10 ×						A	ATS-14	-290	
0mn 3160-3 March 2012)							No. 1004-01 October 31,		
	DEPA	UNITED STATES		OCD Hobbs HOBBS		5. Lease Serial No.		2014	
		EAU OF LAND MAN				NM/C 0802			$\angle \mathbb{D}$
AF	PLICATION	FOR PERMIT TO	DRILL OF	r reenuer1 6	2014	6. If Indian, Allotee N/A	e or Tribe	Name	V,
la. Type of work:	XDRILL	REENTI	ER	RECEN	/ED	7. If Unit or CA Agro N/A			d No.
lb. Type of Well:	Coil Well	Gas Well Other	X Si	ngle Zone 🔲 Multij	ole Zone	8. Lease Name and Garnet Federal		_	6
2. Name of Operator		(Lingin)				9. API Well No.	Ba	/	
ConocoPhillip ^{3a.} Address 600 N.			3b. Phone No	. (include area code)		30-025- 4	Explorato	, rv /.	
Office]	210-4-4054 1, TX 77079-	I Ku,		06-5281		Maljamar; Yes	· •	* 7 L	4500
4. Location of Well (R	port location clea	rly and in accordance with an	ty State requirem	ents.*)		11. Sec., T. R. M. or B		rvey or	Area
At surface 685' F	SL and 270' I	FEL; UL P, Sec. 15, 1	17S, 32E			Sec. 15, 17S, 3	2E		
At proposed prod. z	one 964' FSL a	and 343' FEL; UL P,	Sec. 15, 17	7S, 32E					
		arest town or post office*				12. County or Parish		13. St	
5. Distance from propo		east of Maljamar, No 270'	16. No. of a		17 Spacir	Lea County	wall	NM	·
location to nearest property or lease line (Also to nearest drig	;, ft.	surface 343'	80	cres in lease	40		wen		
8. Distance from propos	ed location*	b3ffom	19. Proposed	•		BIA Bond No. on file			
to nearest well, drillin applied for, on this le	ase, ft.		7091' 1	CVD/7099' MD	ES 00	85			
1. Elevations (Show w	hether DF, KDB,	RT, GL, etc.)		nate date work will sta	rt*	23. Estimated duration	n		
4031'			1	/201 3/		7 days			
			24. Attac	hments					
he following, completed	in accordance with	the requirements of Onshor	e Oil and Gas	Order No.1, must be a	tached to th	is form:			
. Well plat certified by	registered survey)r.			ne operatio	ns unless covered by an	existing b	ond on	file (see
2. A Drilling Plan.	if the location is	on National Forest System	Landa the	Item 20 above). 5. Operator certific	ation				
		Forest Service Office).	Lanus, me	6. Such other site		ormation and/or plans as	may be re	equired	by the
			Nama	BLM.			Data	1 1	
5. Signature Susp	m B. T	Naunder		(Printed/Typed). in B. Maunder			Date 12	<u> </u>	13
Senior Regulat	ory Specialist								
pproved by (Signature)	ve Caf	ev	Name	(Printed/Typed)			DJUN	13	2014
	DMANAGER		Office						
Application approval doe onduct operations therec Conditions of approval, i	s not warrant or ce n.	rtify that the applicant hold	s legal or equit	able title to those right	s in the sub	jectlease which would e	ntitle the a	ipplican	it to
itle 18 U.S.C. Section 100	1 and Title 43 U.S.	C. Section 1212, make it a cr ments or representations as t	ime for any pe o any matter w	rson knowingly and w ithin its jurisdiction.	rillfully to m	nake to any department o	r agency	of the U	Jnited
Continued on pag						*(Insti	ructions	sonn	age 2)
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		Va	5		(200)		r*	ر
ROSWELL COF	IDROILLED F	VATER BASEN	06	116/14 ·					
			•		-				
					¥~ 1	۶ 	•		2
roval Subject to G & Special Stipul	eneral Requir	ements			OTT	ATTACHE	D. Tel N	R	
	WONS Attacho	.d -			- DEL	CANA A MALINDAGA		<i>5</i> ₩	

uons Attached

CONDITIONS OF APPROVAL (* JUN 1 7 2014

Operator Certification

CONOCOPHILLIPS COMPANY

CERTIFICATION:

I hereby certify that I, or persons under my direct supervision, have inspected the proposed drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of State and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application with bond coverage provided by Nationwide Bond ES0085. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

. Maunde Jugan

Date: 12/11/13

Susan B. Maunder Senior Regulatory Specialist

HOBBS OCD JUN 16 2014 RECEIVED

Drilling Plan ConocoPhillips Company <u>Maljamar; Grayburg-San Andres, Yeso (west)</u>

Garnet Federal #6

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depth FT TVD	Top Depths FT MD	Contents
Quaternary	Surface	Surface	Fresh Water
Rustler	885	885	Anhydrite
Salado (top of salt)	1043	1043	Salt
Tansill (base of salt)	2066	2066	Gas, Oil and Water
Yates	2210	2210	Gas, Oil and Water
Seven Rivers	2573	2574	Gas, Oil and Water
Queen	3189	3191	Gas, Oil and Water
Grayburg	3603	3605	Gas, Oil and Water
San Andres	3956	3959	Gas, Oil and Water
Glorieta	5452	5458	Gas, Oil and Water
Paddock	5538	5544	Gas, Oil and Water
Blinebry	5819	5825	Gas, Oil and Water
Tubb	6891	6899	Gas, Oil and Water
Deepest estimated perforation	6891	6899	Deepest estimated perf. is ~ Top of Tubb
Total Depth (maximum)	7091	7099	200' below deepest estimated perforation

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u> production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

2. Proposed casing program:

ster of

Туре	Hole Size	M	Interval D RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str		Safety Fa lated per Co Corporate C	nocoPhillips
 Type	(in)	From	То	(inches)	(lb/ft)		Conin	(psi)	(psi)	(kibs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	20	0	40' - 85' (30' - 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	940' - 955'	8-5/8	24#	J-55	STC	2950	1370	244	1.53	3.23	3.49
 Prod	7-7/8	0	7044' – 7089'	5-1/2	17#	L-80	LTC	7740	6290	338	2.10	2.49	1.97

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	955	24	2950	1370	244000	8.5	6.99	3.25	10.6	12.2
Production Casing	7089	17	7740	6290	338000	10	2.10	1.70	2.80	3.31

Casing Safety Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate Criteria for Minimum Design Factors

