Form 3160-3 (June 2015)

UNITED STATES DEPARTMENT OF THE INTERIOR BURGALLOGIAND MANAGEMENT

FORM APPROVED
OMB No. 1004-0137
Expires: January 31, 201
Expires. January 31, 201

PARTMENT OF THE INTERIOR	RECE	5. Lease Serial No.
NEATH OF LAND MANAGEMENT	>	

BUREAU OF	F LAND MANAGEME	ENT				
APPLICATION FOR F	PERMIT TO DRILL O	R REENTER		6. If Indian, Allot	ee or Tribe	Name
1a. Type of work: DRILL	REENTER			7. If Unit or CA A	Agreement,	Name and No.
1b. Type of Well: Oil Well	Gas Well Other					
		Multiple Zen		8. Lease Name ar	nd Well No	
1c. Type of Completion: Hydraulic Frac	turing Single Zone	Multiple Zon	ie		[3285	12]
2. Name of Operator	[372165]			9. API Well No.	30-02	5-47405
3a. Address		ne No. (include area	code)	10. Field and Poo	ol, or Explo	ratory [2209]
4. Location of Well (Report location clearly a	and in accordance with any S	tate requirements.*)		11. Sec., T. R. M.	or Blk. an	d Survey or Area
At surface						
At proposed prod. zone						
14. Distance in miles and direction from neare	est town or post office*			12. County or Par	rish	13. State
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No c	of acres in lease	17. Spacin	ng Unit dedicated to	o this well	
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19. Prop	oosed Depth	20. BLM/	BIA Bond No. in fi	ile	
21. Elevations (Show whether DF, KDB, RT, C		roximate date work	will start*	23. Estimated dur	ration	
	24. At	ttachments				
The following, completed in accordance with to (as applicable)	the requirements of Onshore	Oil and Gas Order N	No. 1, and the H	Iydraulic Fracturin	g rule per 4	3 CFR 3162.3-3
1. Well plat certified by a registered surveyor. 2. A Drilling Plan.		4. Bond to cov Item 20 abo		s unless covered by	an existing	g bond on file (see
A Surface Use Plan (if the location is on Na SUPO must be filed with the appropriate Fo				mation and/or plans	as may be	requested by the
25. Signature	Na	ame (Printed/Typed)			Date	
Title						
Approved by (Signature)	Na	ame (Printed/Typed)	1		Date	
Title	Of	ffice			'	
Application approval does not warrant or certi applicant to conduct operations thereon. Conditions of approval, if any, are attached.	fy that the applicant holds lea	gal or equitable title	to those rights	in the subject lease	which wo	ald entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S. of the United States any false, fictitious or frau					to any depa	rtment or agency
GCP Rec 06/30/2020				γ	1	

SL (Continued on page 2)

Approval Date: 06/30/2020

07/08/2020

*(Instructions on page 2)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: CENTENNIAL RESOURCE PRODUCTION LLC WELL NAME & NO.: MASTIFF 22 FEDERAL COM 502H

SURFACE HOLE FOOTAGE: 300'/S & 1119'/E BOTTOM HOLE FOOTAGE 100'/N & 1320'/E

LOCATION: | Section 22, T.23 S., R.34 E., NMPM

COUNTY: Lea County, New Mexico

COA

H2S	• Yes	O No	
Potash	None	Secretary	© R-111-P
Cave/Karst Potential	• Low	O Medium	O High
Cave/Karst Potential	Critical		
Variance	O None	Flex Hose	Other
Wellhead	Conventional	• Multibowl	O Both
Other	☐4 String Area	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	☑ COM	□ Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Wolfcamp** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 865 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or 500 pounds compressive strength, whichever is greater. (This is to

- include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - ☑ Eddy CountyCall the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.

- Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
- BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.

- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The results of the test shall be reported to the appropriate BLM office.

- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JJP006242020

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

06/30/2020

APD ID: 10400038202 **Submission Date:** 01/17/2019

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: MASTIFF 22 FEDERAL COM Well Number: 502H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - General

BLM Office: CARLSBAD User: Kanicia Schlichting Title: Sr. Regulatory Analyst

Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM132073 Lease Acres: 320

Surface access agreement in place? Allotted? Reservation:

Agreement in place? NO Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? YES

Permitting Agent? NO APD Operator: CENTENNIAL RESOURCE PRODUCTION LLC

Operator letter of designation:

Operator Info

Operator Organization Name: CENTENNIAL RESOURCE PRODUCTION LLC

Operator Address: 1001 17th Street, Suite 1800

Operator PO Box:

Operator City: Denver State: CO

Operator Phone: (720)499-1400 Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? EXISTING Master Development Plan name: Dandie/Mastiff 22 Federal Com

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: MASTIFF 22 FEDERAL COM Well Number: 502H Well API Number:

Field Pool or Exploratory? Field and Pool Field Name: 2N BONESPRING Pool Name: ANTELOPE

SANDD RIDGE; BONE SPRING, WEST

Zip: 80202

Is the proposed well in an area containing other mineral resources? NONE

Page 1 of 3

Well Name: MASTIFF 22 FEDERAL COM Well Number: 502H

Is the proposed well in an area containing other mineral resources? NONE

Is the proposed well in a Helium production area? N Use Existing Well Pad? YES New surface disturbance? N

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: Number: 6

Well Class: HORIZONTAL

DANDIE/MASTIFF 22 FEDERAL

COM COM

Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL
Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Distance to town: 29 Miles Distance to nearest well: 30 FT Distance to lease line: 300 FT

Reservoir well spacing assigned acres Measurement: 160 Acres

Well plat: MASTIFF_22_FEDERAL_COM_502H_C102_20190117155718.pdf

MASTIFF_22_FEDERAL_COM_502H_LEASE_C102_20190117155719.pdf

Well work start Date: 01/14/2020 Duration: 25 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: 23782 Reference Datum:

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL Leg #1	300	FSL	111 9	FEL	23S	34E	22	Aliquot SESE	32.28366 9	- 103.4530 17	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 132073	343 3	0	0	
KOP Leg #1	103	FSL	922	FEL	23S	34E	22	Aliquot SESE	32.28312 58	- 103.4536 111	LEA	NEW MEXI CO	' ' - ' '	F	NMNM 127446	- 649 4	993 9	992 7	

Well Name: MASTIFF 22 FEDERAL COM Well Number: 502H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
PPP Leg #1-1	100	FSL	111 9	FEL	23S	34E	22	Aliquot SESE	32.28312	- 103.4536 66	LEA	1	NEW MEXI CO	F	NMNM 127446	- 706 7	108 39	105 00	
EXIT Leg #1	100	FNL	132 0	FEL	23\$	34E	22	Aliquot NENE	32.29708 6	- 103.4536 69	LEA	NEW MEXI CO	NEW MEXI CO	S	STATE	- 706 7	153 44	105 00	
BHL Leg #1	100	FNL	132 0	FEL	23S	34E	22	Aliquot NENE	32.29708 6	- 103.4536 69	LEA	NEW MEXI CO	NEW MEXI CO	S	STATE	- 706 7	153 44	105 00	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

06/30/2020

APD ID: 10400038202 **Submission Date:** 01/17/2019

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: MASTIFF 22 FEDERAL COM Well Number: 502H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
377807	RUSTLER	3433	935	935	SANDSTONE	NONE	N
654531	SALADO	2323	1110	1110	SALT	NONE	N
377808	CAPITAN REEF	-1651	5084	5084	OTHER : CARBONATE	USEABLE WATER	N
377813	BELL CANYON	-1742	5175	5175	SANDSTONE	NATURAL GAS, OIL	N
377812	CHERRY CANYON	-2510	5943	5943	SANDSTONE	NATURAL GAS, OIL	N
377814	BRUSHY CANYON	-3893	7326	7326	SANDSTONE	NATURAL GAS, OIL	N
377815	BONE SPRING LIME	-5160	8593	8593	OTHER : CARBONATE	NATURAL GAS, OIL	N
377809	AVALON SAND	-5288	8721	8721	SHALE	CO2, NATURAL GAS, OIL	N
377810	FIRST BONE SPRING SAND	-6270	9703	9703	SANDSTONE	NATURAL GAS, OIL	N
377817	BONE SPRING 2ND	-6475	9908	9908		NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M Rating Depth: 9700

Equipment: The BOP and related equipment will meet or exceed the requirements of a 5M-psi system as set forth in On Shore Order No. 2. See attached BOP Schematic. A. Casinghead: 13 5/8" – 5,000 psi SOW x 13" – 5,000 psi WP Intermediate Spool: 13" – 5,000 psi WP x 11" – 5,000 psi WP Tubinghead: 11" – 5,000 psi WP x 7 1/16" – 15,000 psi WP B. Minimum Specified Pressure Control Equipment • Annular preventer • One Pipe ram, One blind ram • Drilling spool, or blowout preventer with 2 side outlets. Choke side will be a 3-inch minimum diameter, kill line shall be at least 2-inch diameter • 3 inch diameter choke line • 2 – 3 inch choke line valves • 2 inch kill line • 2 chokes with 1 remotely controlled from rig floor (see Figure 2) • 2 – 2 inch kill line valves and a check valve • Upper kelly cock valve with handle available • When the expected pressures approach working pressure of the system, 1 remote kill line tested to stack pressure (which shall run to the outer edge of the substructure and be unobstructed) • Lower kelly cock valve with handle available • Safety valve(s) and subs to fit all drill string connections in use • Inside BOP or float sub available • Pressure gauge on choke manifold • All BOPE connections subjected to well pressure shall be flanged, welded, or clamped • Fill-up line above the uppermost preventer. C. Auxiliary Equipment • Audio and visual mud monitoring equipment shall be placed to detect volume changes indicating loss or gain of circulating fluid volume. (OOS 1, III.C.2) • Gas Buster will be used below intermediate casing setting

Well Name: MASTIFF 22 FEDERAL COM Well Number: 502H

depth. • Upper and lower kelly cocks with handles, safety valve and subs to fit all drill string connections and a pressure gauge installed on choke manifold.

