	1:0	2:19	PM	[Page 36 o
212	C-M	D-0	2164	T	ŧ	ETR	ATEC	Н				LC	OG OF BORING BH-8b			Page 1 of 1
Proje	ect N	lam	e: EV	GSAU 2	2230	-002	Flov	vline	Rele	ease						
Bore	hole	Lo	cation:	GPS: 32.	81411	0°, -1	03.446	6154°				Surface Elevation:	3935 ft			
Bore	Borehole Number: BH-8b									E	Boreh Diame	ole eter (in.):	Date Started: 7/22/2020	Date F	inishe	d: 7/22/2020
DEPTH (ft)	OPERATION TYPE	SAMPLE	CHLORIDE FIELD SCREENING (ppm)	UOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	F LIQUID LIMIT	☐ PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	While Drilling Remarks: MATE	VATER LEVEL OBSERVATION DRY to Upon Completion of E		DEPTH (ft)	PRY_ft REMARKS
_			37 122	0.5 0.1								-SM- SILTY SA	AND: Brown, loose, dry at 1'			BH-8b (0'-1') BH-8b (1'-2')
		•			•						1. 1. 1.	Bott	om of borehole at 2.0 feet.			

Operation Types: Sampler Types: Split Spoon Acetate Liner Hand Auger Notes: Mud Rotary Analytical samples are shown in the "Remarks" column. Surface elevation is an estimated value. Air Rotary Shelby Vane Shear Continuous Flight Auger Bulk Sample Direct Push California Wash Rotary Grab Sample Core Barrel Test Pit Logger: Adrian Garcia Drilling Equipment: Hand Auger Driller:

EVGSAU 2230-002.GPJ `8-17-20 ` TT_AUSTIN_GEOTECH_NOWELL3 ` 2015 TT TEMPLATE DECEMBER WELL.GDT '

Project Name: EVGSAU 2230-002 Flowline Release Borehole Location: GPS: 32.814133*, -103.446934* Borehole Number: BH-9a Borehole Number: BH-9a Borehole Number: BH-9a Borehole Diameter (in.): 8 WATER LEVEL OBSERVATIONS While Drilling Remarks: WATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION Statistic PiD Stati			1
Borehole Number: BH-9a Borehole Diameter (in.): 8 Date Started: 7/22/2020 Date Figure 1 Diameter (in.): 8			
Diameter (in.): WATER LEVEL OBSERVATIONS While Drilling Remarks: WATERIAL DESCRIPTION WATERIAL DESCRIPTION WATERIAL DESCRIPTION WATERIAL DESCRIPTION WATERIAL DESCRIPTION Sample Remarks: WATERIAL DESCRIPTION WATERIAL DESCRIPTION Sample Remarks: WATERIAL DESCRIPTION WATERIAL DESCRIPTION Sample Remarks: Sa			
WATER LEVEL OBSERVATIONS While Drilling Remarks: While Drilling Remarks: WATERIAL DESCRIPTION While Drilling Remarks: WATERIAL DESCRIPTION WATERIAL DESCRIPTION SAMPLE REMARKS: WATERIAL DESCRIPTION WATERIAL DESCRIPTION SAMPLE	-inishe	ate Finishe	d: 7/22/2020
SM- SILTY SAND: Tan, hard, dry, cemented	Ā		PRY_ft
60	DEPTH (ft)	DЕРТН (ff)	REMARKS
Bottom of borehole at 2.0 feet.		_	BH-9a (0'-1') BH-9a (1'-2')

APPENDIX D Laboratory Analytical Data

ANALYTICAL REPORT

May 22, 2020

Cp

³Ss

⁴Cn

Šr

[°]Qc

7 Gl

⁸Al

⁹Sc

ConocoPhillips - Tetra Tech

Sample Delivery Group:

L1218263

Samples Received:

05/13/2020

Project Number:

212C-MD-02164

Description:

COP EVGSAU 2230-002

Site:

LEA COUNTY, NEW MEXICO

Report To:

Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	4
Cn: Case Narrative	12
Sr: Sample Results	13
BH-1 (0'-1') L1218263-01	13
BH-1 (2'-3') L1218263-02	14
BH-1 (4'-5') L1218263-03	15
BH-1 (6'-7') L1218263-04	16
BH-1 (9'-10') L1218263-05	17
BH-1 (14'-15') L1218263-06	18
BH-2 (0'-1') L1218263-07	19
BH-2 (2'-3') L1218263-08	20
BH-2 (4'-5') L1218263-09	21
BH-2 (6'-7') L1218263-10	22
BH-2 (9'-10') L1218263-11	23
BH-2 (19'-20') L1218263-12	24
BH-3 (0'-1') L1218263-13	25
BH-3 (2'-3') L1218263-14	26
BH-3 (4'-5') L1218263-15	27
BH-3 (6'-7') L1218263-16	28
BH-3 (9'-10') L1218263-17	29
BH-4 (0'-1') L1218263-18	30
BH-4 (2'-3') L1218263-19	31
BH-4 (4'-5') L1218263-20	32
BH-4 (6'-7') L1218263-21	33
BH-4 (9'-10') L1218263-22	34
BH-5 (0'-1') L1218263-23	35
BH-5 (2'-3') L1218263-24	36
BH-5 (4'-5') L1218263-25	37
BH-5 (6'-7') L1218263-26	38
BH-5 (9'-10') L1218263-27	39
BH-6 (0'-1') L1218263-28	40
BH-6 (2'-3') L1218263-29	41
BH-6 (4'-5') L1218263-30	42
BH-6 (6'-7') L1218263-31	43
BH-6 (9'-10') L1218263-32	44
BH-7 (0'-1') L1218263-33	45
BH-7 (2'-3') L1218263-34	46
BH-7 (4'-5') L1218263-35	47

BH-7 (6'-7') L1218263-36	48
BH-7 (9'-10') L1218263-37	49
Qc: Quality Control Summary	50
Total Solids by Method 2540 G-2011	50
Wet Chemistry by Method 300.0	54
Volatile Organic Compounds (GC) by Method 8015D/GRO	58
Volatile Organic Compounds (GC/MS) by Method 8260B	62
Semi-Volatile Organic Compounds (GC) by Method 8015	65
GI: Glossary of Terms	68
Al: Accreditations & Locations	69
Sc: Sample Chain of Custody	70

			Collected by	Collected date/time	Received da	te/time
BH-1 (0'-1') L1218263-01 Solid			Joe Tyler	05/05/20 10:00	05/13/20 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1479315	1	05/20/20 18:58	05/20/20 19:08	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1475879	5	05/15/20 10:21	05/15/20 16:12	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1477983	1	05/18/20 08:11	05/18/20 11:27	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 12:54	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477294	1	05/17/20 21:31	05/18/20 09:32	MTJ	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-1 (2'-3') L1218263-02 Solid			Joe Tyler	05/05/20 10:10	05/13/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1479315	1	05/20/20 18:58	05/20/20 19:08	KDW	Mt. Juliet, TI
Vet Chemistry by Method 300.0	WG1475879	5	05/15/20 10:21	05/15/20 16:22	ELN	Mt. Juliet, Ti
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477983	1	05/18/20 08:11	05/18/20 11:48	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 13:14	BMB	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477294	1	05/17/20 21:31	05/18/20 06:58	MTJ	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-1 (4'-5') L1218263-03 Solid			Joe Tyler	05/05/20 10:20	05/13/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1479315	1	05/20/20 18:58	05/20/20 19:08	KDW	Mt. Juliet, Tl
Wet Chemistry by Method 300.0	WG1475879	5	05/15/20 10:21	05/15/20 16:31	ELN	Mt. Juliet, Ti
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477983	1	05/18/20 08:11	05/18/20 12:09	BMB	Mt. Juliet, Ti
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 13:35	BMB	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477294	1	05/17/20 21:31	05/18/20 07:11	MTJ	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
BH-1 (6'-7') L1218263-04 Solid			Joe Tyler	05/05/20 10:30	05/13/20 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1479315	1	05/20/20 18:58	05/20/20 19:08	KDW	Mt. Juliet, TI
Vet Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 17:49	ELN	Mt. Juliet, TI
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477983	1	05/18/20 08:11	05/18/20 12:29	BMB	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 13:55	BMB	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method 8015	WG1477294	1	05/17/20 21:31	05/18/20 07:25	MTJ	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
BH-1 (9'-10') L1218263-05 Solid			Joe Tyler	05/05/20 10:40	05/13/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1479315	1	05/20/20 18:58	05/20/20 19:08	KDW	Mt. Juliet, T
Vet Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 17:59	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477983	1	05/18/20 08:11	05/18/20 12:50	BMB	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 14:16	BMB	Mt. Juliet, TI
Comi Volatila Organia Compounda (CC) by Mothad 9015	WC1477204	4	05/47/20 24-24	05/10/20 07:20	NAT I	MA Lutha TA

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1477294

05/17/20 21:31

05/18/20 07:38

MTJ

Mt. Juliet, TN

BH-1 (14'-15') L1218263-06 Solid			Collected by Joe Tyler	Collected date/time 05/05/20 10:50	Received date 05/13/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1479315	1	05/20/20 18:58	05/20/20 19:08	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 18:08	ELN	Mt. Juliet, T
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1477983	1	05/18/20 08:11	05/18/20 13:11	BMB	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 16:33	BMB	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477294	1	05/17/20 21:31	05/18/20 08:52	MTJ	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
3H-2 (0'-1') L1218263-07 Solid			Joe Tyler	05/05/20 11:00	05/13/20 08:	:45
fethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479315	1	05/20/20 18:58	05/20/20 19:08	KDW	Mt. Juliet, T
let Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 18:18	ELN	Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1478317	1	05/18/20 08:11	05/18/20 23:15	JAH	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 16:53	BMB	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	20	05/17/20 21:34	05/18/20 16:51	KME	Mt. Juliet, T
3H-2 (2'-3') L1218263-08 Solid			Collected by Joe Tyler	Collected date/time 05/05/20 11:10	Received da: 05/13/20 08:	
	Datab	Diletie	Dunantina	Arrabasia	A b b	Lasatian
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479316	1	05/20/20 18:47	05/20/20 18:56	KDW	Mt. Juliet, T
et Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 18:27	ELN	Mt. Juliet, T
platile Organic Compounds (GC) by Method 8015D/GRO	WG1477983	1	05/18/20 08:11	05/18/20 13:52	BMB	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 17:13	BMB	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	40	05/17/20 21:34	05/18/20 17:30	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
BH-2 (4'-5') L1218263-09 Solid			Joe Tyler	05/05/20 11:20	05/13/20 08:	:45
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479316	1	05/20/20 18:47	05/20/20 18:56	KDW	Mt. Juliet, T
et Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 18:46	ELN	Mt. Juliet, T
platile Organic Compounds (GC) by Method 8015D/GRO	WG1477983	1	05/18/20 08:11	05/18/20 14:12	BMB	Mt. Juliet, T
platile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 17:33	BMB	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	40	05/17/20 21:34	05/18/20 17:44	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
			Joe Tyler	05/05/20 11:30	05/13/20 08:	:45
3H-2 (6'-7') L1218263-10 Solid			Preparation	Analysis	Analyst	Location
	Batch	Dilution	•	•	, mary se	
ethod			date/time	date/time		
petal Solids by Method 2540 G-2011	WG1479316	1	date/time 05/20/20 18:47	date/time 05/20/20 18:56	KDW	Mt. Juliet, T
otal Solids by Method 2540 G-2011 let Chemistry by Method 300.0	WG1479316 WG1475882	1 1	date/time 05/20/20 18:47 05/15/20 15:58	date/time 05/20/20 18:56 05/15/20 18:56	KDW ELN	Mt. Juliet, T Mt. Juliet, T
BH-2 (6'-7') L1218263-10 Solid dethod otal Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0 olatile Organic Compounds (GC) by Method 8015D/GRO olatile Organic Compounds (GC/MS) by Method 8260B	WG1479316	1	date/time 05/20/20 18:47	date/time 05/20/20 18:56	KDW	Mt. Juliet, Tl Mt. Juliet, Tl Mt. Juliet, Tl Mt. Juliet, Tl

BH-2 (9'-10') L1218263-11 Solid			Collected by Joe Tyler	Collected date/time 05/05/20 11:40	Received da 05/13/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1479316	1	05/20/20 18:47	05/20/20 18:56	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 19:24	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1477983	1	05/18/20 08:11	05/18/20 14:54	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 18:14	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	40	05/17/20 21:34	05/18/20 17:17	KME	Mt. Juliet, TN
BH-2 (19'-20') L1218263-12 Solid			Collected by Joe Tyler	Collected date/time 05/05/20 12:00	Received da 05/13/20 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1479316	1	05/20/20 18:47	05/20/20 18:56	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 19:34	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:11	05/18/20 15:02	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 18:34	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	5	05/17/20 21:34	05/18/20 16:11	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-3 (0'-1') L1218263-13 Solid			Joe Tyler	05/05/20 12:10	05/13/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1479316	1	05/20/20 18:47	05/20/20 18:56	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 19:43	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:11	05/18/20 15:26	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 18:54	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	1	05/17/20 21:34	05/20/20 20:59	FM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	20	05/17/20 21:34	05/18/20 17:04	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-3 (2'-3') L1218263-14 Solid			Joe Tyler	05/05/20 12:20	05/13/20 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1479316	1	05/20/20 18:47	05/20/20 18:56	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 19:53	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:11	05/18/20 15:56	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1478032	1	05/18/20 08:11	05/18/20 19:15	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	1	05/17/20 21:34	05/18/20 13:59	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-3 (4'-5') L1218263-15 Solid			Joe Tyler	05/05/20 12:30	05/13/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479316	1	05/20/20 18:47	05/20/20 18:56	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 20:02	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:11	05/18/20 16:20	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1478332	1	05/18/20 08:11	05/18/20 23:43	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	1	05/17/20 21:34	05/18/20 13:19	KME	Mt. Juliet, TN

BH-3 (6'-7') L1218263-16 Solid			Collected by Joe Tyler	Collected date/time 05/05/20 12:40	Received da 05/13/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1479316	1	05/20/20 18:47	05/20/20 18:56	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 20:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:11	05/18/20 16:44	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1478332	1	05/18/20 08:11	05/19/20 00:02	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	1	05/17/20 21:34	05/20/20 20:06	FM	Mt. Juliet, TN
BH-3 (9'-10') L1218263-17 Solid			Collected by Joe Tyler	Collected date/time 05/05/20 12:50	Received da 05/13/20 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1479316	1	05/20/20 18:47	05/20/20 18:56	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 20:21	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:11	05/19/20 05:24	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1478332	1	05/18/20 08:11	05/19/20 00:21	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	1	05/17/20 21:34	05/20/20 19:53	FM	Mt. Juliet, TN
BH-4 (0'-1') L1218263-18 Solid			Collected by Joe Tyler	Collected date/time 05/05/20 13:00	Received da 05/13/20 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	. ,	
Total Solids by Method 2540 G-2011	WG1479317	1	05/20/20 20:20	05/20/20 20:30	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 20:31	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:11	05/19/20 06:07	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1478332	1	05/18/20 08:11	05/19/20 00:41	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	1	05/17/20 21:34	05/20/20 20:45	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-4 (2'-3') L1218263-19 Solid			Joe Tyler	05/05/20 13:10	05/13/20 08	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1479317	1	05/20/20 20:20	05/20/20 20:30	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 21:19	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:11	05/18/20 18:03	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1478332	1	05/18/20 08:11	05/19/20 01:00	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	1	05/17/20 21:34	05/18/20 14:38	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-4 (4'-5') L1218263-20 Solid			Joe Tyler	05/05/20 13:10	05/13/20 08	.45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Califactor Mathead 2540 C 2009	11101170017		date/time	date/time	WD111	MAL I D . The
Total Solids by Method 2540 G-2011	WG1479317	1	05/20/20 20:20	05/20/20 20:30	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 21:28	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:24	05/18/20 18:27	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1478332	1	05/18/20 08:24	05/19/20 01:19	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	1	05/17/20 21:34	05/18/20 14:52	KME	Mt. Juliet, TN

