

REMEDIATION SUMMARY AND

SITE CLOSURE REQUEST

ETC FIELD SERVICES, LLC A-14 Compressor Station Field Scrubber Release Lea County, New Mexico UNIT LTR "I", Section 6, Township 24 South, Range 35 East, NMPM Latitude 32° 14' 46.26" North, Longitude 103° 24' 7.2" West NMOCD Reference # 1RP-4634

APPROVED

By Olivia Yu at 2:08 pm, Dec 19, 2017

Prepared For:

ETC Field Services, LLC 800 East Sonterra San Antonio, Texas 78258 NMOCD approves 1RP-4634 for closure.

Prepared By:

TRC Environmental Corporation 2057 Commerce Midland, Texas 79703

October 2017

Nikki Green Project Manager

Jeffrey Kindley, P.G. Senior Project Manager

TABLE OF CONTENTS

INTRODUCTION	1
NMOCD SITE CLASSIFICATION	1
SUMMARY OF SOIL REMEDIATION ACTIVITIES	2
SITE CLOSURE REQUEST	5
LIMITATIONS	5
DISTRIBUTION	6

FIGURES

Figure 1 – Site Location Map	
Figure 2 – Site Details and Soil Sample Location Map	
Figure 3 – Site Details and Soil Sample Locations Map	
Figure 4 – Site Details and Confirmation Soil Sample Location Ma	ıр

TABLES

Table 1 - Concentrations of Benzene, BTEX, TPH, and Chloride in Soil

APPENDICES

- Appendix A Analytical Reports Appendix B Photographs
- Appendix C Sundance Disposal Manifests
- Appendix D Release Notification and Corrective Action (Form C-141)

INTRODUCTION

TRC Environmental Corporation (TRC), on behalf of ETC Field Services, LLC (ETC), has prepared this Remediation Summary and Site Closure Request for the Release Site known as A-14 Compressor Station Field Scrubber. The legal description of the Release Site is Unit Letter "I", Section 6, Township 24 South, Range 35 East, in Lea County, New Mexico. The subject property is administered by the United States Bureau of Land Management (BLM). The GPS coordinates for the site are N 32° 14' 46.26" W 103° 24' 7.2". Please reference Figure 1 for the Site Location Map, and Figure 4 for the Site Details and Confirmation Soil Sample Location Map. The Release Notification and Corrective Action (Form C-141) is provided as Appendix D.

On February 23, 2017, ETC discovered a crude oil and produced water release had occurred from the field scrubber due to a tubing failure. The released fluid flowed from the release point to the south and west in an open pasture and impacted an area measuring approximately three thousand (3,000) square feet. The release was reported to the New Mexico Oil Conservation Division (NMOCD) on March 3, 2017. During initial response activities, ETC replaced the tubing associated with the field scrubber to mitigate the release. Less than five (5) barrels of fluid was released from the field scrubber, with no recovery. General photographs of the site are provided as Appendix B.

NMOCD SITE CLASSIFICATION

A groundwater database maintained by The New Mexico Office of the State Engineer (NMOSE) did not identify any registered water wells in Section 6, Township 24 South, Range 35 East. A reference map utilized by the NMOCD Hobbs District Office, indicates groundwater should be encountered at approximately two hundred and twenty-five (225) feet below ground surface (bgs). Based on the NMOCD site classification system, zero (0) points will be assigned to the A-14 Compressor Station Field Scrubber Release Site as a result of this criterion.

No water wells were observed within one-thousand (1,000) feet of the Release Site. Based on the NMOCD site classification system, zero (0) points will be assigned to the subject area ranking as a result of this criterion.

No surface water was observed within one thousand (1,000) feet of the release. Based on the NMOCD site classification system, zero (0) points will be assigned to the subject area ranking as a result of this criterion.

The NMOCD guidelines indicate the A-14 Compressor Station Field Scrubber Release Site has a ranking score of zero (0). Based on this score, the soil remediation levels for a site with a ranking score of zero (0) points are as follows:

- Benzene 10 mg/Kg (ppm)
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) 50 mg/Kg (ppm)
- TPH 5,000 mg/Kg (ppm)
- Chloride 600 mg/Kg (ppm)

SUMMARY OF SOIL REMEDIATION ACTIVITIES

On March 6, 2017, a representative of ETC submitted the "Proposed Delineation Workplan" for NMOCD and BLM consideration. The "Proposed Delineation Workplan" summarized the delineation activities strategy designed to progress the Release Site toward an NMOCD approved closure status. ETC received written approval from the NMOCD to proceed with the activities outlined in the "Proposed Delineation Workplan".

On March 21 and 22, 2017, due to safety concerns and the potential of striking underground piping and associated equipment within the vicinity of the A-14 Compressor Station, ETC utilized a hydro-vac prior to conducting any field sampling activities to identify the location of underground pipelines and other associated subsurface equipment.

On March 23, 2017, TRC, on behalf of ETC, utilized a hand auger to collect ten (10) delineation soil samples (FS-1 6" through FS-5 6" and FS-1 1' through FS-5 1') from the stained surface soil. The soil samples were submitted to Xenco Laboratories in Midland, Texas for determination of concentrations of BTEX using Method SW 846-8021B, TPH using Method SW 846-8015M, and chloride using Method E-300.1. The analytical results indicated benzene and BTEX concentrations were less than the applicable laboratory Method Detection Limit (MDL), with the exception of soil samples FS-1 6", FS-3 6", and FS-3 1', which exhibited BTEX concentrations of 0.00480 mg/Kg, 0.2959 mg/Kg, and 0.2374 mg/Kg, respectively. The collected soil samples exhibited benzene and BTEX concentrations below NMOCD regulatory guidelines. The laboratory results indicated TPH concentrations ranged from 574.0 mg/Kg for soil sample FS-1 1' to 27,290 mg/Kg for soil sample FS-3 1'. A review of laboratory analytical results indicated soil samples FS-2 6", FS-3 6", FS-3 1', and FS-5 1' exhibited TPH concentrations above NMOCD regulatory guidelines. Chloride concentrations ranged from less than the applicable laboratory MDL for soil samples FS-4 6" and FS-4 1' to 7,910 mg/Kg for soil sample FS-1 6". A review of laboratory analytical results indicated soil samples FS-1 6" through FS-3 6" and FS-1 1' through FS-3 1' exhibited chloride concentrations above NMOCD regulatory guidelines. Table 1 summarizes the Concentrations of Benzene, BTEX, TPH, and Chloride in Soil. Analytical reports are provided as Appendix A. Please refer to Figure 3 for the Site Details and Soil Sample Locations Map for soil sample locations.

In addition to the soil samples described above, seven (7) soil samples (WFS-1 1', EFS-1 1', SFS-1 1', NFS-2 1', SFS-2 1', SFS-3 1', and NFS-3 1') were collected utilizing a hand auger approximately five (5) feet from the outer perimeter of the stained surface soil and submitted for BTEX, TPH, and chloride analysis. The analytical results indicated benzene and BTEX concentrations were less than the applicable laboratory MDL and NMOCD regulatory guidelines. TPH concentrations ranged from 16.7 mg/Kg for soil sample EFS-1 1' to 1,283 mg/Kg for soil sample NFS-3 1'. A review of laboratory results indicated TPH concentrations ranged for the submitted soil samples. Chloride concentrations ranged from less than the applicable laboratory MDL for soil samples SFS-1 1' and NFS-3 1' to 108 mg/Kg for soil sample SFS-3 1'. A review of laboratory analytical results indicated chloride concentrations were below NMOCD regulatory MDL for soil samples SFS-1 1' and NFS-3 1' to 108 mg/Kg for soil sample SFS-3 1'. A review of laboratory analytical results indicated chloride concentrations were below NMOCD regulatory guidelines for the submitted soil samples SFS-1 1' and NFS-3 1' to 108 mg/Kg for soil sample SFS-3 1'. A review of laboratory analytical results indicated chloride concentrations were below NMOCD regulatory guidelines for the submitted soil samples SFS-1 1' and NFS-3 1' to 108 mg/Kg for soil sample SFS-3 1'. A review of laboratory analytical results indicated chloride concentrations were below NMOCD regulatory guidelines for the submitted samples.

In addition, one background sample (BG-1 1') was collected, utilizing a hand auger, approximately fifty (50) feet north of the A-14 Compressor Station and submitted to the laboratory for TPH, BTEX, and chloride analysis. A review of laboratory analytical results indicated benzene, BTEX, TPH, and chloride concentrations were less than laboratory applicable MDL. Please refer

to Figure 2 for the Site Details and Soil Sample Location Map for the background soil sample location.

On April 17, 2017, TRC conducted additional vertical delineation activities utilizing a hand auger. During the sampling event, hand auger refusal was encountered at a depth ranging from approximately one (1) foot to sixteen (16) inches bgs. Three (3) soil samples (FS-3 16", FS-5a 1', and FS-5a 16") were collected from the stained surface soil and submitted to the laboratory for BTEX and TPH analysis. The analytical results indicated benzene concentrations were below the applicable laboratory MDL and NMOCD regulatory guidelines. BTEX concentrations ranged from 0.00389 mg/Kg for soil sample FS-5a 1' to 0.02233 mg/Kg for soil sample FS-3 16". A review of laboratory analytical results indicated BTEX concentrations were below NMOCD regulatory guidelines. TPH concentrations ranged from 1,690.8 mg/Kg for soil sample FS-3 16" to 3,550 mg/Kg for soil sample FS-5a 1'. A review of laboratory analytical results indicated TPH concentrations were below NMOCD regulatory guidelines for the collected samples. In addition, soil samples FS-5a 1' and FS-5a 16" were submitted for chloride analysis. A review of laboratory analytical results indicated for chloride analysis. A review of laboratory analytical results indicated for chloride analysis. A review of laboratory analytical results indicated chloride concentrations were less than the applicable laboratory MDL for the submitted soil samples and below NMOCD regulatory guidelines.

On May 10, 2017, TRC conducted additional vertical delineation activities at the Release Site. Utilizing a backhoe, three (3) vertical trenches were advanced to approximately four (4) feet bgs. Three (3) soil samples (FS-1a 4', FS-2a 4', and FS-3a 4') were collected and submitted to the laboratory for BTEX, TPH, and chloride analysis. A review of laboratory analytical results indicated benzene and BTEX concentrations were less than the applicable laboratory MDL and below NMOCD regulatory guidelines. TPH concentrations ranged from 15.0 mg/Kg for soil sample FS-3a 4' to 23.6 mg/Kg for soil sample FS-1a 4'. A review of laboratory analytical results indicated TPH concentrations were below NMOCD regulatory guidelines. Chloride concentrations ranged from 22.8 mg/Kg for soil sample FS-3a 4' to 478 mg/Kg for soil sample FS-1a 4'. A review of laboratory analytical results indicate TPH concentrations were below NMOCD regulatory guidelines.

In addition, the three (3) vertical trenches were advanced to nine (9) feet bgs to confirm chloride concentrations remained below NMOCD regulatory guidelines. Three (3) soil samples (FS-1a 9', FS-2a 9', and FS-3a 9') were collected and submitted to the laboratory for chloride analysis. A review of laboratory analytical results indicated chloride concentrations ranged from 27.0 mg/Kg for soil sample FS-2a 9' to 162 mg/Kg for soil sample FS-1a 9' indicating chloride concentrations remained below NMOCD regulatory guidelines an additional five (5) feet below soil samples FS-1a 4', FS-2a 4', and FS-3a 4'.

A Kinder Morgan high pressure (1,000 psi) natural gas pipeline, heading in a northwest to southeast direction, bisects the area represented by soil samples FS-4 and FS-5. Due to safety concerns, heavy equipment (i.e. backhoe) was not permitted to break ground within a thirty-five (35) foot radius of the pipeline. For this reason, vertical trenches were not advanced in the areas represented by soil samples FS-4 and FS-5.

On June 1, 2017, a representative of ETC submitted the "Soil Investigation Summary and Proposed Remediation Workplan" (Workplan) for NMOCD consideration. The Workplan summarized remedial activities to date and detailed a closure strategy designed to progress the Release Site

toward an NMOCD approved closure status. On June 9, 2017, ETC received written (email) NMOCD approval to proceed with the activities outlined in the Workplan.

On June 13, 2017, TRC commenced excavation activities utilizing a backhoe from the release point heading west. Chloride field screening was utilized to guide the excavation activities. In the areas represented by soil samples by soil samples FS-4 and FS-5 were conducting utilizing a hydrovac due to the close proximity of the High Pressure Kinder Morgan natural gas line. Excavated soil was stockpiled to the north of the excavation within the A-14 Compressor Station, pending final disposition of the soil.

On June 13, 14, and 15, 2017, twelve (12) soil samples (BH-1 4', SW-1 3', NW-1 3', BH-4 1', EW-1 3', BH-2 3', SW-2 2', NW-2 2', BH-5 1', BH-3 2', NW-3 1', and SW-3 1') were collected from the floor and side walls of the excavated area. The soil samples were submitted to the laboratory and analyzed for concentrations of BTEX using SW 846-8021B, TPH using EPA Method SW 846-8015M and chloride using EPA Method E 300.0. The laboratory analytical results indicated benzene and BTEX concentrations were less than the laboratory applicable MDL for all collected soil samples, with the exception of soil sample BH-4 1', which exhibited a BTEX concentration of 0.00511 mg/Kg. The analytical results indicated TPH concentrations were less than the laboratory MDL of 15 mg/Kg for all collected soil samples, with the exception of soil samples BH-4 1', BH-5 1', BH-3 2', and NW-3 1', which exhibited TPH concentrations of 315 mg/Kg, 26.3 mg/Kg, 37.3 mg/Kg, and 81.4 mg/Kg, respectively. In addition, analytical results indicated chloride concentrations ranged from 11.7 mg/Kg for soil sample BH-5 1' to 336 mg/Kg for soil sample EW-1 3'. A review of laboratory analytical results indicated all submitted soil samples were below NMOCD regulatory guidelines and no additional excavation activities were warranted. Table 1 summarizes the Concentrations of Benzene, BTEX, TPH, and Chloride in Soil. Analytical reports are provided as Appendix A. Please refer to Figure 4 Site Details and Confirmation Soil Sample Location Map for soil sample locations.

On July 11, 2017, one (1) soil sample (KM-1 3") was collected from the surface of the impacted area in the vicinity of the Kinder Morgan High Pressure Natural Gas Steel Line. The soil sample was submitted to the laboratory for BTEX, TPH, and chloride analysis. A review of laboratory analytical results indicated benzene and TPH concentrations were less than the applicable laboratory MDL and NMOCD regulatory guidelines. A review of laboratory analytical results indicated results indicated the chloride concentration was 10.9 mg/Kg and below NMOCD regulatory guidelines.

On July 27, 2017, ETC submitted the Remediation Summary and Permission to Backfill Request for NMOCD and BLM approval. On August 7, 2017, ETC and TRC representatives met with a NMOCD representative to discuss remediation activities at the Release Site and received approval to backfill the excavated area, with the exception of the area in the vicinity of the Kinder Morgan High Pressure Natural Gas Pipeline, which required additional excavation activities.

On August 22, 2017, TRC commenced hand digging activities conducted in the vicinity of the Kinder Morgan High Pressure Natural Gas Steel Pipeline. The excavated area measured approximately twenty (20) feet in length, approximately ten (10) feet in width, and approximately six (6) inches in depth. One (1) confirmation soil sample (KM-1 @ 6") was collected from the excavated area and submitted to the laboratory for TPH analysis. A review of laboratory analytical

results indicated TPH concentrations were 3,319 mg/Kg and below NMOCD regulatory guidelines.

On September 6, 2017, ETC requested NMOCD and BLM approval to backfill the area in the vicinity of the Kinder Morgan High Pressure Natural Gas Pipeline with non-impacted, locally obtained "like" soil.

On September 8, 2017, BLM approved the "Remediation Summary and Permission to Backfill Request" and the backfill of the excavated area in the vicinity of the Kinder Morgan Pipeline.

On September 20 through 22, 2017, TRC began transporting the excavated soil to Sundance Services, Inc. in Eunice, New Mexico. Approximately two hundred and eighty (280) cubic yards of excavated soil was transported to the NMOCD approved facility. The Sundance Disposal Manifests are provided as Appendix C.

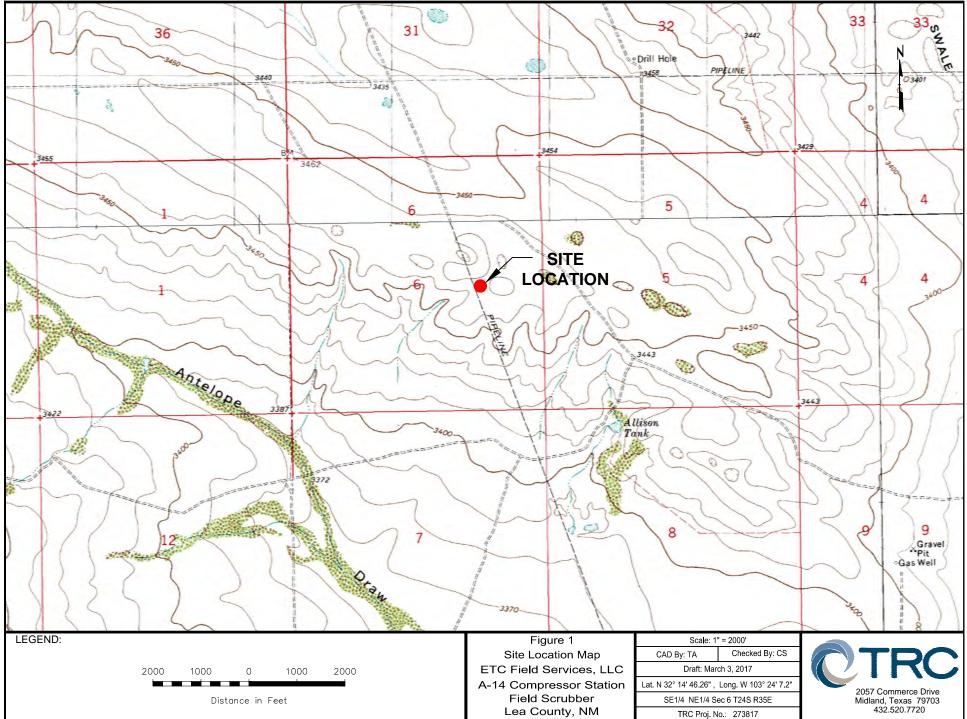
On September 27, 2017, NMOCD approved the backfill of the excavated area in the vicinity of the Kinder Morgan Pipeline.

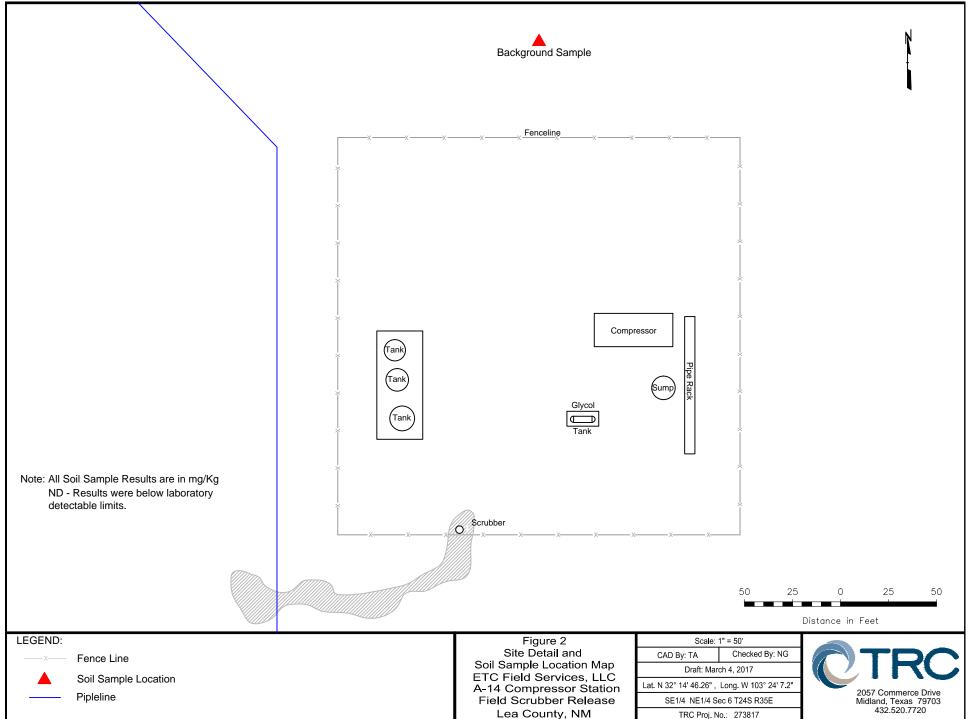
On October 4, 2017, TRC commenced backfill activities at the Release Site. The excavation was backfilled with locally obtained topsoil and the impacted area was contoured to fit the surrounding topography. The backfilled area will be reseeded with vegetation approved by the BLM at a later date.

SITE CLOSURE REQUEST

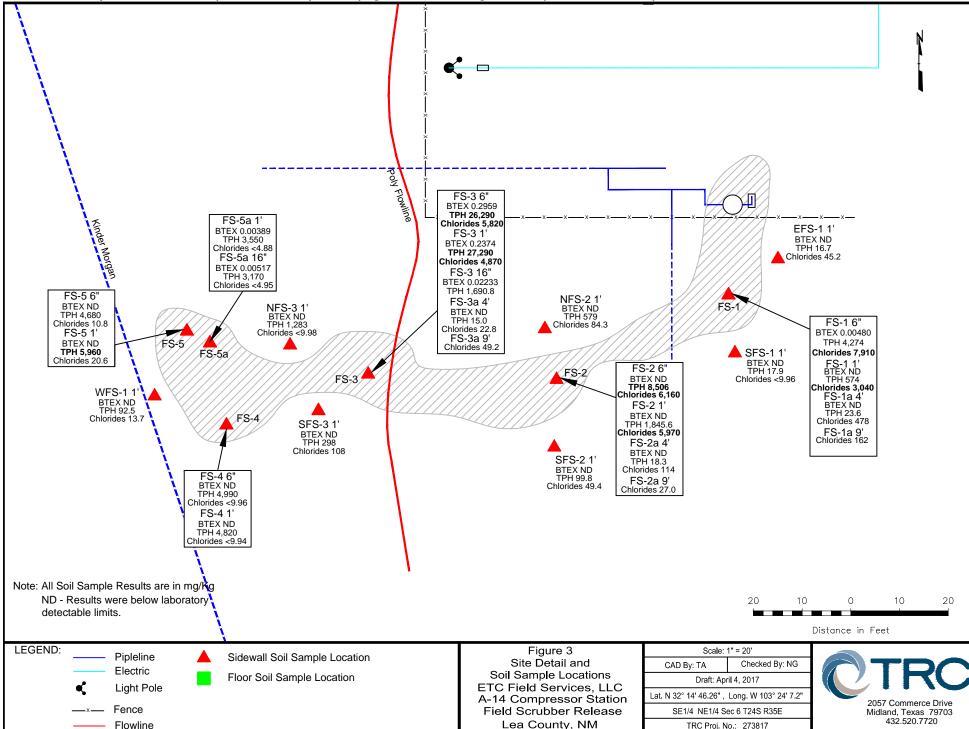
ETC requests NMOCD grant Site Closure Status to the A-14 Compressor Station Field Scrubber (1RP-4634) incident.

LIMITATIONS

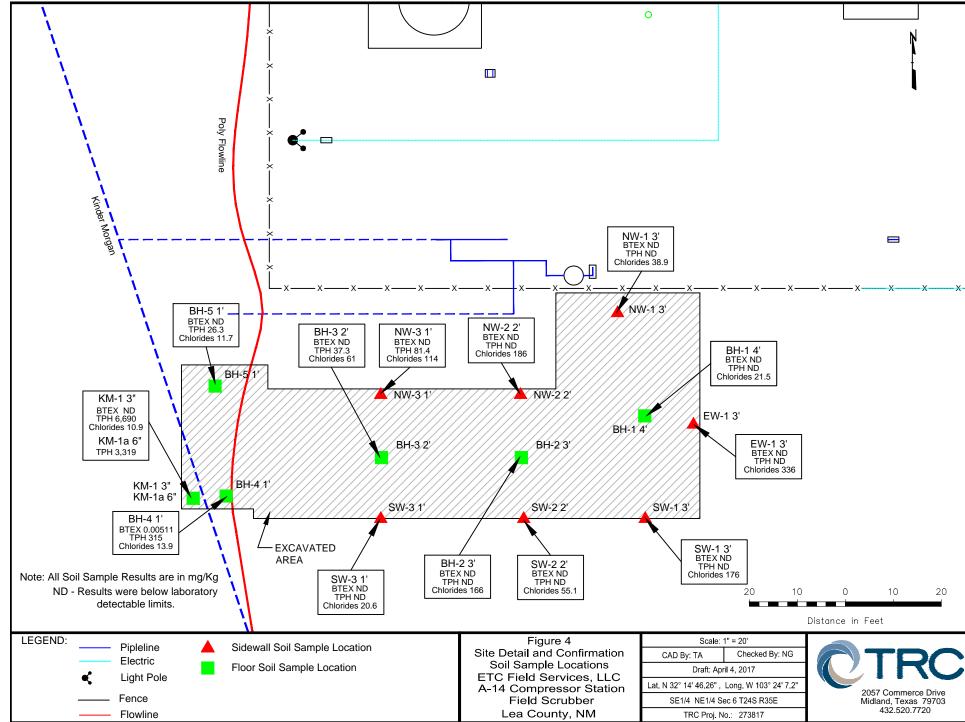

TRC has prepared this Remediation Summary and Site Closure Request to the best of its ability. No other warranty, expressed or implied, is made or intended.


TRC has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. TRC has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. TRC has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. TRC also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of ETC Field Services, LLC. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of TRC and/or ETC Field Services, LLC.


DISTRIBUTION

Copy 1:	Olivia Yu New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (District 1) 1625 French Drive Hobbs, New Mexico 88240
Copy 2:	Yolanda Jordan Jimenez Carlsbad Field Office United States Department of the Interior Bureau of Land Management 620 E. Greene Street Carlsbad, New Mexico 88220
Copy 3:	Rose Slade ETC Field Services, LLC 800 East Sonterra San Antonio, Texas 78258
Copy 4:	TRC Environmental Corporation 2057 Commerce Street Midland, Texas 79703



DRAWING NAME: H:Nova\Project Files\ETC Field Services\A14 Compressor Stat Field ScrubberMaps CAD\New Maps\ Figure 3A Field Scrubber Release.dwg --- PLOT DATE: July 14, 2017 - 4:17PM --- LAYOUT: Layout1

DRAWING NAME: H:\Nova\Project Files\ETC Field Services\A14 Compressor Stat Field Scrubber/Maps CAD\New Maps\ Figure 4 Field Scrubber.dwg --- PLOT DATE: August 31, 2017 - 4:13PM --- LAYOUT: Layout1

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL

ETC FIELD SERVICES, LLC A-14 COMPRESSOR STATION FIELD SCRUBBER LEA COUNTY, NEW MEXICO

	All concentrations are reported in mg/Kg												
	SAMPLE	SOIL			METHODS:	DDS: SW 846-8021b				METHOD:	SW 8015M		E 300.1
SAMPLE LOCATION	DATE	STATUS	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL BTEX	TPH GRO C ₆ -C ₁₀	TPH DRO C ₁₀ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
NMOCD Site Classification Criteria			10					50				5,000	600
FS-1 6"	03/23/17	Trench	< 0.00149	<0.00198	<0.00198	0.00480	<0.00297	0.00480	770	3,260	244	4,274	7,910
FS-1 1'	03/23/17	Trench	< 0.00151	< 0.00201	< 0.00201	< 0.00201	< 0.00301	< 0.00301	20.8	508	45.2	574.0	3,040
FS-2 6"	03/23/17	Trench	< 0.00149	< 0.00199	< 0.00199	< 0.00199	< 0.00298	< 0.00298	730	7,120	656	8,506	6,160
FS-2 1'	03/23/17	Trench	< 0.00147	< 0.00196	< 0.00196	< 0.00196	< 0.00295	< 0.00295	96.6	1,570	179	1,845.6	5,970
FS-3 6"	03/23/17	Trench	< 0.00147	< 0.00196	0.0209	0.146	0.129	0.2959	2,370	21,300	2,620	26,290	5,820
FS-3 1'	03/23/17	Trench	< 0.00150	< 0.00200	0.0144	0.119	0.104	0.2374	1,880	22,700	2,710	27,290	4,870
FS-4 6"	03/23/17	Trench	< 0.00270	< 0.00360	< 0.00360	< 0.00360	< 0.00540	< 0.00540	<15.0	1,730	3,260	4,990	<9.96
FS-4 1'	03/23/17	Trench	< 0.00275	< 0.00366	< 0.00366	< 0.00366	< 0.00549	< 0.00549	<15.0	1,640	3,180	4,820	<9.94
FS-5 6"	03/23/17	Trench	< 0.00149	< 0.00199	< 0.00199	< 0.00199	< 0.00298	< 0.00298	<15.0	1,590	3,090	4,680	10.8
FS-5 1'	03/23/17	Trench	< 0.00148	< 0.00197	< 0.00197	< 0.00197	< 0.00296	< 0.00296	<15.0	2,060	3,900	5,960	20.6
WFS-1 1'	03/23/17	Trench	< 0.00267	< 0.00356	< 0.00356	< 0.00356	< 0.00534	< 0.00534	<14.9	51.4	41.1	92.5	13.7
EFS-1 1'	03/23/17	Trench	< 0.00254	< 0.00339	< 0.00339	< 0.00339	< 0.00508	< 0.00508	<15.0	16.7	<15.0	16.7	45.2
SFS-1 1'	03/23/17	Trench	< 0.00262	< 0.00350	< 0.00350	< 0.00350	< 0.00524	< 0.00524	<15.0	17.9	<15.0	17.9	<9.96
NFS-2 1'	03/23/17	Trench	< 0.00148	< 0.00198	< 0.00198	< 0.00198	< 0.00296	< 0.00296	<15.0	448	131	579	84.3
SFS-2 1'	03/23/17	Trench	< 0.00149	< 0.00199	< 0.00199	< 0.00199	< 0.00299	< 0.00299	<15.0	99.8	<15.0	99.8	49.4
SFS-3 1'	03/23/17	Trench	< 0.00151	< 0.00201	< 0.00201	< 0.00201	< 0.00301	< 0.00301	<15.0	180	118	298	108
NFS-3 1'	03/23/17	Trench	< 0.00152	< 0.00202	< 0.00202	< 0.00202	< 0.00303	< 0.00303	<15.0	513	770	1,283	<9.98
									· ·				
FS-3 16"	04/17/17	Trench	< 0.00149	0.00479	0.00728	0.00625	0.00401	0.02233	117	1,480	93.8	1,690.8	-
FS-5a 1'	04/17/17	Trench	< 0.00151	< 0.00201	< 0.00201	0.00389	< 0.00301	0.00389	<15.0	1,240	2,310	3,550	<4.88
FS-5a 16"	04/17/17	Trench	< 0.00152	< 0.00152	< 0.00202	< 0.00202	0.00517	0.00517	<15.0	1,110	2,060	3,170	<4.95
FS-1a 4'	05/10/17	Trench	< 0.00201	< 0.00201	< 0.00201	< 0.00402	< 0.00201	< 0.00402	<15.0	23.6	<15.0	23.6	478
FS-1a 9'	05/10/17	Trench	-	-	-	-	-	-	-	-	-	-	162
FS-2a 4'	05/10/17	Trench	< 0.00199	< 0.00199	< 0.00199	< 0.00398	< 0.00199	< 0.00398	<15.0	18.3	<15.0	18.3	114
FS-2a 9'	05/10/17	Trench	-	-	-	-	-	-	_	-	-	-	27.0
FS-3a 4'	05/10/17	Trench	< 0.00200	< 0.00200	< 0.00200	< 0.00399	< 0.00200	< 0.00399	<14.9	15.0	<14.9	15.0	22.8
FS-3a 9'	05/10/17	Trench	-	-	-	-	-	-	-	-	-	-	49.2