Requesting Variance? YES

Variance request: Centennial Resource Production, LLC hereby requests to use a flex hose on the choke manifold for this well. Please see multi-bowl attachment in section 8.

Testing Procedure: The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed b. whenever any seal subject to test pressure is broken c. following related repairs d. at 30 day intervals e. checked daily as to mechanical operating conditions. The ram type preventer(s) will be tested using a test plug to 250 psi (low) and 5,000 psi (high) (casinghead WP) with a test plug upon its installation onto the 13" surface casing. If a test plug is not used, the ram type preventer(s) shall be tested to 70% of the minimum internal yield pressure of the casing. The annular type preventer(s) shall be tested to 50% of its working pressure. Pressure will be maintained for at least 10 minutes or until provisions of the test are met, whichever is longer. • A Sundry Notice (Form 3160 5), along with a copy of the BOP test report, shall be submitted to the local BLM office within 5 working days following the test. • If the bleed line is connected into the buffer tank (header), all BOP equipment including the buffer tank and associated valves will be rated at the required BOP pressure. • The BLM office will be provided with a minimum of four (4) hours' notice of BOP testing to allow witnessing. The BOP Configuration, choke manifold layout, and accumulator system, will be in compliance with Onshore Order 2 for a 5,000 psi system. A remote accumulator will be used. Pressures, capacities, and specific placement and use of the manual and/or hydraulic controls, accumulator controls, bleed lines, etc., will be identified at the time of the BLM 'witnessed BOP test. Any remote controls will be capable of both opening and closing all preventers and shall be readily accessible

Choke Diagram Attachment:

Choke_Diagram_5K_20190117160342.pdf

BOP Diagram Attachment:

BOP_Diagram_5M_20190117160356.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
	CONDUCT OR	26	20.0	NEW	API	N	0	120	0	120	3433	3313	120	H-40	1	OTHER - WELD						
2	SURFACE	17.5	13.375	NEW	API	N	0	865	0	865	3433	1633	865	J-55		OTHER - BTC	1.27	3.07	DRY	9.27	DRY	8.7
3	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5050	0	5050	3433	-1617	5050	J-55	40	LT&C	1.39	1.51	DRY	2.57	DRY	3.12
	PRODUCTI ON	8.75	5.5	NEW	API	N	0	9939	0	9927	3433	-6494	9939	P- 110		OTHER - HIS TCBC- HT	2.27	2.58	DRY	3.23	DRY	3.23
	PRODUCTI ON	8.5	5.5	NEW	API	N	9939	15344	9927	10500	-6494	-7067	5405	P- 110		OTHER - HIS TCBC- HT	2.14	2.44	DRY	55.9 3	DRY	55.9 3

Operator Name: CENTENNIAL RESOURCE PRODUCTION	ON LLC
Well Name: MASTIFF 22 FEDERAL COM	Well Number: 502H
Casing Attachments	
Casing ID: 1 String Type: CONDUCTOR	2
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s):	
Casing ID: 2 String Type: SURFACE	
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s):	
CASING_ASSUMPTIONS_WORKSHEET_2019	0117160619.pdf
Casing ID: 3 String Type: INTERMEDIA	TE
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s):	
CASING_ASSUMPTIONS_WORKSHEET_2019	0117145105.pdf

Well Name: MASTIFF 22 FEDERAL COM Well Number: 502H

Casing Attachments

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CASING_ASSUMPTIONS_WORKSHEET_20190117160644.pdf

Technical_Data_Sheet_HIS_TCBC_HT_5.5_20_P110RY_20200123124156.pdf

Casing ID: 5 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CASING_ASSUMPTIONS_WORKSHEET_20190117160657.pdf

Technical_Data_Sheet_HIS_TCBC_HT_5.5_20_P110RY_20200123124219.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		0	0	0	0	0	0		0	0

CONDUCTOR	Lead	0	120	121	1.49	12.9	181	Grout	Bentonite 4% BWOC,
									Cellophane #/sx, CaCl2
									2% BWOC.

Well Name: MASTIFF 22 FEDERAL COM Well Number: 502H

										ф	
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1300	1038	1.74	13.5	1806	100	Class C Premium	Premium Gel Bentonite 4%, C-45 Econolite 0.25%, Phenoseal 0.25#/sk, CaCl 1%, Defoamer C-41P 0.75%
SURFACE	Tail		1300	865	518	1.34	14.8	695	100	Class C Premium	C-45 Econolite 0.10%, CaCl 1.0%
INTERMEDIATE	Lead		0	4550	1100	3.44	10.7	3785	150	TXI Lightweight	Salt 1.77/sk, C-45 Econolite 2.25%, STE 6.00%, Citric Acid 0.18%, C-19 0.10%, CSA-1000 0.20%, C- 530P 0.30%, CTB-15 LCM 7#/sk, Gyp Seal 8#/sk
INTERMEDIATE	Tail		4550	5050	141	1.33	14.8	188	20	Class C Premium	C-45 Econolite 0.10%, Citric acid 0.05%, C503P 0.25%
PRODUCTION	Lead		0	9939	973	3.41	10.6	3317	30	TXI Lightweight	Salt 8.98#/sk, STE 6.00%, Citric acid 0.20%, CSA-1000 0.23%, C47B 0.10%, C- 503P 0.30%
PRODUCTION	Tail		9939	1534 4	1248	1.24	14.2	1548	25	50:25:25 Class H: Poz: CPO18	Citric acid 0.03%, CSA- 1000 0.05%, C47B 0.25%, C-503P 0.30%

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a diesel emulsified brine fluid to inhibit salt washout and prevent severe fluid losses. The production hole will employ oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Circulating Medium Table

Well Name: MASTIFF 22 FEDERAL COM Well Number: 502H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1534 4	OTHER : Brine/OBM	8.8	9.5							
0	865	OTHER : Fresh Water	8.6	9.5							
1800	5050	OTHER : Brine	9.8	10							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will utilize MWD/LWD (Gamma ray logging) from intermediate hole to TD of the well.

List of open and cased hole logs run in the well:

GR

Coring operation description for the well:

n/a

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4904 Anticipated Surface Pressure: 2594

Anticipated Bottom Hole Temperature(F): 170

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Dandie_503_and_Mastiff_501_502_H2S_plan_20190117161137.pdf

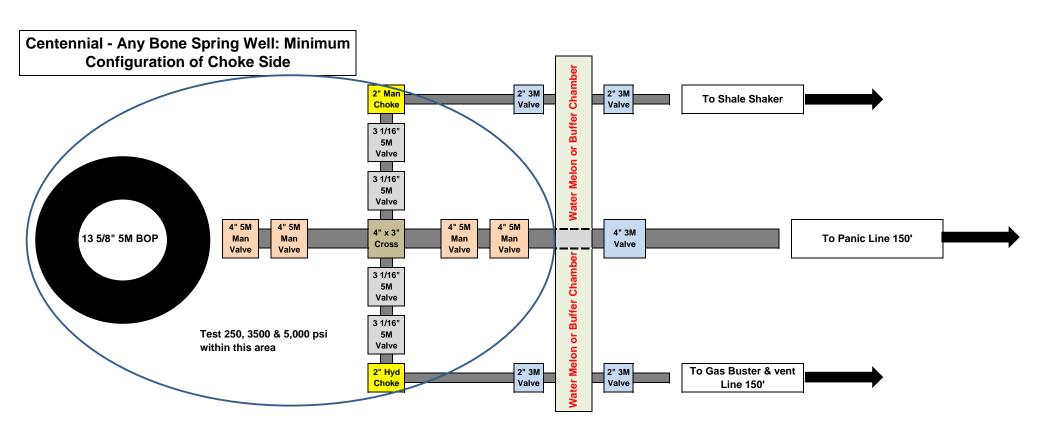
Well Name: MASTIFF 22 FEDERAL COM Well Number: 502H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

MASTIFF_22_FEDERAL_COM_502H___CDEV_PLAN__1_20190117161216.pdf

Other proposed operations facets description:


We are planning to use a spudder rig to preset surface casing. Gas Capture Plan is attached.

Other proposed operations facets attachment:

DandieMastiff_Gas_Capture_Plan_20190117145837.pdf CRD_Batch_Setting_Procedures_20191126180208.pdf

Other Variance attachment:

Flex_Hose_Specs_20190117161242.pdf
CDEV_Multi_Bowl_Procedure_Mastiff_22_Federal_Com_502H_20191126180119.pdf

For Well Design	Well Name:			
Surface 13 3/8 Inter. 9 5/8	_			
Prod. 5 1/2	-			
	-			
		ROTARY TABLE		
		ROTART TABLE		
Surface				13 5/8" 5M BOPS
				to drill entire Bone
				Spring well or to
		Rotate	2	the top of WC in a WC horizontal
	_			WC norizontal
13 5/8" 5M Hydril				Test 250 & 3500 psi
		ANNULAR		
		Pipe Rams	_	
	-////			Test 250 and 5,000 psi
13 5/8" 5M BOPS				
		Blinds		
		M M M M M		
0.4/4.011 534 1/311 03:45			1	4.4// SW SW Ob also Obligate
2 1/16" 5M Kill Side				4 1/16" 5M Choke Side
CHK →		B B B		HCR a
g				
	1		13 5/8" 5M	
		233 943 223 245 233		
	Rental Drilling Spool			
		1011 At 1911 At 1911	13 5/8" 3M	
	A - Section	AL AL ALL AL	13 3/8" 3M	
	A - Section			

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

joint (4 minimum)

- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement

- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff

and through all potential productive zones.

All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

joint (4 minimum)

- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement

- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff

and through all potential productive zones.

All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

joint (4 minimum)

- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement

- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff

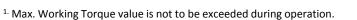
and through all potential productive zones.

