Casing Assumptions and Load Cases

Surface

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Surface Casing Burst Design				
Load Case	External Pressure	Internal Pressure		
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi		
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section		
Displace to Gas	Formation Pore Pressure	Dry gas from next casing point		

Surface Casing Collapse Design					
Load Case	External Pressure	Internal Pressure			
Full Evacuation	Water gradient in cement, mud above TOC	None			
Cementing	Wet cement weight	Water (8.33ppg)			

Surface Casing Tension Design				
Load Case	Assumptions			
Overpull	100kips			
Runing in hole	3 ft/s			
Service Loads	N/A			

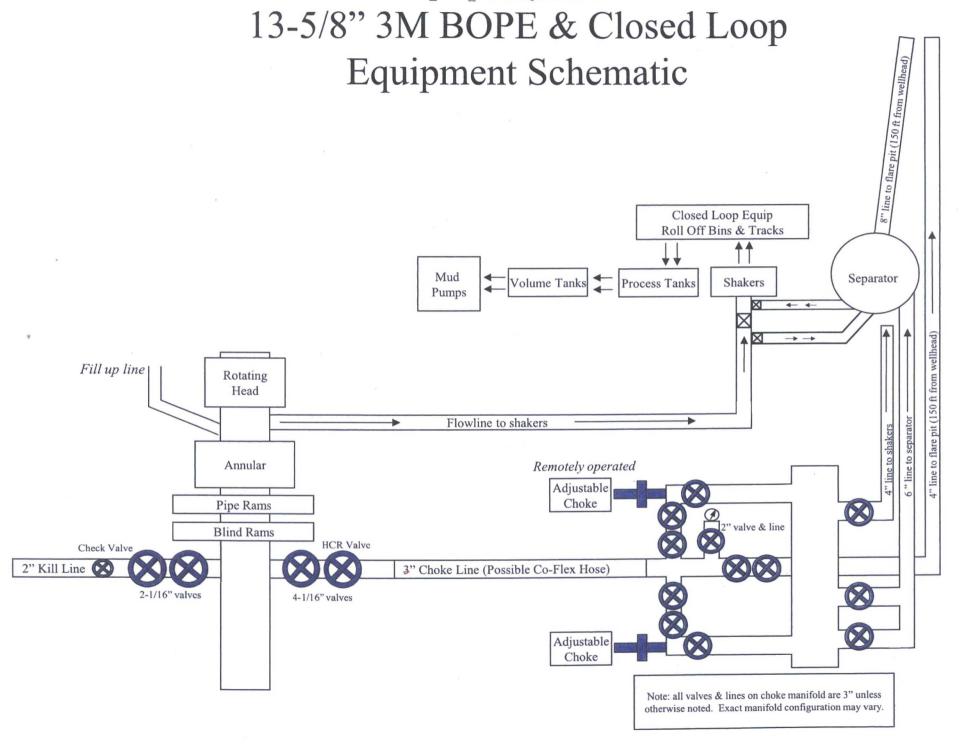
Casing Assumptions and Load Cases

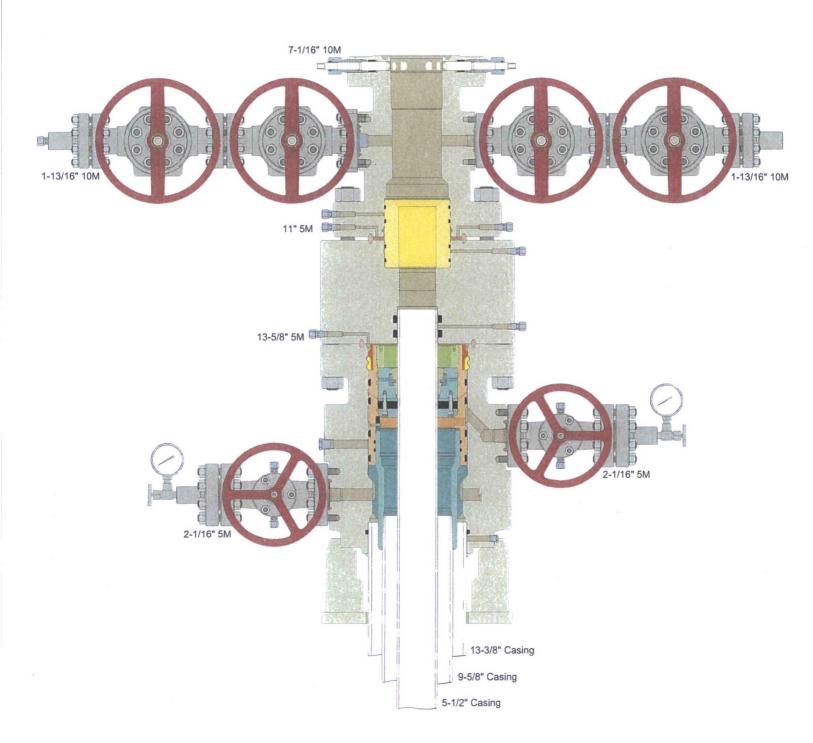
Intermediate

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Intermediate Casing Burst Design				
Load Case	External Pressure	Internal Pressure		
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi		
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section		
Fracture @ Shoe	Formation Pore Pressure	Dry gas		

Intermediate Casing Collapse Design						
Load Case External Pressure Internal Pressure						
Full Evacuation	Water gradient in cement, mud above TOC	None				
Cementing	Wet cement weight	Water (8.33ppg)				


Intermediate Casing Tension Design				
Load Case	Assumptions			
Overpull	100kips			
Runing in hole	2 ft/s			
Service Loads	N/A			


All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Production Casing Burst Design				
Load Case	External Pressure	Internal Pressure		
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced		
		water) + test psi		
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below		
		surface 8.6 ppg packer fluid		
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest		
		frac fluid		

Production Casing Collapse Design						
Load Case External Pressure Internal Pressure						
Full Evacuation	Water gradient in cement, mud	None				
	above TOC.					
Cementing	Wet cement weight	Water (8.33ppg)				

Production Casing Tension Design				
Load Case	Assumptions			
Overpull	100kips			
Runing in hole	2 ft/s			
Service Loads	N/A			

R16 212

PHOENIX

OUALITY DOCUMENT

PHOENIX RUBBER
INDUSTRIAL LTD.

6728 Szeged, Budapesti út 10. Hungary • H-6701 Szeged, P. O. Box 152 none: (3662) 566-737 • Fax: (3662) 566-738

SALES & MARKETING: H-1092 Budapest, Ráday u. 42-44. Hungary • H-1440 Budapest, P. O. Box 26
Phone: (361) 456-4200 • Fax: (361) 217-2972, 456-4273 • www.taurusemerge.hu

QUAL INSPECTION	ITY CONTR		ATE		CERT. N	0.	552	
PURCHASER:	Phoenix Beat	tie Co.	,***,4,5,15,16,16		P.O. Nº	1519	9FA-871	
PHOENIX RUBBER order No-	170466	HOSE TYPE:	3"	ID ·	Cho	ke and Kil	l Hose	
HOSE SERIAL Nº	34128	NOMINAL / AC	TUAL LEN	IGTH:		11,43 m		
W.P. 68,96 MPa 1	0000 psi	T.P. 103,4	MPa	1500	0 psi	Duration:	60	min.
Pressure test with water at ambient temperature ↑ 10 mm = 10 Min. → 10 mm = 25 MPa		achment. (1	page)					the constraint
		COUPLI	NGS					
Type 3" coupling with		Serial N°	-		Quality		Heat N°	
4 1/16" Flange end		20 719			ISI 4130 ISI 4130		C7626	
					;			•
All metal parts are flawless WE CERTIFY THAT THE ABOVE PRESSURE TESTED AS ABOVE				eratur	e rate:"[OF THE ORD	ER AND
Date: 29. April. 2002.	Inspector		Quality	Contraction (HOE HOSE	NIX RUE lustrial Lt. Inspection	d.	in'

Fluid Technology

ContiTech Beattie Corp. Website: www.contitechbeattie.com

Monday, June 14, 2010

RE:

Drilling & Production Hoses Lifting & Safety Equipment

To Helmerich & Payne,

A Continental ContiTech hose assembly can perform as intended and suitable for the application regardless of whether the hose is secured or unsecured in its configuration. As a manufacturer of High Pressure Hose Assemblies for use in Drilling & Production, we do offer the corresponding lifting and safety equipment, this has the added benefit of easing the lifting and handling of each hose assembly whilst affording hose longevity by ensuring correct handling methods and procedures as well as securing the hose in the unlikely event of a failure; but in no way does the lifting and safety equipment affect the performance of the hoses providing the hoses have been handled and installed correctly it is good practice to use lifting & safety equipment but not mandatory

Should you have any questions or require any additional information/clarifications then please do not hesitate to contact us.

ContiTech Beattie is part of the Continental AG Corporation and can offer the full support resources associated with a global organization.

Best regards,

Robin Hodgson Sales Manager ContiTech Beattie Corp

ContiTech Beattle Corp, 11535 Brittmoore Park Drive, Houston, TX 77041 Phone: +1 (832) 327-0141 Fax: +1 (832) 327-0148 www.contitechbeattle.com

> VERIFIED TRUE CO. PHOENIX RUBBER & C.

A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi.

- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 3M, as shown on the attached schematic.
 Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running the 13-3/8" surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 3M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 3,000 psi high pressure test. The 3,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

After running the 9-5/8' intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 3M will already be installed on the wellhead.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 3,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.