1 of 2

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDE IN SOIL

ETC FIELD SERVICES, LLC A-14 COMPRESSOR STATION FIELD SCRUBBER LEA COUNTY, NEW MEXICO

CAMPLE	COLL			METHODS: 3	SW 846-8021b			METHOD: SW 8015M				
SAMPLE DATE	SOIL STATUS	BENZENE	TOLUENE	ETHYL- BENZENE	m, p - XYLENES	o - XYLENE	TOTAL BTEX	TPH GRO C ₆ -C ₁₀	TPH DRO C ₁₀ -C ₂₈	TPH ORO C ₂₈ -C ₃₅	TOTAL TPH C ₆ -C ₃₅	CHLORIDE
		10					50				5,000	600
06/13/17	In-Situ	< 0.00200	< 0.00200	< 0.00200	< 0.00401	< 0.00200	< 0.00401	<15.0	<15.0	<15.0	<15.0	21.5
06/13/17	In-Situ	< 0.00205	< 0.00205	< 0.00205	< 0.00410	< 0.00205	< 0.00410	<15.0	<15.0	<15.0	<15.0	176
06/13/17	In-Situ	< 0.00199	< 0.00199	< 0.00199	< 0.00398	< 0.00199	< 0.00398	<15.0	<15.0	<15.0	<15.0	38.9
06/14/17	In-Situ	< 0.00200	< 0.00200	< 0.00200	0.00511	< 0.00200	0.00511	<15.0	128	187	315	13.9
06/13/17	In-Situ	< 0.00201	< 0.00201	< 0.00201	< 0.00402	< 0.00201	< 0.00402	<15.0	<15.0	<15.0	<15.0	336
06/14/17	In-Situ	< 0.00200	< 0.00200	< 0.00200	< 0.00401	< 0.00200	< 0.00401	<15.0	<15.0	<15.0	<15.0	166
06/14/17	In-Situ	< 0.00199	< 0.00199	< 0.00199	< 0.00398	< 0.00199	< 0.00398	<15.0	<15.0	<15.0	<15.0	55.1
06/14/17	In-Situ	< 0.00202	< 0.00202	< 0.00202	< 0.00404	< 0.00202	< 0.00404	<15.0	<15.0	<15.0	<15.0	186
06/14/17	In-Situ	< 0.00202	< 0.00202	< 0.00202	< 0.00403	< 0.00202	< 0.00403	<15.0	26.3	<15.0	26.3	11.7
06/15/17	In-Situ	< 0.00199	< 0.00199	< 0.00199	<0.00398	<0.00199	< 0.00398	<15.0	37.3	<15.0	37.3	61
06/15/17	In-Situ	< 0.00201	< 0.00201	< 0.00201	< 0.00402	< 0.00201	< 0.00402	<15.0	65.7	15.7	81.4	114
06/15/17	In-Situ	< 0.00202	< 0.00202	< 0.00202	< 0.00404	< 0.00202	< 0.00404	<15.0	<15.0	<15.0	<15.0	20.6
07/11/17	Excavated	< 0.00200	< 0.00200	< 0.00200	< 0.00399	< 0.00200	< 0.00399	<15.0	1.250	5.440	6,690	10.9
08/22/17	In-Situ	-	-	-	-	-	-	<15.0	719	2,600	3,319	-
03/23/17	In-Situ	< 0.00151	< 0.00201	< 0.00201	< 0.00201	< 0.00301	< 0.00301	<15.0	<15.0	<15.0	<15.0	<9.96
	06/13/17 06/13/17 06/13/17 06/14/17 06/14/17 06/14/17 06/14/17 06/14/17 06/15/17 06/15/17 06/15/17 06/15/17	DATE STATUS 06/13/17 In-Situ 06/14/17 In-Situ 06/14/17 In-Situ 06/14/17 In-Situ 06/15/17 In-Situ 07/11/17 Excavated 08/22/17 In-Situ	DATE STATUS BENZENE 06/13/17 In-Situ <0.00200	DATE STATUS BENZENE FOLUENE 06/13/17 In-Situ <0.00200	DATESTATUSBENZENETOLUENEETHYL-BENZENE06/13/17In-Situ10006/13/17In-Situ </td <td>DATESTATUSBENZENETOLUENEETHYL- BENZENEm, p- XYLENES06/13/17In-Situ100<!--</td--><td>DATESTATUSBENZENETOLUENEETHYL- BENZENEm, p - XYLENES0 - XYLENES06/13/17In-Situ100<!--</td--><td>DATESTATUSBENZENETOLUENEETHYL- BENZENEm, p - XYLENES0 - XYLENESTOTAL BTEX06/13/17In-Situ10</td><td>DATE STATUS BENZENE TOLUENE ETHYL- BENZENE m, p- XYLENES 0 - XYLENES TOTAL XYLENE TPH GRO BTEX 06/13/17 In-Situ 10 Image: Comparison of the the the the the the the the the the</td><td>SAMPLE DATE SOIL STATUS BENZENE $TOLUENE$ ETHYL BENZENE m, p - XYLENES 0 - XYLENE TOTAL BEX TPH GRO C₆-C₁₀ TPH DRO C₁₀-C₂₈ 06/13/17 In-Situ <0.00200</td> <0.00200</td> <0.00201</td> <0.00201	DATESTATUSBENZENETOLUENEETHYL- BENZENEm, p- XYLENES06/13/17In-Situ100 </td <td>DATESTATUSBENZENETOLUENEETHYL- BENZENEm, p - XYLENES0 - XYLENES06/13/17In-Situ100<!--</td--><td>DATESTATUSBENZENETOLUENEETHYL- BENZENEm, p - XYLENES0 - XYLENESTOTAL BTEX06/13/17In-Situ10</td><td>DATE STATUS BENZENE TOLUENE ETHYL- BENZENE m, p- XYLENES 0 - XYLENES TOTAL XYLENE TPH GRO BTEX 06/13/17 In-Situ 10 Image: Comparison of the the the the the the the the the the</td><td>SAMPLE DATE SOIL STATUS BENZENE $TOLUENE$ ETHYL BENZENE m, p - XYLENES 0 - XYLENE TOTAL BEX TPH GRO C₆-C₁₀ TPH DRO C₁₀-C₂₈ 06/13/17 In-Situ <0.00200</td> <0.00200</td> <0.00201	DATESTATUSBENZENETOLUENEETHYL- BENZENEm, p - XYLENES0 - XYLENES06/13/17In-Situ100 </td <td>DATESTATUSBENZENETOLUENEETHYL- BENZENEm, p - XYLENES0 - XYLENESTOTAL BTEX06/13/17In-Situ10</td> <td>DATE STATUS BENZENE TOLUENE ETHYL- BENZENE m, p- XYLENES 0 - XYLENES TOTAL XYLENE TPH GRO BTEX 06/13/17 In-Situ 10 Image: Comparison of the the the the the the the the the the</td> <td>SAMPLE DATE SOIL STATUS BENZENE $TOLUENE$ ETHYL BENZENE m, p - XYLENES 0 - XYLENE TOTAL BEX TPH GRO C₆-C₁₀ TPH DRO C₁₀-C₂₈ 06/13/17 In-Situ <0.00200</td> <0.00200	DATESTATUSBENZENETOLUENEETHYL- BENZENEm, p - XYLENES0 - XYLENESTOTAL BTEX06/13/17In-Situ10	DATE STATUS BENZENE TOLUENE ETHYL- BENZENE m, p- XYLENES 0 - XYLENES TOTAL XYLENE TPH GRO BTEX 06/13/17 In-Situ 10 Image: Comparison of the	SAMPLE DATE SOIL STATUS BENZENE $TOLUENE$ ETHYL BENZENE m, p - XYLENES 0 - XYLENE TOTAL BEX TPH GRO C ₆ -C ₁₀ TPH DRO C ₁₀ -C ₂₈ 06/13/17 In-Situ <0.00200	SAMPLE DATE SOL STATUS SOL DENZENE TOLUENE BENZENE ETHYL- BENZENE m, p- XYLENES 0 - XYLENE TOTAL BTEX TPH GRO C ₆ -C ₁₀ TPH DRO C ₁₀ -C ₂₈ TPH ORO C ₂₉ -C ₃₅ 06/13/17 In-Situ <0.00200	SAMPLE DATE STATUS BENZENE TOLUENE BENZENE ETHYL- BENZENE m, p- XYLENE O - XYLENE TOTAL BENZ TPH GRO C ₆ -C ₁₀ TPH DRO C ₆ -C ₁₀ TPH DRO C ₁₀ -C ₂₈ TPH DRO C ₂₈ -C ₃₅ TOTAL TPH C ₆ -C ₃₅ 06/13/17 In-Situ 0.00200 0.00200 0.00200 0.00201

All concentrations are reported in mg/Kg

Analytical Report 549417

for TRC Solutions, Inc

Project Manager: Nikki Green

A14 Compressor Station Field Scrubber

TRC #273817

04-APR-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

04-APR-17

Project Manager: Nikki Green TRC Solutions, Inc 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): **549417** A14 Compressor Station Field Scrubber Project Address: Lea County, NM

Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 549417. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 549417 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 549417

TRC Solutions, Inc, Midland, TX

A14 Compressor Station Field Scrubber

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
FS-1 6"	S	03-23-17 13:25	- 6 In	549417-001
FS-1 1'	S	03-23-17 13:31	- 1 ft	549417-002
FS-2 6"	S	03-23-17 13:35	- 6 In	549417-003
FS-2 1'	S	03-23-17 13:42	- 1 ft	549417-004
FS-3 6"	S	03-23-17 13:47	- 6 In	549417-005
FS-3 1'	S	03-23-17 13:54	- 1 ft	549417-006
FS-4 6"	S	03-23-17 14:07	- 6 In	549417-007
FS-4 1'	S	03-23-17 14:20	- 1 ft	549417-008
FS-5 6"	S	03-23-17 14:28	- 6 In	549417-009
FS-5 1'	S	03-23-17 14:38	- 1 ft	549417-010
WFS-1 1'	S	03-23-17 14:48	- 1 ft	549417-011
EFS-1 1'	S	03-23-17 14:58	- 1 ft	549417-012
SFS-1 1'	S	03-23-17 15:09	- 1 ft	549417-013
NFS-2 1'	S	03-23-17 15:23	- 1 ft	549417-014
SFS-2 1'	S	03-23-17 15:37	- 1 ft	549417-015
SFS-3 1'	S	03-23-17 15:30	- 1 ft	549417-016
NFS-3 1'	S	03-23-17 16:10	- 1 ft	549417-017

CASE NARRATIVE

Client Name: TRC Solutions, Inc Project Name: A14 Compressor Station Field Scrubber

 Project ID:
 TRC #273817

 Work Order Number(s):
 549417

Report Date:04-APR-17Date Received:03/24/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3013589 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3013602 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Certificate of Analysis Summary 54941'
--

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station Field Scrubber

Project Id:TRC #273817Contact:Nikki GreenProject Location:Lea County, NM

Date Received in Lab:Fri Mar-24-17 02:55 pmReport Date:04-APR-17Project Manager:Kelsey Brooks

	Lab Id:	549417-0	001	549417-0	002	549417-0	003	549417-	004	549417-	005	549417-	006		
Analysis Progressed	Field Id:	FS-1 6"		FS-1 1	FS-1 1'		FS-2 6"		FS-2 1'		FS-3 6"		1'		
Analysis Requested	Depth:	6 In	6 In		1 ft		6 In		1 ft		6 In				
Matrix:		SOIL	SOIL		SOIL		,	SOII		SOIL		SOIL			
	Sampled:	Mar-23-17	13:25	Mar-23-17	13:31	Mar-23-17	13:35	Mar-23-17	13:42	Mar-23-17	13:47	Mar-23-17	13:54		
BTEX by EPA 8021B	Extracted:	Mar-28-17	15:30	Mar-28-17	15:30	Mar-28-17	15:30	Mar-28-17	15:30	Mar-28-17	15:30	Mar-28-17	15:30		
	Analyzed:	Mar-28-17	18:38	Mar-28-17	18:54	Mar-28-17 19:10		Mar-28-17	19:26	Mar-28-17	19:42	Mar-28-17 19:59			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		ND	0.00149	ND	0.00151	ND	0.00149	ND	0.00147	ND	0.00147	ND	0.00150		
Toluene		ND	0.00198	ND	0.00201	ND	0.00199	ND	0.00196	ND	0.00196	ND	0.00200		
Ethylbenzene		ND	0.00198	ND	0.00201	ND	0.00199	ND	0.00196	0.0209	0.00196	0.0144	0.00200		
m_p-Xylenes		0.00480	0.00198	ND	0.00201	ND	0.00199	ND	0.00196	0.146	0.00196	0.119	0.00200		
o-Xylene		ND	0.00297	ND	0.00301	ND	0.00298	ND	0.00295	0.129	0.00294	0.104	0.00299		
Total Xylenes		0.00480	0.00198	ND	0.00201	ND	0.00199	ND	0.00196	0.275	0.00196	0.223	0.00200		
Total BTEX		0.00480	0.00149	ND	0.00151	ND	0.00149	ND	0.00147	0.296	0.00147	0.237	0.00150		
Chloride by EPA 300	Extracted:	Apr-01-17	13:54	Apr-01-17 13:54		Apr-01-17 13:54									
SUB: TX104704215	Analyzed:	Apr-02-17	05:39	Apr-02-17 05:48		Apr-02-17 05:57		Apr-02-17 06:07		Apr-02-17 06:16		Apr-02-17 06:25			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		7910 D	99.8	3040 D	96.3	6160 D	98.8	5970 D	99.6	5820 D	99.6	4870 D	99.8		
TPH By SW8015 Mod	Extracted:	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00		
	Analyzed:	Mar-25-17	17:39	Mar-25-17	18:00	Mar-25-17	18:20	Mar-27-17	06:24	Mar-25-17	19:01	Mar-25-17	19:23		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
C6-C10 Gasoline Range Hydrocarbons		770	74.8	20.8	15.0	730	74.9	96.6	15.0	2370	74.9	1880	74.9		
C10-C28 Diesel Range Organics		3260	74.8	508	15.0	7120	74.9	1570	15.0	21300	74.9	22700	74.9		
C28-C35 Oil Range Hydrocarbons		244	74.8	45.2	15.0	656	74.9	179	15.0	2620	74.9	2710	74.9		
Total TPH		4270	74.8	574	15.0	8510	74.9	1850	15.0	26300	74.9	27300	74.9		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 54941'
--

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station Field Scrubber

Project Id:TRC #273817Contact:Nikki GreenProject Location:Lea County, NM

Date Received in Lab:Fri Mar-24-17 02:55 pmReport Date:04-APR-17Project Manager:Kelsey Brooks

			1				1						
	Lab Id:	549417-0	007	549417-0	008	549417-0	009	549417-	010	549417-	011	549417-	012
Analysis Requested	Field Id:	FS-4 6"		FS-4 1'		FS-5 6"		FS-5 1'		WFS-1 1'		EFS-1 1'	
Anuiysis Kequesieu	Depth:	6 In	6 In		1 ft		6 In		1 ft		1 ft		
	Matrix:	SOIL		SOIL		SOIL	,	SOIL		SOIL	,	SOIL	
	Sampled:	Mar-23-17	14:07	Mar-23-17	14:20	Mar-23-17	14:28	Mar-23-17	14:38	Mar-23-17	14:48	Mar-23-17	14:58
BTEX by EPA 8021B	Extracted:	Mar-28-17	16:50	Mar-28-17	16:50	Mar-28-17	15:30	Mar-28-17	15:30	Mar-28-17	16:50	Mar-28-17	16:50
	Analyzed:	Mar-29-17	12:30	Mar-29-17	11:08	Mar-28-17	21:20	Mar-28-17	21:37	Mar-29-17	11:24	Mar-29-17	11:41
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.00270	ND	0.00275	ND	0.00149	ND	0.00148	ND	0.00267	ND	0.00254
Toluene		ND	0.00360	ND	0.00366	ND	0.00199	ND	0.00197	ND	0.00356	ND	0.00339
Ethylbenzene		ND	0.00360	ND	0.00366	ND	0.00199	ND	0.00197	ND	0.00356	ND	0.00339
m_p-Xylenes		ND	0.00360	ND	0.00366	ND	0.00199	ND	0.00197	ND	0.00356	ND	0.00339
o-Xylene		ND	0.00540	ND	0.00549	ND	0.00298	ND	0.00296	ND	0.00534	ND	0.00508
Total Xylenes		ND	0.00360	ND	0.00366	ND	0.00199	ND	0.00197	ND	0.00356	ND	0.00339
Total BTEX		ND	0.00270	ND	0.00275	ND	0.00149	ND	0.00148	ND	0.00267	ND	0.00254
Chloride by EPA 300	Extracted:	Apr-01-17	15:46	Apr-01-17 15:46									
SUB: TX104704215	Analyzed:	Apr-02-17	16:20	Apr-02-17	16:48	Apr-02-17	16:57	Apr-02-17	17:07	Apr-02-17	17:16	Apr-02-17	17:44
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		ND	9.96	ND	9.94	10.8	9.92	20.6	9.88	13.7	9.98	45.2	9.77
TPH By SW8015 Mod	Extracted:	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00
	Analyzed:	Mar-25-17	19:44	Mar-25-17	20:03	Mar-25-17	20:25	Mar-25-17	20:46	Mar-25-17	21:48	Mar-25-17	22:11
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C10 Gasoline Range Hydrocarbons		ND	15.0	ND	15.0	ND	15.0	ND	15.0	ND	14.9	ND	15.0
C10-C28 Diesel Range Organics		1730	15.0	1640	15.0	1590	15.0	2060	15.0	51.4	14.9	16.7	15.0
C28-C35 Oil Range Hydrocarbons		3260	15.0	3180	15.0	3090	15.0	3900	15.0	41.1	14.9	ND	15.0
Total TPH		4990	15.0	4820	15.0	4680	15.0	5960	15.0	92.5	14.9	16.7	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 549417

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station Field Scrubber

Project Id:TRC #273817Contact:Nikki GreenProject Location:Lea County, NM

Date Received in Lab:Fri Mar-24-17 02:55 pmReport Date:04-APR-17Project Manager:Kelsey Brooks

	Lab Id:	549417-0)13	549417-0)14	549417-0	015	549417-0	016	549417-0	017	
	Field Id:	SFS-1		NFS-2		SFS-2		SFS-3		NFS-3		
Analysis Requested	Depth:	1 ft			1 ft			1 ft		1 ft		
	Matrix:	SOIL		SOIL	SOIL		SOIL			SOIL		
	Sampled:	Mar-23-17	15:09	Mar-23-17	15:23	Mar-23-17	15:37	Mar-23-17	15:30	Mar-23-17	16:10	
BTEX by EPA 8021B	Extracted:	Mar-28-17	16:50	Mar-28-17	15:30	Mar-28-17	15:30	Mar-28-17	15:30	Mar-28-17 1	15:30	
·	Analyzed:	Mar-29-17		Mar-28-17		Mar-28-17		Mar-28-17		Mar-28-17 2		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Benzene		ND	0.00262	ND	0.00148	ND	0.00149	ND	0.00151	ND	0.00152	
Toluene		ND	0.00350	ND	0.00198	ND	0.00199	ND	0.00201	ND	0.00202	
Ethylbenzene		ND	0.00350	ND	0.00198	ND	0.00199	ND	0.00201	ND	0.00202	
m_p-Xylenes		ND	0.00350	ND	0.00198	ND	0.00199	ND	0.00201	ND	0.00202	
o-Xylene		ND	0.00524	ND	0.00296	ND	0.00299	ND	0.00301	ND	0.00303	
Total Xylenes		ND	0.00350	ND	0.00198	ND	0.00199	ND	0.00201	ND	0.00202	
Total BTEX		ND	0.00262	ND	0.00148	ND	0.00149	ND	0.00151	ND	0.00152	
Chloride by EPA 300	Extracted:	Apr-01-17	15:46	Apr-01-17 15:46		Apr-01-17 15:46		Apr-01-17 15:46		Apr-01-17 15:46		
SUB: TX104704215	Analyzed:	Apr-02-17	17:53	Apr-02-17	18:03	Apr-02-17	18:12	Apr-02-17	18:21	Apr-02-17 1	18:31	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		ND	9.96	84.3	9.88	49.4	9.92	108	10.0	ND	9.98	
TPH By SW8015 Mod	Extracted:	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17	17:00	Mar-24-17 1	17:00	
	Analyzed:	Mar-25-17	22:32	Mar-25-17	23:34	Mar-25-17	23:55	Mar-26-17	00:15	Mar-26-17 (00:36	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
C6-C10 Gasoline Range Hydrocarbons		ND	15.0	ND	15.0	ND	15.0	ND	15.0	ND	15.0	
C10-C28 Diesel Range Organics		17.9	15.0	448	15.0	99.8	15.0	180	15.0	513	15.0	
C28-C35 Oil Range Hydrocarbons		ND	15.0	131	15.0	ND	15.0	118	15.0	770	15.0	
Total TPH		17.9	15.0	579	15.0	99.8	15.0	298	15.0	1280	15.0	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

Project Name: A14 Compressor Station Field Scrubber

	3013500	Sample: 549417-001 / SMP					
Units:	mg/kg	Date Analyzed: 03/25/17 17:39	st	JRROGATE R	ECOVERY S	STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooctan	e		93.2	99.7	93	70-135	
o-Terphenyl			43.8	49.9	88	70-135	
Lab Batch #:	3013500	Sample: 549417-002 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/25/17 18:00	SU	JRROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1-Chlorooctan		Analytes	88.7	99.7	89	70-135	
o-Terphenyl			44.7	49.9	90	70-135	
Lab Batch #:	3013500	Sample: 549417-003 / SMP	Batc			70 155	
Units:	mg/kg	Date Analyzed: 03/25/17 18:20		JRROGATE R		STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes		[0]	[D]	/UK	
1-Chlorooctan	e		88.1	99.9	88	70-135	
o-Terphenyl			38.6	50.0	77	70-135	
Lab Batch #:	3013500	Sample: 549417-005 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/25/17 19:01	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
	e		106	99.9	106	70-135	
1-Chlorooctan						70-135	
1-Chlorooctan			48.9	50.0	98	/0-155	
		Sample: 549417-006 / SMP	48.9 Batc			70-133	
o-Terphenyl Lab Batch #:		Sample: 549417-006 / SMP Date Analyzed: 03/25/17 19:23	Batc		: Soil		
o-Terphenyl	3013500 mg/kg TPH I	Date Analyzed: 03/25/17 19:23 By SW8015 Mod	Batc	h: 1 Matrix	ECOVERY S		Flag
o-Terphenyl Lab Batch #:	3013500 mg/kg TPH H	Date Analyzed: 03/25/17 19:23	Batc SU Amount Found	h: 1 Matrix JRROGATE R True Amount	: Soil ECOVERY S Recovery	STUDY Control Limits	Flage

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station Field Scrubber

T T •/	4						
Units:	mg/kg	Date Analyzed: 03/25/17 19:44	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooctan	e		97.3	100	97	70-135	
o-Terphenyl			48.6	50.0	97	70-135	
Lab Batch #:	3013500	Sample: 549417-008 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/25/17 20:03	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1-Chlorooctan	e	Analytes	104	99.8	104	70-135	
o-Terphenyl			52.8	49.9	101	70-135	
Lab Batch #:	3013500	Sample: 549417-009 / SMP	Batc			10 155	
Units:	mg/kg	Date Analyzed: 03/25/17 20:25		JRROGATE R		STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes	[]	[2]	[D]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1-Chlorooctan	e		99.7	100	100	70-135	
o-Terphenyl			50.1	50.0	100	70-135	
Lab Batch #:	3013500	Sample: 549417-010 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/25/17 20:46	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH I	By SW8015 Mod	Amount Found	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes	[A]	[23]	[D]		
1-Chlorooctan	e	Analytes	[A] 	99.7	[D]	70-135	
1-Chlorooctan o-Terphenyl	e	Analytes				70-135 70-135	
o-Terphenyl		Analytes Sample: 549417-011 / SMP	98.6	99.7 49.9	99 102		
o-Terphenyl Lab Batch #:			98.6 51.1 Bate	99.7 49.9	99 102 : Soil	70-135	
o-Terphenyl Lab Batch #:	: 3013500 mg/kg	Sample: 549417-011 / SMP Date Analyzed: 03/25/17 21:48 By SW8015 Mod	98.6 51.1 Bate	99.7 49.9 h: 1 Matrix	99 102 Soil ECOVERY S Recovery %R	70-135	Flags
	: 3013500 mg/kg TPH I	Sample: 549417-011 / SMP Date Analyzed: 03/25/17 21:48	98.6 51.1 Bate SU Amount Found	99.7 49.9 h: 1 Matrix JRROGATE R True Amount	99 102 : Soil ECOVERY S	70-135 STUDY Control Limits	Flags

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station Field Scrubber

Lab Batch #:		Sample: 549417-012 / SMP	Bato	ch: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/25/17 22:11	SU	URROGATE R	ECOVERY S	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooctane	•		82.9	99.7	83	70-135	
o-Terphenyl			41.8	49.9	84	70-135	
Lab Batch #:	3013500	Sample: 549417-013 / SMP	Bato	ch: 1 Matrix	: Soil	·	
Units:	mg/kg	Date Analyzed: 03/25/17 22:32	SU	URROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane			87.3	99.9	87	70-135	
o-Terphenyl			44.4	50.0	89	70-135	
Lab Batch #:	3013500	Sample: 549417-014 / SMP	Bato	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/25/17 23:34	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH E	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooctane	•		95.6	99.8	96	70-135	
o-Terphenyl			48.2	49.9	97	70-135	
Lab Batch #:	3013500	Sample: 549417-015 / SMP	Bato	ch: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/25/17 23:55	SU	URROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane			102	99.8	102	70-135	
o-Terphenyl			51.8	49.9	104	70-135	
Lab Batch #:	3013500	Sample: 549417-016 / SMP	Bato	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/26/17 00:15	SU	URROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane	•		90.5	99.8	91	70-135	
o-Terphenyl			45.9	49.9	92	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station Field Scrubber

Units: mg/kg Date Analyzed: 03/27/17 06:24 SURROGATE RECOVERY STUD TPH By SW8015 Mod Amount Found True Amount [A] Recovery %R [D] Recovery %R [D] Con Lin %R (D] 1-Chlorooctane 94.1 99.8 94 70-1 o-Terphenyl 39.0 49.9 78 70-1 Lab Batch #: 3013589 Sample: 549417-001 / SMP Batch: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 18:38 SURROGATE RECOVERY STUD BTEX by EPA 8021B Amount (A] Matrix: Soil 80-1 1.4-Difluorobenzene 0.0314 0.0300 105 80-1 4-Bromofluorobenzene 03/28/17 18:54 SURROGATE RECOVERY STUD BABatch #: 3013589 Sample: 549417-002 / SMP Batch: 1 Matrix: Soil Lab Batch #: 3013589 Sample: 549417-002 / SMP Batch: 1 Matrix: Soil 1.4-Difluorobenzene 0.0322 0.0300 107		
IPH by SW001S ModFound [A]Amount [B]Recovery $%R$ [D]In $%R$ $%R$ [D]1-Chlorooctane97.399.99770-o-Terphenyl50.250.010070-Cab Batch #:3013500Sample: 549417-004 / SMPBatch:1Matrix: SoilUnits:mg/kgDate Analyzed: $03/27/17 06:24$ SURROGATE RECOVERY STUDTPH By SW8015 ModAmount Found [A]True Amount [B]Recovery $9/R$ In $9/R$ 1-Chlorooctane94.199.89470Terphenyl39.049.97870-1-Chlorooctane94.199.89470Terphenyl39.049.97870-1-Chlorooctane0.328/17 18:38SURROGATE RECOVERY STUDMatrix:mg/kgDate Analyzed: $03/28/17 18:38$ SURROGATE RECOVERY STUDI-to-ifluorobenzene0.03140.030010580-1.4-Difluorobenzene0.03140.030010580-1.4-Difluorobenzene0.02450.03008280-Lab Batch #:3013589Sample: 549417-002 / SMPBatch:1Matrix: SoilUnits:mg/kgDate Analyzed: $03/28/17 18:54$ SURROGATE RECOVERY STUDLab Batch #:3013589Sample: 549417-002 / SMPBatch:1Matrix: SoilUnits:mg/kgDate Analyzed: $03/28/17 18:54$ SURROGATE RECOVERY STUDLab Batch #:3013589 <t< th=""><th>SURROGATE RECOVERY STUI</th><th>Y</th></t<>	SURROGATE RECOVERY STUI	Y
Analytes 97.3 99.9 97 70-1 o-Terphenyl 50.2 50.0 100 70- Lab Batch #: 3013500 Sample: 549417-004 / SMP Batch:: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/27/17 06:24 SURROGATE RECOVERY STUD TPH By SW8015 Mod Amount True Amount Recovery % full % Analytes 94.1 99.8 94 70- o-Terphenyl 39.0 49.9 78 70- 1-Chlorooctane 94.1 99.8 94 70- o-Terphenyl 39.0 49.9 78 70- Lab Batch #: 3013589 Sample: 549417-001 / SMP Batch:: 1 Matrix: Soil Units: mg/kg Date Analyzet: 03/28/17 18:38 SURROGATE RECOVERY STUD Lin Analytes 0.0314 0.0300 82 80- 1.4-Difluorobenzene 0.0314 0.0300 82 80- <th>FoundAmountRecoveryLin[A][B]%R%</th> <th>its Flags</th>	FoundAmountRecoveryLin[A][B]%R%	its Flags
O-Terphenyl 50.2 50.0 100 70- Lab Batch #: 3013500 Sample: 549417-004 / SMP Batch:: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/27/17 06:24 SURROGATE RECOVERY STUD TPH By SW8015 Mod Amount [A] True Amount [B] Recovery % R [D] % % 1-Chlorooctane 94.1 99.8 94 70- o-Terphenyl 39.0 49.9 78 70- Lab Batch #: 3013589 Sample: 549417-001 / SMP Batch:: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 18:38 SURROGATE RECOVERY STUD Lin Analytes 0.0314 0.0300 82 80- 1.4-Difluorobenzene 0.0314 0.0300 82 80- Lab Batch #: 3013589 Sample: 549417-002 / SMP Batch:: 1 Matrix: Soil 1.4-Difluorobenzene 0.0314 0.0300 82 80-	[D]	
Lab Batch #:3013500Sample:549417-004 / SMPBatch:1Matrix:SOIUnits:mg/kgDate Analyzed: $03/27/17$ 06:24SURROGATE RECOVERY STUDContinue <td>97.3 99.9 97 70-</td> <td>35</td>	97.3 99.9 97 70-	35
Units:mg/kgDate Analyzed: $03/27/17 06:24$ SURFOGATE RECOVERY SUDTPH By SW8015 Mod AnalytesTrue Found [A]True Anount [B]Recovery %R [D]Con Lab %R [D]Con %R (D]1-Chlorooctane99.899.490.894.470.40-Terphenyl39.049.97870.4Lab Batch #:3013589Sample:549417-001 / SMP 1 Matrix:Batch:1Matrix:Units:mg/kgDate Analyzed:03/28/17 18:38SURFOGATE RECOVERYUDBTEX by EPA 8021BAnount [A]Recovery (D]Con 	50.2 50.0 100 70-	35
TPH By SW8015 Mod Amount [A] True Found [A] Amount [B] True Recovery %R [D] Con- true %R [D] Con- %R [D] Con- %R [D] Con- %R [D] Con- %R [D] Con- %R [D]	Batch: 1 Matrix: Soil	
Found [A] Amount [B] Recovery %R [D] Lin %R [D] 1-Chlorooctane 94.1 99.8 94 70- o-Terphenyl 30.0 49.9 78 70- Lab Batch #: 3013589 Sample: 549417-001 / SMP Batch: 1 Matrix: Soit True BTEX by EPA 8021B Amount [A] Amount Found [A] True Amount [B] Recovery %R [D] Con Lin %R [D] Con Lin %R [D] Con Lin %R [D] Con Lin %R [D] Con Lin %R [D] Con Lin %R [D] Con Lin %R [D] Con SURROGATE RECOVERY STUD Con Lin %R [D] Con Lin %R [D] Con Lin %R [D] Con Lin %R [D] Con Lin %R [D] Con SURROGATE RECOVERY STUD Con Lin %R [D] Con SURROGATE RECOVERY STUD Lab Batch #: 3013589 Sample: 549417-002 / SMP Analytes Batch: 1 Matrix: Soit Units: Soit BTEX by EPA 8021B Amount [A] True Amount [A] Manount [B] Recovery %R [D] Soit 1.4-Difloorobenzene 0.0322 0.0300 95 80- Lab Batch #: 3013589 Sample: 549417-003 / SMP Analytes Batch: 1 Matrix: Soit Lab Batc	SURROGATE RECOVERY STUI	Y
1-Chlorooctane 94.1 99.8 94 70-1 o-Terphenyl 39.0 49.9 78 70-1 Lab Batch #: 3013589 Sample: 549417-001 / SMP Batch: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 18:38 SURROGATE RECOVERY STUD Amount BTEX by EPA 8021B Amount [A] True Amount [B] Recovery [D] Con 1.4-Difluorobenzene 0.0314 0.0300 105 80-1 4-Bromofluorobenzene 0.0245 0.0300 82 80-1 Lab Batch #: 3013589 Sample: 549417-002 / SMP Batch: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 18:54 SURROGATE RECOVERY STUD Surroop (D) 80-1 Lab Batch #: 3013589 Sample: 549417-002 / SMP Batch: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 18:54 SURROGATE RECOVERY STUD Con Analytes 0.0322 0.0300 107 80-1 1.4-Difluorobenzene 0.0322	FoundAmountRecoveryLin[A][B]%R%	its Flags
o-Terphenyl 39.0 49.9 78 70- Lab Batch #: 3013589 Sample: 549417-001 / SMP Batch: 1 Matrix: Soit Units: mg/kg Date Analyzed: 03/28/17 18:38 SURFOGATE RECOVERY SUD SURFOGATE RECOVERY SUD BTEX by EPA 8021B Amount (Analytes Amount (B) True (B) Recovery %R (D) %R Con %R (D) 1.4-Difluorobenzene 0.0314 0.0300 105 80- 4-Bromofluorobenzene 0.0245 0.0300 82 80- Lab Batch #: 3013589 Sample: 549417-002 / SMP Batch: 1 Matrix: Soit Units: mg/kg Date Analyzed: 03/28/17 18:54 SURFOGATE RECOVERY SUD Con Mamount [A] Mamount [B] Recovery %R [D] %R Con %R [D] 1.4-Difluorobenzene 0.0322 0.0300 107 80- 1.4-Difluorobenzene 0.0322 0.0300 107 80- 1.4-Difluorobenzene 0.0284 0.0300 95 80- 1.4-Difluorobenzene 0.0284 0.0300 95 80- 1.4-Bromofluorobenzene 0.0284 0.0300		35
Lab Batch #:3013589Sample:549417-001 / SMP SMPBatch:1Matrix:SoilUnits:mg/kgDate Analyzed:03/28/17 18:38SURROGATE RECOVERY STUD AnalytesBTEX by EPA 8021B AnalytesAmount [A]True [B]Recovery %R [D]Con %R [D]1.4-Difluorobenzene0.03140.030010580-4-Bromofluorobenzene0.02450.03008280-4-Bromofluorobenzene0.02450.03008280-Lab Batch #:3013589Sample:549417-002 / SMPBatch:1Matrix:SoilUnits:mg/kgDate Analyzed:03/28/17 18:54SurroGATE RECOVERY STUDBTEX by EPA 8021B 4-BromofluorobenzeneAmount [A]True Amount [B]Recovery %R [D]Con %R [D]1.4-Difluorobenzene0.03220.030010780-J.4-Difluorobenzene0.03220.030010780-J.4-Difluorobenzene0.03220.03009580-I.4-Difluorobenzene0.02840.03009580-I.4-Difluorobenzene0.02840.03009580-I.4-Difluorobenzene0.02840.03009580-I.4-Difluorobenzene0.02840.03009580-I.4-DifluorobenzeneI.4-DifluorobenzeneI.4-Matrix: SoilIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
Units:mg/kgDate Analyzed: $03/28/17$ $18:38$ SURROGATERECOVERYSTUDBTEX by EPA 8021BAmount Found [A]Amount Found [A]True Amount [B]Recovery %R (D)Con Lin %R (D)1,4-Difluorobenzene0.03140.030010580-14-Bromofluorobenzene0.02450.03008280-1Lab Batch #:3013589Sample:549417-002 / SMPBatch:1Matrix:SoitLab Batch #:3013589Sample:549417-18:54SURROGATERECOVERY STUDLin %R (D)10580-1Lab Batch #:3013589Sample:03/28/1718:54SURROGATERecovery %R (D)10780-1Lab Batch #:3013589Sample:0.03220.030010780-11,4-Difluorobenzene0.03240.03009580-11,4-Difluorobenzene0.02840.03009580-11,4-Difluorobenzene0.02840.03009580-1Lab Batch #:3013589Sample:549417-003 / SMPBatch:1Matrix:SoitUnits:mg/kgDateAnalyzed:03/28/1719:10SURCOGATERECOVERY STUDBTEX by EPA 8021BAmount Found [A]True Amount [B]Recovery %RCon %RBTEX by EPA 8021BAmount Found [A]True Amount [B]Recovery %RCon %R		
Found [A] Amount [B] Recovery %R [D] Lin %A [M] 1.4-Difluorobenzene 0.0314 0.0300 105 80-1 4-Bromofluorobenzene 0.0245 0.0300 82 80-1 Lab Batch #: 3013589 Sample: 549417-002 / SMP Batch: 1 Matrix: Soil 1 Units: mg/kg Date Analyzed: 03/28/17 18:54 Amount Found [A] True Amount [B] Recovery %R [D] Con Lin %A 1.4-Difluorobenzene 0.0322 0.0300 107 80-1 1.4-Difluorobenzene 0.0324 0.0300 95 80-1 Lab Batch #: 3013589 Sample: 549417-003 / SMP Batch: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 19:10 SURTOGATE RECOVERY STUD BTEX by EPA 8021B Amount [A] True [A] Amount [B] <td>SURROGATE RECOVERY STUI</td> <td>Y</td>	SURROGATE RECOVERY STUI	Y
1,4-Difluorobenzene 0.0314 0.0300 105 80-1 4-Bromofluorobenzene 0.0245 0.0300 82 80-1 Lab Batch #: 3013589 Sample: 549417-002 / SMP Batch: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 18:54 SURROGATE RECOVERY STUD BTEX by EPA 8021B Amount [A] True Amount [B] Recovery %R [D] Con Lin %R 1,4-Difluorobenzene 0.0322 0.0300 107 80-1 4-Bromofluorobenzene 0.0284 0.0300 95 80-1 1,4-Difluorobenzene 0.0284 0.0300 95 80-1 Lab Batch #: 3013589 Sample: 549417-003 / SMP Batch: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 19:10 SURROGATE RECOVERY STUD BTEX by EPA 8021B Amount [A] True Amount [A] Matrix: Soil	FoundAmountRecoveryLin[A][B]%R%	its Flags
4-Bromofluorobenzene 0.0245 0.0300 82 80-1 Lab Batch #: 3013589 Sample: 549417-002 / SMP Batch: 1 Matrix: Soil 1 Units: mg/kg Date Analyzed: 03/28/17 18:54 SURROGATE RECOVERY STUD Recovery % Nume Nume Nume Nume Recovery % Nume		
Lab Batch #:3013589Sample:549417-002 / SMPBatch:1Matrix:SoilUnits:mg/kgDate Analyzed:03/28/17 18:54SURROGATE RECOVERY STUDBTEX by EPA 8021BAmount Found [A]True [B]Recovery %R [D]Con Lin %R (D]1,4-Difluorobenzene0.03220.030010780-14-Bromofluorobenzene0.02840.03009580-1Lab Batch #:3013589Sample:549417-003 / SMPBatch:1Matrix:SoilUnits:mg/kgDate Analyzed:03/28/17 19:10SURROGATE RECOVERY STUDCon Lin %RCon Lin %RBTEX by EPA 8021BAmount Found [A]True Amount [B]Recovery %RCon Lin %R		20
Units: mg/kg Date Analyzed: 03/28/17 18:54 SURROGATE RECOVERY STUD BTEX by EPA 8021B Amount Found [A] True Amount [B] Recovery %R [D] Con Lin %R 1,4-Difluorobenzene 0.0322 0.0300 107 80-1 4-Bromofluorobenzene 0.0284 0.0300 95 80-1 Lab Batch #: 3013589 Sample: 549417-003 / SMP Batch: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 19:10 SURROGATE RECOVERY STUD BTEX by EPA 8021B Amount [A] True Amount [A] Recovery %R Con Lin %R		20
BTEX by EPA 8021B Amount Found [A] True Amount [B] Recovery %R [D] Con Lin %R [D] 1,4-Difluorobenzene 0.0322 0.0300 107 80-1 4-Bromofluorobenzene 0.0284 0.0300 95 80-1 Lab Batch #: 3013589 Sample: 549417-003 / SMP Batch: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 19:10 SURROGATE RECOVERY STUD BTEX by EPA 8021B Amount Found [A] True Amount [B] Recovery %R Con Lin %R		
Found [A] Amount [B] Recovery %R [D] Lin %R [D] 1,4-Difluorobenzene 0.0322 0.0300 107 80-1 4-Bromofluorobenzene 0.0284 0.0300 95 80-1 Lab Batch #: 3013589 Sample: 549417-003 / SMP Batch: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 19:10 SURROGATE RECOVERY STUD BTEX by EPA 8021B Amount Found [A] True Amount [B] Recovery %R Con Lin %R	SURROGATE RECOVERY STUI	Y
4-Bromofluorobenzene 0.0284 0.0300 95 80-1 Lab Batch #: 3013589 Sample: 549417-003 / SMP Batch: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 19:10 SURROGATE RECOVERY STUD BTEX by EPA 8021B Amount [A] True [B] Recovery %R Con Lin %R	FoundAmountRecoveryLin[A][B]%R%	its Flags
Lab Batch #: 3013589 Sample: 549417-003 / SMP Batch: 1 Matrix: Soil Units: mg/kg Date Analyzed: 03/28/17 19:10 SURROGATE RECOVERY STUD BTEX by EPA 8021B Amount [A] True [B] Recovery %R Con Lin %R	0.0322 0.0300 107 80-	20
Units: mg/kg Date Analyzed: 03/28/17 19:10 SURROGATE RECOVERY STUD BTEX by EPA 8021B Amount Found [A] True Amount [B] Recovery %R Con Lin %R	0.0284 0.0300 95 80-	20
BTEX by EPA 8021B Amount Found [A] True Amount [B] Con Kecovery %R	Batch: 1 Matrix: Soil	I
FoundAmountRecoveryLin[A][B]%R%	SURROGATE RECOVERY STUI	Y
Analytes	FoundAmountRecoveryLin[A][B]%R%	its Flag
		20
1,4-Difluorobenzene0.03050.030010280-14-Bromofluorobenzene0.02440.03008180-1		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station Field Scrubber