All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

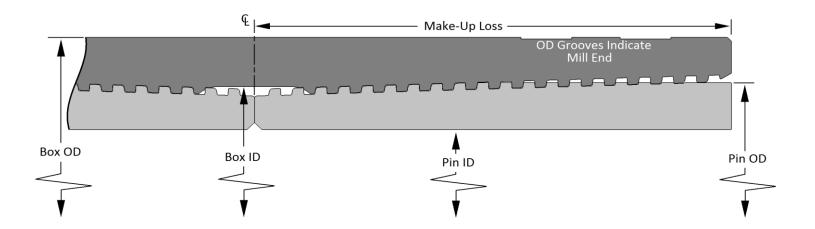
Size	5.5
Grade	P110 RY
Weight	20

TCBC-HT


SeAH Steel

	Coupling and Pipe Dimensions (in)						
	Outer Diameter	Inner Diameter	Coupling	Make-up Loss	Wall Thickness	Drift	
Coupling	6.300	5.383	Length	iviake-up Loss	vvaii Tilickiiess	Diameter	
Pipe	**************************************	4.778	8.250	4.125	0.361	4.653	
Pin	********************************	<i>4</i> 778					

Torque Values (ft-lbs)								
	Field End Make	Max. Working	Yield Torque					
Minimum	Optimum ^{2.}	Torque 1.	rieid Torque					
10,000	13,500	18,500	22,250	25,200				


Yield Stress (x1000 lbs.)					
Tensile Compressive					
100%	100%				

Maximum Pressure (psi)					
Internal External					
100%	100%				

² If Optimum Torque does not meet the Base of Triangle Stamp, M/U to the Base of Triangle.

5.5" 20# .361" P-110 Restricted Yield (RY)

Dimensions (Nominal)

Outside Diameter	5.500	in.
Wall	0.361	in.
Inside Diameter	4.778	in.
Drift	4.653	in.
Weight, T&C	20.000	lbs/f
Weight, PE	19.830	lbs/f

Performance Properties (Minimum)

Minimum Yield Strength	110000	psi
Maximum Yield Strength	125000	psi
Collapse, PE	11100	psi
Internal Yield Pressure		
PE	12630	psi
LTC	12360	psi
ВТС	12360	psi
Yield Strength, Pipe Body	641	1000 lbs
Joint Strength		
LTC	548	1000 lbs
втс	667	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

joint (4 minimum)

- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement

- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff

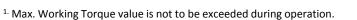
and through all potential productive zones.

All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

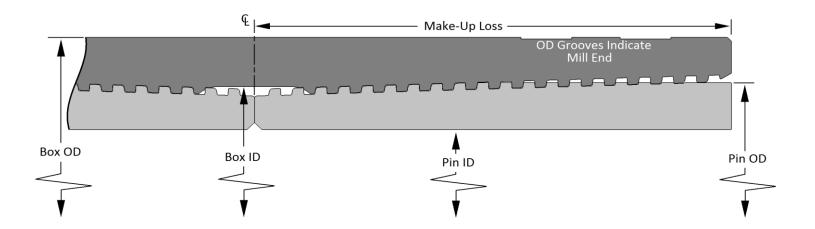
Size	5.5
Grade	P110 RY
Weight	20

TCBC-HT


SeAH Steel

	Coupling and Pipe Dimensions (in)						
	Outer Diameter	Inner Diameter	Coupling	Make-up Loss	Mall Thickness	Drift	
Coupling	6.300	5.383	Length	iviake-up Loss	vvaii Tilickiiess	Diameter	
Pipe	**************************************	4.778	8.250	4.125	0.361	4.653	
Pin	********************************	<i>4</i> 778					

Torque Values (ft-lbs)								
	Field End Make	Max. Working	Yield Torque					
Minimum	Optimum ^{2.}	Torque 1.	riela rorque					
10,000	13,500	18,500	22,250	25,200				


Yield Stress (x1000 lbs.)		
Tensile	Compressive	
100%	100%	

Maximum Pressure (psi)		
Internal	External	
100%	100%	

² If Optimum Torque does not meet the Base of Triangle Stamp, M/U to the Base of Triangle.

5.5" 20# .361" P-110 Restricted Yield (RY)

Dimensions (Nominal)

Outside Diameter	5.500	in.
Wall	0.361	in.
Inside Diameter	4.778	in.
Drift	4.653	in.
Weight, T&C	20.000	lbs/f
Weight, PE	19.830	lbs/f

Performance Properties (Minimum)

Minimum Yield Strength	110000	psi
Maximum Yield Strength	125000	psi
Collapse, PE	11100	psi
Internal Yield Pressure		
PE	12630	psi
LTC	12360	psi
ВТС	12360	psi
Yield Strength, Pipe Body	641	1000 lbs
Joint Strength		
LTC	548	1000 lbs
втс	667	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

HYDROGEN SULFIDE CONTINGENCY PLAN

Dandie 22 Fed Com 503H and Mastiff 22 501H, 502H

Section 22

T 23S R 34E

Lea County, NM

Initial Date: 12/17/18

Revision Date:

Table of Contents

Page 3: Introduction

Page 4: Directions to Location

Page 5: Safe Briefing Areas

Page 6: Drill Site Location Setup

Page 7: Toxicity of Various Gases

Page 10: H2S Required Equipment

Page 11: Determination of Radius of Exposure

Page 12: Emergency Contact List

INTRODUCTION

This plan specifies precautionary measures, safety equipment, emergency procedures, responsibilities, duties, and the compliance status pertaining to the production operations of Hydrogen Sulfide producing wells on:

Centennial Resource Development, Inc.

This plan will be in full effect prior to and continuing with all drilling operations for all wells producing potential Hydrogen Sulfide on the

Dandie 22 Fed Com 503H and Mastiff 22 501H, 502H

This plan was developed in response to the potential hazards involved when producing formations that may contain Hydrogen Sulfide (H₂S) It has been written in compliance with current New Mexico Oil Conservation Division Rule 118 and Bureau of Land Management 43 CFR 3160 Onshore Order No. 6.

All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a

This plan shall require the full cooperation and efforts of all individuals participating in the production of potential H₂S wells.

Each individual is required to know their assigned responsibilities and duties in regard to normal production operations and emergency procedures.

Each person should thoroughly understand and be able to use all safety related equipment on the production facility.

Each person should become familiar with the location of all safety equipment and become involved in ensuring that all equipment is properly stored, easily accessible, and routinely maintained.

An ongoing training program will remain in effect with regular training, equipment inspections, and annual certifications for all personnel.

Centennial Resource Development, Inc. shall make every reasonable effort to provide all possible safeguards to protect all personnel, both on this location and in the immediate vicinity, from the harmful effects of H₂S exposure, if a release to the atmosphere should occur.

DIRECTIONS TO LOCATION

Dandie 22 Fed Com 503H and Mastiff 22 501H, 502H

Section 22

T 23S R 34E

Lea County, NM

COMMENCING AT THE INTERSECTION OF HIGHWAY 18 AND HIGHWAY 128 IN JAL, NEW MEXICO, PROCEED IN A NORTHWESTERLY, THEN WESTERLY DIRECTION ALONG HIGHWAY 128 APPROXIMATELY 20.6 MILES TO THE JUNCTION OF THIS ROAD AND DELAWARE BASIN ROAD TO THE NORTH; TURN RIGHT AND PROCEED IN A NORTHERLY DIRECTION APPROXIMATELY 3.0 MILES TO THE JUNCTION OF THIS ROAD AND SHELL ROAD TO THE EAST; TURN RIGHT AND PROCEED IN AN EASTERLY DIRECTION APPROXIMATELY 2.3 MILES TO THE JUNCTION OF THIS ROAD AND ANTELOPE RIDGE ROAD TO THE NORTH; TURN LEFT AND PROCEED IN A NORTHERLY DIRECTION APPROXIMATELY 1.6 MILES TO THE JUNCTION OF THIS ROAD AND ADOBE ROAD ROAD TO THE NORTHEAST: TURN RIGHT AND PROCEED IN A NORTHEASTERLY DIRECTION APPROXIMATELY 1.0 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE EAST: TURN RIGHT AND PROCEED IN A EASTERLY DIRECTION APPROXIMATELY 0.3 MILES TO THE BEGINNING OF THE PROPOSED ACCESS FOR THE MASTIFF 22 FEDERAL STATE COM 4H WELL PAD TO THE SOUTH; FOLLOW ROAD FLAGS IN A SOUTHERLY DIRECTION APPROXIMATELY 579' TO THE BEGINNING OF THE PROPOSED ACCESS ROAD TO THE SOUTHWEST; FOLLOW ROAD FLAGS IN A SOUTHWESTERLY, THEN SOUTHERLY, THEN WESTERLY DIRECTION APPROXIMATELY 314' TO THE PROPOSED LOCATION.

TOTAL DISTANCE FROM JAL, NEW MEXICO TO THE PROPOSED WELL LOCATION IS APPROXIMATELY 29.0 MILES.

SAFE BRIEFING AREAS

Two areas will be designated as "SAFE BRIEFING AREAS".

The Primary Safe Briefing Area

If the Primary Safe Briefing Area cannot be used due to wind conditions; the designated secondary safe briefing area will be used.

These two areas are so designated for accessibility reasons related to self-contained safe breathing air device locations, evacuation muster point utility, and for ease of overall communication, organizational support, as well as the all-important prevailing wind directions. Drawings of the facility denoting these locations are included on Page 15.

If H₂S is detected in concentrations equal to or in excess of 15 PPM, all personnel not assigned emergency duties are to assemble in the appropriate "SAFE BRIEFING AREA" for instructions.

Wind Direction Indicators: A windsock, shall be positioned, allowing the wind direction to be observed from anywhere on the charted facility location.

Warning-DANGER SIGNS for Approaching Traffic: All signs shall also be illuminated under conditions of poor visibility.

DANGER POISONOUS GAS HYDROGEN SULFIDE DO NOT APPROACH IF AMBER LIGHTS ARE FLASHING

An amber strobe light system will be activated for H₂S concentrations of 10 PPM or greater and an audible alarm will sound when H₂S exceeds 15 ppm, and. This condition will exist until the all clear is given.

