1.1.1							OCI	D-HOBBS	5
District J 1625 N. French J Phone: (575) 393 District J	Dr., Hobbs, NM 3-6161 Fax: (5	1 88240 75) 393-0720		Energy	State of N Minerals at	lew Mexico Id Natural R	esources		Form C-101 Revised July 18, 2013
District II 811 S. First St., Phone: (575) 748 District III 1000 Rio Brazos Phone: (505) 334 District IV 1220 S. St. Franc Phone: (505) 476	Artesia, NM 88 - 1283 Fax: (57 Road, Aztec, N -6178 Fax: (50 is Dr., Santa Fe -3460 Fax: (50	210 5) 748-9720 (M 87410 5) 334-6170 2, NM 87505 5) 476-3462	HOBB	S OCD 2 8 2016	Oil Conserv 1220 South S Santa Fe,	ation Divisio St. Francis D NM 87505	n r.	□A	MENDED REPORT
APPLI	CATIC	ON FOR	Operator Nam BC OPERATI	TO DRILL, he and Address NG, INC.	, RE-ENTE	R, DEEPEN	, PLUGBAC	CK, OR ADI	O A ZONE
		6 A - 2	MIDLAND, TX	K 79710	Sec. 2			30-025-24438	
* Prop	erty Code				Property Name PEARSON SWD			° We	ell No.
				² . St	urface Locatio	n			
UL - Lot H	Section 33	Township 21S	Range 33E	Lot Idn H	Feet from 1980	N/S Line NORTH	Feet From 660	E/W Line EAST	County LEA
UL - Lot H	Section 33	Township 21S	Range 33E	Lot Idn H	Feet from 1980	e Location N/S Line NORTH	Feet From 660	E/W Line EAST	County LEA
				^{9.} Po	ol Information	n			
				Pool SW	Name	RY CAN	YON		97003
				Addition	al Well Inform	ation			1 8 25
Wor	k Type E		SWD		13 Cable/Rolary		FEE	¹⁵ Grou	nd Level Elevation 3644'
16. Mi	ultiple		17 Proposed Deptl 6970'	h	18. Formation		¹⁹ Contractor	20	Spud Date
Depth to Grou 300'	nd water		Dist	ance from nearest f	resh water well		Distance	to nearest surface w	vater 4 20 4
]We will be	e using a c	losed-loop	system in lieu	of lined pits			SEE A	TTACHE	DFOR
Tume	Hole	Size	Casing Size	Cosing Wai	sing and Ceme	Satting Danth	Sacharaf		Estimated TOC
FJ4	6.5"	5120	5.5"	17#	guon	7.200	570	ciliciu	SURFACE
-						W. C.			
-	AP	DDN	VE Casi	ng/Cement Pro	gram: Additio	D MANAGEME	S	A 4	
-	-	nu	YLU		CARLSBAD F	IELD OFFICE	121		17
	UL	24	2016 22.	Proposed Blov	wout Preventie	n Program		Awar	X
AN	Type	5.7	1	Working Pressure		Test Press 2000 PSI	sure	CAMERO	DN
			1						
I hereby cer est of my kno further certi 0.15.14.9 (B) gnature:	tify that the wledge and fy that I ha NMAC	information belief. we complie , if applica	n given above is t ed with 19.15.14. ble.	rue and complete t	and/or Approv	OIL (CONSERVAT		DN
2	SARAH PR	ESLEY	-		Titler	01	fall	7 - Petr	oleum Engine
rinted name					Title:	/			
itle: REGULA	TORY ANA	LYST			Annroy	ved Date: 11/	20/16 E.	niration Date:	1/3/18
itle: REGULA		LYST	ERATING.COM	· · ·	Аррго	ved Date: ///	30/16 Exp	piration Date: //	130/18

APD Re-entry and Operations Plan BC Operating, Inc. Pearson SWD #1 Surface: 1980' FNL & 660' FEL, UL "H" Sec. 33-T21S-R33E Lea County, New Mexico

- 1. Geological Surface Formation: Quaternary Alluvium.
- 2. Vertical disposal well

3. TOPS OF IMPORTANT GEOLOGICAL MARKERS: TVD

Surface:	Quaternary All	uvium
Rustler		1480'
Top Salt		1610'
Base Salt		3410'
Yates		3510'
Seven Rivers		3520'
Capitan Reef		3680'
Manzanita		5030'
Lamar		5070'
Bell Canyon		5360'
Cherry Canyon	Target	5730'
Brushy Canyon	Target	7160'
Bone Spring Lin	ne	8500'

4. Estimated Depth of Anticipated/Possible Water, Oil or Gas:

Ogallala	0-300'	Possible fresh Water
Santa Rosa Sandstone	1100'-1275'	Possible fresh waterzone
Bone Springs	8500'	Oil, gas and water

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water will be protected by the casing in place, BC will also be putting a string of 5-1/2" from surface to 7200'. Cement will be circulated to surface.