FT	л	D-4. A					
Units:	mg/kg	Date Analyzed: 03/28/17 19:26	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1,4-Difluoro	benzene		0.0328	0.0300	109	80-120	
4-Bromofluc	orobenzene		0.0262	0.0300	87	80-120	
Lab Batch	#: 3013589	Sample: 549417-005 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/28/17 19:42	SU	RROGATE R	ECOVERY S	STUDY	
		A polytos	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro		Analytes	0.0325	0.0300	108	80-120	
4-Bromofluc			0.0323	0.0300	86	80-120	
Lab Batch		Sample: 549417-006 / SMP	Batc			00-120	
Units:	mg/kg	Date Analyzed: 03/28/17 19:59		RROGATE R	-	STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes	[]	[2]	[D]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1,4-Difluoro	benzene		0.0324	0.0300	108	80-120	
4-Bromofluc	orobenzene		0.0240	0.0300	80	80-120	
Lab Batch	#: 3013589	Sample: 549417-009 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/28/17 21:20	SU	RROGATE R	ECOVERY S	STUDY	
		L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluoro		Analytes	0.0336	0.0300	112	80-120	
4-Bromofluc			0.0330	0.0300	90	80-120	
	#: 3013589	Sample: 549417-010 / SMP	Bate			00 120	
Units:	mg/kg	Date Analyzed: 03/28/17 21:37		RROGATE R		STUDY	
		K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1,4-Difluoro			0.0337	0.0300	112	80-120	
4-Bromofluc	orobenzene		0.0316	0.0300	105	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station Field Scrubber

	#: 3013589	Sample: 549417-014 / SMP	Batc	h: 1 Matrix	: Soil		
U nits:	mg/kg	Date Analyzed: 03/28/17 22:42	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluoro	obenzene		0.0334	0.0300	111	80-120	
4-Bromoflu	orobenzene		0.0318	0.0300	106	80-120	
Lab Batch	#: 3013589	Sample: 549417-015 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/28/17 22:59	SU	RROGATE R	ECOVERY S	STUDY	
		by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro			0.0345	0.0300	115	80-120	
4-Bromoflu			0.0301	0.0300	100	80-120	
Lab Batch	#: 3013589	Sample: 549417-016 / SMP	Batc	h: 1 Matrix			
Units:	mg/kg	Date Analyzed: 03/28/17 23:15	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	t by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0342	0.0300	114	80-120	
4-Bromoflu	orobenzene		0.0267	0.0300	89	80-120	
Lab Batch	#: 3013589	Sample: 549417-017 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/28/17 23:31	SU	RROGATE R	ECOVERY S	STUDY	
		L by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluoro	benzene		0.0360	0.0300	120	80-120	
4-Bromoflu	orobenzene		0.0279	0.0300	93	80-120	
Lab Batch	#: 3013602	Sample: 549417-008 / SMP	Batc	h: 1 Matrix	: Soil	1	
Units:	mg/kg	Date Analyzed: 03/29/17 11:08	SU	RROGATE R	ECOVERY S	STUDY	
		A by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
	obenzene		0.0271	0.0300	90	80-120	
1 A Diffuse			1111//1	1 111300	i un	i SUL 1/11	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station Field Scrubber

Lab Batch	#: 3013602	Sample: 549417-011 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/29/17 11:24	SU	JRROGATE R	ECOVERY S	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluoro	obenzene		0.0340	0.0300	113	80-120	
4-Bromoflu	orobenzene		0.0282	0.0300	94	80-120	
Lab Batch	#: 3013602	Sample: 549417-012 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/29/17 11:41	SU	JRROGATE R	ECOVERY	STUDY	
		A by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1,4-Difluoro		Anarytes	0.0219	0.0200		80-120	
4-Bromoflu			0.0318	0.0300	106 87	80-120	
	#: 3013602	Sample: 549417-013 / SMP	Batc			80-120	
Lab Batch Units:	mg/kg	Date Analyzed: 03/29/17 11:57					
Units:	iiig/kg	Date Analyzeu: 03/29/17 11.37	SU	JRROGATE R	ECOVERY	STUDY	
		K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1,4-Difluoro	obenzene		0.0351	0.0300	117	80-120	
4-Bromoflu			0.0292	0.0300	97	80-120	
Lab Batch	#: 3013602	Sample: 549417-007 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/29/17 12:30	SU	JRROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluoro	benzene	Anarytes	0.0333	0.0300		80-120	
4-Bromoflu			0.0333	0.0300	87	80-120	
	#: 3013500	Sample: 722213-1-BLK / BL				00-120	
Units:	mg/kg	Date Analyzed: 03/25/17 16:38		JRROGATE R		STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooct	ane		102	100	102	70-135	
o-Terpheny			51.7	50.0	103	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station Field Scrubber

[]m:ta	m a /l	Data Analyzada 02/08/17 17 40					
Units:	mg/kg	Date Analyzed: 03/28/17 17:49	st	RROGATE R	ECOVERY S	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0341	0.0300	114	80-120	
4-Bromoflu	orobenzene		0.0272	0.0300	91	80-120	
Lab Batch	#: 3013602	Sample: 722269-1-BLK / B	LK Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/29/17 01:42	SU	RROGATE R	ECOVERY S	STUDY	
		L by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor		Analytes	0.0280	0.0300	93	80-120	
4-Bromoflu			0.0280	0.0300	93	80-120	
	#: 3013500	Sample: 722213-1-BKS / B				80-120	
Units:	mg/kg	Date Analyzed: 03/25/17 16:58					
Units.	iiig/ kg	Date Analyzet. 03/23/17 10.38	SU	RROGATE R	ECOVERY	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	tane		97.5	100	98	70-135	
o-Terpheny	1		46.4	50.0	93	70-135	
Lab Batch	#: 3013589	Sample: 722268-1-BKS / B	KS Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/28/17 16:27	SU	RROGATE R	ECOVERY S	STUDY	
		L by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor			0.0336	0.0300	112	80-120	
4-Bromoflu	orobenzene		0.0305	0.0300	102	80-120	
Lab Batch	#: 3013602	Sample: 722269-1-BKS / B	KS Batc		: Solid		
Units:	mg/kg	Date Analyzed: 03/29/17 00:20	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes	_		[D]		
1,4-Difluor	obenzene		0.0341	0.0300	114	80-120	
1.5. 0	orobenzene		0.0273	0.0300	91	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station Field Scrubber

Lab Batch #:	3013500	Sample: 722213-1-BSD / B	SD Bate	h: 1 Matrix	: Solid		
U nits:	mg/kg	Date Analyzed: 03/25/17 17:19	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane	•		97.8	100	98	70-135	
o-Terphenyl			47.0	50.0	94	70-135	
Lab Batch #:	3013589	Sample: 722268-1-BSD / B	SD Bate	ch: 1 Matrix	: Solid	·	
Units:	mg/kg	Date Analyzed: 03/28/17 16:43	SU	JRROGATE R	ECOVERY S	STUDY	
		K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorober		Anarytes	0.0330	0.0300	110	80-120	
4-Bromofluoro			0.0308	0.0300	103	80-120	
Lab Batch #:		Sample: 722269-1-BSD / B				00 120	
Units:	mg/kg	Date Analyzed: 03/29/17 00:36		JRROGATE R	ECOVERY	STUDY	
		K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
		Analytes					
1,4-Difluorober			0.0347	0.0300	116	80-120	
4-Bromofluoro			0.0265	0.0300	88	80-120	
Lab Batch #:		Sample: 549417-013 S / MS	B Bate	ch: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/25/17 22:53	SU	JRROGATE R	ECOVERY S	STUDY	
		3y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	;		96.0	99.7	96	70-135	
o-Terphenyl			46.8	49.9	94	70-135	
Lab Batch #:	3013589	Sample: 549416-026 S / MS	S Bate	h: 1 Matrix	: Soil	1	
Units:	mg/kg	Date Analyzed: 03/28/17 17:00	SU	JRROGATE R	ECOVERY S	STUDY	
		K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
4 4 516		Analytes			[D]		
1,4-Difluorober			0.0323	0.0300	108	80-120	
4-Bromofluoro	benzene		0.0318	0.0300	106	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station Field Scrubber

Work Ord Lab Batch #	lers: 54941 : 3013602	7, Sample: 549418-001 S / M.	S Batcl		: TRC #2738	17	
Units:	mg/kg	Date Analyzed: 03/29/17 00:53	SU	RROGATE R	ECOVERY	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorob	enzene		0.0356	0.0300	119	80-120	
4-Bromofluor	robenzene		0.0330	0.0300	110	80-120	
Lab Batch #	: 3013500	Sample: 549417-013 SD / N	ASD Batcl	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/25/17 23:14	SU	RROGATE R	ECOVERY	STUDY	
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chloroocta	ne	Analytes	87.3	99.7	88	70-135	·
o-Terphenyl			41.6	49.9	83	70-135	
Lab Batch #	• 3013589	Sample: 549416-026 SD / N				70-135	
Units:	mg/kg	Date Analyzed: 03/28/17 17:16		RROGATE R		STUDY	
	BTEX	K by EPA 8021B	Amount Found	True Amount	Recovery	Control Limits	Flags
		Analytes	[A]	[B]	%R [D]	%R	
1,4-Difluorob	oenzene		0.0345	0.0300	115	80-120	
4-Bromofluor	robenzene		0.0300	0.0300	100	80-120	
Lab Batch #	: 3013602	Sample: 549418-001 SD / N	MSD Bate	h: 1 Matrix	Soil		
Units:	mg/kg	Date Analyzed: 03/29/17 01:09	SU	RROGATE R	ECOVERY	STUDY	
	втех	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
140:0 1		Analytes	0.0227	0.0000		00.100	ļ
1,4-Difluorot			0.0335	0.0300	112	80-120	<u> </u>
4-Bromofluor	robenzene		0.0317	0.0300	106	80-120	<u> </u>

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: A14 Compressor Station Field Scrubber

Work Order #: 549417							Proj	ject ID:	ГRC #2738	17	
Analyst: ALJ	D	ate Prepar	red: 03/28/201	7			Date A	nalyzed: (03/28/2017		
Lab Batch ID: 3013589 Sample: 722268-1-	BKS	Batch #: 1 Matrix: Solid									
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00150	0.100	0.107	107	0.0998	0.0921	92	15	70-130	35	
Toluene	< 0.00200	0.100	0.112	112	0.0998	0.0993	99	12	70-130	35	
Ethylbenzene	< 0.00200	0.100	0.118	118	0.0998	0.104	104	13	71-129	35	
m_p-Xylenes	< 0.00200	0.200	0.228	114	0.200	0.200	100	13	70-135	35	
o-Xylene	< 0.00301	0.100	0.119	119	0.0998	0.103	103	14	71-133	35	
Analyst: ALJ	D	ate Prepar	red: 03/28/201	7	Date Analyzed: 03/29/2017						
Lab Batch ID: 3013602 Sample: 722269-1-H	BKS	Batc	h #: 1			Matrix: Solid					
Units: mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00149	0.0990	0.0886	89	0.100	0.0825	83	7	70-130	35	
Toluene	<0.00198	0.0990	0.0935	94	0.100	0.0856	86	9	70-130	35	
Ethylbenzene	< 0.00198	0.0990	0.0942	95	0.100	0.0873	87	8	71-129	35	
m_p-Xylenes	< 0.00198	0.198	0.183	92	0.201	0.171	85	7	70-135	35	
o-Xylene	< 0.00297	0.0990	0.0965	97	0.100	0.0905	91	6	71-133	35	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: A14 Compressor Station Field Scrubber

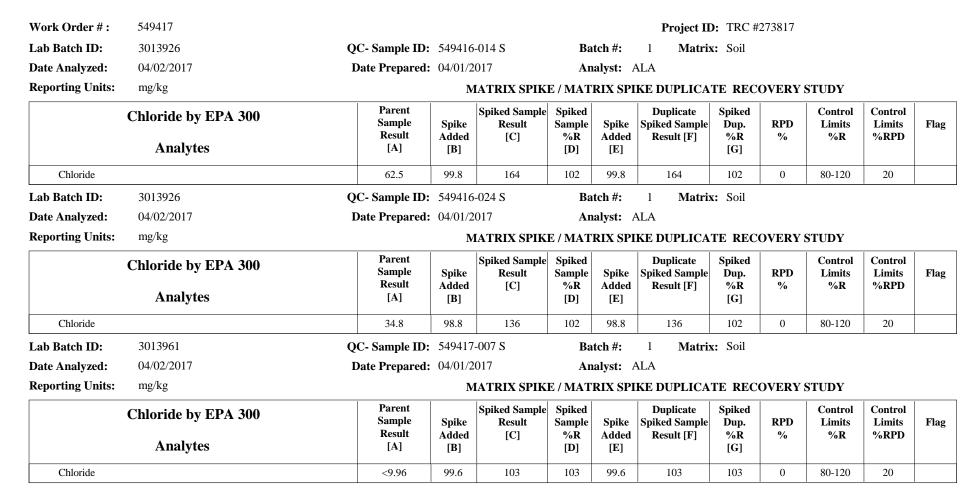
Work Order	· #: 549417							Proj	ject ID: ˈ	TRC #2738	317			
Analyst:	ALA	D	Date Analyzed: 04/02/2017											
Lab Batch ID	: 3013926 Sample: 722476-1	-BKS Batch #: 1				Matrix: Solid								
Units:	mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY												
Analy	Chloride by EPA 300	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Chloride		<1.00	10.0	10.1	101	10.0	10.1	101	0	80-120	20			
Analyst:	ALA	Date Prepared: 04/01/2017 Date Analyzed: 04/02/2017												
Lab Batch ID	: 3013961 Sample: 722491-1	-BKS	BKS Batch #: 1					Matrix: Solid						
Units:	mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY												
	Chloride by EPA 300	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R [D]	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Analytes				[C]		[E]								
Chloride		<1.00	10.0	9.75	98	10.0	9.99	100	2	80-120	20			
Analyst:	ARM	Date Prepared: 03/24/2017 Date Analyzed: 03/25/2017												
Lab Batch ID	: 3013500 Sample: 722213-1	-1-BKS Batch #: 1 Matrix: Solid												
Units:	mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY												
Analy	TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
C6-C10 Gasoline Range Hydrocarbons		<15.0	1000	918	92	1000	928	93	1	70-135	35			
C10-C28 Diesel Range Organics		<15.0	1000	931	93	1000	939	94	1	70-135	35			

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: A14 Compressor Station Field Scrubber

Work Order # : 549417		Project ID: TRC #273817										
Lab Batch ID: 3013589	QC- Sample ID:	549416	-026 S	Ba	tch #:	1 Matrix	: Soil					
Date Analyzed: 03/28/2017	Date Prepared:	03/28/2	017	An	alyst: A	ALJ						
Reporting Units: mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Analytes	[A]	[B]	[0]	[D]	[E]	itesuit [i]	[G]					
Benzene	<0.00150	0.0998	0.0874	88	0.0994	0.0811	82	7	70-130	35		
Toluene	<0.00200	0.0998	0.0879	88	0.0994	0.0795	80	10	70-130	35		
Ethylbenzene	<0.00200	0.0998	0.0853	85	0.0994	0.0723	73	16	71-129	35		
m_p-Xylenes	<0.00200	0.200	0.164	82	0.199	0.137	69	18	70-135	35	X	
o-Xylene	< 0.00299	0.0998	0.0903	90	0.0994	0.0744	75	19	71-133	35		
Lab Batch ID: 3013602	QC- Sample ID:	549418	-001 S	Ba	tch #:	1 Matrix	: Soil					
Date Analyzed: 03/29/2017	Date Prepared:03/28/2017Analyst:ALJ											
Reporting Units: mg/kg		MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Benzene	<0.00151	0.100	0.0716	72	0.101	0.0798	79	11	70-130	35		
Toluene	<0.00201	0.100	0.0726	73	0.101	0.0815	81	12	70-130	35		
Ethylbenzene	<0.00201	0.100	0.0728	73	0.101	0.0819	81	12	71-129	35		
m_p-Xylenes	<0.00201	0.201	0.143	71	0.202	0.155	77	8	70-135	35		
o-Xylene	<0.00301	0.100	0.0713	71	0.101	0.0841	83	16	71-133	35		


Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: A14 Compressor Station Field Scrubber

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: A14 Compressor Station Field Scrubber

Work Order # :	549417					Project II): TRC #	273817			
Lab Batch ID:	3013961	QC- Sample ID:	549417-017 S	Bate	ch #:	1 Matrix	k: Soil				
Date Analyzed:	04/02/2017	Date Prepared:	04/01/2017	Ana	alyst: A	ALA					
Reporting Units:	mg/kg		MATRIX SPIK	E / MATR	RIX SPI	KE DUPLICA	TE REC	OVERY S	STUDY		
	Chloride by EPA 300	Parent Sample	Spiked Sample Spike Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [C] [B]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride		<9.98	99.8 106	106	99.8	106	106	0	80-120	20	
Lab Batch ID:	3013500	QC- Sample ID:	549417-013 S	Bate	ch #:	1 Matrix	k: Soil				
Date Analyzed:	03/25/2017	Date Prepared:	03/24/2017	Ana	lyst: A	ARM					
Date Analyzed: Reporting Units:	03/25/2017 mg/kg	Date Prepared:	03/24/2017 MATRIX SPIK		·		TE REC	OVERY S	STUDY		
Reporting Units:		Parent Sample	MATRIX SPIK Spiked Sample Result	E / MATR Spiked Sample	RIX SPI	KE DUPLICA Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Reporting Units:	mg/kg	Parent	MATRIX SPIK Spiked Sample	E / MATR Spiked Sample	RIX SPI	KE DUPLICA Duplicate	Spiked		Control		Flag
Reporting Units:	mg/kg TPH By SW8015 Mod	Parent Sample Result	MATRIX SPIK Spiked Sample Spike Result Added [C]	E / MATR Spiked Sample %R	RIX SPI Spike Added	KE DUPLICA Duplicate Spiked Sample	Spiked Dup. %R	RPD	Control Limits	Limits	Flag

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Sample Hand Delivered	Time	Date	-							OT:	Received by ELOT:	Time		Date		Relinquished by:	Relinqui
Custody seals on container(s) Custody seals on cooler(s)	HSS Time	J4 Pate	6						1	CATIVLE	Received by:	Time	Ŧ	3/24 Date	5	Relinquished by:	Relinqui
Labels on container(s)	Time	Date	đ					2		N N	Received by;	ime		Date		shed by S	Relinquis
Laboratory Comments: Sample Containers Intact?															Transfer.	Special Instructions: Bill to Rose Slade at Energy Transfer	Special Bill to F
×	×	Soil		1.1				×	-	1448	4		-		1.	WFS-1	
×	×	Soil						×	-	1438						FS-51	
x	×	Soil						×	-	1428					1 1	F55 0	
x	×	Soil						×	-	1420					*	ES-4 1	
×	×	Soil						×	-	1041 CAL			F		0 11	FS-4 (
×	×	Soil						×		1334					11	FS-3	
x	×	Soil					1	×		LAE 1					61	F3-3 (
×	×	Soil						×	-	1342					1.	Fsia	
x	×	Soil						×		1335					Le y	FS-20	
×	×	Soil						×		133	1					FS-1	
x	×	Soil						×		1325	3/23				0 "	15-16	
Cations (Ca, Mg, Na, K) Anions (Cl, SO4, Alkalinity) SAR / ESP / CEC Metals: As Ag Ba Cd Cr Pb Hg Se Volatiles Semivolatiles BTEX 80219/5030 or BTEX 8260 RCI N.O.R.M.	NP=Non-Potable Specify Other TPH: 418.1 1005 TPH: TX 1005 TX 1006	Other (Specify) DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NE=Noo-Rotable Specify Other	Na ₂ S ₂ O ₃ ontainers		H ₂ SO ₄	HCI	HNO ₃	Ice	Total #. of Containers	Time Sampled	CDate Sampled	Ending Depth	Beginning Depth		FIELD CODE		LAB # (lab use only)
	-	Matrix	of Containers		on &	Preservation & #	Pres	٦.							T1+	R# 0200	ORDER #:
TCLP:	Π		UDIS.C	SOID	DUC.	CIIC	Igie									(vino	(lab use only)
	1	r.com	rose.slade@energytransfer.com	ergy	Den	ide	Sa	ros	Ť.	e-mail:		lin	E	WWW 4	e.	Sampler Signature:	
at: 🛛 Standard 🗌 TRRP	Report Format:	Repo							D.	Fax No:			>	720	432.520.7720	Telephone No:	
PO #	P	1												Midland, Texas 79703	Midland,	City/State/Zip:	
Loc: Lea County, NM	Project Loc:	ļ.												2057 Commerce Drive		Company Address:	
ret #: TRC #: 273817	Project #:	1						1					oration	TRC Environmental Corporation	TRC Envi	Company Name	
ame: A14 Compressor Station Field Scrubber	Project Name:	P												an	Nikki Green	Project Manager:	
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST tl-20 East xas 79765 Fax: 432-563-1713	RECORI	ISTODY	OF CL 65	AIN OF 0 East ; 79765	CH. st I-2 exas	CH/ 12600 West I-2 Odessa, Texas	600 less	0 12						es	Pxas	The Environmental Lab of Texas	The Env

Page 24 of 26

Relinquished by:	Kelinguisned by:	Relinquished by	Special instructions: Bill to Rose Slade at Energy Transfer						NFS-	SEST	SES -	NFS-	SFS -	EFS-	LAB # (lab use only)	ORDER # 000	(lab use only)	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:
		en 3	ly Transfer.						21'	5 11	0	a 1.	1.	1 1'	FIELD CODE	1411		ure: Mu	432.520.7720	Midland, Texas 79703	ess: 2057 Commerce Drive	TRC Environmental Corporation	r: Nikki Green
Date Time	Date¢	1/21													Beginning Depth			In the	A. 1. 11.	703	rive	al Corporation	
e Received by ELOT:	e Received by:	5							1-				11	323	Ending Depth Date Sampled			n					
ELOT:		HAMUL							1610	1530	1537	1523	1509	1458	Time Sampled			e-mail:	Fax No:				
		0		1	-	-	-	-	1	-	_	-	-	4	Field Filtered Total #. of Containers	-		1	Ĩ				
				×	×	×	×	×	×	×	×	×	×	×	ice HNO ₃	Pres	1	ose.sla					
															HCI H₂SO₄ NaOH	Preservation & # c		rose.slade@energytransfer.com ngreen@trcsolutions.com					
											T				$Na_2S_2O_3$	of Containers		gytra					
	1	3		_	-	-		-		_				-	None Other (Specify)	iners		nsfer IS.co					
Date	Date	Date 24		Soil	Soil	Soil	Soil	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	Matrix	1	m	Repo			1	P							
Time	Time	14		×	×	×	×	×	×	×	×	×	×	×	NP=Non-Potable Specify Other TPH: 418.1 8015M	015B	SA	a.d.	Report Format:		Project Loc:	P	Project Name:
le	le	Ime	1	Ti											TPH: TX 1005 TX 1006		-2	-	rmat	PO	ect L	Project #:	INAL
Ten	Sar	Cus	San												Cations (Ca, Mg, Na, K)		M	1		PO #:	00:	t#	10.
Temperature U	by Sampler/~	Labels on container(s) Custody seals on cont Custody seals on cool	nple Cs F	1.1											Anions (CI, SO4, Alkalinity)	-	TCLP:						>
ature	Han	sea sea	Con				1				-	-	-		SAR / ESP / CEC		P 5		Standard				4
C	ler/	alls o	of H	·					_						Metals: As Ag Ba Cd Cr Pb Hg	g Se	+	Ana	daro				Ì
	T	n co	ers ead	1.1	-		-			-	-		-	1	Volatiles	-	+	alvze	-				00
CF: +0.1 J. I	by Sampler/^''+ ^ by Courier? Temp:	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?			1							-		Semivolatiles		+	Analyze For:	-		Lea	TR	000
+0.1	5	ner((s)	ct?	×	×	×	×	×	×	×	×	×	×	×	BTEX 80219/5030 or BTEX 8	260				1	Co	#	0
1 8	1	s)		1			1		_	_	-				RCI	_	_		TRRP		Lea County, NM	TRC #: 273817	du
auno	-				1		-						1.0	1	N.O.R.M.	_	_		P		, N	38	19
18				×	×	×	×	×	×	×	×	×	×	×	Chlorides E 300.1						S	17	A14 Compressor Station Field Scrubber
2 :		~ ~ ~	\prec						2														0
P	5																	_	NPDES				Gu
1.11.12	DZZ	zzz	ΖZ	111											RUSH TAT (Pre-Schedule) 2	4, 48, 7	2 hrs		DES				000
1	0			_	×	×	×	×	×	×	×	×	×	×	Standard TAT			7.0	100			1	1

Page 25 of 26

Final 1.000

Client: TRC Solutions, Inc

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 03/24/2017 02:55:00 PM Temperature Measuring device used : R8 Work Order #: 549417 Comments Sample Receipt Checklist 2.2 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A N/A #6 Custody Seals intact on sample bottles? #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes Yes #14 Sample matrix/ properties agree with Chain of Custody? #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace? N/A #22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for N/A samples for the analysis of HEM or HEM-SGT which are verified by the analysts. #23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica WAMER Jessica Kramer Checklist reviewed by: Kelsey Brooks

Date: 03/24/2017

Date: 03/27/2017

Analytical Report 549418

for TRC Solutions, Inc

Project Manager: Nikki Green

A14 Compressor Station

03-APR-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

03-APR-17

Project Manager: **Nikki Green TRC Solutions, Inc** 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 549418 A14 Compressor Station Project Address: Lea County, NM

Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 549418. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 549418 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id BG-1 1' Sample Cross Reference 549418

TRC Solutions, Inc, Midland, TX

A14 Compressor Station

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	03-23-17 16:45	- 1 ft	549418-001

Page 3 of 15

CASE NARRATIVE

Client Name: TRC Solutions, Inc Project Name: A14 Compressor Station

Project ID: Work Order Number(s): 549418
 Report Date:
 03-APR-17

 Date Received:
 03/24/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3013602 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:Contact:Nikki GreenProject Location:Lea County, NM

Certificate of Analysis Summary 549418

TRC Solutions, Inc, Midland, TX Project Name: A14 Compressor Station

Date Received in Lab:Fri Mar-24-17 02:55 pmReport Date:03-APR-17Project Manager:Kelsey Brooks

	Lab Id:	549418-001			
	Field Id:	BG-1 1'			
Analysis Requested	Depth:	1 ft			
	Matrix:	SOIL			
	Sampled:	Mar-23-17 16:45			
BTEX by EPA 8021B	Extracted:	Mar-28-17 16:50	1		
	Analyzed:	Mar-29-17 01:58			
	Units/RL:	mg/kg RL			
Benzene		ND 0.00151			
Toluene		ND 0.00201			
Ethylbenzene		ND 0.00201			
m_p-Xylenes		ND 0.00201			
o-Xylene		ND 0.00301			
Total Xylenes		ND 0.00201			
Total BTEX		ND 0.00151			
Chloride by EPA 300	Extracted:	Apr-01-17 14:14			
SUB: TX104704215	Analyzed:	Apr-02-17 11:11			
	Units/RL:	mg/kg RL			
Chloride		ND 9.96			
TPH By SW8015 Mod	Extracted:	Mar-24-17 17:00			
	Analyzed:	Mar-26-17 02:20			
	Units/RL:	mg/kg RL			
C6-C10 Gasoline Range Hydrocarbons		ND 15.0			
C10-C28 Diesel Range Organics		ND 15.0			
C28-C35 Oil Range Hydrocarbons		ND 15.0			
Total TPH		ND 15.0			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit S	SDL Sample Detection Limit	LOD Limit of Detection
------------------------------	----------------------------	------------------------

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

Project Name: A14 Compressor Station

Lab Batch #	ders : 549418 #: 3013501	Sample: 549418-001 / SMP	Batc	Project ID			
Units:	mg/kg	Date Analyzed: 03/26/17 02:20	SU	JRROGATE R	ECOVERY S	TUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chloroocta	ane		103	99.8	103	70-135	
o-Terphenyl			52.6	49.9	105	70-135	
Lab Batch #	#: 3013602	Sample: 549418-001 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 03/29/17 01:58	SU	JRROGATE R	ECOVERY S	TUDY	
		by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1,4-Difluorol		Anaryus	0.0358	0.0300	119	80-120	
4-Bromofluo			0.0356	0.0300	119	80-120	
Lab Batch #	#: 3013501	Sample: 722214-1-BLK / BL				00 120	
Units:	mg/kg	Date Analyzed: 03/26/17 01:18		JRROGATE R	ECOVERY S	TUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chloroocta	nne		102	100	102	70-135	
o-Terphenyl			52.7	50.0	105	70-135	
Lab Batch #	#: 3013602	Sample: 722269-1-BLK / BL	K Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 03/29/17 01:42	SU	JRROGATE R	ECOVERY S	TUDY	
		by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1 4 Difference		Analytes	0.0000	0.0200		00.120	
1,4-Difluorol			0.0280	0.0300	93	80-120	
4-Bromofluo Lab Batch #		Sample: 722214-1-BKS / BK	0.0293	0.0300	98	80-120	
		-					
Units:	mg/kg	Date Analyzed: 03/26/17 01:40	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chloroocta	ane		92.4	100	92	70-135	
o-Terphenyl			46.3	50.0	93	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station

	:ders : 549418 #: 3013602	8, Sample: 722269-1-BKS / BI	KS Batch	Project ID : 1 Matrix	: x: Solid		
Units:	mg/kg	Date Analyzed: 03/29/17 00:20	SUI	RROGATE R	RECOVERY S	STUDY	
		L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0341	0.0300	114	80-120	
4-Bromoflu	orobenzene		0.0273	0.0300	91	80-120	
Lab Batch	#: 3013501	Sample: 722214-1-BSD / BS	SD Batch	: 1 Matrix	x: Solid		
Units:	mg/kg	Date Analyzed: 03/26/17 02:00	SUI	RROGATE R	RECOVERY S	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
		Analytes					
1-Chlorooc			101	100	101	70-135	
o-Terpheny			50.8	50.0	102	70-135	
Lab Batch	#: 3013602	Sample: 722269-1-BSD / BS	SD Batch	: 1 Matrix	k: Solid		
Units:	mg/kg	Date Analyzed: 03/29/17 00:36	SUI	RROGATE R	ECOVERY S	STUDY	
	BTEX	L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0347	0.0300	116	80-120	
4-Bromoflu	orobenzene		0.0265	0.0300	88	80-120	
Lab Batch	#: 3013501	Sample: 549418-001 S / MS	Batch	: 1 Matrix	k: Soil		
Units:	mg/kg	Date Analyzed: 03/26/17 02:41	SUI	RROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
		Analytes					
1-Chlorooc			96.5	99.9	97	70-135	
o-Terpheny			48.2	50.0	96	70-135	
	#: 3013602	Sample: 549418-001 S / MS					
Units:	mg/kg	Date Analyzed: 03/29/17 00:53	SUI	RROGATE R	RECOVERY S	STUDY	
		by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor			0.0356	0.0300	119	80-120	
4-Bromoflu	orobenzene		0.0330	0.0300	110	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station