Content Con							
Balch Display Pepsinton Analysis Analysis Locoto Analysis Analysis Locoto Analysis Analysis Control							
California Cal	BH-4 (6'-7') L1218263-21 Solid			Joe Tyler	05/05/20 13:20	05/13/20 08	:45
Solids by Method 2540 G-2011	Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Next Chemistry by Method 300.0 Wick178967 1 OSH320 05458 OSH320 0345 LEN M. Julied balance Organic Compounds (GCL) by Method 8055 Wick178067 1 OSH320 0847 OSH320 0845 LEN M. Julied belief Organic Compounds (GCL) by Method 8055 Wick178073 1 OSH320 0847 OSH320 0845 LEN M. Julied belief Organic Compounds (GCL) by Method 8055 Wick178073 1 OSH320 0847 OSH320 0845 LEN M. Julied belief Organic Compounds (GCL) by Method 8055 Wick178073 To ST070 07134 OSH320 0845 Lecalid datablisme of the compounds (GCL) by Method 8055 Wick1780737 To ST070 07124 OSH320 0845 Lecalid datablisme of the compounds (GCL) by Method 8055 Wick1780737 To ST070 07124 OSH320 0845 Lecalid datablisme of the compounds (GCL) by Method 8055 Wick1780737 To ST070 07124 OSH320 0845 OSH320 0845 USA 0845 Lecalid datablisme of the compounds (GCL) by Method 8055 Wick1780737 To ST070 07124 OSH320 0845 OSH320 0845 USA 0845				date/time	date/time		
Bellet Organic Compounds (GCMS) by Method 8015D/GR0 WG1478049 1 OS18270 08.24 OS18270 18.51 JAH M. Aulier Oblatile Organic Compounds (GCMS) by Method 8015 WG1477823 1 OS18270 08.24 OS18270 18.51 BMB M. Julier Organic Compounds (GCMS) by Method 8015 WG1477823 1 OS18720 08.24 OS18270 18.53 BMB M. Julier Organic Compounds (GCMS) by Method 8015 WG1477823 1 OS18720 08.24 OS18270 18.33 OS18270 08.45	otal Solids by Method 2540 G-2011	WG1479317	1	05/20/20 20:20	05/20/20 20:30	KDW	Mt. Juliet, T
Michael Corganic Compounds (GCMs) by Method 82908 WG478049 1	/et Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 21:38	ELN	Mt. Juliet, T
### All Part	olatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:24	05/18/20 18:51	JAH	Mt. Juliet, T
BH-4 (9'-10') L1218263-22 Solid	olatile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 13:53	BMB	Mt. Juliet, T
### A Control of Type	emi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	1	05/17/20 21:34	05/18/20 15:05	KME	Mt. Juliet, T
Batch Dilution Preparation Analysis Analysis Location Analysis				Collected by	Collected date/time	Received da	te/time
	3H-4 (9'-10') L1218263-22 Solid			Joe Tyler	05/05/20 13:30	05/13/20 08	:45
atal Solids by Method 2540 6-2011 WG479317 1 05/20/20 20:20 05/20/20 20:30 KDW Mt. Juliet to Chemistry by Method 8015D/GRO WG478862 1 05/15/20 15:38 05/15/20 17:41 ELN Mt. Julied obable Organic Compounds (GCMS) by Method 8015D/GRO WG478067 1 05/16/20 08:34 05/18/20 18:13 BMB Mt. Julied obable Organic Compounds (GCMS) by Method 8015 WG478068 WG478049 1 05/18/20 08:24 05/18/20 15:18 KM€ Mt. Julied emi-Volatile Organic Compounds (GCMS) by Method 8015 WG477623 1 05/18/20 08:24 05/18/20 15:18 KM€ Mt. Julied BH-5 (O'-1') L1218263-23 Solid Compounds (GCMS) by Method 8015 WG477623 1 05/18/20 08:24 05/18/20 15:18 KM€ Mt. Julied BH-5 (O'-1') L1218263-23 Solid Compounds (GCMS) by Method 8015 WG477631 1 05/18/20 08:24 05/18/20 15:18 KM€ Mt. Julied BH-5 (O'-1') L1218263-23 Solid Compounds (GCMS) by Method 2540 G-2011 WG479317 1 05/20/20 20:20 05/20/20/20 05/20/20/20 05/20/20/20 05/20/20/20/20/20/20/20/20/20/20/20/20/20/	ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
Method 300.0 WG1475882 1 05/15/20 15:58 05/15/20 21:47 ELN Mt. Julied loilable Organic Compounds (GC) by Method 8015D/GRO WG1478047 1 05/18/20 08:24 05/18/20 19:15 JAH Mt. Julied loilable Organic Compounds (GC) by Method 8015 WG1478049 1 05/18/20 08:24 05/18/20 19:15 JAH Mt. Julied loilable Organic Compounds (GC) by Method 8015 WG1478049 1 05/18/20 08:24 05/18/20 15:18 MME Mt. Julied lethind with loilable Organic Compounds (GC) by Method 8015 WG1477623 1 05/18/20 15:18 KME Mt. Julied lethind with loilable Organic Compounds (GC) by Method 8015 WG1478049 1 05/18/20 08:24 05/18/20 15:18 KME Mt. Julied lethind with loilable Organic Compounds (GC) by Method 8015D/GRO WG1478047 1 05/20/20 20:20 05/05/20 13:40 05/18/20 08:24 05/18/20 13:40 05/18/20 08:24 05/18/20 13:40 05/18/20 08:24 05/18/20 13:40 05/18/20 08:24 05/18/20 13:40 05/18/20 08:24 05/18/20 13:40 05/18/20 08:24 05/18/20 13:40 05/18/20 08:24 05/18/20 13:40 05/18/20 08:24 05/18/20 13:40 05/18/20 08:24 05/18/20 13:40 05/18/20 08:45 05/18/20 08:24 05/18/20 08:24 05/18/20 08:24 05/18/20 08:24 05/18/20 08:24 05/18/20 08:24 05/18/20 08:24 05/18/20 08:24 05/18/20 08:24 05/18/20 08:25 08:45 05/18/20 08:45 05				date/time	date/time		
Dilution	•						Mt. Juliet, TI
Dilution Preparation Dilution Preparation Dilution Preparation District		WG1475882	1	05/15/20 15:58	05/15/20 21:47	ELN	Mt. Juliet, T
### Volatile Organic Compounds (GC) by Method 8015 ### WG1477623 ### UG1477623 ### UG147626 ### UG1477623	platile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:24	05/18/20 19:15	JAH	Mt. Juliet, T
Collected by Dilution Preparation Analysis Analyst Location Dilution Preparation Analysis Analyst Location Dilution Preparation Analysis Analyst Location Dilution	olatile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 14:13	BMB	Mt. Juliet, T
SH-5 (O'-1') L1218263-23 Solid	emi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	1	05/17/20 21:34	05/18/20 15:18	KME	Mt. Juliet, T
Batch Dilution Preparation Analysis Analyst Location Analysis Analyst Locati				Collected by	Collected date/time	Received da	te/time
tall Solids by Method 2540 G-2011 WG1479317 1 05/20/20 20:20 05/20/20 20:30 KDW Mt. Julied to Chemistry by Method 300.0 WG1478882 1 05/15/20 15:58 05/15/20 21:57 ELN Mt. Julied Saltile Organic Compounds (GC) by Method 8015D/GRO WG1478047 1 05/18/20 08:24 05/18/20 13:39 JAH Mt. Julied Saltile Organic Compounds (GC) by Method 8015 WG1478049 1 05/18/20 08:24 05/18/20 14:32 BMB Mt. Julied Saltile Organic Compounds (GC) by Method 8015 WG1477623 40 05/17/20 21:34 05/18/20 16:24 KME Mt. Julied Saltile Organic Compounds (GC) by Method 8015 WG1477623 40 05/17/20 21:34 05/18/20 16:24 KME Mt. Julied Saltile Organic Compounds (GC) by Method 8015 WG1478049 1 05/17/20 21:34 05/18/20 16:24 KME Mt. Julied Saltile Organic Compounds (GC) by Method 8015 WG1478047 1 05/20/20 20:30 KDW Mt. Julied Saltile Organic Compounds (GC) by Method 8015 WG1479317 1 05/20/20 20:20 05/18/20 13:50 05/13/20 08:45 05/18/20 13:50 05/13/20 08:45 05/18/20 13:50 05/18/20 05/18/20 13:50 05/18/20 05/1	.H-5 (0'-1') L1218263-23 Solid			Joe Tyler	05/05/20 13:40	05/13/20 08	:45
tal Solids by Method 2540 G-2011 et Chemistry by Method 300.0 WG1475882 1 05/15/20 15:58 05/15/20 21:57 ELN Mt. Juliet et Chemistry by Method 300.0 WG1478067 1 05/18/20 08:24 05/18/20 19:39 JAH Mt. Juliet et Chemistry by Method 8015D/GRO WG1478049 1 05/18/20 08:24 05/18/20 14:32 BMB Mt. Juliet et Clercin Compounds (GC/MS) by Method 8015 WG1477623 40 05/17/20 21:34 05/18/20 14:32 BMB Mt. Juliet et Clercin Stry by Method 2540 G-2011 et Chemistry by Method 300.0 WG1478067 WG1477623 Batch Dilution Preparation date/time da	ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
tet Chemistry by Method 300.0 WG1475882 1 05/15/20 15:58 05/15/20 21:57 ELN Mt. Julied Diatile Organic Compounds (GC) by Method 8015D/GRO WG1478067 1 05/18/20 08:24 05/18/20 19:39 JAH Mt. Julied Diatile Organic Compounds (GC/MS) by Method 8260B WG1478049 1 05/18/20 08:24 05/18/20 14:32 BMB Mt. Julied Emi-Volatile Organic Compounds (GC) by Method 8015 WG1477623 40 05/17/20 21:34 05/18/20 16:24 KME Mt. Julied Diatile Organic Compounds (GC) by Method 8015 WG1477623 40 05/17/20 21:34 05/18/20 16:24 KME Mt. Julied Diatile Organic Compounds (GC) by Method 8015 WG1477623 40 05/17/20 21:34 05/18/20 13:50 05/13/20 08:45 Uccatic date/time date/tim				date/time	date/time		
Diable Organic Compounds (GC) by Method 8015D/GRO WG1478067 1 05/18/20 08:24 05/18/20 19:39 JAH Mt. Julied Diable Organic Compounds (GC/MS) by Method 8260B WG1478049 1 05/18/20 08:24 05/18/20 14:32 BMB Mt. Julied Emit-Volatile Organic Compounds (GC) by Method 8015 WG1477623 40 05/17/20 21:34 05/18/20 16:24 KME Mt. Julied Compounds (GC) by Method 8015 WG1477623 40 05/17/20 21:34 05/18/20 16:24 KME Mt. Julied Collected by Collected date/time Received date/time Os/13/20 08:45 Ethod Batch Dilution Preparation Analysis Analysis Analysis Locatic date/time date/time date/time date/time date/time date/time ostal Solids by Method 2540 G-2011 WG1475878 1 05/18/20 08:24 05/18/20 20:30 KDW Mt. Julied Diable Organic Compounds (GC) by Method 8015D/GRO WG1478049 1 05/18/20 08:24 05/18/20 12:32 JAH Mt. Julied Emit-Volatile Organic Compounds (GC) by Method 8015 WG1478049 1 05/18/20 08:24 05/18/20 14:51 BMB Mt. Julied Emit-Volatile Organic Compounds (GC) by Method 8015 WG1477623 20 05/17/20 21:34 05/18/20 16:37 KME Mt. Julied Ethod Solids by Method 2540 G-2011 WG1477623 20 05/17/20 21:34 05/18/20 16:37 KME Mt. Julied Ethod Solids by Method 2540 G-2011 WG1478047 1 05/20/20 20:20 05/20/20 20:30 KDW Mt. Julied Ethod Solids by Method 2540 G-2011 WG1478047 1 05/20/20 20:20 05/17/20 21:34 05/18/20 16:37 KME Mt. Julied Ethod Solids by Method 2540 G-2011 WG1478047 1 05/20/20 20:20 05/17/20 20:30 KDW Mt. Julied Ethod Solids by Method 2540 G-2011 WG1478047 1 05/20/20 20:20 05/20/20 20:30 KDW Mt. Julied Ethod Solids by Method 2540 G-2011 WG1478047 1 05/18/20 08:24 05/18/20 17:40 ELN Mt. Julied Ethod Solids by Method 2540 G-2011 WG1478067 1 05/18/20 08:24 05/18/20 22:56 JAH Mt. Julied Diatile Organic Compounds (GC) by Method 8260B WG1478049 1 05/18/20 08:24 05/18/20 15:10 BMB Mt. Julied Diatile Organic Compounds (GC/MS) by Method 8260B WG1478049 1 05/18/20 08:24 05/18/20 15:10 BMB Mt. Julied Diatile Organic Compounds (GC/MS) by Method 8260B	otal Solids by Method 2540 G-2011	WG1479317	1	05/20/20 20:20	05/20/20 20:30	KDW	Mt. Juliet, T
Datalie Organic Compounds (GC/MS) by Method 8260B WG1478049 1 05/18/20 08:24 05/18/20 14:32 BMB Mt. Julied Premi-Volatile Organic Compounds (GC) by Method 8015 WG1477623 40 05/17/20 21:34 05/18/20 16:24 KME Mt. Julied Premi-Volatile Organic Compounds (GC) by Method 8015 WG1477623 40 05/17/20 21:34 05/18/20 16:24 KME Mt. Julied Premi-Volatile Organic Compounds (GC) by Method 8015 WG1477623 40 05/17/20 21:34 05/18/20 16:24 KME Mt. Julied Preparation Analysis Analyst Locatic date/time	et Chemistry by Method 300.0	WG1475882	1	05/15/20 15:58	05/15/20 21:57	ELN	Mt. Juliet, T
###-Volatile Organic Compounds (GC) by Method 8015 WG1477623 40 05/17/20 21:34 O5/18/20 16:24 KME Mt. Julied Collected date/time Joe Tyler O5/05/20 13:50 O5/13/20 08:45 Dilution Preparation date/time date/t	platile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:24	05/18/20 19:39	JAH	Mt. Juliet, T
Collected by Joe Tyler O5/05/20 13:50 O5/13/20 08:45	platile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 14:32	BMB	Mt. Juliet, T
H-5 (2'-3') L1218263-24 Solid Batch Dilution Preparation Analysis Analyst Location Analysis Analyst Locati	emi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	40	05/17/20 21:34	05/18/20 16:24	KME	Mt. Juliet, Ti
Batch Dilution Preparation Analysis Analyst Location Analysis Analyst Location Analysis Analyst Location Analysis Analyst Location Analysis Analyst Analyst Location Analysis Analys				Collected by	Collected date/time	Received da	te/time
Dilution Preparation Dilution Preparation Dilution Preparation Dilution	8H-5 (2'-3') L1218263-24 Solid			Joe Tyler	05/05/20 13:50	05/13/20 08	:45
Detail Solids by Method 2540 G-2011 WG1479317 1 05/20/20 20:20 05/20/20 20:30 KDW Mt. Juliet	lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
tet Chemistry by Method 300.0 WG1475878 1 05/14/20 13:02 05/14/20 17:30 ELN Mt. Juliet Organic Compounds (GC) by Method 8015D/GRO WG1478067 1 05/18/20 08:24 05/18/20 14:51 BMB Mt. Juliet Organic Compounds (GC) by Method 8015 WG1477623 20 05/17/20 21:34 05/18/20 14:51 BMB Mt. Juliet Organic Compounds (GC) by Method 8015 WG1477623 20 05/17/20 21:34 05/18/20 16:37 KME Mt. Juliet Organic Compounds (GC) by Method 8015 WG1477623 20 05/17/20 21:34 05/18/20 16:37 KME Mt. Juliet Organic Compounds (GC) by Method 8015 WG1477623 20 05/17/20 21:34 05/18/20 16:37 KME Mt. Juliet Organic Compounds (GC) by Method 8015 WG1477623 20 05/17/20 21:34 05/18/20 16:37 KME Mt. Juliet Organic Compounds (GC) by Method 8015 WG1477623 20 05/17/20 21:34 05/18/20 08:45 WG1477623 20 05/17/20 21:34 05/18/20 20:30 KDW Mt. Juliet Organic Compounds (GC) by Method 8015D/GRO WG1478067 1 05/18/20 08:24 05/18/20 22:56 JAH Mt. Juliet Organic Compounds (GC/MS) by Method 8260B WG1478049 1 05/18/20 08:24 05/18/20 15:10 BMB Mt. Juliet Organic Compounds (GC/MS) by Method 8260B				date/time	date/time		
Delatile Organic Compounds (GC) by Method 8015D/GRO WG1478067 1 05/18/20 08:24 05/18/20 22:32	otal Solids by Method 2540 G-2011	WG1479317	1	05/20/20 20:20	05/20/20 20:30	KDW	Mt. Juliet, Tl
Delatile Organic Compounds (GC/MS) by Method 8260B WG1478049 1 05/18/20 08:24 05/18/20 14:51 BMB Mt. Juliet Premi-Volatile Organic Compounds (GC) by Method 8015 WG1477623 20 05/17/20 21:34 05/18/20 16:37 KME Mt. Juliet	et Chemistry by Method 300.0	WG1475878	1	05/14/20 13:02	05/14/20 17:30	ELN	Mt. Juliet, T
Delatile Organic Compounds (GC/MS) by Method 8260B WG1478049 1 05/18/20 08:24 05/18/20 14:51 BMB Mt. Juliet Premi-Volatile Organic Compounds (GC) by Method 8015 WG1477623 20 05/17/20 21:34 05/18/20 16:37 KME Mt. Juliet	platile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:24	05/18/20 22:32	JAH	Mt. Juliet, T
Collected by Collected date/time Received date/time O5/05/20 14:00 O5/13/20 08:45							Mt. Juliet, T
Batch Dilution Preparation date/time date/ti	, , ,		20				Mt. Juliet, T
Batch Dilution Preparation date/time date/ti				Collected by	Collected data live -	Docoined d-	to/time
Batch Dilution Preparation Analysis Analyst Location date/time date/time date/time total Solids by Method 2540 G-2011 WG1479317 1 05/20/20 20:20 05/20/20 20:30 KDW Mt. Juliet det Chemistry by Method 300.0 WG1475878 1 05/14/20 13:02 05/14/20 17:40 ELN Mt. Juliet colatile Organic Compounds (GC) by Method 8015D/GRO WG1478067 1 05/18/20 08:24 05/18/20 22:56 JAH Mt. Juliet colatile Organic Compounds (GC/MS) by Method 8260B WG1478049 1 05/18/20 08:24 05/18/20 15:10 BMB Mt. Juliet colatile Organic Compounds (GC/MS) by Method 8260B	8H-5 (4'-5') 1218263-25 Solid			,			
date/time date/t	, ,	Batch	Dilution	Preparation	Analysis	Analyst	Location
Tet Chemistry by Method 300.0 WG1475878 1 05/14/20 13:02 05/14/20 17:40 ELN Mt. Juliet olatile Organic Compounds (GC) by Method 8015D/GRO WG1478067 1 05/18/20 08:24 05/18/20 22:56 JAH Mt. Juliet olatile Organic Compounds (GC/MS) by Method 8260B WG1478049 1 05/18/20 08:24 05/18/20 15:10 BMB Mt. Juliet				•	•		
Diatile Organic Compounds (GC) by Method 8015D/GRO WG1478067 1 05/18/20 08:24 05/18/20 22:56 JAH Mt. Juliet olatile Organic Compounds (GC/MS) by Method 8260B WG1478049 1 05/18/20 08:24 05/18/20 15:10 BMB Mt. Juliet	otal Solids by Method 2540 G-2011	WG1479317	1	05/20/20 20:20	05/20/20 20:30	KDW	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B WG1478049 1 05/18/20 08:24 05/18/20 15:10 BMB Mt. Juliet	et Chemistry by Method 300.0	WG1475878	1	05/14/20 13:02	05/14/20 17:40	ELN	Mt. Juliet, T
	platile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:24	05/18/20 22:56	JAH	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015 WG1477623 1 05/17/20 21:34 05/18/20 15:44 KME Mt. Juliet	olatile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 15:10	BMB	Mt. Juliet, T
	emi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	1	05/17/20 21:34	05/18/20 15:44	KME	Mt. Juliet, Ti

			Collected by	Collected date/time	Received da	te/time
3H-5 (6'-7') L1218263-26 Solid			Joe Tyler	05/05/20 14:10	05/13/20 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1479317	1	05/20/20 20:20	05/20/20 20:30	KDW	Mt. Juliet, T
et Chemistry by Method 300.0	WG1475878	1	05/14/20 13:02	05/14/20 18:09	ELN	Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:24	05/18/20 23:20	JAH	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 15:30	BMB	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1477623	1	05/17/20 21:34	05/18/20 15:31	KME	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
3H-5 (9'-10') L1218263-27 Solid			Joe Tyler	05/05/20 14:20	05/13/20 08	:45
1ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1479317	1	05/20/20 20:20	05/20/20 20:30	KDW	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1475878	1	05/14/20 13:02	05/14/20 18:18	ELN	Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:24	05/18/20 23:44	JAH	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 15:49	BMB	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method 8015	WG1478084	1	05/19/20 06:41	05/19/20 20:52	KME	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
8H-6 (0'-1') L1218263-28 Solid			Joe Tyler	05/05/20 14:30	05/13/20 08	:45
ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1479318	1	05/20/20 20:05	05/20/20 20:17	KDW	Mt. Juliet, Ti
et Chemistry by Method 300.0	WG1475878	1	05/14/20 13:02	05/14/20 18:28	ELN	Mt. Juliet, TI
platile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:24	05/19/20 00:10	JAH	Mt. Juliet, TI
olatile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 16:08	BMB	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method 8015	WG1478084	1	05/19/20 06:41	05/19/20 21:56	KME	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
3H-6 (2'-3') L1218263-29 Solid			Joe Tyler	05/05/20 14:40	05/13/20 08	:45
lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1479318	1	05/20/20 20:05	05/20/20 20:17	KDW	Mt. Juliet, TI
et Chemistry by Method 300.0	WG1475878	1	05/14/20 13:02	05/14/20 18:37	ELN	Mt. Juliet, TI
platile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:24	05/19/20 00:40	JAH	Mt. Juliet, TI
olatile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 16:27	BMB	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method 8015	WG1478084	1	05/19/20 06:41	05/20/20 02:34	KME	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
BH-6 (4'-5') L1218263-30 Solid			Joe Tyler	05/05/20 14:50	05/13/20 08	
ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1479318	1	05/20/20 20:05	05/20/20 20:17	KDW	Mt. Juliet, T
et Chemistry by Method 300.0	WG1475878	1	05/14/20 13:02	05/14/20 18:56	ELN	Mt. Juliet, T
platile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:24	05/19/20 01:04	JAH	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 16:47	BMB	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1478084	1	05/19/20 06:41	05/19/20 16:56	KME	Mt. Juliet, TI

BH-6 (6'-7') L1218263-31 Solid			Collected by Joe Tyler	Collected date/time 05/05/20 15:00	Received da: 05/13/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1479318	1	05/20/20 20:05	05/20/20 20:17	KDW	Mt. Juliet, TI
Vet Chemistry by Method 300.0	WG1478252	1	05/18/20 23:00	05/19/20 02:47	ELN	Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1478067	1	05/18/20 08:24	05/19/20 02:01	JAH	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 17:06	BMB	Mt. Juliet, T
semi-Volatile Organic Compounds (GC) by Method 8015	WG1478084	1	05/19/20 06:41	05/19/20 17:12	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
3H-6 (9'-10') L1218263-32 Solid			Joe Tyler	05/05/20 15:10	05/13/20 08:	:45
ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479318	1	05/20/20 20:05	05/20/20 20:17	KDW	Mt. Juliet, T
et Chemistry by Method 300.0	WG1478252	1	05/18/20 23:00	05/19/20 03:22	ELN	Mt. Juliet, T
platile Organic Compounds (GC) by Method 8015D/GRO	WG1478226	1	05/18/20 08:24	05/19/20 00:38	JAH	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 17:25	BMB	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1478084	1	05/19/20 06:41	05/19/20 17:28	KME	Mt. Juliet, T
3H-7 (0'-1') L1218263-33 Solid			Collected by Joe Tyler	Collected date/time 05/05/20 15:20	Received da 05/13/20 08:	
lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
cinod	Baten	Dilation	date/time	date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479318	1	05/20/20 20:05	05/20/20 20:17	KDW	Mt. Juliet, T
et Chemistry by Method 300.0	WG1478252	1	05/18/20 23:00	05/19/20 03:40	ELN	Mt. Juliet, T
platile Organic Compounds (GC) by Method 8015D/GRO	WG1478226	1	05/18/20 08:24	05/19/20 00:59	JAH	Mt. Juliet, T
platile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 17:44	BMB	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1478084	2	05/19/20 06:41	05/19/20 22:12	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
8H-7 (2'-3') L1218263-34 Solid			Joe Tyler	05/05/20 15:30	05/13/20 08:	:45
ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479318	1	05/20/20 20:05	05/20/20 20:17	KDW	Mt. Juliet, T
et Chemistry by Method 300.0	WG1478252	1	05/18/20 23:00	05/19/20 03:58	ELN	Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1478226	1	05/18/20 08:24	05/19/20 01:19	JAH	Mt. Juliet, T
platile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 18:04	BMB	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1478084	10	05/19/20 06:41	05/19/20 22:27	KME	Mt. Juliet, T
			Collected by	Collected date/time		
3H-7 (4'-5') L1218263-35 Solid			Joe Tyler	05/05/20 15:40	05/13/20 08:	:45
ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1479318	1	05/20/20 20:05	05/20/20 20:17	KDW	Mt. Juliet, T
et Chemistry by Method 300.0	WG1478252	1	05/18/20 23:00	05/19/20 04:16	ELN	Mt. Juliet, T
platile Organic Compounds (GC) by Method 8015D/GRO	WG1478226	1	05/18/20 08:24	05/19/20 01:40	JAH	Mt. Juliet, T
platile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 18:23	BMB	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1478084	1	05/19/20 06:41	05/19/20 20:04	KME	Mt. Juliet, T

			Collected by	Collected date/time 05/05/20 15:50	Received da 05/13/20 08:	
BH-7 (6'-7') L1218263-36 Solid			Joe Tyler	05/05/20 15.50	03/13/20 06.	.43
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1479318	1	05/20/20 20:05	05/20/20 20:17	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1478252	1	05/18/20 23:00	05/19/20 04:34	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1478226	1	05/18/20 08:24	05/19/20 02:00	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 18:42	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1478084	1	05/19/20 06:41	05/19/20 21:24	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-7 (9'-10') L1218263-37 Solid			Joe Tyler	05/05/20 16:00	05/13/20 08:	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1479318	1	05/20/20 20:05	05/20/20 20:17	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1478252	1	05/18/20 23:00	05/19/20 04:51	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1478226	1	05/18/20 08:24	05/19/20 02:21	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1478049	1	05/18/20 08:24	05/18/20 19:01	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1478084	1	05/19/20 06:41	05/19/20 17:44	KME	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

ONE LAB. NAT Bage 51 of 11/1

Collected date/time: 05/05/20 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.1		1	05/20/2020 19:08	WG1479315

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	672		49.9	109	5	05/15/2020 16:12	WG1475879

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0295	<u>B J</u>	0.0236	0.109	1	05/18/2020 11:27	WG1477983
(S) a,a,a-Trifluorotoluene(FID)	91.2			77.0-120		05/18/2020 11:27	<u>WG1477983</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

		, ,	<u> </u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00168		0.000507	0.00109	1	05/18/2020 12:54	WG1478032
Toluene	U		0.00141	0.00543	1	05/18/2020 12:54	WG1478032
Ethylbenzene	0.000977	<u>J</u>	0.000800	0.00271	1	05/18/2020 12:54	WG1478032
Total Xylenes	0.00190	<u>J</u>	0.000955	0.00706	1	05/18/2020 12:54	WG1478032
(S) Toluene-d8	101			75.0-131		05/18/2020 12:54	WG1478032
(S) 4-Bromofluorobenzene	101			67.0-138		05/18/2020 12:54	WG1478032
(S) 1,2-Dichloroethane-d4	101			70.0-130		05/18/2020 12:54	WG1478032

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	24.1		1.75	4.34	1	05/18/2020 09:32	WG1477294
C28-C40 Oil Range	23.7		0.297	4.34	1	05/18/2020 09:32	WG1477294
(S) o-Terphenvl	71.7			18.0-148		05/18/2020 09:32	WG1477294

ONE LAB. NAT Page 52 of 191

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	88.6		1	05/20/2020 19:08	<u>WG1479315</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1150		51.9	113	5	05/15/2020 16:22	WG1475879

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0245	0.113	1	05/18/2020 11:48	WG1477983
(S) a,a,a-Trifluorotoluene(FID)	90.2			77.0-120		05/18/2020 11:48	WG1477983

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

			•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000527	0.00113	1	05/18/2020 13:14	WG1478032
Toluene	U		0.00147	0.00564	1	05/18/2020 13:14	WG1478032
Ethylbenzene	U		0.000831	0.00282	1	05/18/2020 13:14	WG1478032
Total Xylenes	U		0.000993	0.00733	1	05/18/2020 13:14	WG1478032
(S) Toluene-d8	102			75.0-131		05/18/2020 13:14	WG1478032
(S) 4-Bromofluorobenzene	98.8			67.0-138		05/18/2020 13:14	WG1478032
(S) 1,2-Dichloroethane-d4	101			70.0-130		05/18/2020 13:14	WG1478032

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.82	4.51	1	05/18/2020 06:58	WG1477294
C28-C40 Oil Range	1.99	<u>J</u>	0.309	4.51	1	05/18/2020 06:58	WG1477294
(S) o-Terphenyl	54.0			18.0-148		05/18/2020 06:58	WG1477294

ONE LAB. NAT Page 53 of 191

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	88.3		1	05/20/2020 19:08	WG1479315

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1540		52.1	113	5	05/15/2020 16:31	WG1475879

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0246	0.113	1	05/18/2020 12:09	WG1477983
(S) a,a,a-Trifluorotoluene(FID)	90.3			77.0-120		05/18/2020 12:09	<u>WG1477983</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000529	0.00113	1	05/18/2020 13:35	WG1478032
Toluene	U		0.00147	0.00566	1	05/18/2020 13:35	WG1478032
Ethylbenzene	U		0.000834	0.00283	1	05/18/2020 13:35	WG1478032
Total Xylenes	U		0.000996	0.00736	1	05/18/2020 13:35	WG1478032
(S) Toluene-d8	102			75.0-131		05/18/2020 13:35	WG1478032
(S) 4-Bromofluorobenzene	98.5			67.0-138		05/18/2020 13:35	WG1478032
(S) 1,2-Dichloroethane-d4	92.1			70.0-130		05/18/2020 13:35	WG1478032

