District I State of New Mexico 1625 N. French Dr., Hobbs, NM 88240 HOBBS OCD Energy Minerals and Natural Resources District II HOBBS OCD Energy Minerals and Natural Resources 1001 Rio Brazos Road, Aztec, NM 87410 2 8 2013 Oil Conservation Division 1000 Rio Brazos Road, Aztec, NM 87410 2 8 2013 Oil Conservation Division 1220 S. St. Francis Dr., Santa Fe, NM 87505 Frence Santa Fe, NM 87505	Form C-144 Revised August 1, 2011 For temporary pits, closed-loop systems, and below-grade tanks, submit to the appropriate NMOCD District Office. For permanent pits and exceptions submit to the Santa Fe Environmental Bureau office and provide a copy to the appropriate NMOCD District Office.
Pit, Closed-Loop System, Below-Grade T	Sank, or
Proposed Alternative Method Permit or Closure P	lan Application
 Type of action: Permit of a pit, closed-loop system, below-grade tank, on Closure of a pit, closed-loop system, below-grade tank, on Modification to an existing permit Closure plan only submitted for an existing permitted or below-grade tank, or proposed alternative method 	or proposed alternative method
Instructions: Please submit one application (Form C-144) per individual pit, closed-loop syste	m, below-grade tank or alternative request
Please be advised that approval of this request does not relieve the operator of liability should operations result in environment. Nor does approval relieve the operator of its responsibility to comply with any other applicable go	
1. Operator: Chevron USA OGRID #:	
Facility or well name: Vacuum Grayburg San Andres Unit #250	
API Number: <u>30-025-38001</u> OCD Permit Number:	
U/L or Qtr/Qtr <u>H</u> Section <u>1</u> Township <u>18S</u> Range <u>34E</u>	
Center of Proposed Design: Latitude N 32.780556° Longitude W 103.510	
Surface Owner: Federal State Private Tribal Trust or Indian Allotment	
☑ Pit: Subsection F or G of 19.15.17.11 NMAC Temporary: ☑ Drilling □ Workover □ Permanent □ Emergency □ Cavitation □ P&A ☑ Lined □ Unlined Liner type: Thickness _20mil □ LLDPE □ HDPE □ PVC ☑ 0 □ String-Reinforced	
3.	
Closed-loop System: Subsection H of 19.15.17.11 NMAC Type of Operation: P&A Drilling a new well Workover or Drilling (Applies to activities whi intent) Drying Pad Above Ground Steel Tanks Haul-off Bins Other Lined Unlined Liner type: Thickness mil LLDPE HDPE PVC Liner Seams: Welded	
4.	
Below-grade tank: Subsection I of 19.15.17.11 NMAC	
Volume:bbl Type of fluid:	
Tank Construction material:	
Secondary containment with leak detection Visible sidewalls, liner, 6-inch lift and automatic ov	erflow shut-off
□ Visible sidewalls and liner □ Visible sidewalls only □ Other	
Liner type: Thickness mil HDPE PVC Other	
 5. Alternative Method: Submittal of an exception request is required. Exceptions must be submitted to the Santa Fe Environment 	ntal Bureau office for consideration of approval.
Form C-144 Oil Conservation Division	Page 1 of 5

11. Temporary Pits, Emergency Pits, and Below-grade Tanks Permit Application Attachment Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached. Hydrogeologic Report (Below-grade Tanks) - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC Hydrogeologic Data (Temporary and Emergency Pits) - based upon the requirements of Paragraph (2) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC Previously Approved Design (attach copy of design) API Number: or Permit Number:
 12. <u>Closed-loop Systems Permit Application Attachment Checklist</u>: Subsection B of 19.15.17.9 NMAC <i>Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached.</i> Geologic and Hydrogeologic Data (only for on-site closure) - based upon the requirements of Paragraph (3) of Subsection B of 19.15.17.9 Siting Criteria Compliance Demonstrations (only for on-site closure) - based upon the appropriate requirements of 19.15.17.10 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC Previously Approved Design (attach copy of design) API Number:
Previously Approved Operating and Maintenance Plan API Number: (Applies only to closed-loop system that use
above ground steel tanks or haul-off bins and propose to implement waste removal for closure)
 13. Permanent Pits Permit Application Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached. Hydrogeologic Report - based upon the requirements of Paragraph (1) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Climatological Factors Assessment Certified Engineering Design Plans - based upon the appropriate requirements of 19.15.17.11 NMAC Dike Protection and Structural Integrity Design - based upon the appropriate requirements of 19.15.17.11 NMAC Liner Specifications and Compatibility Assessment - based upon the appropriate requirements of 19.15.17.11 NMAC Quality Control/Quality Assurance Construction and Installation Plan Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Nuisance or Hazardous Odors, including H₂S, Prevention Plan Emergency Response Plan Oil Field Waste Stream Characterization Monitoring and Inspection Plan Erosion Control Plan Closure Plan - based upon the appropriate requirements of 19.15.17.9 NMAC and 19.15.17.13 NMAC
<u>Proposed Closure</u> : 19.15.17.13 NMAC Instructions: Please complete the applicable boxes, Boxes 14 through 18, in regards to the proposed closure plan.
Type: Drilling Workover Emergency Cavitation P&A Permanent Pit Below-grade Tank Closed-loop System Alternative Proposed Closure Method: Waste Excavation and Removal Waste Removal (Closed-loop systems only) On-site Closure Method (Only for temporary pits and closed-loop systems) In-place Burial On-site Trench Burial Alternative Closure Method (Exceptions must be submitted to the Santa Fe Environmental Bureau for consideration)
15. Waste Excavation and Removal Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure plan. Please indicate, by a check mark in the box, that the documents are attached. Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC

Oil Conservation Division

Page 3 of 5

Form C-144

^{16.} Waste Removal Closure For Closed-loop Systems That Utilize Above Ground Steel Tanks or Haul-off Bins Only: (19.15.17. Instructions: Please indentify the facility or facilities for the disposal of liquids, drilling fluids and drill cuttings. Use attachment facilities are required.	
Disposal Facility Name: Disposal Facility Permit Number:	
Disposal Facility Name: Disposal Facility Permit Number:	
Will any of the proposed closed-loop system operations and associated activities occur on or in areas that <i>will not</i> be used for future Yes (If yes, please provide the information below) No	
 Required for impacted areas which will not be used for future service and operations: Soil Backfill and Cover Design Specifications based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection I of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC 	1AC
^{17.} Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable s provided below. Requests regarding changes to certain siting criteria may require administrative approval from the appropriate of considered an exception which must be submitted to the Santa Fe Environmental Bureau office for consideration of approval. J demonstrations of equivalency are required. Please refer to 19.15.17.10 NMAC for guidance.	listrict office or may be
Ground water is less than 50 feet below the bottom of the buried waste NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	Yes No
Ground water is between 50 and 100 feet below the bottom of the buried waste - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	☐ Yes ☐ No ☐ NA
 Ground water is more than 100 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells 	Yes No
 Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse or lakebed, sinkhole, or play lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site 	a 🗌 Yes 🛛 No
Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	🗌 Yes 🛛 No
Within 500 horizontal feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock watering purposes, or within 1000 horizontal feet of any other fresh water well or spring, in existence at the time of initial application - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site	n. Yes 🛛 No
 Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. Written confirmation or verification from the municipality; Written approval obtained from the municipality 	🗋 Yes 🛛 No
 Within 500 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site 	🗌 Yes 🛛 No
 Within the area overlying a subsurface mine. Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division 	🗌 Yes 🛛 No
 Within an unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map 	🗌 Yes 🛛 No
Within a 100-year floodplain. - FEMA map	🗋 Yes 🛛 No
 18. On-Site Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure by a check mark in the box, that the documents are attached. Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Proof of Surface Owner Notice - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Construction/Design Plan of Burial Trench (if applicable) based upon the appropriate requirements of 19.15.17.13 NMAC Construction/Design Plan of Temporary Pit (for in-place burial of a drying pad) - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Waste Material Sampling Plan - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings or in case on-site closure standards case Soil Cover Design - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC 	19.15.17.11 NMAC

Son Cover Design - based upon the appropriate requirements of Subsection I of 19.15.17.13 NMAC
 Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC

	cation is true, accurate and complete to the best of my knowledge and belief.
Name (Print):	Title:
Signature:	Date:
-mail address:	Telephone:
20.	olan) 🛛 Closure Plan (only) 🔲 OCD Conditions (see attachment)
OCD Representative Signature:	Approval Date:
Fitle:	OCD Permit Number:
	closure plan prior to implementing any closure activities and submitting the closure report. within 60 days of the completion of the closure activities. Please do not complete this
	Es closure completion pare. March 17, 2015
 Closure Method: Waste Excavation and Removal On-Site Closure Method: If different from approved plan, please explain. 	ethod 🔲 Alternative Closure Method 🔲 Waste Removal (Closed-loop systems only)
	losed-loop Systems That Utilize Above Ground Steel Tanks or Haul-off Bins Only: ere the liquids, drilling fluids and drill cuttings were disposed. Use attachment if more than
Disposal Facility Name:	Disposal Facility Permit Number:
Disposal Facility Name:	Disposal Facility Permit Number:
Were the closed-loop system operations and associated activit Yes (If yes, please demonstrate compliance to the items	ies performed on or in areas that <i>will not</i> be used for future service and operations? s below) 🔲 No
Required for impacted areas which will not be used for future Site Reclamation (Photo Documentation) Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique	
24.	a of the following items must be attached to the closure report. Please indicate, by a check
Proof of Closure Notice (surface owner and division)	
	for on-site closure)
 Proof of Deed Notice (required for on-site closure) Plot Plan (for on-site closures and temporary pits) Confirmation Sampling Analytical Results (if applicabl Waste Material Sampling Analytical Results (required in Disposal Facility Name and Permit Number Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique 	for on-site closure)
	for on-site closure)
Proof of Deed Notice (required for on-site closure) Plot Plan (for on-site closures and temporary pits) Confirmation Sampling Analytical Results (if applicabl Waste Material Sampling Analytical Results (required in Disposal Facility Name and Permit Number Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique Site Reclamation (Photo Documentation) On-site Closure Location: Latitude	for on-site closure) le
Proof of Deed Notice (required for on-site closure) Plot Plan (for on-site closures and temporary pits) Confirmation Sampling Analytical Results (if applicabl Waste Material Sampling Analytical Results (required in Disposal Facility Name and Permit Number Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Techniqu Site Reclamation (Photo Documentation) On-site Closure Location: Latitude	for on-site closure) le
Proof of Deed Notice (required for on-site closure) Plot Plan (for on-site closures and temporary pits) Confirmation Sampling Analytical Results (if applicabl Waste Material Sampling Analytical Results (required in Disposal Facility Name and Permit Number Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique Site Reclamation (Photo Documentation) On-site Closure Location: Latitude	for on-site closure) te Longitude NAD: 1927 1983 d with this closure report is true, accurate and complete to the best of my knowledge and ble closure requirements and conditions specified in the approved closure plan.
Proof of Deed Notice (required for on-site closure) Plot Plan (for on-site closures and temporary pits) Confirmation Sampling Analytical Results (if applicabl Waste Material Sampling Analytical Results (required in Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Techniqu Site Reclamation (Photo Documentation) On-site Closure Location: Latitude	for on-site closure) te Longitude NAD: 1927 1983 d with this closure report is true, accurate and complete to the best of my knowledge and ble closure requirements and conditions specified in the approved closure plan.

Oil Conservation Division

2135 South Loop, 250 West, Midland, Texas 79703 Telephone: (432) 686-0086 Fax: (432) 686-0186 www.CRAworld.com

May 14, 2013

Reference No. 073822

HOBBS OCD

MAY 2 8 2013

RECEIVED

Mr. Geoffrey R. Leking Environmental Engineer Specialist New Mexico Oil Conservation Division, District 1 1625 N. French Drive Hobbs, NM 88240

Re: Pit Closure Report (As Attachment to Form C-144) Vacuum Grayburg San Andres Unit #250, API #30-025-38001 Unit Letter H, Section 1, Township 18 South, Range 34 East Lea County, New Mexico

Dear Mr. Leking:

The subject location is the Vacuum Grayburg San Andres Unit (VGSAU) #250 pit excavation (the Site). The Site is located in Unit Letter H, Section 1, Township 18 South, Range 34 East, Lea County, New Mexico. The approximate pit excavation dimensions are 100' x 100' x 6' average depth. The Site coordinates are N 32.780556°, W 103.510052°. The Site location is shown on Figures 1 & 2.

BACKGROUND

On September 19, 2006, Chevron submitted an application to the New Mexico Oil Conservation Division (NMOCD) for approval to drill and inject fluids into VGSAU Well #250. On October 23, 2006, NMOCD granted Chevron's-request to drill and inject fluids into VGSAU well #250. Subsequent to completion of drilling activities, records indicate a pit closure (C-144) form (Appendix A) was submitted to the NMOCD for review and approval in September 2007. Invoice documentation, provided by Controlled Recovery, Inc. (CRI), indicates 2000 cubic yards of pit materials were disposed at the facility in 2007. In 2010, Chevron was contacted by the NMOCD, District 1 Hobbs office to complete pit closure activities associated with the VGSAU Well #250 following a Site inspection. As a result, an environmental Site consultant (Tetra Tech) was contracted by Chevron CEMC to assess the soils in the pit prior to closure. In December 2010, Chevron Environmental Management Company (CEMC) assumed the responsibilities of

> Equal Employment Opportunity Employer

Worldwide Engineering, Environmental, Construction, and IT Services

Reference No. 073822

- 3 -

specific RRALs for benzene, BTEX, and TPH. The chloride concentrations were all below the reporting limit (<200 mg/kg).

In the meeting on January 11, 2011, the NMOCD requested CRA to collect another set of chloride samples in the same general vicinities to confirm concentrations were still below the clean-up goal for chlorides. On December 21, 2011, a total of five confirmation samples were collected from the floor of the excavation and were analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX) by SW 8021B, total petroleum hydrocarbons diesel range/gasoline range (TPH- DRO/GRO) by SW8015M and chlorides by EPA 300.0. BTEX and TPH (DRO & GRO) concentrations for all five samples were all below the recommended remedial action levels (1993 RRALs) established for this Site in the Closure Request Workplan dated March 2011. Four of the five chloride results (VGSAU #250 NW-6", VGSAU Center-6", VGSAU #250 NE-6" and VGSAU #250 SE-6") were below the chloride RRAL (250 mg/kg) established for this Site; one sample (VGSAU #250 SW-6") had a chloride result (365 mg/kg) slightly above of RRAL. The NMOCD's revised guidance document for release reporting and corrective actions, dated September 30, 2011, presents a remediation action level of 1,000 mg/kg chlorides in soils where the vertical separation from groundwater is more than 100'. Sample locations for initial and supplemental confirmation soil samples collected are shown on Figure 3.

Although one chloride sample demonstrated a result slightly above the 1993 RRAL for chlorides the result is below the revised 2011 RRAL for chlorides. In addition, the source area (excavated soil material) has been removed and the single remaining chloride concentration does not pose an immediate threat to groundwater due to the vertical separation from base of excavation (approximately 4 feet below ground surface) to groundwater at the Site is more than 100' (Appendix B). Soil sample analytical results for initial and supplemental confirmation samples collected are summarized in Table II. Copies of initial and supplemental confirmation soil sampling laboratory results and chain-of-custody documentation are included in Appendix C.

PROTOCOLS AND PROCEDURES

On June 27, 2012, CRA and CEMC met with Geoffrey Leking, Environmental Engineer Specialist, of the NMOCD District 1 Hobbs office to discuss the protocols and procedures required for closure of the reserve pit. Meeting discussions included the following:

- A C-144 submitted to the NMOCD on September 11, 2007;
- Request by the NMOCD for Chevron to research and provide the following additional information: results of any sampling from the pit location in 2007; waste records from

Reference No. 073822

when materials were allegedly hauled to the CRI facility in 2007; and any other data pertinent to the pit closure activities;

-4-

- The protocols of the previous three sampling events (two in 2010 and one in 2011) performed on the pit bottom and their analytical results;
- Proposed remediation activity not to include the removal of any additional material from the existing excavation;
- Procedures for backfilling and cover design specification which included installation of a 20 mil liner over the excavated area, backfilling with imported clean materials (caliche) from approximately 6 feet to 1 foot below grade, and 1-2 feet of topsoil cover;
- Procedures for a re-vegetation plan which included the "construction affected" areas of release site will be graded to match surface contours and seeded using mixtures utilized by local agencies such as the Bureau of Land Management (BLM), County Ag Agency and/or as directed by property owner;
- Submittal of a Final Report on NMOCD Form C-144 which documents site closure activities.

DISPOSAL FACILITY NAME AND PERMIT NUMBER

In order to provide additional information pertinent to pit closure activities, an extensive research was performed to provide waste records. Mr. David Duncan with Environmental Plus was contacted about this project. Mr. Duncan was very familiar with the project but was unable to produce any manifests/bill of ladings for the waste disposal. Controlled Recovery Inc. (CRI) waste disposal facility was used for disposal of this waste and was contacted. Mrs. Kim Flowers was able to provide an invoice (Appendix D) of the waste, but any remaining waste records are located within storage boxes and will take additional time to produce if available. Listed below is CRI's contact information and NMOCD Permit Number:

Controlled Recovery, Inc. P.O. Box 388 Hobbs, NM 88241-0388 Voice: (575) 393-1079 Fax: (575) 393-3615 Permit No: R 9166

Reference No. 073822

- 5 -

SOIL BACKFILL AND COVER DESIGN SPECIFICATIONS

The specifications for backfilling the excavation include installation of a 20 mil liner over the excavated area, importing clean materials (caliche) and backfilling from approximately 6 feet to 1 foot below grade, cover with 1-2 feet of topsoil.

RE-VEGETATION ACTIVITIES

Re-vegetation activities include "construction affected areas of release site" graded to match surface contour, seeding using mixtures utilized by local agencies such as the BLM, County Ag Agency, and/or as directed by property owner and fertilizing top soil cover area.

SITE RECLAMATION

On November 5, 2012, CRA sent an e-mail to Geoffrey Leking, Environmental Engineer Specialist, of the NMOCD District 1 Hobbs office requesting approval to backfill the Site. Attached to the e-mail was a copy of the invoice, provided by CRI, which documented the amount of excavated material hauled to the facility. On November 7, 2012, Geoffrey Leking gave approval to backfill the site via a reply e-mail.

On March 12, 2013, site reclamation of the VGSAU #250 pit location commenced with installation of a 20 mil liner over the floor of the existing excavation. Documentation photos of liner installation are included in Appendix E.

On March 13, 2013, backfilling activity began with caliche fill material imported from a borrow pit owned by the Pierce Ranch Trust. Backfilling and compaction activity continued until the crest of the caliche fill material was approximately 0.5 foot below ground surface. Approximately 1,998 cubic yards of fill material was imported into the Site. Documentation photos of backfilling and compaction activity are included in Appendix E. After backfilling was completed, the area was capped with approximately 342 cubic yards of top soil. The top soil was compacted leaving an approximate 0.5 foot lift above ground surface and then graded to match area ground contour. Final site reclamation activity included fertilizing the top soil cap with eighty pounds of NPK Triple 13 fertilizer and spreading eighty pounds of Bermuda/Rye/Fescue grass seed mixture. Documentation photos of top soil cap construction, fertilizing and seeding are included in Appendix E.

Reference No. 073822

- 6 -

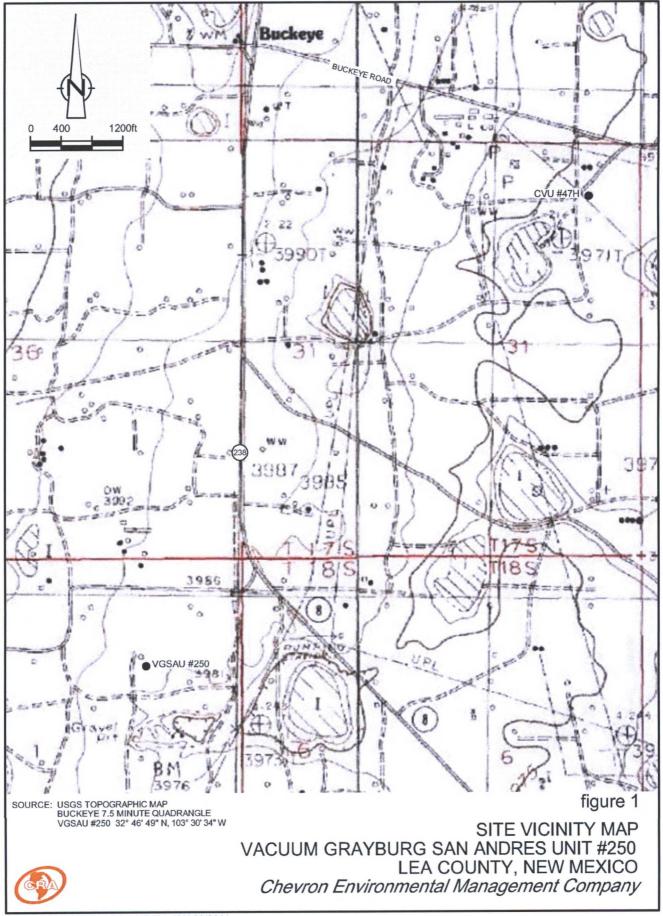
RECOMMENDATIONS

CRA recommends no further action be required for the Site and requests closure of the VGSAU #250 Pit. Attached to the front of this closure report is a completed and signed Form C-144.

If you have any questions or comments with regards to this closure request, please do not hesitate to contact our Midland office at (432) 686-0086.

Yours truly,

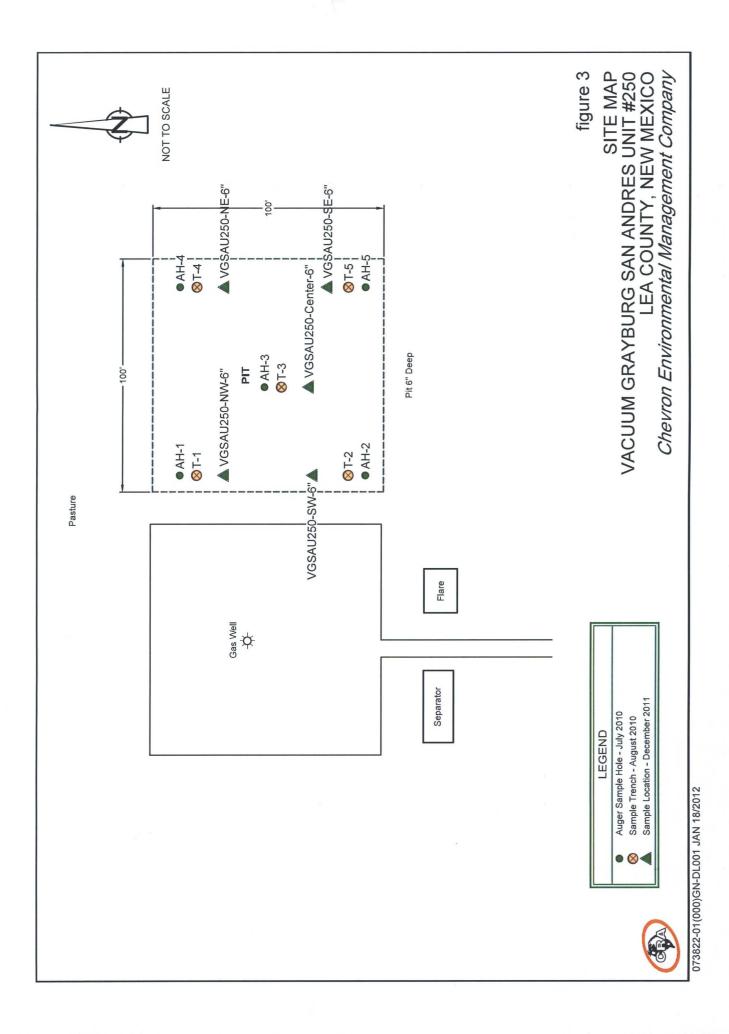
CONESTOGA-ROVERS & ASSOCIATES


John Fergerson Senior Project Manager

Thomas Clayon

Thomas C. Larson Midland Operations Manager

JF/pd/1


- cc: Mr. David Pagano (Chevron Buckeye FMT) w/encl. Mr. Kegan Boyer (CEMC Houston) w/encl.
- Encl: Figure 1 Site Vicinity Topo Map
 Figure 2 Site Location Aerial Image Map
 Figure 3 Site Map
 Table I Soil Analytical Summary
 Table II Soil Analytical Cumulative Summary
 Appendix A Initial Completed & Signed Form C-144
 Appendix B Petroleum Recovery Research Center Distance-to-Groundwater Radius Map
 Appendix C Analytical Laboratory Summary Reports
 Appendix D Controlled Recovery, Inc. (CRI) Copy of Invoice
 Appendix E Site Reclamation Photo documentation

073822-98(CORR001)GN-MD001 JAN 26/2011

073822-98(CORR001)GN-MD001 JAN 26/2011

Page 1 of 1

TABLEI

SOIL ANALYTICAL SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY VACUUM GRAYBURG SAN ANDRES UNIT #250 (PIT) LEA COUNTY, NEW MEXICO

-		-	Ronzono	Toluono	Ethyl-	Total	Total	HdT	TPH (8015B Modified)	fied)	Chloridae
Sample	Depth (feet)	Date	Dellocite	TOTACIIC	Benzene	Xylenes	BTEX	DRO	GRO	(GRO/DRO	Clinotines
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		NMOC	NMOCD Recommended Remediation Action Levels (Total Ranking Score = 20)	ded Remedia	ation Action	Levels (Total	Ranking Sco	re = 20)			
			10	1	1	1	50	1	1	100	1
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
AH-1	,1-0	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-1	1.5-2'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
AH-2	0-1'	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-2	1.5-2'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
AH-3	0-1'	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-3	1.5-2'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
AH-4	0-1'	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-4	2-2.5'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
AH-5	0-1'	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-5	1.5-2'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200

Notes:

1. BTEX analyses by EPA Method 8021B.

2. TPH analyzed by EPA Method 8015B Mod.

3. Chlorides analyzed by SM 4500-Cl B

4. NA - Not Analyzed

5. Bold concentrations above lab reporting limits.

6. Highlighted cells indicated concentrations above regulatory limits

Page 1 of 1

TABLE II

CUMULATIVE SOIL ANALYTICAL SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY VACUUM GRAYBURG SAN ANDRES UNIT #250 (PIT) LEA COUNTY, NEW MEXICO

		-	Deserve	Tolucia	Ethyl-	Total	Total	TPH	TPH (8015B Modified)	(fied)	Chlowidor
Sample ID	(faet)	Date	allazilad	allantor	Benzene	Xylenes	BTEX	DRO	GRO	(GRO/DRO	CIIIOIII
	العددر	NING	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	1993	1993 NMOCD Recommended Remediation Action Levels (Total Ranking Score = 20)	commended	I Remediati	on Action L	evels (Total	Ranking Sc	ore = 20)			
			10	I	1	I	50	I	1	100	I
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2011 NM	IOCD Rect	2011 NMOCD Recommended Remediation Action Levels (Vertical Separation From Groundwater more than 100')	emediation	Action Leve	Is (Vertical	Separation	From Groun	dwater more	e than 100')		
			0.2	1	1	1	50	I	1	500	1,000
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
AH-1	0-1'	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-1	1.5-2'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
VGSAU 250 NW-6"	0.5'	12/21/11	<0.001	<0.001	<0.001	<0.003	<0.003	<1.7	<0.050	<1.7	14
AH-2	0-1'	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-2	1.5-2'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
VGSAU 250 SW-6"	0.5'	12/21/11	<0.001	<0.001	<0.001	<0.003	<0.003	<1.7	<0.050	<1.7	365
AH-3	0-1'	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-3	1.5-2'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
VGSAU 250 Center-6"	0.5'	12/21/11	<0.001	<0.001	<0.001	<0.003	<0.003	12	<050	12	44.5
AH-4	0-1'	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-4	2-2.5'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
VGSAU 250 NE-6"	0.5'	12/21/11	<0.001	<0.001	<0.001	<0.003	<0.003	<1.7	<0.050	<1.7	9.52
AH-5	0-1'	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-5	1.5-2'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
VGSAU 250 SE-6"	0.5'	12/21/11	<0.001	<0.001	<0.001	<0.003	<0.003	5.3	<0.050	5.3	12.6

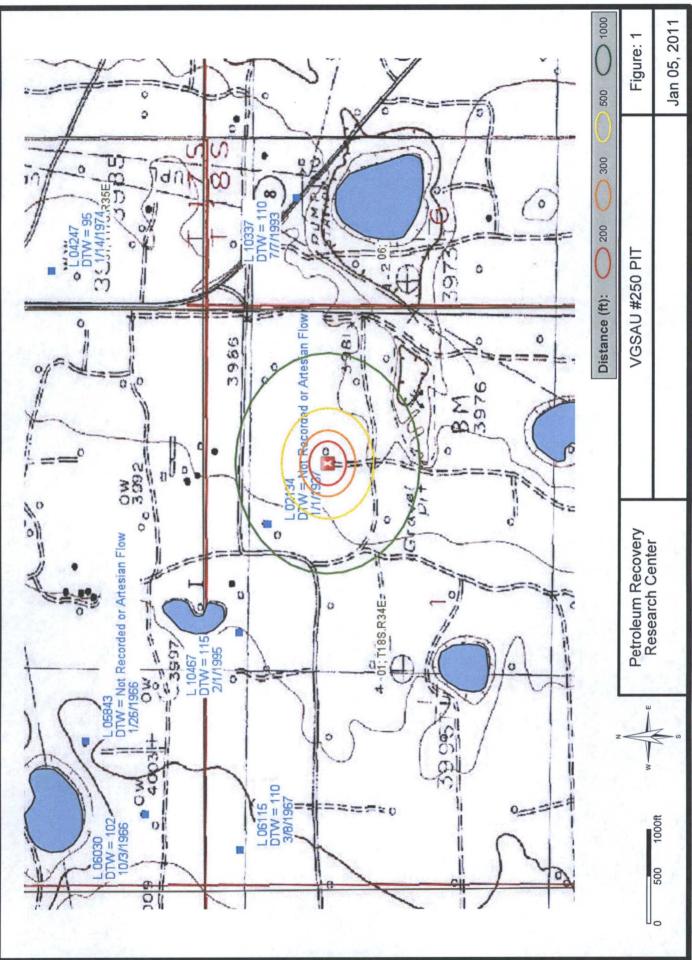
Notes:

1. BTEX analyses by EPA Method 8021B

2. TPH analyzed by EPA Method 8015B Mod

3. Chlorides analyzed by SM 4500-Cl B and EPA 300.0

4. NA - Not Analyzed


5. Bold concentrations above lab reporting limits

6. Highlighted cells indicated concentrations above regulatory limits

CRA 073822 TII

District I 1625 N French Dr, Hobbs, NM 88240 District II 1301 W Grand Avenue, Artesia, NM 88210	State of New Mexico y Minerals and Natural Resources	Form C-144 June 1, 2004
District III 1000 Rio Brazos Road, Aztec, NM 87410	Oil Conservation Division For d	rilling and production facilities, submit to priate NMOCD District Office.
District IV	1220 South St. Francis Dr. For d	ownstream facilities, submit to Santa Fe
1220 S St Francis Dr., Santa Fe, NM 87505	Santa Fe, NM 87505	
	Grade Tank Registration or Close	
Is pit or below-grad	le tank covered by a "general plan"? Yes TN a pit or below-grade tank Closure of a pit or below-g	o 🖾
Type of action Registration of	a pit of below-grade tank Closure of a pit of below-g	
Operator CHEVRON USA Tele	e-mail address Ide	k@chevron.com
Address PO BOX 1949 2401 AVE O EUNICE, NM 88231		
Facility or well name. VGSAU #250AP		
County LEA La	atitude Longitude	NAD 1927 🗌 1983 🔲
Surface Owner Federal 🗌 State 🛛 Private 🗋 Indian 🛄		
Pit	Below-grade tank	
Type Drilling Production Disposal	Volumebbl Type of fluid	
Workover Emergency	Construction material	_
Lined 🛛 Unlined 🗌	Double-walled, with leak detection? Yes 🗌 If r	ot, explain why not
Liner type Synthetic 🛛 Thickness <u>20</u> mil Clay 🗌		
Pit Volumebbl		
	Less than 50 feet	(20 points)
Depth to ground water (vertical distance from bottom of pit to seaso	50 feet or more, but less than 100 feet	(10 points)
high water elevation of ground water)	100 feet or more	(0 points) X
	Yes	(20 points)
Wellhead protection area (Less than 200 feet from a private domes	the No	(0 points) X
water source, or less than 1000 feet from all other water sources)		
Distance to surface water. (horizontal distance to all wetlands, playa	Less than 200 feet	(20 points)
irrigation canals, ditches, and perennial and ephemeral watercourses	200 feet or more, but less than 1000 feet	(10 points)
	1000 feet or more	(0 points) X
	Ranking Score (Total Points)	0
If this is a pit closure: (1) Attach a diagram of the facility showing the	a nut's relationship to other equipment and tanks (2) Indi	cate disposal location (check the onsite how if
your arc burying in place) onsite \square offsite \boxtimes If offsite, name of fac		
your are burying in place) onsite 🖾 offsite 🖾 if offsite, name of fac		
		ft and attach sample results
	xcavations	
5) Attach soil sample results and a diagram of sample locations and e	xcavations	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments HAUL TRACKHOE TO LOCATION, HAU	xcavations	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments' HAUL TRACKHOE TO LOCATION, HAU	xcavations	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments HAUL TRACKHOE TO LOCATION, HAU	xcavations	NG CLEAN-UP TO SOLIDIFY FOR HAUL
	xcavations	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments ⁻ HAUL TRACKHOE TO LOCATION, HAU OFF TO CRI, TEST PIT AREA, ONCE TESTED AND PASSED, C	xcavations JL EXCESS WATER AND FLUIDS OFF, BEGIN MIXIN COVER AREA WITH TOPSOIL AND RETURN IT TO N	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments HAUL TRACKHOE TO LOCATION, HAU	xcavations JL EXCESS WATER AND FLUIDS OFF, BEGIN MIXIN COVER AREA WITH TOPSOIL AND RETURN IT TO N	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments' HAUL TRACKHOE TO LOCATION, HAU OFF TO CRI, TEST PIT AREA, ONCE TESTED AND PASSED, O	xcavations JL EXCESS WATER AND FLUIDS OFF, BEGIN MIXIN COVER AREA WITH TOPSOIL AND RETURN IT TO N	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments HAUL TRACKHOE TO LOCATION, HAU OFF TO CRI, TEST PIT AREA, ONCE TESTED AND PASSED, C I hereby certify that the information above is true and complete to th has been/will be constructed or closed according to NMOCD gui Date 9/10/07	xcavations JL EXCESS WATER AND FLUIDS OFF, BEGIN MIXIN COVER AREA WITH TOPSOIL AND RETURN IT TO N e best of my knowledge and belief 1 further certify that delines 🖾, a general permit 🗌, or an (attached) altern	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments HAUL TRACKHOE TO LOCATION, HAU OFF TO CRI, TEST PIT AREA, ONCE TESTED AND PASSED, C I hereby certify that the information above is true and complete to th has been/will be constructed or closed according to NMOCD gui Date 9/10/07	xcavations JL EXCESS WATER AND FLUIDS OFF, BEGIN MIXIN COVER AREA WITH TOPSOIL AND RETURN IT TO N	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments: HAUL TRACKHOE TO LOCATION, HAU OFF TO CRI, TEST PIT AREA, ONCE TESTED AND PASSED, O I hereby certify that the information above is true and complete to the has been/will be constructed or closed according to NMOCD gui Date <u>9/10/07</u> Printed Name/Title <u>Aim Dukk Construction</u> Your certification and NMOCD approval of this application/closure	xcavations JL EXCESS WATER AND FLUIDS OFF, BEGIN MIXIN COVER AREA WITH TOPSOIL AND RETURN IT TO N cover area with topsoil and belief topsoil topsoil	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments: HAUL TRACKHOE TO LOCATION, HAU OFF TO CRI, TEST PIT AREA, ONCE TESTED AND PASSED, O I hereby certify that the information above is true and complete to the has been/will be constructed or closed according to NMOCD gui Date <u>9/10/07</u> Printed Name/Title <u>Aim Duke</u> Construction	xcavations JL EXCESS WATER AND FLUIDS OFF, BEGIN MIXIN COVER AREA WITH TOPSOIL AND RETURN IT TO N cover area with topsoil and belief topsoil topsoil	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments: HAUL TRACKHOE TO LOCATION, HAU OFF TO CRI, TEST PIT AREA, ONCE TESTED AND PASSED, O I hereby certify that the information above is true and complete to the has been/will be constructed or closed according to NMOCD gui Date <u>9/10/07</u> Printed Name/Title <u>Airm Dukk Construction</u> Your certification and NMOCD approval of this application/closure otherwise endanger public health or the environment. Nor does it rel	xcavations JL EXCESS WATER AND FLUIDS OFF, BEGIN MIXIN COVER AREA WITH TOPSOIL AND RETURN IT TO N cover area with topsoil and belief topsoil topsoil	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments HAUL TRACKHOE TO LOCATION, HAU OFF TO CRI, TEST PIT AREA, ONCE TESTED AND PASSED, C I hereby certify that the information above is true and complete to the has been/will be constructed or closed according to NMOCD gui Date <u>9/10/07</u> Printed Name/Title <u>Arm Duke forestruction</u> Your certification and NMOCD approval of this application/closure otherwise endanger public health or the environment Nor does it refregulations	xcavations JL EXCESS WATER AND FLUIDS OFF, BEGIN MIXIN COVER AREA WITH TOPSOIL AND RETURN IT TO N e best of my knowledge and belief 1 further certify that delines ⊠, a general permit □, or an (attached) altern J May Signature	NG CLEAN-UP TO SOLIDIFY FOR HAUL
5) Attach soil sample results and a diagram of sample locations and e Additional Comments HAUL TRACKHOE TO LOCATION, HAU OFF TO CRI, TEST PIT AREA, ONCE TESTED AND PASSED, C I hereby certify that the information above is true and complete to the has been/will be constructed or closed according to NMOCD gui Date <u>9/10/07</u> Printed Name/Title <u>Airm Duke Construction</u> Your certification and NMOCD approval of this application/closure otherwise endanger public health or the environment Nor does it ref regulations	xcavations JL EXCESS WATER AND FLUIDS OFF, BEGIN MIXIN COVER AREA WITH TOPSOIL AND RETURN IT TO N e best of my knowledge and belief 1 further certify that delines ⊠, a general permit □, or an (attached) altern J May Signature	NG CLEAN-UP TO SOLIDIFY FOR HAUL

Report Date: July 21, 2010

Work Order: 10071924

Summary Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Report Date: July 21, 2010

Work Order: 10071924

Project Location:Lea County, NMProject Name:Vacuum Grayburg San Andres Unit #250 (Pit)Project Number:114-6400600

Sample	Description	Matrix	Date Taken	Time Taken	Date Received
238035	AH-1 0-1'	soil	2010-07-14	00:00	2010-07-19
238036	AH-2 0-1'	soil	2010-07-14	00:00	2010-07-19
238037	AH-3 0-1'	soil	2010-07-14	00:00	2010-07-19
238038	AH-4 0-1'	soil	2010-07-14	00:00	2010-07-19
238039	AH-5 0-1'	soil	2010-07-14	00:00	2010-07-19

]	BTEX		TPH DRO - NEW	TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
238035 - AH-1 0-1'	< 0.0200	< 0.0200	< 0.0200	<0.0200	<50.0	<2.00
238036 - AH-2 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<2.00
238037 - AH-3 0-1'	< 0.0200	< 0.0200	< 0.0200	<0.0200	<50.0	<2.00
238038 - AH-4 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<2.00
238039 - AH-5 0-1'	< 0.0200	<0.0200	< 0.0200	< 0.0200	<50.0	<2.00

Sample: 238035 - AH-1 0-1'

Param	Flag	Result	Units	RL
Chloride		<200	mg/Kg	4.00

Sample: 238036 - AH-2 0-1'

Param	Flag	Result	Units	RL
Chloride		<200	mg/Kg	4.00

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: July	21, 2010	Work Order: 10071924	Page	Number: 2 of 2
Sample: 238037 -	AH-3 0-1'			
Param	Flag	Result	Units	RL
				1.00
Chloride Sample: 238038 -	AH-4 0-1'	<200	mg/Kg	4.00
	AH-4 0-1' Flag	<200 Result	mg/Kg Units	4.00

Param	Flag	Result	Units	RL
Chloride		<200	mg/Kg	4.00

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

200 East Sunset Road, Suite 9 Lubbock, Texas 79424 200 East Sunset Road, Suite E El Pasu, Texas 79922 5002 Basin Street, Suite A1 Midland, Texas 79703 6015 Harris Parkway Suite 110 Ft. Worth, Texas 76132

Lubbock, Texas 79424 800+378+1296 El Pasu, Texas 79922 886+588+3443 Midiand, Texas 79703 Ft Worth, Texas 76132 F-Mail, Tabi@traceanalysis.com

HUB:

NCTRCA

886+588+3443 915+585+3443 432+689+6301 817+201+5260

1752439743100-86536

WFWB38444Y0909

296 FAX 806+794+1298 1443 FAX 915+595+4944 1301 FAX 432+689+6313 1260

DBE: VN 20657

NELAP Certifications

Certifications

Lubbock:

T104704219-08-TX LELAP-02003 Kansas E-10317

WBENC: 237019

El Paso: T104704221-08-TX LELAP-02002 Midland: T104704392-08-TX

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

Report Date: July 21, 2010

Work Order: 10071924

Project Location:Lea County, NMProject Name:Vacuum Grayburg San Andres Unit #250 (Pit)Project Number:114-6400600

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
238035	AH-1 0-1'	soil	2010-07-14	00:00	2010-07-19
238036	AH-2 0-1'	soil	2010-07-14	00:00	2010-07-19
238037	AH-3 0-1'	soil	2010-07-14	00:00	2010-07-19
238038	AH-4 0-1'	soil	2010-07-14	00:00	2010-07-19
238039	AH-5 0-1'	soil	2010-07-14	00:00	2010-07-19

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 23 pages and shall not be reproduced except in its entirety, without written approval of

TraceAnalysis, Inc.

Michael april

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Standard Flags B - The sample contains less than ten times the concentration found in the method blank.

Page 2 of 23

Case Narrative

Samples for project Vacuum Grayburg San Andres Unit #250 (Pit) were received by TraceAnalysis, Inc. on 2010-07-19 and assigned to work order 10071924. Samples for work order 10071924 were received intact at a temperature of 3.3 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	61608	2010-07-19 at 16:00	71924	2010-07-20 at 11:02
BTEX	S 8021B	61608	2010-07-19 at 16:00	71949	2010-07-21 at 05:06
Chloride (Titration)	SM 4500-Cl B	61621	2010-07-20 at 08:52	71897	2010-07-20 at 11:57
TPH DRO - NEW	S 8015 D	61592	2010-07-19 at 14:30	71873	2010-07-19 at 14:30
TPH DRO - NEW	S 8015 D	61593	2010-07-19 at 14:30	71874	2010-07-19 at 14:30
TPH GRO	S 8015 D	61608	2010-07-19 at 16:00	71925	2010-07-20 at 11:29
TPH GRO	S 8015 D	61608	2010-07-19 at 16:00	71950	2010-07-21 at 05:34

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 10071924 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 238035 - AH-1 0-1'

Analysis: QC Batch:	Midland BTEX 71924 61608	Analytical Method: Date Analyzed:	S 8021B 2010-07-20 2010-07-10	Prep Method: Analyzed By:	AG
Prep Batch:	61608	Sample Preparation:	2010-07-19	Prepared By:	AG

Parameter Flag	5	Result		Units	D	ilution	RL
Benzene		< 0.0200)	mg/Kg		1	0.0200
Toluene		< 0.0200)	mg/Kg		1	0.0200
Ethylbenzene		< 0.0200)	mg/Kg		1	0.0200
Xylene		< 0.0200)	mg/Kg		1	0.0200
Cumorata	Flor	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Surrogate	Flag			Diffution			
Trifluorotoluene (TFT)		1.61	mg/Kg	1	2.00	80	52.8 - 137

mg/Kg

1

2.00

80

38.4 - 157

1.61

Sample: 238035 - AH-1 0-1'

4-Bromofluorobenzene (4-BFB)

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 71897 61621	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2010-07-20 2010-07-20	Prep Method: Analyzed By: Prepared By:	AR
Danamatan	Elec	RL Result	Units	Dilution	DT
Parameter	Flag				RL
Chloride		<200 1	mg/Kg	50	4.00

Sample: 238035 - AH-1 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NEW 71873 61592	Analytical Meth Date Analyzed: Sample Preparat	2010-07-19	Prep Method: Analyzed By: Prepared By:	kg
Parameter	Flag	RL Result	Units	Dilution	RL
DRO		<50.0	mg/Kg	1	50.0

Report Date: July 21, 2010 114-6400600 Va			Wacuum Grayb	ork Order: ourg San Ar	Page Number: 5 of 23 Lea County, NM			
Surrogate	Flag	Result	Units	Dih	ition	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane		96.6	mg/Kg	· · · · · · · · · · · · · · · · · · ·	1	100	97	70 - 130
Laboratory: Analysis: QC Batch:	8035 - AH-1 Midland TPH GRO 71925	0-1'	Analytica Date Ana	lyzed:	S 8015 D 2010-07-20		Prep Meth Analyzed	By: AG
Prep Batch:	61608		Sample P	reparation:	2010-07-19)	Prepared I	By: AG
Parameter	F	lag	RL Result		Units		Dilution	RL
GRO			<2.00		mg/Kg		1	2.00
Surrogate		Flag	Result	Units	Dilution	Spike	Percent Recovery	Recovery Limits
Trifluorotolue	ene (TFT)	I lag	1.87	mg/Kg	1	2.00	94	48.5 - 152
	obenzene (4-BF	(B)	1.77	mg/Kg	1	2.00	88	42 - 159

Sample: 238036 - AH-2 0-1'

Trifluorotolue	obenzene (4-			$1.40\\1.40$	mg/Kg mg/Kg	1	2.00	70 70	52.8 - 137 38.4 - 157
Surrogate			Flag	Result	Units	Dilution	Amount	Recovery	Limits
1							Spike	Percent	Recovery
Xylene				< 0.0200		mg/Kg		1	0.0200
Ethylbenzene				< 0.0200		mg/Kg		1	0.0200
Toluene				< 0.0200		mg/Kg		1	0.0200
Benzene				< 0.0200		mg/Kg		1	0.0200
Parameter		Flag		RL Result		Units	Di	ilution	RL
				DI					
Prep Batch:	61608			Sample Pre	paration:	2010-07-19		Prepared I	By: AG
QC Batch:	71924			Date Analy		2010-07-20		Analyzed I	By: AG
Analysis:	BTEX			Analytical 1	Method:	S 8021B		Prep Meth	od: S 5035
Laboratory:	Midland								

Report Date 114-6400600	S Date: July 21, 2010 Work Order: 10071924 00600 Vacuum Grayburg San Andres Unit #250 (P				Page Number: 6 Pit) Lea County		
Sample: 23	8036 - AH-2	0-1'					
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titz 71897 61621	ration)	Date Ana Sample P	d Method: dyzed: 'reparation:	SM 4500-Cl B 2010-07-20 2010-07-20	Prep N Analyz Prepar	ed By: AR
Devenueter		1	RL Result		Units	Dilution	RL
Parameter Chloride	F	lag	<200		ng/Kg	50	4.00
Laboratory: Analysis:	Midland TPH DRO - I	NEW	Analytical Method: S 8015 D			Prep M	
QC Batch: Prep Batch:	71873 61592		Date An Sample I	alyzed: Preparation:	2010-07-19 2010-07-19	Analyz Prepare	• •
			RL				
Parameter	F	lag	Result		Units	Dilution	RL
DRO			<50.0	n	ng/Kg	1	50.0
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane		103	mg/Kg	1	100	103	70 - 130

Sample: 238036 - AH-2 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH GRO 71925 61608		Analytical Date Anal Sample Pr	yzed:	S 8015 D 2010-07-20 2010-07-19		Prep Metl Analyzed Prepared 1	By: AG
			RL					
Parameter	Flag		Result		Units	D	ilution	RL
GRO			<2.00		mg/Kg		1	2.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue	ene (TFT)	0	1.65	mg/Kg	1	2.00	82	48.5 - 152
	obenzene (4-BFB)		1.55	mg/Kg	1	2.00	78	42 - 159

Report Date: 114-6400600	eport Date: July 21, 2010 14-6400600			Work Order: 10071924 Vacuum Grayburg San Andres Unit #250 (Pi			0 (Pit)		nber: 7 of 23 County, NM
Sample: 23	8037 - AH-3	3 0-1'							
Laboratory:	Midland								
Analysis:	BTEX			Analytical	Method:	S 8021B		Prep Meth	od: S 5035
QC Batch:	71924	1		Date Analyzed:		2010-07-20		Analyzed I	By: AG
Prep Batch:	61608			Sample Pre	eparation:	2010-07-19		Prepared E	By: AG
				RL	,				
Parameter		Flag		Result	;	Units	D	lution	RL
Benzene				< 0.0200)	mg/Kg		1	0.0200
Toluene				< 0.0200)	mg/Kg		1	0.0200
Ethylbenzene				< 0.0200)	mg/Kg		1	0.0200
Xylene				< 0.0200)	mg/Kg		1	0.0200
							Spike	Percent	Recovery
Surrogate			Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolue	ene (TFT)			1.62	mg/Kg	1	2.00	81	52.8 - 137
4-Bromofluor		BFB)		1.64	mg/Kg		2.00	82	38.4 - 157

Sample: 238037 - AH-3 0-1'

Chloride		<200	mg/Kg	50	4.00
Parameter	Flag	RL Result	Units	Dilution	RL
Laboratory: Analysis: QC Batch: Prep Batch:	Chloride (Titration) 71897	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2010-07-20 2010-07-20	Prep Method: Analyzed By: Prepared By:	AR

Sample: 238037 - AH-3 0-1'

er Flag		<50.0	mg	Ko	1	
F	lag	RL Result			Dilution	
atch: 71873 Batch: 61592					Prepare	
TPH DRO - NEW 71873						lethod: ed By:
	71873 61592	TPH DRO - NEW 71873	TPH DRO - NEW Analytic 71873 Date An 61592 Sample RL Flag Result	TPH DRO - NEW Analytical Method: 2 71873 Date Analyzed: 2 61592 Sample Preparation: 2 RL Flag Result U	TPH DRO - NEWAnalytical Method:S 8015 D71873Date Analyzed:2010-07-1961592Sample Preparation:2010-07-19RLFlagResultUnits	TPH DRO - NEW Analytical Method: S 8015 D Prep M 71873 Date Analyzed: 2010-07-19 Analyzed 61592 Sample Preparation: 2010-07-19 Preparation RL Flag Result Units Dilution

Report Dat 114-640060	e: July 21, 2010 0	V		ork Order: urg San A	10071924 ndres Unit #250	0 (Pit)	Page Nu Lea	mber: 8 a Count	
Sample: 23	38037 - AH-3 0-1'								
Laboratory:	Midland								
Analysis:	TPH GRO		Analytical		S 8015 D		Prep Met		5 5035
QC Batch:	71925		Date Anal		2010-07-20		Analyzed		4G
Prep Batch:	61608		Sample Pr	reparation:	2010-07-19		Prepared	By: A	AG
			RL						
Parameter	Flag		Result		Units	I	Dilution		RL
GRO			<2.00		mg/Kg		1		2.00
						Spike	Percent	Rec	overy
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Li	mits
Trifluorotolu			1.90	mg/Kg	1	2.00	95		- 152
4-Bromofluo	robenzene (4-BFB)		1.80	mg/Kg	1	2.00	90	42	- 159
Sample: 23	38038 - AH-4 0-1'								
Laboratory:	Midland								
Analysis:	BTEX		Analytical l	Method:	S 8021B		Prep Met	hod: S	5035
QC Batch:	71949		Date Analy	zed:	2010-07-21		Analyzed	By: A	G
Prep Batch:	61608		Sample Pre	paration:	2010-07-19		Prepared	By: A	G
			RL						
Parameter	Flag		Result		Units	Di	ilution		RL
Benzene			< 0.0200		mg/Kg		1	0	.0200
Toluene			< 0.0200		mg/Kg		1		0.0200
Ethylbenzen	е		< 0.0200		mg/Kg		1		0.0200
Xylene		1	< 0.0200		mg/Kg		1	0	.0200
						Spike	Percent	Rece	overy
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery		nits
Trifluorotolu			1.10	mg/Kg	1	2.00	55		- 137
4-Bromofluor	robenzene (4-BFB)		1.11	mg/Kg	1	2.00	56	38.4	- 157
Sample: 23	8038 - AH-4 0-1'								
Laboratory:	Midland								
Analysis:	Chloride (Titration)			tical Metho			Prep Me		N/A
QC Batch:	71897			analyzed:	2010-07-20		Analyze		AR
Prep Batch:	61621		Sample	e Preparat	ion: 2010-07-20)	Prepare	d By:	AR
			RL						
Parameter	Flag		Result		Units	D	lution		RL
Chloride			<200		mg/Kg		50		4.00

Report Date 114-6400600	e: July 21, 201		Wacuum Grayb		: 10071924 Indres Unit #	¥250 (Pit)		umber: 9 of 2 a County, NM
Sample: 23	8038 - AH-4	4 0-1'						
Laboratory:	Midland							
Analysis:	TPH DRO -	- NEW	Anal	ytical Met	hod: S 801	15 D	Prep M	ethod: N/A
QC Batch:	71874		Date	Analyzed	: 2010-	-07-19	Analyze	ed By: kg
Prep Batch:	61593		Samp	ple Prepar	ation: 2010-	-07-19	Prepare	ed By: kg
			\mathbf{RL}					
Parameter		Flag	Result	-	Units		Dilution	RI
DRO			<50.0		mg/Kg		1	50.0
						Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dil	ution	Amount	Recovery	Limits
n-Tricosane		94.2	mg/Kg		1	100	94	70 - 130
Sample: 23 Laboratory: Analysis: QC Batch: Prep Batch:	8038 - AH-4 Midland TPH GRO 71950 61608	l 0-1'	Analytical Date Anal Sample Pr	yzed:	S 8015 D 2010-07-21 : 2010-07-19		Prep Metl Analyzed Prepared	By: AG
			RL					
Parameter		Flag	Result		Units		Dilution	RL
GRO			<2.00		mg/Kg		1	2.00
						Spike	Percent	Decouver
								Recovery
		Flag	Result	Units	Dilution	a Amount	Recovery	Limits
	ne (TFT)	Flag	Result 1.29	Units mg/Kg	Dilution 1	Amount 2.00	Recovery 64	
Surrogate Trifluorotolue 4-Bromofluoro	ene (TFT) obenzene (4-B		and the second					Limits
Trifluorotolue 4-Bromofluore		3FB)	1.29	mg/Kg mg/Kg Method: zed:	1	2.00	64	Limits 48.5 - 152 42 - 159 hod: S 5035 By: AG
Trifluorotolue 4-Bromofluor 5ample: 238 Laboratory: Analysis: QC Batch:	obenzene (4-B 8039 - AH-5 Midland BTEX 71949	3FB)	1.29 1.23 Analytical M Date Analyz	mg/Kg mg/Kg Method: zed:	1 1 S 8021B 2010-07-21	2.00	64 62 Prep Meth Analyzed	Limits 48.5 - 152 42 - 159 hod: S 5035 By: AG
Trifluorotolue 1-Bromofluoro 5ample: 238 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter	obenzene (4-B 8039 - AH-5 Midland BTEX 71949	3FB)	1.29 1.23 Analytical M Date Analyz Sample Prep RL Result	mg/Kg mg/Kg Method: zed:	1 1 S 8021B 2010-07-21 2010-07-19 Units	2.00 2.00	64 62 Prep Meth Analyzed	Limits 48.5 - 152 42 - 159 hod: S 5035 By: AG By: AG RL
Trifluorotolue 4-Bromofluoro 5ample: 238 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene	obenzene (4-B 8039 - AH-5 Midland BTEX 71949	3FB)	1.29 1.23 Analytical M Date Analyz Sample Prep RL Result <0.0200	mg/Kg mg/Kg Method: zed:	1 1 S 8021B 2010-07-21 2010-07-19	2.00 2.00	64 62 Prep Meth Analyzed Prepared I	Limits 48.5 - 152 42 - 159 hod: S 5035 By: AG By: AG
Trifluorotolue 4-Bromofluoro 5ample: 238 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene Foluene	obenzene (4-B 8039 - AH-5 Midland BTEX 71949 61608	3FB)	1.29 1.23 Analytical M Date Analys Sample Prep RL Result <0.0200 <0.0200	mg/Kg mg/Kg Method: zed:	1 1 S 8021B 2010-07-21 2010-07-19 Units	2.00 2.00	64 62 Prep Meth Analyzed Prepared 1 Dilution	Limits 48.5 - 152 42 - 159 hod: S 5035 By: AG By: AG RL
Trifluorotolue 4-Bromofluoro 5ample: 238 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene	obenzene (4-B 8039 - AH-5 Midland BTEX 71949 61608	3FB)	1.29 1.23 Analytical M Date Analyz Sample Prep RL Result <0.0200	mg/Kg mg/Kg Method: zed:	1 1 S 8021B 2010-07-21 2010-07-19 Units mg/Kg	2.00 2.00	64 62 Prep Meth Analyzed Prepared 1 Dilution 1	Limits 48.5 - 152 42 - 159 hod: S 5035 By: AG By: AG RL 0.0200

Report Date 114-6400600	e: July 21, 2010	Vac		rk Order: 100' 1rg San Andre		(Pit)	Page Nun Lea	nber: 1(a Count	
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Li	overy mits
Trifluorotolue 4-Bromofluor	ene (TFT) cobenzene (4-BF	°B)	1.75 1.75	mg/Kg mg/Kg	1 1	2.00 2.00	88 88		- 137 - 157
Sample: 23	8039 - AH-5 ()-1'							
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titr 71897 61621		Date A	tical Method: Analyzed: e Preparation:	SM 4500- 2010-07-2 2010-07-2	0	Prep M Analyze Prepare	ed By:	N/A AR AR
Parameter	ĨŦ	lag	RL Result		Units	1	Dilution		RL
Chloride	1.	145	<200		mg/Kg		50		4.00
Sample: 23 Laboratory:	8039 - AH-5 0 Midland)-1'							
			Date Samp	ytical Method: Analyzed: le Preparation	2010-07-	19	Prep Me Analyze Prepare	ed By:	N/A kg kg
Laboratory: Analysis: QC Batch:	Midland TPH DRO - N 71874 61593		Date	Analyzed:	2010-07-	19 19	Analyze	ed By:	kg
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - N 71874 61593	NEW	Date Samp RL	Analyzed: le Preparation	2010-07- 1: 2010-07-	19 19	Analyze Prepare	ed By:	kg kg
Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate	Midland TPH DRO - N 71874 61593	IEW lag Result	Date Samp RL Result <50.0 Units	Analyzed: le Preparation Dilution	2010-07- n: 2010-07- Units mg/Kg n An	19 19 I pike nount	Analyze Prepare Dilution 1 Percent Recovery	ed By: d By: Rec Lin	kg kg RL 50.0 overy mits
Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate n-Tricosane	Midland TPH DRO - N 71874 61593 Flag	IEW lag Result 96.6	Date Samp RL Result <50.0	Analyzed: le Preparation	2010-07- n: 2010-07- Units mg/Kg n An	19 19 I pike	Analyze Prepare Dilution 1 Percent	ed By: d By: Rec Lin	kg kg RL 50.0 overy
Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate n-Tricosane Sample: 23 Laboratory:	Midland TPH DRO - N 71874 61593 Flag Flag 8039 - AH-5 0 Midland	IEW lag Result 96.6	Date Samp RL Result <50.0 Units mg/Kg	Analyzed: le Preparation Dilution 1	2010-07- n: 2010-07- Units mg/Kg n An	19 19 I pike nount	Analyze Prepare Dilution 1 Percent Recovery 97	ed By: d By: Rec Lin 70	kg kg RL 50.0 overy mits - 130
Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: <u>Parameter</u> <u>DRO</u> <u>Surrogate</u> n-Tricosane Sample: 23: Laboratory: Analysis:	Midland TPH DRO - N 71874 61593 Fl Flag 8039 - AH-5 0 Midland TPH GRO	IEW lag Result 96.6	Date Samp RL Result <50.0 Units mg/Kg	Analyzed: le Preparation Dilution 1 Method: S	2010-07- 1: 2010-07- Units mg/Kg n An 1 8015 D	19 19 I pike nount	Analyze Prepare Dilution 1 Percent Recovery 97 Prep Meth	d By: d By: Rec Lin 70	kg kg RL 50.0 overy mits - 130 5035
Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate n-Tricosane Sample: 23: Laboratory: Analysis: QC Batch:	Midland TPH DRO - N 71874 61593 Flag Flag 8039 - AH-5 0 Midland	IEW lag Result 96.6	Date Samp RL Result <50.0 Units mg/Kg	Analyzed: le Preparation Dilution 1 Method: S yzed: 20	2010-07- n: 2010-07- Units mg/Kg n An	19 19 I pike nount	Analyze Prepare Dilution 1 Percent Recovery 97	d By: d By: Rec Lin 70 nod: S By: A	kg kg RL 50.0 overy mits - 130
Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate n-Tricosane Sample: 23 Laboratory:	Midland TPH DRO - N 71874 61593 Flag 8039 - AH-5 0 Midland TPH GRO 71950 61608	IEW lag Result 96.6	Date Samp RL Result <50.0 Units mg/Kg Analytical Date Analytical	Analyzed: le Preparation Dilution 1 Method: S yzed: 20	2010-07- 1: 2010-07- Units mg/Kg N An 1 8015 D 010-07-21	19 19 I pike 100	Analyze Prepare Dilution 1 Percent Recovery 97 Prep Meth Analyzed	d By: d By: Rec Lin 70 nod: S By: A	kg kg RL 50.0 overy mits - 130 5035 .G

Report Date 114-6400600			Work um Graybur		10071924 adres Unit #	250 (Pit)		nber: 11 of a County, N
Surrogate	(11)77(11)	Flag	Result	Units	Dilution		Percent Recovery	Recove
Trifluorotolue 4-Bromofluor		-BFB)	2.06 1.93	mg/Kg mg/Kg	1	2.00 2.00	103 96	48.5 - 1 42 - 15
Method Bla QC Batch:	ank (1) 71873	QC Batch: 71873	Date Analy	vzed:	2010-07-19		Analy	zed By: k
Prep Batch:	61592		QC Prepar		2010-07-19			red By: k
Parameter		Flag		MDL Result	; -	Uni	its	F
DRO				<14.5	5	mg/	Kg	Ę
Surrogate	Flag	Result	Units	Dilu	ution	Spike Amount	Percent Recovery	Recove
n-Tricosane					1	100		
		103	mg/Kg		1	100	103	70 - 13
QC Batch:	ank (1) 71874 61593	QC Batch: 71874	Date Analy QC Prepar	vzed: 2 ation: 2	2010-07-19 2010-07-19	100	103 Analy	70 - 13 zed By: k
Method Bla QC Batch: Prep Batch: Parameter	71874		Date Analy	vzed: 2 ation: 2 MDL Result	2010-07-19 2010-07-19	Uni	103 Analy Prepa ts	70 - 13 zed By: k red By: k
QC Batch: Prep Batch: Parameter	71874	QC Batch: 71874	Date Analy	vzed: 2 ation: 2 MDL	2010-07-19 2010-07-19		103 Analy Prepa ts	70 - 13 zed By: k red By: k
QC Batch: Prep Batch: Parameter DRO Surrogate	71874	QC Batch: 71874 Flag Result	Date Analy QC Prepar Units	vzed: 2 ation: 2 MDL Result <14.5 Dilu	2010-07-19 2010-07-19	Uni mg/ Spike Amount	103 Analy Prepa ts Kg Percent Recovery	70 - 13 zed By: k red By: k R R R E Limit:
QC Batch: Prep Batch: Parameter DRO	71874 61593	QC Batch: 71874 Flag	Date Analy QC Prepar	vzed: 2 ation: 2 MDL Result <14.5 Dilu	2010-07-19 2010-07-19	Uni mg/ Spike	103 Analy Prepa ts Kg Percent	70 - 13 zed By: k red By: k Recove Limit:
QC Batch: Prep Batch: Parameter DRO Surrogate n-Tricosane Method Bla	71874 61593 Flag	QC Batch: 71874 Flag Result	Date Analy QC Prepar Units mg/Kg	vzed: 2 ation: 2 MDL Result <14.5 Dilu	2010-07-19 2010-07-19 ation 1	Uni mg/ Spike Amount	103 Analy Prepa ts Kg Percent Recovery 87	70 - 13 zed By: k red By: k R R E Recove Limit: 70 - 13
QC Batch: Prep Batch: Parameter DRO Surrogate n-Tricosane	71874 61593 Flag	QC Batch: 71874 Flag Result 87.4	Date Analy QC Prepar Units	zed: 2 ation: 2 MDL Result <14.5 Dilu	2010-07-19 2010-07-19 1 1 010-07-20 010-07-20	Uni mg/ Spike Amount	103 Analy Prepa ts Kg Percent Recovery	70 - 13 zed By: k red By: k Recove Limit: 70 - 13

Report Date: July 21, 2 114-6400600			rk Order: 10 urg San And	071924 res Unit #250) (Pit)	-	nber: 12 of 23 a County, NM
Method Blank (1)	QC Batch: 71924						
QC Batch: 71924		Date Ana		10-07-20		Analyz	-
Prep Batch: 61608		QC Prepa	aration: 201	10-07-19		Prepar	ed By: AG
			MD	L			
Parameter	Flag		Resul	t	Unit	s	RL
Benzene			< 0.015	0	mg/I	ζg	0.02
Toluene			< 0.0095	0	mg/H	Kg	0.02
Ethylbenzene			< 0.010	6	mg/H	٢g	0.02
Xylene			< 0.0093	0	mg/H	ζg	0.02
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		2.19	mg/Kg	1	2.00	110	66.6 - 122
4-Bromofluorobenzene (4-BFB)	2.18	mg/Kg	1	2.00	109	55.4 - 132
QC Batch: 71925 Prep Batch: 61608		Date Ana QC Prepa		10-07-20 10-07-19		Analyz Prepare	
			ACDI				
Daramatar	Floor		MDL		L Inite		pr
	Flag		Result	2 21 A 10	Units mg/K		RL 2
Parameter GRO	Flag				mg/K	g	2
GRO		Result	Result <1.65	Dilution	mg/K Spike	g Percent	2 Recovery
GRO Surrogate	Flag Flag	Result	Result <1.65 Units	Dilution	mg/K Spike Amount	g Percent Recovery	2 Recovery Limits
GRO Surrogate Trifluorotoluene (TFT)	Flag	Result 2.63 2.41	Result <1.65 Units mg/Kg	Dilution 1 1	mg/K Spike	g Percent	2 Recovery
GRO Surrogate Trifluorotoluene (TFT)	Flag	2.63	Result <1.65 Units	1	mg/K Spike Amount 2.00	g Percent Recovery 132	2 Recovery Limits 67.6 - 150
GRO Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (~	Flag	2.63	Result <1.65 Units mg/Kg	1	mg/K Spike Amount 2.00	g Percent Recovery 132	2 Recovery Limits 67.6 - 150
GRO Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (~ Method Blank (1)	Flag 4-BFB)	2.63	Result <1.65 Units mg/Kg mg/Kg	1	mg/K Spike Amount 2.00	g Percent Recovery 132	2 Recovery Limits 67.6 - 150 52.4 - 130
GRO Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (~ Method Blank (1) QC Batch: 71949	Flag 4-BFB)	2.63 2.41	Result <1.65 Units mg/Kg mg/Kg	1 1	mg/K Spike Amount 2.00	g Percent Recovery 132 120	2 Recovery Limits 67.6 - 150 52.4 - 130 ed By: AG
GRO Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (~ Method Blank (1) QC Batch: 71949	Flag 4-BFB)	2.63 2.41 Date Ana	Result <1.65 Units mg/Kg mg/Kg	1 1 .0-07-21 .0-07-19	mg/K Spike Amount 2.00	g Percent Recovery 132 120 Analyze	2 Recovery Limits 67.6 - 150 52.4 - 130 ed By: AG
GRO Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (Method Blank (1) QC Batch: 71949 Prep Batch: 61608	Flag 4-BFB)	2.63 2.41 Date Ana	Result <1.65 Units mg/Kg mg/Kg dlyzed: 201 aration: 201 MDH Result	1 1 .0-07-21 .0-07-19	mg/K Spike Amount 2.00 2.00 Unit	g Percent Recovery 132 120 Analyze Prepare	2 Recovery Limits 67.6 - 150 52.4 - 130 ed By: AG ed By: AG RL
GRO Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (Method Blank (1) QC Batch: 71949 Prep Batch: 61608 Parameter	Flag 4-BFB) QC Batch: 71949	2.63 2.41 Date Ana	Result <1.65 Units mg/Kg mg/Kg dyzed: 201 aration: 201 MDI Result <0.0156	1 1 .0-07-21 .0-07-19 	mg/K Spike Amount 2.00 2.00 Unit mg/K	g Percent Recovery 132 120 Analyze Prepare	2 Recovery Limits 67.6 - 150 52.4 - 130 ed By: AG ed By: AG RL 0.02
GRO Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (~ Method Blank (1) QC Batch: 71949 Prep Batch: 61608 Parameter Benzene Toluene	Flag 4-BFB) QC Batch: 71949	2.63 2.41 Date Ana	Result <1.65 Units mg/Kg mg/Kg dyzed: 201 aration: 201 MDI Result <0.0156 <0.00950	1 1 0-07-21 0-07-19 t	mg/K Spike Amount 2.00 2.00 Unit mg/K mg/K	g Percent Recovery 132 120 Analyze Prepare	2 Recovery Limits 67.6 - 150 52.4 - 130 ed By: AG ed By: AG RL 0.02 0.02
GRO Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (~ Method Blank (1) QC Batch: 71949	Flag 4-BFB) QC Batch: 71949	2.63 2.41 Date Ana	Result <1.65 Units mg/Kg mg/Kg dyzed: 201 aration: 201 MDI Result <0.0156	1 1 .0-07-21 .0-07-19 .t	mg/K Spike Amount 2.00 2.00 Unit mg/K	g Percent Recovery 132 120 Analyze Prepare	2 Recovery Limits 67.6 - 150 52.4 - 130 ed By: AG ed By: AG RL 0.02

Report Date: July 21, 2010 114-6400600	Vac		ork Order ourg San A		924 Jnit #250 (1	Pit)	Page Nu L		13 of 23 nty, NM
Surrogate	Flag	Result	Units	s D	ilution	Spike Amount	Percent Recovery	I	ecovery Jimits
Trifluorotoluene (TFT)		2.01	mg/K	g	1	2.00	100	66	.6 - 122
4-Bromofluorobenzene (4-BF	Ъ)	1.93	mg/K	g	1	2.00	96	55	4 - 132
Method Blank (1) QC	C Batch: 71950								
QC Batch: 71950		Date An	alvzed:	2010-07	7-21		Analy	zed By	: AG
Prep Batch: 61608			paration:	2010-07				ared By	
	-		MI						DI
Parameter	Flag		Resu			Unit			RL
GRO			<1.	65		mg/F	g		2
						Spike	Percent	Re	ecovery
Surrogate	Flag	Result	Units	s D	ilution	Amount	Recovery		imits
Trifluorotoluene (TFT)	0	2.44	mg/K		1	2.00	122		6 - 150
4-Bromofluorobenzene (4-BF	B)	2.16	mg/K	-	1	2.00	108		4 - 130
Laboratory Control Spike	e (LCS-1)		0,						
QC Batch: 71873	e (LCS-1)	Date An QC Prej		2010-0' 2010-0'				lyzed B	-
QC Batch: 71873		QC Prej	nalyzed:	2010-0'	7-19		Prep	ared B	y: kg
QC Batch: 71873 Prep Batch: 61592	LC	QC Prej	nalyzed: paration:	2010-02 2010-02	7-19 Spike	Matrix	Prep	ared By	y: kg Rec.
QC Batch: 71873 Prep Batch: 61592 Param	LC Res	QC Prej S ult U	nalyzed: paration: Units	2010-0' 2010-0' Dil.	7-19 Spike Amount	Result	Prep	ared By I L	y: kg Rec. imit
QC Batch: 71873 Prep Batch: 61592 Param DRO	LC Res 25	QC Prep 2S ult U 6 ma	nalyzed: paration: Units g/Kg	2010-0' 2010-0' Dil. 1	7-19 Spike Amount 250	Result <14.5	Prep Rec. 102	ared By I L	y: kg Rec. imit
QC Batch: 71873 Prep Batch: 61592 Param DRO	LC Res 25	QC Prep 2S ult U 6 ma	nalyzed: paration: Units g/Kg	2010-0' 2010-0' Dil. 1	7-19 Spike Amount 250	Result <14.5	Prep Rec. 102	ared By I L	y: kg Rec. imit
QC Batch: 71873 Prep Batch: 61592 Param DRO	LC Res 25	QC Prep 2S ult U 6 ma	nalyzed: paration: Units g/Kg	2010-0' 2010-0' Dil. 1	7-19 Spike Amount 250	Result <14.5	Prep Rec. 102	ared By I L	y: kg Rec. imit
Prep Batch: 61592 Param DRO Percent recovery is based on Param	LC Res 25 the spike result LCSD Result	QC Prej 2S ult U 6 mi . RPD is b Units	nalyzed: paration: Units g/Kg	2010-0' 2010-0' Dil. 1 he spike Spike Amount	7-19 Spike Amount 250 and spike of Matrix Result	Result <14.5 luplicate re Rec.	Prep Rec. 102 Esult. Rec. Limit	ared By I L	y: kg lec. imit - 133.4 RPD Limit
QC Batch: 71873 Prep Batch: 61592 Param DRO Percent recovery is based on Param	LC Res 25 the spike result LCSD	QC Prej 2S ult U 6 mi . RPD is b	nalyzed: paration: Inits g/Kg pased on th	2010-0' 2010-0' Dil. 1 he spike Spike	7-19 Spike Amount 250 and spike of Matrix	Result <14.5 luplicate re Rec.	Prep Rec. 102 esult. Rec.	Pared By I L 57.4	y: kg lec. imit - 133.4 RPD
QC Batch: 71873 Prep Batch: 61592 Param DRO Percent recovery is based on Param DRO	LC Res 25 the spike result LCSD Result 251	QC Prej 2S ult U 6 ma . RPD is b Units mg/Kg	nalyzed: paration: Units g/Kg pased on the Dil. 4 1	2010-0' 2010-0' Dil. 1 he spike Spike Amount 250	7-19 Spike Amount 250 and spike of Matrix Result <14.5	Result <14.5 luplicate re Rec. 100 5	Prep Rec. 102 sult. Rec. Limit 7.4 - 133.4	Pared By I L 57.4 RPD	y: kg lec. imit - 133.4 RPD Limit
QC Batch: 71873 Prep Batch: 61592 Param DRO Percent recovery is based on Param DRO	LC Res 25 the spike result LCSD Result 251 the spike result.	QC Prej 2S ult U 6 ma . RPD is b Units mg/Kg . RPD is b	nalyzed: paration: Units g/Kg pased on the Dil. 4 1	2010-0' 2010-0' Dil. 1 he spike Spike Amount 250	7-19 Spike Amount 250 and spike d Matrix Result <14.5 and spike d Spike	Result <14.5 luplicate re Rec. 100 5	Prep Rec. 102 ssult. Rec. Limit 7.4 - 133.4 esult.	Pared By I L 57.4 RPD	y: kg lec. imit - 133.4 RPD Limit
QC Batch: 71873 Prep Batch: 61592 Param DRO Percent recovery is based on Param DRO Percent recovery is based on LC Surrogate Res	LC Res 25 the spike result LCSD Result 251 the spike result. CS LCSD ult Result	QC Prej 2S ult U 6 mi . RPD is b Units mg/Kg . RPD is b	nalyzed: paration: Inits g/Kg pased on the Dil. A 1 pased on the its	2010-0' 2010-0' Dil. 1 he spike Spike Amount 250 he spike Dil.	7-19 Spike Amount 250 and spike of Matrix Result <14.5 and spike of Spike Amount	Result <14.5 luplicate re Rec. 100 5 luplicate re LCS Rec.	Prep Rec. Limit 7.4 - 133.4 sult. LCSD Rec.	Pared By F 57.4 RPD 2	y: kg Rec. imit - 133.4 RPD Limit 20 Rec. Limit
QC Batch: 71873 Prep Batch: 61592 Param DRO Percent recovery is based on Param DRO Percent recovery is based on LC	LC Res 25 the spike result LCSD Result 251 the spike result. CS LCSD ult Result	QC Prej 2S ult U 6 mi . RPD is b Units mg/Kg . RPD is b	nalyzed: paration: Inits g/Kg pased on the Dil. A 1 pased on the	2010-0' 2010-0' Dil. 1 he spike Spike Amount 250 he spike	7-19 Spike Amount 250 and spike d Matrix Result <14.5 and spike d Spike	Result <14.5 luplicate re Rec. 100 5 luplicate re LCS	Prep Rec. 102 sult. Rec. Limit 7.4 - 133.4 sult. LCSD	Pared By F 57.4 RPD 2	y: kg Rec. imit - 133.4 RPD Limit 20 Rec.
QC Batch: 71873 Prep Batch: 61592 Param DRO Percent recovery is based on Param DRO Percent recovery is based on LC Surrogate Res	LC Res 25 the spike result LCSD Result 251 the spike result. 2S LCSD ult Result 1 114	QC Prej 2S ult U 6 mi . RPD is b Units mg/Kg . RPD is b	nalyzed: paration: Inits g/Kg pased on the Dil. A 1 pased on the its	2010-0' 2010-0' Dil. 1 he spike Spike Amount 250 he spike Dil.	7-19 Spike Amount 250 and spike of Matrix Result <14.5 and spike of Spike Amount	Result <14.5 luplicate re Rec. 100 5 luplicate re LCS Rec.	Prep Rec. Limit 7.4 - 133.4 sult. LCSD Rec.	Pared By F 57.4 RPD 2	y: kg Rec. imit - 133.4 RPD Limit 20 Rec. Limit
QC Batch: 71873 Prep Batch: 61592 Param 0 Percent recovery is based on 0 Param 0 Percent recovery is based on 0 Percent r	LC Res 25 the spike result LCSD Result 251 the spike result. 2S LCSD ult Result 1 114	QC Prej 2S ult U 6 mi . RPD is b Units mg/Kg . RPD is b	nalyzed: paration: mits g/Kg pased on the Dil. 4 1 pased on the nits /Kg	2010-0' 2010-0' Dil. 1 he spike Spike Amount 250 he spike Dil.	7-19 Spike Amount 250 and spike d Matrix Result <14.5 and spike d Spike Amount 100	Result <14.5 luplicate re Rec. 100 5 luplicate re LCS Rec.	Prep 	Pared By F 57.4 RPD 2	y: kg Rec. imit - 133.4 RPD Limit 20 Rec. Limit 0 - 130

114-6400600	21, 2010	Vacui			er: 100719 Andres U	24 nit #250 (F	'it)		Page N I		14 of 23 nty, NM
Param		LCS Resu	lt U	Inits	Dil.	Spike Amount	Mat Res	ult	Rec.	J	Rec. Limit
DRO		239) mg	g/Kg	1	250	<14	1.5	96	57.4	- 133.4
Percent recovery is b	ased on the s	pike result.	RPD is b	ased on	the spike	and spike d	uplicate	resul	t.		
		LCSD			Spike	Matrix		Б	lec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.		imit	RPD	Limi
DRO		248	mg/Kg	1	250	<14.5	99		- 133.4	4	20
Percent recovery is b	ased on the s	pike result.		ased on			uplicate				
					one openio						
	LCS	LCSD		•.	D .1	Spike		CS	LCSD		Rec.
Surrogate	Result	Result	Un		Dil.	Amount		ec.	Rec.		Limit
n-Tricosane	102	106	mg/	/Kg	1	100	1	02	106		70 - 130
Prep Batch: 61621		LC	S		2010-07-	Spike	M	latrix		ared By	: AR Rec.
Param		Resi	ult I	Units	Dil.	Amount	R	esult	Rec		Limit
		00	5	am/IVm	1	100	-	(2.18	00	(35 - 115
Chloride		98.	J II.	ng/Kg	1	100		2.10	98	(0 - 110
	ased on the sj	start of		to be the second se							0 - 110
	ased on the sj	pike result.		to be the second se	the spike a	and spike du		result	5.		
Chloride Percent recovery is b Param	ased on the sp	pike result. LCSD	RPD is ba	ased on	the spike a	and spike du Matrix	uplicate	result	Rec.		RPD
Percent recovery is b Param	ased on the sp	pike result.	RPD is ba		the spike a	and spike du Matrix		result	5.	RPD 2	
Percent recovery is b Param Chloride		pike result. LCSD Result 101	RPD is ba Units mg/Kg	ased on Dil. 1	the spike a Spike Amount 100	and spike du Matrix Result <2.18	iplicate Rec. 101	result I 85	Rec. Jimit - 115	RPD	RPD Limit
Percent recovery is b Param Chloride Percent recovery is b Laboratory Contro	ased on the sp	pike result. LCSD Result 101 pike result. S-1)	RPD is ba Units mg/Kg RPD is ba	ased on Dil. 1 ased on	the spike a Spike Amount 100	and spike du Matrix Result <2.18	iplicate Rec. 101	result I 85	:. Rec. .imit - 115 :.	RPD 2	RPD Limit 20
Percent recovery is b Param Chloride Percent recovery is b Laboratory Contro QC Batch: 71924	ased on the sp	pike result. LCSD Result 101 pike result. S-1)	RPD is ba Units mg/Kg RPD is ba Date Ana	Dil. 1 ased on alyzed:	the spike a Spike Amount 100 the spike a 2010-07-	And spike du Matrix Result <2.18 and spike du	iplicate Rec. 101	result I 85	i. Rec. Jimit - 115 J. Analy	RPD 2	RPD Limit 20
Percent recovery is b Param Chloride Percent recovery is b Laboratory Contro	ased on the sp	pike result. LCSD Result 101 pike result. S-1)	RPD is ba Units mg/Kg RPD is ba Date Ana QC Prepa	Dil. 1 ased on alyzed:	the spike a Spike Amount 100 the spike a	And spike du Matrix Result <2.18 and spike du 20 19	Iplicate Rec. 101 Iplicate	result L 85 result	i. Rec. Jimit - 115 J. Analy	RPD 2 vzed By ared By	RPD Limit 20 : AG : AG
Percent recovery is b Param Chloride Percent recovery is b Caboratory Contro QC Batch: 71924 Prep Batch: 61608	ased on the sp	pike result. LCSD Result 101 pike result. S-1)	RPD is ba Units mg/Kg RPD is ba Date Ana QC Prepa	Dil. 1 ased on alyzed: aration:	the spike a Spike Amount 100 the spike a 2010-07- 2010-07-	And spike du Matrix Result <2.18 And spike du 20 19 Spike	Iplicate Rec. 101 Iplicate	result L 85 result	:. .imit - 115 ;. Analy Prepa	RPD 2 vzed By ared By	RPD Limit 20 : AG : AG Rec.
Percent recovery is b Param Chloride Percent recovery is b Laboratory Contro QC Batch: 71924 Prep Batch: 61608	ased on the sp	pike result. LCSD Result 101 pike result. S-1) LCS Resul	RPD is ba <u>Units</u> mg/Kg RPD is ba QC Prepa It Ur	ased on Dil. 1 ased on alyzed: aration: nits	the spike a Spike Amount 100 the spike a 2010-07- 2010-07- Dil.	And spike du Matrix Result <2.18 and spike du 20 19 Spike Amount	Iplicate Rec. 101 Iplicate Mat Res	result L 85 result rrix ult	Rec. .imit - 115 Analy Prepa Rec.	RPD 2 vzed By ured By	RPD Limit 20 : AG : AG Rec. Limit
Percent recovery is b Param Chloride Percent recovery is b Caboratory Contro QC Batch: 71924 Prep Batch: 61608 Param Benzene	ased on the sp	pike result. LCSD Result 101 pike result. SS-1) LCS Resul 1.99	RPD is bi Units mg/Kg RPD is bi Date Ana QC Prepa lt Ur mg	ased on Dil. 1 ased on alyzed: aration: nits	the spike a Spike Amount 100 the spike a 2010-07- 2010-07- Dil. 1	And spike du Matrix Result <2.18 and spike du 20 19 Spike Amount 2.00	Iplicate Rec. 101 Iplicate Mat Res <0.0	result L 85 result crix ult 0150	Analy Prepa Rec. Rec. 100	RPD 2 vzed By pred By 81	RPD Limit 20 : AG : AG Rec. Limit 9 - 108
Percent recovery is b Param Chloride Percent recovery is b Laboratory Contro QC Batch: 71924	ased on the sp	pike result. LCSD Result 101 pike result. S-1) LCS Resul	RPD is bi <u>Units</u> mg/Kg RPD is bi Date Ana QC Prepa It Ur mg mg	ased on Dil. 1 ased on alyzed: aration: nits	the spike a Spike Amount 100 the spike a 2010-07- 2010-07- Dil.	And spike du Matrix Result <2.18 and spike du 20 19 Spike Amount	Iplicate Rec. 101 Iplicate Mat Res	result L 85 result ult 1150 0950	Rec. .imit - 115 Analy Prepa Rec.	RPD 2 vzed By ured By 81 81	RPD Limit 20 : AG : AG Rec.

Report Date: July 21, 2010 114-6400600	Vacu	W um Grayb		er: 10071 Andres V		250 (Pi	t)		Page Nu L	umber: .ea Cou	
control spikes continued											
	LCSD		_	Spike		atrix			.ec.		RPI
Param	Result	Units	Dil.	Amount	Re	esult	Rec.	Li	mit	RPD	Lim
	LCSD			Spike		atrix			ec.	_	RPI
Param	Result	Units	Dil.	Amount		esult	Rec.		mit	RPD	Lim
Benzene	2.03	mg/Kg	1	2.00		.0150	102		- 108	2	20
Toluene	2.07	mg/Kg	1	2.00		00950	104		- 107	2	20
Ethylbenzene	2.04	mg/Kg	1	2.00		.0106	102		- 107	2	20
Xylene	6.21	mg/Kg	1	6.00		00930	104		- 107	2	20
Percent recovery is based on the s	pike result.	RPD is t	based on	the spike	and s	pike du	plicate	result.			
And the second second	LCS					Spil		LCS	LCSI		Rec.
Surrogate	Resu			Units	Dil.	Amo	The second se	Rec.	Rec.		Limit
Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)	2.09 2.18			ng/Kg ng/Kg	1 1	2.0 2.0		104 108	102 104		
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925	2.13		09 r alyzed:	ng/Kg 2010-0'	1				104 Anal		
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608	2.18 CS-1)	5 2.0 Date An QC Prep S	09 r alyzed: paration	ng/Kg 2010-0' : 2010-0'	1 7-20 7-19 Sp	2.0	0 Ma	108 trix	104 Analy Prepa	69 yzed By ared By	9.8 - 12 y: AG 7: AG Rec.
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param	2.1) CS-1) LC Rest	5 2.0 Date An QC Prep S ult U	09 r alyzed: paration Units	ng/Kg 2010-0'	1 7-20 7-19 Sp Am	2.0 pike ount	Ma Res	108 trix sult	104 Anal Prepa	69 yzed B ared By	9.8 - 12 y: AC 7: AC Rec. Limit
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param GRO	2.18 CS-1) LC Resu 15.	5 2.0 Date An QC Prep S ult U 7 m	alyzed: paration Units g/Kg	ng/Kg 2010-0' : 2010-0' Dil. 1	1 7-20 7-19 Sp <u>Am</u> 20	2.0 bike ount 0.0	Ma Res <1	trix sult .65	104 Analy Prepa	69 yzed B ared By	9.8 - 12 y: AG 7: AG Rec. Limit
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param	2.18 CS-1) LC Resu 15.	5 2.0 Date An QC Prep S ult U 7 m	alyzed: paration Units g/Kg	ng/Kg 2010-0' : 2010-0' Dil. 1	1 7-20 7-19 Sp <u>Am</u> 20	2.0 bike ount 0.0	Ma Res <1	trix sult .65	104 Anal Prepa	69 yzed B ared By	9.8 - 12 y: AG 7: AG Rec.
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param GRO Percent recovery is based on the s	2.1 CS-1) LC Resu 15. pike result. LCSD	5 2.0 Date An QC Prep S ult U 7 m RPD is b	09 r alyzed: paration Jnits g/Kg pased on	ng/Kg 2010-0' : 2010-0' Dil. 1 the spike Spike	1 7-20 7-19 Sp Am 20 and sp Ma	2.0 pike ount 0.0 pike du	Ma Res <1 plicate	108 trix sult .65 result. Re	104 Analy Prepa Rec. 78	69 yzed By ared By 69	9.8 - 12 y: AC 7: AC Rec. Limit 9 - 95. RPI
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param GRO Percent recovery is based on the s Param	2.18 CS-1) LC Resu 15. pike result. LCSD Result	5 2.0 Date An QC Prep S ult U RPD is b Units	09 r alyzed: paration Units g/Kg pased on Dil.	ng/Kg 2010-0' : 2010-0' Dil. 1 the spike Amount	1 7-20 7-19 Sp Am 20 and sp Ma 5 Re	2.0 oike ount 0.0 pike dup atrix sult	Ma Res <1 plicate Rec.	108 trix sult .65 result. Re Lin	Analy Prepa Rec. 78	69 yzed B ared By 69 RPD	9.8 - 12 y: AC r: AC Rec. Limit 9 - 95. RPI Limit
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param GRO Percent recovery is based on the s Param GRO	2.18 CS-1) LC Resu 15. pike result. LCSD Result 16.6	5 2.0 Date An QC Prep S ult U 7 m RPD is b Units mg/Kg	09 r alyzed: paration Units g/Kg pased on Dil. 1	2010-0' 2010-0' 2010-0' Dil. 1 the spike Amount 20.0	1 7-20 7-19 Sp Am 20 9 and sp Ma 5 Re 4	2.0 bike ount 0.0 pike dup atrix sult 1.65	Ma Res <1 plicate 83	108 trix sult .65 result. Re Lin 69.9 -	Analy Prepa Rec. 78	69 yzed By ared By 69	9.8 - 12 y: AC r: AC Rec. Limit 9 - 95 RPI Lim
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param GRO Percent recovery is based on the s Param GRO	2.18 CS-1) LC Resu 15. pike result. LCSD Result 16.6	5 2.0 Date An QC Prep S ult U 7 m RPD is b Units mg/Kg	09 r alyzed: paration Units g/Kg pased on Dil. 1	2010-0' 2010-0' 2010-0' Dil. 1 the spike Amount 20.0	1 7-20 7-19 Sp Am 20 9 and sp Ma 8 Re 21	2.0 bike ount 0.0 pike dup atrix sult 1.65	Ma Res <1 plicate 83	108 trix sult .65 result. Re Lin 69.9 -	Analy Prepa Rec. 78	69 yzed B ared By 69 RPD	9.8 - 12 y: AC r: AC Rec. Limit 9 - 95 RPI Lim
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param GRO Percent recovery is based on the s GRO Percent recovery is based on the s	2.18 CS-1) LC Resu 15. pike result. LCSD Result 16.6 pike result. LCS	5 2.0 Date An QC Prep S ult U 7 m RPD is b Units mg/Kg RPD is b 5 LCS	29 r alyzed: paration Jnits g/Kg pased on Dil. 1 pased on SD	2010-0' 2010-0' 2010-0' Dil. 1 the spike Amount 20.0 the spike	1 7-20 7-19 Sp Am 20 and sp Ma Re <1 and sp	2.0 pike ount 0.0 pike dup trix sult 1.65 pike dup Spil	Ma Reg <1 plicate 83 plicate ke	108 trix sult .65 result. Re Lin 69.9 - result. LCS	Anal Prepa Rec. 78 ec. nit 95.4	69 yzed B ared By 69 RPD 6	9.8 - 12 y: A(7: A(Rec. Limit 9 - 95 RP) Lim 20 Rec.
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param GRO Percent recovery is based on the s GRO Percent recovery is based on the s Surrogate	2.18 CS-1) LC: Result 15. pike result. LCSD Result 16.6 pike result. LCS Result	5 2.0 Date An QC Prep S ult U 7 m RPD is b Units mg/Kg RPD is b S LCS lt Res	09 r alyzed: oaration Units g/Kg oased on Dil. 1 oased on SD ult	2010-0' 2010-0' 2010-0' Dil. 1 the spike Amount 20.0 the spike Units	1 7-20 7-19 Sp Am 20 and sp Ma 8 Re <1 and sp Dil.	2.0 pike ount 0.0 pike duy trix sult 1.65 pike duy Spil Amon	Ma Res <1 plicate Rec. 83 plicate ke unt	108 trix sult .65 result. Re Lin 69.9 - result. LCS Rec.	Anal Prepa Rec. 78 ec. nit 95.4 LCSI Rec.	69 yzed By ared By 69 RPD 6	9.8 - 12 y: AC 7: AC Rec. Limit 9 - 95. RPI Limit 20 Rec. Limit
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param GRO Percent recovery is based on the spice GRO Percent recovery is based on the spice Surrogate Trifluorotoluene (TFT)	2.18 LCS Result 15. pike result. LCSD Result 16.6 pike result. LCS Result 2.68	5 2.0 Date An QC Prep Sult U 7 m RPD is b Units mg/Kg RPD is b 5 LCS 1t Res 3 2.6	D9 r alyzed: baration Units bg/Kg based on Dil. 1 based on SD ult 58 n	2010-0' 2010-0' 2010-0' Dil. 1 the spike Amount 20.0 the spike Units ng/Kg	1 7-20 7-19 Sp Am 20 3 and sj Ma 3 Re <1 and sj Dil. 1	2.0 pike ount 0.0 pike duy atrix sult 1.65 pike duy Spil Amon 2.0	Ma Res <1 plicate <u>Rec.</u> 83 plicate ke unt 0	108 trix sult .65 result. Ree Lin 69.9 - result. LCS Rec. 134	Anal Prepa Rec. 78 ec. nit 95.4 LCSI Rec. 134	69 yzed By ared By 69 RPD 6	9.8 - 12 y: AC Rec. Limit 9 - 95. RPI Limit 20 Rec. Limit .9 - 14
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param GRO Percent recovery is based on the s GRO Percent recovery is based on the s Surrogate	2.18 CS-1) LC: Result 15. pike result. LCSD Result 16.6 pike result. LCS Result	5 2.0 Date An QC Prep Sult U 7 m RPD is b Units mg/Kg RPD is b 5 LCS lt Res 3 2.6	D9 r alyzed: baration Units bg/Kg based on Dil. 1 based on SD ult 58 n	2010-0' 2010-0' 2010-0' Dil. 1 the spike Amount 20.0 the spike Units	1 7-20 7-19 Sp Am 20 and sp Ma 8 Re <1 and sp Dil.	2.0 pike ount 0.0 pike duy trix sult 1.65 pike duy Spil Amon	Ma Res <1 plicate <u>Rec.</u> 83 plicate ke unt 0	108 trix sult .65 result. Re Lin 69.9 - result. LCS Rec.	Anal Prepa Rec. 78 ec. nit 95.4 LCSI Rec.	69 yzed By ared By 69 RPD 6	9.8 - 12 y: A(7: A(Rec. Limit 9 - 95 RP) Lim 20 Rec. Limit
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)	2.18 CS-1) LC: Result 15. pike result. LCSD Result 16.6 pike result. LCS Result 2.68 2.53	5 2.0 Date An QC Prep Sult U 7 m RPD is b Units mg/Kg RPD is b 5 LCS 1t Res 3 2.6	D9 r alyzed: baration Units bg/Kg based on Dil. 1 based on SD ult 58 n	2010-0' 2010-0' 2010-0' Dil. 1 the spike Amount 20.0 the spike Units ng/Kg	1 7-20 7-19 Sp Am 20 3 and sj Ma 3 Re <1 and sj Dil. 1	2.0 pike ount 0.0 pike duy atrix sult 1.65 pike duy Spil Amon 2.0	Ma Res <1 plicate <u>Rec.</u> 83 plicate ke unt 0	108 trix sult .65 result. Ree Lin 69.9 - result. LCS Rec. 134	Anal Prepa Rec. 78 ec. nit 95.4 LCSI Rec. 134	69 yzed By ared By 69 RPD 6	9.8 - 1: y: A(7: A(Rec. Limit 9 - 95 RP: Lim 20 Rec. Limit .9 - 14
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 71925 Prep Batch: 61608 Param GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s Surrogate Trifluorotoluene (TFT)	2.18 CS-1) LC: Result 15. pike result. LCSD Result 16.6 pike result. LCS Result 2.68 2.53	5 2.0 Date An QC Prep Sult U 7 m RPD is b Units mg/Kg RPD is b 5 LCS 1t Res 3 2.6	09 r alyzed: oaration Jnits g/Kg based on 01. 1 0ased on SD 01. 03 n 05 n	2010-0' 2010-0' 2010-0' Dil. 1 the spike Amount 20.0 the spike Units ng/Kg	1 7-20 7-19 Sp Am 20 and sp Ma Re <1 and sp Dil. 1 1	2.0 pike ount 0.0 pike duy atrix sult 1.65 pike duy Spil Amon 2.0	Ma Res <1 plicate <u>Rec.</u> 83 plicate ke unt 0	108 trix sult .65 result. Ree Lin 69.9 - result. LCS Rec. 134	104 Anal Prepa Rec. 78 ec. nit 95.4 LCSI Rec. 134 128	69 yzed By ared By 69 RPD 6	9.8 - 12 y: A(7: A(Rec. Limit 9 - 95 RP1 Lim 20 Rec. Limit .9 - 14 .2 - 13

Work Order: 10071924 Report Date: July 21, 2010 Page Number: 16 of 23 114-6400600 Vacuum Grayburg San Andres Unit #250 (Pit) Lea County, NM control spikes continued LCS Spike Matrix Rec. Result Units Dil. Amount Result Limit Param Rec. LCS Spike Matrix Rec. Param Result Units Dil. Amount Result Limit Rec. Benzene 2.02 mg/Kg 2.00 < 0.0150 81.9 - 108 1 101 Toluene 2.04mg/Kg 1 2.00< 0.00950102 81.9 - 107 Ethylbenzene 2.00 mg/Kg 1 2.00< 0.0106 100 78.4 - 107 Xylene 6.08 mg/Kg 6.00 1 < 0.00930 101 79.1 - 107 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. LCSD RPD Spike Matrix Rec. Units Param Result Dil. Amount Result Rec. Limit RPD Limit 1.95 2.00 81.9 - 108 Benzene mg/Kg 1 < 0.015098 4 20 Toluene 1.96 mg/Kg 1 2.00 < 0.0095098 81.9 - 107 4 20 Ethylbenzene 1.93 mg/Kg 1 2.00 < 0.0106 96 78.4 - 107 4 20 Xylene 5.87 mg/Kg 1 6.00 < 0.00930 98 79.1 - 107 4 20 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. LCS LCSD Spike LCS LCSD Rec. Result Result Units Dil. Amount Rec. Rec. Limit Surrogate Trifluorotoluene (TFT) 2.00 1.92 1.96 mg/Kg 1 96 98 70.2 - 114 4-Bromofluorobenzene (4-BFB) 1.96 2.01 2.00 98 100 69.8 - 121 mg/Kg 1 Laboratory Control Spike (LCS-1) QC Batch: Date Analyzed: 2010-07-21 Analyzed By: AG 71950 QC Preparation: Prep Batch: 61608 2010-07-19 Prepared By: AG LCS Spike Matrix Rec. Result Units Dil. Amount Result Limit Param Rec. GRO 14.2 mg/Kg 20.0 <1.65 71 69.9 - 95.4 1 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. LCSD RPD Spike Matrix Rec. Result Units Dil. Amount Result Rec. Limit RPD Limit Param GRO 14.6 mg/Kg 20.0 <1.65 73 69.9 - 95.4 20 1 3 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. LCS LCSD Spike LCS LCSD Rec. Result Result Units Dil. Amount Rec. Limit Surrogate Rec. mg/Kg Trifluorotoluene (TFT) 2.24 2.301 2.00112 61.9 - 142 115 2.08 68.2 - 132 4-Bromofluorobenzene (4-BFB) 2.16mg/Kg 1 2.00104 108

Matrix Spik	(MS-1)											
	te (1419-1)	Spiked	Sample: 2	38025								
QC Batch:	71873			Date	Analyzed:	2010-07	-19			Ana	lyzed	By: k
Prep Batch:	61592			QC P	reparation	: 2010-07	-19			Prej	pared I	By: k
			MS	6			Spike	М	atrix			Rec.
Param			Resu		Units	Dil.	Amount		esult	Rec.		Limit
DRO			241	1 :	mg/Kg	1	250	<	14.5	96	35.	2 - 167
Percent recov	ery is based	l on the s	pike result.	RPD is	s based or	the spike	and spike d	uplica	te resu	lt.		
			MSD			Spike	Matrix			Rec.		RP
Param			Result	Units	Dil.	Amount	Result	Rec.		limit	RPD	Lin
DRO	1. 4 .		242	mg/Kg		250	<14.5	97		2 - 167.1	0	20
Percent recov	ery is based	l on the s	pike result.	RPD is	s based or	the spike	and spike d	uplica	te resu	lt.		
		MS	MSD				Spike		MS	MSD		Rec.
Surrogate		MS Result	MSD Result		Units	Dil.	Spike Amount		MS Rec.	MSD Rec.		
n-Tricosane Matrix Spik		Result 101		n 38039	ng/Kg	1	Amount 100			Rec. 106		Rec. Limit 70 - 13
n-Tricosane Matrix Spik QC Batch:	ce (MS-1) 71874 61593	Result 101	Result 106	n 38039 Date A		1 2010-07	Amount 100		Rec.	Rec. 106 Ana	lyzed I	Limit
n-Tricosane Matrix Spik QC Batch:	71874	Result 101	Result 106 Sample: 2	n 38039 Date A QC Pr	ng/Kg Analyzed:	1 2010-07	Amount 100 -19 -19		Rec. 101	Rec. 106 Ana	lyzed I bared F	Limit 70 - 1; By: k; By: k;
n-Tricosane Matrix Spik QC Batch: Prep Batch:	71874	Result 101	Result 106 Sample: 2 MS	n 38039 Date A QC Pr	ng/Kg Analyzed: reparatior	1 2010-07 : 2010-07	Amount 100 -19 -19 Spike		Rec. 101	Rec. 106 Ana Prep	lyzed I bared F	Limit 70 - 13 By: k By: k By: k
n-Tricosane Matrix Spik QC Batch: Prep Batch: Param	71874	Result 101	Result 106 Sample: 2 MS Resu	n 38039 Date A QC Pr	ng/Kg Analyzed: reparation Units	1 2010-07 : 2010-07 Dil.	Amount 100 -19 -19 Spike Amount	R	Rec. 101 atrix esult	Rec. 106 Ana Prep Rec.	lyzed I pared F	Limit 70 - 13 By: ka By: ka By: ka Rec. Limit
n-Tricosane Matrix Spik QC Batch: Prep Batch:	71874 61593	Result 101 Spiked	Result 106 Sample: 2 MS Resu 235	n 38039 Date A QC Pr	ng/Kg Analyzed: reparation Units mg/Kg	1 2010-07 : 2010-07 Dil. 1	Amount 100 -19 -19 Spike Amount 250	Re <	Rec. 101 atrix esult 14.5	Rec. 106 Ana Prep Rec. 94	lyzed I pared F	Limit 70 - 13 By: k By: k By: k Rec. Limit
n-Tricosane Matrix Spik QC Batch: Prep Batch: Param DRO	71874 61593	Result 101 Spiked	Result 106 Sample: 2 MS Resu 235 pike result.	n 38039 Date A QC Pr	ng/Kg Analyzed: reparation Units mg/Kg	1 2010-07 2010-07 Dil. 1 the spike	Amount 100 -19 -19 Spike Amount 250 and spike dr	Re <	Rec. 101 atrix esult 14.5 te result	Rec. 106 Ana Prep Rec. 94	lyzed I pared F	Limit 70 - 13 By: k By: k By: k Rec. Limit 2 - 167
n-Tricosane Matrix Spik QC Batch: Prep Batch: Param DRO	71874 61593	Result 101 Spiked	Result 106 Sample: 2 MS Resu 235	n 38039 Date A QC Pr	ng/Kg Analyzed: reparation Units mg/Kg	1 2010-07 : 2010-07 Dil. 1	Amount 100 -19 -19 Spike Amount 250	Re <	Rec. 101 atrix esult 14.5 te result	Rec. 106 Ana Prep Rec. 94 It.	lyzed I pared F	Limit 70 - 13 By: kj By: kj Rec. Limit 2 - 167 RP1
n-Tricosane Matrix Spik QC Batch: Prep Batch: Param DRO Percent recove	71874 61593	Result 101 Spiked	Result 106 Sample: 2 MS Resu 235 Dike result. MSD	asolate A QC Pr QC Pr Ult RPD is	ng/Kg Analyzed: reparation Units mg/Kg based on Dil.	1 2010-07 2010-07 Dil. 1 the spike	Amount 100 -19 -19 Spike Amount 250 and spike du Matrix	Re <	Rec. 101 atrix esult 14.5 te result I	Rec. 106 Ana Prep Rec. 94 It. Rec.	lyzed I bared F 35.5	Limit 70 - 13 By: k By: k By: k Rec. Limit 2 - 167 RPI Lim
n-Tricosane Matrix Spik QC Batch: Prep Batch: Param DRO Percent recove Param	71874 61593 ery is based	Result 101 Spiked	Result 106 Sample: 2 MS Result 235 Dike result. MSD Result 225	n 38039 Date A QC Pr S ult RPD is mg/Kg	ng/Kg Analyzed: reparation Units mg/Kg based on Dil. 5 1	1 2010-07 2010-07 Dil. 1 the spike Amount 250	Amount 100 -19 -19 Spike Amount 250 and spike du Matrix Result <14.5	Rec. 90	Rec. 101 atrix esult 14.5 te result I S5.2	Rec. 106 Ana Prep Rec. 94 It. Rec. Jimit - 167.1	lyzed I pared E 35.2 RPD	Limit 70 - 13 By: k By: k By: k Rec. Limit 2 - 167 RPI Lim
n-Tricosane Matrix Spik QC Batch: Prep Batch: Param DRO Percent recove Param DRO Percent recove	71874 61593 ery is based	Result 101 Spiked I on the sp I on the sp MS	Result 106 Sample: 2 Sample: 2 MS Result 235 Dike result. MSD Result 225 Dike result. MSD	asolate A QC Pr QC Pr C C Pr C C C C C C C C C C C C C C C C C C C	ng/Kg Analyzed: reparation Units mg/Kg based on Dil. 1 based on	1 2010-07 2010-07 Dil. 1 the spike Amount 250 the spike	Amount 100 -19 -19 Spike Amount 250 and spike du Result <14.5 and spike du Spike	Rec. 90	Rec. 101 atrix esult 14.5 te result 1 1 35.2 te resul MS	Rec. 106 Ana Prep Rec. 94 lt. Rec. Jimit - 167.1 lt. MSD	lyzed I pared F 35.5 RPD 4	Limi 70 - 13 By: k By: k Rec. Limit 2 - 167 RP: Lim 20 Rec.
n-Tricosane Matrix Spik QC Batch: Prep Batch: Param DRO Percent recove Param DRO	71874 61593 ery is based	Result 101 Spiked	Result 106 Sample: 2 MS Result 235 Dike result. MSD Result 225 Dike result.	asolate A QC Pr QC Pr dlt RPD is mg/Kg RPD is	ng/Kg Analyzed: reparation Units mg/Kg based on Dil. 5 1	1 2010-07 2010-07 Dil. 1 the spike Amount 250	Amount 100 -19 -19 Spike Amount 250 and spike du Matrix Result <14.5 and spike du	Rec. 90	Rec. 101 atrix esult 14.5 te result 1 35.2 te resul	Rec. 106 Ana Prep Rec. 94 It. Rec. Limit - 167.1 It.	lyzed I pared F 35.5 RPD 4	Limit 70 - 13 By: k By: k By: k Rec. Limit 2 - 167 RPI Lim 20

Report Date: July 21, 2010 114-6400600	Vacuum	Work Orde Grayburg San			t)	<u> </u>		18 of 23 nty, NM
Deven	MS	Tinita	Dil	Spike	Matrix			Rec.
Param Chloride	Result 10000	Units mg/Kg	Dil. 100	Amount 10000	Result <218	Rec 100		Limit 35 - 115
Percent recovery is based on the				- And and a second s				50 - 110
	MSD		Spike	Matrix		Rec.		RPD
Param	Result U	Jnits Dil.	Amount	Result	Rec. I	Limit	RPD	Limit
Chloride	10200 m	g/Kg 100	10000	<218	102 85	5 - 115	2	20
Matrix Spike (MS-1) Spike	d Sample: 23802	26						
QC Batch: 71924	Da	te Analyzed:	2010-07-2	20		Analy	zed By	: AG
Prep Batch: 61608		Preparation:	2010-07-1	.9			red By	
	MS			Spike	Matrix			Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	1	Limit
Benzene	1.94	mg/Kg	1	2.00	< 0.0150	97		.5 - 112
Toluene	2.01	mg/Kg	1	2.00	< 0.00950	100		.4 - 113
Ethylbenzene	2.06	mg/Kg	1	2.00	< 0.0106	103		.9 - 114
Xylene	6.25	mg/Kg	1	6.00	< 0.00930	104	84	4 - 114

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	1	2.31	mg/Kg	1	2.00	< 0.0150	116	80.5 - 112	17	20
Toluene	2	2.37	mg/Kg	1	2.00	< 0.00950	118	82.4 - 113	16	20
Ethylbenzene	3	2.45	mg/Kg	1	2.00	< 0.0106	122	83.9 - 114	17	20
Xylene	4	7.38	mg/Kg	1	6.00	< 0.00930	123	84 - 114	17	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.61	1.74	mg/Kg	1	2	80	87	41.3 - 117
4-Bromofluorobenzene (4-BFB)	1.67	1.82	mg/Kg	1	2	84	91	35.5 - 129

Matrix Spike (MS-1) Spiked Sample: 238037

QC Batch:	71925	Date Analyzed:	2010-07-20	Analyzed By:	AG
Prep Batch:	61608	QC Preparation:	2010-07-19	Prepared By:	AG

¹MSD analyte out of range. MS/MSD has a RPD within limits. Therfore, MS shows extraction occured properly.

²MSD analyte out of range. MS/MSD has a RPD within limits. Therfore, MS shows extraction occured properly. ³MSD analyte out of range. MS/MSD has a RPD within limits. Therfore, MS shows extraction occured properly.

⁴MSD analyte out of range. MS/MSD has a RPD within limits. Therfore, MS shows extraction occured properly.

Mf Resu 15. ke result. MSD Result 16.2	ult .2	Units		Spik	e Ma	trix			Rec
15. ke result. MSD Result	.2								
ke result. MSD Result			Dil.	Amou		sult	Rec.		Limi
MSD Result	RPD i	mg/Kg	1	20.0) <:	1.65	76	6	1.8 -
Result		s based o	on the spike	and spik	e duplicate	result.			
			Spike	Matr		Re			R
16.2	Units					Lin		RPD	Li
	mg/K		20.0	<1.6		61.8 -	114	6	2
ke result.	RPD is	s based o	on the spike	and spik	e duplicate	result.			
		MSD			Spike	MS			Re
16-21-2-2			Units	Dil.	Amount	Rec.			Lim
				1					50 - 1
1.5	8	2.30	mg/Kg	1	2	79	11	5	50 -
7.50	-	. Sparano	2010-01		M	-	rope		
		TInita	D:1	-			Dee		Rec.
									Limi).5 - 1
									2.4 - 1
									3.9 - 1
			1						4 - 1
a date for the second			on the spike						
MSD			Spike	Matri	x	Re	c.		RF
Result	Units	Dil.	Amount	Resul	t Rec.	Lin	nit	RPD	Lir
2.21	mg/Kg	g 1	2.00	< 0.01	50 110	80.5 -		2	
2.21 2.28	mg/Kg	g 1	2.00	< 0.009	50 114	80.5 - 82.4 -	112 113	2 2	2 2
2.21 2.28 2.32	mg/Kg mg/Kg	g 1 g 1	2.00 2.00	<0.009 <0.01	5011406116	80.5 - 82.4 - 83.9 -	112 113 114	2 2 2	2 2 2
2.21 2.28 2.32 7.03	mg/Kg mg/Kg mg/Kg	g 1 g 1 g 1	2.00 2.00 6.00	<0.009 <0.010 <0.009	50 114 06 116 030 117	80.5 - 82.4 - 83.9 - 84 -	112 113 114	2 2	2 2 2 2
2.21 2.28 2.32 7.03	mg/Kg mg/Kg mg/Kg	g 1 g 1 g 1	2.00 2.00	<0.009 <0.010 <0.009	50 114 06 116 030 117	80.5 - 82.4 - 83.9 - 84 -	112 113 114	2 2 2	2 2 2
2.21 2.28 2.32 7.03	mg/Kg mg/Kg mg/Kg RPD is	g 1 g 1 g 1	2.00 2.00 6.00 m the spike	<0.009 <0.010 <0.009 and spike	50 114 06 116 30 117 e duplicate Spike	80.5 - 82.4 - 83.9 - 84 -	112 113 114	2 2 2 2	2 2 2 2 2 2 2 2
2.21 2.28 2.32 7.03 ce result. MS Resu	mg/Kg mg/Kg mg/Kg RPD is It R	g 1 g 1 g 1 s based o MSD Result	2.00 2.00 6.00 m the spike Units	<0.009 <0.010 <0.009 and spike	50 114 06 116 03 117 e duplicate Spike Amount	80.5 - 82.4 - 83.9 - 84 - result. MS Rec.	112 113 114 114 MSD Rec.	2 2 2 2	2 2 2 2 Rec. Limit
2.21 2.28 2.32 7.03 ce result. MS	mg/Kg mg/Kg mg/Kg RPD is It R	g 1 g 1 g 1 s based o	2.00 2.00 6.00 m the spike	<0.009 <0.010 <0.009 and spike	50 114 06 116 30 117 e duplicate Spike	80.5 - 82.4 - 83.9 - 84 - result. MS	112 113 114 114 MSD	2 2 2 2 41	2 2 2 2 2 2 2 2
	Resu 1.5 1.5 Sample: 23 Sample: 23 Sample: 24 MSD	1.55 1.58 Sample: 238038 Date A QC Pr MS Result 2.16 2.23 2.28 6.91 ce result. RPD is MSD	ResultResult1.552.311.582.30Sample: 238038Date Analyzed QC PreparationMSResultUnits2.16mg/Kg2.23mg/Kg2.28mg/Kg6.91mg/Kgce result.RPD is based ofMSD	ResultResultUnits1.552.31mg/Kg1.582.30mg/Kg3ample: 238038Date Analyzed:2010-07QC Preparation:2010-07QC Preparation:2010-07MSResultUnits2.16mg/Kg12.23mg/Kg12.28mg/Kg16.91mg/Kg1ce result.RPD is based on the spikeMSDSpike	ResultResultUnitsDil.1.552.31mg/Kg11.582.30mg/Kg13333Bample: 238038Date Analyzed:2010-07-21QC Preparation:2010-07-19MSSpikeResultUnitsDil.Amoun2.16mg/Kg12.16mg/Kg12.002.23mg/Kg12.006.91mg/Kg16.00ce result.RPD is based on the spike and spikeMSDSpikeMatri	Result Result Units Dil. Amount 1.55 2.31 mg/Kg 1 2 1.58 2.30 mg/Kg 1 2 Sample: 238038 Date Analyzed: 2010-07-21 QC Preparation: 2010-07-19 MS Spike Main Main Result Units Dil. Amount Result 2.16 mg/Kg 1 2.00 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	ResultResultUnitsDil.AmountRec. 1.55 2.31 mg/Kg 1 2 78 1.58 2.30 mg/Kg 1 2 79 Sample: 238038Date Analyzed: $2010-07-21$ QC Preparation: $2010-07-19$ MSSpikeMatrixResultUnitsDil.AmountResult 2.16 mg/Kg 1 2.00 <0.0150 2.23 mg/Kg 1 2.00 <0.00950 2.28 mg/Kg 1 2.00 <0.00930 <0.00930 $RPD is based on the spike and spike duplicate result.MSDSpikeMatrixRe$	Result Result Units Dil. Amount Rec. Re 1.55 2.31 mg/Kg 1 2 78 11 1.58 2.30 mg/Kg 1 2 79 11 Sample: 238038 Date Analyzed: 2010-07-21 Analy QC Preparation: 2010-07-19 Prepa MS Spike Matrix Result Units Dil. Amount 2.16 mg/Kg 1 2.00 <0.0150 108 2.23 mg/Kg 1 2.00 <0.00950 112 2.28 mg/Kg 1 2.00 <0.0106 114 6.91 mg/Kg 1 6.00 <0.00930 115 ce result. RPD is based on the spike and spike duplicate result. MSD Spike Matrix Rec.	Result Result Units Dil. Amount Rec. Rec. 1.55 2.31 mg/Kg 1 2 78 116 1.58 2.30 mg/Kg 1 2 79 115 Gample: 238038 Date Analyzed: 2010-07-21 Analyzed B QC Preparation: 2010-07-19 Prepared B MS Spike Matrix Result Units Dil. Amount Result Rec. 2.16 mg/Kg 1 2.00 <0.0150 108 80 2.23 mg/Kg 1 2.00 <0.00950 112 82 2.28 mg/Kg 1 6.00 <0.00930 115 8 ce result. RPD is based on the spike and spike duplicate result. MSD Spike Matrix Rec.

Report Date: July 114-6400600	y 21, 2010	Vacuum G	Work Orderayburg San			Pit)	Pa	age Numbe Lea C	r: 20 of 2 ounty, NM
Matrix Spike (N	AS-1) Spiked	Sample: 238039							
QC Batch: 7193	50	Date	Analyzed:	2010-07-	-21			Analyzed	By: AG
Prep Batch: 6160	08	QC	Preparation	2010-07-	-19			Prepared	By: AG
		MS			Spike	Ma	ıtrix		Rec.
Param		Result	Units	Dil.	Amount	Re	sult	Rec.	Limit
GRO		14.7	mg/Kg	1	20.0	<1	1.65	74	61.8 - 114
Percent recovery is	s based on the spi	ke result. RPD	is based on	the spike	and spike d	uplicate	result.		
		MSD		Spike	Matrix		Rec.		RPD
Param		Result Un	its Dil.	Amount	Result	Rec.	Limi	t RPI) Limit
GRO		15.4 mg/	Kg 1	20.0	<1.65	77	61.8 - 3	114 5	20
Percent recovery is	s based on the spi			the spike					
Surrogate		MS Result	MSD Result	Units		Spike mount	MS Rec.	MSD Rec.	Rec. Limit
Trifluorotoluene (T	ኮፑጥ)	2.12		mg/Kg	1	2	106	116	50 - 162
4-Bromofluorobena		2.12		mg/Kg	1	2	106	116	50 - 162
Standard (CCV-	-3)								
Ì	3		e Analyzed:				Porcont		By: kg
·	3	CCVs	CC	Vs	CCVs		Percent		
QC Batch: 71873		CCVs True	CC For	Vs ind	CCVs Percent		Recovery	y	Date
QC Batch: 71873 Param Fla	ag Units	CCVs True Conc.	CC For Co	Vs	CCVs		Recovery Limits	y	Date Analyzed
QC Batch: 71873 Param Fla DRO	ag Units mg/Kg	CCVs True Conc.	CC For Co	UVs 1nd nc.	CCVs Percent Recovery		Recovery	y	Date Analyzed
QC Batch: 71873 Param Fla DRO	ag Units mg/Kg	CCVs True Conc.	CC For Co	UVs 1nd nc.	CCVs Percent Recovery		Recovery Limits	y	Date Analyzed
QC Batch: 71873 Param Fla DRO Standard (CCV-	ag Units mg/Kg -4)	CCVs True Conc. 3 250	CC For Co	Vs ind nc. 35	CCVs Percent Recovery 106		Recovery Limits	y	Date Analyzed 010-07-19
QC Batch: 71873 Param Fla DRO Standard (CCV-	ag Units mg/Kg -4)	CCVs True Conc. 3 250	CC For Co 20 e Analyzed:	Vs ind nc. 35	CCVs Percent Recovery 106		Recovery Limits 80 - 120 Percent	y 2 Analyzed	Date Analyzed 010-07-19
QC Batch: 71873 Param Fla DRO Standard (CCV- QC Batch: 71873	ag Units mg/Kg -4)	CCVs True Conc. 5 250 Date	CC For 20 20 e Analyzed: CC	2Vs ind nc. 55 2010-07-1	CCVs Percent Recovery 106		Recovery Limits 80 - 120	y Analyzed	Date Analyzed 010-07-19 By: kg Date
QC Batch: 71873 Param Fla DRO Standard (CCV-	ag Units mg/Kg -4)	CCVs True Conc. 5 250 Date CCVs True Conc.	CC For 20 e Analyzed: CC For Co	Vs ind <u>nc.</u> 55 2010-07-1 Vs	CCVs Percent Recovery 106		Recovery Limits 80 - 120 Percent	y Analyzed	Date Analyzed 010-07-19 By: kg

Standard (CCV-1)

QC Batch: 71874

Date Analyzed: 2010-07-19

Analyzed By: kg

Report Da 114-640060	te: July 21, 201			k Order: 1007 rg San Andres	1924 Unit #250 (Pit)		lumber: 21 of 23 Lea County, NM
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
DRO	I lag	mg/Kg	250	246	98	80 - 120	2010-07-19
Standard	(CCV-2)						
QC Batch:	71874		Date Anal	yzed: 2010-0	7-19	An	alyzed By: kg
D		TT	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param DRO	Flag	Units mg/Kg	Conc. 250	Conc. 255	Recovery 102	Limits 80 - 120	Analyzed 2010-07-19
Standard QC Batch:	. ,		Date Analy	yzed: 2010-07	7-20	Ana	lyzed By: AR
QU Datch:	11091						lyzed By: AR
			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride	0	mg/Kg	100	102	102	85 - 115	2010-07-20
Standard	(CCV-1)						
QC Batch:	71897		Date Analy	zed: 2010-07	-20	Anal	yzed By: AR
D		TT •.	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param Chloride	Flag	Units mg/Kg	Conc. 100	<u>Conc.</u> 98.3	Recovery 98	Limits 85 - 115	Analyzed 2010-07-20
Standard (116/116					
C Batah			Date Analy	zed: 2010-07	-20		yzed By: AG
QC Batch:	1324				after other an		
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units mg/Kg	True Conc.	Found Conc.	Percent Recovery	Recovery Limits	Analyzed
Param Benzene		mg/Kg	True Conc. 0.100	Found Conc. 0.0995	Percent Recovery 100	Recovery Limits 80 - 120	Analyzed 2010-07-20
QC Batch: Param Benzene Toluene Ethylbenzen	Flag		True Conc. 0.100 0.100	Found Conc.	Percent Recovery	Recovery Limits	Analyzed

Report Dat 114-640060						umber: 22 of 23 Lea County, NM	
Standard	(CCV-3)						
QC Batch:	71924		Date Analy	zed: 2010-07-	-20	Anal	yzed By: AG
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene	Y	mg/Kg	0.100	0.0972	97	80 - 120	2010-07-20
Toluene		mg/Kg	0.100	0.0979	98	80 - 120	2010-07-20
Ethylbenzer	ne	mg/Kg	0.100	0.0954	95	80 - 120	2010-07-20
Xylene		mg/Kg	0.300	0.290	97	80 - 120	2010-07-20
-9		010					
Standard	(CCV-2)						
QC Batch:	71925		Date Analy	zed: 2010-07-	-20	Anal	yzed By: AG
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO	Tag	mg/Kg	1.00	0.992	99	80 - 120	2010-07-20
QC Batch:	71925		Date Analy	zed: 2010-07-	20	Anal	yzed By: AG
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent		Data
Param	Flore	Units				Recovery	Date
GRO	Flag	mg/Kg	Conc. 1.00	Conc. 0.978	Recovery 98	Limits 80 - 120	Analyzed 2010-07-20
Standard ((CCV-1)	mg/rkg	1.00	0.910	20	00 - 120	2010-07-20
QC Batch:			Date Analy	zed: 2010-07-	21	Anal	yzed By: AG
			0011	0011	0.077	D	
			CCVs	CCVs	CCVs	Percent	
	-	77 4.	True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0972	97	80 - 120	2010-07-21
Foluene		mg/Kg	0.100	0.0984	98	80 - 120	2010-07-21
Ethylbenzer	ne	mg/Kg	0.100	0.0957	96	80 - 120	2010-07-21
Kylene		mg/Kg	0.300	0.291	97	80 - 120	2010-07-21
Standard ((CCV-2)						

Report Date: July			k Order: 10071			umber: 23 of 23
114-6400600	1	/acuum Grayou	rg San Andres	Unit #250 (Pit)	L	Lea County, NM
		CCVs	CCVs	CCVs	Percent	
		True	Found	Percent	Recovery	Date
Param	Flag Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene	mg/Kg	0.100	0.0979	98	80 - 120	2010-07-21
Toluene	mg/Kg		0.0989	99	80 - 120	2010-07-21
Ethylbenzene	mg/Kg		0.0964	96	80 - 120	2010-07-21
Xylene	mg/Kg		0.293	98	80 - 120	2010-07-21
QC Batch: 71950		Date Anal	yzed: 2010-07-	-21	Anal	yzed By: AG
QO Dateii. /1300		Date Anal	yzed. 2010-07-	-21	Allal	yzeu by. AG
		CCVs	CCVs	CCVs	Percent	
		True	Found	Percent	Recovery	Date
Param Flag		Conc.	Conc.	Recovery	Limits	Analyzed
GRO	mg/Kg	1.00	0.956	96	80 - 120	2010-07-21
Standard (CCV-2)					
QC Batch: 71950		Date Anal	yzed: 2010-07-	21	Anal	yzed By: AG
		CCVs	CCVs	CCVs	Percent	
		True	Found	Percent	Recovery	Date
Param Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO	mg/Kg	1.00	0.957	96	80 - 120	2010-07-21

Record PAGE: OF: I ANALYSIS REQUEST ANALYSIS REQUEST (Circle or Specify Method No.) (Circle or Specify Method No.)	өз бн ра лл р өз бн ра лл р өз бн ра лл р	2270/625 960/624 1 1	COOM 3 A BA BA 8 BA 8A 8 BA 8A 8 Ba 8 A 8A 8 Ba 8 A 80 A 80 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A 1	ниоз ниоле ниоле ниоле ниоле ниоле ниоле								Date: 1/19/10/10 SAMPLED BY: (Print & Initial) Date: 7-14-10 Time: 14/56 7F 35	SAMPLE SHIPPED BY: (Circle)			I'lle Tavarez Authorizon	
ain of Custody	TETRA TECH 1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946	Tavine E	Andres Unit # 250 (P.4)	LE DENTIFICATIO	1 ,1-0	1	0-1,	0-1,	0-i,	-		RECEIVED BY Segment	RECEIVED ANT (Sighardra)	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	DATE	IT OFTW H
Analysis Request of Cha	1910 N. Big Spri Midland, Texas (432) 682-4559 • Fax	SITE MANAGER:	14-6400600 VALUAM GRANDARE	MATAN XIATAM GOMP GAAB	THA IS NH-1		() AH-3	P-4	- L 2 AH-5			RELATED BY: (Signature) Date: 71, 110	RELINDOISHED BY: (Signature) Date: Time:	RELINQUISHED BY: (Signatura) Date:	RECEIVING LABORATORY: CARCO	STATE: ZX PHONE ZIP:	REMARKS:

(

4

Summary Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Report Date: August 30, 2010

Work Order: 10082304

Project Location:Lea County, NMProject Name:Chevron/Vacuum Grayburg San Andres Unit #250 (Pit)Project Number:114-6400600

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
242080	T-1 1.5-2'	soil	2010-08-19	00:00	2010-08-20
242081	T-2 1.5-2'	soil	2010-08-19	00:00	2010-08-20
242082	T-3 1.5-2'	soil	2010-08-19	00:00	2010-08-20
242083	T-4 2-2.5'	soil	2010-08-19	00:00	2010-08-20
242084	T-5 1.5-2'	soil	2010-08-19	00:00	2010-08-20

Sample: 242080 - T-1 1.5-2'

Param	Flag	Result	Units	RL
Chloride		<200	mg/Kg	4.00

Sample: 242081 - T-2 1.5-2'

Param	Flag	Result	Units	RL
Chloride		<200	mg/Kg	4.00

Sample: 242082 - T-3 1.5-2'

Param	Flag	Result	Units	RL
Chloride		<200	mg/Kg	4.00

Sample: 242083 - T-4 2-2.5'

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: August 30, 2010		Work Order: 10082304		Page Number: 2 of 2
Param	Flag	Result	Units	RL
Chloride	·····	<200	mg/Kg	4.00
Sample: 242084 Param	- T-5 1.5-2' Flag	Result	Units	RL
PART PURITURNER	Fiag	Result		
Chloride		<200	mg/Kg	4.00

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

200 East Sunset Road, Suite E 5002 Basin Street, Suite AT 6015 Harris Parkway, Suite 110 Ft. Worth, Texas 76132

El Paso, Texas 79922 Midiand Texas 79703 E-Mail Jah@traceanalysis.com

HUB:

NCTRCA

888 • 588 • 3443 915-585-3443 432 • 689 • 6301 817 • 201 • 5260

1752439743100-86536

WFWB38444Y0909

FAX 915.585.4944 FAX 432 .689 .6313

DBE: VN 20657

NELAP Certifications

Certifications

Lubbock:

El Paso: LELAP-02002

Midland: T104704392-08-TX

LELAP-02003 Kansas E-10317

T104704219-08-TX

WBENC: 237019

T104704221-08-TX

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

Report Date: August 30, 2010

Work Order: 10082304

Project Location: Lea County, NM Chevron/Vacuum Grayburg San Andres Unit #250 (Pit) Project Name: **Project Number:** 114-6400600

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
242080	T-1 1.5-2'	soil	2010-08-19	00:00	2010-08-20
242081	T-2 1.5-2'	soil	2010-08-19	00:00	2010-08-20
242082	T-3 1.5-2'	soil	2010-08-19	00:00	2010-08-20
242083	T-4 2-2.5'	soil	2010-08-19	00:00	2010-08-20
242084	T-5 1.5-2'	· soil	2010-08-19	00:00	2010-08-20

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 6 pages and shall not be reproduced except in its entirety, without written approval of

TraceAnalysis, Inc.

Michael april

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Case Narrative

Samples for project Chevron/Vacuum Grayburg San Andres Unit #250 (Pit) were received by TraceAnalysis, Inc. on 2010-08-20 and assigned to work order 10082304. Samples for work order 10082304 were received intact at a temperature of 4.0 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (Titration)	SM 4500-Cl B	62585	2010-08-26 at 09:38	73008	2010-08-27 at 15:06

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 10082304 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: August 30, 2010 114-6400600 Work Order: 10082304 Chevron/Vacuum Grayburg San Andres Unit #250 (Pit) Page Number: 4 of 6 Lea County, NM

Analytical Report

Sample: 242080 - T-1 1.5-2'

Laboratory: Analysis:	Midland Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	73008	Date Analyzed:	2010-08-27	Analyzed By:	AR
Prep Batch:	62585	Sample Preparation:	2010-08-26	Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		<200	mg/Kg	50	4.00
Sample: 24	2081 - T-2 1.5-2'				
Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	73008	Date Analyzed:	2010-08-27	Analyzed By:	AR
Prep Batch:	62585	Sample Preparation:	2010-08-26	Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		<200 1	ng/Kg	50	4.00
Sample: 24 Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 73008 62585	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2010-08-27 2010-08-26	Prep Method: Analyzed By: Prepared By:	N/A AR AR
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 73008 62585	Date Analyzed: Sample Preparation: RL	2010-08-27 2010-08-26	Analyzed By: Prepared By:	AR AR
Laboratory: Analysis: QC Batch:	Midland Chloride (Titration) 73008	Date Analyzed: Sample Preparation: RL Result	2010-08-27	Analyzed By:	AR

Analysis:Chloride (Titration)Analytical Method:SM 4500-Cl BPrep Method:N/AQC Batch:73008Date Analyzed:2010-08-27Analyzed By:ARPrep Batch:62585Sample Preparation:2010-08-26Prepared By:AR

continued ...

114-6400600	e: August 30, 2010 0	Chevron/Va		Order: 1008 ourg San A		250 (P	it)	Page Num Lea C	ber: 5 of ounty, NM
sample 2420	83 continued								
			RL						
Parameter	Flag	Re	sult	τ	Inits		Dilution		RI
			RL	6.0					
Parameter	Flag	Be	sult	T	Inits		Dilution		RL
Chloride			200		/Kg		50		4.00
		- 14		0	10		00		4.00
Sample: 24	2084 - T-5 1.5-2'								
Laboratore	Midland								
Laboratory: Analysis:	Midland Chloride (Titration)		nalytical M	othod.	M 4500 CU T				1
QC Batch:	73008		ate Analyze		M 4500-Cl E 010-08-27	5		rep Metho	
Prep Batch:			ample Prepa		010-08-27			nalyzed B repared B	
		~	ampio r rope		010-00-20		I	repared D	y. An
			RL						
Parameter	Flag	Res		U	nits		Dilution		RL
Chloride		<	200	mg	/Kg		50	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00
		a: 73008							大大
QC Batch:	ank (1) QC Batch 73008 62585	Date	Analyzed: Preparation:	2010-08- 2010-08-	27			Analyzed F Prepared F	By: AR
Method Bl QC Batch: Prep Batch:	73008 62585	Date QC 1	Preparation: M	2010-08- DL	27				3y: AR
QC Batch: Prep Batch: Parameter	73008	Date QC 1	Preparation: M Res	2010-08- DL sult	27	Uni	F		By: AR By: AR
QC Batch: Prep Batch: Parameter	73008 62585	Date QC 1	Preparation: M Res	2010-08- DL	27	Uni mg/	F		3y: AR
QC Batch: Prep Batch: Parameter	73008 62585	Date QC 1	Preparation: M Res	2010-08- DL sult	27		F		By: AR By: AR RL
QC Batch: Prep Batch: Parameter Chloride	73008 62585	Date QC 1	Preparation: M Res	2010-08- DL sult	27		F		By: AR By: AR RL
QC Batch: Prep Batch: Parameter Chloride Laboratory	73008 62585 Fla Control Spike (LCS	Date QC 1 -1)	Preparation: M Res <2	2010-08- DL sult 2.18	27 26		ts Kg	Prepared E	By: AR By: AR <u>RL</u> 4
QC Batch: Prep Batch: Parameter Chloride Laboratory QC Batch:	73008 62585 Fla	Date QC 1 -1) Date	Preparation: M Res <2 Analyzed:	2010-08- DL sult 2.18 2010-08-3	27 26		ts Kg A	Prepared E	By: AR By: AR RL 4 By: AR
QC Batch: Prep Batch: Parameter Chloride	73008 62585 Fla Control Spike (LCS 73008	Date QC 1 -1) Date	Preparation: M Res <2	2010-08- DL sult 2.18	27 26		ts Kg A	Prepared E	By: AR By: AR RL 4 By: AR
QC Batch: Prep Batch: Parameter Chloride Laboratory QC Batch: Prep Batch:	73008 62585 Fla Control Spike (LCS 73008	Date QC 1 -1) Date	Preparation: M Res <2 Analyzed:	2010-08- DL sult 2.18 2010-08-3	27 26 27 26	mg/	ts Kg P	Prepared E	By: AR By: AR RL 4 By: AR by: AR
QC Batch: Prep Batch: Parameter Chloride Caboratory QC Batch: Prep Batch: Prep Batch:	73008 62585 Fla Control Spike (LCS 73008	Date QC 1 -1) Date QC F LCS Result	Preparation: M Res <2 Analyzed:	2010-08- DL sult 2.18 2010-08-3	27 26	mg/	ts Kg A P	Prepared E	By: AR By: AR RL 4 By: AR
QC Batch: Prep Batch: Parameter Chloride Caboratory QC Batch: Prep Batch: Prep Batch: Param	73008 62585 Fla Control Spike (LCS 73008 62585	Date QC 1 -1) Date QC F LCS Result 98.7	Analyzed: reparation: Units mg/Kg	2010-08- DL sult 2.18 2010-08- 2010-08- 2010-08- 2010-08- 1	27 26 27 26 Spike <u>Amount</u> 100	mg/ Ma Re	ts Kg A P trix sult 2.18	nalyzed E repared B	By: AR By: AR RL 4 By: AR y: AR y: AR Rec. Limit
QC Batch: Prep Batch: Parameter Chloride Laboratory QC Batch: Prep Batch: Prep Batch: Param	73008 62585 Fla Control Spike (LCS 73008	Date QC 1 -1) Date QC F LCS Result 98.7 ke result. RPD	Analyzed: reparation: Units mg/Kg	2010-08- DL sult 2.18 2010-08- 2010-08- 2010-08- 2010-08- 1	27 26 27 26 Spike <u>Amount</u> 100	mg/ Ma Re	ts Kg A P trix sult 2.18	Prepared E analyzed E Prepared B Rec.	By: AR By: AR RL 4 By: AR y: AR y: AR Rec. Limit
QC Batch: Prep Batch: Parameter Chloride Laboratory QC Batch: Prep Batch: Prep Batch: Param Chloride Percent recov	73008 62585 Fla Control Spike (LCS 73008 62585	Date QC 1 -1) Date QC F LCS Result 98.7 ke result. RPD LCSD	Analyzed: Preparation: Analyzed: Preparation: Units mg/Kg is based on the	2010-08- DL sult 2.18 2010-08-	27 26 27 26 Spike Amount 100 nd spike dup Matrix	Ma Re <2 licate r	ts Kg A P trix sult 2.18 esult. Rec.	Prepared E analyzed E Prepared B Rec.	By: AR By: AR RL 4 By: AR y: AR y: AR Rec.
QC Batch: Prep Batch: Parameter Chloride Caboratory QC Batch: Prep Batch: Prep Batch: Param	73008 62585 Fla Control Spike (LCS 73008 62585	Date QC 1 -1) Date QC F LCS Result 98.7 ke result. RPD	Analyzed: Preparation: Analyzed: Preparation: Units mg/Kg is based on the second	2010-08- DL sult 2.18 2010-08-	27 26 27 26 Spike Amount 100 nd spike dup	mg/ Ma Re	ts Kg A P trix sult 2.18 esult.	Prepared E Inalyzed E Prepared B Rec. 99	By: AR By: AR RL 4 By: AR y: AR Rec. Limit 85 - 115

114-64006	Pa)	Page Number: 6 of 6 Lea County, NM								
Percent rec	covery is based	on the spike result	. RPD is	based on	the spike a	nd spike duj	plicate re	esult.		
Matrix Sj	pike (MS-1)	Spiked Sample:	242084							
QC Batch: Prep Batch				nalyzed: eparation:	2010-08-2 2010-08-2				nalyzed B repared B	-
			IS			Spike	Ma			Rec.
Param			sult	Units	Dil.	Amount	Res		Rec.	Limit
Chloride		98	340	mg/Kg	100	10000	<2	18	97	85 - 115
Percent rec	overy is based	on the spike result	. RPD is	based on t	the spike ar	nd spike dug	olicate re	esult.		
		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		10200	mg/Kg		10000	<218	100	85 - 115		20
		on the spike result	. RPD is	based on t	he spike ar	nd spike dup	olicate re	esult.		
Standard	(ICV-1)									
QC Batch:	73008		Date A	nalyzed:	2010-08-27			А	nalyzed B	y: AR
QC Batch:	73008		Date A	nalyzed: IC		ICVs		A Percent	nalyzed B	y: AR
			ICVs True	IC Fou	Vs ind	ICVs Percent		Percent lecovery		Date
Param	73008 Flag	Units	ICVs True Conc.	IC Fou Co	Vs ind nc.	ICVs Percent Recovery	F	Percent lecovery Limits	A	Date nalyzed
Param		Units mg/Kg	ICVs True	IC Fou	Vs ind nc.	ICVs Percent	F	Percent lecovery	A	Date
Param Chloride	Flag		ICVs True Conc.	IC Fou Co	Vs ind nc.	ICVs Percent Recovery	F	Percent lecovery Limits	A	Date nalyzed
Param Chloride Standard	Flag (CCV-1)		ICVs True Conc. 100	IC Fou Co	Vs ind nc.	ICVs Percent Recovery	F	Percent Recovery Limits 85 - 115	A	Date nalyzed 10-08-27
QC Batch: Param Chloride Standard QC Batch:	Flag (CCV-1)		ICVs True Conc. 100 Date An CCVs	IC Fou Co 10 nalyzed:	Vs ind nc. 11 2010-08-27 Vs	ICVs Percent Recovery 101	F	Percent Recovery Limits 35 - 115 A Percent	A 20	Date nalyzed 10-08-27 y: AR
Param Chloride Standard	Flag (CCV-1)		ICVs True Conc. 100 Date Ar	IC Fou Co 10 nalyzed:	Vs ind nc. 11 2010-08-27 Vs ind	ICVs Percent Recovery 101	F	Percent lecovery Limits 35 - 115	A 20 nalyzed B	Date nalyzed 10-08-27

of Custody Record	ANALYSIS REQUEST (Circle or Specify Method No.)		Revest Be Cd Be Cd Be Cd The C	250 (1/1,1, *250 (7/N) (<u>НС</u> <u>И</u> Р Weits <u>Б</u> РН 8530 <u>В</u> ЕЕХ 80316 H/H03 ICE H/H03 MC/WBEED (MC/WBEED 0 KITLE/ED 0									Storated Date: Die Die Die Stafford SAMPLED BY: (Prim & Initial)		Dete: CAND DELIVERED	Jume.	
Chain		TETRA TECH 1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946	SITE MANAGER: Tkr Tavarze	PROJECT NAME Gray berg Sen Andress	Le C, NM SAMPLEIDE	X 7-1 1,5' Z'	1 7-2 15:21	7-3 1.5'-2'	1-4 2:212	1-5 1.5'2'				B 1245 BECENED BY	HECENERS	Date: RECEIVED BY: (Signature)	nmer RECEIVED BY: (Signature)	DNE: ZIP: DATE
Ivsis Request of (E		000	DATE TIME GRAB	B119 5 X							-	(Signature)	: (Signature) / /	: (Signature)		CITY And Iand STATE: 72 CONTACT: PHONE: PHONE:
Ana			CLIENT NAME:	PROJECT NO .: 114-640 0600	LAB I.D. NUMBER	242080	18	Co	530	OSH				RELINQUISHED BY: (Signature)	RELINQUISHED BY: (Signature)	REUNQUISHED BY: (Signature)	RECEIVING LABORATORN: ADDRESS:	CITY: Thy Tay

10-Jan-2012

James Ornelas Conestoga-Rovers & Associates 2135 S Loop 250 West Midland, TX 79703

Tel: (412) 686-0086 Fax: (432) 686-0186

Re: 073822 CEMC Vacuum Graysburg San Andres Unit # 250

Work Order: 1112715

Dear James,

ALS Environmental received 6 samples on 22-Dec-2011 10:45 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 23.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

atricia L. Lynch

Electronically approved by: Mary K. Knowle Patricia L. Lynch

Environmental 💭

Project Manager

Certificate No: TX: T104704231-11-5

ADDRESS 10450 Stancliff Rd, Suite 210 Houston, Texas 77099-4338 | PHONE (281) 530-5656 | FAX (281) 530-5887 ALS GROUP USA, CORP. Part of the ALS Laboratory Group. A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Date: 10-Jan-12

Client: Project: Work Order:	Conestoga-Rovers & Associates 073822 CEMC Vacuum Graysburg San Andres Unit # 250 1112715	Work Order Sample Summary
		and the second

Lab Samp ID	Client Sample ID	Matrix	Tag Number	Collection Date	Date Received Hold
1112715-01	VGSAU 250 SE-6" 122111	Soil		12/21/2011 11:28	12/22/2011 10:45
1112715-02	VGSAU 250 Center-6" 122111	Soil		12/21/2011 11:26	12/22/2011 10:45
1112715-03	VGSAU 250 NW-6" 122111	Soil		12/21/2011 11:22	12/22/2011 10:45
1112715-04	VGSAU 250 SW-6" 122111	Soil			12/22/2011 10:45
1112715-05	VGSAU 250 NE-6" 122111	Soil		12/21/2011 11:24	12/22/2011 10:45
1112715-06	Trip Blank	Water		12/21/2011	12/22/2011 10:45

Date: 10-Jan-12

Client:	Conestoga-Rovers & Associates	
Project:	073822 CEMC Vacuum Graysburg San Andres Unit # 250	Case Narrative
Work Order:	1112715	

Batch R121062 BTEX, Sample 1112708-01A: MS/MSD is for an unrelated sample.

Batch R121102 BTEX, Sample 1112754-10A: MS/MSD is for an unrelated sample.

Batch R121204 BTEX, Sample 1112741-01A: MS/MSD is for an unrelated sample.

Date: 10-Jan-12

Client: Conestoga-Rovers & Associates

Project: 073822 CEMC Vacuum Graysburg San Andres Unit # 250

Sample ID: VGSAU 250 SE-6" 122111

Collection Date: 12/21/2011 11:28 AM

Work Order: 1112715 Lab ID: 1112715-01 Matrix: SOIL

Report Dilution Result Analyses Qual Limit Units **Date Analyzed** Factor TPH AND MISCELLANEOUS GCFID SW8015M Prep Date: 12/27/2011 Analyst: KMB DRO (>C10 - C28) 5.3 1.7 mg/Kg 1 12/27/2011 05:44 PM Surr: 2-Fluorobiphenyl 72.7 70-130 %REC 1 12/27/2011 05:44 PM **GASOLINE RANGE ORGANICS - SW8015C** SW8015 Analyst: KKP U Gasoline Range Organics 0.050 mg/Kg 1 12/29/2011 02:41 AM Surr: 4-Bromofluorobenzene 92.1 70-130 %REC 1 12/29/2011 02:41 AM BTEX Analyst: SMA SW8021B Benzene U 1.0 µg/Kg 1 12/28/2011 01:25 AM Toluene U 1.0 µg/Kg 12/28/2011 01:25 AM 1 Ethylbenzene U 1.0 µg/Kg 1 12/28/2011 01:25 AM Xylenes, Total U 3.0 µg/Kg 1 12/28/2011 01:25 AM Surr: 4-Bromofluorobenzene 76.2 75-131 %REC 1 12/28/2011 01:25 AM Surr: Trifluorotoluene 93.1 73-130 %REC 1 12/28/2011 01:25 AM ANIONS - EPA 300.0 (1993) E300 Prep Date: 12/29/2011 Analyst: JKP Chloride 12.6 4.80 mg/Kg 12/29/2011 08:21 PM 1 Surr: Selenate (surr) 85-115 %REC 12/29/2011 08:21 PM 114 1 MOISTURE SW3550 Analyst: KAH **Percent Moisture** 16.2 0.0100 wt% 1 12/29/2011 12:20 PM

Note: See Qualifiers Page for a list of qualifiers and their explanation.

Date: 10-Jan-12

Client: Conestoga-Rovers & Associates

Project:073822 CEMC Vacuum Graysburg San Andres Unit # 250Sample ID:VGSAU 250 Center-6" 122111

Collection Date: 12/21/2011 11:26 AM

Work Order: 1112715 Lab ID: 1112715-02 Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
TPH AND MISCELLANEOUS GCFID			SW8015	м	Prep Date: 12/2	7/2011 Analyst: KMB
DRO (>C10 - C28)	12		1.7	mg/Kg	1	12/27/2011 06:04 PM
Surr: 2-Fluorobiphenyl	77.7		70-130	%REC	1	12/27/2011 06:04 PM
GASOLINE RANGE ORGANICS - SW80	15C		SW8015			Analyst: KKP
Gasoline Range Organics	U		0.050) mg/Kg	1	12/29/2011 02:58 AM
Surr: 4-Bromofluorobenzene	105		70-130	%REC	1	12/29/2011 02:58 AM
BTEX			SW8021	в		Analyst: SMA
Benzene	U		1.0) µg/Kg	1	12/28/2011 01:43 AM
Toluene	U		1.0) µg/Kg	1	12/28/2011 01:43 AM
Ethylbenzene	U		1.0	µg/Kg	1	12/28/2011 01:43 AM
Xylenes, Total	U		3.0) µg/Kg	1	12/28/2011 01:43 AM
Surr: 4-Bromofluorobenzene	77.2		75-131	%REC	1	12/28/2011 01:43 AM
Surr: Trifluorotoluene	91.7		73-130	%REC	1	12/28/2011 01:43 AM
ANIONS - EPA 300.0 (1993)			E300		Prep Date: 12/2	9/2011 Analyst: JKP
Chloride	44.5		4.89	mg/Kg	1	12/29/2011 09:26 PM
Surr: Selenate (surr)	115		85-115	5 %REC	1	12/29/2011 09:26 PM
MOISTURE			SW3550			Analyst: KAH
Percent Moisture	12.5		0.0100	wt%	1	12/29/2011 12:20 PM

Note: See Qualifiers Page for a list of qualifiers and their explanation.

Date: 10-Jan-12

Client:Conestoga-Rovers & AssociatesProject:073822 CEMC Vacuum Graysburg San Andres Unit # 250

Sample ID: VGSAU 250 NW-6" 122111

Collection Date: 12/21/2011 11:22 AM

Work Order: 1112715 Lab ID: 1112715-03 Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
TPH AND MISCELLANEOUS GCFID			SW8015M	Λ	Prep Date: 12/2	7/2011 Analyst: KMB
DRO (>C10 - C28)	U		1.7	mg/Kg	1	12/27/2011 05:06 PM
Surr: 2-Fluorobiphenyl	73.4		70-130	%REC	1	12/27/2011 05:06 PM
GASOLINE RANGE ORGANICS - SW8	015C		SW8015			Analyst: KKP
Gasoline Range Organics	U		0.050	mg/Kg	1	12/29/2011 03:15 AM
Surr: 4-Bromofluorobenzene	90.8		70-130	%REC	1	12/29/2011 03:15 AM
BTEX			SW8021E	3		Analyst: SMA
Benzene	U		1.0	µg/Kg	1	12/28/2011 02:00 AM
Toluene	U		1.0	µg/Kg	1	12/28/2011 02:00 AM
Ethylbenzene	U		1.0	µg/Kg	1	12/28/2011 02:00 AM
Xylenes, Total	U		3.0	µg/Kg	1	12/28/2011 02:00 AM
Surr: 4-Bromofluorobenzene	77.2		75-131	%REC	1	12/28/2011 02:00 AM
Surr: Trifluorotoluene	92.3		73-130	%REC	1	12/28/2011 02:00 AM
ANIONS - EPA 300.0 (1993)			E300		Prep Date: 12/2	9/2011 Analyst: JKP
Chloride	14.0		4.94	mg/Kg	1	12/29/2011 09:48 PM
Surr: Selenate (surr)	115		85-115	%REC	1	12/29/2011 09:48 PM
MOISTURE			SW3550			Analyst: KAH
Percent Moisture	17.7		0.0100	wt%	1	12/29/2011 12:20 PM

Date: 10-Jan-12

Client:Conestoga-Rovers & AssociatesProject:073822 CEMC Vacuum Graysburg San Andres Unit # 250Work Order: 1112715Sample ID:VGSAU 250 SW-6" 122111Lab ID: 1112715-04Collection Date:12/21/2011 11:20 AMMatrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
TPH AND MISCELLANEOUS GCFID			SW8015	м	Prep Date: 12/2	7/2011 Analyst: KMB
DRO (>C10 - C28)	U		1.7	mg/Kg	1	12/27/2011 05:25 PM
Surr: 2-Fluorobiphenyl	84.4		70-130	%REC	1	12/27/2011 05:25 PM
GASOLINE RANGE ORGANICS - SW	8015C		SW8015			Analyst: KKP
Gasoline Range Organics	U		0.050	mg/Kg	1	12/29/2011 03:33 AM
Surr: 4-Bromofluorobenzene	92.4		70-130	%REC	1	12/29/2011 03:33 AM
BTEX			SW8021	в		Analyst: SMA
Benzene	U		1.0	µg/Kg	1	12/28/2011 02:17 AM
Toluene	U		1.0	µg/Kg	1	12/28/2011 02:17 AM
Ethylbenzene	U		1.0	µg/Kg	1	12/28/2011 02:17 AM
Xylenes, Total	U		3.0	µg/Kg	1	12/28/2011 02:17 AM
Surr: 4-Bromofluorobenzene	75.4		75-131	%REC	1	12/28/2011 02:17 AM
Surr: Trifluorotoluene	87.7		73-130	%REC	1	12/28/2011 02:17 AM
ANIONS - EPA 300.0 (1993)			E300		Prep Date: 12/2	9/2011 Analyst: JKP
Chloride	365		4.65	mg/Kg	1	12/29/2011 10:10 PM
Surr: Selenate (surr)	113			%REC	1	12/29/2011 10:10 PM
MOISTURE			SW3550			Analyst: KAH
Percent Moisture	10.9		0.0100	wt%	1	12/29/2011 12:20 PM

Note: See Qualifiers Page for a list of qualifiers and their explanation.

Client:

Conestoga-Rovers & Associates

Project: 073822 CEMC Vacuum Graysburg San Andres Unit # 250

Sample ID: VGSAU 250 NE-6" 122111

Collection Date: 12/21/2011 11:24 AM

Work Order: 1112715 Lab ID: 1112715-05

Matrix: SOIL

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
TPH AND MISCELLANEOUS GCFID		- f-	SW8015M	л	Prep Date: 12/2	27/2011 Analyst: KMB
DRO (>C10 - C28)	U		1.7	mg/Kg	1	12/27/2011 03:29 PM
Surr: 2-Fluorobiphenyl	101		70-130	%REC	1	12/27/2011 03:29 PM
GASOLINE RANGE ORGANICS - SW80	15C		SW8015			Analyst: KKP
Gasoline Range Organics	U		0.050	mg/Kg	1	12/29/2011 03:50 AM
Surr: 4-Bromofluorobenzene	107		70-130	%REC	1	12/29/2011 03:50 AM
BTEX			SW8021E	3		Analyst: SMA
Benzene	U		1.0	µg/Kg	1	12/30/2011 01:48 AM
Toluene	U		1.0	µg/Kg	1	12/30/2011 01:48 AM
Ethylbenzene	U		1.0	µg/Kg	1	12/30/2011 01:48 AM
Xylenes, Total	U		3.0	µg/Kg	1	12/30/2011 01:48 AM
Surr: 4-Bromofluorobenzene	114		75-131	%REC	1	12/30/2011 01:48 AM
Surr: Trifluorotoluene	115		73-130	%REC	1	12/30/2011 01:48 AM
ANIONS - EPA 300.0 (1993)			E300		Prep Date: 12/2	29/2011 Analyst: JKP
Chloride	9.52		4.85	mg/Kg	1	12/29/2011 10:31 PM
Surr: Selenate (surr)	104		85-115	%REC	1	12/29/2011 10:31 PM
MOISTURE			SW3550			Analyst: KAH
Percent Moisture	13.4		0.0100	wt%	1	12/29/2011 12:20 PM

Date: 10-Jan-12

Client:	Conestoga-Rovers & Associates		
Project:	073822 CEMC Vacuum Graysburg San Andres Unit # 250	Work Order:	1112715
Sample ID:	Trip Blank	Lab ID:	1112715-06
Collection Date:	12/21/2011	Matrix:	WATER

Analyses	Result	Report Qual Limit I	Units	Dilution Factor	Date Analyzed
BTEX		SW8021E	3		Analyst: SMA
Benzene	U	1.0	µg/L	1	12/28/2011 02:21 AM
Toluene	U	1.0	µg/L	1	12/28/2011 02:21 AM
Ethylbenzene	U	1.0	µg/L	1	12/28/2011 02:21 AM
Methyl tert-butyl ether	U	5.0	µg/L	1	12/28/2011 02:21 AM
Xylenes, Total	U	3.0	µg/L	1	12/28/2011 02:21 AM
Surr: 4-Bromofluorobenzene	112	77-129	%REC	1	12/28/2011 02:21 AM
Surr: Trifluorotoluene	85.2	75-130	%REC	1	12/28/2011 02:21 AM

Derest

Note: See Qualifiers Page for a list of qualifiers and their explanation.

Client: Conestoga-Rovers & Associates Work Order: 1112715

QC BATCH REPORT

Date: 10-Jan-12

Batch ID: 57810 Instrument	ID FID-8		Metho	d: SW801	5M				-			
MBLK Sample ID: FBLKS1-111	227-57810				U	nits: mg/	Kg	Analysis Date: 12/27/2011 01:16 F				
Client ID:	Run I	D: FID-8_	111227A		Seq	No: 2639	9478	Prep Date: 12/	27/2011	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
DRO (>C10 - C28)	U	1.7				·						
Surr: 2-Fluorobiphenyl	2.845	0	3.3	<u> </u>	0	86.2	70-130	()			
LCS Sample ID: FLCSS1-111	227-57810	1			Ur	nits: mg/	Kg	Analy	sis Date: 12	2/27/2011	01:38 PM	
Client ID:	Run I	D: FID-8_	111227A		Seq	No: 2639	9480	Prep Date: 12/	27/2011	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
DRO (>C10 - C28)	33.08	1.7	33.3		0	99.3	70-130	()			
Surr: 2-Fluorobiphenyl	3.489	0	3.3	1 e 1	0	106	70-130	()			
MS Sample ID: 1112715-050	CMS			1.1.18	Ur	nits: mg/l	Kg	Analy	sis Date: 12	2/27/2011	03:49 PM	
Client ID: VGSAU 250 NE-6" 122111	Run I	D: FID-8_1	111227A		Seq	No: 2639	9483	Prep Date: 12/	27/2011	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
DRO (>C10 - C28)	34.67	1.7	33.26	0.224	4	104	70-130	()			
Surr: 2-Fluorobiphenyl	3.366	0	3.296		0	102	70-130	()			
MSD Sample ID: 1112715-050	CMSD				Ur	nits: mg/l	Kg	Analy	sis Date: 12	2/27/2011	04:08 PM	
Client ID: VGSAU 250 NE-6" 122111	Run I	D: FID-8_1	11227A		Seq	No: 2639	485	Prep Date: 12/	27/2011	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
DBO (>C10, C29)	37.24	1.7	33.29	0.224	4	111	70-130	34.67	7 7.16	30		
DRO (>C10 - C28)												

QC Page: 1 of 10

QC BATCH REPORT

Batch ID: R121062 Instrumen	nt ID BTEX3		Metho	d: SW802	1B						
MBLK Sample ID: BBLKS1-1	11227-R121062				U	nits: µg/k	(g	Analys	is Date: 12	2/27/2011	06:39 PN
Client ID:	Run II	D: BTEX3	_111227A		Sec	No: 2638	3966	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Benzene	U	1.0									
Toluene Ethylbenzene	U	1.0									
Xylenes, Total	U	3.0									
Surr: 4-Bromofluorobenzene	26.79	1.0	30		0	89.3	75-131	0			
Surr: Trifluorotoluene	33.48	1.0	30		0	112	73-130	0			
LCS Sample ID: BLCSS1-11	11227-P121062				11	nits: µg/k	(0	Analys	is Date: 12	/27/2011	05:47 PM
Client ID:		D: BTEX3	_111227A			No: 2638		Prep Date:	is Date. 12	DF: 1	05.47 FM
	Result	PQL	SPK Val	SPK Ref Value		%REC	Control	RPD Ref Value	%RPD	RPD Limit	Qual
Analyte									70KPD		Quai
Benzene	16.7	1.0	20		0	83.5	74-129	0			
Toluene	16.8	1.0	20		0	84	75-128	0			
Ethylbenzene	16.52	1.0	20		0	82.6	73-127	0			
Xylenes, Total	46.29	3.0	60		0	77.2	74-127	0			
Surr: 4-Bromofluorobenzene Surr: Trifluorotoluene	23.73 29.96	1.0 1.0	30 30		0	79.1 99.9	75-131 73-130	0			
Sun. mildorotoldene	29.90	1.0	50		0	99.9	75-750	0		_	
LCSD Sample ID: BLCSDS1-	111227-R121062				Ur	nits: µg/k	(g	Analys	is Date: 12	/27/2011	06:04 PM
Client ID:	Run II	D: BTEX3	111227A		Seq	No: 2638	3964	Prep Date:		DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Benzene	20.25	1.0	20		0	101	74-129	16.7	19.2	30	
Toluene	19.28	1.0	20		0	96.4	75-128	16.8	13.8	30	
Ethylbenzene	19.62	1.0	20		0	98.1	73-127	16.52	17.2	30	
Xylenes, Total	53.64	3.0	60		0	89.4	74-127	46.29	14.7	30	
Surr: 4-Bromofluorobenzene	27.71	1.0	30		0	92.4	75-131	23.73	15.5	30	
Surr: Trifluorotoluene	35.21	1.0	30		0	117	73-130	29.96	16.1	30	
MS Sample ID: 1112708-01	AMS				Ur	nits: µg/K	g	Analys	is Date: 12	/27/2011	10:51 PM
Client ID:	Run II	BTEX3	111227A		Seq	No: 2639	778	Prep Date:		DF: 1	
				SPK Ref			Control	RPD Ref		RPD Limit	<u> </u>
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Linit	Qual
Benzene	18.77	1.0	20	4.9	99	68.9	74-129	0			S
Toluene	20.14	1.0	20	9.14	8	54.9	75-128	0			S
Ethylbenzene	15.1	1.0	20		0	75.5	73-127	0			
Xylenes, Total	45.88	3.0	60	7.49		64	74-127	0			S
Surr: 4-Bromofluorobenzene	23.15	1.0	30		0	77.2	75-131	0			
Surr: Trifluorotoluene	31.5	1.0	30		0	105	73-130	0			

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

QC Page: 2 of 10

QC BATCH REPORT

MSD Sample ID: 1112708-0	1AMSD				Units: µg/k	٢g	Analysi	s Date: 12	2/27/2011	11:08 PM
Client ID:	Run ID	BTEX3	111227A	Se	eqNo: 2639	9779	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Benzene	19.08	1.0	20	4.99	70.5	74-129	18.77	1.67	30	S
Toluene	18.92	1.0	20	9.148	48.8	75-128	20.14	6.24	30	S
Ethylbenzene	14.5	1.0	20	0	72.5	73-127	15.1	4.04	30	S
Xylenes, Total	44.86	3.0	60	7.498	62.3	74-127	45.88	2.25	30	S
Surr: 4-Bromofluorobenzene	24.65	1.0	30	0	82.2	75-131	23.15	6.26	30	
Surr: Trifluorotoluene	38.48	1.0	30	0	128	73-130	31.5	19.9	30	

Note:

QC BATCH REPORT

MBLK Sample ID: BBLKW	2-111227-R121102				Units: µg/L	-	Analy	sis Date: 1	2/28/2011	01:29 AN
Client ID:	Run II	D: BTEX1	_111227B		SeqNo: 264	0546	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Benzene	U	1.0								
Toluene	U	1.0								
Ethylbenzene	U	1.0								
Methyl tert-butyl ether	U	5.0								
Xylenes, Total	U	3.0								
Surr: 4-Bromofluorobenzene	33.98	1.0	30		0 113	77-129		0		
Surr: Trifluorotoluene	26.01	1.0	30		0 86.7	75-130		0		

Client ID:	Run II	D: BTEX1	_111227B	S	eqNo: 264	0544	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Benzene	22.87	1.0	20	0	114	77-126	(C		
Toluene	22.91	1.0	20	0	115	80-124	(0		
Ethylbenzene	23.47	1.0	20	0	117	76-125	(0		
Methyl tert-butyl ether	105.7	5.0	100	0	106	75-128	(D		
Xylenes, Total	71.15	3.0	60	0	119	79-124	(C		
Surr: 4-Bromofluorobenzene	35.28	1.0	30	0	118	77-129	(0		
Surr: Trifluorotoluene	26.6	1.0	30	0	88.7	75-130	(0		

LCSD	Sample ID: BLCSDW2-	111227-R121102				Units: µg/l	-	Analys	is Date: 12	2/28/2011	01:12 AM
Client ID:		Run ID	BTEX1	_111227B	5	SeqNo: 264	0545	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Benzene		23.46	1.0	20	0	117	77-126	22.87	2.58	20	
Toluene		23.62	1.0	20	C	118	80-124	22.91	3.06	20	
Ethylbenzen	e	23.95	1.0	20	0	120	76-125	23.47	2.02	20	
Methyl tert-b	utyl ether	102.2	5.0	100	0	102	75-128	105.7	3.34	20	
Xylenes, Tot	al	73.3	3.0	60	0	122	79-124	71.15	2.98	20	
Surr: 4-Br	omofluorobenzene	34.87	1.0	30	0	116	77-129	35.28	1.19	20	
Surr: Triflu	uorotoluene	26.47	1.0	30	0	88.2	75-130	26.6	0.487	20	

Client: Conestoga-Rovers & Associates

QC BATCH REPORT

Work Order: 1112715

Project: 073822 CEMC Vacuum Graysburg San Andres Unit

Batch ID: R121102 Instrume	nt ID BTEX1		Metho	d: SW8021B							
MS Sample ID: 1112754-1	0AMS			ι	Jnits: µg/L		Analysis Date: 12/28/2011 09:52 A				
Client ID:	Run I	D: BTEX1	_111227B	Se	qNo: 264	0560	Prep Date:		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Benzene	43.17	1.0	20	21.96	106	77-126	0				
Toluene	29.31	1.0	20	0.4547	144	80-124	0			S	
Ethylbenzene	30.82	1.0	20	4.867	130	76-125	0			S	
Methyl tert-butyl ether	116.5	5.0	100	8.027	109	75-128	0				
Xylenes, Total	84.93	3.0	60	9.819	125	79-124	0			S	
Surr: 4-Bromofluorobenzene	31.4	1.0	30	0	105	77-129	0		4.4		
Surr: Trifluorotoluene	35.05	1.0	30	0	117	75-130	0	6 S			
MSD Sample ID: 1112754-10	OAMSD			ι	Jnits: µg/L		Analysi	s Date: 12	2/28/2011	10:09 AM	
Client ID:	Run I	D: BTEX1	111227B	Se	qNo: 2640	0561	Prep Date:		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Benzene	44.04	1.0	20	21.96	110	77-126	43.17	2	20		
Toluene	30.62	1.0	20	0.4547	151	80-124	29.31	4.36	20	S	
Ethylbenzene	31.74	1.0	20	4.867	134	76-125	30.82	2.93	20	S	
Methyl tert-butyl ether	116.7	5.0	100	8.027	109	75-128	116.5	0.142	20		
Xylenes, Total	102.1	3.0	60	9.819	154	79-124	84.93	18.3	20	S	
Surr: 4-Bromofluorobenzene	30.99	1.0	30	0	103	77-129	31.4	1.32	20		

The following samples were analyzed in this batch:

Surr: Trifluorotoluene

1112715-06A

30

0

128

75-130

35.05

9.43

20

1.0

38.52

QC BATCH REPORT

Batch ID: R12115	51 Inst	rument ID FID-6		Method	d: SW801	5		-				
MBLK San	mple ID: GBLK	(S2-122811-R121151				ι	Jnits: mg/	Kg	Analys	sis Date: 1	2/29/2011	12:07 AM
Client ID:		Run I	D: FID-6_	111228B		Se	eqNo: 264	1537	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Gasoline Range C	Organics	U	0.050									
Surr: 4-Bromofl	luorobenzene	0.08268	0.0050	0.1		0	82.7	70-130	C)		
LCS San	nple ID: GLCS	S2-122811-R121151				ι	Jnits: mg/	Kg	Analys	sis Date: 1	2/28/2011	11:33 PM
Client ID:		Run I	D: FID-6_	111228B		Se	qNo: 264	1535	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Gasoline Range C	Draanics	0.9611	0.050	1		0	96.1	70-130	C			
Surr: 4-Bromofi		0.08601	0.0050	0.1		0	86	70-130				
LCSD San	mple ID: GLCS	DS2-122811-R121151				ı	Jnits: mg/	Ka	Analys	sis Date: 12	2/28/2011	11:50 PM
Client ID:			D: FID-6_	111228B			eqNo: 264	-	Prep Date:	Duto. II	DF: 1	11.001 1
			-		SPK Ref Value			Control Limit	RPD Ref Value		RPD Limit	
Analyte		Result	PQL	SPK Val	value		%REC	Limit	value	%RPD	Linnit	Qual
Gasoline Range C	-	1.059	0.050	1		0	106	70-130	0.9611		30	
Surr: 4-Bromofl	uorobenzene	0.0967	0.0050	0.1		0	96.7	70-130	0.08601	11.7	30	
MS San	nple ID: 11126	20-37BMS				ι	Jnits: mg/	Kg	Analys	sis Date: 12	2/29/2011	01:50 AM
Client ID:		Run II	D: FID-6_	111228B		Se	qNo: 264	545	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Gasoline Range C	Organics	0.962	0.050	1		0	96.2	70-130	0			
Surr: 4-Bromofl	uorobenzene	0.08068	0.0050	0.1		0	80.7	70-130	0			
MSD Sam	nple ID: 11126	20-37BMSD				ι	Jnits: mg/	Kg	Analys	sis Date: 12	2/29/2011	02:07 AM
Client ID:		Run II	D: FID-6_	111228B		Se	qNo: 264	546	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Gasoline Range O	Organics	1.047	0.050	1		0	105	70-130	0.962	8.46	30	
Surr: 4-Bromofil		0.08739	0.0050	0.1		0	87.4	70-130	0.08068		30	
The following sa	mples were a	nalyzed in this batch:	1.1	112715-01B 112715-04B			15-02B 15-05B	11	12715-03B			

QC Page: 6 of 10

Client: Conestoga-Rovers & Associates **QC BATCH REPORT** Work Order: 1112715 **Project:** 073822 CEMC Vacuum Graysburg San Andres Unit Batch ID: R121204 Instrument ID BTEX3 Method: SW8021B MBLK Sample ID: BBLKS1-111229-R121204 Units: µg/Kg Analysis Date: 12/30/2011 01:14 AM Client ID: Run ID: BTEX3_111230A SeqNo: 2643081 Prep Date: DF: 1 RPD SPK Ref Control **RPD** Ref Value Limit Value Limit SPK Val Analyte Result PQL %REC %RPD Qual Benzene U 1.0 Toluene U 1.0 Ethylbenzene U 1.0 U Xylenes, Total 3.0 Surr: 4-Bromofluorobenzene 31.32 1.0 30 0 104 75-131 0 Surr: Trifluorotoluene 1.0 30 0 31.55 105 73-130 0 LCS Sample ID: BLCSS1-111229-R121204 Units: µg/Kg Analysis Date: 12/30/2011 12:22 AM Client ID: Run ID: BTEX3_111230A SeqNo: 2643079 Prep Date: DF: 1 SPK Ref RPD Ref RPD Control Limit Value Limit Value Analyte Result PQL SPK Val %REC %RPD Qual 20.45 0 Benzene 1.0 20 0 102 74-129 Toluene 20.94 1.0 20 0 105 0 75-128 Ethylbenzene 21.7 20 0 0 1.0 108 73-127 Xylenes, Total 62.27 3.0 60 0 0 104 74-127 Surr: 4-Bromofluorobenzene 34.93 1.0 30 0 0 75-131 116 Surr: Trifluorotoluene 36.58 1.0 30 0 122 73-130 0 LCSD Sample ID: BLCSDS1-111229-R121204 Units: µg/Kg Analysis Date: 12/30/2011 12:39 AM

Client ID:	Run I	Run ID: BTEX3_111230A			SeqNo: 2643080 Prep Date:					DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual		
Benzene	20.36	1.0	20	0	102	74-129	20.45	0.475	30			
Toluene	20.87	1.0	20	0	104	75-128	20.94	0.318	30	1999 (A. 1997)		
Ethylbenzene	21.58	1.0	20	0	108	73-127	21.7	0.536	30			
Xylenes, Total	62.96	3.0	60	0	105	74-127	62.27	1.1	30	1.1		
Surr: 4-Bromofluorobenzene	32.87	1.0	30	0	110	75-131	34.93	6.06	30			
Surr: Trifluorotoluene	33.63	1.0	30	0	112	73-130	36.58	8.38	30			

MS Sample ID: 1112741-01/	AMS				Units: µg/ł	٢g	Analys	sis Date: "	12/30/2011	02:23 AM
Client ID:	Run I	D: BTEX3	_111230A		SeqNo: 264	3085	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Benzene	11.82	1.0	20	(59.1	74-129	()	1. 1. 1	S
Toluene	10.67	1.0	20	(53.4	75-128	()		S
Ethylbenzene	8.829	1.0	20	(44.1	73-127	0)		S
Xylenes, Total	25.98	3.0	60	(43.3	74-127	()		S
Surr: 4-Bromofluorobenzene	31.95	1.0	30	0	106	75-131	0)	1. N.	
Surr: Trifluorotoluene	31.36	1.0	30	C) 105	73-130	()	X	

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

QC Page: 7 of 10

QC BATCH REPORT

Batch ID: R121204 Instrumer	nt ID BTEX3		Metho	d: SW8021	В				1.00		
MSD Sample ID: 1112741-01AMSD					Units: µg/k	٢g	Analysi	s Date: 12	12/30/2011 02:40 AM		
Client ID:	Run ID: BTEX3_111230A		SeqNo: 2643086			Prep Date:		DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Benzene	15.28	1.0	20	C	76.4	74-129	11.82	25.6	30		
Toluene	13.55	1.0	20	0	67.7	75-128	10.67	23.7	30	S	
Ethylbenzene	12.05	1.0	20	0	60.2	73-127	8.829	30.9	30	SR	
Xylenes, Total	33.58	3.0	60	0	56	74-127	25.98	25.5	30	S	
Surr: 4-Bromofluorobenzene	34.95	1.0	30	0) 117	75-131	31.95	8.98	30		
Surr: Trifluorotoluene	34.37	1.0	30	0) 115	73-130	31.36	9.16	30		

The following samples were analyzed in this batch:

1112715-05A

QC BATCH REPORT

_			
	Instrument	ID	ICS3K2

Batch ID: 5	7890 Instrument	t ID ICS3K2		Metho	d: E300			-	1			
MBLK	Sample ID: WBLKS1-12	22911-57890				ι	Jnits: mg/	Kg	Analys	is Date: 1	2/29/2011	12:50 PM
Client ID:		Run ID	: ICS3K2	2_111229A		Se	qNo: 264	2740	Prep Date: 12/2	29/2011	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride	A MARY STREET	U	5.0									
Surr: Sel	enate (surr)	44.84	1.0	49.9	1.10	0	89.9	85-115	0			
LCS	Sample ID: WLCSS1-12	22911-57890				ι	Jnits: mg/	Kg	Analys	is Date: 1	2/29/2011	01:12 PM
Client ID:		Run ID	: ICS3K2	_111229A		Se	qNo: 2642	2741	Prep Date: 12/2	9/2011	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		214.6	5.0	200	16 36	0	107	90-110	0			
	enate (surr)	57.1	1.0	50		0	114	85-115		and the second		
LCSD	Sample ID: WLCSDS1-1	122911-57890			1.87	ι	Jnits: mg/	Kg	Analys	is Date: 1	2/29/2011	01:34 PM
Client ID:	1.4	Run ID	ICS3K2	_111229A		Se	qNo: 2642	2742	Prep Date: 12/2	9/2011	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride	The second second	214.9	5.0	200		0	107	90-110	214.6	0.154	20	
	enate (surr)	57.01	1.0	50	1	0	114	85-115		0.154		
MS	Sample ID: 1112715-010	CMS				L	Jnits: mg/	Ka	Analys	is Date: 1	2/29/2011	08:43 PM
			: ICS3K2	_111229A	9A S		SeqNo: 2642744		Prep Date: 12/29/2011		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		101.6	4.3	86.42	12.5	58	103	75-125	0			
	enate (surr)	49.28	0.86	43.21		0	114	80-120				
MSD	Sample ID: 1112715-010	CMSD				U	Inits: mg/l	٢g	Analys	is Date: 1	2/29/2011	09:05 PM
Client ID: V	GSAU 250 SE-6" 122111	Run ID	: ICS3K2	_111229A		Se	qNo: 2642	745	Prep Date: 12/2	9/2011	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride	A State of the second	103.2	4.4	88.44	12.5	58	102	75-125	101.6	1.58	20	
Surr: Sele	enate (surr)	50.29	0.88	44.22		0	114	80-120	49.28	2.02	20	1
The followi	ing samples were analyze	d in this batch:		12715-01C 12715-04C			15-02C 15-05C	11	12715-03C			N.F.

QC Page: 9 of 10

QC BATCH REPORT

Batch ID: R121181	Instrument ID Ba	alance1		Method	: SW355	0						
DUP Sample ID	: 1112721-09ADUP					U	nits: wt%		Analysi	s Date: 1	2/29/2011	12:20 PM
Client ID:		Run ID	: BALAN	CE1_11122	9D	Se	qNo: 2642	2619	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Percent Moisture		53.77	0.010	0		0	0	0-0	52.41	2.57	7 20	
The following samples	were analyzed in th	nis batch:		12715-01C 12715-04C			15-02C 15-05C	11	12715-03C			

Date: 10-Jan-12

Client: Project: WorkOrder:	Conestoga-Rovers & Associates 073822 CEMC Vacuum Graysburg San Andres Unit # 250 1112715	QUALIFIERS, ACRONYMS, UNITS
Qualifier	Description	
*	Value exceeds Regulatory Limit	
a	Not accredited	
В	Analyte detected in the associated Method Blank above the Repo	rting Limit
E	Value above quantitation range	
Н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
М	Manually integrated, see raw data for justification Not offered for accreditation	
n ND	Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
P	Dual Column results percent difference $> 40\%$	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL	
Acronym	Description	
DCS	Detectability Check Study	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitation Limit	
SD	Serial Dilution	
SDL	Sample Detection Limit	
TRRP	Texas Risk Reduction Program	
Units Reported		
μg/Kg	Micrograms per Kilogram	
μg/L	Micrograms per Liter	
mg/Kg	Milligrams per Kilogram	
wt%		

Client Contacted:

Sample Receipt Checklist

Client Name: CRA-MID		Date/Time	Received:	22-Dec-1	<u>1 10:45</u>	
Work Order: 1112715		Received b	y:	PMG		
Checklist completed by <i>Robert D.</i> Harris eSignature	23-Dec-11 Date	Reviewed by:	Patricia eSignature	L. Lynu	ch	27-Dec-11 Date
Matrices: soils Carrier name: FedEx						
Shipping container/cooler in good condition?	Yes 🖌	No 🗌	Not Prese	nt 🗌		
Custody seals intact on shipping container/cooler?	Yes V	No 🗌	Not Prese	nt 🗌		
Custody seals intact on sample bottles?	Yes	No 🗌	Not Prese	nt 🗹		
Chain of custody present?	Yes 🖌	No 🗌				
Chain of custody signed when relinquished and received?	Yes	No 🗌				
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌				
Samples in proper container/bottle?	Yes 🖌	No 🗌				
Sample containers intact?	Yes	No 🗌				
Sufficient sample volume for indicated test?	Yes 🖌	No 🗌				
All samples received within holding time?	Yes	No 🗌				
Container/Temp Blank temperature in compliance?	Yes 🖌	No 🗌				
Temperature(s)/Thermometer(s):	<u>2.4c</u>		002			
Cooler(s)/Kit(s):	4006					
Water - VOA vials have zero headspace?	Yes 🖌	No 🗌	No VOA vials	submitted		
Water - pH acceptable upon receipt?	Yes	No 🗌	N/A			
pH adjusted? pH adjusted by:	Yes	No 🗌	N/A			
Login Notes: <u>Trip blank on COC without analyses; Logge</u>	d in with BTEX	analysis.				

Contacted By:	Regarding:
Comments:	
CorrectiveAction:	

Date Contacted:

SRC Page 1 of 1

Person Contacted:

Enuiron Customer Information Customer Information Vurchase Order Work Order Vork Order Work Order Conestoga-Ruvers & Associates Vork Order James Ornelas Send Report To James Ornelas Send Report To James Ornelas Crty/State/Zip Midland, TX, 79/05 Phone (45:2) 686-0186 Phone Sample Description I VG SAUL QSO CeNTER - (122111 I VG SAUL QSO SUL - (122111 S VG	Project Name Project Number Bill To Company Invoice Attn	Page	age of	Ŧ	CRA	CRA-MID: Conestoga-Rovers & Associates
Acts Acts Enurchase Order Customer Information Purchase Order Connestoga-Ruvers & Associates Work Order Connestoga-Ruvers & Associates Send Report To Jarmes Ornelas City/State/ZIP Midland, TX 79/05 Phone (452) 666-0066 Phone (452) 666-0166 e-Mail Address Sample Description I VG SAUL SSO Center -6/12311 2 VG SAUL SSO NUL -6/12311 3 VG SAUL SSO NUL -6/12311 5 VG SAUL SSO NUL -6/12311 5 VG SAUL SSO NUL -6/12311 6 77.0.2.00 7 7.0.0.2.00	Project Name Project Number Bill To Company Invoice Attn	ö		F C		
Customer Information Customer Information Purchase Order Constoga-Rovers & Associates Work Order James Crinelas Company Name Conestoga-Rovers & Associates Send Report To James Crinelas Send Report To James Crinelas Company Name Conestoga-Rovers & Associates Send Report To James Crinelas Company Name Conestoga-Rovers & Associates Send Report To James Crinelas Send Report To James Crinelas City/State/Zip Midland, TX 79/05 Phone (452) 686-0086 Phone (452) 686-0186 Fax (452) 686-0186 Fax (452) 686-0186 Phone (452) 686-0186 Phone (452) 686-0186 Phone (452) 000 Sample Description (452) 11 Address Sample Description Address Address Address Address Address Address Address Address Address Address A	Project Name Project Number Bill To Company Invoice Attn				D ¹ , Project	Project: Vacuum Grayburg San Andres-073822
Cuestomer Information Purchase Order Company Name Conestoga-Rowers & Associates Work Order Company Name Conestoga-Rowers & Associates Send Report To James Ornelas Send Report To Send Report To James Ornelas Send Report To Send Report To James Ornelas Send Report To Crty/State/Zip Mildland, TX 79705 Send Report Phone (452) 686-0186 Send Report Fax (452) 686-0186 Send Report Phone Fax Sample Description I VG SAUL QS OCENTER 6'/23111 Send Report 2 VG SAUL QS OCENTER 6'/23111 Send Report 8 VG SAUL QS OCENTER 6'/23111 Send Report 9 VG SAUL QS OCENTER 6''/23111 Send 1/22011 1 VG SAUL QS OCENTER 6''/23111 Send 1/22011 2 VG SAUL QS OCENTER 6''/23111 Send 1/22011 1 VG SAUL QS OCENTER 6''/23111 Send 1/22011 1 YR SAUL QS OCENTER 6''/23111 Send 1/22011 1 VG SAUL QS OCENTER 6''/23111 Send 1/22011 1 YR SA	Project Name Project Number Bill To Company Invoice Attn	A	ALS Project Manager:	er:		
Purchase Order Work Order Work Order Company Name Company Name Company Name Company Name Send Report To James Crinelas Send Report To James Crinelas City/State/Zip Midiand, TX 79/05 Phone (45:2) 686-0066 Pinone (45:2) 686-0186 Pinone Midtensis Pinone (45:2) 686-0186 Pinone (45:2) 686-0186 Pinone (45:2) 686-0186 Pinone (45:2) 686-0186 Pinol Pinol	Project Name Project Number Bill To Company Invoice Attn	Project Information	tion			
Work Order Conestoga-Ruvers & Associates Send Report To James Ornelas City/State/Zip Midland, TX 79/05 Phone (452) 666-0066 Phone (452) 666-0166 Fax (452) 666-0166 Phone (452) 666-0166 Phone (452) 666-0166 Phone (452) 566-0166 Phone (452) 666-0166 Phone (452) 668-0166 Phone (452) 668-0166 Phone (452) 668-0166 Phone (452) 668-0166 Phone (452) 688-0166 Phone (452) 688-0186 Phone (452) 688-0186 <th>Project Number Bill To Company Invoice Attn</th> <th>Vacuum Grayburg San Andres</th> <th>I San Andres</th> <th>A</th> <th>BTEX (8021)</th> <th></th>	Project Number Bill To Company Invoice Attn	Vacuum Grayburg San Andres	I San Andres	A	BTEX (8021)	
Impainy Name Conestoga-Rovers & Associates end Report To James Ormelas end Report To James Ormelas Address 2135 S Loop 250 West Address Address Phone (452) 686-0066 Phone (452) 686-0166 Mail Address Sample Description Mail Address Sample Description VG SAU 250 NW - 6" / 23111 VG SAU 250 NW - 6" / 23111 VG SAU 250 NW - 6" / 23111 VG SAU 250 NW - 6" / 23111 VG SAU 250 NW - 6" / 23111 VG SAU 250 NW - 6" / 23111 VG SAU 250 NW - 6" / 132111 VG SAU 250 NW - 6" / 132111 VG SAU 250 NW - 6" / 132111 VG SAU 250 NW - 6" / 132111	Bill To Company Invoice Attn	073822		Ω.	GRO (8015M)	
Send Report To Jarmes Ornelas Send Report To Jarmes Ornelas Address 2135 S Loop 250 Wiest Address Midland, TX 79703 City/State/Zip Midland, TX 79703 Phone (452) 686-0086 Phone (452) 586-0186 Fax (452) 686-0186 Fax (452) 686-0186 Phone (452) 686-0186 O Sample Description I VG SAUL QSO SEC I VG SAUL QSO SEU I	Invoice Attn	Conestoga-Rovers	s & Aspociates	0	DRO (8015M)	
Address 2135 S Loop 250 West Address Midland, TX 79703 City/State/Zip Midland, TX 79703 Phone (452) 886-0086 Phone (452) 886-0086 Fax (452) 886-0186 Fax (32) 686-0186 Fax (32) 686-0186 I VG SAUL 250 Secontention a VG SAUL 250 Secontention a VG SAUL 250 Sub-6'/23111 b VG SAUL 250 Sub-6'/123111 c VG SAUL 250 Sub-6'/123111 b VG SAUL 250 Sub-6'/123111 c VG SAUL 250 Sub-6'/133111 c VG SAUL 250 Sub-6'/13311		James Ornele:s		0	Anions (300) CI	
City/State/Zip Midland, TX 79703 Phone (452) 686-0086 Phone (452) 686-0186 Fax (452) 686-0186 e-Mail Address (452) 686-0186 a (452) 686-0186 Address (452) 686-0186 a (452) 686-0186 Address sample Description a VG SAU 250 50 600 700 600 700 b VG SAU 250 500 600 700 600 700 b VG SAU 250 500 600 700 600 700 110 b VG SAU 250 500 600 700 700 700 100 c 77 7000 100 100 100 100 100 100 100	Audress	2135 S Loop 250 West	West	ш ц	Moisture	
Phone (4:2) 886-0086 Fax (4:2) 886-0186 e-Mail Address (4:2) 686-0186 e-Mail Address (4:2) 686-0186 a VG SAU 250 55-66 1 VG SAU 250 55-6 2 VG SAU 250 55 3 VG SAU 250 50 4 VG SAU 250 50 5 VG SAU 250 50 6 77:72 32.450	City/State/Zip	Midland, TX 79703	33	G		
Fax (452) 686-0186 e-Mail Address (452) 686-0186 e-Mail Address Sample Description to Sample Description 1 VG SAU 250 50 50 50 12011 2 VG SAU 250 NW 6' 2011 3 VG SAU 250 NW 6' 2011 4 VG SAU 250 NW 6' 12011 5 VG SAU 250 NW 6' 12011 5 VG SAU 250 NW 6' 12011 6 77:7 320 NW 6' 6' 13011	Phone	(432) 666-0036		T		
e-Mail Address a. Sample Description 1 VG SAU 250 556" 122111 2 VG SAU 250 CeNTER 6"22111 3 VG SAU 250 NW 6"122111 4 VG SAU 250 NW 6"122111 5 VG SAU 250 NW 6"123111 6 7717 250 NE -611 123111 6 7717 250 NE -611 123111	Fax	(432) 686-0186		1),		
In NG SALL 250 55-6" (122111 1 VG SALL 250 50 55-6" (22111 2 VG SALL 250 NW-6" (22111 3 VG SALL 250 NW-6" (12111 4 NGSALL 250 NW-6" (12111 5 VG SALL 250 NW-6" (12111 6 77:7	e-Mail Address			7		
1 VG SAW 250 556" 12211 2 VG SAU 250 CENTER 6" 122111 3 VG SAU 250 NW 6" 122111 4 VG SAU 250 NW 6" 122111 5 VG SAU 250 NE - 6" 122111 6 7717 250 NE - 6" 122111 6 7717 250 NE - 6" 122111	Date	Time Matrix	Pres. # Bottles	es A	C B	E F G H I J Hold
2 VGSAU 25 DCeNTER 6"/22111 3 VGSAU 250 NW-6"/22111 4 NGSAU 250 NW-6"/22111 5 VGSAU 250 NE-6" 122111 6 TRIP BUAUS 7 TRIP BUAUS	11-16-61	128 5	m \	×	× × ×	*
VGSALA 250 NW -6" 122111 NGSALL 250 NW -6" 122111 VGSALL 250 NE -6" 122111 VGSALL 250 NE -6" 122111 TRIP ISLANIS	11	126 S	5	X	X	
NGSAU 250 SW - 6" 132111 1165AU 250 NE - 6" 132111 7Rip 136AUS	11-12-51	2 CE	1	X	X X X	
VGSALL 250 NE-6" 122111 TRIP BLANIS	11-12-21	SQ	5	X	XXX	/.>
TRIP BLANIS	11/11/201	24 5		12	XXX	
Then)			
SAL/						
80						
6						
0.						
Sampler(s) Please Print & Sign	Shipment Method	la	Required Turnaround Time: (Check Box)	e: (Check	Box) Other	Results Due Date:
1/2	Time: Received by	ind be	W SKO IU WYN DAYS	Notes:	10 L	
Relinquished by: Date: Ti	Time: Receiv	Received by (Laboratory):	loui	Co	Cooler ID Cooler Temp	QC Package: (Check One Box Below)
Logged by (Laboratory): Date: Til	Time: Check	Checked by (Laboratory):		400	06.	Level II Sid OC/Raw Data TRRP Level N
Preservative Key: 1-HCI 2-HNO ₃ 3-H ₂ SO ₄ 4-NaOI	4-NaOH 5-Na2S203 6-	6-NaHSO4 7-Other	er 8-4°C 9-5035	20		I Level IV SW946/CLP

3 The Chain of Cuctody is a level document All information must be completed accurately

ALS	ALS Environmental	CUSTODY SEAL	Scal Broken By:
	Houston, Texas 77099 Tel. +1 281 530 5656 Fax. +1 281 530 5887	Date: De al 1-11 Time: 302 Name: Company:	Date:

al This portion can be removed as 12-21-11	red for Recipient's records. FedEx Tracking Number	8758825	36305
	METRA	Phone	<u>12 (m. 086</u>
Company CT212			
Address 2135	SOUTHER	<u>P.250</u>	Dept/Foor/Suite/Room
111; Der	inco	State Z	P 79703
ur Internal Billing Referen	ce 073	5822	1. GSAU

Controlled Recovery, Inc. P.O. Box 388 Hobbs, NM 88241-0388

Voice: (575) 393-1079 Fax: (575) 393-3615

Sold To: CHEVRON HCR 60 BOX 423 LOVINGTON, NM 88260 Ship to: CHEVRON VGSAU #250

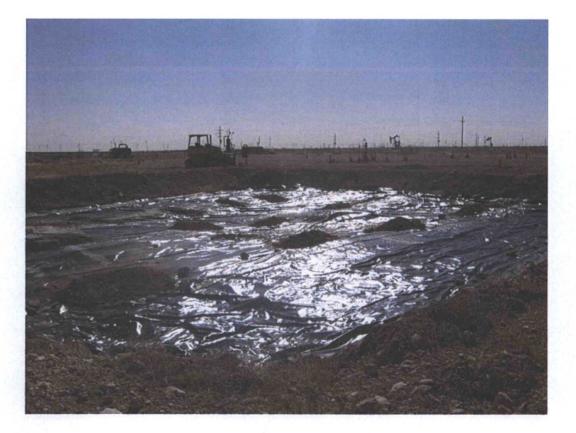
Custome	er ID	Customer PO	Payment Ter	rms
CHEV-B	UCK		Net 30 Da	
Sales Re	p ID	Shipping Method	Ship Date	Due Date
		SEE ATTACHED		11/23/07
Quantity	Item	Description	Unit Price	Extension
2,000.00		CONT SOIL PER ATTACHED	16.00	32,000.00
11 8 1-2				
S. S. S.				

	Subtotal	32,000.00
	Sales Tax	2,140.00
	Total Invoice Amount	34,140.00
Check/Credit Memo No:	Payment/Credit Applied	
	TOTAL	34,140.00

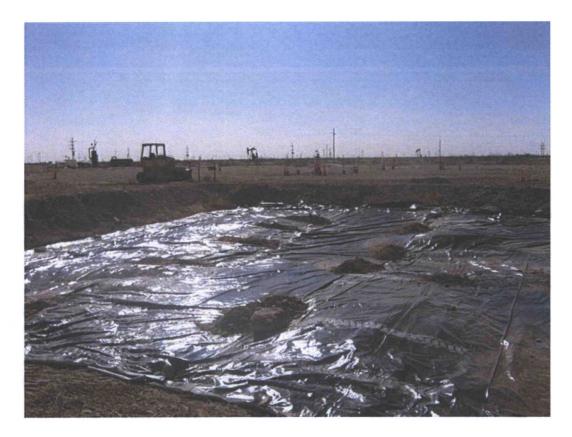
Invoice

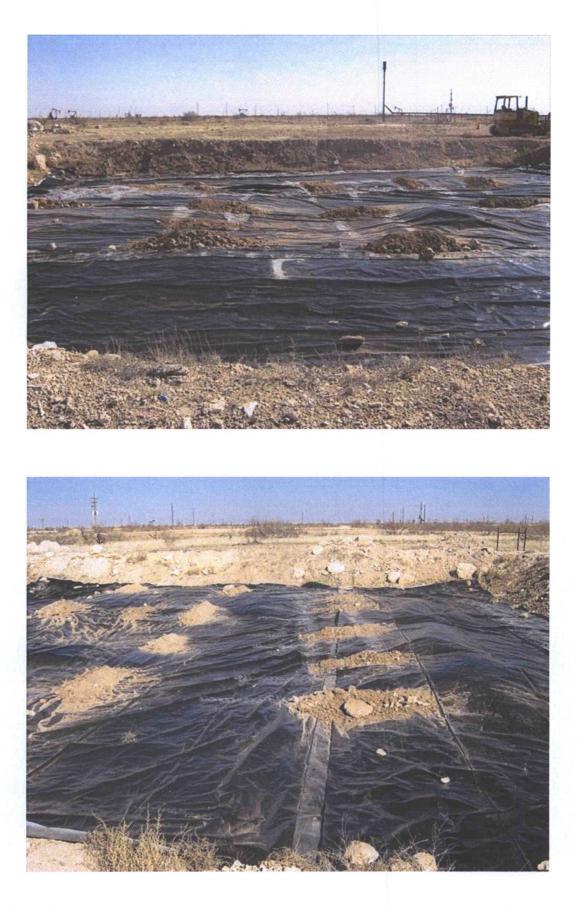
Invoice Number:

039721


Invoice Date: Oct 24, 2007

Page:




CEMC-VGSAU #250 Pit Closure Request



Leking, Geoffrey R, EMNRD

From:	Kainer, Ryan <rkainer@craworld.com></rkainer@craworld.com>		
Sent:	Monday, November 05, 2012 9:03 AM	NOV 0 5 2012	
To:	Leking, Geoffrey R, EMNRD		
Cc:	Larson, Thomas	DECENTED	
Subject:	Chevron - Vacuum Grayburg San Andres Unit (VGSAU) #250	RECEIVED	
Attachments:	062712 OCD Mtg Minutes VGSAU 250 pit closure.pdf; Chevron	VGSAU 250.pdf	

Mr. Leking,

In reference to the VGSAU #250 pit closure request, extensive research has been performed in providing waste records for this excavated pit. Mr. David Duncan with Environmental Plus was contacted about this project. Mr. Duncan was very familiar with the project, but was unable to produce any manifest/bill of ladings for the waste disposal. CRI waste disposal facility was used for as the disposal facility of this waste and was contacted (Kim Flowers). Mrs. Flowers was able to provide an invoice of the waste, but any remaining waste records are located within storage boxes and will take additional time to produce if available. The invoice is attached along with the meeting minutes of CRA's visit with you on 6/27/12. CRA is asking that the attached invoice be sufficient documentation to prove waste disposal of approximately 2,000 cubic yards occurred within CRI's disposal facility and that backfilling of this pit may commence. Please let me know if we need to provide more detailed information.

On another note, Mr. Tom Larson and myself would like to visit with you one day this week to discuss soil boring locations for the Central Vacuum Unit # 47H. We have identified two soil boring locations and will need OCD approval. Please let me know what day this week works best for you.

Thank you,

Ryan Kainer

Conestoga-Rovers & Associates (CRA)

2135 S Loop 250 West Midland, TX 79703

Phone: 432.686.0086 Cell: 432.301.4056 Email: <u>rkainer@craworld.com</u> www.CRAworld.com Think before you print P Perform every task the safe way, the right way, every time! Crieven VCBAU 280 30-025-38001 4-1-185-3415 110' GW Approved for budgill on 11/7/12 - M&D company C-144 FUR CLOS CHAT

This communication and any accompanying document(s) are confidential and are intended for the sole use of the addressee. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this e-mail and any copies. You are advised that any disclosure, copying, distribution, or the taking of any action in reliance upon the communication without consent is strictly prohibited. Thank you.

HOBBS OCD

RECEIVED

NOV 0 5 2012

	MEETIN	G MIN	UTES R	eference No.	073822
PROJECT:	VGSAU 250 (API #30-025-38001) r	eserve pit	closure		
CLIENT: RE:	Chevron Environmental Management Company	CLIENT	REFERENCE NO	.: 073822	
LOCATION:	New Mexico Oil Conservation Division Office - Hobbs, New Mexico	DATE:	6/27/12	TIME:	1030 am MST

Participants:

Tom Larson - CRA Senior Project Manager	David Pagano - HSE Specialist, Chevron Lovington, NM	Geoffrey Leking - OCD Hobbs, Environmental Engineer	

Distribution:

File	Participants		

Item	Description	Action By
1	This project involves the closure of a reserve pit in which a C-144 was submitted to the OCD on $9/11/07$.	all
2	Site observations indicate that the pit materials and liner were removed from the location (100' x100' x6' deep excavation). Some overexcavation in the area below the former pit may have occurred. OCD is requesting additional information from Chevron that may be available for review: results of any sampling from the pit location in 2007; waste records from when materials were alledgedly hauled to the CRI facility in 2007; and any other data pertinent to the pit closure activities. OCD acknowledges that the data may or may not be readily available - and absence of the all the info may not be a 'deal breaker' in closing out the pit - see #3. Chevron will perforn research to obtain the requested data and contact the OCD in the next few week to get a ruling on proceeding with proposed pit closure activities,	all
3	Three sampling events have been performed at the reserve pit bottom locations (5-spot sample pattern) - two events in 2010 and one event in December 2011. The samples analyzed did not exhibit TPH or BTEX above regulatory levels. One sample location exhibited a chloride concentration of 365 mg/kg in the 2011 event. All other chloride samples analyzed (14) from the excavation floor were below 250 mg/kg.	all

Item	Description	Action By
4	Proposed remediation activites, at this time, do not include the removal of any materiasls from the existing excavation.	
5	Excavation shall be backfilled with imported clean materials (caliche) from approximately 6 feet to 1 foot below grade. A 20 mil liner will be laid over this excavated area and covered with 1-2 foot of topsoil cover.	all
6	Construction affected areas of release site will graded to match surface contours and seeded using mixtures utilized by local agencies such as the BLM, County Ag Agency and/or as directed by property owner	all
7	Site Closure activities will be documented and submitted as a 'Final Report' on OCD Form C-144. Disposal information regarding the removal of pit materials (and underlaying soils) is required to document closure activities on the C-144.	all

Prepared By: Tom Larson

Date Issued: 7/2/12

This confirms and records CRA's interpretation of the discussions which occurred and our understanding reached during this meeting. Unless notified in writing within 7 days of the date issued, we will assume that this recorded interpretation or description is complete and accurate.

Page 2 of 2

HOBBS OCD

RECEIVED

TABLE I SOIL ANALYTICAL SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY VACUUM GRAYBURG SAN ANDRES UNIT #250 (PTT) LEA COUNTY, NEW MEXICO

Chloridan	(GRO/DRO)	(mg/kg) (mg/kg)		100	mg/kg mg/kg	<50.0 <200	NA <200								
TPH (8015B Modified)	GRO (GR	(mg/kg) (n		1	mg/kg n	<2.00	NA								
) HAT	DRO	(mg/kg)	e = 10)	1	mg/kg	<50.0	NA								
Total	BTEX	(mg/kg)	ended Remediation Action Levels (Total Ranking Score = 10)	50	mg/kg	<0.0200	NA								
Total	Xylenes	(mg/kg)	Levels (Total	1	mg/kg	<0.0200	NA								
Ethyl-	Benzene	(mg/kg)	ation Action]	1	mg/kg	<0.0200	NA								
Toluene		(mg/kg)	nded Remedi	1	mg/kg	<0.0200	NA								
Benzene		(mg/kg)	NMOCD Recommer	10	mg/kg	<0.0200	NA								
Samule			NMOC			7/14/10	8/19/10	7/14/10	8/19/10	7/14/10	8/19/10	7/14/10	8/19/10	7/14/10	8/19/10
	Depth (feet)					0-1'	1.5-2'	·1-0	1.5-2'	·I-0	1.5-2'	0-1,	2-2.5'	0-1	1.5-2'
Sample	B					1-HA	T-1	AH-2	T-2	AH-3	T-3	AH-4	T-4	AH-5	T-5

Notes:

1. BTEX analyses by EPA Method 8021B.

2. TPH analyzed by EPA Method 8015B Mod.

3. Chlorides analyzed by SM 4500-Cl B

4. NA - Not Analyzed

5. Bold concentrations above lab reporting limits.

6. Highlighted cells indicated concentrations above regulatory limits

TABLE I SOIL ANALYTICAL SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY VACUUM GRAYBURG SAN ANDRES UNIT #250 (PIT) LEA COUNTY, NEW MEXICO

	Denth	Samule	Renzene	Toluene	Ethyl-	Total	Total	TPH	TPH (8015B Modified)	ified)	
Sample ID	(feet)	Date		AUMONT	Benzene	Xylenes	BTEX	DRO	GRO	(GRO/DRO	Chlorides
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	199	1993 NMOCD Recommended Remediation Action Levels (Total Ranking Score = 20)	commended	I Remediati	on Action Le	evels (Total	Ranking Sco	ore = 20)			
			10	I	1	1	50	1	1	100	250
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2011 NI	MOCD Rec	2011 NMOCD Recommended Reme	emediation	Action Leve	ls (Vertical	Separation F	rom Groun	diation Action Levels (Vertical Separation From Groundwater more than 100')	than 100')		
			0.2	1	1	1	50	T	1	500	1,000
-			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
AH-1	0-1'	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	*<200
T-1	1.5-2'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
VGSAU 250 NW-6"	0.5'	12/21/11	<0.001	<0.001	<0.001	<0.003	<0.003	<1.7	<0.050	<1.7	14
AH-2	0-1,	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-2	1.5-2'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
VGSAU 250 SW-6"	0.5'	12/21/11	<0.001	<0.001	<0.001	<0.003	<0.003	<1.7	<0.050	<1.7	365
AH-3	,I-0	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-3	1.5-2'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
VGSAU 250 Center-6"	0.5'	12/21/11	<0.001	<0.001	<0.001	<0.003	<0.003	12	<050	12	44.5
AH-4	0-1,	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-4	2-2.5'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
VGSAU 250 NE-6"	0.5'	12/21/11	<0.001	<0.001	<0.001	<0.003	<0.003	<1.7	<0.050	<1.7	9.52
AH-5	0-1,	7/14/10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<2.00	<50.0	<200
T-5	1.5-2'	8/19/10	NA	NA	NA	NA	NA	NA	NA	NA	<200
VGSAU 250 SE-6"	0.5'	12/21/11	<0.001	<0.001	<0.001	<0.003	<0.003	5.3	<0.050	5.3	12.6

Notes:


1. BTEX analyses by EPA Method 8021B.

2. TPH analyzed by EPA Method 8015B Mod.

3. Chlorides analyzed by SM 4500-Cl B and EPA 300.0

A. - Not Analyzed
 Bold concentrations above lab reporting limits.

6. Highlighted cells indicated concentrations above regulatory limits

HOBBS OCD

Controlled Recovery, Inc. P.O. Box 388 Hobbs, NM 88241-0388 HOBBS OCD

NOV 0 5 2012

RECEIVED

Invoice

Invoice Number: 039721

Invoice Date: Oct 24, 2007

Page:

Voice: (575) 393-1079 Fax: (575) 393-3615

Sold To: CHEVRON HCR 60 BOX 423 LOVINGTON, NM 88260 Ship to: CHEVRON VGSAU #250

Customer	ID	Customer PO	Payment T	erms
CHEV-BUC	K		Net 30 1	Days
Sales Rep	ID	Shipping Method	Ship Date	Due Date
	SE	E ATTACHED		11/23/07
Quantity	Item	Description	Unit Price	Extension
2,000.00		CONT SOIL PER ATTACHED	16.00	32,000.00

Subtotal	32,000.00
Sales Tax	2,140.00
Total Invoice Amount	34,140.00
Payment/Credit Applied	
TOTAL	34,140.00
	Total Invoice Amount Payment/Credit Applied