Work Ord Lab Batch #	lers : 5 4941 : 3013501	8, Sample: 549418-001 SD / M	MSD Bate	Project ID: h: 1 Matrix:			
Units:	mg/kg	Date Analyzed: 03/26/17 03:03	SU	RROGATE R	ECOVERY S	STUDY	
	TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chloroocta	ne	Analytes	89.0	99.9	89	70-135	
o-Terphenyl			43.7	50.0	87	70-135	
Lab Batch #	: 3013602	Sample: 549418-001 SD / M	ASD Bate	h: 1 Matrix:	Soil	11	
Units:	mg/kg	Date Analyzed: 03/29/17 01:09	SU	RROGATE R	ECOVERY S	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorob	enzene		0.0335	0.0300	112	80-120	
4-Bromofluor	robenzene		0.0317	0.0300	106	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: A14 Compressor Station

Work Orde	er #: 549418							Pro	ject ID:			
Analyst:	ALJ	D	ate Prepar	red: 03/28/20	17			Date A	nalyzed:	03/29/2017		
Lab Batch Il	D: 3013602 Sample: 72220	69-1-BKS	Batc	h #: 1					Matrix:	Solid		
Units:	mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
	BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Ana	lytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	;	<0.00149	0.0990	0.0886	89	0.100	0.0825	83	7	70-130	35	
Toluene		<0.00198	0.0990	0.0935	94	0.100	0.0856	86	9	70-130	35	
Ethylber	nzene	< 0.00198	0.0990	0.0942	95	0.100	0.0873	87	8	71-129	35	
m_p-Xy	lenes	< 0.00198	0.198	0.183	92	0.201	0.171	85	7	70-135	35	
o-Xylene	e	< 0.00297	0.0990	0.0965	97	0.100	0.0905	91	6	71-133	35	
Analyst:	ALA	D	ate Prepar	ed: 04/01/20	17	1		Date A	nalyzed:	04/02/2017		4
Lab Batch II	D: 3013954 Sample: 7224	82-1-BKS	Bate	h #: 1					Matrix:	Solid		
U nits:	mg/kg		BLAN	K /BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
	Chloride by EPA 300	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate Besult [E]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Ana	•		נםן	[C]	[D]	[E]	Result [F]	[6]				
Chloride	•	<1.00	10.0	9.91	99	10.0	9.77	98	1	80-120	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery $[G] = 100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: A14 Compressor Station

Work Order #	#: 549418							Pro	ject ID:			
Analyst:	ARM	Da	ate Prepar	red: 03/24/201	17			Date A	nalyzed: ()3/26/2017		
Lab Batch ID:	3013501 Sample: 722214-1-E	BKS	Batc	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK S	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUD	ΟY	
]	TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analyt	es		[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C10 Gas	soline Range Hydrocarbons	<15.0	1000	908	91	1000	1040	104	14	70-135	35	
C10-C28 Di	iesel Range Organics	<15.0	1000	885	89	1000	1000	100	12	70-135	35	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: A14 Compressor Station

Work Order # : 549418						Project II	D:				
Lab Batch ID: 3013602	C- Sample ID:	549418	-001 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed: 03/29/2017	Date Prepared:	03/28/2	017	Ar	nalyst: A	ALJ					
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Added	Duplicate Spiked Sample Result [F]	%R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Benzene	< 0.00151	0.100	0.0716	72	0.101	0.0798	79	11	70-130	35	
Toluene	<0.00201	0.100	0.0726	73	0.101	0.0815	81	12	70-130	35	
Ethylbenzene	<0.00201	0.100	0.0728	73	0.101	0.0819	81	12	71-129	35	
m_p-Xylenes	< 0.00201	0.201	0.143	71	0.202	0.155	77	8	70-135	35	
o-Xylene	< 0.00301	0.100	0.0713	71	0.101	0.0841	83	16	71-133	35	
Lab Batch ID: 3013954 (C- Sample ID:	549418	-001 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed: 04/02/2017	Date Prepared:	04/01/2	017	Ar	nalyst: A	ALA					
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
Chloride by EPA 300	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample		Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride	<9.96	99.6	104	104	99.6	103	103	1	80-120	20	
Lab Batch ID: 3013954 (QC- Sample ID:	549469	-007 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed: 04/02/2017	Date Prepared:	04/01/2	017	Ar	nalyst: A	ALA					
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	IKE DUPLICA	TE REC	OVERY	STUDY		
Chloride by EPA 300	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample		Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride	1							-			

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}[(C-F)/(C+F)]$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: A14 Compressor Station

Work Order # :	549418						Project II):				
Lab Batch ID:	3013501 Q	C- Sample ID:	549418	-001 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed:	03/26/2017	Date Prepared:	03/24/2	017	An	alyst: A	ARM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Г	TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
C6-C10 Gasoline	e Range Hydrocarbons	<15.0	999	972	97	999	879	88	10	70-135	35	
C10-C28 Diesel	Range Organics	<15.0	999	951	95	999	872	87	9	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

elinquis	elinquis	Bill to Rose Relinquished	Special								LAB # (lab use only)	ORDER #:	(lab use only)								The Env
Relinquished by:	Relinquished by:	Bill to Rose Slade at Energy Transfer Relinquished by:	Special Instructions:							Bac	FIE	R#: 0 - / 0	only) SUQ		Telephone No: Sampler Signature:		Citu/State/Zin:	Company Address:	Company Name	Project Manager:	The Environmental Lab of Texas
Date	M 3/24 Date	ransfer. Date								Background -1 BG -1 1	FIELD CODE	C	Þ		432.520.7720	minutariu, rezas rezus	Midland Taxas 70703	2057 Commerce Drive	TRC Environmental Corporation	Nikki Green	35
t	14		F								Beginning Depth	1			2			Ϊ.	oration		
Time	Time	Time	F	1		1					Ending Depth				5						
Received by FI OT-	Received by:	Received by:								32317	Date Sampled										
OT-	ANNA									Ibys	Time Sampled				e-mail:						
	T	0	-	-		-	-			-	Field Filtered Total #. of Containers	-		1	I.						
	1		-	+	++	+	-	+		×	lce	+	1	ngreen@trcsolutions.com	rose						0 12
				-						111	HNO ₃	Pres		ngre	S						12600 West I-20 East Odessa, Texas 79765
				+							HCI	Preservat		en(dec						a, T
											H ₂ SO ₄	ion &		atro	Øer						exa
										1.1	NaOH	# of		CSO	herc						20 E s 79
								1			Na ₂ S ₂ O ₃	ion & # of Containers		utio	lytra						ast 765
1	0									11	None	ainers		ns.c	Insf						
Date	Date	Date					-				Other (Specify)			iom	er.c				1	1	
ē	te	fe								S	DW=Drinking Water SL=Sludge	Ma			on R						
+	-	-								Soil	GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Matrix		ł	apoi			12		Pr	
	=F	Th		-		1		-		×	TPH: 418.1 8015M 80	15B	1		n No			Project Loc:	P	Project Name:	
Time	Fime	Time		-							TPH: TX 1005 TX 1006	tes	are	14	Sma	1	D	ect L	Project #:	tNa	
-	S C C	La So	La								Cations (Ca, Mg, Na, K)				t,	0) ŧ	.oc:	:t #:	me:	
by	unpl	DCs	bor								Anions (CI, SO4, Alkalinity)		10		×	1 L		1			
000	ty se ty se Sam	e Co Free	aton								SAR / ESP / CEC		TOTAL:		Ly Standard	9.1					70
1	als als ind I	of H cont	0								Metals: As Ag Ba Cd Cr Pb Hg	Se		A	ndar						hone Fax:
Temp:	on c Deliv Clier	Heac	mm								Volatiles			alyz	d					14	ie
np:	Custody seals on container(s) Custody seals on cooler(s) Sample Hand Delivered by Sampler/Client Rep. ?	Sample Containers Intact? VOCs Free of Headspace? Labels on container(s)	Laboratory Comments:						1.1.01	101	Semivolatiles	1		Analyze For:				Lea		Con	432-
	r(s)	ce?	"_							×	BTEX 80219/5030 or BTEX 82	260		2				Co		npre	563
7	(s)									-	RCI	_			TRRP			unty		SSC	Phone: 432-563-1800 Fax: 432-563-1713
-						-					N.O.R.M.	_	-		0			Lea County, NM		A14 Compressor Station	30
F										×	Chlorides E 300.1	_	-					7		tati	
R ID:	~~~~	***		-				-												on	-
IR ID:R-8 oldi				-		1	-	-		-	DUCUTAT			Ч	NPDES						
19B	ZZZZ	ZZZ						1.1		1.1	RUSH TAT (Pre-Schedule) 24	48,	72 hrs		IT CO						

Page 14 of 15

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 03/24/2017 02:55:00 PM Temperature Measuring device used : R8 Work Order #: 549418 Comments Sample Receipt Checklist 2.2 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A N/A #6 Custody Seals intact on sample bottles? #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace? N/A #22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for N/A samples for the analysis of HEM or HEM-SGT which are verified by the analysts. #23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica WAMER Jessica Kramer Checklist reviewed by: Kelsey Brooks

Date: 03/24/2017

Date: 03/27/2017

Analytical Report 551537

for TRC Solutions, Inc

Project Manager: Nikki Green

A14 Compressor Station Field Scrubber

TRC#273817

26-APR-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

26-APR-17

Project Manager: **Nikki Green TRC Solutions, Inc** 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): **551537** A14 Compressor Station Field Scrubber Project Address: Lea County, NM

Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 551537. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 551537 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 551537

TRC Solutions, Inc, Midland, TX

A14 Compressor Station Field Scrubber

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
FS-3 16"	S	04-17-17 13:40	- 16 In	551537-001
FS-5a 1'	S	04-17-17 14:30	- 1 ft	551537-002
FS-5a 16"	S	04-17-17 15:20	- 16 In	551537-003

CASE NARRATIVE

Client Name: TRC Solutions, Inc Project Name: A14 Compressor Station Field Scrubber

Project ID:TRC#273817Work Order Number(s):551537

 Report Date:
 26-APR-17

 Date Received:
 04/21/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3015680 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

TRC Solutions, Inc, Midland, TX

Project Id:TRC#273817Contact:Nikki GreenProject Location:Lea County, NM

Project Name: A14 Compressor Station Field Scrubber Date Received in Lab: Fri Apr-21-17 11:39 am Report Date: 26-APR-17 Project Manager: Kelsey Brooks

	Lab Id:	551537-	001	551537-0	002	551537-(003		
Analysis Requested	Field Id:	FS-3 1	6"	FS-5a	1'	FS-5a 1	6"		
	Depth:	16 In	l I	1 ft		16 In			
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	Apr-17-17	13:40	Apr-17-17	14:30	Apr-17-17	15:20		
BTEX by EPA 8021B	Extracted:	Apr-24-17	08:00	Apr-24-17	08:00	Apr-24-17	08:00		
	Analyzed:	Apr-24-17	10:30	Apr-24-17	10:46	Apr-24-17	11:01		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		ND	0.00149	ND	0.00151	ND	0.00152		
Toluene		0.00479	0.00198	ND	0.00201	ND	0.00202		
Ethylbenzene		0.00728	0.00198	ND	0.00201	ND	0.00202		
m_p-Xylenes		0.00625	0.00198	0.00389	0.00201	0.00517	0.00202		
o-Xylene		0.00401	0.00298	ND	0.00301	ND	0.00303		
Total Xylenes		0.0103	0.00198	0.00389	0.00201	0.00517	0.00202		
Total BTEX		0.0223	0.00149	0.00389	0.00151	0.00517	0.00152		
Chloride by EPA 300	Extracted:			Apr-24-17	09:00	Apr-24-17	09:00		
	Analyzed:			Apr-24-17	11:39	Apr-24-17	11:47		
	Units/RL:			mg/kg	RL	mg/kg	RL		
Chloride				ND	4.88	ND	4.95		
TPH By SW8015 Mod	Extracted:	Apr-21-17	17:00	Apr-21-17	17:00	Apr-21-17	17:00		
	Analyzed:	Apr-22-17	16:34	Apr-22-17	16:53	Apr-22-17	17:12		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
C6-C10 Gasoline Range Hydrocarbons	*	117	15.0	ND	15.0	ND	15.0		
C10-C28 Diesel Range Organics		1480	15.0	1240	15.0	1110	15.0		
C28-C35 Oil Range Hydrocarbons		93.8	15.0	2310	15.0	2060	15.0		
Total TPH		1690	15.0	3550	15.0	3170	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

Project Name: A14 Compressor Station Field Scrubber

Lab Batch #:	3015601	Sample: 551537-001 / SMP	Bato	ch: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/22/17 16:34	SU	URROGATE F	RECOVERY	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooctane	e		98.1	99.7	98	70-135	
o-Terphenyl			38.6	49.9	77	70-135	
Lab Batch #:	3015601	Sample: 551537-002 / SMP	Bato	ch: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/22/17 16:53	SU	URROGATE F	RECOVERY	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		Analytes	113	99.8	113	70-135	
o-Terphenyl			59.2	49.9	113	70-135	
Lab Batch #:	3015601	Sample: 551537-003 / SMP			-	10-155	
Units:	mg/kg	Date Analyzed: 04/22/17 17:12		URROGATE F		TUN	
c must			50	JAROGAIE R			
	TPH F	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooctane	e		105	99.8	105	70-135	
o-Terphenyl			52.7	49.9	106	70-135	
Lab Batch #:	3015680	Sample: 551537-001 / SMP	Bato	ch: 1 Matrix	:: Soil		
Units:	mg/kg	Date Analyzed: 04/24/17 10:30	SU	URROGATE R	RECOVERY	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1.4-Difluorobe		Anaryus	0.0321	0.0300	107	80-120	
4-Bromofluoro			0.0321	0.0300	86	80-120	
Lab Batch #:		Sample: 551537-002 / SMP	Bate			00-120	
Units:	mg/kg	Date Analyzed: 04/24/17 10:46		JRROGATE R		STUDY	
		K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
r		Analytes			[D]		
1,4-Difluorobe			0.0283	0.0300	94	80-120	
4-Bromofluoro	benzene		0.0276	0.0300	92	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station Field Scrubber

Lab Batch #		Sample: 551537-003 / SMP	Bate				
Units:	mg/kg	Date Analyzed: 04/24/17 11:01	SU	URROGATE I	RECOVERY	STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorol	enzene		0.0311	0.0300	104	80-120	
4-Bromofluo	robenzene		0.0252	0.0300	84	80-120	
Lab Batch #	: 3015601	Sample: 723517-1-BLK / BI	.K Bate	ch: 1 Matrix	x: Solid		
Units:	mg/kg	Date Analyzed: 04/21/17 22:55	SU	URROGATE F	RECOVERY	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chloroocta			121	100	121	70-135	
o-Terphenyl	-		63.1	50.0	121	70-135	
Lab Batch #	: 3015680	Sample: 723559-1-BLK / BL			x: Solid	10 100	
Units:	mg/kg	Date Analyzed: 04/24/17 09:48		URROGATE F		STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorol	oenzene		0.0345	0.0300	115	80-120	
4-Bromofluo			0.0343	0.0300	114	80-120	
Lab Batch #	: 3015601	Sample: 723517-1-BKS / BK	KS Bate	ch: 1 Matrix	x: Solid		
Units:	mg/kg	Date Analyzed: 04/21/17 23:15	SU	URROGATE F	RECOVERYS	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chloroocta		-	98.0	100	98	70-135	
o-Terphenyl			50.2	50.0	100	70-135	
Lab Batch #	: 3015680	Sample: 723559-1-BKS / BK	KS Bate	ch: 1 Matrix	x: Solid	1	<u> </u>
Units:	mg/kg	Date Analyzed: 04/24/17 08:26	SU	URROGATE F	RECOVERYS	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1,4-Difluorol	enzene		0.0291	0.0300	97	80-120	
4-Bromofluo	robenzene		0.0270	0.0300	90	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station Field Scrubber

Lab Batch #	. 5015001	Sample: 723517-1-BSD / BS	D Batc	ch: 1 Matrix	· bond		
Units:	mg/kg	Date Analyzed: 04/21/17 23:34	SU	JRROGATE R	ECOVERY S	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chloroocta	ane		119	100	119	70-135	
o-Terphenyl			61.5	50.0	123	70-135	
Lab Batch #	#: 3015680	Sample: 723559-1-BSD / BS	D Bate	ch: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 04/24/17 08:43	SU	JRROGATE R	ECOVERY S	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1.4-Difluoro		Anarytes	0.0297	0.0300	99	80-120	
4-Bromofluc			0.0297	0.0300	99	80-120	
Lab Batch		Sample: 551449-002 S / MS	Batc		-	80-120	
Units:	mg/kg	Date Analyzed: 04/22/17 00:33					
omts.	mg/ kg	Date Analyzed: 04/22/17/00.33	SL	JRROGATE R	ECOVERY	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chloroocta	ane		107	99.8	107	70-135	
o-Terphenyl			50.6	49.9	101	70-135	
Lab Batch #	#: 3015680	Sample: 551542-001 S / MS	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/24/17 08:59	SU	JRROGATE R	ECOVERY S	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1,4-Difluoro			0.0325	0.0300	108	80-120	
4-Bromofluc			0.0296	0.0300	99	80-120	
Lab Batch a		Sample: 551449-002 SD / M					
Units:	mg/kg	Date Analyzed: 04/22/17 00:52		JRROGATE R	ECOVERY S	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chloroocta	ane		114	99.9	114	70-135	
o-Terphenyl			55.5	50.0	111	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: A14 Compressor Station Field Scrubber

Work Orders : 551 Lab Batch #: 3015680 Units: mg/kg	537, Sample: 551542-001 SD / M Date Analyzed: 04/24/17 09:15			Soil		
Units: mg/kg	Date Analyzed: 04/24/17 09:15	SU	RROGATE RI	ECOVERY S	STUDY	
BT	EX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0323	0.0300	108	80-120	
4-Bromofluorobenzene		0.0326	0.0300	109	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: A14 Compressor Station Field Scrubber

Work Order	#: 551537							Proj	ect ID:	FRC#2738	17							
Analyst:	ALJ	D	ate Prepar	red: 04/24/201	7	Date Analyzed: 04/24/2017												
Lab Batch ID:	3015680 Sample: 723559-1-H	ample: 723559-1-BKS Batch #: 1							Matrix: S	Solid								
Units:	mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUD										RECOVERY STUDY						
	BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag						
Analyt	tes		[B]	[C]	[D]	[E]	Result [F]	[G]										
Benzene		< 0.00149	0.0994	0.107	108	0.0998	0.106	106	1	70-130	35							
Toluene		< 0.00199	0.0994	0.0992	100	0.0998	0.108	108	8	70-130	35							
Ethylbenze	ne	< 0.00199	0.0994	0.111	112	0.0998	0.109	109	2	71-129	35							
m_p-Xylen	es	< 0.00199	0.199	0.218	110	0.200	0.209	105	4	70-135	35							
o-Xylene		< 0.00298	0.0994	0.105	106	0.0998	0.0967	97	8	71-133	35							
Analyst:	MGO	D	ate Prepar	red: 04/24/201	7		Date Analyzed: 04/24/2017											
Lab Batch ID:	3015643 Sample: 723511-1-H	BKS	Batcl	h #: 1					Matrix: S	Solid								
Units:	mg/kg		BLAN	K/BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY							
Analyt	Chloride by EPA 300 tes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag						
Chloride		<4.98	249	270	108	249	269	108	0	90-110	20							

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: A14 Compressor Station Field Scrubber

Work Order	· #: 551537							Proj	ect ID:	FRC#2738	17			
Analyst:	ARM	D	ate Prepa	red: 04/21/201	.7	Date Analyzed: 04/21/2017								
Lab Batch ID	Matrix: Solid													
Units:	its: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY													
	TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Analy	vtes		[B]	[C]	[D]	[E]	Result [F]	[G]						
C6-C10 G	asoline Range Hydrocarbons	<15.0	1000	974	97	1000	1040	104	7	70-135	35			
C10-C28	Diesel Range Organics	<15.0	1000	910	91	1000	1010	101	10	70-135	35			

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: A14 Compressor Station Field Scrubber

Work Order # :	551537						Project II): TRC#2	273817						
Lab Batch ID:	3015680	QC- Sample ID:	551542	-001 S	Ba	tch #:	1 Matri	x: Soil							
Date Analyzed:	04/24/2017	Date Prepared: 04/24/2017			Ar	halyst:	ALJ								
Reporting Units:	mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY													
	BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag			
Benzene		<0.00151	0.100	0.0743	74	0.0998	0.0666	67	11	70-130	35	X			
Toluene		<0.00201	0.100	0.0515	52	0.0998	0.0436	44	17	70-130	35	X			
Ethylbenzene		<0.00201	0.100	0.0454	45	0.0998	0.0396	40	14	71-129	35	Х			
m_p-Xylenes		<0.00201	0.201	0.0856	43	0.200	0.0765	38	11	70-135	35	X			
o-Xylene		<0.00301	0.100	0.0449	45	0.0998	0.0378	38	17	71-133	35	Х			
Lab Batch ID:	3015643	QC- Sample ID: 551526-001 S Batch #: 1 Matrix: Soil													
Date Analyzed:	04/24/2017	Date Prepared:	04/24/2	017	Ar	nalyst: 1	MGO								
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	'RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY					
	Chloride by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag			
	Analytes	[A]	[B]	[0]	[D]	[E]	Result [1]	[G]	/0		/one D				
Chloride		695	250	936	96	250	944	100	1	90-110	20				
Lab Batch ID:	3015601	QC- Sample ID:	551449	-002 S	Ba	ntch #:	1 Matri	x: Soil							
Date Analyzed:	04/22/2017	Date Prepared:	04/21/2	017	Ar	nalyst: A	ARM								
Reporting Units:	mg/kg		Ν	IATRIX SPIK	E / MAT	'RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY					
	TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag			
		Result	Added	[C]	%R		incourt [1]				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	Analytes	-	Added [B]	[C]	%R [D]	[E]		[G]			/0102				
		Result		[C] 953			1050		10	70-135	35				

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Relinquished by	Special Bill to F						LAB # (lab use only)	ORDER #:	(lab use only)							The Env
Relinquished by: Relinquished by:	Special Instructions: Bill to Rose Slade at Energy Transfer.				FR	FS		R# 000-0	only)	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	The Environmental Lab of Texas
Upate Date	ansfer.			FS-5a 16"	FS-5a 1'	FS-3 16"	FIELD CODE	001) J	Tull	432.520.7720	Midland, Texas 79703	2057 Commerce Drive	TRC Environmental Corporation	Nikki Green	UN I
T					-	-		-		A	\$	11		orporatio		
Time Time					-		Beginning Depth	-		eu				S		
							Ending Depth			D	5					
Received by	11			4/17/2017	4/17/2017	4/17/2017	Date Sampled									
MAAD				1520	1430	1340	Time Sampled			e-mail:	Fax No:					
2						-	Field Filtered	-		1	1					
0					-		Total #. of Containers	+		ros						0 :
T				×	×	×	HNO ₃	Pre		rose.slade@energytransfer.com ngreen@trcsolutions.com						12600 West I-20 East Odessa, Texas 79765
					+	-	нсі	- serva		ade						sa, Sa,
					+	+	H ₂ SO ₄	- tion &		@tr						fexa
	00	Te			1		NaOH	- # of		nerc						t I-20 East xas 79765
	orrec	mp:					Na ₂ S ₂ O ₃	Preservation & # of Containers		Intra						ast 765
4	ted	Temp: 3.1				1	None	iners		e.slade@energytransfer.c ngreen@trcsolutions.com						
Date Date	Tem	- +			-	-	Other (Specify) DW=Drinking Water SL=Sludge	н		om	1	Ļ.		Į.,	Į.	
	Corrected Temp: 3				Sol	Soil	GW = Groundwater S=Soil/Solid	Matrix		(B)	Report Format:				P	
	N	IR ID:R-8			-	1	NP=Non-Potable Specify Other TPH: 418.1 (8015M) 80	015B	-		ortF		Pro		Project Name:	
Time	12):R-			< >	×	TPH: 418.1 (2015M) 80 TPH: TX 1005 TX 1006	-			orm	-	Project Loc:	Project #:	ct N	
8005	<	. +			+	+	Cations (Ca, Mg, Na, K)	-			at:	PO #:	Loc	ct #	ame	
abeli usto amp by by	amp				+	+	Anions (CI, SO4, Alkalinity)				F	1	1	1		
Labels on container(s) Custody seals on cooler Custody seals on cooler Sample Hand Delivered by Sampler/Client Re by Courier?	.aboratory Comments: iample Containers Intact? VOCs Free of Headspace?				+		SAR / ESP / CEC		TCLP:		Standard				14	
cont eals eals and l and l npler npler	y Co ontai				1		Metals: As Ag Ba Cd Cr Pb H			A	ndar				Cor	Phone Fax:
on c on c /Clie	Head						Volatiles			nalyz	ď				npre	ne:
r(s) contair cooler(vered nt Rep UPS	Inta						Semivolatiles			Analyze For:			Leo	TR	SSC	432-
	s: lct? ce?			×	×	×		260		à			Co	0 #	S-IC	563
(s)		\vdash	+		-	-	RCI		_		TRRP		Lea County, NM	TRC #: 273817	atio	Phone: 432-563-1800 Fax: 432-563-1713
		+ + +	+			-	N.O.R.M.		_		U		NN	381	IN F	ω 0
FedEx XXX	44	\vdash	+++	7	Y	-	Chlorides E 300.1		_					7	A14 Compressor Station Field Scrubber	
		\vdash			+	-			-		I I				Ser	
Lone Star	zz				+	-	RUSH TAT (Pre-Schedule) 2	4, 48, 7	2 hrs	1	NPDES				ddn	
					×	×	Standard TAT	-	-	-	S	1			9	

Final 1.000

Client: TRC Solutions, Inc

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 04/21/2017 11:39:00 AM Temperature Measuring device used : R8 Work Order #: 551537 Comments Sample Receipt Checklist 3.2 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A N/A #6 Custody Seals intact on sample bottles? #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace? N/A #22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for N/A samples for the analysis of HEM or HEM-SGT which are verified by the analysts. #23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica WAMER Jessica Kramer Checklist reviewed by: Kelsey Brooks

Date: 04/21/2017

Date: 04/21/2017

Certificate of	f Analysis	Summary	553088
	•	•	

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station Field Scrubber

Project Id:TRC#273817Contact:Nikki GreenProject Location:Lea County, NM

Date Received in Lab:Fri May-12-17 01:13 pmReport Date:26-MAY-17Project Manager:Liz Givens

	Lab Id:	553088-0	001	553088-0	02	553088-0	003	553088-0	04	553088-0	005	553088-0)06
An alugia De aversted	Field Id:	FS -1a	4'	FS-1a 9	,	FS-2a 4'		FS-2a 9'		FS-3a 4'		FS-3a 9'	
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	May-10-17	11:45	May-10-17	12:19	May-10-17	14:25	May-10-17	14:58	May-10-17	16:12	May-10-17	16:58
BTEX by EPA 8021B	Extracted:	May-16-17	May-16-17 15:00			May-16-17	15:00			May-16-17	15:00		
	Analyzed:	May-17-17	07:39			May-17-17 (07:55			May-17-17	08:12		
	Units/RL:	mg/kg	RL			mg/kg	RL			mg/kg	RL		
Benzene		< 0.00201	0.00201			< 0.00199	0.00199			< 0.00200	0.00200		
Toluene		< 0.00201	0.00201			< 0.00199	0.00199			< 0.00200	0.00200		
Ethylbenzene		< 0.00201	0.00201			< 0.00199	0.00199			< 0.00200	0.00200		
m,p-Xylenes		< 0.00402	0.00402			< 0.00398	0.00398			< 0.00399	0.00399		
o-Xylene		< 0.00201	0.00201			< 0.00199	0.00199			< 0.00200	0.00200		
Total Xylenes		< 0.00201	0.00201			< 0.00199	0.00199			< 0.00200	0.00200		
Total BTEX		< 0.00201	0.00201			< 0.00199	0.00199			<0.00200	0.00200		
Chloride by EPA 300	Extracted:	May-20-17	16:45	May-20-17	6:45	May-20-17	16:45	May-20-17	16:45	May-20-17	16:45	May-20-17	16:45
	Analyzed:	May-20-17	19:52	May-20-17	19:59	May-20-17	20:07	May-20-17 20:15		May-20-17 20:22		May-20-17 20:30	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		478	4.92	162	49.3	114	24.7	27.0	5.01	22.8	5.00	49.2	5.00
TPH by SW8015 Mod	Extracted:	May-15-17	14:00			May-15-17	14:00			May-15-17	14:00		
	Analyzed:	May-15-17	20:48			May-15-17	21:07			May-15-17 22:04			
	Units/RL:	mg/kg	RL			mg/kg	RL			mg/kg	RL		
Gasoline Range Hydrocarbons		<15.0	15.0			<15.0	15.0			<14.9	14.9		
Diesel Range Organics		23.6	15.0			18.3	15.0			15.0	14.9		
Oil Range Hydrocarbons		<15.0	15.0			<15.0	15.0			<14.9	14.9		
Total TPH		23.6	15.0			18.3	15.0			15.0	14.9		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Analytical Report 553088

for TRC Solutions, Inc

Project Manager: Nikki Green

A14 Compressor Station Field Scrubber

TRC#273817

26-MAY-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

26-MAY-17

Project Manager: **Nikki Green TRC Solutions, Inc** 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): **553088** A14 Compressor Station Field Scrubber Project Address: Lea County, NM

Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 553088. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 553088 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

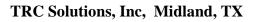
We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY


Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id

FS -1a 4'	
FS-1a 9'	
FS-2a 4'	
FS-2a 9'	
FS-3a 4'	
FS-3a 9'	

Sample Cross Reference 553088

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	05-10-17 11:45		553088-001
S	05-10-17 12:19		553088-002
S	05-10-17 14:25		553088-003
S	05-10-17 14:58		553088-004
S	05-10-17 16:12		553088-005
S	05-10-17 16:58		553088-006

CASE NARRATIVE

Client Name: TRC Solutions, Inc Project Name: A14 Compressor Station Field Scrubber

Project ID:TRC#273817Work Order Number(s):553088

 Report Date:
 26-MAY-17

 Date Received:
 05/12/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3017621 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

1-Chlorooctane

o-Terphenyl

Certificate of Analytical Results 553088

TRC Solutions, Inc, Midland, TX

A14 Compressor Station Field Scrubber

Sample Id: FS -1a 4'		Matrix:	Soil	Ι	Date Received:05.	12.17 13.1	3
Lab Sample Id: 553088-001		Date Colle	ected: 05.10.17 11.45				
Analytical Method: Chloride by	v EPA 300			I	Prep Method: E30)0P	
Tech: MGO				ç	% Moisture:		
Analyst: MGO		Date Prep:	: 05.20.17 16.45	I	Basis: We	t Weight	
Seq Number: 3017806						Ū	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	478	4.92	mg/kg	05.20.17 19.52		1
Tech: ARM						1005P	
Tech:ARMAnalyst:ARMSeq Number:3017485		Date Prep:	: 05.15.17 14.00		% Moisture: Basis: We	t Weight	
Analyst: ARM	Cas Number	Date Prep: Result	: 05.15.17 14.00 RL				Dil
Analyst: ARM Seq Number: 3017485	Cas Number PHC610			I	Basis: We	t Weight	Dil
Analyst: ARM Seq Number: 3017485 Parameter		Result	RL	I Units	Basis: We Analysis Date	t Weight Flag	
Analyst: ARM Seq Number: 3017485 Parameter Gasoline Range Hydrocarbons	PHC610	Result	RL 15.0	Units mg/kg	Basis: Wes Analysis Date 05.15.17 20.48	t Weight Flag	1
Analyst: ARM Seq Number: 3017485 Parameter Gasoline Range Hydrocarbons Diesel Range Organics	PHC610 C10C28DRO	Result <15.0 23.6	RL 15.0 15.0	Units mg/kg mg/kg	Basis: West Analysis Date 05.15.17 20.48 05.15.17 20.48 05.15.17 20.48	t Weight Flag U	1
Analyst: ARM Seq Number: 3017485 arameter asoline Range Hydrocarbons iesel Range Organics ii Range Hydrocarbons	PHC610 C10C28DRO PHCG2835	Result <15.0 23.6 <15.0 23.6	RL 15.0 15.0 15.0	Units mg/kg mg/kg mg/kg	Basis: West Analysis Date 05.15.17 20.48 05.15.17 20.48 05.15.17 20.48 05.15.17 20.48 05.15.17 20.48	t Weight Flag U	1 1 1

99

101

%

%

70-135

70-135

 $05.15.17\ 20.48$

 $05.15.17\ 20.48$

111-85-3

84-15-1

TRC Solutions, Inc, Midland, TX

Sample Id: FS -1a 4' Lab Sample Id: 553088-001		Matrix: Date Collecte	Soil d: 05.10.17 11.45		Date Received	:05.12.17 13.13	3
Analytical Method: BTEX by EPA 80 Tech: ALJ Analyst: ALJ Seq Number: 3017621	21B	Date Prep:	05.16.17 15.00		Prep Method: % Moisture: Basis:	SW5030B Wet Weight	
Parameter	Cas Number	Result R	RL	Units	Analysis Da	ate Flag	Dil

T ut unicici	eus i tumber	itebuit	KL		Omts	Analysis Date	Tiag	Di
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	05.17.17 07.39	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	05.17.17 07.39	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	05.17.17 07.39	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	05.17.17 07.39	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	05.17.17 07.39	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	05.17.17 07.39	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	05.17.17 07.39	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	118	%	80-120	05.17.17 07.39		
1,4-Difluorobenzene		540-36-3	116	%	80-120	05.17.17 07.39		

TRC Solutions, Inc, Midland, TX

Sample Id: Lab Sample Id	FS-1a 9' l: 553088-002		Matrix: Date Collec	Soil cted: 05.10.17 12.19		Date Received:	05.12.17 13.1	3
•	thod: Chloride by EPA	300				Prep Method:	E300P	
Tech: Analyst:	MGO MGO		Date Prep:	05.20.17 16.45		% Moisture: Basis:	Wet Weight	
Seq Number:	3017806							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	162	49.3	mg/kg	05.20.17 19.5	i9	10

TRC Solutions, Inc, Midland, TX

Sample Id: FS-2a 4' Lab Sample Id: 553088-003		Matrix: Date Collec	Soil cted: 05.10.17 14.25		Date Received:05.	12.17 13.1	3
Analytical Method: Chloride by Tech: MGO Analyst: MGO Seq Number: 3017806	7 EPA 300	Date Prep:	05.20.17 16.45		Prep Method: E30 % Moisture: Basis: We	00P t Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	114	24.7	mg/kg	05.20.17 20.07		5
Analytical Method: TPH by SW Tech: ARM Analyst: ARM Seq Number: 3017485	78015 Mod	Date Prep:	05.15.17 14.00		Prep Method: TX % Moisture: Basis: We	1005P t Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0	mg/kg	05.15.17 21.07	U	1
Diesel Range Organics	C10C28DRO	18.3	15.0	mg/kg	05.15.17 21.07		1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0	mg/kg	05.15.17 21.07	U	1
Total TPH	PHC635	18.3	15.0	mg/kg	05.15.17 21.07		1

otal TPH	PHC635	18.3	15.0		mg/kg	05.15.17 21.07		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	98	%	70-135	05.15.17 21.07		
o-Terphenyl		84-15-1	98	%	70-135	05.15.17 21.07		

TRC Solutions, Inc, Midland, TX

Sample Id: FS-2a 4' Lab Sample Id: 553088-003		Matrix: Date Collecte	Soil ed: 05.10.17 14.25	Date Rece	eived:05.12.17 13.13	;
Analytical Method: BTEX by	/ EPA 8021B			1	od: SW5030B	
Tech: ALJ				% Moistu	re:	
Analyst: ALJ		Date Prep:	05.16.17 15.00	Basis:	Wet Weight	
Seq Number: 3017621						
Parameter	Cas Number	Result 5	21.	Units Analys	is Date Flag	Dil