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.82	4.53	1	05/18/2020 07:11	WG1477294
C28-C40 Oil Range	U		0.310	4.53	1	05/18/2020 07:11	WG1477294
(S) o-Terphenyl	31.6			18.0-148		05/18/2020 07:11	WG1477294

ONE LAB. NAT Page 54 of 191

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.2		1	05/20/2020 19:08	WG1479315

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	357		9.37	20.4	1	05/15/2020 17:49	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	05/18/2020 12:29	WG1477983
(S) a,a,a-Trifluorotoluene(FID)	90.5			77.0-120		05/18/2020 12:29	WG1477983

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000509	<u>J</u>	0.000476	0.00102	1	05/18/2020 13:55	WG1478032
Toluene	U		0.00132	0.00509	1	05/18/2020 13:55	WG1478032
Ethylbenzene	U		0.000751	0.00255	1	05/18/2020 13:55	WG1478032
Total Xylenes	U		0.000896	0.00662	1	05/18/2020 13:55	WG1478032
(S) Toluene-d8	102			75.0-131		05/18/2020 13:55	WG1478032
(S) 4-Bromofluorobenzene	96.5			67.0-138		05/18/2020 13:55	WG1478032
(S) 1,2-Dichloroethane-d4	92.5			70.0-130		05/18/2020 13:55	WG1478032

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.07	1	05/18/2020 07:25	WG1477294
C28-C40 Oil Range	U		0.279	4.07	1	05/18/2020 07:25	WG1477294
(S) o-Terphenyl	75.6			18.0-148		05/18/2020 07:25	WG1477294

ONE LAB. NAT Page 55 of \$11

Collected date/time: 05/05/20 10:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.5		1	05/20/2020 19:08	<u>WG1479315</u>

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	509		9.43	20.5	1	05/15/2020 17:59	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.103	1	05/18/2020 12:50	WG1477983
(S) a,a,a-Trifluorotoluene(FID)	90.5			77.0-120		05/18/2020 12:50	<u>WG1477983</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•	'	, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000479	0.00103	1	05/18/2020 14:16	WG1478032
Toluene	U		0.00133	0.00513	1	05/18/2020 14:16	WG1478032
Ethylbenzene	U		0.000756	0.00256	1	05/18/2020 14:16	WG1478032
Total Xylenes	U		0.000902	0.00666	1	05/18/2020 14:16	WG1478032
(S) Toluene-d8	106			75.0-131		05/18/2020 14:16	WG1478032
(S) 4-Bromofluorobenzene	94.9			67.0-138		05/18/2020 14:16	WG1478032
(S) 1,2-Dichloroethane-d4	93.0			70.0-130		05/18/2020 14:16	WG1478032

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.10	1	05/18/2020 07:38	WG1477294
C28-C40 Oil Range	U		0.281	4.10	1	05/18/2020 07:38	WG1477294
(S) o-Terphenyl	82.8			18.0-148		05/18/2020 07:38	WG1477294

Collected date/time: 05/05/20 10:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.3		1	05/20/2020 19:08	WG1479315

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	447		9.65	21.0	1	05/15/2020 18:08	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0274	BJ	0.0228	0.105	1	05/18/2020 13:11	WG1477983
(S) a,a,a-Trifluorotoluene(FID)	86.6			77.0-120		05/18/2020 13:11	<u>WG1477983</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000490	0.00105	1	05/18/2020 16:33	WG1478032
Toluene	U		0.00136	0.00525	1	05/18/2020 16:33	WG1478032
Ethylbenzene	U		0.000773	0.00262	1	05/18/2020 16:33	WG1478032
Total Xylenes	0.00129	<u>J</u>	0.000923	0.00682	1	05/18/2020 16:33	WG1478032
(S) Toluene-d8	102			<i>75.0-131</i>		05/18/2020 16:33	WG1478032
(S) 4-Bromofluorobenzene	103			67.0-138		05/18/2020 16:33	WG1478032
(S) 1,2-Dichloroethane-d4	108			70.0-130		05/18/2020 16:33	WG1478032

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.20	1	05/18/2020 08:52	WG1477294
C28-C40 Oil Range	1.06	<u>J</u>	0.288	4.20	1	05/18/2020 08:52	WG1477294
(S) o-Terphenyl	78.9			18.0-148		05/18/2020 08:52	WG1477294

ONE LAB. NATRAGA 57. of 191

Collected date/time: 05/05/20 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.0		1	05/20/2020 19:08	WG1479315

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	517		9.59	20.8	1	05/15/2020 18:18	WG1475882

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0229	ВЈ	0.0226	0.104	1	05/18/2020 23:15	WG1478317
(S) a,a,a-Trifluorotoluene(FID)	86.0			77.0-120		05/18/2020 23:15	WG1478317

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

			•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	05/18/2020 16:53	WG1478032
Toluene	U		0.00135	0.00521	1	05/18/2020 16:53	WG1478032
Ethylbenzene	U		0.000768	0.00260	1	05/18/2020 16:53	WG1478032
Total Xylenes	U		0.000917	0.00677	1	05/18/2020 16:53	WG1478032
(S) Toluene-d8	102			75.0-131		05/18/2020 16:53	WG1478032
(S) 4-Bromofluorobenzene	99.7			67.0-138		05/18/2020 16:53	WG1478032
(S) 1,2-Dichloroethane-d4	73.9			70.0-130		05/18/2020 16:53	WG1478032

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	189		33.5	83.4	20	05/18/2020 16:51	WG1477623
C28-C40 Oil Range	428		5.71	83.4	20	05/18/2020 16:51	WG1477623
(S) o-Terphenyl	78.0	J7		18.0-148		05/18/2020 16:51	WG1477623

ONE LAB. NATRAGE 58 of 121

Collected date/time: 05/05/20 11:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.6		1	05/20/2020 18:56	WG1479316

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	949		10.0	21.8	1	05/15/2020 18:27	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0261	<u>B J</u>	0.0237	0.109	1	05/18/2020 13:52	WG1477983
(S) a,a,a-Trifluorotoluene(FID)	85.9			77.0-120		05/18/2020 13:52	<u>WG1477983</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

			•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000510	0.00109	1	05/18/2020 17:13	WG1478032
Toluene	0.00197	<u>J</u>	0.00142	0.00546	1	05/18/2020 17:13	WG1478032
Ethylbenzene	U		0.000805	0.00273	1	05/18/2020 17:13	WG1478032
Total Xylenes	0.00104	<u>J</u>	0.000961	0.00710	1	05/18/2020 17:13	WG1478032
(S) Toluene-d8	102			<i>75.0-131</i>		05/18/2020 17:13	WG1478032
(S) 4-Bromofluorobenzene	98.1			67.0-138		05/18/2020 17:13	WG1478032
(S) 1,2-Dichloroethane-d4	96.1			70.0-130		05/18/2020 17:13	WG1478032

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	668		70.3	175	40	05/18/2020 17:30	WG1477623
C28-C40 Oil Range	1610		12.0	175	40	05/18/2020 17:30	WG1477623
(S) o-Terphenyl	81.7	J7		18.0-148		05/18/2020 17:30	WG1477623

ONE LAB. NAT Page 59 of 121

Collected date/time: 05/05/20 11:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.3		1	05/20/2020 18:56	WG1479316

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	901		10.1	21.9	1	05/15/2020 18:46	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0366	ВЈ	0.0238	0.110	1	05/18/2020 14:12	WG1477983
(S) a,a,a-Trifluorotoluene(FID)	86.6			77.0-120		05/18/2020 14:12	<u>WG1477983</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000511	0.00110	1	05/18/2020 17:33	WG1478032
Toluene	0.00157	<u>J</u>	0.00142	0.00548	1	05/18/2020 17:33	WG1478032
Ethylbenzene	0.000931	<u>J</u>	0.000807	0.00274	1	05/18/2020 17:33	WG1478032
Total Xylenes	U		0.000964	0.00712	1	05/18/2020 17:33	WG1478032
(S) Toluene-d8	103			<i>75.0-131</i>		05/18/2020 17:33	WG1478032
(S) 4-Bromofluorobenzene	102			67.0-138		05/18/2020 17:33	WG1478032
(S) 1,2-Dichloroethane-d4	100			70.0-130		05/18/2020 17:33	WG1478032

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2720		70.5	175	40	05/18/2020 17:44	WG1477623
C28-C40 Oil Range	5340		12.0	175	40	05/18/2020 17:44	WG1477623
(S) o-Terphenyl	94.8	J7		18.0-148		05/18/2020 17:44	WG1477623

ONE LAB. NATRAGE 60 of 121

Collected date/time: 05/05/20 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.0		1	05/20/2020 18:56	<u>WG1479316</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	587		9.89	21.5	1	05/15/2020 18:56	WG1475882

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.561	<u>V3</u>	0.0233	0.108	1	05/18/2020 23:36	WG1478317
(S) a,a,a-Trifluorotoluene(FID)	87.5			77.0-120		05/18/2020 23:36	WG1478317

Sample Narrative:

L1218263-10 WG1478317: Previous run also had low IS.

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000502	0.00108	1	05/18/2020 17:53	WG1478032
Toluene	U		0.00140	0.00538	1	05/18/2020 17:53	WG1478032
Ethylbenzene	0.00129	<u>J</u>	0.000792	0.00269	1	05/18/2020 17:53	WG1478032
Total Xylenes	0.00275	<u>J</u>	0.000946	0.00699	1	05/18/2020 17:53	WG1478032
(S) Toluene-d8	101			75.0-131		05/18/2020 17:53	WG1478032
(S) 4-Bromofluorobenzene	96.3			67.0-138		05/18/2020 17:53	WG1478032
(S) 1,2-Dichloroethane-d4	96.2			70.0-130		05/18/2020 17:53	WG1478032

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1000		34.6	86.0	20	05/18/2020 17:57	WG1477623
C28-C40 Oil Range	1780		5.89	86.0	20	05/18/2020 17:57	WG1477623
(S) o-Terphenyl	103	<u>J7</u>		18.0-148		05/18/2020 17:57	WG1477623

ONE LAB. NAT Page 61 of 191

Collected date/time: 05/05/20 11:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.7		1	05/20/2020 18:56	WG1479316

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	849		9.61	20.9	1	05/15/2020 19:24	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0374	ВЈ	0.0227	0.104	1	05/18/2020 14:54	WG1477983
(S) a,a,a-Trifluorotoluene(FID)	89.0			77.0-120		05/18/2020 14:54	WG1477983

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000488	0.00104	1	05/18/2020 18:14	WG1478032
Toluene	U		0.00136	0.00522	1	05/18/2020 18:14	WG1478032
Ethylbenzene	U		0.000770	0.00261	1	05/18/2020 18:14	WG1478032
Total Xylenes	U		0.000919	0.00679	1	05/18/2020 18:14	WG1478032
(S) Toluene-d8	102			75.0-131		05/18/2020 18:14	WG1478032
(S) 4-Bromofluorobenzene	100			67.0-138		05/18/2020 18:14	WG1478032
(S) 1,2-Dichloroethane-d4	98.9			70.0-130		05/18/2020 18:14	WG1478032

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2630		67.3	167	40	05/18/2020 17:17	WG1477623
C28-C40 Oil Range	4500		11.5	167	40	05/18/2020 17:17	WG1477623
(S) o-Terphenyl	53.1	J7		18.0-148		05/18/2020 17:17	WG1477623

ONE LAB. NAT Page 62 of 11/1

Collected date/time: 05/05/20 12:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.7		1	05/20/2020 18:56	WG1479316

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	624		9.61	20.9	1	05/15/2020 19:34	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.104	1	05/18/2020 15:02	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	93.3			77.0-120		05/18/2020 15:02	<u>WG1478067</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000488	0.00104	1	05/18/2020 18:34	WG1478032
Toluene	U		0.00136	0.00522	1	05/18/2020 18:34	WG1478032
Ethylbenzene	U		0.000770	0.00261	1	05/18/2020 18:34	WG1478032
Total Xylenes	U		0.000919	0.00679	1	05/18/2020 18:34	WG1478032
(S) Toluene-d8	102			75.0-131		05/18/2020 18:34	WG1478032
(S) 4-Bromofluorobenzene	97.7			67.0-138		05/18/2020 18:34	WG1478032
(S) 1,2-Dichloroethane-d4	96.1			70.0-130		05/18/2020 18:34	WG1478032

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	80.4		8.41	20.9	5	05/18/2020 16:11	WG1477623
C28-C40 Oil Range	162		1.43	20.9	5	05/18/2020 16:11	WG1477623
(S) o-Terphenyl	72.6			18.0-148		05/18/2020 16:11	WG1477623

ONE LAB. NATRAGE 63 of \$11

Collected date/time: 05/05/20 12:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.8		1	05/20/2020 18:56	WG1479316

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.50	20.7	1	05/15/2020 19:43	WG1475882

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/18/2020 15:26	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	92.0			77.0-120		05/18/2020 15:26	<u>WG1478067</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	05/18/2020 18:54	WG1478032
Toluene	U		0.00134	0.00517	1	05/18/2020 18:54	WG1478032
Ethylbenzene	U		0.000761	0.00258	1	05/18/2020 18:54	WG1478032
Total Xylenes	U		0.000909	0.00672	1	05/18/2020 18:54	WG1478032
(S) Toluene-d8	103			75.0-131		05/18/2020 18:54	WG1478032
(S) 4-Bromofluorobenzene	98.9			67.0-138		05/18/2020 18:54	WG1478032
(S) 1,2-Dichloroethane-d4	93.4			70.0-130		05/18/2020 18:54	WG1478032

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	61.3		1.66	4.13	1	05/20/2020 20:59	WG1477623
C28-C40 Oil Range	256		5.66	82.6	20	05/18/2020 17:04	WG1477623
(S) o-Terphenyl	72.2	<u>J7</u>		18.0-148		05/18/2020 17:04	WG1477623
(S) o-Terphenyl	90.8			18.0-148		05/20/2020 20:59	WG1477623

ONE LAB. NATRAGE 64 of 121

Collected date/time: 05/05/20 12:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.0		1	05/20/2020 18:56	<u>WG1479316</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.58	20.8	1	05/15/2020 19:53	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	05/18/2020 15:56	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	96.8			77.0-120		05/18/2020 15:56	<u>WG1478067</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

			•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00104	1	05/18/2020 19:15	WG1478032
Toluene	U		0.00135	0.00521	1	05/18/2020 19:15	WG1478032
Ethylbenzene	U		0.000767	0.00260	1	05/18/2020 19:15	WG1478032
Total Xylenes	U		0.000916	0.00677	1	05/18/2020 19:15	WG1478032
(S) Toluene-d8	102			75.0-131		05/18/2020 19:15	WG1478032
(S) 4-Bromofluorobenzene	97.7			67.0-138		05/18/2020 19:15	WG1478032
(S) 1,2-Dichloroethane-d4	97.5			70.0-130		05/18/2020 19:15	WG1478032

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.95	<u>J</u>	1.68	4.17	1	05/18/2020 13:59	WG1477623
C28-C40 Oil Range	9.94		0.285	4.17	1	05/18/2020 13:59	WG1477623
(S) o-Terphenyl	76.3			18.0-148		05/18/2020 13:59	WG1477623

ONE LAB. NAT Paga 65 of 191

Collected date/time: 05/05/20 12:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.9		1	05/20/2020 18:56	<u>WG1479316</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	14.6	<u>J</u>	10.0	21.8	1	05/15/2020 20:02	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	05/18/2020 16:20	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	94.8			77.0-120		05/18/2020 16:20	<u>WG1478067</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000508	0.00109	1	05/18/2020 23:43	WG1478332
Toluene	U		0.00141	0.00544	1	05/18/2020 23:43	WG1478332
Ethylbenzene	U		0.000802	0.00272	1	05/18/2020 23:43	WG1478332
Total Xylenes	U		0.000958	0.00707	1	05/18/2020 23:43	WG1478332
(S) Toluene-d8	104			75.0-131		05/18/2020 23:43	WG1478332
(S) 4-Bromofluorobenzene	99.6			67.0-138		05/18/2020 23:43	WG1478332
(S) 1,2-Dichloroethane-d4	109			70.0-130		05/18/2020 23:43	WG1478332

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.75	4.35	1	05/18/2020 13:19	WG1477623
C28-C40 Oil Range	0.859	<u>J</u>	0.298	4.35	1	05/18/2020 13:19	WG1477623
(S) o-Terphenyl	73.7			18.0-148		05/18/2020 13:19	WG1477623

ONE LAB. NATRAGE 66 of 11

Collected date/time: 05/05/20 12:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.6		1	05/20/2020 18:56	WG1479316

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.2	22.1	1	05/15/2020 20:12	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0240	0.110	1	05/18/2020 16:44	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	94.5			77.0-120		05/18/2020 16:44	<u>WG1478067</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000516	0.00110	1	05/19/2020 00:02	WG1478332
Toluene	U		0.00144	0.00552	1	05/19/2020 00:02	WG1478332
Ethylbenzene	U		0.000814	0.00276	1	05/19/2020 00:02	WG1478332
Total Xylenes	U		0.000972	0.00718	1	05/19/2020 00:02	WG1478332
(S) Toluene-d8	102			<i>75.0-131</i>		05/19/2020 00:02	WG1478332
(S) 4-Bromofluorobenzene	96.1			67.0-138		05/19/2020 00:02	WG1478332
(S) 1,2-Dichloroethane-d4	109			70.0-130		05/19/2020 00:02	WG1478332

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.78	4.42	1	05/20/2020 20:06	WG1477623
C28-C40 Oil Range	3.37	<u>J</u>	0.303	4.42	1	05/20/2020 20:06	WG1477623
(S) o-Terphenyl	73.3			18.0-148		05/20/2020 20:06	WG1477623

Collected date/time: 05/05/20 12:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.4		1	05/20/2020 18:56	<u>WG1479316</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.2	22.1	1	05/15/2020 20:21	WG1475882

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0240	0.111	1	05/19/2020 05:24	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	97.9			77.0-120		05/19/2020 05:24	WG1478067

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000516	0.00111	1	05/19/2020 00:21	WG1478332
Toluene	U		0.00144	0.00553	1	05/19/2020 00:21	WG1478332
Ethylbenzene	U		0.000815	0.00276	1	05/19/2020 00:21	WG1478332
Total Xylenes	U		0.000973	0.00719	1	05/19/2020 00:21	WG1478332
(S) Toluene-d8	103			75.0-131		05/19/2020 00:21	WG1478332
(S) 4-Bromofluorobenzene	99.3			67.0-138		05/19/2020 00:21	WG1478332
(S) 1,2-Dichloroethane-d4	109			70.0-130		05/19/2020 00:21	WG1478332

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.78	4.42	1	05/20/2020 19:53	WG1477623
C28-C40 Oil Range	0.623	<u>J</u>	0.303	4.42	1	05/20/2020 19:53	WG1477623
(S) o-Terphenyl	77.6			18.0-148		05/20/2020 19:53	WG1477623

ONE LAB. NAT Page 68 of 191

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.3		1	05/20/2020 20:30	WG1479317

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	11.0	<u>J</u>	9.86	21.4	1	05/15/2020 20:31	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.107	1	05/19/2020 06:07	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	92.5			77.0-120		05/19/2020 06:07	WG1478067

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000501	0.00107	1	05/19/2020 00:41	WG1478332
Toluene	U		0.00139	0.00536	1	05/19/2020 00:41	WG1478332
Ethylbenzene	U		0.000790	0.00268	1	05/19/2020 00:41	WG1478332
Total Xylenes	U		0.000943	0.00697	1	05/19/2020 00:41	WG1478332
(S) Toluene-d8	107			75.0-131		05/19/2020 00:41	WG1478332
(S) 4-Bromofluorobenzene	92.8			67.0-138		05/19/2020 00:41	WG1478332
(S) 1,2-Dichloroethane-d4	104			70.0-130		05/19/2020 00:41	WG1478332

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	25.1		1.73	4.29	1	05/20/2020 20:45	WG1477623
C28-C40 Oil Range	78.4		0.294	4.29	1	05/20/2020 20:45	WG1477623
(S) o-Terphenyl	76.4			18.0-148		05/20/2020 20:45	WG1477623

ONE LAB. NAT Page 69 of 191

Collected date/time: 05/05/20 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.4		1	05/20/2020 20:30	<u>WG1479317</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.8	<u>J</u>	10.1	21.9	1	05/15/2020 21:19	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	05/18/2020 18:03	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	95.9			77.0-120		05/18/2020 18:03	WG1478067

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000511	0.00109	1	05/19/2020 01:00	WG1478332
Toluene	U		0.00142	0.00547	1	05/19/2020 01:00	WG1478332
Ethylbenzene	U		0.000806	0.00273	1	05/19/2020 01:00	WG1478332
Total Xylenes	U		0.000962	0.00711	1	05/19/2020 01:00	WG1478332
(S) Toluene-d8	103			75.0-131		05/19/2020 01:00	WG1478332
(S) 4-Bromofluorobenzene	94.8			67.0-138		05/19/2020 01:00	WG1478332
(S) 1,2-Dichloroethane-d4	107			70.0-130		05/19/2020 01:00	WG1478332

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.37	1	05/18/2020 14:38	WG1477623
C28-C40 Oil Range	3.49	<u>J</u>	0.300	4.37	1	05/18/2020 14:38	WG1477623
(S) o-Terphenyl	64.4			18.0-148		05/18/2020 14:38	WG1477623

Collected date/time: 05/05/20 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.0		1	05/20/2020 20:30	WG1479317

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.78	21.3	1	05/15/2020 21:28	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	05/18/2020 18:27	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	92.6			77.0-120		05/18/2020 18:27	<u>WG1478067</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000497	0.00106	1	05/19/2020 01:19	WG1478332
Toluene	U		0.00138	0.00532	1	05/19/2020 01:19	WG1478332
Ethylbenzene	U		0.000784	0.00266	1	05/19/2020 01:19	WG1478332
Total Xylenes	U		0.000936	0.00691	1	05/19/2020 01:19	WG1478332
(S) Toluene-d8	102			75.0-131		05/19/2020 01:19	WG1478332
(S) 4-Bromofluorobenzene	94.1			67.0-138		05/19/2020 01:19	WG1478332
(S) 1,2-Dichloroethane-d4	108			70.0-130		05/19/2020 01:19	WG1478332

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.25	1	05/18/2020 14:52	WG1477623
C28-C40 Oil Range	1.21	<u>J</u>	0.291	4.25	1	05/18/2020 14:52	WG1477623
(S) o-Terphenyl	76.7			18.0-148		05/18/2020 14:52	WG1477623

ONE LAB. NATRAGE 71. of 11.

