RECEIVED

By JKeyes at 10:51 am, May 17, 2016

2057 Commerce Drive Midland, TX 79703

432.520.7720 PHONE 432.520.7701 FAX

www.TRCsolutions.com

May 16, 2016

Jamie Keyes New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, District 1 1625 French Drive Hobbs, NM 88240

Re: Proposed Remediation Workplan
Boyd 4-Inch Historical West Release Site (1RP-4277)
Unit Letter "P", Section 23, Township 22 South, Range 37 East, NMPM
Lea County, New Mexico

Dear Mr. Keyes,

TRC Environmental Corporation (TRC), has prepared this Proposed Remediation Workplan (Workplan) for the Boyd 4-Inch Historical West Release Site (1RP-4277). The purpose of this Workplan is to propose remediation activities designed to advance the Boyd 4-Inch Historical West Release Site toward an NMOCD approved Site Closure Status. The legal description of the Release Site is Unit Letter "P", Section 23, Township 22 South, Range 37 East, in Lea County, New Mexico. The subject property is owned by Mr. Irwin Boyd of Eunice, New Mexico. A Site Location Map and Site Details and Confirmation Soil Sample Location Map are provided as Figure 1 and Figure 2, respectively. Release Site photographs are attached to this Workplan.

Following the completion of the soil investigation activities, designed to provide vertical and horizontal delineation, the analytical results appear to indicate the Boyd 4-Inch Historical Release Site comprises two (2) distinct releases (Boyd 4-Inch Historical West (1RP-4277) and Boyd 4-Inch Historical East (1RP-4278)). This Workplan addresses proposed remediation activities designed to remediate the western portion (Boyd 4-Inch Historical West) of the Release Site. A Workplan designed to remediate the eastern portion (Boyd 4-Inch Historical East) of Release Site will be submitted under separate cover.

A groundwater database maintained by The New Mexico Office of the State Engineer (NMOSE) did not identify any registered water wells in Section 23, Township 22 South, Range 37 East. A reference map utilized by the New Mexico Oil Conservation Division (NMOCD) Hobbs District Office, indicates groundwater should be encountered at approximately fifty-three (53) feet below ground surface (bgs). Analytical results derived from preliminary soil samples collected from the floor of the existing Release Site excavation indicates hydrocarbon impact exists at approximately twenty (20) feet bgs. Based on the

NMOCD site classification system, twenty (20) points will be assigned to the subject area ranking as a result of this criterion.

An unregistered water well (windmill) is located approximately nine hundred seventy-eight (978) feet north-northwest (upgradient) of the Release Site. Based on the NMOCD site classification system, twenty (20) points will be assigned to the subject area ranking as a result of this criterion.

No surface water was observed within one thousand (1,000) feet of the release. Based on the NMOCD site classification system, zero (0) points will be assigned to the subject area ranking as a result of this criterion.

Based on the NMOCD Site Classification criteria, the Release Site remediation levels are 10 mg/Kg for benzene, 50 mg/Kg for benzene, toluene, ethylbenzene and toluene (BTEX) and 100 mg/Kg for total petroleum hydrocarbons (TPH). Chloride remediation levels for the Release Site are 250 mg/Kg.

From September 18, 2012 through December 11, 2013, a previous contractor excavated approximately 587 cubic yards (cy) of impacted soil from the area of impact. Impacted soil was transported to Sundance Services, Inc. in Eunice, New Mexico. The area excavated by the previous contractor is open and is referred to as, the existing excavation.

On January 29, 2016, TRC, on behalf of ETC, collected six (6) preliminary soil status samples (Floor-1 @ 10', SSW-1 @ 8', NSW-1 @ 7', Floor-2 @ 4', SSW-2 @ 3', and NSW-2 @ 2.5') from the existing excavation to determine the current levels of impact at the Release Site. The soil samples were submitted to Xenco Laboratories in Midland, Texas for determination of concentrations of BTEX using Method SW 846-8021B, TPH using Method SW 846-8015M, and chloride using Method E-300.1. The analytical results indicated benzene and BTEX concentrations were less than the applicable laboratory Method Detection Limit (MDL) and NMOCD regulatory guidelines. All TPH concentrations were less than the laboratory MDL, with the exception of soil samples SSW-2 @ 3' and NSW-2 @ 2.5', which exhibited TPH concentrations of 469 mg/Kg and 151 mg/Kg, respectively. Chloride concentrations ranged from less than 2.00 mg/Kg for soil sample Floor-2 @ 4' to 24.4 mg/Kg for soil sample Floor-1 @ 10'.

Based on field observations, it was determined the analytical results from soil samples collected on January 29, 2016 were likely not an accurate representation of the remaining soil impact at the Release Site.

On March 8, 2016, TRC, on behalf of ETC, utilized a hand auger to collect additional soil samples for laboratory analysis. In the vicinity of previously collected soil sample Floor-1 @ 10', a hand auger was used to collect soil samples Sample-1 BOE 2', Sample-1 BOE 8.5', and Sample-1 BOE 10', which were collected at approximately twelve (12) feet bgs, approximately eighteen and one-half (18.5) feet bgs, and approximately twenty (20) feet bgs, respectively.

In the vicinity of previously collected soil sample Floor-2 @ 4', a hand auger was used to collect soil samples Sample-2 BOE 2', Sample-2 BOE 4', and Sample-2 BOE 4.6', which were collected at approximately six (6) feet bgs, approximately eight (8) feet bgs, and approximately eight (8) feet, seven (7) inches (8.6') bgs, respectively.

On the south side of the existing excavation, a hand auger was utilized in three (3) locations (Sample-3 through Sample-5) to collect soil samples from two (2) feet bgs, six (6) feet bgs, and ten (10) feet bgs. Please see Figure 2 for soil sample locations.

In addition to the soil sample locations described above, three (3) surface soil samples (Sample-6 Surface, Sample-7 Surface, and Sample 8 Surface) were collected from near or on the caliche well pad located immediately south of the Release Site.

The analytical results indicated soil samples (Sample-1 BOE 2', Sample-1 BOE 8.5', and Sample-1 BOE 10') exhibited benzene concentrations less than the applicable laboratory MDL and NMOCD regulatory guidelines. BTEX concentrations ranged from less than the laboratory MDL of 0.00299 mg/Kg for soil sample Sample-1 BOE 2' to 9.267 mg/Kg for soil sample Sample-1 BOE 8.5'. TPH concentrations ranged from 15 mg/Kg for soil sample Sample-1 BOE 2' to 3,458 mg/Kg for soil sample Sample-1 BOE 8.5'. Chloride concentrations were less than the applicable laboratory MDL and NMOCD regulatory guidelines.

The analytical results indicated soil samples (Sample-2 BOE 2', Sample-2 BOE 4', and Sample-2 BOE 4.6') exhibited benzene concentrations less than the applicable laboratory MDL. BTEX concentrations ranged from 1.831 mg/Kg for soil sample Sample-2 BOE 2' to 8.532 mg/Kg for soil sample Sample-2 BOE 4'. TPH concentrations ranged from 1,710.5 mg/Kg for soil sample Sample-2 BOE 2' to 6,735 mg/Kg for soil sample Sample-2 BOE 4'. Chloride concentrations were less than the applicable laboratory MDL and NMOCD regulatory guidelines.

The analytical results indicated soil samples (Sample-3 2', Sample-3 6', and Sample 3-10') exhibited benzene and BTEX concentration less than the applicable laboratory MDL and NMOCD regulatory guidelines. TPH concentrations ranged from less than the laboratory MDL of 15 mg/Kg for soil sample Sample-3 2' to 27.3 mg/Kg for soil sample Sample-3 6'. Chloride concentration ranged from 616 mg/Kg for soil sample Sample 3 10' to 1,590 mg/Kg for soil sample Sample-3 2'.

The analytical results indicated soil samples (Sample-4 2', Sample-4 6', and Sample 4-10') exhibited benzene, BTEX, and TPH concentrations less than the applicable laboratory MDL, with the exception of soil sample Sample-4 10', which exhibited a TPH concentration of 28.1 mg/Kg. Chloride concentrations ranged from 22.7 mg/Kg for soil sample Sample-4 10' to 506 mg/Kg for soil sample Sample-4 2'.

The analytical results indicated soil samples (Sample-5 2', Sample-5 6', and Sample-5 10') exhibited benzene, BTEX, and TPH concentrations less than the applicable laboratory MDL. Chloride concentrations ranged from 157 mg/Kg for soil sample Sample-5 10' to 627 mg/Kg for soil sample Sample-5 2'.

The analytical results indicated soil samples (Sample-6 Surface, Sample-7 Surface, and Sample-8 Surface) exhibited TPH concentrations ranging from 1,340 mg/Kg for soil sample Sample-6 Surface to 11,017 mg/Kg for soil sample Sample-8 Surface. Chloride concentrations ranged from 22.7 mg/Kg for soil sample Sample-7 Surface to 1,400 mg/Kg for soil sample Sample-8 Surface.

