District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505 Release Notification and Corrective Action 1RP-2654 **OPERATOR** Initial Report X Final Report Name of Company Plains Pipeline, LP Contact Jason Henry 2530 Hwy 214 - Denver City, Tx 79323 Telephone No. (575) 441-1099 Address Lea Federal 4-inch Poly Facility Type Pipeline **Facility Name** Surface Owner NMSLO Mineral Owner Lease No. LOCATION OF RELEASE Unit Letter Section Feet from the North/South Line Feet from the East/West Line Township Range County T. 12 208 34E Lea Latitude N 32.58411 Longitude W 103.51914 NATURE OF RELEASE Crude Oil Volume of Release 10 bbls Type of Release Volume Recovered 1 bbl Source of Release 4" Poly Pipeline Date and Hour of Occurrence Date and Hour of Discovery 11/10/2010 @ 10:00 11/10/2010 @ 10:00 Was Immediate Notice Given? If YES, To Whom? Larry Johnson By Whom? Jason Henry Date and Hour 11/10/2010 @ 1500 Was a Watercourse Reached? If YES, Volume Impacting the Watercourse.

Describe Cause of Problem and Remedial Action Taken.*

A 4-inch poly pipeline belonging to Plains Pipeline was struck by a backhoe causing a release of crude oil. Throughput for the subject line is approximately 133 bbls/day and the operating pressure is 60 psi. The depth of the pipeline at the release point is approximately 4' bgs. The H2S concentration in the crude is less than 10 ppm.

Describe Area Affected and Cleanup Action Taken.*

☐ Yes ⊠ No

If a Watercourse was Impacted, Describe Fully.*

Please see the attached Basin Environmental Remediation Summary and Site Closure Request for details of remedial activities conducted at the site.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

rederal, state, or local laws and/or regulations.		
0 01	OIL CONSERVATION DIVISION	
Signature: Cason Dervey	ENNENCINAIS.	
Printed Name: Jason Henry	Approved by District Supervisor: Sleek Roy Johny	
Title: Remediation Coordinator	Approval Date: 08/03/11 Expiration Date:	
E-mail Address: jhenry@paalp.com	Conditions of Approval:	
Date: 08/03/2011 Phone: (575) 441-1099	IRP-11-10-265	54

* Attach Additional Sheets If Necessary

HOBBS OCD

AUG 0 3 2011

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

V CC		Di-!- Di	Car Tr			OPERAT			∠ Initia	l Report Final Rep
Name of Co Address	mpany	Plains Pipe		er City, Tx 7932	2	Contact	Jason Henr No. (575) 441-1			
Facility Nan	ne	Lea Federa			3	Facility Typ		1099		-
actiffy (val.	ne -	Lea redera	14-mea i			racinty 1 y	e ripenue			
Surface Ow	ner NMS	LO		Mineral C)wner				Lease N	
				LOCA	ATIO	N OF RE	LEASE	API	30	0.025.12803
Jnit Letter L	Section 12	Township 20S	Range 34E	Feet from the	North	/South Line	Feet from the	East/W	Vest Line	County Lea
							W 103.51914		4	_ 100 WTR
45.1	-	1 011		NAT	URE	OF REL				
ype of Relea		ude Oil Poly Pipeline			-		Release 10 bbl			Recovered 1 bbl Hour of Discovery
ource of Ke	icase 4	roly ripeline					0 @ 10:00	Le		10 @ 10:00
Vas Immedia	ate Notice		Yes □No	⊠ Not Requi	ired	If YES, To	Whom?			
y Whom?	Jason Hen	ry				Date and I				
Vas a Water	course Rea		Yes 🛛	No		If YES, V	olume Impacting	the Wate	rcourse.	
a Watercou	irse was In	npacted, Descr	ibe Fully.*					non	0888	nu
								nins	171 VC	IN
escribe Cau	ise of Prob	lem and Reme	dial Action	Taken *				NE	ECE	131
4-inch not	v nineline	helonging to	Plains Pine	eline was struck	by a b	ackhoe causi				put for the subject line is
pproximate	ely 133 bbl	s/day and the	operating	pressure is 60	psi. Th	e depth of the	e pipeline at the	release p	point is ap	proximately 4' bgs. The H2S
oncentratio	n in the cr	ude is less tha	an 10 ppm							
escribe Are	a Affected	and Cleanup A	Action Tak	en.* .						
he released	crude po	oled in an ope	n ditch lin	e and a vac true	ck was	utilized to re-	cover approxima	tely I bl	ol from th	e ditch. The impacted area
vill be reme	diated per	applicable gu	idelines.							
hereby certi	fy that the	information g	iven above	is true and comp	elease	the best of my	knowledge and i	understar ctive acti	id that pur	suant to NMOCD rules and eases which may endanger
ublic health	or the env	ironment. The	acceptanc	e of a C-141 rep	ort by th	he NMOCD n	parked as "Final F	Report" d	oes not rel	ieve the operator of liability
hould their	operations	have failed to	adequately	investigate and a	remedia	te contaminat	ion that pose a thi	reat to gr	ound water	r, surface water, human health
				tance of a C-141	report	does not relie	ve the operator of	responsi	bility for c	compliance with any other
ederal, state,	, or local la	iws and/or regi	/				OIL CON	SERV	ATION	DIVISION
	()	21					C	4	Dha -	Conn.
ignature:	Jaso	n De	every						Comme	
rinted Name	e: Jason l	Henry	0			Approved by	District Shpery	ONME	NTAL E	NGINEEP
itle: Reme	ediation C	oordinator				Approval Da	ite: ((, (7, (0)	Expiration	Date: 2.17 2011
-mail Addre	ess: jhenr	y@paalp.com				Conditions o	f Approval:		1	Attached 🗆
Date: 11	117/20	010 eets If Necess		(575) 441-1099		SUBMIT F	inal C.(41.	w Doc	S BH	IRP#11.0. Z654

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

					1	RP-2654				
						OPERA			Initi	al Report X Final Repo
Name of Co	mpany	Plains Pipe				Contact	Jason Henr			
Address				er City, Tx 7932	3		No. (575) 441-1	1099		
Facility Nar	ne	Lea Federa	l 4-inch	Poly		Facility Typ	e Pipeline			
Surface Ow	ner NMS	LO		Mineral (Owner				Lease 1	No.
				LOCA	ATIO	N OF RE	LEASE			
Unit Letter	Section 12	Township	Range 34E	Feet from the		/South Line	Feet from the	East/	West Line	County
L	12	208	34E							Lea
				Latitude N 3	32.5841	1 Longitude	e W 103.51914			
				NAT	TURE	OF REL	EASE			
Type of Rele	ase Cri	ide Oil		IVE	CICE		Release 10 bbls	s	Volume I	Recovered 1 bbl
Source of Re		Poly Pipeline	e				Iour of Occurrence			Hour of Discovery
						11/10/2010				10 @ 10:00
Was Immedia	ate Notice		Van Dry	N		If YES, To				
			res [N	o Not Requi	red	Larry Joh				
By Whom?						Date and F		-		
Was a Water	course Rea		Yes 🗵	1 No		If YES, Vo	olume Impacting t	the Wat	ercourse.	
		pacted, Descr						8	HOBBS C	CD
A 4-inch pol	y pipeline ely 133 bbl	s/day and the	Plains Pip	peline was struck g pressure is 60 j				ude oil.		put for the subject line is proximately 4' bgs. The H2S
		ude is less tha								
Describe Are	a Affected	and Cleanup A	Action 1 ai	Ken.≠						
Please see th	e attached	Basin Enviro	onmental	Remediation Sun	nmary (and Site Closu	are Request for d	etails of	f remedial	activities conducted at the
regulations a public health should their of or the environment	or the envi operations l nment. In a	are required to ronment. The nave failed to	o report and acceptant adequately OCD accep	nd/or file certain rece of a C-141 report investigate and r	release ort by the remedia	notifications as ne NMOCD m te contaminati	nd perform correct arked as "Final R ion that pose a three the operator of	etive act eport" of eat to go respons	ions for rel does not rel round water ibility for c	suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other
	1	11					OIL CON	SERV	ATION	DIVISION
Signature:	(laser	Hen	w				ENVENCIN	, coor		
Printed Name	e: Jason I	lenry	0				District Supervis		Sleek	fray Lohm.
Title: Reme	diation Co	ordinator				Approval Dat	te: 08/03	3/11	Expiration	Date:
E-mail Addre	ess: jhenry	@paalp.com				Conditions of	f Approval:	_		Attached
	03/201	ets If Necess		: (575) 441-1099						IRP-11-10-2654