5. Proposed Casing Program

HOLE SIZE	CASING SIZE	WT./GRADE	COUPLING	SETTING DEPTH
17.5"	13 3/8" (EXISTING)	48# H-40	STC	390'
12.25"	9 5/8" (Existing)	40# K-55, N-80	втс	5035'
8.5″	7 5/8" (Existing)	33.7#, 29.7# S-95, N-80	втс	11,098'
6.5" AND	5 1/2" (NEW)	17# L-80	FJ4	7,200'

MINIMUM SAFETY FACTORS:

BURST 1.125 COLLAPSE 1.125

TENSION 1.8

ALL EXISTING CASING WILL BE PRESSURE TESTED BEFORE MOVING ON, ALL NEW CASING WILL BE API STANDARD.

CEMENT PROGRAM-ALL CEMENT BLENDS WILL BE TESTED TO BLM MINIMUM REQUIREMENTS.

A. 5.5"

NEW PRODUCTION STRING

CEMENT TO SURFACE

LEAD 420 SXS CLASS PRO-ECO C 2.03FT^3/FT 12.5#/GAL. TAIL WITH 120 SXS CLASS H

10% Excess

SPECIFICATIONS FOR PRESSURE CONTROL EQUIPMENT: (EXHIBIT #5)

Prior to commencing work a 2000# Workover BOP will be installed. A Pressure test will be conducted prior to drilling out any cement plugs. BOP controls will be installed prior to drilling under surface casing and will remain in use until completion of drilling operations. BOP's will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and a sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position when the Kelly is not in use, float sub will be available If operations last more than 30 days from 1st test, will test again as per BLM Onshore Oil and Gas order #2.

MUD PROGRAM:

Fresh Water will fresh water gel sweeps to clean the hole

Auxiliary Equipment

A. A Kelly cock will be in the drill string at all times.

B. A full opening drill pipe stabbing valve having the appropriate connections will be on the rig floor at all times

C. Hydrogen Sulfide detection equipment will be in operation before drilling out any cement plugs

TESTING, LOGGING & CORING PROGRAM:

- a. Cased hole Gamma and Cement bond log
- b. Water Analysis on injection interval produced fluid

POTENTIAL HAZARDS:

No significant hazards are expected. Slightly above normal pressure gradient expected. Normal temperature gradient is expected, **estimated pressure gradient of .2 psi/ft (injection well). 1158 psi at 5,790 ft.** Expected temperature at 6,970 TVD is **95 deg F** based on data from area wells. No H₂S is expected, but the operator will utilize a 3rd party H₂S monitoring package from during perforation of injection interval. If H2S is encountered the operator will comply with the provisions of onshore oil and gas order no 6. All personnel will be familiar with all aspects of safe operation of equipment being used to drill this well.

ANTICIPATED STARTING DATE & DURATION:

BC Operating, Inc. anticipates drilling operations to begin around August, 2017 and completed in approximately 45 days. An additional 15 days will be needed for completion activities. Road and location construction will begin after the BLM has approved the APD.

Billy Moore, Operations Engineer BC Operating, Inc. Date

Water Disposal Wells with Fee or State Surface & Fed Minerals

The NMOCD production water disposal Order No. R-14205 is for a proposed project involving private surface & federal mineral rights. In that document the section "IT IS ORDERED THAT:" paragraph (5), division (d) requires that BLM approve the "Applicant's Application for Permit to Drill or Reenter (APD)".

The APD referenced in the order is the one submitted to NMOCD.

While the Operator is not required to file a Federal APD and the operation of the wellbore (completion to abandonment) is to be managed by NMOCD. The OCD Order does require the Operator seek (functionally preferred) prior BLM approval of the NMOCD APD or Recompletion Sundry that will be submitted to NMOCD. The BLM approval of the NMOCD wellbore APD, well completion, and ultimately the plugging procedure will incorporate similar Conditions of Approval that would be applied to any similar wellbore penetrating federal minerals. Other than confirming that the intended mechanical construction meets BLM standards the BLM COA's will stipulate that the formation is to be hydrocarbon unproductive prior to water disposal and is to be accepted as such by BLM.

Compliance with this OCD order will insure federal wellbore standards are adhered to where federal minerals are penetrated. Prior to this OCD stipulation BLM was filing a protest letter for each water disposal well involving split estate, bottlenecking the process.