DRILL SITE LOCATION:

- 1. The drilling rig should be situated on location such that the prevailing winds blow across the rig toward the reserve pit or at right angles to a line from the rig to the reserve pit.
- 2. The entrance to the location should be designated so that it can be barricaded if Hydrogen Sulfide emergency conditions arise. An auxiliary exit (or entrance) should be available in case of a catastrophe; a shift in wind direction would not preclude escape from the location. Appropriate warning signs and flags should be placed at all location entrances.
- 3. Once H2S safety procedures are established on location, no beards or facial hair, which will interfere with face seal or mask, will be allowed on location.
- 4. A minimum of two BRIEFING AREAS will be established, no less than 250 feet from the wellhead and in such location that at least one area will be up-wind from the well at all times. Upon recognition of an emergency situation, all personnel should assemble at the designated briefing areas for instructions.
- 5. A safety equipment trailer will be station at one of the briefing areas.
- 6. Windsocks will be installed and wind streamers (6 to 8 feet above ground level) placed at the location entrance. Windsocks shall be illuminated for nighttime operations. Personnel should develop wind direction consciousness.
- 7. The mud-logging trailer will be located so as to minimize the danger from the gas that breaks out of the drilling fluid.
- 8. Shale shaker mud tanks will be located so as to minimize the danger from gas that breaks out of the drilling fluid.
- 9. Electric power plant(s) will be located as far from the well bore as practical so that it may be used under conditions where it otherwise would have to be shut down.
- 10. When approaching depth where Hydrogen Sulfide may be encountered, appropriate warning signs will be posted on all access roads to the location and at the foot of all stairways to the derrick floor.
- 11. Appropriate smoking areas will be designated, and smoking will be prohibited elsewhere.

The table below lists various poisonous gases and the concentrations at which they become dangerous.

TOXICITY OF VARIOUS GASES

TOXICITY OF GASES (Taken from API RP-49 September 1974 – Re-issued August 1978)					
Common Name	Chemical Formula	Gravity (Air = 1)	Threshold 1 Limit	Hazardous 2 Limit	Lethal 3 Limit
Hydrogen Sulfide	H_2S	1.18	10 ppm	250 ppm/1hr	600 ppm
Sulfur Dioxide	SO_2	2.21	20 ppm		1000 ppm
Carbon Monoxide	СО	0.97	50 ppm	400 ppm/1hr	1000 ppm
Carbon Dioxide	CO ₂	1.52	5000 ppm	5%	10%
Methane	CH ₄	0.55	90000 ppm	Combustible A	_

1. Threshold concentration at which it is believed that all workers may repeatedly be exposed day after day, without adverse effect	2. Hazardous concentration that may cause death	3. Lethal concentration that will cause death with short-term exposure
---	---	--

Properties of Gases

The produced gas will probably be a mixture of Carbon Dioxide, Hydrogen Sulfide, and Methane.

Carbon Dioxide

Carbon Dioxide (CO₂) is usually considered inert and is commonly used to extinguish fires.

It is heavier than air (1.52 times) and it will concentrate in low areas of still air.

Humans cannot breathe air containing more than 10% CO₂ without losing consciousness. Air containing 5% CO₂ will cause disorientation in a few minutes.

Continued exposures to CO₂ after being affected will cause convulsions, coma, and respiratory failure.

The threshold limit of CO₂ is 5000 ppm.

Short-term exposure to 50,000 PPM (5%) is reasonable. This gas is colorless and odorless and can be tolerated in relatively high concentrations.

Hydrogen Sulfide

Hydrogen Sulfide (H₂S) itself is a colorless, transparent gas and is flammable. It is heavier than air and, hence, may accumulate in low places.

Although the slightest presence of H₂S in the air is normally detectable by its characteristic "rotten egg" odor, it is dangerous to rely on the odor as a means of detecting excessive concentrations because the sense of smell is rapidly lost, allowing lethal concentrations to be accumulated without warning. The following table indicates the poisonous nature of Hydrogen Sulfide.

HYDROGEN SULFIDE TOXICITY				
Concentration		ration	Effects	
%H ₂ S	PPM	GR/100 SCF 1		
0.001	10	0.65	Safe for 8 hours without respirator. Obvious and unpleasant odor.	
0.002	20	1.30	Burning in eyes and irritation of respiratory tract after on hour.	
0.01	100	6.48	Kills smell in 3 to 15 minutes; may sting eyes and throat.	
0.02	200	12.96	Kills smell shortly; stings eyes and throat.	
0.05	500	32.96	Dizziness; breathing ceases in a few minutes; need prompt artificial respiration.	
0.07	700	45.92	Unconscious quickly; death will result if not rescued promptly	
0.10	1000	64.80	DEATH!	
Note: 1	Note: 1 grain per 100 cubic feet			

Sulfur Dioxide

Sulfur Dioxide is a colorless, transparent gas and is non-flammable.

Sulfur Dioxide (SO₂) is produced during the burning of H₂S. Although SO₂ is heavier than air, it will be picked up by a breeze and carried downwind at elevated temperatures. Since Sulfur Dioxide is extremely irritating to the eyes and mucous membranes of the upper respiratory tract, it has exceptionally good warning powers in this respect. The following table indicates the toxic nature of the gas.

	SULFUR DIOXIDE TOXICITY						
Conce	entration	Effects					
%SO ₂	PPM						
0.0005	3 to 5	Pungent odor-normally a person can detect SO ₂ in this					
		range.					
0.0012	12	Throat irritation, coughing, and constriction of the chest					
		tearing and smarting of eyes.					
0.15	150	So irritating that it can only be endured for a few					
		minutes.					
0.05	500	Causes a sense of suffocation, even with first breath.					

H2S REQUIRED EQUIPMENT LIST

RESPIRATORY SAFETY SYSTEMS

- Working cascade system available on rig floor and pit system & 750' of air line hose
- Four (4) breathing air manifolds
- Four (4) 30-minute rescue packs
- Five (5) work/Escape units
- Five (5) escape units
- One (1) filler hose for the work/escape/rescue units

DETECTION AND ALARM SYSTEM

- 4 channel H2S monitor
- 4 wireless H2S monitors
- H2S alarm system (Audible/Red strobe)
- Personal gas monitor for each person on location
- Gas sample tubes

WELL CONTROL EQUIPMENT

- Flare line with remote ignitor and backup flare gun, placed 150' from wellhead
- Choke manifold with remotely operated choke
- Mud gas separator

VISUAL WARNING SYSTEMS

- One color code condition sign will be placed at each entrance reflecting possible conditions at the site
- A colored condition flag will be on display, reflecting current condition at the site at the time
- At least 4 wind socks placed on location, visible at all angles and locations

MUD PROGRAM

- Mud will contain sufficient weight and additives to control and minimize H2S

METALLURGY

- All drill strings, casing, tubing, wellhead, BOP, spools, kill lines, choke manifold and lines, and valves shall be suitable for anticipated H2S volume and pressure

COMMUNICATION

- Cell phones, intercoms, and satellite phones will be available on location

ADDITIONAL SAFETY RELATED ITEMS

- Stretcher
- 2 OSHA full body harness
- 20# class ABC fire extinguisher

DETERMINATION OF RADIUS OF EXPOSURE

Potentially hazardous volume means a volume of gas of such H2S concentration and flow rate that it may result in radius of exposure-calculated ambient concentrations of 100 ppm H2S at any occupied residence, school, church, park, school bus stop, place of business or other area where the public could reasonably be expected to frequent, or 500 ppm H2S at any Federal, State, County or municipal road or highway.

Currently there are no residence located within the ROE

Radius of exposure means the calculation resulting from using the Pasquill -Gifford derived equation, or by such other method(s) that may be approved by the authorized officer. Advanced Fire and Safety has provided the Pasquill-Gifford formula in excel format for simple calculations.

NEW MEXICO OIL & GAS CONSERVATION DIVISION 118

Dandie 22 Fed Com 503H and Mastiff 22 501H, 502H

H2S Concentration- 50 PPM (Block 13)

Maximum Escape Volume- 3000 MCF/Day (Block 13)

100 PPM Radius of Exposure (Block 15)- 31 (Formula= 1.589 x (B5/1000000) x (B6 x 1000) x .6258

500 PPM Radius of Exposure (Block 16)- 14 Formula= .4546 x (B5/1000000) x (B6 x 1000) x .6258

EMERGENCY CONTACT LIST

911 is available in the area									
NAME	POSITION	COMPANY	NUMBER						
	Centennial Contacts								
Jeremy Ray	Drilling Engineer	CDEV	303-263-7872						
Ricky Mills/John Helm	Superintendent	CDEV	432-305-1068						
Mike Ponder/Wayne Miller	Field Superintendent	CDEV	432-287-3003						
Brett Thompson	Drilling Manager	CDEV	720-656-7027						
Reggie Phillips	HSE Manager	CDEV	432-638-3380						
H&P 650 Drilling Office	Drilling Supervisor	CDEV	432-538-3343						
	Local Emergency Respo	onse							
Fire Department			575-395-2511						
Jal Community Hospital			505-395-2511						
State Police			505-827-9000						
Lea County Sheriff			575-396-3611						
	Safety Contractor								
Advanced Safety	Office	Advanced Safety	833-296-3913						
Joe Gadway	Permian Supervisor	Advanced Safety	318-446-3716						
Clint Hudson	Operations Manager	Advanced Safety	337-552-8330						
	Well Control Compa	ny							
Wild Well Control			866-404-9564						
	Contractors								
Tommy E Lee	Pump Trucks		432-813-7140						
Paul Smith	Drilling Fluids	Momentum	307-258-6254						
Compass Coordinators	Cement	Compass	432-561-5970						

NEW MEXICO

LEA
DANDIE/ MASTIFF
MASTIFF 22 FEDERAL COM 502H

MASTIFF 22 FEDERAL COM 502H

Plan: PWP0

Survey Report - Geographic

19 December, 2018

Survey Report - Geographic

NEW MEXICO Company:

Project:

DANDIE/ MASTIFF Site:

Well: MASTIFF 22 FEDERAL COM 502H MASTIFF 22 FEDERAL COM 502H Wellbore:

Design: PWP0 **Local Co-ordinate Reference:**

Well MASTIFF 22 FEDERAL COM 502H RKB=3532.2+25 @ 3557.2usft (HP 650) **TVD Reference:** RKB=3532.2+25 @ 3557.2usft (HP 650) MD Reference:

North Reference:

Minimum Curvature **Survey Calculation Method:**

Database: Centennial EDM SQL Server

LEA **Project**

Universal Transverse Mercator (US Survey Feet) Map System:

System Datum:

Mean Sea Level

North American Datum 1983 Geo Datum: Map Zone: Zone 13N (108 W to 102 W)

Site DANDIE/ MASTIFF

0.00 usft Northing: Site Position: Latitude: 0° 0' 0.000 N From: Мар Easting: 0.00 usft Longitude: 109° 29' 19.478 W Slot Radius: Grid Convergence: **Position Uncertainty:** 0.0 usft 13-3/16 " 0.00°

Well MASTIFF 22 FEDERAL COM 502H

Well Position +N/-S 0.0 usft Northing: 11,722,186.32 usft Latitude: 32° 17' 1.209 N

+E/-W 0.0 usft Easting: 2,118,357.98 usft Longitude: 103° 27' 10.861 W

0.0 usft usft Ground Level: 3,532.2 usft **Position Uncertainty** Wellhead Elevation:

MASTIFF 22 FEDERAL COM 502H Wellbore Magnetics **Model Name** Sample Date Declination Dip Angle Field Strength (°) (°) (nT) IGRF200510 60.32 12/31/2009 7.70 48,841.27551214

PWP0 Design **Audit Notes:** PROTOTYPE Version: Phase: Tie On Depth: 0.0 Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 0.0 0.0 357.63

12/19/2018 **Survey Tool Program** Date From То (usft) (usft) Survey (Wellbore) **Tool Name** Description 15,344.0 PWP0 (MASTIFF 22 FEDERAL COM 502 MWD+IFR1+MS OWSG MWD + IFR1 + Multi-Station Correction 0.0

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.0	0.00	0.00	0.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861 W
100.0	0.00	0.00	100.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861 W
200.0	0.00	0.00	200.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861 W
300.0	0.00	0.00	300.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861 W
400.0	0.00	0.00	400.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861 W
500.0	0.00	0.00	500.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861 W
600.0	0.00	0.00	600.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861 W
700.0	0.00	0.00	700.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861 W
800.0	0.00	0.00	0.008	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861 W
900.0	0.00	0.00	900.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861 W
1,000.0	0.00	0.00	1,000.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861 W
1,100.0	0.00	0.00	1,100.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861 W

Survey Report - Geographic

TVD Reference:

MD Reference:

Company: NEW MEXICO

Project: LEA

Site: DANDIE/ MASTIFF

Well: MASTIFF 22 FEDERAL COM 502H

Wellbore: MASTIFF 22 FEDERAL COM 502H

Design: PWP0

Local Co-ordinate Reference:

Well MASTIFF 22 FEDERAL COM 502H RKB=3532.2+25 @ 3557.2usft (HP 650)

RKB=3532.2+25 @ 3557.2usft (HP 650)

North Reference: True

Survey Calculation Method: Minimum Curvature

Database: Centennial EDM SQL Server

ned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
1,200.0	0.00	0.00	1,200.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861
1,300.0	0.00	0.00	1,300.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861
1,400.0	0.00	0.00	1,400.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861
1,500.0	0.00	0.00	1,500.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861
1,600.0	0.00	0.00	1,600.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.861
1,700.0	0.00	0.00	1,700.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
1,800.0	0.00	0.00	1,800.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
1,900.0	0.00	0.00	1,900.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
2,000.0	0.00	0.00	2,000.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
2,100.0	0.00	0.00	2,100.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
2,200.0	0.00	0.00	2,200.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
2,300.0	0.00	0.00	2,300.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
2,400.0	0.00	0.00	2,400.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
2,500.0	0.00	0.00	2,500.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
2,600.0	0.00	0.00	2,600.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
2,700.0	0.00	0.00	2,700.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
2,800.0	0.00	0.00	2,800.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
2,900.0	0.00	0.00	2,900.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
3,000.0	0.00	0.00	3,000.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
3,100.0	0.00	0.00	3,100.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
3,200.0	0.00	0.00	3,200.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
3,300.0	0.00	0.00	3,300.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
3,400.0	0.00	0.00	3,400.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
3,500.0	0.00	0.00 0.00	3,500.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
3,600.0 3,700.0	0.00	0.00	3,600.0 3,700.0	0.0 0.0	0.0 0.0	11,722,186.32 11,722,186.32	2,118,357.98 2,118,357.98	32° 17' 1.209 N 32° 17' 1.209 N	103° 27' 10.86 103° 27' 10.86
3,800.0	0.00	0.00	3,800.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
3,900.0	0.00	0.00	3,900.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
4,000.0	0.00	0.00	4,000.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
4,100.0	0.00	0.00	4,100.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
4,200.0	0.00	0.00	4,100.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
4,300.0	0.00	0.00	4,300.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
4,400.0	0.00	0.00	4,400.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
4,500.0	0.00	0.00	4,500.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
4,600.0	0.00	0.00	4,600.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
4,700.0	0.00	0.00	4,700.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
4,800.0	0.00	0.00	4,800.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
4,900.0	0.00	0.00	4,900.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
5,000.0	0.00	0.00	5,000.0	0.0	0.0	11,722,186.32	2,118,357.98	32° 17' 1.209 N	103° 27' 10.86
5,100.0	1.00	224.88	5,100.0	-0.6	-0.6	11,722,185.69	2,118,357.37	32° 17' 1.203 N	103° 27' 10.86
5,200.0	2.00	224.88	5,200.0	-2.5	-2.5	11,722,183.81	2,118,355.55	32° 17' 1.184 N	103° 27' 10.89
5,300.0	3.00	224.88	5,299.9	-5.6	-5.5	11,722,180.68	2,118,352.52	32° 17' 1.154 N	103° 27' 10.92
5,400.0	4.00	224.88	5,399.7	-9.9	-9.8	11,722,176.29	2,118,348.27	32° 17' 1.111 N	103° 27' 10.97
5,500.0	5.00	224.88	5,499.4	-15.4	-15.4	11,722,170.65	2,118,342.82	32° 17' 1.056 N	103° 27' 11.04
5,600.0	5.00	224.88	5,599.0	-21.6	-21.5	11,722,164.39	2,118,336.76	32° 17' 0.995 N	103° 27' 11.11
5,700.0	5.00	224.88	5,698.6	-27.8	-27.7	11,722,158.12	2,118,330.70	32° 17' 0.934 N	103° 27' 11.18
5,800.0	5.00	224.88	5,798.2	-34.0	-33.8	11,722,151.86	2,118,324.64	32° 17' 0.873 N	103° 27' 11.25
5,900.0	5.00	224.88	5,897.8	-40.2	-40.0	11,722,145.60	2,118,318.58	32° 17' 0.811 N	103° 27' 11.32
6,000.0	5.00	224.88	5,997.5	-46.3	-46.1	11,722,139.33	2,118,312.52	32° 17' 0.750 N	103° 27' 11.39
6,100.0	5.00	224.88	6,097.1	-52.5	-52.3	11,722,133.07	2,118,306.46	32° 17' 0.689 N	103° 27' 11.47
6,200.0	5.00	224.88	6,196.7	-58.7	-58.4	11,722,126.81	2,118,300.40	32° 17' 0.628 N	103° 27' 11.54
6,300.0	5.00	224.88	6,296.3	-64.9	-64.6	11,722,120.54	2,118,294.34	32° 17' 0.567 N	103° 27' 11.61
6,400.0	5.00	224.88	6,395.9	-71.0	-70.7	11,722,114.28	2,118,288.28	32° 17' 0.506 N	103° 27' 11.68
6,500.0	5.00	224.88	6,495.6	-77.2	-76.9	11,722,108.01	2,118,282.22	32° 17' 0.445 N	103° 27' 11.75
6,600.0	5.00	224.88	6,595.2	-83.4	-83.0	11,722,101.75	2,118,276.16	32° 17' 0.384 N	103° 27' 11.82

Survey Report - Geographic

NEW MEXICO Company:

Project:

Site: DANDIE/ MASTIFF

Well: MASTIFF 22 FEDERAL COM 502H

MASTIFF 22 FEDERAL COM 502H Wellbore:

Design: PWP0 Local Co-ordinate Reference:

Well MASTIFF 22 FEDERAL COM 502H TVD Reference: RKB=3532.2+25 @ 3557.2usft (HP 650)

MD Reference: RKB=3532.2+25 @ 3557.2usft (HP 650)

North Reference:

Minimum Curvature **Survey Calculation Method:**

Database: Centennial EDM SQL Server

ned Survey									
leasured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
6,700.0	5.00	224.88	6,694.8	-89.6	-89.2	11,722,095.49	2,118,270.09	32° 17' 0.322 N	103° 27' 11.900
6,800.0	5.00	224.88	6,794.4	-95.7	-95.3	11,722,089.22	2,118,264.03	32° 17' 0.261 N	103° 27' 11.972
6,900.0	5.00	224.88	6,894.0	-101.9	-101.5	11,722,082.96	2,118,257.97	32° 17' 0.200 N	103° 27' 12.044
7,000.0	5.00	224.88	6,993.7	-108.1	-107.6	11,722,076.70	2,118,251.91	32° 17' 0.139 N	103° 27' 12.115
7,100.0	5.00	224.88	7,093.3	-114.3	-113.8	11,722,070.43	2,118,245.85	32° 17' 0.078 N	103° 27' 12.187
7,200.0	5.00	224.88	7,192.9	-120.4	-119.9	11,722,064.17	2,118,239.79	32° 17' 0.017 N	103° 27' 12.259
7,300.0	5.00	224.88	7,292.5	-126.6	-126.1	11,722,057.90	2,118,233.73	32° 16' 59.956 N	103° 27' 12.330
7,400.0	5.00	224.88	7,392.1	-132.8	-132.2	11,722,051.64	2,118,227.67	32° 16' 59.895 N	103° 27' 12.402
7,500.0	5.00	224.88	7,491.8	-139.0	-138.4	11,722,045.38	2,118,221.61	32° 16' 59.834 N	103° 27' 12.474
7,600.0	5.00	224.88	7,591.4	-145.1	-144.5	11,722,039.11	2,118,215.55	32° 16' 59.772 N	103° 27' 12.54
7,700.0	5.00	224.88	7,691.0	-151.3	-150.7	11,722,032.85	2,118,209.49	32° 16' 59.711 N	103° 27' 12.617
7,800.0	5.00	224.88	7,790.6	-157.5	-156.8	11,722,026.59	2,118,203.43	32° 16' 59.650 N	103° 27' 12.688
7,900.0	5.00	224.88	7,890.2	-163.7	-163.0	11,722,020.32	2,118,197.37	32° 16' 59.589 N	103° 27' 12.760
8,000.0	5.00	224.88	7,989.9	-169.8	-169.1	11,722,014.06	2,118,191.31	32° 16' 59.528 N	103° 27' 12.83
8,100.0	5.00	224.88	8,089.5	-176.0	-175.3	11,722,007.79	2,118,185.25	32° 16' 59.467 N	103° 27' 12.90
8,200.0	5.00	224.88	8,189.1	-182.2	-181.4	11,722,001.53	2,118,179.19	32° 16' 59.406 N	103° 27' 12.97
8,300.0	4.00	224.88	8,288.8	-187.8	-187.0	11,721,995.89	2,118,173.74	32° 16' 59.351 N	103° 27' 13.04
8,400.0	3.00	224.88	8,388.6	-192.1	-191.3	11,721,991.50	2,118,169.49	32° 16' 59.308 N	103° 27' 13.09
8,500.0	2.00	224.88	8,488.5	-195.2	-194.4	11,721,988.37	2,118,166.46	32° 16' 59.277 N	103° 27' 13.12
8,600.0	1.00	224.88	8,588.5	-197.0	-196.2	11,721,986.49	2,118,164.64	32° 16' 59.259 N	103° 27' 13.14
8,700.0	0.00	0.00	8,688.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
8,800.0	0.00	0.00	8,788.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
8,900.0	0.00	0.00	8,888.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
9,000.0	0.00	0.00	8,988.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
9,100.0	0.00	0.00	9,088.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
9,200.0	0.00	0.00	9,188.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
9,300.0	0.00	0.00	9,288.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
9,400.0	0.00	0.00	9,388.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
9,500.0	0.00	0.00	9,488.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
9,600.0	0.00	0.00	9,588.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
9,700.0	0.00	0.00	9,688.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
9,800.0	0.00	0.00	9,788.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
9,900.0	0.00	0.00	9,888.5	-197.6	-196.8	11,721,985.86	2,118,164.03	32° 16' 59.253 N	103° 27' 13.15
9,938.5	0.00	0.00	9,888.3	-197.6	-196.8			32° 16' 59.253 N	103° 27' 13.15
						11,721,985.86 11,721,989.16	2,118,164.03		
10,000.0 10,100.0	6.15	358.98	9,988.3	-194.3	-196.9	, ,	2,118,163.93	32° 16' 59.285 N	103° 27' 13.15
,	16.15	358.98	10,086.3	-175.0	-197.2	11,722,008.46	2,118,163.30	32° 16' 59.477 N	103° 27' 13.15
10,200.0	26.15	358.98	10,179.5	-139.0	-197.9	11,722,044.47	2,118,162.14	32° 16' 59.833 N	103° 27' 13.16
10,300.0	36.14	358.98	10,265.0	-87.4	-198.8	11,722,096.10	2,118,160.48	32° 17' 0.344 N	103° 27' 13.17
10,400.0	46.14	358.98	10,340.2	-21.7	-200.0	11,722,161.77	2,118,158.36	32° 17' 0.994 N	103° 27' 13.19 103° 27' 13.20
10,500.0	56.14	358.98	10,402.8	56.1	-201.3	11,722,239.51	2,118,155.85	32° 17' 1.764 N	
10,600.0	66.14	358.98	10,451.0	143.5	-202.9	11,722,326.93	2,118,153.04	32° 17' 2.629 N	103° 27' 13.22
10,700.0	76.14	358.98	10,483.3	238.0	-204.6	11,722,421.39	2,118,149.99	32° 17' 3.565 N	103° 27' 13.24
10,800.0	86.14	358.98	10,498.7	336.7	-206.3	11,722,520.02	2,118,146.81	32° 17' 4.541 N	103° 27' 13.26
10,838.6	90.00	358.98	10,500.0	375.3	-207.0	11,722,558.61	2,118,145.57	32° 17' 4.923 N	103° 27' 13.27
10,900.0	90.00	359.04	10,500.0	436.7	-208.1	11,722,619.94	2,118,143.62	32° 17' 5.530 N	103° 27' 13.28
11,000.0	90.00	359.15	10,500.0	536.7	-209.7	11,722,719.90	2,118,140.60	32° 17' 6.520 N	103° 27' 13.30
11,100.0	90.00	359.25	10,500.0	636.6	-211.1	11,722,819.86	2,118,137.76	32° 17' 7.509 N	103° 27' 13.32
11,200.0	90.00	359.35	10,500.0	736.6	-212.3	11,722,919.82	2,118,135.10	32° 17' 8.499 N	103° 27' 13.33
11,300.0	90.00	359.46	10,500.0	836.6	-213.3	11,723,019.79	2,118,132.62	32° 17' 9.488 N	103° 27' 13.34
11,400.0	90.00	359.56	10,500.0	936.6	-214.2	11,723,119.76	2,118,130.31	32° 17' 10.478 N	103° 27' 13.35
11,500.0	90.00	359.66	10,500.0	1,036.6	-214.9	11,723,219.74	2,118,128.19	32° 17' 11.468 N	103° 27' 13.36
11,600.0	90.00	359.76	10,500.0	1,136.6	-215.4	11,723,319.72	2,118,126.25	32° 17' 12.457 N	103° 27' 13.37
11,700.0	90.00	359.87	10,500.0	1,236.6	-215.7	11,723,419.71	2,118,124.48	32° 17' 13.447 N	103° 27' 13.37
11,800.0	90.00	359.97	10,500.0	1,336.6	-215.8	11,723,519.69	2,118,122.90	32° 17' 14.437 N	103° 27' 13.37
11,900.0	90.00	0.07	10,500.0	1,436.6	-215.8	11,723,619.68	2,118,121.50	32° 17' 15.426 N	103° 27' 13.37

Survey Report - Geographic

NEW MEXICO Company:

Project:

Site: DANDIE/ MASTIFF

Well: MASTIFF 22 FEDERAL COM 502H MASTIFF 22 FEDERAL COM 502H Wellbore:

Local Co-ordinate Reference:

Well MASTIFF 22 FEDERAL COM 502H TVD Reference: RKB=3532.2+25 @ 3557.2usft (HP 650) MD Reference: RKB=3532.2+25 @ 3557.2usft (HP 650)