Collected date/time: 05/05/20 13:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.2		1	05/20/2020 20:30	<u>WG1479317</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	49.6		9.56	20.8	1	05/15/2020 21:38	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	05/18/2020 18:51	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	93.0			77.0-120		05/18/2020 18:51	WG1478067

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	05/18/2020 13:53	WG1478049
Toluene	U		0.00135	0.00520	1	05/18/2020 13:53	WG1478049
Ethylbenzene	U		0.000766	0.00260	1	05/18/2020 13:53	WG1478049
Total Xylenes	U		0.000915	0.00675	1	05/18/2020 13:53	WG1478049
(S) Toluene-d8	113			75.0-131		05/18/2020 13:53	WG1478049
(S) 4-Bromofluorobenzene	90.2			67.0-138		05/18/2020 13:53	WG1478049
(S) 1,2-Dichloroethane-d4	97.7			70.0-130		05/18/2020 13:53	WG1478049

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.16	1	05/18/2020 15:05	WG1477623
C28-C40 Oil Range	1.78	<u>J</u>	0.285	4.16	1	05/18/2020 15:05	WG1477623
(S) o-Terphenyl	68.3			18.0-148		05/18/2020 15:05	WG1477623

ONE LAB. NATRAGE 72 of 111

Collected date/time: 05/05/20 13:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.2		1	05/20/2020 20:30	<u>WG1479317</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	23.9		10.1	21.9	1	05/15/2020 21:47	WG1475882

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0238	0.110	1	05/18/2020 19:15	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	97.1			77.0-120		05/18/2020 19:15	<u>WG1478067</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000512	0.00110	1	05/18/2020 14:13	WG1478049
Toluene	U		0.00143	0.00548	1	05/18/2020 14:13	WG1478049
Ethylbenzene	U		0.000808	0.00274	1	05/18/2020 14:13	WG1478049
Total Xylenes	U		0.000965	0.00713	1	05/18/2020 14:13	WG1478049
(S) Toluene-d8	109			75.0-131		05/18/2020 14:13	WG1478049
(S) 4-Bromofluorobenzene	87.8			67.0-138		05/18/2020 14:13	WG1478049
(S) 1,2-Dichloroethane-d4	104			70.0-130		05/18/2020 14:13	WG1478049

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.39	1	05/18/2020 15:18	WG1477623
C28-C40 Oil Range	0.684	<u>J</u>	0.301	4.39	1	05/18/2020 15:18	WG1477623
(S) o-Terphenyl	71.7			18.0-148		05/18/2020 15:18	WG1477623

ONE LAB. NAT Bage 3 of 111

Collected date/time: 05/05/20 13:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.7		1	05/20/2020 20:30	WG1479317

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.3	22.3	1	05/15/2020 21:57	WG1475882

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0242	0.111	1	05/18/2020 19:39	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	91.7			77.0-120		05/18/2020 19:39	WG1478067

СQс

GI

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000520	0.00111	1	05/18/2020 14:32	WG1478049
Toluene	U		0.00145	0.00557	1	05/18/2020 14:32	WG1478049
Ethylbenzene	U		0.000821	0.00279	1	05/18/2020 14:32	WG1478049
Total Xylenes	U		0.000981	0.00724	1	05/18/2020 14:32	WG1478049
(S) Toluene-d8	111			75.0-131		05/18/2020 14:32	WG1478049
(S) 4-Bromofluorobenzene	88.3			67.0-138		05/18/2020 14:32	WG1478049
(S) 1,2-Dichloroethane-d4	102			70.0-130		05/18/2020 14:32	WG1478049

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	146	<u>J</u>	71.8	178	40	05/18/2020 16:24	WG1477623
C28-C40 Oil Range	585		12.3	178	40	05/18/2020 16:24	WG1477623
(S) o-Terphenyl	64.5	J7		18.0-148		05/18/2020 16:24	WG1477623

Sample Narrative:

 ${\tt L1218263-23~WG1477623:} \ Cannot \ run \ at \ lower \ dilution \ due \ to \ viscosity \ of \ extract$

ONE LAB. NAT Page 74 of 191

Collected date/time: 05/05/20 13:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	89.8		1	05/20/2020 20:30	WG1479317

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.2	22.3	1	05/14/2020 17:30	WG1475878

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0242	0.111	1	05/18/2020 22:32	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	88.1			77.0-120		05/18/2020 22:32	WG1478067

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000520	0.00111	1	05/18/2020 14:51	WG1478049
Toluene	U		0.00145	0.00557	1	05/18/2020 14:51	WG1478049
Ethylbenzene	U		0.000821	0.00279	1	05/18/2020 14:51	WG1478049
Total Xylenes	U		0.000980	0.00724	1	05/18/2020 14:51	WG1478049
(S) Toluene-d8	113			75.0-131		05/18/2020 14:51	WG1478049
(S) 4-Bromofluorobenzene	91.2			67.0-138		05/18/2020 14:51	WG1478049
(S) 1,2-Dichloroethane-d4	104			70.0-130		05/18/2020 14:51	WG1478049

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	120		35.9	89.1	20	05/18/2020 16:37	WG1477623
C28-C40 Oil Range	466		6.10	89.1	20	05/18/2020 16:37	WG1477623
(S) o-Terphenyl	59.1	J7		18.0-148		05/18/2020 16:37	WG1477623

36 of 74

ONE LAB. NAT Page 75 of 191

Collected date/time: 05/05/20 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	86.0		1	05/20/2020 20:30	<u>WG1479317</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.7	23.3	1	05/14/2020 17:40	WG1475878

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0252	0.116	1	05/18/2020 22:56	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	94.3			77.0-120		05/18/2020 22:56	WG1478067

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000543	0.00116	1	05/18/2020 15:10	WG1478049
Toluene	U		0.00151	0.00582	1	05/18/2020 15:10	WG1478049
Ethylbenzene	U		0.000857	0.00291	1	05/18/2020 15:10	WG1478049
Total Xylenes	U		0.00102	0.00756	1	05/18/2020 15:10	WG1478049
(S) Toluene-d8	113			<i>75.0-131</i>		05/18/2020 15:10	WG1478049
(S) 4-Bromofluorobenzene	89.8			67.0-138		05/18/2020 15:10	WG1478049
(S) 1,2-Dichloroethane-d4	101			70.0-130		05/18/2020 15:10	WG1478049

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.43		1.87	4.65	1	05/18/2020 15:44	WG1477623
C28-C40 Oil Range	21.4		0.319	4.65	1	05/18/2020 15:44	WG1477623
(S) o-Terphenyl	70.8			18.0-148		05/18/2020 15:44	WG1477623

37 of 74

ONE LAB. NATRAGE 76 of 121

Collected date/time: 05/05/20 14:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.8		1	05/20/2020 20:30	<u>WG1479317</u>

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	14.2	<u>J</u>	10.0	21.8	1	05/14/2020 18:09	WG1475878

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	05/18/2020 23:20	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	95.5			77.0-120		05/18/2020 23:20	WG1478067

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000509	0.00109	1	05/18/2020 15:30	WG1478049
Toluene	U		0.00142	0.00545	1	05/18/2020 15:30	WG1478049
Ethylbenzene	U		0.000803	0.00272	1	05/18/2020 15:30	WG1478049
Total Xylenes	U		0.000958	0.00708	1	05/18/2020 15:30	WG1478049
(S) Toluene-d8	109			75.0-131		05/18/2020 15:30	WG1478049
(S) 4-Bromofluorobenzene	88.0			67.0-138		05/18/2020 15:30	WG1478049
(S) 1,2-Dichloroethane-d4	101			70.0-130		05/18/2020 15:30	WG1478049

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.75	4.36	1	05/18/2020 15:31	WG1477623
C28-C40 Oil Range	1.82	<u>J</u>	0.298	4.36	1	05/18/2020 15:31	WG1477623
(S) o-Terphenvl	75.2			18.0-148		05/18/2020 15:31	WG1477623

ONE LAB. NAT Page 77. of 191

Collected date/time: 05/05/20 14:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.1		1	05/20/2020 20:30	WG1479317

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	95.4		9.67	21.0	1	05/14/2020 18:18	WG1475878

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	05/18/2020 23:44	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	98.3			77.0-120		05/18/2020 23:44	WG1478067

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•		•					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000491	0.00105	1	05/18/2020 15:49	WG1478049
Toluene	U		0.00137	0.00526	1	05/18/2020 15:49	WG1478049
Ethylbenzene	U		0.000775	0.00263	1	05/18/2020 15:49	WG1478049
Total Xylenes	U		0.000925	0.00683	1	05/18/2020 15:49	WG1478049
(S) Toluene-d8	114			75.0-131		05/18/2020 15:49	WG1478049
(S) 4-Bromofluorobenzene	90.3			67.0-138		05/18/2020 15:49	WG1478049
(S) 1,2-Dichloroethane-d4	102			70.0-130		05/18/2020 15:49	WG1478049

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.20	1	05/19/2020 20:52	WG1478084
C28-C40 Oil Range	4.08	<u>J</u>	0.288	4.20	1	05/19/2020 20:52	WG1478084
(S) o-Terphenyl	79.4			18.0-148		05/19/2020 20:52	WG1478084

39 of 74

ONE LAB. NAT Page 78 of 191

Collected date/time: 05/05/20 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	89.6		1	05/20/2020 20:17	WG1479318

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	25.6		10.3	22.3	1	05/14/2020 18:28	WG1475878

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0329	<u>J</u>	0.0242	0.112	1	05/19/2020 00:10	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	94.3			77.0-120		05/19/2020 00:10	WG1478067

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

			•				
<u> </u>	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000521	0.00112	1	05/18/2020 16:08	WG1478049
Toluene	U		0.00145	0.00558	1	05/18/2020 16:08	WG1478049
Ethylbenzene	U		0.000822	0.00279	1	05/18/2020 16:08	WG1478049
Total Xylenes	U		0.000982	0.00725	1	05/18/2020 16:08	WG1478049
(S) Toluene-d8	112			75.0-131		05/18/2020 16:08	WG1478049
(S) 4-Bromofluorobenzene	90.3			67.0-138		05/18/2020 16:08	WG1478049
(S) 1,2-Dichloroethane-d4	99.4			70.0-130		05/18/2020 16:08	WG1478049

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	29.3		1.80	4.46	1	05/19/2020 21:56	WG1478084
C28-C40 Oil Range	67.8		0.306	4.46	1	05/19/2020 21:56	WG1478084
(S) o-Terphenyl	85.4			18.0-148		05/19/2020 21:56	WG1478084

40 of 74

ONE LAB. NATRAGE 79 of 121

Collected date/time: 05/05/20 14:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.1		1	05/20/2020 20:17	WG1479318

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	164		9.99	21.7	1	05/14/2020 18:37	WG1475878

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.109	1	05/19/2020 00:40	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	96.9			77.0-120		05/19/2020 00:40	<u>WG1478067</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000507	0.00109	1	05/18/2020 16:27	WG1478049
Toluene	U		0.00141	0.00543	1	05/18/2020 16:27	WG1478049
Ethylbenzene	U		0.000800	0.00271	1	05/18/2020 16:27	WG1478049
Total Xylenes	U		0.000956	0.00706	1	05/18/2020 16:27	WG1478049
(S) Toluene-d8	109			75.0-131		05/18/2020 16:27	WG1478049
(S) 4-Bromofluorobenzene	88.5			67.0-138		05/18/2020 16:27	WG1478049
(S) 1,2-Dichloroethane-d4	103			70.0-130		05/18/2020 16:27	WG1478049

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.78	<u>J</u>	1.75	4.34	1	05/20/2020 02:34	WG1478084
C28-C40 Oil Range	5.89		0.298	4.34	1	05/20/2020 02:34	WG1478084
(S) o-Terphenyl	79.4			18.0-148		05/20/2020 02:34	WG1478084

ONE LAB. NAT Page 80 of 191

Collected date/time: 05/05/20 14:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.7		1	05/20/2020 20:17	WG1479318

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	326		9.71	21.1	1	05/14/2020 18:56	WG1475878

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	05/19/2020 01:04	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	93.0			77.0-120		05/19/2020 01:04	<u>WG1478067</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000493	0.00106	1	05/18/2020 16:47	WG1478049
Toluene	U		0.00137	0.00528	1	05/18/2020 16:47	WG1478049
Ethylbenzene	U		0.000778	0.00264	1	05/18/2020 16:47	WG1478049
Total Xylenes	U		0.000929	0.00686	1	05/18/2020 16:47	WG1478049
(S) Toluene-d8	110			<i>75.0-131</i>		05/18/2020 16:47	WG1478049
(S) 4-Bromofluorobenzene	87.3			67.0-138		05/18/2020 16:47	WG1478049
(S) 1,2-Dichloroethane-d4	99.3			70.0-130		05/18/2020 16:47	WG1478049

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.22	1	05/19/2020 16:56	WG1478084
C28-C40 Oil Range	0.615	<u>J</u>	0.289	4.22	1	05/19/2020 16:56	WG1478084
(S) o-Terphenyl	86.3			18.0-148		05/19/2020 16:56	WG1478084

42 of 74

Collected date/time: 05/05/20 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.8		1	05/20/2020 20:17	<u>WG1479318</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	269		9.51	20.7	1	05/19/2020 02:47	WG1478252

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/19/2020 02:01	WG1478067
(S) a,a,a-Trifluorotoluene(FID)	95.3			77.0-120		05/19/2020 02:01	<u>WG1478067</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•	,	, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000483	0.00103	1	05/18/2020 17:06	WG1478049
Toluene	U		0.00134	0.00517	1	05/18/2020 17:06	WG1478049
Ethylbenzene	U		0.000762	0.00258	1	05/18/2020 17:06	WG1478049
Total Xylenes	U		0.000910	0.00672	1	05/18/2020 17:06	WG1478049
(S) Toluene-d8	110			<i>75.0-131</i>		05/18/2020 17:06	WG1478049
(S) 4-Bromofluorobenzene	88.7			67.0-138		05/18/2020 17:06	WG1478049
(S) 1,2-Dichloroethane-d4	103			70.0-130		05/18/2020 17:06	WG1478049

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	05/19/2020 17:12	WG1478084
C28-C40 Oil Range	0.554	<u>J</u>	0.283	4.13	1	05/19/2020 17:12	WG1478084
(S) o-Terphenyl	76.2			18.0-148		05/19/2020 17:12	WG1478084

ONE LAB. NATRAGE 82 of 111

Collected date/time: 05/05/20 15:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.9		1	05/20/2020 20:17	WG1479318

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	238		9.50	20.6	1	05/19/2020 03:22	WG1478252

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.122	В	0.0224	0.103	1	05/19/2020 00:38	WG1478226
(S) a,a,a-Trifluorotoluene(FID)	86.5			77.0-120		05/19/2020 00:38	WG1478226

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	05/18/2020 17:25	WG1478049
Toluene	U		0.00134	0.00516	1	05/18/2020 17:25	WG1478049
Ethylbenzene	U		0.000761	0.00258	1	05/18/2020 17:25	WG1478049
Total Xylenes	U		0.000908	0.00671	1	05/18/2020 17:25	WG1478049
(S) Toluene-d8	111			<i>75.0-131</i>		05/18/2020 17:25	WG1478049
(S) 4-Bromofluorobenzene	88.8			67.0-138		05/18/2020 17:25	WG1478049
(S) 1,2-Dichloroethane-d4	106			70.0-130		05/18/2020 17:25	WG1478049

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	05/19/2020 17:28	WG1478084
C28-C40 Oil Range	0.664	<u>J</u>	0.283	4.13	1	05/19/2020 17:28	WG1478084
(S) o-Terphenyl	84.9			18.0-148		05/19/2020 17:28	WG1478084

ONE LAB. NATRAGE 83 of \$11

Collected date/time: 05/05/20 15:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.8		1	05/20/2020 20:17	WG1479318

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	533		9.50	20.7	1	05/19/2020 03:40	WG1478252

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/19/2020 00:59	WG1478226
(S) a,a,a-Trifluorotoluene(FID)	88.1			77.0-120		05/19/2020 00:59	WG1478226

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		•					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	05/18/2020 17:44	WG1478049
Toluene	U		0.00134	0.00517	1	05/18/2020 17:44	WG1478049
Ethylbenzene	U		0.000761	0.00258	1	05/18/2020 17:44	WG1478049
Total Xylenes	U		0.000909	0.00671	1	05/18/2020 17:44	WG1478049
(S) Toluene-d8	114			75.0-131		05/18/2020 17:44	WG1478049
(S) 4-Bromofluorobenzene	87.8			67.0-138		05/18/2020 17:44	WG1478049
(S) 1,2-Dichloroethane-d4	103			70.0-130		05/18/2020 17:44	WG1478049

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	73.1		3.33	8.26	2	05/19/2020 22:12	WG1478084
C28-C40 Oil Range	128		0.566	8.26	2	05/19/2020 22:12	WG1478084
(S) o-Terphenyl	71.1			18.0-148		05/19/2020 22:12	WG1478084

ONE LAB. NATRAGE 84 of 111

Collected date/time: 05/05/20 15:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.1		1	05/20/2020 20:17	WG1479318

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	432		9.57	20.8	1	05/19/2020 03:58	WG1478252

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0248	ВЈ	0.0226	0.104	1	05/19/2020 01:19	WG1478226
(S) a,a,a-Trifluorotoluene(FID)	88.9			77.0-120		05/19/2020 01:19	WG1478226

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

<u> </u>	'	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00104	1	05/18/2020 18:04	WG1478049
Toluene	U		0.00135	0.00520	1	05/18/2020 18:04	WG1478049
Ethylbenzene	U		0.000767	0.00260	1	05/18/2020 18:04	WG1478049
Total Xylenes	U		0.000915	0.00676	1	05/18/2020 18:04	WG1478049
(S) Toluene-d8	109			75.0-131		05/18/2020 18:04	WG1478049
(S) 4-Bromofluorobenzene	86.5			67.0-138		05/18/2020 18:04	WG1478049
(S) 1,2-Dichloroethane-d4	103			70.0-130		05/18/2020 18:04	WG1478049

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	133		16.7	41.6	10	05/19/2020 22:27	WG1478084
C28-C40 Oil Range	267		2.85	41.6	10	05/19/2020 22:27	WG1478084
(S) o-Terphenyl	98.5			18.0-148		05/19/2020 22:27	WG1478084

ONE LAB. NATRAGE 85 of \$11

Collected date/time: 05/05/20 15:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.6		1	05/20/2020 20:17	WG1479318

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	346		9.62	20.9	1	05/19/2020 04:16	WG1478252

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0230	ВЈ	0.0227	0.105	1	05/19/2020 01:40	WG1478226
(S) a,a,a-Trifluorotoluene(FID)	88.2			77.0-120		05/19/2020 01:40	WG1478226

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

		, , ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000488	0.00105	1	05/18/2020 18:23	WG1478049
Toluene	U		0.00136	0.00523	1	05/18/2020 18:23	WG1478049
Ethylbenzene	U		0.000771	0.00261	1	05/18/2020 18:23	WG1478049
Total Xylenes	U		0.000920	0.00680	1	05/18/2020 18:23	WG1478049
(S) Toluene-d8	108			75.0-131		05/18/2020 18:23	WG1478049
(S) 4-Bromofluorobenzene	89.3			67.0-138		05/18/2020 18:23	WG1478049
(S) 1,2-Dichloroethane-d4	105			70.0-130		05/18/2020 18:23	WG1478049

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.18	1	05/19/2020 20:04	WG1478084
C28-C40 Oil Range	2.64	<u>J</u>	0.287	4.18	1	05/19/2020 20:04	WG1478084
(S) o-Terphenyl	88.7			18.0-148		05/19/2020 20:04	WG1478084

ONE LAB. NATRAGA 86 of 191

Collected date/time: 05/05/20 15:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.6		1	05/20/2020 20:17	WG1479318

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	469		9.72	21.1	1	05/19/2020 04:34	WG1478252

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	05/19/2020 02:00	WG1478226
(S) a,a,a-Trifluorotoluene(FID)	87.5			77.0-120		05/19/2020 02:00	WG1478226

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

			*				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000494	0.00106	1	05/18/2020 18:42	WG1478049
Toluene	U		0.00137	0.00528	1	05/18/2020 18:42	WG1478049
Ethylbenzene	U		0.000779	0.00264	1	05/18/2020 18:42	WG1478049
Total Xylenes	U		0.000930	0.00687	1	05/18/2020 18:42	WG1478049
(S) Toluene-d8	110			75.0-131		05/18/2020 18:42	WG1478049
(S) 4-Bromofluorobenzene	91.2			67.0-138		05/18/2020 18:42	WG1478049
(S) 1,2-Dichloroethane-d4	103			70.0-130		05/18/2020 18:42	WG1478049

9 Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.47		1.70	4.23	1	05/19/2020 21:24	WG1478084
C28-C40 Oil Range	17.7		0.290	4.23	1	05/19/2020 21:24	WG1478084
(S) o-Terphenyl	77.8			18.0-148		05/19/2020 21:24	WG1478084

Total Solids by Method 2540 G-2011

Collected date/time: 05/05/20 16:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.9		1	05/20/2020 20:17	WG1479318

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	251		9.49	20.6	1	05/19/2020 04:51	WG1478252

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/19/2020 02:21	WG1478226
(S) a,a,a-Trifluorotoluene(FID)	88.0			77.0-120		05/19/2020 02:21	WG1478226

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•	'	, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	05/18/2020 19:01	WG1478049
Toluene	U		0.00134	0.00516	1	05/18/2020 19:01	WG1478049
Ethylbenzene	U		0.000760	0.00258	1	05/18/2020 19:01	WG1478049
Total Xylenes	U		0.000908	0.00671	1	05/18/2020 19:01	WG1478049
(S) Toluene-d8	111			75.0-131		05/18/2020 19:01	WG1478049
(S) 4-Bromofluorobenzene	89.5			67.0-138		05/18/2020 19:01	WG1478049
(S) 1,2-Dichloroethane-d4	103			70.0-130		05/18/2020 19:01	WG1478049

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.06	<u>J</u>	1.66	4.13	1	05/19/2020 17:44	WG1478084
C28-C40 Oil Range	0.891	<u>J</u>	0.283	4.13	1	05/19/2020 17:44	WG1478084
(S) o-Terphenvl	93.0			18.0-148		05/19/2020 17:44	WG1478084

ONE LAB. NATRAGE 88 of 191

Total Solids by Method 2540 G-2011

L1218263-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3530478-1 C	05/20/20 19:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

[†]Cn

L1218263-03 Original Sample (OS) • Duplicate (DUP)

(OC) 1 1210262 02	0E/20/20 10:00	וחווח/ ו	D2E20/170 2	0E/20/20 10:00
(US) LIZ 10Z 03-US	05/20/20 19:08 • ((DUP) F	K333U4/0-3	05/20/20 19.06

(03) 11210203 03 03/20/2	Original Result	•		DUP RPD	DUP Qualifier	DUP RPD Limits
ınalyte	%	%		%		%
Total Solids	88.3	89.8	1	1.60		10

(LCS) R3530478-2 0	5/20/20 19:08
--------------------	---------------

(LCS) R3530478-2 05/20	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NAT Page 89 of 121

Total Solids by Method 2540 G-2011 L1218263-08,09,10,11,12,13,14,15,16,17

3 Ss

L1218263-14 Original Sample (OS) • Duplicate (DUP)

(OS) L1218263-14 05/20/20 18:56 • (DUP) R3530471-3 05/20/20 18:56

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.0	95.4	1	0.624		10

· Cn

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3530471-2 05/20/20 18:56

(100) 10000471-2 0012012		LCS Rec. Rec. Limits
Analyte	% %	% %
Total Solids	50.0 50.0	100 85.0-115