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

'Conductor Surface Casing (8-5/8" 24# J-55 STC)	85	Wt_	MIY 65 3500	Col	Jt Str	Pipe Yie 4329		Burs		Ten					
	955	i	24 295	0 13	70 244000	3810	00 8.5	5 1.5		.23 3.	49				
Production Casing (5-1/2" 17# L-80 LTC)	7099	<u> </u>	17 774	0 62	90 338000	39700	00 10	2.1	0 2	.49[1.	.97				
Burst - ConocoPhillips Required Load Cases															
The maximum internal (burst) load on the Surface Casing occurs when th The maximum internal (burst) load on the Production Casing occurs during								ements)	.						
(LIAWP) is the pressure that would fit ConocoPhilips Corporate Criteria fo	or Winimum Fa	ctors.	Don which e b	IIG MAARI		counting but	33018		_						
Surface Casing Test Pressure =	1500				dicted Pore Pi				5 ppg						
Surface Rated Working Pressure (BOPE) = Field SW =	3000	psr PPg		Predic	ted Frac Gra	lient at Sho	6 (CSFG) =	19.2	3 ppg						
Surface Casing Burst Safety Factor = API Burst Rating / Ma Production Casing MAWP for the Fracture Stimulation = API	ximum Predic	ted Sur				m Allowabl	e Surface Pre	ssure (uasp)						
	a a carrier carriery o			i barar b											
"Surface Casing Burst Safety Factor: Case #1. MPSP (MWhyd next section) =	955	x	0.052	×	10	=	497								
Case #2. MPSP (Field SW @ Bullhead _{CSF3} + 200 psi) =	955		0.052		19.23	-	497	+	200		658				
Case #3. MPSP (Kick Vol @ next section TD) = Case #4. MPSP (PPTD - GG) =	7099 7099		0.052 0.052		8.55 8.55	:	614.4 709.9	• =	422 2446	=	2120				
Case #3 & #4 Limited to MPSP (CSFG + 0.2 ppg) =	955	x	0.052	X		÷	0.2) =	965						
MASP (MWhyd + Test Pressure) = Burst Safety Factor (Max, MPSP or MASP) =	955 2950		0.052 1922	× =	8.5 1.53	+	1500	=	1922						
Production Casing Burst Safety Factor:															
Case #1. MPSP (MWhyd TD) = Case #4. MPSP (PPTD - GG) =	7099 7099		0.052 0.052	x x	10 8.55	-	3691.48 709.9	=	2446						
Burst Safety Factor (Max. MPSP) =	7740	- 1		- =	2.10			-							
MAWP for the Fracture Stimulation (Corporate Criteria) =	7740	1	1.15] =	6730										
Collapse - ConocoPhillips Required Load Cases															
<u>Lonapse - Conocophilips Required Coao Cases</u> The maximum colapse load on the Surface Casing occurs when cementing	g to surface,	1/3 eva	cuation to th	ie next ci	ising setting o	lepih, or dei	epest depth a	of expos	sure (full e	vacuation)					
The maximum collapse load on the Production Casing occurs when cement															
Interefore, the external pressure profile for the evacuation cases about be Surface Casing Collapse Safety Factor = API Collapse Rating								WC 238	unted to b	e PPTD.					
Production Casing Collapse Safety Factor = API Collapse Rai	ting / Maximur	n Predk		Pressur	e 'OR' Cemeni	Displaceme	nt during Cer	menting	to Surfac	e					
Cement Displacement Fluid (FW) = Surface Cement Lead =	8.34 13.6		Pr		Cement = nt Lead = [Cement to S 11 I	urface B ppg								
Surface Cement Tall =	14.8	ppg	1	Prod Cen	ent Tell =	16.4	1 ppg								
Top of Surface Tail Cement =	300	ft	Top of i	Prod Tail	Cement =	520	Djft								
Surface Casing Collapse Safety Factor:	055		0.050												
Full Evacuation Diff Pressure = Cementing Diff Lift Pressure =	955 ((x 655	0.052 x	× 0.052	8.55 x	= 13.6	425)+(300	×	0,052	x	14.8	1.	414	= 280
Collapse Safety Factor =	1370	1	425	=	3.23		, ,						,		,
Production Casing Collapse Safety Factor: 1/3 Evacuation Diff Pressure =	K	7099	x	0.052	x	8.55) - (7099	,	3	x	0.052	x	8 34)] = 213
Cementing Diff Lift Pressure =	K	1899	x	0.052	x	11.8) + (5200	x	0.052	x	16.4] = 252
Collapse Safety Factor =	6290	1	2521	=	2.49										
Tensial Strength - ConocoPhillips Required Load Cases															
The maximum axial (lension) load occurs if casing were to get stuck and pu				Linimum	Axial Desica	Factor									
The maximum axial (lension) load occurs it casing were to get stuck and pu Naximum Alowable Axial Load for Pipe Yield = API Pipe Naximum Alowable Axial Load for Joint = API Joint Stren	Yield Strengtl 19th Rating / C	h Rating Corpora	/ Corporate te Llinimum A	Axial Des	gn Factor	Factor						,			
The maximum axial (lension) load occurs if casing were to get stuck and pu llaximum Atowable Axial Load for Pipe Yield - API Pipe llaximum Atowable Axial Load for Joint - API Joint Stren llaximum Atowable Hook Load (Linted to 75% of Rig Ma	Yield Strengtl 1gth Rating / C ax Load) = Ma	h Rating Corpora winum) / Corporate te Llinimum A Allowable A	Axial Des Ixial Load	gn Factor	Factor									
The maximum axial (lension) load occurs it casing were to get stuck and pu Naximum Alowable Axial Load for Pipe Yield = API Pipe Naximum Alowable Axial Load for Joint = API Joint Stren	Yield Strength ngth Rating / C ex Load) = Ma ele Hook Load ngth 'OR' Rig I	h Rating Corporat sximum I - Bouyi Max Lot) / Corporate to Llinimum A Albovable A ant Wt of the	Axial Des Ixial Load String	gn Factor		verpuil Requi	red)							
The maximum axial (lension) load occurs if casing were to get stuck and pu liaximum Atowabie Axial Load for Pipe Yield - API Pipe i Maximum Atowabie Axial Load for John - API Johni Stren Naximum Atowabie Hock Load (Linzed to 75% of Rig Ma Maximum Atowabie Hock Load (Linzed to 75% of Rig Ma Maximum Atowabie Hock Load (Linzed to 75% of Rig Ma Tensial Safety Factor - API Pipe Yield 'OR' API Johni Stre Rig Max Load (2000,000 bas) x 75% =	Yield Strength ngth Rating / C ax Load) = Wa the Hook Load ngth <u>'OR' Rig</u> 225000 a	h Rating Corporat sximum I - Bouyi Max Loi bs) / Corporate to Llinimum A Albovable A ant Wt of the	Axial Des Ixial Load String	gn Factor		verpui Requi	red)							
The maximum axial (lension) load occurs if casing were to get stuck and pu llaximum Alowable Axial Load for Fige Yield - API Pige llaximum Alowable Axial Load for Joint = API Joint Stree llaximum Alowable Overpub Margin = Maximum Alowab Maximum Alowable Overpub Margin = Maximum Alowab Tensial Safety Factor = API Pige Yield 'OR' API Joint Stree Rig Max Load (300,000 lbs) x 75% = Uinimum Overpub Required =	Yield Strength ngth Rating / C ex Load) = Ma ele Hook Load ngth 'OR' Rig I	h Rating Corporat sximum I - Bouyi Max Loi bs) / Corporate to Llinimum A Albuvable A ant Wt of the	Axial Des Ixial Load String	gn Factor		verpul Requi	red)							
The maximum axial (lension) load occurs if casing were to get stuck and pu liaximum Atowabie Axial Load for Pipe Yield - API Pipe i Maximum Atowabie Axial Load for John - API Johni Stren Naximum Atowabie Hock Load (Linzed to 75% of Rig Ma Maximum Atowabie Hock Load (Linzed to 75% of Rig Ma Maximum Atowabie Hock Load (Linzed to 75% of Rig Ma Tensial Safety Factor - API Pipe Yield 'OR' API Johni Stre Rig Max Load (2000,000 bas) x 75% =	Yield Strength ngth Rating / C ax Load) = Wa the Hook Load ngth <u>'OR' Rig</u> 225000 a	h Rating Corporat sximum I - Bouyi Max Loi bs) / Corporate to Llinimum A Albuvable A ant Wt of the	Axial Des Ixial Load String	gn Factor		verpus Requi	red)							
The maximum axial (lension) load occurs if casing were to get stuck and pu Naximum Alowable Axial Load for Pipe Yield - API Pipe Maximum Alowable Axial Load for Joint - API Joint Stree Naximum Alowable Overput Margin - Maximum Atowab Tensial Safety Factor - API Pipe Yield 'OR' API Joint Stree Rig Max Load (300,000 bs) x 75% - Uninnum Overput Required - Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt =	Yieki Strengti ngth Rating / C ex Load) = Ma the Hook Load ngth 'OR' Rig 225000 1 50000 1 22920 22920	h Rating Corporat aximum - Bouyi Max Los bs bs bs) / Corporate to Linknum A Allowable A ant Wi of the ad Rating / (0.870	Axial Des xial Lead 2 SIring Bouyant	ign Factor W1 of String - 19946		verpuš Requi	red)							
The maximum axial (lension) load occurs if casing over to get stuck and pu liaximum Atowable Axial Land for Pipe Yield - API Pipe iliaximum Atowable Hock Load (Linded to 75% of Rig Ma Maximum Atowable Hock Load (Linded to 75% of Rig Ma Maximum Atowable Hock Load (Linded to 75% of Rig Ma Maximum Atowable Hock Load (Linded to 75% of Rig Ma Maximum Atowable Accept Margin = Maximum Atowable Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stre Rig Max Load (200,000 bs) x 75% = Linimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Bouyant Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) =	Yield Strength ngth Rating / C ex Load) = Ma He Hook Load ngth 'OR' Ng 225000 1 50000 1 22920 22920 381000	h Rating Corporat aximum - Bouyi Max Lo: bs bs bs t x /	Corporate to Linknum A Allowable A ant Wi of the ad Rating / (0.870 1.40	Axial Des oxial Load String Bouyant Eouyant	ign Factor W1 of String - 19946 272143		verpuil Requi	red)							
The maximum axial (lension) load occurs if casing vore to get stuck and pu litaximum Alowable Axial Load for Pipe Yield - API Pipe il Aximum Alowable Axial Load for Joint - API Joint Stree Naximum Alowable Hook Load (Limited to 75% of Rig Ma Maximum Alowable Hook Load (Limited to 75% of Rig Ma Maximum Alowable Hook Load (300,000 bs) x 75% = Ulinimum Overpub Nargin - Maximum Alowable Rig Max Load (300,000 bs) x 75% = Ulinimum Overpub Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) =	Yield Strength ngth Rating / C zz Load) = Ma kile Hook Load ngth 'OR' Rig 225000 50000 22920 22920 381000 244000 174286	h Rating Corporat aximum - Bouyn Max Lot bs bs bs bs / / /) / Corporate to Linknum A Allowable A ant W1 of the ad Rating / (0.870 1.40 1.40	Axial Des xial Lead 2 SIring Bouyant	ign Factor Wt of String - 19946 272143 174286	Minimum O		red)							
The maximum axial (lension) load occurs if casing vore to get stuck and pu Naximum Alowable Axial Load for Pipe Yield - API Pipe Maximum Alowable Axial Load for Joint - API Joint Stree Naximum Alowable Hook Load (Linted to 75% of Rig Ma Maximum Alowable Overpul Margin = Maximum Atowable Tensial Safety Factor - API Pipe Yield 'OR' API Joint Stree Rig Max Load (300,000 bs) x 75% - Uinimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) =	Yield Strength ngth Rating / C sz Load) = Ua ide Hook Load 225000 1 50000 1 22920 22920 381000 174286 174286	h Railing Carpara xximum - Bouyi Ulax Loi bs bs bs x / / / /) / Corporate to Winimum A Allowable A Anit Wi of the ad Rating / (0.870 1.40 1.40 22920	Axial Des axial Lead S String Bouyant E = = = x	ign Factor 441 of String - 19946 272143 174286 0.870	Minimum O) ≕	154340	red)							