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	05.17.17 07.55	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	05.17.17 07.55	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	05.17.17 07.55	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	05.17.17 07.55	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	05.17.17 07.55	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	05.17.17 07.55	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	05.17.17 07.55	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	87	%	80-120	05.17.17 07.55		
4-Bromofluorobenzene		460-00-4	85	%	80-120	05.17.17 07.55		

TRC Solutions, Inc, Midland, TX

Sample Id: Lab Sample Id	FS-2a 9' l: 553088-004		Matrix: Date Collec	Soil cted: 05.10.17 14.58		Date Received:	05.12.17 13.1	3
Analytical Me	thod: Chloride by EPA	300				Prep Method:	E300P	
Tech:	MGO					% Moisture:		
Analyst:	MGO		Date Prep:	05.20.17 16.45		Basis:	Wet Weight	
Seq Number:	3017806							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	27.0	5.01	mg/kg	05.20.17 20.1	5	1

TRC Solutions, Inc, Midland, TX

Sample Id: FS-3a 4' Lab Sample Id: 553088-005		Matrix: Date Collec	Soil cted: 05.10.17 16.12		Date Received:05.	12.17 13.1	3
Analytical Method: Chloride by	EPA 300				Prep Method: E30)0P	
Tech: MGO					% Moisture:		
Analyst: MGO		Date Prep:	05.20.17 16.45		Basis: We	t Weight	
Seq Number: 3017806						C	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	22.8	5.00	mg/kg	05.20.17 20.22		1
Analytical Method: TPH by SW	78015 Mod				Prep Method: TX	1005P	
Tech: ARM					% Moisture:		
Analyst: ARM		Date Prep:	05.15.17 14.00		Basis: We	t Weight	
Seq Number: 3017485							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<14.9	14.9	mg/kg	05.15.17 22.04	U	1
Diesel Range Organics	C10C28DRO	15.0	14.9	mg/kg	05.15.17 22.04		1

Seq Number. 3017405								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<14.9	14.9		mg/kg	05.15.17 22.04	U	1
Diesel Range Organics	C10C28DRO	15.0	14.9		mg/kg	05.15.17 22.04		1
Oil Range Hydrocarbons	PHCG2835	<14.9	14.9		mg/kg	05.15.17 22.04	U	1
Total TPH	PHC635	15.0	14.9		mg/kg	05.15.17 22.04		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	97	%	70-135	05.15.17 22.04		
o-Terphenyl		84-15-1	94	%	70-135	05.15.17 22.04		

TRC Solutions, Inc, Midland, TX

Sample Id: FS-3a 4' Lab Sample Id: 553088-005	Matrix: Soil Date Collected: 05.10.17 16.12	Date Received:05.12.17 13.13
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3017621	Date Prep: 05.16.17 15.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	05.17.17 08.12	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	05.17.17 08.12	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	05.17.17 08.12	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	05.17.17 08.12	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	05.17.17 08.12	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	05.17.17 08.12	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	05.17.17 08.12	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	90	%	80-120	05.17.17 08.12		
1,4-Difluorobenzene		540-36-3	100	%	80-120	05.17.17 08.12		

TRC Solutions, Inc, Midland, TX

Sample Id: FS-3a 9' Lab Sample Id: 553088-006		Matrix: Date Collec	Soil ted: 05.10.17 16.58		12.17 13.1	3	
Analytical Method: Chloride	e by EPA 300				Prep Method: E30)0P	
Tech: MGO					% Moisture:		
Analyst: MGO		Date Prep:	05.20.17 16.45		Basis: We	t Weight	
Seq Number: 3017806							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	49.2	5.00	mg/kg	05.20.17 20.30		1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 553088

TRC Solutions, Inc

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E300	0P	
Seq Number:	3017806	Matrix:	Solid	Solid Date Prep: 05.20.17					0.17			
MB Sample Id:	724934-1-BLK		LCS Sample Id: 724934-1-BKS					LCSI	D Sample	d: 7249	934-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	< 5.00	250	253	101	255	102	90-110	1	20	mg/kg	05.20.17 16:49	

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	od: E30	0P	
Seq Number:	3017806	Soil	Soil Date Prep:				ep: 05.2	05.20.17				
Parent Sample Id:	553084-001	553084-001 S MSD Sample Id:				Id: 553	553084-001 SD					
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	144	246	413	109	413	109	90-110	0	20	mg/kg	05.20.17 17:12	

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	od: E30	OP 90	
Seq Number:	3017806		Matrix: Soil					Date Prep: 05.20.17				
Parent Sample Id:	553084-005		MS Sar	nple Id:	553084-00	05 S		MSI	O Sample	e Id: 5530)84-005 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	526	250	774	99	775	100	90-110	0	20	mg/kg	05.20.17 18:59	

Analytical Method:	TPH by SW80)15 M	od					Prep Method: TX1005P					
Seq Number:	3017485			Matrix: Solid				Date Prep: 05.15.17					
MB Sample Id:	724731-1-BLK	2		LCS Sample Id: 724731-1-BKS				LCS	D Sample	e Id: 7247	731-1-BSD		
Parameter	R	MB esult	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydroc	arbons <	<15.0	1000	960	96	915	92	70-135	5	35	mg/kg	05.15.17 16:53	
Diesel Range Organics	<	<15.0	1000	935	94	909	91	70-135	3	35	mg/kg	05.15.17 16:53	
Surrogate	(MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			mits	Units	Analysis Date	
1-Chlorooctane		117		1	13		110		70	-135	%	05.15.17 16:53	
o-Terphenyl		119		1	07		106		70	-135	%	05.15.17 16:53	

QC Summary 553088

TRC Solutions, Inc

Analytical Method:					Pr	ep Meth	od: TX1	005P					
Seq Number:	3017485			Matrix: Soil					Date Prep: 05.15.17				
Parent Sample Id:	553084-00	1		MS Sample Id: 553084			553084-001 S MSD Sa				e Id: 5530	084-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydroc	arbons	<15.0	999	945	95	932	93	70-135	1	35	mg/kg	05.15.17 17:58	
Diesel Range Organics		19.5	999	939	92	927	91	70-135	1	35	mg/kg	05.15.17 17:58	
Surrogate					IS Rec	MS Flag	MSD %Re			mits	Units	Analysis Date	
1-Chlorooctane				1	09		105		70	-135	%	05.15.17 17:58	
o-Terphenyl				1	00		93		70	-135	%	05.15.17 17:58	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3017621 724725-1-BLK	lB	Matrix: Solid LCS Sample Id: 724725-1-BKS					Prep Method: SW5030B Date Prep: 05.16.17 LCSD Sample Id: 724725-1-BSD				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00202	0.101	0.0884	88	0.0888	89	70-130	0	35	mg/kg	05.16.17 15:59	
Toluene	< 0.00202	0.101	0.0889	88	0.0944	94	70-130	6	35	mg/kg	05.16.17 15:59	
Ethylbenzene	< 0.00202	0.101	0.100	99	0.0996	100	71-129	0	35	mg/kg	05.16.17 15:59	
m,p-Xylenes	< 0.00403	0.202	0.202	100	0.201	100	70-135	0	35	mg/kg	05.16.17 15:59	
o-Xylene	< 0.00202	0.101	0.0963	95	0.0964	96	71-133	0	35	mg/kg	05.16.17 15:59	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	101		1	06		118		80	-120	%	05.16.17 15:59	
4-Bromofluorobenzene	95		1	12		119		80	-120	%	05.16.17 15:59	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 8021B Matrix: 3017621 Matrix: 553084-008 MS Sample Id:)8 S		Prep Method: SW5030B Date Prep: 05.16.17 MSD Sample Id: 553084-008 SD				
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	0.00489	0.0996	0.0767	72	0.0763	71	70-130	1	35	mg/kg	05.16.17 17:03	
Toluene	< 0.00199	0.0996	0.0826	83	0.0823	82	70-130	0	35	mg/kg	05.16.17 17:03	
Ethylbenzene	< 0.00199	0.0996	0.0880	88	0.0770	77	71-129	13	35	mg/kg	05.16.17 17:03	
m,p-Xylenes	< 0.00398	0.199	0.177	89	0.155	78	70-135	13	35	mg/kg	05.16.17 17:03	
o-Xylene	< 0.00199	0.0996	0.0850	85	0.0820	82	71-133	4	35	mg/kg	05.16.17 17:03	
Surrogate				IS Rec	MS Flag	MSD %Ree			imits	Units	Analysis Date	
1,4-Difluorobenzene			1	12		103		80	0-120	%	05.16.17 17:03	
4-Bromofluorobenzene			1	19		119		80	0-120	%	05.16.17 17:03	

Relinquished by: Relinquished by:	Bill to R										LAB # (lab use only)	ORDER #:	(lab use only)							The En
thed by:	Special Instructions: Bill to Rose Slade at Energy Transfer				FR	FR	F	F	E E	F	FIE		only LTT	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	The Environmental Lab of Texas
Dully Shite	ansfer.				FS-3a 9'	FS-3a 4'	FS-2a 9'	FS-2a 4'	FS-1a 9'	FS-1a 4'	FIELD CODE	100	XX XX	TUNNU	432.520.7720	Midland, Texas 79703	2057 Commerce Drive	TRC Environmental Corporation	Nikki Green	as
1											Beginning Depth			XXX	5			rporation		
Time										T	Ending Depth	1		8						
Received by: Received by: Received by ELOT:					5/10/2017	5/10/2017	5/10/2017	5/10/2017	5/10/2017	5/10/2017	Date Sampled			D						
6					1658	1612	1458	1425	1219	1145	Time Sampled			e-mail:	Fax No:					
Temp: CF:(0-6: 0.0°C) (6-23: +0.1°C) Corrected Temp: 1 1 /						10					Field Filtered	<u>ا</u>			×					
6: 0.					-	-	-	-	-	-	Total #. of Containers			IZ	1					
Temp:////// CF:(0-6: 0.0°C) (Corrected Temp:					×	×	×	×	×	×	Ice	P		rose.slade@energytransfer.com ngreen@trcsolutions.com						12600 West I-20 East Odessa, Texas 79765
p:/6				-					_		HNO ₃	Preservati		slac						00 V
-23: IR				-	-		-		-	-	HCI H ₂ SO ₄									, Te
IR ID:R-9 3: +0.1°C)			++		-	-	-		-	-	NaOH	& # 0		ene						I-20
°C)											Na ₂ S ₂ O ₃	f Con		gytr						12600 West I-20 East Odessa, Texas 79765
12	1								211		None	on & # of Containers		e.slade@energytransfer.c ngreen@trcsolutions.com				1.1		01 04
Date Date				-				-			Other (Specify)	Ĺ		er.c		÷ .			1	
e e 7					Soil	Soil	Soil	Soil	Soil	Soil	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	Matrix		om	Re					
					≌:	Ľ.	≌:	≌:	<u>S</u>	i ≦i	NP=Non-Potable Specify Other	trix		1	Report Format:		-		Pro	
Time Time	1.					×		×		×	TPH: 418.1 (8015M) 801	5B	П		For		Project Loc:	Pro	Project Name:	
W					_		1			-	TPH: TX 1005 TX 1006				mat:	PO #:	ct Lo	Project #:	Nam	
abe Custo Samp b b	abo			-			_				Cations (Ca, Mg, Na, K)	-			_	#	ñ	*	ē	
Labels on container(s) Custody seals on container(Custody seals on cooler(s) Sample Hand Delivered by Sampler/Client Rep. ? by Courier? UPS Temperature Upon Receipt:	rato ole C S Fre	-	++		-	-	-		-		Anions (CI, SO4, Alkalinity) SAR / ESP / CEC	-	TCLP:	1.1	Standard		1		A	
con eals eals and mple urier	onta e of	-	++						-		Metals: As Ag Ba Cd Cr Pb Hg S	-			and				40	Ph
Labels on container(s) Custody seals on container(s) Custody seals on cooler(s) Sample Hand Delivered by Sampler/Client Rep. ? by Courier? UPS DF	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	-									Volatiles		T.	Analyze For:	ard				A14-Compressor-Station-Field-Scrubber	rt I-20 East Phone: 432-563-1800 Fax: 432-563-1713
er(s) coole vere unt R UP	s Inta										Semivolatiles		П	ze F			Le	큐	ress	43
	s: act?			1		×		×		×	BTEX 8021B/5030 or BTEX 826	0		8			aCo	C #	ore	2-56
DHL (S)											RCI				TRRP		ount	27	tati	432-563-1800 432-563-1713
							_				N.O.R.M.	-	_		P		Lea County, NM	TRC #: 273817	On-I	13
FedEx					×	×	×	×	×	×	Chlorides E 300.1		_				5	17	ielo	
				+ +	_	-	-	-	-	-		_	-	1					Se	
C C C C C C C C C C C C C	zz			+			-		-		RUSH TAT (Pre-Schedule) 24,	48, 7	2 hrs	-	NPDES				rubb	
la					×	×	×	×	×	-	Standard TAT	1.		-	S				er	

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 05/12/2017 01:13:00 PM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 553088	Temperature Measuring device used : R9
Sample Recei	pt Checklist Comments
#1 *Temperature of cooler(s)?	4.6
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seal present on shipping container/ cooler?	N/A
#5 *Custody Seals intact on shipping container/ cooler?	N/A
#6 Custody Seals intact on sample bottles?	N/A
#7 *Custody Seals Signed and dated?	N/A
#8 *Chain of Custody present?	Yes
#9 Sample instructions complete on Chain of Custody?	Yes
#10 Any missing/extra samples?	Νο
#11 Chain of Custody signed when relinquished/ received?	Yes
#12 Chain of Custody agrees with sample label(s)?	Yes
#13 Container label(s) legible and intact?	Yes
#14 Sample matrix/ properties agree with Chain of Custody?	Yes
#15 Samples in proper container/ bottle?	Yes
#16 Samples properly preserved?	Yes
#17 Sample container(s) intact?	Yes
#18 Sufficient sample amount for indicated test(s)?	Yes
#19 All samples received within hold time?	Yes
#20 Subcontract of sample(s)?	N/A Houston
#21 VOC samples have zero headspace?	N/A
#22 <2 for all samples preserved with HNO3,HCL, H2SO4? E samples for the analysis of HEM or HEM-SGT which are verifi analysts.	
#23 >10 for all samples preserved with NaAsO2+NaOH, ZnA	c+NaOH? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Marta thaya Marithza Anaya

Date: 05/12/2017

Checklist reviewed by: Hely Taylor Holly Taylor

Date: 05/15/2017

Nikki Green

Lea County, NM

Contact:

Project Location:

Certificate of Analysis S	Summary 555475
---------------------------	----------------

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station Field Scrubber

Date Received in Lab:Thu Jun-15-17 09:30 amReport Date:06-JUL-17Project Manager:Kelsey Brooks

	Lab Id:	555475-	001	555475-(002	555475-(003	555475-	004	555475-	005	555475-(006
	Field Id:	BH-1	4'	SW-1.3	3'	NW-1	3'	BH-4	1'	EW-1	3'	BH-23	3'
Analysis Requested	Depth:	4 ft		3 ft		3 ft		1 ft		3 ft		3 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL	,	SOIL	_	SOIL	,
	Sampled:	Jun-13-17	11:51	Jun-13-17	12:05	Jun-13-17	12:17	Jun-14-17	17:00	Jun-13-17	12:22	Jun-14-17	10:00
BTEX by EPA 8021B	Extracted:	Jun-15-17	17:15	Jun-15-17	17:15	Jun-15-17	17:15	Jun-15-17	17:15	Jun-16-17	15:30	Jun-16-17	15:30
	Analyzed:	Jun-16-17	02:59	Jun-16-17	03:15	Jun-16-17 (06:04	Jun-16-17	10:59	Jun-17-17	12:18	Jun-16-17	23:33
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00200	0.00200	< 0.00205	0.00205	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00200	0.00200
Toluene		< 0.00200	0.00200	< 0.00205	0.00205	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00200	0.00200
Ethylbenzene		< 0.00200	0.00200	< 0.00205	0.00205	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00200	0.00200
m,p-Xylenes		< 0.00401	0.00401	< 0.00410	0.00410	< 0.00398	0.00398	0.00511	0.00399	< 0.00402	0.00402	< 0.00401	0.00401
o-Xylene		< 0.00200	0.00200	< 0.00205	0.00205	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00201	0.00201	< 0.00200	0.00200
Total Xylenes		< 0.00200	0.00200	< 0.00205	0.00205	< 0.00199	0.00199	0.00511	0.00200	< 0.00201	0.00201	< 0.00200	0.00200
Total BTEX		< 0.00200	0.00200	< 0.00205	0.00205	< 0.00199	0.00199	0.00511	0.00200	< 0.00201	0.00201	< 0.00200	0.00200
Chloride by EPA 300	Extracted:	Jun-19-17	11:00	Jun-19-17	11:00	Jun-19-17	11:00	Jun-19-17	11:00	Jun-19-17	13:30	Jun-19-17	13:30
	Analyzed:	Jun-19-17	16:21	Jun-19-17	16:29	Jun-19-17	17:48	Jun-19-17	17:56	Jun-19-17	19:58	Jun-19-17	20:20
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		21.5	4.94	176	4.94	38.9	5.00	13.9	4.94	336	4.89	166	4.97
TPH by SW8015 Mod	Extracted:	Jun-15-17	15:00	Jun-15-17	15:00	Jun-15-17	15:00	Jun-15-17	15:00	Jun-15-17	15:00	Jun-15-17	15:00
	Analyzed:	Jun-15-17	23:27	Jun-15-17	23:47	Jun-16-17 (00:06	Jun-16-17	00:27	Jun-16-17	00:47	Jun-16-17	01:08
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons	ì	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Diesel Range Organics		<15.0	15.0	<15.0	15.0	<15.0	15.0	128	15.0	<15.0	15.0	<15.0	15.0
Oil Range Hydrocarbons		<15.0	15.0	<15.0	15.0	<15.0	15.0	187	15.0	<15.0	15.0	<15.0	15.0
Total TPH		<15.0	15.0	<15.0	15.0	<15.0	15.0	315	15.0	<15.0	15.0	<15.0	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Roah

Kelsey Brooks Project Manager

Page 1 of 32

Certificate of Analysis Summary 5	555475
-----------------------------------	--------

TRC Solutions, Inc, Midland, TX

Project Id:TRC#273818Contact:Nikki GreenProject Location:Lea County, NM

Project Name: A14 Compressor Station Field Scrubber Date Received in Lab: Thu Jun-15-17 09:30 am Report Date: 06-JUL-17 Project Manager: Kelsey Brooks

	Lab Id:	555475-0	007	555475-0	00	555475-0	00		
Analysis Requested	Field Id:	SW-2 2	2'	NW-2 2	!'	BH-5 1			
	Depth:	2 ft		2 ft		1 ft			
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	Jun-14-17	10:15	Jun-14-17 1	0:27	Jun-14-17 1	7:05		
BTEX by EPA 8021B	Extracted:	Jun-15-17	17:15	Jun-16-17 1	5:30	Jun-19-17 0	6:30		
	Analyzed:	Jun-16-17	11:32	Jun-17-17 1	2:35	Jun-19-17 1	3:22		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00199	0.00199	< 0.00202	0.00202	< 0.00202	0.00202		
Toluene		< 0.00199	0.00199	< 0.00202	0.00202	< 0.00202	0.00202		
Ethylbenzene		< 0.00199	0.00199	< 0.00202	0.00202	< 0.00202	0.00202		
m,p-Xylenes		< 0.00398	0.00398	< 0.00404	0.00404	< 0.00403	0.00403		
o-Xylene		< 0.00199	0.00199	< 0.00202	0.00202	< 0.00202	0.00202		
Total Xylenes		< 0.00199	0.00199	< 0.00202	0.00202	< 0.00202	0.00202		
Total BTEX		< 0.00199	0.00199	< 0.00202	0.00202	< 0.00202	0.00202		
Chloride by EPA 300	Extracted:	Jun-19-17	13:30	Jun-19-17 1	3:30	Jun-19-17 1	3:30		
	Analyzed:	Jun-19-17 2	20:28	Jun-19-17 2	0:36	Jun-19-17 2	20:43		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		55.1	4.92	186	24.8	11.7	5.00		
TPH by SW8015 Mod	Extracted:	Jun-15-17	15:00	Jun-15-17 1	5:00	Jun-15-17 1	5:00		
	Analyzed:	Jun-16-17 (01:28	Jun-16-17 0	1:48	Jun-16-17 0	02:10		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons		<15.0	15.0	<15.0	15.0	<15.0	15.0		
Diesel Range Organics		<15.0	15.0	<15.0	15.0	26.3	15.0		
Oil Range Hydrocarbons		<15.0	15.0	<15.0	15.0	<15.0	15.0		
Total TPH		<15.0	15.0	<15.0	15.0	26.3	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Analytical Report 555475

for TRC Solutions, Inc

Project Manager: Nikki Green

A14 Compressor Station Field Scrubber

TRC#273818

06-JUL-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

06-JUL-17

Project Manager: **Nikki Green TRC Solutions, Inc** 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 555475 A14 Compressor Station Field Scrubber Project Address: Lea County, NM

Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 555475. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 555475 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id BH-1 4' SW-1 3' NW-1 3' BH-4 1' EW-1 3' BH-2 3' SW-2 2' NW-2 2' BH-5 1'

Sample Cross Reference 555475

TRC Solutions, Inc, Midland, TX

A14 Compressor Station Field Scrubber

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	06-13-17 11:51	- 4 ft	555475-001
S	06-13-17 12:05	- 3 ft	555475-002
S	06-13-17 12:17	- 3 ft	555475-003
S	06-14-17 17:00	- 1 ft	555475-004
S	06-13-17 12:22	- 3 ft	555475-005
S	06-14-17 10:00	- 3 ft	555475-006
S	06-14-17 10:15	- 2 ft	555475-007
S	06-14-17 10:27	- 2 ft	555475-008
S	06-14-17 17:05	- 1 ft	555475-009

Page 5 of 32

CASE NARRATIVE

Client Name: TRC Solutions, Inc Project Name: A14 Compressor Station Field Scrubber

Project ID: TRC#273818 Work Order Number(s): 555475
 Report Date:
 06-JUL-17

 Date Received:
 06/15/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3019915 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Benzene, Toluene Relative Percent Difference (RPD) between matrix spike and duplicate were above quality control limits.

Samples in the analytical batch are: 555475-001, -002, -003, -004, -007

Lab Sample ID 555475-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzene, Ethylbenzene, Toluene, m,p-Xylenes recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 555475-001, -002, -003, -004, -007.

The Laboratory Control Sample for Toluene, Benzene, m,p-Xylenes, Ethylbenzene is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3020005 BTEX by EPA 8021B

Lab Sample ID 555475-006 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). m,p-Xylenes recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 555475-005, -006, -008.

The Laboratory Control Sample for m,p-Xylenes is within laboratory Control Limits, therefore the data was accepted.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3020111 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

TRC Solutions, Inc, Midland, TX

Sample Id: BH-1 4' Lab Sample Id: 555475-001		Matrix: Date Collecte	Soil d: 06.13.17 11.51		Date Received Sample Depth	1:06.15.17 09.30 :4 ft	
Analytical Method: Chloride by EPA 3 Tech: MGO Analyst: MGO Seq Number: 3020141	300	Date Prep:	06.19.17 11.00		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter	Cas Number	Result F	8L	Units	Analysis Da	ate Flag	Dil

rarameter	Cas Number	Kesult	KL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	21.5	4.94	mg/kg	06.19.17 16.21		1

Analytical Method: TPH by SW80	15 Mod				F	Prep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Prep	p: 06.15.	17 15.00	E	Basis: We	t Weight	
Seq Number: 3019902								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.15.17 23.27	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.15.17 23.27	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.15.17 23.27	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.15.17 23.27	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane	1	111-85-3	103	%	70-135	06.15.17 23.27		
o-Terphenyl	8	84-15-1	103	%	70-135	06.15.17 23.27		

TRC Solutions, Inc, Midland, TX

Sample Id: BH-1 4' Lab Sample Id: 555475-001	Matrix: Soil Date Collected: 06.1		Date Received Sample Depth	:06.15.17 09.30 :4 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ			Prep Method: % Moisture:	SW5030B
Analyst: ALJ Seq Number: 3019915	Date Prep: 06.1	5.17 17.15	Basis:	Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.16.17 02.59	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.16.17 02.59	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.16.17 02.59	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	06.16.17 02.59	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.16.17 02.59	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.16.17 02.59	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.16.17 02.59	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	89	%	80-120	06.16.17 02.59		
4-Bromofluorobenzene		460-00-4	104	%	80-120	06.16.17 02.59		

TRC Solutions, Inc, Midland, TX

Sample Id: SW-1 3' Lab Sample Id: 555475-002		Matrix: Date Collecte	Soil d: 06.13.17 12.05		Date Received: Sample Depth:	06.15.17 09.30 3 ft	
Analytical Method: Chloride by EPA (Tech: MGO Analyst: MGO Seq Number: 3020141	300	Date Prep:	06.19.17 11.00		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter	Cas Number	Result F	RL	Units	Analysis Da	te Flag	Dil

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	176	4.94	mg/kg	06.19.17 16.29		1

Analytical Method: TPH by SW8015	5 Mod				F	Prep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Prep	p: 06.15.	17 15.00	E	Basis: We	t Weight	
Seq Number: 3019902								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.15.17 23.47	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.15.17 23.47	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.15.17 23.47	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.15.17 23.47	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	104	%	70-135	06.15.17 23.47		
o-Terphenyl		84-15-1	104	%	70-135	06.15.17 23.47		

TRC Solutions, Inc, Midland, TX

Sample Id: SW-1 3' Lab Sample Id: 555475-002	Matrix: Soil Date Collected: 06.13.17 12.05	Date Received:06.15.17 09.30 Sample Depth: 3 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ		Prep Method: SW5030B % Moisture:
Analyst: ALJ Seq Number: 3019915	Date Prep: 06.15.17 17.15	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00205	0.00205		mg/kg	06.16.17 03.15	U	1
Toluene	108-88-3	< 0.00205	0.00205		mg/kg	06.16.17 03.15	U	1
Ethylbenzene	100-41-4	< 0.00205	0.00205		mg/kg	06.16.17 03.15	U	1
m,p-Xylenes	179601-23-1	< 0.00410	0.00410		mg/kg	06.16.17 03.15	U	1
o-Xylene	95-47-6	< 0.00205	0.00205		mg/kg	06.16.17 03.15	U	1
Total Xylenes	1330-20-7	< 0.00205	0.00205		mg/kg	06.16.17 03.15	U	1
Total BTEX		< 0.00205	0.00205		mg/kg	06.16.17 03.15	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	83	%	80-120	06.16.17 03.15		
4-Bromofluorobenzene		460-00-4	94	%	80-120	06.16.17 03.15		

TRC Solutions, Inc, Midland, TX

Sample Id: NW-1 3' Lab Sample Id: 555475-003		Matrix: Date Collecte	Soil ed: 06.13.17 12.17		Date Received Sample Depth	d:06.15.17 09.30 n:3 ft)
Analytical Method:Chloride by EPA 3Tech:MGOAnalyst:MGOSeq Number:3020141	300	Date Prep:	06.19.17 11.00		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter	Cas Number	Result J	RL	Units	Analysis D	ate Flag	Dil

rarameter	Cas Number	Kesult	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	38.9	5.00	mg/kg	06.19.17 17.48		1	

Analytical Method: TPH by SW8015	5 Mod				F	Prep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Prep	p: 06.15.	17 15.00	E	Basis: We	t Weight	
Seq Number: 3019902								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.16.17 00.06	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.16.17 00.06	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.16.17 00.06	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.16.17 00.06	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	97	%	70-135	06.16.17 00.06		
o-Terphenyl		84-15-1	100	%	70-135	06.16.17 00.06		

TRC Solutions, Inc, Midland, TX

Sample Id: NW-1 3' Lab Sample Id: 555475-003	Matrix: Soil Date Collected: 06.13.17 12.17	Date Received:06.15.17 09.30 Sample Depth: 3 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ		Prep Method: SW5030B % Moisture:
Analyst: ALJ Seq Number: 3019915	Date Prep: 06.15.17 17.15	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.16.17 06.04	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.16.17 06.04	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.16.17 06.04	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.16.17 06.04	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.16.17 06.04	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.16.17 06.04	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.16.17 06.04	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	95	%	80-120	06.16.17 06.04		
4-Bromofluorobenzene		460-00-4	98	%	80-120	06.16.17 06.04		

Chloride

1-Chlorooctane

o-Terphenyl

Certificate of Analytical Results 555475

1

06.19.17 17.56

06.16.17 00.27

06.16.17 00.27

mg/kg

70-135

70-135

TRC Solutions, Inc, Midland, TX

A14 Compressor Station Field Scrubber

4.94

105

105

%

%

Sample Id: BH-4 1' Lab Sample Id: 555475-004		Matrix: Date Collecte	Matrix: Soil Date Collected: 06.14.17 17.00			Date Received:06.15.17 09.30 Sample Depth: 1 ft				
Analytical Method:Chloride by EPATech:MGOAnalyst:MGOSeq Number:3020141	300	Date Prep:	06.19.17 11.00		o Method: E300 Aoisture: is: Wet)P Weight				
Parameter	Cas Number	Result I	RL .	Units	Analysis Date	Flag	Dil			

13.9

16887-00-6

Analytical Method: TPH by SW	8015 Mod				P	Prep Method: T	X1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Prep	p: 06.15.	17 15.00	E	Basis: W	Vet Weight	
Seq Number: 3019902								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.16.17 00.27	U	1
Diesel Range Organics	C10C28DRO	128	15.0		mg/kg	06.16.17 00.27		1
Oil Range Hydrocarbons	PHCG2835	187	15.0		mg/kg	06.16.17 00.27		1
Total TPH	PHC635	315	15.0		mg/kg	06.16.17 00.27		1
Surrogate		Cas Number	% Recoverv	Units	Limits	Analysis Date	e Flag	

111-85-3

84-15-1

TRC Solutions, Inc, Midland, TX

Sample Id: BH-4 1' Lab Sample Id: 555475-004	Matrix: Soil Date Collected: 06.14.17 17.00	Date Received:06.15.17 09.30 Sample Depth: 1 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ		Prep Method: SW5030B % Moisture:
Analyst:ALJSeq Number:3019915	Date Prep: 06.15.17 17.15	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.16.17 10.59	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.16.17 10.59	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.16.17 10.59	U	1
m,p-Xylenes	179601-23-1	0.00511	0.00399		mg/kg	06.16.17 10.59		1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.16.17 10.59	U	1
Total Xylenes	1330-20-7	0.00511	0.00200		mg/kg	06.16.17 10.59		1
Total BTEX		0.00511	0.00200		mg/kg	06.16.17 10.59		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	120	%	80-120	06.16.17 10.59		
1,4-Difluorobenzene		540-36-3	95	%	80-120	06.16.17 10.59		

TRC Solutions, Inc, Midland, TX

Sample Id: EW-1 3' Lab Sample Id: 555475-005		Matrix: Date Collecte	Soil ed: 06.13.17 12.22	Date Recei Sample De	ved:06.15.17 09.30 pth:3 ft	
Analytical Method: Chloride by EPA 3 Tech: MGO Analyst: MGO Seq Number: 3020148	300	Date Prep:	06.19.17 13.30	Prep Metho % Moisture Basis:		
Parameter	Cas Number	Result F	RL .	Units Analysis	s Date Flag	Dil

				Childs	111111301012400	 211	
Chloride	16887-00-6	336	4.89	mg/kg	06.19.17 19.58	1	

Analytical Method: TPH by SW8015	5 Mod				F	Prep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Prep	p: 06.15.	17 15.00	E	Basis: We	t Weight	
Seq Number: 3019902								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.16.17 00.47	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.16.17 00.47	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.16.17 00.47	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.16.17 00.47	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	106	%	70-135	06.16.17 00.47		
o-Terphenyl		84-15-1	105	%	70-135	06.16.17 00.47		

TRC Solutions, Inc, Midland, TX

Sample Id: EW-1 3' Lab Sample Id: 555475-005	Matrix: Soil Date Collected: 06.13.17 12.22	Date Received:06.15.17 09.30 Sample Depth: 3 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ		Prep Method: SW5030B % Moisture:
Analyst: ALJ Seq Number: 3020005	Date Prep: 06.16.17 15.30	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	06.17.17 12.18	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	06.17.17 12.18	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	06.17.17 12.18	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	06.17.17 12.18	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	06.17.17 12.18	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	06.17.17 12.18	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	06.17.17 12.18	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	82	%	80-120	06.17.17 12.18		
1,4-Difluorobenzene		540-36-3	96	%	80-120	06.17.17 12.18		

TRC Solutions, Inc, Midland, TX

Sample Id: BH-2 3' Lab Sample Id: 555475-006		Matrix: Date Collecte	Soil ed: 06.14.17 10.00		Date Received Sample Depth	1:06.15.17 09.30 1:3 ft)
Analytical Method: Chloride by EPA 3 Tech: MGO Analyst: MGO Seq Number: 3020148	300	Date Prep:	06.19.17 13.30		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter	Cas Number	Result I	RL .	Units	Analysis Da	ate Flag	Dil

Chloride	16887-00-6	166	4.97	mg/kg	06.19.17 20.20	1

Analytical Method: TPH by SW8015	5 Mod				F	Prep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Pre	p: 06.15.	17 15.00	E	Basis: We	t Weight	
Seq Number: 3019902								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.16.17 01.08	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.16.17 01.08	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.16.17 01.08	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.16.17 01.08	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	94	%	70-135	06.16.17 01.08		
o-Terphenyl		84-15-1	96	%	70-135	06.16.17 01.08		

TRC Solutions, Inc, Midland, TX

Sample Id: BH-2 3' Lab Sample Id: 555475-006	Matrix: Soil Date Collected: 06.14.17 10.00	Date Received:06.15.17 09.30 Sample Depth: 3 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ		Prep Method: SW5030B % Moisture:
Analyst: ALJ Seq Number: 3020005	Date Prep: 06.16.17 15.30	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.16.17 23.33	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.16.17 23.33	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.16.17 23.33	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	06.16.17 23.33	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.16.17 23.33	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.16.17 23.33	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.16.17 23.33	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	116	%	80-120	06.16.17 23.33		
1,4-Difluorobenzene		540-36-3	108	%	80-120	06.16.17 23.33		

TRC Solutions, Inc, Midland, TX

Sample Id: SW-2 2' Lab Sample Id: 555475-007			Soil sd: 06.14.17 10.15		Date Received:06.15.17 09.30 Sample Depth: 2 ft			
Analytical Method:Chloride by EPA (Tech:MGOAnalyst:MGOSeq Number:3020148	300	Date Prep:	06.19.17 13.30	0	Prep Method: H % Moisture: Basis: N	E300P Wet Weight		
Parameter	Cas Number	Result F	RL	Units	Analysis Date	e Flag	Dil	

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	55.1	4.92	mg/kg	06.19.17 20.28		1

Analytical Method: TPH by SW8015 Mod					Prep Method: TX1005P				
Tech: ARM					9	% Moisture:			
Analyst: ARM		Date Pre	p: 06.15.	17 15.00	E	Basis: We	t Weight		
Seq Number: 3019902									
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.16.17 01.28	U	1	
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.16.17 01.28	U	1	
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.16.17 01.28	U	1	
Total TPH	PHC635	<15.0	15.0		mg/kg	06.16.17 01.28	U	1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
1-Chlorooctane		111-85-3	103	%	70-135	06.16.17 01.28			
o-Terphenyl		84-15-1	102	%	70-135	06.16.17 01.28			

