Submit 1 Cç Office	opy To Appropriate District	State of New M			Form C-103
1625 N. Frei	575) 393-6161 nch Dr., Hobbs, NM 88240	Energy, Minerals and Nat	tural Resources	WELL API NO.	Revised July 18, 2013
	(575) 748-1283 St., Art <u>es</u> ia, NM 88210	OIL CONSERVATIO	N DIVISION	30-025-42104	· · ·
District III -	(505) 334-6178	1220 South St. Fra	ancis Dr.	5. Indicate Type of Le	FEE
	azos Rd., Aztec, NM 87410 - (505) 476-3460	Santa Fe, NM 8	37505	6. State Oil & Gas Le	
	Francis Dr., Santa Fe, NM			A-1320-9	
(DO NOT U DIFFERENT	SE THIS FORM FOR PROPO TRESERVOIR. USE "APPLI	ICES AND REPORTS ON WELL DSALS TO DRILL OR TO DEEPEN OR P CATION FOR PERMIT" (FORM C-101) I	LUG BACK TO A	7. Lease Name or Uni Vacuum Glorieta East	
PROPOSAL	of Well: Oil Well 🛛	Gas Well 🔲 Other		8. Well Number 114I	H /
	of Operator		'AUG 1 0 2015	9. OGRID Number	
	nillips Company		140 a	217817 10. Pool name or Wild	deat
	iry Ashford Rd, P10-30	96; Houston, TX 77079	RECEIVED	Vacuum; Glorieta	icat
4. Well L		· · · · · · · · · · · · · · · · · · ·	1000	,	
ט	Init Letter <u>L</u> :		uth line and	<u></u>	West line
S	ection 27	Township 17S	Range 35E	NMPM LEA	County
		11. Elevation (Show whether D)	R, RKB, RT, GR, etc.		
Se sta		3940' GL	······································		
	12. Check	Appropriate Box to Indicate N	Nature of Notice,	Report or Other Data	1
		ITENTION TO:		SEQUENT REPOR	
		PLUG AND ABANDON	REMEDIAL WOR		ERING CASING 🔲
			COMMENCE DRI		NDA 🗌
		MULTIPLE COMPL	CASING/CEMEN	ТЈОВ 📋	
	LE COMMINGLE				
OTHER:		П	OTHER:		
of		leted operations. (Clearly state all ork). SEE RULE 19.15.7.14 NMA ompletion.			
9325' MD.	Our bottom-hole location has changed to Shaffer m C-102 package Revised directional we	matic (includes changes to casing s	directional plan. We 70% of working pres	e plan to use an alternate ssure. Attached are the fo	rig, so the BOP llowing documents.
		l			
Spud Date:	09/01/15	Rig Release D	ate:		
	I		L_ <u></u>	,,	
hereby cert	tify that the information	above is true and complete to the b	est of my knowledge	e and belief.	
		-	, 0		
SIGNATUR	E AVSAUBM	aunder TITLE Sr. Re	egulatory Specialist	DATE	7/22/15
Гуре or prin For State U	it name <u>Susan B. Maun</u> se Only		.	·	<u>206-5281</u>
APPROVED	DBY:	TITLE PO	etroleum Enginee	DATE	08/10/15
	of Approval (if any):		ÂIJ	5 1 1 2015	h
			, MUN		11

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

SCALE

REVISED BY: Z.H.F. 04-24-15

N89'40'46"W

2648.27' (Meas.

SECTION CORNERS LOCATED.

N89*40'50"W

2647.71' (Meas.

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

HOBBS OCD AUG 1 0 2015

AMENDED REPORT

Pool NamRECEIVED WELL LOCATION AND ACREAGE DEDICATION PLAT ¹ API Number 30-025-42104 ² Pool Code 62160 Vacuum: Glorieta ⁴ Property Code Property Name Well Number VGĖU 114H 31257 OGRID No. ⁸ Operator Name PElevation ConocoPhillips Company 3939.9' <u>217817</u> Surface Location Feet from the North/South line UL or lot no. Section Township Lot Idn Feet from the East/West line Range County 35Ē 1896 27 17S SOUTH WEST LEA 2.8 L "Bottom Hole Location If Different From Surface Feet from the UL or lot no. Section Township Range Lot Idn North/South line Feet from the East/West line County NORTH 2294 17S 962 LEA в 33 35E EAST 12 Dedicated Acres 15 Order No. ¹³ Joint or Infill 14 Consolidation Code 200 No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. N89'37'19"W N89*48'43"W 16 **"OPERATOR** 2647.85' (Meas.) 2651.31' (Meas.) N89'48'14"W - 5288.50' (Meas.) CERTIFICATION I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and that this NOO'D6'20"W 2652.46' (Meas., organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a '55"W (Meas.) Meas. right to drill this well at this location pursuant to a contract with an owner of such a mineral or working interest, or to a voluntary pooling 10.00N 5314.51 agreement or a compulsory pooling order heretofore entered by the division. 5297.92 Secure Maurder 27 28 Date Signature ł 10 10' REGULATORY DRILLING SHL M., ZZ, 60.00N SETBACK Susan B. Maunder N00'08'14"W 2649.13' (Meas., 28 UNIT Printed Name (NOT TO SCALE) Susan.B.Maunder@cop.com 896' E-mail Address ~0%80 ¹⁸SURVEYOR N89'34'35"W 60 CERTIFICATION 5290.97' (Meas I hereby certify that the well location shown on this plat was plotted from field notes of N89'59'02"W - 5299.93' (Meas.) actual surveys made by me or under my NAD 83 (SURFACE LOCATION) supervision, and that the same is true and correct to the best of my belief. '06"W (Meas.) N00'04'43"W 542.71' (Meas.) LATITUDE = 32°48'13.51" (32.803753) 2294 LONGITUDE = 103°27'14.27" (103.453964) July 09, 2014 Bł NAD 27 (SURFACE LOCATION) LATITUDE = 32°48'13.07" (32.803631) NOD'09' 2640.26' Date of Survey Signature and Seal of Professional Surveyor: LONGITUDE = 103°27'12,48" (103,453467) 2642. STATE PLANE NAD 83 of test IONAL N: 657261.63 E: 811531.33 SURVEY STATE PLANE NAD 27 33 N: 657196.94 E: 770352.42 JEN MEX ବ୍ଲି NAD 83 (BOTTOM HOLE) 2000' 2000' 000 LATITUDE = 32°47'45.41" (32.795947) N00'06'16"W 2648.02' (Meas.) N00'08'31"W 2640.97' (Meas.) LONGITUDE = 103°27'41.42" (103.461506) 2446 NAD 27 (BOTTOM HOLE) LATITUDE = 32°47'44.97" (32.795824) LONGITUDE = 103°27'39.64" (103.461010)