Based on the analytical results of soil samples collected on March 8, 2016, ETC proposes the following remediation activities designed to remediate the western portion (Boyd 4-Inch Historical West) Release Site:

- Utilizing a trackhoe, excavate the Release Site (Boyd 4-Inch Historical West) to a depth of approximately twenty (20) feet bgs. The dimensions for the proposed excavation are approximately thirty-five (35) feet in width and sixty-five (65) feet in length. Excavated soil will be stockpiled adjacent to the excavation pending transportation to a NMOCD approved disposal facility.
- Collect an appropriate number of excavation sidewall and floor soil samples and submit to the laboratory for determination of concentrations of BTEX, TPH, and Chloride.
- On receipt of favorable analytical results, request NMOCD permission to backfill the excavation with locally purchased non-impacted "like" soil or caliche. On NMOCD approval, the excavation will be backfilled with the non-impacted material.
- Transport excavated soil under manifest to an NMOCD approved disposal facility.
- Prepare and submit a "Remediation Summary and Site Closure Request" to the NMOCD.

ETC is prepared to begin the activities outlined in this Proposed Remediation Workplan on NMOCD approval.

If you have any questions, or if additional information is required, please feel free to call me at 432-520-7720 (office) or 432-559-3296 (cell).

Thank you,

Curt D. Stanley

Senior Project Manager

TRC Environmental Corporation

Jeffrey Kindley, PG Senior Project Manager

TRC Environmental Corporation

Attachments:

Figure 1 - Site Location Map

Figure 2 – Site Details and Confirmation Soil Sample Locations Map

Table 1 – Concentrations of Benzene, BTEX, TPH and Chloride in Soil

Release Site Photographs Laboratory Analytical Results

cc: File

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL

ETC FIELD SERVICES, LLC BOYD 4 INCH HISTORICAL RELEASE SITE LEA COUNTY, NEW MEXICO

All concentrations are reported in mg/Kg

				METHODS:	SW 846-8021b				METHOD: S	SW 8015M		E 300.1
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
**Floor-1 @ 10'	01/29/16	رم مرم مرم مرم المرم	40 00200	40 00100	-0.00200	-0.00100	< 0.00200					24.4
**SSW-1 @ 8'	01/29/16	<0.00100 <0.000996	<0.00200 <0.00199	<0.00100 <0.000996	<0.00200 <0.00199	<0.00100 <0.000996	<0.00200	<15.0	<15.0	<15.0	<15.0	24.4
**NSW-1 @ 7'	01/29/16	<0.000996	<0.00199	<0.000996	<0.00199	<0.000996	<0.00199	<14.9 <15.0	<14.9 <15.0	<14.9 <15.0	<14.9 <15.0	2.42
			<0.00198	<0.000992								
**Floor-2 @ 4'	01/29/16	<0.000998 <0.000998			<0.00200	<0.000998	<0.00200	<15.0	35.0 469	<15.0	35.0 469	<2.00 17.8
**SSW-2 @ 3'	01/29/16		<0.00200	<0.000998	<0.00200	<0.000998	<0.00200	<15.0		<15.0		
**NSW-2 @ 2.5'	01/29/16	<0.00100	<0.00200	<0.00100	<0.00200	<0.00100	<0.00200	<14.9	151	<14.9	151	7.69
Sample-1 BOE 2'	03/08/16	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00299	< 0.00299	<15.0	15.0	<15.0	15.0	<9.98
Sample-1 BOE 8.5'	03/08/16	< 0.0149	0.177	1.49	6.40	1.20	9.267	613	2,810	35.0	3,458	<9.67
Sample-1 BOE 10'	03/08/16	< 0.0149	0.100	0.681	2.81	0.934	4.525	338	1,800	31.6	2,169.6	< 9.88
Sample-2 BOE 2'	03/08/16	< 0.00746	< 0.00994	0.273	0.813	0.745	1.831	237	1,430	43.5	1,710.5	<9.98
Sample-2 BOE 4'	03/08/16	< 0.0150	0.512	1.50	4.99	1.53	8.532	1,020	5,600	115	6,735	<9.96
Sample-2 BOE 4.6'	03/08/16	< 0.0150	0.307	0.881	2.85	1.40	5.438	376	2,420	46.8	2,842.8	<10.0
Sample-3 2'	03/08/16	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00299	< 0.00299	<15.0	<15.0	<15.0	<15.0	1,590
Sample-3 6'	03/08/16	< 0.00149	< 0.00198	< 0.00198	< 0.00198	< 0.00298	< 0.00298	<15.0	27.3	<15.0	27.3	1,200
Sample-3 10'	03/08/16	< 0.00149	< 0.00199	< 0.00199	< 0.00199	< 0.00298	< 0.00298	<14.9	20.6	<14.9	20.6	616
Sample-4 2'	03/08/16	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00300	< 0.00300	<15.0	<15.0	<15.0	<15.0	506
Sample-4 6'	03/08/16	< 0.00150	< 0.00200	< 0.00200	< 0.000200	< 0.00299	< 0.00299	<15.0	<15.0	<15.0	<15.0	102
Sample-4 10'	03/08/16	< 0.00150	< 0.00200	< 0.00200	< 0.000200	< 0.00299	< 0.00299	<15.0	28.1	<15.0	28.1	22.7
Sample-5 2'	03/08/16	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00299	< 0.00299	<14.9	<14.9	<14.9	<14.9	627
Sample-5 6'	03/08/16	< 0.00149	< 0.00199	< 0.00199	< 0.00199	< 0.00298	< 0.00298	<15.0	<15.0	<15.0	<15.0	472
Sample-5 10'	03/08/16	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00300	< 0.00300	<15.0	<15.0	<15.0	<15.0	157
Sample-6 Surface	03/08/16	-	-	-	-	=	-	24.0	1,200	116	1,340	43.7
Sample-7 Surface	03/08/16	-	-	-	-	=	-	19.1	630	99.8	748.9	22.7
Sample-8 Surface	03/08/16	-	-	-	-	-	-	165	10,700	152	11,017	1,400
Sample-1 @ 21'	04/05/16	< 0.00149	< 0.00199	< 0.00199	< 0.00199	< 0.00298	< 0.00298	<15.0	<15.0	<15.0	<15.0	9.07
T-SSW-1 @ 6'	04/05/16	< 0.00149	< 0.00198	< 0.00198	< 0.00198	< 0.00298	< 0.00298	<15.0	<15.0	<15.0	<15.0	20.0
T-NSW-1 @ 7'	04/05/16	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00299	< 0.00299	<15.0	<15.0	<15.0	<15.0	3.65
T-WSW-1 @ 11'	04/05/16	< 0.00149	< 0.00198	< 0.00198	< 0.00198	< 0.00298	< 0.00298	<15.0	51.7	<15.0	51.7	35.6
Sample-2 @ 20'	04/05/16	0.0264	0.0132	0.160	0.315	0.059	0.5736	444	1,920	26	2,390.1	32.3
Sample -10 @ 2.5'	04/05/16	< 0.00149	< 0.00199	< 0.00199	< 0.00199	< 0.00298	< 0.00298	<15.0	<15.0	<15.0	<15.0	40.9

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL

ETC FIELD SERVICES, LLC BOYD 4 INCH HISTORICAL RELEASE SITE LEA COUNTY, NEW MEXICO

All concentrations are reported in mg/Kg

				METHODS:	SW 846-8021b				METHOD: S	SW 8015M		E 300.1
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL BTEX	TPH GRO C ₆ -C ₁₂	TPH DRO C ₁₂ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
T-SSW-2 @ 7'	04/06/16	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00299	< 0.00299	<15.0	<15.0	<15.0	<15.0	99.0
T-ESW-1 @ 5'	04/06/16	< 0.00149	< 0.00198	< 0.00198	< 0.00198	< 0.00298	< 0.00298	<15.0	<15.0	<15.0	<15.0	875
T-ESW-1 @ 10'	04/06/16	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00299	< 0.00299	<15.0	58.8	<15.0	58.8	168
T-ESW-1 @ 16'	04/06/16	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00299	< 0.00299	<15.0	<15.0	<15.0	<15.0	14.1
T-NSW-2 @ 16'	04/06/16	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00300	< 0.00300	<15.0	<15.0	<15.0	<15.0	1,440
T-NSW-3 @ 4'	04/06/16	< 0.00149	< 0.00199	< 0.00199	< 0.00199	< 0.00298	< 0.00298	<15.0	<15.0	<15.0	<15.0	246
T-ESW-2 @ 4'	04/06/16	< 0.00150	< 0.00200	< 0.00200	< 0.00200	< 0.00300	< 0.00300	<15.0	<15.0	<15.0	<15.0	304
T-ESW-3 @ 4'	04/06/16	-	-	-	-	-	-	-	-	-	-	321
T-ESW-4 @ 4'	04/06/16	-	-	-	-	-	-	-	-	-	-	361

^{** =} Soil sample results do not appear to be representative

Photographic Documentation

Client: ETC Field Services, LLC

Project Name: Boyd 4-Inch Historical (West)

Prepared by: TRC Environmental Corp.

Location: Lea County, NM

Photograph No. 1

Date:

March 17, 2016

Description: Looking East West end of existing excavation.

Photograph No. 2

Date:

March 17, 2016

Description:
Looking South.
Existing
excavation from
north side of west
end of excavation.