A summary of the guidance for these procedures (from the March 21, 1989, BLM Information Bulletin No. 89- 192) is offered here:

"If a well is drilled on private or state surface/federal minerals as a disposal well for water not produced on-lease or unit (a commercial water disposal well) it is BLM responsibility to ensure that the disposal does not adversely impact Federal minerals. The Board stated that BLM's permitting authority under section 302(b) of FLPMA is not the appropriate means to protect the mineral resource. The Board stated that such protection can be achieved through coordination and cooperation with the Environmental Protection Agency or the State primacy Agency with underground injection program responsibility. The solicitors opinion provides the following:

In sum, the BLM has no authority over salt water disposal on a tract of land with a Federal mineral reservation from another tract where the mineral estate is not producing nor will the disposal aid in production on the tract where the disposal well is located. Conversely, if disposal on a tract of land with a federal mineral reservation will aid in production from that tract, or if secondary and tertiary recovery methods will aid in production of oil and gas from that tract, then BLM and its lessee have complete authority over such uses and not the surface owner."

_WB Rcd (5.06 Ongard-01 2524438 P&A'd

_WB Rcd (5.06 Pearson-01 2524438 ReEntr APD

133/8	surface	csg in a	17 1/2	inch hole.	, 10 ANNO 10 ANNO 10 AN	Design	Factors	SUF	RFACE
Segment	#/ft	G	rade	Coupling	Joint	Collapse	Burst	Length	Weight
"A"	48.00	Н	40	ST&C	17.2	4.42	0.66	390	18,720
w/8.4#/g mu	id, 30min Sfc	Csg Test psig:	1,041	Tail Cmt	does	circ to sfc.	Totals:	390	18,720
Compari	son of Pr	roposed to	o Minimum	Required (Cement Vo	olumes			
Hole	Annular	Proposed	CuFt Cmt	Min	Excess	Drilling	Calc	Req'd	Min Dis
Size	Volume	Sx Cmt	Proposed	Cu Ft	% Cmt	Mud Wt	MASP	BOPE	Hole-Cpl
17 1/2	0.6946	200	268	292	-8	8.60	1508	2M	1.56
,									-
95/8	casing in	side the	13 378	casing		Design Fa	ctore	INTER	MEDIATE
Segment	#/ft	Gi	rade	Counling.	loint	Collanse	Buret	Length	Weigh
"Δ"	40.00	GI	55	ST&C	2.24	0.08	0.70	5.035	201 40
w/8 A#/a mu	d 30min Sfc	Cog Test noig:	568	JIAU	2.24	0.90	Totals	5,035	201,40
w/o.4#/g IIIu	iu, somm sic	csg rest psig.	500				rotais.	0,000	201,40
The cem	nent volum	ne(s) propo	sed may ac	hieve a top	0	feet from s	urface.		
Hole	Annular	Proposed	CuFt Cmt	Min	Excess	Drilling	Calc	Rea'd	Min Dis
Size	Volume	Sx Cmt	Proposed	Cu Ft	DVT Cmt	Mud Wt	MASP	BOPE	Hole-Co
12 1/4	0.3132	2100	3539	1620	OK	10.00	3208	5M	0.81
		PROPERTY AND A STATE				Accuration and a second state		over data synthesis and the second	14
		1997 IF JOHN IF JOHN .							
7 578	casing in	nside the	95/8			Design Fa	ctors	ÎNTERN	MEDIATE
7 578 Segment	casing ir #/ft	iside the Gi	9 5/8 ade	Coupling	Joint	Design Fac Collapse	<u>ctors</u> Burst	INTERN Length	MEDIATE Weigh
7 5/8 Segment "A"	casing in #/ft 42.80	nside the Gr N	95/8 ade 80	Coupling VAM FJL	Joint 2.12	Design Fac Collapse 4.29	ctors Burst 1.83	INTERN Length 4,945	MEDIATE Weigh 211,64
7 578 Segment "A" "B"	casing in #/ft 42.80 26.40	nside the Gr N N	95/8 ade 80 80	Coupling VAM FJL HD-L	Joint 2.12 2.13	Design Far Collapse 4.29 0.77	<u>ctors</u> Burst 1.83 1.07	INTERN Length 4,945 3,697	MEDIATE Weigh 211,64 97,601
7 578 Segment "A" "B" "C"	casing in #/ft 42.80 26.40 29.70	nside the Gr N N N	95/8 ade 80 80 80 80	Coupling VAM FJL HD-L HD-L	Joint 2.12 2.13 6.00	Design Fac Collapse 4.29 0.77 0.85	ctors Burst 1.83 1.07 1.22	INTERN Length 4,945 3,697 2,456	MEDIATE Weigh 211,64 97,601 72,943
7 5/8 Segment "A" "B" "C" w/8.4#/g mu	casing in #/ft 42.80 26.40 29.70 rd, 30min Sfc	nside the Gi N N Csg Test psig:	95/8 ade 80 80 80 -20	Coupling VAM FJL HD-L HD-L	Joint 2.12 2.13 6.00	Design Fac Collapse 4.29 0.77 0.85	ctors Burst 1.83 1.07 1.22 Totals:	INTERN Length 4,945 3,697 2,456 11,098	MEDIATE Weigh 211,644 97,601 72,943 382,190
7 5/8 Segment "A" "B" "C" w/8.4#/g mu	casing in #/ft 42.80 26.40 29.70 ad, 30min Sfc	nside the Gr N N Csg Test psig:	95/8 ade 80 80 80 -20	Coupling VAM FJL HD-L HD-L	Joint 2.12 2.13 6.00	Design Far Collapse 4.29 0.77 0.85	ctors Burst 1.83 1.07 1.22 Totals:	INTERN Length 4,945 3,697 2,456 11,098	MEDIATE Weigh 211,644 97,601 72,943 382,190
7 5/8 Segment "A" "B" "C" w/8.4#/g mu The cem	casing in #/ft 42.80 26.40 29.70 d, 30min Sfc	nside the Gr N N Csg Test psig: ne(s) propo	95/8 ade 80 80 80 -20 sed may acl	Coupling VAM FJL HD-L HD-L	Joint 2.12 2.13 6.00	Design Far Collapse 4.29 0.77 0.85	Etors Burst 1.83 1.07 1.22 Totals:	INTERN Length 4,945 3,697 2,456 11,098	MEDIATE Weigh 211,64/ 97,601 72,943 382,190
7 5/8 Segment "A" "C" w/8.4#/g mu The cem Hole	casing in #/ft 42.80 26.40 29.70 ad, 30min Sfc nent volum Annular	nside the Gr N N Csg Test psig: ne(s) propo Proposed	95/8 ade 80 80 80 -20 sed may act CuFt Cmt	Coupling VAM FJL HD-L HD-L	Joint 2.12 2.13 6.00 <u>Q</u> Excess	Design Fac Collapse 4.29 0.77 0.85 feet from su Drilling	ctors Burst 1.83 1.07 1.22 Totals: urface. Calc	INTERN Length 4,945 3,697 2,456 11,098 Req'd	MEDIATE Weigh 211,644 97,601 72,943 382,190 Min Dis
7 5/8 Segment "A" "C" w/8.4#/g mu The cem Hole Size	casing in #/ft 42.80 26.40 29.70 ad, 30min Sfc Annular Volume	nside the Gr N N Csg Test psig: ne(s) propo Proposed Sx Cmt	9 5/8 ade 80 80 80 -20 sed may acl CuFt Cmt Proposed	Coupling VAM FJL HD-L HD-L hieve a top Min Cu Ft	Joint 2.12 2.13 6.00 <u>Q</u> Excess % Cmt	Design Fac Collapse 4.29 0.77 0.85 <u>feet from su</u> Drilling Mud Wt	ctors Burst 1.83 1.07 1.22 Totals: urface. Calc MASP	INTERN Length 4,945 3,697 2,456 11,098 Req'd BOPE	MEDIATE Weigh 211,644 97,601 72,943 382,190 Min Diss Hole-Cpl
7 5/8 Segment "A" "C" w/8.4#/g mu Mole Size 8 1/2	casing in #/ft 42.80 26.40 29.70 ad, 30min Sfc hent volume 0.0770	nside the Gr N N Csg Test psig: ne(s) propo Proposed Sx Cmt 575	9 5/8 ade 80 80 -20 sed may ac CuFt Cmt Proposed 904	Coupling VAM FJL HD-L HD-L Min Cu Ft 1025	Joint 2.12 2.13 6.00 <u>0</u> Excess % Cmt -12	Design Fac Collapse 4.29 0.77 0.85 feet from su Drilling Mud Wt 9.80	<u>ctors</u> Burst 1.83 1.07 1.22 Totals: urface. Calc MASP 1782	INTERM Length 4,945 3,697 2,456 11,098 Req'd BOPE 2M	MEDIATE Weigh 211,644 97,601 72,943 382,190 Min Dist Hole-Cpl 0.44
7 5/8 Segment "A" "C" w/8.4#/g mu <u>The cem</u> Hole Size 8 1/2	casing in #/ft 42.80 26.40 29.70 ad, 30min Sfc ent volum Annular Volume 0.0770	nside the Gr N N Csg Test psig: ne(s) propo Proposed Sx Cmt 575	9 5/8 ade 80 80 -20 sed may acl CuFt Cmt Proposed 904	Coupling VAM FJL HD-L HD-L hieve a top Min Cu Ft 1025	Joint 2.12 2.13 6.00 <u>Q</u> Excess % Cmt -12	Design Far Collapse 4.29 0.77 0.85 feet from su Drilling Mud Wt 9.80	ctors Burst 1.83 1.07 1.22 Totals: urface. Calc MASP 1782	INTERM Length 4,945 3,697 2,456 11,098 Req'd BOPE 2M	MEDIATE Weigh 211,64/ 97,601 72,943 382,190 Min Dist Hole-Cpl 0.44
7 5/8 Segment "A" "C" w/8.4#/g mu <u>The cem</u> Hole Size 8 1/2	casing in #/ft 42.80 26.40 29.70 ad, 30min Sfc ent volum Annular Volume 0.0770	nside the Gr N N Csg Test psig: ne(s) propo Proposed Sx Cmt 575	9 5/8 ade 80 80 80 -20 sed may acl CuFt Cmt Proposed 904	Coupling VAM FJL HD-L HD-L hieve a top Min Cu Ft 1025	Joint 2.12 2.13 6.00 <u>Q</u> Excess % Cmt -12	Design Fac Collapse 4.29 0.77 0.85 feet from su Drilling Mud Wt 9.80	ctors Burst 1.83 1.07 1.22 Totals: urface. Calc MASP 1782	INTERN Length 4,945 3,697 2,456 11,098 Req'd BOPE 2M	MEDIATE Weight 211,644 97,601 72,943 382,190 Min Dist Hole-Cpl 0.44
7 5/8 Segment "A" "C" w/8.4#/g mu <u>The cem</u> Hole Size 8 1/2	casing in #/ft 42.80 29.70 ad, 30min Sfc Ment volume Annular Volume 0.0770	nside the Gr N N Csg Test psig: ne(s) propo Proposed Sx Cmt 575	95/8 ade 80 80 -20 sed may ac CuFt Cmt Proposed 904 Tail cm	Coupling VAM FJL HD-L HD-L hieve a top Min Cu Ft 1025	Joint 2.12 2.13 6.00 <u>0</u> Excess % Cmt -12 for the csg	Design Fac Collapse 4.29 0.77 0.85 feet from su Drilling Mud Wt 9.80 below could	ctors Burst 1.83 1.07 1.22 Totals: urface. Calc MASP 1782	INTERN Length 4,945 3,697 2,456 11,098 Req'd BOPE 2M	MEDIATE Weigh 211,640 97,601 72,943 382,190 Min Disl Hole-Cpl 0.44
7 5/8 Segment "A" "C" w/8.4#/g mu The cem Hole Size 8 1/2 5 1/2	casing in #/ft 42.80 29.70 ad, 30min Sfc Ment volume 0.0770 casing in #/ft	nside the Gr N N Csg Test psig: ne(s) propo Proposed Sx Cmt 575	9 5/8 ade 80 80 -20 sed may acl CuFt Cmt Proposed 904 Tail cm 7 5/8	Coupling VAM FJL HD-L HD-L Min Cu Ft 1025	Joint 2.12 2.13 6.00 <u>Q</u> Excess % Cmt -12 for the csg	Design Fac Collapse 4.29 0.77 0.85 feet from su Drilling Mud Wt 9.80 below could Design I	ctors Burst 1.83 1.07 1.22 Totals: urface. Calc MASP 1782	INTERN Length 4,945 3,697 2,456 11,098 Req'd BOPE 2M e previous PROD	MEDIATE Weight 211,644 97,601 72,943 382,190 Min Dist Hole-Cpl 0.44
7 5/8 Segment "A" "C" w/8.4#/g mu <u>The cem</u> Hole Size 8 1/2 5 1/2 Segment "A"	casing in #/ft 42.80 26.40 29.70 ad, 30min Sfc ment volume 0.0770 casing in #/ft 17.00	nside the Gr N N Csg Test psig: ne(s) proposed Sx Cmt 575 side the Gr	95/8 ade 80 80 -20 <u>sed may acl</u> CuFt Cmt Proposed 904 Tail cm 75/8 ade 80	Coupling VAM FJL HD-L HD-L Min Cu Ft 1025	Joint 2.12 2.13 6.00 <u>Q</u> Excess % Cmt -12 for the csg	Design Fac Collapse 4.29 0.77 0.85 feet from su Drilling Mud Wt 9.80 below could Design I Collapse 1.87	ctors Burst 1.83 1.07 1.22 Totals: Inface. Calc MASP 1782 Overlap th actors Burst 2.30	INTERN Length 4,945 3,697 2,456 11,098 Req'd BOPE 2M e previous PROD Length 7 200	MEDIATE Weight 211,640 97,601 72,943 382,190 Min Dist Hole-Cpl 0.44 s csg shou UCTION Weight 122,400
7 5/8 Segment "A" "B" "C" w/8.4#/g mu <u>The cem</u> Hole Size 8 1/2 5 1/2 Segment "A" w/8.4#/g mu	casing in #/ft 42.80 26.40 29.70 ad, 30min Sfc ment volume 0.0770 casing in #/ft 17.00 d 30min Sfc	nside the Gr N N Csg Test psig: ne(s) proposed Sx Cmt 575 side the Gr L	9 5/8 ade 80 80 -20 sed may acl CuFt Cmt Proposed 904 Tail cm 7 5/8 ade 80 1 584	Coupling VAM FJL HD-L HD-L Min Cu Ft 1025 t proposed Coupling FJ-4*	Joint 2.12 2.13 6.00 <u>Q</u> Excess % Cmt -12 for the csg Joint 1.71	Design Fac Collapse 4.29 0.77 0.85 feet from su Drilling Mud Wt 9.80 below could Design I Collapse 1.87	ctors Burst 1.83 1.07 1.22 Totals: Inface. Calc MASP 1782 Overlap th actors Burst 2.30 Totals:	INTERN Length 4,945 3,697 2,456 11,098 Req'd BOPE 2M e previous PROD Length 7,200 7,200	MEDIATE Weight 211,64(97,601 72,943 382,190 Min Dist Hole-Cpl 0.44 s csg shou UCTION Weight 122,400 122,400
7 5/8 Segment "A" "B" "C" w/8.4#/g mu <u>The cem</u> Hole Size 8 1/2 5 1/2 Segment "A" w/8.4#/g mu	casing in #/ft 42.80 26.40 29.70 ad, 30min Sfc ment volume 0.0770 casing in #/ft 17.00 d, 30min Sfc	nside the Gr N N Csg Test psig: ne(s) proposed Sx Cmt 575 nside the Gr L Csg Test psig:	9 5/8 ade 80 80 80 -20 sed may acl CuFt Cmt Proposed 904 Tail cm 7 5/8 ade 80 1,584	Coupling VAM FJL HD-L HD-L hieve a top Min Cu Ft 1025 to proposed Coupling FJ-4*	Joint 2.12 2.13 6.00 <u>Q</u> Excess % Cmt -12 for the csg Joint 1.71	Design Fac Collapse 4.29 0.77 0.85 feet from su Drilling Mud Wt 9.80 below could Design I Collapse 1.87	ctors Burst 1.83 1.07 1.22 Totals: Calc MASP 1782 doverlap th actors Burst 2.30 Totals:	INTERN Length 4,945 3,697 2,456 11,098 Req'd BOPE 2M e previous PROD Length 7,200 7,200	MEDIATE Weigh 211,644 97,601 72,943 382,190 Min Dis Hole-Cpl 0.44 S csg sho UCTION Weigh 122,400 122,400
7 5/8 Segment "A" "B" "C" w/8.4#/g mu The cem Hole Size 8 1/2 5 1/2 Segment "A" w/8.4#/g mu The cem	casing in #/ft 42.80 26.40 29.70 ad, 30min Sfc ment volume 0.0770 casing in #/ft 17.00 d, 30min Sfc	nside the Gr N N Csg Test psig: ne(s) propo Proposed Sx Cmt 575 nside the Gr L Csg Test psig: ne(s) propo	95/8 ade 80 80 80 -20 sed may acl CuFt Cmt Proposed 904 Tail cm 75/8 ade 80 1,584 sed may acl	Coupling VAM FJL HD-L HD-L hieve a top Min Cu Ft 1025 tt proposed Coupling FJ-4*	Joint 2.12 2.13 6.00 <u>0</u> Excess % Cmt -12 for the csg Joint 1.71 3898	Design Fac Collapse 4.29 0.77 0.85 feet from su Drilling Mud Wt 9.80 below could Design I Collapse 1.87 feet from su	ctors Burst 1.83 1.07 1.22 Totals: Inface. Calc MASP 1782 Overlap th actors Burst 2.30 Totals:	INTERN Length 4,945 3,697 2,456 11,098 Req'd BOPE 2M e previous PROD Length 7,200 7,200	MEDIATE Weigh 211,64 97,601 72,943 382,19 Min Dis Hole-Cpi 0.44 Scsg sho UCTION Weigh 122,400
7 5/8 Segment "A" "B" "C" w/8.4#/g mu <u>The cem</u> Hole Size 8 1/2 5 1/2 Segment "A" w/8.4#/g mu <u>The cem</u> Hole	casing in #/ft 42.80 26.40 29.70 ad, 30min Sfc ment volume 0.0770 casing in #/ft 17.00 d, 30min Sfc annular	nside the Gr N N Csg Test psig: ne(s) propo Proposed Sx Cmt 575 nside the Gr L Csg Test psig: ne(s) propo Proposed	95/8 ade 80 80 80 -20 Sed may acl CuFt Cmt Proposed 904 Tail cm 75/8 ade 80 1,584 Sed may acl CuFt Cmt	Coupling VAM FJL HD-L HD-L hieve a top Min Cu Ft 1025 ti proposed Coupling FJ-4*	Joint 2.12 2.13 6.00 Excess % Cmt -12 for the csg Joint 1.71 3898 Excess	Design Fac Collapse 4.29 0.77 0.85 feet from su Drilling Mud Wt 9.80 below could Design I Collapse 1.87 feet from su Drilling	ctors Burst 1.83 1.07 1.22 Totals: Inface. Calc MASP 1782 Overlap th actors Burst 2.30 Totals:	INTERN Length 4,945 3,697 2,456 11,098 Req'd BOPE 2M e previous PRODI Length 7,200 7,200	MEDIATE Weight 211,644 97,601 72,943 382,190 Min Dist Hole-Cpl 0.44 Scsg shou UCTION Weight 122,400 122,400
7 5/8 Segment "A" "C" w/8.4#/g mu The cem Hole Size 8 1/2 5 1/2 Segment "A" w/8.4#/g mu <u>The cem</u> Hole Size	casing in #/ft 42.80 26.40 29.70 ad, 30min Sfc ment volume 0.0770 casing in #/ft 17.00 d, 30min Sfc annular Volume	nside the Gr N N Csg Test psig: ne(s) propo Proposed Sx Cmt 575 nside the Gr L Csg Test psig: ne(s) propo Proposed Sx Cmt	95/8 ade 80 80 80 -20 sed may acl CuFt Cmt Proposed 904 Tail cm 75/8 ade 80 1,584 sed may acl CuFt Cmt Proposed	Coupling VAM FJL HD-L HD-L hieve a top Min Cu Ft 1025 ti proposed Coupling FJ-4*	Joint 2.12 2.13 6.00 <u>Q</u> Excess % Cmt -12 for the csg Joint 1.71 <u>3898</u> Excess % Cmt	Design Fac Collapse 4.29 0.77 0.85 feet from su Drilling Mud Wt 9.80 below could Design I Collapse 1.87 feet from su Drilling Mud Wt	ctors Burst 1.83 1.07 1.22 Totals: Inface. Calc MASP 1782 I overlap th actors Burst 2.30 Totals: I otals:	INTERN Length 4,945 3,697 2,456 11,098 Req'd BOPE 2M e previous PROD Length 7,200 7,200 7,200	MEDIATE Weight 211,644 97,601 72,943 382,190 Min Dist Hole-Cpl 0.44 s csg shou UCTION Weight 122,400 122,400 Min Dist Hole-Cpl

Reentry Conditions of Approval

BC Operating, Inc. Pearson - 01, API 3002524438 T21S-R33E, Sec 33, 1980FNL & 660FEL September 24, 2016

- 1. Operator is required to have BLM approved NOI procedure with applicable conditions of approval on location during workover operations.
- 2. Surface disturbance beyond the existing pad shall have prior approval.
- 3. A closed loop system is required. The operator shall properly dispose of drilling/circulating contents at an authorized disposal site. Tanks are required for all operations, no excavated pits.
- 4. Functional H₂S monitoring equipment shall be on location.
- 5. 5000 (5M) Blow Out Prevention Equipment to be used. All BOPE and workover procedures shall establish fail safe well control. Blind ram(s) and pipe ram(s) designed to close on all workstring diameters used is required equipment. A manual BOP closure system (hand wheels) shall be available for use regardless of BOP design. Function test the installed BOPE to 500psig when well conditions allow. Related equipment, (choke manifolds, kill trucks, gas vent or flare lines, etc.) shall be employed when needed for reasonable well control requirements.
- 6. All waste (i.e. trash, salts, chemicals, sewage, gray water, etc.) created as a result of work over operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.
- 7. Notify BLM as work begins. Procedures to be witnessed. Notify <u>pswartz@blm.gov</u>, 575-200-7902 24 hours prior.
- 8. Drill out all P&A cement plugs above 9,000ft. Tag and report to BLM if the 7 5/8" PBTD above the 5" 19.5# drill pipe liner top is below 9377. Pressure the 7 5/8" csg to the PBTD with 500psig and establish an injection rate. Evaluate the results and take necessary correction steps to insure the cementing success of the proposed 5 ½" csg.
- 9. Set a Class "H" mixed 16.4#/gal, 1.06ft³/sx, 4.3gal/sx water cmt plug from 8800 across the Bone Spring formation top of 8750. WOC & tag the plug with tbg at 8600 or above.

- 10. Set a Class "H" mixed 16.4#/gal, 1.06ft³/sx, 4.3gal/sx water cmt plug from 7470. WOC & tag the plug with tbg at 7270 or above.
- 11. Provide BLM with an electronic copy cement bond log record of the 7 5/8" csg from 7200 to 2800 (above the Capitan Reef) taken with 0psig casing pressure. The CBL is to be submitted to NMOCD or attached a <u>pswartz@blm.gov</u> email.
- 12. Provide BLM with an electronic copy cement bond log record of the proposed 5 ¹/₂²" csg to be set from 7200 to surface taken with 0psig casing pressure. The CBL is to be submitted to NMOCD or attached a <u>pswartz@blm.gov</u> email.
- 13. The well is considered a commercial hydrocarbon producer until proven otherwise. Provide statements with evidence that paying quantities of hydrocarbons are not produced when the well has a pumped off fluid level. A copy of the well's mudlog, and an estimated insitu water salinity based on copies of open hole logs may be offered as evidence.
- 14. A minimum of 1000 barrels is to be withdrawn from the proposed disposal formation after any recent stimulation load volumes have been recovered. Reports of ten samples from the last 200bbls analyzed for hydrocarbons and insitu salinity by a reputable laboratory. BLM agreement is to be obtained prior to the well is utilized as a disposal well.
- 15. The swabbing procedure is to be witnessed by BLM. Notify <u>pswartz@blm.gov</u>, 575-200-7902 24 hours prior to taking the 10 samples of paragraph 14.
- 16. Approval is granted for disposal of water produced from the lease, communitization, or unit agreement of this well only. Disposal fluid from another operator, lease, communitization, or unit agreement require surface right-of-way agreement **approvals** and authorization from the surface owner.
- 17. File NMOCD intermediate **subsequent sundry** within 30 days of any interrupted workover procedures and a complete (dated daily) workover subsequent sundry.
- 18. Submit a NMOCD Recompletion Report within 30 days of the date all BLM approved procedures are complete. Include formation tops on every well Recompletion Report. The operator shall provide to the BLM their formation depth picks based on mud log and geophysical logs along with a copies of the mud log and open-hole logs.
- 19. An inactive/shut-in well bore is a non-producing completion that is capable of "beneficial use" i.e. production in paying quantities or of service use.
- 20. Should active production water disposal for this well not be maintained for more than 90 consecutive days, submit for NMOCD &BLM approval a plan for restoration or plug and abandonment.

Well with a Packer – Operations

- 1) Compliance with the NMOCD Administrative Order is required.
 - a) Approved injection pressure compliance is required.
 - b) If injection pressure exceeds the approved pressure you are required to reduce that pressure and notify the NMOCD within 24 hours.
 - c) When injection pressure is within 50 psig of the maximum pressure, install automation equipment that will prevent exceeding that maximum. Submit a subsequent report describing the installed automation equipment within 30 days.
- Stimulation injection pressures are not to exceed NMOCD permitted wellhead pressure or 50psig below the well's frac pressure established by a NMOCD/BLM approved step rate test for Class II water injection wells.
- The casing/tubing annulus is required to be monitored for communication with injection fluid or loss of casing integrity. A BLM inspector may request verification of a full annular fluid level at any time.
- 4) Maintain the annulus full of packer fluid at atmospheric pressure. Installation of equipment that will display continuous open to the air packer fluid level above the casing vent is required for this disposal well.
- Notify the BLM's authorized officer ("Paul R. Swartz" <<u>pswartz@blm.gov></u>, cell phone 575-200-7902) <u>before injection begins</u> to arrange for approval of the annular monitoring system.
- 6) Class II (production water disposal) wells will not be permitted Stimulation Pressures or "Injectivity Tests" that exceed the NMOCD/BLM generic frac pressure which is: .2 x ft depth to the topmost injection or 50psig below the frac point as clearly indicated by a BLM accepted "Step Rate Test". Initial wellhead pressure through tubing with an ID greater than 2 ¹/₂" is reduced to 0.18 x the depth of the top perforation.
- 7) BLM notification of application for increased disposal wellhead pressure is required prior to running a "Step Rate Test".
- 8) The SRT is to be conducted per BLM specifications developed from United States Environmental Protection Agency guidance. An injectivity test ran to determine the disposal rate at an NMOCD/BLM accepted wellhead pressure requires no BLM notification.
- 9) The subsequent report is to include all stimulation injection pressures. Report maximum/minimum injection rate (bpm) and max/min stimulation injection pressures (psig).