The maximum axial (lension) load occurs if casing vere to get stuck and pu litaximum Atowable Axial Load for Pipe Yield - API Pipe' litaximum Atowable Axial Load for Joint - API Joint Stren litaximum Atowable Hook Load (Linted to 75% of Rig Ma Maximum Atowable Hook Load (Linted to 75% of Rig Ma Maximum Atowable Hook Load (Joint) - API Pipe Yield 'OR' API Joint Stren Rig Max Load (300,000 lbs) x 75% - Binimum Overput Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Joint) = Max. Allowable Overput Margin = Tensial Safety Factor =	Yield Strength ngth Rating / C zz Load) = Ma kile Hook Load ngth 'OR' Rig 225000 50000 22920 22920 381000 244000 174286	h Rating Corporat aximum - Bouyn Max Lot bs bs bs bs / / /) / Corporate to Linknum A Allowable A ant W1 of the ad Rating / (0.870 1.40 1.40	Axial Des axial Lead S String Bouyant Bouyant = = =	ign Factor Wt of String - 19946 272143 174286	Minimum O		red)							
The maximum axial (lension) load occurs if casing vere to get stuck and pu Naximum Alowable Axial Load for Pipe Yield - API Pipe ' Maximum Alowable Axial Load for Joint - API Joint Stree Naximum Alowable Hook Load (Linated to 75% of Rig Ma Maximum Alowable Hook Load (Linated to 75% of Rig Ma Maximum Alowable Hook Load (Joint) = Naximum Alowable Tensial Safety Factor - API Pipe Yield 'OR' API Joint Stree Rig Max Load (300,000 bs) x 75% = Uninnum Overpul Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor = Production Casing Tensial Strength Safety Factor:	Yield Strengtl rgth Rating / C ex Load) = Ua is Hook Load ngth YOR Reg 2250001 500001 22920 29200 381000 244000 174286 174286 244000 120583	h Rating Corporat aximum. - Bouyn Itax Lot bs bs bs / / / / / / /) / Corporate to Minimum A Altowable A ant Wt of the ad Rating / (0.870 1.40 1.40 22920 19946	Axial Des xial Load SIring Bouyant Bouyant = = x +	gn Factor W1 of String - 272143 174286 0.870 50000	Minimum O) ≕	154340	red)							
The maximum axial (lension) load occurs if casing vere to get stuck and pu litaximum Atowable Axial Load for Pipe Yield - API Pipe' Maximum Atowable Axial Load for Joint - API Apin Stem Maximum Atowable Hock Load (Linted to 75% of Rig Ma Maximum Atowable Hock Load (Linted to 75% of Rig Ma Maximum Atowable Hock Load (2000) Boisy 75% = Rig Max Load (3000) Boisy 75% = Binimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dioit) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Production Casing Tensial Strength Safety Factor:	Yield Strengt) rgth Rating / C ex Loed) = Unit lie Hook Loed 225000 50000 22920 22920 22920 281000 244000 174286 244000	h Railing Carpara xximum - Bouyi Ulax Loi bs bs bs x / / / /) / Corporate to Winimum A Allowable A Anit Wi of the ad Rating / (0.870 1.40 1.40 22920	Axial Des axial Lead S String Bouyant E = = = x	ign Factor 441 of String - 19946 272143 174286 0.870	Minimum O) ≕	154340	red)							
The maximum axial (lension) load occurs if casing vere to get stuck and pu litaximum Alowable Axial Load for Pipe Yield - API Pipe' Maximum Alowable Makit Load for Joint - API Joint Stem Maximum Alowable Hick Load (Linted to 75% of Rig Ma Maximum Alowable Hick Load (Linted to 75% of Rig Ma Maximum Alowable Hick Load (Joint) - Maximum Alowable Rig Max Load (300,000 bas) x 75% = Biufinum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Overpull Margin = Tensial Safety Factor = Production Casing Tensial Strength Safety Factor = Production Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) =	Yield Sirengti rgth Raing / C sc Load) - Ma ie Hook Load acth OK Rig 225000 i 50000 i 22920 22920 381000 244000 174286 174286 174286 344000 120683 397000	h Rating Corporat aximum - Bouyn Bax Lo: bs bs bs / / / / / / / / / / / / /	0.870 0.874 0.870 0.874 0.847 0.	Axial Des xial Load Slring Bouyant = = x +	gn Factor VII of String - 272143 174286 0.870 50000 102258	Minimum O) ≕	154340	red)							
The maximum axial (lension) load accurs if casing vere to get stuck and pu liaximum Atowabie Axial Load for Pipe Yield - API Pipe iliaximum Atowabie Hock Load (linted to 75% of Rig Ma Maximum Atowabie Hock Load (linted to 75% of Rig Ma Maximum Atowabie Hock Load (linted to 75% of Rig Ma Maximum Atowabie Hock Load (00,000 bis) ar 75% - Big Max Load (200,000 bis) ar 75% - Big Max Allowabie Axial Load (Pipe Yield) = Max. Allowabie Axial Load (Joint) = Max. Allowabie Safety Factor: Production Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowabie Axial Load (Pipe Yield) =	Yield Strengtl rgth Rating / C as Load) = Ua ist Hook Load (25000) i 50000 i 22920 22920 22920 381000 244000 174286 244000 120683 120683 397000 338000 225000	h Rating Corporat - Bouyn Hax Lot bbs bbs - ((/ (X / /	1 Corporate 15 Mihmum A Alowabis A ani Wi of the ad Rating / (0.870 1.40 1.40 22920 19946 0.847 1.40 1.40 1.40	Axial Des xial Load String Bouyant = = x + = = x +	In Factor 19946 272143 174286 0.870 50000 102258 283571 241429	Minimum () ,) =) =	154340 3.49	red)							
The maximum axial (lension) load occurs if casing vere to get stuck and pu litaximum Alowable Axial Load for Pipe Yield - API Pipe' Maximum Alowable Makit Load for Joint - API Joint Stem Maximum Alowable Hick Load (Linted to 75% of Rig Ma Maximum Alowable Hick Load (Linted to 75% of Rig Ma Maximum Alowable Hick Load (Joint) - Maximum Alowable Rig Max Load (300,000 bas) x 75% = Biufinum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Overpull Margin = Tensial Safety Factor = Production Casing Tensial Strength Safety Factor = Production Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) =	Yield Strengtl rgth Rating / C school (1997) (22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 120683 120683 120683 120683 397000) 338000 225000	h Rating Corpora aximum. I- Bouyi Max Lo: bbs bs / / / / / / / / / /) / Corporate to Librium A Alowable A and Will of the ad Rating / (0.870 1.40 1.40 1.946 19946 0.847 1.40	Axial Des oxial Load SIring Bouyant E = = x + +	In Factor 49946 272143 174286 0.870 50000 102258 283571	Minimum O) ≕	154340	red)							
The maximum axial (lension) load accurs if casing vere to get stuck and pu litaximum Atowable Axial Load for Pipe Ytel API Pipe' Maximum Atowable Axial Load for Joint = API Joint Stren Naximum Atowable Hook Load (Linted to 75% of Rig Ma Maximum Atowable Hook Load (Linted to 75% of Rig Ma Maximum Atowable Hook Load (Joint) = Maximum Atowable Rig Max Load (300,000 bis) x 75% = Binimum Overput Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yteld) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Tensial Safety Factor = Production Casing Tensial Strength Safety Factor = Production Casing Tensial Strength Safety Factor = Max. Allowable Axial Load (Joint) =	Yield Strengtl rgth Rating / C school (1997) (22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 22920) 120683 120683 120683 120683 397000) 338000 225000	h Raiing Corporai xxinum. - Bouyn Illax Le: bbs bbs - (/ (/ / / / / / / / / /	1 Corporata to Minimum A Albovable A Aani Wi of the ad Rating / (0.870 1.40 1.40 1.40 19946 0.847 1.40 1.40 1.40	Axial Des xial Load S Siring Bouyant = = = x + = = x + x x	In Factor 19946 272143 174286 0.870 50000 102258 283571 241429 0.847) =) =	154340 3.49 122742	red)							
The maximum axial (lension) load accurs if casing vere to get stuck and pu litaximum Atiowable Axial Load for Pipe Yield - API Pipe' Maximum Atiowable Mail Load for Joint - API Aich Strein Nakimum Atiowable Hock Load (Linted to 75% of Rig Ma Maximum Atiowable Hock Load (Linted to 75% of Rig Ma Maximum Atiowable Factor - API Pipe Yield 'OR' API Joint Stee Rig Max Load (2000) bas) x 75% = Uninnum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Bouyant Wt = Bouyant Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) =	Yield Strengtl rgth Rating / C school and school and sc	h Raing Carpara Saxinum I- Bouy Ilax Loi bs bs - (/ (/ / / / /	1 Corporata to Minimum A Adouvable A Adouvable A Adouvable A and W1 of the ad Rating / (0.870 1.40 1.40 1.40 1.40 1.9946 0.847 1.40 1.40 1.40 1.40 1.40	Axial Des xial Load S Siring Bouyant = = = x + = = x + x x	In Factor 19946 272143 174286 0.870 50000 102258 283571 241429 0.847) =) =	154340 3.49 122742	red)							
The maximum axial (lension) load accurs if casing vere to get stuck and pu liaximum Atowable Axial Land for Pipe Yteld - API Pipe 'liaximum Atowable Hock Load (Linted to 75% of Rig Ma Maximum Atowable Hock Load (Linted to 75% of Rig Ma Maximum Atowable Hock Load (Linted to 75% of Rig Ma Maximum Atowable Hock Load (Linted to 75% of Rig Ma Maximum Atowable Hock Load (Linted to 75% of Rig Ma Maximum Atowable Hock Load (Linted to 75% of Rig Ma Maximum Atowable Hock Load (Diry Or API Join Strie Rig Max Load (200,000 bs) x 75% - Unitrum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Diripe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Linted to 75% of Rig Max Load) = Max. Allowable Hook Load (Linted to 75% of Rig Max Load) = Max. Allowable Axial Load (Cint) =	Yield Sirengti rgth Raing / C sc Load) - Ma ise Hook Load acth OK Rig 225000 i 50000 i 22920 22900 225000 20000 225000 20000	h Raing Carpara aximum. - Bouyy Idax Lei bs bs - (/ (/ / / / / / / / / / / / / / / / /	/ Corporate to Minimum A Allowable A and Will of the ad Rating / (0.870 1.40 1.40 1.40 19946 0.847 1.40 19946 0.847 1.40 120683 102258 conductor	Axial Des xial Load S Siring Bouyant = = = x + = = x + x x	In Factor 19946 272143 174286 0.870 50000 102258 283571 241429 0.847) =) =	154340 3.49 122742)							
The maximum axial (lension) load accurs if casing vere to get stuck and public taximum Atowable Axial Load for Pipe Ytel API Pipe' Maximum Atowable Axial Load for Joint = API Aich Strem Maximum Atowable Hook Load (Linted to 75% of Rig Ma Maximum Atowable Hook Load (Linted to 75% of Rig Ma Maximum Atowable Hook Load (Linted to 75% of Rig Ma Maximum Atowable Hook Load (Joint) = Maximum Atowable Rig Max Load (300,000 bas) a 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yteld) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Lintied to 75% of Rig Max Load) = Max. Allowable Axial Load (Lintie) = Max. Allowable Axial Load (Lintie) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Lintie) = Max. Allowable Axial Load (Lintie) = Max. Allowable Axial Load (Lintie) = Max. Allowable Axial Load Ax Joint = Max. Allowable Axial Load Axia Haxis Axia Maxis Axia Maxis (compression) Isad for the wells where the surface cash is also calual but not Imited. Any olher axial Isads such as a soubbing und or other wouk	Yield Strengtl rgth Rating / C school and school and sc	h Rating Carpara aximum. - Bouyn Ulax Lo: bs bs bs - (/ (/ / / / / / / / / / / / / / / / /	(Corporata to Minimum A Adiovable A Adiovable A Adiovable A Adiovable A Adiovable A ad Rating / (0.870 1.40 1.40 1.22920 19946 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	xxial Des xial Load > Siring Bouyant = = x + = = = x + + x +	In Factor 19946 272143 174286 0.870 50000 102258 283571 241429 0.847 50000) =) =	154340 3.49 122742	red)							