Analytical Report 524056

for TRC Solutions, Inc

Project Manager: Curt Stanley
Boyd 4 Inch Historical
ETC Field Services
08-FEB-16

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-15-19), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)
Xenco-San Antonio: Texas (T104704534-15-1)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco-Atlanta (EPA Lab Code: GA00046):
Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135)
Texas (T104704477), Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

08-FEB-16

Project Manager: Curt Stanley

TRC Solutions, Inc 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 524056

Boyd 4 Inch Historical

Project Address: Lea County, NM

Curt Stanley:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 524056. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 524056 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knus Hoah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 524056

TRC Solutions, Inc, Midland, TX

Boyd 4 Inch Historical

Sample Id Matrix Date Collected Sample Depth Lab Sample Id

CASE NARRATIVE

Client Name: TRC Solutions, Inc Project Name: Boyd 4 Inch Historical

Project ID: ETC Field Services Report Date: 08-FEB-16
Work Order Number(s): 524056 Date Received: 02/01/2016

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Certificate of Analysis Summary 524056

TRC Solutions, Inc, Midland, TX Project Name: Boyd 4 Inch Historical

Project Id: ETC Field Services

Contact: Curt Stanley
Project Location: Lea County, NM

Date Received in Lab: Mon Feb-01-16 04:38 pm

Report Date: 08-FEB-16 **Project Manager:** Kelsey Brooks

	Lab Id:	524056-0	001	524056-0	02	524056-0	003	524056-0	004	524056-0	005	524056-	006
Analysis Requested	Field Id:	Floor-1 @	10'	SSW-1 @	8'	NSW-1 @	9 7'	Floor-2 @	9 4'	SSW-2 @	@ 3'	NSW-2 @	2.5'
Anaiysis Requesiea	Depth:	10 ft		8 ft		7 ft		4 ft		3 ft		2.5 ft	t
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	,	SOIL	
	Sampled:	Jan-29-16 1	14:00	Jan-29-16 1	4:05	Jan-29-16 1	14:10	Jan-29-16	14:30	Jan-29-16	14:35	Jan-29-16	14:40
BTEX by EPA 8021B	Extracted:	Feb-03-16	17:30	Feb-03-16 1	7:30	Feb-03-16	17:30	Feb-03-16	17:30	Feb-03-16	17:30	Feb-03-16	17:30
	Analyzed:	Feb-04-16	16:31	Feb-03-16 2	21:01	Feb-03-16 2	21:18	Feb-04-16	16:48	Feb-03-16	21:56	Feb-03-16	22:12
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.00100	ND (0.000996	ND	0.000992	ND	0.000998	ND	0.000998	ND	0.00100
Toluene		ND	0.00200	ND	0.00199	ND	0.00198	ND	0.00200	ND	0.00200	ND	0.00200
Ethylbenzene		ND	0.00100	ND (0.000996	ND	0.000992	ND	0.000998	ND	0.000998	ND	0.00100
m_p-Xylenes		ND	0.00200	ND	0.00199	ND	0.00198	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		ND	0.00100	ND (0.000996	ND	0.000992	ND	0.000998	ND	0.000998	ND	0.00100
Total Xylenes		ND	0.00100	ND (0.000996	ND	0.000992	ND	0.000998	ND	0.000998	ND	0.00100
Total BTEX		ND	0.00100	ND (0.000996	ND	0.000992	ND	0.000998	ND	0.000998	ND	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-04-16	13:00	Feb-04-16 1	3:00	Feb-04-16	13:00	Feb-04-16	13:00	Feb-04-16	13:00	Feb-04-16	13:00
	Analyzed:	Feb-04-16	23:25	Feb-04-16 2	23:43	Feb-05-16 (00:01	Feb-05-16	00:18	Feb-05-16	00:36	Feb-05-16	01:29
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		24.4	2.00	2.64	2.00	2.42	2.00	ND	2.00	17.8	2.00	7.69	2.00
TPH By SW8015B Mod	Extracted:	Feb-07-16	17:00	Feb-07-16 1	7:00	Feb-07-16	17:00	Feb-07-16	17:00	Feb-07-16	17:00	Feb-07-16	17:00
	Analyzed:	Feb-07-16	23:57	Feb-08-16 0	1:11	Feb-08-16 (01:35	Feb-08-16	01:58	Feb-08-16	02:24	Feb-08-16	02:50
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C10 Gasoline Range Hydrocarbons		ND	15.0	ND	14.9	ND	15.0	ND	15.0	ND	15.0	ND	14.9
C10-C28 Diesel Range Hydrocarbons		ND	15.0	ND	14.9	ND	15.0	35.0	15.0	469	15.0	151	14.9
C28-C35 Oil Range Hydrocarbons		ND	15.0	ND	14.9	ND	15.0	ND	15.0	ND	15.0	ND	14.9
Total TPH		ND	15.0	ND	14.9	ND	15.0	35.0	15.0	469	15.0	151	14.9

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

Hone Fax
(281) 240-4200 (281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335
1211 W Florida Ave, Midland, TX 79701 (432) 563-1800 (432) 563-1713
2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282 (602) 437-0330

Project Name: Boyd 4 Inch Historical

Work Orders: 524056, Project ID: ETC Field Services

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Boyd 4 Inch Historical

Work Order #: 524056

Project ID: ETC Field Services

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: Boyd 4 Inch Historical

Project ID: ETC Field Services

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: Boyd 4 Inch Historical

Work Order #: 524056 Project ID: ETC Field Services

Xenco Laboratories

The Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST
12600 West I-20 East
Odessa, Texas 79765
Phone: 432-563-1800
Fax: 432-563-1713

Relinquished by:	kerinquished-b	Relinquistied	Bill to Ros	Special										LAB # (lab use only)	ORDER #:	do b						÷
ed by:		Dillip	986	Appeial Instructions:				NSW-2 @ 2.5'	SSW-2 @ 3'	Floor-2 @ 4'	NSW-1 @ 7	SSW-1 @ 8'	Floor-1 @ 10'	FIELD CODE	ORDER #: 504056		ture:	Telephone No: 432520,7720	City/State/Zip: Midland, TX 79703	Company Address: 2057 Commerce	Company Name TRC Solutions, Inc	Project Manager: Curt Stanley
		6		Г										Beginning Depth	1							.1
Ime	me	M_{M}		\vdash	H									Ending Depth	($\not\downarrow$,	ĺ			
7	1 7	70		-	-									Linding Depth								
Received by ELOT:	Received by:	Received by:						1/29/2016	1/29/2016	1/29/2016	1/29/2016	1/29/2016	1/29/2016	Date Sampled				\				
		7 Olle						1440	1435	1430	1410	1405	1400	Time Sampled		,	e-mail:	Fax No:				
		1/2		_	<u> </u>									Field Filtered				200				
		N		-	-		2772		1	_	-	1	-	Total #. of Containers	_	15	ļ	432 520 7701				
				-				×	×	×	×	×	×	Ice	Ţ	rose.slade@er	cds	520				
		,	ŀ	-							_		_	HNO ₃	Preservation	slac	tan	770				
				-							_		_	HCI	vation	e@	levi	_				
					-	_							_	H ₂ SO ₄	Qο	ene) 190					
				-	1							_	-	NaOH Na ₂ S ₂ O ₃	# of Co	YD	sol					
		97		-	1							-	<u> </u>	None	Containers	tran	ti					
_	6	E.										H		Other (Specify)	ers	nergytransfer.com	trcsolutions.com					
Date	ate	Date			<u> </u>									DW=Drinking Water SL=Sludge		8	g I			L		I,
								Soil	Soil	Soil	Soil	Soil	Soil	GW = Groundwater S=Soil/Solid	Matrix	ıз	Í	Į.				
_		€ _¬				Ш								NP=Non-Potable Specify Other			Ì	1	30	2		Proj.
Time	i iii iii ii				\vdash	Ш		\times	×	×	×	×	×	The same of the sa	15B (L	1-1-	o +{	ک د	5	\$	Pro	Project Name:
	L o	005	< 0 [╁									TPH: TX 1005 TX 1006			ğ	1	PO #:	ect Loc:	Project #:	Vam
emp	g g g	abel usto	amp	<u>}</u>	\vdash				_					Cations (Ca, Mg, Na, K)	- _				.# 	ι L	.# 	.P.
erat	nple Hand I by Sampler by Courier?	s on dy s	Fre	}	\vdash									Anions (Cl, SO4, Alkalinity) SAR / ESP / CEC	TCLP:		- S-					
ure (and nple rier	con eals	onta e of	\vdash	-	Н	\dashv				3			Metals: As Ag Ba Cd Cr Pb Hg				tano		1		50
Temperature Upon Receipt	Sample Hand Delivered by Sampler/Client Rep. ? by Courier? UPS	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Sample Containers Intact? VOCs Free of Headspace?	i 🗀	 									Volatiles		Analyze For:	ğ	2			[m	99
1 Re	vered ant Rep UPS	er(s)	s Int		-				-					Semivolatiles		yze					ξ	Щ
с <u>еі</u> р	လှမ်ာ့ ထု	aine er(s)	act?	:-	1	Н	1	×	×	×	×	×	×	BTEX 8021B/5030 or BTEX 826	30 x	or:				ea	4	CF
r 	몯	r(s)								-		- Scanical		RCI	- I'' I	11				ည	l 라	ield
	<u> </u>													N.O.R.M.		11	Ź	GGGI		Lea County, NM	II.	Se
V.	FedEx							×	×	×	×	×	×	Chlorides E 300.1		11				Σ	Boyd 4 Inch Historical	ETC Field Services
ة. 0.	⊽≺≺	~ ~ ~	\prec													11	Г	- 1			ical	es
0	Lon														-	11		- 77	8			
c	N N Lone Star	zzz	ZZ										-60014	RUSH TAT (Pre-Schedule) 24,	48, 72 hrs		7	ğ				
	벅							×	×	×	×	×	×	Standard TAT		_	0	,			, 12	