North Reference: True

Minimum Curvature **Survey Calculation Method:**

Design: PWP0 Database: Centennial EDM SQL Server

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
12,000.0	90.00	0.18	10,500.0	1,536.6	-215.6	11,723,719.68	2,118,120.27	32° 17' 16.416 N	103° 27' 13.373
12,060.9	90.00	0.24	10,500.0	1,597.6	-215.3	11,723,780.61	2,118,119.62	32° 17' 17.019 N	103° 27' 13.370
12,100.0	90.00	0.24	10,500.0	1,636.6	-215.2	11,723,819.67	2,118,119.22	32° 17' 17.406 N	103° 27' 13.368
12,200.0	90.00	0.24	10,500.0	1,736.6	-214.8	11,723,919.66	2,118,118.19	32° 17' 18.395 N	103° 27' 13.363
12,300.0	90.00	0.24	10,500.0	1,836.6	-214.3	11,724,019.66	2,118,117.17	32° 17' 19.385 N	103° 27' 13.359
12,400.0	90.00	0.24	10,500.0	1,936.6	-213.9	11,724,119.65	2,118,116.15	32° 17' 20.374 N	103° 27' 13.354
12,500.0	90.00	0.24	10,500.0	2,036.6	-213.5	11,724,219.65	2,118,115.12	32° 17' 21.364 N	103° 27' 13.349
12,600.0	90.00	0.24	10,500.0	2,136.6	-213.1	11,724,319.64	2,118,114.10	32° 17' 22.354 N	103° 27' 13.344
12,700.0	90.00	0.24	10,500.0	2,236.6	-212.7	11,724,419.64	2,118,113.08	32° 17' 23.343 N	103° 27' 13.339
12,800.0	90.00	0.24	10,500.0	2,336.6	-212.2	11,724,519.63	2,118,112.05	32° 17' 24.333 N	103° 27' 13.334
12,900.0	90.00	0.24	10,500.0	2,436.6	-211.8	11,724,619.63	2,118,111.03	32° 17' 25.323 N	103° 27' 13.329
13,000.0	90.00	0.24	10,500.0	2,536.6	-211.4	11,724,719.62	2,118,110.00	32° 17' 26.312 N	103° 27' 13.324
13,100.0	90.00	0.24	10,500.0	2,636.6	-211.0	11,724,819.62	2,118,108.98	32° 17' 27.302 N	103° 27' 13.320
13,200.0	90.00	0.24	10,500.0	2,736.6	-210.6	11,724,919.61	2,118,107.96	32° 17' 28.291 N	103° 27' 13.31
13,300.0	90.00	0.24	10,500.0	2,836.6	-210.2	11,725,019.61	2,118,106.93	32° 17' 29.281 N	103° 27' 13.310
13,400.0	90.00	0.24	10,500.0	2,936.6	-209.7	11,725,119.60	2,118,105.91	32° 17' 30.271 N	103° 27' 13.30
13,500.0	90.00	0.24	10,500.0	3,036.6	-209.3	11,725,219.60	2,118,104.89	32° 17' 31.260 N	103° 27' 13.30
13,600.0	90.00	0.24	10,500.0	3,136.6	-208.9	11,725,319.59	2,118,103.86	32° 17' 32.250 N	103° 27' 13.29
13,700.0	90.00	0.24	10,500.0	3,236.6	-208.5	11,725,419.59	2,118,102.84	32° 17' 33.240 N	103° 27' 13.29
13,800.0	90.00	0.24	10,500.0	3,336.6	-208.1	11,725,519.58	2,118,101.81	32° 17' 34.229 N	103° 27' 13.28
13,900.0	90.00	0.24	10,500.0	3,436.6	-207.6	11,725,619.58	2,118,100.79	32° 17' 35.219 N	103° 27' 13.28
14,000.0	90.00	0.24	10,500.0	3,536.6	-207.2	11,725,719.57	2,118,099.77	32° 17' 36.209 N	103° 27' 13.27
14,100.0	90.00	0.24	10,500.0	3,636.6	-206.8	11,725,819.57	2,118,098.74	32° 17' 37.198 N	103° 27' 13.27
14,200.0	90.00	0.24	10,500.0	3,736.6	-206.4	11,725,919.56	2,118,097.72	32° 17' 38.188 N	103° 27' 13.26
14,300.0	90.00	0.24	10,500.0	3,836.6	-206.0	11,726,019.55	2,118,096.70	32° 17' 39.177 N	103° 27' 13.26
14,400.0	90.00	0.24	10,500.0	3,936.6	-205.5	11,726,119.55	2,118,095.67	32° 17' 40.167 N	103° 27' 13.25
14,500.0	90.00	0.24	10,500.0	4,036.6	-205.1	11,726,219.54	2,118,094.65	32° 17' 41.157 N	103° 27' 13.25
14,600.0	90.00	0.24	10,500.0	4,136.6	-204.7	11,726,319.54	2,118,093.62	32° 17' 42.146 N	103° 27' 13.240
14,700.0	90.00	0.24	10,500.0	4,236.6	-204.3	11,726,419.53	2,118,092.60	32° 17' 43.136 N	103° 27' 13.24
14,800.0	90.00	0.24	10,500.0	4,336.6	-203.9	11,726,519.53	2,118,091.58	32° 17' 44.126 N	103° 27' 13.23
14,900.0	90.00	0.24	10,500.0	4,436.6	-203.5	11,726,619.52	2,118,090.55	32° 17' 45.115 N	103° 27' 13.23
15,000.0	90.00	0.24	10,500.0	4,536.6	-203.0	11,726,719.52	2,118,089.53	32° 17' 46.105 N	103° 27' 13.22'
15,100.0	90.00	0.24	10,500.0	4,636.6	-202.6	11,726,819.51	2,118,088.51	32° 17' 47.095 N	103° 27' 13.22
15,200.0	90.00	0.24	10,500.0	4,736.6	-202.2	11,726,919.51	2,118,087.48	32° 17' 48.084 N	103° 27' 13.21
15,300.0	90.00	0.24	10,500.0	4,836.6	-201.8	11,727,019.50	2,118,086.46	32° 17' 49.074 N	103° 27' 13.212
15,344.1	90.00	0.24	10,500.0	4,880.7	-201.6	11,727,063.59	2,118,086.01	32° 17' 49.510 N	103° 27' 13.210

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
LTP/BHL - MASTIFF 22 - plan hits target cen - Point	0.00 ter	0.00	10,500.0	4,880.7	-201.6	11,727,063.59	2,118,086.01	32° 17' 49.510 N	103° 27' 13.210 W
FTP - MASTIFF 22 FED - plan misses target - Circle (radius 50.0)	,	0.00 4usft at 104	10,500.0 00.0usft MD	-199.8 (10340.2 TVD	-200.7), -21.7 N, -20	11,721,983.60 00.0 E)	2,118,160.23	32° 16' 59.231 N	103° 27' 13.199 W

Checked By:	Approved By:	Date:	
1	,		

Centennial Resource Development New Mexico Multi-Well Pad Drilling Batch Setting Procedures

> Avalon and Bone Springs Formations

13-3/8" Surface Casing - CRD intends to preset 13-3/8" casing to a depth approved in the APD. 17-1/2" Surface Holes will be batch drilled by a Surface Preset rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 17-1/2" Surface hole to Approved Depth with Surface Preset Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land 13-3/8" 54.5# J55 BTC casing to depth approved in APD.
- 3. Cement 13-3/8" casing with cement to surface and floats holding.
- 4. Cut / Dress 20" Conductor and 13-3/8" casing as needed, weld on Cameron Multi-bowl system with baseplate supported by 20" conductor (see Illustration 1-1 Below). Weld performed per Cameron weld procedure.
- 5. Test Weld to 70% of 13-3/8" casing collapse or ~ 790psi.
- 6. Install nightcap with Pressure Gauge on wellhead. Nightcap is shown on final wellhead Stack up Illustration #2-2 page 3.
- 7. Skid Rig to adjacent well to drill Surface hole.
- 8. Surface casing test will be performed by the Big Rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is greater not to exceed 70% casing burst.

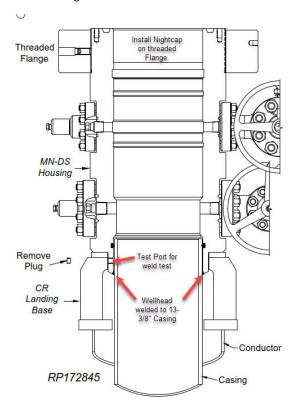
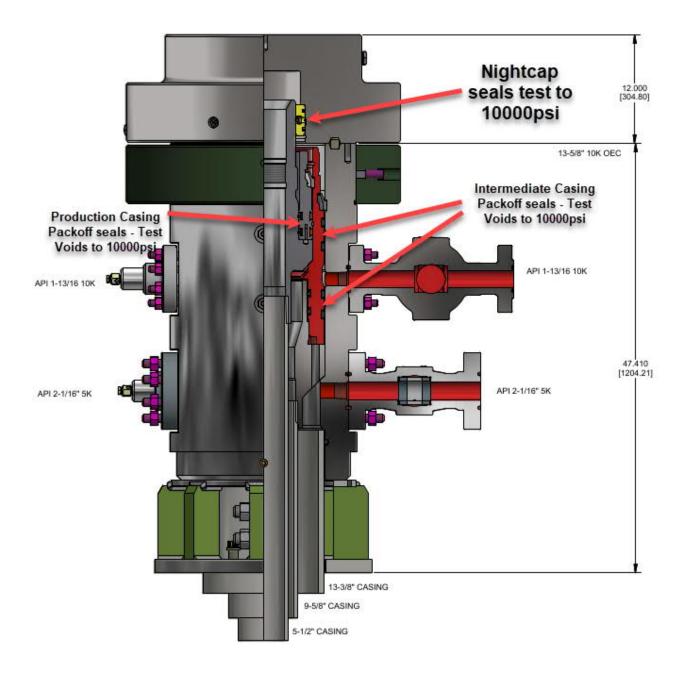


Illustration 1-1

o Intermediate and Production Casing – For all subsequent Intermediate and Production Casing Strings, the Big Rig will remove the nightcap and install and test BOPE. Prior to drill out the 13-3/8" Casing will be tested to 0.22psi/ft or 1500psi whichever is greater. The well will be drilled below 13-3/8" to its intended final TD in the Avalon or Bonesprings formations. Batch drilling will not be executed for casing strings below the 13-3/8". Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings. The


> Wolfcamp Formations

<u>13-3/8" Surface Casing</u> - CRD intends to preset 13-3/8" casing to a depth approved in the APD. Surface Holes will be batch set by a Surface Preset rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 17-1/2" Surface hole to Approved Depth with Surface Preset Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land 13-3/8" 54.5# J55 BTC casing to depth approved in APD.
- 3. Cement 13-3/8" casing with cement to surface and floats holding.
- 4. Cut / Dress 20" Conductor and 13-3/8" casing as needed, weld on Cameron Multi-bowl system with baseplate supported by 20" conductor (see Illustration 1-1). Weld performed per Cameron weld procedure.
- 5. Test Weld to 70% of 13-3/8" casing collapse or ~ 790psi.
- 6. Install nightcap with Pressure Gauge on wellhead. Nightcap is shown on final wellhead Stack up Illustration #2-2 on page 3.
- 7. Subsequent casing test will be performed by the Big Rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is greater not to exceed 70% casing burst.

<u>Intermediate Casing</u> – CRD intends to Batch set all intermediate casing strings to a depth approved in the APD, typically set 100′ above KOP in the 3rd Bonesprings Carbonate. For the last intermediate section drilled on pad, the associated production interval will immediately follow. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Big Rig will remove the nightcap and install and test BOPE.
- 2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 3. Install wear bushing then drill out 13-3/8" shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
- 5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
- 6. Cement casing to surface with floats holding.
- 7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 8. Install pack-off and test void to 10000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
- 9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 10. Install nightcap skid rig to adjacent well to drill Intermediate hole.

WITH CAP

Illustration 2-2

<u>Production Casing</u> – CRD intends to Batch set all Production casings, except for the last intermediate hole. In this case the production interval will immediately follow the intermediate section on that well. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Big Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.

- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run 5-1/2" Production Casing.
- 6. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 7. Cement 5-1/2" Production string to surface with floats holding.
- 8. Run in with wash tool and wash wellhead area install pack-off and test void to 10000psi for 15 minutes.
- 9. Install BPV in 5-1/2" mandrel hanger Nipple down BOPE and install nightcap.
- 10. Test nightcap void to 10000psi for 30 minutes per illustration 2-2 page 3.
- 11. Skid rig to adjacent well on pad to drill production hole.