The maximum axial (lension) load accurs if casing vere to get stuck and pu litaximum Atowable Axial Load for Pipe Yiel - API Pipe - Maximum Atowable Mack Load (linted to 75% of Rig Ma Maximum Atowable Hock Load (linted to 75% of Rig Ma Maximum Atowable Hock Load (linted to 75% of Rig Ma Maximum Atowable Hock Load (Cloud Obes) × 75% = Rig Max Load (300.00 bes) × 75% = Unitrum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Dint) = Max. Allowable Overpull Margin = Bouyant Wt = Bouyant Wt = Bouyant Wt = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Lintied to 75% of Rig Max Load) = Max. Allowable Axial Load (Lintied to 75% of Rig Max Load) = Max. Allowable Axial Load (Lintied to 75% of Rig Max Load) = Max. Allowable Axial Load (Lintied to 75% of Rig Max Load) = Max. Allowable Axial Load (Lintied to 75% of Rig Max Load) = Max. Allowable Axial Load Load (Lintied to 75% of Rig Max Load) = Max. Allowable Axial Load Load (Lintied to 75% of Rig Max Load) = Max. Allowable Axial Load Load Load Load Load Load (Lintied to 75% of Rig Max Load) = Max. Allowable Axial Load Load Load Load Load Load Load Load	Yield Strengtl rgth Rating / C sc Load) - Ma is Hook Load rgth OR Raj 225000 i 50000 i 22920 22920 22920 22920 22920 240000 174286 174286 174286 174286 174286 174286 174286 174286 120683 397000 338000 225000 225000 397000 300000 300000 225000 20000 200 2000 2	h Rating Carpara axinum. - Bouyn Max Lon bs bs - (/ / / / / / / / / / / / / / / / / / (/	(Corporata to Minimum A Adiovable A Adiovable A Adiovable A Adiovable A Adiovable A ad Rating / (0.870 1.40 1.40 1.22920 19946 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	xxial Des xial Load > Siring Bouyant = = x + = = = x + + x +	In Factor 19946 272143 174286 0.870 50000 102258 283571 241429 0.847 50000) =) =	154340 3.49 122742	red)			·				
The maximum axial (lension) load accurs if casing vere to get stuck and public load for Joint - API API Piee's Maximum Atowable Axial Load for Joint - API Joint Strem Maximum Atowable Hook Load (Linted to 75% of Rig Ma Maximum Atowable Hook Load (Linted to 75% of Rig Max Load) (200,000 bas) x 75% - Bintrum Overput Required - API Piee Yteld 'OR' API Joint Strem Overput Required - Bouyant W1 = Bouyant W1 = Max. Allowable Axial Load (100) (Pipe Yteld) (Pipe Y	Yield Strengtl rgth Rating / C school and school and sc	h Rating Carpara axinum. - Bouyn Max Lon bs bs - (/ / / / / / / / / / / / / / / / / / (/	(Corporata to Minimum A Adiovable A Adiovable A Adiovable A Adiovable A Adiovable A ad Rating / (0.870 1.40 1.40 1.22920 19946 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	xxial Des xial Load > Siring Bouyant = = x + = = = x + + x +	In Factor 19946 272143 174286 0.870 50000 102258 283571 241429 0.847 50000) =) =	154340 3.49 122742	red)							
The maximum axial (lension) load accurs if casing vere to get stuck and pu litaximum Atowable Axial Load for Pipe Yiel - API Pipe Maximum Atowable Makial Load for Joint - API Aichi Stren Nawimum Atowable Hook Load (Lindeo to 75% of Rig Ma Maximum Atowable Hook Load (Lindeo to 75% of Rig Ma Maximum Atowable Hook Load (Lindeo to 75% of Rig Ma Maximum Atowable Factor - API Pipe Yield OR' API Joint Stee Rig Max Load (2000 bas) z 75% = Unitrum Overpuil Required = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dioint) = Max. Allowable Axial Load (Dioint) = Max. Allowable Axial Load (Dioint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Linit) = Max. Allowable Axial Load (Yield Strengtl rgth Rating / C sc Load) - Ma ie Hook Load rgth OR Raj 225000 g 22920 244000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 330000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 200000 200	h Rating Carpara axinum. - Bouyn Max Lon bs bs - (/ / / / / / / / / / / / / / / / / / (/	/ Corporate to Minimum A Allowable A Allowable A Allowable A and Will of the ad Rating / (0.870 1.40 1.40 1.40 22920 19946 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	xxial Des xial Coad > Siring Bouyant = = X + + X + Cled Load	In Factor 19946 272143 174286 0.870 50000 102258 283571 241429 0.847 50000) =) =	154340 3.49 122742	red)							
The maximum axial (lension) load occurs if casing vere to get stuck and public dationum Atowable Axial Load for Joint – AFI Joint Streen Maximum Atowable Axial Load for Joint – AFI Joint Streen Maximum Atowable Hook Load (Linted to 75% of Rig Ma Maximum Atowable Hook Load (Linted to 75% of Rig Ma Maximum Atowable Tensial Safety Factor – AFI Pipe Yield OR' AFI Joint Streen Bulkinum Overput Required = Bouyant Wt = Bouyant Wt = Bouyant Wt = Max. Allowable Axial Load (Dripe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Limited to 75% of Rig Max Load) = Max. Allowable Axial Load (Limited to 75% of Rig Max Load) = Max. Allowable Axial Load (Joint) = Tensial Safety Factor = Max. Allowable Axial Load (Joint) = Joint Joint Joint = Axial Joint Sinter Axial Joi	Yield Strengtl rgth Rating / C school (1997) 22920 244000 174286 3397000 338000 225000 300000 225000 225000 300000 225000 20000 225000 300000 225000 20000 225000 20000 225000 20000 225000 20000 225000 200000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 200000 200000 200000 200000 2000000	h Rating Carpara: - Bouy Max Lo: bs bs - (/ / / / / / / / / / / / / / / / / / /	/ Corporata to Minimum A Albovable A Anni Wi of the ad Rating / (0.870 1.40 22920 19946 0.847 1.40 1.40 1.40 1.20683 102258 conductor te load o the load, xtnum Predik	xial Des xial Load e String Bouyant = = = x + + = = x + + cled Load 0.870 0.847	gn Factor 19946 272143 174286 0.870 50000 102258 283571 241429 0.847 50000 0.847 50000) =) =) =	154340 3.49 122742	red)							
The maximum axial (lension) load accurs if casing vere to get stuck and public liability of the API Ref Maximum Atowable Axial Load for Joint = API Apin Per Maximum Atowable Ktok Load (Lindeo to 75% of Rig Ma Maximum Atowable Hook Load (Lindeo to 75% of Rig Ma Maximum Atowable Hook Load (Lindeo to 75% of Rig Ma Maximum Atowable Hook Load (Soloo) Bay 3 75% = Big Max Load (3000) Bay 3 75% = Uninnum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) Pipe Yield (Dint) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load Cir The maximum axid (compression) load for the well is where the surface case with a support of a plate or landng ring. The surface cashig is also calculat but not limited. Any other axial loads such as a sombining und or other vouk Compression Safety Factor = API Axial Joint Strength Rating 'OR' API Axial P Wettheed Load = Conductor & Surface Compression Safety Factor Surf Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Prod Casing Wt (Air Wt) =	Yield Strengtl rgth Rating / C sc Load) - Mail iel Hook Load rgth Ork Raj 225900 22920 244000 120683 337000 225000 22500 200 2	h Rating Carpara, - Bouy Max Lei bs bs - ((/ (x / / / / / / / / / / / / / / / / / / /	/ Corporate to Minimum A Adouvable A Adouvable A Adouvable A Adouvable A and W1 of the ad Rating / (0.870 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.4	xxial Des xxial Coad > Siring Bouyant = = - - - - - - - - - - - - - - - - -	gn Factor 19946 272143 174286 0.870 50000 102258 283571 241429 0.847 50000 9) =) = 46144) =) =) =) = 19946 102258	154340 3.49 122742 1.97		2 441	- 12					
The maximum axial (lension) load occurs if casing vere to get stuck and pu litaximum Atowable Axial Load for Pipe Yteld - API Pipe ilitaximum Atowable Hook Load (Linted to 75% of Rig Ma Maximum Atowable Hook Load (Linted to 75% of Rig Ma Maximum Atowable Hook Load (Linted to 75% of Rig Ma Tensial Safety Factor - API Pipe Yteld OR' API Join Stire Rig Max Lead (200,000 bas) x 75% - Big Max Lead (200,000 bas) x 75% - Max Allowable Axial Load (Joint) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Diont) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Diont) = Max. Allowable Axial Load (Diont) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength — ConocoPhillips. Required Load Ca The maximum axial (compression) bad for the web is where the surface ca with a support of a plate or landing ring. The surface casing is also calculal but not limbed. Any other axial bads such as a snubbing und ar ather wouk Compression Safety Factor = API Axial Joint Slowaff Can Axial Pipe Vetihead Lead = Conductor & Surface Compression Safety Factor Surf Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Tubing Fluid Wt = Load on Conductor =	Yield Sirengti rgth Rating / C sc Local - Lab ide Hook Load ngth Orr Rej 22920 244000 174266 224000 225000 20000 225000 20000 225000 20000 225000 20000 225000 20000 225000 20000 225000 20000 225000 20000 225000 20000 225000 20000 225000 20000 225000 20000 225000 200000 20000 20000 20000 20000 20000 20000 20000	h Rating Carpara: - Bouy Max Lo: bs bs - (/ / / / / / / / / / / / / / / / / / /	(Corporata to Mahmum A Adowable A Anni Wi of the ad Rating / (0.870 1.40 22920 19946 0.847 1.40 1.40 1.20683 102258 conductor te load o the load. xtmum Predk	xial Des xial Load e String Bouyant = = = x + + = = x + + cled Load 0.870 0.847	gn Factor 19946 272143 174286 0.870 50000 102258 283571 241429 0.847 50000 0.847 50000	Linimum ()) =) =) =) = 19946	154340 3.49 122742	red) +	<u>2.441</u> 11315	} ∗ 2 =	11315 182663				
The maximum axial (lension) load occurs if casing vere to get stuck and pu Naximum Akowable Axial Load for Pipe Yteld - API Pipe Maximum Akowable Hook Load (Linded to 75% of Rig Ma Maximum Akowable Hook Load (Linded to 75% of Rig Ma Maximum Akowable Hook Load (Linded to 75% of Rig Ma Maximum Akowable Hook Load (Linded to 75% of Rig Ma Maximum Akowable Hook Load (200,000 bas) 7.75% - Big Max Load (200,000 bas) 7.75% - Jihimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Dippe Yteld) = Max. Allowable Axial Load (Dippe Yteld) = Max. Allowable Axial Load (Dippe Yteld) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Cippe Yteld) = Max. Allowable Axial Load (Cippe Yteld) = Max. Allowable Axial Load (Cipint) = Max. Allowable Axial Load (Yield Strengtl rgth Rating / C scal Load) - Mail is Hook Load (100 - 100 - 100 22920 22920 22920 22920 22920 22920 22920 22920 22920 22920 22920 22920 244000 174286 174886 174886 174886 174886 174886 174886 174886	h Rating Carpara sxirum - Bouy Max Lor bs bs - (/ (/ / / / / / / / / / / / / / / / /	(Corporate to Minimum A Allowable A and Will of the ad Rating / (0.870 1.40 1.40 22920 19946 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.20683 102258 conductor te load o the load. xtmum Predkt	xxial Des xial Load = Sining Bouyant = = = = x + + cled Load 0.847 = x	gn Factor 19946 272143 174286 0.870 50000 102258 283571 241429 0.847 50000 0.847 50000 0.847 50000 0.847 50000	Linimum ()) =) =) = 19946 102258 x	154340 3.49 122742 1.97 0.7854	× [