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc

Date/ Time Received: 02/01/2016 04:38:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 524056

Temperature Measuring device used: r8

	0 1 5 1 (0) 111 (
	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		9
#2 *Shipping container in good condition	1?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping con	ntainer/ cooler?	N/A
#5 Custody Seals intact on sample bottle	es?	N/A
#6 *Custody Seals Signed and dated?		N/A
#7 *Chain of Custody present?		Yes
#8 Sample instructions complete on Cha	ain of Custody?	Yes
#9 Any missing/extra samples?		No
#10 Chain of Custody signed when reline	quished/ received?	Yes
#11 Chain of Custody agrees with samp	le label(s)?	Yes
#12 Container label(s) legible and intact	?	Yes
#13 Sample matrix/ properties agree with	h Chain of Custody?	Yes
#14 Samples in proper container/ bottle?	?	Yes
#15 Samples properly preserved?		Yes
#16 Sample container(s) intact?		Yes
#17 Sufficient sample amount for indicat	red test(s)?	Yes
#18 All samples received within hold tim	e?	Yes
#19 Subcontract of sample(s)?		No
#20 VOC samples have zero headspace	e (less than 1/4 inch bubble)?	N/A
#21 <2 for all samples preserved with HI samples for the analysis of HEM or HEM analysts.		N/A
#22 >10 for all samples preserved with N	NaAsO2+NaOH, ZnAc+NaOH?	N/A
* Must be completed for after-hours de Analyst:	elivery of samples prior to placing in	n the refrigerator
Checklist completed by:	Carley Owens	Date: 02/02/2016
Checklist reviewed by:	Kelsey Brooks	Date: 02/02/2016

Analytical Report 526570

for TRC Solutions, Inc

Project Manager: Nikki Green
Energy Transfer Boyd 4" Historical

15-MAR-16

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-15-19), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400)
Xenco-San Antonio: Texas (T104704534-15-1)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco-Atlanta (EPA Lab Code: GA00046):
Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135)
Texas (T104704477), Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

15-MAR-16

Project Manager: Nikki Green

TRC Solutions, Inc 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 526570

Energy Transfer Boyd 4" Historical Project Address: Lea County, NM

Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 526570. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 526570 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knus Hoah

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 526570

$TRC\ Solutions,\ Inc,\ Midland,\ TX$

Energy Transfer Boyd 4" Historical

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Sample-1 BOE	S	03-08-16 10:30	- 2 ft	526570-001
Sample-1 BOE	S	03-08-16 11:03	- 8.5 ft	526570-002
Sample-1 BOE	S	03-08-16 11:21	- 10 ft	526570-003
Sample-2 BOE	S	03-08-16 11:50	- 2 ft	526570-004
Sample-2 BOE	S	03-08-16 12:30	- 4 ft	526570-005
Sample-2 BOE	S	03-08-16 12:45	- 4.6 ft	526570-006
Sample-3	S	03-08-16 13:17	- 2 ft	526570-007
Sample-3	S	03-08-16 13:50	- 6 ft	526570-008
Sample-3	S	03-08-16 14:33	- 10 ft	526570-009
Sample-4	S	03-08-16 15:01	- 2 ft	526570-010
Sample-4	S	03-08-16 15:36	- 6 ft	526570-011
Sample-4	S	03-08-16 15:49	- 10 ft	526570-012
Sample-5	S	03-08-16 16:01	- 2 ft	526570-013
Sample-5	S	03-08-16 16:15	- 6 ft	526570-014
Sample-5	S	03-08-16 16:45	- 10 ft	526570-015
Sample-6 Surface	S	03-08-16 16:50		526570-016
Sample-7 Surface	S	03-08-16 16:55		526570-017
Sample-8 Surface	S	03-08-16 17:00		526570-018

CASE NARRATIVE

Client Name: TRC Solutions, Inc

Project Name: Energy Transfer Boyd 4" Historical

Project ID: Report Date: 15-MAR-16
Work Order Number(s): 526570 Date Received: 03/09/2016

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-990191 BTEX by EPA 8021B

Lab Sample ID 526570-015 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzene, Ethylbenzene, Toluene, m_p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 526570-002, -003, -004, -005, -006, -015.

The Laboratory Control Sample for Toluene, Benzene, Ethylbenzene, m_p-Xylenes, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Nikki Green

Lea County, NM

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 526570

TRC Solutions, Inc, Midland, TX

Project Name: Energy Transfer Boyd 4" Historical

Date Received in Lab: Wed Mar-09-16 04:30 pm

Report Date: 15-MAR-16 Project Manager: Kelsey Brooks

	Lab Id:	526570-0	001	526570-0	002	526570-0	003	526570-	004	526570-0	005	526570-0	006
Analusia Daguastad	Field Id:	Sample-1	BOE	Sample-1	BOE	Sample-1	BOE	Sample-2	BOE	Sample-2 1	ВОЕ	Sample-2	BOE
Analysis Requested	Depth:	2 ft		8.5 ft		10 ft		2 ft		4 ft		4.6 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Mar-08-16	10:30	Mar-08-16	11:03	Mar-08-16	11:21	Mar-08-16	11:50	Mar-08-16	12:30	Mar-08-16	12:45
BTEX by EPA 8021B	Extracted:	Mar-10-16	17:30	Mar-10-16	10:15	Mar-10-16	10:15	Mar-10-16	10:15	Mar-10-16	10:15	Mar-10-16	10:15
	Analyzed:	Mar-11-16	07:38	Mar-11-16	18:39	Mar-11-16	17:50	Mar-11-16	18:55	Mar-11-16	18:23	Mar-11-16	18:06
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.00150	ND	0.0149	ND	0.0149	ND	0.00746	ND	0.0150	ND	0.0150
Toluene		ND	0.00200	0.177	0.0198	0.100	0.0199	ND	0.00994	0.512	0.0200	0.307	0.0200
Ethylbenzene		ND	0.00200	1.49	0.0198	0.681	0.0199	0.273	0.00994	1.50	0.0200	0.881	0.0200
m_p-Xylenes		ND	0.00200	6.40	0.0198	2.81	0.0199	0.813	0.00994	4.99	0.0200	2.85	0.0200
o-Xylene		ND	0.00299	1.20	0.0298	0.934	0.0298	0.745	0.0149	1.53	0.0299	1.40	0.0299
Total Xylenes		ND	0.00200	7.60	0.0198	3.74	0.0199	1.56	0.00994	6.52	0.0200	4.25	0.0200
Total BTEX		ND	0.00150	9.27	0.0149	4.53	0.0149	1.83	0.00746	8.53	0.0150	5.44	0.0150
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-11-16	17:00	Mar-11-16	17:00	Mar-11-16	17:00	Mar-11-16	17:00	Mar-11-16	17:00	Mar-11-16	17:00
SUB: TX104704215	Analyzed:	Mar-11-16	18:05	Mar-11-16	18:49	Mar-11-16	19:32	Mar-11-16	19:46	Mar-11-16	20:01	Mar-11-16	20:15
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		ND	9.98	ND	9.67	ND	9.88	ND	9.98	ND	9.96	ND	10.0
TPH By SW8015B Mod	Extracted:	Mar-10-16	11:00	Mar-10-16	11:00	Mar-10-16	11:00	Mar-10-16	11:00	Mar-10-16	11:00	Mar-10-16	11:00
	Analyzed:	Mar-10-16	14:43	Mar-10-16	16:06	Mar-10-16	16:34	Mar-10-16	17:02	Mar-11-16	08:00	Mar-10-16	18:01
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C10 Gasoline Range Hydrocarbons		ND	15.0	613	15.0	338	15.0	237	15.0	1020	75.0	376	15.0
C10-C28 Diesel Range Hydrocarbons		15.0	15.0	2810	15.0	1800	15.0	1430	15.0	5600	75.0	2420	15.0
C28-C35 Oil Range Hydrocarbons		ND	15.0	35.0	15.0	31.6	15.0	43.5	15.0	115	75.0	46.8	15.0
Total TPH		15.0	15.0	3460	15.0	2170	15.0	1710	15.0	6740	75.0	2840	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Nikki Green