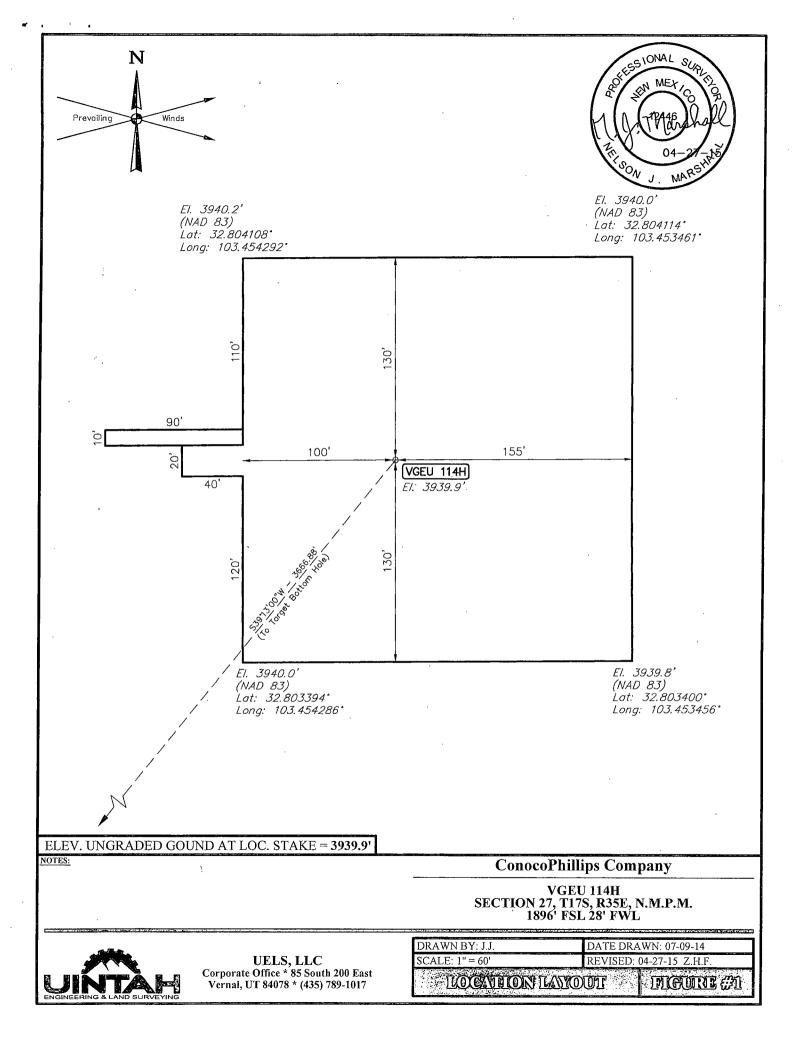
STATE PLANE NAD 83

N: 654401.84 E: 809237.17 STATE PLANE NAD 27

N: 654337.13 E: 768058.20

T17S

T18S


Certificate Number:

SON

J

MARSHA

-27-15

onocoPhilli	DS									Date: ersion: red by:	
				COUNTY,STAT	E.				T	AFE:	
SURFACE LOC: UI	′acuum Glorietta East U L - L - S27 -T17S - R35E L - B - S33 - T17S - R35E	1896' FSL 28' F) 962' FNL 2294' 1	NL	API No NDIC Permi BLM Permi).: it:					vork No.: ndler ID: OST ESTIMATE	
ELEVATIONS:	GL 3,939.9' KB ~14'	Rig - PD194		WH Coord (NAD-27)	I.: LAT LON	32° 103°	48' 27'	13.07" 12.48"	DRILLI COMPLETI FACILITI TOT	ON IES	
/4" X 9-5/8"	FORMATION TOP:	TVD SUBS	EA	<u>Objective</u>							
	Rustler	1,593									· .
	Salado	1,685									
	Tansil	2,733									
	Yates	2,864		Notes							
	Seven Rivers	3,140									
	Queen	3,504		[·	
	Grayburg	4,033		· ·							
	San Andres	4,368							,		
3/4" X 7"	Glorieta	5,954									
	Upper Paddock Target Lower Paddock	6,070 6,100 6,164		<u>Goals</u>							
	6-1/8")		CONTACTS							
A STATE OF STATE	******										
)				Office	Cell	
	,			Drilling	Engineer: Geologist:			<u>(</u>	Office	<u>Cell</u>	
				Drilling Onsite Dri	Engineer: Geologist:			<u>.</u>	Office	<u>Cell</u>	
	ence of the Dunham, Pine, Or	peche, and Charles St		Drilling Onsite Dri Dril	Engineer: Geologist: Iling Rep.:			<u>(</u>	Office	<u>Cell</u>	
ING FLUID: Surface: Intermediate: Production:	<u>Type</u> Fresh Water/WBM Brine Brine	Interval (MD) Surface-1,655' 1,655' - 6,825' 6,825' - 9,325'	Density PPg 8.4-8.9 10 9.0-10.0	Drilling Onsite Dri	Engineer: Geologist: Iling Rep.:	р <u>Н</u>	<u>FL</u> mL	L <u>GS</u> % by vol	<u>Office</u> <u>Cl NaCl</u> k mg/L ppb so	Remarks	
ING FLUID: Surface: Intermediate: Production: ence Baroid Drilling Flu IG:	<u>Type</u> Fresh Water/WBM Brine Brine dids Program Hole <u>TOP (MD)</u>	Interval (MD) Surface-1,655' 1,655' - 6,825' 6,825' - 9,325' BTM (MD) Leng	Density ppg 8.4-8.9 10 9.0-10.0 th Size	Drilling Onsite Dri Drill Vis PV sec/qt CP	Engineer: Geologist: Iling Rep.: ling Supt.: <u>YP</u> #100tt2 <u>e Conne</u>	ection	mL	LGS % by vol BOP:	<u>Cl NaCl</u> k mg/L ppb so Working	<u>Remarks</u> Test	
ING FLUID: Surface: Intermediate: Production: Ence Baroid Drilling Flu IG: Surface: Intermediate: Production:	Type Fresh Water/WBM Brine Brine uids Program	<u>Interval</u> (MD) Surface-1,655' 1,655' - 6,825' 6,825' - 9,325' <u>BTM (MD)</u> Leng 1,640' 1,64(6,810' 6,811 9,325' 2,511	Density ppg 8.4-8.9 10 9.0-10.0 th Size 9' 9-5/8" 5' 7"	Drilling Onsite Dri Drill <u>Vis</u> PV sec/qt cP <u>Wt</u> Grad 36.00 J58 23.00 L58 23.00 L59 Open Hole	Engineer: Geologist: lling Rep.: ling Supt.: <u>YP</u> #/100ft2 E E LT BT	ection C	mL	LGS % by vol BOP:	<u>Cl NaCl</u> k mg/L ppb so Working 3000 psi	<u>Remarks</u>	
ING FLUID: Surface: Intermediate: Production: Ence Baroid Drilling Flu IG: Surface: Intermediate: Production: 5/8" Annulus Casing p	Type Fresh Water/WBM Brine uids Program Hole TOP (MD) 12-1/4" 0' 8-3/4" 0' 6-1/8" 6,810'	Interval (MD) Surface-1,655' 1,655' - 6,825' 6,825' - 9,325' BTM (MD) Leng 1,640' 1,640 6,810' 6,811 9,325' 2,511 surface casing shoe	Density PPg 8.4-8.9 10 9.0-10.0 th Size 9.5/8" 7" 5" in casing annulu	Drilling Onsite Dri Drill <u>Vis</u> PV sec/qt cP <u>Wt Grad</u> 36.00 J58 23.00 L58 23.00 L59 Open Hole	Engineer: Geologist: lling Rep.: ling Supt.: <u>YP</u> #/100ft2 E E LT BT	ection C	mL	LGS % by vol BOP: Annular Double Ram	<u>Cl NaCl</u> k mg/L ppb so Working 3000 psi	Remarks Test 2100 psi	
ING FLUID: Surface: Intermediate: Production: Ence Baroid Drilling Flu IG: Surface: Intermediate: Production: 5/8" Annulus Casing p	Type Fresh Water/WBM Brine Jids Program Hole TOP (MD) 12-1/4" 0' 8-3/4" 0' 6-1/8" 6,810' packer will be set ~100' above e for details on float equipment Hole MD	Interval (MD) Surface-1,655' 1,655' - 6,825' 6,825' - 9,325' BTM (MD) Leng 1,640' 1,640 6,810' 6,811 9,325' 2,511 surface casing shoe	Density PPg 8.4-8.9 10 9.0-10.0 th Size 9.5/8" 7" 5" in casing annulu	Drilling Onsite Dri Drill Vis PV sec/qt cP Wt Grad 36.00 J55 23.00 L80 Open Hole Is	Engineer: Geologist: lling Rep.: ling Supt.: <u>YP</u> #/100ft2 E E LT BT	ection C	mL	LGS % by vol BOP: Annular Double Ram	Cl NaCl k mg/L ppb so Working 3000 psi 3000 psi 3000 psi	Remarks Test 2100 psi	
ING FLUID: Surface: Intermediate: Production: Ence Baroid Drilling Flu IG: Surface: Intermediate: Production: 5/8" Annulus Casing p ence Drilling Procedure NT:	Type Fresh Water/WBM Brine Brine JdS Program Hole TOP (MD) 12-1/4" 0' 8-3/4" 0' 6-1/8" 6,810' packer will be set ~100' above e for details on float equipment Hole MD 1-1/4"X9-5/8" 1,640'	Interval (MD) Surface-1,655' 1,655' - 6,825' 6,825' - 9,325' BTM (MD) Leng 1,640' 1,640 6,810' 6,811 9,325' 2,511 surface casing shoe t, centralizers, and line <u>TVD</u> 1,640' 6100'	Density PPg 8.4-8.9 10 9.0-10.0 th Size 9' 9-5/8" 9' 7" 5' in casing annulu er equipment. Spacer	Drilling Onsite Dri Drill Vis PV sec/qt cP Wt Grad 36.00 J55 23.00 L80 Open Hole Is	Engineer: Geologist: Iling Rep.: Iing Supt.: <u>YP</u> #/100ft2 <u>E</u> <u>Conne</u> LT BT	ection C C	mL	LGS % by vol BOP: Annular Double Ram Wellhead: Tail 272 593	Cl NaCl k mg/L ppb so Working 3000 psi 3000 psi 3000 psi CO TOC	Remarks Test 2100 psi 3000 psi Surface C Surface	
ING FLUID: Surface: Intermediate: Production: Surface: Intermediate: Production: Surface: Production: 5/8" Annulus Casing p Surface: 12 Intermediate: Intermediate: Intermediate: Surface: 12 Intermediate: Surface: 12 Intermediate: Surface: 12 Intermediate: Surface: 12 Intermediate: Surface: 12 Intermediate: Surface: 12 Intermediate: Surface: 12 Intermediate: Surface: 12 Surface: 12 Surface	Type Fresh Water/WBM Brine Brine JdS Program Hole TOP (MD) 12-1/4" 0' 8-3/4" 0' 6-1/8" 6,810' packer will be set ~100' above e for details on float equipment Hole MD 1-1/4"X9-5/8" 1,640'	Interval (MD) Surface-1,655' 1,655' - 6,825' 6,825' - 9,325' BTM (MD) Leng 1,640' 1,640 6,810' 6,811 9,325' 2,511 surface casing shoe t, centralizers, and line <u>TVD</u> 1,640' 6100'	Density PPg 8.4-8.9 10 9.0-10.0 th Size 9' 9-5/8" 9' 7" 5' in casing annulu er equipment. Spacer	Drilling Onsite Dri Drill Vis PV sec/qt cP Wt Grad 36.00 J55 23.00 L80 Open Hole Is	Engineer: Geologist: Iling Rep.: Iing Supt.: <u>YP</u> #/100ft2 <u>E</u> <u>Conne</u> LT BT	ection C C	mL	LGS % by vol BOP: Annular Double Ram Wellhead: Tail 272 593	<u>Cl NaCl</u> k mg/L ppb so Working 3000 psi 3000 psi 3000 psi TOC	Remarks Test 2100 psi 3000 psi Surface C Surface	
ING FLUID: Surface: Intermediate: Production: G: Surface: Intermediate: Production: 5/8" Annulus Casing p ence Drilling Procedure NT: Surface: 12 Intermediate:	Type Fresh Water/WBM Brine Jds Program Hole TOP (MD) 12-1/4" 0' 8-3/4" 0' 6-1/8" 6,810' packer will be set ~100' above e for details on float equipment Hole MD L1/4"X9-5/8" 1,640' 8-3/4"X7" 6,810'	Interval (MD) Surface-1,655' 1,655' - 6,825' 6,825' - 9,325' BTM (MD) Leng 1,640' 1,640 6,810' 6,811 9,325' 2,511 surface casing shoe t, centralizers, and line <u>TVD</u> 1,640' 6100'	Density PPg 8.4-8.9 10 9.0-10.0 th Size 9' 9-5/8" 7" 5' in casing annulu er equipment. Spacer t Volume will be	Drilling Onsite Dri Drill Vis PV sec/qt cP Wt Grad 36.00 J55 23.00 L80 Open Hole Is	Engineer: Geologist: ling Rep.: ing Supt.: <u>YP</u> #/100ft2 <u>EX</u>	ection C C	mL	LGS % by vol BOP: Annular Double Ram Wellhead: Tail 272 593	Cl NaCl k mg/L ppb so Working 3000 psi 3000 psi 3000 psi CO TOC	Remarks Test 2100 psi 3000 psi Surface C Surface	
ING FLUID: Surface: Intermediate: Production: Surface: Intermediate: Production: 5/8" Annulus Casing p Annulus C	Type Fresh Water/WBM Brine Jids Program Hole TOP (MD) 12-1/4" 0' 8-3/4" 0' 6-1/8" 6,810' packer will be set ~100' above e for details on float equipment Hole MD -1/4"X9-5/8" 1,640' 8-3/4"X7" 6,810' nting Reccomendation MD	Interval (MD) Surface-1,655' 1,655' - 6,825' 6,825' - 9,325' BTM (MD) Leng 1,640' 6,810' 9,325' 2,511 surface casing shoe t, centralizers, and line TVD 1,640' 6100' Cemen INC AZI	Density PPg 8.4-8.9 10 9.0-10.0 th Size 9' 9-5/8" 7" 5' in casing annulu er equipment. Spacer t Volume will be	Dritling Onsite Dri Dritl Sec/qt cP Wt Grad 36.00 J55 23.00 L80 Open Hole Is	Engineer: Geologist: ling Rep.: ing Supt.: <u>YP</u> #/100ft2 <u>EX</u>	ection C C nditions or DLS	mL	LGS % by vol BOP: Annular Double Ram Wellhead: <u>Tail</u> 272 593 spending on v	<u>CI</u> <u>NaCI</u> k mg/L ppb so Working 3000 psi 3000 psi 3000 psi <u>CD</u> TOC TOC vhat is well specific	Remarks Test 2100 psi 3000 psi Surface C Surface	· · · · · ·
ING FLUID: Surface: Intermediate: Production: Surface: Intermediate: Production: 5/8" Annulus Casing p Annulus C	Type Fresh Water/WBM Brine Jids Program Hole TOP (MD) 12-1/4" 0' 8-3/4" 0' 6-1/8" 6,810' packer will be set ~100' above e for details on float equipment Hole MD -1/4"X9-5/8" 1,640' 8-3/4"X7" 6,810' nting Reccomendation MD	Interval (MD) Surface-1,655' 1,655' - 6,825' 6,825' - 9,325' BTM (MD) Leng 1,640' 6,810' 9,325' 2,511 surface casing shoe t, centralizers, and line TVD 1,640' 6100' Cemen INC AZI	Density PPg 8.4-8.9 10 9.0-10.0 th Size 9' 9-5/8" 7" 5' in casing annulu er equipment. Spacer t Volume will be	Dritling Onsite Dri Dritl Sec/qt cP Wt Grad 36.00 J55 23.00 L80 Open Hole Is	Engineer: Geologist: ling Rep.: ing Supt.: <u>YP</u> #/100ft2 <u>EX</u>	ection C C nditions or DLS	mL	LGS % by vol BOP: Annular Double Ram Wellhead: <u>Tail</u> 272 593 spending on v	<u>CI</u> <u>NaCI</u> k mg/L ppb so Working 3000 psi 3000 psi 3000 psi <u>CD</u> TOC TOC vhat is well specific	Remarks Test 2100 psi 3000 psi Surface C Surface	•
ING FLUID: Surface: Intermediate: Production: Surface: Intermediate: Production: Sourface: Production: Sourface: Production: Sourface: Intermediate: Intermedi	Type Fresh Water/WBM Brine Brine Jids Program Hole TOP (MD) 12-1/4" 0' 8-3/4" 0' 6-1/8" 6,810' packer will be set ~ 100' above e for details on float equipment Hole MD -1/4"X9-5/8" 1,640' 8-3/4"X7" 6,810' nting Reccomendation MD (ft)	Interval (MD) Surface-1,655' 1,655' - 6,825' 6,825' - 9,325' BTM (MD) Leng 1,640' 6,810' 9,325' 2,511 surface casing shoe t, centralizers, and line TVD 1,640' 6100' Cemen INC AZI	Density PPg 8.4-8.9 10 9.0-10.0 th Size 9' 9-5/8" 7" 5' in casing annulu er equipment. Spacer t Volume will be	Dritling Onsite Dri Dritl Sec/qt cP Wt Grad 36.00 J55 23.00 L80 Open Hole Is	Engineer: Geologist: ling Rep.: ing Supt.: <u>YP</u> #/100ft2 <u>EX</u>	ection C C nditions or DLS	mL	LGS % by vol BOP: Annular Double Ram Wellhead: <u>Tail</u> 272 593 spending on v	<u>CI</u> <u>NaCI</u> k mg/L ppb so Working 3000 psi 3000 psi 3000 psi <u>CD</u> TOC TOC vhat is well specific	Remarks Test 2100 psi 3000 psi Surface C Surface	

ć

•

.

ConocoPhillips

Lea County, New Mexico (NAD 27) VGEU 114H

Wellbore #1

Plan: Design #8

Standard Planning Report

25 June, 2015

MS Energy Services

Database: Company: Project: Site: Well: Well: Wellbore: Design:	Cono Lea (VGE 114H	oore #1		27)	TVD Refe MD Refe North Re	rence:			54.00usft (Pred 54.00usft (Pred rvature	,
Project	Lea C	ounty, New M	lexico (NAD 2	27)			·····			1997 - L. 1
Map System: → Geo Datum: Map Zone:	NAD 19	te Plane 1927 927 (NADCON exico East 300	V CONUS)	ion)	System Da	atum:	M	ean Sea Leve	91	
Well	114H									
Well Position	+N/-S	657,196.9		orthing:		657,196.94 u		titude:		32° 48' 13.075 N
	+E/-W	770,352.4		asting:		770,352 <i>.</i> 42 u	-	ngitude:		103° 27' 12.484 V
Position Uncert	ainty	0.0	00 usft W	ellhead Elev	ation:		Gr	ound Level:		3,940.00 ust
Wellbore	Wellb	ore #1			······································					المراجع من
Magnetics	Мо	del Name	Sampl	e Date	Declina (°)	ition	Dip A ('	Angle °)		Strength iT)
Magnetics	Мо	del Name BGGM2015	Sampl	e Date 09/01/15		ntion 7.17				
		BGGM2015	Sampl				(60.70		iT)
Desígn	Mo	BGGM2015	Sampl			7.17	(60.70		iT)
Design Audit Notes:		BGGM2015	Sampl	09/01/15		7.17	(60.70		iT)
Design Audit Notes: Version:	Desigr	BGGM2015	Phas	09/01/15	(°) PROTOTYPE	7.17	(On Depth:	60.70	0.00	iT)
Design Audit Notes:	Desigr	BGGM2015		09/01/15	(°)	7.17	(On Depth:	60.70	0.00 rection	iT)
Design Audit Notes: Version:	Desigr	BGGM2015	Phas phas	09/01/15	(°) PROTOTYPE +N/-S	7.17 Tie +E/	(On Depth: -W ft)	2) 60.70 Di	0.00	iT)
Design Audit Notes: Version: Vertical Section	Desigr	BGGM2015	Phas pth From (T (usft)	09/01/15	(°) PROTOTYPE +N/-S (usft)	7.17 Tie +E/. (us	(On Depth: -W ft)	2) 60.70 Di	0.00 (rection (°)	iT)
Design Audit Notes: Version: Vertical Section Plan Sections	Desigr	BGGM2015	Phas epth From (T (usft) 0.00	09/01/15	(°) PROTOTYPE +N/-S (usft)	7.17 Tie +E/ (us 0.0	(On Depth: -W ft) -00	2) 60.70 Din 2	0.00 (rection (°)	iT)
Design Audit Notes: Version: Vertical Section Plan Sections Measured	Desigr	BGGM2015	Phas pth From (T (usft)	09/01/15	(°) PROTOTYPE +N/-S (usft)	7.17 Tie +E/. (us	(On Depth: -W ft)	2) 60.70 Di	(r 0.00 rection (°) 18.74	iT)
Design Audit Notes: Version: Vertical Section Plan Sections Measured	Desig I:	BGGM2015	Phas epth From (T (usft) 0.00 Vertical	09/01/15 se: F VD)	(°) PROTOTYPE +N/-S (usft) 0.00 +E/-W	7.17 Tie +E/. (us 0.0	(On Depth: -W fft) 20 Build Rate) 60.70 Din 2 Turn Rate	0.00 (rection (°)	iT)
Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth Inc	Design	BGGM2015	Phas epth From (T (usft) 0.00 Vertical Depth	09/01/15 se: F VD) +N/-S	(°) PROTOTYPE +N/-S (usft) 0.00 +E/-W	7.17 Tie +E/. (us 0.0 Dogleg Rate	(On Depth: -W fft) 20 Build Rate) 60.70 Din 2 Turn Rate	(r 0.00 rection (°) 18.74 TFO	m) 48,553
Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth Inc (usft)	Design	BGGM2015 n #8 De Azimuth (°)	Phas epth From (T. (usft) 0.00 Vertical Depth (usft)	09/01/15 se: F VD) +N/-S (ùsft)	(°) PROTOTYPE +N/-S (usft) 0.00 +E/-W (usft)	7.17 Tie +E/. (us 0.0 Dogleg Rate (°/100usft)	(*/ On Depth: -W ft) 30 Build Rate (*/100usft)	-) 60.70 Di Di 2 Turn Rate (°/100usft)	(r 0.00 rection (°) 18.74 TFO (°)	m) 48,553
Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth Inc (usft) 0.00	Design i: (BGGM2015 n #8 De Azimuth (°) 0.00	Phas epth From (T (usft) 0.00 Vertical Depth (usft) 0.00	09/01/15 se: F VD) +N/-S (ùsft) 0.00	(°) PROTOTYPE +N/-S (usft) 0.00 +E/-W (usft) 0.00	7.17 Tie +E/. (us 0.0 Dogleg Rate (°/100usft) 0.00	(*/ On Depth: 	5) 60.70 Di Di 2 7 Turn Rate (°/100usft) 0.00	(r 0.00 rection (°) 18.74 TFO (°) 0.00 0.00	11) 48,553
Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth Inc (usft) 0.00 5,110.34	Design i: clination (°) 0.00 0.00	BGGM2015 1 #8 De Azimuth (°) 0.00 0.00	Phas Phas Phas Phas Phas 0.00 Vertical Depth (usft) 0.00 5,110.34	09/01/15 se: F VD) +N/-S (ùsft) 0.00 0.00	(°) PROTOTYPE +N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00	7.17 Tie +E/. (us 0.0 Dogleg Rate (°/100usft) 0.00 0.00	(*/ On Depth: 	5) 60.70 Di Di 2 7 Turn Rate (°/100usft) 0.00 0.00	(r 0.00 rection (°) 18.74 TFO (°) 0.00 0.00	m) 48,553
Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth Inc (usft) 0.00 5,110.34 6,443.67	Design i: clination (°) 0.00 0.00 80.00	BGGM2015 1 #8 De Azimuth (°) 0.00 0.00 218.74	Phas Phas Phas Phas Phas 0.00 Vertical Depth (usft) 0.00 5,110.34 6,050.76	09/01/15 se: F VD) +N/-S (ùsft) 0.00 0.00 -615.52	(°) PROTOTYPE +N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 -493.79	7.17 Tie +E/. (us 0.0 Dogleg Rate (°/100usft) 0.00 0.00 6.00	(*/ On Depth:) 60.70 Din 2 Turn Rate (°/100usft) 0.00 0.00 0.00	(r 0.00 rection (°) 18.74 TFO (°) 0.00 0.00 218.74	11) 48,553 Target

Ľ.

MS Energy Services

ار را عشيخ در و مصنع مست

Planning Report

Database:	EDM 5000.1 Conroe DB	Local Co-ordinate Reference:	Well 114H
Company:	ConocoPhillips	TVD Reference:	WELL @ 3954.00usft (Precision 194)
Project:	Lea County, New Mexico (NAD 27)	MD Reference:	WELL @ 3954.00usft (Precision 194)
Site:	VGEU	North Reference:	Grid
Well:	114H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	:	
Design:	Design #8	1	

. . .

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.00 100.00 200.00 300.00 400.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 100.00 200.00 300.00 400.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
500.00 600.00 700.00 800.00 900.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	500.00 600.00 700.00 800.00 900.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	. 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
1,000.00 1,100.00 1,200.00 1,300.00 1,400.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	1,000.00 1,100.00 1,200.00 1,300.00 1,400.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
1,500.00 1,593.00 Rustler	0.00 0.00	0.00 0.00	1,500.00 1,593.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
1,600.00 1,685.00 Salado	0.00	0.00 0.00	1,600.00 1,685.00	0.00 0.00	0.00 0.00	0.00 0.00	· 0.00 0.00	0.00 × 0.00	0.00 0.00
1,700.00 1,800.00 1,900.00 2,000.00 2,100.00 2,200.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	1,700.00 1,800.00 2,000.00 2,100.00 2,200.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
2,300.00 2,400.00 2,500.00 2,600.00 2,700.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	2,300.00 2,400.00 2,500.00 2,600.00 2,700.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
2,733.00 Tansil 2,800.00 2,864.00	0.00 0.00 0.00	0.00 0.00 0.00	2,733.00 2,800.00 2,864.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00
Yates 2,900.00 3,000.00	0.00 0.00	0.00 0.00	2,900.00 3,000.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00
3,100.00 3,140.00 Seven Rive	0.00 0.00	0.00 0.00	3,100.00 3,140.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
~ 3,200.00 3,300.00 3,400.00	0.00 0.00 0.00	0.00 0.00 0.00	3,200.00 3,300.00 3,400.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
3,500.00 3,504.00 Queen	0.00 0.00	0.00 0.00	3,500.00 3,504.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
3,600.00 3,700.00 3,800.00	0.00 0.00 0.00	0.00 0.00 0.00	3,600.00 3,700.00 3,800.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
3,900.00 4,000.00	0.00 0.00	0.00 0.00	3,900.00 4,000.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00

China and a second

MS Energy Services

Planning Report

ALL	And the second	and the second states	
Database:	EDM 5000.1 Conroe DB	Local Co-ordinate Reference:	Well 114H
Company:	ConocoPhillips	TVD Reference:	WELL @ 3954.00usft (Precision 194)
Project:	Lea'County, New Mexico (NAD 27)	MD Reference:	WELL @ 3954.00usft (Precision 194)
Site:	VGEU	North Reference:	Grid
Well:	114H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #8		1

THE STREET

Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	
	4,033.00	0.00	0.00	4,033.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Grayburg	0.00	0.00	4 100 00	0.00	0.00	0.00		0.00	0.00	
	4,100.00 4,200.00	0.00 0.00	0.00 0.00	4,100.00 4,200.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	4,300.00	0.00	0.00	4,300.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4,368.00	0.00	0.00	4,368.00	0.00	0.00	0.00	0.00	0.00	0.00	
	San Andre			.,				0100	0,000	0.00	
	4,400.00	0.00	0.00	4,400.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4,500.00	0.00	0.00	4,500.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4,600.00	0.00	0.00	4,600.00	0.00	0.00	0.00	0.00	0.00	. 0.00	
	4,700.00	0.00	0.00	4,700.00	0.00	0.00	0.00	0.00	0.00	0.00	
	4,800.00 4,900.00	0.00 , 0.00	0.00 0.00	4,800.00 4,900.00	0.00 0.00	0.00 0.00	0.00 0.00	. 0.00 0.00	0.00 0.00	0.00 0.00	
	5,000.00	0.00	0.00	5,000.00	0.00	0.00	0.00	0.00	0.00	0.00	
	5,100.00	0.00	0.00	5,100.00	0.00	0.00	0.00		0.00	0.00	
	5,110.34	0.00	0.00	5,110.34	0.00	0.00	0.00	0.00	0.00	0.00	
	KOP, 6.00°										
	5,150.00	2.38	218.74	5,149.99	-0.64	-0.52		6.00	6.00	0.00	
	5,200.00	5.38	218.74	5,199.87	-3.28	-2.63	4.21	6.00	6.00	0.00	
	5,250.00 5,300.00	8.38 11.38	218.74 218.74	5,249.50 5,298.76	-7.95 -14.64	-6.38 -11.75	10.19 18.77	6.00 6.00	6.00 6.00	0.00 0.00	
	5,350.00		218.74	5,347.49	-23.34	-18.72	29.92		6.00		
	5,350.00	14.38 · 17.38	218.74	5,347.49 5,395.58	-23.34 -34.01	-18.72 -27.28	29.92 43.60	6.00 6.00	6.00	0.00 0.00	
	5,450.00	20.38	218.74	5,442.88	-46.62	-37.40	59.77		6.00	0.00	
	5,500.00	23.38	218.74	5,489.28	-61.16	-49.06	78.40	6.00	6.00	0.00	
	5,550.00	26.38	218.74	5,534.63	-77.56	-62.22	99.44	6.00	6.00	0.00	
	5,600.00	29.38	218.74	5,578.82	-95.80	-76.85	122.81	6.00	6.00	0.00	
	5,650.00	32.38 35.38	218.74 218.74	5,621.73 5,663.24	-115.81 -137.55	-92.91 -110.35	148.47 176.34	6.00 6.00	6.00 6.00	0.00 0.00	
	5,700.00 5,750.00	38.38	218.74	5,703.23	-160.95	-129.12	206.35	6.00	6.00	0.00	
	5,800.00	41.38	218.74	5,741.59	-185.96	-149.18	238.40	6.00	6.00	0.00	
	5,850.00	44.38	218.74	5,778.23	-212.49	-170.47	272.42	6.00	6.00	0.00	
	5,900.00	47.38	218.74	5,813.03	-240.49	-192.93	308.31	6.00	6.00	0.00	
	5,950.00	50.38 53.38	218.74 218.74	5,845.91 5,876.77	-269.87 -300.54	-216.49 -241.11	345.97 385.30	. 6.00 6.00	6.00 6.00	0.00 0.00	
	6,000.00 6,050.00	56.38	218.74	5,905.53	-332.44	-266.69	426.20	6.00	6.00	0.00	
	6,100.00	59.38	218.74	5,932.12	-365.47	-293.19	468.54	6.00	6.00	0.00	
	6,144.75	62.06	218.74	5,954.00	-395.92	-317.62	507.57	6.00	6.00	0.00	
	Glorieta										
	6,150.00	62.38	218.74	5,956.44	-399.54	-320.52	512.21	6.00	6.00	0.00	
	6,200.00	65.38	218.74 218.74	5,978.46 5,998.09	-434.55 -470.42	-348.61	557.10 603.08	. 6.00 6.00	6.00 6.00	0.00 0.00	
	6,250.00	68.38				-377.38					
	6,300.00 6,350.00	71.38 74.38	218.74 218.74	6,015.28 6,030.00	-507.03 -544.30	-406.76 -436.65	650.02 697.80	6.00 6.00	6.00 6.00	0.00 0.00	
	6,400.00	74.38	218.74	6,042.20	-582.12	-466.99	746.29	6.00	6.00	0.00	
	6,443.67	80.00	218.74	6,050.76	-615.52	-493.79	789.11	6.00	6.00	0.00	
	Begin 80.00	•									
	6,500.00	80.00	218.74	6,060.54	-658.79	-528.50	844.58	0.00	0.00	0.00	
	6,554.46	80.00	218.74	6,070.00	-700.62	-562.06	898.21	0.00	0.00	0.00	
	U. Paddock									•	
	6,600.00	80.00	218.74	6,077.91	-735.61	-590.12	943.06	0.00	0.00	0.00	
	6,643.67 Begin 6.00°	80.00 /100' Build	218.74	6,085.49	-769.15	-617.04	986.07	0.00	0.00	0.00	
l	Degin 0.00										

4

MS Energy Services

٦

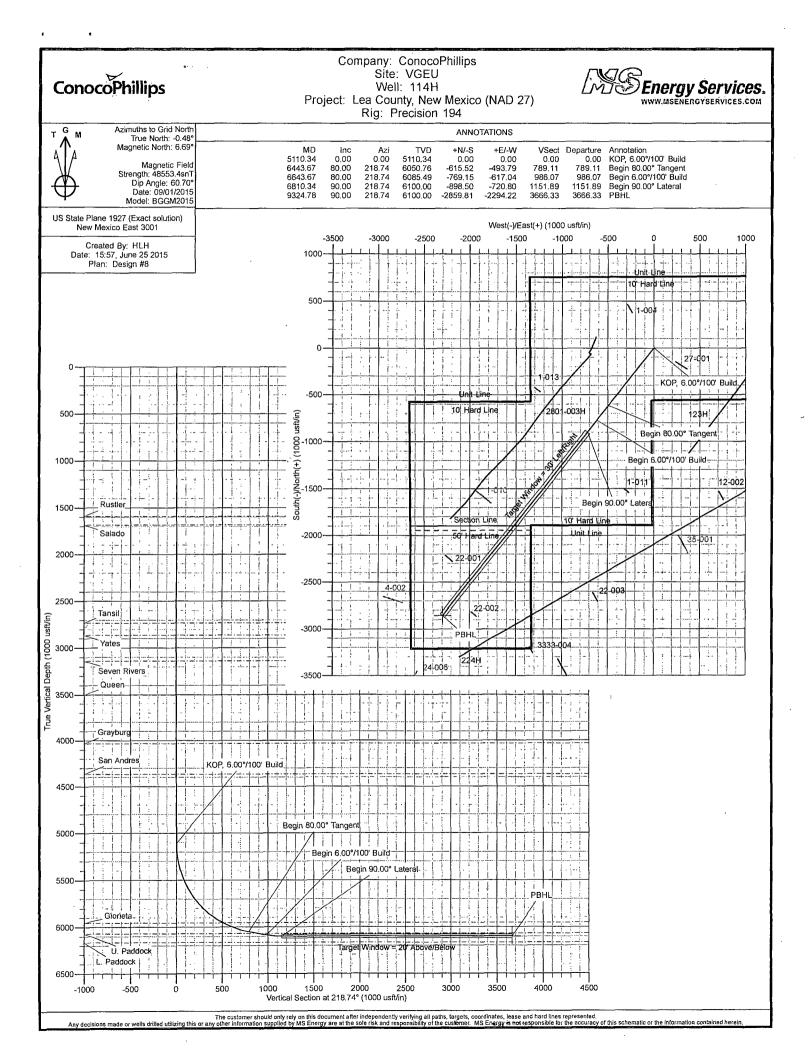
Planning Report

			an interference of the second second	-	-			WWW.N	ASENERGYSERVICES	s.c0
atabase: ompany: roject: ite: ell: ellbore: esigñ:	ConocoPhil	New Mexico	(NAD 27)	TVD R MD Re North	Co-ordinate eference: ference: Reference: r Calculatio	Reference	WELL @ 3	3954.00usft (Pre 3954.00usft (Pre		
lanned Survey		vz iraizva				a sur char				1.000 1000.
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+Ė/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	, , ,
6,650.00 6,700.00	80.38 83.38	218.74 218.74	6,086.57 6,093.63	-774.02 -812.62	-620.94 -651.91	992.30 1,041.80		6.00 6.00	0.00	
6,750.00 6,800.00 6,810.34	86.38 89.38 90.00	218.74 218.74 218.74 218.74	6,093.03 6,098.09 6,099.94 6,100.00	-812.82 -851.46 -890.43 -898.50	-683.07 -714.33 -720.80	1,091.59 1,141.55 1,151.89	6.00	6.00 6.00 6.00	0.00 0.00 0.00	
Begin 90.00 6,900.00 7,000.00	° Lateral 90.00 90.00	218.74 218.74	6,100.00 6,100.00	-968.44 -1,046.44	-776.91 -839.48	1,241.55 1,341.55	0.00 0.00	0.00 0.00	0.00 0.00	
7,100.00 7,200.00 7,300.00 7,400.00 7,500.00	90.00 90.00 90.00 90.00 90.00	218.74 218.74 218.74 218.74 218.74 218.74	6,100.00 6,100.00 6,100.00 6,100.00 6,100.00	-1,124.44 -1,202.44 -1,280.44 -1,358.45 -1,436.45	-902.06 -964.63 -1,027.21 -1,089.78 -1,152.36	1,441.55 1,541.55 1,641.55 1,741.55 1,841.55	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	1
7,600.00 7,700.00 7,800.00 7,900.00 8,000.00	90.00 90.00 90.00 90.00 90.00	218.74 218.74 218.74 218.74 218.74 218.74	6,100.00 6,100.00 6,100.00 6,100.00 6,100.00 6,100.00	-1,514.45 -1,592.45 -1,670.45 -1,748.46 -1,826.46	-1,214.93 -1,277.51 -1,340.08 -1,402.66 -1,465.24	1,941.55 2,041.55 2,141.55 2,241.55 2,341.55	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	
8,100.00 8,200.00 8,300.00 8,400.00 8,500.00	90.00 90.00 90.00 90.00 90.00	218.74 218.74 218.74 218.74 218.74 218.74	6,100.00 6,100.00 6,100.00 6,100.00 6,100.00	-1,904.46 -1,982.46 -2,060.46 -2,138.47 -2,216.47	-1,527.81 -1,590.39 -1,652.96 -1,715.54 -1,778.11	2,441.55 2,541.55 2,641.55 2,741.55 2,841.55	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	
8,600.00 8,700.00 8,800.00 8,900.00 9,000.00	90.00 90.00 90.00 90.00 90.00	218.74 218.74 218.74 218.74 218.74 218.74	6,100.00 6,100.00 6,100.00 6,100.00 6,100.00 6,100.00	-2,294.47 -2,372.47 -2,450.47 -2,528.48 -2,606.48	-1,840.69 -1,903.26 -1,965.84 -2,028.41 -2,090.99	2,941.55 3,041.55 3,141.55 3,241.55 3,341.55	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	
9,100.00 9,200.00 9,300.00 9,324.78 PBHL	90.00 90.00 90.00 90.00	218.74 218.74 218.74 218.74	6,100.00 6,100.00	-2,684.48 -2,762.48 -2,840.48 -2,859.81	-2,153.57 -2,216.14	3,441.55 3,541.55 3,641.55 3,666.33	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	
esign Targets		nny nati n				1		· · · · · · · · · · · · · · · · · · ·	1 ** * · · · · · . ·	
arget Name - hit/miss target - Shape	Dip Angle (°)		TVD +N/ usft) (usf		Northi (usft		asting usft)	Latitude	Longitude	
BHL v8 - VGEU 11 - plan hits target - Rectangle (side	center			59.81 -2,294.2	2 654,3	37.13 7	68,058.20	32° 47' 44.967 N	103° 27' 39.63	
asing Points		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		na anno coto c		····		:
<u> </u>	asured Depth (usft)	Vertical Depth (usft)		Nam	e		Casir Diame (")	eter Diame		
بالطوا سلامت محددة وتصميكم بال	9,324.78	6,100.00 5	5 1/2"					5-1/2	6	

.

MS Energy Services

Planning Report


Database:	EDM 5000.1 Conroe DB	Local Co-ordinate Reference:	Well 114H	1
Company:	ConocoPhillips	TVD Reference:	WELL @ 3954.00usft (Precision 194)	
Project:	Lea County, New Mexico (NAD 27)	MD Reference:	WELL @ 3954.00usft (Precision 194)	Í.
Site:	VGEU	North Reference:	Grid	•
Well:	114H	Survey Calculation Method:	Minimum Curvature	Į
Wellbore:	Wellbore #1			1
Design:	Design #8	;		ľ

Formations [

. 1	Measured Depth (usft)	Vertical Depth (usft)		Name		Lithology	Dip (°)	Dip Direction (°)
	1,593.00	1,593.00	Rustler	******	 	···· · ··· ··· · · · · · · · · · · · ·	0.00	218.74
	1,685.00	1,685.00	Salado				0.00	218.74
	2,733.00	2,733.00	Tansil				0.00	218.74
	2,864.00	2,864.00	Yates				0.00	218.74
	3,140.00	3,140.00	Seven Rivers				0.00	218.74
	3,504.00	3,504.00	Queen				0.00	218.74
	4,033.00	4,033.00	Grayburg				0.00	218.74
	4,368.00	4,368.00	San Andres				0.00	218.74
	6,144.75	5,954.00	Glorieta				0.00	218.74
	6,554.46	6,070.00	U. Paddock			,	0.00	218.74

Plan Annotations -----

1		Measured	Vertical	Local Coord	linates				
	•	Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment	۰.	•	
L.,		5,110.34	5,110.34	0.00	0.00	KOP, 6.00°/100' Build			
	•	6,443.67	6,050.76	-615.52	-493.79	Begin 80.00° Tangent			
		6,643.67	6,085.49	-769.15	-617.04	Begin 6.00°/100' Build			
		6,810.34	6,100.00	-898.50	-720.80	Begin 90.00° Lateral			
		9,324.78	6,100.00	-2,859.81	-2,294.22	PBHL			

H₂S Contingency Plan

H₂S Contingency Plan Holders:

Attached is an H₂S Contingency Plan for COPC Permian Drilling working in the West Texas and Southeastern New Mexico areas operated by ConocoPhillips Company.

If you have any questions regarding this plan, please call Jet Brown at ConocoPhillips Company, 432.688.6849.

Table of Contents

Section

I. Purpose

II. Scope

III. Procedures

IV. Emergency Equipment and Maintenance

(

Emergency Equipment Suppliers General Information H2S Safety Equipment and Monitoring Systems

V. Emergency Call List

VI. Public/Media Relations

VII. Public Notification/Evacuation

VIII. Forms/Reports

ConocoPhillips

HYDROGEN SULFIDE (H₂S) OPERATIONS

Contingency Plan For Permian Drilling Operations

ConocoPhillips Company Mid-Continent Business Unit Permian Asset Area

I. PURPOSE

The purpose of this Contingency Plan is to provide an organized plan of action for alerting and protecting the public following the release of a potentially hazardous volume of hydrogen sulfide. This plan prescribes mandatory safety procedures to be followed in the event of a release of H_2S into the atmosphere from exploration and production operations included in the scope of this plan. The extent of action taken will be determined by the supervisor and will depend on the severity and extent of the H_2S release. Release of H_2S must be reported to the Drilling Superintendent and documented on the IADC report and in Wellview.

II. SCOPE

This Contingency plan shall cover the West Texas and Southeastern New Mexico areas, which contain H2S gas and could result in a release in which the 100 ppm radius of exposure is greater than 50' yet less than 3000' and does not include a public area, and in which the 500 ppm radius of exposure does not include a public road. Radius of exposure is defined as the maximum distance from the source of release that a specified calculated average concentration of H_2S could exist under specific weather conditions.

First Employee on Scene

_____ Assess the incident and <u>ensure your own safety</u>.

Note the following:

—— Location of the incident.

_____ Nature of the incident.

—— Wind direction and weather conditions.

_____ Other assistance that may be needed.

Call local supervisory personnel (refer to Section V: Emergency Call List) until personal contact is made with a person on the list.

Perform emergency assessment and response as needed. The response may include rescue and/or evacuation of personnel, shutting in a system and/or notification of nearby residents/public (refer to Section VII: Public Notification/Evacuation).

Secure the site.

Follow the direction of the On-scene Incident Commander (first ConocoPhillips supervisor arriving on-scene).

First Supervisor on Scene (ConocoPhillips On-scene Incident Commander)

----- Becomes ConocoPhillips' On-scene Incident Commander upon arrival to location.

----- Follow the principles of the **D.E.C.I.D.E.** process below to assess the incident. (Note wind direction and weather conditions and ensure everyone's safety).

DETECT the problem ESTIMATE likely harm without intervention CHOOSE response objectives IDENTIFY action options DO the best option EVALUATE the progress

Complete the Preliminary Emergency Information Sheet (refer to Section VIII: Forms/Reports).

_____ Call your supervisor (refer to Section V: Emergency Call List).

Perform emergency response as necessary. (This may include notification & evacuation of all personnel and/or nearby residents/public (refer to Section VII: Public Notification/Evacuation), requesting assistance from ConocoPhillips personnel or outside agencies (refer to Section V: Emergency Call List) and obtaining any safety equipment that may be required (refer to Section IV: Emergency Equipment and Maintenance).

Notify appropriate local emergency response agencies of the incident as needed. Also notify the appropriate regulatory agencies. (refer to Section V: Emergency Call List).

_____ Ensure site security.

----- Set barricades and /or warning signs at or beyond the calculated 100 ppm H₂S radius of exposure (ROE). All manned barricades must be equipped with an H₂S monitor and a 2-way radio.

----- Set roadblocks and staging area as determined.

Establish the Incident Command Structure by designating appropriate on-scene response personnel as follows:

Recording Secretary Public Information Officer	
Safety/Medical Officer Decontamination Officer	

- Have the "Recording Secretary" begin documenting the incident on the "Incident Log" (refer to Section VIII: Forms/Reports).
- If needed, request radio silence on all channels that use your radio tower stating that, until further notice, the channels should be used for emergency communications only.
- ----- Perform a Site Characterization and designate the following:

Hot Zone	 Hazardous Area
Warm Zone	 Preparation & Decontamination Area
Cold Zone	 Safe Area

On-Scene Incident Command Post Public Relations Briefing Area Staging Area Triage Area Decontamination Area (Cold Zone) (Cold Zone) (Cold Zone) (Cold Zone) (Warm Zone)

- Refer all media personnel to ConocoPhillips' On-Scene Public Information Officer (refer to Section VI: Public Media Relations).
- Coordinate the attempt to stop the release of H_2S . You should consider closing upstream and downstream values to shut-off gas supply sources, and/or plugging or clamping leaks. Igniting escaping gas to reduce the toxicity hazard should be used **ONLY AS A LAST RESORT**. (It must first be determined if the gas can be safely ignited, taking into consideration if there is a possibility of a widespread flammable atmosphere.)

Once the emergency is over, return the situation to normal by:

Confirming the absence of H₂S and combustible gas throughout the area,

Discontinuing the radio silence on all channels, stating that the emergency incident is over,

Removing all barricades and warning signs,

Allowing evacuees to return to the area, and

Advising all parties previously notified that the emergency has ended.

- Ensure the proper regulatory authorities/agencies are notified of the incident (refer to Section V: Emergency Call List).
- Clean up the site. (Be sure all contractor crews have had appropriate HAZWOPER training.)
- Report completion of the cleanup to the Asset Environmentalist. (Environmentalist will report this to the proper State and/or Federal agencies.)

Fill out all required incident reports and send originals to the Safety Department. (Keep a copy for your records.)

• Company employee receiving occupational injury or illnesses.

• Company employee involved in a vehicle accident while driving a company vehicle.

• Company property that is damaged or lost.

• Accident involving the public or a contractor; includes personal injuries, vehicle accidents, and property damage. Also includes any situation which could result in a claim against the Company.

• Hazardous Material Spill/Release Report Form

• Emergency Drill Report

Assist the Safety Department in the investigation of the incident. Review the factors that caused or allowed the incident to occur, and modify operating, maintenance, and/or surveillance procedures as needed. Make appropriate repairs and train or retrain employees in the use and operation of the system.

If this incident was simulated for practice in emergency response, complete the Emergency Drill Report found in Section VIII: Forms/Reports and submit a copy to the Drilling Manager. (Keep one copy in area files to document exercising of the plan.)

Emergency Procedures <u>Responsibility</u>

In the event of a release of potentially hazardous amounts of H2S, all personnel will immediately proceed upwind/ crosswind to the nearest designated briefing area. The COPC Drilling Rep. will immediately, upon assessing the situation, set this into action by taking the proper procedures to contain the gas and notify appropriate people and agencies.

- 1. In an emergency situation, the Drilling Rep. on duty will have complete responsibility and will take whatever action is deemed necessary to ensure the personnel's safety, to protect the well, and to prevent property damage.
- 2. The Toolpusher will assume all responsibilities of the Drilling Rep. in an emergency situation in which the Drilling Rep. becomes incapacitated.
- 3. Advise each contractor, service company, and all others entering the site that H2S may be encountered and of the potential hazards that may exist.
- 4. Authorize the evacuation of local residents if H2S threatens their safety.
- 5. Keep the number of persons on location to a minimum during hazardous operations.
- 6. Direct corrective actions to control the flow of gas.
- 7. The COPC Drilling Rep. has full responsibility for igniting escaping gas to reduce the toxicity hazard. This should be used **ONLY AS A LAST RESORT**.

IV. EMERGENCY EQUIPMENT and MAINTENANCE

Emergency Equipment Suppliers

DXP Safety International – Odessa, TX

H₂S monitors Breathing air including cascade systems First aid and medical supplies Safety equipment H2S Specialist

<u>EnerSafe Inc. – Odessa, TX</u>

H₂S monitors (personal and fixed) Breathing air including cascade systems First aid and medical supplies Safety equipment

Indian Fire & Safety - Hobbs, NM

H₂S monitors Breathing air including cascade systems (trailer mounted) 30 minute air packs Safety Equipment 432.580.3770

432.550.0600

575.393.3093

Emergency Equipment and Maintenance (continued)

General Information

Materials used for repair should be suitable for use where H_2S concentrations exceed 100 ppm. In general, carbon steels having low yield strengths and a hardness below RC-22 are suitable. The engineering staff should be consulted if any doubt exists on material specifications.

Appropriate signs should be maintained in good condition at location entrance and other locations as specified in Texas Rule 36 and NMOCD Rule 118.

All notification lists should be kept current with changes in names, telephone numbers, etc.

All shutdown devices, alarms, monitors, breathing air systems, etc., should be maintained in accordance with applicable regulations.

All personnel working in H_2S areas shall have received training on the hazards, characteristics, and properties of H_2S , and on procedures and safety equipment applicable for use in H_2S areas.

H2S Safety Equipment and Monitoring Systems

An H2S emergency response package will be maintained at locations requiring H2S monitoring. The package will contain at a minimum the following:

- 3 Fixed H2S sensors located as follows:
 - 1 -on the rig floor
 - 1 at the Bell Nipple
 - 1 -at the Shale Shaker or Flowline

1 -<u>Entrance Warning Sign</u> located at the main entrance to the location, with warning signs and colored flags to determine the current status for entry into the location.

2 - Windsocks that are clearly visible.

- 1 <u>Audible</u> warning system located on rig floor
- 2 Visual warning systems (Beacon Lights)
 - 1 -located at the rig floor
 - 1 located in the mud mixing room

Note: All alarms (audible and visual) should be set to alarm at 10 ppm.

- 2 Briefing areas clearly marked
 - 2 SCBA's at each briefing area
 - 1- SCBA located at the Drilling Rep's office

Note:

- 1. All SCBA's must be <u>positive pressure</u> type only.
- 2. All SCBA's must be either Scott or Drager brand.

3. All SCBA's face pieces should be <u>size large</u>, unless otherwise specified by the Drilling Supervisor.

5 – Emergency Escape Packs located at Top Doghouse.

Note: Ensure provisions are included for any personnel working above rig floor in derrick.

 $1 - \underline{\text{Tri or Quad gas monitor}}$ located at the Drilling Rep's office. This will be used to determine if the work area is safe to re-enter prior to returning to work following any alarm.

V. EMERGENCY CALL LIST:

The following is a priority list of personnel to contact in an emergency situation:

Supervisory Personnel	Office No.	Home	Cellular
Sam Hyden Permian Drilling Supt.	432.688.9163	432.561.9958	432.557.1999
Tim Garrett Jerry Moore	432.688.9057 432.688.9057 432.688.9057		505.330.5638 806.683.6852
Terry Brumley Permian Drilling Field Supt. Jet Brown	432.688.6850		432.238.9069
WSER			
R.E. (Gene) True Operations Manager, Permian Conventional Asset	432.688.9050	281.546.1034	281.217.8492
Kyle O'Dell Safety and Environmental Coordinator	432.688.9051		432.250.4912
Gene Schwall Drilling Mngr.	281.206.5159	281.579.2914	713.301.7590

EMERGENCY CALL LIST: State Officials

Regulatory Agencies

a 1 *

Texas Railroad Commission

1701 N. Congress Austin, TX 78701 512.463.6838 24 Hour Emergency: 512.463.6788

New Mexico Oil Conservation Commission

Office: 575.393.6161

١

P. O. Box 1980 Hobbs, New Mexico 88240-1980

Bureau of Land Management

Carlsbad Field Office 620 E. Greene St. Carlsbad, NM 88220 Office: 575.234.5972 Fax: 575.885.9264 BLM 24 Hr on call # Lea County: 575-393-3612

EMERGENCY CALL LIST: Local Officials

Refer to the Location Information Sheet Note: The LIS should include any area residents (i.e. rancher's house, etc)

ConocoPhillips Emergency Call List and Location Information Sheet

<u>ConocoPhillips-</u> 281-293-3600

Drilling Superintendent	Sam Hyden	Office: 432-688-9163
		Cell: 432-557-1999
Safety (WSER)	Jet Brown	Office: 432-688-6849
		Cell: 432-638-0509
Drilling Engineer	Cord Denton	Office: 281-206-5406
		Cell: 832-754-7363
	Stephanie Basse	Office: 281-206-5239
		Cell: 832-231-1159
	Nancy Luo	Office: 281-206-5280
		Cell: 281-546-8154
Regulatory Contact	Susan Maunder	Office: 432-688-6913
		Cell: 432-269-4378

Emergency Numbers

Hospital: Lea Co. Regional Medical Center (Hobbs)	
Ambulance: Hobbs Fire Dept.	
Air Ambulance: Care Star	
Aero Star	
Fire Dept. (Hobbs)	575-397-9308
(Maljamar non-emerg)	
State Police (Artesia)	575-748-9718
(Hobbs)	575-392-5580
Sheriff (Lovington)	575-396-3611
Police (Lovington)	575-396-2811
NMOCD	575-393-6161
(Emerg)	575-370-3186
BLM Switchboard	
BLM 24 Hr on Call, Lea County	575-393-3612
New Mexico Emergency Response Comm (Santa Fe)	505-476-9600
New Mexico State Emerg Ops Ctr	505-476-9635
National Emergency Response Center	800-424-8802

Number of Residences within 1 mile of Well: There are no residences within one mile of the well to be drilled.

VI. Public Media Relations

The **Public Information Officer** becomes the ConocoPhillips on-scene contact (once designated by the ConocoPhillips On-Scene Incident Commander).

The Public Information Officer confers with Houston Office's Human Relations Representative, who is responsible for assisting in the coordination of local public relations duties.

If you are the Public Information Officer, answer media questions honestly and <u>only with</u> <u>facts</u>, do not speculate about the cause, amount of damage, or the potential impact of the incident on the community, company, employees, or environment. (This information will be formally determined in the incident investigation.)

If you are not comfortable answering a question or if you are unsure of the answer, use terms such as the following:

- "I do not know. I will try to find out."
- I am not qualified to answer that question, but I will try to find someone who is."
- "It is under investigation."

Note:

Do Not Say "No Comment." (This implies a cover-up.)

Do Not Disclose Names of Injured or Dead! Confer with the Houston Office's Human Relations Representative, who is responsible for providing that information.

Alert and/or Evacuate People within the Exposure Area

<u>Public Notification</u> – If the escape of gas could result in a hazard to area residents, the general public, or employees, the person <u>first</u> observing the leak should take <u>immediate</u> steps to cause notification of any nearby residents. The avoidance of injury or loss of life should be of prime consideration and given top priority in all cases. If the incident is of such magnitude, or at such location as to create a hazardous situation, local authorities will be requested to assist in the evacuation and roadblocks of the designated area until the situation can be returned to normal.

Note: Bilingual employees may be needed to assist in notification of residents.

Evacuation Procedures – Evacuation will proceed upwind from the source of the release of H₂S. Extreme caution should be exercised in order to avoid any depressions or low-lying areas in the terrain. The public area within the radius of exposure should be evacuated in a southwesterly and southeasterly direction so as to avoid the prevailing southern wind direction.

Roadblocks and the staging area should be established as necessary for current wind conditions.

Note: In all situations, consideration should be given to wind direction and weather conditions. H_2S is heavier than air and can settle in low spots. Shifts in wind direction can also change the location of possible hazardous areas.

VIII. FORMS & REPORTS

- I. Incident Log
- II. Preliminary Emergency Information Sheet
- III. Emergency Drill Report
- IV. Onshore Hazardous Material Spill/Release Report Form
- V. Immediate Report of Occupational Injury or Illness Report of Accident-Public Contractor Report of Loss or Damage to Company Property Report of Automotive Incident