Basin Environmental Service Technologies, LLC

3100 Plains Highway P. O. Box 301 Lovington, New Mexico 88260

biarguijo@basineny.com

Office: (575) 396-2378

Fax: (575) 396-1429

REMEDIATION SUMMARY & SITE CLOSURE REQUEST

PLAINS PIPELINE, LP (231735) Lea Federal 4-Inch Poly Lea County, New Mexico Plains SRS # 2010-206 Unit Letter "L" (NW/SW), Section 12, Township 20 South, Range 34 East Latitude 32° 35' 2.80" North, Longitude 103° 31' 8.90" West NMOCD Reference # 1RP-2654

Prepared For:

Plains Pipeline, LP 333 Clay Street Suite 1600 Houston, Texas 77002

HOBBS OCD

AUG 0 3 2011

Prepared By:

RECEIVED

Basin Environmental Service Technologies, LLC 3100 Plains Highway Lovington, New Mexico 88260

June 2011

J. Arguijo Project Manager

TABLE OF CONTENTS

1.0	INTRODUCTION AND BACKGROUND INFORMATION 1
2.0	NMOCD SITE CLASSIFICATION
3.0	SUMMARY OF SOIL REMEDIATION ACTIVITIES
4.0	QA/QC PROCEDURES
	4.1 Soil Sampling.
	4.2 Decontamination of Equipment
	4.3 Laboratory Protocol
5.0	SITE CLOSURE REQUEST
6.0	LIMITATIONS
7.0	DISTRIBUTION

FIGURES

Figure 1 - Site Location Map

Figure 2 - Site & Sample Location Map

TABLES

Table 1 - Concentrations of Benzene, BTEX, TPH, & Chlorides in Soil

Table 2 – Field Test Results for Chloride Concentrations

APPENDICES

Appendix A - Laboratory Analytical Reports

Appendix B - Photographs

Appendix C – Release Notification and Corrective Action (Form C-141)

1.0 INTRODUCTION AND BACKGROUND INFORMATION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Plains Pipeline, LP (Plains), has prepared this *Remediation Summary & Site Closure Request* for the release site known as Lea Federal 4-Inch Poly (SRS #2010-206). The legal description of the release site is Unit Letter "L" (NW/SW), Section 12, Township 20 South, Range 34 East in Lea County, New Mexico. The property affected by the release is owned by the New Mexico State Land Office (NMSLO). The geographic coordinates of the release site are 32° 35' 2.80" North latitude and 103° 31' 8.90" West longitude. A "Site Location Map" is provided as Figure 1.

On November 10, 2010, during repairs of Plains' Scharb 8" pipeline, the Lea Federal 4-inch poly pipeline was struck by a backhoe, resulting in a release of crude oil. The release was reported to the New Mexico Oil Conservation Division (NMOCD) Hobbs District Office on November 17, 2010. The "Release Notification and Corrective Action" (Form C-141) indicated that approximately ten (10) barrels of crude oil was released. During initial response activities, a vacuum truck was utilized to recover approximately one (1) barrel of free fluids, which had pooled in an adjacent, open ditch line. The release site was excavated, and the area of impact was delineated. General photographs of the site are provided as Appendix B. The Form C-141 is provided as Appendix C.

2.0 NMOCD SITE CLASSIFICATION

A search of the New Mexico Water Rights Reporting System (NMWRRS) database maintained by the New Mexico Office of the State Engineer (NMOSE) indicated information was unavailable for Section 12, Township 20 South, Range 34 East. A depth-to-groundwater reference map utilized by the NMOCD indicates groundwater should be encountered at approximately seventy five feet (75') below ground surface (bgs). Based on the NMOCD ranking system, ten (10) points will be assigned to the site as a result of the depth-to-groundwater criterion.

A search of the NMWRRS database indicated there are no water wells within 1,000 feet of the release. Based on the NMOCD ranking system, zero (0) points will be assigned to the site as a result of this criterion.

There are no surface water bodies within 1,000 feet of the release. Based on the NMOCD ranking system, zero (0) points will be assigned to the site as a result of this criterion.

NMOCD guidelines indicate the Lea Federal 4-Inch Poly release site has an initial ranking score of ten (10). The soil remediation levels for a site with a ranking score of ten (10) points are as follows:

- Benzene 10 mg/kg (ppm)
- BTEX 50 mg/kg (ppm)
- TPH 1,000 mg/kg (ppm)

The New Mexico Administrative Code (NMAC) does not currently specify a remediation level for chloride concentrations in soil. Chloride remediation levels are set by the NMOCD on a site-specific basis.

3.0 SUMMARY OF SOIL REMEDIATION ACTIVITIES

On November 15, 2010, approximately seventy-two (72) cubic yards (cy) of heavily impacted soil stockpiled on-site during initial response activities was removed and transported to the Lazy Ace Landfarm (NMOCD Permit #NM01-0041) for disposal.

On November 16, 2010, excavation of impacted soil commenced at the site. Hach Quantab Chloride Low Range (30-600 mg/Kg) Titrators were used to field-screen the horizontal and vertical extent of impacted soil and to guide the excavation. From November 16 through November 18, 2010, approximately four hundred and fourteen (414) cy of impacted soil was excavated and transported to the Lazy Ace Landfarm for disposal.

On November 17, 2010, nine (9) soil samples (Release Point, North Floor, North Sidewall, South Floor, South Sidewall, East Floor, East Sidewall, West Floor, and West Sidewall) were collected from the floor and sidewalls of the excavation. The soil samples were submitted to Xenco Laboratories, Inc., in Odessa, Texas, for analysis of total petroleum hydrocarbons (TPH) and benzene, toluene, ethyl-benzene, and xylenes (BTEX) constituent concentrations using EPA Methods SW 846-8015M and SW 846-8021b, respectively. Laboratory analytical results indicated TPH concentrations ranged from less than the laboratory Method Detection Limit (MDL) in soil sample "North Floor" to 130 mg/Kg in soil sample "Release Point". BTEX constituent concentrations were less than the appropriate laboratory MDL in all soil samples submitted. Table 1 summarizes the "Concentrations of Benzene, BTEX, TPH & Chlorides in Soil". Soil sample locations are depicted in Figure 2, "Site & Sample Location Map". Laboratory analytical reports are provided as Appendix A.

On December 3, 2010, two (2) soil samples (Release Point and Release Point #2) were collected from the floor of the excavation. Field test results indicated chloride concentrations were less than that measurable by the Hach Quantab Chloride Low Range (30-600 mg/Kg) Titrators utilized to perform the field analyses. A two-point composite soil sample, "Release Point", was submitted to Xenco Laboratories for confirmatory analysis of chlorides using EPA Method 300.1. Laboratory analytical results indicated the chloride concentration was less than the laboratory MDL. Field-test results are provided in Table 2, "Chloride Field-Test Results".

Based on laboratory analytical results, the excavation was backfilled in eighteen-inch (18") lifts, compacted, and contoured to fit the surrounding topography. Prior to backfilling, the final dimensions of the excavation were approximately forty-two feet (42') in length, eighteen feet (18') feet in width, and ranging in depth from four feet (4') to eleven feet (11').

4.0 QA/QC PROCEDURES

4.1 Soil Sampling

Soil Samples were delivered to Xenco Laboratories, Inc., in Odessa, Texas, for BTEX, TPH, and/or chloride analyses using the methods described below. Soil samples were analyzed for

BTEX, TPH, and/or chloride concentrations within fourteen (14) days following the collection date.

The soil samples were analyzed as follows:

- BTEX concentrations in accordance with EPA Method 8021B, 5030
- TPH concentrations in accordance with modified EPA Method 8015M GRO/DRO
- Chloride concentrations in accordance with EPA Method 300.1

4.2 Decontamination of Equipment

Cleaning of the sampling equipment was the responsibility of the environmental technician. Prior to use, and between each sample, the sampling equipment was cleaned with Liqui-Nox® detergent and rinsed with distilled water.

4.3 Laboratory Protocol

The laboratory was responsible for proper QA/QC procedures after signing the chain-of-custody form(s). These procedures were either transmitted with the laboratory reports or are on file at the laboratory.

5.0 SITE CLOSURE REQUEST

Soil samples collected from the floors and sidewalls of the Lea Federal 4-Inch Poly excavation were analyzed by an NMOCD-approved laboratory, and concentrations of Benzene, BTEX, TPH, and chlorides were below the remediation action levels established for the site. Based on these analytical results, Basin recommends Plains provide the NMOCD Hobbs District Office a copy of this "Remediation Summary and Site Closure Request" and request the NMOCD grant site closure to the Lea Federal 4-Inch Poly release site.

6.0 LIMITATIONS

Basin Environmental Service Technologies, LLC, has prepared this *Remediation Summary & Site Closure Request* to the best of its ability. No other warranty, expressed or implied, is made or intended. Basin has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. Basin has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Basin has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains Marketing, LP. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and/or Plains Marketing, LP.

7.0 DISTRIBUTION:

Copy 1: Geoffrey Leking

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division (District 1)

1625 French Drive Hobbs, NM 88240

GeoffreyR.Leking@state.nm.us

Copy 2: Myra Harrison

New Mexico State Land Office

2702 N Grimes St # D Hobbs, NM 88240-1817 mharrison@slo.state.nm.us

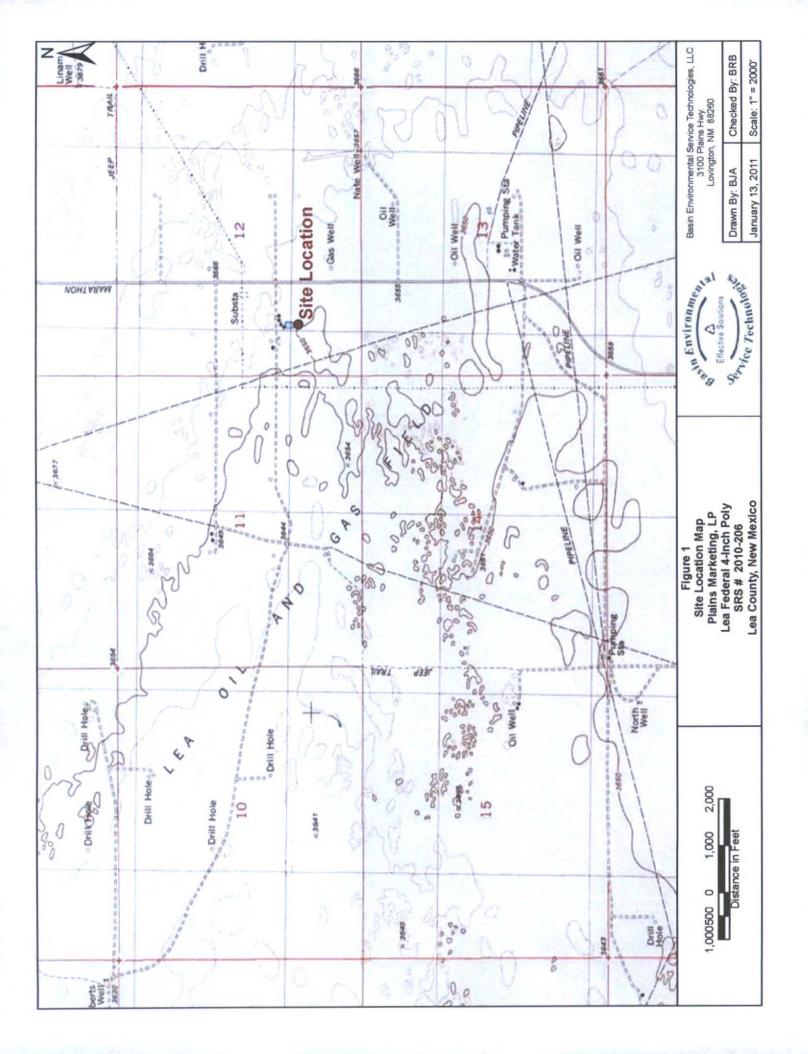
Copy 3: Jeff Dann

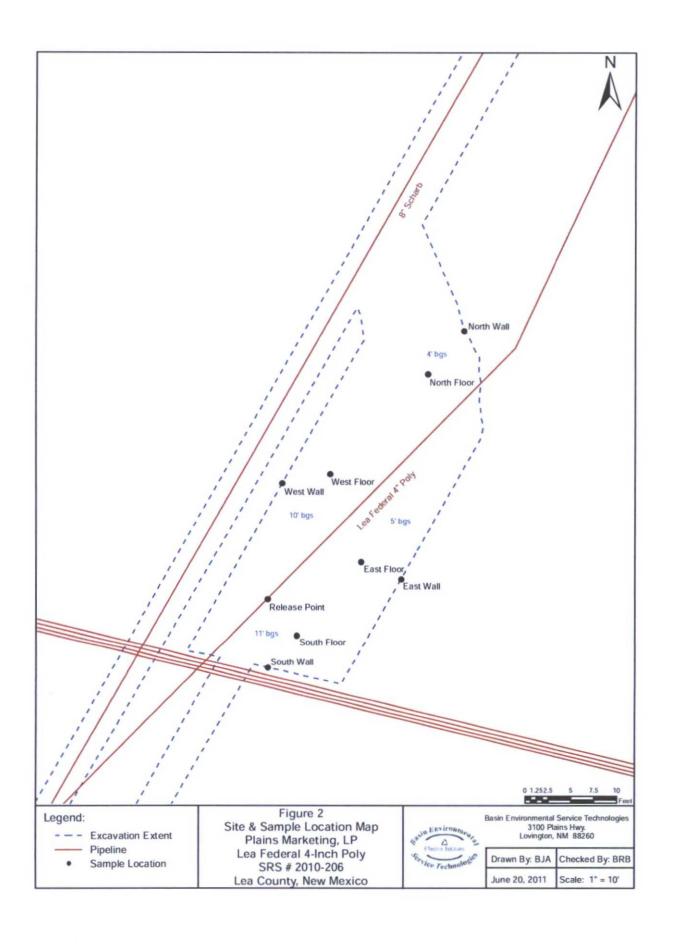
Plains Pipeline, LP

333 Clay Street, Suite 1600 Houston, Texas 77002 jpdann@paalp.com

Copy 4: Jason Henry

Plains Pipeline, LP


2530 State Highway 214 Denver City, Texas 79323


jhenry@paalp.com

Copy 5: Basin Environmental Service Technologies, LLC

P.O. Box 301

Lovington, New Mexico 88260

TABLE 1 CONCENTRATIONS OF BENZENE, BTEX, TPH AND CHLORIDES IN SOIL

PLAINS PIPELINE, L.P.
LEA FEDERAL 4-INCH POLY
LEA COUNTY, NEW MEXICO
PLAINS SRS #: 2010-206
NMOCD REFERENCE #: 1RP-2654

	1				METHO	METHOD: EPA SW 846-8021B, 5030	46-8021B, 50.	30		METHOL	METHOD: SW 846-8015M	8015M	TOTAL	E 300.1
SAMPLE LOCATION	SAMPLE	SAMPLE	SOIL	BENZENE	TOLLIENE	ETHYL-	M.P	ò	TOTAL	GRO	DRO	ORO	TPH	adiao ino
	(808)	DATE	STATUS	(marka)	(שמונים)	BENZENE	XYLENES	XYLENE	BTEX	C6-C12	C12-C28	C28-C35	C ₆ -C ₃₈	(mg/kg)
	(200)			(Bushin)	(Bu/Biii)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(Bu/Biii)
Release Point	11.	11/17/10	In-Situ	<0.0010	<0.0021	<0.0010	<0.0021	<0.0010	<0.0010	21.9	108	<15.6	130	,
North Floor	7	11/17/10	In-Situ	<0.0010	<0.0021	<0.0010	<0.0021	<0.0010	<0.0010	<15.6	<15.6	<15.6	<15.6	
North Sidewall	4.5'	11/17/10	In-Situ	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0010	<15.3	<15.3	<15.3	<15.3	,
South Floor	11.	11/17/10	In-Situ	<0.0010	<0.0021	<0.0010	<0.0021	<0.0010	<0.0010	<15.5	23.4	<15.5	23.4	
South Sidwall	35	11/17/10	In-Situ	<0.0011	<0.0021	<0.0011	<0.0021	<0.0011	<0.0011	<15.8	<15.8	<15.8	<15.8	
East Floor	7:	11/17/10	In-Situ	<0.0010	<0.0021	<0.0010	<0.0021	<0.0010	<0.0010	<15.4	<15.4	<15.4	<15.4	n
East Sidewall	-4	11/17/10	In-Situ	<0.0010	<0.0021	<0.0010	<0.0021	<0.0010	<0.0010	<15.4	<15.4	<15.4	<15.4	×
West Floor	10,	11/17/10	In-Situ	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0010	<15.3	17.4	<15.3	17.4	
West Sidewall	6.5	11/17/10	In-Situ	<0.0010	<0.0021	<0.0010	<0.0021	<0.0010	<0.0010	<15.6	<15.6	<15.6	<15.6	
		OK MARKET		DESCRIPTION OF PRINCIPAL P	THE PERSON NAMED IN	Total Control In Sec.	THE VIEW	THE PROPERTY OF	The state of the s	Name of the last	WOND NOT	STORY OF	True C	
Release Point	11.	12/03/10	In-Situ			,								<5.12
				日本 一日本の大	SERVICE SERVICE	THE PARTY OF THE P		STATE OF THE STATE	STATE STATE	State of the	The second	September 1		

TABLE 2 CHLORIDE FIELD-TEST RESULTS

PLAINS PIPELINE, L.P. LEA FEDERAL 4-INCH POLY LEA COUNTY, NEW MEXICO PLAINS SRS#: 2010-206

NMOCD REFERENCE #: 1RP-2654

	SAMPLE	CAMPI E	0011	Hach Quantab
SAMPLE LOCATION	DEPTH (BGS)	SAMPLE DATE	SOIL	CHLORIDE (PPM)
Release Point	11'	12/3/2010	In-Situ	ND
Release Point #2	11'	12/3/2010	In-Situ	ND
NMOCD Regulatory Sta	andard			500

ND = "Non-detectable"; chloride concentration less than that measurable by Hach Quantab Chloride Low Range (30-600 mg/Kg) Titrator.

Analytical Report 397821

for PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

Lea Federal 4" Poly

2010-206

29-NOV-10

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALII), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370)

Xenco-Boca Raton (EPA Lab Code: FL01273):

Florida(E86240), South Carolina(96031001), Louisiana(04154), Georgia(917)

North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901):

Arizona(AZ0757), California(06244CA), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

29-NOV-10

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 397821

Lea Federal 4" Poly

Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 397821. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 397821 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 397821

PLAINS ALL AMERICAN EH&S, Midland, TX

Lea Federal 4" Poly

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Release Point	S	Nov-18-10 13:35		397821-001
South Sidewall	S	Nov-18-10 13:40		397821-002
South Floor	S	Nov-18-10 13:45		397821-003
East Floor	S	Nov-18-10 13:50		397821-004
East Sidewall	S	Nov-18-10 14:00		397821-005
North Sidewall	S	Nov-18-10 14:05		397821-006
North Floor	S	Nov-18-10 14:10		397821-007
West Sidewall	S	Nov-18-10 14:15		397821-008
West Floor	S	Nov-18-10 14:20		397821-009

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: Lea Federal 4" Poly

Project ID: 2010-206 Work Order Number: 397821

Report Date: 29-NOV-10 Date Received: 11/18/2010

Sample receipt non conformances and Comments:

None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-833642 BTEX by EPA 8021

SW8021BM

Batch 833642, Benzene, Ethylbenzene, Toluene, o-Xylene recovered below QC limits in the Matrix Spike. m_p-Xylenes recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate.

Samples affected are: 397821-003, -009, -002, -006, -004, -005, -007, -008, -001.

The Laboratory Control Sample for Toluene, Benzene, Ethylbenzene, m_p-Xylenes , o-Xylene is

within laboratory Control Limits

SW8021BM

Batch 833642, m p-Xylenes RPD was outside QC limits.

Samples affected are: 397821-003, -009, -002, -006, -004, -005, -007, -008, -001

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2010-206

Certificate of Analysis Summary 397821 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lea Federal 4" Poly

Date Received in Lab: Thu Nov-18-10 04:00 pm Report Date: 29-NOV-10

Brent Barron, II Project Manager:

					a to jeet transmiger . Dient tentoni, in	Marie Date of the	
	Lab 1d:	397821-001	397821-002	397821-003	397821-004	397821-005	397821-006
Amohicis Donnostod	Field 1d:	Release Point	South Sidewall	South Floor	East Floor	East Sidewall	North Sidewall
Amurysis weynesieu	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Nov-18-10 13:35	Nov-18-10 13:40	Nov-18-10 13:45	Nov-18-10 13:50	Nov-18-10 14:00	Nov-18-10 14:05
BTEX by EPA 8021	Extracted:	Nov-24-10 15:45	Nov-24-10 15:45	Nov-24-10 15:45	Nov-24-10 15:45	Nov-24-10 15:45	Nov-24-10 15:45
	Analyzed:	Nov-25-10 06:16	Nov-25-10 02:53	Nov-25-10 03:16	Nov-25-10 03:38	Nov-25-10 04:01	Nov-25-10 04:23
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Benzene		ND 0.0010	ND 0.0011	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010
Toluene		ND 0.0021	ND 0.0021	ND 0.0021	ND 0.0021	ND 0.0021	ND 0.0020
Ethylbenzene		ND 0.0010	ND 0.0011	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010
m_p-Xylenes		ND 0.0021	ND 0.0021	ND 0.0021	ND 0.0021	ND 0.0021	ND 0.0020
o-Xylene		ND 0.0010	ND 0.0011	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010
Xylenes, Total		ND 0.0010	ND 0.0011	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010
Total BTEX		ND 0.0010	ND 0.0011	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010
Percent Moisture	Extracted:						
	Analyzed:	Nov-20-10 09:30	Nov-20-10 09:30	Nov-20-10 09:30	Nov-20-10 09:30	Nov-20-10 09:30	Nov-20-10 09:30
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		3.79 1.00	4.91 1.00	3.63 1.00	2.53 1.00	2.70 1.00	1.80 1.00
TPH by SW8015 Mod	Extracted:	Nov-19-10 09:30	Nov-19-10 09:30	Nov-19-10 09:30	Nov-19-10 09:30	Nov-19-10 09:30	Nov-19-10 09:30
	Analyzed:	Nov-19-10 13:14	Nov-19-10 13:33	Nov-19-10 13:53	Nov-19-10 14:12	Nov-19-10 14:30	Nov-19-10 14:50
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		21.9 15.6	ND 15.8	ND 15.5	ND 15.4	ND 15.4	ND 15.3
C12-C28 Diesel Range Hydrocarbons		108 15.6	ND 15.8	23.4 15.5	ND 15.4	ND 15.4	ND 15.3
C28-C35 Oil Range Hydrocarbons		ND 15.6	ND 15.8	ND 15.5	ND 15.4	ND 15.4	ND 15.3
Total TPH		130 15.6	ND 15.8	23.4 15.5	ND 15.4	ND 15.4	ND 15.3

This analytical roport, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this malytical report represents the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Brefit Barron, II

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2010-206

Certificate of Analysis Summary 397821 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lea Federal 4" Poly

Date Received in Lab: Thu Nov-18-10 04:00 pm

29-NOV-10	Brent Barron, II
Report Date:	Project Manager:

	Lab Id:	397821-007	397821-008	397821-009	
Australia Dannach	Field Id:	North Floor	West Sidewall	West Floor	
Anaiysis Nequesieu	Depth:				
	Matrix:	SOIL	SOIL	SOIL	
	Sampled:	Nov-18-10 14:10	Nov-18-10 14:15	Nov-18-10 14:20	
BTEX by EPA 8021	Extracted:	Nov-24-10 15:45	Nov-24-10 15:45	Nov-24-10 15:45	
	Analyzed:	Nov-25-10 05:53	Nov-25-10 08:32	Nov-25-10 08:54	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	
Benzene		ND 0.0010	ND 0.0010	ND 0.0010	
Toluene		ND 0.0021	ND 0.0021	ND 0.0020	
Ethylbenzene		ND 0.0010	ND 0.0010	ND 0.0010	
m_p-Xylenes		ND 0.0021	ND 0.0021	ND 0.0020	
o-Xylene		ND 0.0010	ND 0.0010	ND 0.0010	
Xylenes, Total		ND 0.0010	ND 0.0010	ND 0.0010	
Total BTEX		ND 0.0010	ND 0.0010	ND 0.0010	
Percent Moisture	Extracted:				
	Analyzed:	Nov-20-10 09:30	Nov-20-10 09:30	Nov-20-10 09:30	
	Units/RL:	% RL	% RL	% RL	
Percent Moisture		3.95 1.00	3.69 1.00	2.14 1.00	
TPH by SW8015 Mod	Extracted:	Nov-19-10 09:30	Nov-19-10 09:30	Nov-19-10 09:30	
	Analyzed:	Nov-19-10 15:09	Nov-19-10 15:47	Nov-19-10 16:07	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	
C6-C12 Gasoline Range Hydrocarbons		ND 15.6	ND 15.6	ND 15.3	
C12-C28 Diesel Range Hydrocarbons		ND 15.6	ND 15.6	17.4 15.3	
C28-C35 Oil Range Hydrocarbons		ND 15.6	ND 15.6	ND 15.3	
Total TPH		ND 15.6	ND 15.6	17.4 15.3	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpetutions and results expressed throughout this in analytical report represents the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and mades no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- BRL Below Reporting Limit.
- **RL** Reporting Limit
- MDL Method Detection Limit
- **PQL** Practical Quantitation Limit
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Project Name: Lea Federal 4" Poly

Work Orders: 397821,

Project ID: 2010-206

Lab Batch #: 833642

Sample: 589805-1-BKS / BKS

Matrix: Solid Batch:

Units: mg/kg Date Analyzed: 11/25/10 01:00	SU	RROGATE R	RECOVERY	STUDY	
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0304	0.0300	101	80-120	
4-Bromofluorobenzene	0.0317	0.0300	106	80-120	

Lab Batch #: 833642

Sample: 589805-1-BSD / BSD

Batch:

Matrix: Solid

Units: mg/kg Date Analyzed: 11/25/10 01:23	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene	0.0306	0.0300	102	80-120			
4-Bromofluorobenzene	0.0312	0.0300	104	80-120			

Lab Batch #: 833642

Sample: 589805-1-BLK / BLK

Batch:

Matrix: Solid

Units: mg/kg Date Analyzed: 11/25/10 02:31	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0270	0.0300	90	80-120		
4-Bromofluorobenzene	0.0291	0.0300	97	80-120		

Lab Batch #: 833642

Sample: 397821-002 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 11/25/10 02:53	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene	0.0269	0.0300	90	80-120			
4-Bromofluorobenzene	0.0304	0.0300	101	80-120			

Lab Batch #: 833642

Sample: 397821-003 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 11/25/10 03:16		SURROGATE RECOVERY STUDY						
BTEX by EPA Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene		0.0268	0.0300	89	80-120			
4-Bromofluorobenzene		0.0305	0.0300	102	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Lea Federal 4" Poly

Work Orders: 397821,

Project ID: 2010-206

Lab Batch #: 833642

Sample: 397821-004 / SMP

Matrix: Soil Batch: 1

Units: mg/kg Date Analyzed: 11/25/10 03:38	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene	0.0272	0.0300	91	80-120			
4-Bromofluorobenzene	0.0309	0.0300	103	80-120			

Lab Batch #: 833642

Sample: 397821-005 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 11/25/10 04:01	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene	0.0269	0.0300	90	80-120			
4-Bromofluorobenzene	0.0309	0.0300	103	80-120			

Lab Batch #: 833642

Sample: 397821-006 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 11/25/10 04:23	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene	0.0273	0.0300	91	80-120			
4-Bromofluorobenzene	0.0304	0.0300	101	80-120			

Lab Batch #: 833642

Sample: 397821-007 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 11/25/10 05:53	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene	0.0274	0.0300	91	80-120			
4-Bromofluorobenzene	0.0314	0.0300	105	80-120			

Lab Batch #: 833642

Sample: 397821-001 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 11/25/10 06:16	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0273	0.0300	91	80-120		
4-Bromofluorobenzene	0.0318	0.0300	106	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Lea Federal 4" Poly

Work Orders: 397821.

Project ID: 2010-206

Lab Batch #: 833642

Sample: 397821-007 S / MS

Batch: Matrix: Soil

Units: mg/kg Date Analyzed: 11/25/10 06:39	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analytes 1,4-Difluorobenzene	0.0308	0.0300	103	80-120		
4-Bromofluorobenzene	0.0333	0.0300	111	80-120		

Lab Batch #: 833642

Sample: 397821-007 SD / MSD

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 11/25/10 07:02	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0306	0.0300	102	80-120		
4-Bromofluorobenzene	0.0325	0.0300	108	80-120		

Lab Batch #: 833642

Sample: 397821-008 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 11/25/10 08:32	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene	0.0278	0.0300	93	80-120			
4-Bromofluorobenzene	0.0323	0.0300	108	80-120			

Lab Batch #: 833642

Sample: 397821-009 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 11/25/10 08:54	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0267	0.0300	89	80-120		
4-Bromofluorobenzene	0.0298	0.0300	99	80-120		

Lab Batch #: 832797

Sample: 589262-1-BKS / BKS

Batch: 1

Matrix: Solid

Units: mg/kg Date Analyzed: 11/19/10 11:20	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	72.7	99.6	73	70-135			
o-Terphenyl	46.8	49.8	94	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Lea Federal 4" Poly

Work Orders: 397821,

Project ID: 2010-206

Lab Batch #: 832797

Sample: 589262-1-BSD / BSD

Matrix: Solid Batch: 1

Units: mg/kg Date Analyzed: 11/19/10 11:40	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
I-Chlorooctane	73.7	100	74	70-135		
o-Terphenyl	40.0	50.1	80	70-135		

Lab Batch #: 832797

Sample: 589262-1-BLK / BLK

Batch: 1

Matrix: Solid

SURROGATE RECOVERY STUDY					
Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
73.3	100	73	70-135		
37.3	50.0	75	70-135		
	Amount Found [A]	Amount Found Amount [B] 73.3 100	Amount True Amount Recovery %R [D]	Found	

Lab Batch #: 832797

Sample: 397821-001 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 11/19/10 13:14	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	73.5	100	74	70-135		
o-Terphenyl	36.6	50.0	73	70-135		

Lab Batch #: 832797

Sample: 397821-002 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 11/19/10 13:33	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	75.0	100	75	70-135			
o-Terphenyl	37.0	50.1	74	70-135			

Lab Batch #: 832797

Sample: 397821-003 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 11/19/10 13:53	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	70.9	99.5	71	70-135			
o-Terphenyl	35.8	49.8	72	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Lea Federal 4" Poly

Work Orders: 397821,

Project ID: 2010-206

Lab Batch #: 832797

Sample: 397821-004 / SMP

Matrix: Soil Batch:

Units: mg/kg Date Analyzed: 11/19/10 14:12	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	75.3	100	75	70-135		
o-Terphenyl	36.6	50.0	73	70-135		

Lab Batch #: 832797

Sample: 397821-005 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 11/19/10 14:30	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	72.5	99.9	73	70-135		
o-Terphenyl	35.5	50.0	71	70-135		

Lab Batch #: 832797

Sample: 397821-006 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 11/19/10 14:50	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	72.1	100	72	70-135		
o-Terphenyl	35.4	50.0	71	70-135		

Lab Batch #: 832797

Sample: 397821-007 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 11/19/10 15:09	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
I-Chlorooctane	77.6	99.9	78	70-135			
o-Terphenyl	38.3	50.0	77	70-135			

Lab Batch #: 832797

Sample: 397821-008 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 11/19/10 15:47	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	72.8	100	73	70-135			
o-Terphenyl	36.0	50.0	72	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Lea Federal 4" Poly

Work Orders: 397821,

Lab Batch #: 832797

Sample: 397821-009 / SMP

Project ID: 2010-206

Matrix: Soil Batch: 1

Units: mg/kg Date Analyzed: 11/19/10 16:07	SU	RROGATE R	RECOVERY	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	77.6	100	78	70-135	
o-Terphenyl	37.1	50.0	74	70-135	

Lab Batch #: 832797

Sample: 397821-009 S / MS

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 11/19/10 18:41	SU	RROGATE R	ECOVERY	STUDY	
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	76.7	100	77	70-135	
o-Terphenyl	47.9	50.0	96	70-135	

Lab Batch #: 832797

Sample: 397821-009 SD / MSD

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 11/19/10 19:00	SU	RROGATE R	ECOVERY	STUDY	
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	73.5	100	74	70-135	
o-Terphenyl	48.7	50.0	97	70-135	

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Lea Federal 4" Poly

Work Order #: 397821

Lab Batch ID: 833642 Analyst: SEE

Date Prepared: 11/24/2010

Project ID: 2010-206 **Date Analyzed:** 11/25/2010

Matrix: Solid Batch #: 1 Sample: 589805-1-BKS

Units: mg/kg		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANKS	PIKE DUPL	ICATE F	ECOVE	RY STUD	Y	
BTEX by EPA 8021	Blank Sample Result [A]	Spike	Blank Spike Result	Blank Spike %R	Spike	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[<u>Q</u>]	[E]	Result [F]	[6]				
Benzene	QN	8660.0	0.1062	106	8660.0	0.1022	102	4	70-130	35	
Toluene	QN	8660.0	0.0977	86	8660.0	0.0940	94	4	70-130	35	
Ethylbenzene	ND	0.0998	0.0963	96	0.0998	0.0932	93	3	71-129	35	
m_p-Xylenes	ND	0.1996	0.1898	95	0.1996	0.1863	93	2	70-135	35	
o-Xylene	QN	0.0998	0.0910	91	8660.0	0.0884	68	3	71-133	35	

Date Prepared: 11/19/2010 Sample: 589262-1-BKS Lab Batch ID: 832797 Analyst: BEV

Batch #: 1

Matrix: Solid

Date Analyzed: 11/19/2010

Units: mg/kg		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE	PIKE / B	LANKS	PIKE DUPL	ICATE 1	RECOVE	RECOVERY STUDY	Y	
TPH by SW8015 Mod	Blank Sample Result	Spike	Blank Spike Poemit	Blank Spike	Spilke	Blank Spike Dunffeate	Bik. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	(v)	[B]	[C]	[D]	[E]	Result [F]	[6]		Val.	7	
C6-C12 Gasoline Range Hydrocarbons	ND	966	965	26	1000	983	86	2	70-135	35	
C12-C28 Diesel Range Hydrocarbons	QN	966	875	88	1000	914	16	4	70-135	35	

Relative Percent Difference RPD = 200*(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Final 1.001

Form 3 - MS / MSD Recoveries

Project Name: Lea Federal 4" Poly

Work Order #: 397821

Lab Batch ID: 833642

Date Analyzed: 11/25/2010

Project ID: 2010-206

Matrix: Soil Batch #:

QC-Sample ID: 397821-007 S Date Prepared: 11/24/2010

SEE Analyst:

Flag XF × × × %RPD Control Limits 35 35 35 35 35 70-130 70-130 71-129 Control Limits %R 70-135 71-133 MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY RPD 22 23 23 89 22 Spiked Dup. %R [G] 72 75 73 30 81 Spiked Sample Duplicate Result [F] 0.0615 0.0779 0.0755 0.0745 0.0844 Spike 0.1039 0.1039 0.2078 0.1039 0.1039 E Sample Spiked %R 57 65 9 58 9 Spiked Sample 0.1243 Result 0.0619 0.0601 0.0597 0.0676 Spike 0.1039 0.2078 0.1039 0.1039 0.1039 [8] Parent Sample Result ND ND ND ND S BTEX by EPA 8021 Analytes Reporting Units: mg/kg Ethylbenzene m p-Xylenes o-Xylene Benzene Toluene

Lab Batch ID: 832797

QC- Sample ID: 397821-009 S

Matrix: Soil BEV Batch #:

Date Analyzed: 11/19/2010

Analyst: Date Prepared: 11/19/2010

Reporting Units: mg/kg		M	MATRIX SPIKE / MATRIX SPIKE DUPLICATE	MAT.	RIX SPII	CE DUPLICA	TE REC	RECOVERY STUDY	TUDY		
TPH by SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1030	1010	86	1030	086	95	3	70-135	35	
C12-C28 Diesel Range Hydrocarbons	17.4	1030	938	68	1030	882	84	9	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)|

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Sample Duplicate Recovery

Project Name: Lea Federal 4" Poly

Work Order #: 397821

Lab Batch #: 832830

Date Analyzed: 11/20/2010 Date Prepare

Project ID: 2010-206

Date Prepared: 11/20/2010

: 11/20/2010 Analyst: JLG

QC- Sample ID: 397823-001 D

Batch #:

Matrix: Soil

Reporting Units: %	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	3.53	3.65	3	20	

Xenco Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Odessa, Texas 79765 12600 West I-20 East

432-563-1713 Phone: 432-563-1800

YAG 4 TAT brabnat2 NPDES RUSH TAT (Pre-Schedule) 24, 48, 72 hrs Company of 7 M.A.O.N TRRP BCI by Sampler/Client Rep. ?
by Courier? UPS DI
by Courier? UPS DI
7 0 2 4 (455) Labels on container(s)
Custody seals on container(s
Custody seals on cooler(s) Project Name: Lea Federal 4" Poly BTEX 8021B/5030 or BTEX 8260 Sample Containers Intact? VOCs Free of Headspace? Laboratory Comments: Sample Hand Delivered Analyze Project Loc: Lea County, NM X Standard PO #: PAA-J. Henry Project #: 2010-206 Vetals: As Ag Ba Cd Cr Pb Hg Se TCLP TOTAL Anions (Cl. 5O4, Alkalinity) Cations (Ca, Mg, Na, K) Report Format: 3.3 9001 XT 3001 XT Lime × × × × × × × × 215 80158 (M2108) 1.811 Hdl Soil Soil Soil Soil Soil Soil Soil Soil Soil 11-18-10 1116/10 WY-DANKING WARE SESINGSE Other (Specify) None pm@basinenv.com Na2S2O3 HOBN 'os'H (575) 396-1429 HCI CONH × × × × × × × × × IC6 Total #. of Containers ield Filtered Fax No: e-mail: Som 1415 1340 1345 1350 1400 1405 1410 1335 1420 Time Sampled SUCE (CLUBY Received by ELOT Andrea 11/18/2010 11/18/2010 11/18/2010 11/18/2010 11/18/2010 11/18/2010 11/18/2010 11/18/2010 11/18/2010 Received by: Received by: Basin Environmental Service Technologies, LLC Date Sampled Ending Depth ime 004 me Beginning Depth Run TPH, Hold for BTEX 01/81/4 11 1810 Lovington, NM 88260 Date (575)396-2378 Company Address: P.O. Box 301 Ben Arguijo South Sidewall North Sidewall West Sidewall Release Point East Sidewall South Floor North Floor FIELD CODE West Floor East Floor 20 Sampler Signature: Project Manager: Company Name Telephone No: 10,024 City/State/Zip: Special Instructions Relinquished by: Relinquished by: (lab use only) ORDER #: SOFT 3 7 5 D 0 LAB # (lab use only)

× × × ×

XENCO Laboratories

Atianta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client: Basin Low.	Plair	15					
Date/Time: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	o.CC	-					
Lab ID#: 39787	1						
Initials:							
	S	ample Receipt C	heck	list			
1. Samples on ice?				Blue	(Water)	No	
2. Shipping container in good condit	tion?			Yes	No	None	
3. Custody seals intact on shipping	container (c	ooler) and bottles?		Yes	No	N/A	
4. Chain of Custody present?				Yes	No		
5. Sample instructions complete on	chain of cus	tody?		(Yes)	No		
6. Any missing / extra samples?				Yes	(No)		
7. Chain of custody signed when rel	inquished /	received?		Yes	No		
8. Chain of custody agrees with sam	ple label(s)	,		Yes	No		
9. Container labels legible and intact	1?			(Yes)	No		
10. Sample matrix / properties agree	with chain	of custody?		Yes	No ·		
11. Samples in proper container / bo	ttle?			Yes	No		
12. Samples properly preserved?				Yes	No	N/A	
13. Sample container intact?				(Yes)	No		
14. Sufficient sample amount for ind	licated test(s	3)?		Yes	No		
15. All samples received within suffi	cient hold ti	me?		Yes	No		
16. Subcontract of sample(s)?				Yes	No	(N/A)	
17. VOC sample have zero head spa	ce?			(Yes)	No	N/A	
18. Cooler 1 No. Cooler 2 No.	0.	Cooler 3 No.		Cooler 4 No.		Cooler 5 No.	
Ibs 4.1 °C Ibs	°C	lbs	°C	lbs	°C	lbs	°c
Regarding:	None Contacted by	conformance Do	cume		Date/Time:_		
Corrective Action Taken:							
Check all that apply: Cooling procond		egun shortly after sa able by NELAC 5.5.8.			rt of temper	ature	

Final 1.001

□Initial and Backup Temperature confirm out of temperature conditions

□ Client understands and would like to proceed with analysis

Analytical Report 400071

for PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

Lea Federal 4" Poly

2010-206

14-DEC-10

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370)

Xenco-Boca Raton (EPA Lab Code: FL01273):

Florida(E86240), South Carolina(96031001), Louisiana(04154), Georgia(917)

North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901):

Arizona(AZ0757), California(06244CA), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

14-DEC-10

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 400071

Lea Federal 4" Poly

Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 400071. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 400071 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 400071

PLAINS ALL AMERICAN EH&S, Midland, TX

Lea Federal 4" Poly

Sample IdMatrixDate CollectedSample DepthLab Sample IdRelease PointSDec-03-10 10:00400071-001

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: Lea Federal 4" Poly

Project ID:

2010-206

Report Date: 14-DEC-10

Work Order Number: 400071

Date Received: 12/09/2010

Sample receipt non conformances and Comments:

None

Sample receipt Non Conformances and Comments per Sample:

None

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2010-206

Certificate of Analysis Summary 400071 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lea Federal 4" Poly

Date Received in Lab: Thu Dec-09-10 04:00 pm

Project Manager: Brent Barron, II Report Date: 14-DEC-10

		1		
	Lab Id:	400071-001		
Australia Danisadad	Field 1d:	Release Point		
Analysis Nequesieu	Depth:			
	Matrix:	SOIL		
	Sampled:	Dec-03-10 10:00		
Inorganic Anions In Soil by E300	Extracted:			
	Analyzed:	Dec-10-10 08:21		
	Units/RL:	mg/kg RL		
Chloride		ND 5.12		
Percent Moisture	Extracted:			
	Analyzed:	Dec-10-10 08:25		
	Units/RL:	% RL		
Percent Moisture		2.43 1.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratorics. XENCO Laboratorics assumes no responsibility and mades no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Brefit Barron, II

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- BRL Below Reporting Limit.
- **RL** Reporting Limit
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

BS / BSD Recoveries

Project Name: Lea Federal 4" Poly

Work Order #: 400071

Analyst: LATCOR

Date Prepared: 12/10/2010

Project ID: 2010-206 **Date Analyzed:** 12/10/2010

Matrix: Solid

Sample Result Added Spike Spik	Lab Batch ID: 835486	Sample: 835486-1-BKS	KS	Batch #:	#: 1					Matrix: S	Solid		
ganic Anions In Soil by E300 Blank Sample Result Spike Added Spike Spike Added Spike Bunilicate IA] IB IE Result IF ytes ND 100 9.04 90 10 9.00	Units: mg/kg			BLANI	K/BLANKS	PIKE / B	LANKS	PIKE DUPL		RECOVERY	RY STUDY	Α.	
ytes [B] [C] [D] [E] Result [F] ND 10.0 9.04 90 10 9.00	Inorganic Anions In	Soil by E300	Blank Sample Result [A]	Spike	Blank Spike Result	Blank Spike %R	Spike	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
ND 10.0 9.04 90 10 9.00	Analytes			[B]	[c]	[D]	[E]	Result [F]	[6]				
	Chloride		ND	10.0	9.04	06	10	00.6	06	0	75-125	20	

Relative Percent Difference RPD = 200*(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: Lea Federal 4" Poly

Work Order #: 400071

Lab Batch #: 835486

Date Analyzed: 12/10/2010 QC-Sample ID: 399968-001 S Date Prepared: 12/10/2010 Batch #: 1

Project ID: 2010-206

Analyst: LATCOR

Matrix: Soil

Reporting Units: mg/kg	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	30600	21200	47300	79	75-125	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: Lea Federal 4" Poly

Work Order #: 400071

Lab Batch #: 835486

Date Analyzed: 12/10/2010 08:21

Date Prepared: 12/10/2010

Project ID: 2010-206

Analyst: LATCOR

QC- Sample ID: 399968-001 D

Batch #:

Matrix: Soil

Reporting Units: mg/kg	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions In Soil by E300 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	30600	27200	12	20	

Lab Batch #: 835275

Date Analyzed: 12/10/2010 08:25

Date Prepared: 12/10/2010

Analyst: JLG

QC- Sample ID: 399951-001 D

Batch #:

Matrix: Soil

Reporting Units: %	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Percent Moisture	3.34	3.80	13	20	

Xenco Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Phone: 432-563-1800 Odessa, Texas 79765

	Company Name Basin Envir	Basin Environmental Service Technologies,	ce Tec	hnolog	gies, LLC				1		1		1		Pro	oject #	201	Project #: 2010-206						
Compan	Company Address: P.O. Box 301	-											1		Proje	ct Loc	Lea	Project Loc: Lea County, NM	y, NM					
City/State/Zip:	e/Zip: Lovington, NM 88260	NM 88260											ı			PO#	PAA	PO #: PAA-J. Henry	nry.		1			
Telephone No:		78				Fax No:	(5)	5) 39	(575) 396-1429				1	Repo	Report Format:	mat:	×	X Standard	p		TRRP		□ NPDES	DES
Sampler	Sampler Signature:	10	4			e-mail:	ри	(C)	pm@basinenv.com	v.com														
	1	1													Ш	П	П	۷	Analyze For	For			T	
(lab use only)	1														Ш		TOTAL	TCLP: OTAL:		~				end ST
ORDER #:	489=							ď	reserva	tion & #	Preservation & # of Containers	tainers	F	Matrix	-	\vdash	F	99	t	09	_		_	189
	FIELD CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered Total # of Containers	lce	HCI HNO ³	*OS ² H	HO6N O ₂ S ₂ 6N	Mone	Other (Specify) DW=Drinking Water SL=Studge	GW = Groundwater S=Soil/Soild	WP=Nan-Polable Speaky Other TPH: 418.1 8015M 8015	TPH: TX 1005 TX 1006 Calions (Ca, Mg, Na, K)	Anions (Cl. SO4, Alkalinity)	Wetals: As Ag Ba Cd Cr Pb Hg S	Volatiles	BLEX 8051B\2030 ot BLEX 856	RCI N.O.R.M.		Chlorides	PX (eluberiose-enq) TAT HEURI YAG 4 TAT brabnat2
	Release Point				12/3/2010	1000	-	×	_		_		_	Soil				_		-			×	×
									\vdash		\vdash													
			$ \cdot $	\parallel			-		\vdash		\vdash		H		H	\vdash		-		+				
				+			+		+	\perp	+	\perp	+		+	+	1	+		+	+	#	F	
							H		H		H		HH			H		H		H				
									-		+							+		+		\pm	\blacksquare	士
Special Instructions:						Alex											Cample Con	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?	Comments: tainers Intac of Headspac	ntact ntact	. ~	803	og o	zz
Relinquished by:		Date CT 125/2010	Time		Received by:		Ma.	6				12	Date 12/9/2010	0	Time		abels of astody astody	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	ainer on co	s) ntaine oler(s	rr(s)	000		zzz
Reinquished by	\	Date 140	Time			1							Date		Time		by S by S by Ç	Sample Hand Delivered by Sampler/Client Rep. ? by Çourier? UPS	Client	livered ient Rep.	PH	OO F	E ×	N N N
shed by		/ Date	Time		Received by ELOT	no Fla						ī	Date 7		Time		1 due	7 02 9 19 55 Temperature Upon Receipt	Poon F	Seceil Receip		7 77		ò

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client: BOSIN Fr	w. / Plais	ΛŜ				- 3		
	0 16:0							
Below Fillian II	22771							
Initials:	AE							
		S	ample Receipt	Check	list			
1. Samples on ice?					Blue	Water	No	
2. Shipping container in	good condition?				Yes	No	None	
3. Custody seals intact o		iner (c	poler and bottles?		(Yes)	No	N/A	
4. Chain of Custody pres		(Yes)	No					
5. Sample instructions co		Yes	No					
	6. Any missing / extra samples?							
7. Chain of custody sign	ed when relinquis	shed / i	received?		(Yes)	No		
8. Chain of custody agre	es with sample la	bel(s)	}		(Yes)	No		
9. Container labels legible	le and intact?				Tes	No		
10. Sample matrix / prop	erties agree with	chain d	of custody?		Yes	No		
11. Samples in proper co	entainer / bottle?				(Yes)	No		
12. Samples properly pre	eserved?				(Yes)	No	N/A	
13. Sample container into	act?				(Yes)	No		
14. Sufficient sample am	ount for indicate	d test(s	3)?		Yes	No		
15. All samples received	within sufficient	hold ti	me?		Yes	No		
16. Subcontract of samp	le(s)?				Yes	No	(N/A)	
17. VOC sample have zer		(Yes)	No	N/A				
18. Cooler 1 No.	Cooler 2 No.		Cooler 3 No.		Cooler 4 No.		Cooler 5 No.	
1bs 4.(0 °C	ibs	°C	lbs	°C	lbs	°c	Ibs	°C
Contact:	Conta		conformance Do	cume		Date/Time:		
Corrective Action Taken	:							

Final 1.000

Check all that apply:

Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.3.1.a.1.

☐ Client understands and would like to proceed with analysis

☐ Initial and Backup Temperature confirm out of temperature conditions

Lea Federal 4-Inch Poly Release Site (looking North)


Lea Federal 4-Inch Poly - Release Point

Lea Federal 4-Inch Poly - Excavation (looking South, sample locations flagged)

Lea Federal 4-Inch Poly - Excavation Floor (looking South, sample locations flagged)

Lea Federal 4-Inch Poly - Excavation (looking North)

Lea Federal 4-Inch Poly - Excavation (following backfill)