Submit I Copy To Appropriate District Office	State of New Me Energy, Minerals and Natu			Form C-103 d July 18, 2013
<u>District 1</u> – (575) 393-6161 1625 N. French Dr., Hobbs, NM 88240	Ellergy, Willerais and Natu	rai Resources	WELL API NO.	<u>d 3019 10, 2015</u>
<u>District II</u> – (575) 748-1283 811 S. First St., Artesia, NM 88210	OIL CONSERVATION	30-045-35747 5. Indicate Type of Lease		
<u>District III</u> – (505) 334-6178 1000 Rio Brazos Rd., Aztec, NM 87410	1220 South St. Fran	icis Dr.	STATE FEE	\square
District IV - (505) 476-3460	6. State Oil & Gas Lease No.			
1220 S. St. Francis Dr., Santa Fe, NM 87505				3 - -
SUNDRY NOTIO (DO NOT USE THIS FORM FOR PROPOS DIFFERENT RESERVOIR. USE "APPLIC PROPOSALS.)		G ВАСК ТО А	7. Lease Name or Unit Agree	ment Name
	Gas Well 🔀 Other Wastewater E	Disposal Well	8. Well Number: WDW #2	
2. Name of Operator			9. OGRID Number 267595	
Western Refining Southwest,,Inc.				
3. Address of Operator 50 County Road 4990 (PO Box 159) Bloomfield, NM 87413		10. Pool name or Wildcat Entrada	
4. Well Location				
Unit Letter H Section 27	<u>2028</u> feet from the <u>Nor</u>		Eastfeet from the	line
Section 27	Township 29N 11. Elevation <i>(Show whether DR</i> ,	Range 11W	NMPM San Juan	County
		nnb, ni, on, ere.		
	nal Injection Well Discharge Pe Test (FOT) on WDW #2. Wes	ertinent details, and 2. For Multiple Con rmit (UICI-011), '	LLING OPNS. P AND A JOB 20 Fall-Off Test Report give pertinent dates, including npletions: Attach wellbore diag	gram of , Inc.
Spud Date:	Rig Release Da	te:		
I hereby certify that the information a	bove is true and complete to the be	est of my knowledge	e and belief.	
SIGNATURE Kelley Rol	TITLE Enviro	nmental Supervisor	DATE <u>11/26/2020</u>	
Type or print name <u>Kelly Robinson</u> For State Use Only	1 E-mail address: <u>kro</u>	binson3@marathon	petroleum.com PHONE: (505	<u>6) 632-4166</u>

APPROVED BY:	TITLE	DATE
Conditions of Approval (if any):		

2020 ANNUAL BOTTOM-HOLE PRESSURESURVEY AND PRESSURE FALLOFF TEST REPORT WESTERN REFINING SOUTHWEST, INC.

WASTE DISPOSAL WELL NO. 2 Bloomfield, New Mexico

November 2020

Houston, TX

Project No. 192143A

Prepared by Larry McDonald Reviewed by Jeffry Tahtouh

TABLE OF CONTENTS

EXECUT	IVE SUMMARY	5
1.	FACILITY INFORMATION	6
2.	WELL INFORMATION	6
3.	CURRENT WELLBORE SCHEMATIC	6
4.	ELECTRIC LOG ENCOMPASSING THE COMPLETED INTERVAL	7
5.	RELEVANT PORTIONS OF THE POROSITY LOG USED TO ESTIMATE FORMATION	
	POROSITY	7
6.	PVT DATA OF THE FORMATION AND INJECTION FLUID	7
7.	DAILY RATE HISTORY DATA (MINIMUM OF ONE MONTH PRECEDING THE FALLO	FF
	TEST)	7
8.	CUMULATIVE INJECTION INTO THE FORMATION FROM TEST WELL	7
9.	PRESSURE GAUGES	7
10.	ONE MILE AREA OF REVIEW (AOR)	8
11.	GEOLOGY	
12.	OFFSET WELLS	9
13.	CHRONOLOGICAL LISTING OF THE DAILY TESTING ACTIVITIES	.10
14.	PRESSURE FALLOFF ANALYSIS	.10
15.	NEW MEXICO OIL CONSERVATION DIVISION THREE YEAR RECORDING KEEPING	
	STATEMENT	.16

- TABLE 1:TABULATION OF WELLS WITHIN ONE MILE AREA OF REVIEW FOR Waste Disposal Well No. 2
- TABLE 2:
 WELL CHANGES IN THE COMBINED AREA OF REVIEW
- TABLE 3: WELLS THAT HAVE BEEN PLUGGED AND ABANDONED SINCE THE 2019 AOR UPDATE
- TABLE 4: WELLS THAT HAVE BEEN TEMPORARILY ABANDONED SINCE THE 2019 AOR UPDATE
- TABLE 5:
 WELLS THAT HAVE BEEN RECOMPLETED SINCE THE 2019 AOR UPDATE
- TABLE 6:
 NEWLY DRILLED WELLS SINCE THE 2019 AOR UPDATE
- TABLE 7:
 TABULATION OF THE FIGURES INCLUDED IN THE REPORT
- TABLE 8:COMPARISON OF PERMEABILITY, MOBILITY-THICKNESS, SKIN, AND FALSE EXTRAPOLATED
PRESSURE 2020, AND 2019 FROM AVAILABLE DATA
- TABLE 9:
 STATIC PRESSURE GRADIENT DATA

FIGURES

- FIGURE 1: WASTE DISPOSAL WELL NO. 2 SCHEMATIC
- FIGURE 2: MAP OF ONE MILE AREA OF REVIEW
- FIGURE 3: TEST OVERVIEW
- FIGURE 4: CARTESIAN PLOT OF THE DATA USED IN THE ANALYSIS
- FIGURE 5: DERIVATIVE LOG-LOG PLOT
- FIGURE 6: SUPERPOSITION HORNER (SEMI-LOG) PLOT
- FIGURE 7: EXPANDED SUPERPOSITION HORNER (SEMI-LOG) PLOT
- FIGURE 8: STATIC PRESSURE GRADIENT SURVEY

APPENDICES

- APPENDIX A:DUAL INDUCTION LOG SECTIONS FROM 7200 FEET TO 7532 FEETAPPENDIX B:POROSITY LOG SECTIONS FROM 7200 FEET TO 7532 FEETAPPENDIX C:INJECTION AND FORMATION FLUID ANALYSISAPPENDIX D:DAILY RATE HISTORY DATAAPPENDIX E:GAUGE CALIBRATION SHEETS
- APPENDIX F: PANSYSTEM© ANALYSIS OUTPUT

EXECUTIVE SUMMARY

WSP USA Inc. (WSP) was contracted by Western Refining Southwest Inc. (Western) to conduct the analysis of the annual bottom-hole pressure survey and pressure falloff test on Western's Waste Disposal Well No. 2 (WDW#2). The test was performed according to New Mexico Oil Conservation Division (OCD) falloff test guidelines (*New Mexico Oil Conservation Division UIC Class I Well Fall-Off Test Guidance, December 3, 2007*).

The test provides the state regulatory agency with the necessary information to access the validity of requested or existing injection well permit conditions and satisfy the permitting objective of protecting the underground sources of drinking water (USDW). Specifically, 40 CFR Part 146 states "the Director shall require monitoring of the pressure buildup in the injection zone annually, including at a minimum, a shutdown of the well for a time sufficient to conduct a valid observation of the pressure fall-off curve" (40 CFR§146.13 for Nonhazardous Class I Wells).

The falloff testing was conducted according to the testing plan submitted to and approved by the NM OCD.

As prescribed by the guidelines, the report discusses supporting and background information in Sections 1 through 9. The one-mile area of review (updated since the 2019 falloff testing) is discussed in Section 10 and geology in Section 11. Information on the offset wells is discussed in Section 12, daily testing activities in Section 13. The pressure falloff testing and analysis results are discussed in Section 14. The OCD required record keeping statement is discussed in Section 15.

1. FACILITY INFORMATION

- a. Name: Western Refining Southwest, Inc. (subsidiary of the Marathon Petroleum Company)
- b. Facility Location: 50 County Road 4990 (PO Box 159) Bloomfield, New Mexico 87413
- c. Operator's Oil and Gas Remittance Identifier (OGRID) Number: 267595

2. WELL INFORMATION

- a. OCD UIC Permit Number: UICI-011
- b. Well Classification: Class I Non-hazardous
- c. Well Name and Number: WDW#2
- d. API Number: 30-045-35747
- e. Well Legal Location: 2028' FNL and 111' FEL, Unit letter H of Section 27, Township 29 North, Range 11 West

3. CURRENT WELLBORE SCHEMATIC

The WDW#2 wellbore schematic is presented in Figure 1. The schematic contains data, as requested by the guidelines and includes the following:

- a. Tubing: 4-1/2-inch, 11.6 pound per foot, API grade L-80, with Internal Plastic Coated (IPC) casing, set at 7230 feet
- b. Packer: Baker, 7-inch by 4-1/2-inch set at 7230 feet.
- c. Size, Type, and Depth of Casing: There are three casing strings in the well. The information for these casing strings was obtained from OCD records on file with the state and geophysical logs. The casing strings are:
 - i. 13-3/8-inch, 48 pound per foot, steel construction, API grade H40, set at a depth of 298 feet. The casing was cemented to the surface with 394 sacks of cement. The casing was set in open hole with a diameter of 17.5 inches.
 - ii. 9-5/8-inch, 36 pound per foot, steel construction, API grade J-55, set at a depth of 3500 feet. The casing was cemented to the surface with 857 sacks of cement. The casing was set in open hole with a diameter of 12.25 inches.
 - iii. 7-inch, 26 pound per foot and 23 pound per foot, steel construction, API grade L-80, set at a depth of 7525 feet. The casing was cemented to surface with 868 sacks of cement. The casing was set in open hole with a diameter of 8.75 inches.

Annual Bottom-Hole Pressure Survey and Pressure Falloff Test Report – Waste Disposal Well No. 2 – Project 192143A Western Refining Southwest, Inc. – Bloomfield, New Mexico – November 2020

4. ELECTRIC LOG ENCOMPASSING THE COMPLETED INTERVAL

The dual induction log is presented in Appendix A and encompasses the completed interval between 7200 feet and 7532 feet. The dual induction log was submitted to the OCD with the original permit after the well was drilled.

5. RELEVANT PORTIONS OF THE POROSITY LOG USED TO ESTIMATE FORMATION POROSITY

The porosity log is presented in Appendix B and encompasses the completed interval between 7200 feet and 7532 feet. The neutron density log was submitted to the OCD with the original permit after the well was drilled. The porosity of the formation, 14.9%, and the reservoir thickness, 123 feet, were determined from this log. These values were used in the analysis of the pressure falloff data (Section 15). Additional information concerning the geology of the injection reservoir is discussed in Section 11.

6. PVT DATA OF THE FORMATION AND INJECTION FLUID

The fluid used for the injection test is the terminal treated wastewater (effluent). A current effluent analysis collected on July 13, 2020 and August 17, 2020 is included in Appendix C. A summary of the formation water is also in Appendix C. The formation water analyses taken on January 25, 2017 is included.

7. DAILY RATE HISTORY DATA (MINIMUM OF ONE MONTH PRECEDING THE FALLOFF TEST)

The rate history used in the analysis of the pressure falloff data began on May 28, 2020 and ends when the well was shut-on September 21, 2020. The daily rate history is summarized in Appendix D.

8. CUMULATIVE INJECTION INTO THE FORMATION FROM TEST WELL

The total volume of fluid injected into the WDW#2 was 6,738,018 gallons. The injected volumes were obtained from NMOCD online records.

9. PRESSURE GAUGES

Two (2) downhole pressure gauges were used for the WDW-2 buildup and falloff testing. The downhole pressure gauge was set at 7312 feet, ground level.

a. Describe the type of downhole surface pressure readout gauge used including manufacture and type:

An MRO pressure gauge was used to monitor the bottom-hole pressure and temperature during the pressure buildup and falloff testing. The gauge was a sapphire crystal gauge with Serial No.240. The gauges are manufactured by Micro-Smart.

b. List the full range, accuracy and resolution of the gauge:

The MRO pressure gauge, Serial No. 240, has a full range of 14.73 psi to 5000 psi and an accuracy of 0.05% of full scale.

c. Provide the manufacturer's recommended frequency of calibration and a calibration certificate showing date the gauge was last calibrated:

The certificates of calibration for the pressure gauge used during the testing are included as Appendix E. The pressure gauge was last calibrated on March 10, 2020 and is within the recommended calibration frequency as recommended by Micro-Smart.

10. ONE MILE AREA OF REVIEW (AOR)

Federal Abstract Company was contracted by WSP to undertake a review of well changes made within a one-mile area of review (AOR) of WDW#2. The current update of the one-mile area of review includes all existing wells within the one-mile AOR and any changes that have occurred to these wells since the 2019 update.

No new freshwater wells were reported within the search area since the submittal of the 2019 report.

a. Identify wells located within the one-mile AOR:

There are 62 wells in the one-mile radius of investigation. Table 1 contains a listing of all wells within the one-mile AOR of WDW#2. Figure 2 is a base map of the area containing the one-mile AOR.

b. Ascertain the status of wells within the one-mile AOR:

Table 1 also contains a listing of all wells within the one-mile AOR, with their current status. Tables 2 through 6 contain a list of all wells within the one-mile AOR that have had modifications to the current permit or have had new drilling and/or completion permits issued since the 2019 pressure falloff report.

Five (5) additional wells were found in the AOR that were not identified in the previous reports. They can be found in the Table 1 and are numbered 58 through 62. Ten (10) wells were found in which the owner had changed. Three (3) wells were found in which the permit was cancelled. Five (5) new wells were plugged and abandoned. No wells were placed in temporarily abandoned status. No wells were found that were returned to production status. No wells were found that had been recompleted.

No new wells were drilled and no permits were issued to drill new wells. All plugged and abandoned wells were successfully plugged and isolated from the WDW#2 injection interval according to current OCD records.

c. Provide details on any offset producers and injectors completed in the same interval:

One of the sixty-two wells in the AOR, Ashcroft SWD #1, penetrates the Entrada injection zone. This well is 0.64 miles from the disposal well and is an active water disposal well. Ashcroft SWD #1 is listed as ID No. 24 in Table 1 and no changes have occurred to this well. No wells are currently producing form the Entrada injection zone within the AOR.

11. GEOLOGY

The injection zone is the Entrada sandstone formation. The formations occur in WDW #2 at the depths shown in the table below. The injection zone is shown in WDW #2 logs in Appendices A and B.

	Waste Disposal Well #2						
Injection Zone Formation	(KB elev = 5,550 ft)						
	MD below KB (ft)	SS Depth (ft)					
Bluff Sandstone	Not completed	7,031					
Entrada Sandstone	7,312 to 7,470	7,308					

The Jurassic aged Entrada Sandstone is thought to be one of the best water disposal rock units in the San Juan Basin. The Entrada is the basal formation of the San Rafael Group which also includes the Todilto and Wanakah Formations. The Entrada Sandstone is present throughout the basin's subsurface and crops out along its margin as step cliffs. The Entrada unconformably overlies the Chinle Formation. The Todilto Formation made up of limestone and anhydrite in dense and thought to an impermeable barrier or seal and likely seal for the injection zone.

The Entrada Sandstone consists of mottled reddish-brown very fine to medium grained wellsorted, silica cemented quartz sandstone interbedded with thinner reddish-brown siltstones. The sandstone units are assembled in high-angle, large-scale crossbeds indicating eolian environment deposition and with the siltstones representing interdue and sabkha deposition. The crossstratified sandstone is competent, laterally persistent and with homogenous reservoir properties. Entrada Sandstone gross thickness ranges from 60 feet to 330 feet across the basin.

At the WDW #2 location the Entrada is 158 feet thick. Based upon the nearby XTO Energy Ashcroft SWD #1 water disposal well density porosities are up to 18 percent with the most porous interval found in the upper 90 feet of the formation where many of the density porosities are greater than 10 percent. WDW #2 has a density porosity of 12.1 percent. The two intervals with the highest porosity are 20 feet from 7,333 feet to 7,353 feet with 14.1 percent porosity and 26 feet from 7,442 feet to 7,468 feet with 14.9 percent porosity. Permeability for the well as measured by this falloff test is 1.14 md or less.

12. OFFSET WELLS

The offset well is discussed in Section 10.0.

13. CHRONOLOGICAL LISTING OF THE DAILY TESTING ACTIVITIES

a. Date of the testing:

The buildup portion of the testing started on September 18, 2020 at 1334 hours and continued until September 21, 2020 at 1424 hours when WDW-2 was shut-in. The falloff test ended on October 1, 2020 at 0802 hours. Five-minute gradient stops were made at 1000-foot intervals while pulling the pressure gauges out of the well. After the pressure gauges were pulled out of the well, the well was turned over to Western plant operations personnel.

b. Time of the injection period:

The buildup portion of the testing began on September 18, 2020 when the injection rate was set at an average injection rate of approximately 22 gallons per minute (gpm). The bottomhole pressure and temperature were monitored for 72.83 hours after which time the well was shut in.

c. Type of injection fluid:

The injected fluid was non-hazardous wastewater from the plant. The density of the injection fluid averaged 8.33 pounds per gallon during the test.

d. Final injection pressure and temperature prior to shutting in the well:

The final flowing pressure feet (P_{wf}) and temperature (T_{wf}) were 4479.71 psia and 181.71°F, respectively.

e. Total shut-in time:

WDW-2 was shut-in for 234 hours.

f. Final static pressure and temperature at the end of the fall-off portion of the test:

The final static pressure (P_{static}) and temperature (T_{static}) were 3750.78 psia and 184.46°F, respectively.

14. PRESSURE FALLOFF ANALYSIS

The following discussion of the analysis of the pressure data recorded during the falloff testing of WDW- 2 satisfies Sections 15 through 19 of Section IX, Report Components, of the OCD's falloff test guidelines. Where appropriate, the specific guideline addressed is annotated. Specific parameters used in the equations and discussed previously in this report are also annotated. The plots included with this report are summarized in Table 7. The inclusion of these plots in this report satisfies OCD Guideline Section IX.18.

The pressure data obtained during the falloff test were analyzed using the commercially available pressure transient analysis software program PanSystem[©]. Appendix F contains the output from this software program. Figure 3 shows the pressure data recorded by the bottomhole pressure gauge from the time the tool was in place through the 234-hour shut-in period. Figure 4 is a Cartesian plot of the pressure data recorded during the falloff period.

Figure 5 is the derivative log-log diagnostic plot of the falloff data, showing change in pressure and pressure derivative versus elapsed shut-in time. The different flow regimes, wellbore storage, fracture bilinear flow, pseudo-radial flow and change in reservoir characteristics if present, are indicated on the log-log plot and the superposition Horner plot (OCD Guideline Section IX.18.c and IX.18.d).

Wellbore storage begins at 0.036 hours and continues to an elapsed shut in time of 0.052 hours. The bi- linear flow period begins at an elapsed shut-in time of 0.488 and continues until an elapsed shut-in time of 1.10 hours. The linear flow period was not apparent on the 2020 derivative log-log plot as was seen on the 2019 pressure falloff analysis report. Although the pseudo-radial flow period is not fully developed, it gives a good determination of the reservoir permeability. The pseudo-radial flow period begins at an elapsed shut in time of 153.77 hours and continues to an elapsed time of 233.94 hours. (OCD Guideline Section IX.15.b).

The reservoir permeability was determined from the pseudo-radial flow region of the superposition semi-log plot, Figure 6. The superposition time function was used to account for all rate changes during the injection period used in the analysis of the data. The pseudo-radial flow regime begins at a Superposition time of 1.96 and continues to 1.76. Figure 7 shows an expanded view of the pseudo-radial flow regime. The slope of the radial flow period, as calculated by the analysis software, was 482.305 psi/cycle (OCD Guideline Section IX.15.c). The injection rate just prior to shut in was 24 gpm which is equivalent to 882.86 barrels per day (bbls/day).

An estimate of mobility-thickness (transmissibility, OCD Guideline Section IX.15.d), kh/ μ , for the reservoir was determined to be 297.64 md-ft/cp using the following equation:

$$\frac{kh}{\mu} = 162.6 \frac{qB}{m}$$

where,

kh/μ	=	formation mobility-thickness, millidarcy-feet/centipoise
q	=	rate prior to shut in, bpd
В	=	formation volume factor, reservoir volume/surface volume
m	=	slope of radial flow period, psi/cycle

$$\frac{kh}{\mu} = 162.6 \ \frac{(882.86)(1.0)}{482.305}$$

= 297.64 md-ft/cp

The permeability-thickness (flow capacity, OCD Guideline Section IX.15.i), kh, was determined to be 138.89 md-ft by multiplying the mobility-thickness, kh/ μ , by the viscosity of the reservoir fluid (see Section 6), $\mu_{reservoir}$, of 0.47 centipoise (cp):

$$kh = \frac{(kh)}{\mu} \mu_{reservoir}$$
$$= (297.64)(0.47)$$
$$= 139.89 \text{ md-ft}$$

The reservoir permeability (OCD Guideline Section IX.15.e) using the total thickness (see Section 5 and Section 11) of 123 feet was 1.14 md:

$$k = \frac{kh}{h}$$
$$= \frac{139.89}{123}$$
$$= 1.14 \text{ md}$$

To determine whether the proper viscosity was used in arriving at this permeability, the travel time for a pressure transient to pass beyond the waste front needs to be calculated (OCD Guideline Section VIII.5). The distance to the waste front is determined from the following equation:

$$r_{waste} = \left(\frac{0.13368 V}{\pi h \Phi}\right)^{1/2}$$

where,

r _{waste}	=	radius to waste front, feet
V	=	total volume injected into the injection interval, gallons
h	=	formation thickness, feet
φ	=	formation porosity, fraction
0.13368	=	constant

A cumulative volume of approximately 6,738,018 gallons of waste has been injected into WDW-2 (see Section 8). The formation has a porosity of 0.149 (see Section 5 and Section 11).

The distance to the waste front was determined to be 125.08 feet:

$$r_{waste} = \left(\frac{(0.13368)(6738018)}{\pi (123)(0.149)}\right)^{1/2}$$

= 125.08 feet

The time necessary for a pressure transient to traverse this distance is calculated from the following equation:

$$t_{waste} = 948 \frac{\Phi \,\mu_{waste} \, c_t \, r_{waste}^2}{k}$$

where,

t_{waste}	=	time for pressure transient to reach waste front, hours
φ	=	formation porosity, fraction
μ_{waste}	=	viscosity of the waste at reservoir conditions, centipoise
r_{waste}	=	radius to waste front, feet
Ct	=	total compressibility of the formation and fluid, psi
k	=	formation permeability, millidarcies
948	=	constant

The pore volume compressibility is $4.44 \ge 10^{-6} \operatorname{psi}^{-1}$ (see Section 6). The viscosity of the waste fluid is 0.47 cp (see Section 6). The time necessary for a pressure transient to traverse the distance from the wellbore to the leading edge of the waste front would be 4.04 hours:

 $t_{waste} = 948 \frac{(0.149)(0.47)(4.44 \times 10^{-6})(125.08)^2}{1.14}$

= 4.04 hours

Since the time required to pass through the waste is less than the 153.77 hours required to reach the beginning of the radial flow period, the assumption that the pressure transient was traveling through reservoir fluid during the period of the semi-log straight line was correct.

The near wellbore skin damage (OCD Guideline Section IX.15.f) was determined from the following equation:

s = 1.151
$$\left[\frac{p_{wf} - p_{1hr}}{m_1} - log \left(\frac{k}{\phi \mu c_t r_w^2} \right) + 3.23 \right]$$

where,

S	=	formation skin damage, dimensionless
1.151	=	constant
p_{wf}	=	flowing pressure immediately prior to shut in, psi

$p_{\rm 1hr}$	=	pressure determined from extrapolating the first radial flow semi-log line to a Δt
		of one hour, psi
m_1	=	slope of the first radial flow semi-log line, psi/cycle
k	=	permeability of the formation, md
φ	=	porosity of the injection interval, fraction
μ	=	$viscosity of the fluid the {\tt pressuretransient} is {\tt travelingthrough, cp}$
Ct	=	total compressibility of the formation plus fluid, psi ⁻¹
r_w	=	radius of the wellbore, feet
3.23	=	constant

The final measured flowing pressure was 4479.71 psia. The pressure determined by extrapolating the radial flow semi-log line to a Δt of one hour, p_{1hr}, was 4522.64 psia (calculated from the analysis software). The wellbore radius, r_w, is 0.3281 feet (completion records). Using these values in addition to the previously discussed parameters results in a skin of -5.05:

$$s = 1.151 \left[\frac{4479.71 - 4522.64}{482.305} - \log \left(\frac{1.14}{(0.149)(0.47)(4.44x10^{-6})(0.3281^2)} \right) + 3.23 \right]$$

= -5.05

The change in pressure, Δp_{skin} , in the wellbore associated with the skin factor (OCD Guideline Section IX.15.g) was calculated using the following equation:

 $\Delta p_{skin} = 0.869(m)(s)$

where,

0.869	=	constant
m	=	slope from superposition plot of the well test, psi/cycle
S	=	skin factor calculated from the well test

The change in pressure, $\Delta p_{skin},$ using the previously calculated and defined values was determined to be -2117 psi:

 $\Delta p_{skin} = 0.869(m)(s)$

= 0.869 (482.305)(-5.05)

= – 2117 psi

The flow efficiency (E, OCD Guideline Section IX.15.h) was determined from the following equation:

$$E = \frac{p_{wf} - \Delta p_{skin} - p_{static}}{p_{wf} - p_{static}}$$

\\S|

14

where,

E	=	flow efficiency, fraction
p_{wf}	=	flowing pressure prior to shutting in the well for the fall-off test,
p _{static}	=	final pressure from the pressure falloff test
Δp_{skin}	=	pressure change due to skin damage

Using the previously determined parameters, the flow efficiency was calculated to be 3.91:

$$E = \frac{4479.71 - (-2117) - 3750.78}{4479.40 - 3750.78}$$

= 3.91

The radius of investigation (OCD Guideline Section IX.15.a) was calculated using the following equation:

$$R_{\rm inv} = 0.029 \sqrt{\frac{k \,\Delta ts}{\phi \,\mu \,Ct}}$$

The radius of investigation, r_{inv}, using the previously defined values was determined to be 849 feet:

$$R_{inv} = 0.029 \sqrt{\frac{(1.14)(234)}{(0.149)(0.47)(4.44 \times 10^{-6})}}$$

As indicated on Figure 5, the pressure data does not depart the pseudo-radial flow region. No pressure or temperature anomalies were noted on any of the analysis plots (OCD Guideline Section VIII.9 and IX17.b).

Because WDW-2 was shut in approximately 1915 hours prior to the 2020 pressure falloff testing, a current Hall plot (OCD Guideline Section IX.18.h) could not be constructed.

A comparison of the 2020 and 2019 reservoir analysis results are available in Table 8 (OCD Guideline Section IX.19).

On October 1, 2020, a static pressure gradient survey was conducted while pulling the pressure gauges out of the well. Static gradient stops were conducted at 7312 feet, 7000 feet, 6000 feet,

5000 feet, 4000 feet, 3000 feet, 2000 feet, 1000 feet, and at the surface. The bottom-hole pressure and temperature, after 234 hours of shut-in at 7312 feet were 3750.78 psia and 184.46°F, respectively. The gradient survey is summarized in Table 8. The data are graphically depicted in Figure 8.

15. NEW MEXICO OIL CONSERVATION DIVISION THREE YEAR RECORDING KEEPING STATEMENT

Western will keep the raw test data, generated during the testing, on file for a minimum of three years. The raw test data will be made available to OCD upon request.

TABULATION OF WELLS WITHIN ONE MILE AREA OF REVIEW FOR WASTE DISPOSAL WELL NO. 2

											Penetrate
Мар	Distance				Well	Total					Injection
ID	(ft)	API No	Со	Lease	No	Depth	ULSTR	Туре	Status	Plug Date	Zone
0	0	30-045-35747	Western Refining Southwest, Inc.	Waste Disposal Well	2	7525	H-27-29N-11W	SWD	Active		Y
1	1041	30-045-34409	Holcomb Oil & Gas Inc	Jacque	2	1897	H-27-29N-11W	Gas	Active		Ν
2	1141	30-045-24084	Hilcorp Energy Co	Davis Gas Com F	001E	6392	H-27-29N-11W	Gas	Active		Ν
3	1170	30-045-07883	Pre-Ongard Well Operator	Pre-Ongard Well	2	0	H-27-29N-11W	Gas	Plugged	12/31/1901	Ν
4	1380	30-045-29002	San Juan Refining Co	Disposal	1	3601	I-27-29N-11W	SWD	Plugged	10/29/2015	Ν
5	1582	30-045-30833	Hilcorp Energy Co	Davis Gas Com F	001R	6700	I-27-29N-11W	Gas	Active		Ν
6	1643	30-045-25329	Holcomb Oil & Gas Inc	Davis Gas Com J	1	4331	F-26-29N-11W	Gas	Active		Ν
7	1693	30-045-24083	Hilcorp Energy Co	Sullivan Gas Com D	001E	6329	F-26-29N-11W	Gas	Active		Ν
8	1740	30-045-07825	Bp America Production Co	Davis Gas Com F	1	6365	I-27-29N-11W	Gas	Plugged	1/19/1994	Ν
9	1742	30-045-23554	XTO Energy, Inc	Davis Gas Com G	1	2951	I-27-29N-11W	Gas	Plugged	11/15/2011	Ν
10	1756	30-045-34463	Holcomb Oil & Gas Inc	Jacque	1	1890	I-27-29N-11W	Gas	Active		Ν
11	1793	30-045-07812	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	I-27-29N-11W	Gas	Plugged	11/3/1982	Ν
12	2376	30-045-12003	Hilcorp Energy Co	Calvin	1	6450	M-26-29N-11W	Gas	Active		Ν
13	2640	30-045-02133	N/A	Lauren Kelly	1	3028	27-29N-11W	N/A	Inactive		Ν
14	2640	30-045-02134	N/A	B Garland	1	3028	27-29N-11W	N/A	Inactive		Ν
15	2713	30-045-34266	Holcomb Oil & Gas Inc	Mangum	001S	0	F-27-29N-11W	Gas	Cancelled	12/31/9999	Ν
16	2750	30-045-25612	Hilcorp Energy Co	Calvin	3	5970	K-26-29N-11W	Oil	Active		Ν
17	2904	30-045-31118	Hilcorp Energy Co	Calvin	100	1970	N-26-29N-11W	Gas	Active		Ν
18	2909	30-045-07776	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	M-26-29N-11W	Gas	Plugged	12/31/1901	Ν
19	3018	30-045-26721	Manana Gas Inc	Nancy Hartman	2	2824	P-22-29N-11W	Gas	Active		Ν
20	3025	30-045-24572	Morningstar Operating Llc	Congress	9	2960	N-26-29N-11W	Gas	Active		Ν
21	3121	30-045-07733	Hilcorp Energy Co	Sullivan Gas Com D	1	6260	B-26-29N-11W	Gas	Active		Ν
22	3146	30-045-07961	Manana Gas Inc	Hartman	1	6310	P-22-29N-11W	Gas	Plugged	6/14/1999	Ν
23	3391	30-045-07959	John C Pickett	Grace Pearce	1	1620	O-22-29N-11W	Gas	Plugged	3/2/2000	Ν
24	3412	30-045-30788	Hilcorp Energy Co	Ashcroft Swd	1	7512	B-26-29N-11W	SWD	Active		Y
25	3451	30-045-25673	Hilcorp Energy Co	Congress	18	6150	K-27-29N-11W	Oil	Active		Ν
26	3498	30-045-24673	Hilcorp Energy Co	Mangum	001E	6240	F-27-29N-11W	Gas	Active		Ν
27	3597	30-045-33093	Hilcorp Energy Co	Calvin	001F	6525	J-26-29N-11W	Gas	Active		Ν

TABULATION OF WELLS WITHIN ONE MILE AREA OF REVIEW FOR WASTE DISPOSAL WELL NO. 2

											Penetrate
Мар	Distance				Well	Total					Injection
ID	(ft)	API No	Со	Lease	No	Depth	ULSTR	Туре	Status	Plug Date	Zone
28	3645	30-045-27365	Manana Gas Inc	Marian S	1	2840	F-27-29N-11W	Gas	Active		Ν
29	3654	30-045-27361	Manana Gas Inc	Lauren Kelly	1	1500	F-27-29N-11W	Gas	Active		Ν
30	3803	30-045-29107	Pre-Ongard Well Operator	Pre-Ongard Well	001X	0	G-26-29N-11W	Gas	Plugged	7/28/1955	Ν
31	3805	30-045-07870	Pre-Ongard Well Operator	Pre-Ongard Well	00X	0	G-26-29N-11W	Gas	Plugged	7/1/1953	Ν
32	3836	30-045-07896	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	C-27-29N-11W	Gas	Plugged	11/27/1978	Ν
33	3874	30-045-23163	Hilcorp Energy Co	Earl B Sullivan	1	2861	B-26-29N-11W	Gas	Active		Ν
34	3907	30-045-25657	Hilcorp Energy Co	Congress	16	6200	A-34-29N-11W	Oil	Active		Ν
35	3936	30-045-23550	Holcomb Oil & Gas Inc	State Gas Com Bs	1	2954	K-23-29N-11W	Gas	Active		Ν
36	3963	30-045-07985	Bp America Production Co	Pearce Gas Com	1	6230	K-23-29N-11W	Gas	Plugged	3/12/1997	Ν
37	4155	30-045-07835	Holcomb Oil & Gas Inc	Mangum	1	6350	L-27-29N-11W	Gas	Active		Ν
38	4199	30-045-26731	Manana Gas Inc	Mary Jane	1	2845	N-22-29N-11W	Gas	Active		Ν
39	4192	30-045-24574	Hilcorp Energy Co	Summit	9	2985	A-34-29N-11W	Gas	Active		Ν
40	4209	30-045-34312	Manana Gas Inc	Royal Flush	1	2045	N-22-29N-11W	Gas	Active		Ν
41	4364	30-045-07940	Manana Gas Inc	Cook	1	6305	N-22-29N-11W	Gas	Active		Ν
42	4391	30-045-13089	Manana Gas Inc	Cook	2	1440	N-22-29N-11W	Gas	Active		Ν
43	4587	30-045-07868	Holcomb Oil & Gas Inc	Sullivan	2	1478	H-26-29N-11W	Gas	Active		Ν
44	4583	30-045-08009	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	K-23-29N-11W	Gas	Plugged	8/26/1980	Ν
45	4649	30-045-25675	Hilcorp Energy Co	Congress	15	6030	C-35-29N-11W	Oil	Active		Ν
46	4722	30-045-21457	Morningstar Operating Llc	Delo	10	2900	I-26-29N-11W	Gas	Active		Ν
47	4736	30-045-25707	Morningstar Operating Llc	Summit	15	6216	C-34-29N-11W	Gas	Active		Ν
48	4773	30-045-07903	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	M-27-29N-11W	Gas	Plugged	7/1/1975	Ν
49	4816	30-045-24573	Morningstar Operating Llc	Garland	3	2905	M-27-29N-11W	Gas	Active		Ν
50	4897	30-045-25195	Hilcorp Energy Co	Calvin	2	5950	P-26-29N-11W	Oil	Active		Ν
51	4908	30-045-24772	Hilcorp Energy Co	Calvin	001E	6500	P-26-29N-11W	Gas	Active		Ν
52	4983	30-045-21732	Burlington Resources O&G Co Lp	Garland B	001R	1810	M-27-29N-11W	Gas	Plugged	8/9/2010	Ν
53	5038	30-045-25621	Holcomb Oil & Gas Inc	Earl B Sullivan	2	5751	H-26-29N-11W	Oil	Active		Ν
54	5056	30-045-24837	Hilcorp Energy Co	Congress	004E	6508	E-35-29N-11W	Gas	Active		Ν
55	5133	30-045-20752	Chaparral Oil & Gas Co	Lea Ann	1	1900	E-35-29N-11W	Gas	Plugged	12/18/1999	Ν

TABULATION OF WELLS WITHIN ONE MILE AREA OF REVIEW FOR WASTE DISPOSAL WELL NO. 2

Мар	Distance				Well	Total					Penetrate Injection
ID	(ft)	API No	Со	Lease	No	Depth	ULSTR	Туре	Status	Plug Date	Zone
56	5165	30-045-22639	General Minerals Corp	Delo	11	1945	P-26-29N-11W	Gas	Plugged	7/30/2010	Ν
57	5221	30-045-24082	Hilcorp Energy Co	Pearce Gas Com	001E	6365	J-23-29N-11W	Gas	Active		N
58	703	30-045-25745	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	E-26-29N-11W	Gas	Cancelled		Ν
59	1129	30-045-23553	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	H-27-29N-11W	Gas	Plugged		N
60	1658	30-045-23552	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	F-26-29N-11W	Gas	Cancelled		Ν
61	4766	30-045-23551	Pre-Ongard Well Operator	Pre-Ongard Well	1	0	O-23-29N-11W	Gas	Cancelled		Ν
62	4894	30-045-25738	Pre-Ongard Well Operator	Pre-Ongard Well	23	0	I-26-29N-11W	Gas	Cancelled		N

WELL CHANGES IN THE AREA OF REVIEW

Unit	Sect	Twp	Rng	Map ID	Well Name	Operator	Changes	Change of Owner	P&A	T&A	Recomp	New	Cancelled
Н	27	29N		2	Davis Gas Com F	Davis Gas Com F	Owner	[X]					
Н	27	29N	11W	3	Pre-Ongard Well	Pre-Ongard Well	P&A		[X]				
Ι	27	29N	11W	5	Davis Gas Com F	Davis Gas Com F	Owner	[X]					
F	26	29N	11W	7	Sullivan Gas Com D	Sullivan Gas Com D	Owner	[X]					
F	27	29N	11W	15	Mangum	Mangum	P&A		[X]				
Μ	26	29N	11W	18	Pre-Ongard Well	Pre-Ongard Well	P&A		[X]				
В	26	29N	11W	21	Sullivan Gas Com D	Sullivan Gas Com D	Owner	[X]					
В	26	29N	11W	24	Ashcroft Swd	Ashcroft Swd	Owner	[X]					
С	27	29N	11W	32	Pre-Ongard Well	Pre-Ongard Well	P&A		[X]				
В	26	29N	11W	33	Earl B Sullivan	Earl B Sullivan	Owner	[X]					
I	26	29N	11W	46	Delo	Delo	Owner	[X]					
С	34	29N	11W	47	Summit	Summit	Owner	[X]					
Μ	27	29N	11W	49	Garland	Garland	Owner	[X]					
J	23	29N	11W	57	Pearce Gas Com	Pearce Gas Com	Owner	[X]					
E	26	29N	11W	58	Pre-Ongard Well	Pre-Ongard Well Operator	Cancelled						[X]
Н	27	29N	11W	59	Pre-Ongard Well	Pre-Ongard Well Operator	P&A		[X]				
F	26	29N	11W	60	Pre-Ongard Well	Pre-Ongard Well Operator	Cancelled						[X]
0	23	29N	11W	61	Pre-Ongard Well	Pre-Ongard Well Operator	Cancelled						[X]
Ι	26	29N	11W	62	Pre-Ongard Well	Pre-Ongard Well Operator	Cancelled						[X]

WELLS THAT HAVE BEEN PLUGGED AND ABANDONED SINE THE 2019 AOR UPDATE

								Change of					
Unit	Sect	Twp	Rng	Map ID	API No	Well Name	Operator	Owner	P&A	T&A	Prod	Recomp	New
Н	27	29N	11W	3	30-045-07883	Pre-Ongard Well	Pre-Ongard Well		[X]				
F	27	29N	11W	15	30-045-34266	Mangum	Mangum		[X]				
Μ	26	29N	11W	18	30-045-07776	Pre-Ongard Well	Pre-Ongard Well		[X]				
С	27	29N	11W	32	30-045-07896	Pre-Ongard Well	Pre-Ongard Well		[X]				
Н	27	29N	11W	59	30-045-23553	Pre-Ongard Well	Pre-Ongard Well		[X]				

WELLS THAT HAVE BEEN TEMPORARILY ABANDONED SINCE THE 2019 AOR UPDATE

Unit Sect Twp Rng Map ID API No Well Name Operator Owner P&A T&A Prod Recomp Nev								Change of				
	Unit	Sect	Twp	Rng	Map ID	API No	Well Name Operator	Owner	T&A	Prod	Recomp	New

NO CHANGES

WELLS THAT HAVE BEEN RECOMPLETED SINCE THE 2019 AOR UPDATE

							Change of					
Unit	Sect	Twp	Rng	Map ID	API No	Well Name Operator	Owner	P&A	T&A	Prod	Recomp	New

NO CHANGES

TABLE 6	5
---------	---

NEWLY DRILLED WELLS SINCE THE 2019 AOR UPATE

							Change of					
Unit	Sect	Twp	Rng	Map ID	API No	Well Name Operator	Owner	P&A	T&A	Prod	Recomp	New

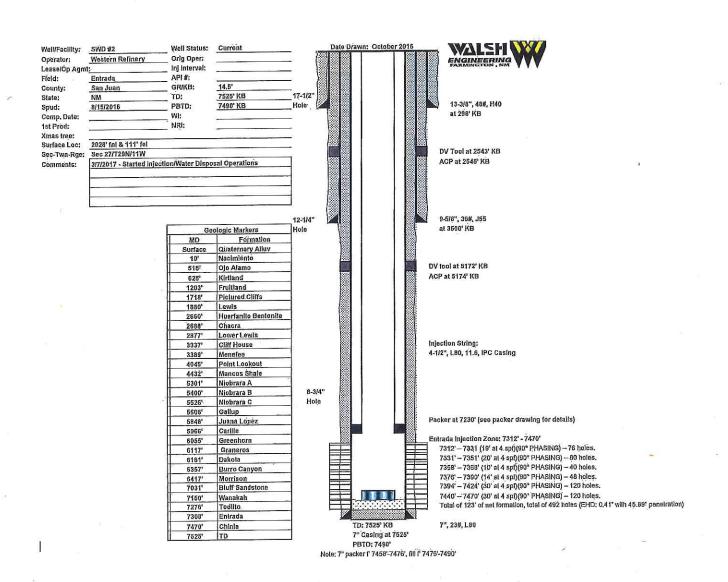
NO CHANGES

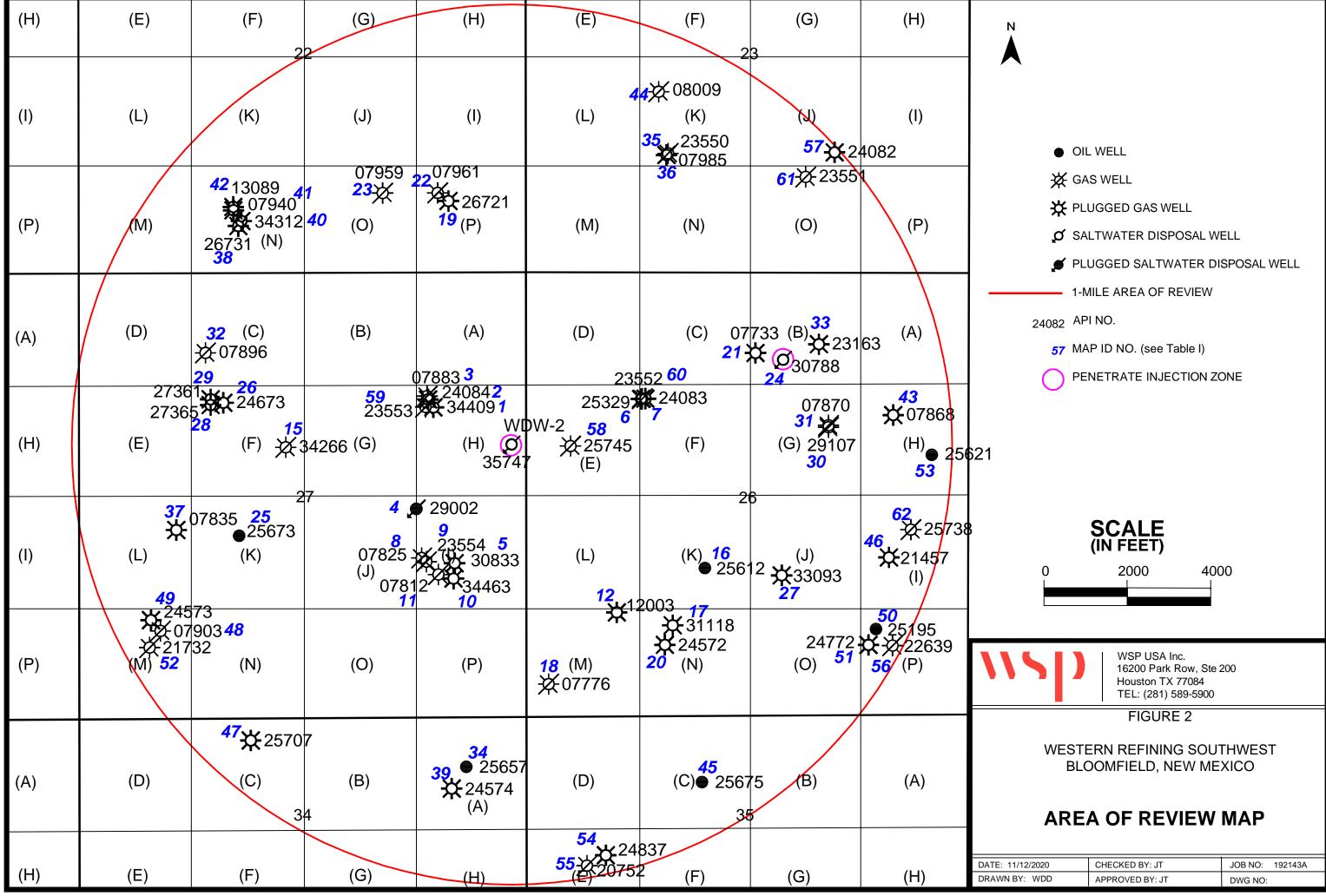
FIGURES INCLUDED IN THE REPORT

Figure	Description	OCD Reference
1	Waste Disposal Well #2 Schematic	Section VI.1 and IX.3
2	Map of One Mile Area of Review	n/a
3	Waste Disposal Well #2 Test Overview	Section IX.18.f
4	Waste Disposal Well #2 Cartesian Plot of Data Used in the Analysis	Section IX.18.a
5	Waste Disposal Well #2 Derivative Log-Log Plot	Section IX.18.c
6	Waste Disposal Well #2 Superposition Horner (Semi- Log) Plot	Section IX.18.d
7	Waste Disposal Well #2 Expanded Superposition Horner (Semi-Log) Plot	Section IX.18.d
8	Waste Disposal Well #2 Static Pressure Gradient Survey	n/a

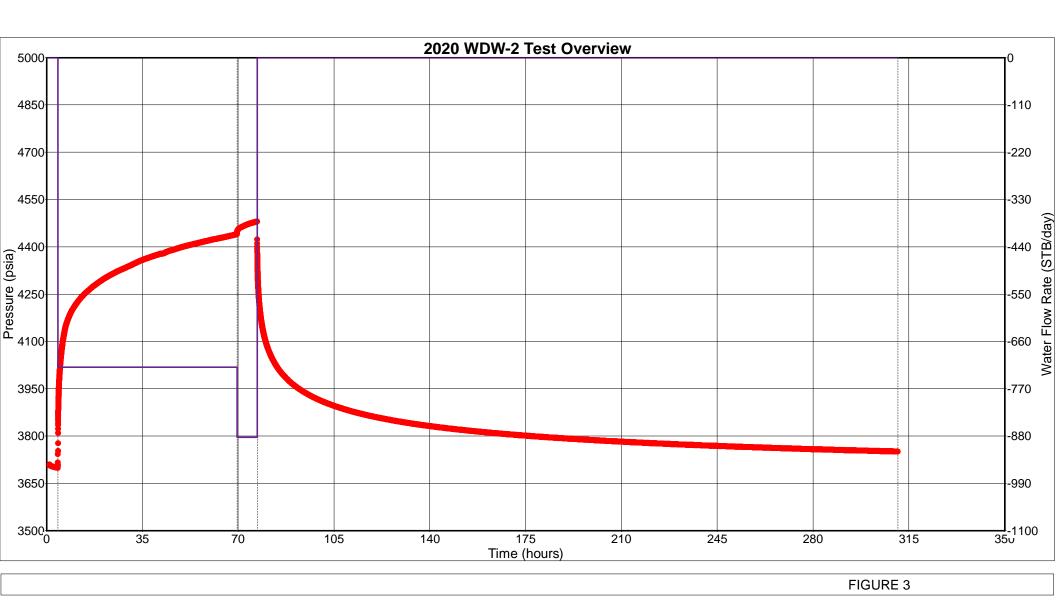
Waste Disposal Well #2 Comparison of Permeability, Transmissibility, Skin, False Extrapolated Pressure, and Fill Depth

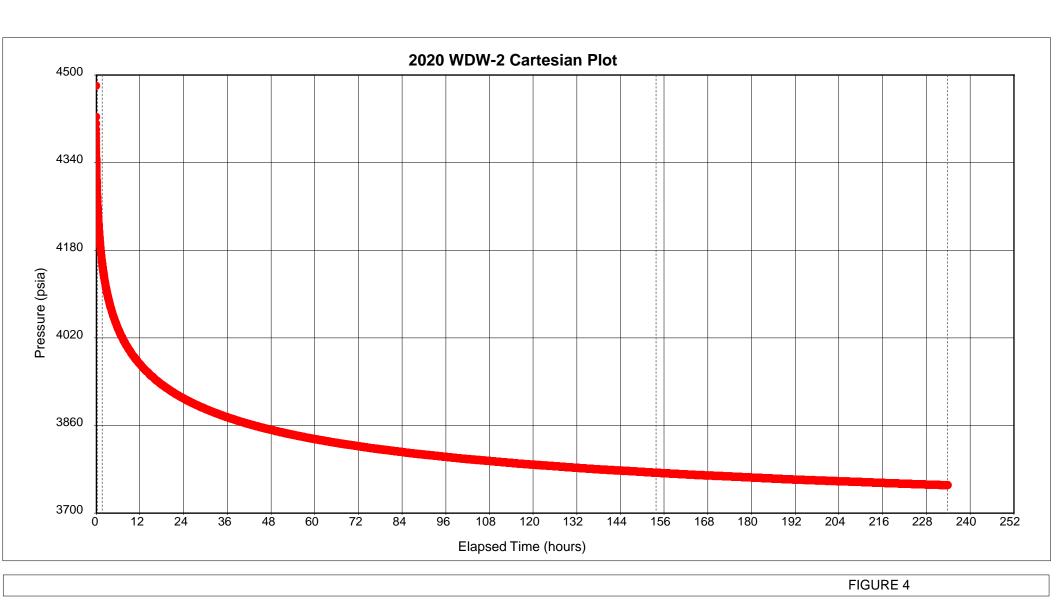
Date of Test	Permeability (k)	Mobility-Thickness (kh/u)	Skin (s)	False Extrapolated Pressure (p*)
September 21 to October 1, 2020	1.14 md	297.64 md-ft/cp	-5.05	3632.37 psia
April 15 – 30, 2019	1.73 md	451 md-ft/cp	-3.80	3809.70 psia

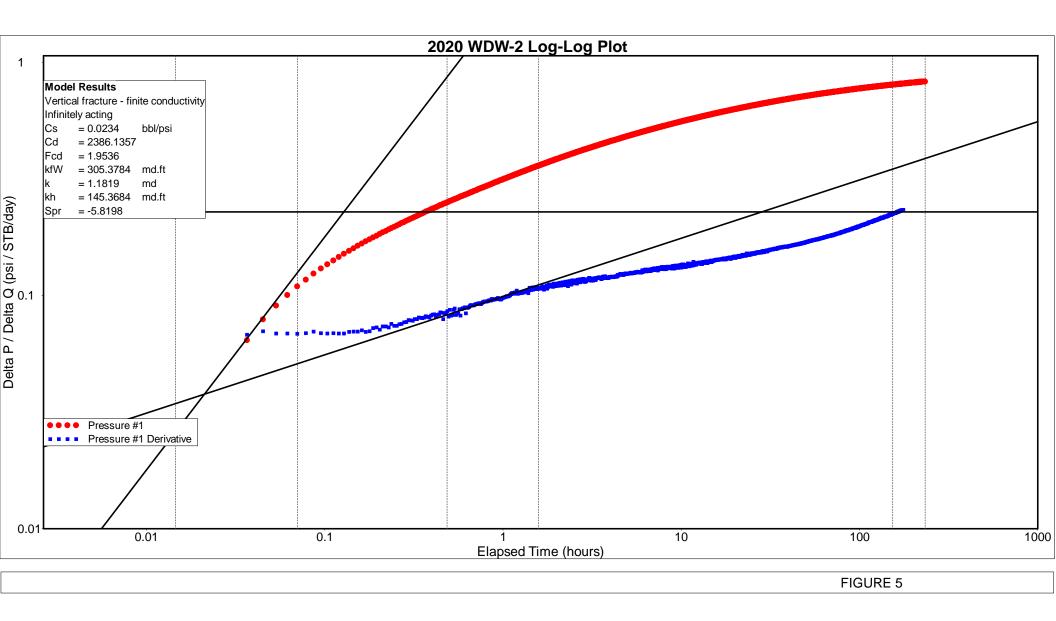

STATIC PRESSURE GRADIENT SURVEY WASTE DISPOSAL WELL No. 2 OCTOBER 1, 2020

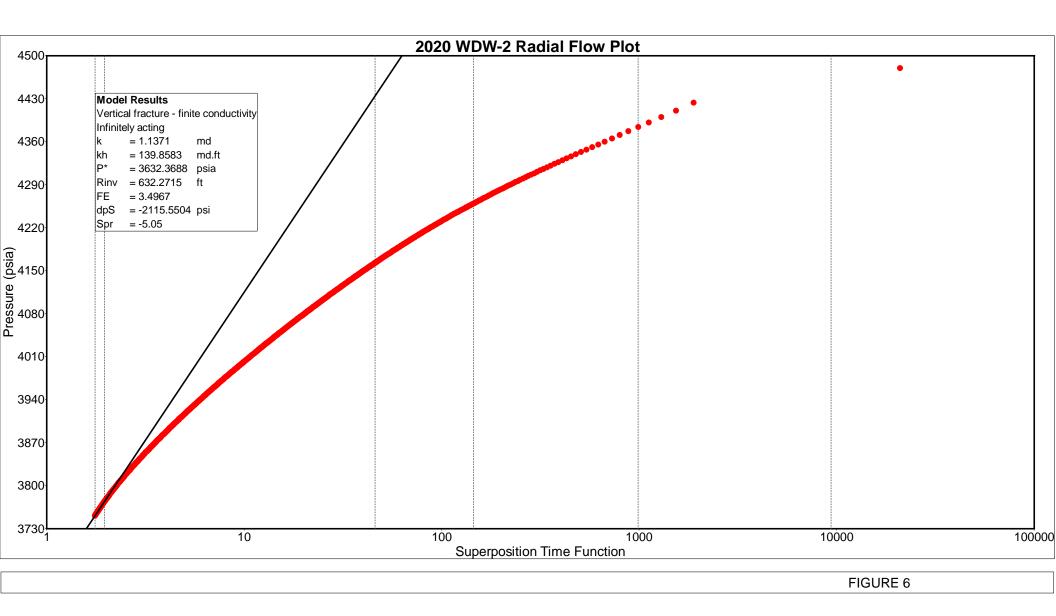

	Memory Gauge Serial No. 1243								
Depth (feet)	Pressure (psig)	Pressure Gradient (psi/ft)	Temperature (ºF)						
0	587.92	-	65.86						
1000	1024.54	0.437	75.71						
2000	1437.63	0.413	95.25						
3000	1888.65	0.451	112.31						
4000	2319.81	0.431	131.73						
5000	2749.02	0.429	149.61						
6000	3176.71	0.428	177.27						
7000	3603.32	0.427	187.23						
7312	3736.08	0.426	184.46						

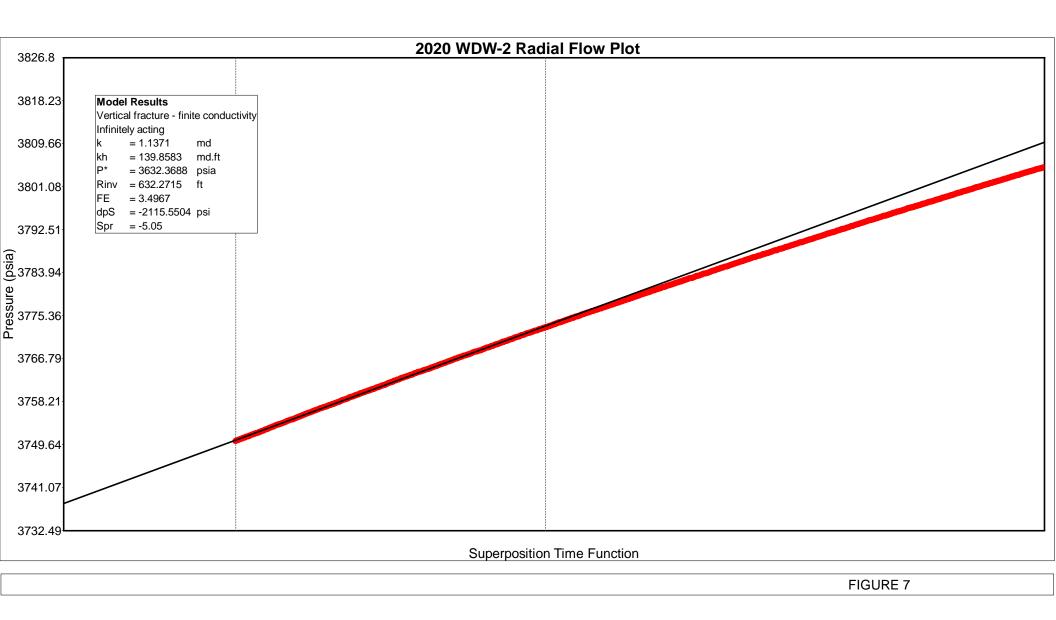
FIGURES

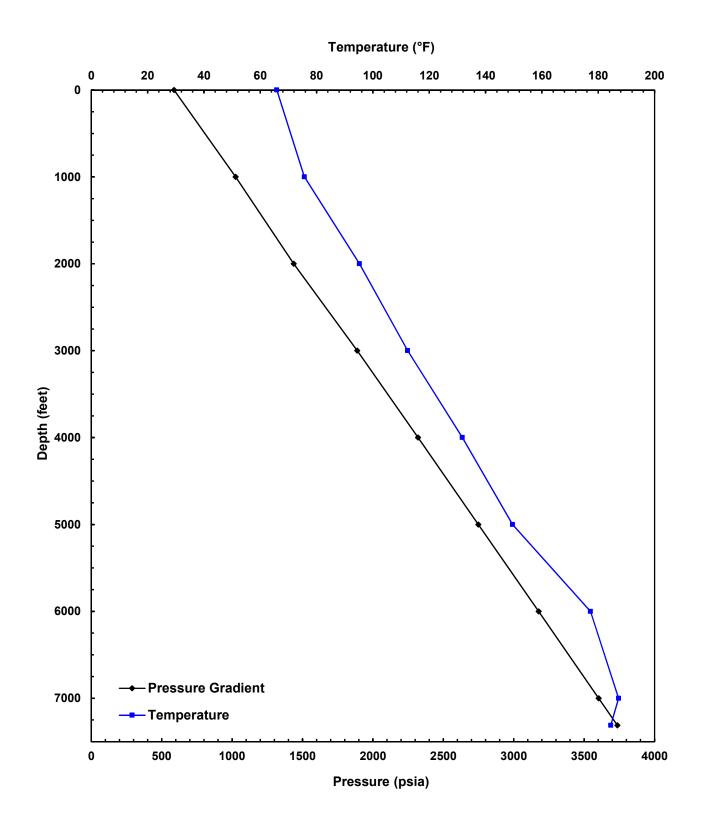



FIGURE 1






ATE: 11/12/2020	CHECKED BY: JT	JOB NO: 192143A
RAWN BY: WDD	APPROVED BY: JT	DWG NO:



STATIC PRESSURE GRADIENT SURVEY WASTE DISPOSAL WELL No. 2 OCTOBER 1, 2020

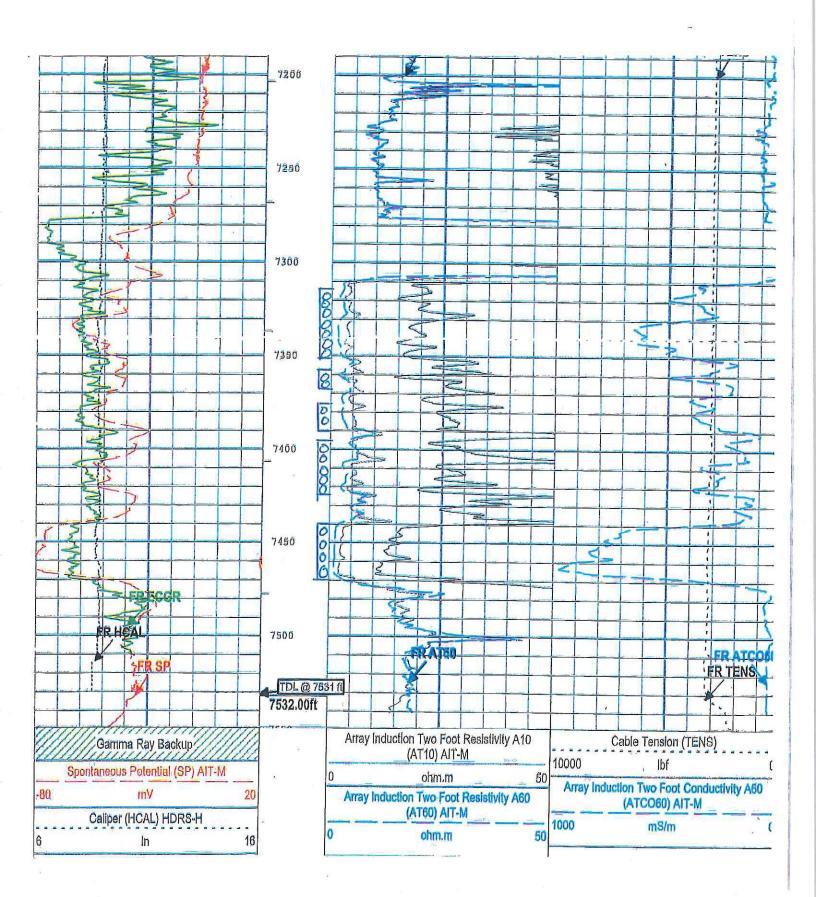
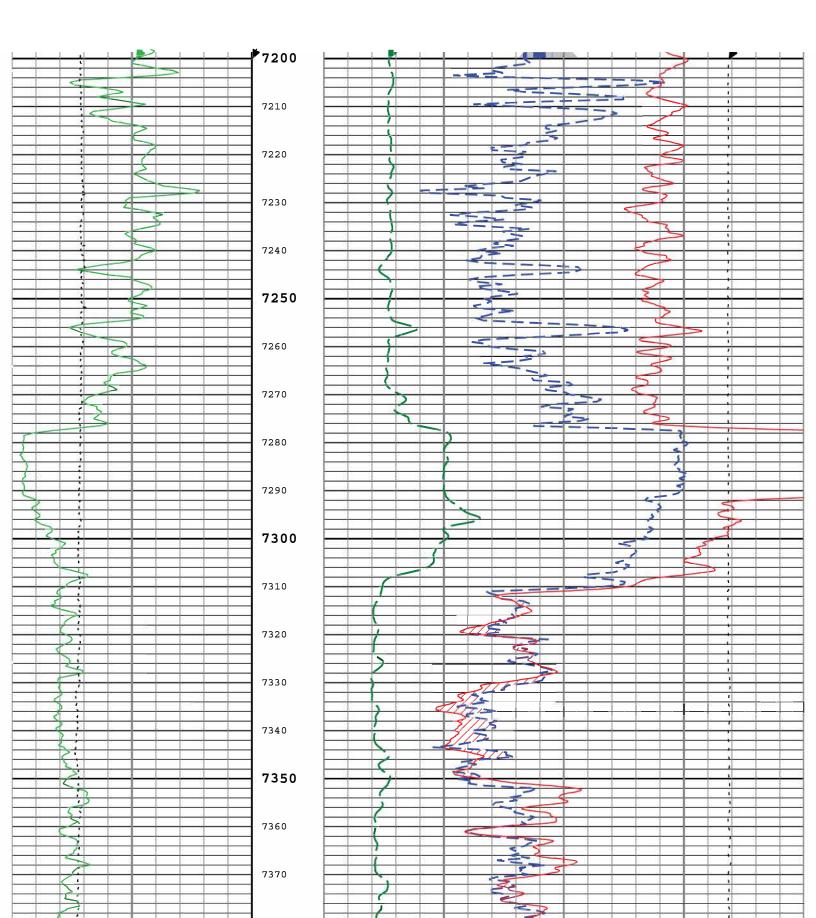
wsp

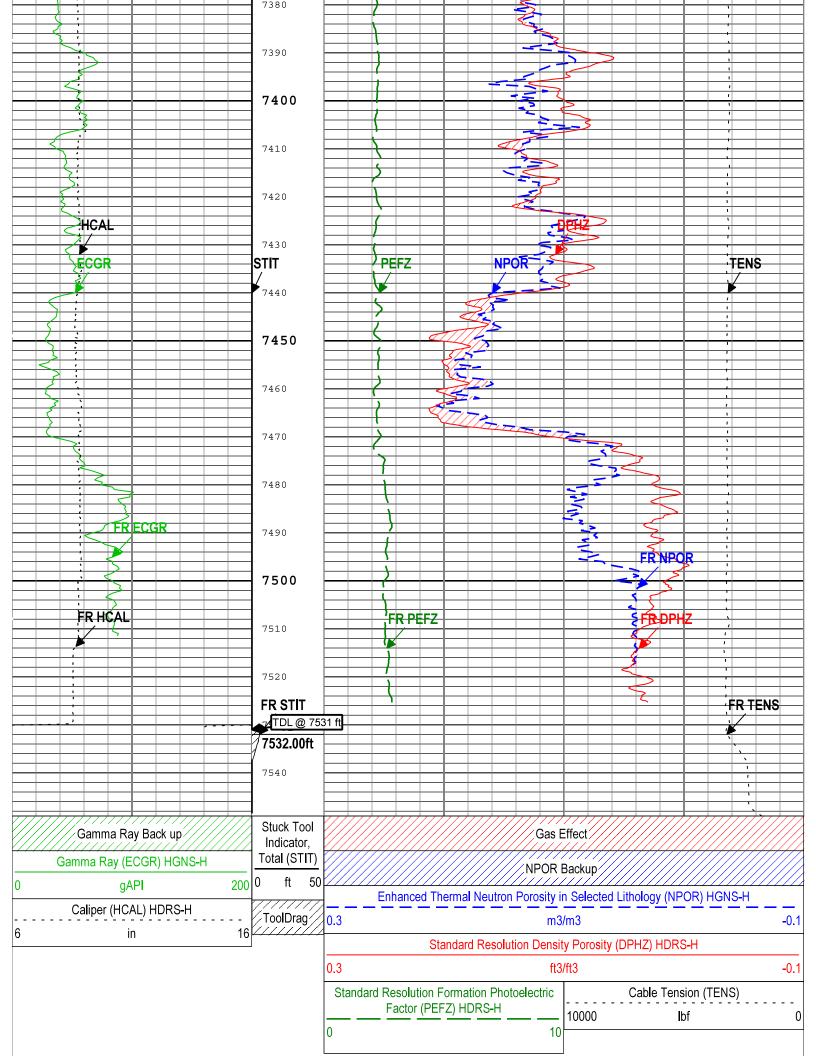
APPENDICES

Annual Bottom-Hole Pressure Survey and Pressure Falloff Test Report – Waste Disposal Well No. 2 – Project 192025X Western Refining Southwest, Inc. – Bloomfield, New Mexico – November 2020

APPENDIX A

DUAL INDUCTION LOG SECTIONS FROM 7200 FEET TO 7532 FEET


Table 1: A copy of the well log showing the Entrada interval to be tested.

APPENDIX B

POROSITY LOG SECTIONS FROM 7200 FEET TO 7532 FEET

wsp

APPENDIX C

INJECTION AND FORMATION FLUID ANALYSIS

wsp

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 01, 2017

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: DWD #2

OrderNo.: 1701A75

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/26/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 1701A75

Date Reported: 2/1/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: DWD #2

Lab ID: 1701A75-001

Client Sample ID: DWD 2 Formation Water Collection Date: 1/25/2017 11:00:00 AM Received Date: 1/26/2017 7:05:00 AM

Aualyses	Result	PQL 0	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	MRA
Fluoride	ND	2.0		mg/L	20	1/26/2017 6:37:17 PM	R40335
Chioride	23000	2500	*	mg/L	5E	1/27/2017 7:20:01 PM	R40361
Bromide	ND	2.0		mg/L	20	1/26/2017 6:37:17 PM	R40335
Phosphorus, Orthophosphate (As P)	ND	10		mg/L	20	1/26/2017 6:37:17 PM	R40335
Sulfate	910	25	*	mg/L	50	1/27/2017 7:07:36 PM	R40361
Nitrate+Nitrite as N	ND	20		mg/L	100) 1/27/2017 7:32:26 PM	R40361
SM2510B: SPECIFIC CONDUCTANCI	1					Analyst	JRR
Conductivity	94000	50		µmhos/cm	50	1/30/2017 1:40:54 PM	R40366
SM2320B: ALKALINITY						Analyst	: JRR
Bicarbonate (As CaCO3)	255.3	20.00		mg/L CaCO3	1	1/30/2017 11:39:53 AM	R40366
Carbonate (As CaCO3)	ND	2.000		mg/L CaCO3	1	1/30/2017 11:39:53 AM	R4036
Total Alkalinity (as CaCO3)	255.3	20.00		mg/L CaCO3	1	1/30/2017 11:39:53 AN	R4036
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	: KS
Total Dissolved Solids	48900	2000	*D	mg/L	1	2/1/2017 3:56:00 PM	29970
EPA 6010B: TOTAL RECOVERABLE	METALS					Analyst	: pmf
Calcium	1700	20		mg/L	20	1/30/2017 10:59:56 AŇ	29930
Magnesium	200	20		mg/L	20	1/30/2017 10:59:56 AM	29930
Potassium	450	20		mg/L	20	1/30/2017 10:59:56 AM	29930
Sodium	16000	500		mg/L	500) 1/30/2017 11:06:12 AM	29930

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

	i to th	o Qo buinning report and tamper - B		
Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 5
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
		Not not the second s	***	2 1 is the second

% Recovery outside of range due to dilution or matrix S

Sample container temperature is out of limit as specified W

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:Hall EnvironmentalReport Date:01/27/17Project:Not indicatedCollection Date:01/25/17Lab ID:B17011690-001DateReceived:01/27/17Client Sample ID:1701A75-001C DWD 2 Formation WaterMatrix:Aqueous

Analyses	Result Units	Qualifiers	RL	MCI MCI	Method	Analysis Date / By
CORROSIVITY pH	6.46 s.u.		0.10		SW9040C	01/27/17 10:54 / jmg

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

ř

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 01/27/17

Work Order: B17011690

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDI_imit	Quel
Melhod:	8W9040C		2007 - 1076 - 1076 - 1076			***	Analytical Ru	n: ORION	1720A HZW	_170127A
Lab ID: pH	ICV	Initial Calibrat 8.11	ion Verificatio s.u.	n Standard 0.10	101	98	102		01/2	7/17 10:54
Method:	SW9040C								Batch	: R273974
Lab ID: pH	B17011690-001ADUP	Sample Dupli 6.49	cate s.u.	0.10		Run: ORIC	on 720a Hzw_	170127A 0.5	01/2 3	7/17 10:54

Qualifiers: RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Western Refining Southwest, Inc.

Project:	DWD #2									
Sample ID MB	Şi	атрТуре: г	nbik	Tos	Code: El	PA Method	300.0: Anions			2
Client ID: PBW		Batch ID: I	R40335	F	unNo: 40	D335				
Prep Date:	Analy	sis Date:	1/26/2017	S	eqNo: 12	264291	Units: mg/L			
Analyte	Res	ult PQI	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1	VD 0.1	0							
Bromide	1	ND 0.1	0							
Phosphorus, Orthophos	ohate (As P 💦 🕴	ND 0.5	0							
Sample ID LCSb	Si	ampType: I	cs	Tes	tCode: El	PA Method	300.0: Anions	E		
Client ID: LCSW		Batch ID: I	R40335	F	RunNo: 4	0335				
Prep Date:	Analy	/sis Date:	1/26/2017	9	SeqNo: 1	264293	Units: mg/L			
Analyte	Res	ult PQ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLImit	Qual
Fluoride	0.	52 0.1	0 0.5000	0	104	90	110	76580.44-1		
Bromide	3	2.4 0.1	0 2.500	0	96.4	90	110			
Phosphorus, Orthophos	phate (As P	4.8 0.5	0 5.000	0	96.7	90	110	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		
Sample ID MB	S	ampType:	mbik	Tes	tCode: El	PA Method	300.0: Anions			
Client ID: PBW		Batch ID: 1	R40361	F	RunNo: 4	0361				
Prep Date:	Anal	vsis Date:	1/27/2017	5	SeqNo: 1	265117	Units: mg/L			
Analyte	Res	sult PQ	_ SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 0.8								
Sulfate		ND 0.5								
Nitrate+Nitrite as N		ND 0.2	.0							
Sample ID LCS	S	ampType:	lcs	Tes	tCode: E	PA Method	300.0: Anions	1		
Client ID: LCSW		Batch ID:	R40361	F	RunNo: 4	0361				
Prep Date:	Anal	ysis Date:	1/27/2017	5	SeqNo: 1	265118	Units: mg/L			
Analyte	Res	sult PQ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	1	4.8 0.5	50 5.000	0	95.5	90	110			
Sulfate		9.7 0.8	50 10.00	0	97.2	90	110			

0

Qualifiers:

Nitrate+Nitrite as N

Client:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н

3.5

0.20

3,500

- Not Detected at the Reporting Limit ND
- RPD outside accepted recovery limits R
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range

98.8

- Analyte detected below quantitation limits J
- P Sample pH Not In Range
- RL **Reporting Detection Limit**
- Sample container temperature is out of limit as specified W

90

110

Page 2 of 5

WO#: 1701A75

01-Feb-17

Client: Western Refining Southwest, Inc.

Project: DWD #2

Sample ID Client ID:											
Client ID:	MB-29930	SampT	ype: ME	BLK	Test	Code; E	PA 6010B:	Total Recover	able Meta	als	
Giennia.	PBW	Batch	iD: 29	930	R	unNo: 4	0375				
Prep Date:	1/27/2017	Analysis D	ate: 1/	30/2017	S	eqNo: 1	265583	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium		ND	1.0								
Magnesium		ND	1.0								
Potassium		ND	1.0								
Sodium		ND	1.0		2.8						
Sample ID	LCS-29930	SampT	ype: LC	S	Tes	Code: E	PA 6010B:	Total Recover	able Meta	als	
Client ID:	LCSW	Batch	D: 29	930	F	tunNo: 4	0375				
Prep Date:	1/27/2017	Analysis D	ate: 1/	30/2017	S	SegNo: 1	265584	Units: mg/L			
and the second second second											
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
		Result 49	PQL 1.0	SPK value 50.00	SPK Ref Val 0	%REC 98.3	LowLimit 80	HighLimit 120	%RPD	RPDLimit	Qual
Analyte Calcium	,								%RPD	RPDLimit	Qual
Analyte		49	1.0	50.00	0	98.3	80	120	%RPD	RPDLimit	Qual
								0 7 0			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 3 of 5

WO#: 1701A75 01-Feb-17

Client: Western Refining Southwest, Inc. DWD #2 **Project:**

Sample ID mb-1	SampType: mblk	TestCode: SM2320B: A	lkalinity	
Client ID: PBW	Batch ID: R40366	RunNo: 40366		
Prep Date:	Analysis Date: 1/30/2017	SeqNo: 1266120	Units: mg/L CaCO3	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Fotal Alkalinity (as CaCO3)	ND 20.00			
Sample ID Ics-1	SampType: Ics	TestCode: SM2320B: A	lkalinity	
Client ID: LCSW	Batch ID: R40366	RunNo: 40366		
Prep Date:	Analysis Date: 1/30/2017	SeqNo: 1266121	Units: mg/L CaCO3	
	Result POL SPK value	SPK Ref Val %REC Lowl imit	HighLimit %RPD	RPDLimit Qual
Analyte	Result PQL SPK value	SENTREIVAI /OREC LUWIIIIII	Tigheinin 7010 B	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND
- RPD outside accepted recovery limits R
- % Recovery outside of range due to dilution or matrix S
- Analyte detected in the associated Method Blank В
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- Р Sample pH Not In Range
- **Reporting Detection Limit** RL
- Sample container temperature is out of limit as specified W

WO#: 1701A75

01-Feb-17

Page 4 of 5

01-Feb-17

Client: West Project: DWI	ern Refining Southwest, Inc. D #2			
Sample ID MB-29970	SampType: MBLK	TestCode: SM2540C M	OD: Total Dissolved Solids	
Client ID: PBW	Batch ID: 29970	RunNo: 40436		
Prep Date: 1/31/2017	Analysis Date: 2/1/2017	SeqNo: 1267368	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLim	nit Qual
Fotal Dissolved Solids	ND 20.0			
Sample ID LCS-29970	SampType: LCS	TestCode: SM2540C M	OD: Total Dissolved Solids	
Client ID: LCSW	Batch ID: 29970	RunNo: 40436		
Prep Date: 1/31/2017	Analysis Date: 2/1/2017	SeqNo: 1267369	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLim	nit Qual
Total Dissolved Solids	1010 20.0 1000	0 101 80	120	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 5 of 5

6

Cilent Name: Western Refining Southw Work Order Number Received by/date: Arr 6[1 246/17] Logged By: Anne Thorne 1/26/2017 7:05:00 All Completed By: Anne Thorne 1/26/2017 9:13:16 All Reviewed By: Arr 11/26/2017 9:13:16 All Chain of Custody 1 1 1. Custody seals intact on sample bottles? 2. Is Chain of Custody complete? 3. How was the sample delivered? Log In 4. 4. Was an attempt made to cool the samples? 5. Were all samples received at a temperature of >0° C to 6.0°C 6. Sample(s) in proper container(s)? 7. Sufficient sample volume for indicated test(s)?	er: 1701A75	and the second		
Logged By: Anne Thorne 1/26/2017 7:05:00 Al Completed By: Anne Thorne 1/26/2017 9:13:16 Al Reviewed By: 1 1/26/2017 9:13:16 Al Chain of Custody 1 1/26/2017 9:13:16 Al Custody seals intact on sample bottles? 1 1 J. Custody seals intact on sample bottles? 1 1 J. B Chain of Custody complete? 3 How was the sample delivered? Log In 4 Was an attempt made to cool the samples? 5 Were all samples received at a temperature of >0° C to 6.0°C 6 Sample(s) in proper container(s)?			RoptNo:	1
Completed By: Anne Thorne 1/26/2017 9:13:16 Ai Reviewed By: 1/26/17 Chain of Custody 1(26/17) Chain of Custody 1(26/17) Chain of Custody 1(26/17) Chain of Custody complete? 3. How was the sample delivered? 1000 In 4. Was an attempt made to cool the samples? 5. Were all samples received at a temperature of >0° C to 6.0°C 6. Sample(s) in proper container(s)?				<u></u>
Reviewed By: 1(26/17) Chain of Custody 1. Custody seals intact on sample bottles? 2. Is Chain of Custody complete? 3. How was the sample delivered? Log In 4. Was an attempt made to cool the samples? 5. Were all samples received at a temperature of >0° C to 6.0°C 6. Sample(s) in proper container(s)?	M	an In-	~	
Reviewed By: 1/2/6/17 Chain of Custody 1. Custody seals intact on sample bottles? 2. Is Chain of Custody complete? 3. How was the sample delivered? Log In 4. Was an attempt made to cool the samples? 5. Were all samples received at a temperature of >0° C to 6.0°C 6. Sample(s) in proper container(s)?	М	ann Am		
 Custody seals intact on sample bottles? Is Chain of Custody complete? How was the sample delivered? How was the sample delivered? Was an attempt made to cool the samples? Were all samples received at a temperature of >0° C to 6.0°C Sample(s) in proper container(s)? 		un si-		
 Is Chain of Custody complete? How was the sample delivered? Log In Was an attempt made to cool the samples? Were all samples received at a temperature of >0° C to 6.0°C Sample(s) in proper container(s)? 				
 3. How was the sample delivered? Log In 4. Was an attempt made to cool the samples? 5. Were all samples received at a temperature of >0° C to 6.0°C 6. Sample(s) in proper container(s)? 	Yes 🗆	No 🗆	Not Present 🗹	
 Log In 4. Was an attempt made to cool the samples? 5. Were all samples received at a temperature of >0° C to 6.0°C 6. Sample(s) in proper container(s)? 	Yes 🔽	No 🗌	Not Present	
 4. Was an attempt made to cool the samples? 5. Were all samples received at a temperature of >0° C to 6.0°C 6. Sample(s) in proper container(s)? 	Courier			
 5. Were all samples received at a temperature of >0° C to 6.0°C 6. Sample(s) in proper container(s)? 				
Sample(s) in proper container(s)?	Yeş 🔽	No 🗌		
1 8038 8 19 CBAN	Yes 🗹	No 🗌	NA 🗆	
7. Sufficient sample volume for Indicated test(s)?	Yes 🗹	No 🗌		
	Yes 🗹	No 🗆		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	Na 🗆		
9. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗌	
10. VOA vials have zero headspace?	Yes 🗌	No 🗔	No VOA Viais 🗹	
11. Were any sample containers received broken?	Yes 🗌	No 🗹	# of preserved	
12. Does paperwork match bottle labels?	Yes 🗹	No 🗔	for pH:	2
(Note discrepancies on chain of custody)		_	(S)	or >12 unless not \mathcal{M}
13. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗌	Adjusted?	
14. Is it clear what analyses were requested?	Yes 🔽	No		An
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No 🗔	Checked by:	1001
Special Handling (if applicable)				
18. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗆	NA 🗹	
Person Notified: Date	*	Dhone 🗔 Eer	In Person	
By Whom: Via:	eMail 🔄	Phone 🗌 Fax		
Regarding: Client Instructions:				

17. Additional remarks:

18. Cooler Information

Cooler	No Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.0	Good	Yes			en antipoliticant antipolitication varia
l					1. The state of th	ar an ta' an ar an tabaran sadalah ta matka a si da

-

of 1	
ot	

44 23 2												1						- <u>7</u>	T		— <u>—</u> ,
					-		(N 10) (V (Air Bubbles									+			0
	A R						e.							-	 			+			
	E C													+	+		+				
	Ĩ∎ S		60			MA	Myo	101	to ms	X	X	$\overline{}$					-				
	₹6	c	871	107		<u> </u>		1	imə2) 0728	~		\sim	ѷ┼		-						
	5 Å	Lcon	WN	45-4 ast				25 32 333 35 38	OV) 80928												
	ĞΖ	enta	Albuquerque, NM 87109	505-345-4107 Request		s'BD4 s	2808 / 3		olteeq 1808												
	SI	muo.	Iduel	Fax 5 vsis R		S,₄Oq,	⁷ ON' [®]) DN'R	D, A) snoinA	6							-				
	E S	envil	Abt	Analvsis		2010/10/02			ыМ 8 АЯЭЯ												
		hall	ш	775 A		(SMIS	8270	10 Ot	rɛ8) a'HA9											1	e.
	HALL ENVIRONMENTAL ANALYSIS LABORATORY	www.hallenvironmental.com	ns N	15-35			(1.40	ig po	EDB (Metho												
	- 4	655	4901 Hawkins NE	Tel. 505-345-3975			2673		о <mark>н) Н</mark> ЯТ												in he Malkellin
			01 H	<u></u> ગ. 5(88108 H9T											S:	
ľ			49	Ť					TM + XƏT8	Ĺ										Remarks:	
	·······				(r208) s	+ TMB'	- 38.	TM + X3T8											A K	
				4						1	-	5	-							me 1 년 - 7	<u>)</u>
	7	-5		よ 1		2				8	Ø	201								Time 14	11 me
	2-day					20	2 2 2		HEAL NR 11755	Ļ					a					I te	tell a
	Å			Ŭ.		41	N S	9		F										1/25/	Date 01/24
			-1	9		Robinson	2		<u>.</u> 0	╞	-			<u></u>			_				R
	X Rush	1	сл #	و ا		\mathcal{C}			Preservative Type	~	M	1	-	10						H	211
je	X	C	#	(0		4	た。		eserva Type	Poly	HND3	Ha SQy		×							Y
Turn-Around Time:	q	;;; í	DMD	# 20-13619631	Project Manager:	Kelly	Mat	Sample Temperature	<u> </u>		1	Ħ			-					the	10 10
Loun	□ Standard	Project Name:	м С	40	Mar	ЪĽ	1 26	0 T 0	Container Type and #	3	-Sam	140								id by:	
RA	l Sta	oject	 }	Project #:	oject		Sampler: On fce:	Idmi	Contro	Set	21	-1254								Received by	sceive
		ቪ	<u> </u>	<u>م</u> _	<u> </u>		0 N	Ň		Fa	<u> </u>			-	-					N N	ě)
	_			M		tion)			E D	Formeten water - 500.41							19				8
	5			- 0	-	□ Level 4 (Fuil Validation)			Sample Request ID	1 Ku										Z	4
Č	ר ה פ	,	0	-	2	lin ∧			Req	Mas									•	0	whele
0	ĽĽ		99	023	F	4 (F			ole 1		ľ			8						13	-2
Ċ Ż	SUC IN		CK 499	51	Ъ	evel			ami	Eama										a	K.
4	Refluting		15	2C	0				S	Du										Aq pa	quished by:
ċ	3		ρ				D Other		Matrix	3										Relinquished by	Relinquished by
Chain of Custody Decord	5 5			もて	3				Ma	Ĥ	а.									Reii	Sellin
2			ress:	(金)		age:	Ę,	()	Time	00:11											17me: 180
, in the second s	Ne ⁶		Add	22	r Fa)	Pack Idard	itatio AP	J (Ty		Ξ					<u> </u>	8				Time:	
C	Client: Wester y		Mailing Address:	Bloodte	email or Fax#:	QA/QC Package: X Standard	Accreditation	D EDD (Type)	Date	LI-SC-									e.	Date: 25/17	
	ថ		Ň		El P	9 🕅	ĕ □			ŝ										ا ي ما	3

· 2,.. 67 3

All Anions	EPA Method 300.0	1-500ml unpreserved plastic 1-125 ml H2SO4 plastic
Alkalinity	SM2320 B	Volume will come from the 500ml unpreserved plastic
eC	SM 2510B	Volume will come from the 500ml unpreserved plastic
TDS	SM 2540 C	Volume will come from the 500ml unpreserved plastic
Cations	EPA Method 200.7	1-500ml HNO3 Plastic
pH	EPA Method 9040	Volume will come from the 500ml unpreserved plastic

SM = Standard Methods

EPA Methods 310.1, 150.1, 160.1, 320.1 and 120.1 have been withdrawn by EPA. Most labs have are accredited for all of the tests listed above and we perform these methods regularly for !

We will ship out one bottle set today as listed below. Fill all bottles to the neck and keep the sa We can rush this work on a 1-2 business day TAT.

.

1-500ml unpreserved plastic

1-125ml H2SO4 Plastic

1-500ml HNO3 plastic

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

August 17, 2020

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX:

RE: Injection Well 2 2Q2020

OrderNo.: 2007018

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/1/2020 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued July 23, 2020.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 2007018

Date Reported: 8/17/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Injection Well 2 2Q2020 **Project:**

Lab ID:

2007018-001

Client Sample ID: Injection Well #2 Collection Date: 6/30/2020

Received Date: 7/1/2020 8:05:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8081: PESTICIDES TCLP					Analyst	JME
Chlordane	ND	0.20	mg/L	1	7/15/2020 9:21:46 AM	53534
Surr: Decachlorobiphenyl	75.8	38.2-102	%Rec	1	7/15/2020 9:21:46 AM	53534
Surr: Tetrachloro-m-xylene	52.7	32.3-92.4	%Rec	1	7/15/2020 9:21:46 AM	53534
EPA METHOD 8270C TCLP					Analyst	DAM
2-Methylphenol	ND	200	mg/L	1	7/22/2020 8:27:37 PM	53528
3+4-Methylphenol	ND	200	mg/L	1	7/22/2020 8:27:37 PM	53528
2,4-Dinitrotoluene	ND	0.13	mg/L	1	7/22/2020 8:27:37 PM	53528
Hexachlorobenzene	ND	0.13	mg/L	1	7/22/2020 8:27:37 PM	53528
Hexachlorobutadiene	ND	0.50	mg/L	1	7/22/2020 8:27:37 PM	53528
Hexachloroethane	ND	3.0	mg/L	1	7/22/2020 8:27:37 PM	53528
Nitrobenzene	ND	2.0	mg/L	1	7/22/2020 8:27:37 PM	53528
Pentachlorophenol	ND	100	mg/L	1	7/22/2020 8:27:37 PM	53528
Pyridine	ND	5.0	mg/L	1	7/22/2020 8:27:37 PM	53528
2,4,5-Trichlorophenol	ND	400	mg/L	1	7/22/2020 8:27:37 PM	53528
2,4,6-Trichlorophenol	ND	2.0	mg/L	1	7/22/2020 8:27:37 PM	53528
Cresols, Total	ND	200	mg/L	1	7/22/2020 8:27:37 PM	53528
Surr: 2-Fluorophenol	54.9	15-81.1	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: Phenol-d5	45.6	15-61.1	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: 2,4,6-Tribromophenol	77.5	17.2-108	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: Nitrobenzene-d5	63.0	18.7-120	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: 2-Fluorobiphenyl	47.7	23.6-103	%Rec	1	7/22/2020 8:27:37 PM	53528
Surr: 4-Terphenyl-d14	94.9	24.1-105	%Rec	1	7/22/2020 8:27:37 PM	53528
SPECIFIC GRAVITY					Analyst	CAS
Specific Gravity	0.9946	0		1	7/1/2020 2:10:00 PM	R70056
EPA METHOD 300.0: ANIONS					Analyst	CAS
Fluoride	ND	0.50	mg/L	5	7/1/2020 10:01:06 PM	R70074
Chloride	1200	50	* mg/L	100	7/2/2020 4:39:21 PM	R70134
Nitrogen, Nitrite (As N)	ND	0.50	mg/L	5	7/1/2020 10:01:06 PM	R70074
Bromide	4.0	0.50	mg/L	5	7/1/2020 10:01:06 PM	R70074
Nitrogen, Nitrate (As N)	ND	0.50	mg/L	5	7/1/2020 10:01:06 PM	R70074
Phosphorus, Orthophosphate (As P)	ND	2.5	mg/L	5	7/1/2020 10:01:06 PM	R70074
Sulfate	78	2.5	mg/L	5	7/1/2020 10:01:06 PM	R70074
SM2510B: SPECIFIC CONDUCTANCE					Analyst	JRR
Conductivity	4500	10	µmhos/c	21	7/7/2020 10:26:38 AM	R70195
SM2320B: ALKALINITY					Analyst	JRR
Bicarbonate (As CaCO3)	647.1	20.00	mg/L Ca	1	7/7/2020 10:26:38 AM	R70195
Carbonate (As CaCO3)	ND	2.000	mg/L Ca		7/7/2020 10:26:38 AM	R70195
. ,			-			

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Not Detected at the Reporting Limit

Qualifiers:

Н

ND

В Analyte detected in the associated Method Blank

Е Value above quantitation range J

Analyte detected below quantitation limits Р Sample pH Not In Range

RL Reporting Limit

Page 1 of 14

PQL Practical Quanitative Limit % Recovery outside of range due to dilution or matrix S

Holding times for preparation or analysis exceeded

Analytical Report Lab Order 2007018

Date Reported: 8/17/2020

CLIENT: Western Refining Southwest, Inc. Project: Injection Well 2 2Q2020				ample ID tion Date		ection Well #2 0/2020	
Lab ID: 2007018-001	Matrix: AQUE	OUS	Recei	ved Date	:7/1/	/2020 8:05:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SM2320B: ALKALINITY						Analyst	: JRR
Total Alkalinity (as CaCO3)	647.1	20.00		mg/L Ca	1	7/7/2020 10:26:38 AM	R70195
SM2540C MOD: TOTAL DISSOLVED SOLID	os					Analyst	: KS
Total Dissolved Solids	2870	200	*D	mg/L	1	7/8/2020 10:16:00 AM	53514
	2010	200	D	iiig/L	•		
SM4500-H+B / 9040C: PH						Analyst	
pH	7.77		Н	pH units	1	7/7/2020 10:26:38 AM	R70195
EPA METHOD 7470: MERCURY						Analyst	JLF
Mercury	ND	0.0010		mg/L	5	7/7/2020 4:27:56 PM	53531
EPA 6010B: TOTAL RECOVERABLE META	LS					Analyst	ELS
Arsenic	ND	0.030		mg/L	1	7/8/2020 12:41:36 PM	53551
Barium	0.22	0.0020		mg/L	1	7/8/2020 12:41:36 PM	53551
Cadmium	ND	0.0020		mg/L	1	7/8/2020 12:41:36 PM	53551
Calcium	73	1.0		mg/L	1	7/8/2020 12:41:36 PM	53551
Chromium	ND	0.0060		mg/L	1	7/8/2020 12:41:36 PM	53551
Lead	ND	0.020		mg/L	1	7/8/2020 12:41:36 PM	53551
Magnesium	52	1.0		mg/L	1	7/8/2020 12:41:36 PM	53551
Potassium	13	1.0		mg/L	1	7/8/2020 12:41:36 PM	53551
Selenium	ND	0.050		mg/L	1	7/8/2020 12:41:36 PM	53551
Silver	ND	0.0050		mg/L	1	7/8/2020 12:41:36 PM	53551
Sodium	910	10		mg/L	10	7/8/2020 1:06:08 PM	53551
TCLP VOLATILES BY 8260B						Analyst	CCM
Benzene	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113
1,2-Dichloroethane (EDC)	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113
2-Butanone	ND	200		mg/L	200	7/7/2020 12:55:00 AM	T70113
Carbon Tetrachloride	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113
Chloroform	ND	6.0		mg/L	200	7/7/2020 12:55:00 AM	T70113
1,4-Dichlorobenzene	ND	7.5		mg/L	200	7/7/2020 12:55:00 AM	T70113
1,1-Dichloroethene	ND	0.70		mg/L	200	7/7/2020 12:55:00 AM	T70113
Tetrachloroethene (PCE)	ND	0.70		mg/L	200	7/7/2020 12:55:00 AM	T70113
Trichloroethene (TCE)	ND	0.50		mg/L	200	7/7/2020 12:55:00 AM	T70113
Vinyl chloride	ND	0.20		mg/L		7/7/2020 12:55:00 AM	T70113
Chlorobenzene	ND	100		mg/L		7/7/2020 12:55:00 AM	T70113
Surr: 1,2-Dichloroethane-d4	103	70-130		%Rec	200	7/7/2020 12:55:00 AM	T70113

102

106

102

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

70-130

70-130

70-130

Hall Environmental Analysis Laboratory, Inc.

B Analyte detected in the associated Method Blank

%Rec

%Rec

%Rec

200 7/7/2020 12:55:00 AM

200 7/7/2020 12:55:00 AM

200 7/7/2020 12:55:00 AM

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

Qualifiers:

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method BlankE Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 14

T70113

T70113

T70113

ANALYTICAL REPORT July 14, 2020

Hall Environmental Analysis Laboratory

Sample Delivery Group:

Samples Received:

Project Number:

L1236077 07/02/2020

Report To:

Description:

Jackie Bolte 4901 Hawkins NE Albuquerque, NM 87109

Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By: John V Howkins

John Hawkins Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

PROJECT:

SDG: L1236077

DATE/TIME: 07/14/20 07:36

TABLE OF CONTENTS

*

Ср

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Cp: Cover Page	1	
Tc: Table of Contents	2	
Ss: Sample Summary	3	
Cn: Case Narrative	4	
Sr: Sample Results	5	
2007018-001E INJECTION WELL #2 L1236077-01	5	
2007018-001F INJECTION WELL #2 L1236077-02	6	
2007018-001G INJECTION WELL #2 L1236077-03	7	
Qc: Quality Control Summary	8	
Wet Chemistry by Method 2580	8	
Wet Chemistry by Method 4500 CN E-2011	9	
Wet Chemistry by Method 4500H+ B-2011	10	
Wet Chemistry by Method 9034-9030B	11	
Wet Chemistry by Method D93/1010A	12	
GI: Glossary of Terms	13	
Al: Accreditations & Locations	14	
Sc: Sample Chain of Custody	15	

SDG: L1236077 DATE/TIME: 07/14/20 07:36

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

2007018-001E INJECTION WELL #2 L1236077-01 \	\\/\//		Collected by	Collected date/time 06/30/20 00:00	Received dat 07/02/20 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 2580	WG1504658	1	07/07/20 05:39	07/07/20 05:39	AKA	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1503689	1	07/03/20 12:57	07/03/20 12:57	KEG	Mt. Juliet, TN
Wet Chemistry by Method D93/1010A	WG1506806	1	07/11/20 19:15	07/11/20 19:15	JIC	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
2007018-001F INJECTION WELL #2 L1236077-02	WW			06/30/20 00:00	07/02/20 08:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9034-9030B	WG1504791	1	07/07/20 15:23	07/07/20 15:23	SL	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
2007018-001G INJECTION WELL #2 L1236077-03	WW			06/30/20 00:00	07/02/20 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
			uale/lime	uatertime		

CASE NARRATIVE

*

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

putins

John Hawkins Project Manager

Project Narrative

All Reactive Cyanide results reported in the attached report were determined as totals using method 9012B. All Reactive Sulfide results reported in the attached report were determined as totals using method 9034/9030B.

SAMPLE RESULTS - 01 L1236077

Qc

Sc

Wet Chemistry by Method 2580

_		Result	Qualifier	Dilution	Analysis	Batch	Ср
A	nalyte	mV			date / time		2
0	RP	37.7	Q	1	07/07/2020 05:39	WG1504658	ЪС

Wet Chemistry by Method 4500H+ B-2011

Wet Chemistry by	Method 4500F	H+ B-2011				³Ss
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	SU			date / time		 4 Cn
Corrosivity by pH	7.63	<u>T8</u>	1	07/03/2020 12:57	WG1503689	CII

Sample Narrative:

L1236077-01 WG1503689: 7.63 at 21.1C

Wet Chemistry by Method D93/1010A

Analyte	Result deg F	Qualifier	Dilution	Analysis date / time	Batch	 ⁷ Gl
Flashpoint	DNF at 170		1	07/11/2020 19:15	WG1506806	⁸ Al

SAMPLE RESULTS - 02

Гс

Wet Chemistry by Method 9034-9030B

							 10
	Re	ult <u>Qualifie</u>	r RDL	Dilution	Analysis	Batch	
Analyte	mg	4	mg/l		date / time		2
Reactive Sulfide	3.0	33	0.0500	1	07/07/2020 15:23	WG1504791	

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ AI
⁹ Sc

SAMPLE RESULTS - 03

Τс

Wet Chemistry by Method 4500 CN E-2011

	, , , , , , , , , , , , , , , , , , ,							 1' 1
		Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte		mg/l		mg/l		date / time		2
Reactive Cyanide		ND		0.00500	1	07/13/2020 15:06	WG1507316	

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

00
വ
Q
4
0
വ
$\sum_{i=1}^{n}$
U
>
>

QUALITY CONTROL SUMMARY

*

0 U

ЧС

SS

Sc

Ū

₹

Wet Chemistry by Method 2580

L1236077-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1236077-01 07/07/20 05:39 • (DUP) R3546691-2 07/07/20 05:39	:0 05:39 • (DUI	P) R3546691-2	07/07/20	05:39		
	Original Result	Original Result DUP Result Dilution DUP Diff	Dilution	DUP Diff	DUP Qualifier DUP Diff Limits	7
Analyte	шV	шV		mV	mV	
ORP	37.7	55.8	-	18.1	20	
						m

Laboratory Control Sample (LCS)

Laboratory Control Sample (LCS)	ol Sample (L ⁱ	CS)				((
(LCS) R3546691-1 07/07/20 05:39	/20 05:39					5
	Spike Amount	Spike Amount LCS Result LCS Rec.	LCS Rec.	Rec. Limits	ts LCS Qualifier	L
Analyte	шV	mV	%	%		°ى ت
ORP	228	226	0.06	86.0-105		
						0 C C

WG1507316 Wet Chemistry by Method 4500 CN E-2011

QUALITY CONTROL SUMMARY

Ч Ss Б ğ SC ភ $\overline{\mathbb{O}}$ ₹ DUP RPD Limits 20 % LCS Qualifier DUP Qualifier Rec. Limits 90.0-110 0.00500 MB RDL mg/l % Dilution DUP RPD 0.000 % LCS Rec. MB MDL 0.00180 l/gm 98.4 % Original Sample (OS) • Duplicate (DUP) MB Qualifier Original Result DUP Result Spike Amount LCS Result 0.0984 mg/l mg/l QN Laboratory Control Sample (LCS) (OS) • (DUP) R3548947-3 07/13/20 14:37 **MB** Result (LCS) R3548947-2 07/13/20 14:33 l/gm 0.100 (MB) R3548947-1 07/13/20 14:32 mg/l ⊃ Method Blank (MB) Reactive Cyanide Reactive Cyanide Reactive Cyanide Analyte Analyte Analyte

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%	20
		%	4.83
	MSD Qualifier		
	MS Qualifier		
	Rec. Limits	%	75.0-125
	Dilution		-
	MSD Rec.	%	101
	MS Rec.	%	106
20 15:05	MSD Result	l/gm	0.101
(OS) • (MS) R3548947-4 07/13/20 15:04 • (MSD) R3548947-5 07/13/20 15:05	Spike Amount Original Result MS Result	mg/l	0.106
17-4 07/13/20 15:04	Spike Amount	mg/l	0.100
(OS) • (MS) R354894		Analyte	Reactive Cyanide

DATE/TIME: 07/14/20 07:36

(5)
C	χ)
(2)
C	Y)
C	2)
L	2)
2		
	<u>_</u>	
2	\geq	2

QUALITY CONTROL SUMMARY

*

Wet Chemistry by Method 4500H+ B-2011

Laboratory Control Sample (LCS)

Laboratory Control Sample (LCS)	ol Sample (L ⁱ	CS)) (
(LCS) R3545989-1 07/03/20 12:57	3/20 12:57					
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	ts LCS Qualifier	0
Analyte	SU	SU	%	%		Tc
Corrosivity by pH	10.0	10.1	101	99.0-101		
						3
Contraction of the second seco))

Ch

പ്

ğ

Ū

₹

Sc

LCS: 10.05 at 22.2C Sample Narrative:

SDG: L1236077

DATE/TIME: 07/14/20 07:36

*

Method Blank (MB)

	/					e
(MB) R3547698-1 07/07/20 14:56	7/20 14:56					ר גר
	MB Result	MB Qualifier MB MDL	MB MDL	AB MDL MB RDL	~	
Analyte	mg/l		mg/l	l/gm l/gr		ЦС
Reactive Sulfide			0.00650	00650 0.0500		
					(U) (m)	³ Ss

Laboratory Control Sample (LCS)

Laboratory Control Sample (LCS)	ol Sample (I	-CS)				4 (
(LCS) R3547698-2 07/07/20 14:56	7/20 14:56					5
	Spike Amoun:	Spike Amount LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	L
Analyte	mg/l	mg/l	%	%		َں ک
Reactive Sulfide	0.500	0.473	94.6	85.0-115		
						6 OC
						1

Sc

Ū

₹

	D93/1010A
WG1506806	Wet Chemistry by Method

QUALITY CONTROL SUMMARY

*

0 U Ч

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

1.CS) R3548542-1 07/11/20 19:15 • (LCSD) R3548542-2 07/11/20 19:15

	RPD Limits	%	10
	LCSD Qualifier RPD	%	1.59
	LCS Qualifier		
	Rec. Limits	%	96.0-104
	LCSD Rec.	%	99.1
	LCS Rec.	%	101
GI'RI N7/II//N	LCSD Result LCS Rec.	deg F	125
1 K3048047-7	LCS Result	deg F	127
11/20 13:12 • (FCSD)	Spike Amount LCS Result	deg F	126
(FCS) K3348342-1 0//11/20 19:13 • (FCSD) K3348342-2 0//11/20 19:13		Analyte	Flashpoint

ğ

Ū

₹

្តភ

Sc

Ъ,

Ss

ACCOUNT:	nvironmental Analysis Laboratory
----------	----------------------------------

DATE/TIME: 07/14/20 07:36

SDG: L1236077

GLOSSARY OF TERMS

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
Q	Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be considered minimum values.

Τ8

Sample(s) received past/too close to holding time expiration.

SDG: L1236077

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

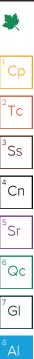
lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations


Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

ACCOUNT: Hall Environmental Analysis Laboratory PROJECT:

SDG: L1236077

DATE/TIME: 07/14/20 07:36

Sc

SUB CONTRATOR Pace TN	COMPANY: PAC	PACE TN	PHONE	(800) 767-5859 FAX	(615) 758-5859
ADDRESS 12065 Lebanon Rd	oanon Rd		ACCOUNT #	EMAIL:	
CITY, STATE, ZIP. Mt. Juliet	Mt. Juliet, TN 37122				
SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	COLLECTION MATRIX DATE	ANALYTICAL COMMENTS	COMMENTS
2007018-001E Injection Well #2	ction Well #2	500HDPE	Aqueous 6/30/2020	1 ORP, Corrosivity, Ignitability	1_1236077-01
2007018-001F Inje	Injection Well #2	500PLNAOH Aqueous	Aqueous 6/30/2020	1 Reactive Sulfide	63
2007018-001G Injection Well #2	ction Well #2	500PL-NaOH Aqueous	Aqueous 6/30/2020	1 Reactive Cyanide	60
SPECIAL INSTRUCTIONS / COMMENTS: Please include the LAB ID and the	IENTS: Ind the CLJENT SAMPLE ID on all final r	eports. Please e-ma	ll results to lab@hallenvironmental.	ECIAL INSTRUCTIONS / COMMENTS. Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.	78
Refinquished By: 9,000	Time:		Date: Time:	REPORT TRANSMITTAL DESIRED	TAL DESIRED:
2.1	7/1/2020 11:19 AM Date: Time: Received By:	y:	Date: Time:	TAX (extra ost)	EMAIL ONLINE
Relinquished By: TAT:	Date: Time: Revea	Next BD D 2n	2nd BD = ad BD =	Temp of samples 5±055 cAl	ONLY Attempt to Cool ?

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	2007018
	17-Aug-20

	n Refining S n Well 2 2Q		st, Inc.							
Sample ID: MB	Samp	Type: mk	olk	Tes	tCode: EF	6				
Client ID: PBW	Batc	h ID: R7	0074	F	RunNo: 70	0074				
Prep Date:	Analysis Date: 7/1/2020			5	SeqNo: 24	434415	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Nitrogen, Nitrite (As N)	ND	0.10								
Bromide	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Phosphorus, Orthophosphate (As P	ND	0.50								
Sulfate	ND	0.50								
Sample ID: LCS	Samp	Гуре: Ics	;	TestCode: EPA Method 300.0: Anions						
Client ID: LCSW	Batch ID: R70074			F	RunNo: 7(0074				
Prep Date:	Analysis Date: 7/1/2020		SeqNo: 2434416 Units: mg			Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.54	0.10	0.5000	0	108	90	110			
Nitrogen, Nitrite (As N)	0.98	0.10	1.000	0	98.3	90	110			
Bromide	2.5	0.10	2.500	0	101	90	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	100	90	110			
Phosphorus, Orthophosphate (As P	4.7	0.50	5.000	0	94.3	90	110			
Sulfate	9.8	0.50	10.00	0	98.0	90	110			
Sample ID: MB	Samp	Type: mt	olk	Tes	tCode: EF	PA Method	300.0: Anions	6		
Client ID: PBW	Batc	h ID: R7	0134	F	RunNo: 7(0134				
Prep Date:	Analysis [Date: 7/	2/2020	5	SeqNo: 24	437168	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50								
Sample ID: LCS	Samp	Type: Ics	;	Tes	tCode: EF	PA Method	300.0: Anions	6		
Client ID: LCSW	Batc	h ID: R7	0134	F	RunNo: 7(0134				
Prep Date:	Analysis [Date: 7/	2/2020	5	SeqNo: 24	437169	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.9	0.50	5.000	0	98.4	90	110			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

	tern Refining Southw ction Well 2 2Q2020								
Sample ID: MB-53534	SampType: N	//BLK	TestCode: EPA Method 8081: Pesticides TCLP						
Client ID: PBW	Batch ID: 5	53534	R	unNo: 70	0353				
Prep Date: 7/7/2020	Analysis Date:	7/15/2020	S	eqNo: 24	445441	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chlordane	ND 0.03	0							
Surr: Decachlorobiphenyl	0.0022	0.002500		87.3	38.2	102			
Surr: Tetrachloro-m-xylene	0.0018	0.002500		72.0	32.3	92.4			
Sample ID: LCS-53534	SampType: L	SampType: LCS			TestCode: EPA Method 8081: Pesticides TCL				
Client ID: LCSW	Batch ID: 5	Batch ID: 53534			RunNo: 70353				
Prep Date: 7/7/2020	Analysis Date:	7/15/2020	S	eqNo: 24	445442	Units: %Rec			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Decachlorobiphenyl	0.0022	0.002500		88.4	38.2	102			
Surr: Tetrachloro-m-xylene	0.0019	0.002500		77.1	32.3	92.4			
Sample ID: LCSD-53534	SampType: L	SampType: LCSD TestCode: EPA Method 8081: Pesticides TCLP							
Client ID: LCSS02	Batch ID: 5	53534	R	unNo: 70	0353				
Prep Date: 7/7/2020	Analysis Date:	7/15/2020	S	eqNo: 24	445443	Units: %Rec			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Decachlorobiphenyl	0.0024	0.002500		96.2	38.2	102	0	0	
Surr: Tetrachloro-m-xylene	0.0017	0.002500		66.1	32.3	92.4	0	0	
Sample ID: MB-53534	SampType: N	//BLK	Test	Code: E	PA Method	8081: Pestici	des TCLP		
Client ID: PBW	Batch ID: 5	53534	R	unNo: 7	0353				
Prep Date: 7/7/2020	Analysis Date:	7/15/2020	S	eqNo: 24	445445	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chlordane	ND 0.03	0							
Surr: Decachlorobiphenyl	0.0022	0.002500		86.5	38.2	102			
Surr: Tetrachloro-m-xylene	0.0018	0.002500		72.9	32.3	92.4			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 14

WO#:	2007018

17-Aug-20

Client: Project:	Western I Injection	-		st, Inc.							
Sample ID: 100ng I	le ID: 100ng Ics SampType: LCS			Tes	tCode: TC	CLP Volatil					
Client ID: LCSW		Batch ID: T70113			F	RunNo: 70113					
Prep Date:		Analysis	Date: 7/	6/2020	S	SeqNo: 24	438829	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.019	0.00023	0.02000	0	95.7	70	130			
1,1-Dichloroethene		0.019	0.00013	0.02000	0	95.1	70	130			
Trichloroethene (TCE)		0.018	0.00020	0.02000	0	88.0	70	130			
Chlorobenzene		0.021	0.00014	0.02000	0	107	70	130			
Surr: 1,2-Dichloroethar	ne-d4	0.0098		0.01000		98.0	70	130			
Surr: 4-Bromofluorober	nzene	0.010		0.01000		102	70	130			
Surr: Dibromofluorome	thane	0.0096		0.01000		96.4	70	130			
Surr: Toluene-d8		0.010		0.01000		102	70	130			
Sample ID: MB SampType: MBLK					Tes	tCode: T(CLP Volatil	es by 8260B			
Client ID: PBW		Batch ID: T70113			F	RunNo: 7	0113				
Prep Date:		Analysis Date: 7/6/2020		5	SeqNo: 2438830 Units: m		Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.50								
1,2-Dichloroethane (EDC)	ND	0.50								
2-Butanone		ND	200								
Carbon Tetrachloride		ND	0.50								
Chloroform		ND	6.0								
1,4-Dichlorobenzene		ND	7.5								
1,1-Dichloroethene		ND	0.70								
Tetrachloroethene (PCE)		ND	0.70								
Trichloroethene (TCE)		ND	0.50								
Vinyl chloride		ND	0.20								
Chlorobenzene		ND	100								
Surr: 1,2-Dichloroethar	ne-d4	0.010		0.01000		102	70	130			
Surr: 4-Bromofluorober	nzene	0.010		0.01000		100	70	130			
Surr: Dibromofluorome	thane	0.010		0.01000		99.5	70	130			
Surr: Toluene-d8		0.010		0.01000		100	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, Inc.	

WO#:	2007018
	17 4

	rn Refining S on Well 2 20		st, Inc.							
Sample ID: mb-53528	Samp	SampType: MBLK			tCode: El	PA Method	8270C TCLP			
Client ID: PBW	Bato	h ID: 53	528	F	RunNo: 7	0542				
Prep Date: 7/7/2020	Analysis	Date: 7/	22/2020	S	SeqNo: 24	453803	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	ND	200								
3+4-Methylphenol	ND	200								
2,4-Dinitrotoluene	ND	0.13								
Hexachlorobenzene	ND	0.13								
Hexachlorobutadiene	ND	0.50								
Hexachloroethane	ND	3.0								
Nitrobenzene	ND	2.0								
Pentachlorophenol	ND	100								
Pyridine	ND	5.0								
2,4,5-Trichlorophenol	ND	400								
2,4,6-Trichlorophenol	ND	2.0								
Cresols, Total	ND	200								
Surr: 2-Fluorophenol	0.13		0.2000		67.3	15	81.1			
Surr: Phenol-d5	0.10		0.2000		52.1	15	61.1			
Surr: 2,4,6-Tribromophenol	0.15		0.2000		74.1	17.2	108			
Surr: Nitrobenzene-d5	0.078		0.1000		77.9	18.7	120			
Surr: 2-Fluorobiphenyl	0.059		0.1000		59.0	23.6	103			
Surr: 4-Terphenyl-d14	0.11		0.1000		114	24.1	105			S
Sample ID: Ics-53528	Samp	Type: LC	S	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: LCSW	Bato	ch ID: 53	528	F	RunNo: 7	0542				
Prep Date: 7/7/2020	Analysis	Date: 7 /	22/2020	S	SeqNo: 24	453804	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.077	0.0010	0.1000	0	76.5	33.8	121			
3+4-Methylphenol	0.16	0.0010	0.2000	0	81.8	33.6	109			
2,4-Dinitrotoluene	0.055	0.0010	0.1000	0	54.8	50.4	124			
Hexachlorobenzene	0.088	0.0010	0.1000	0	88.1	50.1	120			
Hexachlorobutadiene	0.043	0.0010	0.1000	0	42.5	16.1	103			
Hexachloroethane	0.042	0.0010	0.1000	0	42.3	15	94.2			
Nitrobenzene	0.087	0.0010	0.1000	0	87.4	32.4	125			
Pentachlorophenol	0.080	0.0010	0.1000	0	79.7	44.6	114			
Pyridine	0.011	0.0010	0.1000	0	11.2	15	67			S
2,4,5-Trichlorophenol	0.082	0.0010	0.1000	0	81.9	49.4	118			
2,4,6-Trichlorophenol	0.083	0.0010	0.1000	0	82.6	50.3	116			
Cresols, Total	0.24	0.0010	0.3000	0	80.0	33.8	109			
Surr: 2-Fluorophenol	0.12		0.2000		61.5	15	81.1			
Surr: Phenol-d5	0.092		0.2000		45.8	15	61.1			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

Surr: 2,4,6-Tribromophenol

S % Recovery outside of range due to dilution or matrix

0.14

B Analyte detected in the associated Method Blank

72.4

17.2

108

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

0.2000

	Refining S Well 2 20		est, Inc.							
Sample ID: Ics-53528	Samp	Type: LC	s	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: LCSW	Bato	ch ID: 53	528	F	RunNo: 70542					
Prep Date: 7/7/2020	Analysis	Date: 7/	/22/2020	S	SeqNo: 24	453804	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Nitrobenzene-d5	0.080		0.1000		80.5	18.7	120			
Surr: 2-Fluorobiphenyl	0.060		0.1000		59.6	23.6	103			
Surr: 4-Terphenyl-d14	0.11		0.1000		108	24.1	105			S
Sample ID: 2007018-001bms	Samp	Type: M	S	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: Injection Well #2	Bato	ch ID: 53	528	F	RunNo: 7	0542				
Prep Date: 7/7/2020	Analysis	Date: 7/	/22/2020	S	SeqNo: 24	453806	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.095	0.0010	0.1000	0	95.3	30.5	98.2			
3+4-Methylphenol	0.21	0.0010	0.2000	0	106	27.4	98.6			S
2,4-Dinitrotoluene	0.077	0.0010	0.1000	0	77.0	34.3	87.4			
Hexachlorobenzene	0.094	0.0010	0.1000	0	93.8	36.5	100			
Hexachlorobutadiene	0.053	0.0010	0.1000	0	52.9	15	108			
Hexachloroethane	0.054	0.0010	0.1000	0	53.6	15	90.7			
Nitrobenzene	0.095	0.0010	0.1000	0	95.4	39	100			
Pentachlorophenol	0.088	0.0010	0.1000	0	87.5	15	97.5			
Pyridine	0.010	0.0010	0.1000	0	10.4	15	65.8			S
2,4,5-Trichlorophenol	0.091	0.0010	0.1000	0	90.7	36.1	109			
2,4,6-Trichlorophenol	0.095	0.0010	0.1000	0	94.9	37.8	104			
Cresols, Total	0.31	0.0010	0.3000	0	102	27.1	99.8			S
Surr: 2-Fluorophenol	0.15		0.2000		72.6	15	81.1			
Surr: Phenol-d5	0.11		0.2000		54.5	15	61.1			
Surr: 2,4,6-Tribromophenol	0.17		0.2000		86.3	17.2	108			
Surr: Nitrobenzene-d5	0.091		0.1000		91.2	18.7	120			
Surr: 2-Fluorobiphenyl	0.070		0.1000		69.8	23.6	103			
Surr: 4-Terphenyl-d14	0.10		0.1000		102	24.1	105			
Sample ID: 2007018-001bmsc	d Samp	Туре: М	SD	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: Injection Well #2	Bato	ch ID: 53	528	F	RunNo: 7	0542				
Prep Date: 7/7/2020	Analysis	Date: 7	/22/2020	S	SeqNo: 24	453807	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.076	0.0010	0.1000	0	75.9	30.5	98.2	22.7	44.3	
3+4-Methylphenol	0.16	0.0010	0.2000	0	79.5	27.4	98.6	28.3	50	
2,4-Dinitrotoluene	0.067	0.0010	0.1000	0	67.0	34.3	87.4	13.9	45.1	
Hexachlorobenzene	0.082	0.0010	0.1000	0	81.9	36.5	100	13.6	47.2	
							100	~ ~ /		

Qualifiers:

Nitrobenzene

Hexachlorobutadiene

Hexachloroethane

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Practical Quanitative Limit

PQL

% Recovery outside of range due to dilution or matrix S

0.039

0.039

0.077

0.0010

0.0010

0.0010

0.1000

0.1000

0.1000

в Analyte detected in the associated Method Blank

39.3

38.9

76.6

15

15

39

Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

0

0

0

Page 7 of 14

43.4

39.2

42.1

29.4

31.8

21.9

108

90.7

100

WO#: 2007018 17-Aug-20

Client:

Western Refining Southwest, Inc.

Project: Injection Well 2 2Q2020

Sample ID: 2007018-001bmsd	SampType: MSD TestCode: EPA Method 8270C TCLP									
Client ID: Injection Well #2	Bato	h ID: 53	528	F	RunNo: 7	0542				
Prep Date: 7/7/2020	Analysis I	Date: 7/2	22/2020	S	SeqNo: 24	453807	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Pentachlorophenol	0.086	0.0010	0.1000	0	85.6	15	97.5	2.30	50	
Pyridine	ND	0.0010	0.1000	0	0.0392	15	65.8	200	50	RS
2,4,5-Trichlorophenol	0.086	0.0010	0.1000	0	85.6	36.1	109	5.85	49.7	
2,4,6-Trichlorophenol	0.080	0.0010	0.1000	0	80.2	37.8	104	16.8	47	
Cresols, Total	0.23	0.0010	0.3000	0	78.3	27.1	99.8	26.5	27.4	
Surr: 2-Fluorophenol	0.13		0.2000		62.9	15	81.1	0	0	
Surr: Phenol-d5	0.10		0.2000		50.9	15	61.1	0	0	
Surr: 2,4,6-Tribromophenol	0.16		0.2000		81.5	17.2	108	0	0	
Surr: Nitrobenzene-d5	0.079		0.1000		79.4	18.7	120	0	0	
Surr: 2-Fluorobiphenyl	0.060		0.1000		59.7	23.6	103	0	0	
Surr: 4-Terphenyl-d14	0.10		0.1000		104	24.1	105	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

17-Aug-20

Page 8 of 14

WO#: 2007018

		Refining S Well 2 2Q		st, Inc.							
Sample ID: Ics-1 99.	.5uS eC	SampT	ype: Ics	;	Tes	tCode: SI	//2510B: Sp	pecific Condu	uctance		
Client ID: LCSW	Batch ID: R70195			0195	RunNo: 70195						
Prep Date:		Analysis D	ate: 7/	7/2020	S	SeqNo: 24	439134	Units: µmho	os/cm		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		99	10	99.50	0	99.8	85	115			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
 - J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	2007018
	17-Aug-20

Client: Project:		Refining So Well 2 2Q		st, Inc.							
Sample ID:	MB-53531	-53531 SampType: MBLK			Tes	tCode: El	PA Method	7470: Mercur	у		
Client ID:	PBW	Batch	ID: 53	531	F	RunNo: 7	0152				
Prep Date:	7/7/2020	Analysis D	ate: 7 /	7/2020	S	SeqNo: 2	437876	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND 0	.00020								
Sample ID:	LLLCS-53531	SampT	ype: LC	SLL	Tes	tCode: El	PA Method	7470: Mercur	у		
Client ID:	BatchQC	Batch	ID: 53	531	F	RunNo: 7	0152				
Prep Date:	7/7/2020	Analysis D	ate: 7 /	7/2020	S	SeqNo: 2	437877	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND 0	.00020	0.0001500	0	96.1	50	150			
Sample ID:	LCS-53531	SampT	ype: LC	S	Tes	tCode: El	PA Method	7470: Mercur	у		
Client ID:	LCSW	Batch	ID: 53	531	F	RunNo: 7	0152				
Prep Date:	7/7/2020	Analysis D	ate: 7 /	7/2020	S	SeqNo: 2	437878	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0049 0	.00020	0.005000	0	98.2	80	120			
Sample ID:	2007018-001DMS	SampT	ype: MS	6	Tes	tCode: El	PA Method	7470: Mercur	у		
Client ID:	Injection Well #2	Batch	ID: 53	531	F	RunNo: 7	0152				
Prep Date:	7/7/2020	Analysis D	ate: 7/	7/2020	S	SeqNo: 2	437885	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0025	0.0010	0.005000	0	49.4	75	125			S
Sample ID:	2007018-001DMSE) SampT	ype: M \$	SD	Tes	tCode: El	PA Method	7470: Mercur	y		
Client ID:	Injection Well #2	Batch	ID: 53	531	F	RunNo: 7	0152				
Prep Date:	7/7/2020	Analysis D	ate: 7 /	7/2020	5	SeqNo: 2	437886	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0024	0.0010	0.005000	0	48.5	75	125	1.89	20	S

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Western Refining Southwest, Inc.

SampType: MBLK

Batch ID: 53551

PQL

Analysis Date: 7/8/2020

Injection Well 2 2Q2020

Result

WO#:	2007018
	17-Aug-20

Qual

Qual

S S

S S

S

es	tCode: EF	PA 6010B: "	Total Recover	able Meta	lls	
F	RunNo: 7 (0197				
S	SeqNo: 24	439313	Units: mg/L			
ıl	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Analyte	Result		OF IN VALUE	OF INTREE Val		LOWLINI	riigiiciinii		
Arsenic	ND	0.030							
Barium	ND	0.0020							
Cadmium	ND	0.0020							
Calcium	ND	1.0							
Chromium	ND	0.0060							
Lead	ND	0.020							
Magnesium	ND	1.0							
Potassium	ND	1.0							
Selenium	ND	0.050							
Silver	ND	0.0050							
Sodium	ND	1.0							
Sample ID: LCS-53551	Samp	Type: LC	S	Tes	tCode: E	PA 6010B:	Total Recover	able Meta	als
Client ID: LCSW	Bato	ch ID: 53	551	F	RunNo: 7	70197			
Prep Date: 7/7/2020	Analysis	Date: 7/	8/2020	5	SeqNo: 2	2439314	Units: mg/L		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
Arsenic	0.45	0.030	0.5000	0	89.1	80	120		
Barium	0.47	0.0020	0.5000	0	93.1	80	120		
Cadmium	0.46	0.0020	0.5000	0	92.8	80	120		
Calcium	51	1.0	50.00	0	102	80	120		
Chromium	0.45	0.0060	0.5000	0	89.1	80	120		
Lead	0.45	0.020	0.5000	0	90.6	80	120		
Magnesium	51	1.0	50.00	0	103	80	120		
Potassium	50	1.0	50.00	0	99.2	80	120		
Selenium	0.45	0.050	0.5000	0	90.1	80	120		
Silver	0.095	0.0050	0.1000	0	95.0	80	120		
Sodium	51	1.0	50.00	0	101	80	120		
Sample ID: 2007018-001DMS	Samp	Type: MS	3	Tes	tCode: E	PA 6010B: "	Total Recover	able Meta	als
Client ID: Injection Well #2	Bato	ch ID: 53	551	F	RunNo: 7	70197			
Prep Date: 7/7/2020	Analysis	Date: 7/	8/2020	S	SeqNo: 2	2439318	Units: mg/L		
Analyte	Result	PQL		SPK Ref Val	%REC		HighLimit	%RPD	RPDLimit
Arsenic	0.32	0.030	0.5000	0	63.1	75	125		
Barium	0.58	0.0020	0.5000	0.2229	71.2		125		
Cadmium	0.37	0.0020	0.5000	0	73.1	75	125		
Chromium	0.32	0.0060	0.5000	0	64.2		125		
Lead	0.33	0.020	0.5000	0	65.8		125		
Magnesium	97	1.0	50.00	52.48	88.9	75	125		

SPK value SPK Ref Val

TestCode: EPA

Qualifiers:

Client:

Project:

Client ID:

Analyte

Sample ID: MB-53551

Prep Date: 7/7/2020

PBW

Value exceeds Maximum Contaminant Level. *

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Practical Quanitative Limit PQL

% Recovery outside of range due to dilution or matrix S

Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

в Analyte detected in the associated Method Blank

WO#:	2007018
	17-Aug-20

Client: Project:	Western I Injection	-		st, Inc.							
Sample ID:	DE: 2007018-001DMS SampType: MS TestCode: EPA 6010B: Total Recove								able Meta	als	
Client ID:	Injection Well #2 Batch ID: 53551 RunNo: 70197										
Prep Date:	7/7/2020	Analysis	Date: 7/	8/2020	S	eqNo: 24	439318	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Potassium		60	1.0	50.00	12.98	94.1	75	125			
Selenium		0.32	0.050	0.5000	0	63.5	75	125			S
Silver		0.074	0.0050	0.1000	0	74.0	75	125			S
0 1 10	2007018-001DMS		T		T						
Sample ID:	2007018-001010131	J Samp	Type: MS	50	Ies		PA 6010B:	otal Recover	able Meta	als	
•	Injection Well #2		ch ID: 53			Code: EF		otal Recover	able Meta	als	
•		Bato		551	R		0197	Units: mg/L	able Meta	als	
Client ID:	Injection Well #2	Bato	ch ID: 53	551 8/2020	R	RunNo: 70	0197		%RPD	als RPDLimit	Qual
Client ID: Prep Date:	Injection Well #2	Bato Analysis	ch ID: 53: Date: 7/	551 8/2020	R	RunNo: 70 SeqNo: 24	0197 439319	Units: mg/L			Qual S
Client ID: Prep Date: Analyte Arsenic	Injection Well #2	Bato Analysis Result	ch ID: 53 Date: 7 / PQL	551 8/2020 SPK value	R S SPK Ref Val	RunNo: 70 SeqNo: 24 %REC	0197 439319 LowLimit	Units: mg/L HighLimit	%RPD	RPDLimit	
Client ID: Prep Date: Analyte	Injection Well #2	Bate Analysis Result 0.30	ch ID: 53 Date: 7 PQL 0.030	551 8/2020 SPK value 0.5000	R S SPK Ref Val 0	RunNo: 70 SeqNo: 24 %REC 59.7	0197 439319 LowLimit 75	Units: mg/L HighLimit 125	%RPD 5.44	RPDLimit 20	S
Client ID: Prep Date: Analyte Arsenic Barium	Injection Well #2	Bate Analysis Result 0.30 0.55	ch ID: 53 Date: 7 PQL 0.030 0.0020	551 8/2020 SPK value 0.5000 0.5000	R S SPK Ref Val 0 0.2229	RunNo: 70 GeqNo: 24 <u>%REC</u> 59.7 65.3	0197 439319 LowLimit 75 75	Units: mg/L HighLimit 125 125	%RPD 5.44 5.26	RPDLimit 20 20	S S
Client ID: Prep Date: Analyte Arsenic Barium Cadmium Chromium	Injection Well #2	Bate Analysis Result 0.30 0.55 0.35	ch ID: 538 Date: 7/8 PQL 0.030 0.0020 0.0020	551 8/2020 SPK value 0.5000 0.5000 0.5000	R S SPK Ref Val 0 0.2229 0	RunNo: 7 (BeqNo: 2 4 <u>%REC</u> 59.7 65.3 69.8	0197 439319 LowLimit 75 75 75	Units: mg/L HighLimit 125 125 125	%RPD 5.44 5.26 4.61	RPDLimit 20 20 20	S S S
Client ID: Prep Date: Analyte Arsenic Barium Cadmium Chromium Lead	Injection Well #2	Bate Analysis Result 0.30 0.55 0.35 0.31	ch ID: 538 Date: 7/2 0.030 0.0020 0.0020 0.0020	551 8/2020 SPK value 0.5000 0.5000 0.5000 0.5000	R S SPK Ref Val 0 0.2229 0 0 0	RunNo: 7 (GeqNo: 2 4 <u>%REC</u> 59.7 65.3 69.8 61.1	0197 439319 LowLimit 75 75 75 75	Units: mg/L HighLimit 125 125 125 125	%RPD 5.44 5.26 4.61 5.01	RPDLimit 20 20 20 20	S S S
Client ID: Prep Date: Analyte Arsenic Barium Cadmium Chromium Lead Magnesium	Injection Well #2	Bate Analysis Result 0.30 0.55 0.35 0.31 0.32	ch ID: 53 Date: 7/2 PQL 0.030 0.0020 0.0020 0.0060 0.020	551 8/2020 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000	R SPK Ref Val 0 0.2229 0 0 0 0 0	RunNo: 70 SeqNo: 24 %REC 59.7 65.3 69.8 61.1 63.9	0197 439319 LowLimit 75 75 75 75 75 75	Units: mg/L HighLimit 125 125 125 125 125 125	%RPD 5.44 5.26 4.61 5.01 2.92	RPDLimit 20 20 20 20 20 20	S S S
Client ID: Prep Date: Analyte Arsenic Barium Cadmium	Injection Well #2	Bate Analysis Result 0.30 0.55 0.35 0.31 0.32 91	ch ID: 53 Date: 7/2 PQL 0.030 0.0020 0.0020 0.0060 0.020 1.0	551 8/2020 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 50.00	SPK Ref Val 0 0.2229 0 0 0 0 0 52.48	RunNo: 70 SeqNo: 24 %REC 59.7 65.3 69.8 61.1 63.9 76.5	0197 439319 LowLimit 75 75 75 75 75 75 75 75	Units: mg/L HighLimit 125 125 125 125 125 125 125 125	%RPD 5.44 5.26 4.61 5.01 2.92 6.58	RPDLimit 20 20 20 20 20 20 20	S S S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 14

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	2007018
	17-Aug-20

Client: Project:	Western Refining Southwest, Inc. Injection Well 2 2Q2020
Sample ID: mb-1 a	alk SampType: mblk TestCode: SM2320B: Alkalinity
Client ID: PBW	Batch ID: R70195 RunNo: 70195
Prep Date:	Analysis Date: 7/7/2020 SeqNo: 2439098 Units: mg/L CaCO3
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity (as CaCC	D3) ND 20.00
Sample ID: Ics-1 a	Ik SampType: Ics TestCode: SM2320B: Alkalinity
Client ID: LCSW	Batch ID: R70195 RunNo: 70195
Prep Date:	Analysis Date: 7/7/2020 SeqNo: 2439099 Units: mg/L CaCO3
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity (as CaCC	D3)76.4020.0080.00095.590110
Sample ID: mb-2 a	alk SampType: mblk TestCode: SM2320B: Alkalinity
Client ID: PBW	Batch ID: R70195 RunNo: 70195
Prep Date:	Analysis Date: 7/7/2020 SeqNo: 2439121 Units: mg/L CaCO3
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity (as CaCC	D3) ND 20.00
Sample ID: Ics-2 a	Ik SampType: Ics TestCode: SM2320B: Alkalinity
Client ID: LCSW	Batch ID: R70195 RunNo: 70195
Prep Date:	Analysis Date: 7/7/2020 SeqNo: 2439122 Units: mg/L CaCO3
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity (as CaCC	D3) 77.32 20.00 80.00 0 96.7 90 110

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 14

WO#:	2007018
	17-Aug-20

	tern Refining Southwest, Inc. ction Well 2 2Q2020		
Sample ID: MB-53514	SampType: MBLK	TestCode: SM2540C MC	DD: Total Dissolved Solids
Client ID: PBW	Batch ID: 53514	RunNo: 70168	
Prep Date: 7/6/2020	Analysis Date: 7/8/2020	SeqNo: 2438320	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	ND 20.0		
Sample ID: LCS-53514	SampType: LCS	TestCode: SM2540C MC	DD: Total Dissolved Solids
Client ID: LCSW	Batch ID: 53514	RunNo: 70168	
Prep Date: 7/6/2020	Analysis Date: 7/8/2020	SeqNo: 2438321	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	1010 20.0 1000	0 101 80	120

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 14

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Albi TEL: 505-345-3975	Analysis Laboratory 4901 Hawkins NE uquerque, NM 87109 FAX: 505-345-4107 illenvironmental.com	san	nple Log-In Check	List
Client Name: Western Refining Southwest, Inc.	Work Order Number:	2007018		RcptNo: 1	
Received By: Emily Mocho	7/1/2020 8:05:00 AM				
Completed By: Emily Mocho	7/1/2020 10:48:41 AM				
Reviewed By: SPA 12:40 7.1-20					
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered?		Courier			
Log In 3. Was an attempt made to cool the samples?	,	Yes 🗹	No 🗌	NA 🗌	
4. Were all samples received at a temperature	of >0° C to 6.0°C	Yes 🔽	No 🗌	NA 🗌	
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
6. Sufficient sample volume for indicated test(s	5)?	Yes 🗸	No 🗌	100	
7. Are samples (except VOA and ONG) proper	ly preserved?	Yes 🖌	No 🗌	FILLED	
8. Was preservative added to bottles?		Yes	No 🖌	P=711/20 NA □	
9. Received at least 1 vial with headspace <1/4	4" for AQ VOA?	Yes 🗹	No 🗌		
10. Were any sample containers received broke	en?	Yes	No 🗹	# of preserved	
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🔽	No 🗌	for pH:	ss noted)
12. Are matrices correctly identified on Chain of	Custody?	Yes 🖌	No 🗌	Adjusted? Jec	5
13. Is it clear what analyses were requested?		Yes 🖌	No 🗌	0	1 1
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗌	Checked by: JR =	21120
<u>Special Handling (if applicable)</u>					
15. Was client notified of all discrepancies with	this order?	Yes	No 🗌	NA 🗹	
Person Notified: By Whom: Regarding: Client Instructions:	Date: Date: Via:] eMail 📋 Phone	e 🗌 Fax	In Person	
16. Additional remarks: 0.5 w Of t	thes was a	added to	Sai	MPIE OUID For	phc2
17. <u>Cooler Information</u> Fos ma	etals analy ealIntact Seal No S	PS: S. JP 7			

 HALL ENVIRONMENTAL HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 	Analysis Request			(1.)728 , <u>s</u> OI	. 405 or 8 3 , N , N	- \C 103 103 103 103	1etho 8 Me 3r, 1 6 Mo 3r, 1 6 7 0 1 1 0 1 1 0 1 1 0	S) 0728	3 3 1 1	X	×		X			X			See Attached Analytical Lift		y sub-contracted data will be clearly notated on the analytical report.
4901 Tel.			ЯМ\О	אם י	/ 03	4อ)	٩۶٢	08:H9T	-									 	Remarks:		ibility. An
		(1	.208) e'	am ⁻	L /	BE	(°C)	X TEX /					. 3-								of this possi
Turn-Around Time: Standard D Rush Project Name: Project #:	FO# 4560 83752	Project Manager:	K, Zobiusay	Sampler:	On Ice: 🛛 Yes 🗆 No		Cooler Temp(including cF): 2.0 ±0 = 2.0 (°(Container Preservative HEAL No. Type and # Thurst.	* 1	•	3-VOA HCI	1- 500ml poly NaDH	1 - SDOWL DUN Zu Acht	1-250ml Ru HNOS	5	ESCONE DE			Received by: Via: Date Time	Received by: Via: Dâte Time	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Chain-of-Custody Record Client: Western Refiniu Mailing Address: SD CR-4990 Bloomfield NN 87413	Phone #(SUS) 801 - Soll	email or Fax#:	QAVOC Package:	Accreditation:	D NELAC D Other	EDD (Type) Excel	2	Date Time Matrix Sample Name	/20 Witcher										Time:	Date: Time: Relinquished by:	1

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

immediately or within a specified time period, or assess a civil penalty, or both (see Section 74-6-10 NMSA 1978). The compliance order may also include a suspension or termination of this Discharge Permit. OCD may also commence a civil action in district court for appropriate relief, including injunctive relief (see Section 74-6-10(A)(2) NMSA 1978). The Permittee may be subject to criminal penalties for discharging a water contaminant without a discharge permit or in violation of a condition of a discharge permit; making any false material statement, representation, certification or omission of material fact in a renewal application, record, report, plan or other document filed, submitted or required to be maintained under the Water Quality Act; falsifying, tampering with or rendering inaccurate any monitoring device, method or record required to be maintained under the Water Quality Act; or failing to monitor, sample or report as required by a Discharge Permit issued pursuant to a state or federal law or regulation (see Section 74-6-10.2 NMSA 1978).

2. GENERAL FACILITY OPERATIONS:

2.A. QUARTERLY MONITORING REQUIREMENTS FOR CLASS I NON-

HAZARDOUS WASTE INJECTION WELL: The Permittee shall properly conduct waste management injection operations at its facility by injecting only non-hazardous (RCRA exempt and RCRA non-hazardous, non-exempt) oil field waste fluids. Injected waste fluids shall not exhibit the RCRA characteristics, i.e., ignitability, reactivity, corrosivity, or toxicity under 40 CFR 261 Subpart "C" 261.21 – 261.24 (July 1, 1992), at the point of injection into WDW-2, based upon environmental analytical laboratory testing. Pursuant to 20.6.2.5207B, the Permittee shall provide analyses of the injected fluids at least quarterly to yield data representative of their toxicity characteristic.

The Permittee shall also analyze the injected fluids quarterly for the following characteristics:

- • pH (Method 9040);
- • Eh;
- Specific conductance;
- Specific gravity;
 - Temperature;
- Major dissolved cations and anions, including: fluoride, calcium, potassium, magnesium, sodium bicarbonate, carbonate, chloride, sulfate, bromide, total dissolved solids, and cation/anion balance using the methods specified in 40 CFR 136.3); and,
- EPA RCRA Characteristics for Ignitability (ASTM Methods); Corrosivity (SW-846) and Reactivity (determined through Permittee's application of knowledge or generating process).

The Permittee shall analyze the injected fluids quarterly for the constituents identified in the Quarterly Monitoring List (below) to demonstrate that the injected fluids do not exhibit the characteristic of toxicity using the Toxicity Characteristic Leaching Procedure, EPA SW-846 Test Method 1311 (see Table 1, 40 CFR 261.24(b)).

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

QUARTERLY MONITORING LIST

EPA HW No.	Contaminant	SW-846 Methods	Regulatory Level (mg/L)
D004	Arsenic	1311	5.0
-D005	Barium	1311	100.0
D018	Benzene	8021B	0.5
D006	Cadmium	1311	1.0
D019	Carbon tetrachloride	8021B 8260B	0.5
D020	Chlordane	8081A	0.03
D021	Chlorobenzene	8021B 8260B	100.0
D022	Chloroform	8021B 8260B	6.0
D007	Chromium	1311	5.0
D023	o-Cresol	8270D	200.0
D024	m-Cresol	8270D	200.0
D025 .	p-Cresol	8270D	200.0
D026	Cresol	8270D	200.0
D027	1,4-Dichlorobenzene	8021B 8121 8260B 8270D	7.5
D028	1,2-Dichloroethane	8021B 8260B	0.5
D029	1,1-Dichloroethylene	8021B 8260B	0.7
D030	2,4-Dinitrotoluene	8091 8270D	0.13
D032	Hexachlorobenzene	8121	0.13
D033	Hexachlorobutadiene	8021B 8121 8260B	0.5
D034	Hexachloroethane	8121	3.0
2008	Lead	1311	5.0
2009	Mercury	7470A 7471B	0.2
	Methyl ethyl ketone	8015B 8260B	200.0
>036	Nitrobenzene	8091 8270D	2.0
0037	Pentrachlorophenol	8041	100.0
2038	Pyridine	8260B 8270D	5.0

Page 6

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

D010	Selenium	1311	1.0
D011	Silver	1311	5.0
D039	Tetrachloroethylene	8260B	0.7
D040	Trichloroethylene	8021B	0.5
		8260B	No. Contractor
D041	2,4,5-Trichlorophenol	8270D	400,0
D042	2,4,6-Trichlorophenol	8041A	2.0
		8270D	Second State
D043	Vinyl chloride	8021B	0.2
		8260B	"tenningar

If o-, m-, and p-cresol concentrations cannot be differentiated, then the total cresol (D026) concentration is used. The regulatory level of total cresol is 200 mg/L.

If the quantitation limit is greater than the regulatory level, then the quantitation limit becomes the regulatory level. If metals (dissolved), the EPA 1311 TCLP Laboratory Method is required with the exception of Mercury (total).

1. Monitor and Piezometer Wells: Groundwater with a total dissolved solids concentration of less than 10,000 mg/L occurs at an estimated depth of approximately 10 - 30 ft. below ground surface at the WDW-2 well (hereafter, "uppermost water-bearing unit"). Groundwater monitoring well (MW) with GW sampling capability shall be installed proximal to and hydrogeologically downgradient from WDW-2 in order to monitor the uppermost water-bearing unit. The MW shall be screened (15 ft. screen with top of screen positioned 5 ft. above water table) into the uppermost water-bearing unit. The Permittee shall propose a monitoring frequency with chemical monitoring parameters in order to detect potential groundwater contamination either associated with or not associated with WDW-2.

2.B. CONTINGENCY PLANS: The Permittee shall implement its proposed contingency plan(s) included in its application to cope with failure of a system(s) in the Discharge Permit.

2.C. CLOSURE: Prior to closure of the facility, the Permittee shall submit for OCD's approval, a closure plan including a completed form C-103 for plugging and abandonment of the waste injection well. The Permittee shall plug and abandon its well pursuant to 20.6.2.5209 NMAC and as specified in Permit Condition 2.D.

- Pre-Closure Notification: Pursuant to 20.6.2.5005A NMAC, the Permittee shall submit a pre-closure notification to OCD's Environmental Bureau at least 30 days prior to the date that it proposes to close or to discontinue operation of WDW-2. Pursuant to 20.6.2.5005B NMAC, OCD's Environmental Bureau must approve all proposed well closure activities before the Permittee may implement its proposed closure plan.
- 2. Required Information: The Permittee shall provide OCD's Environmental Bureau with the following information in the pre-closure notification specified in Permit Condition 2.C.1:
 - Name of facility;
 - Address of facility;
 - Name of Permittee (and owner or operator, if appropriate);

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

July 13, 2020

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX: (505) 632-3911

RE: Evaporation Ponds

OrderNo.: 2007061

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/1/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 2007061

Date Reported: 7/13/2020

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Eva

Lab ID:

Evaporation Ponds 2007061-001 Matrix: AQUEOUS Client Sample ID: Evap Pond South Collection Date: 6/30/2020 7:45:00 AM Received Date: 7/1/2020 8:05:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analyst	JME
Diesel Range Organics (DRO)	0.54	0.40		mg/L	1	7/7/2020 10:40:40 AM	53522
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	7/7/2020 10:40:40 AM	53522
Surr: DNOP	113	81.5-152		%Rec	1	7/7/2020 10:40:40 AM	53522
SM2340B: HARDNESS						Analyst	ags
Hardness (As CaCO3)	390	6.6		mg/L	1	7/7/2020 12:58:00 PM	R70149
EPA METHOD 300.0: ANIONS						Analyst	CJS
Fluoride	ND	1.0		mg/L	10	7/6/2020 6:28:24 PM	R70144
Chloride	1100	50	*	mg/L	100) 7/6/2020 6:41:15 PM	R70144
Bromide	3.7	1.0		mg/L	10	7/6/2020 6:28:24 PM	R70144
Phosphorus, Orthophosphate (As P)	ND	5.0	Н	mg/L	10	7/6/2020 6:28:24 PM	R70144
Sulfate	79	5.0		mg/L	10	7/6/2020 6:28:24 PM	R70144
Nitrate+Nitrite as N	ND	2.0		mg/L	10	7/6/2020 6:54:07 PM	R70144
SM2510B: SPECIFIC CONDUCTANCE						Analyst	JRR
Conductivity	4600	10		µmhos/c	1	7/7/2020 1:18:10 PM	R70195
SM2320B: ALKALINITY						Analyst	JRR
Bicarbonate (As CaCO3)	653.3	20.00		mg/L Ca	1	7/7/2020 1:18:10 PM	R70195
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	7/7/2020 1:18:10 PM	R70195
Total Alkalinity (as CaCO3)	653.3	20.00		mg/L Ca	1	7/7/2020 1:18:10 PM	R70195
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	KS
Total Dissolved Solids	2660	200	*D	mg/L	1	7/8/2020 6:10:00 PM	53532
EPA METHOD 200.7: METALS						Analyst	ags
Calcium	72	1.0		mg/L	1	7/7/2020 2:19:40 PM	53509
Iron	1.7	0.25	*	mg/L	5	7/7/2020 2:21:25 PM	53509
Magnesium	52	1.0		mg/L	1	7/7/2020 2:19:40 PM	53509
Manganese	0.20	0.0020	*	mg/L	1	7/7/2020 2:19:40 PM	53509
Potassium	13	1.0		mg/L	1	7/7/2020 2:19:40 PM	53509
Sodium	840	10		mg/L	10	7/7/2020 3:10:25 PM	53509
EPA METHOD 8015D: GASOLINE RANGE						Analyst	DJF
Gasoline Range Organics (GRO)	0.11	0.10		mg/L	2	7/9/2020 2:37:38 PM	GW7022
Surr: BFB	104	70-130		%Rec	2	7/9/2020 2:37:38 PM	GW7022
EPA METHOD 8260B: VOLATILES						Analyst	DJF
Benzene	ND	2.0		µg/L	2	7/9/2020 2:37:38 PM	W70228
Toluene	12	2.0		µg/L	2	7/9/2020 2:37:38 PM	W70228
Ethylbenzene	ND	2.0		µg/L	2	7/9/2020 2:37:38 PM	W70228
Methyl tert-butyl ether (MTBE)	ND	2.0		µg/L	2	7/9/2020 2:37:38 PM	W70228

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceededND Not Detected at the Reporting Limit

NDNot Detected at the ReportingPQLPractical Quanitative Limit

Qualifiers:

B Analyte detected in the associated Method BlankE Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 1 of 13

S % Recovery outside of range due to dilution or matrix

Lab Order 2007061

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Evaporation Ponds

2007061-001 Lab ID:

Client Sample ID: Evap Pond South Collection Date: 6/30/2020 7:45:00 AM Received Date: 7/1/2020 8:05:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
1,2,4-Trimethylbenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W7022
1,3,5-Trimethylbenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W7022
1,2-Dichloroethane (EDC)	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W7022
1,2-Dibromoethane (EDB)	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W7022
Naphthalene	ND	4.0	µg/L	2	7/9/2020 2:37:38 PM	W7022
1-Methylnaphthalene	ND	8.0	µg/L	2	7/9/2020 2:37:38 PM	W7022
2-Methylnaphthalene	ND	8.0	µg/L	2	7/9/2020 2:37:38 PM	W7022
Acetone	120	20	µg/L	2	7/9/2020 2:37:38 PM	W7022
Bromobenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W702
Bromodichloromethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W702
Bromoform	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W702
Bromomethane	ND	6.0	µg/L	2	7/9/2020 2:37:38 PM	W702
2-Butanone	ND	20	µg/L	2	7/9/2020 2:37:38 PM	W702
Carbon disulfide	ND	20	µg/L	2	7/9/2020 2:37:38 PM	W702
Carbon Tetrachloride	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W702
Chlorobenzene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
Chloroethane	ND	4.0	μg/L	2	7/9/2020 2:37:38 PM	W702
Chloroform	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
Chloromethane	ND	6.0	µg/L	2	7/9/2020 2:37:38 PM	W702
2-Chlorotoluene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
4-Chlorotoluene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
cis-1,2-DCE	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	2	7/9/2020 2:37:38 PM	W702
Dibromochloromethane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
Dibromomethane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
1,2-Dichlorobenzene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
1,3-Dichlorobenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W702
1,4-Dichlorobenzene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
Dichlorodifluoromethane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
1,1-Dichloroethane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
1,1-Dichloroethene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
1,2-Dichloropropane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
1,3-Dichloropropane	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
2,2-Dichloropropane	ND	4.0	µg/L	2	7/9/2020 2:37:38 PM	W702
1,1-Dichloropropene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W702
Hexachlorobutadiene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W702
2-Hexanone	ND	20	µg/L	2	7/9/2020 2:37:38 PM	W702
Isopropylbenzene	ND	2.0	μg/L	2	7/9/2020 2:37:38 PM	W7022

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

D Sample Diluted Due to Matrix Η

Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- J Analyte detected below quantitation limits

Sample pH Not In Range

Reporting Limit

Page 2 of 13

Analytical Report

Date Reported: 7/13/2020

Р RL

Analytical Report Lab Order 2007061

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Lab ID:

2007061-001

Client Sample ID: Evap Pond South Collection Date: 6/30/2020 7:45:00 AM Received Date: 7/1/2020 8:05:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
4-Isopropyltoluene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
4-Methyl-2-pentanone	ND	20	μg/L	2	7/9/2020 2:37:38 PM	W70228
Methylene Chloride	ND	6.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
n-Butylbenzene	ND	6.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
n-Propylbenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
sec-Butylbenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Styrene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
tert-Butylbenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,1,2,2-Tetrachloroethane	ND	4.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Tetrachloroethene (PCE)	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
trans-1,2-DCE	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
trans-1,3-Dichloropropene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,2,3-Trichlorobenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,2,4-Trichlorobenzene	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,1,1-Trichloroethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,1,2-Trichloroethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Trichloroethene (TCE)	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Trichlorofluoromethane	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
1,2,3-Trichloropropane	ND	4.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Vinyl chloride	ND	2.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Xylenes, Total	9.6	3.0	µg/L	2	7/9/2020 2:37:38 PM	W70228
Surr: 1,2-Dichloroethane-d4	104	70-130	%Rec	2	7/9/2020 2:37:38 PM	W70228
Surr: 4-Bromofluorobenzene	91.6	70-130	%Rec	2	7/9/2020 2:37:38 PM	W70228
Surr: Dibromofluoromethane	101	70-130	%Rec	2	7/9/2020 2:37:38 PM	W70228
Surr: Toluene-d8	99.8	70-130	%Rec	2	7/9/2020 2:37:38 PM	W70228

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: *

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 13

Date Reported: 7/13/2020

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	2007061
	13-Jul-20

Client:		Refining		st, Inc.							
Project:	Evapora	tion Ponds	8								
Sample ID:	MBLK-53509	Samp	Type: ME	BLK	Tes	TestCode: EPA Method 200.7: Metals					
Client ID:	PBW	Batch ID: 53509			F	RunNo: 7	0149				
Prep Date:	7/6/2020	Analysis	Date: 7/	7/2020	S	SeqNo: 24	437613	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium		ND	1.0								
Iron		ND	0.050								
Magnesium		ND	1.0								
Manganese		ND	0.0020								
Potassium		ND	1.0								
Sodium		ND	1.0								
Sample ID:	LLLCS-53509	Samp	Type: LC	SLL	Tes	tCode: El	PA Method	200.7: Metals			
Client ID:	BatchQC	Bato	ch ID: 53	509	F	RunNo: 7	0149				
Prep Date:	7/6/2020	Analysis	Date: 7/	7/2020	S	SeqNo: 24	437614	Units: mg/L			
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium		ND	1.0	0.5000	0	110	50	150			
Iron		ND	0.050	0.02000	0	111	50	150			
Magnesium		ND	1.0	0.5000	0	106	50	150			
Manganese		0.0020	0.0020	0.002000	0	102	50	150			
Potassium		ND	1.0	0.5000	0	78.7	50	150			
Sodium		ND	1.0	0.5000	0	134	50	150			
Sample ID:	LCS-53509	Samp	Type: LC	S	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID:	LCSW	Bate	ch ID: 53	509	F	RunNo: 7	0149				
Client ID: Prep Date:		Bato Analysis				RunNo: 70 SeqNo: 24		Units: mg/L			
Prep Date: Analyte		Analysis Result	Date: 7 / PQL	7/2020 SPK value	SPK Ref Val	eqNo: 24 %REC	437615 LowLimit	HighLimit	%RPD	RPDLimit	Qual
Prep Date: Analyte		Analysis Result 49	Date: 7 / PQL 1.0	7/2020 SPK value 50.00	SPK Ref Val	SeqNo: 24 %REC 97.3	437615 LowLimit 85	HighLimit 115	%RPD	RPDLimit	Qual
Prep Date: Analyte Calcium		Analysis Result 49 0.47	Date: 7/ PQL 1.0 0.050	7/2020 SPK value 50.00 0.5000	SPK Ref Val	SeqNo: 24 %REC 97.3 93.7	437615 LowLimit 85 85	HighLimit 115 115	%RPD	RPDLimit	Qual
Prep Date:		Analysis Result 49	Date: 7 / PQL 1.0	7/2020 SPK value 50.00	SPK Ref Val	SeqNo: 24 %REC 97.3	437615 LowLimit 85	HighLimit 115	%RPD	RPDLimit	Qual
Prep Date: Analyte Calcium Iron		Analysis Result 49 0.47	Date: 7/ PQL 1.0 0.050	7/2020 SPK value 50.00 0.5000	SPK Ref Val 0 0	SeqNo: 24 %REC 97.3 93.7	437615 LowLimit 85 85	HighLimit 115 115	%RPD	RPDLimit	Qual
Prep Date: Analyte Calcium Iron Magnesium		Analysis Result 49 0.47 49	Date: 7 / PQL 1.0 0.050 1.0	7/2020 SPK value 50.00 0.5000 50.00	SPK Ref Val 0 0 0	SeqNo: 2 4 %REC 97.3 93.7 98.2	437615 LowLimit 85 85 85	HighLimit 115 115 115	%RPD	RPDLimit	Qual

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

WO#:	2007061

13-Jul-20

	Western Refining Evaporation Pond		st, Inc.							
		5								
Sample ID: MB	Samp	Type: m l	olk	Test	tCode: El	PA Method	300.0: Anions	6		
Client ID: PBW	Bat	ch ID: R7	0144	R	RunNo: 7	0144				
Prep Date:	Analysis	Date: 7/	6/2020	S	eqNo: 24	437459	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Bromide	ND	0.10								
Phosphorus, Orthophosph	nate (As P ND	0.50								
Filospiloius, Ortilopilospil										
Sulfate	ND	0.50								
1 1 1	1	0.50 0.20								
Sulfate	ND ND		;	Tes	tCode: El	PA Method	300.0: Anions			
Sulfate Nitrate+Nitrite as N	ND ND Samp	0.20			tCode: EF		300.0: Anions	5		
Sulfate Nitrate+Nitrite as N Sample ID: LCS	ND ND Samp Bat	0.20 Type: Ics	0144	R)144	300.0: Anions Units: mg/L	5		
Sulfate Nitrate+Nitrite as N Sample ID: LCS Client ID: LCSW	ND ND Samp Bat	0.20 Type: Ics ch ID: R7	0144 6/2020	R	RunNo: 7)144		s %RPD	RPDLimit	Qual
Sulfate Nitrate+Nitrite as N Sample ID: LCS Client ID: LCSW Prep Date:	ND ND Samp Bat Analysis	0.20 Type: Ics ch ID: R7 Date: 7/	0144 6/2020	R	RunNo: 70 SeqNo: 24	0144 437460	Units: mg/L		RPDLimit	Qual
Sulfate Nitrate+Nitrite as N Sample ID: LCS Client ID: LCSW Prep Date: Analyte	ND ND Samp Bat Analysis Result	0.20 Type: Ics ch ID: R7 Date: 7/ PQL	0144 6/2020 SPK value	R S SPK Ref Val	RunNo: 70 SeqNo: 24 %REC	0144 137460 LowLimit	Units: mg/L HighLimit		RPDLimit	Qual
Sulfate Nitrate+Nitrite as N Sample ID: LCS Client ID: LCSW Prep Date: Analyte Fluoride	ND ND Samp Bat Analysis Result 0.46	0.20 DType: Ics ch ID: R7 Date: 7/ PQL 0.10	0144 6/2020 SPK value 0.5000	R S SPK Ref Val 0	RunNo: 70 SeqNo: 24 %REC 91.4	0144 437460 LowLimit 90	Units: mg/L HighLimit 110		RPDLimit	Qual
Sulfate Nitrate+Nitrite as N Sample ID: LCS Client ID: LCSW Prep Date: Analyte Fluoride Chloride	ND ND Samp Bat Analysis Result 0.46 4.8 2.4	0.20 DType: Ics ch ID: R7 Date: 7/ PQL 0.10 0.50	0144 6/2020 SPK value 0.5000 5.000	R S SPK Ref Val 0 0	RunNo: 70 SeqNo: 24 <u>%REC</u> 91.4 95.5	0144 437460 LowLimit 90 90	Units: mg/L HighLimit 110 110		RPDLimit	Qual
Sulfate Nitrate+Nitrite as N Sample ID: LCS Client ID: LCSW Prep Date: Analyte Fluoride Chloride Bromide	ND ND Samp Bat Analysis Result 0.46 4.8 2.4	0.20 DType: Ics ch ID: R7 Date: 7/ PQL 0.10 0.50 0.10	6/2020 SPK value 0.5000 5.000 2.500	R SPK Ref Val 0 0 0	RunNo: 7 6 BeqNo: 2 6 <u>%REC</u> 91.4 95.5 97.2	0144 437460 LowLimit 90 90 90	Units: mg/L HighLimit 110 110 110		RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Result

3.4

0.30

PQL

0.40

Client: Project:	Western Refi Evaporation		ithwes	st, Inc.							
Sample ID: MB-5	3522	SampTyp	e: MB	LK	Test	Code: EF					
Client ID: PBW		Batch II	D: 535	522	R	unNo: 7()147				
Prep Date: 7/6/	2020 An	alysis Dat	e: 7/7	7/2020	S	eqNo: 24	37591	Units: mg/L			
Analyte	R	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organic	s (DRO)	ND	0.40								
Motor Oil Range Orga	nics (MRO)	ND	2.5								
Surr: DNOP		0.51		0.5000		101	81.5	152			
Sample ID: LCS-	53522	SampTyp	e: LC	S	Test	Code: EF	PA Method	8015D: Diese	Range		
Client ID: LCS	N	Batch II	D: 535	522	R	unNo: 7()147				
Prep Date: 7/6/	2020 An	alysis Dat	e: 7/7	7/2020	S	eqNo: 24	37592	Units: mg/L			
Analyte	R	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organic	s (DRO)	3.1	0.40	2.500	0	123	82	138			
Surr: DNOP		0.25		0.2500		99.2	81.5	152			
Sample ID: 2007	061-001BMS	SampTyp	e: MS		Test	Code: EF	A Method	8015D: Diese	Range		
Client ID: Evap	Pond South	Batch II	D: 535	522	R	unNo: 7()147				
Prep Date: 7/6/	2020 An	alysis Dat	e: 7 /7	7/2020	S	eqNo: 24	37594	Units: mg/L			
Analyte	R	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organic	s (DRO)	3.5	0.40	2.500	0.5436	118	70.1	159			
Surr: DNOP		0.30		0.2500		120	81.5	152			
Sample ID: 2007	061-001BMSD	SampTyp	e: MS	D	Test	Code: EF	A Method	8015D: Diese	Range		
Client ID: Evap	Pond South	Batch II	D: 535	522	R	unNo: 7()147				
Prep Date: 7/6/	2020 An	alysis Dat	e: 7/7	7/2020	S	eqNo: 24	37595	Units: mg/L			

SPK value SPK Ref Val

2.500

0.2500

0.5436

Qualifiers:

Analyte

Surr: DNOP

Diesel Range Organics (DRO)

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

в Analyte detected in the associated Method Blank

%REC

115

119

LowLimit

70.1

81.5

HighLimit

159

152

%RPD

1.96

0

RPDLimit

20

0

Qual

- Е Value above quantitation range
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

WO#:	2007061
	13-Jul-20

	rn Refining So ration Ponds	outhwe	st, Inc.							
Sample ID: mb1	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch	ID: W7	70228	RunNo: 70228						
Prep Date:	Analysis D	ate: 7/	9/2020	S	SeqNo: 2	440715	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

WO#:	2007061
	13-Jul-20

	rn Refining S	outhwe	st, Inc.							
Project: Evapor	ration Ponds									
Sample ID: mb1	SampT	ype: ME	BLK	Tes	TestCode: EPA Method 8260B: VOLATILES					
Client ID: PBW	Batch	Batch ID: W70228			RunNo: 70	0228				
Prep Date:	Analysis D	ate: 7/	9/2020	S	SeqNo: 24	440715	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
	ND									
1,1,1-Trichloroethane		1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130			
Surr: 4-Bromofluorobenzene	9.1		10.00		91.4	70	130			
Surr: Dibromofluoromethane	10		10.00		99.8	70	130			
Surr: Toluene-d8	10		10.00		100	70	130			
Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	1D: W	70228	F	RunNo: 7	0228				
Prep Date:	Analysis D	ate: 7/	9/2020	S	SeqNo: 24	440716	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	111	70	130			
Toluene	21	1.0	20.00	0	106	70	130			
Chlorobenzene	20	1.0	20.00	0	101	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Page 8 of 13

WO#:	2007061
	13-Jul-20

Client: Western Refining Southwest, Inc.

Project: Evaporation Ponds

Sample ID: 100ng Ics Client ID: LCSW	SampType: LCS Batch ID: W70228			TestCode: EPA Method 8260B: VOL/ RunNo: 70228				ATILES		
Prep Date:	Analysis D	ate: 7/	9/2020	5	SeqNo: 24	440716	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	22	1.0	20.00	0	109	70	130			
Trichloroethene (TCE)	19	1.0	20.00	0	95.3	70	130			
Surr: 1,2-Dichloroethane-d4	9.5		10.00		95.2	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		92.8	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.7		10.00		97.4	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 13

Client: Project:		Refining S ion Ponds	outhwe	st, Inc.							
Sample ID: Ics-1 9	99.5uS eC	SampT	ype: Ics	;	Tes	tCode: SI	M2510B: Sp	pecific Condu	uctance		
Client ID: LCSW	1	Batch	n ID: R7	0195	F	RunNo: 7 0	0195				
Prep Date:		Analysis D)ate: 7/	7/2020	S	SeqNo: 24	439134	Units: µmho	os/cm		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		99	10	99.50	0	99.8	85	115			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р
- RL Reporting Limit

Page 10 of 13

- Sample pH Not In Range

Client: Project:	Western Re Evaporation	U	uthwes	st, Inc.							
Sample ID: mb1		SampTyp	be: ME	BLK	Tes	tCode: El	PA Method	8015D: Gasol	ine Rang	e	
Client ID: PBW		Batch I	D: GV	V70228	F	RunNo: 70	0228				
Prep Date:	A	Analysis Dat	te: 7 /	9/2020	S	eqNo: 24	440763	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Orgar Surr: BFB	nics (GRO)	ND 11	0.050	10.00		105	70	130			
Sample ID: 2.5ug	gro lcs	SampTyp	be: LC	S	Tes	tCode: El	PA Method	8015D: Gasol	ine Rang	e	
Client ID: LCSV	v	Batch I	D: GV	V70228	F	RunNo: 7	0228				
Prep Date:	A	Analysis Dat	te: 7 /	9/2020	S	eqNo: 24	440764	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organ	nics (GRO)		0.050	0.5000	0	96.7	70	130			
Surr: BFB		10		10.00		102	70	130			
Sample ID: 20070	061-001ams	SampTyp	be: MS	3	Tes	tCode: El	PA Method	8015D: Gasol	ine Rang	e	
Client ID: Evap	Pond South	Batch I	D: GV	V70228	F	lunNo: 7	0228				
Prep Date:	A	Analysis Dat	te: 7/	9/2020	5	eqNo: 24	440766	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Orgar	nics (GRO)	1.1	0.10	1.000	0.1140	99.4	70	130			
Surr: BFB		21		20.00		104	70	130			
Sample ID: 20070)61-001amsd	SampTyp	be: MS	SD.	Tes	tCode: El	PA Method	8015D: Gasol	ine Rang	e	
Client ID: Evap	Pond South	Batch I	D: GV	V70228	F	RunNo: 7	0228				
Prep Date:	A	Analysis Dat	te: 7/	9/2020	S	eqNo: 24	440767	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organ	nics (GRO)	1.1	0.10	1.000	0.1140	95.2	70	130	3.86	20	
Surr: BFB		21		20.00		103	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 13

WO#: 2007061 13-Jul-20

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	2007061

13-Jul-20

Client: Project:	Western Refining Southwest, Inc. Evaporation Ponds
Sample ID: mb-1 a	alk SampType: mblk TestCode: SM2320B: Alkalinity
Client ID: PBW	Batch ID: R70195 RunNo: 70195
Prep Date:	Analysis Date: 7/7/2020 SeqNo: 2439098 Units: mg/L CaCO3
Analyte Total Alkalinity (as CaCo	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 03) ND 20.00
Sample ID: Ics-1 a	alk SampType: Ics TestCode: SM2320B: Alkalinity
Client ID: LCSW	Batch ID: R70195 RunNo: 70195
Prep Date:	Analysis Date: 7/7/2020 SeqNo: 2439099 Units: mg/L CaCO3
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity (as CaCo	03) 76.40 20.00 80.00 0 95.5 90 110
Sample ID: mb-2 a	alk SampType: mblk TestCode: SM2320B: Alkalinity
Client ID: PBW	Batch ID: R70195 RunNo: 70195
Prep Date:	Analysis Date: 7/7/2020 SeqNo: 2439121 Units: mg/L CaCO3
Analyte Total Alkalinity (as CaCo	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 03) ND 20.00 </td
Sample ID: Ics-2 a	alk SampType: Ics TestCode: SM2320B: Alkalinity
Client ID: LCSW	Batch ID: R70195 RunNo: 70195
Prep Date:	Analysis Date: 7/7/2020 SeqNo: 2439122 Units: mg/L CaCO3
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity (as CaCo	03) 77.32 20.00 80.00 0 96.7 90 110

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

WO#:	2007061
	13-Jul-20

	tern Refining Southwest, Inc. poration Ponds		
Sample ID: MB-53532	SampType: MBLK	TestCode: SM2540C MC	D: Total Dissolved Solids
Client ID: PBW	Batch ID: 53532	RunNo: 70189	
Prep Date: 7/7/2020	Analysis Date: 7/8/2020	SeqNo: 2438885	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	ND 20.0		
Sample ID: LCS-53532	SampType: LCS	TestCode: SM2540C MC	DD: Total Dissolved Solids
Client ID: LCSW	Batch ID: 53532	RunNo: 70189	
Prep Date: 7/7/2020	Analysis Date: 7/8/2020	SeqNo: 2438886	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	995 20.0 1000	0 99.5 80	120

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 13

	ANAL	CONMENTAL YSIS RATORY	Hall Environmenta Alb TEL: 505-345-397: Website: clients.hu	4901 Hawkin buquerque, NM 8 5 FAX: 505-345-	77109 San 4107	nple Log-In Check List
CI	ient Name:	Western Refining Southwest, Inc.	Work Order Number	r: 2007061		RcptNo: 1
Re	ceived By:	Emily Mocho	7/1/2020 8:05:00 AM			
Co	mpleted By:	John Caldwell	7/1/2020 2:33:35 PM		John Cella	41/
Re	viewed By:	SPA	7.2.20		<i>y</i>	
Ch	ain of Cus	<u>tody</u>				
1.	Is Chain of C	ustody complete?		Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?		Courier		
	o g In Was an attern	pt made to cool the samples?	2	Yes 🔽	No 🗌	NA 🗌
4. V	Were all samp	oles received at a temperature	e of >0° C to 6.0°C	Yes 🗸	No 🗌	
5. s	Sample(s) in p	proper container(s)?		Yes 🗹	No 🗌	
6. 5	Sufficient sam	ple volume for indicated test(s	5)?	Yes 🔽	No 🗌	
7. A	Are samples (except VOA and ONG) proper	ly preserved?	Yes 🗸	No 🗌	
8. V	Vas preservat	tive added to bottles?		Yes 🗌	No 🔽	NA 🗌
9. F	Received at le	ast 1 vial with headspace <1/4	4" for AQ VOA?	Yes 🔽	No 🗌	
10. \	Nere any san	nple containers received broke	en?	Yes	No 🔽	# of preserved
	and the second	rk match bottle labels? incies on chain of custody)		Yes 🔽	No 🗌	for pH:
12. A	re matrices c	orrectly identified on Chain of	Custody?	Yes 🔽	No 🗌	Adjusted? No
13. ls	s it clear what	analyses were requested?		Yes 🖌	No 🗌	
		ng times able to be met?		Yes 🔽	No 🗌	Checked by: EM 7/2/20
(1	n no, notity cu	istomer for authorization.)			L	
Spe	cial Handli	ing (if applicable)				
15.\	Nas client no	tified of all discrepancies with	this order?	Yes	No 🗌	NA 🔽
	Person	Notified:	Date			
	By Who	m:	Via:	eMail 🗌 P	hone 🗌 Fax	In Person
	Regardi	na:			Constraint and an other states of the second	

16. Additional remarks:

Client Instructions:

17. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	2.0	Good				

HALLENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Tel. 505-345-3975 Fax 505-345-4107	BTEX / MTBE / TMB's (8021) TPH:8015D(GRO / DRO / MRO) 8081 Pesticides/8082 PCB's PAHs by 8310 or 8270SIMS RCRA 8 Metals CI, F, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ 8260 (VOA) 8260 (VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2017 (Semi-VOA) 2017 (Semi-VOA) 2016 (Semi-VOA) 2017 (Sem	Kemarks:	possibility. Any sub-contracted data will be clearly notated on the analytical report.
Client: Western Refinit Turn-Around Time: Client: Western Refinit Project Name: Mailing Address: SD CR UPOR Project Mane: Blowfield, NM 97413 Project #: Phone #: SD5 BO1-SD1 L PO-# 4500193752	email or Fax#: Project Manager: QA/QC Package: QA/QC Package: Image: Image: Image:		necessary samples submitted to Hall Environmental may be subcontracted to other a

GWC			
pH	SM 4500-11+B		
<u> </u>	SM 2510B		
TDS	SM 2540C MOD	1 500ml (mm mm m	
alkalinity	SM 2320B	t - 500ml (non preserved)	
hardness	SM12340B		
	EPA Method 300.0		
	nitrate nitrite		/
	bromide	1 - 250ml H2SO4	
ANIONS	chloride		
	sulfate		$1 \leq r$
	phosporus)0
and the set of the set	fluoride		6
	EPA Method 200.7		
	calcium #	1 - 500ml HNO3	
	iron -		
ATIONS / METALS	magnesium -		
	manganese -		1/
	potassium –		
	sodium _		
	EPA Method 200.7	n an	
	barium —		
	beryllium_		
	cadmium		1
	chromium		1
	silver –		
	lead		
			1
Metals	EPA 280.8	1 ~ 500ml HNO3	
	copper -	1 ~ 500mi HNO3	
	zinc -		
	antimony_		
	arsenic –		
	sclenium -		
	thallium -		
	Epa Method 245.1		
Γ	mercury		

Scanned with CamScanner

DAILY RATE HISTORY

WDW#2 Daily Injection Rates and Pressures

	WDW#2	WDW#2
Date/Time	Daily Rates	Pressure
	(gpm)	(psig)
05/28/20 00:00	0	595
05/29/20 00:00	27	1233
05/30/20 00:00	26	1316
05/31/20 00:00	0	984
06/01/20 00:00	0	791
06/02/20 00:00	0	740
06/03/20 00:00	0	713
06/04/20 00:00	0	694
06/05/20 00:00	0	681
06/06/20 00:00	0	670
06/07/20 00:00	0	661
06/08/20 00:00	0	653
06/09/20 00:00	0	647
06/10/20 00:00	0	641
06/11/20 00:00	0	636
06/12/20 00:00	0	631
06/13/20 00:00	0	627
06/14/20 00:00	0	623
06/15/20 00:00	0	619
06/16/20 00:00	0	616
06/17/20 00:00	0	613
06/18/20 00:00	0	610
06/19/20 00:00	0	607
06/20/20 00:00	0	605
06/21/20 00:00	0	602
06/22/20 00:00	0	600
06/23/20 00:00	0	597
06/24/20 00:00	0	772
06/25/20 00:00	0	636
06/26/20 00:00	0	618
06/27/20 00:00	0	610
06/28/20 00:00	0	605
06/29/20 00:00	0	601
06/30/20 00:00	33	1252
07/01/20 00:00	0	919
07/02/20 00:00	0	733
07/03/20 00:00	0	690
07/04/20 00:00	0	669
07/05/20 00:00	0	655
07/06/20 00:00	0	644
07/07/20 00:00	0	636

WDW#2 Daily Injection Rates and Pressures

	WDW#2	WDW#2
Date/Time	Daily Rates	Pressure
	(gpm)	(psig)
07/08/20 00:00	0	629
07/09/20 00:00	0	624
07/10/20 00:00	0	618
07/11/20 00:00	0	614
07/12/20 00:00	0	610
07/13/20 00:00	0	607
07/14/20 00:00	0	603
07/15/20 00:00	0	600
07/16/20 00:00	0	597
07/17/20 00:00	0	595
07/18/20 00:00	0	592
07/19/20 00:00	0	590
07/20/20 00:00	0	588
07/21/20 00:00	0	586
07/22/20 00:00	0	584
07/23/20 00:00	0	582
07/24/20 00:00	0	580
07/25/20 00:00	0	578
07/26/20 00:00	0	576
07/27/20 00:00	0	575
07/28/20 00:00	0	573
07/29/20 00:00	0	572
07/30/20 00:00	0	570
07/31/20 00:00	0	569
08/01/20 00:00	0	567
08/02/20 00:00	0	566
08/03/20 00:00	0	565
08/04/20 00:00	0	563
08/05/20 00:00	0	562
08/06/20 00:00	0	561
08/07/20 00:00	0	560
08/08/20 00:00	0	559
08/09/20 00:00	0	557
08/10/20 00:00	0	556
08/11/20 00:00	0	555
08/12/20 00:00	0	554
08/13/20 00:00	0	553
08/14/20 00:00	0	552
08/15/20 00:00	0	551
08/16/20 00:00	0	550
08/17/20 00:00	0	549

WDW#2 Daily Injection Rates and Pressures

	WDW#2	WDW#2
Date/Time	Daily Rates	Pressure
	(gpm)	(psig)
08/18/20 00:00	0	548
08/19/20 00:00	0	547
08/20/20 00:00	0	546
08/21/20 00:00	0	545
08/22/20 00:00	0	544
08/23/20 00:00	0	544
08/24/20 00:00	0	543
08/25/20 00:00	0	542
08/26/20 00:00	0	541
08/27/20 00:00	0	540
08/28/20 00:00	0	540
08/29/20 00:00	0	539
08/30/20 00:00	0	538
08/31/20 00:00	0	537
09/01/20 00:00	0	536
09/02/20 00:00	0	535
09/03/20 00:00	0	535
09/04/20 00:00	0	534
09/05/20 00:00	0	533
09/06/20 00:00	0	533
09/07/20 00:00	0	532
09/08/20 00:00	0	531
09/09/20 00:00	0	531
09/10/20 00:00	0	530
09/11/20 00:00	0	529
09/12/20 00:00	0	528
09/13/20 00:00	0	528
09/14/20 00:00	0	527
09/15/20 00:00	0	527
09/16/20 00:00	0	526
09/17/20 00:00	0	525
09/18/20 00:00	0	534
09/19/20 00:00	23	1064
09/20/20 00:00	22	1180
09/21/20 14:24	22	1291

APPENDIX E

GAUGE CALIBRATION CERTIFICATES

Gauge Model Gauge S/N

SP-2000 240

Pressure Ra	ange	5 K
Accuracy	0.05%	Full Scale

Applied Pressure	Recorded Pressure	Diff	erence
psig	psig	psi	Percent (%)
0.01	0.01	0.00	0.0000%
774.08	772.99	-1.09	-0.0218%
1498.24	1496.97	-1.27	-0.0254%
2222.36	2221.20	-1.16	-0.0232%
2946.53	2945.44	-1.09	-0.0218%
3670.66	3669.59	-1.07	-0.0214%
4394.87	4393.80	-1.07	-0.0214%
5119.00	5118.01	-0.99	-0.0198%
4394.87	4393.83	-1.04	-0.0208%
3670.66	3669.56	-1.10	-0.0220%
2946.53	2945.51	-1.02	-0.0204%
2222.36	2221.22	-1.14	-0.0228%
1498.24	1496.99	-1.25	-0.0250%
774.08	772.81	-1.27	-0.0254%
0.01	0.01	0.00	0.0000%

Oven Temperature: 2

218.7 °F Probe Temperature:

218.6 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

Gauge Model	SP-2000	Pressure Range	5 K
Gauge S/N	240	Accuracy 0.05	5% Full Scale
Applied	Recorded		
Pressure	Pressure	Diffe	rence
psig	psig	psi	Percent (%)
0.01	2.38	2.37	0.0474%
774.08	776.30	2.22	0.0444%
1498.24	1500.18	1.94	0.0388%
2222.36	2224.29	1.94	0.0386%
2946.53	2948.24	1.95	0.0342%
3670.66	3672.19	1.53	0.0306%
4394.87	4396.25	1.35	0.0276%
5119.00	5120.28	1.28	0.0256%
4394.87	4396.11	1.28	
3670.66			0.0248%
	3671.87	1.21	0.0242%
2946.53	2947.80	1.27	0.0254%
2222.36	2223.58	1.22	0.0244%
1498.24	1499.16	0.92	0.0184%
774.08	775.38	1.30	0.0260%
0.01	1.82	1.81	0.0362%
			Sanatan di kacamatan

Oven Temperature: 254.1 °F

Probe Temperature:

.

253.4 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

Gauge Model Gauge S/N SP-2000 262 Pressure Range5 KAccuracy0.05%Full Scale

Applied Pressure	Recorded Pressure	Diffe	Difference	
psig	psig	psi	Percent (%)	
0.01	1.00	0.99	0.0198%	
0.01	1.00	0.99	0.0154%	
774.08	774.85			
1498.24	1499.96	1.72	0.0344%	
2222.36	2222.84	0.48	0.0096%	
2946.53	2947.01	0.48	0.0096%	
3670.66	3671.21	0.55	0.0110%	
4394.87	4395.43	0.56	0.0112%	
5119.00	5119.62	0.62	0.0124%	
4394.87	4395.86	0.99	0.0198%	
3670.66	3671.85	1.19	0.0238%	
2946.53	2947.85	1.32	0.0264%	
2222.36	2223.50	1.14	0.0228%	
1498.24	1499.51	1.27	0.0254%	
774.08	775.37	1.29	0.0258%	
0.01	1.52	1.51	0.0302%	

Oven Temperature:

e: 218.9 °F

Probe Temperature:

218.6 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

Gauge Model	SP-2000	Pressure Range	5 K
Gauge S/N	262	Accuracy 0.05%	Full Scale

Applied	Recorded		
Pressure	Pressure	Diffe	erence
psig	psig	psi	Percent (%)
0.01	1.40	1.00	0.00700/
0.01	1.40	1.39	0.0278%
774.08	774.85	0.77	0.0154%
1498.24	1499.96	1.72	0.0344%
2222.36	2222.84	0.48	0.0096%
2946.53	2947.01	0.48	0.0096%
3670.66	3671.51	0.85	0.0170%
4394.87	4395.43	0.56	0.0112%
5119.00	5119.62	0.62	0.0124%
4394.87	4395.86	0.99	0.0198%
3670.66	3671.85	1.19	0.0238%
2946.53	2947.80	1.27	0.0254%
2222.36	2223.52	1.16	0.0232%
1498.24	1499.51	1.27	0.0254%
774.08	775.37	1.29	0.0258%
0.01	1.52	1.51	0.0302%

Oven Temperature:

254.1 °F

Probe Temperature:

253.4 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

APPENDIX F

PANSYSTEM© ANALYSIS OUTPUT

WSP USA	Report File:	LKM 2020 PanSystem WDW
PanSystem Version 3.5		
Well Test Analysis Report		
Company	Western Refining Company	
Well	Waste Disposal Well No. 2	
Location	Bloomfield, New Mexico	
Test	Pressure Buildup/Falloff Test	
Date		
Gauge Depth	7312	
Gauge Type/Serial Number	Micro-Smart Systems/SP2000/#240	
Analyst	LKM	
WSP USA Project No.	N/A	

Report File:

PanSystem Version 3.5

Well Test Analysis Report

Reservoir Description

Fluid type : Water Well orientation : Vertical Number of wells : 1 Number of layers : 1

Layer Parameters Data

	Entrada Sandstone
Formation thickness	123.0000 ft
Average formation porosity	0.1490
Water saturation	0.0000
Gas saturation	0.0000
Formation compressibility	0.000000 psi-1
Total system compressibility	4.4400e-6 psi-1
Layer pressure	3632.369000 psia
Temperature	181.710000 deg F

Well Parameters Data

	WDW-2
Well radius	0.3281 ft
Distance from observation to active well	0.000000 ft
Wellbore storage coefficient	0.02338 bbl/psi
Storage Amplitude	0.000000 psi
Storage Time Constant	0.000000 hr
Second Wellbore Storage	0.000000 bbl/psi
Time Change for Second Storage	0.000000 hr
Well offset - x direction	0.0000 ft
Well offset - y direction	0.0000 ft

Fluid Parameters Data

	Entrada Sandstone
Oil gravity	0.000000 API
Gas gravity	0.000000 sp grav
Gas-oil ratio (produced)	0.000000 scf/STB
Water cut	0.000000
Water salinity	0.000000 ppm
Check Pressure	3698.530000 psia
Check Temperature	181.710000 deg F
Gas-oil ratio (solution)	0.000000 scf/STB
Bubble-point pressure	0.000000 psia
Oil density	0.000 lb/ft3

Report File:

LKM 2020 PanSystem WDW-2.pa

PanSystem Version 3.5

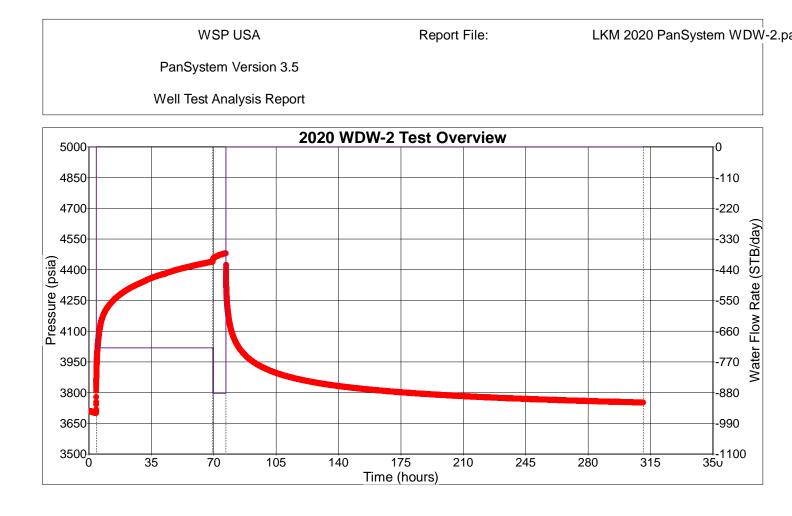
Well Test Analysis Report

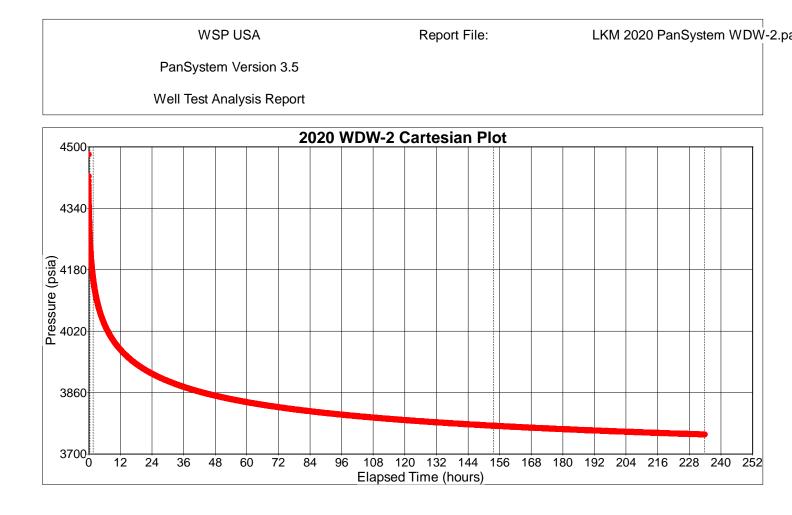
Fluid Parameters Data (cont)

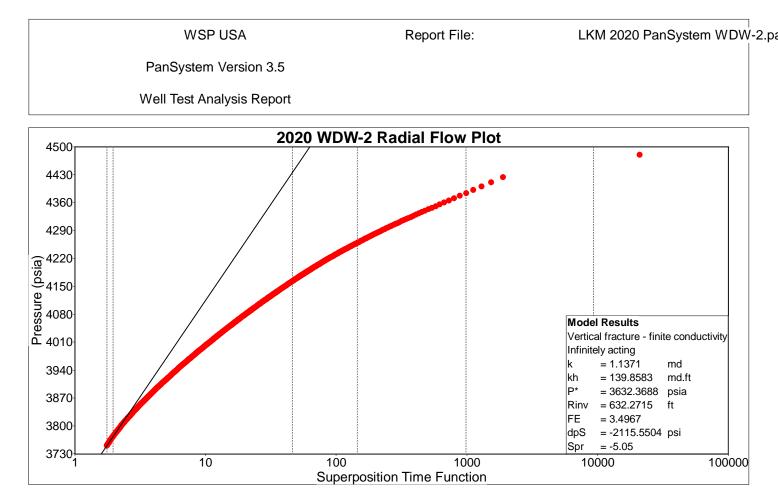
	Entrada Sandstone
Oil viscosity	0.000 cp
Oil formation volume factor	0.000 RB/STB
Gas density	0.000 lb/ft3
Gas viscosity	0.0 cp
Gas formation volume factor	0.000 ft3/scf
Water density	62.1852 lb/ft3
Water viscosity	0.470 cp
Water formation volume factor	1.000 RB/STB
Oil compressibility	0.000000 psi-1
Initial Gas compressibility	0.000000 psi-1
Water compressibility	2.9753e-6 psi-1

Entrada Sandstone Correlations

Not Used


Entrada Sandstone Model Data


Entrada Sandstone Model Type : Vertical fracture - finite conductivity


	Entrada Sandstone
Permeability	1.13706 md
Fracture face skin	0.0000
Fracture half-length	137.4750 ft
Dimensionless fracture conductivity	1.091280

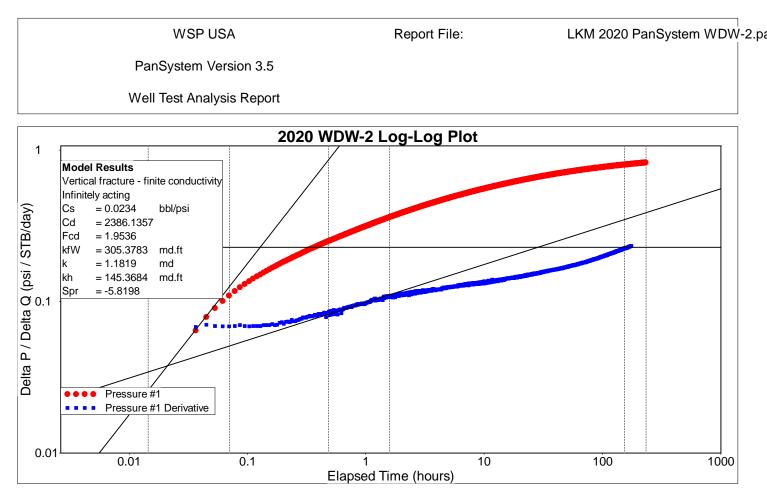
Rate Change Data

Time	Pressure	Rate
Hours	psia	STB/day
-2745.566670	0.000000	-922.520000
-2682.566670	0.000000	0.000000
-1970.566670	0.000000	-1095.880000
4.133330	3698.530000	0.000000
69.596255	4439.165000	-720.000000
76.963378	4479.706000	-882.860000
310.999696	3750.402000	0.000000

2020 WDW-2 Radial Flow Plot Model Results

Vertical fracture - finite conductivity - Infinitely acting

Classic Wellbore Storage


	Value
Permeability	1.13706 md
Permeability-thickness	139.858329 md.ft
Extrapolated pressure	3632.368779 psia
Radius of investigation	632.271493 ft
Flow efficiency	3.496704
dP skin (constant rate)	-2115.550411 psi
Pseudo-radial skin factor	-5.049953

2020 WDW-2 Radial Flow Plot Line Details

Line type : Pseudo-radial flow Slope : 482.305 Intercept : 3632.37 Coefficient of Determination : 0.999736

	Pseudo-radial flow
Extrapolated pressure	3632.368779 psia
Pressure at dt = 1 hour	4522.643982 psia

Number of Intersections = 0

2020 WDW-2 Log-Log Plot Model Results

Vertical fracture - finite conductivity - Infinitely acting

Classic Wellbore Storage

	Value
Wellbore storage coefficient	0.02338 bbl/psi
Dimensionless wellbore storage	2386.135683
Dimensionless fracture conductivity	1.953579
Fracture conductivity	305.378305 md.ft
Permeability	1.181857 md
Permeability-thickness	145.368424 md.ft
Pseudo-radial skin factor	-5.819792

2020 WDW-2 Log-Log Plot Line Details

Line type : Wellbore storage Slope : 1 Intercept : 1.78215 Coefficient of Determination : Not Used

Line type : Fracture bilinear flow Slope : 0.25 Intercept : 0.0988643 Coefficient of Determination : Not Used WSP USA

Report File:

PanSystem Version 3.5

Well Test Analysis Report

Line type : Pseudo-radial flow Slope : 0 Intercept : 0.228261 Coefficient of Determination : Not Used

Number of Intersections = 0