TRC Solutions, Inc, Midland, TX

Sample Id: SW-2 2' Lab Sample Id: 555475-007	Matrix: Soil Date Collected: 06.14.17 10.15	Date Received:06.15.17 09.30 Sample Depth: 2 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ		Prep Method: SW5030B % Moisture:
Analyst: ALJ Seq Number: 3019915	Date Prep: 06.15.17 17.15	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.16.17 11.32	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.16.17 11.32	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.16.17 11.32	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.16.17 11.32	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.16.17 11.32	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.16.17 11.32	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.16.17 11.32	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	114	%	80-120	06.16.17 11.32		
1,4-Difluorobenzene		540-36-3	95	%	80-120	06.16.17 11.32		

TRC Solutions, Inc, Midland, TX

Sample Id: NW-2 2' Lab Sample Id: 555475-008		Matrix: Date Collecte	Soil ed: 06.14.17 10.27		Received:06.15.17 le Depth: 2 ft	09.30
Analytical Method: Chloride by EPA 3 Tech: MGO Analyst: MGO Seq Number: 3020148	300	Date Prep:	06.19.17 13.30	1	Method: E300P bisture: : Wet Wet	ght
Parameter	Cas Number	Result]	RL	Units A	nalysis Date Fl	ag Dil

1 al anicter	Cas Mulliber	Kesut	KL	Units	Analysis Date	Flag	Dii	
Chloride	16887-00-6	186	24.8	mg/kg	06.19.17 20.36		5	

Analytical Method: TPH by SW801	5 Mod				F	Prep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Pre	p: 06.15.	17 15.00	E	Basis: We	t Weight	
Seq Number: 3019902								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.16.17 01.48	U	1
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.16.17 01.48	U	1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.16.17 01.48	U	1
Total TPH	PHC635	<15.0	15.0		mg/kg	06.16.17 01.48	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	96	%	70-135	06.16.17 01.48		
o-Terphenyl		84-15-1	97	%	70-135	06.16.17 01.48		

TRC Solutions, Inc, Midland, TX

Sample Id: NW-2 2' Lab Sample Id: 555475-008	Matrix: Soil Date Collected: 06.14.17 10.27	Date Received:06.15.17 09.30 Sample Depth: 2 ft
Analytical Method: BTEX by EPA 8021B Tech: ALJ		Prep Method: SW5030B % Moisture:
Analyst: ALJ Seq Number: 3020005	Date Prep: 06.16.17 15.30	Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	06.17.17 12.35	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	06.17.17 12.35	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	06.17.17 12.35	U	1
m,p-Xylenes	179601-23-1	< 0.00404	0.00404		mg/kg	06.17.17 12.35	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	06.17.17 12.35	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	06.17.17 12.35	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	06.17.17 12.35	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	91	%	80-120	06.17.17 12.35		
4-Bromofluorobenzene		460-00-4	107	%	80-120	06.17.17 12.35		

TRC Solutions, Inc, Midland, TX

Sample Id: BH-5 1' Lab Sample Id: 555475-009		Matrix: Date Collecte	Soil d: 06.14.17 17.05		Date Received Sample Depth	l:06.15.17 09.30 :1 ft	
Analytical Method: Chloride by EPA 3 Tech: MGO Analyst: MGO Seq Number: 3020148	300	Date Prep:	06.19.17 13.30		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter	Cas Number	Result F	L	Units	Analysis Da	ate Flag	Dil

Chloride	16887-00-6	11.7	5.00	mg/kg	06.19.17 20.43	1

Analytical Method: TPH by SW801	5 Mod				F	Prep Method: TX	(1005P	
Tech: ARM					9	% Moisture:		
Analyst: ARM		Date Pre	p: 06.15	.17 15.00	E	Basis: We	et Weight	
Seq Number: 3019902								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.16.17 02.10	U	1
Diesel Range Organics	C10C28DRO	26.3	15.0		mg/kg	06.16.17 02.10		1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.16.17 02.10	U	1
Total TPH	PHC635	26.3	15.0		mg/kg	06.16.17 02.10		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	97	%	70-135	06.16.17 02.10		
o-Terphenyl		84-15-1	96	%	70-135	06.16.17 02.10		

TRC Solutions, Inc, Midland, TX

Sample Id: BH-5 1' Lab Sample Id: 555475-009	Matrix: Soil Date Collected: 06.14.17 17.05	Date Received:06.15.17 09.30 Sample Depth: 1 ft
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3020111	Date Prep: 06.19.17 06.30	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	06.19.17 13.22	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	06.19.17 13.22	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	06.19.17 13.22	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	06.19.17 13.22	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	06.19.17 13.22	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	06.19.17 13.22	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	06.19.17 13.22	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	116	%	80-120	06.19.17 13.22		
1,4-Difluorobenzene		540-36-3	94	%	80-120	06.19.17 13.22		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	гах
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 555475

TRC Solutions, Inc

Analytical Method: Seq Number: MB Sample Id:	Chloride by EPA 3020141 726321-1-BLK	Prep Method:E300PMatrix:SolidDate Prep:06.19.17Sample Id:726321-1-BKSLCSD Sample Id:726321-1-BSD										
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	249	100	246	98	90-110	1	20	mg/kg	06.19.17 11:27	
Analytical Method: Seq Number: MB Sample Id:	Chloride by EPA 3020148 726322-1-BLK	Matrix: nple Id:		-BKS			rep Metho Date Pro D Sample	ep: 06.1				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	227	91	230	92	90-110	1	20	mg/kg	06.19.17 19:42	

Analytical Method:	Chloride by EPA 30)0						Pr	ep Metho	od: E300	OP	
Seq Number:	3020141			Matrix:	Soil				Date Pre	ep: 06.1	06.19.17	
Parent Sample Id:	555462-001		MS Sar	nple Id:	555462-00	01 S		MSI	O Sample	Id: 5554	462-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	5.64	247	249	99	252	100	90-110	1	20	mg/kg	06.19.17 13:13	

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	d: E30	0P	
Seq Number:	3020141			Matrix:	Soil				Date Pre	ep: 06.1	9.17	
Parent Sample Id:	555462-002		MS Sar	nple Id:	555462-00	02 S		MSI	O Sample	Id: 5554	462-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	11.2	246	257	100	257	100	90-110	0	20	mg/kg	06.19.17 14:59	

Analytical Method:	Chloride by EPA 30)0						Pr	ep Metho	d: E30)P	
Seq Number:	3020148			Matrix:	Soil				Date Pre	ep: 06.1	9.17	
Parent Sample Id:	555360-001		MS Sar	nple Id:	555360-00	01 S		MSI	O Sample	Id: 5553	360-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	19.1	249	272	102	280	105	90-110	3	20	mg/kg	06.19.17 21:51	

Analytical Method: Seq Number:	Chloride by EPA 30 3020148	00		Matrix:	Soil			Pr	-	od: E300 ep: 06.1		
Parent Sample Id:	555475-005		MS Sar	nple Id:	555475-00)5 S		MSI	O Sample	Id: 5554	475-005 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	336	245	575	98	576	98	90-110	0	20	mg/kg	06.19.17 20:05	

QC Summary 555475

TRC Solutions, Inc

Analytical Method:TPH by SW8015 ModPrep Method:TX1005P													
Seq Number:	3019902				Matrix:	Solid				Date Pre	ep: 06.1	5.17	
MB Sample Id:	726219-1-BL	K		LCS Sar	nple Id:	726219-1-	-BKS		LCS	D Sample	e Id: 7262	219-1-BSD	
Parameter]	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydroc	arbons	<15.0	1000	1030	103	1050	105	70-135	2	35	mg/kg	06.15.17 21:08	
Diesel Range Organics		<15.0	1000	1040	104	1060	106	70-135	2	35	mg/kg	06.15.17 21:08	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			mits	Units	Analysis Date	
1-Chlorooctane		109		1	02		102		70	-135	%	06.15.17 21:08	
o-Terphenyl		101 101			101 70-135 % 06.15.17 21:08								

Analytical Method: Seq Number:	lod		Matrix:	Soil 555308-00)1 S			ep Methe Date Pr	ep: 06.1	005P 5.17 308-001 SD			
Parent Sample Id: Parameter	Spike Amount	MS MS MSD MSD Liu Result %Rec Result %Rec				Limits	%RPD	RPD Limit	Units	Analysis Date	Flag		
Gasoline Range Hydroc Diesel Range Organics	arbons	<15.0 41.5	998 998	1050 1070	105 103	1000 1050	100 101	70-135 70-135	5 2	35 35	mg/kg mg/kg	06.15.17 22:07 06.15.17 22:07	
Surrogate					AS Rec	MS Flag	MSD %Re			mits	Units	Analysis Date	
1-Chlorooctane o-Terphenyl				109 107			111 106			-135 -135	% %	06.15.17 22:07 06.15.17 22:07	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3019915 726203-1-BLK	1B	LCS Sar	Matrix: nple Id:	Solid 726203-1	-BKS		Prep Method: SW5030B Date Prep: 06.15.17 LCSD Sample Id: 726203-1-BSD				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0832	83	0.0822	81	70-130	1	35	mg/kg	06.16.17 01:06	
Toluene	< 0.00200	0.100	0.0875	88	0.0793	79	70-130	10	35	mg/kg	06.16.17 01:06	
Ethylbenzene	< 0.00200	0.100	0.100	100	0.0979	97	71-129	2	35	mg/kg	06.16.17 01:06	
m,p-Xylenes	< 0.00401	0.200	0.190	95	0.178	89	70-135	7	35	mg/kg	06.16.17 01:06	
o-Xylene	< 0.00200	0.100	0.103	103	0.0961	95	71-133	7	35	mg/kg	06.16.17 01:06	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSE %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene	84		1	16		111		80	0-120	%	06.16.17 01:06	
4-Bromofluorobenzene	92		1	14		113		80	0-120	%	06.16.17 01:06	

TRC Solutions, Inc

Analytical Method: Seq Number:	BTEX by EPA 802 3020005	1B	Matrix: Solid LCS Sample Id: 726253-1-BKS						Prep Method: SW5030B Date Prep: 06.16.17			
MB Sample Id:	726253-1-BLK		LCS Sar	nple Id:	726253-1	-BKS		LCS	D Sample	e Id: 7262	253-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0985	99	0.0982	99	70-130	0	35	mg/kg	06.16.17 21:39	
Toluene	< 0.00200	0.100	0.0836	84	0.0896	90	70-130	7	35	mg/kg	06.16.17 21:39	
Ethylbenzene	< 0.00200	0.100	0.0885	89	0.0952	96	71-129	7	35	mg/kg	06.16.17 21:39	
m,p-Xylenes	< 0.00401	0.200	0.152	76	0.168	84	70-135	10	35	mg/kg	06.16.17 21:39	
o-Xylene	< 0.00200	0.100	0.0785	79	0.0908	91	71-133	15	35	mg/kg	06.16.17 21:39	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	102		9	9 3		97		80)-120	%	06.16.17 21:39	
4-Bromofluorobenzene	83		8	81		101		80)-120	%	06.16.17 21:39	

Analytical Method:	BTEX by EPA 8021	IB				Prep Method: SW5030B						
Seq Number:	3020111			Matrix:	Solid				Date Pr	ep: 06.1	9.17	
MB Sample Id:	726344-1-BLK		LCS Sar	nple Id:	726344-1	-BKS		LCS	D Sample	e Id: 7263	344-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.105	105	0.101	101	70-130	4	35	mg/kg	06.19.17 08:20	
Toluene	< 0.00199	0.0996	0.0888	89	0.0891	89	70-130	0	35	mg/kg	06.19.17 08:20	
Ethylbenzene	< 0.00199	0.0996	0.106	106	0.101	101	71-129	5	35	mg/kg	06.19.17 08:20	
m,p-Xylenes	< 0.00398	0.199	0.163	82	0.173	87	70-135	6	35	mg/kg	06.19.17 08:20	
o-Xylene	< 0.00199	0.0996	0.0986	99	0.0960	96	71-133	3	35	mg/kg	06.19.17 08:20	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSE %Rec			mits	Units	Analysis Date	
1,4-Difluorobenzene	100		8	35		96		80	-120	%	06.19.17 08:20	
4-Bromofluorobenzene	104		1	04		102		80	-120	%	06.19.17 08:20	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3019915 555475-001	1B	MS San	Matrix: nple Id:		01 S		Prep Method: SW5030B Date Prep: 06.15.17 MSD Sample Id: 555475-001 SD					
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Benzene	< 0.00201	0.100	0.0349	35	0.0512	51	70-130	38	35	mg/kg	06.16.17 01:39	XF	
Toluene	< 0.00201	0.100	0.0365	37	0.0524	53	70-130	36	35	mg/kg	06.16.17 01:39	XF	
Ethylbenzene	< 0.00201	0.100	0.0630	63	0.0677	68	71-129	7	35	mg/kg	06.16.17 01:39	Х	
m,p-Xylenes	< 0.00402	0.201	0.113	56	0.112	56	70-135	1	35	mg/kg	06.16.17 01:39	Х	
o-Xylene	< 0.00201	0.100	0.0764	76	0.0866	87	71-133	13	35	mg/kg	06.16.17 01:39		
Surrogate				IS Rec	MS Flag	MSD %Ree			imits	Units	Analysis Date		
1,4-Difluorobenzene			8	38		89		80	-120	%	06.16.17 01:39		
4-Bromofluorobenzene			8	36		113		80	-120	%	06.16.17 01:39		

QC Summary 555475

TRC Solutions, Inc

Analytical Method:	BTEX by EPA 802					P	rep Meth	od: SW:	5030B			
Seq Number:	3020005			Matrix:	Soil				Date Pr	ep: 06.1	6.17	
Parent Sample Id:	555475-006		MS San	nple Id:	555475-00	06 S		MS	D Sample	e Id: 5554	475-006 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00203	0.101	0.0914	90	0.0862	85	70-130	6	35	mg/kg	06.16.17 22:12	
Toluene	< 0.00203	0.101	0.0810	80	0.0774	77	70-130	5	35	mg/kg	06.16.17 22:12	
Ethylbenzene	< 0.00203	0.101	0.0832	82	0.0806	80	71-129	3	35	mg/kg	06.16.17 22:12	
m,p-Xylenes	< 0.00406	0.203	0.146	72	0.140	69	70-135	4	35	mg/kg	06.16.17 22:12	Х
o-Xylene	< 0.00203	0.101	0.0820	81	0.0752	74	71-133	9	35	mg/kg	06.16.17 22:12	
Surrogate				1S Rec	MS Flag	MSD %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene			ç	95		96		80	0-120	%	06.16.17 22:12	
4-Bromofluorobenzene			1	02		99		80	0-120	%	06.16.17 22:12	

Analytical Method:	BTEX by EPA 802									Prep Method: SW5030B					
Seq Number:	3020111]	Matrix:	Soil				Date Pr	ep: 06.1	9.17				
Parent Sample Id:	555245-021		MS San	nple Id:	555245-02	21 S		MS	D Sample	e Id: 5552	245-021 SD				
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag			
Benzene	< 0.00389	0.195	0.175	90	0.181	91	70-130	3	35	mg/kg	06.19.17 09:02				
Toluene	0.0115	0.195	0.157	75	0.170	80	70-130	8	35	mg/kg	06.19.17 09:02				
Ethylbenzene	< 0.00389	0.195	0.171	88	0.168	85	71-129	2	35	mg/kg	06.19.17 09:02				
m,p-Xylenes	0.00913	0.389	0.297	74	0.300	74	70-135	1	35	mg/kg	06.19.17 09:02				
o-Xylene	< 0.00389	0.195	0.161	83	0.167	84	71-133	4	35	mg/kg	06.19.17 09:02				
Surrogate				1S Rec	MS Flag	MSD %Re			imits	Units	Analysis Date				
1,4-Difluorobenzene			9	97		94		80	0-120	%	06.19.17 09:02				
4-Bromofluorobenzene			1	03		115		80)-120	%	06.19.17 09:02				

linquis	Refinquished by:	Refinduished b	Bill to R	Special I											LAB # (lab use only)	ORDER #:	(lab use only)							The Env
Relinquished by:	hed by:	hed by	Bill to Rose Siade at Energy Transfer.	Special Instructions:		В	N	S	в	D	В	N	S	в	File	(# U U U	only)	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	The Environmental Lab of Texas
		2	ansfer.			BH-5 1'	NW-2 2'	SW-2 2'	BH-2 3'	EW-1 3'	BH-4 1'	NW-1 3'	SW-1 3'	BH-1 4'	FIELD CODE	SIL	Unr U	XXIVE	432.520.7720	Midland, Texas 79703	2057 Commerce Drive	TRC Environmental Corporation	Nikki Green	tal Lab of Texas
Date	Date	Date 6/5/17			-											-	U	A Los		79703	e Drive	ental Corpo		
-	-	27		Ī											Beginning Depth	1		NA	_			oration		
Time	Time	Time		Ī			T	T							Ending Depth	1		IKKI	1.1.1.					
Received Ł	Received t	Received by:				6/14/2017	6/14/2017	6/14/2017	6/14/2017	6/13/2017	6/14/2017	6/13/2017	6/13/2017	6/13/2017	Date Sampled			Creen	2					
CF:(0-6: -0.2°C)	Temp: D.	/				1705	1027	1015	1000	1222	1700	1217	1205	1151	Time Sampled			- e-mail:	Fax No:					
C) Sol	8. E	n.		Ē											Field Filtered									
3					-	-		-	-	-	-		-	-	Total #. of Containers			To						0.7
	IR			┝	-	×	×	×	×	×	×	×	×	×	Ice	P		rose.slade@energytransfer.com ngreen@trcsolutions.com			1			CHAIN OI 12600 West I-20 East Odessa, Texas 79765
	IR ID:R-8			H	-	+	-	-	-	-				_	HNO3	Preservation		reer						oo w
	R-8			ŀ	+	+					-	-			HCI H ₂ SO ₄	ation		100						est Tex
	00			h	+	+	-			-					NaOH	& # O		rcso						HA 1-20 as 7
		~		F	1	1									Na ₂ S ₂ O ₃	# of Containers		gytr						Eas 976
		51								:11					None	ainers		ansi						5 7 7
Date	Date	Date 5//				1			11	11		100		1	Other (Specify)	Ľ		er.c	1	1		L.,		US
œ	-	2				Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Matrix		om	Report Format:				Pro	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST t1-20 East \$xas 79765 Fax: 432-563-1713
Time	Time	S. 3		F		×	×	×	×	×	×	×	×	×		15E	П		tFo		roje	Pr	oject	EC
		CI													TPH: TX 1005 TX 1006				mat	PC	Project Loc:	Project #:	Project Name:	ORL
	Sample Hand Delivered by Sampler/Client Rep. ?	Lab Cus	San	Lab											Cations (Ca, Mg, Na, K)					PO #:	00:	#:	ne:	A
by Courier? UPS [hple by S	Labels on container(s) Custody seals on cont Custody seals on cool	Sample Containers Intact? VOCs Free of Headspace?	Laboratory Comments:				11	1.1	14	-			1	Anions (CI, SO4, Alkalinity)		TCLP:		X					VD.
by Courier?	Han	sea sea	Con ree o	Vio		-								1	SAR / ESP / CEC	_	- P.		Standard				A	PI
ello ary	d De	Is or	of He	Con	-	-	-	-	-		-				Metals: As Ag Ba Cd Cr Pb Hg Volatiles	Se	+	Ana	dard				14 0	NALYSIS REQUEST Phone: 432-563-1800 Fax: 432-563-1713
	liver	ner(s	ads	Ime	-	+	-	-		-	-				Semivolatiles	+	+	Analyze For:			-	4	om	43
UPS	Rep	s) htain htain	pace	nts:	-	×	×	×	×	×	×	×	×	×	BTEX 8021B/5030 or BTEX 820	60	H	For			.ea (RC	pre	RE
DHL		er(s)	200	-	+	\uparrow	Ê	-							RCI	2	×1		TR		Cour	#	SSOI	63-1 63-1
ŧ				F		1									N.Ö.R.M.	-			TRRP		Lea County, NM	TRC #: 273818	St	432-563-1800 432-563-1713
Fee						×	×	×	×	×	×	×	×	×	Chlorides E 300.1						MN	318	A14 Compressor Station Sump	
FedEx	~~-	~~~	~ ~	Ē						6			1		1								n St	
Lone Star		5 5 5 4																-	NPDES				duir	
ŝ	77	ZZZ	ΖZ			1				1				11	RUSH TAT (Pre-Schedule) 24,	48,	72 hrs	T	E				12	

Final 1.001

Relinquished by:	Refinquished by	Bill to R	Special I											LAB # (lab use only)	ORDER #:	(lab use only)						The Env
ned by:	hed by:	Bill to Rose Slade at Energy Transfer	Special Instructions:			7	0				7	0		FIE	# 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	only)	Telephone No:	City/State/Zip:	Company Address: 2057 Commerce Drive	Company Name	Project Manager:	The Environmental Lab of Texas
	6,	ransfer.			BH-5 1'	NW-2 2'	SW-2 2'	BH-2 3'	EW-1 3'	BH-4 1'	NW-1 3'	SW-1 3'	BH-1 4'	FIELD CODE	475	and tak	432.520.7720	Midland, Texas 79703	: 2057 Commerce	TRC Environmental Corporation	Nikki Green	kas
Date	Date Date		1												F	- Charles		9703	Drive	ital Corpo		
-	9.1						Ĩ			-			1	Beginning Depth		NN				oration		
Time	Time Time			1		1	ñ,	IK.		17				Ending Depth	1	IKKI	111					
Received t	Received by Received E				6/14/2017	6/14/2017	6/14/2017	6/14/2017	6/13/2017	6/14/2017	6/13/2017	6/13/2017	6/13/2017	Date Sampled		Green	7					
ed T	Temp: D				1705	1027	1015	1000	1222	1700	1217	1205	1151	Time Sampled		e-mail:	Fax No:					
°C) .2°C	Ś													Field Filtered		4	r.					
-			-	+		-	-			-				Total #. of Containers	-	10						0-
Þ	E		-	+	×	×	×	×	×	×	×	×	×	Ice HNO ₃	Pre	rose.slade@er ngreen@tro						CHAIN OF 12600 West I-20 East Odessa, Texas 79765
2	Ð		-	-	-			-	-					HIG HCI	serv	eer						0 W
	IR ID:R-8			-						-		-	-	H ₂ SO ₄	Preservation	0						est Tex
	~			+										NaOH	& # 0	rcsc				1		1-20 as 7
	~			1										Na2S2O3	# of Containers	nergytransfer.c csolutions.com			11			Eas 976
71 de .	5													None	taine	ons						5 + 7
D	Date Date	6.00												Other (Specify)		con		4.				ò
Date	2			Į.	Soil	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Matrix	nergytransfer.com csolutions.com	Report Format:	ĺ	T		Pro	2014/11/20 East Factoria And Analysis Regues 1 Phone: 432-563-1800 Fax: 432-563-1713								
Time	S; 3				×	×	×	×	×	×	×	×	×	TPH: 418.1 (8015M) 80	D15E	Π	For		Project Loc:	Pro	Project Name:	
	0					-						_		TPH: TX 1005 TX 1006			mat:	PO #:	t Lo	Project #:	Nam	IRD
Tem	Labe Cust Cust	Sam	Lab					-	_	_	-		_	Cations (Ca, Mg, Na, K)				*	ň	#		AN
by Co	Labels on container(s) Custody seals on contai Custody seals on cooler Sample Hand Delivered	s Fi	Laboratory Comments:			-		_	_	_	_			Anions (CI, SO4, Alkalinity)	TOTAL:	TCLP:	Standard					0
ampl	n co sea sea Han	Cont ee c	97	-	-		-	_		_	-	-	-	SAR / ESP / CEC		<u>9</u>	itanc		1.1	-	A	PH
er/C	ntaii Is or Is or	taine of He	Com-	-		-	-		_	-	-	-	-	Metals: As Ag Ba Cd Cr Pb Hg Volatiles	Se	Ana	fard			2	140	hone Fax:
U U	ner(s	ads	me	\vdash		-	-		-	-	-		-	Semivolatiles		yze		- 20	12	1	òm	44
by Sampler/Client Rep. 7 by Courier? UPS [Temperature Upon Receipt:	s) htain bler() red	Sample Containers Intact? VOCs Free of Headspace?	nts:		×	×	×	×	×	×	×	×	×	BTEX 8021B/5030 or BTEX 82	260	Analyze For:			ea	RC	pre	32-5
ipt:	Labels on container(s) Custody seals on cooler(s) Custody seals on cooler(s) Sample Hand Delivered	6. ()	-	-	Ê	^	^	^	^	^	^	-	-	RCI	×	-11	1		Cou	#8	SSO	63-
DHL	0					-	-	-					11	N.O.R.M.		11	TRRP		Lea County, NM	273	S	Phone: 432-563-1800 Fax: 432-563-1713
F					×	×	×	×	×	×	×	×	×	Chlorides E 300.1		11			MN	SCIVILADELT TRC #: 273818	A14 Compressor Station Sump	ωο 1
FedEx	~~~~	\prec	-								11								Ĩ.	1	Suc	
																11	NP				E2	P
N Lone Star °C	zzzz	zz		-					1.77	1.11			Ú,	RUSH TAT (Pre-Schedule) 24	, 48, 72	hrs	NPDES				or	
ar				1	×	×	×	×	×	×	×	×	×	Standard 3-Day TAT								

Final 1.001

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 06/15/2017 09:30:00 AM Temperature Measuring device used : R-8 Work Order #: 555475 Comments Sample Receipt Checklist 2.6 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A #6 Custody Seals intact on sample bottles? N/A #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? No #21 VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Mary Alexis Megron Mary Negron Checklist reviewed by: Hely Taylor Holly Taylor

Date: 06/15/2017

Date: 06/16/2017

Project Id:Contact:Nikki GreenProject Location:Lea County, NM

Certificate of Analysis Summary 555847

TRC Solutions, Inc, Midland, TX Project Name: A-14 Field Scrubber

Date Received in Lab:Wed Jun-21-17 08:40 amReport Date:26-JUN-17Project Manager:Kelsey Brooks

1 1		1							1
Lab Id:	555847-0	001	555847-0	002	555847-0	003			
Field Id:	BH-3 2	2'	NW-3	1'	SW-3 1	'			
Depth:	2- ft		1- ft		1- ft				
Matrix:	SOIL		SOIL		SOIL				
Sampled:	Jun-15-17	14:00	Jun-15-17	14:00	Jun-15-17 1	14:00			
Extracted:	Jun-24-17	11:30	Jun-24-17	1:30	Jun-24-17 1	1:30			
Analyzed:	Jun-25-17 (06:37	Jun-25-17 ()6:53	Jun-25-17 (07:09			
Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL			
	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00202	0.00202			
	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00202	0.00202			
	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00202	0.00202			
	< 0.00398	0.00398	< 0.00402	0.00402	< 0.00404	0.00404			
	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00202	0.00202			
	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00202	0.00202			
	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00202	0.00202			
Extracted:	Jun-26-17	10:05	Jun-26-17 1	0:05	Jun-26-17 1	0:05			
Analyzed:	Jun-26-17	11:58	Jun-26-17 1	2:05	Jun-26-17 1	2:13			
Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL			
	61.0	4.99	114	4.97	20.6	4.97			
Extracted:	Jun-24-17	16:00	Jun-24-17	6:00	Jun-24-17 1	6:00			
Analyzed:	Jun-25-17 (06:54	Jun-25-17 (07:15	Jun-25-17 (07:36			
Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL			
·	<15.0	15.0	<15.0	15.0	<15.0	15.0			
	37.3	15.0	65.7	15.0	<15.0	15.0			
	<15.0	15.0	15.7	15.0	<15.0	15.0			
	37.3	15.0	81.4	15.0	<15.0	15.0			
	Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed:	Field Id: BH-3 2 Depth: 2- ft Matrix: SOIL Sampled: Jun-15-17 Extracted: Jun-24-17 Analyzed: Jun-25-17 Units/RL: mg/kg <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00191 Jun-26-17 Analyzed: Jun-26-17 Units/RL: mg/kg <0.00 Jun-25-17 Units/RL: mg/kg <15.0	Field Id: BH-3 2' Depth: 2- ft Matrix: SOIL Sampled: Jun-15-17 14:00 Extracted: Jun-24-17 11:30 Analyzed: Jun-25-17 06:37 Units/RL: mg/kg RL <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 Jun-26-17 10:05 <t< th=""><th>Field Id: BH-3 2' NW-3 2 Depth: 2- ft 1- ft Matrix: SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 12 Analyzed: Jun-24-17 11:30 Jun-24-17 12 Analyzed: Jun-25-17 06:37 Jun-25-17 06 Units/RL: mg/kg RL mg/kg <0.00199 0.00199 <0.00201 <0.00199 0.00199 <0.00201 <0.00201</th><th>Field Id: BH-3 2' NW-3 1' Depth: 2- ft 1- ft Matrix: SOIL SOIL Sampled: Jun-15-17 14:00 Jun-24-17 11:30 Analyzed: Jun-25-17 06:37 Jun-25-17 06:53 Units/RL: mg/kg RL mg/kg RL <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 <td< th=""><th>Field Id: BH-3 2' NW-3 1' SW-3 1 Depth: 2- ft 1- ft 1- ft Matrix: SOIL SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 14:00 Jun-24-17 11:30 Extracted: Jun-24-17 11:30 Jun-24-17 11:30 Jun-24-17 11:30 Analyzed: Jun-25-17 06:37 Jun-25-17 06:53 Jun-25-17 06:53 Units/RL: mg/kg RL mg/kg RL mg/kg <0.00199 0.00199 <0.00201 0.00201 <0.00202 <0.00199 0.00199 <0.00201 0.00201 <0.00202 <0.00199 0.00199 <0.00201 0.00201 <0.00202 < <0.00199 0.00199 <0.00201 <0.00201 <0.00202 < <0.00199 0.00199 <0.00201 <0.00201 <0.00202 < <0.00199 0.00199 <0.00201 <0.00202 <0.00202 < <0.00199 0.00199 <0.00201 <0.00201 <0.00202 < Jun-26-17 10:05 Jun-26-17 10:05</th><th>Field Id: BH-3 2' NW-3 1' SW-3 1' Depth: 2- ft 1- ft 1- ft 1- ft Matrix: SOIL SOIL SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 14:00 Jun-24-17 11:30 Jun-24-17 11:30 Analyzed: Jun-25-17 06:37 Jun-25-17 06:53 Jun-25-17 07:09 Units/RL: mg/kg RL mg/kg RL mg/kg RL <0.00199 0.00199 <0.00201 0.00201 <0.00202 0.00202 <0.00199 0.00199 <0.00201 <0.00202 0.00202 0.00202 <0.00199 0.00199 <0.00201 0.00201 <0.00202 0.00202 <0.00199 0.00199 <0.00201 0.00201 <0.00202 0.00202 <0.00199 0.0199 <0.00201 <0</th><th>Field Id: BH-3 2' NW-3 1' SW-3 1' Depth: 2- ft 1- ft 1- ft Matrix: SOIL SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 14:00 Jun-24-17 11:30 Extracted: Jun-24-17 11:30 Jun-25-17 06:33 Jun-25-17 07:09 Units/RL: mg/kg RL mg/kg RL < <0.00199 0.00199 <0.00201 0.00202 0.00202 < <0.00199 0.00199 <0.00201 0.00202 0.00202 < < <0.00199 0.00199 <0.00201 <0.00202 0.00202 < < < < < < < </th></td<></th></t<> <th>Field Id: BH-3 2' NW-3 1' SW-3 1' Depth: 2 - ft 1 - ft 1 - ft Matrix: SOIL SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 14:00 Jun-25-17 06:37 Extracted: Jun-25-17 06:37 Jun-25-17 06:53 Jun-25-17 07:09 Units/RL: mg/kg RL mg/kg RL mg/kg RL < <0.00199 0.00199 <0.00201 <0.00202 < <0.00199 <0.00201 <0.00202 < <</th>	Field Id: BH-3 2' NW-3 2 Depth: 2- ft 1- ft Matrix: SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 12 Analyzed: Jun-24-17 11:30 Jun-24-17 12 Analyzed: Jun-25-17 06:37 Jun-25-17 06 Units/RL: mg/kg RL mg/kg <0.00199 0.00199 <0.00201 <0.00199 0.00199 <0.00201 <0.00201 <0.00199 0.00199 <0.00201 <0.00201 <0.00199 0.00199 <0.00201 <0.00201 <0.00199 0.00199 <0.00201 <0.00201 <0.00199 0.00199 <0.00201 <0.00201 <0.00199 0.00199 <0.00201 <0.00201 <0.00199 0.00199 <0.00201 <0.00201 <0.00199 0.00199 <0.00201 <0.00201 <0.00199 0.00199 <0.00201 <0.00201 <0.00199 0.00199 <0.00201 <0.00201 <0.00199 0.00199 <0.00201 <0.00201	Field Id: BH-3 2' NW-3 1' Depth: 2- ft 1- ft Matrix: SOIL SOIL Sampled: Jun-15-17 14:00 Jun-24-17 11:30 Analyzed: Jun-25-17 06:37 Jun-25-17 06:53 Units/RL: mg/kg RL mg/kg RL <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 0.00201 <0.00199 0.00199 <0.00201 <td< th=""><th>Field Id: BH-3 2' NW-3 1' SW-3 1 Depth: 2- ft 1- ft 1- ft Matrix: SOIL SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 14:00 Jun-24-17 11:30 Extracted: Jun-24-17 11:30 Jun-24-17 11:30 Jun-24-17 11:30 Analyzed: Jun-25-17 06:37 Jun-25-17 06:53 Jun-25-17 06:53 Units/RL: mg/kg RL mg/kg RL mg/kg <0.00199 0.00199 <0.00201 0.00201 <0.00202 <0.00199 0.00199 <0.00201 0.00201 <0.00202 <0.00199 0.00199 <0.00201 0.00201 <0.00202 < <0.00199 0.00199 <0.00201 <0.00201 <0.00202 < <0.00199 0.00199 <0.00201 <0.00201 <0.00202 < <0.00199 0.00199 <0.00201 <0.00202 <0.00202 < <0.00199 0.00199 <0.00201 <0.00201 <0.00202 < Jun-26-17 10:05 Jun-26-17 10:05</th><th>Field Id: BH-3 2' NW-3 1' SW-3 1' Depth: 2- ft 1- ft 1- ft 1- ft Matrix: SOIL SOIL SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 14:00 Jun-24-17 11:30 Jun-24-17 11:30 Analyzed: Jun-25-17 06:37 Jun-25-17 06:53 Jun-25-17 07:09 Units/RL: mg/kg RL mg/kg RL mg/kg RL <0.00199 0.00199 <0.00201 0.00201 <0.00202 0.00202 <0.00199 0.00199 <0.00201 <0.00202 0.00202 0.00202 <0.00199 0.00199 <0.00201 0.00201 <0.00202 0.00202 <0.00199 0.00199 <0.00201 0.00201 <0.00202 0.00202 <0.00199 0.0199 <0.00201 <0</th><th>Field Id: BH-3 2' NW-3 1' SW-3 1' Depth: 2- ft 1- ft 1- ft Matrix: SOIL SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 14:00 Jun-24-17 11:30 Extracted: Jun-24-17 11:30 Jun-25-17 06:33 Jun-25-17 07:09 Units/RL: mg/kg RL mg/kg RL < <0.00199 0.00199 <0.00201 0.00202 0.00202 < <0.00199 0.00199 <0.00201 0.00202 0.00202 < < <0.00199 0.00199 <0.00201 <0.00202 0.00202 < < < < < < < </th></td<>	Field Id: BH-3 2' NW-3 1' SW-3 1 Depth: 2- ft 1- ft 1- ft Matrix: SOIL SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 14:00 Jun-24-17 11:30 Extracted: Jun-24-17 11:30 Jun-24-17 11:30 Jun-24-17 11:30 Analyzed: Jun-25-17 06:37 Jun-25-17 06:53 Jun-25-17 06:53 Units/RL: mg/kg RL mg/kg RL mg/kg <0.00199 0.00199 <0.00201 0.00201 <0.00202 <0.00199 0.00199 <0.00201 0.00201 <0.00202 <0.00199 0.00199 <0.00201 0.00201 <0.00202 < <0.00199 0.00199 <0.00201 <0.00201 <0.00202 < <0.00199 0.00199 <0.00201 <0.00201 <0.00202 < <0.00199 0.00199 <0.00201 <0.00202 <0.00202 < <0.00199 0.00199 <0.00201 <0.00201 <0.00202 < Jun-26-17 10:05 Jun-26-17 10:05	Field Id: BH-3 2' NW-3 1' SW-3 1' Depth: 2- ft 1- ft 1- ft 1- ft Matrix: SOIL SOIL SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 14:00 Jun-24-17 11:30 Jun-24-17 11:30 Analyzed: Jun-25-17 06:37 Jun-25-17 06:53 Jun-25-17 07:09 Units/RL: mg/kg RL mg/kg RL mg/kg RL <0.00199 0.00199 <0.00201 0.00201 <0.00202 0.00202 <0.00199 0.00199 <0.00201 <0.00202 0.00202 0.00202 <0.00199 0.00199 <0.00201 0.00201 <0.00202 0.00202 <0.00199 0.00199 <0.00201 0.00201 <0.00202 0.00202 <0.00199 0.0199 <0.00201 0.00201 <0.00202 0.00202 <0.00199 0.0199 <0.00201 0.00201 <0.00202 0.00202 <0.00199 0.0199 <0.00201 0.00201 <0.00202 0.00202 <0.00199 0.0199 <0.00201 <0	Field Id: BH-3 2' NW-3 1' SW-3 1' Depth: 2- ft 1- ft 1- ft Matrix: SOIL SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 14:00 Jun-24-17 11:30 Extracted: Jun-24-17 11:30 Jun-25-17 06:33 Jun-25-17 07:09 Units/RL: mg/kg RL mg/kg RL < <0.00199 0.00199 <0.00201 0.00202 0.00202 < <0.00199 0.00199 <0.00201 0.00202 0.00202 < < <0.00199 0.00199 <0.00201 <0.00202 0.00202 < < < < < < <	Field Id: BH-3 2' NW-3 1' SW-3 1' Depth: 2 - ft 1 - ft 1 - ft Matrix: SOIL SOIL SOIL Sampled: Jun-15-17 14:00 Jun-15-17 14:00 Jun-25-17 06:37 Extracted: Jun-25-17 06:37 Jun-25-17 06:53 Jun-25-17 07:09 Units/RL: mg/kg RL mg/kg RL mg/kg RL < <0.00199 0.00199 <0.00201 <0.00202 < <0.00199 <0.00201 <0.00202 < <

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Analytical Report 555847

for TRC Solutions, Inc

Project Manager: Nikki Green

A-14 Field Scrubber

26-JUN-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

26-JUN-17

Project Manager: **Nikki Green TRC Solutions, Inc** 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): **555847** A-14 Field Scrubber Project Address: Lea County, NM

Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 555847. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 555847 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 555847

TRC Solutions, Inc, Midland, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BH-3 2'	S	06-15-17 14:00	2 ft	555847-001
NW-3 1'	S	06-15-17 14:00	1 ft	555847-002
SW-3 1'	S	06-15-17 14:00	1 ft	555847-003

Client Name: TRC Solutions, Inc Project Name: A-14 Field Scrubber

Project ID: Work Order Number(s): 555847
 Report Date:
 26-JUN-17

 Date Received:
 06/21/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3020665 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

TRC Solutions, Inc, Midland, TX

Sample Id:	BH-3 2'		Matrix:	Soil		Date Received:06.	21.17 08.4	0
Lab Sample I	d: 555847-001		Date Colle	cted: 06.15.17 14.00		Sample Depth: 2 ft		
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E30	90P	
Tech:	MGO					% Moisture:		
Analyst:	MGO		Date Prep:	06.26.17 10.05		Basis: We	t Weight	
Seq Number:	3020684							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	61.0	4.99	mg/kg	06.26.17 11.58		1

Analytical Method: TPH by SW8015 Tech: ARM Analyst: ARM Seq Number: 3020771	i Mod	Date Pre	p: 06.24	17 16.00	9	Prep Method: TX 6 Moisture: Basis: We	1005P t Weight	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.25.17 06.54	U	1
Diesel Range Organics	C10C28DRO	37.3	15.0		mg/kg	06.25.17 06.54		1
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.25.17 06.54	U	1
Total TPH	PHC635	37.3	15.0		mg/kg	06.25.17 06.54		1
Surrogate 1-Chlorooctane		Cas Number 111-85-3	% Recovery 103	Units %	Limits 70-135	Analysis Date 06.25.17 06.54	Flag	
o-Terphenyl		84-15-1	99	%	70-135	06.25.17 06.54		

TRC Solutions, Inc, Midland, TX

Sample Id: BH-3 2' Lab Sample Id: 555847-001	Matrix: Soil Date Collected: 06.15.17 14.00	Date Received:06.21.17 08.40 Sample Depth: 2 ft
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3020665	Date Prep: 06.24.17 11.30	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.25.17 06.37	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.25.17 06.37	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.25.17 06.37	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.25.17 06.37	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.25.17 06.37	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.25.17 06.37	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.25.17 06.37	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	100	%	80-120	06.25.17 06.37		
4-Bromofluorobenzene		460-00-4	94	%	80-120	06.25.17 06.37		

TRC Solutions, Inc, Midland, TX

Sample Id: NW-3 1' Lab Sample Id: 555847-002		Matrix: Date Collecte	Soil ed: 06.15.17 14.00		Date Received Sample Depth:	:06.21.17 08.40 : 1 ft	1
Analytical Method: Chloride by EPA 3 Tech: MGO Analyst: MGO Seq Number: 3020684	300	Date Prep:	06.26.17 10.05		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter	Cas Number	Result F	RL	Units	Analysis Da	ite Flag	Dil

					e e	0	
Chloride	16887-00-6	114	4.97	mg/kg	06.26.17 12.05		1

Analytical Method: TPH by SW80	015 Mod				F	Prep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Pre	p: 06.24	17 16.00	E	Basis: We	t Weight	
Seq Number: 3020771								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.25.17 07.15	U	1
Diesel Range Organics	C10C28DRO	65.7	15.0		mg/kg	06.25.17 07.15		1
Oil Range Hydrocarbons	PHCG2835	15.7	15.0		mg/kg	06.25.17 07.15		1
Total TPH	PHC635	81.4	15.0		mg/kg	06.25.17 07.15		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	105	%	70-135	06.25.17 07.15		
o-Terphenyl		84-15-1	101	%	70-135	06.25.17 07.15		

TRC Solutions, Inc, Midland, TX

Sample Id: NW-3 1'	Matrix: Soil	Date Received:06.21.17 08.40
Lab Sample Id: 555847-002	Date Collected: 06.15.17 14.0	Sample Depth: 1 ft
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3020665	Date Prep: 06.24.17 11.3	Prep Method: SW5030B % Moisture: 0 Basis: Wet Weight

Parameter	Cas Number	Result	ult RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	06.25.17 06.53	U	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	06.25.17 06.53	U	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	06.25.17 06.53	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	06.25.17 06.53	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	06.25.17 06.53	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	06.25.17 06.53	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	06.25.17 06.53	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	85	%	80-120	06.25.17 06.53		
1,4-Difluorobenzene		540-36-3	84	%	80-120	06.25.17 06.53		

TRC Solutions, Inc, Midland, TX

A-14 Field Scrubber

	Matrix: Date Collecte	Soil ed: 06.15.17 14.00	_	Date Received:06.21.17 08.40 Sample Depth: 1 ft				
300	Date Prep:	06.26.17 10.05	%	Moisture:				
Cas Number	Result	RL.	Units	Analysis Date	Flag	Dil		
		Date Collecte	Date Collected: 06.15.17 14.00 300 Date Prep: 06.26.17 10.05	Date Collected: 06.15.17 14.00 S 300 P M Date Prep: 06.26.17 10.05 B	Date Collected: 06.15.17 14.00 Sample Depth: 1 f 300 Prep Method: E3 % Moisture: Date Prep: 06.26.17 10.05 Basis: We	Date Collected: 06.15.17 14.00 Sample Depth: 1 ft 300 Prep Method: E300P % Moisture: Date Prep: 06.26.17 10.05 Basis: Wet Weight		

 Chloride
 16887-00-6
 20.6
 4.97
 mg/kg
 06.26.17
 12.13
 1

Analytical Method:TPH by SW8015 ModTech:ARMAnalyst:ARMSeq Number:3020771		Date Pre	p: 06.24.	17 16.00	Prep Method: TX1005P % Moisture: Basis: Wet Weight				
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Gasoline Range Hydrocarbons	PHC610	<15.0	15.0		mg/kg	06.25.17 07.36	U	1	
Diesel Range Organics	C10C28DRO	<15.0	15.0		mg/kg	06.25.17 07.36	U	1	
Oil Range Hydrocarbons	PHCG2835	<15.0	15.0		mg/kg	06.25.17 07.36	U	1	
Total TPH	PHC635	<15.0	15.0		mg/kg	06.25.17 07.36	U	1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
1-Chlorooctane	1	111-85-3	107	%	70-135	06.25.17 07.36			
o-Terphenyl	8	84-15-1	105	%	70-135	06.25.17 07.36			

TRC Solutions, Inc, Midland, TX

Sample Id: SW-3 1'	Matrix: Soil	Date Received:06.21.17 08.40
Lab Sample Id: 555847-003	Date Collected: 06.15.17 14.00	Sample Depth: 1 ft
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3020665	Date Prep: 06.24.17 11.30	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	06.25.17 07.09	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	06.25.17 07.09	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	06.25.17 07.09	U	1
m,p-Xylenes	179601-23-1	< 0.00404	0.00404		mg/kg	06.25.17 07.09	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	06.25.17 07.09	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	06.25.17 07.09	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	06.25.17 07.09	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	94	%	80-120	06.25.17 07.09		
1,4-Difluorobenzene		540-36-3	95	%	80-120	06.25.17 07.09		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	гах
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 555847

TRC Solutions, Inc

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E30	0P	
Seq Number:	3020684	Matrix: Solid				Date Prep: 06.26.17						
MB Sample Id:	726721-1-BLK		LCS Sample Id: 726721-1-BKS LCS			LCSI	O Sample	ple Id: 726721-1-BSD				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride							90-110	0	20		06.26.17 10:21	

Analytical Method:	Chloride by EPA 300							Pr	ep Metho	d: E30	OP	
Seq Number:	3020684		Matrix: Soil			Date Prep: 06.26.17						
Parent Sample Id:	555846-002	MS Sar	S Sample Id: 555846-002 S				MSI	D Sample	Id: 5558	555846-002 SD		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	5.85	247	245	97	244	96	90-110	0	20	mg/kg	06.26.17 12:36	

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	od: E30	OP 90	
Seq Number:	3020684			Matrix:	Soil				Date Pre	ep: 06.2	6.17	
Parent Sample Id:	556064-003		MS Sar	nple Id:	556064-00)3 S		MSI	O Sample	e Id: 5560)64-003 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	16.6	246	261	99	259	99	90-110	1	20	mg/kg	06.26.17 10:49	

Analytical Method:	TPH by SW8015 M	lod						Pı	rep Meth	od: TX1	005P	
Seq Number:	3020771			Matrix:	Solid				Date Pr	ep: 06.2	4.17	
MB Sample Id:	726685-1-BLK		LCS Sar	nple Id:	726685-1	-BKS		LCS	D Sample	e Id: 7266	585-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydroc	arbons <15.0	1000	992	99	1020	102	70-135	3	35	mg/kg	06.25.17 00:55	
Diesel Range Organics	<15.0	1000	1010	101	979	98	70-135	3	35	mg/kg	06.25.17 00:55	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1-Chlorooctane	113		1	08		114		70)-135	%	06.25.17 00:55	
o-Terphenyl	122		1	00		107		70)-135	%	06.25.17 00:55	

QC Summary 555847

TRC Solutions, Inc

Analytical Method: Seq Number: Parent Sample Id:	TPH by SV 3020771 555795-002	lod		Matrix: nple Id:	Soil 555795-00	01 S			ep Meth Date Pr D Sample	ep: 06.2	005P 4.17 795-001 SD		
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydroca	arbons	<15.0	997	1060	106	974	98	70-135	8	35	mg/kg	06.25.17 01:58	
Diesel Range Organics		<15.0	997	998	100	987	99	70-135	1	35	mg/kg	06.25.17 01:58	
Surrogate					1S Rec	MS Flag	MSD %Ree			mits	Units	Analysis Date	
1-Chlorooctane				1	07		100		70	-135	%	06.25.17 01:58	
o-Terphenyl				1	01		98		70	-135	%	06.25.17 01:58	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3020665 726706-1-BLK	lB		Matrix: nple Id:	Solid 726706-1	-BKS			ep Methe Date Pr D Sample	ep: 06.2	5030B 4.17 706-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.107	107	0.0950	96	70-130	12	35	mg/kg	06.25.17 03:55	
Toluene	< 0.00200	0.100	0.101	101	0.0876	88	70-130	14	35	mg/kg	06.25.17 03:55	
Ethylbenzene	< 0.00200	0.100	0.111	111	0.0966	97	71-129	14	35	mg/kg	06.25.17 03:55	
m,p-Xylenes	< 0.00401	0.200	0.200	100	0.173	87	70-135	14	35	mg/kg	06.25.17 03:55	
o-Xylene	< 0.00200	0.100	0.106	106	0.0914	92	71-133	15	35	mg/kg	06.25.17 03:55	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	99		ç	90		93		80	-120	%	06.25.17 03:55	
4-Bromofluorobenzene	98		9	93		92		80	-120	%	06.25.17 03:55	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3020665 556138-002	1B	Matrix: Soil MS Sample Id: 556138-002 S ke MS MS MSD MSD Lin						ep Metho Date Pr D Sample	ep: 06.2	5030B 4.17 138-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0785	79	0.0898	90	70-130	13	35	mg/kg	06.25.17 04:27	
Toluene	< 0.00200	0.100	0.0785	79	0.0795	80	70-130	1	35	mg/kg	06.25.17 04:27	
Ethylbenzene	< 0.00200	0.100	0.0770	77	0.0764	76	71-129	1	35	mg/kg	06.25.17 04:27	
m,p-Xylenes	0.00688	0.200	0.144	69	0.135	64	70-135	6	35	mg/kg	06.25.17 04:27	Х
o-Xylene	< 0.00200	0.100	0.0771	77	0.0762	76	71-133	1	35	mg/kg	06.25.17 04:27	
Surrogate			M %I		MS Flag	MSD %Ree			imits	Units	Analysis Date	
1,4-Difluorobenzene			11	12		112		80	-120	%	06.25.17 04:27	
4-Bromofluorobenzene			11	16		112		80	-120	%	06.25.17 04:27	

Stafford, Texas (281-240-4200)

CHAIN OF CUSTODY

San Antonio, Texas (210-509-3334) Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

9	Turnaround Time (Business days) Same Day TAT Next Day EMERGENCY 2 Day EMERGENCY 3 Day EMERGENCY 3 Day EMERGENCY TAT Starts Day received by Lab, if reininguisbet by Sampler:	Turnaround Time (Business days) Same Day TAT Next Day EMERGENCY 2 Day EMERGENCY 3 Day EMERGENCY 3 Day EMERGENCY TAT Starts Day received by Lab, if re-	Turnaround Time (Business days) Same Day TAT Same Day EMERGENCY Next Day EMERGENCY 2 Day EMERGENCY 3 Day EMERGENCY 3 Day EMERGENCY TAT Starts Day received by Lab, if re-	Turnaround Time (Business days) Same Day TAT Next Day EMERGENCY 2 Day EMERGENCY 3 Day EMERGENCY	Turnaround Time (Business days) Same Day TAT Next Day EMERGENCY 2 Day EMERGENCY	Turnaround Time (Business days) Same Day TAT Next Day EMERGENCY	Turnaround Time (Business days)			60 0			7	σ	4 73	3 SW-3 1' 1'	2 NW-3 1'	1 ISH-3 Z 2'	D	No. Field ID / Point of Collection		Nikki Green	Project Contact: N 1/N	ngreen@trcsolutions.com rose.slade@energytransfer.com	Email: Phone No:	2057 Commerce Drive Midland, TX 79703	Company Address:	Company Name / Branch: TRC Environmental Corporation	Client / Reporting Information			Dallas Texas (214-902-0300)
																6/16/2017	6/16/2017	6/15/2017	1	Collection	Pallanti	PO Number:		Rose Sla	Invoice To:	Lea County, NM	Project Location:	Project Na A-14 Fiel				Midland,
Received By:	Receive	ITED BELOW E														17 1410	17 1400	17 1400				a		Rose Slade. ETC Field Services. San Antonio		y, NM	cation:	Project Name/Number: A-14 Field Scrubber	Pro			Midland, Texas (432-704-5251)
d By:	Y	d BY	ACH TIME		TRRP Checklist	Level 3 (CLP Forms)	Level III Std QC+ Forms	Level II Std QC								s	s	s	x					d Service					Project Information		W	704-5251
		6	SAMPLES		klist	P Forms)	I QC+ Foi	QC	ata Delive							glass	glass	glass	-	_				is. San A					nation		www.xenco.com	-
		112	CHANGE				rms		Data Deliverable Information	-						-		+	HCI NaOH/ Acetate	Zn Nun	Aller			ntonio							.com	
A	71	1 2 12	POSSESS						mation							-			HNO3	ther of br												
	Relinquished By:	Kelinquished By: 2	ION, INCLU			UST / RG -411	TRRP Level IV	Level IV (Full Data Pl	1										NaOH	served												
	ed By:	ed By:	JDING CO			-411	el IV	Full Data											MEOH	04 Dottles												
								Pkg /raw data)		-	-	_				× ×	×××	×	TPH	by N	leth	nod	80	15N	1	-	_	-	-		Xenc	
			ER DELIVERY					/ data)	-							×	×	×	BTE	X by	Me	tho	d 2	081	в		-	-			Xenco Quote #	
	Date Time:	Date lime:	Data T					1								×	×	×	Chlo	oride b	by B	EPA	30	00.1						Anal	*	
	me:	met	Ma.	FED			-	-				-	-			+		-			-		_	_			-			Analytical Information		
				FED-EX / UPS: Trac	•			INVO	Notes:																					ormatio		
	Receive	2	Donaiv	PS: Tra				INVOICE TO ETC								-	-	-	-	-	_	_	-	-	-	_				-	Xenco Job #	
					Ŧ			ETC		-	-					-					-				-	-	-		-		#	
		orrec	6-	F:(0-(emp:				1											- 1											J	
	and the second	Corrected Temp: 2	(6-23: +0.2°C)	CF:(0-6: -0.2°C)	Temp: 37	1													-												18 55	
	0	N.Y.			IR ID:R-8														Field Comments		A = Air		WI = Wipe	SL = Sludge OW =Ocean/Sea Water	SW = Surface water	DW = Drinking Water P = Product	GW =Ground Water	W = Water S = Soil/Sed/Solid		Matrix Codes	Lhs	

be enforced unless previously negotiated under a fully executed client contract.

Final 1.000

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 06/21/2017 08:40:00 AM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 555847	Temperature Measuring device used : r8
Sample Recei	pt Checklist Comments
#1 *Temperature of cooler(s)?	3.5
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seal present on shipping container/ cooler?	N/A
#5 *Custody Seals intact on shipping container/ cooler?	N/A
#6 Custody Seals intact on sample bottles?	N/A
#7 *Custody Seals Signed and dated?	N/A
#8 *Chain of Custody present?	Yes
#9 Sample instructions complete on Chain of Custody?	Yes
#10 Any missing/extra samples?	Νο
#11 Chain of Custody signed when relinquished/ received?	Yes
#12 Chain of Custody agrees with sample label(s)?	Yes
#13 Container label(s) legible and intact?	Yes
#14 Sample matrix/ properties agree with Chain of Custody?	Yes
#15 Samples in proper container/ bottle?	Yes
#16 Samples properly preserved?	Yes
#17 Sample container(s) intact?	Yes
#18 Sufficient sample amount for indicated test(s)?	Yes
#19 All samples received within hold time?	Yes
#20 Subcontract of sample(s)?	N/A
#21 VOC samples have zero headspace?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Marithza Anaya

Date: 06/21/2017

Checklist reviewed by: Mmg Moah Kelsey Brooks

Date: 06/21/2017

Project Id:TRC#273818Contact:Nikki GreenProject Location:Lea County NM

Certificate of Analysis Summary 557335

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station Sump

Date Received in Lab:Wed Jul-12-17 12:09 pmReport Date:14-JUL-17Project Manager:Kelsey Brooks

	Lab Id:	557335-001			
	Field Id:	KM-1 3"			
Analysis Requested	Depth:	3- In			
	Matrix:	SOIL			
	Sampled:	Jul-11-17 11:00			
BTEX by EPA 8021B	Extracted:	Jul-13-17 17:30			
	Analyzed:	Jul-14-17 09:36			
	Units/RL:	mg/kg RL			
Benzene		<0.00200 0.00200			
Toluene		<0.00200 0.00200			
Ethylbenzene		<0.00200 0.00200			
m,p-Xylenes		<0.00399 0.00399			
o-Xylene		<0.00200 0.00200			
Total Xylenes		<0.00200 0.00200			
Total BTEX		<0.00200 0.00200			
Chloride by EPA 300	Extracted:	Jul-14-17 14:00			
	Analyzed:	Jul-14-17 14:43			
	Units/RL:	mg/kg RL			
Chloride		10.9 4.92			
TPH by SW8015 Mod	Extracted:	Jul-12-17 14:00			
	Analyzed:	Jul-12-17 16:36			
	Units/RL:	mg/kg RL			
Gasoline Range Hydrocarbons (GRO)		<15.0 15.0			
Diesel Range Organics (DRO)		1250 15.0			
Oil Range Hydrocarbons (ORO)		5440 15.0			
Total TPH		6690 15.0			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Analytical Report 557335

for TRC Solutions, Inc

Project Manager: Nikki Green

A14 Compressor Station Sump

TRC#273818

14-JUL-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

14-JUL-17

SALE ACCREDIES

Project Manager: **Nikki Green TRC Solutions, Inc** 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 557335 A14 Compressor Station Sump Project Address: Lea County NM

Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 557335. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 557335 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id KM-1 3"

Sample Cross Reference 557335

TRC Solutions, Inc, Midland, TX

A14 Compressor Station Sump

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	07-11-17 11:00	3 In	557335-001

CASE NARRATIVE

Client Name: TRC Solutions, Inc Project Name: A14 Compressor Station Sump

Project ID: *TRC#273818* Work Order Number(s): 557335
 Report Date:
 14-JUL-17

 Date Received:
 07/12/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3022274 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

TRC Solutions, Inc, Midland, TX

A14 Compressor Station Sump

Sample Id:	KM-1 3"		Matrix:	Soil		Date Received:07.	12.17 12.0	9
Lab Sample I	d: 557335-001		Date Coll	ected: 07.11.17 11.00		Sample Depth: 3 Ir	l	
Analytical Me	ethod: Chloride by EF	A 300				Prep Method: E30)0P	
Tech:	MGO					% Moisture:		
Analyst:	MGO		Date Prep	: 07.14.17 14.00		Basis: We	t Weight	
Seq Number:	3022314							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	10.9	4.92	mg/kg	07.14.17 14.43		1

Analytical Method: TPH by SW8015	5 Mod				P	rep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Prep	o: 07.12.	17 14.00	E	Basis: We	t Weight	
Seq Number: 3022138								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	07.12.17 16.36	U	1
Diesel Range Organics (DRO)	C10C28DRO	1250	15.0		mg/kg	07.12.17 16.36		1
Oil Range Hydrocarbons (ORO)	PHCG2835	5440	15.0		mg/kg	07.12.17 16.36		1
Total TPH	PHC635	6690	15.0		mg/kg	07.12.17 16.36		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	110	%	70-135	07.12.17 16.36		
o-Terphenyl		84-15-1	110	%	70-135	07.12.17 16.36		

TRC Solutions, Inc, Midland, TX

A14 Compressor Station Sump

Sample Id: KM-1 3'' Lab Sample Id: 557335-001	Matrix: Soil Date Collected: 07.11.17 11.00		Date Received:07.12.17 12.09 Sample Depth: 3 In		
Analytical Method:BTEX by EPA 8021BTech:JUMAnalyst:JUMSeq Number:3022274	Date Prep:	07.13.17 17.30	Prep Method % Moisture: Basis:	: SW5030B Wet Weight	

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.14.17 09.36	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	07.14.17 09.36	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.14.17 09.36	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	07.14.17 09.36	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.14.17 09.36	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.14.17 09.36	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	07.14.17 09.36	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	90	%	80-120	07.14.17 09.36		
4-Bromofluorobenzene		460-00-4	115	%	80-120	07.14.17 09.36		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	FIIOIIC	Tax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 557335

TRC Solutions, Inc

A14 Compressor Station Sump

Analytical Method:	Chloride by EPA 30	0						Pr	ep Metho	d: E30	0P	
Seq Number:	3022314			Matrix:	Solid				Date Pre	ep: 07.1	4.17	
MB Sample Id:	727676-1-BLK		LCS Sar	nple Id:	727676-1-	BKS		LCSI	D Sample	Id: 7276	676-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	od: E30	0P	
Seq Number:	3022314	Matrix:	Soil				Date Pre	ep: 07.1	4.17			
Parent Sample Id:	557335-001		MS Sar	nple Id:	557335-00	01 S		MSI	D Sample	e Id: 5573	335-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	10.9	246	266	104	267	104	90-110	0	20	mg/kg	07.14.17 14:50	

Analytical Method:	nalytical Method: TPH by SW8015 Mod Prep Method: TX1005P												
Seq Number:	3022138				Matrix:	Solid				Date Pr	ep: 07.1	2.17	
MB Sample Id:	727570-1-	BLK		LCS Sample Id: 727570-1-BKS LCSD Sample Id: 727570-1-BSD									
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	oons (GRO)	<15.0	1000	960	96	983	98	70-135	2	35	mg/kg	07.12.17 14:59	
Diesel Range Organics	(DRO)	<15.0	1000	948	95	960	96	70-135	1	35	mg/kg	07.12.17 14:59	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re	-		imits	Units	Analysis Date	
1-Chlorooctane		121		1	14		109		70)-135	%	07.12.17 14:59	
o-Terphenyl		127		1	12		108		70)-135	%	07.12.17 14:59	

Analytical Method:	TPH by S	W8015 M	lod						Pı	ep Meth	od: TX1	005P	
Seq Number:	3022138				Matrix:	Soil				Date Pr	ep: 07.1	2.17	
Parent Sample Id:	MS Sar	nple Id:	557336-00	01 S		MSD Sample Id: 557336-001 SD							
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	1000	990	99	1030	103	70-135	4	35	mg/kg	07.12.17 17:27	
Diesel Range Organics	(DRO)	43.5	1000	1020	98	1020	98	70-135	0	35	mg/kg	07.12.17 17:27	
Surrogate					AS Rec	MS Flag	MSD %Re			mits	Units	Analysis Date	
1-Chlorooctane				1	09		112		70	-135	%	07.12.17 17:27	
o-Terphenyl				1	08		114		70	-135	%	07.12.17 17:27	

TRC Solutions, Inc

A14 Compressor Station Sump

Analytical Method:	BTEX by EPA 802	lB						P	rep Meth	od: SW3	5030B	
Seq Number:	3022274			Matrix:	Solid				Date Pr	ep: 07.1	3.17	
MB Sample Id:	727633-1-BLK		LCS Sar	nple Id:	727633-1	-BKS		LCS	D Sample	e Id: 7276	533-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00198	0.0992	0.102	103	0.122	122	70-130	18	35	mg/kg	07.13.17 18:04	
Toluene	< 0.00198	0.0992	0.0949	96	0.114	114	70-130	18	35	mg/kg	07.13.17 18:04	
Ethylbenzene	< 0.00198	0.0992	0.0907	91	0.117	117	71-129	25	35	mg/kg	07.13.17 18:04	
m,p-Xylenes	< 0.00397	0.198	0.165	83	0.209	105	70-135	24	35	mg/kg	07.13.17 18:04	
o-Xylene	< 0.00198	0.0992	0.0887	89	0.115	115	71-133	26	35	mg/kg	07.13.17 18:04	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	88		9) 9		106		80	0-120	%	07.13.17 18:04	
4-Bromofluorobenzene	92		8	35		108		80	0-120	%	07.13.17 18:04	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3022274 557431-001	1B		Matrix: ple Id:	Prep Method: SW5030B k: Soil Date Prep: 07.13.17 i: 557431-001 S MSD Sample Id: 557431-001 S						3.17	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00198	0.0992	0.0893	90	0.0957	96	70-130	7	35	mg/kg	07.13.17 18:37	
Toluene	< 0.00198	0.0992	0.0971	98	0.0842	84	70-130	14	35	mg/kg	07.13.17 18:37	
Ethylbenzene	< 0.00198	0.0992	0.0816	82	0.0822	82	71-129	1	35	mg/kg	07.13.17 18:37	
m,p-Xylenes	0.00444	0.198	0.164	81	0.163	79	70-135	1	35	mg/kg	07.13.17 18:37	
o-Xylene	0.00391	0.0992	0.103	100	0.0840	80	71-133	20	35	mg/kg	07.13.17 18:37	
Surrogate				IS Rec	MS Flag	MSD %Rec			imits	Units	Analysis Date	
1,4-Difluorobenzene			1	13		115		80)-120	%	07.13.17 18:37	
4-Bromofluorobenzene			1	18		116		80	0-120	%	07.13.17 18:37	

Relinquished by:	Relinquished by:	Bill to Ro	Special I					LAB # (lab use only)	07007 #.	(lab use only)							The Envi
ned by:	shed by:	Bill to Rose Slade at Energy Transfer.	Special Instructions:				×	FIE	1	# USU	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	Xenco Laboratories
	2	ansfer.					KM-1 3"	FIELD CODE	(220	All	432.520.7720	Midland, Texas 79703	2057 Commerce Drive	TRC Environ	Nikki Green	atorie
Date	Date	1046	Ì								MM ,		as 79703	erce Drive	TRC Environmental Corporation		S
_	N							Beginning Depth			R	1			ration		
Time	09 Time	20						Ending Depth			ae.						
Received by ELOT:	Received by:						7/11/2017	Date Sampled			2						
OT	und						1100	Time Sampled			e-mail:	Fax No:					
	3							Field Filtered				1					
	E	2	-					Total #. of Containers	+	1	TOS						0 -
	7		-			+	×	Ice HNO ₃	Pre		rose.slade@ene ngreen@trcs						CHAIN O 12600 West I-20 East Odessa, Texas 79765
	2		+		-		-	HCI	Preservation & #		ade						sa,
			-				-	H ₂ SO ₄	- tion &		@tr						C/ Post I- Texa
			-				010	NaOH			ner						
								Na ₂ S ₂ O ₃	of Containers		e.slade@energytransfer.com ngreen@trcsolutions.com						AIN OF 0 East 79765
	1	1			71.71		엄난	None	ainer	1	ansi Ins.						л С
Date	Date	2						Other (Specify)			er. o		1.0				USI
-	12						Soil	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	-		om	Report Format:		Pr		Project Name:	IN OF CUSTODY RECORD AND ANALYSIS REQUEST Phone: 432-563-1800 Fax: 432-563-1713
Time	ime		-				×		015B			orm		Project Loc:	Project #:	ect N	COF
	0		-	 			-	TPH: TX 1005 TX 1006 Cations (Ca, Mg, Na, K)	5			lat:	PO #:	t Lo	ect ;	lame	SD,
Ter	Custr Custr Cut Sar	OC:	abo				-	Anions (CI, SO4, Alkalinity)	-				1	1	.**	1	AND
S	Te	Sample Containers Intact? VOCs Free of Headspace?	Laboratory Comments:				-	SAR / ESP / CEC		TOTAL:		Standard					AN
(6	Temp: CF:(0-6	onta e of	20					Metals: As Ag Ba Cd Cr Pb H	g Se		Þ	anda				A1.	Pho Fa
-23 cteo	-6:	iners	omm		1.1			Volatiles			Analyze For:	Ird				4 Co	ALYSI. hone: Fax:
H +C	-01 onts	s Inta	lent				11 10.1	Semivolatiles			ze F			5	쿢	duid	432 432
(6-23: +0.2°C) Corrected Temp:	Custow container(s) Custow costs on container(s) Sar Temp: US CF:(0-6: -0.2°C)	Sample Containers Intact? VOCs Free of Headspace?	s:				×	BTEX 8021B/5030 or BTEX 8	260		OL:			Lea County, NM	TRC #: 273818	A14 Compressor Station Sump	IALYSIS REQUEST Phone: 432-563-1800 Fax: 432-563-1713
0	(2)							RCI	_			RRI		unty	27	Or C	-180
\sim	÷.				-		-	N.O.R.M.	-			9		NN	381	Stat	1307
č	Y H ID:R-8	< 					×	Chlorides E 300.1	-			_		2	8	ion	
	U:R		-			+++				-		Z				Sun	
	° 27	zz	-			+ + +	×	RUSH TAT (Pre-Schedule) 2	4. 48	72 hrs	4	NPDES				du	
			-				+*	Standard 3-Day TAT	1, 40,	12 113	-	S					
								Standard S-Day IAT					J	1	1	1	

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 07/12/2017 12:09:00 PM Temperature Measuring device used : R8 Work Order #: 557335 Comments Sample Receipt Checklist 4.1 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A #6 Custody Seals intact on sample bottles? N/A #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jession Veramer

Jessica Kramer

Date: 07/12/2017

Checklist reviewed by:

- mg	
•	

Julian Martinez

Date: 07/12/2017

Nikki Green

Lean County NM

Contact:

Project Location:

Certificate of Analysis Summary 561288

TRC Solutions, Inc, Midland, TX

Project Name: A14 Compressor Station Field Scrubber

Date Received in Lab:Fri Aug-25-17 02:35 pmReport Date:30-AUG-17Project Manager:Kelsey Brooks

	Lab Id:	561288-0	01			
Analysis Requested	Field Id:	KM-1a 6	5"			
Analysis Kequesieu	Depth:					
	Matrix:	SOIL				
	Sampled:	Aug-22-17	12:00			
TPH by SW8015 Mod	Extracted:	Aug-28-17	16:00	8		
	Analyzed:	Aug-29-17 (04:39			
	Units/RL:	mg/kg	RL			
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0			
Diesel Range Organics (DRO)		719	15.0			
Oil Range Hydrocarbons (ORO)		2600	15.0			
Total TPH		3319	15			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Roah

Kelsey Brooks Project Manager

Analytical Report 561288

for TRC Solutions, Inc

Project Manager: Nikki Green

A14 Compressor Station Field Scrubber

30-AUG-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

30-AUG-17

Sale Accelone

Project Manager: **Nikki Green TRC Solutions, Inc** 2057 Commerce Midland, TX 79703

Reference: XENCO Report No(s): 561288 A14 Compressor Station Field Scrubber Project Address: Lean County NM

Nikki Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 561288. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 561288 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id

KM-1a 6"

Sample Cross Reference 561288

A14 Compressor Station Field Scrubber

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	08-22-17 12:00		561288-001

CASE NARRATIVE

Client Name: TRC Solutions, Inc Project Name: A14 Compressor Station Field Scrubber

Project ID: Work Order Number(s): 561288
 Report Date:
 30-AUG-17

 Date Received:
 08/25/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

1-Chlorooctane

o-Terphenyl

Certificate of Analytical Results 561288

TRC Solutions, Inc, Midland, TX

A14 Compressor Station Field Scrubber

93

94

%

%

70-135

70-135

08.29.17 04.39

08.29.17 04.39

Surrogate		Cas Number	% Recoverv	Units	Limits	Analysis Date	Flag	
Total TPH	PHC635	3319	15		mg/kg	08.29.17 04.39		1
Oil Range Hydrocarbons (ORO)	PHCG2835	2600	15.0		mg/kg	08.29.17 04.39		1
Diesel Range Organics (DRO)	C10C28DRO	719	15.0		mg/kg	08.29.17 04.39		1
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	08.29.17 04.39	U	1
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Seq Number: 3026146								
Analyst: ARM		Date Prep	o: 08.28	.17 16.00	E	Basis: We	t Weight	
Tech: ARM					9	6 Moisture:		
Analytical Method: TPH by SW801	5 Mod				F	Prep Method: TX	1005P	
Lab Sample Id: 561288-001		Date Coll	ected: 08.22	.17 12.00				
Sample Id: KM-1a 6"		Matrix:	Soil		Date Received:08.25.17 14.35			

111-85-3

84-15-1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	гах
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

TRC Solutions, Inc

A14 Compressor Station Field Scrubber

Analytical Method:	TPH by S	SW8015 M	od						Pr	ep Meth	od: TX1	005P	
Seq Number:	3026146				Matrix:	Solid				Date Pr	ep: 08.2	8.17	
MB Sample Id:	730045-1-	-BLK		LCS Sar	nple Id:	730045-1	-BKS		LCS	D Sample	e Id: 7300)45-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocart	bons (GRO)	<15.0	1000	898	90	952	95	70-135	6	35	mg/kg	08.29.17 02:12	
Diesel Range Organics	(DRO)	<15.0	1000	967	97	1020	102	70-135	5	35	mg/kg	08.29.17 02:12	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Ree			mits	Units	Analysis Date	
1-Chlorooctane		93		9	92		100		70	-135	%	08.29.17 02:12	
o-Terphenyl		95		:	89		100		70	-135	%	08.29.17 02:12	

Analytical Method: Seq Number:	TPH by SV 3026146	W8015 M	od		Matrix:	Soil			Pı	ep Metho Date Pro	, and the second s	005P 8.17	
Parent Sample Id:	561389-00	1		MS San	nple Id:	561389-0	01 S		MS	D Sample	e Id: 5613	389-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	998	1050	105	893	89	70-135	16	35	mg/kg	08.29.17 03:14	
Diesel Range Organics	(DRO)	99.9	998	1120	102	988	89	70-135	13	35	mg/kg	08.29.17 03:14	
Surrogate					1S Rec	MS Flag	MSD %Re			mits	Units	Analysis Date	
1-Chlorooctane				1	11		89		70	-135	%	08.29.17 03:14	
o-Terphenyl				ç) 9		82		70	-135	%	08.29.17 03:14	

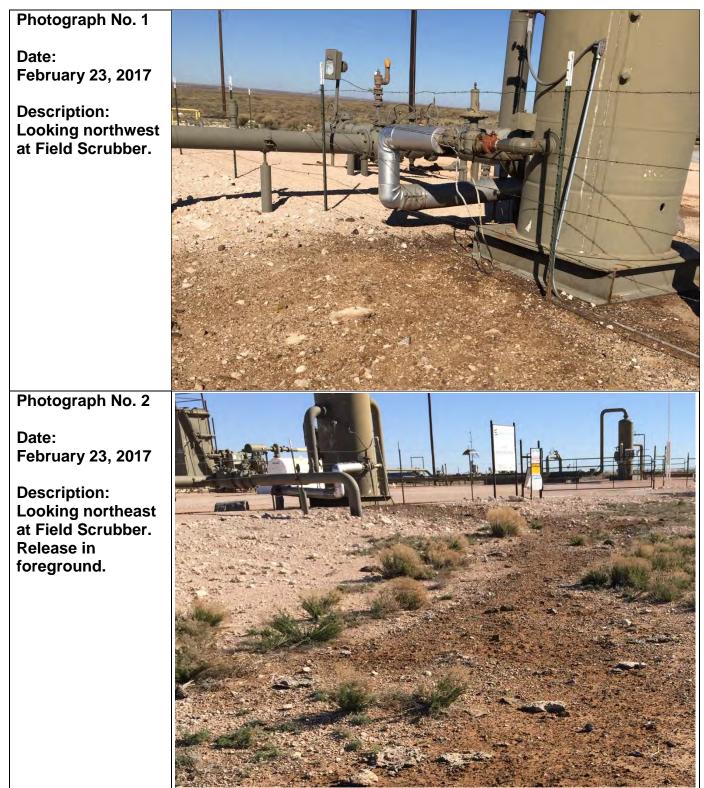
Relinquished by	Bill to Rose Relinquished	Special Instructions:								LAB # (lab use only)	Citizent.	ORDER #-	(lab use only)					1.3		The Envi
d by: d by:	Bill to Rose Slade at Energy Transfer. Relinquished by:	structions:							KN	FIEL	K	+ 5/1/1264	nlv)	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:	The Environmental Lab of Texas
M	ansfer.								KM-1a 6"	FIELD CODE				M	432.520.7720	Midland, Texas 79703	2057 Commerce Drive	TRC Enviror	Nikki Green	ß
XDS/1- V25/17 Date	Date										-			ullu	0	(as 79703	erce Drive	TRC Environmental Corporation		
1410	=								10	Beginning Depth				1				ration		
Time 1/10 Time	Time									Ending Depth	1			20	-					
Received by:	Received by: ,							110212210	8/00/0017	Date Sampled				CD						
liam								1200	1000	Time Sampled				e-mail:	Fax No:					
D III	1.1									Field Filtered			1		1					
12	5	-		+	-	-	+		-	Total #. of Containers	-	1		5						0.7
	1	-	1	+	-		+ +	×		Ice HNO ₃	Pre		ngi	rose.slade@energytransfer.com						12600 West I-20 East Odessa, Texas 79765
			-					++	1	HCI	Preservation & #		ngreen@trcsolutions.com	lade						o Wo
										H ₂ SO ₄	tion 8		Qtr	0e						est I Texa
										NaOH			CSO	nero						-20 as 7
										Na ₂ S ₂ O ₃	of Containers		utio	avtra						East 976
X										None	iners		ns.c	ansf		10				0.
Date Date	Date	-				-			+	Other (Specify)			mo:	erc	l.	1	Į.	41.	<u>ار ا</u>	
171								G	2	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	Matrix			om	Report Format:		Pr		Proj	t I-20 East Fax: 432-563-1800 Fax: 432-563-1713
137 o Time Time	Time	-				-	+		-	TPH: 418.1 (8015M) 801	5B	1	11		Forn		Project Loc:	Pro	Project Name:	
<u>800</u>	Sa Sa	-					+		+	TPH: TX 1005 TX 1006 Cations (Ca, Mg, Na, K)	-				1at:	PO #:	t Lo	Project #:	Vam	
	5 1				+	-	++		+	Anions (CI, SO4, Alkalinity)	-	7		Κ.,		1	18	.**	1	
Orr	e Co								-	SAR / ESP / CEC		TOTAL:			Standard				A14	
0-6 6-2	p:	3							1	Metals: As Ag Ba Cd Cr Pb Hg S	Se		Þ		anda	1	1		Co	Phone Fax:
3:+	Ners								1	/olatiles			Analyze		rd	1			mpr	x:
CF:(0-6: -0.2°C) (6-23: +0.2°C) Corrected Temp:	Sample Containers Intact? V(Li Temp: 2-3	ahoratory Comments:								Semivolatiles			ze Fu				Le	H	ess.	Phone: 432-563-1800 Fax: 432-563-1713
ip:	ct?				1				E	BTEX 8021B/5030 or BTEX 826	0		For:				a C	C #	or	432-563-1800 432-563-1713
IA				-					F	RCI					TRRP		ount	1.2	Stati	3-18
-	ū					1			-	N.O.R.M.					RP		Lea County, NM	TRC #: 273817	A14 Compressor Station Field Scrubber	300
-	5								(Chlorides E 300.1							Σ	17	Fiel	
1	ŏ ≺					-			1		_								S p	
C				_	++				1		_		Ц		NPDES				cru	
	Z	$\sim 10^{-1}$	i = i						F	RUSH TAT (Pre-Schedule) 24,	48,	72 hrs	- 1)ES				bbo	

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: TRC Solutions, Inc Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 08/25/2017 02:35:00 PM Temperature Measuring device used : r-8 Work Order #: 561288 Comments Sample Receipt Checklist 3.1 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A #6 Custody Seals intact on sample bottles? N/A #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? No #21 VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

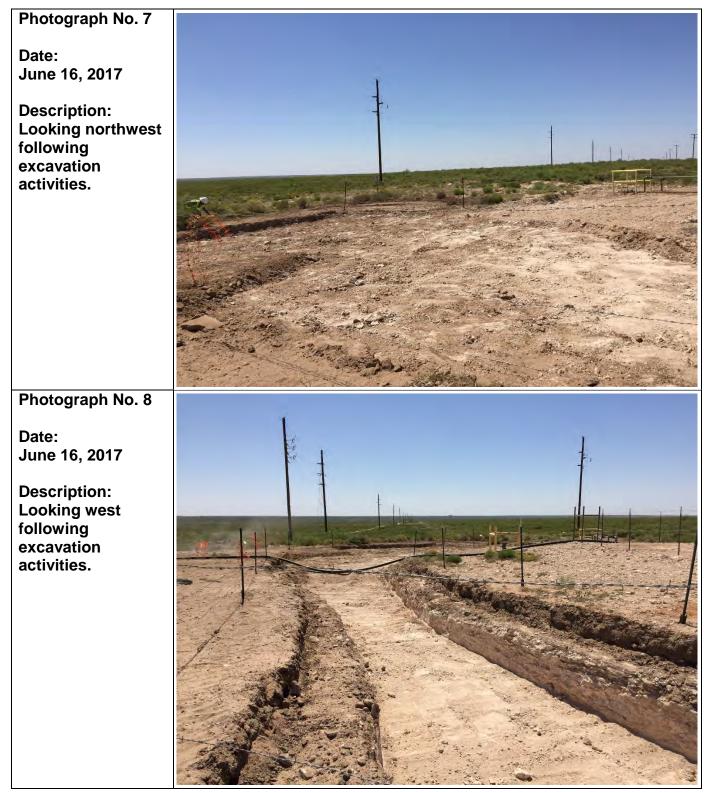
Analyst:


PH Device/Lot#:

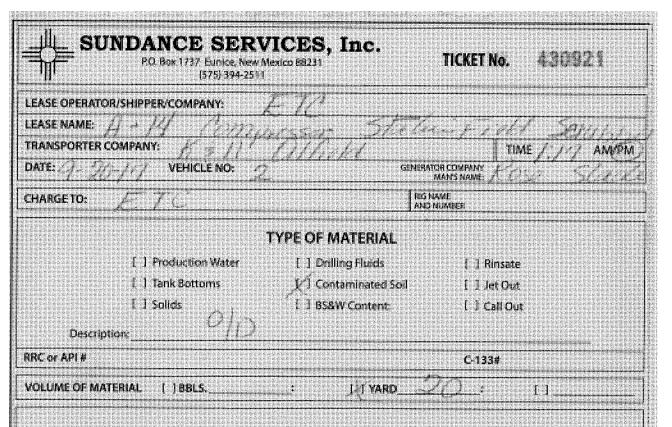
Date: 08/25/2017

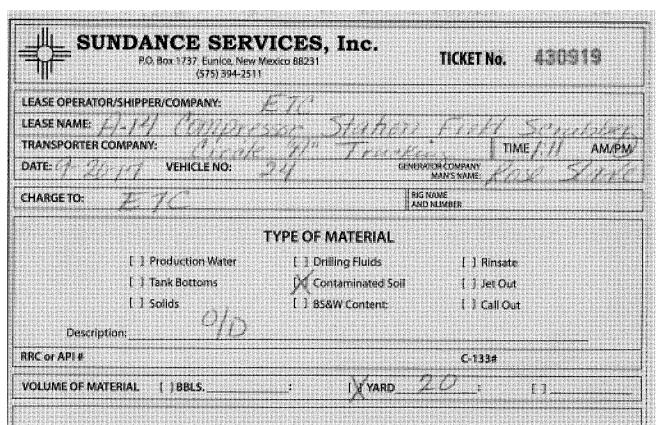
Checklist completed by: Jessica Kramer Checklist reviewed by: Kelsey Brooks

Date: 08/28/2017








SUN SUN	PIC Base 1737 Elerrice, Niew ((575) 394-251	Massico BE231	TICKET No. 43092	2
LEASE OPERATOR	SHIPPER/COMPANY:	TC		
LEASE NAME	AH Com	Pressor Stah	m Field Sy	ar
TRANSPORTER COM	MPANY: Aldos	Trucking	the second se	A.M./
DATE: 9-20	VEHICLE NO: 0	2 GEMENNE	HOMMANY KOX SUL	Z
CHARGE TO:	ETC	NC N MC N	unti Limitatia	
		TYPE OF MATERIAL		
	[] Production Water	[] Drilling Fluids	[] Rinsate	
	[] Tank Bottoms	I Contaminated Soil	[] Jet Out	
	1.) Solids	[] #56W Content:	[] Call Out	
Descriptio	m 1D			
RIRC or API #			C-133#	
VOLUME OF MATE	DITION TO SUNDANCE SERVI	CES, INCS ACCEPTANCE OF THE M	ATERIALS SHIPPED WITH THIS A	
VOLUME OF MATER AS A CONE TROAT, OPER MATERIAL EXE TO TIME, 40 U. THERETO, BY V ASSOCIATED V GEOTHERMAL ALSO AS A C TROAT, TRAN	DITION TO SUNDANCE SERVI ATOR/SHIPPER REPRESENTS INPT FROM THE RESOURCE, O S.C. & 6301, 45 SEQ, THE NM I VIRTUE OF THE EXEMPTION A WITH THE EXPLORATION, DE ENERGY. IONDITION TO SUNDANCE SE ISPORTER REPRESENTS A IPPER TO TRANSPORTER IS		ATERIALS SHIPPED WITH THIS A MATERIAL SHIPPED WITH THIS A MATERIAL SHIPPED HEREWITH OF 1976, AS AMENDED FROM TH E seq., AND REGULATIONS RELAT UCED WATERS, AND OTHER WAS CRUDE OR OR NATURAL GAS O MATERIALS SHIPPED WITH THIS A THE MATERIAL DELIVERED	IS ME ED TE OR OR

AS A CONDITION TO SUNDANCE SERVICES, INC:S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. § 6901, et seq., THE NM HEALTH AND SAF. CODE § 361,001 et seq., AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY.

ALSO AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET. TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC.'S FACILITY FOR DISPOSAL.

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
DRIVER:	- eret		
SIGNATURE	<u>1</u> 1		
FACILITY REPRESENTATIVE:	1 Jakana		
(Income realized)			
White - Sundance	Canary - Sundance Acct #1	Pink - Transporter	
An-order from TOTA	LLY SHARP ADVERTISINE - 432-546-5401 - www.Prom	19 ⁹ 0041499184534	
		99999999999999999999999999999999999999	

AS A CONDITION TO SUNDANCE SERVICES, INC:'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. § 6901, et seq., THE NM HEALTH AND SAF. CODE § 361.001 et seq., AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY.

ALSO AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET. TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC.'S FACILITY FOR DISPOSAL.

DRIVER: sistanitti FACILITY REPRESENTATIVE GIGHATURE White - Sundance Canary - Sundance Acct #1 Pink - Transporter Re-order from TOTALLY SHARP ADVTRITISING - 412-586-5401 - www.PrompSeparadel.com

(\$75) 394-25	1		
EASE OPERATOR/SHIPPER/COMPANY:	7		
RANSPORTER COMPANY:	<u>(2267 Sillium)</u> Augus Dart		AM/PA
DATE () / /) VEHICLE NO:	GENERAT	GR COMPANY MAN'S NAME	
HARGETO:	ag n		
	TYPE OF MATERIAL		
[] Production Water	[) Drilling Fluids	[] Rinsate	
[] Tank Bottoms	Contaminated Soil	[] Jet Out	
[] Soliids	[] BS&W Content:	[] Call Out	
Description:			
RC or API #	-4. (4	C-133#	
OLUME OF MATERIAL [] BBLS.			
	: (/) YARD		
AS A CONDITION TO SUNDANCE SERV TICKET, OPERATOR/SHIPPER REPRESENTS MATERIAL EXEMPT FROM THE RESOURCE, TO TIME, 40 U.S.C. § 6901, et seq., THE NM THERETO, BY VIRTUE OF THE EXEMPTION ASSOCIATED WITH THE EXPLORATION, D GEOTHERMAL ENERGY.	ACES, INC.'S ACCEPTANCE OF THE M AND WARRANTS THAT THE WASTE CONSERVATION AND RECOVERY ACT HEALTH AND SAF, CODE § 361,001 e AFFORDED DRILLING FLUIDS, PROD	IATERIALS SHIPPED WITH THE MATERIAL SHIPPED HEREWI OF 1976, AS AMENDED FROM t seq., AND REGULATIONS REL UCED WATERS, AND OTHER W	th is Time Ated 'Aste
AS A CONDITION TO SUNDANCE SERV TICKET, OPERATOR/SHIPPER REPRESENTS MATERIAL EXEMPT FROM THE RESOURCE, TO TIME, 40 U.S.C. § 6901, et seq., THE NM THERETO, BY VIRTUE OF THE EXEMPTION ASSOCIATED WITH THE EXPLORATION, D GEOTHERMAL ENERGY.	ACES, INC.'S ACCEPTANCE OF THE M AND WARRANTS THAT THE WASTE CONSERVATION AND RECOVERY ACT HEALTH AND SAF, CODE § 361,001 e AFFORDED DRILLING FLUIDS, PROD EVELOPMENT OR PRODUCTION OF EVELOPMENT OR PRODUCTION OF ERVICES, INC.'S ACCEPTANCE OF THE I AND WARRANTS THAT ONLY 1	IATERIALS SHIPPED WITH THE MATERIAL SHIPPED HEREWI OF 1976, AS AMENDED FROM USED WATERS, AND OTHER W CRUDE OIL OR NATURAL GA MATERIALS SHIPPED WITH THE MATERIAL DELIVERED	TH IS TIME ATED ASTE S OR S JOB BY
AS A CONDITION TO SUNDANCE SERV TICKET, OPERATOR/SHIPPER REPRESENTS MATERIAL EXEMPT FROM THE RESOURCE, TO TIME, 40 U.S.C. § 6901, et seq., THE NM THERETO, BY VIRTUE OF THE EXEMPTION ASSOCIATED WITH THE EXPLORATION, D GEOTHERMAL ENERGY. ALSO AS A CONDITION TO SUNDANCE SE TICKET, TRANSPORTER REPRESENTS OPERATOR/SHIPPER TO TRANSPORTER IS	ACES, INC.'S ACCEPTANCE OF THE M AND WARRANTS THAT THE WASTE CONSERVATION AND RECOVERY ACT HEALTH AND SAF. CODE § 361.001 e AFFORDED DRILLING FLUIDS, PROD EVELOPMENT OR PRODUCTION OF EVELOPMENT OR PRODUCTION OF ERVICES, INC.'S ACCEPTANCE OF THE I AND WARRANTS THAT ONLY 'I NOW DELIVERED BY TRANSPORTE conter loaded the material represented indered by the above described shippe	ATERIALS SHIPPED WITH THI MATERIAL SHIPPED WITH THI OF 1976, AS AMENDED FROM USED WATERS, AND OTHER W CRUDE OIL OR NATURAL GA MATERIALS SHIPPED WITH THI HE MATERIAL DELIVERED R TO SUNDANCE SERVICES, 1 by this Transporter Statement of This will certify that no addit	TH IS TIME ATED ASTE S OR S JOB BY NC'S at the
AS A CONDITION TO SUNDANCE SERV TICKET, OPERATOR/SHIPPER REPRESENTS MATERIAL EXEMPT FROM THE RESOURCE, TO TIME, 40 U.S.C. § 6901, et seq., THE NM THERETO, BY VIRTUE OF THE EXEMPTION ASSOCIATED WITH THE EXPLORATION, D GEOTHERMAL ENERGY. ALSO AS A CONDITION TO SUNDANCE SE TICKET. TRANSPORTER REPRESENTS OPERATOR/SHIPPER TO TRANSPORTER IS FACILITY FOR DISPOSAL.	ACES, INC.'S ACCEPTANCE OF THE M AND WARRANTS THAT THE WASTE CONSERVATION AND RECOVERY ACT HEALTH AND SAF. CODE § 361.001 e AFFORDED DRILLING FLUIDS, PROD EVELOPMENT OR PRODUCTION OF EVELOPMENT OR PRODUCTION OF ERVICES, INC.'S ACCEPTANCE OF THE I AND WARRANTS THAT ONLY 'I NOW DELIVERED BY TRANSPORTE conter loaded the material represented indered by the above described shippe	ATERIALS SHIPPED WITH THI MATERIAL SHIPPED WITH THI OF 1976, AS AMENDED FROM USED WATERS, AND OTHER W CRUDE OIL OR NATURAL GA MATERIALS SHIPPED WITH THI HE MATERIAL DELIVERED R TO SUNDANCE SERVICES, 1 by this Transporter Statement of This will certify that no addit	TH IS TIME ATED ASTE S OR S JOB BY NC'S at the

Re-order from: YOTALLY SHAIP ADVIRTISING - 432-586-5401 - www.PromoSugermarket.com

.....

-

PO. Box 1737 Eunice, New (575) 394-251	Mexico 88231	TICKET No. 431018
LEASE OPERATOR/SHIPPER/COMPANY:	7C Pran Stadie	TIME Z. CAMUPM
DATE: / / / / VEHICLE NO:	(Genew	TOR COMPANY AND A COMPANY
CHARGE TO: ETC		NAMER (-)) + 142+SIM
	TYPE OF MATERIAL	
[] Production Water	[] Drilling Fluids	[] Rinsate
[] Tank Bottoms	Contaminated Soil	[] Jet Out
[] Solids	[] BS&W Content:	[] Call Out
Description:	010	
RRC or API #		C-133#
VOLUME OF MATERIAL () BBLS	: 1/ YARD	<u>C; [1</u>

AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. § 6901, et seq., THE NM HEALTH AND SAF. CODE § 361,001 et seq., AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY.

ALSO AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET. TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC.'S FACILITY FOR DISPOSAL.

DRIVER:	al -		
GIONARDE	malle.		
PACILIT REPRESENTATIVE	<u> 141/>/ 164></u>		
White - Sundance	Canary - Sundance Acct #1	Pink - Transporter	
flu-order fisari: TCIT.8,	ly shaap advertising - 492-586-5401 - www.tyst	eSeptimarket.com	

	DANCE SERV FO. Box 1737 Eunice, New N (375) 394-2511		TICKET No. 4	1020
LEASE OPERATOR/ LEASE NAME: / TRANSPORTER CO	SHIPPER/COMPANY: 5-77 111 (Charles Charles Cha	<u> </u>	200 21 TIME	C/ TAM/PM
DATE / ///	YEHICLE NO:	GD	ARATOR COMPANY MAN'S NAME	S. C. A.
CHARGE TO:	7		IIG MAINE AND NUMBER 452.74	<u>2-517</u>
		TYPE OF MATERIAL		
	[] Production Water [] Tank Bottoms [] Solids	() Drilling Fluids 问 Contaminated Soil [] BS&W Content:	[] Rinsate [] Jet Out [] Call Out	
Descriptio	1:	CH13		
RRC or API #		L C E	C-133#	
VOLUME OF MATER	NAL []BBLS	: (X) YARD	<i></i>	

AS A CONDITION TO SUNDANCE SERVICES, INC:'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. § 6901, et seq., THE NM HEALTH AND SAF. CODE § 361.001 et seq., AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY.

ALSO AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET. TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC.'S FACILITY FOR DISPOSAL

DRIVER:	<u>/</u> /		
FACILITY REPRESENTATIVE:	und Stein		dan waran
White - Sundance	Canary - Sundance Acct #1	Pink - Transporter	
Bia-andur Asure TOTA	ly sharp advertising - 432-586-5401 - wave protec	iSagurnaitus czeri	

PO. Box 1737 Eunice, No (575) 394-2	w Mexico 88231	TICKET No. 431028	
LEASE OPERATOR/SHIPPER/COMPANY:		I met Cit & Com	
DATE: / /// VEHICLE NO:	GENERAL GENERAL	TIMEL SAMPANY	
CHARGE TO: 7 C	RIGHAME 132.140.514		
	TYPE OF MATERIAL		
[] Production Water	[] Drilling Fluids	[] Rinsate	
[] Tank Bottoms	Contaminated Soil	[] Jet Out	
[] Solids	1) BS&W Content:	[] Call Out	
Description:	- <u>c(f)</u>		
RRC or API #		C-133#	
VOLUME OF MATERIAL [] BBLS	: 1 YARD	(<u> </u>	

AS A CONDITION TO SUNDANCE SERVICES, INC'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 46 U.S.C. § 6901, et seq., THE NM HEALTH AND SAF. CODE § 361.001 et seq., AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY.

ALSO AS A CONDITION TO SUNDANCE SERVICES, INC:'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET. TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC:'S FACILITY FOR DISPOSAL.

DRIVER:	and the second			
FACILITY REPRESENTATIVE:	Jonah Hern	Var -		
ssowros White - Sundance	Canary - Sundance Acct #1	Pink - Transporter		
Re-order from TOTALLY SHARP ADVENTISING - 432 300-5403 - www.PeorroSupermarket.com				

	ANCE SERV 0. Box 1737 Eunice, New Me (575) 394-2511		TICKET No. 4	31029
LEASE OPERATOR/SHIP LEASE NAME:	Canques		DO YT TIME/	1. 4 Stanipm
CHARGE TO:	L.		AND NUMBER 752 - 79	42-5747
	Т	YPE OF MATERIAL		
1	Production Water Tank Bottoms Solids	I Drilling Fluids Contaminated Soil I BS&W Content:	[] Rinsate [] Jet Out [] Call Out	
Description:		010		
RRC or API #		L.C.S	Ç-133#	
VOLUME OF MATERIAL	[]88LS	: MÍ YARD	40 ; I	

AS A CONDITION TO SUNDANCE SERVICES, INC:S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. § 6901, et seq., THE NM HEALTH AND SAF. CODE § 361,001 et seq., AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY.

ALSO AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET. TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC.'S FACILITY FOR DISPOSAL.

DRIVER: <u>Za man ezz eta de</u> re	<u> </u>		
	Malitterica	<u>ک</u>	And any set of the set
White - Sundance	Canary - Sundance Acct #1	Pink - Transporter	
Re-order from: TOT)	ally sharp adventeing - 402-508-3401 - www.promp	iagiannyaaksel.com	

ant sur	P.O. Box 1737 Eunice, New N (575) 394-2511		TICKET No. 431	030
LEASE OPERATOR LEASE NAME: TRANSPORTER CO		2201 Stadie Mild House) (AM/PM
CHARGE TO:) VEHICLE NO: 05	GENERATOR COMPANY (10) (10) MAN'S MAME RIG RAME AND NUMBER (5) · 74/0·5/9		·1.4.4 · 57.77
		TYPE OF MATERIAL		
	Production Water Tank Bottoms Solids	() Drilling Fluids () Contaminated Soil [] BS&W Content:	[] Rinsate [] Jet Out [] Call Out	
Descriptio	inc.	010		
RRC or API N		LLI	C-133#	
VOLUME OF MATI	RIAL [] 88LS	: I'l YARD	<u>Ø_; []_</u>	

AS A CONDITION TO SUNDANCE SERVICES, INC:'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. \$ 6901, et seq., THE NM HEALTH AND SAF, CODE \$ 361,001 et seq., AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY.

ALSO AS A CONDITION TO SUNDANCE SERVICES, INC:'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET. TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC:'S FACILITY FOR DISPOSAL.

DRIVER: Rauman Rai	where			
FACILITY REPRESENTATIVE:	<u>xaathane</u>	2		
White - Sundance	Canary - Sundance Acct #1	Pink - Transporter		
Re-onder from TOTALLY SHARP ADVERTISING +432-334-5401 + www.PromaGuparmarket.com				

P.O. Biox 1737 Eurolce, New (575) 394-251	Mexico 88231	TICKET No. 43	1032
LEASE OPERATOR/SHIPPER/COMPANY:	t C. ' Her'slait Milling	GEMERATCH COMPANY MAN'S NAME	50 mm
	TYPE OF MATERIAL		
 Production Water Tank Bottoms Solids 	[] Drilling Fluids [J.] Contaminated So [] 058W Content:	[] Rinsate] Jet Out [] Call Out	
Description:	<i>C/</i> 13		
RRC or API #	104	C-133#	
VOLUME OF MATERIAL [] BBLS.		<u> </u>	

AS A CONDITION TO SUNDANCE SERVICES, INC'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. § 6901, et seq., THE NM HEALTH AND SAF, CODE § 361.001 et seq., AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY.

ALSO AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET. TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC.'S FACILITY FOR DISPOSAL.

oriver: cicautere FACILITY REPRESENTATIVE 9663627,867 White - Sundance Canary - Sundance Acct #1 Pink - Transporter Re-order from: TOTALLY SHARP ADVITITIONS - 432:5386-5401 - 94446 Protectupermarket com

	IDANCE SERV P.O. Box 1737 Eunice, New 1 (575) 394-2511	ACES, Inc.	TICKET No.	431033
LEASE OPERATOR	SHIPPER/COMPANY:	C		
LEASE NAME:		Decr. Stute	6,1	
TRANSPORTER CC	The second s		(<u>) [)(]</u> -TIM	E//_//AM/PM
DATE		GENE	MATCH COMPANY	Made
CHARGE TO:	7 <u>C</u>			240.514
		TYPE OF MATERIAL		
	[] Production Water	[] Drilling Fluids	[] Rinsate	
	[] Tank Bottoms	XI Contaminated Soil	[] Jet Out	
	[] Solids	[] BS&W Content:	[] Call Out	
Descriptic	n:	C(D		
RRC or API #			C-133#	
VOLUME OF MATE	RIAL []BBLS	: 1,) YARD		11

AS A CONDITION TO SUNDANCE SERVICES, INC:S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. § 6901, et seq., THE NM HEALTH AND SAF. CODE § 361.001 et seq., AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY.

ALSO AS A CONDITION TO SUNDANCE SERVICES, INC'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET. TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC'S FACILITY FOR DISPOSAL.

e			
DRIVER:	222		
FACILITY REPRESENTATIVE:	Sorah Herry	<u></u>	
(Instantive	D		
White - Sundance	Canary - Sundance Acct #1	Pink - Transporter	
Ra-order learn: TO?	TALLY SHAIP ADVERTISING - 132-586-5401 - www.Pramo	Supermarket.com	

P.O. Box 1737 Eurice, New M (575) 394-2511		ICKET No. 43	1034
LEASE OPERATOR/SHIPPER/COMPANY:	C Standard	TIME TO	3 AMPM
CHARGETO: 2 C	RIG NAM AND NUR		•57477
	TYPE OF MATERIAL		
[] Production Water [] Tank Bottoms [] Solids Description:	Orilling Fluids Ontaminated Soil ONE BS&W Content:	[] Rinsate [] Jet Out [] Call Out	
RRC or API #	<u> </u>	C-133#	
VOLUME OF MATERIAL [] 88LS	_: XIYARD 2C	: 11	

AS A CONDITION TO SUNDANCE SERVICES, INC:S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. § 6901, et seq., THE NM HEALTH AND SAF, CODE § 361,001 et seq., AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY.

ALSO AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET. TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC.'S FACILITY FOR DISPOSAL.

DRIVER: Cira Man	201/a		
	ural Altu	<u>, 15</u>	
White - Sundance	Canary - Sundance Acct #1	Pink - Transporter	
Re-oster from; 1921ALL	r sharp almentising - 412-346-3401 - www.pro	AdSupermeter.com	

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa	1 Fe, NM 87505				
Release Notificati	ion and Corrective Action				
	• OPERATOR Initial Report Final Report				
Name of Company: ETC Field Services, LLC	Contact: Rose Slade				
Address: 800 East Sonterra Rd. Suite 2 San Antonio, TX 78249	Telephone No. 210-403-6525				
Facility Name: A-14 (Field Scrubber)	Facility Type: Compressor Station				
Surface Owner: BLM Mineral Owner	: N/A API No. N/A				
LOCATION OF RELEASE					
Unit LetterSectionTownship 24SRange 35EFeet from theNo	orth/South Line Feet from the East/West Line County: Lea				
Latitude 32.246183 Longitude: -103.402000					
NATURE OF RELEASE					
Type of Release: Crude Oil/ Produced water	Volume of Release: < 5 barrels Volume Recovered: O				
Source of Release: Field Scrubber	Date and Hour of Occurrence:Date and Hour of Discovery: 2/23/17Unknown				
Was Immediate Notice Given?	If YES, To Whom?				
🗌 Yes 🛛 No 🗌 Not Require	ed Notification was given to Ms. Olivia Yu on 3/3/17 at approximately 8:19 AM				
By Whom?	Date and Hour:				
Was a Watercourse Reached? If YES, Volume Impacting the Watercourse.					
If a Watercourse was Impacted, Describe Fully.*					
If a watercourse was impacted, Describe Funy.	RECEIVED				
N/A	By Olivia Yu at 12:52 pm, Mar 09, 2017				
	elease from the field scrubber due to a piece of tubing breaking off going into the new piece of tubing going into the field scrubber to prevent another incident.				
	m the release point to the southwest corner of the facility. The impacted area was ted by ETC personnel and an environmental company representing ETC. A work- and the Bureau of Land Management (BLM)				
regulations all operators are required to report and/or file certain releas public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remed	to the best of my knowledge and understand that pursuant to NMOCD rules and se notifications and perform corrective actions for releases which may endanger y the NMOCD marked as "Final Report" does not relieve the operator of liability diate contamination that pose a threat to ground water, surface water, human health ort does not relieve the operator of responsibility for compliance with any other				
	OIL CONSERVATION DIVISION				
Signature: Rose L. Slade	Approved by Environmental Specialist:				
Printed Name: Rose L. Slade					
Title: Sr. Environmental Specialist	Approval Date: 3/9/2017 Expiration Date:				
E-mail Address: Rose.Slade@energytransfer.com	Conditions of Approval: Attached Attached				
Date: 3/3/17 Phone: 210-403-6525					
Attach Additional Sheets If Necessary	1RP-4634 [fOY1706953656] [pOX1706954187]				

nO	Y17	7069	9554	143
IPΟ	111	00.	500-	

nOY1706954187

Operator/Responsible Party,

The OCD has received the form C-141 you provided on $_3/3/2017$ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number $_1R-_4634$ has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District _1_ office in __Hobbs____ on or before _4/10/2017_. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us