Lea County, NM

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 526570

TRC Solutions, Inc, Midland, TX

Project Name: Energy Transfer Boyd 4" Historical

Date Received in Lab: Wed Mar-09-16 04:30 pm

Report Date: 15-MAR-16 Project Manager: Kelsey Brooks

	Lab Id:	526570-0	007	526570-0	800	526570-	009	526570-0	010	526570-0	011	526570-	012
A sa alassia D a sas anta d	Field Id:	Sample-	-3	Sample	-3	Sample	-3	Sample-	-4	Sample-	-4	Sample	-4
Analysis Requested	Depth:	2 ft		6 ft		10 ft		2 ft		6 ft		10 ft	
	Matrix:	SOIL		SOIL	,	SOIL	,	SOIL		SOIL		SOIL	,
	Sampled:	Mar-08-16	13:17	Mar-08-16	13:50	Mar-08-16	14:33	Mar-08-16	15:01	Mar-08-16	15:36	Mar-08-16	15:49
BTEX by EPA 8021B	Extracted:	Mar-10-16	17:30	Mar-10-16	17:30	Mar-10-16	17:30	Mar-10-16	17:30	Mar-10-16	17:30	Mar-10-16	17:30
	Analyzed:	Mar-11-16	07:55	Mar-11-16	08:11	Mar-11-16	08:28	Mar-11-16	08:44	Mar-11-16 (09:01	Mar-11-16	09:18
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene	'	ND	0.00150	ND	0.00149	ND	0.00149	ND	0.00150	ND	0.00150	ND	0.00150
Toluene		ND	0.00200	ND	0.00198	ND	0.00199	ND	0.00200	ND	0.00200	ND	0.00200
Ethylbenzene		ND	0.00200	ND	0.00198	ND	0.00199	ND	0.00200	ND	0.00200	ND	0.00200
m_p-Xylenes		ND	0.00200	ND	0.00198	ND	0.00199	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		ND	0.00299	ND	0.00298	ND	0.00298	ND	0.00300	ND	0.00299	ND	0.00299
Total Xylenes		ND	0.00200	ND	0.00198	ND	0.00199	ND	0.00200	ND	0.00200	ND	0.00200
Total BTEX		ND	0.00150	ND	0.00149	ND	0.00149	ND	0.00150	ND	0.00150	ND	0.00150
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-11-16	17:00	Mar-11-16	17:00	Mar-11-16	17:00	Mar-11-16	17:00	Mar-11-16	17:00	Mar-11-16	17:00
SUB: TX104704215	Analyzed:	Mar-11-16	20:29	Mar-11-16	20:44	Mar-11-16	20:58	Mar-11-16	21:13	Mar-11-16	21:27	Mar-11-16	22:39
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1590	100	1200	100	616	99.0	506	99.8	102	48.8	22.7	9.67
TPH By SW8015B Mod	Extracted:	Mar-10-16	11:00	Mar-10-16	11:00	Mar-10-16	11:00	Mar-10-16	11:00	Mar-10-16	11:00	Mar-10-16	11:00
	Analyzed:	Mar-10-16	18:29	Mar-10-16	18:57	Mar-10-16	19:25	Mar-10-16	19:52	Mar-10-16	20:51	Mar-10-16	21:20
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C10 Gasoline Range Hydrocarbons		ND	15.0	ND	15.0	ND	14.9	ND	15.0	ND	15.0	ND	15.0
C10-C28 Diesel Range Hydrocarbons		ND	15.0	27.3	15.0	20.6	14.9	ND	15.0	ND	15.0	28.1	15.0
C28-C35 Oil Range Hydrocarbons		ND	15.0	ND	15.0	ND	14.9	ND	15.0	ND	15.0	ND	15.0
Total TPH		ND	15.0	27.3	15.0	20.6	14.9	ND	15.0	ND	15.0	28.1	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Knis Roah

Nikki Green

Lea County, NM

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 526570

TRC Solutions, Inc, Midland, TX

Date Received in Lab: Wed Mar-09-16 04:30 pm

Report Date: 15-MAR-16 Project Manager: Kelsey Brooks

	Lab Id:	526570-0	013	526570-0	014	526570-0)15	526570-0	16	526570-0)17	526570-0	18
Analusia Paguastad	Field Id:	Sample-	-5	Sample	-5	Sample	-5	Sample-6 Su	rface	Sample-7 Su	ırface	Sample-8 Su	rface
Analysis Requested	Depth:	2 ft		6 ft		10 ft							
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Mar-08-16	16:01	Mar-08-16	16:15	Mar-08-16	16:45	Mar-08-16	16:50	Mar-08-16	16:55	Mar-08-16	17:00
BTEX by EPA 8021B	Extracted:	Mar-10-16	17:30	Mar-10-16	17:30	Mar-10-16	10:15						
	Analyzed:	Mar-11-16	09:50	Mar-11-16	09:34	Mar-11-16	12:06						
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL						
Benzene		ND	0.00150	ND	0.00149	ND	0.00150						
Toluene		ND	0.00200	ND	0.00199	ND	0.00200						
Ethylbenzene		ND	0.00200	ND	0.00199	ND	0.00200						
m_p-Xylenes		ND	0.00200	ND	0.00199	ND	0.00200						
o-Xylene		ND	0.00299	ND	0.00298	ND	0.00300						
Total Xylenes		ND	0.00200	ND	0.00199	ND	0.00200						
Total BTEX		ND	0.00150	ND	0.00149	ND	0.00150						
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-11-16	17:00	Mar-11-16	17:00	Mar-11-16	17:00	Mar-11-16	17:00	Mar-11-16	17:00	Mar-11-16 1	17:00
SUB: TX104704215	Analyzed:	Mar-11-16	22:54	Mar-11-16	23:08	Mar-11-16	23:22	Mar-11-16	23:37	Mar-11-16	23:51	Mar-12-16 (00:06
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride	·	627	98.4	472	98.4	157	50.0	43.7	10.0	22.7	9.96	1400	99.6
TPH By SW8015B Mod	Extracted:	Mar-10-16	11:00	Mar-10-16	11:00	Mar-10-16	11:00	Mar-10-16	11:00	Mar-10-16	11:00	Mar-10-16 1	11:00
	Analyzed:	Mar-10-16	21:50	Mar-10-16	22:18	Mar-10-16	22:47	Mar-11-16	07:03	Mar-11-16	07:29	Mar-11-16 (00:14
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C10 Gasoline Range Hydrocarbons		ND	14.9	ND	15.0	ND	15.0	24.0	15.0	19.1	15.0	165	74.9
C10-C28 Diesel Range Hydrocarbons		ND	14.9	ND	15.0	ND	15.0	1200	15.0	630	15.0	10700	74.9
C28-C35 Oil Range Hydrocarbons		ND	14.9	ND	15.0	ND	15.0	116	15.0	99.8	15.0	152	74.9
Total TPH		ND	14.9	ND	15.0	ND	15.0	1340	15.0	749	15.0	11000	74.9

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

 Phone
 Fax

 4147 Greenbriar Dr, Stafford, TX 77477
 (281) 240-4200
 (281) 240-4280

 9701 Harry Hines Blvd , Dallas, TX 75220
 (214) 902 0300
 (214) 351-9139

 5332 Blackberry Drive, San Antonio TX 78238
 (210) 509-3334
 (210) 509-3335

 1211 W Florida Ave, Midland, TX 79701
 (432) 563-1800
 (432) 563-1713

 2525 W. Huntington Dr. - Suite 102, Tempe AZ 85282
 (602) 437-0330

Project Name: Energy Transfer Boyd 4" Historical

 Work Orders: 526570,
 Project ID:

 Lab Batch #: 990033
 Sample: 526570-001 / SMP
 Batch: 1 Matrix: Soil

Units:	mg/kg Date Analyzed: 03/10/16 14:43	SU	RROGATE RI	ECOVERY S	STUDY	
	TPH By SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes			[2]		
1-Chlorooctane		112	99.9	112	70-130	
o-Terphenyl		57.0	50.0	114	70-135	

Units:	mg/kg	Date Analyzed: 03/10/16 16:06	SU	RROGATE RE	ECOVERY S	STUDY	
	TPH 1	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane	•	126	99.7	126	70-130	
o-Terpheny	¹ 1		58.5	49.9	117	70-135	

Units: mg/kg Date Analyzed: 03/10/16 16:34 SURROGATE RECOVERY STUDY

TPH By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	116	99.9	116	70-130	
o-Terphenyl	56.0	50.0	112	70-135	

Units:	mg/kg	Date Analyzed: 03/10/16 17:02	SURROGATE RECOVERY STUDY						
	TPH 1	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		119	99.9	119	70-130			
o-Terpheny	1		56.6	50.0	113	70-135			

Units:	mg/kg	Date Analyzed: 03/10/16 18:01	SURROGATE RECOVERY STUDY						
	TPH 1	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	tane		123	99.7	123	70-130			
o-Terpheny	·1		57.0	49.9	114	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Energy Transfer Boyd 4" Historical

 Work Orders:
 526570,
 Project ID:

 Lab Batch #:
 990033
 Sample:
 526570-007 / SMP
 Batch:
 1
 Matrix:
 Soil

Units:	mg/kg Date Analyzed: 03/10/16 18:29 SURROGATE RECOVERY STUDY								
TPH By SW8015B Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]				
1-Chlorooct	ane		110	99.8	110	70-130			
o-Terphenyl			54.8	49.9	110	70-135			