ContiTech

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 210/ 2014

Page: 9 / 113

							<u></u>	
QUAI INSPECTION	LITY CON		ATE		CERT. N	N°:	504	
PURCHASER:	ContiTech	Oil & Marine C	Corp.		P.O. N°:		4500409659	
CONTITECH RUBBER order N	ı°: 538236	HOSE TYPE:	3"	ID	1	Choke and	l Kill Hose	
HOSE SERIAL N°:	67255	NOMINAL / AC	TUAL LE	ENGTH:		10,67 m	ı / 10,77 m	-
W.P. 68,9 MPa 10	0000 psi	T.P. 103,4	MPa	1500)() psi	Duration:	60	min.
Pressure test with water at ambient temperature								
	;	See attachm	ent. (1	l page	;)			
↑ 10 mm = 10 Min. → 10 mm = 20 MPs				_				
COUPLINGS Typ	ре	Seria	ıl Nº		G	Quality	Heat N°	
3" coupling with	h	9251	925	4	AIS	SI 4130	A0579N	
4 1/16" 10K API b.w. Fla	ange end				AIS	SI 4130	035608	
Not Designed F	For Well Te	esting		•		AI	PI Spec 16 C	
						Temp	erature rate:	:"B"
All metal parts are flawless WE CERTIFY THAT THE ABOVE INSPECTED AND PRESSURE T						'H THE TERMS	OF THE ORDER	
STATEMENT OF CONFORMITY conditions and specifications of accordance with the referenced st	f: We hereby of the above Purc standards, codes	certify that the above	ve items/ethat these and meet	equipmer items/ed the relev	nt supplied quipment v	were fabricated	inspected and tes	sted in
Detail								
20. March 2014.	Inspector		Quant	y Contro) See	Industria Quality Cont	al Kft.	1_

No: 501, 504, 505

Page: 1/1

· · · · · · · · · · · · · · · · · · ·	Eluy De
	Carrie Rubber
GN +21-32 90 01120 RD +21-35 90 91120	entrol Dept.
BL +1053 bar 01:20 CN +21:15 °C 01:10	
BL #1055- bd# 01:10	
RD +21.30 96 91.98	809
GN +21-28 9C 00:48	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
BL +1059. bar 00:46 GN +21-38 9C 00:30	
BL +1061 bd. 00 36 GN +21.35 9C 00 20	
R0 +21-99 90 00+26	
0 70 20 30 40 50 50 70 80 9	b 100
19-83-2914-29-59 67252-67255-67256-23-58	

CONTITECH RUBBER No:QC-DB- 210/ 2014 Industrial Kft.

15 / 113

Page: ContiTech

Hose Data Sheet

CRI Order No.	538236
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500409659
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
Type of coupling other end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL + GAS RESISTANT SOUR
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

Mastiff 22 Federal Com 502H

Centennial Drilling Plan for 3-Casing String Bone Springs Formation

13-3/8" x 9-5/8" x 5-1/2" Casing Design

- 1. Drill 17-1/2" surface hole to Total Depth with Spudder Rig and perform wellbore cleanup cycles.
- 2. Run and land 13-3/8" casing to Depth.
- 3. Cement 13-3/8" casing cement to surface.
- 4. Cut / Dress Conductor and 13-3/8" casing as needed, weld on Cameron Multi-bowl system with baseplate supported by 20" conductor.
- 5. Test Weld to 70% of 13-3/8" casing collapse. Place nightcap with Pressure Gauge on wellhead and test seals to 70% of Casing Collapse.
- 6. Bleed Pressure if necessary and remove nightcap. Nipple up and test BOPE with test plug per Onshore Order 2.
- 7. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 8. Install wear bushing then drill out 13-3/8" shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 9. Drill 12-1/4" Intermediate hole to 9-5/8" casing point. (Base Capitan Reef).
- 10. Remove wear bushing then run and land 9-5/8" Intermediate Casing with mandrel hanger in wellhead.
- 11. Cement 9-5/8 casing cement to surface.
- 12. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 13. Install pack-off and test to 5000 psi for 15 minutes.
 - a. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 14. Install wear bushing then drill out 9-5/8" shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 15. Drill 8-3/4" Vertical hole to KOP Trip out for Curve BHA.
- 16. Drill 8-3/4" Curve, landing in production interval Trip for Lateral BHA.
- 17. Drill 8-1/2" Lateral to Permitted BHL, perform cleanup cycles and trip out to run 5-1/2" Production Casing.
- 18. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 19. Cement 5-1/2" Production string to surface.
- 20. Run in with wash tool and wash wellhead area install pack-off and test to 5000psi for 15 minutes.
- 21. Install BPV in 5-1/2" mandrel hanger Nipple down BOPE and install nightcap.
- 22. Test nightcap void to 5000psi for 30 minutes.

1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

<u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION OCD - HOBBS

1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

06|30|2020

RECEIVED

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number 30-025-47405	² Pool Code 2209	Antelope Ridge: Bones Spring, West			
⁴ Property Code 328512	⁵ Pr MASTIFF 2	6 Well Number #502H			
⁷ OGRID №. 372165		perator Name DURCE PRODUCTION, LLC	⁹ Elevation 3432.2'		

¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
P	22	23S	34E		300	SOUTH	1119	EAST	LEA

¹¹ Bottom Hole Location If Different From Surface

UL or lot no. A	Section 22	Township 23S	Range 34E	Lot Idn	Feet from the 100	North/South line NORTH	Feet from the 1320	East/West line EAST	County LEA
12 Dedicated Acre 320	es 13 J	Joint or Infill	14 Conso	olidation Code	15 Order No.				

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

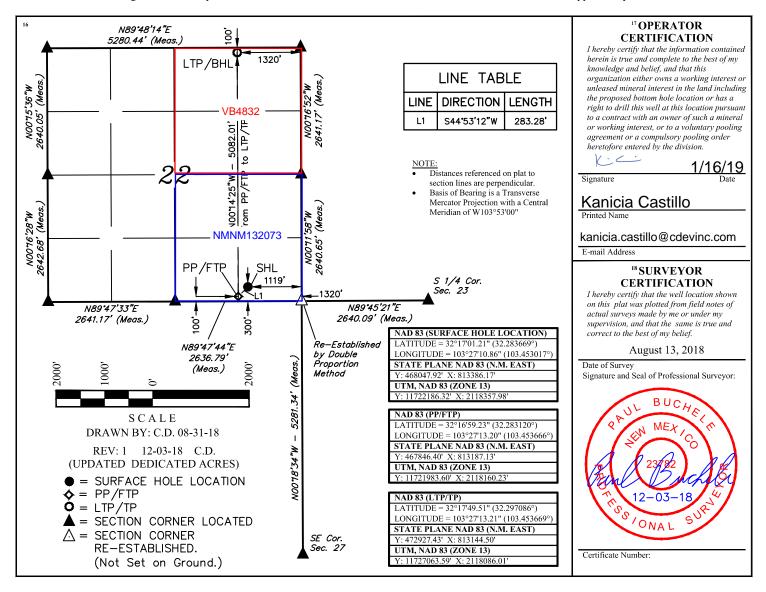
State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number 30-025-47405		² Pool Code 2209	Antelope Ridge: Bones Sp	rina. West
⁴ Property Code		⁵ Pr MASTIFF 2	6 Well Number #502H	
⁷ OGRID No. 372165			perator Name OURCE PRODUCTION, LLC	⁹ Elevation 3432.2'


¹⁰ Surface Location

UL or lot no. S	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
P	22	23S	34E		300	SOUTH	1119	EAST	LEA

¹¹ Bottom Hole Location If Different From Surface

UL or lot no. A	Section 22	Township 23S	Range 34E	Lot Idn	Feet from the 100	North/South line NORTH	Feet from the 1320	East/West line EAST	County LEA
12 Dedicated Acro	es 13 J	oint or Infill	14 Conso	olidation Code	15 Order No.				

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

01/11/2010

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS CAPTURE PLAN

Date: 01/11/2019	
⊠ Original	Operator & OGRID No.: Centennial Resource Production, LLC 372165
☐ Amended - Reason for Amendment:	

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Dandie 22 Federal Com 303H	Pending	P-22-23S-34E	450 FSL 1149 FEL	2860 MCF/D	Neither	New Well
Dandie 22 Federal Com 503H	Pending	P-22-23S-34E	300 FSL 1149 FEL	2660 MCF/D	Neither	New Well
Mastiff 22 Federal Com 301H	Pending	P-22-23S-34E	450 FSL 1089 FEL	2740 MCF/D	Neither	New Well
Mastiff 22 Federal Com 302H	Pending	P-22-23S-34E	450 FSL 1119 FEL	2420 MCF/D	Neither	New Well
Mastiff 22 Federal Com 501H	Pending	P-22-23S-34E	300 FSL 1089 FEL	2220 MCF/D	Neither	New Well
Mastiff 22 Federal Com 502H 30 -	Pending 025-47405	P-22-23S-34E	300 FSL 1119 FEL	2540 MCF/D	Neither	New Well

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated <u>Lucid Energy Group</u> low/high pressure gathering system located in <u>Lea</u> County, New Mexico. It will require <u>0'</u> of pipeline to connect the facility to low/high pressure gathering system. <u>Centennial Resource Production, LLC</u> provides (periodically) to <u>Lucid Energy Group</u> a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, <u>Centennial Resource Production, LLC</u> and <u>Lucid Energy Group</u> have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at <u>Red Hills Plant</u> located in Sec. <u>13</u>, Twn. <u>24S</u>, Rng. <u>33E</u>, <u>Lea</u> County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Lucid Energy Group</u> system at that time. Based on current information, it is <u>Centennial Resource Production</u>, <u>LLC</u>'s belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - o Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines