

Rennick, Kenneth <krennick@blm.gov> To: Steve Munsell <Steve_Munsell@eogresources.com> Thu, Mar 31, 2016 at 8:35 AM

Good Morning Mr. Steve Munsell,

I assume this conversation on the BOPs for these Thor wells relates to the Ornanna wells?

If you can confirm this, that will be greatly appreciated!

Best Regards,

Kenny Rennick [Quoted text hidden]

Steve Munsell <Steve_Munsell@eogresources.com> To: "Rennick, Kenneth" <krennick@blm.gov> Thu, Mar 31, 2016 at 8:53 AM

Kenneth,

Yes Sir. It will be the same for all four wells.

From: Rennick, Kenneth [mailto:krennick@blm.gov] Sent: Thursday, March 31, 2016 9:36 AM To: Steve Munsell <Steve_Munsell@eogresources.com>

[Quoted text hidden]

[Quoted text hidden]

Rennick, Kenneth <krennick@blm.gov>

Wed, Mar 30, 2016 at 8:58 AM

To: Stan Wagner < Stan Wagner@eogresources.com>

Cc: Bruce Coit <Bruce_Coit@eogresources.com>, Steve Munsell <Steve_Munsell@eogresources.com>

Hello Gentlemen,

I already communicated with Mr. Steve Munsell about the addition of information about centralizers in the notifications. But there is another issue that I identified.

I am reviewing on the 703H, I was doing my calculations and I noticed a 10M BOP & BOPE system is actually required below the intermediate casing. As of now the the Drilling Program only proposes a 5M system.

My calculation follows:

12,520 [Max TVD in Sundry] * (12.00 [Max MW at that Depth in Sundry] /19.25-0.22 [Assumed Gas Gradient]) = 5045.543 > 5000. Therefore BOP & BOPE needs to be rated, as well as tested, to a 10M System.

Because of this, I am requesting EOG to review the BOP and BOPE for this notification to address this issue.

You may also want to check the other wells that you sent notifications for. I just started on the one with the closest spud date.

Best Regards,

Kenny Rennick

[Quoted text hidden]'

Kenneth Rennick

Petroleum Engineer Bureau of Land Management Carlsbad Field Office (575) 234-5964 krennick@blm.gov

Steve Munsell <Steve_Munsell@eogresources.com> Wed, Mar 30, 2016 at 9:27 AM To: "Rennick, Kenneth" <krennick@blm.gov>, Stan Wagner <Stan_Wagner@eogresources.com> Cc: Bruce Coit <Bruce Coit@eogresources.com>

Kenneth,

We will resubmit and change the anticipated mud weight range to 10.0 to 11.5 ppg. Normally we drill these laterals with mud weights ranging from 9.5 to 11.5 ppg. Almost always we get it done with 10.5 ppg or less.

So the 11.5 ppg maximum anticipated MW keeps us below the 5000 psi shut in surface pressure scenario.

I'm very comfortable with this. All of our rigs are equipped with 10,000 psi BOPs and chokes. The only piece of equipment that is not rated for 10,000 psi is the annular BOP.

Also we have all rigs equipped with two sets of pipe rams and one set of blinds (single BOP, mud cross, dual BOP, annular).

Thanks for your help.

>>>Munsell

From: Rennick, Kenneth [mailto:krennick@blm.gov]
Sent: Wednesday, March 30, 2016 9:59 AM
To: Stan Wagner <Stan_Wagner@eogresources.com>
Cc: Bruce Coit <Bruce_Coit@eogresources.com>; Steve Munsell <Steve_Munsell@eogresources.com>
Subject: Re: Sundry NOI - Casing Change - Thor 21 Fed Com 703H & 704H

** External email. Use caution.**

Hello Gentlemen,

[Quoted text hidden] [Quoted text hidden]

1. GEOLOGIC NAME OF SURFACE FORMATION: Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	[.] 783'
Top of Salt	1,138'
Base of Salt / Top Anhydrite	4,843'
Lamar	4,843
Bell Canyon	4,883'
Cherry Canyon	5,763'
Brushy Canyon	7,573'
Bone Spring Lime	9,003'
1 st Bone Spring Sand	10,000'
2 nd Bone Spring Lime	10,360'
2 nd Bone Spring Sand	10,520
3 rd Bone Spring Sand	11,650
Wolfcamp	12,060'
TD	12,280'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400;	Fresh Water
Cherry Canyon	5,763'	Oil
Brushy Canyon	7,573'	Oil
1 st Bone Spring Sand	10,000	Oil
2 nd Bone Spring Lime	10,360,	Oil
2 nd Bone Spring Sand	10,520'	Oil
3 rd Bone Spring Sand	11,650'	Oil
Wolfcamp	12,060	• Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 875' and circulating cement back to surface.

١.

4. CASING PROGRAM - NEW

~/								
Hole		Csg			0	DF _{min}	DF _{min}	DF _{min}
Size	Interval	OD	Weight	Grade	Conn	Collapse	Burst	<u>I ension</u>
14.75"	0 - 875'	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	0-8,000'	7.625"	29.7#	HCP-110	LTC	1.125	1.25	1.60
8.75"	8,000' - 10,900'	7.625"	29.7#	HCP-110	Ultra FJ	1.125	1.25	1.60
6.75"	0'-17,052'	5.5"	23#	HCP-110	ULT SFII	1.125	1.25	1.60

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation. Centralizers will be placed in the 9-7/8" hole interval at least one every third joint.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Depth	No. Sacks	Wt. ppg	Yld Ft ³ /ft	Mix Water Gal/sk	Slurry Description
10-3/4" 875	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl ₂ + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	200	14.8	1.34	6.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
7-5/8" 10,900'	750	9.0	2.50	9.06	Class C + 0.6% ASM-3 + 0.15% CDF-4P + 0.6% LTR + 0.5% SCA-6 + 0.13 pps LCL-11 + 0.13 pps LDP-c-0215
	500	12.5	1.71	9.06	Class C + 0.6% LTR + 0.5% SCA-6 + 0.6% ASM-3 + 0.15% CDF-4P + 0.13% LCL-11 + 0.13% LCF-7
	250	15.6	1.19	5.20	Class H + 0.2% ASM-3 + 0.3% SCA-6 + 0.65% LTR + 0.3% SPC-2
5-1/2" 17,052'	575	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

2.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/250 psig and the annular preventer to 5000/250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/250 psig and the annular preventer to 5000/250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 - 875'	Fresh - Gel	8.6-8.8	28-34	N/c
875' - 10,900'	Brine	8.8-10.0	28-34	N/c
10,900' - 17,052'	Oil Base	10.0-11.5	58-68	3 - 6
Lateral				•

The applicable depths and properties of the drilling fluid systems are as follows.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

3.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 179 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 7343 psig. No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

Orrtanna 20 Fed #701H

220' FSL 950' FWL Section 20 T-26-S, R-33-E Lea County, New Mexico Proposed Wellbore Revised 3/29/16 API: 30-025-42936

KB: 3,248' GL: 3,218'

Lateral: 17,052' MD, 12,280' TVD Upper Most Perf: 330' FSL & 330' FWL Sec. 20 Lower Most Perf: 330' FNL & 330' FWL Sec. 20 BH Location: 230' FNL & 330' FWL Section 20 T-26-S, R-33-E **PERFORMANCE DATA**

TMK UP ULTRATM FJ Technical Data Sheet

7.625 in

29.70 lbs/ft

.

P110 HC - EVRAZ

Tubular Parameters					
Size	7.625	in	Minimum Yield	110.000	psi
Nominal Weight	29.70	lbs/ft	Minumum Tensile	125,000	psi
Grade	10 HC - EVF	SAZ	Yield Load	939,000	sqi
PE Weight	29.04	ths:/ft	Tensile Load	1.067,000	sqI
Wall Thickness	0.375	Ē	Min, Internal Yield Pressure	9.420	bsi
Nominal ID	6.875	<u>u</u>	Collapse Pressure	7.610	psi
Drift Diameter	6.750	<u>2</u> .		,	
Nom, Pipe Body Area	8.541	² rii			
Connection Parameters					
Connection OD	7.625	ŝ			
Connection iD	6 881	S			-4£
Make-Up Loss	4.022	Ē			cJ _Q Phi
Critical Section Area	5.316	117 ²			
Tension Efficiency	62.2	%			¶n() I
Compression Efficiency	. 62.2	%			TA
Yield Load In Tension	584.000	lbs			
Min. Internal Yield Pressure	9.470	psi			
Collapse Pressure	7.610	psi			
Uniaxial Bending	4 **	°/ 100 ft			
Make-Up Torques			<u>.</u>		4
Min Make-Up Torque	17.700	ft-Ibs			
Opt. Make-Up Torque	19, 700	ft-lbs			् इ.स.च्
Max. Make-Up Torque	21,700	ft-lbs			
Yield Torque	31.500	ft-lbs			

R F