Units: mg/kg Date Analyzed: 03/10/16 18:57 SURROGATE RECOVERY STUDY **Amount** True Control TPH By SW8015B Mod Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 109 99.8 109 70-130 o-Terphenyl 54.4 49.9 109 70-135

Units: mg/kg Date Analyzed: 03/10/16 19:25 SURROGATE RECOVERY STUDY

TPH By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	108	99.6	108	70-130	
o-Terphenyl	53.8	49.8	108	70-135	

Lab Batch #: 990033 Sample: 526570-010 / SMP Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/10/16 19:52	SURROGATE RECOVERY STUDY						
	TPH 1	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooc	tane		108	99.9	108	70-130			
o-Terpheny	1		54.1	50.0	108	70-135			

Units:	mg/kg	Date Analyzed: 03/10/16 20:51	SURROGATE RECOVERY STUDY						
	TPH 1	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		97.5	99.7	98	70-130			
o-Terphenyl			48.9	49.9	98	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Energy Transfer Boyd 4" Historical

Work Orders: 526570,
Lab Batch #: 990033
Sample: 526570-012 / SMP
Batch: 1 Matrix: Soil

Units:	ts: mg/kg Date Analyzed: 03/10/16 21:20 SURROGATE RECOVERY STUDY								
TPH By SW8015B Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]				
1-Chlorooct	ane		109	100	109	70-130			
o-Terpheny	l		53.8	50.0	108	70-135			

Lab Batch #: 990033 **Sample:** 526570-013 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 03/10/16 21:50 SURROGATE RECOVERY STUDY **Amount** True Control TPH By SW8015B Mod Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 89.7 99.6 90 70-130 o-Terphenyl 44.7 49.8 70-135 90

Units: mg/kg Date Analyzed: 03/10/16 22:18 SURROGATE RECOVERY STUDY

TPH By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	110	99.7	110	70-130	
o-Terphenyl	54.7	49.9	110	70-135	

Lab Batch #: 990033 **Sample:** 526570-015 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 03/10/16 22:47	SURROGATE RECOVERY STUDY					
	TPH I	By SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1-Chloroocta	ine		92.4	99.9	92	70-130		
o-Terphenyl			45.9	50.0	92	70-135		

Units:	mg/kg	Date Analyzed: 03/11/16 00:14	SURROGATE RECOVERY STUDY						
	TPH]	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		88.4	99.9	88	70-130			
o-Terphenyl			45.9	50.0	92	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Energy Transfer Boyd 4" Historical

Work Orders: 526570,

Lab Batch #: 990033

Sample: 526570-016 / SMP

Batch: 1 Matrix: Soil

Units:	ts: mg/kg Date Analyzed: 03/11/16 07:03 SURROGATE RECOVERY STUDY								
TPH By SW8015B Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]				
1-Chlorooct	ane		111	99.8	111	70-130			
o-Terphenyl			52.4	49.9	105	70-135			

Lab Batch #: 990033 **Sample:** 526570-017 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 03/11/16 07:29 SURROGATE RECOVERY STUDY **Amount** True Control TPH By SW8015B Mod Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 108 99.8 108 70-130 o-Terphenyl 50.5 49.9 101 70-135

Units: mg/kg Date Analyzed: 03/11/16 07:38 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0262	0.0300	87	80-120	
4-Bromofluorobenzene	0.0260	0.0300	87	80-120	

Lab Batch #: 990116 Sample: 526570-007 / SMP Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/11/16 07:55	SURROGATE RECOVERY STUDY							
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1.4-Difluoro	hanzana	Analytes	0.0204	0.0200		00.120				
4-Bromoflu			0.0284	0.0300	95	80-120 80-120				

Units:	mg/kg	Date Analyzed: 03/11/16 08:00	SURROGATE RECOVERY STUDY						
	TPH 1	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		96.9	100	97	70-130			
o-Terphenyl	[56.5	50.0	113	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Energy Transfer Boyd 4" Historical

 Work Orders: 526570,
 Project ID:

 Lab Batch #: 990116
 Sample: 526570-008 / SMP
 Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 03/11/16 08:11 SURROGATE RECOVERY STUDY									
	BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
	Analytes			[D]					
1,4-Difluor	obenzene	0.0288	0.0300	96	80-120				
4-Bromoflu	orobenzene	0.0293	0.0300	98	80-120				

Units: mg/kg Date Analyzed: 03/11/16 08:28 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0292 0.0300 97 80-120 4-Bromofluorobenzene 0.0308 0.0300 80-120 103

Units: mg/kg Date Analyzed: 03/11/16 08:44 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0242	0.0300	81	80-120	
4-Bromofluorobenzene	0.0297	0.0300	99	80-120	

Lab Batch #: 990116 Sample: 526570-011 / SMP Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/11/16 09:01	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1,4-Difluoro	obenzene		0.0285	0.0300	95	80-120		
4-Bromoflu	orobenzene		0.0295	0.0300	98	80-120		

Units:	mg/kg	Date Analyzed: 03/11/16 09:18	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluoro	benzene	•	0.0290	0.0300	97	80-120			
4-Bromoflu	orobenzene		0.0305	0.0300	102	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Energy Transfer Boyd 4" Historical

 Work Orders:
 526570,
 Project ID:

 Lab Batch #:
 990116
 Sample:
 526570-014 / SMP
 Batch:
 1
 Matrix:
 Soil

Units: mg/kg Date Analyzed: 03/11/16 09:34 SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
	Analytes			[D]				
1,4-Difluor	obenzene	0.0246	0.0300	82	80-120			
4-Bromoflu	orobenzene	0.0286	0.0300	95	80-120			

Units: mg/kg **Date Analyzed:** 03/11/16 09:50 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0291 0.0300 97 80-120 4-Bromofluorobenzene 0.0297 0.0300 80-120 99

Lab Batch #: 990191 **Sample:** 526570-015 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 03/11/16 12:06 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0290	0.0300	97	80-120	
4-Bromofluorobenzene	0.0296	0.0300	99	80-120	

Lab Batch #: 990191Sample: 526570-003 / SMPBatch: 1Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/11/16 17:50	SURROGATE RECOVERY STUDY							
	вте	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
		Analytes		1						
1,4-Difluor	robenzene		0.0244	0.0300	81	80-120				
4-Bromoflu	uorobenzene		0.0251	0.0300	84	80-120				

Units:	mg/kg	Date Analyzed: 03/11/16 18:06	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorol	benzene		0.0271	0.0300	90	80-120			
4-Bromofluo	orobenzene		0.0347	0.0300	116	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Energy Transfer Boyd 4" Historical

 Work Orders: 526570,
 Project ID:

 Lab Batch #: 990191
 Sample: 526570-005 / SMP
 Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 03/11/16 18:23 SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]			
1,4-Difluorobenzene			0.0247	0.0300	82	80-120		
4-Bromoflu	iorobenzene		0.0281	0.0300	94	80-120		

Lab Batch #:990191Sample:526570-002 / SMPBatch:1Matrix:Soil

Units:	mg/kg	Date Analyzed: 03/11/16 18:39	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluor	obenzene		0.0280	0.0300	93	80-120			
4-Bromoflu	orobenzene		0.0266	0.0300	89	80-120			

Units: mg/kg Date Analyzed: 03/11/16 18:55 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0251	0.0300	84	80-120	
4-Bromofluorobenzene	0.0358	0.0300	119	80-120	

Lab Batch #: 990033 Sample: 706222-1-BLK / BLK Batch: 1 Matrix: Solid

Units:	mg/kg	RROGATE R	RECOVERY STUDY				
	TPH 1	By SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	ctane		109	100	109	70-130	
o-Terpheny	yl		53.9	50.0	108	70-135	

Lab Batch #: 990116 Sample: 706268-1-BLK / BLK Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 03/10/16 19:08	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorob	enzene	Marytes	0.0274	0.0300	91	80-120			
4-Bromofluor	obenzene		0.0275	0.0300	92	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Energy Transfer Boyd 4" Historical

Work Orders: 526570, **Project ID: Lab Batch #:** 990191 **Sample:** 706321-1-BLK / BLK Matrix: Solid Batch: 1

Units: mg/kg	Date Analyzed: 03/11/16 11:50	SURROGATE RECOVERY STUDY					
	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene		0.0269	0.0300	90	80-120		
4-Bromofluorobenzene		0.0272	0.0300	91	80-120		

Lab Batch #: 990033 **Sample:** 706222-1-BKS / BKS Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 03/10/16 13:45	SURROGATE RECOVERY STUDY					
	ТРН	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooc	tane		119	100	119	70-130		
o-Terpheny	·1		52.2	50.0	104	70-135		

Sample: 706268-1-BKS / BKS Lab Batch #: 990116 Batch: 1 Matrix: Solid

Date Analyzed: 03/10/16 17:39 **Units:** mg/kg SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0280	0.0300	93	80-120	
4-Bromofluorobenzene	0.0293	0.0300	98	80-120	