ONE LAB. NAT Page 90 of 101

Total Solids by Method 2540 G-2011 L1218263-18,19,20,21,22,23,24,25,26,27

Method Blank (MB)

(MB) R3530525-1 0	5/20/20 20:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

[†]Cn

L1218263-21 Original Sample (OS) • Duplicate (DUP)

(00) 14040000 04	05/20/20 20:20	(DLID) DOFOCEOE O	05/00/00 00:00
105111218263-21	05/20/20 20:30	• (DUP) R3530525-3	05/20/20 20:30
(00) =:=:0=00 =:	00,20,2020	(20.)	00/20/20 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.2	96.6	1	0.384		10

(LCS) R3530525-2 05/20/20 20:30										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	%	%	%	%						
Total Solids	50.0	50.0	100	85.0-115						

ONE LAB. NATRAGARA OF 11/1

Total Solids by Method 2540 G-2011

L1218263-28,29,30,31,32,33,34,35,36,37

Method Blank (MB)

(MB) R3530517-1 05	5/20/20 20:17			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1218263-32 Original Sample (OS) • Duplicate (DUP)

(OS) L1218263-32 05/20/	20 20:17 • (DUF) R3530517-3	05/20/20	20:17		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	%	%		%		%
Total Solids	96.9	97.0	1	0.149		10

(LCS) R3530517-2 05/20	LCS) R3530517-2 05/20/20 20:17									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	%	%	%	%						
Total Solids	50.0	50.0	100	85.0-115						

ONE LAB. NAT Page 92 of 111

Wet Chemistry by Method 300.0

L1218263-24,25,26,27,28,29,30

Method Blank (MB)

(MB) R3528152-1 05	5/14/20 13:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

Ss

L1218263-29 Original Sample (OS) • Duplicate (DUP)

(OS) L1218263-29 05/14/20 18:37 • (DUP) R3528152-6 05/14/20 18:47								
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/kg	mg/kg		%		%		
Chloride	164	158	1	3.80		20		

(LCS) R3528152-2	05/14/20 14:08
------------------	----------------

(LCS) R3528152-2 05/14/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	192	95.8	90.0-110	

ONE LAB. NATRAGE 93. of 101

Wet Chemistry by Method 300.0

L1218263-01,02,03

Method Blank (MB)

(MB) R3528440	(MB) R3528440-1 05/15/20 11:27							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
Chloride	U		9.20	20.0				

Ss

Original Sample (OS) • Duplicate (DUP)

(OS)	• (DUP) R3528440-3	05/15/20 12:23

(33) (33.)							
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte		mg/kg		%		%	
Chloride		624	1	2.32		20	

²Qc

(LCS) R3528440-2	05/15/20 11:37
------------------	----------------

(LCS) R3528440-2 05/15/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	192	96.0	90.0-110	

ONE LAB. NAT Page 94 of 121

Wet Chemistry by Method 300.0

L1218263-04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23

Method Blank (MB)

(MB	3) R3529361-1 05/15/2	20 17:20			
		MB Result	MB Qualifier	MB MDL	MB RDL
Anal	lyte	mg/kg		mg/kg	mg/kg
Chlo	oride	U		9.20	20.0
Cnio	oride	U		9.20	20.0

²Tc

L1218263-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1218263-08 05/15/20 18:27 • (DUP) R3529361-3 05/15/20 18:37								
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/kg	mg/kg		%		%		
Chloride	949	915	1	3.64		20		

L1218263-23 Original Sample (OS) • Duplicate (DUP)

(OS) L1218263-23 05/15/20 21:57 • (DUP) R3529361-6 05/15/20 22:06

(00) 11210200 20 00/10/2	Original Result (dry)		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3529361-2 05/15/20 17:30

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	191	95.6	90.0-110	

L1218263-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1218263-18 05/15/20 20:31 • (MS) R3529361-4 05/15/20 20:40 • (MSD) R3529361-5 05/15/20 20:50

(O3) L1210203-10 O3/1	03) E1210203-10 03/13/20 20.31 • (M3) N3323301-4 03/13/20 20.40 • (M3D) N3323301-3 03/13/20 20.30											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	536	11.0	517	538	94.3	98.2	1	80.0-120			4.00	20

ONE LAB. NAT Page 95 of 191

Wet Chemistry by Method 300.0

L1218263-31,32,33,34,35,36,37

Method Blank (MB)

(MB) R3529462-1 05/19	/20 01:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

(OS) L1218263-31	05/19/20 02:47 • (DUP) R3529462-3 05/19/20 03:04	
	Original Result DLIP Result	

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	269	273	1	1.23		20

(OS) L1218741-33 05/19/20 10:32 • (DUP) R3529462-6 05/19/20 10:50

(33) 2.2.37 33 33, 13, 23	Original Result (dry)		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	858	757	5	12.4		20

Laboratory Control Sample (LCS)

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	204	102	90.0-110	

L1218263-37 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1218263-37 05/19/20 04:51 (MS) R3529462-4 05/19/20 05:45 (MSD) R3529462-5 05/19/20 06:03

(O3) E1210203-37 O3/19/2	, ,	Original Result (dry)		,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	516	251	747	742	96.0	95.2	1	80.0-120			0.595	20

ONE LAB. NAT Page 96 of 111

Volatile Organic Compounds (GC) by Method 8015D/GRO L1218263-01,02

L1218263-01,02,03,04,05,06,08,09,11

Method Blank (MB)

1B) R3529258-3 05/18	/20 10:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
nalyte	mg/kg		mg/kg	mg/kg
H (GC/FID) Low Fraction	0.0217	<u>J</u>	0.0217	0.100
(S) a,a-Trifluorotoluene(FID)	95.1			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3529258-2 05/18/	/20 09:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.64	103	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			110	77.0-120	

[†]Cn

Reserved by 8605 71/3/2020 1:02:19 PM

QUALITY CONTROL SUMMARY

ONE LAB. NATRAGA 97. of 111

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1218263-12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

Method Blank (MB)

(MB) R3529326-2 05/18/	20 12:10				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	99.3			77.0-120	

(LCS) R3529326-1 05/18/20 11:04										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	6.04	110	72.0-127						
(S) a,a,a-Trifluorotoluene(FID)			107	77.0-120						

ONE LAB. NATRAGARS of 191

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1218263-32,33,34,35,36,37

Method Blank (MB)

(MB) R3529363-3 05/18/2	20 22:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0258	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	95.8			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3529363-2 05/18	(LCS) R3529363-2 05/18/20 21:39									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	5.57	101	72.0-127						
(S) a,a,a-Trifluorotoluene(FID)			110	77.0-120						

ConocoPhillips - Tetra Tech

ONE LAB. NATRAGA 99 of 191

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1218263-07,10

Method Blank (MB)

(MB) R3529364-3 05/18/	20 22:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0258	J	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	95.8			77.0-120

(LCS) R3529364-2 05/18	(LCS) R3529364-2 05/18/20 21:39									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	5.57	101	72.0-127						
(S) a,a,a-Trifluorotoluene(FID)			110	77.0-120						

Reserved by 86度 21/3/2020 1:02:19 PM

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

L1218263-01,02,03,04,05,06,07,08,09,10,11,12,13,14

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3529264-2 05/18/2	20 08:50				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	103			75.0-131	
(S) 4-Bromofluorobenzene	99.3			67.0-138	
(S) 1,2-Dichloroethane-d4	97.6			70.0-130	

Laboratory Control Sample (LCS)

LC3/ K3529264-1 U5/18/2	CS) R3529264-1 05/18/20 07:49												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/kg	mg/kg	%	%									
Benzene	0.125	0.131	105	70.0-123									
Ethylbenzene	0.125	0.129	103	74.0-126									
Toluene	0.125	0.129	103	75.0-121									
Kylenes, Total	0.375	0.354	94.4	72.0-127									
(S) Toluene-d8			96.4	75.0-131									
(S) 4-Bromofluorobenzene			101	67.0-138									

103

70.0-130

ONE LAB. NAPagev101 of 191

Volatile Organic Compounds (GC/MS) by Method 8260B

L1218263-21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3529249-3 05/18/2	20 10:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	112			75.0-131
(S) 4-Bromofluorobenzene	90.8			67.0-138
(S) 1,2-Dichloroethane-d4	105			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.125	0.115	0.120	92.0	96.0	70.0-123			4.26	20
Ethylbenzene	0.125	0.145	0.144	116	115	74.0-126			0.692	20
Toluene	0.125	0.114	0.121	91.2	96.8	75.0-121			5.96	20
Xylenes, Total	0.375	0.363	0.362	96.8	96.5	72.0-127			0.276	20
(S) Toluene-d8				105	104	75.0-131				
(S) 4-Bromofluorobenzene				94.2	88.8	67.0-138				

70.0-130

L1218263-36 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

108

109

(OS) L1218263-36 05/18/20 18:42 • (MS) R3529249-4 05/18/20 19:21 • (MSD) R3529249-5 05/18/20 19:40													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Benzene	0.132	U	0.111	0.119	84.0	90.4	1	10.0-149			7.34	37	
Ethylbenzene	0.132	U	0.138	0.156	105	118	1	10.0-160			12.2	38	
Toluene	0.132	U	0.114	0.122	86.4	92.0	1	10.0-156			6.28	38	
Xylenes, Total	0.396	U	0.332	0.360	83.7	90.9	1	10.0-160			8.24	38	
(S) Toluene-d8					107	108		75.0-131					
(S) 4-Bromofluorobenzene					86.8	89.3		67.0-138					
(S) 1,2-Dichloroethane-d4					104	104		70.0-130					

ONE LAB. NA Page 102 of 191

Volatile Organic Compounds (GC/MS) by Method 8260B <u>L1218263-15,16,17,18,19,20</u>

Method Blank (MB)

(MB) R3529322-2 05/18/2	20 19:14				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	³ Ss
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	109			75.0-131	Cn
(S) 4-Bromofluorobenzene	102			67.0-138	\vdash
(S) 1,2-Dichloroethane-d4	106			70.0-130	⁵ Sr

(LCS) R3529322-1 05/1	18/20 18:17					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	7 (
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.129	103	70.0-123		8
Ethylbenzene	0.125	0.119	95.2	74.0-126		'
Toluene	0.125	0.137	110	75.0-121		9
Xylenes, Total	0.375	0.349	93.1	72.0-127		[]
(S) Toluene-d8			102	75.0-131		L
(S) 4-Bromofluorobenzen	e		98.0	67.0-138		
(S) 1,2-Dichloroethane-d4	!		117	70.0-130		

ONE LAB. NA Page 103 of 191

Semi-Volatile Organic Compounds (GC) by Method 8015

L1218263-01,02,03,04,05,06

Method Blank (MB)

(MB) R3528941-1 05/18/	(MB) R3528941-1 05/18/20 02:47										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/kg		mg/kg	mg/kg							
C10-C28 Diesel Range	U		1.61	4.00							
C28-C40 Oil Range	U		0.274	4.00							
(S) o-Terphenyl	76.1			18.0-148							

Laboratory Control Sample (LCS)

(LCS) R3528941-2 05/18	LCS) R3528941-2 05/18/20 03:01													
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier									
Analyte	mg/kg	mg/kg	%	%										
C10-C28 Diesel Range	50.0	39.1	78.2	50.0-150										
(S) o-Terphenyl			107	18.0-148										

(OS) L1218158-05 05/18/20 04:46 • (MS) R3528941-3 05/18/20 04:59 • (MSD) R3528941-4 05/18/20 05:13

(03) 11210130 03 03/10	, ,	Original Result (dry)		,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	50.8	U	34.5	37.5	67.9	73.6	1	50.0-150			8.47	20	
(S) o-Terphenvl					88.5	104		18.0-148					

ONE LAB. NAPagev104 of 191

Semi-Volatile Organic Compounds (GC) by Method 8015

L1218263-07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26

Method Blank (MB)

(MB) R3529293-1 05/18	(MB) R3529293-1 05/18/20 12:52									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
C10-C28 Diesel Range	U		1.61	4.00						
C28-C40 Oil Range	U		0.274	4.00						
(S) o-Terphenyl	77.8			18.0-148						

(LCS) R3529293-2 05/1	LCS) R3529293-2 05/18/20 13:06												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/kg	mg/kg	%	%									
C10-C28 Diesel Range	50.0	40.2	80.4	50.0-150									
(S) o-Terphenyl			108	18.0-148									

L1218263-15 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1218263-15 05/18/20 13:19 • (MS) R3529293-3 05/18/20 13:32 • (MSD) R3529293-4 05/18/20 13:45

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	51.5	U	28.3	31.2	55.0	60.5	1	50.0-150			9.87	20
(S) o-Terphenyl					74.0	80.5		18.0-148				

ONE LAB. NA Page 105 of 111

Semi-Volatile Organic Compounds (GC) by Method 8015

L1218263-27,28,29,30,31,32,33,34,35,36,37

Method Blank (MB)

(MB) R3529788-1 05/19	/20 16:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	83.8			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3529788-2 05/19/20 16:40							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
C10-C28 Diesel Range	50.0	42.8	85.6	50.0-150			
(S) o-Terphenyl			89.6	18.0-148			

L1218263-37 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1218263-37 05/19/20 17:44 • (MS) R3529788-3 05/19/20 18:00 • (MSD) R3529788-4 05/19/20 18:16

(03) [1210203 37 03/15	, ,	Original Result (dry)		. ,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	50.1	2.06	41.5	40.5	78.6	76.7	1	50.0-150			2.26	20
(S) o-Terphenyl					78.7	74.8		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifier	C	escri)	ption

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V3	The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. BDL results will be unaffected.

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:

 ConocoPhillips - Tetra Tech
 212C-MD-02164
 L1218263
 05/22/20 17:01

Тс

Ss

Cn

Sr

Qc

GI

Sc

PAGE:

68 of 74

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Page: 1 of 4

Analysis Request of Chain of Custody Record

901 West Wall Street, Suite 100 Tetra Tech, Inc. Midland, Texas 79701 218263 Tel (432) 682-4559 Fax (432) 682-3946 Client Name: Conoco Phillips ANALYSIS REQUEST Site Manager: Christian Llull (Circle or Specify Method No.) Project Name: Email: christian.llull@tetratech.com COP EVGSAU 2230-002 Contact Info: Phone: (512) 338-1667 Project Location: Lea County, New Mexico Project #: (county, state) 212C-MD-02164 Accounts Payable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Receiving Laboratory: Pace Analytical Sampler Signature: Joe Tyler D191 Comments: see COPTETRA Acctnum FPH 8015M (GRO - DRO eneral Water Chemistry **PRESERVATIVE** SAMPLING MATRIX METHOD Semi. Vol. YEAR: 2020 LAB# SAMPLE IDENTIFICATION C/MS Vol. LAB USE NONE SC/MS HNO3 SOIL DATE ONLY TIME 호 CE -0 BH-1 (0'-1') 05/05/20 1000 X 1 N BH-1 (2'-3') 05/05/20 X 1 X 1010 N X BH-1 (4'-5') 05/05/20 1020 X X N X X BH-1 (6'-7') 05/05/20 X X X 1030 1 N X BH-1 (9'-10') 05/05/20 X 1040 X 1 N X X 06 BH-1 (14'-15') / X X 05/05/20 1050 X N X BH-2 (0'-1') 05/05/20 1100 X X 1 N X BH-2 (2'-3') 1 X 05/05/20 1110 X X N BH-2 (4'-5') 05/05/20 X Х 1120 N X X BH-2 (6'-7') 05/05/20 1130 X Relinquished by: Date: Date: REMARKS: Time: LAB USE X Standard ONLY Received by: RUSH: Same Day 24 hr. 48 hr. 72 hr. Sample Temperature Rush Charges Authorized Relinquished by: Received by: Special Report Limits or TRRP Report ORIGINAL COPY (Circle) HAND DELIVERED FEDEX UPS Tracking #:

7# 44300.1237252.0+, 1=2.1 M

Received by OCD: 11/3/2020 1:02:19 PM
Analysis Request of Chain of Custody Record

Page 109 of 191

Page: 2 of 4

Special Report Limits or TRRP Report

(Circle) HAND DELIVERED FEDEX UPS Tracking #:

TE	Tetra Tech, Inc.				901	Midla Tel	nd, T (432)	Street, exas 79 682-45 682-39	9701 559	00					C	10	2/	18	2	6-	3				
Client Name:	Conoco Phillips	Site Manage	er:	Chi	ristian	Llull													REC						
Project Name:	COP EVGSAU 2230-002	Contact Info):			ristian 512) 3		@tetrate	ch.cor	n	1	1	((Circ	le	or 	Sp	ecit	fy I\	/let	ho	d N	lo.)		П
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	2C-ME	0-0216	4				1	-		1/2	F					51					
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701	-								1	(Ш							ist)	1	
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		Joe 1	yler	2				11	- MRO		Se Hg	0								attached list)	100	1
Comments: COPTET	RA Acctnum						Tr.	40			8260B	DRO - ORO - MRO)		Cd Cr Pb Se Hg				8270C/625			A.	S	ees)		
7		SAMP	LING	M	ATRIX			RVATIVI	E S	î	BTEX	GRO - DF		As Ba		tiles	08 / 80					te TDS	Chemistry	alice	- 7-
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020				T	T	1 18	INE	(X)	18	M (G	U	s Ag	tiles	i Vola			2/60	To any	0.00	Sulfate	ater C	2 2	
(LAB USE)	1 - Service Se	DATE	TIME	WATER	OIL	HCL	HNOS	NONE	#CONTAINERS	FUTERED (Y/N)	BTEX 8021B	TPH 8015M (GRO - DRO	PAH 8270C	Fotal Metals Ag As Ba Cd Cr Pb Se Hg	rclp Volatiles	rcLP Semi Volatiles	RCI GCMS Vol	GC/MS Ser	PCB's 8082 / 608	NORM	PLM (Aspestos) Chloride 300.0	Chloride	General Water	Anion/Cation balance TPH 8015R	НОГР
-//	BH-2 (9'-10')	05/05/20	1140	>	X))		1	W N	X	X	0	FF	-	F	Œ (C) 0	1	2 0	X	1000	0 <		I
	BH-2 (14'-15') ፣	05/05/20	1150		X		>		M	N	х	Х		+		Н		1	\Box	4	×		- 50		200
-/2	BH-2 (19'-20')	05/05/20	1200	\Box	х		×		1	N	x	X			T			1	\Box		×				
-13	BH-3 (0'-1')	05/05/20	1210		X	18	×		1.	N	х	X		\top	T		1	1			X	8 3	8		N
-14	BH-3 (2'-3') *	05/05/20	1220	П	х		×		1	N	х	X			T	П		\top			×				
-16	BH-3 (4'-5') #	05/05/20	1230	П	Х	M	×		1	N	х	X			T				П		X				
-16	BH-3 (6'-7')	05/05/20	1240		Х		×		1	N	х	X				Topic			3	E	X				
717	BH-3 (9'-10')	05/05/20	1250		х		X		1	N	х	X			7			- Av			X		VERN T	100	
-14	BH-4 (0'-1') A	05/05/20	1300	300	Х		Х		1	N	Х	Х					7				х				
-14	BH-4 (2'-3') Y	05/05/20	1300	2-1	Х	4	X	(1	N	х	Х							16	2	X		4		
Relinquished by:	Fariof 5(2-to 13:00	Received by:	w		5	Dat 7 (2:	2		3:.	ا		AB ON		E	RE	X	Stan	dard							
Refinquished by:	Date: Time: 512-65 (Gress Date: Time:	Received by:			5	(2-2	8	Time	: 0.0	0	Samp	ole Ter	nper	ature					ame D			48	hr. 7	2 hr.	

Special Report Limits or TRRP Report

(Circle) HAND DELIVERED FEDEX UPS Tracking #:

TPH 8015R

HOLD

TE	Tetra Tech, Inc.			Ş	N	/lidlan	d, Te	Street, exas 7 682-4 682-3	559	00				1		1	2	1	8	2	6	3	Ī		
Client Name:	Conoco Phillips	Site Manage	er:	Chris	ian L	lull										-				REQ					
Project Name:	COP EVGSAU 2230-002	Contact Info	:			stian.l 2) 33			ech.cor	n	1	1	1	(Ci	rcle	e c	or S	pe	CIT	y M 	eth	lod	No	.)	ı
Project Location: (county, state)	Lea County, New Mexico	Project #:		212C	MD-(02164					11										1				
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7	9701				100					11												list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:	Jo	e Tyl	ler					11	COM COO	MIN	Se Hg	Se Hg								ached		
Comments: COPTET	RA Acctnum									- 6	8260B	100	2	d Cr Pb	Cd Cr Pb			**	8270C/625				S v (see att		
		SAMP	LING	MAT	RIX		SER'	VATIV	E SE	(Y/N)	BTEX 8	TX1005 (Ext to C35)		As Ba C	As Ba (tiles	8260B / 624	Vol. 8270	88		1 1	tte TDS	lance	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020		I	П	4	T	П	INE		8021B	005 (E	- 1	Is Ag	als Ag	tilles	Semi Volatiles			32 / 60	estos)	0.00	Sulfate ater Che	on Ba	1,
(LAB USE)		DATE	TIME	WATER		HCL HNO-	CE	NONE	# CONTAINERS	FILTERED		TPH TX1005	PAH 8270C	rotal Metals Ag As Ba Cd Cr Pb Se Hg	CLP Met	rcLP Volatiles	TCLP Sen	GC/MS Vol.	GC/MS Se	PCB's 8082 / 608	PLM (Asbestos)	Chloride 300.0	Chloride Sulfate TDS General Water Chemistry (see attached list)	Anion/Cation Balance	Carried Line
-20	BH-4 (4'-5')	05/05/20	1310)			X		1	N	Х	-	(-			- 14			4 2		Х	0 0	Q.	ľ
-21	BH-4 (6'-7')	05/05/20	1320	1		7	X	П	1	N	х	,	K		П	1	1		П			X		\Box	r
-23	BH-4 (9'-10')	05/05/20	1330	,		3	X		1	N	х)	<		7.4	1	y :	T				X	7/3		
-13	BH-5 (0'-1')	05/05/20	1340)		is	X	П	1	N	X	,	<			1		T				X	10	10	
-24	BH-5 (2'-3') *	05/05/20	1350)			X	П	1	N	х)	<			1		T	\Box			x		П	Ī
-25	BH-5 (4'-5')	05/05/20	1400)		Tall Mary	X	\Box	1	N	X	,	K								T	x			
-16	BH-5 (6'-7')	05/05/20	1410)			X		1	N	X)	<		П	1		T	\Box			x			
-37	BH-5 (9'-10')	05/05/20	1420)		190	X	П	1	N	X)	<			1				1014		X		\Box	Ī
-26	BH-6 (0'-1') +	05/05/20	1430)			Х	П	1	N	х)	K				W 7			3	1	X		П	
-29	BH-6 (2'-3') ▼	05/05/20	1440)			X		1	N	х)	× .		87							х			Ī
Relinquished by:	Date: Time: 5-12-20 13-44 Date: Time: 5-12-20 16-4	Received by:	de la constantina della consta		5	Date Date Date	20	Time	3:	w O	Sam	0	B US NL)	1	100		_	Stand	l: Sar	me Da			48 hr.	721	hr
Relinquished by:	Date: Time:	Received by:				Date	e:	Time	e:		1					_	_		- 3	100					