٩

۰.

3. Proposed cementing program:

<u>16" or 13-3/8" Conductor:</u>

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Intervals Ft MD				Additives	Yield ft ³ /sx	
Lead	Class C	Surface	610' – 655'	13.6	300	510	2% Extender 2% CaCl ₂ 0.125 lb/sx LCM if needed 0.2% Defoamer Excess =75% based on gauge hole volume	1.70
Tail	Class C	610' – 655'	910' – 955'	14.8	200	268	1% CaCl2 Excess ≕ 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing & Cementing Program:

The intention for the cementing program for the Production Casing is to:

- Place the Tail Slurry from the casing shoe to a point approximately 200' above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Siurry	inter Ft f		Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	5200'	11.8	700	1820	10% Bentonite 5% Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 220% or more if needed based on gauge hole volume	2.6
Tail	Class H	5200'	7044' – 7089'	16.4	400	428	0.2% Fluid loss additive 0.3% Dispersant 0.15% Retarder 0.2% Antifoam Excess = 100% or more if needed based on gauge hole volume	1.07

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

5-1/2" Production Casing & Cementing Program – TXI/LW Cementing Option for Grayburg-San Andres:

ConocoPhillips Company respectfully requests the options to our cementing program. This option will only be implemented in the cementing operation of wells requesting for co-mingling after approval and authorization by all agencies have been obtained. The intention for the alternative option to the cementing program for the Production Casing is to:

- Accommodate the additional frac'ing and stimulation of the Grayburg-San Andres by placement of the Tail Slurry from the casing shoe to the top of the Grayburg-San Andres formation,
- Bring the Lead Slurry to surface.

<u>_l</u>	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	3000'	11.8	500	1300	10% Bentonite 8 lbs/sx Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 200% or more if needed based on gauge hole volume	2.6
Tail	TXI/LW	3000'	7044' 7089'	13.2	800	1120	 0.5% Fluid loss additive 0.10% Retarder 0.2% Antifoam 0.125 lb/sx LCM if needed Excess = 150% or more if needed based on gauge hole volume 	1.40

Spacer: 20 bbls Fresh Water

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volume presented above are estimates based on gauge 7-7/8" hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. **See Attached BOPE Schematic.** A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. <u>Proposed Mud System:</u>

The mud systems that are proposed for use are as follows:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 - 9.0	28 – 40	N.C.	N.C.	120 – 160
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	500 – 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 – 10	10 – 11	0 – 750

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 2500': Resistivity, Density, and Gamma Ray
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Formation pressure data (XPT) on electric line if needed (optional)
 - Rotary Sidewall Cores on electric line if needed (optional)
 - BHC or Dipole Sonic if needed (optional)
 - Spectral Gamma Ray if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - o The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27
Yeso Group	860	160	29	13

ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well as early as 2014 after receiving approval of the APD.

Attachments:

- Attachment # 1...... BOP and Choke Manifold Schematic 3M System
- Attachment # 2...... Diagram of Choke Manifold Equipment

Contact Information:

Proposed 9 December 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (281) 206-5244 Cell (832) 768-1647 TXI Energy Services | TXI :: Innovating Standards - Cement. Aggregates. Concrete.

Page 1 of 4-

Search

OVERVIEW | ECO STANDARDS | INVESTOR RELATIONS | PRODUCTS | MSDS | REAL ESTATE | CAREERS | CONTACT US

TXI Energy Services provides specialized drilling products and petrochemical support services to the energy industry. Whether we're supplying well cement and additives for the next deep water project in the Gulf of Mexico or implementing new environmental procedures, our group shares a commitment to improved performance.

TXI is dedicated to providing environmental services that benefit people and the planet. Our Energy Services division removes and recycles a variety of non-hazardous by-products from petrochemical refineries and provides solidification materials to remediation sites.

Drilling Products

TXI Lightweight OilWell Cement is a low-density cement that can be mixed in a range of 12.0 to 14.2 pounds per gailon. In addition to being the world's only manufacturer of lightweight oil well cement, TXI also manufactures and distributes two classifications of well cements that meet the American Petroleum Institute specifications:

- · Class A: a "general purpose" cement for use at low to moderate temperatures
- · Class C: a moderate sulfate-resistant (MSR) cement for depths to 6000 féet.
- Other Special Cements

Cement Additives

TXI Energy Services, in partnership with a worldwide chemical manufacturer, can supply a wide verity of cement additives.

TXI Energy Services

11111 Wilcrest Green, Suite 108, Houston, Texas 77042, Phone 713.329.2611 www.txi.com

Overview | Eco Standards | Investor Relations | Products | MSDS | Real Estate | Careers | Contact Us | @ 2013 Texas Industries, Inc. All Rights Reserved.

http://www.txi.com/TXI-products/TXI-energy-services

ConocoPhillips MCBU

Buckeye Garnet Federal Garnet Federal 6

Original Hole

Plan: Plan Design

Standard Planning Report - Geographic

31 October, 2013

Planning Report - Geographic

		and and DI			·····			M-10- 15		
Databaše: Company:		entral Plannir Phillips MCB			1	-ordinate Refe	erence:	Well Garnet Fed		
Project:	Buckey	•	0		TVD Refe		ľ	RKB @ 4044.0L		
Site:		Federal			MD Refe North Re			RKB @ 4044.00 Grid	ISR (PD822)	
Well:		Federal 6				alculation Mel	thad	Minimum Curva	turo	
Wellbore:	Origina				Surveyo		liiou.	winimum Curva	luie	
Design:	Plan De									
Design.				armendali felinkuuski eelineku	···*					
Project	Buckeye	e, Lea County	, NM		·			<u> </u>		<u></u>
Map System:		Plane 1927 (I		tion)	System Da	itum:	M	ean Sea Level		
Geo Datum:		7 (NADCON C								
Map Zone:	New Mexi	co East 3001					U:	sing geodetic sca	ale factor	
Site	Garnet F	ederal, New	Mexico, S	outheast						
Site Position:			N	orthing:	665	5,838.65 usft	Latitude:			32° 49' 44.750 N
From:	Lat/L	ona		asting:),526.85 usft	Longitude:			103° 44' 44.280 V
Position Uncertainty		-		lot Radius:		8 "	Grid Converg	ence:		0.32
Well	Garnet F	ederal 6, Dev	iated Well							
							· · · · · ·		<u> </u>	001 401 44 700 1
Well Position	+N/-S		0.0 usft	Northing:		665,838.94		itude:		32° 49' 44.760 N
						680,397,15	5usft Lor	igitude:		103° 44' 45.800 W
	+E/-W	(0.0 usft	Easting:						
Position Uncertainty			D.0 usπ D.0 usft	Easting: Wellhead Elev	vation:			ound Level:		4,031.0 usf
Position Uncertainty Wellbore		(-	vation:			ound Level:		4,031.0 usf
	Original	(D.0 usft	-	Đeċlina	ation	Gro Dip A	ngle		trength
Wellbore	Original	Hol <u>e</u> el Name	D.0 usft	Wellhead Elev		atión	Gro	ingle ')		trength IT)
Wellbore	Original	(Hole	D.0 usft	Wellhead Elev	Đeċlina	ation	Gro Dip A	ngle		trength
Wellbore	Original	Hole el Name BGGM2012	D.0 usft	Wellhead Elev	Đeċlina	atión	Gro Dip A	ingle ')		trength IT)
Wellbore Magnetićs	Original Mod	Hole el Name BGGM2012	D.0 usft	Wellhead Elev	Đeċlina	atión	Gro Dip A	ingle ')		trength IT)
Wellbore Magnetičs Design	Original Mod	Hole el Name BGGM2012	0.0 usft	Wellhead Elev	Đeċlina	ation 7.53	Gro Dip A	ngle) 60.59		trength IT)
Wellbore Magnetics Design Audit Notes:	Original Mod	Hole Hole BGGM2012	0.0 usft Sa Sa Pepth Fron	Wellhead Elev Imple Date 10/31/2013 Phase: n (TVD)	Decilina (°) PROTOTYPE +N/-S	ation 7.53 Tie +E	Gro Dip A (' • On Depth:	ingle) 60,59 Dire	(n 0.0	iT)
Wellbore Magnetičs Design Audit Notes: Version:	Original Mod	Hole Hole BGGM2012	0.0 usft	Wellhead Elev Imple Date 10/31/2013 Phase: n (TVD)	Decilina (°) PROTOTYPE	atiòn 7.53 Tie +E (u	Gro Dip A (' 9 On Depth:	ingle) 60.59 Dire	(n	trength IT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section:	Original Mod	Hole Hole BGGM2012	D.0 usft Sa Sa P Pepth Fron (usft	Wellhead Elev Imple Date 10/31/2013 Phase: n (TVD)	Decilina (°) PROTOTYPE +N/-S (usft)	atiòn 7.53 Tie +E (u	Gro Dip A (' e On Depth: :/-W sft)	ingle) 60.59 Dire	(n 0.0 Setion (°)	trength IT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections	Original Mod	Hole Hole BGGM2012	D.0 usft Se Pepth From (usft 0.0	Wellhead Elev Imple Date 10/31/2013 Phase: n (TVD)	Decilina (°) PROTOTYPE +N/-S (usft)	ation 7.53 Tie +E (u C	Gro Dip <i>A</i> (' • On Depth: :/-W sft) 0.0	ngle) 60.59 Dire (34	(n 0.0 Setion (°)	trength IT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli	Original Mod	Hole Hole BGGM2012	D.0 usft Sa Sa P Pepth Fron (usft	Wellhead Elev Imple Date 10/31/2013 Phase: n (TVD)	Decilina (°) PROTOTYPE +N/-S (usft)	atiòn 7.53 Tie +E (u	Gro Dip A (' e On Depth: :/-W sft)	ingle) 60.59 Dire	(n 0.0 Setion (°)	trength IT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli	Original Mod Plan Des I	Hole Hole BGGM2012 sign D	0.0 usft Sa P P P P P P P P P P P P P P P P P P	Wellhead Elev Imple Date 10/31/2013 Phase: n (TVD)) +N/-S	Declina (°) PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft)	ation 7.53 Tie +E (u C Dogleg Rate	Gro Dip A (' e On Depth: :/-W sft) 0.0 Build Rate	ngle) 60.59 Dire (34 Turn Rate	(n 0.0 ection (°) 4.94 TFO	trength iT) 48,686
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli (usft)	(Original Mod (Plan Des 1	Hole el Name BGGM2012 sign D Azimuth (°)	0.0 usft Sa P P P P P P P P P P P P P P P P P P	Wellhead Elev imple Date 10/31/2013 hase: n (TVD) +N/-S (usft) 0.0 0.0	Declina (°) PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft)) 0.0	ation 7.53 Tie +E (u C Dogleg Rate (°/100usft)	Gro Dip A (' e On Depth: :/-W sft)).0 Build Rate (°/100usft)	ngle) 60.59 Dire (34 Turn Rate (°/100usft)	(n 0.0 5ction (°) 4.94 TFO (°)	trength iT) 48,686
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli (usft) 0.0	[Original Mod { Plan Des 1 1 	Hole el Name BGGM2012 sign D Azimuth (°) 0.00	D.0 usft Sa P P Pepth From (usft 0.0 Vertical Depth (usft)	Wellhead Elev Imple Date 10/31/2013 Phase: n (TVD)) +N/-S (usft) 0.0 0.0 5.0 0.0	Declina (*) PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0	ation 7.53 Tie +E (u Dogleg Rate (°/100usft) 0.00	Gro Dip A (' e On Depth: :/-W sft) 0.0 Build Rate (°/100usft) 0.00	ngle) 60.59 Dire (34 Turn Rate (°/100usft) 0.00	(n 0.0 5ction (°) 4.94 TFO (°) 0.00	trength iT) 48,686

.

•

,

ł

Planning Report - Geographic

Planned Survey				
Désign:	Plan Design		 	į
Wellbore:	Original Hole			
Well:	Garnet Federal 6	Survey Calculation Method:	Minimum Curvature	:
Site:	Garnet Federal	North Reference:	Grid	
Project:	Buckeye	MD Reference:	RKB @ 4044.0usft (PD822)	
Company:	ConocoPhillips MCBU	TVD Reference:	RKB @ 4044.0usft (PD822)	
Database:	EDM Central Planning	Local Co-ordinate Reference:	Well Garnet Federal 6	

leasured Depth (usft)	Inclination (°)	Ažimuth (°)	Vertical Depth (usft)	+N/-Š (usft)	+E/-W (usft)	Map Northing (usft)	Mâp Easting (usft)	Lâtitude	Longitude
						· · · ·			Longitude
0.0	0.00	. 0.00	0.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
85.0	0.00	0.00	85.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
Conduct									
100.0	0.00	0.00	100.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
200.0	0.00	0.00	200.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
300.0	0.00	0.00	300.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
400.0	0.00	0.00	400.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
500.0	0.00	0.00	500.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
600.0	0.00	0.00	600.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
700.0	0.00	0.00	700.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
800.0	0.00	0.00	800.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
885.0	0.00	0.00	885.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
Rustler									
900.0	0.00	0.00	900.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
955.0	0.00	0.00	955.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
Surface									
1,000.0	0.00	0.00	1,000.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
1,043.0	0.00	0.00	1,043.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
Salado									
1,100.0	0.00	0.00	1,100.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
1,200.0	0.00	0.00	1,200.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
1,300.0	0.00	0.00	1,300.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
1,400.0	0.00	0.00	1,400.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
1,500.0	0.00	0.00	1,500.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
1,600.0	0.00	0.00	1,600.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
1,700.0	0.00	0.00	1,700.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
1,800.0	0.00	0.00	1,800.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
1,900.0	0.00	0.00	1,900.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
2,000.0	0.00	0.00	2,000.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
2,066.0	0.00	0.00	2,066.0	0.0	0.0	665,838.94	680,397.15	32° 49' 44.760 N	103° 44' 45.80
Tansill									
2,100.0	0.51	344.94	2,100.0	0.1	0.0	665,839.09	680,397.11	32° 49' 44.761 N	103° 44' 45.80
2,200.0	2.01	344.94	2,200.0	2.3	-0.6	665,841.21	680,396.54	32° 49' 44.782 N	103° 44' 45.80
2,210.0	2.16	344.94	2,210.0	2.6	-0.7	665,841.56	680,396.44	32° 49' 44.786 N	103° 44' 45.80
Yates									
2,290.0	3.36	344.94	2,289.9	6.3	-1.7	665,845.28	680,395.44	32° 49' 44.823 N	103° 44' 45.82
2,300.0	3.36	344.94	2,299.9	6.9	-1.9	665,845.85	680,395.29	32° 49' 44.828 N	103° 44' 45.82
2,400.0	3.36	344.94	2,399.7	12.6	-3.4	665,851.50	680,393.77	32° 49' 44.885 N	103° 44' 45.83
2,500.0	3.36	344.94	2,499.5	18.2	-4.9	665,857.16	680,392.24	32° 49' 44.941 N	103° 44' 45.85
2,573.6	3.36	344.94	2,573.0	22.4	-6.0	665,861.33	680,391.12	32° 49' 44.982 N	103° 44' 45.86
Seven Riv	/ers								
2,600.0	3.36	344.94	2,599.3	23.9	-6.4	665,862.82	680,390.72	32° 49' 44.997 N	103° 44' 45.87
2,700.0	3,36	344.94	2,699.2	29.5	-7.9	665,868.48	680,389.20	32° 49' 45.053 N	103° 44' 45.89
2,800.0	3.36	344.94	2,799.0	35.2	-9.5	665,874.14	680,387.68	32° 49' 45.109 N	103° 44' 45.90
2,900.0	3.36	344.94	2,898.8	40.9	-11.0	665,879.80	680,386.15	32° 49' 45.165 N	103° 44' 45.92
3,000.0	3.36	344.94	2,998.7	46.5	-12.5	665,885.46	680,384.63	32° 49' 45.221 N	103° 44' 45.94
3,100.0	3.36	344.94	3,098.5	52.2	-14.0	665,891.12	680,383.11	32° 49' 45.277 N	103° 44' 45.96
3,190.7	3.36	344.94	3,189.0	57.3	-15.4	665,896.25	680,381.73	32° 49' 45.328 N	103° 44' 45.97
Queen									
3,200.0	3.36	344.94	3,198.3	57.8	-15.6	665,896.78	680,381.59	32° 49' 45.333 N	103° 44' 45.97
3,300.0	3.36	344.94	3,298.1	63.5	-17.1	665,902.44	680,380.06	32° 49' 45.389 N	103° 44' 45.99
3,400.0	3.36	344.94	3,398.0	69.2	-18.6	665,908.10	680,378.54	32° 49' 45.445 N	103° 44' 46.01
3,500.0	3,36	344.94	3,497.8	74.8	-20.1	665,913.76	680,377.02	32° 49' 45.501 N	103° 44' 46.03
3,600.0	3.36	344.94	3,597.6	80.5	-21.7	665,919.42	680,375.49	32° 49' 45.557 N	103° 44' 46.04

.

•

1

COMPASS 5000.1 Build 61

ł

Planning Report - Geographic

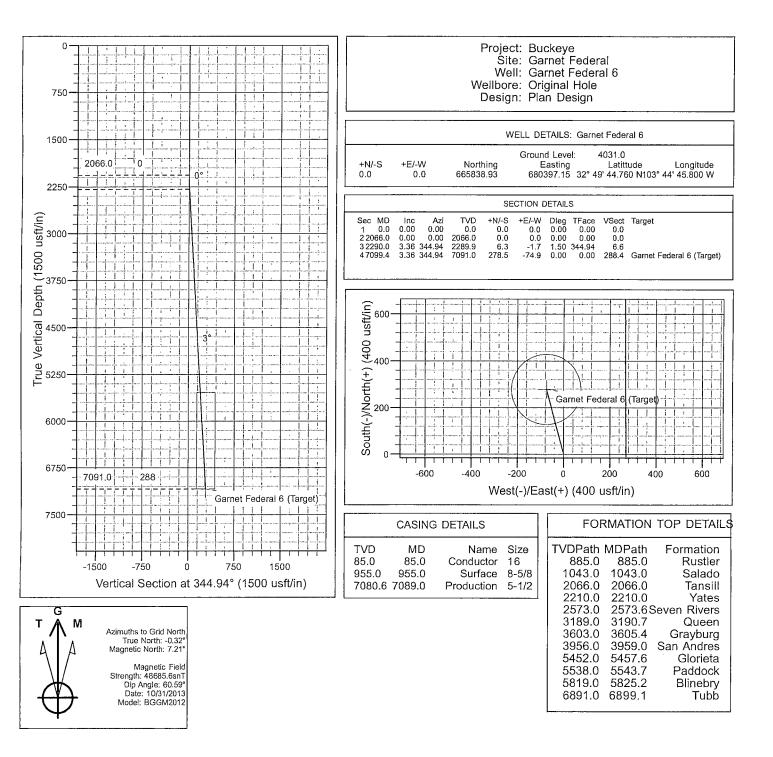
Company: ConocoPhillips MCBU TVD Reference: RKB @ 4044.0usft (PD822) Project: Buckeye MD Reference: RKB @ 4044.0usft (PD822) Site: Garnet Federal North Reference: Grid Well: Garnet Federal 6 Survey Calculation Method: Minimum Curvature	
Sité: Garnet Federal North Reference: Grid	
Woll: Garnet Federal 6 Survey Calculation Method: Minimum Curvature	
went jourvey datatation wethout a within and our value	
Wellbore: Original Hole	
Design: Plan Design	

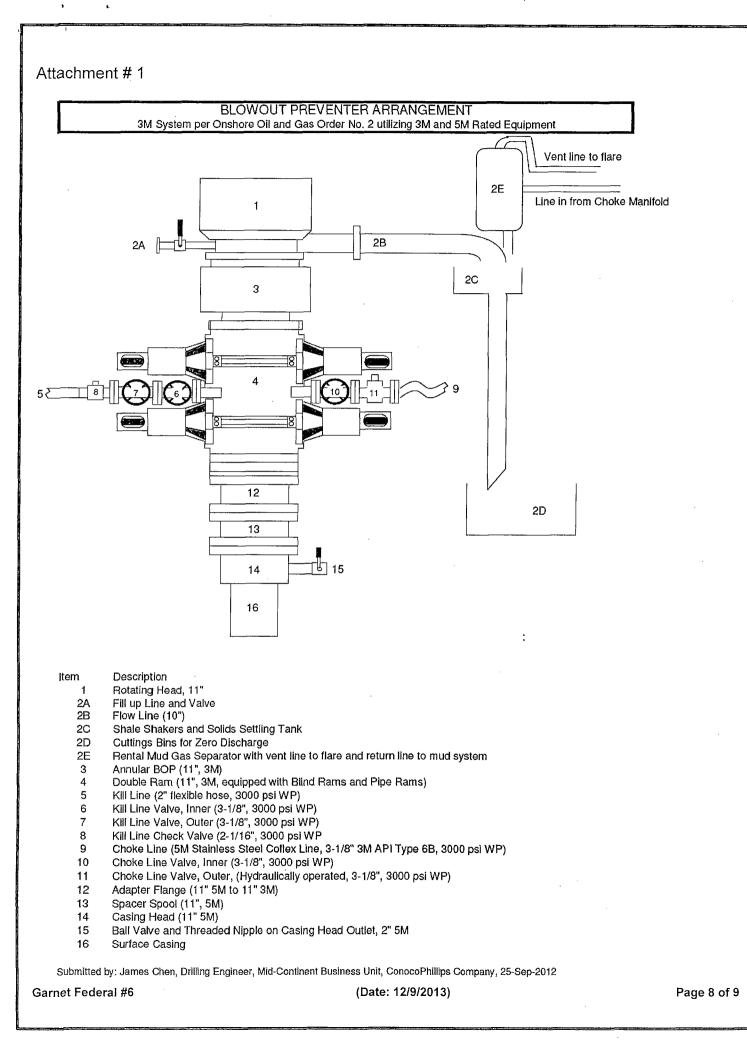
/leasured Depth (usft)	Inclination (°)	Azimuth (°)	Vertičal Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Loñgitude
3,605.4	3.36	344.94	3,603.0	80.8	-21.7	665,919.72	680,375.41	32° 49' 45.561 N	103° 44' 46.04
Grayburg			-,			,	,		
3,700.0	3.36	344.94	3,697.4	86.1	-23.2	665,925.07	680,373.97	32° 49' 45.614 N	103° 44' 46.06
3,800.0	3.36	344.94	3,797.3	91.8	-24.7	665,930.73	680,372.45	32° 49' 45.670 N	103° 44' 46.08
3,900.0	3.36	344.94	3,897.1	97.5	-26.2	665,936.39	680,370.93	32° 49' 45.726 N	103° 44' 46.10
3,959.0	3.36	344,94	3,956.0	100.8	-27.1	665,939.73	680,370.03	32° 49' 45.759 N	103° 44' 46.11
San Andre		044.04	0,000.0	100.0	-21.1	000,000.70	000,370.00	52 45 45.755 N	105 44 40.11
4,000.0	3.36	344.94	3,996.9	103.1	-27.7	665,942.05	680,369.40	32° 49' 45.782 N	103° 44' 46.11
4,100.0	3.36	344.94	4,096.8	108.8	-29.3	665,947.71	680,367.88	32° 49' 45.838 N	103° 44' 46.13
4,100.0	3.36	344.94 344.94	4,090.0	114.4	-29.5	665,953.37	680,366.36	32° 49' 45.894 N	103° 44' 46.15
4,200.0	3.36	344.94 344.94	4,196.0	120.1	-30.8	665,959.03	680,364.84	32° 49' 45.950 N	103° 44' 46.13
4,400.0	3.36	344.94	4,396.2	125.8	-33.8	665,964.69	680,363.31	32° 49' 46.006 N	103° 44' 46.18
•		344.94 344.94		123.8					
4,500.0	3.36 3.36	344.94 344.94	4,496.1 4,595.9	131.4	-35.4 -36.9	665,970.35 665,976.01	680,361.79 680,360,27	32° 49' 46.062 N 32° 49' 46.118 N	103° 44' 46.20 103° 44' 46.22
4,600.0 4,700.0	3.36	344.94 344.94	4,595.9 4,695.7	142.7	-36.9 -38.4	665,981.67	680,360.27 680,358.75	32° 49' 46.174 N	103 44 46.22 103° 44' 46.24
4,700.0	3.36	344.94 344.94	4,095.7	142.7	-39.9	665,987.33	680,357.22	32° 49' 46.230 N	103° 44' 46,24
		344.94 344.94	-	148.4	-39.9	•		32° 49' 46.230 N 32° 49' 46.287 N	103° 44' 46.25
4,900.0	3.36	344.94 344.94	4,895.4	154.1	-41.4	665,992.99	680,355.70		
5,000.0	3.36		4,995.2			665,998.64	680,354.18	32° 49' 46.343 N	103° 44' 46.29
5,100.0 5,200.0	3.36	344.94 344.94	5,095.0 5,194.9	165.4 171.0	-44.5 -46.0	666,004.30 666,009.96	680,352.66	32° 49' 46.399 N 32° 49' 46.455 N	1.03° 44' 46.31 103° 44' 46.32
	3.36	344.94 344.94		176.7	-40.0		680,351.13		103° 44' 46.34
5,300.0	3.36	344.94 344.94	5,294.7	182.4	-47.5	666,015.62	680,349.61	32° 49' 46.511 N 32° 49' 46.567 N	103° 44' 46.36
5,400.0	3.36	344.94	5,394.5 5,452.0	185.6	-49.1	666,021.28 666,024.54	680,348.09 680,347.21	32° 49' 46,599 N	103° 44' 46.37
5,457.6	3.36	344.94	5,452.0	165.0	-49.9	000,024.04	000,347.21	32 49 40.599 N	105 44 46.57
Glorieta			F 101 1	400.0	50.0			500 401 40 000 M	
5,500.0	3.36	344.94	5,494.4	188.0	-50.6	666,026.94	680,346.57	32° 49' 46.623 N	103° 44' 46.38
5,543.7	3.36	344.94	5,538.0	190.5	-51.2	666,029.42	680,345.90	32° 49' 46.648 N	103° 44' 46.38
Paddock									
5,600.0	3.36	344.94	5,594.2	193,7	-52.1	666,032.60	680,345.04	32° 49' 46.679 N	103° 44' 46.39
5,700.0	3.36	· 344.94	5,694.0	199.3	-53.6	666,038.26	680,343.52	32° 49' 46.735 N	103° 44' 46.41
5,800.0	3.36	344.94	5,793.8	205.0	-55.2	666,043.92	680,342.00	32° 49' 46.791 N	103° 44' 46.43
5,825.2	3,36	344.94	5,819.0	206.4	-55.5	666,045.35	680,341.62	32° 49' 46.805 N	103° 44' 46.43
Blinebry									
5,900.0	3.36	344.94	5,893.7	210.7	-56.7	666,049.58	680,340.48	32° 49' 46.847 N	103° 44' 46.45
6,000.0	3.36	344.94	5,993.5	216.3	-58.2	666,055.24	680,338.95	32° 49' 46.903 N	103° 44' 46.46
6,100.0	3.36	344.94	6,093.3	222.0	-59.7	666,060.90	680,337.43	32° 49' 46.960 N	103° 44' 46.48
6,200.0	3.36	344.94	6,193.2	227.6	-61.2	666,066.56	680,335.91	32° 49' 47.016 N	103° 44' 46.50
6,300.0	3.36	344.94	6,293.0	233.3	-62.8	666,072.21	680,334.39	32° 49' 47.072 N	103° 44' 46.52
6,400.0	3.36	344.94	6,392.8	238.9	-64.3	666,077.87	680,332.86	32° 49' 47.128 N	103° 44' 46.53
6,500.0	3.36	344.94	6,492.6	244.6	-65.8	666,083.53	680,331.34	32° 49' 47.184 N	103° 44' 46.55
6,600.0	3.36	344.94	6,592.5	250.3	-67.3	666,089.19	680,329.82	32° 49' 47.240 N	103° 44' 46.57
6,700.0	3.36	344.94	6,692.3	255.9	-68.9	666,094.85	680,328.30	32° 49' 47.296 N	103° 44' 46.59
6,800.0	3.36	344.94	6,792.1	261.6	-70.4	666,100.51	680,326.77	32° 49' 47.352 N	103° 44' 46.60
6,899.1	3.36	344.94	6,891.0	267.2	-71.9	666,106.12	680,325.27	32° 49' 47.408 N	103° 44' 46.62
Tubb									
6,900.0	3.36	344.94	6,891.9	267.2	-71.9	666,106.17	680,325.25	32° 49' 47.408 N	103° 44' 46.62
7,000.0	3.36	344.94	6,991.8	272.9	-73.4	666,111.83	680,323.73	32° 49' 47.464 N	103° 44' 46.64
7,089.0	3.36	344.94	7,080.6	277.9	-74.8	666,116.87	680,322.37	32° 49' 47.514 N	103° 44' 46.65
Production	ł								
7,099.4	3.36	344.94	7,091.0	278.5	-74.9	666,117.45	680,322.21	32° 49' 47.520 N	103° 44' 46.66

Planning Report - Geographic

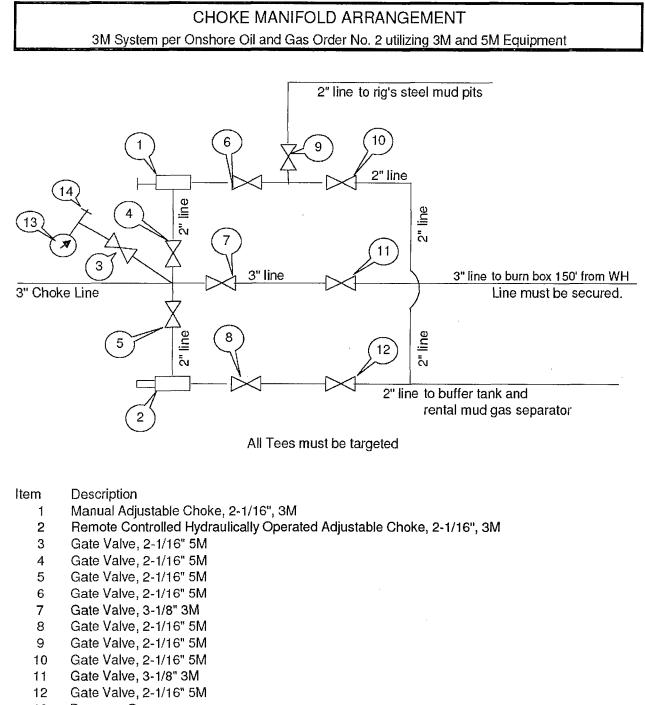
Database: Company: Project: Site: Well: Well: Design: Design Targets		ederal 6 iole			TVD Refere MD Referer North Refe	ice:	Well Garnet RKB @ 404 RKB @ 404 Grid Minimum Cl	4.0usft (4.0usft (PD822)	
Target Name - hit/miss targ - Shape	iết Dip Ang (°)	le Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitu	ide	Longitude
Garnet Federal 6 - plan hits ta - Circle (radi	rget center	.00 0.00	7,091.0	278.5	-74.9	666,117.45	680,322.21	32° 49'	47.520 N	103° 44' 46.660 V
Cásing Points	Measured Depth (usft)	Vertical Depth (usift)			Năme		Càšir Diame (")		Hõİe Diameter ('')	
	85.0 955.0 7,089.0	85.0 955.0 7,080.6	Conductor Surface Production				<u></u>	16 8-5/8 5-1/2	2 12-1/- 7-7/1	4
Formations										
	Measured Depth (usft)	Vertical Depth (usft)		Name		Litholog	Di v (°	۲	Dip Direction (°)	
	885.0	885.0 R	ustler							
	1,043.0	1,043.0 S	alado					0.00		
	2,066.0	2,066.0 T	ansill				(0.00		
	2,210.0	2,210.0 Y	ates				(0.00		
	2,573.6	2,573.0 S	even Rivers				(0.00		
	3,190.7	3,189.0 Q	ueen				(0.00		
	3,605.4	3,603.0 G	rayburg				(0.00		
	3,959,0	3,956.0 S	an Andres				(0.00		
	5,457.6	5,452.0 G	lorieta				(0.00		
	5,543.7	5,538.0 P	addock				(0.00		
	5,825.2	5,819.0 B	linebry				(0.00		
	6,899,1	6,891.0 T	ubb				,	0.00		

r


•


1

i.



Proposed Directional Well Plan

Attachment # 2

- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

We will test each valve to 3000 psi from the upstream side.

Submitted by: James Chen Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 21-March-2013

Request for Variance

ConocoPhillips Company

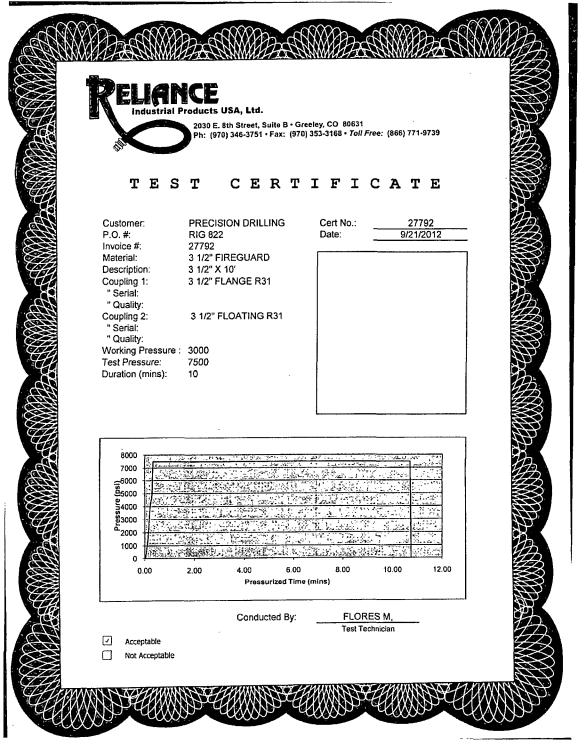
Lease Number: NM LC 080258 Well: Garnet #6 Location: Sec. 15, T17S, R32E Date: 12/9/2013

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.


Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Attachment # 2

		Products US	ia, Lud.								
4						:					
		Relia	9MC D								
	•		Rel	iar	ice El	imina	ator	Chok	e & Ki	1	
									IOP stack to the BOP k		-off
	The	Reliance	Elimi	nator	·Choke &	Kill hose	contains	a specially	/ bonded co	ompounde	ed.
• ••	COVE	er that re	place	s rubi	ber covere	ed Asbest	os, Fibreg	glass and	other fire re	etardant	
									er designs.	• • • • • • •	
	The	Reliance	Elimi	nator and e	Choke &	Kill hose B Directiv	has been /e 36 (70)	verified b 0°C for 5	y an indep minutes).	endent	
	0.19						(
	Nom	. ID		Nom	OD	Weig	aht	Min Be	nd Radius	Max	WP
	in.	mm.	in	•	mm	lb/ft	kg/m	in.	mm.	psi	Mpa
	3 3-1/2	76.2 88.9	5.1 5.7	1 '9	129.79 147.06	14.5 20.14	21.46 29.80	48 54	1219.2 1371.6	5000 5000	34.47 34.47
		Set Merel	No. Takin								
						•			•		
	inge '			į	Flanges		Han	nmer Uni	ions	Othe	r
Fitt			836		3 5000# AP	l Type 6B		ion Configu		Threaded C	
Fitt RC4	X5055										
RC4 RC3	_				3 3000# AP					Grayloo Custom E	

۰ **،**

.

÷.

Closed Loop System Design, Operating and Maintenance, and Closure Plan

ConocoPhillips Company Well: Garnet #6 Location: Sec. 15, T17S, R32E Date: 12/9/2013

.

ConocoPhillips proposes the following plan for design, operating and maintenance, and closure of our proposed closed loop system for the above named well:

1. We propose to use a closed loop system with steel pits, haul-off bins, and frac tanks for containing all cuttings, solids, mud, water, brine, and liquids. We will not dig a pit, nor will we use a drying pad, nor will we build an earth pit above ground level, nor will we dispose of or bury any waste on location.

All drilling waste and all drilling fluids (fresh water, brine, mud, cuttings, drill solids, cement returns, and any other liquid or solid that may be involved) will be contained on location in the rig's steel pits or in hauloff bins or in frac tanks as needed. The intent is as follows:

- We propose to use the rigs' steel pits for containing and maintaining the drilling fluids.
- We propose to remove cuttings and drilled solids from the mud by using solids control equipment and to contain such cuttings and drilled solids on location in haul-off bins.
- We propose that any excess water that may need to be stored on location will be stored in tanks.

The closed loop system components will be inspected daily by each tour and any needed repairs will be made immediately. Any leak in the system will be repaired immediately, and any spilled liquids and/or solids will be cleaned immediately, and the area where any such spill occurred will be remediated immediately.

2. Cuttings and solids will be removed from location in haul-off bins by an authorized contractor and disposed of at an authorized facility. For this well, we propose the following disposal facility:

R-360 Inc. 4507 West Carlsbad Hwy, Hobbs, NM 88240, P.O. Box 388; Hobbs, New Mexico 88241 Toll Free Phone: 877.505.4274, Local Phone Number: 432.638.4076

The physical address for the plant where the disposal facility is located is Highway 62/180 at mile marker 66 (33 miles East of Hobbs, NM and 32 miles West of Carlsbad, NM).

The Permit Number for R-360 is NM-01-0006.

A photograph showing the type of haul-off bins that will be used is attached.

- 3. Mud will be transported by vacuum truck and disposed of at R-360 Inc. at the facility described above.
- 4. Fresh Water and Brine will be hauled off by vacuum truck and disposed of at an authorized salt water disposal well. We propose the following for disposal of fresh water and brine as needed:
 - Nabors Well Services Company, 3221 NW County Rd; Hobbs, NM 88240, PO 5208 Hobbs, NM, 88241, Permit SWD 092. (Well Location: Section 3, T19S R37E)
 - Basic Energy Services, P.O. Box 1869; Eunice, NM 88231 Phone Number: 575.394.2545, Facility located at Hwy 18, Mile Marker 19; Eunice, NM.

James Chen Drilling Engineer Office: 281-206-5244 Cell: 832.678.1647

SPECIFICATIONS

FLOOR: 3/16" PL one piece CROSS MEMBER: 3 x 4-1 channel 16' on center

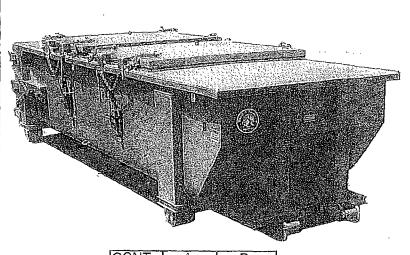
WALLS: 3/16" PL solid welded with tubing

top, insi de liner hooks DOOR: 3/16" PL with tubing frame FRONTE 3/16 PL slant (ormed PICK UP: Standard cable with 2" x 6" x 1/4" ralls, gu sset at each crossmember WHEELS: 10 DIA:x 9 long with rease fittings DOOR LATCH: 3 Independent ratchet binders with chains, vertical second laton GASKETS: Extruded rubber seal with metal retainers

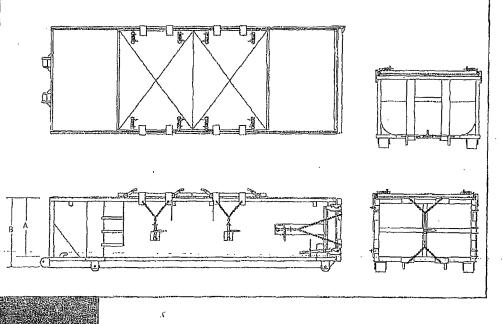
WELDER All welds continuous except subsinucluire crossmembers

FINISHE Coated inside and out with direct to metal, rust inhibiting activitie enamel color coat HYDROTESTING: Full capacity static test DIMENSIONS: 22:-11* long (21:-8* inside), 99" wide (88* inside), see drawing for height OPTIONS: Steel gilt blast and special paint, Amplicell, Heil and Dine pickup

ROOF: 3/16" PL roof panels with tubing and channel support frame


LIDS: (2) 68" x 90" metal rolling lids spring loaded, self raising ROLLERS: 4" V-groove rollers with defrin bearings and grease fittings OPENING: (2) 60" x 82" openings

with 8⁴ divider centered on container


LATCH: (2) independent ratchet binders with chains berlid GASKETS: Extruded rubber

seal with metal relainers

Heavy Duty Split Metal Rolling Lid

CONT.	A	В
20 YD	41	53
25 YD	53	65
30 YD	65	77

٤

31