Sample: 706321-1-BKS / BKS **Lab Batch #:** 990191 Batch: Matrix: Solid

Units:	mg/kg	Date Analyzed: 03/11/16 10:23	SURROGATE RECOVERY STUDY					
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluore	benzene	•	0.0296	0.0300	99	80-120		
4-Bromoflu	orobenzene		0.0318	0.0300	106	80-120		

Lab Batch #: 990033 **Sample:** 706222-1-BSD / BSD Batch: Matrix: Solid

Units:	mg/kg	Date Analyzed: 03/10/16 14:14	SURROGATE RECOVERY STUDY						
	TPH 1	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooc	tane		119	100	119	70-130			
o-Terpheny	·1		53.0	50.0	106	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Energy Transfer Boyd 4" Historical

Work Orders: 526570, **Project ID: Lab Batch #:** 990116 **Sample:** 706268-1-BSD / BSD Matrix: Solid Batch: 1

Units:	mg/kg	Date Analyzed: 03/10/16 17:55	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobe	enzene		0.0285	0.0300	95	80-120		
4-Bromofluoro	benzene		0.0295	0.0300	98	80-120		

Lab Batch #: 990191 **Sample:** 706321-1-BSD / BSD Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 03/11/16 10:40	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorol	benzene	-	0.0296	0.0300	99	80-120		
4-Bromofluo	robenzene		0.0329	0.0300	110	80-120		

Sample: 526570-001 S / MS **Lab Batch #:** 990033 Batch: 1 Matrix: Soil

Date Analyzed: 03/10/16 15:11 **Units:** mg/kg SURROGATE RECOVERY STUDY

TPH By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	120	99.8	120	70-130	
o-Terphenyl	53.3	49.9	107	70-135	

Lab Batch #: 990116 **Sample:** 526061-009 S / MS Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/10/16 18:19	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluoro	obenzene		0.0317	0.0300	106	80-120		
4-Bromoflu	orobenzene		0.0333	0.0300	111	80-120		

Lab Batch #: 990191 **Sample:** 526570-015 S / MS Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/11/16 10:56	SU	RROGATE RI	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	benzene	•	0.0302	0.0300	101	80-120	
4-Bromofluc	orobenzene		0.0341	0.0300	114	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Energy Transfer Boyd 4" Historical

Work Orders: 526570,
Lab Batch #: 990033
Sample: 526570-001 SD / MSD
Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/10/16 15:39	SU	RROGATE RE	ECOVERY S	STUDY	
TPH By SW8015B Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes				[D]			
1-Chlorooct	tane		117	99.8	117	70-130	
o-Terphenyl		52.1	49.9	104	70-135		

 Lab Batch #: 990116
 Sample: 526061-009 SD / MSD
 Batch: 1
 Matrix: Soil

Units:	mg/kg	Date Analyzed: 03/10/16 18:36	SU	RROGATE RE	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0301	0.0300	100	80-120	
4-Bromoflu	orobenzene		0.0315	0.0300	105	80-120	

Lab Batch #: 990191 Sample: 526570-015 SD / MSD Batch: 1 Matrix: Soil

Units: mg/kg **Date Analyzed:** 03/11/16 11:13 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B **Found** Limits Flags Amount Recovery [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0296 0.0300 99 80-120 4-Bromofluorobenzene 0.0321 0.0300 107 80-120

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Energy Transfer Boyd 4" Historical

Work Order #: 526570 Project ID:

Analyst: PJB **Date Prepared:** 03/10/2016 **Date Analyzed:** 03/10/2016

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00150	0.100	0.0837	84	0.100	0.0834	83	0	70-130	35	
Toluene	< 0.00200	0.100	0.0854	85	0.100	0.0831	83	3	70-130	35	
Ethylbenzene	< 0.00200	0.100	0.0903	90	0.100	0.0901	90	0	71-129	35	
m_p-Xylenes	< 0.00200	0.200	0.187	94	0.200	0.188	94	1	70-135	35	
o-Xylene	< 0.00300	0.100	0.0862	86	0.100	0.0866	87	0	71-133	35	

Analyst: PJB Date Prepared: 03/10/2016 Date Analyzed: 03/11/2016

Lab Batch ID: 990191 Sample: 706321-1-BKS Batch #: 1 Matrix: Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00150	0.100	0.0824	82	0.100	0.0808	81	2	70-130	35	
Toluene	< 0.00200	0.100	0.0814	81	0.100	0.0812	81	0	70-130	35	
Ethylbenzene	< 0.00200	0.100	0.0821	82	0.100	0.0853	85	4	71-129	35	
m_p-Xylenes	< 0.00200	0.200	0.171	86	0.200	0.178	89	4	70-135	35	
o-Xylene	< 0.00300	0.100	0.0822	82	0.100	0.0855	86	4	71-133	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Energy Transfer Boyd 4" Historical

Work Order #: 526570 Project ID:

 Analyst:
 DEP
 Date Prepared: 03/11/2016
 Date Analyzed: 03/11/2016

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<10.0	100	103	103	100	103	103	0	90-110	20	

Analyst: ARM **Date Prepared:** 03/10/2016 **Date Analyzed:** 03/10/2016

Lab Batch ID: 990033 **Sample:** 706222-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015B Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C10 Gasoline Range Hydrocarbons	<15.0	1000	958	96	1000	907	91	5	75-125	25	
C10-C28 Diesel Range Hydrocarbons	<15.0	1000	992	99	1000	959	96	3	75-125	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Energy Transfer Boyd 4" Historical

Work Order #: 526570 Project ID:

Lab Batch ID: 990116 **QC- Sample ID:** 526061-009 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00150	0.100	0.0811	81	0.0998	0.0799	80	1	70-130	35	
Toluene	< 0.00200	0.100	0.0803	80	0.0998	0.0801	80	0	70-130	35	
Ethylbenzene	< 0.00200	0.100	0.0846	85	0.0998	0.0840	84	1	71-129	35	
m_p-Xylenes	<0.00200	0.200	0.176	88	0.200	0.174	87	1	70-135	35	
o-Xylene	< 0.00300	0.100	0.0821	82	0.0998	0.0816	82	1	71-133	35	

Lab Batch ID: 990191 **QC- Sample ID:** 526570-015 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00150	0.0998	0.0576	58	0.0992	0.0593	60	3	70-130	35	X
Toluene	< 0.00200	0.0998	0.0586	59	0.0992	0.0597	60	2	70-130	35	X
Ethylbenzene	< 0.00200	0.0998	0.0637	64	0.0992	0.0647	65	2	71-129	35	X
m_p-Xylenes	< 0.00200	0.200	0.135	68	0.198	0.137	69	1	70-135	35	X
o-Xylene	< 0.00299	0.0998	0.0680	68	0.0992	0.0672	68	1	71-133	35	X

Form 3 - MS / MSD Recoveries

Project Name: Energy Transfer Boyd 4" Historical

Work Order #: 526570 Project ID:

Lab Batch ID: 990124 **QC- Sample ID:** 526570-001 S **Batch #:** 1 **Matrix:** Soil

 Date Analyzed:
 03/11/2016
 Date Prepared:
 03/11/2016
 Analyst:
 DEP

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[0]	[D]	[E]	Result [1]	[G]	70	/ U IX	70KI D	
Chloride	<9.98	99.8	110	110	99.8	109	109	1	80-120	20	

Lab Batch ID: 990124 **QC- Sample ID:** 526570-011 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 03/11/2016 **Date Prepared:** 03/11/2016 **Analyst:** DEP

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	102	488	592	100	488	594	101	0	80-120	20	

Lab Batch ID: 990033 **QC- Sample ID:** 526570-001 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015B Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C10 Gasoline Range Hydrocarbons	<15.0	998	908	91	998	934	94	3	75-125	25	
C10-C28 Diesel Range Hydrocarbons	15.0	998	1010	100	998	1030	102	2	75-125	25	

Xenco Laboratories

The Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Phone: 432-563-1800
Odessa, Texas 79765 Fax: 432-563-1713

Relinquished by: Bill to Rose Slade at Energy, Transfer. TPH Extended 35 Special Instructions: Relinquished by ORDER #: (lab use only) LAB # (lab use only) Sampler Signature: Telephone No: City/State/Zip: Company Address: Company Name Project Manager: Sample-2 BOE Sample-2 BOE Sample-1 BOE Sample-1 BOE Sample-1 BOE Sample-2 BOE FIELD CODE Sample-4 Sample-3 Sample-3 Sample-3 2057 Commerce TRC Solutions, Inc 432.520.7720 Midland, TX 79703 Nikki Green Date 4.6 ą ð N တ္ Ŋ 4 N V **Beginning Depth** Time **Ending Depth** Received by ELOT: 3/8/2016 3/8/2016 3/8/2016 3/8/2016 3/8/2016 3/8/2016 3/8/2016 3/8/2016 3/8/2016 3/8/2016 Date Sampled 1317 1121 1103 1150 1501 1433 1350 1245 1230 1030 Fax No: Time Sampled e-mail: Field Filtered Total #. of Containers 432.520.7701 ngreen@trcsolutions.com rose.slade@energytransfer.com × × × × × Ice HNO₃ HCI H₂SO₄ NaOH Na₂S₂O₃ None Other (Specify) Date DW=Drinking Water SL=Sludge Soil Soil Soi Soil Soil Soil Soi Soil Soil Soi Report Format: NP=Non-Potable Project Name: Specify Other Project Loc: Time × × × 418.1 (8015M 8015E × × × × TPH: Project #: TX 1005 TX 1006 TPH: PO #: Labels on container(s)
Custody seals on container(s)
Custody seals on cooler(s) Sample Hand Delivered by Sampler/Client Rep. ? by Courier? UPS Sample Containers Intact? VOCs Free of Headspace? Temperature Upon Receipt: Laboratory Comments: Cations (Ca, Mg, Na, K) Anions (CI, SO4, Alkalinity) Standard TOTAL TCLP: SAR / ESP / CEC Energy Transfer Boyd 4" Historical Vletals: As Ag Ba Cd Cr Pb Hg Se Volatiles × × × × BTE 80215/5030 or BTEX 8260 × County, NN RCI N.O.R.M. FedEx Lone Star × Chlorides E 300.0 × × × × × × NPDES zzzzzz RUSH TAT (Pre-Schedule) 24, 48, 72 hrs Standard TAT

Page 23 of 25

Final 1.000

Xenco Laboratories

The Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

Project Name Proj	Relinquished by:	Relinquished	Bill to Ro											LAB # (lab use only)	ORDER #:	(lab use only)	124						
Project Name: Energy Transfer Boyd 4" Historical Project Name: Energy Transfer Name: Energy Tran	ed by:	THE MAN	Energy Transfer			Sample-8 Surface	Sample-7 Surface	Sample-6 Surface	Sample-5	Sample-5	Sample-5	Sample-4	Sample-4	FIELD CODE		1000		Sampler Signature:	T (100)			1933	
Fax No.	Date	39/iv	xtended 35															The same	*	79703	erce	ıs, Inc	
Feat Project No.			\bigvee						10'	တ္	Ŋ	10'	ගු	Beginning Depth				1	1				
Project Name: Energy Transfer Boyd 4" Historical Transfer Boyd 4" Historical Project #:	9					X 3.5								Ending Depth	30			6					
Project A22.520.7701 Report Format:	Received by ELC	Received by:				3/8/2016	3/8/2016	3/8/2016	3/8/2016	3/8/2016	3/8/2016	3/8/2016	3/8/2016	Date Sampled			`	an				ii.	
A32.520.7701 Report Formations	ίΤ:					1700	1655	1650	1645	1615	1601	1549	1536	Time Sampled				e-mail:	Fax No:				
Project Name: Energy Transfer Boyd 4" Historical		1				4		_						100 000 000 000 000 000 000 000 000 000				ľ	<u>م</u> ا				
Project Name: Energy Transfer Boyd 4" Historical Project Name: Energy Transfer Com Projec		11				-		_	<u> </u>						Н		los Sol	Ì	32.5				
Project Name: Energy Transfer Boyd 4" Historical Project Name: Energy Transfer Com Projec		1 1			H	`	$\stackrel{\sim}{+}$	_	_	^	^	Ĥ	Ĥ		g		e.s	ng	20.				
Project Name: Energy Transfer Boyd 4" Historical		1			\vdash	+	-								eserv		ade	reer	7701				
Project Loc: Project Loc: Proje				H	\vdash	-	\dashv						\vdash		ation		e@	<u>@</u>	Γ				
Project Loc: Project Loc: Proje					\vdash	1						15-57-					ene	CS					
Project Loc: Project Loc: Proje						1	\neg								ξĊ		rgyt	oluti					
Project Loc: Project Loc: Proje	1000	W.				T	\neg								taine		rans	ons	10				
Project Loc: Project Loc: Proje	D	200					T							Other (Specify)	ä		sfer.	.cor					
Project Loc: Project Loc: Proje	ā					, ,		ر,				40	4.0	DW=Drinking Water SL=Sludge	I		con	I	1				l
Project Loc: Cations (Ca, Mg, Na, K))				<u>s</u> [<u>ĕ</u> .	≌	<u>Si</u>	Soil	Soil	Soil	Soil	GW = Groundwater S=Soil/Solid	latri				Rep				_
#: Energy Transfer Boyd 4" Historical Standard	=	1 60 1		_	H,	<u>.</u>	_								<u>r </u>		0	Kx,	유		P		roje
#: Energy Transfer Boyd 4" Historical Standard	ne			2	H	\dashv	+			^	^	Ĥ	^		136			7	O'N)jec	Poj	Čť.
Standard Standard TCLP: Analyze For: TCLP: T	Te	8 552	Sa La		\vdash	_	+	_							-				ar'	PO	L L	ect #	lame
Ster Boyd 4" Ster Boyd 4" Ster Boyd 4" Ster Boyd 4" Historical Historical Historical Historical Historical Historical Hi	mpe .	ustoc ustoc umpl by	S mp		\vdash	+	\dashv		\dashv						ᅴᆲ.				П	1	!" 	1	
Ster Boyd 4" Ster Boyd 4" Ster Boyd 4" Ster Boyd 4" Historical Historical Historical Historical Historical Historical Hi	ratu	on o	e Co												-	OTAL P			600000000000000000000000000000000000000				
Ster Boyd 4" Ster Boyd 4" Ster Boyd 4" Ster Boyd 4" Historical Historical Historical Historical Historical Historical Hi	re ∟	nd Dier/	ntain of F											Metals: As Ag Ba Cd Cr Pb Hg	23 cm 11	+			anda		1	12	ne
Ster Boyd 4" Ster Boyd 4" Ster Boyd 4" Ster Boyd 4" Historical Historical Historical Historical Historical Historical Hi	on	on g	ners leac											Volatiles	T	1	naly		ā				V
Ster Boyd 4" Ster Boyd 4" Ster Boyd 4" Ster Boyd 4" Historical Historical Historical Historical Historical Historical Hi	Rec	ontai ontai ooler ered t Re UPS	Inta Ispa											Semivolatiles			ze F				<u>_</u>		<u>a</u>
RR B N.O.R.M. X X X X X X X X X X X Chlorides E 300.1 N.O.R.M. X X X X X X X X X X X X X X X X X X X	eipt:	ner (s)	04.5 C4.5						×	×	×	×	×	BTEX 3021B/5030 or BTEX 826	60		97				ea C		ısfe
× × × × × Standard TAT		HE (s)			\sqcup			_]											ΤŖ		ount		r Bc
× × × × × Standard TAT		T I		_		20 00 00	\perp	_		_									¥		Y. Z		yd .
× × × × × × Standard TAT	^	ED イイイイイ	~ ~	\vdash	-	× >	×	×	×	×	×	×	×	Unlondes E 300.1			1		1		≤		4
× × × × × Standard TAT	OV				\vdash	+		\dashv	-														listo
× × × × × Standard TAT	700	ă ® ZZZZZ	zz	\vdash	\vdash	+	\dashv			-				RUSH TAT (Pro-Schodule) 24	4P 7	2 hr-	Ц		PDE				rica
	<i>3.0</i>	व्य			-	, ,	, †,	$\frac{1}{x}$	$\frac{1}{x}$	${x}$	$\overline{}$	$\frac{1}{x}$			<i>-</i> ∞, <i>′</i>	a ms			S	.5			
						ľ					•	. 1			I			Fin	al 1 ∩])()	I	I	1

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc

Date/ Time Received: 03/09/2016 04:30:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 526570

Temperature Measuring device used: r8

Work Order #: 526570	remperature w	casuling (device used . 10							
	Sample Receipt Checklist		Comments							
#1 *Temperature of cooler(s)?		8.7								
#2 *Shipping container in good condition	?	Yes								
#3 *Samples received on ice?		Yes								
#4 *Custody Seals intact on shipping cor	ntainer/ cooler?	N/A								
#5 Custody Seals intact on sample bottle	es?	N/A								
#6 *Custody Seals Signed and dated?		N/A								
#7 *Chain of Custody present?		Yes								
#8 Sample instructions complete on Cha	in of Custody?	Yes								
#9 Any missing/extra samples?		No								
#10 Chain of Custody signed when relind	quished/ received?	Yes								
#11 Chain of Custody agrees with sampl	e label(s)?	Yes								
#12 Container label(s) legible and intact?	?	Yes								
#13 Sample matrix/ properties agree with	n Chain of Custody?	Yes								
#14 Samples in proper container/ bottle?		Yes								
#15 Samples properly preserved?		Yes								
#16 Sample container(s) intact?		Yes								
#17 Sufficient sample amount for indicate	ed test(s)?	Yes								
#18 All samples received within hold time	e?	Yes								
#19 Subcontract of sample(s)?		Yes	subcontract to xenco houston							
#20 VOC samples have zero headspace	(less than 1/4 inch bubble)?	N/A								
#21 <2 for all samples preserved with HN samples for the analysis of HEM or HEM-analysts.		N/A								
#22 >10 for all samples preserved with N	N/A									
* Must be completed for after-hours delivery of samples prior to placing in the refrigerator										
Analyst:	PH Device/Lot#:									
Checklist completed by:	Carley Owens	Date: <u>03/</u>	10/2016							
Checklist reviewed by:	Mms Hoah Kelsey Brooks	Date: <u>03/</u>	10/2016							