CORIGINAL COPY

Received by OCD: 11/3/2020 1:02:19 PM
Analysis Request of Chain of Custody Record

Page 111 of 191 Page: 4 of 4

		22	_
TE	Tetra	Tech,	Inc

901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559

11218763

)									82-39							L		1	\wedge	1	0	~					
Client Name:	Conoco Phillips	Site Manage	r:	Chi	ristian	Llull		0000		141		Γ									REC						
Project Name:	COP EVGSAU 2230-002	Contact Info	:		ail: ch					ch.co	n	1	1	1	(Ci	rc	le (or :	Spe	CI	y 1\	/let	ho:	d N	lo.)	1	П
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-MD	-021	64	ir				1		-													
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701			-								1									П				list)		
Receiving Laboratory	Pace Analytical	Sampler Sig	nature:		Joe T	yler	W. T.	-				1	No.	DHM	Se Hg	Se Hg									attached I		
Comments: COPTE	TRA Acctnum	V	logica.	gily	-		8		4			8260B	TPH TX1005 (Ext to C35)	DHO-OF	Ag As Ba Cd Cr Pb Se Hg	rCLP Metals Ag As Ba Cd Cr Pb Se Hg			4	8270C/625		ŀ		TDS	ees)	-	
		SAMP	LING	M	ATRIX	PF		ERV	ATIVE	RS	(Y/N)	BTEX	(Ext to C3	OHE OHE	As Ba	g As Ba		Semi Volatiles	60B / 62	/ol. 8270	808				Chemistry	ajance	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020		-						AINE		8021B	900	COM		als A	atiles	ni Vol	82	emi. V	82/6	octor	0.00	Sulfate	Water (A HOLD	3
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	NONE	# CONTAINERS	FILTERED	BTEX 80;	TPH TX1005	PAH 8270C	Fotal Metals	rcLP Met	rCLP Volatiles	0	ACI GC/MS Vol. 8260B / 624	SC/MS Se	PCB's 8082 / 608	NORM Mehostos	Chloride 300.0	Chloride	General W	Anion/Cation Balance TPH 8015R	НОГР
-30	BH-6 (4'-5') /	05/05/20	1450		Х	Ī	1	Х		1	N	Х	-	X								9	X			- 100	7 7 9
-31	BH-6 (6'-7')	05/05/20	1500		х		8	Х	\top	1	N	х	3	X		32			1	T	П	-	X	6-		0/6	100
-34	BH-6 (9'-10')	05/05/20	1510		х		-	Х		1	N	Х	W.	X	T	re j			1	T		45	X				
-33	BH-7 (0'-1')	05/05/20	1520		X	T	8	Х		1	N	Х	1	x	1			T	\top			1	X	П	\Box	+	
-34	BH-7 (2'-3')	05/05/20	1530		Х		T.	х	\top	1	N	Х	1	X	T				\top	T	П	\top	X	П			Ш
- 39	BH-7 (4'-5')	05/05/20	1540		Х	T	1	Х		1	N	Х	1	X	T	П	П		\top	T	П	\top	X			1	
-36	BH-7 (6'-7') *	05/05/20	1550		Х		1	Х		1	N	Х	1	x	T	П			T	T	П	\top	X				
-37	BH-7 (9'-10')	05/05/20	1600		Х		3	Х	7	1	N	Х	1	X		П						De V	X		\Box	3	
A - 1/2 _ 1/3		4 3	- 4			T	12	П							-		1.0					3	T		3	2	970
		-				Т	-							1	14	- 1			\top	T	*	1	T	- 5	\sqcap		П
Relinquished by: Bed &	Any 5-2-20 (3: a.	Received by:	El)5		ate:	20	Time	3:0	دا		LAI	B U		1			Stand								
Relifiquished by	Date: Time: 5(2-45) (6:40	Received by:	<		5-		ate:		Time	0-	9	Sar	nple T	emp	eratu	ire] [_			ame D			48	hr. 7	2 hr.	
Relinquished by:	Date: Time:	Received by:	0				ate:		Time	35							[port Li			RP Re	eport		
		OPTGINA	L COPY				0					(Ci	cle)	HAN	D DE	LIVE	ERE	D F	EDE	x u	JPS	Trac	king	#: _			

	vation		
m			7
	41218	263	
Temperature:	2.1		
自然等的是不同的影			
NP	Yes	No	7
			7
	1/		6
	1	V	-
	V		1:
	1/		7
		E MARKON TO	
CONTRACTOR OF THE STREET		The second second second	-
	m Temperature:	Temperature: 2.1	m L1218263 Temperature: 2.1

ANALYTICAL REPORT

August 05, 2020

ConocoPhillips - Tetra Tech

Sample Delivery Group:

L1243728

Samples Received:

07/25/2020

Project Number:

212C-MD-02164

Description:

EVGSAU 2230-002

Site:

LEA COUNTY, NEW MEXICO

Report To:

Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
BH-8A (0-1') L1243728-01	5
BH-8A (1-2') L1243728-02	6
BH-9A (0-1') L1243728-03	7
BH-9A (1-2') L1243728-04	8
Qc: Quality Control Summary	9
Total Solids by Method 2540 G-2011	9
Wet Chemistry by Method 300.0	10
Volatile Organic Compounds (GC) by Method 8015D/GRO	11
Volatile Organic Compounds (GC/MS) by Method 8260B	12
Semi-Volatile Organic Compounds (GC) by Method 8015	13
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

DI LOA (0.41) 140.40700 04 0 1: I			Collected by Adrian	Collected date/time 07/23/20 08:00	07/25/20 09	
BH-8A (0-1') L1243728-01 Solid			Aurian	01/23/20 08.00	01123120 03	.00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1518217	1	07/31/20 22:59	07/31/20 23:33	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1516545	1	07/30/20 13:29	07/31/20 09:22	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1518152	1	07/29/20 00:42	07/31/20 17:57	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1517296	1	07/29/20 00:42	07/30/20 08:49	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1518400	1	07/31/20 12:52	08/01/20 00:43	TH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-8A (1-2') L1243728-02 Solid			Adrian	07/23/20 08:10	07/25/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1518217	1	07/31/20 22:59	07/31/20 23:33	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1516545	1	07/30/20 13:29	07/30/20 16:12	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1518152	1	07/29/20 00:42	07/31/20 18:19	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1517296	1	07/29/20 00:42	07/30/20 09:09	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1518400	1	07/31/20 12:52	07/31/20 23:00	TH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-9A (0-1') L1243728-03 Solid			Adrian	07/23/20 08:20	07/25/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1518217	1	07/31/20 22:59	07/31/20 23:33	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1516545	1	07/30/20 13:29	07/30/20 16:26	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1518152	1	07/29/20 00:42	07/31/20 18:41	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1517296	1	07/29/20 00:42	07/30/20 09:28	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1518501	2.73	08/01/20 08:47	08/01/20 17:17	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-9A (1-2') L1243728-04 Solid			Adrian	07/23/20 08:30	07/25/20 09	00:
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Calida by Mathad 2540 C 2044	W04E40047	4			I/D/W	MA LUISA THE
Total Solids by Method 2540 G-2011	WG1518217	1	07/31/20 22:59	07/31/20 23:33	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1516545	1	07/30/20 13:29	07/30/20 16:39	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1518152	1	07/29/20 00:42	07/31/20 19:03	BMB	Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1517296

WG1518675

1

10

07/29/20 00:42

08/01/20 15:44

07/30/20 09:48

08/04/20 22:04

BMB

JN

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

1 C

Chris McCord Project Manager

Collected date/time: 07/23/20 08:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.4		1	07/31/2020 23:33	WG1518217

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.55	20.8	1	07/31/2020 09:22	WG1516545

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0391	<u>J</u>	0.0225	0.104	1	07/31/2020 17:57	WG1518152
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		07/31/2020 17:57	WG1518152

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	07/30/2020 08:49	WG1517296
Toluene	U		0.00135	0.00519	1	07/30/2020 08:49	WG1517296
Ethylbenzene	U		0.000765	0.00259	1	07/30/2020 08:49	WG1517296
Total Xylenes	0.00169	<u>J</u>	0.000913	0.00674	1	07/30/2020 08:49	WG1517296
(S) Toluene-d8	105			75.0-131		07/30/2020 08:49	WG1517296
(S) 4-Bromofluorobenzene	102			67.0-138		07/30/2020 08:49	WG1517296
(S) 1,2-Dichloroethane-d4	110			70.0-130		07/30/2020 08:49	WG1517296

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.51		1.67	4.15	1	08/01/2020 00:43	WG1518400
C28-C40 Oil Range	18.2		0.284	4.15	1	08/01/2020 00:43	WG1518400
(S) o-Terphenyl	56.5			18.0-148		08/01/2020 00:43	WG1518400

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.4		1	07/31/2020 23:33	<u>WG1518217</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.54	20.7	1	07/30/2020 16:12	WG1516545

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0295	<u>J</u>	0.0225	0.104	1	07/31/2020 18:19	WG1518152
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		07/31/2020 18:19	WG1518152

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000484	0.00104	1	07/30/2020 09:09	WG1517296
Toluene	U		0.00135	0.00518	1	07/30/2020 09:09	WG1517296
Ethylbenzene	U		0.000764	0.00259	1	07/30/2020 09:09	WG1517296
Total Xylenes	U		0.000913	0.00674	1	07/30/2020 09:09	WG1517296
(S) Toluene-d8	105			<i>75.0-131</i>		07/30/2020 09:09	WG1517296
(S) 4-Bromofluorobenzene	103			67.0-138		07/30/2020 09:09	WG1517296
(S) 1,2-Dichloroethane-d4	108			70.0-130		07/30/2020 09:09	WG1517296

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.12	<u>J</u>	1.67	4.15	1	07/31/2020 23:00	WG1518400
C28-C40 Oil Range	5.46		0.284	4.15	1	07/31/2020 23:00	WG1518400
(S) o-Terphenyl	76.8			18.0-148		07/31/2020 23:00	WG1518400

Collected date/time: 07/23/20 08:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.1		1	07/31/2020 23:33	<u>WG1518217</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	11.2	<u>J</u>	9.57	20.8	1	07/30/2020 16:26	WG1516545

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0497	J	0.0226	0.104	1	07/31/2020 18:41	WG1518152
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		07/31/2020 18:41	WG1518152

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00104	1	07/30/2020 09:28	WG1517296
Toluene	U		0.00135	0.00520	1	07/30/2020 09:28	WG1517296
Ethylbenzene	U		0.000767	0.00260	1	07/30/2020 09:28	WG1517296
Total Xylenes	U		0.000915	0.00676	1	07/30/2020 09:28	WG1517296
(S) Toluene-d8	105			75.0-131		07/30/2020 09:28	WG1517296
(S) 4-Bromofluorobenzene	104			67.0-138		07/30/2020 09:28	WG1517296
(S) 1,2-Dichloroethane-d4	107			70.0-130		07/30/2020 09:28	WG1517296

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	12.0		4.58	11.3	2.73	08/01/2020 17:17	WG1518501
C28-C40 Oil Range	56.8		0.778	11.3	2.73	08/01/2020 17:17	WG1518501
(S) o-Terphenvl	82.4			18.0-148		08/01/2020 17:17	WG1518501

ONE LAB. NAPage 120 of 191

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.0		1	07/31/2020 23:33	WG1518217

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	31.2		9.58	20.8	1	07/30/2020 16:39	WG1516545

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	07/31/2020 19:03	WG1518152
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		07/31/2020 19:03	WG1518152

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

			_				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00104	1	07/30/2020 09:48	WG1517296
Toluene	U		0.00135	0.00521	1	07/30/2020 09:48	WG1517296
Ethylbenzene	U		0.000767	0.00260	1	07/30/2020 09:48	WG1517296
Total Xylenes	0.00105	<u>J</u>	0.000916	0.00677	1	07/30/2020 09:48	WG1517296
(S) Toluene-d8	107			<i>75.0-131</i>		07/30/2020 09:48	WG1517296
(S) 4-Bromofluorobenzene	106			67.0-138		07/30/2020 09:48	WG1517296
(S) 1,2-Dichloroethane-d4	108			70.0-130		07/30/2020 09:48	WG1517296

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	78.4		16.8	41.7	10	08/04/2020 22:04	WG1518675
C28-C40 Oil Range	519		2.85	41.7	10	08/04/2020 22:04	WG1518675
(S) o-Terphenyl	79.4			18.0-148		08/04/2020 22:04	WG1518675

PAGE: 8 of 19

ONE LAB. NAPagev121 of 191

Total Solids by Method 2540 G-2011

L1243728-01,02,03,04

Method Blank (MB)

Total Solids

(MB) R3555381-1 07/	/31/20 23:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1243727-01 Original Sample (OS) • Duplicate (DUP)

92.5

0.189

92.4

(OS) L1243/27-01 07/3	31/20 23:33 • (DUP)	R3555381-3	0//31/20 2	23:33		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%

10

(LCS) R3555381-2 07/3	LCS) R3555381-2 07/31/20 23:33										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	%	%	%	%							
Total Solids	50.0	50.0	100	85.0-115							

ONE LAB. NAPagev122 of 121

Wet Chemistry by Method 300.0

L1243728-01,02,03,04

Method Blank (MB)

(MB) R3555089-1 07/30/20 14:41										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
Chloride			9.20	20.0						

L1244400-21 Original Sample (OS) • Duplicate (DUP)

(OS) L1244400-21 07/30	/20 21:07 • (DUP)) R3555089-5	07/30/20	21:21		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	81 7	71.3	1	13.7		20

L1243728-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1243728-01 07/31/20	0 09:22 • (DUP) R3555089-6	07/31/20	09:35		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3555089-2 0	7/30/20 14:54
--------------------	---------------

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	199	99.6	90.0-110	

L1243732-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1243732-02 07/30/20 17:59 • (MS) R3555089-3 07/30/20 18:13 • (MSD) R3555089-4 07/30/20 18:26

(03) [1243/32-02 07/30]	(03) E1243732-02 07/30/20 17/33 - 07/30/20 10/33 - 07/30/20 10/30 - 07/30/20 10/30											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	516	19.8	557	556	104	104	1	80.0-120			0.213	20

ONE LAB. NAPagev123 of 111

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1243728-01,02,03,04

Method Blank (MB)

(MB) R3555189-2 07/31/2	20 11:46			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3555189-1 07/31/2	0 11:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.63	121	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			106	77.0-120	

L1244028-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(0	S) I 1244028-03	07/31/20 20:11 •	(MS) R3555189-3	07/31/20 20:55 •	(MSD	R3555189-4	07/31/20 21:18

(00) 112 1 1020 00 07/01/2	0 20.11 (1110) 1	(000010000	701/20 20.00	(11102) 1100001	03 1 07701120	21.10						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	550	601	998	968	72.2	66.7	100	10.0-151			3.05	28
(S) a,a,a-Trifluorotoluene(FID)					102	99.8		77.0-120				

ONE LAB. NAPagev124 of 191

Volatile Organic Compounds (GC/MS) by Method 8260B

L1243728-01,02,03,04

Method Blank (MB)

MB) R3555463-2 07/30/					
	MB Result	MB Qualifier	MB MDL	MB RDL	
nalyte	mg/kg		mg/kg	mg/kg	
enzene	U		0.000467	0.00100	
thylbenzene	U		0.000737	0.00250	
oluene	U		0.00130	0.00500	
(ylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	102			75.0-131	
(S) 4-Bromofluorobenzene	102			67.0-138	
(S) 1,2-Dichloroethane-d4	98.4			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3555463-1 07/30/	20 04:54					Ē
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		L
Benzene	0.125	0.113	90.4	70.0-123		٤
Ethylbenzene	0.125	0.113	90.4	74.0-126		
Toluene	0.125	0.111	88.8	75.0-121		Į.
Xylenes, Total	0.375	0.351	93.6	72.0-127		ľ
(S) Toluene-d8			105	<i>75.0-131</i>		L
(S) 4-Bromofluorobenzene			107	67.0-138		
(S) 1 2-Dichloroethane-d4			119	70 O-130		

L1243728-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1243728-04 07/30/	20 09:48 • (MS) R3555463-3	07/30/20 13:28	3 • (MSD) R355	5463-4 07/30	/20 13:48						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.129	U	0.139	0.127	107	98.4	1	10.0-149			8.63	37
Ethylbenzene	0.129	U	0.145	0.131	112	102	1	10.0-160			9.81	38
Toluene	0.129	U	0.141	0.131	109	102	1	10.0-156			6.90	38
Xylenes, Total	0.387	0.00105	0.430	0.403	111	104	1	10.0-160			6.50	38
(S) Toluene-d8					101	104		75.0-131				
(S) 4-Bromofluorobenzene					103	107		67.0-138				
(S) 1,2-Dichloroethane-d4					102	110		70.0-130				

ONE LAB. NAPagev125 of 111

Semi-Volatile Organic Compounds (GC) by Method 8015

L1243728-01,02

Method Blank (MB)

(MB) R3555333-1 07/31	1/20 16:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	83.8			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3555333-2 07/3	1/20 16:19				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	37.1	74.2	50.0-150	
(S) o-Terphenyl			71.3	18.0-148	

L1243727-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1243727-03 08/01/20 01:22 • (MS) R3555433-1 08/01/20 01:35 • (MSD) R3555433-2 08/01/20 01:47

(00) 112 10727 00 0070	31/20 01.22 (1110)	110000 100 1 0	0/01/20 01.00	(11102) 110000	100 2 00/01/	20 01.17							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	50.6	5.41	45.3	39.3	79.0	67.0	1	50.0-150			14.3	20	
(S) o-Terphenyl					75.9	67.8		18.0-148					

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 126 of 191

L1243728-03

Method Blank (MB)

(MB) R3555544-1 08/0	1/20 13:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	74.6			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3555544-2 08/0	1/20 14:02				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	41.3	82.6	50.0-150	
(S) o-Terphenyl			89.9	18.0-148	

L1243649-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1243649-01 08/01/20 16:25 • (MS) R3555544-3 08/01/20 16:38 • (MSD) R3555544-4 08/01/20 16:51

,	Sniko Amount	Original Result	MS Posult	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Amalusta	•				MS Rec.	WISD Rec.	Dilution	o/	WS Qualifier	MSD Qualifier	0/	o/
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	49.8	18.8	50.8	59.1	64.3	80.9	1	50.0-150			15.1	20
(S) o-Terphenyl					57.4	61.4		18.0-148				

ONE LAB. NAPagev127 of 191

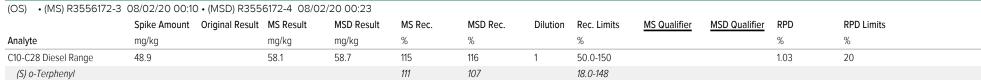
Semi-Volatile Organic Compounds (GC) by Method 8015

L1243728-04

Method Blank (MB)

(MB) R3556172-1 08/01	/20 23:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	123			18.0-148

Laboratory Control Sample (LCS)


(LCS) R3556172-2 08/0	1/20 23:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	62.5	125	50.0-150	
(S) o-Terphenyl			125	18.0-148	

	8
-	ΑI

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations an	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

¹Cp

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Analysis Request of Chain of Custody Record

Page 130 of 191
Page: 1 of 1

U243728

ч	r	_	_	_	_
4	ı		-	ď	
d	ľ	п		Ь	
а	П		81	ы	р.

Tetra Tech, Inc.

901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946

F026

ت ا	retta recii, me.								82-45					4				Ä	Y.								
Client Name:	Conoco Phillips	Site Manage	rí	Chr	istian	Llu	ı	30							· C:	u a l					REQ			I M	~ \		
Project Name:	EVGSAU 2230-002	Contact Info	Email: christian.llull@tetratech.com Phone: (512) 338-1667								1	ľ	01				pe	CII	y M	eu		1).)		1		
Project Location: (county, state)	Lea County, New Mexico	Project #:	117	212	C-ME)-02	164				di s											-					10 10
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701	01										6											0 4	d list)			
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		Adria	n					- 1		OBO - MRO			Se Hg									ttached		200
Comments: COPTE									8260B	-1-		Cd Cr Pb	CCLP Metals Ag As Ba Cd Cr Pb			24	OC/625				TDS	General Water Chemistry (see attached list) Anion/Cation Balance	00 m				
100	7	SAMP	LING	M	ATRIX	P		ETH	ATIVE DD	ERS	Y/N)	BTEX	TPH TX1005 (Ext to C35)		g As Ba	Ag As Ba		olatiles	GC/MS Vol. 8260B / 624	3C/MS Semi. Vol. 8270C/625	809	s)		Sulfate T	General Water Chemis Anion/Cation Balance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020		-		1	-			CONTAINERS	RED (3021B	TX1005	70C	etals A	letals /	olatiles	emi Vo	Vol. 8	Semi.	30827	spesto	30	Su	Water ation E	15R	
(LAB USE)		DATE	TIME	WATER	SOIL	107	HNO	ICE	NONE	# CON	FILTERED (Y/N)	BTEX 8021B	TPH T	PAH 8270C	Total Me	TCLP N	TCLP Volatiles	TCLP Semi Volatiles	GC/MS	GC/MS	PCB's 8082 / 608	PLM (Asbestos)	Chloride 300.0	Chloride	General Anion/C	TPH 8015R	НОГР
اعد	BH-8a (0-1')	7/23/2020	800	i.	Х	1000		Х		1	N	Х	>	(-			Х				5
-07	BH-8a (1-2')	7/23/2020	810		Х	1		Х		1	N	Х)	(-8	T					Х		-		
-03	BH-9a (0-1')	7/23/2020	820		Х			X		1	N	Х	>	(-					X				100
_ey	BH-9a (1-2')	7/23/2020	830	r	Х	1		Х		1	N	Х)						1	-		-	X		+	\square	
		-			-	+	+	H	+				+	+		Н	\forall	+	+	+	Н	+	H		+	Н	
						1	1						1	1				1	1	T						П	1
- 8				8	+	+	+	\vdash		\vdash	-	Н	+	+	-		V 1	+	-1	+		3	H	IE.	E C		+
				1	1	1)			15	1- 3			-		100		+		+	H	+	H		7.8		
Relinquished by:	Date: Time: 724/20 :50 p	Received by:	IN		/	7/4	Date Date	hi	Time	Bir	د	100		NL	Υ			MAR X	Stand	dard	ame Da	ay 2	4 hr.	48 h	r. 72	hr.	129
Relinquished by:	7k4/20 17:00	Received by	+	1	7	12	9/2 Date	20	Time	74	2	San	nple T	emp	eratu	ire	[Rush	Char	ges Au	ıthoriz	ed				
riciniquiatied by.	Date. Infle	Rek	<u>_</u>	1	7	2				90	لع				- N		[Specia	al Re	port Li	mits o	TRR	P Rep	oort		
		ORIGINA	L COPY	1								(Ci	cle)	HAN	D DE	ELIV	ERE	D F	EDE	X U	JPS	Trac	king #	:			7 1 1

3.4-, 2=3. 2 MB

Pace Analytical National Center for Testing & Innov	vation	
Cooler Receipt Form		
Client: Tela Tocha COPTETNA	612437	128
Client: Telestocher COPTETNA Cooler Received/Opened On: 7 / 25 / 20 Temperature:	3.2	
Received By: Bryan Burgess		
Signature: h		
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		1
COC Signed / Accurate?		Cathaga 2
Bottles arrive intact?		A Marian
Correct bottles used?	1	
Sufficient volume sent?		
If Applicable		法裁判法法
VOA Zero headspace?		
Preservation Correct / Checked?	newson services and	

ANALYTICAL REPORT

August 05, 2020

ConocoPhillips - Tetra Tech

Sample Delivery Group:

L1243730

Samples Received:

07/25/2020

Project Number:

212C-MD-02164

Description:

EVGSAU 2230-002

Site:

LEA COUNTY, NEW MEXICO

Report To:

Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
BH-8B (0-1') L1243730-01	5
BH-8B (1-2') L1243730-02	6
Qc: Quality Control Summary	7
Total Solids by Method 2540 G-2011	7
Wet Chemistry by Method 300.0	8
Volatile Organic Compounds (GC) by Method 8015D/GRO	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
Semi-Volatile Organic Compounds (GC) by Method 8015	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

			Collected by	Collected date/time	e Received da	te/time
BH-8B (0-1') L1243730-01 Solid			Adrian	07/23/20 08:00	07/25/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1518218	1	08/01/20 22:36	08/01/20 22:48	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1515537	1	07/29/20 11:47	07/29/20 22:15	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1518152	1	07/29/20 16:58	07/31/20 19:26	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1517465	1	07/29/20 16:58	07/30/20 00:55	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1518675	1	08/01/20 15:44	08/02/20 00:37	JN	Mt. Juliet, TN
			Collected by	Collected date/time	e Received da	te/time
BH-8B (1-2') L1243730-02 Solid			Adrian	07/23/20 08:10	07/25/20 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1518218	1	08/01/20 22:36	08/01/20 22:48	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1515537	1	07/29/20 11:47	07/29/20 22:33	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1518152	1.01	07/29/20 16:58	07/31/20 19:48	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1517465	1	07/29/20 16:58	07/30/20 01:15	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1518675	1	08/01/20 15:44	08/04/20 13:31	TJD	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Collected date/time: 07/23/20 08:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	84.5		1	08/01/2020 22:48	WG1518218

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.9	23.7	1	07/29/2020 22:15	WG1515537

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0257	0.118	1	07/31/2020 19:26	WG1518152
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		07/31/2020 19:26	WG1518152

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000637	0.00137	1	07/30/2020 00:55	WG1517465
Toluene	U		0.00177	0.00683	1	07/30/2020 00:55	WG1517465
Ethylbenzene	U		0.00101	0.00341	1	07/30/2020 00:55	WG1517465
Total Xylenes	U		0.00120	0.00887	1	07/30/2020 00:55	WG1517465
(S) Toluene-d8	94.5			75.0-131		07/30/2020 00:55	WG1517465
(S) 4-Bromofluorobenzene	100			67.0-138		07/30/2020 00:55	WG1517465
(S) 1,2-Dichloroethane-d4	98.8			70.0-130		07/30/2020 00:55	WG1517465

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.19	<u>J</u>	1.90	4.73	1	08/02/2020 00:37	WG1518675
C28-C40 Oil Range	9.88		0.324	4.73	1	08/02/2020 00:37	WG1518675
(S) o-Terphenyl	118			18.0-148		08/02/2020 00:37	WG1518675

Ss Cn

ONE LAB. NAPagev13-7 of 191

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.1		1	08/01/2020 22:48	WG1518218

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.98	21.7	1	07/29/2020 22:33	WG1515537

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0238	0.110	1.01	07/31/2020 19:48	WG1518152
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		07/31/2020 19:48	<u>WG1518152</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000507	0.00109	1	07/30/2020 01:15	WG1517465
Toluene	U		0.00141	0.00543	1	07/30/2020 01:15	WG1517465
Ethylbenzene	U		0.000800	0.00271	1	07/30/2020 01:15	WG1517465
Total Xylenes	U		0.000955	0.00705	1	07/30/2020 01:15	WG1517465
(S) Toluene-d8	96.6			75.0-131		07/30/2020 01:15	WG1517465
(S) 4-Bromofluorobenzene	97.2			67.0-138		07/30/2020 01:15	WG1517465
(S) 1,2-Dichloroethane-d4	98.8			70.0-130		07/30/2020 01:15	WG1517465

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.46	<u>J</u>	1.75	4.34	1	08/04/2020 13:31	WG1518675
C28-C40 Oil Range	15.3		0.297	4.34	1	08/04/2020 13:31	WG1518675
(S) o-Terphenyl	89.5			18.0-148		08/04/2020 13:31	WG1518675

6 of 16

ONE LAB. NAPagev138 of 191

[†]Cn

Total Solids by Method 2540 G-2011

L1243730-01,02

Method Blank (MB)

(MB) R3555853-1 O	8/01/20 22:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1243732-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1243/32-02 08/0	01/20 22:48 • (D	UP) R3555853-	-3 08/01/2	0 22:48		
	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.9	97.2	1	0.333		10

Laboratory Control Sample (LCS)

(LCS) R3555853-2 08/01	1/20 22:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NAPagev139 of 191

Wet Chemistry by Method 300.0

L1243730-01,02

Method Blank (MB)

(№	1B) R3554621-1 0	7/29/20 13:13			
		MB Result	MB Qualifier	MB MDL	MB RDL
Ar	nalyte	mg/kg		mg/kg	mg/kg
Ch	lloride	U		9.20	20.0

Ss

[†]Cn

L1243360-01 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Chloride	216	203	1	5.78		20	

L1243595-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1243595-01 07/29/2	Original Result (dry)			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte				%		%
Chloride	U	U	1	0.000		20

Sc

Laboratory Control Sample (LCS)

(LCS) R3554621-2 07/29/20 13:31

()					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	195	97.6	90.0-110	

L1243573-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1243573-01 07/29/20 16:17 • (MS) R3554621-4 07/29/20 17:11

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MS Rec.	Dilution	Rec. Limits	MS Qualifier
alyte	mg/kg	mg/kg	mg/kg	%		%	
Chloride	587	14300	14400	22.8	1	80.0-120	EV

ONE LAB. NAPagev140 of 191

Wet Chemistry by Method 300.0

L1243730-01,02

L1243573-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1243573-01 07/29/2	, ,						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/kg	mg/kg	mg/kg	%		%	
Chloride	587	14300	15300	182	1	80.0-120	EV

ONE LAB. NAPagev141 of 111

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1243730-01,02

Method Blank (MB)

(MB) R3555189-2 07/31/2	20 11:46			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120

Laboratory Control Sample (LCS)

0 11:01				
Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
mg/kg	mg/kg	%	%	
5.50	6.63	121	72.0-127	
		106	77.0-120	
	Spike Amount mg/kg	Spike Amount LCS Result mg/kg mg/kg	Spike Amount LCS Result LCS Rec. mg/kg mg/kg % 5.50 6.63 121	Spike Amount mg/kg LCS Result mg/kg LCS Rec. Rec. Limits 5.50 6.63 121 72.0-127

L1244028-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(0	S) I 1244028-03	07/31/20 20:11 •	(MS) R3555189-3	07/31/20 20:55 •	(MSD	R3555189-4	07/31/20 21:18

(00) E12 11020 00 07/01/20 20.11 (110) 10000103 0 07/01/20 20.00 (1100) 10000103 1 07/01/20 21.10												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	550	601	998	968	72.2	66.7	100	10.0-151			3.05	28
(S) a,a,a-Trifluorotoluene(FID)					102	99.8		77.0-120				

ONE LAB. NA Page 142 of 191

Volatile Organic Compounds (GC/MS) by Method 8260B

L1243730-01,02

Method Blank (MB)

(MB) R3554887-2 07/29/20 22:01									
	MB Result	MB Qualifier	MB MDL	MB RDL		Ī			
Analyte	mg/kg		mg/kg	mg/kg		ľ			
Benzene	U		0.000467	0.00100		L			
Ethylbenzene	U		0.000737	0.00250		-			
Toluene	U		0.00130	0.00500		L			
Xylenes, Total	U		0.000880	0.00650		Ţ.			
(S) Toluene-d8	93.8			75.0-131					
(S) 4-Bromofluorobenzene	97.8			67.0-138		L			
(S) 1,2-Dichloroethane-d4	97.8			70.0-130		!			

Laboratory Control Sample (LCS)

(LCS) R3554887-1 07/29/	20 21:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.127	102	70.0-123	
Ethylbenzene	0.125	0.113	90.4	74.0-126	
Toluene	0.125	0.110	88.0	75.0-121	
Xylenes, Total	0.375	0.332	88.5	72.0-127	
(S) Toluene-d8			95.3	75.0-131	
(S) 4-Bromofluorobenzene			95.5	67.0-138	
(S) 1 2-Dichloroethane-d4			108	70 0-130	

L1244098-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1244098-10 07/30/20 04:58 • (MS) R3554887-3 07/30/20 06:19 • (MSD) R3554887-4 07/30/20 06:40												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.174	U	0.209	0.212	120	122	1	10.0-149			1.33	37
Ethylbenzene	0.174	0.00132	0.192	0.190	110	108	1	10.0-160			1.47	38
Toluene	0.174	U	0.177	0.177	102	102	1	10.0-156			0.000	38
Xylenes, Total	0.522	0.00737	0.559	0.565	106	107	1	10.0-160			1.00	38
(S) Toluene-d8					94.4	93.4		75.0-131				
(S) 4-Bromofluorobenzene					118	121		67.0-138				
(S) 1,2-Dichloroethane-d4					103	101		70.0-130				

11 of 16

ONE LAB. NA Page 143 of 191

Semi-Volatile Organic Compounds (GC) by Method 8015

L1243730-01,02

Method Blank (MB)

(MB) R3556172-1 08/01/	20 23:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	123			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3556172-2 08/01/20 23:18									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
C10-C28 Diesel Range	50.0	62.5	125	50.0-150					
(S) o-Terphenyl			125	18.0-148					

L1244183-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

10	2011244102 00	09/01/20 22:57	(MC) D2EE6172 2	08/02/20 00:10 •	(MCD) D2EE6172 /	00/02/20 00:22
(J3) L1244103-U3	00/01/20 23.37	(IVIS) KSSSSC1/2-S	00/02/20 00.10 • 1	(IVISD) KSSSS0172-4	00/02/20 00.23

(03) E124+103 03 00/01/20 23.37 - (1113) 1033011/2 3 00/02/20 00.10 - (11132) 1033011/2 4 00/02/20 00.23												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	48.9	1.89	58.1	58.7	115	116	1	50.0-150			1.03	20
(S) o-Terphenyl					111	107		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

 ACCOUNT:
 PROJECT:

 ConocoPhillips - Tetra Tech
 212C-MD-02164

SDG: L1243730

DATE/TIME: 08/05/20 14:39

PAGE:

13 of 16

Tc

Sr

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina 1	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Page 146 of 191
Page: 1 of 1

C1243730

	-78	1-1	
		-	
-		4 5 - 4	

FIRS 4	777 1	T
Letra	Tech,	Inc.

901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946

F027

	Tetra Tech, Inc.								82-455 82-39								1									-	
Client Name:	Conoco Phillips	Site Manager: Christian Llull					ANALYSIS REQUES																				
Project Name:	EVGSAU 2230-002	Contact Info			ail: ch					h.com		1	1	ī	(61	Circle or Specify Method No.)											
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	2C-MD	0-02	164									1											
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	1											1	5										list)			
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		Adria	n	A						2		Se Hg	Se Hg		١.					400	attached list)			100
Comments: COPTE	TRA Acctnum	est and			10%		J.					8260B	TPH TX1005 (Ext to C35)	0-0-0-	rotal Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Metals Ag As Ba Cd Cr Pb Se Hg			24	8270C/625			C	ees)		14.5	
		SAMP	LING	М	ATRIX	P		ERV	ATIVE OD		2	BTEX	xt to C	O. O.	As Ba	As Ba	atiles		80B / 62	ol. 827	20	139	10	1 E	lance	fr	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020	1000							AINE	ED (Y	RED (Y/ 8021B		8270C	tals Ag	stals Ag	Volatiles Semi Vols		/ol. 82(Semi. V	0051	bestos)	300.0	Suna Water (tion Ba	2H	
(LAB USE)		DATE	TIME	WATER	SOIL	E	HNO3	ICE	NONE	# CONTAINERS	FILTERED (Y/N)	BTEX 80	TPH TX1005 (Ext to C35)	PAH 82	Total Me	TCLP Me	TCLP Semi Volatiles	RCI	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol.	NORM	PLM (Asbestos)	Chloride 300.0	Chloride Sulfate General Water Che	Anion/Cation Balance	IPH 80	HOLD
-01	BH-8b (0-1')	7/23/2020	800	1	Х			Х		.1	N	Х	7	X									Х				
-62	BH-8b (1-2')	7/23/2020	810		Х			Х		1	N	Х	1	X								11	Х				Ĺ
To the second				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H	les																					
		20		1		1	T					П	1	T					П		139		7	100			
						+	E.					Н	+	+		BFT I											- 13
		Jan Y				-		(15)									***				Ŧ	21		1			
100		1		1	H	+	113		+	\vdash	12										100	1	+	-0	i i	+	
Relinquished by:	Date: Time: 7/24/2 1:000	Received by	R	e	1	76	Date:	120	Time:	3:	۵		LAI	B U		F			anda		44.5				2)	-	4
Relinguished by:	Date: Time: 7/24/20 17:00	Received by FEAEX			7	6	Date		Time:	,	ک	San	nple T	emp	eratu	re		_			e Day			48 hr.	72 hr.	,	
Relinquished by:	Date: Time:	Received by	-	- 1			Date		Time	qu)							_						Repor	ı		4
		ORIGINA	L COPY	1				3				(Cir	cle)	HAN	ID DE	LIVE	RED	FEI	DEX	UP	S Tr	rackin	ıg #:				

3.4-,2=3.2 my

Pace Analytical National Center for Testing & Innov	ation	
Cooler Receipt Form		
Client: Feta Tichen COPTETRA	42437	70
Cooler Received/Opened On: 7 / 15 / 20 Temperature:	3.2	
Received By: Bryan Burgess		
Signature: R. D.		
Receipt Check List NP	Yes	No
COC Seal Present / Intact?	er en	
COC Signed / Accurate?		
Bottles arrive intact?		
Correct bottles used?		
Sufficient volume sent?		
If Applicable	有效 计等值	和人员 对于是
VOA Zero headspace?	Carlo .	
Preservation Correct / Checked?		

ANALYTICAL REPORT

September 15, 2020

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1261121

Samples Received: 09/12/2020

Project Number: 212C-MD-02164

Description: COP EVGSAU 2230-002

Site: LEA COUNTY, NEW MEXICO

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chu, toph J men

Chris McCord
Project Manager

Results relate only to the items tested or collivated and are reported as rounded values. This test sport shall not be reported or except in full, without written approval of the liboratory, Whore applicable, sufficiently provided by Proce Aralytical National is performed per guidance provided in aboratory standard operating procedures EMV-SOP MITIL 0068 Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Ср

Cp: Cover Page	1					
Tc: Table of Co	2					
Ss: Sample Sun	3					
Cn: Case Narra	tive	4				
Sr: Sample Res	ults	5				
BH-10 (0-1')	L1261121-01	5				
BH-11 (0-1')	L1261121-02	6				
BH-12 (0-1')	L1261121-03	7				
BH-13 (0-1')	L1261121-04	8				
BH-14 (0-1')	L1261121-05	9				
Qc: Quality Cor	ntrol Summary	10				
Total Solids I	oy Method 2540 G-2011	10				
Wet Chemist	ry by Method 300.0	12				
Volatile Orga	nnic Compounds (GC) by Method 8015D/GRO	13				
Volatile Orga	nic Compounds (GC/MS) by Method 8260B	14				
Semi-Volatile	e Organic Compounds (GC) by Method 8015	16				
GI: Glossary of	Terms	17				
Al: Accreditations & Locations						
Sc: Sample Cha	ain of Custody	19				

³Ss

[†]Cn

Sr

[°]Qc

GI

Sc

			Collected by	Collected date/time		
BH-10 (0-1') L1261121-01 Solid			John Thurston	09/11/20 00:00	09/12/20 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1542601	1	09/14/20 12:38	09/14/20 12:45	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1541864	1	09/13/20 20:10	09/14/20 06:30	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1542332	27.5	09/11/20 00:00	09/13/20 17:12	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1542298	1.1	09/11/20 00:00	09/13/20 12:16	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1543135	1.1	09/11/20 00:00	09/15/20 12:12	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1542806	2	09/14/20 19:54	09/15/20 09:14	JN	Mt. Juliet, TN
			Collected by John Thurston	Collected date/time 09/11/20 00:00	Received da 09/12/20 09:	
BH-11 (0-1') L1261121-02 Solid			JOHN MUSION	09/11/20 00.00	09/12/20 09.	.00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1542601	1	09/14/20 12:38	09/14/20 12:45	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1541864	1	09/13/20 20:10	09/14/20 06:45	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1542332	27.3	09/11/20 00:00	09/13/20 17:35	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1542298	1.09	09/11/20 00:00	09/13/20 12:35	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1543135	1.09	09/11/20 00:00	09/15/20 12:31	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1542806	1	09/14/20 19:54	09/15/20 07:45	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-12 (0-1') L1261121-03 Solid			John Thurston	09/11/20 00:00	09/12/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1542601	1	09/14/20 12:38	09/14/20 12:45	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1541864	1	09/13/20 20:10	09/14/20 07:00	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1542332	27.3	09/11/20 00:00	09/13/20 17:58	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1542298	1.09	09/11/20 00:00	09/13/20 12:54	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1543135	1.09	09/11/20 00:00	09/15/20 12:50	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1542806	1	09/14/20 19:54	09/15/20 07:58	JN	Mt. Juliet, TN
BH-13 (0-1') L1261121-04 Solid			Collected by John Thurston	Collected date/time 09/11/20 00:00	Received da 09/12/20 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Julie.	5.100.01.	date/time	date/time	7	2000.011
Total Solids by Method 2540 G-2011	WG1542604	1	09/14/20 12:29	09/14/20 12:37	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1541864	1	09/13/20 20:10	09/14/20 07:14	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1542332	26.5	09/11/20 00:00	09/13/20 18:21	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1542298	1.06	09/11/20 00:00	09/13/20 13:13	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1543135	1.06	09/11/20 00:00	09/15/20 13:09	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1542806	1	09/14/20 19:54	09/15/20 07:20	JN	Mt. Juliet, TN
BH-14 (0-1') L1261121-05 Solid			Collected by John Thurston	Collected date/time 09/11/20 00:00	Received da 09/12/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1542604	1	09/14/20 12:29	09/14/20 12:37	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1541864	1	09/13/20 20:10	09/14/20 07:29	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1542332	26.3	09/11/20 00:00	09/13/20 18:44	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1542298	1.05	09/11/20 00:00	09/13/20 13:32	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1542238 WG1543135	1.05	09/11/20 00:00	09/15/20 13:28	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1542806	1.05	09/11/20 00:00	09/15/20 15:28	JN	Mt. Juliet, TN
Serial volutile organic compounds (oc) by Mctilou 6013	VVO1J42000	1	JJI 1/20 1J.J4	03/13/20 01.32	JIN	ivic. JuliCt, TN

Chris McCord Project Manager

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ConocoPhillips - Tetra Tech

ONE LAB. NAPagev152 of 191

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.7		1	09/14/2020 12:45	<u>WG1542601</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	15.3	<u>J</u>	9.51	20.7	1	09/14/2020 06:30	WG1541864

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.757	ВЈ	0.636	2.93	27.5	09/13/2020 17:12	WG1542332
(S) a,a,a-Trifluorotoluene(FID)	96.4			77.0-120		09/13/2020 17:12	WG1542332

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000674	<u>J</u>	0.000547	0.00117	1.1	09/13/2020 12:16	WG1542298
Toluene	0.00395	<u>J</u>	0.00152	0.00586	1.1	09/13/2020 12:16	WG1542298
Ethylbenzene	U		0.000864	0.00293	1.1	09/15/2020 12:12	WG1543135
Total Xylenes	0.00164	<u>J</u>	0.00103	0.00762	1.1	09/15/2020 12:12	<u>WG1543135</u>
(S) Toluene-d8	98.4			<i>75.0-131</i>		09/13/2020 12:16	WG1542298
(S) Toluene-d8	95.9			75.0-131		09/15/2020 12:12	<u>WG1543135</u>
(S) 4-Bromofluorobenzene	99.8			67.0-138		09/13/2020 12:16	WG1542298
(S) 4-Bromofluorobenzene	112			67.0-138		09/15/2020 12:12	WG1543135
(S) 1,2-Dichloroethane-d4	110			70.0-130		09/13/2020 12:16	WG1542298
(S) 1,2-Dichloroethane-d4	105			70.0-130		09/15/2020 12:12	WG1543135

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	64.3		3.33	8.27	2	09/15/2020 09:14	WG1542806
C28-C40 Oil Range	241		0.567	8.27	2	09/15/2020 09:14	WG1542806
(S) o-Terphenyl	45.0			18.0-148		09/15/2020 09:14	WG1542806

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.2		1	09/14/2020 12:45	WG1542601

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.77	21.2	1	09/14/2020 06:45	WG1541864

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.662	3.05	27.3	09/13/2020 17:35	WG1542332
(S) a,a,a-Trifluorotoluene(FID)	95.3			77.0-120		09/13/2020 17:35	WG1542332

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000569	0.00122	1.09	09/13/2020 12:35	WG1542298
Toluene	0.00362	<u>J</u>	0.00159	0.00609	1.09	09/13/2020 12:35	WG1542298
Ethylbenzene	U		0.000898	0.00305	1.09	09/15/2020 12:31	WG1543135
Total Xylenes	0.00173	<u>J</u>	0.00107	0.00792	1.09	09/15/2020 12:31	WG1543135
(S) Toluene-d8	97.8			75.0-131		09/13/2020 12:35	WG1542298
(S) Toluene-d8	98.8			75.0-131		09/15/2020 12:31	WG1543135
(S) 4-Bromofluorobenzene	99.6			67.0-138		09/13/2020 12:35	WG1542298
(S) 4-Bromofluorobenzene	114			67.0-138		09/15/2020 12:31	WG1543135
(S) 1,2-Dichloroethane-d4	106			70.0-130		09/13/2020 12:35	WG1542298
(S) 1,2-Dichloroethane-d4	105			70.0-130		09/15/2020 12:31	WG1543135

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.67		1.71	4.25	1	09/15/2020 07:45	WG1542806
C28-C40 Oil Range	57.4		0.291	4.25	1	09/15/2020 07:45	WG1542806
(S) o-Terphenyl	48.0			18.0-148		09/15/2020 07:45	WG1542806

ONE LAB. NAPagev154 of 191

Collected date/time: 09/11/20 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.0		1	09/14/2020 12:45	<u>WG1542601</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.6	<u>J</u>	9.58	20.8	1	09/14/2020 07:00	WG1541864

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	1.08	<u>B J</u>	0.639	2.95	27.3	09/13/2020 17:58	WG1542332
(S) a,a,a-Trifluorotoluene(FID)	96.6			77.0-120		09/13/2020 17:58	<u>WG1542332</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

Volume Organic O.	'	,	,		Dilution	Amelyoio	Detel
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000549	0.00118	1.09	09/13/2020 12:54	WG1542298
Toluene	0.00315	<u>J</u>	0.00153	0.00588	1.09	09/13/2020 12:54	WG1542298
Ethylbenzene	U		0.000867	0.00295	1.09	09/15/2020 12:50	WG1543135
Total Xylenes	0.00141	<u>J</u>	0.00104	0.00764	1.09	09/15/2020 12:50	WG1543135
(S) Toluene-d8	99.8			<i>75.0-131</i>		09/13/2020 12:54	WG1542298
(S) Toluene-d8	95.3			75.0-131		09/15/2020 12:50	WG1543135
(S) 4-Bromofluorobenzene	97.2			67.0-138		09/13/2020 12:54	WG1542298
(S) 4-Bromofluorobenzene	110			67.0-138		09/15/2020 12:50	WG1543135
(S) 1,2-Dichloroethane-d4	104			70.0-130		09/13/2020 12:54	WG1542298
(S) 1,2-Dichloroethane-d4	107			70.0-130		09/15/2020 12:50	WG1543135

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.42		1.68	4.17	1	09/15/2020 07:58	WG1542806
C28-C40 Oil Range	39.1		0.285	4.17	1	09/15/2020 07:58	WG1542806
(S) o-Terphenyl	47.7			18.0-148		09/15/2020 07:58	WG1542806

ONE LAB. NAPagev155 of 191

Collected date/time: 09/11/20 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.8		1	09/14/2020 12:37	WG1542604

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.40	20.4	1	09/14/2020 07:14	WG1541864

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.600	2.76	26.5	09/13/2020 18:21	WG1542332
(S) a,a,a-Trifluorotoluene(FID)	96.3			77.0-120		09/13/2020 18:21	WG1542332

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	<u></u>
Benzene	U		0.000516	0.00111	1.06	09/13/2020 13:13	WG1542298
Toluene	0.00329	<u>J</u>	0.00144	0.00553	1.06	09/13/2020 13:13	WG1542298
Ethylbenzene	U		0.000815	0.00276	1.06	09/15/2020 13:09	WG1543135
Total Xylenes	0.00144	<u>J</u>	0.000973	0.00719	1.06	09/15/2020 13:09	WG1543135
(S) Toluene-d8	102			75.0-131		09/13/2020 13:13	WG1542298
(S) Toluene-d8	101			75.0-131		09/15/2020 13:09	WG1543135
(S) 4-Bromofluorobenzene	97.7			67.0-138		09/13/2020 13:13	WG1542298
(S) 4-Bromofluorobenzene	108			67.0-138		09/15/2020 13:09	WG1543135
(S) 1,2-Dichloroethane-d4	109			70.0-130		09/13/2020 13:13	WG1542298
(S) 1,2-Dichloroethane-d4	107			70.0-130		09/15/2020 13:09	WG1543135

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.71	<u>J</u>	1.65	4.09	1	09/15/2020 07:20	WG1542806
C28-C40 Oil Range	18.9		0.280	4.09	1	09/15/2020 07:20	WG1542806
(S) o-Terphenyl	53.0			18.0-148		09/15/2020 07:20	WG1542806

ONE LAB. NAPagev156 of 191

Collected date/time: 09/11/20 00:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.8		1	09/14/2020 12:37	WG1542604

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.41	20.5	1	09/14/2020 07:29	WG1541864

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.596	2.75	26.3	09/13/2020 18:44	WG1542332
(S) a,a,a-Trifluorotoluene(FID)	96.1			77.0-120		09/13/2020 18:44	WG1542332

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

- Totalite Organio O	'	,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000512	0.00110	1.05	09/13/2020 13:32	WG1542298
Toluene	0.00318	<u>J</u>	0.00142	0.00548	1.05	09/13/2020 13:32	WG1542298
Ethylbenzene	0.00101	<u>J</u>	0.000808	0.00275	1.05	09/15/2020 13:28	WG1543135
Total Xylenes	0.00153	<u>J</u>	0.000965	0.00713	1.05	09/15/2020 13:28	WG1543135
(S) Toluene-d8	102			<i>75.0-131</i>		09/13/2020 13:32	WG1542298
(S) Toluene-d8	99.8			75.0-131		09/15/2020 13:28	WG1543135
(S) 4-Bromofluorobenzene	101			67.0-138		09/13/2020 13:32	WG1542298
(S) 4-Bromofluorobenzene	106			67.0-138		09/15/2020 13:28	WG1543135
(S) 1,2-Dichloroethane-d4	110			70.0-130		09/13/2020 13:32	WG1542298
(S) 1,2-Dichloroethane-d4	109			70.0-130		09/15/2020 13:28	WG1543135

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.52	<u>J</u>	1.65	4.09	1	09/15/2020 07:32	WG1542806
C28-C40 Oil Range	15.3		0.280	4.09	1	09/15/2020 07:32	WG1542806
(S) o-Terphenyl	51.5			18.0-148		09/15/2020 07:32	WG1542806

ONE LAB. NAPagev157 of 191

Total Solids by Method 2540 G-2011

L1261121-01,02,03

Method Blank (MB)

(MB) R3570402-1	09/14/20 12:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

L1261121-01 Original Sample (OS) • Duplicate (DUP)

` ,	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.7	96.1	1	0.629		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3570402-2 09/14/20 12:45

(LCS) R35/0402-2 09/14/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NAPagev158 of 191

Total Solids by Method 2540 G-2011

L1261121-04,05

Method Blank (MB)

(MB) R3570399-1 O	9/14/20 12:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

L1261135-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1261135-03	09/14/20 12:37	• (DUP) R3570399-3	09/14/20 12:37

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	82.5	82.6	1	0.0781		10

Laboratory Control Sample (LCS)

(LCS) R35/0399-2 09/14/	LCS Qualifier				
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NAPagev159 of 191

Wet Chemistry by Method 300.0

L1261121-01,02,03,04,05

Method Blank (MB)

(MB) R3569986-1 09/13/	20 21:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	11		9.20	20.0

L1260251-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1260251-01 09/14/20 00:32 • (DUP) R3569986-3 09/14/20 00:47

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	39.4	39.2	1	0.432		20

(OS) L1260772-06 09/14/20 06:00 • (DLIP) R3569986-6 09/14/20 06:15

, ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	3960	4110	10	3.70		20

Laboratory Control Sample (LCS)

(LCS) R3569986-2 09/13/20 21:53

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	197	98.3	90.0-110	

L1260772-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OST 1260772 01 09/14/20 03:21 (MS) P3569986 4 09/14/20 03:46 (MSD) P3569986 5 09/14/20 04:01

(03) E1200772-01 09/14/20 03.51 • (1015) K3503360-4 09/14/20 03.40 • (1015) K3503360-5 09/14/20 04.01													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	500	10100	10300	10800	43.3	129	1	80.0-120	ΕV	ΕV	4.05	20	

ONE LAB. NAPagev160 of 191

Volatile Organic Compounds (GC) by Method 8015D/GRO L1261121-01,02,03,04,05

Method Blank (MB)

(MB) R3570397-2 09/13/2	(MB) R3570397-2 09/13/20 11:22							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
TPH (GC/FID) Low Fraction	0.0229	<u>J</u>	0.0217	0.100				
(S) a,a,a-Trifluorotoluene(FID)	96.1			77.0-120				

³Ss

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3570397-1 09/13/2	LCS) R3570397-1 09/13/20 10:36								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
TPH (GC/FID) Low Fraction	5.50	5.33	96.9	72.0-127					
(S) a,a,a-Trifluorotoluene(FID)			104	77.0-120					

ONE LAB. NAPagev161 of 191

Volatile Organic Compounds (GC/MS) by Method 8260B L1261121-01,02,03,04,05

Method Blank (MB)

(MB) R3570408-3 09/13/20 11:04							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
Benzene	U		0.000467	0.00100			
Toluene	U		0.00130	0.00500			
(S) Toluene-d8	97.6			75.0-131			
(S) 4-Bromofluorobenzene	96.1			67.0-138			
(S) 1,2-Dichloroethane-d4	111			70.0-130			

³Ss

[†]Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3570408-1 09/13/20 09:48 • (LCSD) R3570408-2 09/13/20 10:07											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.111	0.119	88.8	95.2	70.0-123			6.96	20	
Toluene	0.125	0.102	0.111	81.6	88.8	75.0-121			8.45	20	
(S) Toluene-d8				93.0	93.0	75.0-131					
(S) 4-Bromofluorobenzene				104	103	67.0-138					
(S) 1.2-Dichloroethane-d4				110	109	70.0-130					

ONE LAB. NA Page 162 of 191

Volatile Organic Compounds (GC/MS) by Method 8260B

L1261121-01,02,03,04,05

Method Blank (MB)

(MB) R3570567-3 09/15/2	MB) R3570567-3 09/15/20 09:33								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
Ethylbenzene	U		0.000737	0.00250					
Xylenes, Total	U		0.000880	0.00650					
(S) Toluene-d8	98.5			75.0-131					
(S) 4-Bromofluorobenzene	111			67.0-138					
(S) 1,2-Dichloroethane-d4	111			70.0-130					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3570567-1 09/15/20 08:18 • (LCSD) R3570567-2 09/15/20 08:37											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Ethylbenzene	0.125	0.118	0.118	94.4	94.4	74.0-126			0.000	20	
Xylenes, Total	0.375	0.386	0.380	103	101	72.0-127			1.57	20	
(S) Toluene-d8				96.7	97.7	75.0-131					
(S) 4-Bromofluorobenzene				106	104	67.0-138					
(S) 1,2-Dichloroethane-d4				112	114	70.0-130					

ONE LAB. NAPagev163 of 191

L1261121-01,02,03,04,05 Semi-Volatile Organic Compounds (GC) by Method 8015

Method Blank (MB)

(MB) R3570533-1 09/15/20 04:09 MB RDL MB Result MB Qualifier MB MDL Analyte mg/kg mg/kg mg/kg C10-C28 Diesel Range U 1.61 4.00 U C28-C40 Oil Range 0.274 4.00 (S) o-Terphenyl 70.6 18.0-148

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3570533-2 09/15/20 04:22 LCS Qualifier Spike Amount LCS Result LCS Rec. Rec. Limits Analyte mg/kg mg/kg % % C10-C28 Diesel Range 50.0 33.2 66.4 50.0-150 58.7 (S) o-Terphenyl 18.0-148

L1260620-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1260620-01 09/15/20 05:00 • (MS) R3570533-3 09/15/20 05:13 • (MSD) R3570533-4 09/15/20 05:25

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	49.8	U	33.3	30.7	66.9	61.6	1	50.0-150			8.12	20
(S) o-Terphenyl					50.9	49.4		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifi∆r	\Box	escri)	ntion
Qua		\vdash	/C3C11	Puon

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:

 ConocoPhillips - Tetra Tech
 212C-MD-02164
 L1261121
 09/15/20 22:19

PAGE:

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana 1	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Analysis Request of Chain of Custody Record

1 CC Page 166 of 191

Page: 1 of 1

TE .	Tetra Tech, Inc.					Midla Tel	and, I (43	Texa 2) 68	eet, Su as 797 2-4559 2-394	01 9	10	a i				1			i i							
Client Name:	Conoco Phillips	Site Manager	r:	Chri	stian l	Llull						ANALYSIS REQUEST (Circle or Specify Method					NEA									
Project Name:	EVGSAU 2230-002	Contact Info:	1.		ail: chr ne: (5				tratech	n.com		1	1) 		cie	 	Spe 		y IV 	leti 		INC).) 	1-1	
Project Location: county, state)	Lea County, New Mexico	Project #:		212	C-MD	-0216	64																		-	
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970				4				١.,				o		2								/ licely	l list)		
Receiving Laboratory:	Pace Analytical	Sampler Sign	nature:		John ⁻	Thurs	ston						O-MRO)		Se Hg	Se Hg							Hochoch	attached		
Comments: COPTET	RA Acctnum										17.	8260B	C35) DRO - ORO		As Ba Cd Cr Pb Se Hg	Ca Cr Pa		7	0C/625				000	see		
		SAMP	LING	MA	TRIX	PR		THO	TIVE	RS	(Y/N)	BTEX	GRO - DI		As Ba	3 As Ba	Volatiles	8260B / 624	8	80				Chemistry		
LAB# (LAB USE)	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE	NONE	# CONTAINERS	FILTERED (Y	X 8021B	TPH TX1005 (E		Metals	TCLP Metals Ag	TCLP Semi Vola	RCI GC/MS Vol. 82	GC/MS Semi. Vol.	PCB's 8082 / 608	NOHM PLM (Asbestos)	Chloride 300.0	Chloride Sulfate	General Water Che Anion/Cation Balar	TPH 8015R	НОГР
-01	BH-10 (0-1')	9/11/2020	69		Х			Х		1	N	Х	Х									Х				
oz.	BH-11 (0-1')	9/11/2020			Х	14		х		÷1-	N	Х	X			5 -						Х				
03	BH-12 (0-1')	9/11/2020			X	1.0		х		1	N	Х	X									Х			E a	
64	BH-13 (0-1')	9/11/2020			Х			Х		1	N	Х	X									X		í		
oś .	BH-14 (0-1')	9/11/2020			Х			Х		1	N	Х	×									Х	THE			
										1-38		E A		H			46									
Relinquished by: Relinquished by:	Date: Time: 9/11/126 1400 Date: Time:	Received by: Date: Time: LAB USE ONLY Standard X RUSH: Same Day 24 Rush Charges Authorize								48 h	ır. 72	2 hr.														
Relinquished by:	Date: Time:	Received by:	1			Da	ate:		ime: 9:0	00		1								port Li			RP Rep	port		

Pace Ana	lytical National Center f	or Testing & Innov	ation	
	Cooler Receipt	Form		
Client:	COPTETRA		1261	1121
Cooler Received/Opens	- 1.36 - 1.03 P.C 2.5 P.C 2	Temperature:	0.702	
	CAS GREEN			
Signature:				
The Charle Liet		NP	Yes	No
Receipt Check List				Kara
COC Seal Present / Intact? COC Signed / Accurate?			1/	
Bottles arrive intact?				
Correct bottles used?		SECTION SHOWS THE SECTION OF		
Sufficient volume sent?		and the second of the second o		
If Applicable				Ex .
VOA Zero headspace?				
Preservation Correct / Checked	?		Garage Control	

APPENDIX E Photographic Documentation

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	DESCRIPTION View east. Former wellhead and release area on the former EVGSAU 2230-002 lease pad.	
212C-MD-02020	SITE NAME	EVGSAU 2230-002 Wellhead Release	1/3/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View west from former wellhead. Release area on the former lease pad.	2
212C-MD-02020	SITE NAME	EVGSAU 2230-002 Wellhead Release	1/3/2020

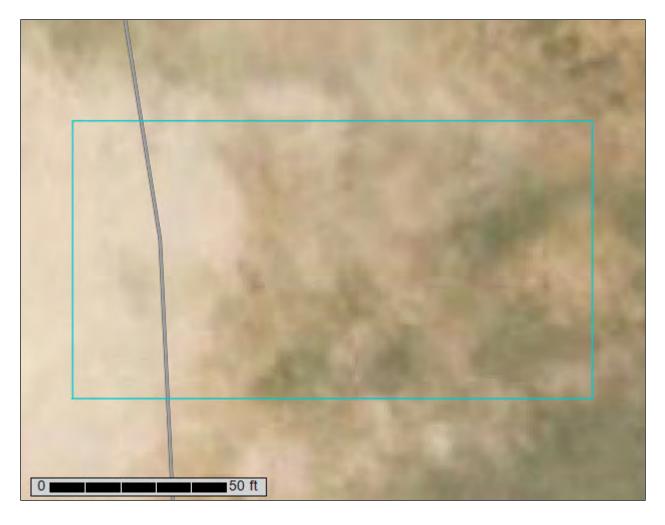
TETRA TECH, INC.	DESCRIPTION	View south. Release area and depressed area indicating previous excavation.	3
212C-MD-02020	SITE NAME	EVGSAU 2230-002 Wellhead Release	1/3/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View west-northwest. Depressed area indicating previous excavation.	4
212C-MD-02020	SITE NAME	EVGSAU 2230-002 Wellhead Release	1/3/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View northwest. Depressed area indicating previous excavation.	5
212C-MD-02020	SITE NAME	EVGSAU 2230-002 Wellhead Release	1/3/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View southwest. Sidewall of excavated area.	7
212C-MD-02020	SITE NAME	EVGSAU 2230-002 Wellhead Release	1/3/2020

APPENDIX F NMSLO Seed Mixture Details



NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

EVGSAU 2230-002 Wellhead Release

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Lea County, New Mexico	
KO—Kimbrough gravelly loam, dry, 0 to 3 percent slopes	
KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes	
References	17

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

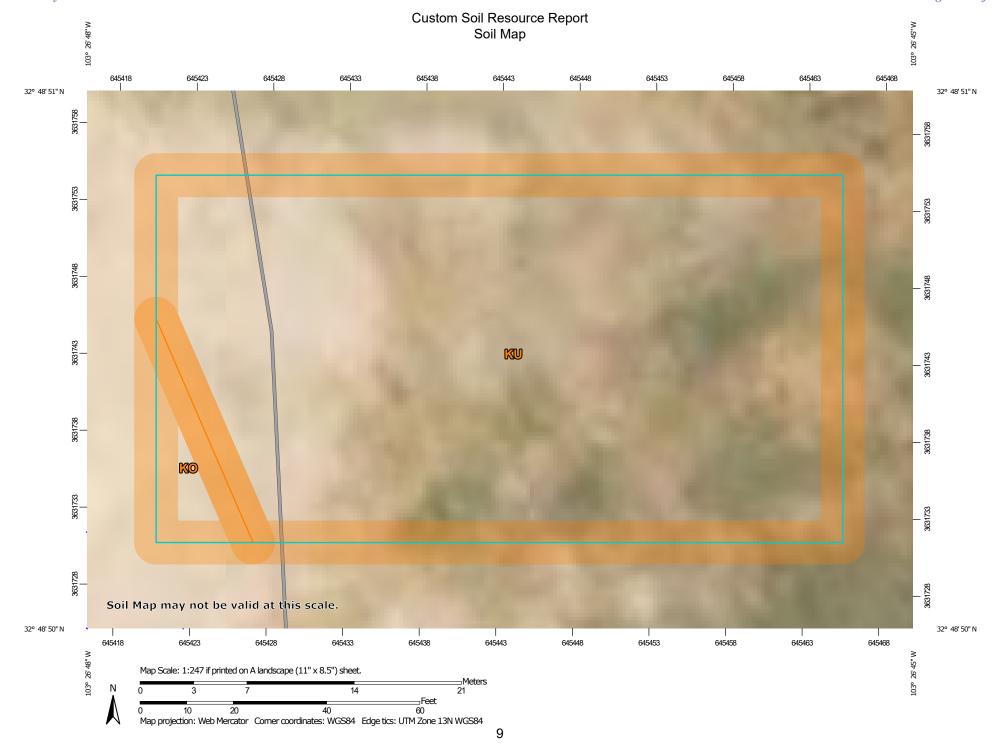
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

å

Stony Spot Very Stony Spot

Ŷ

Wet Spot Other

Δ

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

00

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 17, Jun 8, 2020

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Sep 18, 2016—Nov 20. 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
ко	Kimbrough gravelly loam, dry, 0 to 3 percent slopes	0.0	4.3%
KU	Kimbrough-Lea complex, dry, 0 to 3 percent slopes	0.3	95.7%
Totals for Area of Interest		0.3	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

KO—Kimbrough gravelly loam, dry, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw43 Elevation: 2,500 to 4,800 feet

Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 57 to 63 degrees F

Frost-free period: 180 to 220 days

Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough, dry, and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kimbrough, Dry

Setting

Landform: Plains, playa rims
Down-slope shape: Linear, convex
Across-slope shape: Linear, concave

Parent material: Loamy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam

Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 4 to 18 inches to petrocalcic

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.01 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 95 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water capacity: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R077DY049TX - Very Shallow 12-17" PZ

Hydric soil rating: No

Minor Components

Eunice

Percent of map unit: 10 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Convex

Ecological site: R077DY049TX - Very Shallow 12-17" PZ

Hydric soil rating: No

Spraberry

Percent of map unit: 6 percent Landform: Plains, playa rims Down-slope shape: Linear, convex

Across-slope shape: Linear

Ecological site: R077DY049TX - Very Shallow 12-17" PZ

Hydric soil rating: No

Kenhill

Percent of map unit: 4 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R077DY038TX - Clay Loam 12-17" PZ

Hydric soil rating: No

KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw46 Elevation: 2,500 to 4,800 feet

Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F

Frost-free period: 180 to 220 days

Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough and similar soils: 45 percent Lea and similar soils: 25 percent

Minor components: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kimbrough

Setting

Landform: Plains, playa rims Down-slope shape: Linear, convex Across-slope shape: Linear, concave

Parent material: Loamy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam

Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 4 to 18 inches to petrocalcic

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.01 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 95 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water capacity: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R077DY049TX - Very Shallow 12-17" PZ

Hydric soil rating: No

Description of Lea

Setting

Landform: Plains

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous, loamy eolian deposits from the blackwater draw formation of pleistocene age over indurated caliche of pliocene age

Typical profile

A - 0 to 10 inches: loam Bk - 10 to 18 inches: loam

Bkk - 18 to 26 inches: gravelly fine sandy loam Bkkm - 26 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 22 to 30 inches to petrocalcic

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 90 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 3.0

Available water capacity: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R077DY047TX - Sandy Loam 12-17" PZ

Hydric soil rating: No

Minor Components

Douro

Percent of map unit: 12 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX)

Hydric soil rating: No

Kenhill

Percent of map unit: 12 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R077DY038TX - Clay Loam 12-17" PZ

Hydric soil rating: No

Spraberry

Percent of map unit: 6 percent Landform: Plains, playa rims Down-slope shape: Linear, convex

Across-slope shape: Linear

Ecological site: R077DY049TX - Very Shallow 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX)

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

NMSLO Seed Mix

Coarse (CS)

COARSE (CS) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX	
<u>Grasses:</u>			_	
Sand bluestem	VNS, Southern	2.0	${f F}$	
Sideoats grama	Vaughn, El Reno	2.0	\mathbf{F}	
Blue grama	Hachita, Lovington	1.5	D	
Little bluestem	Cimmaron, Pastura	1.5	\mathbf{F}	
Sand dropseed	VNS, Southern	1.0	S	
Plains bristlegrass	VNS, Southern	0.75	D	
Forbs:				
Parry penstemon	VNS, Southern	1.0	D	
Desert globemallow	VNS, Southern	1.0	D	
White prairieclover	Kaneb, VNS	0.5	D	
Sulfur buckwheat	VNS, Southern	0.5	D	
Shrubs:				
Fourwing saltbush	VNS, Southern	1.0	D	
Skunkbush sumac	VNS, Southern	1.0	D	
Common winterfat	VNS, Southern	1.0	\mathbf{F}	
Fringed sagewort	VNS, Southern	0.5	F	
	Total PLS/acr	e 18.25		

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box

- VNS, Southern No Variety Stated, seed should be from a southern latitude collection of this species.
- Double above seed rates for broadcast or hydroseeding.
- If Parry is not available, substitute firecracker penstemon.
- If desert globemallow is not available, substitute scarlet globemallow.
- If one species is not available, provide a suggested substitute to the New Mexico Land Office for approval. Increasing all other species proportionately may be acceptable.

